
IEEE	Copyright	Notice	
Copyright	(c)	2019	IEEE	
Personal	use	of	this	material	is	permitted.	Permission	from	IEEE	must	be	obtained	for	all	
other	uses,	in	any	current	or	future	media,	including	reprinting/republishing	this	material	
for	advertising	or	promotional	purposes,	creating	new	collective	works,	for	resale	or	
redistribution	to	servers	or	lists,	or	reuse	of	any	copyrighted	component	of	this	work	in	
other	works.	

Published	in:	Proceedings	of	ACM/IEEE	37th	International	Conference	on	
Software	Engineering	(ICSE'15),	May	2015	

	

Symbolic Model Checking of Product-Line Requirements Using SAT-Based
Methods

Cite as:

BibTex:

DOI: https://doi.org/10.1109/ICSE.2015.40

S.	Ben-David,	B.	Sterin,	J.	M.	Atlee	and	S.	Beidu,	"Symbolic	Model	Checking	of	
Product-Line	Requirements	Using	SAT-Based	Methods,"	2015	IEEE/ACM	37th	
IEEE	International	Conference	on	Software	Engineering,	Florence,	2015,	pp.	189-199.

@INPROCEEDINGS{7194573,		
author={S.	{Ben-David}	and	B.	{Sterin}	and	J.	M.	{Atlee}	and	S.	{Beidu}},		
booktitle={2015	IEEE/ACM	37th	IEEE	International	Conference	on	Software	
Engineering},		
title={Symbolic	Model	Checking	of	Product-Line	Requirements	Using	SAT-
Based	Methods},		
year={2015},		
volume={1},		
pages={189-199},		
month={May},}

Symbolic Model Checking of Product-Line
Requirements Using SAT-Based Methods

Shoham Ben-David∗, Baruch Sterin†, Joanne M. Atlee∗ and Sandy Beidu∗
∗David Cheriton School of Computer Science

University of Waterloo, Waterloo, Canada
Email: {s3bendav,jmatlee,sbeidu}@uwaterloo.ca

†Department of EECS
University of California, Berkeley, CA, USA

Email: sterin@berkeley.edu

Abstract—Product line (PL) engineering promotes the de-
velopment of families of related products, where individual
products are differentiated by which optional features they
include. Modelling and analyzing requirements models of PLs
allows for early detection and correction of requirements errors
– including unintended feature interactions, which are a serious
problem in feature-rich systems. A key challenge in analyzing PL
requirements is the efficient verification of the product family,
given that the number of products is too large to be verified
one at a time. Recently, it has been shown how the high-level
design of an entire PL, that includes all possible products, can
be compactly represented as a single model in the SMV language,
and model checked using the NuSMV tool. The implementation
in NuSMV uses BDDs, a method that has been outperformed by
SAT-based algorithms.

In this paper we develop PL model checking using two leading
SAT-based symbolic model checking algorithms: IMC and IC3.
We describe the algorithms, prove their correctness, and report
on our implementation. Evaluating our methods on three PL
models from the literature, we demonstrate an improvement of
up to 3 orders of magnitude over the existing BDD-based method.

I. INTRODUCTION

Product-line engineering (PLE) is an increasingly popular
approach to product development in which processes and
practices are geared towards creating and managing a family of
related products (e.g., smart phones, automobiles). Variability
among products is characterized in terms of features, where
a feature is a unit of functionality or variation. The product
line maintains a collection of mandatory and optional features,
and individual products are derived by selecting among and
integrating features from this feature set. Companies that
successfully employ PLE report dramatic improvements in
productivity, quality, cost, labour needs, support for mass
customization, and time to market [1].

We are particularly interested in requirements models of
product lines, which we call PL requirements. We focus on
requirements models because incorrect system requirements
are a major source of software errors. Requirements analy-
sis can reveal requirements errors early in the development
process, when errors are easier and cheaper to fix [2]. In
particular, in PLE, a common error is feature interactions,
in which independently developed features behave differently
when combined with other features. Determining how features

ought to behave in combination is a requirements-engineering
problem, thus early identification of undesired interactions that
need to be fixed is essential. Another reason that we focus on
requirements models is that they are smaller to analyze than
other software artifacts are, and thus are more amenable to
automated analyses.

A key challenge in analyzing PL requirements is effi-
cient verification. Many traditional verification techniques are
product-based [3], meaning that they can be used to assess
models of individual products. In a product line of reasonable
size, it is impractical to verify each derivable product individ-
ually because the number of possible products is exponential
in the number of optional features. As a result, developers
(especially of safety-critical products) might verify a small
fraction of products and limit the choices that are offered
to consumers, thereby foregoing one of the greatest assets of
product-line engineering – the promise of mass customization.

As such, there is significant interest in family-based ver-
ification techniques [3] that analyze entire product lines. In
these approaches, a product line and its family of products are
modelled as a single artifact that represents all possible vari-
able behaviour. Family-based verifiers operate on the product-
line artifact, and either (1) guarantee that the desired property
holds for all derivable products, or (2) identify the products
that violate a desired property. Many verification techniques
have been adapted to support family-based reasoning, includ-
ing type checking [4], [5], constraint checking [6], [7], [8],
equivalence checking [9], model checking [10], [11], [12],
[13], and deductive verification [14].

For the analysis of requirements models we use symbolic
model checking [15]. We note that when software is con-
cerned, explicit state (rather than symbolic) model check-
ing techniques are typically used. However, when verifying
requirements, the picture changes. Many software require-
ments formalisms like statecharts [16], SCR [17], process
algebras [18], [19], [20], RSML [21], Stateflow [22], and our
Feature-Oriented Requirements Modelling Language [23] have
a simplified execution semantics in which the software system
is assumed to respond completely to one set of inputs, before
the next set of inputs from the environment occurs. These

0 1 2 3 4 5
card PIN amount cash

card [¬R]

receipt [R]

card [R]

cancel [C]
cancel [C]

cancel [C]

deposit [D]

Fig. 1. Product line model of an automatic banking machine.

semantics map most naturally to the synchronous execution
semantics of symbolic model checkers.

Classen et al. [10] showed how a product line can be
modelled and verified using symbolic model checking [24].
The modelling language is an extended version of the SMV
language [15] that supports feature modules. Each feature is
modelled as a distinct module that extends a base system,
and when composed together they form a single SMV model
of the entire product line. If a behaviour in the product-line
model is feature-specific, it is guarded by a corresponding
feature variable, such that the behaviour is enabled or disabled
depending on whether the feature is present or absent in a
particular product. Consider the model of a simplified product
line for an automatic banking machine (ABM) shown in
Figure 1. In the base product (shown in black), the ABM
authenticates the user, dispenses cash, and returns the card
to the user. The product line includes three optional features –
a deposit transaction (D), the issuing of a receipt (R), and
a cancel operation (C), each shown in a different color –
that can be combined in different ways to produce different
products. The transitions that model feature-specific behavior
are annotated with an expression over the feature variables.
For example, the transition from state 5 to state 0 is executable
only if the receipt (R) feature is present in the product; the
transition from state 4 to state 0 is executable only if the receipt
feature is absent from the product.

In PL model checking, the feature variables (D, R, and C
in Figure 1) are Boolean variables that are assigned a value
nondeterministically in the initial state and keep this value
throughout the computation1. Each assignment to the feature
variables represents a particular feature combination, whose
corresponding enabled behaviours realize a single product. By
analyzing all feature-variable assignments2, the model checker
analyzes the behaviours of all the possible products in the
product line.

The symbolic model checker in Classen et al.’s work [10]
is an adaptation of the NuSMV toolset [26]3. Given an
SMV model of a product line and a property in the CTL
property language [28], the outputs of the extended model

1In this work, we assume that a product’s feature configuration does not
change dynamically as the product executes.

2If a feature model [25] is provided, which specifies the feature combina-
tions of the valid products in the product line, then assignments to feature
variables will be restricted to valid combinations.

3In [27], [11], Classen et al. present family-based explicit-state model
checking, which uses a feature-aware variant of the Promela language and
a new model checker, called SNIP, that is based on SPIN. In this paper we
concentrate on symbolic model checking only.

checker, when the property is violated in the model, are (1) an
expression, in terms of the feature variables, representing all of
the products that violate the property and (2) a counterexample
trace from one of the violating products. Thus, in a single
model-checking run, the user gets information regarding all
products in the product line. The results of [10] report a
significant speedup compared to model checking each of the
products separately.

Classen et al. set nicely the basis for symbolic model check-
ing of product line requirements. Their implementation, how-
ever, is far from optimal. They implemented their method on
top of the classical symbolic model-checking algorithm [24],
[15], using Binary Decision Diagrams (BDDs) [29]. This
method is known to be significantly outperformed by modern
techniques, that are based on satisfiability solving (SAT) [30],
[31], [32], [33]. For the vast majority of cases, SAT-based
symbolic model checking methods outperform BDD-based
ones by an order of magnitude or more [34]. In this paper
we investigate adding PL reasoning support to SAT-based
algorithms.

We examine the two leading SAT-based symbolic model-
checking algorithms, and show how each of them can be
adapted to support PL model checking. The first is called
IMC: it is Bounded Model Checking [30] combined with
interpolation [32]. In this method, the model’s transition
relation is unfolded k times, and the model checker looks for a
counterexample within this search space. If no counterexample
exists within k execution steps, interpolation is used to try
and prove that no counterexample exists in deeper states. The
second method we investigated is the IC3 algorithm [31],
[35], [36], which is considered the state-of-the-art symbolic
model-checking algorithm. For a safety property P , the IC3
algorithm maintains a sequence of “frames” R0, ..., RN , where
each frame Rj satisfies P and is an over approximation of
the set of states that are reachable from the initial states in
j or fewer steps. If two adjacent frames are found to be
equal, it means that a fix point has been found, indicating
that the property holds in all reachable states. Otherwise, a set
of counterexamples is found during the computation.

We modify both of these algorithms to support PL model
checking. In both methods, when a counterexample is detected,
the model checker does not terminate. Instead, we slightly
modify the model, removing from the search space the violat-
ing product(s) represented in the counterexample, and continue
the model-checking procedure as if no counterexample has
been found. The algorithm progresses in this manner, filtering
out products that violate the property, until the property is
found to hold on the modified model (i.e., the property holds
in remaining products).

We have implemented our methods in the ABC toolset [37],
on top of its existing IMC and IC3 utilities [38]. We evaluate
our implementations on three product-line models. Two are
taken from the literature – an Elevator and a Telephone
System, both introduced by Plath and Ryan in [39]. The
third is an automotive PL model, that we built based on
feature requirement examples provided by General Motors.

Our experimental results demonstrate a dramatic improvement,
ranging between one and three orders of magnitude faster
than the BDD-based implementation. More importantly, our
methods are capable of (easily) model checking examples that
are too big to be tackled by the BDD method.

The rest of the paper is organized as follows. In Section II,
we review the necessary definitions. Section III is the main
section of the paper, where we describe our algorithms and
prove their correctness. Section IV discusses our implemen-
tations in the ABC tool and in Section V we present our
experimental results. Section VI gives an overview of related
results, and in Section VII we conclude and discuss future
directions.

II. PRELIMINARIES

Let V be a finite set of Boolean variables. A literal is a
variable v ∈ V or its negation ¬v. A clause is a disjunction of
literals, and a cube is a conjunction of literals. Note that if c is
a clause then ¬c is a cube, and vise versa. A Boolean formula
is in CNF if it is a conjunction of clauses, and in DNF form if
it is a disjunction of cubes. For a CNF formula F , we denote
by CL(F) the set of clauses of which F is composed. We use
the notation SAT?[F] for the satisfiability query, checking
whether the Boolean formula F has a satisfying assignment.

A. Kripke Structures and Model Checking

A model M over V is a Kripke structure M = (S, T, I, L),
where S is a set of states, T ⊆ S × S is a total transition
relation, I ⊆ S is the set of initial states, and L : S → 2V is
the labeling function that assigns to each state the subset of
variables that are true in the state. A state can also be seen
as a cube of literals, one literal for every variable in V . For
a state s and a variable v ∈ V , we denote by s(v) the value
(true or false) of v in s. We identify a Boolean formula
B over the variables V with the set of states it represents:
the set of all states satisfying B. If (s, t) ∈ T , we say that
t is a successor of s. A path in M is a sequence of states
π = s0, s1, . . . , sn such that s0 ∈ I and for all i, 0 ≤ i < n,
we have (si, si+1) ∈ T . We say that a state s is reachable in
M if s appears on a path in M . The path π above is said to be
of length n, and sn on π is in depth n from the initial state.

We refer to the transition relation T in two different ways:
(1) As a Boolean formula, T (V, V1) is defined over two
copies of the set of variables. The copies might be called
Vi and Vi+1 (Section III-A), or V and V1 (Section III-B).
(2) As a function, T : 2S → 2S maps a set of states
G ⊆ S to the set of all successors of states from G. That is,
T (G) = {t | ∃s ∈ G · (s, t) ∈ T}.

An invariant property P is a set of states (represented by a
Boolean formula). The model checking problem for a model
M and property P is to determine whether all reachable states
in M satisfy P . We say that a model M satisfies P (denoted
M |= P).

B. Product Line Modeling

We follow [11] to model a product line as a Kripke structure.
Let M = (S, T, I, L) be a model over a set of variables V .
We assume the existence of a special set of variables VF ⊂ V ,
called feature variables. Literals of feature variables are called
feature literals. The feature variables are assigned values in
the initial state and keep their values forever. That is, for
(s, t) ∈ T , we have that for all v ∈ VF , s(v) = t(v). Every
assignment to the feature variables defines a product of the
product line. A conjunction of literals of feature variables is
called a product cube. We note that a product line model is
usually accompanied by a feature model [25], which can be
interpreted as a Boolean expression describing the allowed
products in the product line. To accommodate this, we restrict
the initial assignments to feature variables to include exactly
those that satisfy the feature model [27].

III. PL MODEL CHECKING USING SAT-BASED METHODS

In this section we show how PL support can be added to
the two leading symbolic model checking algorithms: IMC and
IC3. We assume the model under verification describes a full
PL as described in Section II-B above, and that the property
to be verified is an invariant formula P . In Section IV-B
we explain how complex CTL formulas are translated into
invariant properties.

In both our methods we search for a counterexample; if one
does not exist, it means that the property holds for all products.
When a counterexample is found, it describes a violating
product (might be a set of violating products in the IC3 case).
We first try to enlarge the set of violating products as much
as possible. Then, we modify the model by excluding from it
all violating products found so far, and continue the model-
checking procedure. We repeat this process until the property
is found to hold in the modified model – at which point the
rest of the products (those that have not been excluded from
the model) satisfy the property.

At this stage, the set of violating products should be
presented to the user. However, this set might grow very big
(as the number of products grows exponentially in the number
of feature variables) and should not be presented to the user
as a list. We simplify this set to a compact Boolean expression
that represents exactly the set of violating products.

In the rest of this section, we give the PL-support algorithms
over IMC (Section III-A) and over IC3 (Section III-B). Since
the enlarge and simplify procedures are common to both, we
describe them together in Section III-C.

A. PL model checking with IMC

Let M = (S, T, I, L) be a model over a set of variables
V , and let P be an invariant formula. In Bounded Model
Checking (BMC) [30], a counterexample is searched for
among all paths of M up to a given depth k. For a given
bound k, we introduce new copies V1, .., Vk of the set V (and
for readability purposes, we define V0 = V). A subscript i

on Boolean formulas over V indicates that the formula is
expressed using the variables Vi. We denote by

φk = unroll(M,P, k)

the formula

φk = I0 ∧ T (V0, V1) ∧ T (V1, V2) ∧ ... ∧ T (Vk−1, Vk) ∧ ¬Pk.

φk represents an unrolling of the model M : it is a Boolean
formula, representing all legal paths through M , that end
in a buggy state violating P , in depth k steps from the
initial state. If φk is satisfiable, the satisfying assignment
produced by the SAT solver demonstrates a counterexample
showing that M 6|= P . If φk is unsatisfiable, it means that
no counterexample exists in depth k from the initial state. In
the sequel, we use the terms “counterexample” and “satisfying
assignment” interchangeably.

In order to verify a property P using BMC, we verify φk =
unroll(M,P, k) for k = 0, 1, 2 · · ·, until φk is satisfiable. Note
that if P holds in the model (no counterexample exists), the
BMC procedure as described above never ends. This problem
is solved by applying interpolation [32] (thus the method is
called IMC): when no satisfying assignment is found for depth
k, interpolation is used to over-approximate the reachable state
space. Interpolation involves several more calls to the SAT
solver, searching for a fix point for the over-approximation of
the reachable states. If such a fix point is found, P is proven
to hold in M . If not, we need to increase k and try again.

Adding PL Support

In the method described above, the procedure terminates
when either a counterexample is found or when interpolation
proves that the property holds in the model. When the model
describes an entire PL, we want to provide an answer for
each of the products in the line. If the property holds for all
the products (no satisfying assignment exists in the model),
the output is the same; we need only to change the message
to the user to say that the property holds for all products.
When a satisfying assignment is found however, it provides a
value to all the variables in V , and in particular, to the feature
variables in VF . The assignment to the feature variables defines
a single violating product. The conjunction of the feature
literals described by the assignment is a cube, pc, representing
the violating product.

Our target is to find all violating products. To do that, we
first try to enlarge the set of violating products that exist in the
current depth (k). This procedure is described in Section III-C.
Assume that pc is the output of the enlarge procedure, thus
representing a set of violating products.

We modify the model checking problem by excluding the
products pc from the model. For depth k, this is done by
checking for the satisfiability of the formula:

φ
pc
k = φk ∧ ¬pc0

Recall that pc0 stands for the cube pc expressed in terms of
the variables in V0. The above formula thus disallows any
product in pc to exist in the initial state of the BMC instance

φk. Since feature variables keep their values (Section II-B),
the conjunction with ¬pc0 excludes all product satisfying pc
from the model. Thus, if the above formula is satisfiable again,
the satisfying assignment provided must demonstrate a product
out of our pc set.

The full procedure is given in Algorithm 1. The variable

Algorithm 1: IMCPL() – PL Model Checking Using BMC
and Interpolation

1 Input: model M = (S, T, I, L); property P ; featureVars
VF ;

2 Output: DNF formula VP;
3 cube pc, Cex;
4 int k = 0;
5 VP = FALSE;
6 while TRUE do
7 φk = unroll(M,P, k);
8 while Cex =SAT?[φVP

k] do
9 pc = enlarge(φVP

k , Cex, VF)
10 VP = VP ∨ pc;
11 end
12 (Result,k) = interpolation(φVP

k);
13 if (Result == TRUE) then
14 return simplify(VP);
15 end
16 end

VP (Violating Products) is a DNF formula, representing the
products for which the property is found to fail so far. It
is assigned FALSE in the beginning, and as the procedure
progresses, violating products discovered are added to it. Cex
on line 8 is the satisfying assignment, produced by the SAT
procedure if φVP

k is satisfiable. We assume that Cex=0 if φVP
k

is unsatisfiable, causing the while loop to exit. In the inner loop
(lines 8-11), all counterexamples of length k are found. For
each counterexample detected, we first try to enlarge it (line
9) to cover more products (see Section III-C1). The violating
product cube pc is then added to the products already found
(line 10), which guarantees the exclusion of it from the rest of
the computation. When the inner loop exits, we are guaranteed
that φVP

k = φk ∧ ¬VP0 has no more satisfying assignments
of length k.

We apply interpolation (line 12), to check whether P can
be proven to hold on φVP

k in which case Result is TRUE. If P
holds on φVP

k , no more violating products exist in the model,
and we return a simplification of VP (line 14), describing
exactly all violating products. Otherwise, the interpolation
makes a few more unrolling iterations and returns a k that is
larger than before. The model is unrolled again (line 7) with
the larger k, and counterexamples are searched for deeper in
the model.

In order to prove termination of our algorithm, we first claim
that the inner while loop must terminate for every k. This is
because in every iteration of the loop, all previously found

violating products are removed from the computation. If a
new satisfying assignment is found, it involves a product that
has not been detected before. Since the number of products
is finite, the loop must terminate. Note that if all products are
violating, the DNF formula VP is equivalent to TRUE, thus the
conjunction φk ∧ ¬VP0 is equivalent to FALSE and does not
have a satisfying assignment.

Since the inner loop always terminates, the termination of
IMCPL() depends on the ability of interpolation to prove
correctness of P in the modified model, which is guaranteed,
for large enough k [32].

Theorem 1: When IMCPL() terminates, VP describes ex-
actly all the violating products in the model.

Proof 1: Products satisfying VP are all violating – they
were added to VP either because they appeared in an explicit
counterexample, or as a result of enlarge (which we assume
to work correctly). When IMCPL() terminates, it is because
interpolation determined that no more counterexamples existed
in φVP

k . This means that no more violating products exist in
the model, thus VP satisfies exactly all of them.

B. PL Model Checking using IC3

IC3 is a SAT-based symbolic model-checking algorithm that
does not involve unrolling of the model. Thus we use only two
copies of the variables, V and V1. IC3 is based on maintaining
a sequence of “frames” R0, R1, ..., RN . Each frame is a CNF
formula over the variables V , representing a set of states in
the model (Rj ⊆ S). Each frame Rj is an over-approximation
of the set of states that are reachable from the initial states
I in j or fewer steps. The frames Rj fulfill the conditions
in Fig. 2 (adapted from [38]). The IC3 algorithm proceeds by

1) R0 = I .
2) a) Rj ⊆ Rj+1.

b) CL(Rj+1) ⊆ CL(Rj), for j > 0.
3) T (Rj) ⊆ Rj+1.
4) Rj ⊆ P , for j < N .

Fig. 2. The conditions maintained by the frames of the IC3 algorithm

refining the frames, adding more clauses when possible, while
maintaining the conditions of Fig. 2. One way of refining the
frames, that we use in the sequel, is that of “pushing” clauses.
A clause c in a frame Rj can be “pushed forward” to the
following frame if the SAT query

SAT?[Rj ∧ T (V, V1) ∧ ¬c1] (1)

is not satisfiable. This means that starting from states in Rj

and taking one step forward through T , we can never reach a
state that does not satisfy the clause c. Thus, we can safely add
c to Rj+1 and this will not violate the conditions of Fig. 2.

The IC3 algorithm terminates in one of two cases:
1) For some j, Rj = Rj+1. In this case, a fix point of

reachable states has been found, and thus M |= P .

2) An error cube sI ⊆ I is found, from which a path to
¬P exists. In this case M 6|= P .

The two termination cases above, together with the conditions
in Fig. 2 and Query (1), are sufficient for understanding our
product line support. For more details about the IC3 algorithm,
refer to [31], [35], [36], [38].

Adding PL Support

Let M = (S, T, I, L) be a model over a set of variables
V , with a subset VF ⊂ V of feature variables. Let P be the
invariant property to be verified. Our goal is to find all of the
violating products – that is, all assignments to variables from
VF such that P fails to hold. As before, if P is found to hold
in the model it means that it is satisfied for all products. We
change the output to the user reporting that P holds for all
products.

In the case where the property fails to hold in the model, we
get a cube sI ⊆ I from which a path exists to a state violating
P . Like in the IMC case, we extract the product cube out of
sI , and enlarge it to get a cube pc, hopefully describing a set
(larger than one) of violating products. In order to remove pc
from the model we define modified frames4:

∀0 ≤ j ≤ N, R̂j := Rj ∧ ¬pc. (2)

Note that R̂j ⊆ Rj for each j.
The product cube pc is put aside to be reported later to the

user. The IC3PL continues checking P , with the new frames
R̂0, ..., R̂N replacing the old ones. Note that by doing so, the
algorithm actually checks P on a modified model, where states
satisfying pc are filtered out. If another counterexample is
found on the modified model, it identifies a different product
cube pc′ that also fails to satisfy P . The product cube pc′ is
set aside, and the frames are modified as before. The IC3PL

algorithm continues in this manner until the property is found
to hold on the modified model.

The full procedure is given in Algorithm 2. The input to the
IC3 function on line 7 is a sequence of frames (initially, the
sequence of frames contains the initial states I and the full set
of states S), and the output is an updated sequence of frames.
IC3 returns also a Boolean Result whose value is TRUE if
two frames are found to be equal; if the value of Result is
FALSE, then the cube sI is a counterexample that identifies
initial states that lead to an error state. The function enlarge
in line 11 is the one explained in Section III-C, which returns a
cube of feature literals representing a set of violating products.
We use the notation “Frames[Rj ← (Rj ∧¬pc)]” (line 14) to
denote the replacement of Rj by Rj ∧¬pc in the set Frames.
The function simplify in line 9 is the same as in Algorithm 1,
and its functionality is described in Section III-C.

We claim that, when Algorithm 2 terminates, the set of
products reported to the user is exactly the set of products
in the PL that violate the property. To prove this, we first state
the following.

4The clause ¬pc is in fact added to RN only. In the IC3 algorithm, a clause
added to Rj is automatically added to all Ri such that i < j. We explicate
this in the description of our algorithm.

Algorithm 2: IC3PL() – PL Model Checking Using IC3

1 Input: model M = {S, T, I, L}; property P ; featureVars
VF ;

2 Output: DNF formula VP;
3 sequence Frames = {I, S}; int result;
4 cube pc, sI ;
5 VP = FALSE ;
6 while TRUE do
7 (Result, Frames, sI) = IC3(T ,Frames,P);
8 if Result == TRUE then
9 return simplify(VP);

10 end
11 pc = enlarge(Frames, sI , VF);
12 VP = VP ∨ pc;
13 for Rj ∈ Frames do
14 Frames = Frames[Rj ← (Rj ∧ ¬pc)]
15 end
16 end

Proposition 1:. Let R0, ..., RN be frames satisfying the con-
ditions of Fig. 2. Then R̂0, ..., R̂N , defined as in Equation 2,
satisfy the conditions of Fig. 2 as well, where I is replaced
by Î = I ∧ ¬pc.

Proof 2: Conditions 1, 2 and 4 of Fig. 2 hold trivially. For
condition 3, note that

T (R̂j) = T (R̂j) ∧ ¬pc. (3)

To see why, recall that R̂j = Rj ∧ ¬pc (Equation 2), thus
states satisfying pc do not exist in R̂j . Since feature variables
keep their values, no state satisfying pc can exist in T (R̂j).
Thus, the conjunction of T (R̂j) with ¬pc does not change the
set.

Since R̂j ⊆ Rj it follows that T (R̂j) ⊆ T (Rj). Given
that Rj satisfies the conditions of Fig. 2 (the premise of the
proposition), we have T (Rj) ⊆ Rj+1, which allows us to
deduce T (R̂j) ⊆ Rj+1. By conjuncting ¬pc to both sides, we
get T (R̂j) ∧ ¬pc ⊆ Rj+1 ∧ ¬pc. By Equations 2 and 3, we
conclude what we need:

T (R̂j) ⊆ R̂j+1.

Note that in every call to IC3, the list of frames might grow.
However, new frames that are introduced will include the
product clauses, because product clauses satisfy the pushing
condition (Query 1). Like in proposition 1, this is because
feature variables keep their values. By adding the clause ¬pc
to the frames, we modify the model on which P is verified,
in a way that the products in pc are disabled. Note also that
the products in pc are the only products disabled by adding
¬pc to the frames. Since the new frames satisfy the conditions
of Fig. 2, when IC3 returns TRUE, we are guaranteed that P
holds in the modified model.

A special case that should be noted is when all products
in the product line violate P . Suppose that our product list
already holds several product cubes, and assume that the pc

identified in the current iteration of the loop represents all the
remaining products in the product line. Adding ¬pc to the
frames would make each Rj a contradicting CNF formula.
This would make every clause of each frame pushable to the
next frame (since Query 1 would be unsatisfiable). Thus, when
opening a new frame, two frames will be found equal and the
algorithm would terminate correctly.

Following the discussion above we can now state the
theorem:

Theorem 2: When the algorithm of Fig. 2 terminates, VP
includes exactly all of the violating products.

C. Enlarge and Simplify a Set of Products

The algorithms in Sections III-A and III-B both use the
functions enlarge and simplify. In this section we explain
their functionalities and how they are implemented in our tool.
We note that other implementation options exist that achieve
the same functionalities.

1) The enlarge function: Our methods discussed in the
previous subsections, detect violating products one at a time.
Our target is to get more violating products at each iteration.
In order to do that, we take the formula φ for which a
counterexample was found, and try to find feature variables
whose values are not needed for determining the satisfying
assignment. This is the purpose of enlarge.

The functionality of enlarge is based on a capability
possessed by modern SAT solvers, among them MiniSat [40]
that we use in our implementation. MiniSat allows literals to be
added to a SAT formula φ as “assumptions”. When φ is found
to be unsatisfiable, MiniSat returns the set of assumptions used
to prove that no satisfying assignment existed. While this is
not necessarily a minimal set of assumption, it is often smaller
than the original set.

Let φk = unroll(M,P, k) be as in Section III-A, and Cex
the satisfying assignment produced for it. In order to enlarge
our set of assignments, we use a well known trick based on
the assumption capability. We construct a new formula ϕ, built
of several components. The first is φ′k = unroll(M,¬P, k),
that is similar to φ but requires P to hold at depth k (see
Section III-A). The second component is a set of unit clauses,
one for each literal defined by Cex, except for the feature
literals. The last component is the set of feature literals, added
as assumptions.

For example, let V = {v1, v2, v3, v4} with VF = {v3, v4},
and let Cex be (v1 = 0, v2 = 1, v3 = 0, v4 = 1). Our formula
ϕ will be defined as follows:

ϕ = φ′ ∧ ¬v1 ∧ v2; assumption(¬v3, v4).

Note that ϕ is unsatisfiable: it requires that P would be
TRUE in cycle k, but it forces the values of Cex (because of
the unit clauses) which must cause P to be FALSE (since it is
a satisfying assignment to the original φ).

When given to the SAT solver, ϕ is immediately found to be
conflicting, and a conflict clause in terms of the feature literals
is produced. In our example, let this conflict clause be (¬v3).

This means that the value of v4 does not make a difference,
thus both (¬v3, v4) and (¬v3,¬v4) are failing products.

2) The Simplify function: The list of violating products is
stored in our algorithms as a DNF formula VP, satisfying
exactly all the violating products. As discussed before, this
formula can easily get too big to be presented to the user. For
example, in a model with 10 features, if half of the products
are violating, VP describes 512 products.

There exist more than one way for simplifying a DNF
formula. In our implementation, we use a method by Mor-
reale [41] known as “Irrelevant Sum of Products” (ISOP). This
algorithm takes as input a truth table representing a Boolean
formula f and calculates the simplest possible DNF formula
that is equivalent to f .

In ABC, where we implemented our algorithms, the ISOP
method is implemented, supporting formulas of up to 16
Boolean variables. Our program constructs a truth table repre-
senting the list of products, and uses the ISOP service of ABC
to simplify it. The simplification using ISOP took a fraction of
a second to complete. Since this step depends on the number
of features in the model and not on the size of the model itself,
the simplification is expected to have very little influence on
the overall runtime models of any size. When the number of
features in the model is larger than 16, other simplification
methods should be considered, for example, using BDDs.

We note that our output will always be the simplest DNF
formula, but not necessarily the simplest formula. For exam-
ple, the DNF formula (v1 ∧ ¬v2) ∨ (v1 ∧ ¬v3) is equivalent
to v1 ∧ (¬v2 ∨ ¬v3), which is simpler. In contrast, the output
from the NuSMV implementation depends on the last BDD
order in the model-checking run. While in many cases it is
the simplest formula possible, we have seen cases where, due
to the BDD order, the expression includes irrelevant feature
variables.

IV. IMPLEMENTATION

We implemented our methods in the ABC toolset [37], on
top of its existing IC3 and IMC functions. In the subsections
below we describe the ABC tool and the conversion of safety
CTL properties into invariant properties.

A. The ABC Tool

ABC is an open-source software system for the synthesis
and verification of sequential logic circuits represented as And-
Inverter Graphs (AIGs) [42]. ABC uses logic optimization
and implements many algorithms from the literature, including
synthesis, equivalence checking and various model checking
algorithms, among them BMC, interpolation and IC3. The tool
uses a dialect of MiniSat [40] as its SAT solving facility, and
supports the ISOP [41] method, which we use to simplify the
resulting set of products.

To be accepted by the ABC toolset, a model should be
given in the AIGER language [42]. For our experiments, we
translated models written in NuSMV to AIGER in two steps:
(1) We invoked NuSMV with the option output Boolean model
(-obm), to translate a complex NuSMV model into a simpler

one that is flat (i.e., has no modules) and Boolean (i.e., has no
multi-valued variables). (2) We used the utility smvtoaig from
the AIGER distribution [42] to translate the Boolean model
from (1) into AIGER.

B. Translating safety ACTL Properties to Invariant Properties

Our current implementations support only invariant prop-
erties, of type AGp, with p being a Boolean formula. We
were able to translate all safety ACTL properties into AG(p)
type ones, accompanied by auxiliary state machines (that were
added to the SMV model). A property is in ACTL if, when
represented in Negation Normal Form (where negation is over
atomic propositions only), it does not contain the E path
quantifier. An ACTL property is considered a “safety” property
if it does not contain the AF or AU operators. For properties
that use the AU operator, but are otherwise safety ACTL
properties, we converted AU into AW (weak-until). While
this weakened the meaning of the properties, it allowed them
to be included in our experiments.

For a safety ACTL formula ϕ, the translation was done in
two phases. First, we converted ϕ into a regular expression
Rϕ [43]. We note that this conversion is limited to safety
properties that are in the common fragment of ACTL and
LTL [44]. Luckily, all safety properties in our case belong
to this fragment. We then used the algorithm of [45] to build
a state machine Sϕ in the SMV language, together with an
AG(p) type property. The results of [43], [45] guarantee
the correctness of the translation, but we also validated our
implementation by running NuSMV on the two versions of
each property, and comparing the results.

V. EXPERIMENTAL RESULTS

We ran our experiments on three PL requirement models.
Two are taken from the literature: the Elevator and Telephone
models introduced by Plath and Ryan [39]. In order to build
a PL model containing all features, we used Classen et al.
method and tool [10]. The third model is based on an industrial
product line model of automotive software controllers, first
presented in [46]. We elaborate more on these models in the
subsections below.

The experiments compare the performance of our two new
methods with that of the BDD-based method of Classen
et al. [10] implemented in the NuSMV tool [26]. For the
NuSMV experiments, we performed a preprocessing phase: we
invoked each model with the dynamic BDD ordering option
(-dynamic), and saved the final variable ordering in a file.
Consequent runs, recorded in the tables, were invoked with
the saved variable ordering file as an initial order, and did not
perform dynamic reordering.

The runs were performed on an AMD FX-6100 machine
with six cores at 3.3GHz and 32GB of RAM. The output
results, indicating the set of products for which the formula
fails to hold, were the same for all three methods, for all runs
(except for those where NuSMV could not terminate).

TABLE I
EXPERIMENTAL RESULTS FOR THE ELEVATOR MODEL. TIME IS GIVEN IN SECONDS. (*) THE PRODUCT SET IS ¬Shuttle ∧ (Antiprank ∨ Empty)

Property Res Products BDD IMC IC3 Speedsup
Quick-close→ AG(door = open→ AX(door = close))

√
None 0.86 0.02 0.02 × 43

AG(door = open→ AX(door = close)) X ¬Quick-close 8.12 0.14 0.37 × 58
Shuttle → AG((floor = 2 ∧ direc = up)→ AX(direc = up))

√
None 0.97 0.02 0.02 × 48

AG((floor = 2 ∧ direc = up)→ AX(direc = up)) X ¬Shuttle 999 0.33 0.55 × 3027
Shuttle → AG((floor = 3 ∧ direc = down)→ AX(direc = down))

√
None 1.00 0.02 0.03 × 50

AG((floor = 3 ∧ (direc = down))→ AX(direc = down)) X ¬Shuttle 2088 2.02 1.20 × 1740
AG(But2 ∧ ¬But3→ A[¬(floor = 3 ∧ door = open)W (floor = 2 ∧ door = open)]) X ALL 230 0.21 1.14 × 1095
Overloaded → AG((over ∧ door = closed)→ AX¬(door = closed))

√
None 0.95 0.03 0.03 × 31

AG((over ∧ (door = closed))→ AX¬(door = closed))
√

¬Overloaded 9.8 0.22 0.52 × 44
Overloaded→ AG((floor = 3 ∧ over)→ A[(floor = 3)W¬over]

√
None 1.02 0.06 0.04 × 25

AG((floor = 3 ∧ over)→ A[(floor = 3)W¬over] X ¬Overloaded 12.5 0.43 1.30 × 29
AG((floor = 3 ∧ ¬But3 ∧ (direc = up))→ (door = closed)) X ALL 180 0.19 1.08 × 947
AG((floor = 3 ∧ ¬But3 ∧ (direc = down))→ (door = closed)) X ALL 497 2.11 3.31 × 235
AG((floor = 2 ∧ ¬But8 ∧ (direc = up))→ A[(direc = up)Wfloor = 8]) X See (*) 74 0.47 1.56 × 159
AG((floor = 8 ∧ ¬But1 ∧ (direc = down))→ A[(direc = down)Wfloor = 1]) X See (*) 68 2.1 1.36 × 50

A. The Elevator Model

The Elevator model we use was first introduced by Berry in
[47]. Plath and Ryan in [39] augmented the model with fea-
tures, demonstrating how feature interactions can be detected
using model checking. Classen et al. in [10] generalized the
model, added features, and made it configurable, allowing the
composition of part or all the features into a single PL model.
We use Classen et al.’s model (taken from their site [48]),
in its largest configuration possible, containing 8 floors and 9
features. The feature set in our model includes Park, which
sends the elevator to a designated floor to park; Too-full,
ignoring calls when elevator is too full to load more people,
Executive-floor which gives priority to one of the floors;
Overloaded, preventing the doors from closing when the
elevator is overloaded; Open-if-idle, leaving the doors open
when parked; Empty, which cancels calls inside the elevator
if it is empty; Antiprank, ignoring calls inside the elevator
when active; Shuttle, continuously moving, even when no
calls are made, and Quick-close, closing doors one time step
after opening. For a full description of the Elevator model and
its features, refer to [39], [10].

After composing all features, the model had 40 state vari-
ables, making it a relatively small model. Out of about 30
properties accompanying the Elevator model, only ten were
safety properties supported by our methods. The rest were
mixed universal and existential CTL properties, or liveness
ones. Five of the properties were conditioned on the existence
of a certain feature in the product tested. For those, we
introduced also an unconditioned version. Table I presents the
results, for each of the properties. Column 2 of the table lists
the output of the run – true (

√
) for all products, or false

(X) for some (or all) of them. Column 3 gives the expression
describing the violating products (hence, this value is ‘None‘
when the formula holds for all products). For example, the
second property in Table I is violated in all products where
Quick-close is not present. Columns 4,5,6 present the time, in
seconds, for the BDD, IMC, and IC3 methods respectfully. The

last column calculates the speedup between the IMC method,
which is the fastest, and the BDD method. We note that while
the speedup gets up to 3000 times better, the run times are
relatively short for all cases.

B. The Telephone Model

Our second case study is a simple version of a Telephone
system, introduced by Plath and Ryan in [39]. The system
models a network of 4 phones, each with a different set of
functionalities. We manually translated the system and feature
modules, that were written in a dialect of the SMV language
(Cadence-SMV), into the NuSMV dialect. We were able to
compose 7 features, using Classen et al.’s composer [48] to get
a PL model with 76 state variables. Most of the features were
applied to Phone 1 only, some were applied also to Phone 2.
This is indicated by an extension -1 or -2 to the feature name.
The list of features, taken from [39], is given below.

Call Forward Unconditional (Cfu-1): All calls to the sub-
scriber’s phone are redirected to another phone. Call Forward
on Busy (Cfb-1 and Cfb-2): All calls to the subscriber’s
phone are redirected to another phone, if the line is busy.
Call Forward on No Reply (Cfnr-1 and Cfnr-2): All calls to
the subscriber’s phone are redirected to another phone, if not
answered in a certain amount of time. Ring Back When Free
(Rbwf-1): If the user gets the busy-tone on calling another
line, the feature can be activated. A call to the same line
will be reissued as soon as it becomes idle. Terminating Call
Screening (Tcs-1): Reject calls to the subscriber’s phone from
numbers on a given screening list. Full description of the
Telephone model can be found in [39].

The Telephone model includes 37 properties, 23 of which
are safety ACTL properties. We ran all of them, and we report
the results for 10 of them, in Table II. The rest of the properties
were found to fail on all products, and have run times that are
comparable to those presented in Table II. While the Telephone
model is almost twice as large as the Elevator, run times
were not longer, and seemed to vary less than in the Elevator

TABLE II
EXPERIMENTAL RESULTS FOR THE TELEPHONE MODEL

Property Result Products BDD IMC IC3 Speedup
AG(ph 1.st = talking ∧ ph 1.dialled = 2→ ph 2.st = talked) X ALL 212 0.18 0.43 ×1177
AG(ph 2.tcs msg → ((ph 2.dialled = 1 ∧ ph 1.tcs2)∨ X Cfu-1 ∨ Cfb-1 80 0.20 0.36 ×401

(ph 2.dialled = 4 ∧ ph 4.tcs2)))
AG(¬(ph 1.cfu forw = 0)→ AG(¬(ph 1.st in{ringing, talked}))) X ¬Cfu-1 219 0.31 0.25 ×876
AG(ph 2.tcs msg → ((ph 2.dialled = 1 ∧ ph 1.tcs2) X Cfu-1 ∨ Cfb-1 80 0.20 0.36 ×401

∨(ph 2.dialled = 4 ∧ ph 4.tcs2)))
AG((ph 1.tcs2 ∧ ph 1.st = ringing)→ ph 3.st = ringingt) X ALL 160 0.14 0.30 ×1142
AG(ph 3.tcs msg → ((ph 3.dialled = 1 ∧ ph 1.tcs3) X Cfu-1 ∨ Cfb-1 80 0.21 0.39 ×387

∨(ph 3.dialled = 4 ∧ ph 4.tcs3)))
AG((ph 1.st = trying)→ AX((ph 1.st = ringingt) ∨ (ph 1.st = busyt))) X Cfb-2 203 0.17 0.33 ×1194
AG((ph 1.st = talking ∧ ph 1.dialled = 3)→ ph 3.st = talked)

√
None 44 0.02 0.03 ×1110

AG(ph 1.tcs3→ AG¬(ph 3.dialled = 1 ∧ ph 3.st in{ringingt, talking})) X ¬Tcs-1 97 0.21 0.25 ×562
AG(p 4.tcs2→ AG¬(ph 2.dialled = 4 ∧ ph 2.st in{ringingt, talking})) X ¬Tcs-1 84 0.21 0.23 ×401

example. The significant advantage of our methods over the
BDD one, however, is maintained here, with all SAT-based
runs completing the verification in less than half a second.

C. The Autosoft Model
Our third and largest PL Requirement model is an auto-

motive example, called Autosoft. This model is derived from
feature requirement examples provided by General Motors
and was manually modelled in the FORML language [46],
which supports precise modelling of feature requirements for
software product lines. Full details of the FORML features
(which are very abstract versions of the features in the original
document), can be found in [49]. The features were auto-
matically composed into a PL model, which was then semi-
automatically translated, using a chain of tools being deployed
by the last author, into the SMV language. Its analysis, using
a model checker, is presented here for the first time.

The model consists of 10 features. BDS is the Basic driv-
ing service, which responds to the drivers’s requests. Cruise
Control (CC) maintains the vehicle’s speed, while Headway
Control (HC) maintains the vehicle’s headway distance from
road objects. Lane Change Alert (LCA) is responsible for
issuing an alert if the driver tries to change lanes under unsafe
conditions and Forward Collision Alert (FCA) issues an alert
whenever there is danger of a collision with an object ahead.
Headway Personalization (HP) saves the last cruise-headway
setting of a driver. Speed Limit Control (SLC) overrides CC’s
computation of the car’s acceleration, whenever cruising speed
is greater than the speed limit of the road, and Lane Centring
Control (LCC) periodically adjusts the car’s orientation to
centre the vehicle in its current lane. Lane Change Control
(LXC) automatically changes the vehicle’s lane to a driver
selected lane, provided the conditions are safe. Finally, Driver
Monitoring System (DMS) issues an alert whenever the driver
is not attentive.

For our experiment, we introduced a set of safety properties,
listed below.

1) If LXC is activated by the driver, then within two cycles,
either LCC will be automatically activated, or a request
will be issued for the driver to take control.

2) If LXC is activated, then so is LCA.
3) When LCC is active and the driver turns the steering

wheel, then LCC should be temporarily deactivated.
4) Whenever a driver issues an accelerate command, the

speed of the car must increase.
5) The car always tries to keep a certain minimum headway

distance from the car ahead.
6) If a driver issues both an accelerate and decelerate

commands, then the speed of the car should reduce.
7) When the car’s ignition is off and the driver requests an

ignition turn on, then the car will be turned on.

The Autosoft model in the SMV language consists of 526
state variables, and was too large to be analyzed with the BDD
implementation. We left the model checker running for 33
hours for property (1), and terminated it after realizing that all
of the available memory had been exhausted. For the rest of
the properties, we set a cutoff time of 7200 second (2 hours).
None of the BDD runs were capable of evaluating the property
with a 2-hour limit.

In an attempt to cope with the size problem, we exper-
imented with applying cone-of-influence (COI) reduction to
the model. This service of NuSMV reduces a model based
on the property to be verified, leaving only the parts of the
model that are relevant for the verification. The COI reduction
is applied separately for each property, to get a reduced model
customized for the property. After applying COI, the run times
for the SAT based methods were reduced (significantly, in
some cases). The BDD method however, was not capable of
completing any of the runs within the 2 hour limit, even for
the reduced models.

Table III presents two results (in seconds) for each of the
7 properties, for the SAT based methods. The first is the run
time for the original model, with no reduction (the “Size”
column gives the number of state variables in the model),
and the second is the time for the reduced model, after
COI reduction was applied. The notation AX[1..2](p) (first
property of Table III) stands for AX(p ∨ AXp). Note that
IC3 was able to solve each property in less that 4 minutes,
and IMC in less than one minute.

TABLE III
EXPERIMENTAL RESULTS FOR THE AUTOSOFT MODEL. (*) THE SET OF PRODUCTS IS (BDS ∧ LCC ∧ ¬HP ∧ CC) ∨ (BDS ∧ LCC ∧ HC ∧ CC).

(**) THE SET OF PRODUCTS IS (BDS ∧ ¬DMS ∧ HC ∧ CC ∧ ¬LXC) ∨ (BDS ∧ LCC ∧ HC ∧ CC).

Property Size Result Products BDD IMC IC3
AG(LXC execute→ AX[1..2](LCC active ∨ LXC takeOverAlert)) 526 X ALL —- 48 180

259 —- 47 125
AG(LXC active→ AX(LCS engaged)) 526 X ALL —- 50 224

257 —- 48 118
AG((LCC ∧ LCC active ∧ Steer ∧ (Steer angle > 0))→ 526 X See (*) —- 21 82

AX(LCC inactive)) 258 —- 20 62
AG(Accelerate→ AX(Car speed ≥ Car speed pre)) 526 X ALL —- 6.8 24

261 —- 6.0 15
AG((HC ∧ (Car headway < Car setHeadway))→ 526 X See (**) —- 8.2 25

AX(Car goalSpeed ≤ Car goalSpeed pre)) 260 —- 7.5 23
AG(Accelerate ∧Decelerate→ AX(Car speed ≤ Car speed pre)) 526

√
None —- 3.7 7

261 —- 1.6 4.2
AG(BDS off ∧ IgniteOn→ AX((Car ignition = on) ∧BDS on) 526

√
None —- 2 13

204 —- 1.6 9.3

Threats to Validity

NuSMV provides many configuration ‘flags’ in which a
model-checking run can be invoked. Thus, our configuration
might not have been the optimal one. Finding the best con-
figuration, however, is itself extremely time consuming. Also,
while our new methods significantly outperform the old one,
it is possible that part of this difference has to do with the
differences in the underlying tool infrastructures.

VI. RELATED WORK

Family-based symbolic model checking has been proposed
in several works. Plath and Ryan [39] were the first to suggest
the use of SMV to model and verify feature interactions.
They proposed an extension to the SMV input language that
allowed modifying an existing system with additional features.
Interactions between features can then be verified by model
checking a property ϕ before and after adding a new feature.
The work of Classen et al. [10] was mentioned before and
it is the closest to ours. While our method performs much
better, it currently supports safety ACTL properties only,
whereas Classen et al. support the full CTL language. We note,
however, that it is common practice in the model-checking
world to compromise expressiveness for better performance.

Researchers have also proposed family-based explicit-state
model checking. Lauenroth et al. [13] showed how product
lines could be modeled as an extension to I/O automata.
They adapted the original CTL model-checking algorithm of
Clarke et al. [28] to verify a product-line model. A variability
model, which specifies the legal products of the product line,
ensures that the model checker explores only legal feature
combinations. Gruler et al. [12] showed how features could
be modelled in CCS [18] and integrated into a product line.
The product line is represented as a labelled transition system
whose transitions are annotated with feature combinations;
the model-checking algorithm returns a set of products that
satisfy a given formula. Classen et al. [50], [27] implemented
what they call a (family-based) semi-symbolic model-checking
algorithm that searches the explicit state space of products,

but represents sets of products in a symbolic data structure.
We consider this work as being in the camp of explicit-
state model checkers. In general, explicit-state and symbolic
model-checking approaches are complementary and cannot
be directly compared, since the models have different execu-
tion semantics (interleaving vs. synchronized execution). One
chooses between explicit-state and symbolic model-checking
based on the characteristics of the problem to be verified.

Another related area is that of variability-aware model
checking [51], [52] in which modelling languages and model-
checking algorithms accommodate variability (e.g., optional
behaviour), but the variability is not packaged into features.
As a result, the output of the model checker is not in terms
of features and products that violate a property.

Cimatti et al. [53] consider the synthesis of parameters for
infinite state models. They use IC3 with an SMT (rather than
SAT) solver, in the target of finding parameters that are feasible
for a given system. While the context of their work is very
different from ours, their IC3 algorithm to find the set of
relevant parameters is close in nature to our algorithm for
finding violating products.

VII. CONCLUSION

We demonstrated how PL support can be added to SAT
based symbolic model checking methods, thus enabling the
verification of PL requirement models much larger than before.
Our experiments show that the IMC method performs consis-
tently better than the IC3 one, a phenomena that is different
from what is reported in the literature, and would be interesting
to investigate.

In our current implementations, only a single property can
be verified in one run. This seems inherent in the algorithms,
as the model is modified during the verification (to filter out
violating products), and thus cannot be used to model-check
other properties. One way to deal with this is to modify the
property rather the model. Experimenting with this idea is left
for future work.

REFERENCES

[1] Software Engineering Institute, “Software product lines: Overview [on-
line web page],” (2013, Oct. 1), http://www.sei.cmu.edu/productlines/.

[2] B. W. Boehm, Software Engineering Economics. Prentice Hall PTR,
1981.

[3] T. Thüm, S. Apel, C. Kästner, M. Kuhlemann, I. Schaefer, and G. Saake,
“Analysis strategies for software product lines,” 2012, technical Report
FIN-004-2012, School of Computer Science, University of Magdeburg,
Germany.

[4] L. Aversano, M. Di Penta, and I. Baxter, “Handling preprocessor-
conditioned declarations,” in SCAM, 2002, pp. 83–92.

[5] C. Kästner, S. Apel, T. Thüm, and G. Saake, “Type checking annotation-
based product lines,” In TOSEM, vol. 21, no. 3, pp. 14:1–14:39, July
2012.

[6] S. Apel, W. Scholz, C. Lengauer, and C. Kastner, “Detecting depen-
dences and interactions in feature-oriented design,” in ISSRE, 2010, pp.
161–170.

[7] K. Czarnecki and K. Pietroszek, “Verifying feature-based model tem-
plates against well-formedness OCL constraints,” in GPCE, 2006, pp.
211–220.

[8] F. Heidenreich, “Towards systematic ensuring well-formedness of soft-
ware product lines,” in FOSD, 2009, pp. 69–74.

[9] M. Cordy, A. Classen, G. Perrouin, P.-Y. Schobbens, P. Heymans,
and A. Legay, “Simulation-based abstractions for software product-line
model checking,” in ICSE, 2012, pp. 672–682.

[10] A. Classen, P. Heymans, P.-Y. Schobbens, and A. Legay, “Symbolic
model checking of software product lines,” in ICSE. ACM, 2011, pp.
321–330.

[11] A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay, and J.-F. Raskin,
“Model checking lots of systems: efficient verification of temporal
properties in software product lines,” in ICSE (1), 2010, pp. 335–344.

[12] A. Gruler, M. Leucker, and K. Scheidemann, “Modeling and model
checking software product lines,” in FMOODS, 2008, pp. 113–131.

[13] K. Lauenroth, K. Pohl, and S. Toehning, “Model checking of domain
artifacts in product line engineering,” in ASE, 2009, pp. 269–280.

[14] T. Thüm, I. Schaefer, S. Apel, and M. Hentschel, “Family-based deduc-
tive verification of software product lines,” in GPCE, 2012, pp. 11–20.

[15] K. McMillan, Symbolic Model Checking. Kluwer Academic Publishers,
1993.

[16] D. Harel, A. Pnueli, J. Schmidt, and R. Sherman, “On the formal
semantics of statecharts,” in LICS, 1987, pp. 54–64.

[17] C. L. Heitmeyer and R. D. Jeffords, “The SCR tabular notation: A formal
foundation,” Naval Research Lab, Tech. Rep. NLR/MR/5546-03-8678,
2003, nLR/MR/5546-03-8678.

[18] R. Milner, Communication and Concurrency. New York: Prentice Hall,
1989.

[19] C. A. R. Hoare, Communicating Sequential Processes. UK: Prentice
Hall, 1985.

[20] ISO8807, “LOTOS - a formal description technique based on the
temporal ordering of observational behaviour,” ISO, Tech. Rep., 1988.

[21] N. G. Leveson, M. P. E. Heimdahl, H. Hildreth, and J. D. Reese,
“Requirements specification for process-control systems,” vol. 20, no. 9,
pp. 684–707, September 1994.

[22] G. Hamon, “A denotational semantics for stateflow,” in Proceedings
of the 5th ACM International Conference on Embedded Software, ser.
EMSOFT ’05, 2005, pp. 164–172.

[23] P. Shaker, J. Atlee, and S. Wang, “A feature-oriented requirements
modelling language,” in IEEE International Requirements Engineering
Conference (RE), Sept 2012, pp. 151–160.

[24] E. Clarke and E. Emerson, “Design and synthesis of synchronization
skeletons using branching time temporal logic,” in Proc. Workshop on
Logics of Programs, ser. LNCS 131. Springer-Verlag, 1981, pp. 52–71.

[25] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson,
“Feature-oriented domain analysis (FODA) feasibility study,” Carnegie-
Mellon University Software Engineering Institute, Tech. Rep. CMU/SEI-
90-TR-21, 1990.

[26] A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri, “NUSMV:
A new symbolic model checker,” In STTT, vol. 2, no. 4, pp. 410–425,
2000.

[27] A. Classen, M. Cordy, P.-Y. Schobbens, P. Heymans, A. Legay, and
J.-F. Raskin, “Featured transition systems: Foundations for verifying
variability-intensive systems and their application to ltl model checking,”
IEEE Transactions on Software Engineering, vol. 39, no. 8, pp. 1069–
1089, 2013.

[28] E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic verification
of finite-state concurrent systems using temporal logic specifications,”
In TOPLAS, vol. 8, no. 2, pp. 244–263, 1986.

[29] R. Bryant, “Graph-based algorithms for boolean function manipulation,”
in IEEE Transactions on Computers, vol. C-35(8), 1986, pp. 677–691.

[30] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic model checking
without BDDs,” in TACAS, 1999, pp. 193–207.

[31] A. R. Bradley, “SAT-based model checking without unrolling,” in
VMCAI, 2011, pp. 70–87.

[32] K. L. McMillan, “Interpolation and SAT-based model checking,” in CAV,
2003, pp. 1–13.

[33] M. Sheeran, S. Singh, and G. Stålmarck, “Checking safety properties
using induction and a SAT-solver,” in FMCAD, 2000, pp. 108–125.

[34] N. Amla, X. Du, A. Kuehlmann, R. P. Kurshan, and K. L. McMillan,
“An analysis of sat-based model checking techniques in an industrial
environment,” in CHARME, 2005, pp. 254–268.

[35] A. R. Bradley, “IC3 and beyond: Incremental, inductive verification,” in
CAV, 2012, p. 4.

[36] ——, “Understanding IC3,” in SAT, 2012, pp. 1–14.
[37] R. K. Brayton and A. Mishchenko, “ABC: An academic industrial-

strength verification tool,” in CAV, 2010, pp. 24–40.
[38] N. Eén, A. Mishchenko, and R. K. Brayton, “Efficient implementation

of property directed reachability,” in FMCAD, 2011, pp. 125–134.
[39] M. Plath and M. Ryan, “Feature integration using a feature construct,”

In Science of Computer Programming, vol. 41, no. 1, pp. 53–84, 2001.
[40] N. Eén and N. Sörensson, “An extensible SAT-solver,” in SAT, 2003,

pp. 502–518.
[41] E. Morreale, “Recursive operators for prime implicant and irredundant

normal form determination,” In IEEE Trans. Comput., vol. 19, no. 6,
pp. 504–509, 1970.

[42] A. Biere, “The AIGER And-Inverter Graph (AIG) Format,”
http://fmv.jku.at/aiger/.

[43] I. Beer, S. Ben-David, and A. Landver, “On-the-fly model checking of
RCTL formulas,” in CAV, ser. LNCS 1427. Springer-Verlag, 1998, pp.
184–194.

[44] M. Maidl, “The common fragment of CTL and LTL,” in FOCS, 2000,
pp. 643–652.

[45] S. Ben-David, D. Fisman, and S. Ruah, “Automata construction for
regular expressions in model checking,” June 2004, iBM research report
H-0229.

[46] P. Shaker, J. M. Atlee, and S. Wang, “A feature-oriented requirements
modelling language,” in RE, 2012, pp. 151–160.

[47] M. Berry, “Proving properties of the lift system,” 1996, master?s Thesis,
School of Computer Science, University of Birmingham.

[48] A. Classen, “Feature Transition System,”
https://projects.info.unamur.be/fts/implementations/nusmv-extension/.

[49] P. Shaker, “A feature-oriented modelling language and a feature-
interaction taxonomy for product-line requirements,” Ph.D. dissertation,
Waterloo, ON, Canada, 2013.

[50] A. Classen, M. Cordy, P. Heymans, A. Legay, and P.-Y. Schobbens,
“Model checking software product lines with SNIP,” In STTT, vol. 14,
no. 5, pp. 589–612, 2012.

[51] P. Asirelli, M. H. T. Beek, A. Fantechi, and S. Gnesi, “A logical
framework to deal with variability,” in IFM, 2010, pp. 43–58.

[52] A. Fantechi and S. Gnesi, “Formal modeling for product families
engineering,” in SPLC, 2008, pp. 193–202.

[53] A. Cimatti, A. Griggio, S. Mover, and S. Tonetta, “Parameter synthesis
with IC3,” in Formal Methods in Computer-Aided Design, FMCAD

2013, Portland, OR, USA, October 20-23, 2013, 2013, pp. 165–168.

	ICSE15.Copyright
	ICSE15

