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Abstract

Spodoptera frugiperda clonal isolate 9 (Sf-9) insect cells in conjunction with recombi-

nant baculovirus are an industrially relevant system for producing biologics. Sf-9 cells

are capable of robust high-density growth in single cell suspension. However, unlike many

other continuous cell lines, Sf-9 cell culture media remains undefined. Typically, the growth

medium requires undefined hydrolysate supplementation (most often yeast extract) in order

to support cell proliferation. The lack of chemical definition makes medium and process

optimization difficult, leads to batch-to-batch variability, and potentially affects down-

stream processing. This work aims to combine available information on the composition

of yeast extract and the composition of media for other cell lines to reduce the concentra-

tion of undefined components (yeast extract) in the medium and elucidate the effects of

micronutrient compounds.

Utilizing an in-house medium based on the classic IPL-41 medium with yeast extract

as the only undefined component, several steps were taken towards chemical definition.

Through fortifying the trace metal and vitamin content in the medium and the addition

of 11 micronutrients, the yeast extract content was successfully reduced 10-fold (from 4

g/L to 0.4 g/L). Without medium fortification and micronutrient addition, the cells were

incapable of growth at low yeast extract concentration. Sf-9 cells adapted to this new

medium were capable of long-term consistent growth. Micronutrients of key importance in

this medium were identified as glycine betaine, ascorbic acid, and the polyamine putrescine.

The presence of glycine betaine (1 mM), ascorbic acid (10 µM), and putrescine (10 µM)

improved maximum cell density by 32%, 41%, and 28% respectively in the low yeast
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extract medium. The role of these micronutrients could be properly investigated only after

medium enhancement and yeast extract reduction. Further, this medium was found to be

cost-effective compared to commercially available alternatives and the potential for added

cost-savings related to lipid supplementation was identified.

This enhanced low yeast extract medium could allow for micronutrient and other com-

ponent investigation with less convolution and is particularly applicable to designed com-

pound screening experiments (e.g. Plackett-Burman). Identification and supplementation

of additional required components provided solely by the yeast extract could lead to a

chemically defined medium.
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Chapter 1

Introduction

1.1 Introduction

Continuously dividing cell lines have wide application in the production of viral vaccines

and other biologics. Insect cell culture in particular is of interest in these applications due

to its relative safety and robustness. Recombinant baculovirus allows for the exploitation of

insect cell culture, specifically Spodoptera frugiperda clonal isolate 9 (Sf-9), to produce pro-

teins of interest. This platform is known as the Insect Cell-Baculovirus Expression Vector

System (IC-BEVS). Recent developments in this field have seen an increased applicability

to commercially approved products [1].

Insect cell culture growth media utilizes a basal medium containing a mixture of car-

bohydrates, amino acids, salts, trace metals and vitamins. Historically, this basal medium

has been supplemented with undefined components and is otherwise incapable of support-
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ing cell proliferation. Undefined supplements have progressed from insect hemolymph [2]

to animal sera [3] to non-animal derived plant hydrolysates and yeast extract [4, 5]. Yeast

extract is often the most successful complex media additive in insect cell culture and is

most prominently utilized. Presently, the most popular commercially available Sf-9 insect

cell media are proprietary in formulation and still contain undefined hydrolysates or yeast

extract (e.g. GibcoTM Sf-900III). However, the use of undefined components results in

the potential for batch-to-batch variability and difficulties in medium optimization and

metabolic understanding.

Replacement of yeast extract with known components would result in a chemically de-

fined medium. In contrast to many mammalian cell lines, a chemically defined medium for

Sf-9 insect cell culture has been slow to develop. Only recently (2018), has a chemically

defined Sf-9 medium become available (GibcoTM ExpiSfTM CD). However, this medium is

proprietary in formulation and requires the use of an Sf-9 derivative cell line, ExpiSf9TM to

guarantee results. A known chemically defined formulation would allow for batch-to-batch

consistency and for the ability to study the effects of compounds without convolution from

undefined components. This would allow for a greater understanding of Sf-9 insect cell

metabolism and would enable optimization of the medium for specific processes. Addition-

ally, a chemically defined medium could simplify the purification of products of interest

produced via IC-BEVS.
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1.1.1 Hypothesis and Objectives

This work utilizes an in-house medium (“ALIM + YX”), which is a simplified version of

the classic published IPL-41 medium [3], containing yeast extract as the only undefined

component. It is theorized that by studying available partial yeast extract characterization,

particularly characterization performed previously in this lab on the utilized yeast extract

products [6], and by studying chemically defined medium formulations for other cell lines,

the necessary components to replace yeast extract can be elucidated. It is hypothesized

that the effects of simply adding compounds of interest to a typical medium are likely to

be convoluted by their presence or the presence of similar compounds in the yeast extract.

As such, a more robust platform for compound screening must be developed, where live

cell density may be used to quantify medium component effects.

The primary objective of this work is to develop an Sf-9 cell culture medium platform

where components of interest can be tested and their effects determined with more certainty

and less convolution. To achieve this, the yeast extract concentration will be reduced

via media alterations and cell adaptation. The secondary objective is to utilize this low

yeast extract medium in designed screening experiments in order to determine necessary

compounds in a step-wise fashion. This process should eventually lead to a fully chemically

defined medium. The economic benefits of the in-house medium will also be analyzed and

optimized.
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1.2 Approach to Objectives

The experimental approach and structure of this work are as follows:

1. Investigate in-house medium and feed additives as they compare to commercially

available products (Chapter 4).

2. Optimize and fortify in-house medium utilizing information gained from preliminary

experimentation (Chapter 4).

3. Alleviate some of the limiting compounds to chemically defined growth based on

other medium formulations and partial yeast extract characterization. Through mi-

cronutrient addition, minimize the concentration of undefined yeast extract in the

medium (Chapter 4).

4. Utilize the developed enhanced low yeast extract medium for designed compound

screening experiments (Chapter 5).

5. Investigate the economic viability of the in-house medium and potential for further

improvement (Chapter 6).
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Chapter 2

Literature Review

2.1 Insect Cell Culture

2.1.1 Continuous Cell Culture

Cell culture is widely used for the production of biologics, such as therapeutic proteins

and viral vaccines. Animal cells are ideal for such production as they naturally have the

ability to create and modify proteins in complex ways [7]. Primary cell culture is when

cells are taken directly from an animal and then utilized. These cells may also be cultured

into a cell line, where they can be grown and passaged but only for a finite amount of

time. After dividing a certain number of times the cells will no longer propagate, and such

cell lines are considered secondary cell culture. A cell line that does not stop dividing is

known as an immortal or continuous cell line. Continuous cell lines offer advantages over

primary cell lines in that they can be grown to higher densities and are capable of secreting
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more product [8]. Continuous cell lines can be propagated to a certain passage number

and frozen as cell banks. This process allows for the creation of an almost unlimited

supply of consistent cells and results in lower cost and higher availability [9]. Additionally,

such cell lines can be screened to ensure that they do not contain adventitious pathogens,

which is an inherent risk with animal derived cells and cell lines that have been exposed

to animal serum [10]. These advantages mean that continuous cell lines are desirable for

the consistent and cost-effective production of biologics, although they must go through

strict regulatory procedures before being approved. These procedures include testing for

tumourigenicity and viral contamination [8]. In addition to creating products, animal cell

lines are also useful in that they allow for virus replication and propagation, and as a result

are highly desirable for human and animal viral vaccine production.

2.1.2 Insect Cell Lines

Insect cell lines are of particular interest due to their ability to be grown readily in sus-

pension and serum free cultures, and to high cell densities [11, 12, 5]. Additionally, insect

cells possess the ability to perform post-translational processing of proteins in a similar

manner to mammalian cells [13, 14, 15]. The combination of these factors results in a

relatively simple, safe, and cost-effective system for the production of biologics. A large

number of insect cell lines from a variety of orders have been developed [16]. Of particular

note are cell lines developed from Lepidoptera [17] due to their susceptibility to baculovirus

infection and replication. One of the most useful and popular of these Lepidopteran cell

lines comes from the ovarian tissue of the fall army worm (Spodoptera frugiperda), which
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was initially developed by Vaughn et al as IPLB-SF-21 [18]; adaptation of this cell line

to a less complex, hemolymph-free medium resulted in IPLB-SF-21-AE [19]. Spodoptera

frugiperda clonal isolate 9 (Sf-9) was subsequently isolated from this cell line. Sf-9 is one of

the most commonly used insect cell lines and its popularity stems from the versatility and

robustness (e.g. suspension, serum-free and high density growth) of the cells, and further,

due to their high susceptibility to baculovirus infection [20].

2.1.3 Baculovirus

The driving force behind academic and industrial interest in insect cell culture is its suscep-

tibility to baculovirus infection, particularly by Autographa californica nuclear polyhedrosis

virus (AcMNPV). AcMNPV was originally isolated from the Alfalfa Looper (Autographa

californica) and demonstrated high infectivity [21]. AcMNPV is capable of replication in

Lepidopteran species, including the Sf-9 cell line. The virus encodes for polyhedrin protein

under the control of a very strong, very late promoter (polh). However, it was determined

that polyhedrin is not required for viral replication in cell culture [22], and this can be

exploited to recombinantly express a protein of interest, as first demonstrated by Smith

et al [23]. Likewise, the baculovirus P10 protein has also been shown to be unnecessary

for viral replication, and its very strong, very late promoter (p10) has been similarly ex-

ploited [24]. The use of recombinant AcMNPV in insect cell culture (e.g. Sf-9) for protein

expression is known as the insect cell-baculovirus expression vector system (IC-BEVS).

Since its initial development, IC-BEVS has been utilized in the production of thousands

of recombinant protein products [24, 25], and recently has seen an increase in products
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approved for both veterinary and human use [1].

2.2 Insect Cell Media

In the IC-BEVS system, the cell is responsible for the actual production of the protein

of interest. It follows that cell metabolic requirements are important when designing an

IC-BEVS process, both prior to and after baculovirus infection. Currently, these metabolic

requirements are still not fully understood. This section will address the present under-

standing of insect cell metabolism as it relates to growth media design, with specific focus

on Sf-9 cell culture.

2.2.1 Historical Media

Early success in insect culture media development came by means of mimicking properties

of insect hemolymph in basal media, and supplementing that media with hemolymph of

the species of interest. Wyatt pioneered this strategy in culturing the Lepidopteran Bom-

byx mori [26]. Grace improved on this medium through the addition of several vitamins

and by means of matching osmotic pressure, pH and ion ratios of his medium to that of

the Lepidopteran Antheraea eucalypti, which resulted in the first continuous insect cell

lines [2]. Multiple improvements were made to Grace’s medium in the following years,

notably eliminating the need for insect hemolymph by utilizing a variety of animal-derived

complex components (most prominently fetal bovine serum (FBS)) [27, 19, 28]. Unde-

fined supplements such as FBS were more desirable for these early media formulations
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than insect hemolymph due to their ease of availability. These formulations were further

improved by Weiss et al in the development of IPL-41 growth medium for Spodoptera

frugiperda [3], which incorporated higher concentrations of most amino acids and vitamins

and utilized 10% FBS. Most subsequent and current serum-free insect culture media are

based on IPL-41, as are the formulations utilized in this study.

2.2.2 Traditional Media Composition and Cell Metabolism

2.2.2.1 Sugars

Early media formulations utilized multiple sugars as potential energy sources for the cell,

typically the disaccharides sucrose and maltose, as well as glucose [26, 2, 27, 28]. However,

it was shown early on that Sf cells could subsist and proliferate with glucose as the only

sugar source [19]. While Sf-9 cells have been shown to be capable of utilizing disaccharides

and other sugars (e.g. fructose and lactate) as carbon and energy sources [29, 30], it is

established that glucose is the most important carbohydrate energy and carbon source,

and in fact, the only sugar necessary to include in media formulations [29, 30, 31]. Excess

glucose in growth media results in the formation of alanine as a byproduct [32, 33]. Ala-

nine formation represents energetic inefficiency; however, alanine does not accumulate to

inhibitory levels [34], which is likely why glucose feed limitation strategies do not result in

growth improvement [31], despite successfully limiting alanine formation [33]. It is clear

that glucose can be used as the sole sugar source in Sf-9 cell culture media, and that con-

centration is not of extreme importance as long as it is sufficient to maintain exponential

growth and achieve high cell densities. Glucose should be provided at levels sufficient to
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maintain high growth, but excess should be kept to a minimum to avoid energetic ineffi-

ciency.

2.2.2.2 Amino Acids

Insect hemolymph contains a significant amount of free amino acids [35], and as a result

early insect cell culture media had high amino acid concentrations. The development

of IPL-41 basal media increased these free amino acid concentrations even further [3].

However, such media has shown to be inefficient, utilizing only 26% of the available amino

acids during typical culturing, with high cell densities still achievable when significantly

reducing the amino acid content [31].

The cell utilizes amino acids for energy, growth, compound synthesis and protein pro-

duction. Some amino acids are essential for Sf-9 cells (i.e. cannot be synthesized by the

cell) and must be supplied (e.g. glycine [36]), while others are supplied in excess to reduce

the metabolic burden on the cell and enhance growth. Typical insect cell media contains

19-20 amino acids (alanine is included in early media formulations but not required). All

amino acids are consumed to varying degrees during Sf-9 cell culture (except alanine which

is produced), with the most significant consumption usually being of glutamine [31, 29].

Glutamine can function as an energy source (via the TCA cycle) as well as a significant

carbon and nitrogen source for Sf-9 cells, and its role is well studied [30, 33, 37]. Notably,

Ohman et al demonstrated that Sf-9 cells could be grown in a glutamine-free medium,

although the inclusion of ammonium for glutamine biosynthesis was necessary [38]. How-

ever, a glutamine-free medium is likely simply increasing the metabolic burden on the cells
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by forcing them to produce glutamine. The utilization of most amino acids by Sf-9 cells

is likely for cell biomass proteins, although several amino acids are utilized for energetic

purposes (e.g. aspartate, asparagine, glutamate, glutamine and serine [31, 34], as well as

arginine and methionine [34]).

While amino acids are likely not at optimal concentrations in current media, optimiza-

tion would be laborious due to their complex metabolic interactions with one another

and with other media components. There are likely different optimal concentrations for

each cell line (e.g. [39]). Further, hydrolysates are providing an undefined and variable

source of amino acids in addition to those provided in basal medium [40]. If a chemi-

cally defined medium were developed it would then be prudent to optimize amino acid

concentrations for growth and/or protein production. Mathematical modeling approaches

would be useful in this scenario, having been employed in similar ways for insect cell feed

additive design [41, 42]. During development of chemically defined media, current amino

acid composition is adequate for all amino acids, and likely not of extreme importance.

2.2.2.3 Trace Metals

Trace metals or inorganic trace elements undoubtedly play a significant role in eukaryotic

cells, largely as co-factors [43, 44, 45]. Historically, such metal ions have been introduced

to media as impurities resulting from water or component contamination [46], a problem

which may persist today [47]. Additionally, insect hemolymph [35], animal sera [48], hy-

drolysates [49] and other undefined media components provide a variety of trace elements

to the medium. Previous work in this laboratory identified several trace metals present
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in yeast extract [6]. Although trace element requirements of Sf-9, or even insect cells in

general have not been well investigated, they are likely a required component provided

in modern serum-free media by undefined hydrolysates. IPL-41 provides several trace el-

ements which were not previously contained in insect cell media (e.g. Co, Cu, Fe, Mn,

Mo and Zn) [3]. In contrast to the inorganic trace elements provided by IPL-41, defined

media for other animal cell lines [50, 51], various media patents [52, 53, 54], and several

commercially available products (e.g. CorningTM Trace Elements A, B and C from Fisher

Scientific, Pittsurgh, USA) contain significantly more trace element compounds. These

additional trace metals, if required by Sf-9 insect cells, must be provided by the undefined

hydrolysates utilized in conjunction with IPL-41 basal media. When attempting to remove

undefined components towards a chemically defined media, careful consideration should be

given to trace metals added.

2.2.2.4 Vitamins

Vitamins are organic compounds, some of which are necessary in cell culture. Vitamins play

a variety of cellular roles, most prominently as enzyme co-factors [55]. Grace incorporated

the water-soluble B vitamins (thiamine, riboflavin, niacin, pantothenate, pyridoxine, biotin

and folate) and B vitamin-like compounds (4-aminobenzoic acid, inositol and choline) into

early successful insect cell culture media [2]. These have remained similar throughout the

development of insect cell media, with IPL-41 only differing in its incorporation of Vitamin

B12 (cyanocobalamin) and increased concentrations of all B vitamins [3]. The lipid soluble

Vitamin E (alpha tocopherol acetate) played a key role in the development of a complex

lipid solution for serum replacement by Inlow et al [5], where it acts as an antioxidant.
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There are several vitamins not typically included in insect cell culture that are worth

consideration in media development. Vitamin C (ascorbic acid) is a known antioxidant in

insect cells [56] and may have other roles in cell culture [57]. It is apparent that ascorbic

acid may be an important additive in chemically defined insect cell media [58]. The role,

if any, of the fat-soluble vitamin classes A, D and K have not been investigated in insect

cell culture.

Serum provides proteins that stabilize the vitamins in media. With the move towards

chemically defined media, care must be taken with respect to the stability of the vitamins in

solution. Stability of the B vitamins in terms of: chemical interaction, pH, light exposure,

oxidation and temperature is well reviewed [59] and of particular interest when eliminating

serum and hydrolysates from insect cell culture media. Previous work in this laboratory

has shown high concentrations of B vitamins are contained in yeast extract [6], and it

follows that replacement of the yeast extract likely requires increasing basal medium B

vitamin concentrations.

2.2.2.5 Lipids

Lipids are well known as integral components in continuous cell culture and play a variety

of roles (e.g. membrane structure, cell signaling, energy) [60]. However, lipid composition

differs significantly between mammalian and Sf-9 cells [61]. At least dietarily, insects

cannot synthesize sterols [62], and early media provided these and other lipid components

by means of hemolymph addition [63]. The replacement of hemolymph with animal sera

maintained the supplementation of necessary lipids [60].
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The importance of lipids in Sf-9 culture media was demonstrated by the necessity of

a complex lipid supplement when replacing animal serum [5, 4]. This supplement was

composed of: cholesterol, alpha tocopherol acetate (as an antioxidant), Tween-80 and

undefined cod liver oil fatty acid methyl esters. These components were dissolved in ethanol

and solubilized utilizing the polyol PluronicTM F-68. In the 30 years since the development

of this lipid supplement, very little has changed, and similar supplements are widely used

today. A current popular lipid media supplement, chemically defined Lipid Mixture 1

(Sigma) has improved on this early lipid supplement only slightly, replacing the cod liver

oil fatty acid methyl esters with a defined combination of non-animal derived fatty acids

(arachidonic, linoleic, linolenic, myristic, oleic, palmitic and stearic).

Gilbert et al studied the variation of these lipid mixture components in High-FiveTM

insect cells [64]. While minimal growth effects were seen in the absence of the supple-

ment’s lipid components, cholesterol and Tween-80 were shown to be critical for protein

production. It is useful to note that these experiments were carried out in a yeast ex-

tract containing medium. More careful study of the lipids and their related compounds

(e.g. choline, ethanolamine), and their necessity and availability in Sf-9 cell media is likely

of importance when developing and optimizing a chemically defined medium. This is of

particular interest from a cost perspective, as currently available lipid concentrates are a

relatively expensive component in insect cell media.
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2.2.2.6 Inorganic Ion Ratios

Inorganic salts are always included in cell culture media, with early insect media mimicking

the hemolymph of that particular species. Particular attention is paid to the ratio of Na+ to

K+ ions which varies considerably amongst insect species. Lepidopteran media is typically

already tailored in this respect to these species. However, it has been established that insect

cells can tolerate a wide range of ionic ratios (e.g. no effect on growth rate was observed

when altering Spodoptera media from a physiological Na+:K+ of 0.67 to 1.38 [63]). As such

there is likely little room for improvement in this aspect of media development.

2.2.2.7 Other Components

Organic Acids Insect hemolymph contains relatively high concentrations of TCA cycle

intermediate organic acids [65] and as a result, insect cell media typically include these

compounds (e.g. IPL-41 contains malic, α-ketoglutaric, succinic and fumaric acids [3]).

However, some insect cell media has been shown to support growth in the absence of

these organic acids [19], and so their necessity in media is unclear. The inclusion of these

organic acids is likely an artifact of early hemolymph analysis as Sf-9 cells are capable of

synthesizing the organic acids through their fully functioning TCA cycle [66]. However,

such compounds may be of use to relieve metabolic burdens, particularly during protein

production.

Antioxidants Cell culture is a highly oxidative environment and protective or “antiox-

idant” compounds are critical for cell health; however, they act in a complex and often
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convoluted manner [67]. Examples of antioxidants utilized in cell culture include: alpha to-

copherol acetate (Vitamin E; prevents lipid oxidation), ascorbic acid, cysteine, glutathione

and selenium (acts in conjunction with other antioxidants; seleno-enzymes) [56, 68]. Ox-

idative stress has been shown to increase in Sf-9 culture after baculovirus infection, and

as such is of interest in IC-BEVs systems [69]. Many of these antioxidants were provided

in insect cell media previously by animal sera and presently by yeast extract or plant

hydrolysates. A move towards chemically defined media would require a greater under-

standing of antioxidant roles and requirements in Sf-9 cells.

Chelators When trace metals are introduced to cell culture in complex solutions (e.g.

animal sera or hydrolysates) they are often in chelated form. This reduces their toxicity

and allows them to become accessible to the cell. Metal chelating agents are likely an

important aspect of a chemically defined media [70]. Very little information is available

on metal chelation specifically in insect cell media, however such compounds will be of

interest when moving away from yeast extract supplementation.

2.2.2.8 Byproducts

As outlined previously, alanine represents the most significant byproduct in typical Sf-9

culture but does not accumulate to inhibitory levels. It is of interest to look at lactate

and ammonia, which are the classic mammalian cell culture byproducts, and which often

inhibit growth in these systems.

Unlike in mammalian cell culture, lactate does not accumulate during Sf-9 cell culture

under normal conditions [71, 34]. Likewise, ammonia does not accumulate [34], except un-
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der glucose-limiting conditions [32, 33]. Further, Bedard et al demonstrated that the addi-

tion of 10 mM of ammonia to Sf-9 cultures did not inhibit cell growth [29]. Very high (40-80

mM) ammonia and lactate concentrations have been shown to reduce β-galactosidase pro-

tein production in IC-BEVS [72].

Since metabolic byproducts do not appear to be inhibitory in typical Sf-9 culture, they

are mostly of interest in terms of: metabolic efficiency, protein production, and specialty

operating conditions that allow for greater accumulation (i.e. fed batch systems). In such

cases, glucose and glutamine limited feeding strategies may be beneficial towards reducing

overall byproduct accumulation [32].

2.2.3 Other Media Considerations

2.2.3.1 Osmotic Pressure

The osmotic pressure of a solution or medium is determined by the overall concentration

of solutes, or the medium osmolality/osmolarity. The balance between osmotic pressure of

the medium and intracellular osmotic pressure is important for cell health. Hyperosmotic

stress occurs when medium osmolality is higher than intracellular osmolality, and conversely

hypoosmotic stress occurs when medium osmolality is lower. These stresses negatively

affect the cells ability to maintain homeostasis, interfering with water flux, and other

cellular processes [73].

A study of 22 insect species found a hemolymph osmolality range of 319-421 mOsm/kg [74].

Insect hemolymph osmolality is notably higher than that of mammalian serum. Insect cell
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culture media are typically kept within an osmolality range of 340-390 mOsm/kg [65],

with IPL-41 calling for an osmolality between 360-375 mOsm/kg [3]. Similarly, Zhang

et al showed that the optimal osmolality range for Bombyx mori insect cell growth was

between 350-385 mOsm/kg, with maximum growth rate occurring at 370 mOsm/kg [75].

Generally, insect cells are considered to be less sensitive to osmolality changes than mam-

malian cells [76].

When producing media, osmolality is a good measure to maintain batch to batch con-

sistency. Often, pH adjustment may result in high osmolality due to the addition of either

HCl or NaOH to the medium. As such, fed batch operation may run in to the issue of

high osmolality. In this case, there are a number of compounds that may act as “os-

moprotectants” (e.g. glycine betaine, sarcosine, glycine). Such osmoprotection has been

demonstrated in certain hybridoma cell lines [77, 78], but is poorly studied with respect to

insect cell culture and may not apply.

2.2.3.2 pH

Much like with osmotic pressure, insect cell media pH is based on observations of insect

hemolymph. Insect cell media pH is typically more acidic than that of mammalian cells,

ranging from 6.2-6.9 [65], with IPL-41 calling for pH of 6.2 +/- 0.01 [3]. Consistent batch

to batch media pH is important for consistent growth.
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2.2.3.3 Shear Protection

Since Sf-9 cells are grown in suspension culture, mixing is required. This leads to shear

stress, especially during large-scale operation, from which the cells must be protected.

Care must be taken to ensure adequate oxygen is being supplied to the medium, while not

exceeding critical shear force [79]. In early media, animal sera supplied adequate shear

protection [80], however with the move toward replacing sera with hydrolysates, shear

protectants were required. By far the most popular shear protectant media additive is the

polyol PluronicTM F-68 (Polaxamer 188). PluronicTM F-68 has been shown to adequately

protect insect cell culture from shear forces in the absence of serum [5, 81], and further to

be necessary in such formulations [64].

2.2.4 Undefined Media Components

As described previously, early insect cell culture media utilized hemolymph from the in-

sect of interest as a complex medium component. As large quantities of hemolymph were

difficult to obtain and not readily available, it was desirable to replace it with complex an-

imal derived components. Examples of these components include: whole egg ultrafiltrate,

lactalbumin hydrolysate, and various vertebrate sera (turkey, chicken, fetal bovine). These

complex animal components were able to successfully take the place of insect hemolymph

in insect cell media, and eventually FBS was used as the sole complex medium component

(e.g. IPL-41). However, there are various drawbacks associated with the use of FBS in cell

culture. These drawbacks include: high cost and low availability, undefined and inconsis-

tent composition, protein purification difficulty, and the potential presence of adventitious
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agents or other contaminants [65, 82]. Potential for adventitious agents is of particular

concern when producing biologics for human or animal use [83, 84].

The most notable breakthrough in replacing serum, and as such animal derived com-

ponents in Sf-9 cell culture media was made by Maiorella and Inlow who replaced FBS in

IPL-41 based media with a combination of 4 g/L yeast extract (also known as yeastolate or

yeast hydrolysate) and a complex lipid emulsion [4, 5]. Yeast extract replaces the growth

factors, trace elements and undefined micronutrients required for cell growth that were

previously provided by FBS. The lipid emulsion provides necessary lipids which are likely

not present in the yeast extract and further, utilizes PluronicTM F-68 as both a means to

solubilize the lipids and as a necessary shear protectant in culture. The resultant insect

serum-free media (ISFM) forms the basis for commercial media available today and for

the media used in this study (particularly the starting point of 4 g/L yeast extract and

the use of lipid emulsion). Simplified major early steps in insect cell media are outlined in

Figure 2.1:
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Figure 2.1: Simplistic outline of major milestones in animal component free insect media

development. Grace’s (Grace 1962); IPL-41 (Weiss et al 1981); ISFM (Maiorella et al 1988,

Inlow et al 1989)

A variety of animal derived (e.g. lactalbumin, casein, primatone RL) [85, 86] and

plant derived (e.g. wheat, soy, rice, pea) [87] hydrolysates have been tested in various

combinations in insect and mammalian cell lines. Soy hydrolysate, in particular, has been

used in conjunction with yeast extract in insect cell culture [88]. However, animal derived

products are not ideal as discussed previously, and often yeast extract proves to be most

effective supplement [85, 89].
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2.3 Yeast Extract and Replacements

2.3.1 Properties of Yeast Extract

2.3.1.1 Basic Composition

Yeast extract (also referred to as yeast autolysate or yeastolate) is a complex undefined

mixture of amino acids, carbohydrates, vitamins, trace metals, nucleic material and other

micronutrients. A portion of yeast extract components are contained in complex forms such

as oligopeptides and oligonucleotides [49, 90, 91]. BD Biosciences (Becton Dickinson, New

Jersey, USA) has provided basic composition analysis of 6 of their yeast extract products.

These compositions are summarized and compared in Table 2.1 and Figure 2.2 [49].
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Table 2.1: Yeast extract general composition properties. Data selected from 6 products

and adapted from BD Bionutrients Technical Manual 3rd edition. “%” refers to mass

percentage.

Property Low Value High Value % Difference

Total Nitrogen (%) 10.6 11.4 7%

Amino Nitrogen (%) 6.0 6.9 14%

AN/TN 0.54 0.61 12%

Total Carbohydrate (%) 6.8 16.3 82%

Inorganic Ash (%) 10.0 18.2 58%

Component (ug/g) Low Value High Value % Difference

Calcium 130 320 84%

Iron 32 74 79%

Magnesium 250 799 105%

Potassium 31950 60940 62%

Sodium 760 8190 166%

Component (%) Low Value High Value % Difference

Chloride 0.07 0.52 153%

Sulfate 0.09 1.02 168%

Phosphate 1.10 3.73 109%
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Figure 2.2: Free amino acid composition and variation in 6 different yeast extract products.

Raw data provided in BD Bionutrients Technical Manual 3rd edition.

2.3.1.2 Variability

Commercial yeast extract production typically involves the culturing of Saccharomyces

cerevisiae to high density. The cells are then killed by moderate temperature increase

or osmotic pressure increase. Protein and other macromolecules are broken down by the

yeasts own enzymes, making this an autolytic process. The water soluble portion is then

processed via centrifugation and filtration (to varying degrees), often followed by spray
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drying to obtain the final product [49, 92]. Autolysis is the most common method of

producing yeast extract products [90, 93]. A variety of factors contribute to the variable

composition of yeast extract, such as: yeast culture conditions, autolysis temperature,

enzyme variation and addition, as well as downstream processing [93, 94, 95, 96]. Such

variability is demonstrated in Table 2.1 and Figure 2.2. Lobo-Alfonso et al demonstrated

insect cell growth variability both due to different yeast extract providers as well as lot-to-

lot variability from the same provider [92].

2.3.2 Chemically Defined Media

Due to the undefined nature and inherent variability of yeast extract, it is desirable to

replace it in insect cell culture media. Successfully replacing yeast extract with defined

components would result in a chemically defined medium.

2.3.2.1 Mammalian Cell Lines

As with insect cell lines, early mammalian cell culture required undefined supplements

(most commonly serums, e.g. FBS). van der Valk et al have reviewed the movement away

from FBS supplementation towards serum-free and chemically defined media [97]. This

review outlines the fact that different cell lines have different nutritional requirements and

indicates compounds often necessary in the development of chemically defined mammalian

cell media. These compounds include: growth factors, hormones, lipids, antioxidants,

vitamins and Insulin-Transferrin-Selenium (ITS) supplement. Presently, several serum-

free mammalian cell culture media are commercially available, e.g. GibcoTM CD CHO for
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Chinese Hamster Ovary (CHO) cell lines (Thermo Fisher Scientific, Massachusetts, USA),

EX-CELLTM CD Hybridoma Medium for hybridoma cell lines (Sigma-Aldrich, Missouri,

USA) and GibcoTM CD 293 for human embryonic kidney 293 (HEK 293) cells (Thermo

Fisher Scientific).

2.3.2.2 Insect Cell Lines

In contrast to mammalian cell lines, there has been much less success in the development

of chemically defined media for insect cell lines. Wilkie et al reported the first chemically

defined insect cell medium in 1980, for S. frugiperda cells [98], however it has not been suc-

cessfully utilized since then. On the contrary, Wilkie’s medium has been demonstrated to

not work in a variety of insect cell lines [66, 99], and specifically in Sf cell lines (without the

use of yeast extract) [31]. Mitsuhashi successfully developed a chemically defined medium

(MTCM-1520) capable of sustaining the flesh fly (Sarcophaga peregrina) cell line, NIH-

SaPe-4, for more than 200 passages [99]. This medium was poorly optimized, containing

105 compounds, which is significantly more than in previously discussed media. Further

experimentation by Mitsuhashi allowed for elimination of many of these compounds and

elucidated the importance of polyamines for cell proliferation [100]. However, cell growth

of NIH-SaPe-4 in this medium is dictated by a strong density dependence, requiring pas-

saging at a ratio of 1:2. Further, MTCM-1520 has not been shown to sustain defined

growth for non-Dipteran cell lines. More recently, Burnette et al utilized a small molecule

screening technique to develop a chemically defined medium for Drosophila cells [101, 58].

This medium was successful in sustaining long term growth of the adherent cell line Clone

8 (Cl.8) over the course of at least 95 passages while maintaining consistent growth rates.
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However, the medium was unable to sustain growth of suspension cell line Schneider 2 (S2)

for more than 4 passages. This study provides more evidence towards the importance of

the polyamines in chemically defined insect cell growth, identifying spermidine as a key

growth inducing component.

Presently, the most popular commercially available Sf-9 insect cell media, GibcoTM Sf-

900II and Sf-900III (Thermo Fisher Scientific) still utilize undefined hydrolysates. Recently

(2018), Thermo Fisher Scientific released the first commercial chemically defined medium

for insect cells, GibcoTM ExpiSfTM CD. This medium is designed for Sf-9 cells and is

advertised to achieve very high cell densities (2 × 107 cells/mL) and allow for high protein

yield for over 20 passages. However, its formulation is proprietary and the promised results

are utilizing Thermo Fisher’s Sf-9 cell line derivative, ExpiSf9TM. They do not guarantee

that adapting other Sf-9 cells to the medium will achieve the same results, even after the

recommended slow acclimatization of 25-30 passages. This difference points towards a

metabolic difference between typical Sf-9 cells and the ExpiSf9TM derivative.

2.3.2.3 Compounds of Importance

In order to develop a successful chemically defined growth medium for Sf-9 cells, it is im-

portant to consider defined media for other cell lines as well as yeast extract composition.

Different cell lines often require different media and different nutrients or nutrient levels.

However, there are many similarities between different media, and chemically defined me-

dia for other cell lines, particularly insect cell lines, will likely provide clues as to what is

required in Sf-9 cell culture. Since it is well established that Sf-9 insect cells are capable of
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strong growth in a medium where the only undefined component is yeast extract, it follows

that the composition of yeast extract is of key importance in the development of a chemi-

cally defined medium. Although yeast extract is very complex and not fully characterized,

it is worthwhile to look to existing characterization work to find components that may be

of interest in its replacement. Likewise, plant hydrolysates have shown similar growth pro-

moting properties and their characterization is of interest in determining compounds that

may be needed in a chemically defined medium. Low molecular weight fractions (<3kDa)

of yeast extract and other hydrolysates have been demonstrated to provide the majority

of growth promoting abilities in both Sf insect cell lines [85, 102, 103] and in mammalian

cell lines [104, 105, 106]. This effect is likely indicative of free components and short chain

peptides being of primary importance to growth rather than large macromolecules and pro-

teins. Compounds of potential interest in the development of a chemically defined medium

for Sf-9 insect cells based on other defined media and yeast extract characterization are

summarized:

• B vitamins: Already provided in typical Sf-9 media, however yeast extract is also

a significant supplier of B vitamins [90, 107, 6]. Supplementation may be required

when eliminating yeast extract.

• Nucleic material: Yeast extract contains a significant amount of nucleic material [91,

108], mostly from RNA [6, 109]. However, basal insect cell media does not typi-

cally contain nucleic material. This lack of nucleic material is in contrast to many

mammalian media formulations (e.g. Medium 199, Ham’s F-12 [110]). It is worth

investigating whether supplementation of nucleic material might aid in the transition
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away from yeast extract in insect cell culture, likely by easing the metabolic burden

necessary for the cells to synthesize these compounds.

• Oligopeptides: It is well established that yeast extract is a rich source of short chain

peptides. However, simply replacing these peptides with their equivalent free amino

acids may not be adequate when eliminating yeast extract. There is evidence that

short chain peptides play roles (e.g. cell signalling) beyond simply providing amino

acids to cell culture, as reviewed by Franek [111]. Although chemically defined cell

culture media does not typically contain synthetic peptides, it may be a useful avenue

of investigation in Sf-9 cell culture yeast extract replacement.

• Other micronutrients: Both polyamines [106] and betaine [6] are present in yeast ex-

tract. These compounds have been described earlier, with polyamines being shown

necessary in many chemically defined media and betaine playing an important osmo-

protective role in some mammalian cell culture.

The compounds summarized in Table 2.1 and Figure 2.2 are all provided in basal media.

These compounds are therefore likely not essential in yeast extract replacement. However,

the basal medium may need to be fortified with such compounds in order to restore their

ideal concentrations.

29



Chapter 3

Materials and Methods

3.1 Materials

All compounds used in cell culture media were purchased from Sigma-Aldrich (St. Louis,

Missouri, United States) unless otherwise stated. These compounds were mostly “Biore-

agant” grade, and if not were either “BioXtra” or “BioUltra” grade. Yeast extract used

in “ALIM” media was purchased from Thermo Fisher Scientific (Waltham, Massachusetts,

United States). Yeast extract used for all experiments in this study was Product BP-1422,

Lot 171921. Sf-900III media was also purchased from Thermo Fisher Scientific. Water used

for production of cell culture media was of Ultrapure quality (in-house purification system),

and was ensured to have a resistivity of greater than 17 MΩ · cm at room temperature.
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3.2 Cell Culture

Spodoptera frugiperda clonal isolate (Sf-9) cells were grown in screw-capped glass Erlen-

meyer shake flasks. Flasks were incubated at 27◦C and on an orbital shaker set to 130

rpm. Screw caps were not completely closed as to allow for adequate air circulation. Cells

were typically grown to densities of 2.5 - 4 × 106 cells/mL before being passaged into fresh

medium at 0.5 - 0.6 × 106 cells/mL. For low yeast extract adaptation experiments, seed-

ing density was often higher, at 0.7 - 0.8 × 106 cells/mL. Cells were cultured in either 50

mL, 125 mL, 250 mL or 1 L flasks at working volumes of 13 mL, 30 mL, 60 mL and 250

mL, respectively. Ramping up for experiments was done typically in 250 mL flasks and

occasionally in 1 L flasks. Experiments were typically carried out in 125 mL flasks and

occasionally in 50 mL flasks (due to media or space restrictions).

3.2.1 Cell Counting

Cell counting was performed using the CountessTM II Automated Cell Counter (Life Tech-

nologies; Thermo Fisher Scientific). Cell samples of 0.5-1 mL were taken directly from

flasks and counted immediately so as to avoid additionally variability due to cell settling.

Samples were diluted 1:1 with a 0.1% trypan blue in phosphate buffered saline (PBS)

solution (Sigma-Aldrich). It was ensured that the cells were evenly distributed prior to

selecting “count”. Experimental counts were repeated and the average used for analysis.

To ensure accurate results and stay within the recommended measurement range, cell den-

sities of greater than 1 × 107 cells/mL were further diluted with PBS prior to counting.

Cell density, viability, and size were measured with the CountessTM II Automated Cell
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Counter.

3.3 Media Production

All media formulations may be found in Appendix A. Aucoin Lab Insect Cell basal media

(basal “ALIM”; 1 L batch in this case) was produced by dissolving the appropriate amount

of dry amino acids, sugars, and salts into approximately 600 mL of fresh UltraPure water.

The components were then mixed in a beaker with a magnetic stir bar and allowed to

fully dissolve at room temperature. Next, 1 mL of 1000x concentrated trace metal solution

and 1 mL of 1000x concentrated vitamin solution were fully thawed from frozen at -80◦C,

mixed well and added to the solution. All concentrated stock solutions were previously

produced in-house by dissolving at room temperature before being aliquoted into 1 mL

volumes and frozen. Next, 13.3 mL of 75x concentrated L-cystine and L-tyrosine stock was

thawed and also added to the solution. This amino acid concentrate was produced using 1

M hydrochloric acid due to solubility issues in water. After ensuring all previously added

components were fully dissolved, 30 mL of chemically defined Lipid Mixture 1 (Sigma-

Aldrich) was added to the solution. UltraPure water was then used to bring the mixture

to an approximate volume of 900 mL. After allowing time for adequate mixing, the pH of

the solution was raised to 6.2 by adding the required volume of 3 M sodium hydroxide.

During pH balance, care was taken to not overshoot 6.2, as having to reduce the pH

after overshooting would result in a higher osmolality and therefore an inconsistent media.

The solution was subsequently topped up to 1 L in a volumetric flask and sterile filtered

(0.20µm polyethersulfone (PES) membrane; VWR International (Mississauga, Canada))
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into a sterilized bottle. All media were stored at 4◦C.

The concentrations of compounds mentioned in this section are formulation dependent,

i.e. “enhanced basal ALIM” utilized larger volumes of trace metal and vitamin concen-

trates. Additional components for experiments were either built in to the media during

production, or added via concentrate spike. Such concentrate spikes were produced in

UltraPure water at a high enough concentration such that the volume added to culture

would have a negligible effect on the greater media composition; controls were spiked with

corresponding volumes of UltraPure water. All component and water spikes were sterile

filtered prior to use in cell culture.

3.4 Osmolality

All osmolality measurements were performed using The AdvancedTM Micro-Osmometer

(Model 3300; Advanced Instruments Inc., Massachusetts, United States) utilizing freezing-

point osmometry. Media samples were aliquoted and analyzed immediately. Supernatant

samples were gathered by centrifugation of cell culture samples and subsequent collecting

of the supernatant from the top of the sample, ensuring no significant cell debris remained.

The instrument was properly calibrated, and a standard was tested prior to each use. The

instrument was properly cleaned between samples and all tested solutions were run in at

least triplicate. Duplicate samples were run non-consecutively to ensure consistency of

measurements. Osmolality measurements were routinely taken to ensure batch-to-batch

consistency of media produced in-house.
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Chapter 4

Media Platforms for Compound

Testing and Optimization

4.1 Premise

Fully chemically defined growth medium is desirable as it allows for the system to be more

precisely monitored and efficiently fed/adjusted. Furthermore, a fully chemically defined

medium allows for the testing of compounds such that their effects can be fully seen and

not convoluted by the presence of complex hydrolysates. This enables the use and effect

determination of micronutrients as one can be sure of the exact amounts which may or

may not be present in the growth media.

Commercial media (e.g. Gibco Sf-900III) is not desirable as a platform for media opti-

mization and component testing as the formulations are proprietary and further, contain

34



hydrolysate. In addition to the presence of hydrolysate, there are many factors which may

affect growth and production, and which may confound other results, such as pH, osmo-

lality, Na:K ratios, etc. Simply adding compounds to finished commercial media products

will alter the product in ways that are not consistent from compound to compound. In-

corporating components desired for testing into the medium during production allows for

pH, osmolality, and ion ratios to be consistent from batch to batch and from experiment

to experiment for whatever compound is being analyzed. It is useful, then, to utilize an

in-house growth medium such that more controllable alterations may be made and such

that there is more information as to what is already present in the medium.

4.2 In-house Medium

4.2.1 Media with Hydrolysate

In order to develop a platform for medium optimization testing with the overall goal of

eliminating the need for hydrolysates, Sf-9 insect cells were adapted to an in-house medium,

“ALIM”, containing 4 g/L yeast extract (“ALIM + YX”). This in-house medium is based

on and remains similar to IPL-41. See Table A.1 for initial “ALIM + YX” formulation.

Cells frozen at low passage number (p16) in a medium composed of 80% Sf-900III, 10%

Fetal Bovine Serum (FBS) and 10% dimethyl sulfoxide (DMSO) were thawed into 100% Sf-

900III growth medium. The cells were then allowed to return to their normal growth rates

in Sf-900III over the course of approximately 4 passages (during which time any residual

FBS and DMSO were eliminated from the system). Cells were subsequently adapted to
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“ALIM + YX” media by halving the amount of Sf-900III and replacing with “ALIM +

YX” each passage until Sf-900III was eliminated altogether (approximately 5 passages).

Figure 4.1 illustrates this simple adaptation process. As expected, after this adaptation,

the cells experienced a reduced growth rate compared to that of cells in Sf-900III. Figure 4.2

compares exponential cell growth in Sf-900III medium to that of low passage/early adapted

“ALIM + YX”.

Figure 4.1: Adaptation process for transitioning Sf-9 cells from Sf-900III commercial
medium to “ALIM + YX” in-house medium. Fraction indicates amount of Sf-900III in
fresh medium.
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Figure 4.2: Exponential growth profile comparison of Sf-9 cells in Sf-900III medium and
post-adaptation to “ALIM + YX” medium. Error bars represent ± standard deviation
(n=3) of independent cultures.

As can be seen, most of the growth reduction is due to an increased lag phase (approx-

imately one day). This lag phase is illustrated in Figure 4.2 by the inclusion of the “ALIM

+ YX” growth curve shifted back 24 hours (dashed line), and may be largely overcome by

simply seeding new flasks at a higher cell density (e.g. 6 - 8 × 105 cells/mL). Regardless,

this growth rate reduction does not inhibit the medium’s usefulness as a platform for op-

timization as it still affords the ability to control and compare compounds. Maximum cell

density is comparable to the commercial medium (13 - 14 × 106 cells/mL; data not shown)
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and is beyond what is necessary for even “high density” infections and protein production

using the IC-BEVs. Over many passages, the cell growth rate in “ALIM + YX” was ob-

served to steadily improve and even approach the growth rate in the commercial Sf-900III

medium (data not shown).

4.2.2 Basal Media

With the cells fully adapted to, and growing well in “ALIM + YX”, it was then desirable

to attempt to eliminate the yeast extract entirely. Passaging directly from “ALIM + YX”

into “ALIM” without yeast extract (‘Basal ALIM’), yields slow growth to a maximum

of approximately 1-2 cell doublings (see Figure 4.3 comparing typical first passage Basal

“ALIM” growth to that of “ALIM + YX”). However, subsequent passage attempts (from

Basal “ALIM” into Basal “ALIM”) show no growth whatsoever, as expected. The small

amount of cell proliferation in the first passage into Basal “ALIM” is due to residual yeast

extract. Initially, it seemed as though cells passaged into Basal “ALIM” from “ALIM +

YX” were ideal candidates for growth inducing compound/yeastolate replacement testing.

However, as the minor growth seen is entirely due to residual yeast extract, inconsistencies

arise. These inconsistencies are due to seed volume and therefore seeding flask density, and

further due to the degradation level (or ‘freshness’) of the yeast extract being carried over

from the previous culture during passaging. Figure 4.4 demonstrates this inconsistency

with examples of observed first passage Basal “ALIM” growth profiles.
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Figure 4.3: Growth profile comparison of Sf-9 cells in “ALIM + YX” medium to first
passage growth in Basal “ALIM” medium. Error bars represent the range of duplicate
cultures.
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Figure 4.4: Three examples of Sf-9 cell growth profiles during first passage into Basal
“ALIM” medium from “ALIM + YX” medium.

Figure 4.4 displays three examples of first passage Basal “ALIM” growth profiles. Seed-

ing flask conditions for examples 1 and 2 do not differ in any appreciable way, while example

3 was passaged from a slightly higher density and one day older flask. More significant

growth has also been observed when passaging from flasks which were seeded high (e.g.

>1 × 106 cells/mL) and passaged after less days of growth, but from the same seeding

flask density as examples 1 and 2 (i.e. more ‘fresh’ yeast extract). As can be seen in

Figure 4.4, these factors play a significant role in growth observed in Basal “ALIM” and
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cannot be precisely controlled in a practical manner. This makes consistency from experi-

ment to experiment very difficult and as such defeats the whole purpose behind utilizing a

controllable in-house medium. Additionally, the one passage limitation of growth in Basal

“ALIM” does not allow for thorough investigation of the effects of tested compounds.

4.2.3 Preliminary Low Yeast Extract Media

Next, it was desirable to attempt to adapt these Sf-9 “ALIM + YX” cells to growth in a

low yeast extract environment. This was done in an effort to achieve consistent growth and

maintain the ability to passage cells continuously, in contrast to Basal “ALIM”. The major

benefit of a low yeast extract medium to this work is that it provides a jumping off point

for the testing of potential growth inducing compounds in a way that their effects are not

convoluted by either their presence, or the presence of other unknown compounds, in yeast

extract. Results may still be confounded by the presence of even small amounts of yeast

extract, but lower concentrations and consequent improved consistency allows for insight

into the actual effects of the compound being tested. First, to determine a baseline for the

effects of yeast extract levels on cell growth/proliferation, the standard “ALIM + YX” (4

grams of yeast extract per litre) was simultaneously compared to 2g/L, 1g/L, 0.1g/L, and

Basal “ALIM”. The results of this may be seen in Figure 4.5.
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Figure 4.5: A) Growth profile comparison of Sf-9 cells in “ALIM” media with YX levels
varying from 4 g/L (“ALIM + YX”) to 0 g/L (Basal “ALIM”). B) Semi-log exponential
growth comparison of 4, 2, and 1 g/L YX “ALIM”. Error bars represent the range of
duplicate cultures.
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Clearly, reduction of yeast extract has a detrimental effect on cell growth, inhibiting

it in an almost linear fashion as yeast extract is reduced. Maximum cell density is also

adversely affected. Yeast extract likely contains multiple components necessary for cell

growth that are present at different levels. As can be seen in Figure 4.5, when yeast

extract is reduced to 50% and 25% (i.e. 2g/L and 1g/L), growth begins normally, but

then falters as the cells begin to reach a density of 2-3 × 106 cells/mL. Exponential growth

rates are similar for 4g/L YX (0.024h−1), 2g/L YX (0.021h−1), and 1g/L YX (0.024h−1),

however exponential growth phase continues significantly longer with 4g/L YX. This could

be explained by a co-factor (likely a trace metal) that is present in the yeast extract at

levels high enough to only maintain exponential growth for a limited number of cells when

yeast extract is at reduced levels. In this case, inhibition would not be realized immediately,

but only when the cell density requires more of the co-factor than is available. Overcoming

this hypothesized low yeast extract co-factor limitation would be required such that other

limitations (i.e. micronutrients) may be realized and addressed.

4.3 Feed Additives

4.3.1 Preliminary Work

Based on the co-factor limitation hypothesis from the previous experiment, it was thought

that the trace metal content should be increased. Initially, and for maximum flexibility, this

was performed/tested by utilizing a concentrated feed additive (F.A.) at approximately 5%

culture volume. In this work, ‘feed additives’ may be used both as a medium enhancement
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(i.e. added to standard media at the start of culture) or as a nutrient spike (i.e. added at

certain time or at cell density points during the culture). Feed additives are a good way to

boost nutrients provided to the cells (particularly trace metals and vitamins in this case)

and to ensure that none of the ‘defined’ components already provided to the cells in the

medium are limiting to growth. This allows for focus on compounds that are not provided

in the medium or that are solely or largely provided by the yeast extract.

Preliminary work with feed additives was done in order to ensure their effectiveness and

gauge the effects of increasing certain components in the medium. The initially tested feed

additive is described by Bédard et al [112]. A version of this feed additive excluding yeast

extract was also tested. Figures 4.6, 4.7 and 4.8 show results from baseline feed additive

experiments.
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Figure 4.6: Growth profile comparison of Sf-9 cells in Sf-900III medium with and without

the use of a feed additive spike regimen. Arrows indicate feed additive spikes. Error bars

represent the range of duplicate cultures.
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Figure 4.7: Growth profile comparison of Sf-9 cells in Sf-900III medium with and without

a feed additive spike regimen. Compares original yeast extract containing feed additive to

an identical feed additive excluding yeast extract (“YX-free F.A. Spikes”). Arrows indicate

feed additive spikes. Error bars represent the range of duplicate cultures.
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Figure 4.8: Growth profile comparison of Sf-9 cells in “ALIM + YX” medium with and

without the use of a feed additive spike regimen. Arrows indicate feed additive spikes.

Error bars represent the range of duplicate cultures.

In the baseline experiments, feed additives were used to supplement cultures as per the

following regimen [113]: 2% culture volume feed additive spike at approximately 2 × 106

cells/mL, 4% culture volume feed additive spike at approximately 4 × 106 cells/mL, and 6%

culture volume feed additive spike at approximately 8 × 106 cells/mL. Figure 4.6 demon-

strates that the feed additive regimen prolongs exponential growth phase and significantly
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improves maximum cell density. Figure 4.7 utilizes an identical feed additive excluding

yeast extract (i.e. a chemically defined feed additive). It is apparent that the defined feed

additive does not succeed in prolonging exponential growth, enforcing the idea that there

are significant and essential components to growth being provided by the yeast extract,

and that these components are solely provided by the yeast extract. The defined feed

additive does prolong growth and improve maximum cell density, but this is likely due

to replenishing macronutrients that have been depleted from the Sf-900III by that point

in the culture. Figure 4.8 confirms that the feed additive (containing yeast extract) has

a similar effect on “ALIM + YX” culture as was observed in Sf-900III. It follows that

the feed additive can be a useful tool in conjunction with the in-house “ALIM” medium.

Based on this, it was hypothesized that incorporating the use of a micronutrient boosting

feed additive, while reducing the yeast extract concentration in “ALIM + YX” would be

a useful approach.

4.3.2 Yeast Extract Reduction Attempt

The basis for the feed additive initially used in this study is described by Bédard et al [112],

however a number of alterations were made for these purposes. Lipids were not included due

to the difficulty of consistently incorporating them into the concentrated solution and due

to the adequacy of lipids provided in “ALIM”; amino acids and salts were considered to be

at appropriate/sufficient concentrations already and were kept consistent with their levels

in “ALIM”; yeast extract was included in preliminary experiments (46 g/L in additive)

but not henceforth. The feed additive formulation for initial low yeast extract “ALIM”
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experimentation can be seen in Table A.2. The feed additive was used as a 5% by culture

volume supplement added to the fresh “ALIM” medium prior to seeding (i.e. 1.5 mL of

feed additive in a 30 mL culture). This method was chosen over the previously used spike

regimen for the sake of simplicity. The most noteworthy differences between “ALIM”

and “ALIM + 5% feed additive” were that the latter had nearly triple the amount of

trace metals and vitamins, and approximately 30% more glucose. Essentially, use of the

feed additive resulted in a richer version of “ALIM” in terms of certain media component

classes. Initial experimentation with yeast extract levels and 5% feed additive may be seen

in Figures 4.9 and 4.10.

49



Figure 4.9: Growth profile and cell viability of first passage basal “ALIM” with and without

supplemention with 5% yeast extract free feed additive by volume. Error bars represent

the range of duplicate cultures.
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Figure 4.10: Growth profile comparison of Sf-9 cells in “ALIM + 2 g/L YX” medium and

in “ALIM + 2 g/L YX” medium supplemented with 5% yeast extract free feed additive

by volume. Error bars represent the range of duplicate cultures.

Figure 4.9 shows that supplementing basal “ALIM” with the defined feed additive seems

to improve growth slightly, reaching a live cell density greater than 2.5 × 106 cells/mL, how-

ever subsequent passages in this medium do not yield meaningful growth (i.e. passagable

cell density of 2 × 106 cells/mL is not reached). Furthermore, Figure 4.10 shows that the

feed additive does not aid cell proliferation in media containing 2 g/L yeast extract (one
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half the normal amount). It is apparent that the feed additive is tolerated by the cells,

despite the increased osmolality, however it does not aid cell growth. This lack of improve-

ment indicates that the growth limitation in low yeast extract media is due to a compound

being provided solely by the yeast extract, and not due to some trace metal or vitamin

already contained in the “ALIM” formulation. However, the somewhat promising improve-

ment in basal “ALIM” growth is supportive of continuing to boost these micronutrients.

For the feed additive to be effective, it needs to provide compounds that are not already

being provided to the cells.

4.3.3 Potential Growth Inducing Compounds

In an effort to develop a low yeast extract growth medium from which to more thoroughly

study yeast extract replacement, it was decided to first incorporate a variety of promising

micronutrients into the feed additive. Compounds for this initial strategy were chosen based

on preliminary experiments, literature, and previous yeast extract characterization work

done in this laboratory (via acid digestion and nuclear magnetic resonance (NMR) targeted

profiling) [6]. It was decided to simultaneously add a number of compounds at once as it is

likely that multiple necessary compounds are provided by yeast extract, and to hasten the

development of a platform from which compounds could be more thoroughly studied. All

compounds utilized here were tested to ensure that they would not have negative effects

and as such would not conceal potential positive results. This preliminary testing typically

consisted of adding the compound of interest to basal “ALIM” at various concentrations

and ensuring that cell viability was unaffected. The first group of compounds used in this
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study are referred to as potential growth inducing compounds (pGICs). Compound choices

and reasoning are described in the remainder of this section.

4.3.3.1 Betaine

Glycine betaine is a known osmoprotectant in other cell lines [77, 78]. Since the use of

a feed additive increases the osmolality of the medium, and since “ALIM” is already at

high osmotic pressure, it is of interest to incorporate betaine in order to combat potential

negative side effects of an enriched growth medium. Preliminary experiments utilizing be-

taine in both feed additive spiked culture and artificially high osmolality culture (sucrose

spiked) did not show any clear osmoprotective effects (Appendix B). However, those ex-

periments were done in Sf-900III and “ALIM + YX”; since betaine has been detected in

yeast extract [6], it is possible that any positive effects may have been obfuscated by the

yeast extract already present in the media. These preliminary experiments did demonstrate

that betaine is tolerable at high concentrations (>100mM). It is therefore appropriate to

add betaine to the feed additive in order to potentially mitigate high-osmolality-related

negative effects that may develop as the yeast extract content in the media is reduced.

4.3.3.2 Polyamines

One or more of the polyamines (putrescine, spermidine, spermine) and their metabolic

precursor (ornithine) are widely reported to be necessary for chemically defined cell growth

in multiple cell lines [100, 101, 106]. The typically accepted cellular metabolic pathway for

the polyamines and their precursors is shown in Figure 4.11.
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Figure 4.11: Simplistic polyamine biosynthesis pathway.

Previous work in this laboratory has demonstrated the presence of ornithine in yeast

extract [6]. In the same work, the polyamines (putrescine, spermidine, spermine) were

not identified, likely due to their very low concentrations and the convolution of the NMR

spectra. Polyamines have been shown by others to be present in hydrolysate products [106].

Preliminary polyamine experiments (data not shown) had mixed results but allowed

for the determination of polyamine levels which were tolerable to the cells. A preliminary

result of note is shown in Figure 4.12.

54



Figure 4.12: Sf-9 cell growth profile in Basal “ALIM” demonstrating polyamine-induced

proliferation. Arrow indicates time of polyamine spike.

Figure 4.12 shows cell proliferation in basal “ALIM” media being induced by a polyamine

concentrate spike (as indicated by the arrow; spike added after 72-hour count). This spike

contained ornithine as well as the 3 polyamines. However, passaging such growth induced

flasks into the same conditions (basal “ALIM” + late polyamine spike) or directly into

basal “ALIM” + polyamines did not yield notable growth. Further, varying the levels of

polyamines in both strategies was also not successful in achieving multi-passage growth.
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This speaks to the complexity of yeast extract, and that likely at the residual levels from

the first passage into basal “ALIM”, a lack of polyamines is limiting growth, but in sub-

sequent passages some other micronutrient is now limiting growth. Residual yeast extract

amounts from the first passage would contain enough of said micronutrient(s) to allow for

growth, but beyond that they also become limiting as yeast extract levels approach zero.

Additionally, these polyamine spike experiments were not always repeatable, once again

demonstrating the inconsistencies arising due to residual yeast extract in basal “ALIM”.

Similarly, utilizing this polyamine spike at the beginning of first passage basal “ALIM” cul-

ture also yielded variable growth results, ranging from typical first passage basal “ALIM”

growth (i.e. 1.5 - 2 × 106 cells/mL; no improvement over baseline), to as high as 3 × 106

cells/mL (data not shown). While it is not possible to draw conclusions regarding the in-

fluence of polyamines on cell proliferation from these preliminary experiments, it is worth

exploring their impact further and including the polyamines as pGICs in the feed additive.

Concentrations are based on the results of preliminary experimentation and may be seen

in Table 4.1. The entire polyamine family was included due to all being variously reported

as important in literature.

4.3.3.3 Nucleic Material

Nucleosides have been shown to be present at significant levels in yeast extract [6, 109].

Uridine, inosine, and adenosine were chosen as pGICs as they were observed to be the most

prevalant nucleic compounds present in the yeast extract used with “ALIM” media. By

adding nucleosides to the feed additive, the cells are being provided with ‘pools’ of these

compounds, which will potentially reduce growth lag after passaging. Concentrations were
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chosen to mimic 4 g/L yeast extract.

4.3.3.4 Other Compounds

Other compounds elected to be included in the feed additive as “pGICs” were as follows:

• Sodium ascorbate: Can act as an antioxidant, which is especially important in the

trace metal enriched medium [56]. Ascorbic acid may play a more complex role in

cell metabolism [57] and is likely to be an important compound in chemically defined

insect cell media [99, 58].

• Ethanolamine: Has been shown to be essential to or important for growth in many

serum-free media for mammalian cell culture [97, 114, 115]. Ethanolamine may not

be necessary for insect cell culture [116] but this has not been thoroughly investigated.

• Selenium: Has been shown to be critical for serum-free cell growth in most cell lines;

often acts as an antioxidant co-factor [97, 68].

These compounds were added based on levels seen in literature, and were tested to

ensure they were tolerated by the Sf-9 cells (data not shown).

4.3.3.5 Summary

All compounds added to the feed additive as pGICs and their concentrations (final media

concentration; i.e. 1/20th of their concentration in the feed additive) are summarized in

Table 4.1.
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Table 4.1: Potential growth inducing compounds and their final concentrations in “ALIM

+ 5% YX-free F.A. with pGICs”.

Compound Form Final Concentration (µM)

betaine betaine 1000

ornithine ornithine · HCl 40

putrescine putrescine · 2HCl 10

spermidine spermidine · 3HCl 10

spermine spermine · 4HCl 10

adenosine adenosine 100

inosine inosine 1000

uridine uridine 1000

ascorbate sodium ascorbate 5

ethanolamine ethanolamine · HCl 25

selenium sodium selenite 0.3

4.4 Consistent Low Yeast Extract Growth

4.4.1 Improved Feed Additive Testing

Next, it was of interest to incorporate these pGICs into the feed additive, and use this

to enhance “ALIM” media at 5% volume. To determine the effects of this improved feed
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additive, previous feed additive experiments (Figures 4.9 and 4.10) were repeated. The

results of these experiments are shown in Figures 4.13, 4.14 and 4.15.

Figure 4.13: Growth profile and cell viability of first and second passage basal “ALIM”

supplemented with 5% yeast extract free feed additive with pGICs by volume. Triangles

represent viability. Error bars represent the range of duplicate cultures.
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Figure 4.14: Growth profile comparison of Sf-9 cells in “ALIM + 2 g/L YX” medium and

in “ALIM + 2 g/L YX” medium supplemented with 5% yeast extract free feed additive

with pGICs by volume. Error bars represent the range of duplicate cultures.
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Figure 4.15: Growth profile comparison of “ALIM” media with 4 g/L yeast extract to 2

g/L yeast extract with and without 5% feed additive supplement with pGICs by volume.

Error bars represent the range of duplicate cultures.

Figure 4.13 shows that supplementing basal “ALIM” with the defined feed additive with

pGICs greatly improves first passage growth as compared to basal “ALIM” without feed

additive, and further, as compared to basal “ALIM” with 5% defined feed additive without

pGICs (see Figure 4.9). A second passage into the same conditions even achieves nearly

two cell density doublings, which is more than any previous basal “ALIM” experimental
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condition (none of which have achieved any second passage growth). Subsequent passages

do not yield any cell growth, once again indicating that while additional hurdles in replac-

ing yeast extract seem to have been overcome, still more compounds are likely needed.

Figure 4.14 compares growth of “ALIM + 2g/L YX” to that with 5% of the improved feed

additive. It is clear that this feed additive restores a significant amount of cell growth which

was stunted by halving the “ALIM” yeast extract content. Comparing this to Figure 4.10,

where the initial yeast extract free feed additive failed to restore growth, indicates that

the defined pGICs are responsible for this growth restoration. Figure 4.15 compares these

growth profiles with the original yeast extract levels experiment (Figure 4.5) in order to

demonstrate the growth restoration as compared to “ALIM + YX”. It is clear that while

growth is not restored to that of “ALIM + YX”, the improvement is significant.

These experiments clearly demonstrate that the pGICs improve the feed additive and

are capable of restoring at least some of the growth lost with yeast extract reduction in

“ALIM” media. The combination of a vitamin and trace metal enriching feed additive

and a variety of potential growth inducing compounds is a viable strategy for achieving

growth in “ALIM” with reduced yeast extract. As is the case with most media alterations,

it follows that an adaptation to low yeast extract in the presence of the feed additive with

pGICs should be carried out in order to ascertain the true effects and viability of this

enhanced media.
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4.4.2 Low Yeast Extract Adaptation

Due to the promising results seen in preliminary feed additive with pGIC experiments, it

was decided to attempt to reduce the yeast extract concentration in “ALIM” over multiple

passages. This was done utilizing a feed additive with pGIC supplement at 5% volume in

each flask. Figure 4.16 shows the cell growth profiles over the course of this adaptation.

Figure 4.16: Growth profiles and rates of 12 passage adaptation from “ALIM + YX” into

1/10th YX medium with 5% F.A. and pGICs. Triangles represent cell growth rate.

As can be seen in Figure 4.16, over the course of 12 passages, the yeast extract concen-

tration in “ALIM” was successfully reduced to 1/10th of its original concentration (0.4g/L),
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and further, returned to a stable growth rate. Passage 1 was reduced to 40% yeast ex-

tract, but saw little drop in growth from that of “ALIM + YX”, likely due to residual

combined with fresh yeast extract. Passage 2 had 20% yeast extract, and passages 3-12

had 10% yeast extract. Each reduction in yeast extract resulted in a reduced exponential

growth rate; however, this growth was recovered with subsequent passaging. Attempting

to reduce the yeast extract further than this resulted in inconsistent growth and unhealthy

cells. Although the stabilized growth rate was lower than that in “ALIM + YX”, it was

consistent. This adaptation was shown to be repeatable in two duplicate experiments and

to maintain consistent growth for at least 40 passages (data not shown).

4.4.3 Discussion

The “ALIM” + 5% feed additive with pGICs and low yeast extract was combined into one

medium and this was able to maintain stable growth. Other minor alterations were made

to the medium: yeast extract concentration was raised from 0.4 to 0.5 g/L as this was

observed to further stabilize growth rate; L-cysteine was added (previously only supplied

in the form of L-cystine), and glucose concentration was reduced to “ALIM + YX” levels

as it was already provided in excess. The lower growth rate than “ALIM + YX” was

beneficial for the purposes of testing compound effects on growth rate and yeast extract

replacement as more minute improvements were observable. This medium formulation was

named “Enhanced low YX ALIM” (Table A.3).

Attempts to transition from “Enhanced low YX ALIM” to the same media without

pGICs did not result in sustainable growth, confirming that at least some of the pGICs are
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necessary. Individual effects of the pGICs should be investigated more thoroughly to gain

a better understanding of this system and to remove unnecessary additives. Determining

the individual effects of the pGICs is important for streamlining the medium.

It was further attempted to transition from “Enhanced low YX ALIM” directly to the

chemically defined basal “ALIM” with pGICs. It was hypothesized that the long term

adaptation to low yeast extract growth may allow for the cells to transition into fully

defined growth in the presence of the pGICs. Once again, chemically defined sustainable

growth was not achieved, confirming that the yeast extract is still the sole provider of some

necessary compounds.
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Chapter 5

Utilizing the Low Yeast Extract

Medium and Compound Screening

5.1 Potential Growth Inducing Compound Analysis

Although consistent low yeast extract growth was achieved with the utilization of a feed

additive and a number of pGICs (“Enhanced low YX ALIM”), the exact effects of these

compounds and their necessity remained unknown. In order to streamline the medium and

acquire more information as to the individual effects of the pGICs, it was decided to per-

form additional experimentation prior to utilizing the medium platform to test additional

compounds. Since there were 11 pGICs a 12 run, 11 factor Plackett-Burman design [117]

was selected in order to efficiently gain insight and allow for low yeast extract growth

optimization. The experimental design and levels are summarized in Tables 5.1 and 5.2.
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Table 5.2: Low and high pGIC levels for low yeast extract medium optimization

Compound
Concentration (µM)

Low (-1) High (+1)

selenium 0 0.3

inosine 0 1000

uridine 0 1000

adenosine 0 100

betaine 0 1000

ethanolamine 0 25

ascorbate 0 10

ornithine 0 40

putrescine 0 10

spermidine 0 10

spermine 0 10

Compounds were ordered randomly in generating Table 5.1. As is seen in Table 5.2,

the “low” level tested for all compounds was zero. These zero levels were selected in order

to ascertain whether or not all of these compounds were required in the medium. The

“high” levels were set as the level currently used in the low yeast extract formulation.

Prior to beginning this experiment, cells were passaged from “enhanced low YX ALIM”

into the same media without pGICs. This allowed for enough residual growth to achieve

passagable densities and enabled the pGICs to be tested without convolution from residual

media after passaging.
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5.1.1 Individual Effects

Results of the pGIC Plackett-Burman experiment are presented in Figures 5.1 and 5.2.

Live cell density is used to analyze compound effects.

Figure 5.1: Growth profiles of all pGIC Plackett-Burman conditions.
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Figure 5.2: Factor level effects of all 11 pGIC compounds tested. Blue dots represent the

mean cell density at each factor level.
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Figure 5.1 shows the growth profiles over the course of the cultures. It is clear that the

different combinations of pGICs result in significant growth differences. It is also apparent

that a lack of all pGICs (flask 12) does not result in significant growth, as expected and as

was demonstrated previously. Figure 5.2 utilizes box plots to demonstrate the factor level

effects of each individual pGIC. The majority of compounds tested do not show significant

effects. Three of the compounds (betaine, sodium ascorbate, putrescine) show significant

positive effects when present (i.e. “High” factor level), improving mean cell density by 32,

41, and 28% respectively (see Table 5.3). This experiment indicated that while not all of

the pGICs appeared to be strictly necessary for growth, none inhibited growth.

Flasks showing the strongest growth (conditions 2,3,9,10) all contained putrescine and

at least one of sodium ascorbate or betaine, and the flask showing the best growth (con-

dition 10) contained all three. While the flask showing the worst cell growth (condition 7)

also contained putrescine, it contained neither sodium ascorbate nor betaine. It is possible

that the cells required putrescine for growth and also at least one “protective” agent due

to the richness of the medium and lack of hydrolysate. The results of this experiment sup-

ported the hypothesis that antioxidant compounds (e.g. sodium ascorbate) are beneficial

to Sf-9 cell culture, particularly in a trace mineral rich medium such as “Enhanced low

YX ALIM”. The benefits of putrescine are in line with previous reports and indicate that

it may be the most important polyamine for Sf-9 cell culture. This makes sense as the

cells are likely able to synthesize the other polyamines in the pathway when provided with

putrescine. The strong benefits of betaine imply that it may in fact act as an osmoprotec-

tant in insect cell culture as it does in other cell lines. The medium used is enriched, and

as such, high in osmolality; while yeast extract generally contains betaine, the low yeast
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extract levels used in this experiment may not provide sufficient osmoprotection. This

speaks to the usefulness of the low yeast extract platform, as previous attempts at testing

betaine in this work proved inconclusive (Appendix B), likely due to convolution from its

presence in yeast extract or from other osmoprotective compounds present.

Table 5.3: Factor level effects of all pGICs tested in terms of mean live cell density at time

= 158h. Highlighted compounds represent the most significant effects.

Mean Cell Density (cells/mL)

Compound
Factor Level

% Change
-1 +1

selenium 2.57E+06 2.85E+06 11%

inosine 2.94E+06 2.48E+06 -16%

uridine 2.54E+06 2.88E+06 14%

adenosine 2.78E+06 2.64E+06 -5%

betaine 2.34E+06 3.08E+06 32%

ethanolamine 2.84E+06 2.58E+06 -9%

ascorbate 2.25E+06 3.17E+06 41%

ornithine 2.61E+06 2.81E+06 7%

putrescine 2.38E+06 3.04E+06 28%

spermidine 2.58E+06 2.84E+06 10%

spermine 2.76E+06 2.66E+06 -4%
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5.1.2 Discussion

The Plackett-Burman experiment done here yielded useful information on the importance

of certain compounds used in the “Enhanced low YX ALIM” medium platform. It would

next be beneficial to perform a factorial experiment to elucidate the interactions and op-

timal levels of the three most notable compounds (sodium ascorbate, betaine, putrescine).

As none of the pGICs tested demonstrate significant negative effects, their immediate

elimination from the platform is not a priority, however inosine levels should be slightly

reduced.

The significance of the positive results in this experiment were supported by the fact

that all flasks were seeded simultaneously from the same flask, and due to the consistent

growth repeatedly observed in “Enhanced low YX ALIM”. Testing many compounds

simultaneously without introducing variation due to seeding from different flasks, or due

to splitting the experiment into multiple sections, is only possible utilizing an approach

such as the Plackett-Burman design. This experiment demonstrated the usefulness of this

approach, combined with a low yeast extract medium platform, to distinguish effects of

micronutrients in an efficient manner. This usefulness instilled confidence in utilizing the

approach to simultaneously screen a variety of new micronutrients for potential growth

stimulating effects.
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5.2 Towards Defined Growth - Compound Screening

Due to the promising results of the pGIC Plackett-Burman experiment, it was decided to

utilize this approach for screening new micronutrients. While the previous experiment did

not provide in-depth information on the effects of compounds or their optimal levels, it did

demonstrate that strong effects may be observed and that yeast extract convolution could

be minimized. For the sake of experimental ease and efficiency it was decided to continue

with the 11 factor, 12 run Plackett-Burman approach for the screening of new compounds.

5.2.1 Compound Screening Experimental Design

Compounds chosen for the Plackett-Burman screening of new micronutrients in “Enhanced

low YX ALIM” were as follows:

• Sugars (trehalose and glucose): Trehalose is a disaccharide composed of 2 glucose

molecules which is able to be broken down by Sf-9 cells [6]). A significant amount

of trehalose is present both in insect hemolymph and in yeast extract [35, 6]. An

equivalent amount of glucose was also included in the screening to help determine

if any effects which may be seen with trehalose addition are simply related to an

increased sugar concentration rather than being trehalose specific.

• TCA cycle intermediates (α-ketoglutarate, fumarate, malate, succinate): Organic

acids known to be present in high concentrations in insect hemolymph and which are

often included in classic Sf-9 cell media (e.g. IPL-41). Could play a role in chela-
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tion [65], which is important in a trace metal rich environment such as “Enhanced

low YX ALIM”.

• L-citrulline: Related to arginine metabolism and ornithine and therefore may relate

to the polyamine synthesis pathway. Citrulline has been found to be present in

soy hydrolysate [118]. It is worth investigating citrulline for the sake of thoroughly

exploring the polyamine pathways.

• Guanosine: Nucleoside present in yeast extract [6], and not previously tested in this

work.

• Lipoic acid: Present in a variety of serum-free media formulations (e.g. Ham’s F12).

Plays a number of cellular roles (e.g. enzyme co-factor, antioxidant) [119, 120].

• Reduced glutathione: Tripeptide with a variety of roles in cell culture. The antiox-

idant role of glutathione has been investigated in Sf-9 insect cells [56] and glutathione

has been included in a chemically defined insect cell culture medium (MTCM-1520 [99]).

• CorningTM Trace Elements B (Thermo Fisher Scientific): Contains a variety of trace

elements not present in the “ALIM” media. Table 5.4 lists the components contained

in the solution.
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Table 5.4: Trace elements and their form contained in CorningTM Trace Elements B solu-

tion.

CorningTM Trace Elements B

Trace Element Form

Mo ammonium molybdate

V ammonium vanadate

Mn manganese sulfate

Ni nickel sulfate

Si sodium silicate

Sn stannous chloride

The Plackett-Burman experimental design and levels are summarized in Tables 5.5

and 5.6. Compounds were ordered randomly in generating Table 5.5.
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Table 5.6: Low and high compound levels for Plackett-Burman screening experiment in

“Enhanced low YX ALIM”.

Compound
Concentration (µM)

Low (-1) High (+1)

succinate 0 200

α-ketoglutarate 0 100

fumarate 0 50

malate 0 50

L-citrulline 0 100

lipoic acid 0 5

glucose 0 10000

trehalose 0 5000

glutathione 0 1000

guanosine 0 50

TM B 0 10 µL

As is seen in Table 5.6, the “low” level tested for all compounds other than glucose was

zero. This is due to the fact that glucose is already present in basal “ALIM” as the primary

energy source. The 10 mM increase from “low” to “high” glucose levels is equivalent to the 5

mM increase of trehalose (i.e. there are two glucose molecules in each molecule of trehalose).

The “high” levels were based on a combination of available literature values, available media

formulations and yeast extract composition. Since CorningTM Trace Elements B is a 1000x

concentrate solution, it was added as a volume amount. Trace Elements B was added at

78



slightly less than the recommended levels (10 µL instead of 13 µL) due to the fact that

enhanced basal “ALIM” with GICs is already very rich in trace metal content.

5.2.2 New Compound Effects

Results of the new compound screening Plackett-Burman experiment are presented in

Figures 5.3 and 5.4. Live cell density is used to analyze compound effects.

79



Figure 5.3: Growth profiles of all compound screening Plackett-Burman conditions. A)

First passage; B) Second passage.
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Figure 5.4: Factor level effects of all 11 compounds screened. Blue dots represent the mean

cell density at each factor level.
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Figure 5.3 shows the growth profiles over the course of both passages in each condition.

Growth profiles showed very little variation in the first passage reaffirming the observation

that growth effects often require multiple passages to observe. Figure 5.4 utilizes box

plots to demonstrate the factor level effects of each individual compound screened in this

experiment. This data was based on the maximum cell density achieved during passage

2 of each condition. Most of the compounds screened do not show significant effects.

The largest factor effect was the addition of 5 mM trehalose, which resulted in a mean

cell density increase of approximately 19%. All four conditions showing higher maximum

passage 2 cell density than the control (condition 12) contained trehalose. Compound

factor level effects are summarized in Table 5.7.
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Table 5.7: Factor level effects of all compounds screened in terms of mean live cell density

at time = 144h (of passage 2). Highlighted compounds represent the most significant

effects.

Mean Cell Density (cells/mL)

Compound
Factor Level

% Change
-1 +1

succinate 4.11E+06 3.55E+06 -14%

α-ketoglutarate 3.87E+06 3.79E+06 -2%

fumarate 3.97E+06 3.69E+06 -7%

malate 3.72E+06 3.93E+06 6%

L-citrulline 3.94E+06 3.72E+06 -6%

lipoic acid 4.00E+06 3.66E+06 -8%

glucose 3.69E+06 3.96E+06 7%

trehalose 3.49E+06 4.17E+06 19%

glutathione 4.07E+06 3.59E+06 -12%

TM B 3.81E+06 3.85E+06 1%

guanosine 3.75E+06 3.91E+06 4%

5.2.3 Discussion

Since all of the compounds except trehalose showed negative or non-significant positive

effects they were ruled out at those levels in future screening experiments. The positive
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effect seen with trehalose is of interest due to the fact that the medium already has an

excess of glucose, and due to the fact that an analogous glucose spike did not result in

significant improvement. This indicates that perhaps trehalose is operating in a manner

beyond simply as a carbohydrate source. Further investigation is required to fully elucidate

the effects of trehalose addition in a low yeast extract growth medium.

This screening experiment illustrated that growth effects or lack thereof may be ob-

served simultaneously and efficiently for many compounds by utilizing the “Enhanced low

YX ALIM” medium and designed experiments. The low growth of the medium (relative

to commercial media and “ALIM + YX”) allowed for the observation of small effects.

This strategy should be continued for multiple experiments, eliminating conditions which

showed negative or no effects. Conditions which display potential positive effects (e.g.

trehalose) should be added to the medium formulation and carried forward for subsequent

experimentation. Designed experiments with more degrees of freedom should be run in

order to better quantify significance and move forward with confidence.
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Chapter 6

Media Cost Analysis and

Optimization

6.1 In-house Medium Cost Analysis

6.1.1 Component Cost Analysis

A secondary benefit to utilizing an in-house medium with a known formulation is the

potential for significant cost reductions compared to purchasing commercial media. A

detailed cost analysis was performed on the “ALIM + YX” formulation, the results of

which are shown in Table 6.1 (Component pricing current to 2019).
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Table 6.1: “ALIM + YX” in-house medium cost analysis summarized by class of compo-
nents.

Component Class
Cost ($/L)

Normal Bulk

Amino Acids $ 18.84 $ 11.46
Trace Metals1 $ 0.00 $ 0.00
Vitamins $ 0.10 $ 0.05
Lipids $ 24.24 $ 24.24
Other2 $ 4.41 $ 3.25

Total: $ 47.59 $ 39.01

1trace metal cost per litre is less than $0.01.
2“other” includes sugars, salts, hydrolysate.

The analysis was performed using both small scale and bulk pricing. All compounds were

of cell culture/ bioreagent grade and the majority of prices were taken from Sigma-Aldrich

(the only exception being yeast extract, which was priced through Fisher Bioreagents).

Compared to commercially available Sf-9 insect cell culture media (Table 6.2), “ALIM

+ YX” was significantly less expensive.
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Table 6.2: Commercial media versus in-house “ALIM + YX” cost comparison.
Cost ($/L)

Medium Manufacturer Normal Bulk

Sf-900TMIII SFM ThermoFisher $ 126.00 $ 106.75
Sf-900TMII SFM ThermoFisher $ 162.00 $ 80.40
ALIM + YX In-house $ 47.59 $ 39.01

This potential savings clearly demonstrates that in-house medium provides economic

benefits, in addition to the previously described benefits of control and customizability.

6.1.2 Feed Additive and Micronutrients

When considering the feed additives, the cost of “ALIM + YX” is not significantly increased

as the vitamins and trace metals are at such low concentrations that their cost per litre

is essentially negligible (even when increased nearly 3-fold in “Enhanced low YX ALIM”).

Potential growth inducing compounds (pGICs) mentioned previously also do not have a

significant impact on costs, as shown in Table 6.3.
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Table 6.3: Cost analysis of potential growth inducing compounds at their desired concen-
tration provided via feed additive.

Conc. Cost ($/L)
Compound (g/L) Normal Bulk

inosine 0.2682 $ 1.25 $ 1.25
uridine 0.2442 $ 1.28 $ 0.99
adenosine 0.0267 $ 0.27 $ 0.16
ornithine · HCl 0.0067 $ 0.01 $ 0.01
putrescine · 2HCl 0.0016 $ 0.01 $ 0.01
spermidine · 3HCl 0.0025 $ 0.15 $ 0.07
spermine · 4HCl 0.0035 $ 0.27 $ 0.19
ethanolamine · HCl 0.0024 $ 0.00 $ 0.00
Na2SeO3 0.0001 $ 0.00 $ 0.00
betaine 0.1172 $ 0.17 $ 0.09
sodium ascorbate 0.0020 $ 0.00 $ 0.00

Total: $ 3.41 $ 2.78

Compounds showing a cost per litre of $0.00 cost less than $0.01 per litre. Nucleo-

sides are priced through ThermoFisher at the highest available purity (99%+). All other

compounds included in Table 6.3 are priced from Sigma-Aldrich at Bioreagent or higher

grade.

6.1.3 Potential for Cost Reduction

Looking more closely at the “ALIM + YX” cost breakdown, it is apparent that the Sigma

Chemically Defined Lipid Mixture 1 is contributing a significant percentage of the cost

(50.9%). As such, the lipids are an obvious starting point for potentially further reducing

the cost of the medium. Table 6.4 shows the cost breakdown if the lipid mixture was
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produced in-house.

Table 6.4: Individual component cost analysis of lipid mixture at in-house media concen-
trations.

Conc. Cost ($/L)
Compound (g/L) Normal Bulk

arachidonic acid 0.0001 $ 0.09 $ 0.06
linoleic acid 0.0003 $ 1.45 $ 1.45
linolenic acid 0.0003 $ 0.06 $ 0.03
myristic acid 0.0003 $ 0.00 $ 0.00
oleic acid 0.0003 $ 0.01 $ 0.01
palmitic acid 0.0003 $ 0.00 $ 0.00
stearic acid 0.0003 $ 0.01 $ 0.00
cholesterol 0.0066 $ 0.42 $ 0.13
Tween-80 0.0660 $ 0.03 $ 0.01
tocopherol acetate 0.0021 $ 0.01 $ 0.01
Pluronic F-68 3.0000 $ 9.81 $ 9.81

Total: $ 11.89 $ 11.52

As shown in Table 6.4, good cost reduction is possible by making the lipid mixture

in-house. However, due to the labour involved, and the difficulty of consistently producing

the solution (as compared to e.g. amino acid solution, which is trivial), it is likely not

worthwhile for the minor reduction in “ALIM + YX” cost per litre. A thorough investiga-

tion of the necessity of such high lipid levels is therefore warranted. The potential savings

due to lipid mixture concentration reduction are outlined in Table 6.5, highlighting the

importance of this avenue of investigation.
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Table 6.5: Cost saving potential of utilizing less defined lipid mixture in in-house medium.
Lipid Mixture Cost ($/L) Savings (%)

Medium Conc. (mL/L) Normal Bulk Normal Bulk

ALIM + YX 30 $ 47.59 $ 39.01 - -
ALIM + YX 20 $ 39.51 $ 30.93 17% 21%
ALIM + YX 10 $ 31.43 $ 22.85 34% 41%

As outlined in Table 6.5, reducing the level of lipid mixture concentration in the medium

would provide significant cost savings while also maintaining consistency in a portion of

the medium which is typically difficult to produce. It is reasonable to hypothesize that

such a reduction is possible due to the higher than typical amounts used in the medium.

6.2 Lipid Optimization and Cost Reduction

6.2.1 Premise

The originally used in-house “ALIM + YX” formulation called for 30 mL lipid mixture per

1 L media. This amount had been chosen prior to this work as preliminary experiments

had shown a growth improvement when increasing the lipid mixture concentration from

the typical 10 mL/L (Lipid Mixture 1 is sold as a 100x concentrate). Lipid Mixture 1 and

its component contributions to “ALIM + YX” in-house media may be seen in Table 6.6.
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Table 6.6: Sigma-Aldrich Lipid Mixture 1 component concentrations and final concentra-
tions in original in-house “ALIM + YX” formulation.

Soln Conc. ALIM Conc.
Compound (µg/mL) (g/L)

arachidonic acid 2 0.00006
linoleic acid 10 0.00030
linolenic acid 10 0.00030
myristic acid 10 0.00030
oleic acid 10 0.00030
palmitic acid 10 0.00030
stearic acid 10 0.00030
cholesterol 220 0.00660
Tween-80 2200 0.06600
tocopherol acetate 70 0.00210
Pluronic F-68 100000 3

6.2.2 Preliminary Experimentation: Lipid Reduction

First, the lipid levels were reduced in fully adapted “ALIM + YX” cells to confirm that

the growth was, in fact, impacted. Figures 6.1 and 6.2 show the exponential growth as

well as maximum growth of duplicate flasks of each: 30mL lipid mixture per 1L“ALIM +

YX” (control), 20mL/L, and 10mL/L.
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Figure 6.1: Semi-log plot showing exponential growth effects of lipid mixture reduction in
media. Error bars represent the range of duplicate cultures.
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Figure 6.2: Complete growth profile of lipid mixture reduction in media. Error bars rep-

resent the range of duplicate cultures.

As can be seen in Figures 6.1 and 6.2, the reduction of lipid concentration did have a

detrimental effect on cell proliferation as well as maximum density. Calculated maximum

exponential growth rates were 0.030 h−1, 0.025 h−1, and 0.023 h−1 for 30mL/L, 20mL/L,

and 10mL/L lipid mixture respectively. The greater the lipid reduction, the stronger the

detrimental effect (i.e. 10mL/L lipid mixture performs worse than 20mL/L). The effects

on exponential growth are of particular concern.
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6.2.2.1 Adaptation

Since the growth was not completely inhibited by reducing the lipid mixture concentration,

it was thought that the cells may be fine at lower levels but simply needed to adapt. The

same experiment was repeated, with the cells being passaged into their same lipid level

when densities of 2 - 5 × 106 cells/mL were reached. This was continued for 3 passages for

each condition and the results are presented in Figure 6.3.

Figure 6.3: Three passage reduced lipid adaptation growth profiles. Connected data points
comprise a single passage. Error bars represent the range of duplicate cultures.
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Figure 6.3 clearly demonstrates that reducing the lipid mixture concentration is not a

viable cost saving solution. Adaptation to lower lipid levels was not successful; in fact, at

reduced lipid concentrations, cell growth slows down with subsequent passages. This effect

is particularly noticeable at 10mL/L lipid mixture (which did not even reach passageable

cell densities during passage 3). The control (30mL/L) lipid amount maintains consistent

growth throughout the three passages; the appearance of growth rate improvement is

simply related to experimental variation and increasing seed densities (i.e. passage 1 flasks

were seeded at 5.0 × 105 cells/mL, while passage 2 and 3 flasks were seeded at 5.5 × 105

and 6.0 × 105 cells/mL respectively). The fact that the cell growth is less affected by lipid

reduction in the initial passage is likely due to carry over volume and perhaps the cells

holding on to components of the lipid mixture. For example, the effects of Pluronic F-68

on insect cell culture have been demonstrated to persist even after elimination of the polyol

from the medium [121].

6.2.3 Pluronic F-68 Replacement

The previous results indicated that it was not a viable strategy to simply reduce the con-

centration of lipid mixture used. It followed that an investigation of specific components

of the mixture might yield a cost reduction strategy that maintains cell proliferation rates.

Previous work by Gilbert et al focused on the importance of lipids during cell growth,

specifically in insect cells (Sf-9 and High-FiveTM) [64]. This study demonstrated that a

key component to growth present in typical lipid mixtures is PluronicTM F-68 polyol (Polox-

amer 188), while other lipid mixture components investigated were not strictly required
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for cell growth. Pluronic F-68 is a polyol often included in cell culture media largely as a

shear protectant and as a stabilizing agent in lipid emulsions. As can be seen in Table 6.6,

Lipid Mixture 1 provides a significant amount of Pluronic F-68 to “ALIM + YX” in-house

media (3g/L).

It was hypothesized that the only component requiring the medium concentration pro-

vided by 30mL/L Lipid Mixture 1 was Pluronic F-68, while the other lipid mixture com-

ponents were being provided in excess. Based on this, it was decided to pursue Lipid

Mixture 1 reduction with simultaneous Pluronic F-68 replacement. Duplicate flasks of the

5 experimental conditions were seeded simultaneously from the same “seeding flask”. The

experimental conditions were: 30mL/L lipids (+ve control), 20mL/L lipids + Pluronic

F-68, 10mL/L lipids + Pluronic F-68, 0mL/L lipids + Pluronic F-68, 0mL/L lipids (-ve

control). Pluronic F-68 was added such that the total Pluronic F-68 concentration was

equivalent to that which would be provided by 30mL lipid mixture per 1L in-house media

(i.e. all flasks in the experiment had the same concentration of Pluronic F-68 except for

the -ve control which did not contain any). The results of this experiment are presented

in Figures 6.4 and 6.5.
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Figure 6.4: Semi-log plot showing exponential growth effects of lipid level reduction plus
Pluronic F-68 replacement in media. Error bars represent the range of duplicate cultures.
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Figure 6.5: Complete growth profiles of lipid level reduction plus Pluronic F-68 replacement

in media. Error bars represent the range of duplicate cultures.

As can be seen in Figures 6.4 and 6.5, the replacement of Pluronic F-68 in media with

reduced lipid mixture concentrations restored growth to that of media with full (30mL/L)

lipid mixture concentration. Figure 6.4 highlights the exponential growth recovery via

Pluronic F-68 replacement, in contrast to Figure 6.1. This supports the hypothesis that the

only component of the lipid mixture necessary at such high concentration initially provided

was, in fact, the Pluronic F-68. Flasks without lipid mixture showed very slow growth,
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likely due to carry-over lipids and Pluronic F-68 from passaging. Pluronic F-68 addition

did not appear to help in the absence of lipid mixture, indicating that at least some level

of the lipids themselves (e.g. cholesterol) or another component (i.e. Tween-80 or Vitamin

E) are necessary for exponential growth. Figure 6.5 presents the complete growth profile,

demonstrating that maximum cell density is also recovered. Figure 6.5 shows the possibility

that maximum cell density is actually increased in the flasks with reduced lipid mixture

and Pluronic F-68 replacement, however further investigation would be required in order

to determine whether or not this is the case in a manner that is statistically significant. If

that were the case, one explanation might be that the reduction in lipid mixture means that

there is less ethanol in the medium, which can have a negative effect at high concentrations.

It is possible that the importance of Pluronic F-68 in Sf-9 insect cells is simply related to

shear protection, although it has been demonstrated to be incorporated into the cellular

membrane and perhaps plays a larger role in cell proliferation [121].

It was then necessary to determine if Pluronic F-68 replacement was a viable strategy to

restore cell growth from lipid mixture reduction over multiple passages. Figure 6.6 repeats

the experiment shown in Figure 6.3 but with Pluronic F-68 replacement for the 20mL/L

and 10mL/L Lipid Mixture 1 cultures. Pluronic F-68 was replaced as before, i.e. to mimic

total Pluronic F-68 present in media with 30 mL/L Lipid Mixture 1.
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Figure 6.6: Three passage reduced lipid adaptation growth profiles with Pluronic F-68

replacement. Error bars represent the range of duplicate cultures.

As can be seen in Figure 6.6, Pluronic F-68 replacement does maintain restored cell

growth for media with 20mL/L lipid mixture. However, while Pluronic F-68 does restore

some of the growth lost at 10mL/L lipid solution, it does not maintain pace with the

30mL/L control, unlike in the single passage experiment (Figure 6.5).
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6.3 Discussion

A cost analysis of in-house “ALIM + YX” revealed that while the medium is already

cheaper than commercially available products, there was potential for further cost savings.

It was successfully demonstrated that reducing the amount of the expensive Lipid Mixture 1

was possible only alongside Pluronic F-68 replacement. These effects should be investigated

with respect to virus amplification and protein production in IC-BEVs, where it is known

that lipid levels (particularly cholesterol) play a role [64].

Based on these results, it is economically beneficial to reduce the concentration of

defined lipid mixture used, while replacing the polyol Pluronic F-68 that was removed

while doing so. This should not have a detrimental effect on exponential cell proliferation

or maximum cell density. It appears viable to reduce the lipid mixture content of in-

house “ALIM + YX” media by 1/3, or in some cases 2/3, to 20 or 10 mL/L (in line with

manufacturer recommended levels). This would result in an in-house media production cost

savings of approximately 17-41% (see Table 6.5). It is likely that Pluronic F-68 addition

would prove even more necessary in large-scale cultures due to the greater shear forces in

such systems. Further investigation is required before applying these changes to IC-BEVS

applications.
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Chapter 7

Conclusions

The objective of this work was to develop an Sf-9 cell culture medium platform based on

yeast extract composition and media designed for other cell lines, with which micronutrient

compound effects could be properly tested in order to progress towards a fully chemically

defined growth medium for Sf-9 insect cells.

• A trace metal and B vitamin fortified medium in combination with a selection of

“growth inducing” compounds was shown to be necessary to, and effective in, the

development of a low yeast extract growth medium for Sf-9 insect cells. The medium

was capable of consistent growth over at least 40 passages with a yeast extract con-

centration of only 0.5 g/L. Initial yeast extract concentration was 4 g/L.

• At low yeast extract concentration (0.5 g/L), multi-passage growth was only achiev-

able with the inclusion of the determined “growth inducing” compounds.
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• The low yeast extract medium was instrumental in elucidating the positive effects

of compounds which were otherwise convoluted by their presence, or the presence of

similar compounds in full yeast extract concentration medium. Betaine in particular

was shown to be of significance in the low yeast extract medium while preliminary

experiments in the full yeast extract medium proved inconclusive.

• Glycine betaine (1 mM), ascorbic acid (10 µM), and putrescine (10 µM) were shown

to be necessary supplements when reducing yeast extract concentration, improving

maximum cell density in the low yeast extract medium by 32%, 41%, and 28%

respectively (in comparison to their exclusion from the medium).

• There still remains other components which are necessary for fully chemically defined

growth which are yet to be identified.

• The low yeast extract medium is cost-effective compared to commercially available

Sf-9 insect media.

• Pluronic F-68 is an important component in Sf-9 cell media and its supplementation

allows for the reduction of chemically defined lipid solution concentration in the

medium. This allows for further cost-saving benefits of the in-house medium.
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Chapter 8

Recommendations

• The low yeast extract medium platform should be used for further designed screening

experiments (e.g. Plackett-Burman) in order to identify the remaining compounds

necessary for a fully defined growth medium. Hormones, growth factors and synthetic

oligopeptides in particular should be tested.

• Further refine the low yeast extract medium by testing the elimination of pGIC

compounds deemed to have insignificant effects in the Plackett-Burman experiment

in this study. Further experimentation is necessary to ensure that compounds which

are required are currently at optimal levels (e.g. full factorial experiment to optimize

betaine, ascorbate, and putrescine levels).

• Enhancement of the medium to improve growth rate and maximum cell density would

be beneficial regardless of whether, but especially if, chemically defined growth is

achieved.
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• The enhanced low yeast extract medium should be studied with respect to virus repli-

cation and protein production utilizing IC-BEVS, as well as with stably transfected

cell lines, in order to determine the feasibility of utilizing it as a more-defined, lower-

cost alternative to commercially available media over a wider range of applications.

105



References

[1] Rachael S Felberbaum. The baculovirus expression vector system: A commercial

manufacturing platform for viral vaccines and gene therapy vectors. Biotechnology

Journal, 10:702–714, 2015.

[2] TDC Grace. Establishment of Four Strains of Cells from Insect Tissues Grown In

Vitro. Nature, 195:788–789, 1962.

[3] S A Weiss, G C Smith, S S Kalter, and J L Vaughn. Improved Method for the

Production of Insect Cell Cultures in Large Volume. In Vitro, 17(6):495–502, 1981.

[4] Brian Maiorella, Duane Inlow, Andrea Shauger, and David Harano. Large-Scale

Insect Cell-Culture for Recombinant Protein Production. Nature Biotechnology,

6:1406–1410, 1988.

[5] Duane Inlow, Andrea Shauger, and Brian Maiorella. Insect Cell Culture and Bac-

ulovirus Propagation in Protein-Free Medium. Journal of Tissue Culture Methods,

12(1):13–16, 1989.

106



[6] Marco Quattrociocchi. Partial Characterization of Yeast Hydrolysates for Insights

on Chemically Defined Media for Sf-9 Insect Cells. University of Waterloo MASc

Thesis, 2017.

[7] Michael L Shuler and Fikret Kargi. Bioprocess Engineering: Basic Concepts. Prentice

Hall, Upper Saddle River, NJ, 2nd edition, 2002.

[8] WHO. Recommendations for the evaluation of animal cell cultures as substrates for

the manufacture of biological medicinal products and for the characterization of cell

banks. Technical report, World Health Organization, 2010.

[9] WHO. Acceptability of cell substrates for production of biologicals: Report of a

WHO study group. Technical report, World Health Organization, 1987.

[10] Peter Castle and James S. Robertson. Animal Sera, Animal Sera Derivatives and

Substitutes Used in the Manufacture of Pharmaceuticals. Biologicals, 26:365–368,

1998.

[11] Max D Summers and Gale E Smith. A Manual of Methods for Baculovirus Vectors

and Insect Cell Culture Procedures. Texas Agricultural Experiment Station, College

Station TX, 1987.

[12] L Sondergaard. Drosophila Cells can be Grown to High Cell Densities. Biotechnology

Techniques, 10(3):161–166, 1996.

[13] Hans-Dieter Klenk. Post-translational modifications in insect cells. Cytotechnology,

20:139–144, 1996.

107



[14] Marija Vrljic, Pavel Strop, Ryan C Hill, Kirk C Hansen, Steven Chu, and Axel T

Brunger. Post-Translational Modifications and Lipid Binding Profile of Insect Cell-

Expressed Full-Length Mammalian Synaptotagmin 1. Biochemistry, 50:9998–10012,

2011.

[15] Hilary A Overton, Yoichi Fujii, Ian R Price, and Ian M Jones. The Protease and gag

Gene Products of the Human lmmunodeficiency Virus: Authentic Cleavage and Post-

translational Modification in an Insect Cell Expression System. Virology, 170:107–

116, 1989.

[16] Dwight E Lynn. Novel Techniques to Establish New Insect Cell Lines. In Vitro

Cellular & Developmental Biology - Animal, 37:319–321, 2001.

[17] Dwight E Lynn and Robert L Harrison. Available Lepidopteran Insect Cell Lines.

In David W Murhammer, editor, Baculovirus and Insect Cell Expression Protocols,

chapter 6, pages 119–137. Humana Press, New York, 3rd edition, 2016.

[18] J L Vaughn, R H Goodwin, G J Tompkins, and P Mccawley. The Establishment of

Two Cell Lines from the Insect Spodoptera frugiperda (Lepidoptera; Noctuidae). In

Vitro, 13(4):213–217, 1977.

[19] G R Gardiner and H Stockdale. Two Tissue Culture Media for Production of Lepi-

dopteran Cells and Nuclear Polyhedrosis Viruses. Journal of Invertebrate Pathology,

25:363–370, 1975.

[20] Robert R Granados, Guoxun Li, and GW Blissard. Insect Cell Culture and Biotech-

nology. Virologica Sinica, 22(2):83–93, 2007.

108



[21] PV Vail, G Sutter, DL Jay, and D Gough. Reciprocal Infectivity of Nuclear Polyhe-

drosis Viruses of the Cabbage Looper and Alfalka Looper. Journal of Invertebrate

Pathology, 17:383–388, 1971.

[22] Gale E Smith, M J Fraser, and Max D Summers. Molecular Engineering of the Auto-

grapha californica Nuclear Polyhedrosis Virus Genome: Deletion Mutations Within

the Polyhedrin Gene. Journal of Virology, 46(2):584–593, 1983.

[23] Gale E Smith, Max D Summers, and M J Fraser. Production of Human Beta Inter-

feron in Insect Cells Infected with a Baculovirus Expression Vector. Molecular and

Cellular Biology, 3(12):2156–2165, 1983.

[24] Monique M van Oers, Gorben P Pijlman, and Just M Vlak. Thirty years of bac-

ulovirus insect cell protein expression: from dark horse to mainstream technology.

Journal of General Virology, 96:6–23, 2015.

[25] Thomas A Kost, J Patrick Condreay, and Donald L Jarvis. Baculovirus as versatile

vectors for protein expression in insect and mammalian cells. Nature Biotechnology,

23(5):567–575, 2005.

[26] S S Wyatt. Culture In Vitro of Tissue from the Silkworm, Bombyx Mori L. The

Journal of General Physiology, 39(6):841–852, 1956.

[27] WF Hink. Established Insect Cell Line from the Cabbage Looper, Trichoplusia ni .

Nature, 226:466–467, 1970.

[28] Ronald H Goodwin. Insect Cell Culture: Improved Media and Methods for Initiating

Attached Cell Lines from the Lepidoptera. In Vitro, 11(6):369–378, 1975.

109



[29] Charles Bédard, Rosanne Tom, and Amine Kamen. Growth, Nutrient Consumption,

and End-Product Accumulation in Sf-9 and BTI-EAA Insect Cell Cultures: Insights

into Growth Limitation and Metabolism. Biotechnology Progress, 9:615–624, 1993.

[30] Ronaldo Z Mendonca, Laura A Palomares, and Octavio T Ramirez. An insight into

insect cell metabolism through selective nutrient manipulation. Journal of Biotech-

nology, 72:61–75, 1999.

[31] Jerome P Ferrance, Akshay Goel, and Mohammad M Ataai. Utilization of Glucose

and Amino Acids in Insect Cell Cultures: Quantifying the Metabolic Flows within

the Primary Pathways and Medium Development. Biotechnology and Bioengineering,

42:697–707, 1993.

[32] L Ohman, J Ljunggren, and L Haggstrom. Induction of a metabolic switch in insect

cells by substrate-limited fed batch cultures. Applied Microbiology and Biotechnology,

43:1006–1013, 1995.

[33] Monika Drews, Magnus Doverskog, Lars Ohman, Bogdan E Chapman, Ulla Jacob-

sson, Philip W Kuchel, and Lena Haggstrom. Pathways of glutamine metabolism

in Spodoptera frugiperda (Sf9) insect cells: evidence for the presence of the nitrogen

assimilation system, and a metabolic switch by 1H/15N NMR. Journal of Biotech-

nology, 78:23–37, 2000.

[34] Monika Drews, Toomas Paalme, and Raivo Vilu. The growth and nutrient utilization

of the insect cell line Spodoptera frugiperda Sf9 in batch and continuous culture.

Journal of Biotechnology, 40:187–198, 1995.

110



[35] G R Wyatt. The Biochemistry of Insect Hemolymph. Annual Review of Entomology,

6:75–102, 1961.

[36] Gilles B Tremblays, Narciso R Mejia, and Robert E MacKenzie. The NADP-

dependent Methylenetetrahydrofolate Dehydrogenase- Methenyltetrahydrofolate

Cyclohydrolase-Formyltetrahydrofolate Synthetase Is Not Expressed in Spodoptera

frugiperda Cells. The Journal of Biological Chemistry, 267(12):8281–8285, 1992.

[37] Chouki Benslimane, Cynthia B Elias, Jalal Hawari, and Amine Kamen. Insights

into the Central Metabolism of Spodoptera frugiperda (Sf-9) and Trichoplusia ni

BTI-Tn-5B1-4 (Tn-5) Insect Cells by Radiolabeling Studies. Biotechnology Progress,

21:78–86, 2005.

[38] Lars Ohman, Maria Alarcon, Jan Ljunggren, Anna-Karin Ramqvist, and Lena Hag-

gstrom. Glutamine is not an Essential Amino Acid for Sf-9 Insect Cells. Biotechnology

Letters, 3(7):765–770, 1996.

[39] Jun Mitsuhashi. Amino acid requirements of some continuous cell lines of insects.

Applied Entomology and Zoology, 13:170–175, 1978.
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Table A.1: “ALIM + YX” medium formulation. See Materials and Methods for production
protocol.

Amino Acid Concentration (g/L) Trace Metal Concentration (mg/L)

Arginine 1.219 CoCl2·(H2O)6 0.050
Asparagine 1.300 CuCl2·(H2O)2 0.200
Aspartate 1.300 FeSO4·(H2O)7 0.550
Cystine 0.200 MnCl2·(H2O)4 0.020
Glutamate 1.500 (NH4)6Mo7O24·(H2O)4 0.040
Glutamine 2.192 ZnCl2 0.040
Glycine 0.200

Histidine 0.200 Vitamin Concentration (mg/L)

Isoleucine 0.750 4-Aminobenzoic acid 0.320
Leucine 0.656 Biotin 0.160
Lysine · HCl 0.700 Calcium pantothenate 0.008
Methionine 1.000 Cyanocobalamin 0.240
Phenylalanine 1.000 Folic acid 0.080
Proline 0.500 Inositol 0.400
Serine 0.736 Niacin 0.160
Threonine 0.596 Pyridoxine · HCl 0.400
Tryptophan 0.408 Riboflavin 0.080
Tyrosine 0.500 Thiamine · HCl 0.080
Valine 0.500

Salt Concentration (g/L) Sugar Concentration (g/L)

CaCl2 0.500 Glucose 3.895
Choline chloride 0.070

KCl 1.200 Additive Concentration (g/L)

MgSO4·(H2O)7 1.880 Yeast Extract 4.000
NaCl 2.505

NaHCO3 0.350 Lipid Solution Concentration (mL/L)

NaH2PO4 1.000 Lipid Mixture 1 30
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Table A.2: Feed additive formulation. In experiments utilizing a yeast extract containing
feed additive, concentration of yeast extract was 46 g/L.

Amino Acid Concentration (g/L) Trace Metal Concentration (mg/L)

Arginine 1.219 CoCl2·(H2O)6 1.834
Asparagine 1.300 CuCl2·(H2O)2 7.336
Aspartate 1.300 FeSO4·(H2O)7 20.175
Cystine 0.200 MnCl2·(H2O)4 0.734
Glutamate 1.500 (NH4)6Mo7O24·(H2O)4 1.467
Glutamine 2.192 ZnCl2 1.467
Glycine 0.200

Histidine 0.200 Vitamin Concentration (mg/L)

Isoleucine 0.750 4-Aminobenzoic acid 11.738
Leucine 0.656 Biotin 5.869
Lysine · HCl 0.700 Calcium pantothenate 0.293
Methionine 1.000 Cyanocobalamin 8.804
Phenylalanine 1.000 Folic acid 2.935
Proline 0.500 Inositol 14.673
Serine 0.736 Niacin 5.869
Threonine 0.596 Pyridoxine · HCl 14.673
Tryptophan 0.408 Riboflavin 2.935
Tyrosine 0.500 Thiamine · HCl 2.935
Valine 0.500

Salt Concentration (g/L) Sugar Concentration (g/L)

CaCl2 0.500 Glucose 30.675
Choline chloride 0.070
KCl 1.200
MgSO4·(H2O)7 1.880
NaCl 2.505
NaHCO3 0.350
NaH2PO4 1.000
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Table A.3: “Enhanced low YX ALIM” medium formulation. Low concentration pGIC

compounds added via individual freshly prepared concentrates.

Amino Acid Concentration (g/L) Trace Metal Concentration (mg/L)

Arginine 1.219 CoCl2·(H2O)6 0.150

Asparagine 1.300 CuCl2·(H2O)2 0.600

Aspartate 1.300 FeSO4·(H2O)7 1.650

Cysteine 0.160 MnCl2·(H2O)4 0.060

Cystine 0.200 (NH4)6Mo7O24·(H2O)4 0.120

Glutamate 1.500 ZnCl2 0.120

Glutamine 2.192

Glycine 0.200

Histidine 0.200 Vitamin Concentration (mg/L)

Isoleucine 0.750 4-Aminobenzoic acid 0.960

Leucine 0.656 Biotin 0.480

Lysine · HCl 0.700 Calcium pantothenate 0.024

Methionine 1.000 Cyanocobalamin 0.720

Phenylalanine 1.000 Folic acid 0.240

Proline 0.500 Inositol 1.200

Serine 0.736 Niacin 0.480

Threonine 0.596 Pyridoxine · HCl 1.200

Tryptophan 0.408 Riboflavin 0.240

Tyrosine 0.500 Thiamine · HCl 0.240

Valine 0.500

Table continues on next page
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Table A.3: (Continued)

Salt Concentration (g/L) pGIC Concentration (mg/L)

CaCl2 0.500 Adenosine 26.724

Choline chloride 0.070 Betaine 117.150

KCl 1.200 Ethanolamine · HCl 2.439

MgSO4·(H2O)7 1.880 Inosine 268.230

NaCl 2.505 Ornithine · HCl 6.745

NaHCO3 0.350 Putrescine · 2HCl 1.610

NaH2PO4 1.000 Sodium ascorbate 1.981

Sodium selenite 0.052

Sugar Concentration (g/L) Spermidine · 3HCl 2.546

Glucose 3.895 Spermine · 4HCl 3.482

Uridine 244.200

Additive Concentration (g/L)

Yeast Extract 0.500

Lipid Solution Concentration (mL/L)

Lipid Mixture 1 30
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Figure B.1: Betaine addition tolerance of Sf-9 cells in 900III medium. Error bars represent
the range of duplicate cultures.
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Figure B.2: Effects of betaine addition on growth in artificially osmolality-increased Sf-9
culture in 900III medium. Osmolality increased by means of approximately 100 mM spike
of sucrose. Error bars represent the range of duplicate cultures.
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Figure B.3: Effect of betaine addition during feed additive spike regimen in Sf-9 culture
in 900III medium. Betaine added simultaneously with feed additive spikes; 5mM betaine
at 2% spike, 10mM betaine at 4% spike, 15 mM betaine at 6% spike. Feed additive spike
regimen is as described previously. Error bars represent the range of duplicate cultures.
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