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Abstract  

One recent megatrend in medicine is that of “precision medicine” whereby a precise 

diagnosis leads to a precise intervention for superior results. This thesis was undertaken to 

enhance the understanding of spine and hip interactions and facilitate precision in both detection 

and the intervention of mechanical and neurological based disorders. The hip and spine are highly 

integrated structures. In order to adequately examine and improve the understanding of the 

complex mechanical linkage between the two, development of a highly biofidelic Hip-Spine 

Model (HSM) was pursued. Given that no model existed that incorporated the necessary detail, 

several challenges regarding model development needed to be addressed. It was clear that 

biofidelity of the model depended on a better understanding and representation of the passive 

hip stiffness in both males and females. Thus, the experimental data of passive stiffness was 

evaluated in conjunction with the HSM passive stiffness model predictions. Next, known Anterior 

Cruciate Ligament (ACL) injury risk factors, such as dynamic knee valgus (DKV) were examined in 

a female population where both the kinetic and kinematic variables of the hip and spine were 

evaluated to assist in differentiating those deemed at-risk and not-at-risk during the drop vertical 

jump (DVJ) procedure. Finally, an atlas of rehabilitation exercises was constructed to guide 

program design and progression/regressions of rehabilitation protocols for those with back and 

hip concerns. Each of these themes were unified around the overall goal of this thesis, that being 

the understanding of the hip-spine mechanical linkage pertaining to injury mechanisms and a 

guide for rehabilitation of hip-spine disorders.  

The first task was the development of the HSM. This model is anatomically detailed and 

driven by biological signals obtained from the individual to provide new insights into the 
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understanding of the linkage in a way that was sensitive to the unique movement strategies of 

the individual. The HSM is an expansion of the previously established ‘Spine Model’ (SM), 

developed by Stuart McGill and his team over the past 37 years. The model anatomy was 

expanded from the current SM using the most complete single subject lower limb data set 

available know as the Twente Lower Extremity Model (TLEM). Hip ligaments were also added to 

enhance the passive behaviour of the model. An electromyographic (EMG) driven approach with 

subject specific kinematics was used to compute the model outputs that consisted of tissue and 

joint loads. Thus, the first objective of this thesis was to examine the interactions of hip and spine 

mechanics using a newly developed Hip-Spine Model (HSM) and then to investigate a spectrum 

of injury mechanisms and rehabilitation exercises. 

The next objective was to evaluate passive hip stiffness to enhance the biofidelity of the 

model and the understanding of hip mechanics in both males and females. A novel testing 

apparatus was designed and fabricated for measuring hip stiffness which could easily be adapted 

to clinical settings. This study also serves to establish normative baselines for passive hip stiffness 

in vivo.  

The third objective of this thesis was to examine issues of normal function and potential 

injury mechanisms. For example, ACL injury risk has been linked with some knee kinematic and 

kinetic patterns however, hip and spine interactions have not been appropriately explored nor 

have neuromuscular control strategies. This thesis linked the mechanical variables which 

differentiate at-risk landings of the DVJ task versus non-at-risk landing in females to enhance the 

understanding of risk behaviours. Clear differences in hip and spine control were documented to 
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differentiate high and low valgus landings. Adding this knowledge to the current understanding 

of ACL injury risk will lead to the development of superior and more specific coaching cues to 

decrease tissue stress/strain concentrations. This approach will underpin intervention strategies 

leading to lower risk behaviour and correspondingly lower injury risk among female athletes.  

The final objective of this thesis was to evaluate the appropriateness of rehabilitation 

exercises to address hip spine disorders. Currently, there exists a myriad of exercises but little 

evidence to guide clinical reasoning or decisions for exercise choice, progression, volume and 

technique. Currently missing from the literature is knowledge of tissue and joint loads in 

combination with muscle activation patterns. This knowledge will facilitate better matching of 

specific exercises for specific disorders.  

The main objectives of this thesis were: (1) The development of the anatomically detailed, 

biologically driven HSM which successfully computes joint and tissue loads unique to the 

individual and their neuromuscular control strategy. (2) The establishment of passive hip stiffness 

for males and females. (3) To enhance understanding of both neurological and tissue loading 

characteristics associated with ACL injury risk which when added to the current knowledge 

provides the opportunity for more precise interventions. (4) The beginning of the development 

of an atlas for rehabilitation exercises to guide prescriptions that can be matched to specific hip-

spine disorders. These findings have the potential to enhance precision medicine in the area of 

musculoskeletal health – where precision medicine is currently lacking.  
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1.0 Introduction: 

A mega trend in medicine is “precision medicine” or what is sometimes referred to as 

“personalised medicine”. This is a move away from the “one size fits all” approach to care 

towards matching an intervention to a specific mechanism. This thesis seeks to contribute to this 

developing trend through a more complete assessment of the biomechanical variables and 

mechanisms leading to hip-spine disorders. Every system in biology has a tipping point where 

loading below the tipping point adds resiliency and loading exceeding the point causes damage, 

or pain, or dysfunction, or all three. Analysis of hip/spine disorders have centered around 

kinematic variables or muscle activation usually in isolation. To further the advances of the 

aforementioned mega trend of precision medicine this thesis was directed towards developing 

tools to assess complex kinetics, neuromuscular control and kinematics in a more holistic 

examination of hip/spine disorders and then assess the influence of these variables on stress and 

strategies to enhance resilience and performance.  

The spine and hip joints form very complex neural, muscular and skeletal systems. While they 

thrive under optimal loading conditions, they become painful and disabled when mechanical 

loading is either too much or too little. The hip and spinal joints form linkages in the kinetic chain 

that exhibits regional interactions and interdependence of function. Their interaction across the 

continuum of injury mechanics, rehabilitation, and performance, are of interest. If spine load can  
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their synergistic relationships that optimize function along the kinetic chain will prove 

beneficial. This information can be used to modify risk for athletes and inform clinicians in the 

management of musculoskeletal disorders (MSD). For example, finding ways to reduce spine load 

in a patient with load back pain (LBP) may enable function while mitigating pain triggers (Ikeda & 

McGill 2012). Similarly, altering movement or motor strategy along the kinetic chain in an at risk 

athlete may enhance performance while reducing injury risk, in this case injury to the knee 

(Hewett & Myer 2011). These are just two examples of potential benefits gained from 

understanding the complex interdependence of the hip and spine along the kinetic chain.  

A review of the clinical research examining the interplay between hip and spine function is 

presented in detail in the literature review section of this thesis. While the interactions of the hip 

and spinal regions have been of interest clinically for some time (Offierski & MacNab 1983), there 

is a paucity of research examining the mechanical and functional relationships between them. 

Furthermore, the review in this thesis shows the spine has generally been modeled and analysed 

in isolation and likewise analysis of the lower limb has rarely if ever incorporated structures above 

the pelvis. It makes sense to study the hip and spine function together. But the impediments lie 

in the complexity of properly accounting for all of the structures, in sufficient detail, with respect 

to anatomy and mechanics.  

Biomechanical modelling is performed to gain understanding of joint and tissue loading and 

mechanisms of musculoskeletal (MSK) function and dysfunction in both healthy and pathological 

populations (Buchanan et al. 2004). Direct measurement of joint and tissue load is often not 

possible in vivo. Specifically, this thesis will consider the interactions between hip and spine 
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function with the development of an anatomically detailed, biologically driven, hip-spine model 

(HSM). To improve model biofidelity an examination of passive hip stiffness will be conducted 

and together with differences in males and female passive hip stiffness, range of motion (ROM) 

and neutral zone (NZ) size, to name a few. The ability of the HSM to predict the behaviours of the 

male passive hip stiffness was assessed with comparison to experimental data. Next, examining 

the mechanisms underlying ACL injury risk in females will be investigated including both hip and 

spine kinetics using this novel approach. Finally, the quantification of hip-centric rehabilitation 

exercises will assist in informing clinicians regarding exercise choice, dosage, progression and 

regression for specific disorders. The grand intention of this thesis is to better understand the 

interplay between the mechanics of these two regionally interdependent joint complexes, and 

ultimately provide leadership with clinical aspects of assessment, treatment and management, 

and performance enhancement.  

 1.1 The Problem 

There are two main inadequacies in the current body of knowledge that this thesis attempts 

to address, one concerning the limited investigation of the regional interdependency of hip and 

spine function outlined in the clinical literature; and, the second being the MSD which propagate 

along the kinetic/kinematic chain, in this case involving the knee, hip and spine. The first problem 

is due to the lack of an experimental approach with sufficient detail. This thesis addressed this 

first problem with the development of a novel HSM which provides new insights in the function 

of each joint as well as the interplay between these joints. The second major problem is the 

inadequate understanding of the kinetics and kinematics concurrently linked with non-contact 

ACL injuries. Thus, the injury mechanisms remain associations rather than specific cause-and-
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effect. Addressing the neuromuscular control and modelling tissue and joint stresses is a 

powerful approach that will deepen the understanding of cause-and-effect.  

1.2  Background & Justification of the Problem  

While it may seem odd to include a discussion of LBP and ACL injury mechanisms into the 

same thesis justification, I will argue that it is more than appropriate. The unifying theme of this 

thesis is that it is the mechanics which underpin injury mechanisms, management of pain and 

disorders, and enhancement of performance. One biomechanical principle applied to the 

articulating linkage is: ‘proximal stiffness is required for distal mobility and athleticism’ – the most 

proximal segment linkage is the torso – sometime referred to as the core. Enhancing core 

stiffness allows for both the initiation and the resistance of motion in the lower limb (McGill and 

Karpowicz 2009), it has been shown to enhance athletic performance, for example, improved 

striking performance (Lee and McGill 2016; McGill et al. 2010), enhanced the management of 

spine disorders (Cholewicki and McGill 1996) and the elimination of pain triggers in back pained 

individuals (McGill 2004; Ikeda & McGill 2012). To this effect muscles of the torso are activated 

to stop motion and enhance control of the thigh across the hip (Brown & McGill 2005; McGill & 

Cholewicki 2001) which in turn influences load and mechanics at the knee. Further control of the 

hip (Hewett et al. 2010; Hewett & Myer 2011; Hewett et al. 2005) as well as neuromuscular 

patterning (Myer, Brent, et al. 2011; Myer et al. 2007a) is linked to dynamic valgus which in turn 

are associated with ACL injuries. Clearly, more understanding of the regional interdependence 

justifies this thesis. 
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1.2.1 Low Back Disorders  

Clinically, there has been an interest in hip-spine interplay as hip dysfunction has been linked 

with disorders of the spine (Offierski & MacNab 1983). Back pain presents a vast economic 

burden on society in both direct and indirect costs (Dagenais et al. 2008). The numbers are 

staggering. In the United States alone, cost estimates range from $84.1 to 624.8 billion, annually. 

In nationwide surveys, Deyo et al. (2006) reported LBP as the most common source of pain, with 

26.4 percent of the respondents reporting pain within the last three months, followed by 

headaches and neck pain, rounding out the top three categories. In addition to the financial 

burden, the health care system is also encumbered by LBP. This is evident in primary care 

physician offices where LBP is among the most common reasons for visits to primary care 

physicians (Deyo et al. 2006). When examining the severity of spine pain cases the majority (low 

back and neck) are acute/sub-acute and graded either one or two, on a four point severity scale 

(Manchikanti et al. 2009; Cote, Cassidy, and Carroll 1998). This lower severity level of pain is 

associated with disorders that are likely to be amendable to approaches utilising conservative 

management strategies. This provides a great opportunity for conservative interventions to 

impact the LBP burden on society. Obviously, working to obtain a better understanding of the 

conditions and mechanisms which lead to mild and moderate levels of pain is a logical next step.  

1.2.2 Lower Limb Disorders   

Lower limb injuries are a significant problem in sport accounting for over 50% of injuries in 

collegiate athletics and ACL injuries are on the rise (Hootman et al. 2007). The majority of ACL 

injuries are non-contact injury mechanisms (Gianotti et al. 2009). Even more staggering is that an 

ACL injury history leads to a sevenfold increase in the odds of having a total knee replacement as 
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a result of osteoarthritis later in life (Khan et al. 2018). These injuries are important not only for 

their immediate effects but also the long-term effects. As many as 51% of female athletes who 

sustain an ACL injury will show radiographic evidence of knee arthritis, and 75% report symptoms 

affecting their quality of life just 12 years post-injury (Lohmander et al. 2004). The implications 

of sport related lower limb injuries have serious implications on future health, making prevention 

and rehabilitation strategies, a worth while pursuit for further investigation.  

Identifying injury risk is important. Targeting an at-risk group could lead to large reductions 

in injury and subsequent functional limitations, pain, disability and decreased quality of life after 

the injury.  Dynamic knee valgus (DKV) has been and is evolving as predictor for several knee 

disorders (Powers 2010). Hewett and Myers (Hewett et al. 2005; Ford et al. 2000; Timothy E 

Hewett et al. 2004; Hewett, Ford, et al. 2006; Hewett, Myer, et al. 2006a) have linked DKV to ACL 

injury risk, while Powers and colleagues have linked DKV to a myriad of knee injuries (Sigward et 

al. 2011) but most commonly patellofemoral pain syndrome (PFPS) (Powers 2003; Powers 2010). 

While identifying the phenomena of DKV and its link to injury is a terrific accomplishment little 

has been done to understand the mechanism which drive this movement pattern until recently 

(Cannon, Cambridge, McGill; in press).  This further suggests investigation on the kinetic and 

kinematic chain will lead to improvement in prevention and rehabilitation strategies 

downstream.  

A final justification for inquiry into kinetic/kinematic chain dysfunction are several sub-groups 

of patients with low back, hip and knee disorders who have common links. For example, hip 

dysfunction and asymmetry have been suggested to lead to earlier back pain (relevant references 
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provided in detail in the literature review). All of this evidence suggests the efforts to develop a 

novel biomechanical model to evaluate hip-spine function and utilize this HSM to evaluate 

mechanics and mechanisms of joint function in a more comprehensive way will bear fruit.  

 1.3 Potential Thesis Impact & Theory Development  

 As shown in the MSK literature (Lu & Chang 2012); inappropriate loads, postures, and 

movements can cause joint injury and tissue damage leading to pain. The contrary is also true: 

appropriate loads, postures and movements can be both therapeutic and prophylactic. A 

conceptual model for this framework is proposed in Figure 1.1. To formalize these thoughts, the 

dynamic relationships between joint and tissue loading through applied loads, postures and 

movements govern both injury causation and injury prevention. The notion that tissue load may 

fall within the tissue’s capacity or exceed tissue capacity is the key to understanding both 

mechanism of injury and designing effective intervention strategies. The potential intervention 

sites of hip-spine function with potential to influence the injury cascade are demonstrated in the 

conceptual model entitled "Hip-Spine Integration Model (HSIM)". This conceptual model lays out 

the foundation and theory development of the current thesis as well as a general guiding 

principle as to how understanding mechanics and mechanism lead to the development of 

improved clinical scenarios.  

The HSIM is a culmination of years of research and work from many scientists, distilled 

here to provide a conceptual framework to guide scientific inquiry. Kumar (2001) and McGill 

(1997, 2007) are two in particular who have made a significant contribution to MSK injury theory 

literature. This HSIM is a conceptualization that provides a framework to wage future  



 

 

8 

 

 

Figure 1.1: A conceptual model of healthy and pathological tissue loading, and interaction links 

between the hip and spine function. The individual's MSK system forms the basis of 

the tissue model, which is modulated by unique movement patterns and postures, 

which in turn influence joint loading (McGill, 2007). Tissue demands are matched by 

their capacity to bear load; two possible outcomes result, the demands are within 

the system's capacity or they exceed it. Demands have been discussed elsewhere by 

Kumar (2001) in relation to repetitive loading and acute over exertion along with 

imbalances in the muscular system or differential fatigue. If tissue capacity exceeds 

the demands place on the tissue, then the "healthy tissue loading" cascade will ensue 

(blue). If the demands exceed tissue capacity, then the "pathological tissue loading" 

cascade ensues (red). Several theoretical interaction points exist to promote healthy 

tissue loading and healing as well as encourage tissue overload and failure.  In other 

words, hip and spine mechanics may serve to promote load sharing or encourage 

tissue overload and injury depending on the individual movement and motor 

patterns, as well as postures, and loading conditions experienced. Similarly, during 

the tissue healing process a similar interaction between the hip and spine joint 

mechanics may promote or retard the healing process based on the same principle 

of tissue demands and capacity.  
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investigations of the various interactions and model nodes.  In summary, filling in understanding 

of the various intersections in the framework will improve patient care through better 

prevention; earlier assessment/diagnosis of MSK disorders and more effective and efficient 

treatment protocols, all of which are the ultimate objective of this work. 

1.4 Objectives  

 The objectives of this thesis are: 1, to improve upon the fundamental understanding of 

the biomechanical relationship between hip and spine function developing and using a 

biologically driven model to address research questions; and 2, to improve the mechanical and 

mechanistic understanding of the interplay between the spine, hip and knee. This process will 

require several stages to achieve these two main objectives.  

The first major objective was the development of a "Hip-Spine Model" (HSM). To achieve 

this objective, the existing anatomically detailed, biologically driven spine model was expanded 

to include a more detailed pelvis and hip. This new HSM allowed for the investigation of the 

mechanical relationship between hip and spine function. New questions and hypotheses in the 

relationships involving the hips and spine were investigated with the use of the HSM. In addition, 

because of the utilization of the muscle activation and kinematics was obtained from each 

individual, the HSM provided unique insights into the mechanical load sharing capacity arising 

from the individual neurological control strategies. The capability of this type of unique and 

robust analysis of loads, postures and movement does not currently exist in a single data base or 

model that considers the hip and spine together. This in turn has the potential to enhance the 



 

 

10 

 

design and application of preventative, therapeutic, and rehabilitative interventions for superior 

management of spine and hip disorders and even enhance performance.  

 Following the development of the HSM model and the analysis of passive hip stiffness, 

two additional biomechanical themes were proposed to investigate hip and spine interplay. The 

first theme examined the influence of the hip and spine interplay on ACL injury risk. Through the 

monitoring of motor patterns, movements, postures, and loads, the associations between the 

hip and spine interplay was investigated for their role in contributing to ACL injury risk behaviour, 

namely DKV. Deeper insights into the already established body of knowledge related to ACL injury 

risk and knee disorders related to DKV was obtained. The second theme was to create an atlas of 

hip centric spine sparing rehabilitation exercises designed to promote appropriate motor 

patterns, motions, postures and loads in the hip and spine to guide clinical decision making. In 

this manner, the prospective and retrospective analyses using the detailed biological HSM, 

allowed for unparalleled understanding of fundamental mechanics, activity demands, and 

therapeutic exercise dosages. 

 1.5 Thesis outline and guide to this document  

The thesis is subdivided around thematic topics for the presentation of the data. Two major 

data collections served to provide the experimental data for this thesis along with the extraction 

of data from the literature to develop the HSM and refine it from the current data sets available. 

 Chapter two outlined the relevant literature that served to inform this thesis and direct the 

investigations to provide greater insights into the issue of hip and spine function and the 

associated disorders of the spine, hip and knee. The literature review first examined issues in 
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musculoskeletal modelling pertinent to the proposed modelling approach. The literature review 

then examined the clinical theoretical framework for the studies investigating the various hip-

spine disorders. The review concluded with a statement of what is known and what is yet to be 

discovered. This shall serve as the rationale, in part, for the work of this thesis.  

Chapter three addressed the development of an anatomically detailed, biologically driven, 

HSM for the estimation of joint and tissue loading. A description of the model as well as relevant 

equations and utilizations of model parameters are found here. Data related to the model tuning 

and estimation of gain factors is also documented here, as well as the modifications and updates 

to maintain the biofidelity of the anatomical function of various muscles. Ligaments and passive 

tissue properties were also enhanced at the hip with the use of previous literature and 

experimental data capture in the next chapter.  

Chapter four documented the passive hip stiffness properties of males and females in vivo. 

Experimental data was evaluated to enhance the understanding of hip mechanics from a 

foundational knowledge perspective as well as a direct input to the HSM. It was hypothesised 

that males and females would have different passive hip properties and the model would predict 

male passive hip properties sufficiently well.  

Chapter five documented the investigation of ACL non-contact injury mechanisms in females 

and the underlying mechanisms which differentiate high and low valgus groups, a known injury 

risk predictor. It was hypothesized that the neuromuscular patterns as well as kinetic analysis will 

lead to a better understanding of underlying mechanism for dynamic valgus.  
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Chapter six documented the development of an atlas of hip rehabilitation exercise 

progressions that spare the spine, while challenging the hip for conservative management of 

many hip and spine disorders as well as potentially impactful knee injury mechanisms. It was 

hypothesised that differences in kinematics, neuromuscular patterns and kinetics will be 

revealed and knowledge of these differences can be utilised by clinicians to prescribe exercise 

selection, volume and programming more specifically to the individual.  

Finally, chapter seven, provided a global discussion of the thesis and the impact of the results 

on the objectives set out in the thesis. This provides the capstone impressions and considerations 

of this data as well as directions for future work.  

  This thesis developed organically, while the first objective the thesis was model 

development, experimental data was required to inform and utilize the model. Two major data 

collections were used to create this data set. The first, was a group of females primarily collected 

for the “ACL study” in Chapter 5 (study 3). The second, was a group of males primarily collected 

for the “Hip Rehab study” in Chapter 6 (study 4). Each of these data sets also contributed to the 

“passive hip stiffness study” in Chapter 4 (study 2). This brings us full circle back to model 

development in chapter 3 (study 1) where the model gain factors, and tuning was documented. 

The general flow of the data sets and studies is provided in Figure 1.2.  
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Figure 1.2: The flow of data through two major data collections and four thesis studies.  
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2.0 Literature Review:  

The purpose of this literature review is to establish what is known and identify what remains 

unknown, forming the rationale for this thesis. Given the need to create an anatomically detailed, 

biologically driven, hip model which was married to the existing spine model (McGill & Norman 

1986), the first section of the literature review, entitled 'Modelling Review', addresses pertinent 

information related to model development. This information was used in development of the hip 

model including anatomical and tissue properties along with a review of fundamental concepts 

in modeling. In addition, the review includes a selection of current hip and spine models available 

in the literature and discusses the current status of these models. The second major section of 

the literature review entitled 'Clinical issues of the knee, the hip, & the spine' is focused on the 

clinical and practical applications of the model as well as the current status of the clinical evidence 

surrounding knee, hip and spine disorders as they relate to the dynamic interplay of the 

interactions between these joints. This section of the review includes various forms of a condition 

referred to as 'Hip-Spine Syndrome' as well as the relationships between hip and spine mechanics 

and low back pain.  In addition, Anterior Cruciate Ligament (ACL) injuries are discussed along with 

dynamic knee valgus (DKV) and the current evidence relating these issues. How these clinical 

theories are related to loads, postures and movements was reviewed together with the available 

evidence to support the underlying mechanism of injury propagation along the kinetic/kinematic 

chain. In this way, this review has served as the foundation knowledge to provide an 

understanding of hip and spine mechanics and they relate to injury prediction, prevention, 

rehabilitation, pain and dysfunction. From this understanding a path for future discovery and 

development of new ideas is presented.  
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2.1 Modelling Review:  

The focus of musculoskeletal modelling included in this review will be inverse dynamics and 

EMG driven modelling approaches, as they relate to the spine and hip joints. This will also include 

anatomical considerations, muscle modelling, passive tissue properties and model tuning or the 

indeterminacy problem. A fundamental issue in biomechanics is the understanding of tissue 

loading characteristics.  Direct measurement of tissue loading, including joint load, is very difficult 

and usually highly invasive (Erdemir et al. 2007). For this reason, modelling is an essential and 

critical process in biomechanics. Modelling has been used to estimate joint loads from surrogate 

biological signals. This is possible through the understanding of the relationship to intermediate 

variables. For example, surface electromyography (EMG) is readily measured in the laboratory 

and relationships to muscle force are well established from previous research (Hof 1984). 

Combining EMG, anatomical data (muscle attachment sites), and kinematics provides the 

modelling inputs and model guts required to estimate joint loads. For instance, in a biologically 

driven model such as the one proposed here, the EMG is used to estimate muscle force, couple 

with attachment sites located in the model are tracked via the individual’s kinematics measured 

in the laboratory. These variables are then used to estimate muscle parameters (line of action, 

moment arm lengths, muscle lengths, muscle velocities and force) and this process is repeated 

for each muscle of interest and summed to estimate joint force. The advancement of modelling 

techniques and new applications of models is essential to the advancement of biomechanics and 

the understanding of tissue and joint loading. This knowledge then serves as a foundation for 

applied and clinical applications as well as future research.  
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 2.1.1 Relevant Anatomy for Modelling  

 One issue with modelling is the generalizability of anatomical data and matching the 

research pool to the data set from which the model parameters were derived. Two approaches 

have been used to attempt to resolve this issue. Brand and colleges (1982) examined attachment 

sites for the hip, knee, and ankle used as model parameters in a gait analysis. They attempted to 

provide scaling factors to individualize these model parameters for the participant pool for which 

the model was applied. While these authors were proponents of using scaling factors, moment 

arm estimates were associated with errors in the accuracy identifying locations of origins and 

insertions. Based on sensitivity analysis the error represented inaccurately identifying specific 

muscle attachment locations would likely be less than a 10 percent.  In contrast, a recently 

detailed data set of lower limb anatomy was published “The Twente Lower Extremity Model” 

(TLEM) (Horsman et al. 2007) using a single cadaveric specimen. These authors suggested that 

the relative relationship of the anatomy was more important than removing the biological 

variance. Therefore, they suggested that this data set with a robust set of biological parameters 

(muscle rest length, muscle PCSA, muscle and ligament attachment points, muscle 'via' points, 

segment inertial parameters) for modelling inputs would be superior to piecing together norms 

and averages from multiple data sets and specimens. How well the participant pool matches the 

model parameters continues to present challenges for gender matching. There are statistically 

significant differences in pelvic morphology (Bonneau et al. 2012). However, it remains unknown 

whether or not these differences are practically significant when it comes to modelling and the 

application of the model to participant pools. The Twente Lower Extremity Model (TLEM) 

(Horsman et al. 2007) was chosen to be used to here to construct the HSM in chapter three. The 
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model parameters are listed in Appendix A (Table A-1). These model parameters will be 

integrated with the existing spine model and are discussed in detail in chapter three. Finally, 

realizing that these anatomical studies are done on cadaveric specimens or static CT or MR 

imaging it is noteworthy that dynamic movements of the limb do not greatly change the inertial 

properties of the limbs. Clark & Hawkins (2010) found a less than 0.01% effect when correcting 

for tissue movement within the limb during dynamic tasks. There are always limitations and 

assumptions when it comes to model inputs and anatomical data is no exception. 

 2.1.1 .1 Anatomical Relationships to joint coordinate systems (JCS) 

Identifying anatomical landmarks and their relationship to joint centers of rotation has been 

a challenge. Bell et al.(1990) compared methods of estimating hip joint center from palpable 

anatomical landmarks. Errors in hip joint center estimation ranged from 3.79 cm using 'the 

rotational method' (based on radiographs) to 3.61 cm using 'Andriacchi's method' (again based 

on radiographic data). None of the methods at this time reached a predetermined standard of 

accuracy of 2.0 cm and were deemed inaccurate. Moreover, the implications for joint axes of 

rotation and calculations of joint Euler angles, thereafter, rely on the accuracy of marker 

placement to be able to define joint rotation accurately.  

An updated approach to identifying joint centers and joint axes of rotation is using 

‘[functional] joint centers (FJC)’ (Schwartz & Rozumalski 2005). Begon et al. (2007) examined the 

effects of movement in calibration trials to inform users of FJC how best to calibrate and calculate 

hip joint center location. For example, using at least 10 cycles of movement was critical for 

accuracy, and circumduction was better then flexion/extension or abduction/adduction motion 
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in isolation. Interestingly smaller amplitude motions were also more accurate then large 

movements. In fact, when considering clinical populations with reduced hip ROM this newer FJC 

approach remains the preferred method (Piazza et al. 2001). Overall, this approach is more 

objective and precise when compared to the standard clinical approach. It was also considered 

more accurate in calculating knee joint motion for example by limiting signal bleeding between 

axes of rotation and thereby producing more accurate valgus measures in the knee (Schwartz & 

Rozumalski 2005).  

 2.1.2 Muscle Modeling  

 Muscle modeling is a major area of investigation in biomechanics research, it is worthy of 

a textbook to review the entirety of the issues related to the understanding and complications. 

This review will highlight a few of the areas pertinent to this thesis and assist in the justification 

and rational of the modeling approached proposed for the use in these investigations.  

  2.1.2.1 Force-Length Relationship 

  The force-length (F-L) relationships was formalized by Gordon et al. (1966) through a 

series of experiments examining tension and sarcomere length. It was discovered that muscles, 

or more accurately sarcomeres, have an optimal length and shortened or lengthened beyond this 

optimal length there is a reduce capability for force production. The cause of this relationship 

relates to the cross-bridging capabilities with respect to the sliding filament theory. At optimal 

lengths the congruency of the cross-bridging of actin and myosin fibers as well as force 

production are maximized. When the fiber is shortened or lengthened the cross-bridge 

integration is reduced and force production capability is diminished. More recently, this has been 
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documented in the abdominal musculature to better understand the physiological range of the 

sliding filament theory as it relates to these torso muscles (Brown & Gerling 2012). Muscle length 

is a critical intermediate in the prediction of muscle force and ultimately joint load.     

  2.1.2.2 Force-Velocity Relationship 

Demonstrated as early as the 1930s, by A.V. Hill, there is an inverse non-linear relationship 

between shortening velocity of the sarcomere and force production capacity (Hill 1938). While 

simplifying complexity is often done to improve comprehension of a relationship, a single linear 

relationship is not appropriate for the force-velocity (F-V) relationship for isometric contractions 

(Chapman & Harrower 1977). Contraction velocity ought to be accounted for in any EMG driven 

modelling approach.  

  2.1.2.3 Force-Length-Velocity Relationship 

 It would appear that the interaction effect of the length and velocity parameters should 

also be considered as these are inseparable in vivo.  Bahler (1968) was one of the first to examine 

the combined effects of length and velocity on muscle force capabilities. Several equations were 

developed to explain the mechanics of parallel and serial elastic properties combined with the 

contractile properties of muscle. The stimulation parameters were also considered not only in 

terms of stimulation frequencies and intervals but also force development, since muscle is not a 

first order mechanical system. In short, rest length and lower velocity conditions provide maximal 

muscle force capabilities while deviations from rest length and higher velocities decrease the 

available force capacity of the muscle. To summarise the individual constraints of length and 

velocity were maintained in this examination.  
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  2.1.2.4 EMG to Force  

Direct measurements of muscle force are difficult and invasive in human subjects. Therefore, 

understanding the relationship between muscle force and neural drive is important for 

biomechanical modeling. Since neural drive is readily measured in the laboratory, it makes this 

an ideal surrogate for muscle force. The development of this relationship has been ongoing for 

many decades and continues to be refined even today. In a four part series Hof and Van den Berg 

(1981a, 1981b, 1981c, 1981d) examined the Hill-Type Model, which remains today as "The 

Standard" for modelling the relationship between neural drive and muscle force, both 

conceptually and mathematically. In part one of the examination, the Hill-Type Model's linearity 

was investigated(Hof & Van den Berg 1981a). Muscle torque was directly measured and force 

and lengths were extrapolated and corrections for length and velocity are discussed. The 

importance of these scaling factors remain as key elements of the EMG to force relationship. Part 

two examined the passive elastic component of the system and torque-angle relationships (Hof 

& Van den Berg 1981b). NoTable hysteresis was observed requiring different equations for 

increasing and decreasing force. Unfortunately, individual differences observed in hysteresis 

were larger than the effects themselves. Therefore, correction factors were never adopted into 

the Hill-Type Model. Yet, the EMG processor presented here remains quite accurate.  Similarly, 

each muscle had its own torque-angle relationship. In other words, at a given joint angle each 

muscle that crosses that joint will be at a unique location on the force-length curve. Results 

suggest factors from muscle architecture to single or multiple crossing articulations account for 

these unique relationships. It is important to remember, given this information, joint torque is 

the sum of all muscles components and each component requires consideration for its unique 
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scaling factors. However, there were commonalities found in calf muscles given the conditions 

of the task, similarities in activation profiles were observed. Therefore, it is reasonable to 

extrapolate certain variables like torque-velocity to both calf muscles as being equivalent. This is 

important when there is limited access to some muscles, as is found in the spine and hip. In these 

situations, with deep musculature and no accessible surface electrode recording sites, 

neurological surrogates must be identified. The third paper continues to examine the torque-

angle relationship in even more detail (Hof & Van den Berg 1981c). Here the model is tested and 

is found to be able to closely represent measured torque from predicted torque. Also, mean 

rectified EMG is linearly proportional to the muscle torque in quasi-static conditions(Hof & van 

den Berg 1977). However, there seems to be more of a quadratic relationship during dynamic 

contractions. On the contrary, when corrected with SEC (tendon compliance) the relationship 

restores its linearity as seen in part three of the examination (Hof & Van den Berg 1981c). Lastly, 

part four of the examination of muscle modeling investigates contraction dynamics in both 

concentric and eccentric scenarios (Hof & Van den Berg 1981d). This EMG processor was able to 

handle both concentric and eccentric processing with good congruency. However, in this work 

the authors commented on the importance of a non-linear conversion for fast dynamic 

movements. This non-linear approach was able to characterize the fast rise and slower decline 

of the active muscle state in a more accurate way. While others (Guimaraes et al. 1994) have 

noted that the linearity of the EMG to force relationship, between 5 and 88% of the activation 

spectrum is a reasonable estimation for most applications. This debate remains at some level 

even today. In summary, this series of papers (parts one to four) demonstrated the ability to 
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digitally program the Hill-Type Muscle Model with good success for predicting force profiles 

under different conditions.   

 2.1.3 Neurologically Driving Muscle Mechanics with EMG 

Consideration of neuromuscular compartments, including physical anatomical separations 

and unique neurological activation patterns, are importing for EMG driven modelling approaches. 

Mechanical separations have been described to influence muscle lines of action and moment arm 

lengths (Pereira et al. 2004; Johnson et al. 1996; Van der Helm & Veenbaas 1991) and the 

representative PCSA of these muscles sections are also of important consideration. The 

neurological aspect to these compartments is far more theoretical and has been referred to as 

"the partitioning hypothesis" (English et al. 1993). There is some empirical support for this 

concept with much of this work investigating shoulder muscles and function including the 

pectoralis, deltoid and latissimus dorsi (Brown, Wickham, McAndrew, & Huang, 2007; Wickham 

& Brown, 1998; Wickham & Brown, 2011) and others have examined gluteus maximus 

(McAndrew et al. 2006). Identifying neurological patterning within and between muscles is 

important for identifying the number of unique muscle drivers. In other words, do groups of 

muscle share common activation patterns? If yes, then these muscles can be well represented by 

a single neural driver (i.e. one EMG channel). If not, then some muscle may have multiple 

activation patterns requiring more than one neural driver. The examination of neuromuscular 

compartments is of course not without controversy, a critical appraisal of the methodology to 

identify these compartments is the nature of the tasks used to demonstrate these unique 

compartments is often highly controlled in posture, direction of force, and task objective (Brown 

et al. 2007). This is especially true when comparing these highly controlled tasks to a dynamic 
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task like a drop vertical jump off a box to a maximal vertical height. The presence of 

neuromuscular compartments requires further examination for the hip and thigh muscles as well 

as for less controlled and more common or even dynamic tasks. This knowledge will then guide 

the development of EMG driven modelling approaches to improve anatomical and neurological 

fidelity.  

  2.1.4 Passive Tissue Properties & Modeling  

 Any joint load modelling approach must consider the role of passive tissue not only within 

the muscular system but also the joint complex. In this manner, the joint load is a culmination of 

both the active muscle, and the passive forces and moments. Here the passive moment is the 

contribution of all tissues crossing the joint that restrict movement while the musculature 

remains inactive (Yoon & Mansour 1982). However, it should be noted that in vivo both of these 

forces and moments produce may act simultaneously and even synergistically and therefore are 

not mutually exclusive. Yoon and Mansour (1982) brought this issue to the forefront as is relates 

to hip modelling. Previous hip models have omitted ligaments altogether suggesting they are not 

relevant in gait analysis (Crowninshield et al. 1978). This is in stark contrast to the work of Bresler 

& Frankel (1950), who found the passive elements contributed 30-50% of the hip moment during 

gait at toe-off. Contributions at heel strike were between 20-40 Nm as well (percent 

contributions were not stated as the total hip moment changes so rapidly during this phase of 

gait). It seems clear that the passive elements ought to be included in any detailed model of hip 

which seeks to predict joint loading.  
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Skeletal muscle, as mention above, also comprises a series of passive elements. The passive 

component contributions are greatly impacted when considering the bi-articular muscles. These 

are of particular interest since the adjacent joints may greatly influence these passive element 

characteristics by altering the length-tension relationship at the adjacent joint. This was more 

closely considered at the hip when it was discovered that knee angle greatly affects the passive 

load on the hip due to the hamstring group (Yoon & Mansour 1982). It is reasonable to suggest 

that rectus femoris, and psoas might have similar effects on the passive contribution to hip joint 

loading during extension activities when considering spine and knee kinematics, respectively. As 

a result, the importance of quantifying the passive contribution of joint loading is obvious. The 

viscoelastic nature of the passive structures to contribute in the counter movement has been 

made in many different circumstances from running (Cavagna et al. 1964) to general exercise 

(Thys et al. 1972).  Clearly, the forces and moments at any joint ought to consider the contribution 

from passive tissue as well as the effects adjacent joints may influence this phenomenon. Our 

model first assigns passive forces based on joint position then allocates the remaining force to 

muscle, where the distribution is EMG based - recognizing the individual motor control strategies. 

Passive force from muscles and articular structures should not be overlooked and with this new 

model both the hip and the knee will now be incorporated and the passive tissues which are 

influenced by joint posture will be considered along this kinetic chain.  

 2.1.5 Spine Models 

 Over five decades ago began the formalization of the biomechanical investigation of 

spinal loading (Morris, Lucas, & Bresler, 1961; Chaffin, 1969). Many assumptions were made in 

these pioneering spine models which provided just as many limitations. As these models were a 
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static analysis, acceleration and momentum were neglected, in part due to the lack of 

technology. Major muscle groups were assumed to have negligible contribution to the task at 

hand and were omitted from the analysis. Anatomical details were simplistic in nature. Though 

these models had significant limitations it began the awareness of biomechanical spine modelling 

and prompted more detailed analysis in hopes of better understanding of mechanical issues 

related to LBP and spine function in general.  

Since then there have been advancements to the biomechanical investigation of spine 

loading (Andersson, Ortengren, & Schultz 1980; Schultz et al. 1982; Marras & Sommerich 1991; 

Marras & Sommerich 1991; Larivi & Gagnon 1999; Gagnon, Larivière, & Loisel 2001).  However, 

it is still the McGill and Norman model (1986) which has been regarded as the most anatomically 

detailed, and complex model (Delleman & Drost 1992). Kingma noted in his keynote (CSB 

Kingston) that it best balances predicted and measured moments when compared to other 

available models (de Looze et al. 1992). This model was greatly enhanced with the addition of a 

spine stability index (Jacek Cholewicki & McGill 1996), a concept first formalized by Bergmark 

(1989) as is relates to the lumbar spine. Stability analysis of the lumbar spine provides new 

insights into spine function. Aside from the addition of spine stability this model has had 

numerous updates and enhancements to improve its predictions of spine loading (Grenier & 

McGill, 2007). This model remains to be the best choice to enhance further with the addition of 

anatomy sufficient to investigate hip-spine interactions.  

 These models have enhanced the understanding of spine function, loading, and injury 

mechanics. In addition to the biomechanical advancements in understanding function, these 
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models have also been used to design therapeutic exercises based on various criterion such as 

tolerable loading and the targeting of specific tissues (Grenier & Mcgill, 2007; Grenier & McGill, 

2007; Kavcic, Grenier, & Mcgill, 2004a, 2004b; Mcgill & Karpowicz, 2009; McGill, 1997; 1998) as 

well as diagnostic tests (McGill 2007; Ikeda & McGill, 2012).  The role of spine modelling in 

biomechanics has major impacts on the understanding of normal function, injury mechanics and 

therapeutic interventions right on through to maximising human performance (McGill et al. 2010; 

McGill 2001; Lee & McGill 2015; Lee & McGill 2016; Green et al. 2002). 

 2.1.6 Hip Models 

Multiple hip models are currently available in the literature and the majority of them utilize 

various optimization techniques to solve the indeterminate problem. Understanding hip and 

spine loading, and more importantly the distribution of load, requires knowledge of muscle 

activation time histories. Muscle activation is the single highest contributor to joint force in 

human movement for the hip (Lewis et al. 2010) and the spine (McGill & Norman, 1986)  alike. In 

addition, of the available hip models in the literature, none have been developed to include the 

mechanics of the spine. Below I will review and highlight some of the advancements and 

limitations to the currently available models, which will highlight the need for the development 

of the proposed model.  

Crowninshield and colleges (1978) developed one of the earliest and most sophisticated hip 

models of their time. However, some important limitations are observed, namely the omission 

of ligaments and the absence of EMG data to assist the indeterminate problem. Ligaments were 

omitted as the authors suggested the tasks being observed (walking and stair climbing and 



 

 

27 

 

descents) were within the range of motion (ROM) where ligaments would not contribute to the 

joint loading profile. Essentially these authors were suggesting all the motion required occurs in 

the neutral zone of the joint and the passive contribution is negligible. This was refuted earlier in 

the literature (Bresler & Frankel 1950), as the passive components do indeed contribute to joint 

loading during gait. In addition, the absence of EMG data requires the authors to rely solely on 

optimization techniques, which are known to be non-physiological by relying on a given 

philosophical phenomenon – like minimization of muscle stress cubed, for example. Given these 

limitations the model developed was well within its capability to handle gait and stair ascents 

and descents.  

Another of the earlier anatomically detailed models of the hip was developed by Dostal & 

Andrews (1981). This model was considered by the investigators as a "muscle model" (pg. 803). 

The model incorporated straight line actuators to represent the hip musculature. Physical model 

simulations identified some important limitation with the effects of joint angle and muscle paths. 

Namely, gluteus maximus required a manual override for the moment arm calculation at hip 

flexion angles greater than five degrees of flexion. These manual overrides are also used in other 

models to maintain the anatomical integrity of muscle moment arms (Cholewicki et al., 1995; 

Cholewicki & McGill, 1994; McGill & Norman, 1986). Limitations considered, this model was 

validated with normal walking and pathological gait data. 

One important issue for any joint loading predictive model is the biological fidelity and 

anatomical detail as it relates to the application of the model. Brand and colleges (1982) 

published one of the earlier data bases of lower limb muscle anatomy, and since used by Delp in 
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his lower limb models (Arnold et al. 2010). This data used straight lines for muscles and used 

pervious research (Jensen & Davy 1975) to justify their approach. These authors (Brand et al. 

1982) demonstrated the need to scale the anatomy to the individual. Their approach featured 

the use of variation in the anatomical landmarks taken from cadaveric specimens with a scaling 

factor for in vivo use. Another example, is the importance of hip joint center location when 

considering force and moment production at the hip (Delp & Maloney, 1993). Small changes in 

modeling technique or even anatomical land marking can have noTable changes in joint loading 

as was demonstrated by Frost and colleagues (CSB, Burnaby, BC). The challenge remains how 

best to define and locate critical anatomical structures when developing modelling approaches. 

Moreover, Lenaerts et al. (2008) showed that individualized hip joint geometry is important and 

relevant to the accuracy of modelled results. However, these authors were additionally limited 

by the optimization approach and inherent assumptions in their modelling technique. None the 

less they found femoral neck length could be used to predict changes in hip loading while the 

femoral neck angle was not as critical to individualize. This study was followed up by Scheys and 

colleagues(2011), who found hip muscle moment arm lengths were affected by subject specific 

anatomical data versus generic data sets bases on percentiles. However, it remains unclear how 

the modelling approach would affect these results and, whether or not, this research simply 

identifies a weakness in the modelling approach. Recently, palpation of anatomical land marks, 

have been used to scale model anatomy to the individual (Luo et al. 2009). Regression equations 

require two or more independent variables to achieve sufficient predictive ability for anatomical 

scaling. No matter the approach, tuning the model to the individual of interest is an important 
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aspect to biomechanical modelling, yet no unanimous method exists, and the issue is not without 

controversy.   

In a paper by Arnold and colleges (2010) a group of 21 cadavers were used to create a data 

set for model inputs, however these 21 specimens were elderly and considered to be at risk for 

illness leading to disuse atrophy in the lower limb. There were limitations in this model as 61 

N/cm2 maximum isometric force per PCSA was used to tune the results to attain equilibrium. This 

relatively higher force/PCSA may be a result of the sample as age can change the prediction of 

force based on PCSA (Jones et al. 2008). In addition, the 21 specimens seemed to be from a 

homogeneous population, defeating the purpose of estimating anatomical variability in the 

broadest sense. There continued to be some outputs which were none physiological in this model 

and systematic manual adjustments were made. The authors were critical of a common gain and 

elected instead to take the approach of relying on the variance of the 21 specimens. 

In more recent years, with the development of both refined modeling approaches and 

software applications, open source software has been developed for biomechanical use. One of 

the earliest open source models was developed by Professor Delp and colleagues (1990). This 

model was equipped with interactive platform which allows for user manipulation of input 

parameters to better understand consequences of surgical interventions. Building on this 

foundation, one of the more popularized lower limb models is the that of Delp and colleagues 

(2007), named the "OpenSim" model. This model was designed for estimating the effects of 

pathology on joint and muscle mechanics. Obviously, the pathology being investigated must have 

well understood impairments and limitations in order to make meaningful insights. For example, 
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shortened musculotendinous units like those found in cerebral palsy patients can be examined 

with simulation trials in this model.  Others (Modenese et al. 2011a) have also used generations 

of the OpenSim models combining them with the most robust anatomical data set available 

(Horsman, Koopman, van der Helm, Prosé, & Veeger, 2007) to validate their optimization 

modelling approaches. The approach by Modenese (2011a) and colleagues seems to be limited 

by identifying the appropriate objective function based on a predetermined physiological 

criterion, which is a common criticism of optimization - What is the most physiological criterion? 

On the other hand, this demonstrates the ability of these models to be shared and developed by 

fellow scientists to advance our ultimate understanding of the biological system.  

Validation of a biomechanical model of the hip, or any joint for that matter, offers many 

challenges. Generally speaking this is not often accomplished directly though it is possible to do 

so if direct measures are possible (Lu, O’Connor, Taylor, & Walker, 1998). A more practical 

approach is verification and validation in parts. Meaning the individual parts within the model 

have been validated separately and therefore when combined they are assumed to also be valid. 

The approached described above to validate in parts and verify with established approaches will 

be used in this thesis. These are only some of the aspects related to model validity, which is a 

major consideration for any modeling approach (Anderson et al. 2007; Henninger et al. 2010). 

 2.1.7 Passive Hip Mechanics 

 2.1.7.1 Stability  

Passive structures at the hip contribute to joint mechanics is several ways. One important 

way is the contribution to hip stability. In fact, even the periarticular tissues (muscles, skin, and 
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fat) can contribute to hip kinematic stability in multiple planes by controlling motion of the 

femoral head and limiting translations in the acetabulum (Safran et al. 2013). However, the 

contribution of the ligaments should not be lover looked. In particular when considering repair 

strategies surgically theoretical anatomical evidence suggests both the iliofemoral ligament and 

the acetabular labrum play unique and significant roles in limiting external rotation and anterior 

translation of the femur (Myers et al. 2011). This was updated and confirmed more recently, with 

experimental data demonstrating the multiple postures and the interactions with specific 

ligaments. It was clear that passive resistance is posture dependant and that the joint capsule as 

well as ligaments have a significant role in hip stability and limiting translations of the femur 

which is suspected to contribute the progression of hip osteoarthritis (van Arkel et al. 2015).   

 2.1.7.2 Models  

As mentioned above in the hip modelling section these contributions have not been 

incorporated into many if any modelling approaches. One consideration of passive structures is 

their effects on joint range of motion, this includes bone, ligament, joint capsule and labrum 

when considering the hip. One approached is a lumped parameter to sum the effects of all these 

tissues into one algorithm. However, some experimental data exists to partition the contribution 

of at least the individual ligaments into a biomechanical model (Hewitt et al. 2002), and this data 

is used and described in more detail in Hip-Spine Model (HSM) section of this document.  

 2.1.7.3 In vivo clinical studies  

Evaluating passive joint stiffness is often a clinical target – hip stiffness and even hamstring 

‘tightness’ is no exception. Some have investigated passive force and stiffness changes with 

hamstring stretching (Miyamoto et al. 2015; Reid & McNair 2004) but few have asked the more 
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fundamental question, should we stretch? Or even more fundamental should reducing ‘joint 

stiffness’ or ‘tissue stiffness’ be a clinical target? There was a small sample of a sub-group of LBP 

patients (with spondylolysis) and tight hamstrings compared to healthy controls (Barash et al. 

1970) and in addition to a multimodal rehabilitation program (Khalil et al. 1992). Similarly, 

Individuals with LBP have been shown to have stiffer hamstrings (Tafazzoli & Lamontagne 1996). 

While passive stretching has been shown to change mechanical properties at the joint, like 

increases ROM and decreased rotational stiffness (Reid & McNair 2004; Marshall, Cashman, et 

al. 2011) it remains unclear who will benefit from these changes in both the patient population 

and in a injury resilience points of view. Moreover, the refinement of stretching technique can 

also make a difference on the clinical effect (Miyamoto et al. 2015). In addition to all these clinical 

questions, one more is while the patients learn to use the greater access to joint motion? Studies 

(Moreside & McGill 2011) have shown that skillfully improving one’s ROM does not translate into 

the utilization of improvements in ROM during function tasks. Utilizing new movement strategies 

requires equally skillful movement coaching.  

It also important to consider how these clinical studies measure hip joint motion or stiffness 

– since clinical studies may lose accuracy in order to gain access to a clinical population. With 

respect to the hip many studies (Marshall, Cashman, et al. 2011; Lee & Munn 2000; Reid & McNair 

2004) actually evaluate angle between the leg (femur) and the global space horizontal, or 

clinically, the straight leg raise (SLR). This is problematic manly because this angle is not a direct 

measure the hip, and the definition of zero degrees may not in fact be anatomically zero degrees 

and even more importantly the spine and pelvis have the potential to rotate and there contribute 
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to the total femur-horizontal angle. This is a major limitation in the clinical evaluation and 

skillfulness of the assessment techniques.  

2.1.8 Solving the Indeterminacy Problem   

As mentioned above, direct measurement of muscle force, tissue and joint loading is highly 

invasive and not available in most clinical or research settings. Currently the most advanced 

clinical settings have access to inverse dynamics analysis systems like OpenSim software. Inverse 

dynamics calculations are able to acquire quite reasonable estimates of joint loading in most 

cases (perhaps with the exception of the spine). However, making the leap to capture individual 

muscle forces has been of significant challenge due to the complexity of the control system 

(Erdemir et al. 2007). This is due to the indeterminacy, the number of muscles creating forces 

and moments about the joint far exceed the number of equations to solve the problem. One of 

the early spine models by Schultz(1982) employed an optimization approach. This is solved 

mathematically to balance the moments and forces by using a predetermined objective function. 

This objective function is often an attempt to minimize or maximize some value thought to relate 

to a control strategy. For example, minimizing muscle stress might be an objective function. This 

approach will solve the equation of equilibrium however; the solutions are not always 

physiologically similar to observed control strategies. Crowninshield and colleagues 

(Crowninshield et al. 1978) noted the issue of co-contraction and physiological representation 

when using the optimization approach in their examination of hip mechanics and elected to 

ignore the contribution of co-activation. Another example in the hip was Brand and colleagues 

(Brand et al. 1994), who attempted to solve the indeterminate solution with optimization and 

compared the results to implanted transducer measurements. The mathematically predicted hip 
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joint force was similar in this analysis, while the authors alluded to over estimation in earlier 

attempts utilizing the optimization technique. General configuration of the force curves were 

also adequately represented in the modelling approach. The authors(Brand et al. 1994) noted, 

however, that performing more physiologically based measurements would likely improve 

mathematical modelling predictions. It seems the complexity of the task being measured may 

have had a role to play in the accuracy of the model predictions. In this study, post-operative 

patients were walking at relatively slow speeds. While variability is in the magnitude of 10 

percent for most gait variables, moment calculations are as high as 10-30 percent(Winter 2009). 

This alludes to the variability in control strategy, especially when walking speed is controlled. The 

more robust the model, the more versatile its capabilities.  

Another early approach to address the indeterminate problem employed EMG driven 

models. In this case normalized EMG was used to predict individual muscle contribution to the 

overall joint force profile. In theory, the sum of each muscle equals the reactive moment. While 

this approach is sensitive to individual motor control strategies it does not always provide a 

balanced equilibrium equation. McGill & Norman(1986) were the first to develop an EMG driven 

spine model and use an EMG assisted optimization (Cholewicki & McGill, 1994; Cholewicki et al., 

1995) to solve the indeterminacy problem in a spine model. They investigated this by comparing 

traditional optimization and EMG assisted optimization (EMGAO) approaches while solving for 

muscle force. In addition, Gagnon and colleges (Gagnon et al. 2001) reviewed traditional 

optimization, EMG driven, and EMG assisted optimization (EMGAO) approaches during a 

dynamic lifting task using an L5-S1 partitioned spine model. Not surprisingly they found similar 

results, the optimization techniques were best able to handle the mechanical equilibrium, while 
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the physiological fidelity was upheld through the EMG approaches (Cholewicki et al. 1995; 

Gagnon et al. 2001).  

2.2 Clinical issues of the knee, the hip, & the spine: 

 Given the close anatomical, biomechanical and neurological relationship between the 

knee, hip and spine, due in part to their proximity, many symbiotic relationships exist between 

these joints. Many muscles have shared functions between these joints and the neurological 

relationships are obvious from the lumbar plexus on down. These regional interdependent 

relationships exist in pairs, for example the knee and hip (Taylor et al. 2018; Reiman, Bolgla, et 

al. 2009; Powers 2010) as well as the hip and spine(Offierski & MacNab 1983; Reiman, Weisbach, 

et al. 2009; Wong & Lee 2002) and also the knee and spine (Li & Zhang 2009). As a result, the 

knee, hip and spine function have been of interest to clinicians within the context of LBP for some 

time. The nature of the relationships, between hip and spine function as related to the clinical 

presentation, present themselves in many forms including movement patterns, (Wong & Lee 

2004; Haugstad et al. 2006; Shum et al. 2005a), neuromuscular control strategies (Freeman et al. 

2013; Nelson-wong et al. 2008; Nadler et al. 2002; Leinonen et al. 2000; Hungerford et al. 2003; 

Murphy et al. 2006), and fatigue characteristics (Kankaanpää et al. 1998; Marshall, Patel, et al. 

2011; Nourbakhsh & Arab 2002). Each of these relationships will be reviewed here beginning with 

the earliest documented hip and spine disorder called "hip-spine syndrome"(Offierski & MacNab 

1983). This section of the literature review will reveal the clinical importance of this thesis and 

detail the implications for clinical research moving forward.  

 2.2.1 Hip-Spine Syndrome 
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 The formalization of hip-spine syndrome was made by Offierski in 1983 (Offierski & 

MacNab 1983). In this report a series of clinical cases suggested an increase in the prevalence of 

spine disorders with those who also had hip osteoarthritis (OA). This association was more 

recently confirmed by Saunders and colleges (1979) who demonstrated that patients with hip OA 

had increased incidence of spine OA (lumbar and thoracic), especially at younger ages. Moreover, 

these associations were not made in the hands or wrists and therefore, are not thought to be 

part of a generalized arthritis but rather a more localized relationship between the hip and spine. 

Simple hip-spine syndrome was classified as concurrent pathology (degeneration). Secondary 

hip-spine syndrome included the cases of LBP that were aggravated by hip deformity. Finally, 

complex hip-spine syndrome included those patient experiencing symptoms in both joints 

making the casual etiology more difficult to identify (Offierski & MacNab 1983). Clearly this first 

attempt to classify these conditions was limited, however, important none the less as the first 

real identification of the clinical phenomenon.  Offierski and MacNab (1983) also discussed the 

challenges with complex cases and the need for ancillary diagnostic and investigative approaches 

to be better enable accurate diagnosis and appropriately treat these patients. Since this initial 

reporting there have been additional investigations examining the relationship of LBP associated 

with hip dominate pathologies. Matsuyama et al. (2004) examined the effects of secondary hip-

spine syndrome on spine posture in a group of patients with LBP. Specifically, they examined 

patients with bilateral congenital hip dysplasia and reported increases in anterior angulations of 

the pelvis leading to hyperlordosis. This population demonstrated higher reporting of LBP 

compared to hip pain despite the obvious hip pathology and comparatively less obvious spine 

deformity.  Later, Yoshimoto and colleagues (2005) investigated the a group of patients with hip 
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OA and compared them to a spine group, which included patients with ‘degenerative joint 

disease’ (DJD) and other spinal pathologies. A number of measurements were used to quantify 

the biomechanical relationships within these patient populations including increases in lumbar 

lordosis, sacral base angle, pelvic incidence angle (the angle formed by the coccyx to the midpoint 

of the acetabulum, passing through the midpoint of the sacral base - measured in the sagittal 

plane) and sharp angle (the angle between a line passing through the bilateral tear drops and a 

line from one tear drop to the ipsilateral superior lateral edge of the acetabulum - measured in 

the frontal plane) found in the hip OA population. In addition, the hip OA population had greater 

pelvic obliquity and leg length inequalities. Lastly, the hip OA group had decreased pelvic tilt 

when compared with the spine group. In support of this theory, patients with LBP and OA of the 

hip requiring total hip replacement (THR) are likely to benefit from addressing the primary lesion, 

in this case, hip pathology. After THR patients reported clinically significant reductions in LBP 

(Ben-Galim et al. 2007). Based on these observations further analysis is warranted to elucidate 

the relationship between the hip and spine function, and how they are related pain and 

pathology.     

 2.2.2 Hip & Spine ROM   

Movement aberrations are associated with pained individuals and LBP is no exception 

(Luomajoki, Kool, Bruin, et al. 2008). Yet, the issue is controversial when considering causality of 

movement aberrations and pain, in regards to the precipitating factor (Williams et al. 2010). 

However, ROM has been investigated as a potential contributor to the development of LBP. Sjolie 

et al. (2004)  investigated LBP in adolescents and found an association with hip mobility and body 

mass index (BMI) with LBP. Hip extension demonstrated a trending relationship between 
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decreased ROM and LPB, and active ROM was found to be decreased in hip flexion and hamstring 

flexibility (two independent tests) in the LBP group. Moreover, when attempting to identifying 

those who will develop LBP in physically active and inactive adolescents, decreased spine motion 

and restricted hip motion have been shown to have predictive values among males (Kujalal et al. 

1994), and weight, height, lumbar extension ROM and previous LBP were predictive among 

females (Kujalal et al. 1994). Importantly, higher levels of physical activity were not shown to be 

detrimental to pain development in these adolescents. Two other reports (Ellison, Rose, & 

Sahrmann, 1990; Van Dillen, Bloom, Gombatto, & Susco, 2008) have used ROM testing in clinical 

settings to investigate the relationship between hip ROM and LBP. During passive ROM testing a 

group of patients with chronic low back pain (cLBP) displayed less hip ROM then healthy 

participants. Specifically, these deficits were noted with less medial and lateral rotation, than the 

non-LBP group. In addition, the cLBP individuals had ROM imbalances with the right side having 

less total ROM than the left; this relationship was not evident in the non-LBP group (Van Dillen 

et al. 2008). In relation to absolute ROM is the notion of balance and symmetry from side to side. 

This has long been thought of as clinically important for normal function. Ellison et al.(1990) have 

demonstrated hip ROM imbalances are associated with LBP. During hip ROM testing, patients 

with LBP were more likely to have less medial rotation of the hip then lateral. In fact, 48% of this 

patient population demonstrated a restricted hip pattern during internal rotation. On the other 

hand, this pattern was only present in 27% of the healthy population. Identifying when hip ROM 

or imbalances side to side might contribute to LBP development and chronicity are important 

next steps.   
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As another example, in a group of professional golfers associations were investigated 

between LBP and non-LBP groups to identify relationships associated with the development of 

LBP in this at risk group (Vad 2004). It is important to note; this elite group of golfers would likely 

form a sub-group of LBP if a common presentation could be identified and may not reflect the 

general population. None the less, associations were seen for decreased lumbar extension, 

Patrick's test ROM (AKA FABER's test: flexion, abduction and external rotation), and decreased 

hip internal rotation of the lead side in the LBP group. Prospective studies would be the next 

logical step to investigate whether there is clinical efficacy in attempting to change these 

variables in hopes of preventing or managing LBP.  

 2.2.3 Hip & Spine Movement   

  Movement coordination involves both joint mechanics and neural control. The result of 

coordinated movement can be thought of as movement quality.  Rather than simply quantifying 

the amount of movement as evaluated by ROM testing, assessing movement quality reflects 

aspects of coordination of movement patterns, typically in goal-oriented movement. In this 

sense, goal directed movement relates to both the mechanical capabilities of the joint as well as 

the neurological control strategy to control and coordinate movement thus forming movement 

patterns over time. These movement patterns have been a clinical focus for some time by many 

researchers (Van Dillen, Maluf, & Sahrmann, 2007; J B Ellison, Rose, & Sahrmann, 1990; 

Gombatto, Collins, Sahrmann, Engsberg, & Van Dillen, 2007; Lewis & Sahrmann, 2009; Luomajoki, 

Kool, de Bruin, & Airaksinen, 2008; Sahrmann, 2001; Van Dillen, Maluf, & Sahrmann, 2009). 

Unfortunately, there is a paucity of empirical data characterizing Hip-Spine syndrome, due to the 

lack of investigation into this area and comparative data to healthy controls. Researchers 
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(Haugstad et al. 2006) studying posterior pelvic pain have developed reliable analysis tools, 

though these analysis systems lack clinical validation. Yet, characteristic stance, including a 

narrowed stance, anterior translation of the pelvis, posterior translation of the upper back and 

shoulder girdle; and sitting posture, including a cross legged and lumbar kyphotic posture were 

evident in the patient population. Moreover, balance and coordination was compromised as well 

as a lack of hip mobility during gait (Haugstad et al. 2006). Further examination of the differences 

in movement quality and movement patterns are warranted for a better understanding of the 

mechanisms in this population of patients as well as in other low back, pelvis and hip pain 

syndromes.  

 One of the most clinically important analyses are of movements that are performed daily. 

These are the movements that have the potential to contribute in a meaningful way to 

cumulative loading injuries. Research (for example, Lamoth et al., 2002) has shown LBP 

populations and healthy controls use different strategies during walking for example. Movement 

patterns between the thorax and pelvis are in-phase at walking velocities below 3km/h. During 

faster speeds the thorax and pelvis move out of phase to conserve and transfer angular 

momentum between the lower limb and the pelvis, however, patients with LBP may remain in-

phase walking at higher walking speeds potentially leading to increased joint loading in the 

lumbar spine. Strategies for the pained patient during walking have been identified by Callaghan 

and colleagues (1999) which included appropriate arm swing to counter the angular momentum 

created by the lower limb. Recently, researchers (Shum et al. 2005b; Shum et al. 2005a; Wong & 

Lee 2004) have demonstrated reduced lumbar flexion in two sub-groups of LBP patients with and 

without limited side-lying leg raise (SLR) during activities of daily living (ADLs). Loss of lumbar 
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flexion movement was accompanied by increased axial rotation in some patients (Shum et al. 

2005b), those with nerve root symptoms used even less lumbar flexion while performing ADLs 

then the LBP and the control groups (Shum et al. 2005b) and while performing ROM testing 

(Wong & Lee 2004). Interestingly, only the nerve root sub-group demonstrated less hip flexion 

than the health controls in activities such as putting on a sock (Shum et al. 2005b). In relation to 

the quality of movement, lumbar flexion velocity and right hip flexion velocity were significantly 

reduced in both LBP groups (Shum et al. 2005b), while movement time was as much as doubled 

in this group (Wong & Lee 2004).  Perhaps more importantly, spine to hip flexion ratio was 

increased indicating a dominance of spine motion, especially in the SLR sub-group (Shum et al. 

2005b; Shum et al. 2005a; Wong & Lee 2004). Further, the coordination of motion (cross-

correlation analysis) demonstrated a significant reduction in the similarity of hip and spine 

sagittal plane motion, while there was an increase in frontal plane coordination in both 

symptomatic groups. These changes in movement strategy are interesting, however, it is difficult 

to fully understand the origin of these movement patterns. Are those with back troubles moving 

because of pain or attempting to avoid pain resulting in altered movement patterns or does their 

movement pattern pre-exist their pain? This is a difficult question and more research is needed 

to understand the relationships between injury mechanics, movement patterns and pain 

behaviour.   

Excessive motion of the spine can be detrimental to some patients while too little motion 

may be pain provoking in others. For example, those who experience pain associated with 

prolonged postures (Marshall, Patel, et al. 2011). Clinical wisdom would suggest this group might 

benefit from alternating postures in an attempt to create tissue load sharing capacity. An in vivo 
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investigation of segmental movement in a severely degenerative group of patients showed a 

significant reduction in segmental rotation and a lack of coupled motion (Lund et al. 2002). 

Though it was only possible to make this assessment in a surgical population due to the 

invasiveness of the procedure it is unclear if these patterns are related to pain. However, the 

general theory in this group may create increased force concentrations to a specific region of the 

tissue due to the lack of mobility leading to inappropriate load sharing and diminishing capacity. 

On the other hand, the ability to create proximal stiffness as discussed earlier can be 

fundamentally important for some patients with back troubles who demonstrate hip rather than 

spine dominated movement patterns. Scholtes et al.(2009) demonstrated that a subgroup of 

patients with LBP who participate in rotation related sports (i.e. racket sports) demonstrate 

earlier and greater amplitudes of spine motion during extremity movements. This is theorized to 

contribute to cumulative trauma injuries due to the repetition of motion associated with their 

sporting activities (McGill, 1997). This example likely demonstrates why a signal treatment 

technique has failed to help all LBP conditions, yet, a single theory of how to manage LBP 

conditions may still be possible if it is robust enough to account for individual differences and 

multiple aetiologies.  

It is unclear whether poor movement causes pain, potentially through tissue overload, or 

poor movement patterns develop as a result of pain and pain avoidance or possibly both. 

However, anatomical asymmetries, limitations or biases may be an important factor in the 

understanding of the relationship between movement and pain. Al-Eise et al.(2006) 

demonstrated pelvic asymmetries were more prevalent in those with LBP. Moreover, the LBP 

group was more likely to have asymmetries in spine motion. Therefore, understanding the 
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adaptability of hip and spine motion based on a structural limitation, functional adaptation or 

selective motor pattern is important. Recently, Hoffman et al.(2011) demonstrated the ability to 

decrease spine motion and increase the amount of hip motion prior to engaging in movement 

requiring spine motion during a controlled clinical movement screen. The authors suggested that 

this would over time provide a more favourable pattern of hip dominate movement leading to 

spine sparing movement patterns. A critical next step in the understanding of this phenomenon 

and the association between movement and pain is identifying the precipitating factors. Hence, 

the ability to develop the desired ROM and train new movement patterns assumed to be more 

beneficial from a LBP perspective will only be possible when the cascade of events leading to pain 

is understood.  

 2.2.4 Hip & Spine Loads  

 Movements and postures will define the joint load and which tissues will bear the load 

within the joint. Pain is associated with changes in movement regardless of whether or not the 

issue of causation can be resolved. Movement related changes in sagittal plane motion, during 

forward bending, translate to increases in moments in the early and mid-ranges of motion, while 

reduced at the end range in subjects with LBP (Shum et al. 2010). This was accompanied by 

increases in adduction moment at the hips during forward bending. The authors suggested tissue 

stiffness and muscle splinting as potential mechanisms for this change in behaviour however, 

their use of models (inverse dynamics) does not have the capacity to reveal these changes. These 

changes were more likely a result of the observed changes in ROM and movement patterns. A 

more sophisticated model is required to understand loading behaviour between tissues in the 

hip and spine.  
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In some earlier work, Vleeming and colleges (1995) were among the first provide a theoretical 

anatomical rationale for the inherent relationship between the hip and spine with their work on 

the posterior fascia, and biceps femoris with its relationship to sacrotuberous ligament provides 

some evidence of a direct anatomical link (van Wingerden et al. 1993). This was followed by their 

work with the dorsal sacral ligament and here the authors are far less subtle with the potential 

contribution to the development of LBP and the relationships between the spine, pelvis and hip 

(Vleeming et al. 1996). Essentially this body of work sought to understand the theoretical 

mechanisms by which the transmission of force, through mainly the muscles and fascia, might 

influence spine and hip behaviour and the potential influence of low back pain. Though this work 

was purely theoretical in nature its influence on the understanding the of the management of 

LBP has been highly influential in clinical thought processing. These theories require further 

investigation and more sophisticated approaches to reveal the nature of the relationships 

between the anatomical regions of the spine, pelvis and hip as well as the potential to transmit 

load. Moreover, the potential effects of low back pain and how movement and motor patterns 

in different populations might affect this theory is also important for the understanding of joint 

loading and LBP.   

 2.2.5 Hip & Spine - Neuromuscular Patterns & Fatigue  

Spine pain has been shown to effect neurologic reflex loops and alter motor firing patterns 

(Graven-Nielsen et al. 1997; Graven-Nielsen 2006). The question remains to what extent does 

this affect have on whole muscle activation and joint mechanics? Hungerford et al.(2003) 

demonstrated this effect with sacroiliac joint pain (SIJP) during a simple hip flexion task. In 

comparison to a control group the patient population displayed a delayed firing onset of internal 
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oblique, multifidus and GMax on the side of the SIJP. This phenomenon was not true of all hip 

extensors, biceps femoris was increased, theoretically to support the extension moment 

otherwise produced by GMax. In addition, Leinonen and colleges(2000), also demonstrated these 

types of effects in another population of LBP patients. During flexion and extension movements 

the gluteal muscles in LBP patients were significantly less active in comparison to their healthy 

counter parts. Variability was also seen in onset latency, though this was much less predicTable. 

This is some of the newer evidence in support of an older theory of crossed pelvic syndrome first 

described by Vladimir Janda (in Page et al. 2010) and discussed by Professor McGill as "gluteal 

amnesia" (McGill, 2007). Additional support for the "gluteal amnesia" phenomenon is provided 

by the investigation of muscular fatigue (Kankaanpää et al. 1998). During repetitive trunk 

extension endurance testing patients with (chronic low back pain) cLBP, who were initially similar 

in motor patterns to a healthy control group, demonstrated a divergent pattern with fatigue. It 

was again the gluteal muscle group that was early to fatigue which separated the groups in the 

investigation. Interestingly, the erector spinae (ES) EMG characteristics remained similar 

between groups. In contrast, during twisting and torque producing movements Pirouzi and 

colleges (2006) found increased co-activation of the erector spinae muscles and gluteal muscles 

in back pain patients as compared to healthy controls. This muscle splinting was suggested to 

provide stiffness and limit motion to prevent further spine injury during these more demanding 

twisting and torque producing tasks. On the other hand, great compressive force is applied to 

the spine during these twisting tasks, which may have been pain producing depending on the 

nature of the back disorder (McGill, 2007). This example highlights the challenges ahead when 

attempting to identify the specific etiology of spine pain verses the compensatory responses to 
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protect the injured area. In other words, it appears the effects of LBP may be as diverse as the 

causes of LBP – making the argument for heterogeneity very relevant in the study and 

management of back disorders.  

Several diagnostic tests have been used to identify and quantify neuromuscular patterns, 

strength and fatigue behaviour in patients with LBP. One such test was first described by Janda 

(Page et al. 2010), as the prone hip extension test, has been the focus of much research in an 

attempt to quantifying the validity of Janda's original findings (Vogt & Banzer 1997; Arab et al. 

2011; Lewis & Sahrmann 2009; Bruno & Bagust 2006; Sakamoto et al. 2009). Generally, the 

pattern is assumed to be normal when a predicted pattern is followed based on 'clinical wisdoms' 

of motor patterns seen in upright gait patterns (Page et al. 2010). However, this predicted pattern 

has not shown to be valid in healthy subjects when more sophisticated instrumentation like EMG 

has been used verse visual inspection (Arab et al. 2011; Lewis & Sahrmann 2009; Bruno & Bagust 

2006; Sakamoto et al. 2009; Vogt & Banzer 1997). Although the original hypothesis for the 

mechanism of this test has not been supported (aberrant neuromuscular timing), Murphy and 

colleagues (2006) have proposed its utility and reliably when identifying the ability of a patient 

with LBP to create "punctum fixum" during the prone leg raise movement. This is theorized to 

provide insights into the ability of the patient to create core control to stabilise the spine while 

performing leg movements (proximal stiffness and distal mobility). This is an excellent example 

of a ‘functional test’ which interacts with the kinetic chain and may provide insights into the 

motion/motor pattern used but some cohorts of low back pain patients. Much work is needed to 

validate these clinical observations and better understand, neuromuscular patterns, gluteal 

amnesia, and fatigue with respect to the LBP patient.  
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In the management of musculoskeletal disorders, one more recently popularized approach is 

neuromuscular compartment training. This concept has been of considerable interest in the 

clinical management of musculoskeletal disorders, especially at the shoulder, when considering 

the ability to selectively activate muscular compartments (Holtermann et al. 2010; Holtermann 

et al. 2009) as well as shoulder rehabilitation to reduce shoulder impingement syndromes 

through neural control strategies (Cools et al. 2007; Cools et al. 2002; Cools et al. 2003). The 

clinical goal is to either redirect the load through changes in movement patterns and/or change 

the motor patter in an attempt to shelter injured tissues with the training of new motor patterns. 

In this way it is a similar approach to the proposed theoretical model of this thesis – namely, load 

sharing will optimise loading capacity and tissue tolerance.  

Motor patterns and the selection of neuromuscular patterns likely play a role in the 

development of musculoskeletal disorders. The next step is to identify the mechanism of injury 

and the development of faulty motor patterns as well as the effects of pain on motor patterning. 

Then the best approach for managing these disorders through motor pattern training and 

rehabilitation techniques can follow.  

 2.2.6 Hip & Spine - Muscle Strength, Imbalances & Endurance   

Muscle imbalances are hypothesized to contribute to unfavourable joint loading causing 

localized force concentrations leading to tissue overload. For example, tight hamstrings are 

thought to create excessive pelvic torque and are associate with LBP (Nourbakhsh & Arab 2002; 

Sjolie 2004). Clinical theory would suggest as noted above the hamstrings overload the posterior 

kinetic chain, namely via the sacrotuberous ligament, and lead to tissue overload. Arab and 
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Nourbakhsh (2010), investigate interplay between tensor fascia latae and the iliotibial band (ITB) 

as it is thought to relate to LBP. Janda theorized (Page et al. 2010) that this relationship is a result 

of weakness in the gluteals and the TFL compensation results in unfavourable loading on the ITB 

leading to ITB syndromes. Again, in light of observational data (Arab & Nourbakhsh 2010) it seems 

that ITB tightness may or may not be associated with LBP. However, in both groups of LBP 

patients (with and without ITB tightness) hip abduction strength was significantly less than those 

without LBP. In contrast, during a prolonged standing task, used as an experimental pain model, 

hip strength was not related to the development of LBP but GMed muscle endurance was able 

to adequately predict those who would develop LBP (Marshall, Patel, et al. 2011).  Yet again, 

others (Nadler et al. 2000; Nadler et al. 2001) have observed that muscle strength alone is not a 

predictor of LBP but rather an imbalance from side to side in hip abduction strength was able to 

differentiate athletes with and without LBP. Similarly, when examining co-activation of the torso 

and hip muscle in prolonged standing experimental data has shown those likely to develop back 

pain are more likely to co-contract GMed (Nelson-wong et al. 2008). This was theorized to be 

related to excessive joint loading leading to pain. Nadler et al.(2002) reported a significant benefit 

to training the muscle imbalances in a group of female athletes with LBP. To further confuse the 

situation, muscle imbalances in males at the hip were not found to be predictive of LBP; and once 

trained the association between muscle imbalances and LBP were no longer predictive in trained 

female patients. Interestingly, core strengthening was shown to facilitate gluteal strength, 

demonstrating an integration of hip and spine mechanics. There were limitations in this study 

since the severity of pain was not significant enough to require treatment. However, athletes are 

known not to report injury and seek treatment due to fears of lost time in sport among others 
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(Garrick & Requa 1993). As a result, it may be difficult to evaluate the severity of these injuries. 

On the contrary, Nourbakhsh and Arab(2002) found back extensor endurance to have the 

strongest association with LBP followed by hip flexion strength, back extensor endurance and hip 

adductor strength. There seems to be a relationship between hip muscle characteristics and the 

development of LBP, however, the specific mechanisms and nature of the relationship continue 

to elude clinicians and researchers alike. 

Next, related more specifically to hip disorders, motor patterns and muscle imbalances have 

been shown to be equally as important as the previous work examining LBP. In an examination 

of hip pain related to hip instability and labral tears, Lewis and colleagues(2007) found gluteal 

and "iliopsoas" (note due to their clearly different functions these should not be considered one 

muscle) to be contributing factors. Finding motor control strategies to alleviate pain by reducing 

anterior shear forces is often the clinical goal in managing these conditions. The gluteal muscles 

are a major target of these interventions. Similarly, Freeman and colleges(2013), have also found 

gluteal activation an important factor in hip capsule pathology. Tightness in the hip capsule, 

associated with osteoarticular joint disorders, as an example, is detrimental to gluteal function. 

There is more than enough evidence to promote and suggest the further examination of the 

contribution and effects of motor pattern selection on joint and tissue loading characteristics. In 

order to achieve this a model capable of handling individual motor pattern selection will be 

required.  
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 2.2.7 Hip and Spine Rehabilitation and Manual Therapy  

A critical question for rehabilitation design and exercise prescription is knowledge of the 

target muscle demands. For example, targeted rehabilitation programs may desire maximizing 

the target muscle demands while minimizing the joint load, thus optimizing the benefit of the 

strengthening/endurance while minimizing the risk for joint injury, in perhaps a patient with a 

degenerative hip condition. On the other hand, a younger athlete may not want to limit 

joint/bone loading with the desire to maximise muscle demands for strength gains as an example. 

Unfortunately, the rehabilitation literature for hip exercises are lacking the knowledge of relative 

joint demands while solely focusing on muscle activation levels. This has been the case for 

extensor (posterior chain) training (Arokoski et al. 1999), hip abduction exercises in healthy 

people (Bolgla & Uhl 2005) as well as in total hip arthoplasty patients (Jacobs et al. 2009), in single 

and double leg support in athlete (McCurdy et al. 2010) and non-athlete (Krause et al. 2009; 

Schmitz et al. 2002) populations, and even when using "Janda sandals"(Bullock-Saxton et al. 

1993).  The approach of only assessing EMG has also been used when a myriad  of exercises were 

used in various rehabilitation purposes for the hip (Distefano et al. 2009; Krause et al. 2009; 

Schmitz et al. 2002; Arokoski et al. 1999; Bolgla & Uhl 2005) as well as the spine (Oliver et al. 

2010). A more holistic analysis of muscle activation, joint motion and loading for the hip is likely 

to provide an enhanced analysis and improve the recommendations made for prevention and 

rehabilitation exercises. Only recently, has the consideration for spine sparing hip rehabilitation 

been made evident in the literature(Cambridge et al. 2012). Here the concept is introduced as 

exercises are intended at producing hip motion and gluteal activation while minimizing spine 
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movement, as thought to be more spine sparing. Further research is warranted and this will be 

the focus of the final study of this thesis.  

 In addition to tradition rehabilitation, grade IV hip mobilization has been used to 

successfully enhance GMax strength, experimentally (Yerys et al. 2002).  Surgically, this has been 

confirmed with therapeutic arthrograms stretching the hip capsule will affecting gluteal 

activation(Freeman et al. 2013). When comparing manual therapy to exercise therapy in a 

randomized controlled trial (RCT) conducted on patients with hip osteoarthritis, manual therapy 

was shown to be more advantageous to exercise(Lubbe et al. 2004). This research likely identified 

a sub-population of patients, likely with hip mobility deficits, who are more responsive to mobility 

enhancement verse strength or endurance gains. Pragmatically, in clinical setting those trained 

in both practices will apply both techniques to maximize the individual benefits, unfortunately, a 

combination intervention group was not included, as they rarely are in these highly constrained 

RCT designs. None the less, there are vast opportunities to inform clinical practice with more 

sophisticated analysis of rehabilitative techniques.   

2.2.8 Knee injuries and the hip and spine   

Non-contact ACL injuries are yet another area of interest where more recent investigations 

are leading the importance of neuromuscular control strategies of the spine, hip and knee rather 

than simply understanding this injury as a knee dominate problem. Early work (Hewett et al. 

2005) investigating ACL injury among young female athletes in jumping and cutting sports 

(basketball and soccer) focused on knee variables (Knee abduction (shank relative to the femur), 

knee flexion, knee abduction moment (KAM), differences in leg dominance. This began from the 
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original observations during a drop vertical jump (DVJ) task there major differences were seen 

between gender and even leg dominance. Females had significantly higher maximum valgus 

scores then their male counter parts and this was most prominent on their dominate side (Ford 

et al. 2000). Also in the literature others (Powers 2003) have investigated dynamic knee valgus 

(DKV) as predictor of patellofemoral pain syndromes. In an attempt to identify the mechanism 

behind ACL injury which are linked to dynamic knee valgus (DKV) was the investigation of knee 

abduction moment (KAM) which was proposed with a threshold value of 25.25 Nm as the most 

sensitive variable to dichotomize between ‘at-risk’ and ‘not-at-risk’ groups for ACL injury (Myer 

et al. 2014; Myer, Brent, et al. 2011; Myer et al. 2007a; Myer et al. 2010b). However, isolating 

the KAM as a single measure for ACL injury is less than perfect. This is not surprising since this 

was really an attempt to find a threshold value which was related to DKV which was considered 

the injury mechanism leading to ACL strain and injury.  

In more recent work, Hewett et al.(2016) used a more robust approach to develop three pools 

of female athletes, low-, moderate- and high-risk, respectively. In this analysis additional 

biomechanical variables such as, ground reaction force (GRF), hip moments, pelvis angle (pelvis 

in global space), were used to enhance the understanding of mechanical differences between 

risk level. This has brought the understanding of hip and spine control into the discussion of ACL 

injury risk. Further clinical studies are required to better understand the most critical 

characteristics; however, this is an important study which demonstrates ACL injury is far more 

complicated then a signal variable such as a threshold value of KAM. Understanding the regional 

interdependency of injury propagation along the kinetic chain is a worthy pursuit and justified by 

this recent work.    
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2.3 Summary of Literature Review 

In summary, missing from the biomechanics literature is an integrated hip and spine model 

which is anatomically detailed and biologically driven capable of investigating the 

neuromusculoskeletal implications of hip and spine interplay as it relates to normal and clinical 

populations at the individual level. Equally missing from the clinical literature is understanding of 

how this relationship between hip and spine mechanics contributes to and/or is affect by 

disorders which arise from an interaction of the kinetic chain (i.e. non-contact ACL injuries and 

low back pain). Many clinical wisdoms and scientific evidence are available to suggest and 

support the notion of an important interaction of hip and spine function with injury mechanism, 

yet there is a paucity of studies with the breadth and depth of analysis to fully examine the hip 

and spine interplay. Even more so, there is a scarcity of highly sophisticated analysis of the 

rehabilitation techniques being used for the management of hip disorders and little consideration 

for the effects on knee and spine mechanics. All of this provides an opportunity for a robust 

analysis of the hip and spine in an integrated approach using biomechanical modelling to examine 

mechanics of hip and spine function as well as knee injuries. With this understanding of hip and 

spine function there is an opportunity to enhance the clinical management of knee, hip and spine 

disorders through the development of superior exercise and therapy regimes. Limitations in the 

scientific investigations were also evident throughout the review. Modelling approaches are no 

exception. Nonetheless the details in physiology, mechanics and anatomy coupled with using a 

method sensitive to the individual variation in motor strategy will add to understanding of the 

links between the spine and more caudal structures. It is the intention of this thesis to bolster 
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the mechanical understanding of hip and spine function in order to ultimately improve clinical 

outcomes for patients. 
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3.0 Study 1: Developing the Hip-Spine Model 

Biomechanical modelling is used to predict variables that are not readily nor directly 

measurable. In doing so, biomechanical modelling provides a window into a biological system 

and the ability to gain a deeper understanding of the underlying behaviour of that system. The 

objective of this study was to build an anatomically detailed, biologically driven, three-

dimensional (3D) Hip-Spine Model (HSM). The purpose of this model is to evaluate the 

distribution of joint and tissue loads within the hip and spine complex, based on a well-

established muscle modelling approach (Hill-Type Model), and the best available data sets for 

the spine (McGill & Norman, 1986; Cholewicki & McGill, 1994; Cholewicki et al., 1995) and the 

lower limb anatomy (Horsman et al. 2007).  For simplicity, these data sets will be referred to as 

the McGill dataset and the Twente Lower Extremity Model (TLEM) dataset, respectively. The 

mechanical relationship between these areas have been neglected in a large way in the past. 

There is sufficient clinical evidence to suggest the investigation into the mechanical behaviour 

may provide valuable insights into both injury mechanisms, prevention and rehabilitation of 

spine, hip and even knee disorders. Hence, this new anatomically detailed, biologically driven 

HSM provides a foundation for the understanding of regional interdependency of the hip and 

spine and will allow for novel investigations into injury mechanisms, rehabilitation strategies, and 

athletic performance. 

Creating the HSM was an extensive process which involved re-writing the original McGill spine 

model into MATLAB™ and amalgamating additional anatomical details for the pelvis and lower 

limb from the TLEM dataset to create an integrated model. It is noted that this was not trivial 

process and was intensive and extensive process to transform the world’s most detailed spine 
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model with a complete set of hip and pelvis data. This formed the basis of the HSM and allow for 

an enhancement of each model as well as the combination of both models. For example, the 

psoas attachment was extended into the femur from the pelvis allowing the movement at the 

hip and the spine to enhance the biofidelity of the muscle behaviour with respect to both spine 

and the lower limb models. Further enhancements were integrated into the model based on 

problem solving which were presented as the model was examined and proofed. Details are 

provided below, however, to highlight some of these enhancements this is the first model we are 

aware of to incorporate ligaments into this type of whole joint modelling at the hip. Moreover, 

refinements were made to maintain the biological fidelity, such as adjusting anatomical muscle 

lengths to match the physiological properties. With the development of this model there is great 

potential for novel investigative approaches which may lead to an improved understanding of 

the mechanical relationship of the interdependence of the hip and spine.  

This chapter outlines the major components of the model in detail. Included is a description 

of the equations which represent the physiological and behavioural characteristics of the 

ligaments, muscles and joints represented in this model. The model is driven by biological signals; 

it calculates ligament and muscle lengths, velocities, vectors, and forces and then sums them to 

estimate joint loading characteristics as shown in the schematic diagram in Figure 3.1.  While 

further refinements and improvements are always possible and will evolve with this model over 

time, the current fundamentals and sophistication of the model provides valuable insights in the 

mechanical linkage of the hip and spine.  

 



 

 

57 

 

 

Figure 3.1: A schematic diagram of the HSM. Biological signals drive the anatomical detail (model 

parameters) found within the model which are used to estimate the joint reaction 

forces and moments.  

 

3.1 Input Variables  

 Input variables are considered all of the biological signals which drive the model. These 

biological signals are recorded during the trial/task/activity for which the model is to be applied. 

Each of the input parameters are illustrated in Figure 3.1 across the top of the schematic of the 

model. Namely, the input variables are kinetics, anthropometrics, kinematics and 

electromyography. Here I will describe the variables directly related to the modelling procedures. 
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In some cases, there are pre-processing procedures required which are described in detail in 

appendix D, along with the data collection procedures to acquire these input signals.   

 3.1.1 Kinetics  

Kinetic data, namely, the ground reaction force (GRF),provides inputs in the linked segment 

inverse dynamics modelling. Inverse dynamics is calculated using Visual 3D software from the 

data collected by Vicon Nexus software. The linked segment model data calculated reaction 

moments which are used to tune the EMG driven initial model estimations, providing model 

verification from this established modelling approach (Figure 3.1).   

 3.1.2 Anthropometrics  

Anthropometrics are collected to support inverse dynamics calculations and serve as scaling 

factors for segment parameters in Visual 3D. Pelvis depth, chest depth and greater trochanter 

width, as well as, height and weight are all utilised to the scale the segment parameters in in the 

linked segment model.  

 3.1.3 Kinematics 

The definitions of the joint orientation definitions are shown in Figure 3.2. Anatomical 

markers were placed on anatomical landmarks so that segments can be defined in 3D (Figure 

3.3). Marker clusters were placed on each segment with 4 to 5 tracking markers per cluster. 

Markers were tracked and then lablled using Vicon Nexus software and segments are formed. 

Data was then inported to Visual 3D where kinematic segments and joints were defined and Euler 

rotations (Z, X, Y: Flex, Bend/AbAd, Twist/MedLat) were computed to calculate orthopaedic 

angles.  
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Figure 3.2: Schematic diagram of axis definitions for the spine and hip in two view, frontal and 

sagittal plans, in a right-hand coordinate system. Flexion occurs about the z axis, 

lateral bend of the spine and adduction of the hip occur about the x axis, while axial 

rotation (twist) occurs about the y axis.  
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Figure 3.3: Reflective Marker Set-Up Anatomical       (Single) and marker cluster         (4-5) markers. 

  

 3.1.4 Electromyography  

Myoelectric activity was recorded from 24 muscles of the spine and hip (Figure 3.4). The 

signals were processed using a custom MATLAB program. The signals were band pass filtered at 

30-500 Hz, then DC bias was captured using quiet lying trial and removed form the motion tirals, 

the signals were then full wave rectified (FWR), linear enveloped (2.5 Hz) and normalised to MVC 

trials (Figure 3.5). These signals then served as input variables into the HSM EMG-Force 

conversion calculations after McGill’s approach in the spine model described in detail below. 
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Figure 3.4: Twenty-Four EMG channels were collected including 6 bilateral core muscles (Rectus 

Abdominis (RA), External Oblique (EO), Internal Oblique (IO), Lower Erector Spinae 

(LES), Upper Erector Spinae (UES), and Latissimus Dorsi (LD))  and 6 bilateral hip/leg 

muscles (Rectus Femoris (RF), Tensor Fascia Latae (TFL), Gluteus Medius (GMed), 

Gluteus Maximus (GMax), Biceps Femoris (BF), and Adductor Longus (ADD).  

 

 

Figure 3.5: Custom MATLAB EMG processor normalized the EMG signals to a MVC for later force 

estimation calculations in the model. (Top) Raw EMG is filtered 30-500H and bias 

removed, then (Middle) full wave rectified (FWR) and low pass filtered (Bottom).  
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3.2 Model Parameters  

Model parameters are predetermined equations, variables and data points which were used 

to define the anatomical characteristics and behaviours of the biological system. Detailed 

attachment sites for muscles and ligaments were incorporated from the evolved McGill dataset 

while the pelvis and lower limb data were adopted from the TLEM in Table 3.1 and appendix A. 

  Table 3.1: Bony Landmarks (cm)  

Segment  Bony Landmark X Y Z 

Pelvis Anterior Superior Iliac Spine (R)  14.16 15.58 13.35 

 Anterior Superior Iliac Spine (L) 14.16 15.58 -12.88 

 Posterior Superior Iliac Spine (R) -0.93 15.38 4.67 

 Posterior Superior Iliac Spine (L)  -0.74 15.77 -4.13 

 Public Tubercle (R)  16.5 6.78 1.87 

 Pubic Tubercle (L)  16.04 6.75 -2.88 

Femur Greater Trochanter  7.65 3.80 16.31 

 Medial Epicondyle  10.40 -33.98 2.70 

 Lateral Epicondyle 10.40 -33.44 12.49 

Shank Medial Epicondyle  10.41 -37.29 3.46 

(Tibia) Lateral Epicondyle  10.42 -37.06 12.02 

 Tibial Tuberosity * 14.39 39.80 8.29 

 Fibular Head* 8.60 -38.81 13.03 

 Medial Maleolus  12.95 -72.72 3.42 

 Lateral Maleolus 9.00 -74.59 9.87 

*coordinate switched in original publication from TLEM was an error  

 

 

3.2.1 Modified Skeletal Geometry  

Several model enhancements and improvements were undertaken in the creation of the 

HSM. This section will outline in detail both the rationale and the improvement made in the 

enhanced datasets.  
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3.2.1.1 Correction of Fixation position back to Anatomical  

Accurate anatomical data including skeletal, muscle and ligament geometry is critical to the 

development of an accurate model. This model was supported with two main sources of 

anatomical data; (1) the existing spine model, which has had several updates and refinements 

from the original version (Table 3.2); and, (2) the TLEM, which has laid out an in-depth and 

systematic description of model inputs for the pelvis and lower limb. The original McGill model 

(McGill & Norman, 1986) was developed based on a single source data set from archived 

radiographic records based on the 50th percentile from Dreyfuss (1966). Since this time several 

updates and improvements have been added in order to enhance the anatomical detail of the 

spine (Cholewicki et al., 1995; Grenier & McGill, 2007). In a sense, this thesis continued to develop 

this work through the expansion of the model to the hip joint with the TLEM. 

In order to mesh the two data sets an off-set and a correction factor was applied to the TLEM 

for the pelvis and lower limb anatomical coordinates. First the off-set was created from the 

position of the hip-joint-center in the McGill data set 10.4, 6.8, and 7.6 for x, y and z, respectively. 

However, the z coordinated had to be altered based on the symmetry of the pelvis coordinates 

in the TLEM. The off-set for the z axis was based on the calculated mean of the mid sagittal 

location of the ASIS, PSIS and pubic tubercles (which was 9.205). The resulted in the adjusted off-

set of 10.4 6.8, and 9.2, for x, y, and z, respectively. This improved the congruency of the relative 

position of the anatomical data when it was reflected (about the z axis) for the left side hip, femur 

and tibia. Next, a correction factor was created to adjust the anatomical data points in the TLEM 

dataset to a neutral position. A description of the anatomical correction factor for the fixation 

procedure has yet to be described or even discussed by others using this anatomical dataset 



 

 

64 

 

(Modenese et al. 2011a). The position of the femur relative to the pelvis was described as 

“externally rotated, the knee extended with the patella in the corresponding position and the 

foot in plantar flexion and supination” pp.240 (Horsman et al., 2007). However, when examining 

the data set and precisely analysing the anatomical data the hip was also flexed and abducted, 

while the knee was hyperextended and laterally rotated, only slightly. Therefore, a hip and knee 

a joint correction factor was applied to the dataset. The hip was rotated 12.47 degrees in 

extension, adducted 6.24 degrees and medially rotated 26.26 degrees. As shown in Figure 3.6 

and Figure 3.7 this brought the femoral epicondyles into the same plane as the hip-joint-center.  

The approach to the correction factor was justified by Dostal (1981), who dealt with a 

similar issue when using a non-articulated femur and defining anatomical attachment sites when 

constructing his muscle model. The femur was oriented in anatomical position by setting the mid-

point between the medial and lateral femoral epicondyles to intersect with the vertical position 

of the hip joint center. This was deemed to be a reasonable assumption and the orientation of 

the femur was positioned in a similar manner here (see Figure 3.7). The tibial epicondyles were 

also aligned with the same assumptions and this left the medial and lateral malleoli straddling 

the frontal plane as one would expect in anatomical position. For the correction factor at the 

knee to achieve an anatomical position the shank needed to be rotated relative to the femur. 

The knee joint was rotated far less then that of the femur, the rotation was 5 degrees of flexion 

and 5 degrees of medial rotation. The meshed data set used in this model with the correction 

factor applied can be found in Tables 3.2, 3.3 a, b, c and 3.4 for the spine, hip, and hips-spine 

muscles, respectively.  
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3.2.2 Modified Muscle Parameters    

Form and function are critical interrelated constructs in biomechanics. In order for muscles 

to function in a predicTable way their anatomical relationships to the surrounding joint(s) must 

be maintained. This section outlines modifications made to muscle parameters to enhance the 

function of the muscles throughout the physiological range of motion thereby maintaining the 

expected muscle behaviour and relationship to the hip joint.  

 

 

 

Figure 3.6: Correction factor for hip posture off-set in the TLEM as shown in the 2D axial plane 

view. The off-set accounts for the fixation posture of the cadaveric specimen during 

the fixation process. The magnitudes are 12.465 degrees of extension, 6.24 degrees 

of adduction, and 26.28 degrees of medial rotation. The mid-point of the femoral 

epicondyles is also graphed here however, it perfectly over lays the hip-joint-center 

and is therefore not visualized. Note: The left side is also shown here for comparison 

in the uncorrected position with the right side demonstrating the corrected posture. 

L5 = Fifth lumbar vertebra center.  
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Figure 3.7: Correction factor for hip posture off-set in the TLEM as shown in the 2D sagittal plane 

view. The off-set accounts for the fixation posture of the cadaveric specimen during 

the fixation process. The magnitudes are 12.465 degrees of extension, 6.24 degrees 

of adduction, and 26.28 degrees of medial rotation. Note: The femoral and tibial 

epicondyles and the hip joint center are now aligned vertically. Rectus abdominis is 

shown as an example of a muscle and provides a relative reference point attaching 

on the inferior aspect of the rib cage and the pubic bone of the pelvis.  
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Table 3.2: Spine Muscle Attachments  

Muscle (part) # 
Origin (cm)  Insertion (cm) 

X Y Z SEG X Y Z SEG 

REC AB 1 18.4 5 3 Pelvis 19 35 4 RC 

REC AB (AH) * 1 12.4 5 3 Pelvis 14 35 7 RC 

EXT OBL 1 11 19 13 Pelvis 6 30 12.5 RC 

 2 18.4 5 3 Pelvis 12.5 29 12.5 RC 

IN OBL 1 9 21.5 12.5 Pelvis 15 29 11.5 RC 

 2 16 16 12 Pelvis 19 38 0 RC 

PARS LUMB 1 2.4 17.8 6 Pelvis 7.4 23.4 2.6 L4 

 2 2.4 17.8 6 Pelvis 6.9 26.6 3 L3 

 3 2.4 17.8 6 Pelvis 5.9 29.8 2.7 L2 

 4 2.4 17.8 6 Pelvis 4.4 32.8 2.4 L1 

ILIO LUMB 1 1.4 16.6 6.8 Pelvis 1.6 39 8.4 RC 

LONG THOR 1 1.4 16.6 3.3 Pelvis 12 44 5 RC 

 2 4 20.4 0.2 L5 2 53.5 2 RC 

QUAD LUMB 1 6 21.4 9 Pelvis 3.5 35.5 7.2 RC 

 2 6 21.4 9 Pelvis 4 33 3.6 L1 

 3 6 21.4 9 Pelvis 5.2 30 3.8 L2 

 4 6 21.4 9 Pelvis 6.2 26.8 3.8 L3 

 5 6 21.4 9 Pelvis 7.2 23.8 4.4 L4 

LAT  1 3.6 19.2 3 Pelvis 9 47 12 RC 

 2 4.8 21.5 6 Pelvis 3.6 24.2 6.5 RC 

MULT  1 2 13.8 1.5 Pelvis 4.1 21.5 0.5 L4 

 2 2.6 18 3.6 Pelvis 4 24 0.5 L3 

 3 2.6 18 3.6 Pelvis 3.2 26.9 0.5 L2 

 4 2.6 18 3.6 Pelvis 2.2 30.2 0.5 L1 

 5 5.8 19.1 1.5 L5 4 24 0.5 L3 

 6 5.8 19.1 1.5 L5 3.2 26.9 0.5 L2 

 7 5.8 19.1 1.5 L5 2.2 30.2 0.5 L1 

TRANS AB (SP) 1 5 25 60 Pelvis 3.6 20.4 0 L5 

 2 5 25 60 Pelvis 3.6 22.3 0 L4 

 3 5 25 60 Pelvis 2.9 25.4 0 L3 

 4 5 25 60 Pelvis 2.4 28 0 L2 

TRANS AB (TVP) 5 5 25 60 Pelvis 7.9 19.8 3 L5 

 6 5 25 60 Pelvis 6.8 23.2 3.4 L4 

 7 5 25 60 Pelvis 6.8 25.4 3.8 L3 

 8 5 25 60 Pelvis 6 29.6 3.8 L2 

Ten Muscles and 34 (+1) Muscle Parts x 2 (Right and Left).  

*Indicates modification based on anatomical variation (AH = abdominal hollowing).  
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Table 3.3a: Hip Muscles Attachments  

Muscle (part) 
#/ 

SEG 

Origin (cm)  Insertion (cm) 

X Y Z SEG X Y Z SEG 

AD BREV (PROX) 1 15.02 5.5 2.28 Pelvis 9.08 -1.27 11.49 Femur 

 2 15.47 5.48 2.08 Pelvis 9.41 -2.54 11.34 Femur 

AD BREV (MID) 3 14.97 4.98 1.59 Pelvis 9.58 -3.82 11.24 Femur 

 4 15.33 4.96 1.42 Pelvis 9.64 -5.11 11.13 Femur 

AD BREV (DIST) 5 14.26 4.23 0.86 Pelvis 9.69 -6.40 10.97 Femur 

 6 14.49 4.22 0.75 Pelvis 9.82 -7.67 10.69 Femur 

AD LONG  1 15.65 5.88 2.56 Pelvis 10.62 -10.82 9.84 Femur 

 2 15.84 5.64 2.31 Pelvis 10.64 -12.03 9.56 Femur 

 3 15.97 5.43 2.01 Pelvis 10.70 -13.27 9.34 Femur 

 4 16.03 5.24 1.69 Pelvis 10.78 -14.53 9.15 Femur 

 5 16.01 5.07 1.35 Pelvis 10.83 -15.77 8.92 Femur 

 6 15.90 4.92 1.00 Pelvis 10.80 -16.98 8.63 Femur 

AD MAG (DIST)* 1 8.30 -0.30 4.35 Pelvis 8.81 -29.33 4.36 Femur 

 2 8.89 0.09 3.63 Pelvis 8.81 -29.33 4.36 Femur 

 3 10.61 1.02 2.17 Pelvis 8.81 -29.33 4.36 Femur 

AD MAG (MID) 1 7.61 -0.10 4.26 Pelvis 10.39 -13.25 9.49 Femur 

 2 7.90 0.12 4.67 Pelvis 10.39 -13.25 9.49 Femur 

 3 8.28 0.20 3.67 Pelvis 10.46 -16.38 8.72 Femur 

 4 8.53 0.38 4.02 Pelvis 10.46 -16.38 8.72 Femur 

 5 9.15 0.59 2.96 Pelvis 10.62 -19.56 8.30 Femur 

 6 9.34 0.73 3.22 Pelvis 10.62 -19.56 8.30 Femur 

AD MAG (PROX) 1 12.26 2.30 1.46 Pelvis 10.23 -3.98 10.39 Femur 

 2 10.79 1.47 2.44 Pelvis 10.34 -6.05 10.14 Femur 

 3 11.53 1.88 1.95 Pelvis 10.52 -8.13 9.89 Femur 

 4 12.26 2.30 1.46 Pelvis 10.66 -10.20 9.64 Femur 

BICEPS FEM (LH) 1 6.62 0.71 7.49 Pelvis 8.63 -38.31 12.34 Tibia 

GEM (INF) 1 3.90 2.75 6.34 Pelvis 10.28 7.48 14.31 Femur 

GEM (SUP) 1 4.84 7.66 4.18 Pelvis 10.90 6.56 13.30 Femur 

GLUT MAX (SUP) 1 2.49 14.57 7.63 Pelvis 11.73 12.21 17.52 Femur 

 2 1.42 12.31 5.74 Pelvis 11.13 9.00 17.88 Femur 

 3 0.76 9.53 4.19 Pelvis 10.47 6.34 18.30 Femur 

 4 1.27 15.71 6.52 Pelvis 13.24 11.59 17.01 Femur 

 5 0.07 13.57 4.51 Pelvis 12.73 8.61 17.35 Femur 

 6 -0.54 10.74 3.01 Pelvis 11.97 5.72 17.79 Femur 

GLUT MAX (INF) 1 -0.34 5.97 1.68 Pelvis 6.99 0.44 15.20 Femur 

 2 0.53 5.31 1.89 Pelvis 7.13 -0.91 14.67 Femur 

 3 1.35 4.24 1.85 Pelvis 7.85 -3.42 13.71 Femur 

 4 0.15 6.64 2.34 Pelvis 6.99 0.44 15.20 Femur 

 5 1.02 5.98 2.55 Pelvis 7.13 -0.91 14.67 Femur 

 6 1.75 4.80 2.40 Pelvis 7.85 -3.42 13.71 Femur 

*Error in the TLEM the coordinates were corrected. The Adductor tubercle is the distal attachment of the 

Adductor Magnus (distal segment) which is on the superior pole of the medial epicondyle of the femur. The 

coordinates given match the correct anatomical position it was erroneously assigned to the Tibia. 
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Table 3.3b: Hip Muscles Origination on the Pelvis (Con’t) 

Muscle (part) 
#/ 

SEG 

Origin (cm) Insertion (cm) 

X Y Z SEG X Y Z SEG 

GLUT MED (ANT)  1 10.80 16.28 13.66 Pelvis 11.04 6.39 15.66 Femur 

 2 11.83 15.83 13.76 Pelvis 11.82 6.01 15.57 Femur 

 3 12.89 15.83 13.76 Pelvis 12.53 5.73 15.45 Femur 

 4 11.33 16.75 14.42 Pelvis 10.77 5.61 16.08 Femur 

 5 12.20 16.16 14.29 Pelvis 11.46 5.03 16.09 Femur 

 6 13.21 15.27 13.92 Pelvis 12.16 4.76 15.97 Femur 

GLUT MED (POST) 1 6.52 18.67 11.71 Pelvis 9.88 7.82 14.79 Femur 

 2 4.38 16.95 8.79 Pelvis 9.51 7.89 14.39 Femur 

 3 3.58 14.01 6.89 Pelvis 9.14 7.88 14.18 Femur 

 4 5.59 20.26 11.27 Pelvis 9.88 7.82 14.79 Femur 

 5 3.06 19.21 8.17 Pelvis 9.31 7.47 15.23 Femur 

 6 1.99 16.73 6.14 Pelvis 8.94 7.43 15.06 Femur 

GLUT MIN (ANT) 1 10.32 14.69 12.51 Pelvis 12.19 4.07 15.20 Femur 

GLUT MIN (MID) 1 8.14 14.35 10.93 Pelvis 12.19 4.07 15.20 Femur 

GLUT MIN (POST) 1 6.37 13.31 9.27 Pelvis 12.19 4.07 15.20 Femur 

GRACILIS 1 12.05 1.92 1.81 Pelvis 11.32 -41.58 5.38 Tibia 

 2 14.07 3.34 1.22 Pelvis 11.32 -41.58 5.38 Tibia 

ILIACUS (LAT) 1 7.45 20.03 11.95 Pelvis 8.49 2.12 10.42 Femur 

 2 9.27 18.28 12.12 Pelvis 8.49 2.12 10.42 Femur 

 3 10.06 16.81 11.98 Pelvis 8.49 2.12 10.42 Femur 

ILIACUS (MID) 1 4.82 20.34 9.23 Pelvis 8.49 2.12 10.42 Femur 

 2 6.08 17.83 8.99 Pelvis 8.49 2.12 10.42 Femur 

 3 7.32 15.41 8.82 Pelvis 8.49 2.12 10.42 Femur 

ILIACUS (MED) 1 5.13 19.55 5.30 Pelvis 8.49 2.12 10.42 Femur 

 2 5.73 17.57 5.69 Pelvis 8.49 2.12 10.42 Femur 

 3 6.72 14.93 5.59 Pelvis 8.49 2.12 10.42 Femur 

OBT EXT INF 1 10.36 1.97 2.45 Pelvis 7.62 1.91 13.54 Femur 

 2 12.29 2.85 1.22 Pelvis 7.62 1.91 13.54 Femur 

OBT EXT SUP 1 14.28 5.03 1.18 Pelvis 9.39 5.86 12.71 Femur 

 2 12.51 3.54 1.48 Pelvis 9.39 5.86 12.71 Femur 

 3 10.36 2.47 2.33 Pelvis 9.39 5.86 12.71 Femur 

OBT INT 1 8.18 8.99 5.01 Pelvis 10.59 7.02 13.81 Femur 

 2 8.42 7.15 4.28 Pelvis 10.59 7.02 13.81 Femur 

 3 9.47 5.52 3.30 Pelvis 10.59 7.02 13.81 Femur 

PECTINEUS  1 13.87 8.18 4.07 Pelvis 9.10 -0.60 11.27 Femur 

 2 14.37 7.83 3.72 Pelvis 9.12 -1.48 11.20 Femur 

 3 14.87 7.47 3.72 Pelvis 9.13 -2.36 11.14 Femur 

 4 15.37 7.12 3.02 Pelvis 9.10 -0.60 11.27 Femur 

PIRIFORMIS 1 0.33 9.11 1.78 Pelvis 9.43 7.93 13.05 Femur 
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Table 3.3c: Hip Muscles Origination on the Pelvis (Con’t) 

Muscle (part) 
#/ 

SEG 

Origin (cm) Insertion (cm) 

X Y Z Seg. X Y Z Seg. 

QUAD FEM 1 9.50 1.82 2.90 Pelvis 7.96 4.96 13.64 Femur 

 2 8.86 1.56 3.70 Pelvis 7.92 4.18 13.68 Femur 

 3 8.23 1.30 4.51 Pelvis 7.88 3.39 13.70 Femur 

 4 7.60 1.04 5.31 Pelvis 7.84 2.60 13.73 Femur 

REC FEM 1 13.42 11.07 11.23 Pelvis 15.06 -31.47 6.83 Patella 

 2 13.42 11.07 11.23 Pelvis 15.06 -31.47 6.83 Patella 

SARTORIUS  1 13.60 14.29 12.70 Pelvis 11.61 -41.19 5.36 Tibia 

 2 13.60 14.29 12.70 Pelvis 11.61 -41.19 5.36 Tibia 

SEMIMEM 1 7.60 0.19 7.17 Pelvis 6.88 -36.51 4.62 Tibia 

SEMITEN 1 6.37 0.73 6.42 Pelvis 10.59 -42.58 5.17 Tibia 

TFL 1 13.23 14.79 13.96 Pelvis 11.97 -32.24 11.56 Tibia 

 2 12.77 15.81 14.33 Pelvis 11.97 -32.24 11.56 Tibia 

 

 

 

 

Table 3.4: Muscle crossing the hip and spine.  

Muscle (part) # 
Origin (cm) Insertion (cm) 

X Y Z SEG X Y Z SEG 

PSOAS 1 10.2 16.8 5 L5 8.5 2.12 10.42 Femur 

 2 10.6 23 2.3 L4 8.5 2.12 10.42 Femur 

 3 10.1 26.7 2.1 L3 8.5 2.12 10.42 Femur 

 4 9.1 30.5 2 L2 8.5 2.12 10.42 Femur 

 5 8.8 33.6 1.9 L1 8.5 2.12 10.42 Femur 

 

 

 3.2.2.1 Muscle Wrapping and Geodesics  

In order to maintain anatomical relationships and muscle functions, such as muscles which 

follow a curved path, additional wrapping points were required. The spine model and the TLEM 

data set utilized numerous via points to ensure anatomical relationships of the muscle paths. A 

list of muscle via points for the spine and hip muscles can be found in Table 3.5. These via points 

(sometimes referred to as nodal points) help maintain the anatomical relationship to ensure 
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appropriate muscle function. For example, with a high degree of joint movement straight line 

muscles from origin to insertion may cross or flip to the opposite side of the joint, thereby, 

changing muscle function. Via points are used to maintain the anatomical relationship and 

relative anatomical constraints from other muscles, ligaments, bony surfaces and fascia. 

However, these were not always sufficient for all muscles in the TLEM, especially when testing 

full ranges of motion. The main areas of concern were the muscle segments most proximal to the 

hip. Research by Aronld et al. (2000) have examined the erroneous moment arm values when 

wrapping is not considered. They used a similar technique to that used in the current model and 

their data showed a high level of congruency with experimental cadaveric data. Therefore, 

geodesics, specifically spherical wrapping techniques, were added to this model to improve the 

biofidelity of muscle parameters and maintain expected muscle functional properties. The effect 

of adding wrapping spheres to some of the hip muscles resulted in altering the muscle length 

estimations since the muscle now followed a longer path. These length changes also altered the 

force estimates, as normalised muscle length augments model predicted force, details are 

outlined in the next section 3.2.2.2 Modified Muscle Rest Lengths & Sensitivity Testing.   

 3.2.2.1.1 Psoas Major  

A sphere was used to wrap psoas major and iliacus muscle around the pelvis and hip bony 

anatomy. The same sphere for both muscles was positioned at the hip joint center (10.4, 6.8, 

9.205) with a radius of 3.5 cm. The pelvis hybrid node was the suprajacent point prior to 

contacting the sphere. This point was used in order to maintain the contact point on the superior 

ramus of the pubic bone. Thick connective fascia and the inguinal ligaments hold the psoas major 

muscle/tendon in place as it wraps around the bony pelvis. At the inferior end the muscle freely 
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releases from the sphere to the femoral attachment in a straight line to the muscles’ distal 

attachment (insertion) on the lesser trochanter of the femur. The psoas major and the iliacus 

share a similar function at their distal end, since the point before and after the sphere, the pelvis 

node and lesser trochanter of the femur, respectively. However, only the psoas crosses into the 

spine making these two muscles as a whole very different in the functional abilities when 

considering the integration of the hip and spine. Iliacus is a hip flexor, but psoas has a more 

complex role to stabilize the spine and pelvis – these functional differences can now be quantified 

in detail with the development of this model.  

The geodesics of the wrapping sphere are used to improve muscle length estimation. The 

length of the arc segments on the sphere are calculated by dividing the arc into 100 points and 

calculating the straight-line distances of each segment along the entire wrapping arc. The 

wrapping sphere engages with the muscle/tendon of psoas from full extension to 63° of flexion. 

Past 63° of flexion the muscle/tendon travels directly to the femoral attachment (lesser 

trochanter) from the pelvis node (the arch suprajacent to the superior pubic ramus). Notice this 

maintains approximation with superior ramus, where there is an extensive fascia as well as the 

inguinal ligament surrounding the psoas major and iliacus muscle/tendon as is passes through 

the iliopectineal arch under the inguinal ligament (Moore & Dalley 2006).  The psoas and iliacus 

muscles in the new orientation can be visualised in Figures 3.8-3.9 (psoas) and 3.10 (iliacus).  
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Table 3.5: Muscle Via Points  

Muscle (part) # 
Location (cm)  

X Y Z SEG 

EXT OBL 2 1 18.72 21.2 3.54 L4 

INT OBL 2 1 18.78 24.2 3.64 L4 

LAT 1 (SAC) 1 3.6 24.2 6.5 RC 

PSOAS  1 8 32 4.6 L1 

 2 9.4 28.8 4.7 L2 

 3 10.3 25 4.8 L3 

 4 10.5 21.5 4.9 L4 

 5 10.2 16.8 5 L5 

*PSOAS  6 14.87 7.47 8.17 Pelvis 

*ILIACUS  1 14.87 7.47 8.17 Pelvis 

OBT EXT SUP 1 9.64 3.69 10.19 Femur 

SAR (PROX) 1 13.71 -4.29 5.65 Femur 

 2 14.08 -12.94 6.05 Femur 

 3 13.67 -13.85 5.74 Femur 

 4 13.23 -15.25 5.29 Femur  

 5 12.59 -16.20 4.98 Femur 

 6 11.83 -17.32 4.72 Femur 

 7 11.26 -18.39 4.36 Femur 

 8 10.81 -19.58 4.28 Femur 

 9 10.30 -20.87 4.10 Femur 

 10 9.99 -22.30 3.92 Femur 

 11 9.77 -23.76 3.70 Femur  

 12 9.42 -25.18 3.43 Femur 

 13 9.37 -25.47 3.43 Femur 

SAR (DIST) 1 -7.66 -33.13 0.45 Femur 

GRACILIS  1 8.13 -36.96 3.67 Tibia 

 2 8.77 -37.76 3.81 Tibia 

 3 8.85 -37.78 3.76 Tibia 

 4 9.41 -38.07 3.75 Tibia 

 5 9.94 -38.77 4.08 Tibia 

 6 10.03 -38.78 4.03 Tibia 

 7 10.99 -39.46 4.69 Tibia 

 8 11.87 -39.92 5.40 Tibia 

SEMITEN 1 5.91 -36.03 5.33 Tibia 

 2 6.04 -36.74 5.21 Tibia 

 3 6.66 -37.54 5.13 Tibia 

 4 7.41 -38.46 5.08 Tibia 

 5 8.04 -39.07 5.00 Tibia 

 6 8.46 -39.53 4.95 Tibia 

 7 8.75 -40.18 5.09 Tibia 
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Figure 3.8: Sagittal view (left) and frontal view (right) of psoas major with an anatomical 

representation (top) and the model 3D point representation (bottom) with spherical 

warping object and wrapping points in anatomical position (right side only displayed).  
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Figure 3.9: Sagittal view (left) and frontal view (right) of psoas major with spherical warping 

points in anatomical position (right side muscle displayed).  

  

 

Figure 3.10: Iliacus with its 6 proximal segments on the ilium passing through the common psoas 

and iliacus via point prior to wrapping around the hip/pelvis sphere and attaching to 

the lesser trochanter of the femur (right side only displayed).  
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3.2.2.1.2 Gluteus Maximus  

The earlier attempts to model GMAX have been over simplified with a single muscle path and 

element (Dostal & Andrews 1981). Several researchers have better represented this muscle with 

enhanced the complexity of GMAX modelling assumptions by adding more segments (Arnold et 

al. 2010), or addition via points for more complex muscles paths (Blemker & Delp 2005) and this 

approach builds on the enhancement of muscle complexity – straight line assumptions are not 

biological for this muscle. As shown in Figure 3.11 the GMax is a robust muscle and large in overall 

size – this characteristic require consideration from the straight-line assumptions of previous 

work. Examining the effects of ROM on GMAX, there were clearly issues in the flexion range as 

the muscle force continued to increase due to passive resistance, however the moment was 

decreasing (Figure 3.12). This was a non-physiological change in higher degrees of flexion as the 

moment arm was decreasing to unrealistically small lengths with hip flexion because there were 

no via points or wrapping geodesics to maintain anatomical relationships. A series of wrapping 

spheres were added to model to allow gluteus maximus inferior sections to wrap around the 

contours of the bony pelvis and the deeper layers of the muscle. The corrected lengths are shown 

in Figure 3.13. Semitendinosus and semimembranosus served as reference points to identify the 

placement of the sphere. A small sphere simulated the size and shape of the ischial tuberosities, 

and sacrotuberous ligament to enhance the anatomical relationships of this muscle.  
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Figure 3.11: Gluteus maximus as it passes posterior to the hamstring group and ischial 

tuberosity. 

 

 
Figure 3.12: Gluteus maximus inferior reduces its moment arm to non-physiological amounts 

above ~70 degrees. (Extension is negative – flexion is positive, moments are 

calculated in flexion-extension plane.)  
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Figure 3.13: Gluteus maximus inferior was wrapped to provide realistic anatomical muscle 

mapping. (Extension is negative – flexion is positive, moments are calculated in 

flexion-extension plane.) 

 

3.2.2.1.3 The Hamstrings.  

Semitendinosus, semimembranosus and biceps femoris form the hamstrings group. They each have 

respective attachments on the posterior aspect of ischial tuberosity and arduous muscle paths at the 

distal end wrapping around the knee. These are modelled with via points to maintain anatomical 

relationships and preserve biomechanical function. At high levels of flexion, the straight-line path at the 

proximal end of the muscles violate reasonable assumptions of anatomy at the hip joint. The bony pelvis 

and ligamentous structures provide contours by which these two muscles navigate around – not 

through. Therefore, a geodesic wrapping sphere was used to wrap these three muscles when they are 

presumed to interact with the underlying boney and ligamentous anatomy of the ischial tuberosity and 

pelvis. The effects of these changes illustrated in Figures 3.15 – 3.17.  
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Figure 3.14: Semimembranosus (left), Semitendinosus (middle) and Biceps Femoris Long Head 

(right) each muscle was wrapped around the inferior margin of a sphere which 

represented the ischial tuberosity, the bony pelvis and the extensive ligamentous 

structures present in vivo.  

 

 

 

Figure 3.15: The effect of wrapping on changes in length for semimembranosus. Wrapping 

begins at 45 degrees of hip flexion and continues until terminal flexion. 
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Figure 3.16: The effect of wrapping on changes in length for semitendinosus. Wrapping begins 

at 45 degrees of hip flexion and continues until terminal flexion.  

 

 

 

Figure 3.17: The effect of wrapping on changes in length for biceps femoris. Wrapping begins at 

59 degrees of hip flexion and continues until terminal flexion.  
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3.2.2.2 Modified Muscle Rest Lengths & Sensitivity Testing  

Initial evaluation the model performance during simulated movements identified critical 

errors in the original TLEM with respect to muscle lengths. Unfortunately, several groups have 

used this data set and no corrections were reported in the literature that this author was able to 

identify. Typically, these issues are considered less important because optimization procedures 

are used rather than a biologically driven approaches such as the approach used here. No current 

dataset exists which has experimentally defined optimal muscle length relationships for the hip 

muscles. The approach used here was similar to the initial development of the Spine model – all 

muscles were set to anatomical length as a default “optimal muscle rest length”. When re-

examining the functional range of motion nearly all muscles were brought the physiological 

operating range within a physiologically appropriate range based on muscle mechanics. 

However, some sections of some muscles were still operating beyond a physiological range 

(these will be discussed by muscle in the following subsections). While some Researchers 

(Modenese 2016) have provide initial attempts to establish muscle parameters from both subject 

specific imaging and scaling factors from available datasets these are typically done by groups 

interested in gait and therefore only validated in relatively small ranges of motion required during 

gait (for example: -34 to 39 degrees of flexion/extension, -15 to 9 degrees of 

abduction/adduction). In this analysis muscle segments were observed over a full physiological 

range from 30 degrees of extension to 115 degrees of flexion, as well as 40 degrees of abduction 

and 40 degrees of adduction, to test the operational range this model will operate within. The 

objective of the optimal length correction was to maintain the muscle length within the 

physiological range of ~0.5 to ~1.6 rest lengths and with a preferred goal of ~0.8 to ~1.3 rest 
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lengths. Hence, modification of the muscle optimal length was required to enhance the 

biofidelity of the HSM. This assumption will need to be addressed in the ongoing development of 

the model; however, for the time being it will provide a more feasible solution for rest lengths.  

3.2.2.2.1 Adductor Magnus  

In this muscle the anatomical position was nearly “shortest” length the muscle would 

achieve. Adduction would only slightly shorten this muscle and extension would shorten it to a 

point and then lengthen it once again and clearly flexion and abduction would significantly 

lengthen the muscle. Illustrated in Table 3.6 are the muscle parameters modified in this work. 

Examples of the modifications which prevent violations in muscle function are illustrated in 

Figures 3.18 and 3.19, the adjusted length to a physiological range for those muscle still 

operating outside the expected physiological range. Note the non-physiological length 

predictions from the TLEM data set and the initial and secondary attempts to address these 

issues. Increments no smaller than 1 cm were used to adjust the optimal length within the ideal 

operational zone. This has rendered new “estimated optimal rest length” measures which are 

used in this model and reported in Table 3.6. 

3.2.2.2.2 Iliacus  

Setting muscle length to anatomical length provided little to no passive resistance 

contribution from iliacus. This is most improbable and therefore muscle rest lengths for this 

muscle were re-estimated based on the muscle length at 30 degrees of flexion, or the edge 

barrier of the neutral zone. Except for iliacus medial sections 2 and 3 which were better 

represented at rest lengths calculated with the hip in 15 degrees of hip flexion and anatomical 

position, respectively. This provided muscle lengths which contributed to passive resistance in 
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hip extension with more appropriate physiological behaviour (see Figure 3.20).  The assumption 

here is that these muscles contribute to passive resistance during hip extension. Like adductor 

magnus the goal of these physiological estimates was to improve the physiological 

representation of the muscle function. This analysis was done in conjunction with the next 

chapter – inherently justifying the assumptions used here with experimental data.  

Table 3.6: Modified muscle parameters from the TLEM data set based on 

physiological muscle length operating range over a physiological range of 

motion.  

Muscle 

TLEM 

OptLen 

TLEM 

TenLen 

Anatomical 

Length 

Flex/Ext 

Range 

Ab/Ad 

Range 

Estimated 

Optimal 

Rest 

Length 

Ad_Mag_Dist_1 10.8 4.2 24.8 28.8 26.8 28.8 

Ad_Mag_Dist_2 10.8 4.2 25.2 29.2 - 25.2 

Ad_Mag_Dist_3 10.8 4.2 26.3 28.3 - 26.3 

Ad_Mag_Mid_1 10.4 0 14.4 19.4 - 19.4 

Ad_Mag_Mid_2 10.4 0 14.4 19.4 - 19.4 

Ad_Mag_Mid_3 10.4 0 17.5 21.5 18.5 21.5 

Ad_Mag_Mid_4 10.4 0 13.3 20.3 19.3 19.8 

Ad_Mag_Mid_5 10.4 0 20.9 23.9 21.9 22.9 

Ad_Mag_Mid_6 10.4 0 21.0 24.0 21 23.0 

Ad_Mag_Prox_1 10.7 0 11.1 - - 11.1 

Ad_Mag_Prox_2 10.7 0 10.8 - - 10.8 

Ad_Mag_Prox_3 10.7 0 12.8 - - 12.8 

Ad_Mag_Prox_4 10.7 0 15.0 - - 15.0 

Note: (1) A nil finding (-) reflects that the anatomical length was sufficiently represented 

within the operating range of the muscle over that particular plane of motion.  

           (2) Given that the flexion/extension plane of motion was most dominate for the 

adductor magus the rest lengths were selected based on this dominate range of motion 

with the exception of Adductor Magnus Middle section 5 which was deemed to became 

too short in the adduction range plane when using the flexion/extension value of 23.9 

cm thus 22.9 was selected as a compromise between the adduction/abduction value at 

21.9. A similar compromise was achieved for Adductor Magnus Middle section 6. See 

Figures XX and xx for details.   

 



 

 

84 

 

 

Figure 3.18: Adjusted physiological optimal muscle length to achieve more appropriate 

operating ranges for the force-length and PEC equations for Adductor Magnus 

Middle section 5. Here a compromise is struck between the flexion/extension plane 

and the abduction/adduction plane, selecting 22.9 cm as the optimal rest length.  

 

 

Figure 3.19: Adjusted physiological optimal muscle length to achieve more appropriate 

operating ranges for the force-length and PEC equations for Adductor Magnus 

Middle section 6. Here a compromise is struck between the flexion/extension plane 

and the abduction/adduction plane, selecting 23 cm as the optimal rest length.  
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Figure 3.20: Passive resistive moment created by sections iliacus. (Extension is negative – flexion 

is positive, moments are calculated in flexion-extension plane.) 

 

 

3.2.3 Ligament Parameters  

Ligament attachments sites based on the HSM meshed coordinate system are shown in 

Table 3.5. The ligaments of the hip were modified with respect to their slack length (or rest 

length). Based on the experimental data as well as the TLEM data (i.e. the fixation position of 

the cadaveric specimen) the rest length, which was initially arbitrarily set to anatomical position 

was adjust to 30 degrees of flexion. This essentially shorten the rest lengths of ligaments and 

allowed them to contribute to passive joint resistance in a more meaningful way that matched 

the end-range motion of the joint.  
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Table 3.7: HSM ligament attachments  

Ligament  
#/ 

SEG 

Origin (cm) Insertion (cm)  

X Y Z Seg. X Y Z Seg. 

ALL 1 12 19.2 0 L5 12.4 22.2 0 L4 

PLL 1 8.6 20.2 0 L5 8.7 22.3 0 L4 

LIG. FLAVUM  1 7.9 20.9 0 L5 8 22.6 0 L4 

INTERTRANSVERSE  1 7.6 20.4 3.6 L5 7.4 23.4 3.6 L4 

LAT FACET CAP 1 8 21.4 2 L5 7.2 22.1 2 L4 

MED FACET CAP 1 7.2 22 2.4 L5 7.2 22 1.6 L4 

INTERSPINUS  1 4.6 20.8 0 L5 3.6 22 0 L4 

 2 6 21 0 L5 4.7 21.8 0 L4 

 3 6.6 21.2 0 L5 4.7 21.8 0 L4 

SUPRASPINUS  1 3.6 20.4 0 L5 3.6 22.3 0 L4 

LUMBODORSAL  1 5.4 21 6.2 Pelvis 0.2 34 1.5 RC 

ILIOFEMORAL (ANT) 1 12.40 9.90 10.30 Pelvis 9.19 3.37 11.10 Femur 

ILIOFEMORAL (LAT) 1 11.60 10.10 11.20 Pelvis 9.19 3.37 11.10 Femur 

PUBOFEMORAL 1 13.10 6.20 5.60 Pelvis 9.25 5.68 14.50 Femur 

ISHIOFEMORAL 1 7.50 5.50 9.20 Pelvis 7.90 7.02 11.69 Femur 

*Ligaments with a Z = 0 value do not have a right and left ligament.  

 

3.2.3 Kinematics   

The joint kinematics drive the positional changes in skeletal geometry and attachment points. 

The spine model will be discussed first, followed by the addition of the hip, ultimately forming 

the HSM. The spine model geometry is referenced from the midpoint between the hip joint 

centers (symmetry is assumed) which serves as the local origin. In this case the pelvis is 

considered to be fixed and the spine angles are calculated from this immovable base. Each spinal 

segment is then rotated based on a percent contribution of the total rotation of the lumbar spine 

measured from T12-L1 to the sacrum (eq. 3.1). The contribution of rotation by each segment was 

described by McGill (1986) as linear synchrony, since it was found to be equally acceptable  as 

cubic and quadratic functions to describe the segmental spine movement. Rotations from 

kinematic inputs drive the rotation of clouds of data points, associated with anatomical 

structures and landmarks, in 3D around joint centers. The result is time series data of anatomical 
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points which can then to calculate muscle lengths and velocities, as well as changes in ligament 

length.  

The hip model maintains the same origin and premise as the spine for rotational displacement 

– the pelvis is fixed, and the femur moves about the hip joint center. Clouds of points represent 

muscle and ligament attachment sites as well as via points, and these will be rotated as predicted 

from the experimental kinematic data. A very simple knee hinge joint will also be used to allow 

for tracking the lower limb bi-articular muscles such as the hamstring group and rectus femoris.  

 

Equation 3.1: Vertebral Rotation  

���� =  ���� ∗  �	 

  R�i� : Rotation of the ith vertebra (rad) 

  i : the lumbar segmental level (L1, L2, L3, L4, L5) 

  a�i� : % of total rotation assigned to the respective ith segmental level 

  Rt : total orthopedic rotation of the lumbar spine  
 

 3.2.4 Muscle Activation  

 Muscle activation is used to drive the Hill-Type EMG model, and this provides the foundation 

for the EMG to force relationship. The critical issue here is to ensure the neurological control 

pattern is adequately captured with the activation profiles from the EMG signals. This requires 

the appropriate electrode location and a sufficient number of channels to fully represent the to 

control strategies. Then the electromyographic signals are filtered, FWR, and linear enveloped 

prior to being entering in the model.  
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 3.2.5 Calculation of Muscle and Ligament Lengths and Velocities  

 Vertebral rotation is captured and recorded as described above throughout the 

movement trial. The distances between the muscle and ligament attachment sites in the 

absolute-inertial reference frames represent the muscle and ligament lengths. Central difference 

finite differentiation is used for the muscles and ligament length calculations when the muscle 

and ligaments are in a straight line. When an arc is a more appropriate representation of the 

muscle path, Equation 3.2 is used to calculate the length of the muscle. (Note: Appendix E 

demonstrates the congruency between the McGill model previously written in Visual Basic and 

the current HSM model recoded and updated in MATLAB.)  

 

Equation 3.2: Lengths of muscle which follow an arced path  

� =  [� � ∗  ������ �  �� � ∗  � � �  ∗  � �  −  � 	 

  � : Real muscle length �m� � : Coefficient based on muscle being a simple arc or 'S' shaped  � : Linear distance between origin and insertion �m�   � : Radius of curvature of arc to represent muscle line �m� �	 : Tendon Length   
 3.2.6 Calculation of Muscle Force 

The Hill-type model is used to calculate muscle force (eq. 3.3). Normalized EMG corrected by 

length (eq. 3.5) and velocity (eq. 3.4) parameters and passive tissue contributions provides 

muscle force data. Similarly, ligament force is calculated from force-displacement curves (Figure 

3.21). The main obstacle for this modelling approach is a clearly defined rest length for both 
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muscles and ligaments. Several approaches in the literature including that by Horsman (Horsman 

et al. 2007) to define whole muscle rest length based on the scaling factors of a muscle sarcomere 

do not seem to provide reasonable estimates. This is the major limitation to this model. However, 

a pragmatic approach has been used here to circumvent this issue by setting the hip muscles and 

ligaments to their rest length in the anatomical position though some of these had to be refined 

and adjusted. The anatomical position is not necessarily the functional rest length of a muscle. 

Refinement of some rest lengths have been made here and will continue to evolve in the future 

with more data to enhance the biofidelity. The approach to set rest length at anatomical position 

was initially used in the spine model, and later refined through experimentation (McGill, 2016; 

Personal Communication, Unpublished Data) this same evolution and enhancement will be 

applied to the hip as the model continues to be refined and used address different research 

questions.  

 

Equation 3.3-1: Muscle Force 

1�234� = 5 ∗  [ 6 785785 29:;
<<.>  ∗  ?@ ∗  A ∗  B +  1�DE ] 

  1�234� : Muscle Force �N� 5 : gain or error term 785 : EMG amplitude �arbitrary units�  78529: : MVC EMG amplitude �arbitrary units� ?@ : Maximum isometric force �N� A : Coefficient for velocity modulation �unitless� B : Coefficient for length modulation �unitless�  1�DE : Force due to passive elasticity �N� 
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Equation 3.3-2: Passive muscle force-velocity parameter 

A =  � ?@ ∗  O −  P ∗ 9��P +  O�   

Concentric Contractions   A : Coefficient for velocity modulation ?@ : Maximum isometric force �N� 9 , O : Coefficients  P : muscle velocity in rest lengths per second   9?@  =  OP 29: 
 P 29: : Maximum velocity at which force can be produced    A =  1 −  1.6P  eccentric contractions �0 to -0.125 Lo/s�   A =  1.2  eccentric contractions �< -0.125 Lo/s� 

 

 

Equation 3.3-3: Active length modulation coefficient 

B =  ��� � Z ∗  �� ��@�  −  0.5� 

  B : Coefficient for length modulation �/�@ : Muscle length normalized to rest length  
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Equation 3.3-4: Passive muscle force-length parameter (Passive Elastic Component - PEC)  

1�DE =  :4DE ∗ \ ��@] ∗ ^ ∗ �
1 − �\ ��@] − 1�0.7

 

  1�DE : Force due to passive elasticity :4DE : cross sectional area �/�@ : Muscle length normalized to rest length ^ 9`a �: coefficients    

 

Figure 3.21: Active (Blue) and passive (orange) muscle force-length modulation. Active dynamics 

are a piece wise equation and PEC operates above rest lengths of 1. 

 

 

Equation 3.3-5: Determination of the moment, disc compression and shear from a muscle 

force: 

82 =  � �� 1b �c� d �  −  � �b 1� ��� d �  
  82 : muscle moment about L4/L5 �Nm� �� : horizontal component moment arm �m� 
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�b : vertical component moment arm �m�  1� : horizontal component force vector �N� 1b : vertical component force vector �N�   8E =  12 �c� ���2 +  d�  −  �a� 

84 =  12 ��� ���2 +  d�  −  �a� 

8E : disc compression due to muscle force �N� Ms : disc shear due to muscle force �N� �2 : absolute angle of muscle �rad� �a : absolute angle of disc �rad�  
  

3.2.7 Calculation of Ligament Force 

Ligaments are visco-elastic structures which function to restrict and guide joint motion 

(Solomonow 2004). However,  they have been modelled as linear non-visco-elastic elements 

(Yettram & Jackman 1982; Schultz et al. 1973). Two separate methods have been employed to 

evaluate ligament force in this model. The spine used its current approach from the original 

model and the hip took on a new approach mainly due to the availability of data. Both 

approaches are described below in detail.  

 3.2.7.1 Spine Ligaments  

Anderson (Andersson 1983) developed an equations for ligament behaviour  for ligamentum 

flavum, based on the work of Nachemson and Morris in 1954; interspinous and supraspinous 

ligaments, using data from Walters & Moris in 1963; and the lumbodorsal fascia based on 

Bazergui and colleges (1978) data. In this model, Andersson's basic equation for ligament force 

was enhanced to account for cross sectional area (CSA) as shown in Equation 3.5-5 with the phi 

term as a correction factor. As mentioned above the spinal ligaments were assumed to have 
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similar properties to those of supraspinous and interspinous ligaments, and the coefficients for 

the spinal ligaments are shown in Table 3.8. In addition, the angle at which the ligament engages 

in force production during forward flexion of the L4-L5 segment is shown in Table 3.9. Once the 

force is calculated the line of pull vector is computed and the passive moment is estimated based 

on the perpendicular from the rotating joint center.  

 

Equation 3.8: Ligament Force (spine) 

1�f�g� = h9 ∗  i ∗ � D:�jk�l +  ? 

  1�f�g� : Ligament Force �N� 9 , j : coefficients i : correction for cross-section �0.006 * area mm2� k : Percent strain ? : ligament pre-tension �N�     
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Table 3.8: Input parameters for ligament force calculations  

LigamentLigamentLigamentLigament    alphaalphaalphaalpha    betabetabetabeta    PPPP    phiphiphiphi    
Supra/Interspin. 2.3296* 0.27215 0.0 1.0 Ligament Flav. 1.1994* 0.06420 1.5 1.0 LDF 0.5381* 0.17843 / 1.0 PLL 2.3269 0.27215 0.0 0.177 ALL 2.3269 0.27215 0.0 0.1 Intertransverse 2.3269 0.27215 0.0 0.006 Articular 2.3269 0.27215 0.0 0.174 Supraspinatous 2.3269 0.27215 0.0 0.18 Interspinatous 2.3269 0.27215 0.0 0.78 * from Andersson 1983 **Table recreated from McGill Thesis 1986 

 
 

 

Table 3.9: Point of application (degree of flexion) when ligaments start to strain 

Ligament  CSA �mm2� Degree of flexion where strain occurs Lig. Flav. 130 0 LDF / 14 PLL 30 14 ALL 17 / Intertranseverse 1 14 Articular 29 14 Supraspinatous 30 14 Interspinatous 130 14   **Table recreated from McGill Thesis 1986 
 

 3.2.7.2 Hip Ligaments  

Ligament anatomical coordinates (Table 3.7) were available form the TLEM (Horsman et 

al. 2007) and the parameters of the of the ligaments  were adopted from previous research 

(Hewitt et al. 2002). This data provided the basis of using a previously described method (shown 

in eq. 3.9) to evaluate ligament force (Barrett & Callaghan 2018). Incorporating the knowledge 
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form these three sources allowed this hip joint model to be the first to include ligament modeling 

into the joint load model (Figure 3.22).  

 

 
Figure 3.22: Hip ligaments and capsule.  

 

Equation 3.9: Ligament Force (hip) 

1hk�	�l = uv
√2Z exp x− hy + k�	�lz

2vz { + uhy + k�	�l2 |erf }y + k�	�
√2v ~ + 1� 

 

 

Where,  �h����l = Ligament Force (N) at a given length (k�	�) k�	� = length change  u, v, y = coefficients  
 

 

And,  

erf�:� = 2
√Z � D���a	�

�  
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� = error term from matlab 

 := length change  

 

 

 

Below are paired Figures (Figures 3.23-3.25, inferior iliofemoral; Figures 3.23, 3.26-3.27, superior 

iliofemoral; Figures 3.28-3.30 ishiofemoral) which were used to extract the raw data from the ligament 

parameters in the Hewitt and colleagues (2002) work and using the Barrett and Callaghan (2018) 

equation to inform the model parameters in this work. Contact with the Hewitt and colleagues failed to 

provide the original data set and the best that could be provided was original data from the Tables in the 

original paper. The approach taken here was to recreate 2 or 3 critical inflection points so that the curve 

could be recreated with the Barrett and Callaghan (2018) equation. 

  

Figure 3.23: Anatomical illustration of the iliofemoral ligament. 
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Figure 3.24: Experimental data from Hewitt 2002. Orange lines indicate key target points in the 

curve to identify the inferior iliofemoral ligament characteristics.  

 

 

 

 

 

Figure 3.25: Model estimated force-displacement curve for inferior iliofemoral ligament. 

Coefficients in the Barrett equations are as follows: K=55, s=1.5 and m=-3.3. 
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Figure 3.26: Experimental data from Hewitt 2002. Orange lines indicate key target points in the 

curve to identify the superior iliofemoral ligament characteristics.   

 

 

 

 

Figure 3.27: Model estimated force-displacement curve for superior iliofemoral ligament. 

Coefficients in the Barrett equations are as follows: K=41, s=0.8 and m=-2.05. 
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Figure 3.28: Anatomical illustration of the ishiofemoral ligament.  

 

 

 

 

Figure 3.29:  Experimental data from Hewitt 2002. Orange lines indicate key target points in the 

curve to identify the ishiofemoral ligament characteristics.   
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Figure 3.30: Model estimated force-displacement curve for ischiofemoral ligament. Coefficients 

in the Barrett equations are as follows: K=8, s=1.5 and m=-2.0. 

 

The pubofemoral ligament. The pubofemoral ligament is absent from a stress-strain/force-

displacement in the literature. Here it has been assumed to have similar behaviour to the 

iliofemoral ligament. This is based on the evidence of Hidaka et al. (2014) who observed the strain 

(%) for iliofemoral and pubofemoral were similar 3.48% and 3.28%, respectively at their maximal 

physiological strain. In contrast, the maximal strain for ischofemoral ligament was 7.83%. This is 

perhaps a good indication of why the force-displacement behaviour of ischiofemoral ligament is 

so different in comparison to superior and inferior iliofemoral ligaments.  
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Figure 3.31: Anatomical illustration of the pubofemoral ligament.  

 

3.3 Model Tuning – EMG driven model and Inverse Dynamics  

Tuning the EMG driven model via the use of a gain factor is a critical step to provide for the 

accurate interpretation of the model results. This is a scaling factor that accommodates individual 

variabilities in traits such as muscle stress, size, etc., but it allows the model to converge on an 

estimated moment that equals the inverse dynamics estimation. This final step in the analysis of 

the model calculations will account for missing details, unknown entities and biological variances 

not accounted for in the HSM. When estimating muscle force from Eq.3-3.1 a gain factor is 

required since this is not a direct measure of muscle force. In this way the model can be corrected 

for individual variances and experimental assumptions (including electrode placement, as an 

example). A reference voluntary contraction (RVC) is used when a relatively large moment is 

created so that the initially predicted EMG driven moment can be “tuned” to the inverse 

dynamics predicted moment (Figure 3.30). A Least Squares Difference (LSD) (Eq. 3.10) is used to 

generate this value about the flexion/extension orthopedic joint axes in the current studies but 

could be tuned to any of the axes or even a resultant moment of all three summed axes. This gain 
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factor is then applied to all trials in order to tune the muscle force predictions of the EMG driven 

model. Two reference postures were examined in this thesis. A standing posture traditionally 

used to determine the gain for the lumbar spine, and a semi-squat posture for the hip estimates 

were used to calculate the gain for the hip and spine independently – the trail with the most 

congruency between model estimates was used to calculate the gain. Acceptable  gain factors 

used here were consistent with laboratory standards when using the spine model which are 

between 0.5 and 1.5 (these cut-off values are based on long standing laboratory standards).  

 

 

Figure 3.32: Reference voluntary contraction (RVC) positions for evaluating and tuning the 

model. Position one (left) standing erect with the weight held in front and position 2 

(right) standing in a semi-squat position.  
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Equation 3.10: Least Squares Difference for calculating a gain factor.  

5 = ∑�8��� ∗ 8����∑�8��� ∗ 8���� 

where,  

G = gain applied to the EMG model  

MLSM = Moment from Linked Segment Model  

MEMG = Moment from EMG driven Model  

 

 

 

 3.4 Results   

The model showed very good congruency with the ID data during the RVC trials for most 

subjects. Examples of model congruency between the HSM and ID during the reference trials are 

shown in Figures 3.33-3.35. These Figures show the raw calculations used to calculate the HSM 

gain (additional examples of HSM performance are shown in Appendix E and G). In Figure 3.33 

the first posture in Figure 3.32 was used since it yielded the best match. In contrast, Figures 3.34 

and 3.35 the subject moves in and out of posture 2, the semi squat position, and there is an 

appreciation of the model performance and sensitivity to the changing position and load as the 

participant moves into and out of the testing position. Tables 3.10 and 3.11 provide the summary 

data from each subject’s gain calculation for females and males, respectively. Acceptable gains 

range between 0.5 and 1.5 based on pervious experience with the spine model. Gains outside 

the range were omitted and subject’s joint loads were not used in the group analysis.  
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Figure 3.33: Right hip moment data comparing the HSM and ID (subject 13 in the ACL study, 

right hip gain of 1.12). This data is used in the model to calculate the tuning factor by 

which the HSM is adjusted to the ID prediction during the RVC trial. In this trial the 

data collection captured the posture demonstrated in position 1 in Figure 3.32.  

 

 
Figure 3.34: Left hip moment data comparing the HSM and ID (subject 13 from the ACL study, 

left hip gain of 0.94). This data is used in the model to calculate the tuning factor by 

which the HSM is adjusted to the ID prediction during the RVC trial. In this RVC trial 

the participant moves into and out of the posture in position 2 in Figure 3.32. 
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Figure 3.35: Lumbar spine moment data comparing the HSM and ID (subject 13 of the ACL study 

with a lumbar spine gain of 0.72). This data is used in the model to calculate the 

tuning factor by which the HSM is adjusted to the ID prediction during the RVC trial. 

In this RVC trial the participant moves into and out of the posture in position 2 in 

Figure 3.32. 

 

Table 3.10: Muscle gains for study 3: ACL injury risk. 

Subject ID Right Hip Left Hip Spine 

S01 0.71 0.53 0.83 

S02 0.97 1.00 0.94 

S03 1.01 1.01 0.68 

S04 0.99 1.31 0.58 

S05 1.17 1.35 1.26 

S06 0.62 0.75 1.02 

S07 1.06 0.95 0.55 

S08 0.61 0.63 0.71 

S09 1.19 1.32 0.70 

S10 0.51 0.79 0.77 

S11 0.69 0.69 0.50 

S12 0.79 0.58 1.35 

S13 1.12 0.94 0.72 

S14 1.29 0.99 0.62 

S15 1.20 1.12 0.91 

S16 0.52 0.72 0.99 

S17 0.85 0.80 0.82 

S18 0.82 0.79 0.84 
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Table 3.11: Muscle gains for study 4: HRA. 

Subject ID Right Hip Left Hip Spine 

S01 0.55 0.88 1.05 

S02 --- --- --- 

S03 --- --- --- 

S04 --- --- --- 

S05 1.04 0.80 1.26 

S06 0.85 1.19 1.34 

S07 1.50 0.94 1.07 

S08 1.43 1.09 1.04 

S09 1.22 0.99 --- 

S10 0.92 --- 1.40 

S11 0.62 0.79 0.54 

S12 0.93 0.83 0.85 

S13 0.77 0.80 1.37 

S14 0.99 1.38 1.09 

S15 0.87 1.62 1.36 

S16 1.05 0.88 1.17 

S17 0.63 0.94 0.97 

S19 0.97 1.33 1.42 

 

 

 3.5 The Integrated Hip-Spine Model Validation  

There are many different ways to validate a biological model. This model, through its, 

respective parts, has achieved various stages of verification and validation along its development. 

The existing spine model has been assessed with various tests of validity as much as such a 

complicated approach can be. As has the data set for the lower limb anatomical parameters with 

its previous uses in biomechanical modelling. Validation in parts, suggests that the combination 

of two valid components ought to approach a valid model. Now, with the combination of both 

the spine and lower limb models this is the overarching approach to validation. Moreover, this 

current model has several updates as describe in section 3.2 and its various sub-sections to 



 

 

107 

 

enhance the model’s capabilities. With these improvements in mind the model is iteratively 

validated as part of its implementation process. Consider the model overview in Figure 3.1 the 

HSM is gained, or tested against, the inverse dynamics model. In doing this the model is ‘tested’ 

for each subject to ensure a reasonable load estimation in the calibration task (RVC trial). In this 

way the gain factor is an indication of model performance. As an extension of this logic the HSM  

can be tested or evaluated relative to its predictions with ID. The mean (SD) gains in for the 

females were 0.89 (0.25), 0.90 (0.25), and 0.82 (0.23) for the right hip, left hip and spine, 

respectively; and for the males 0.96 (0.27), 1.03 (0.26) and 1.14 (0.25), respectively. Further 

validation testing such a model sensitivity as well as performance with respect to additional 

moments (lateral bend and twist in the spine and abduction/adduction and medial and lateral 

rotation at the hip) will enhance the models’ abilities and validation in future experiments under 

an expanding repertoire of measurable tasks. For now, this is a trade-off, the model will continue 

to be refined but in its current form it’s more than sufficient to address specific research 

questions as those posed in the following chapters. The complex model will show what elements 

are critical, and which should deserve more clarification, together with those that have less 

influence on the results and can be ignored.  

3.6 Discussion    

The Hip-Spine Model is a unique and novel investigative instrument for analysis of complex 

biomechanical interactions between the hip and spine. There are some risks to combining two 

anatomical data sets, however there is more to gain. Scaling is one of the major considerations 

when combining two data sets. First, the spine model data set has been developed and improved 

upon with respect to its anatomical detail for 37 years as described above in detail. Regarding 
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the hip model, the proposed data set has been adopted by many models including the London 

Lower Limb Model which was a published validation of the data set (Modenese et al. 2011b). The 

wide use and adoption of the Horsman et al. (2007) data set by open access modeling platforms 

provides a tremendous amount of credibility for its choice as the hip model data inputs. The 

benefits of combining these data appear to outweigh the potential negatives. First, human 

cadaver specimens ought to be used sparingly and only when necessary. In addition, the 

availability of a young and healthy cadaver, such as the one used by Horsman, are rare. Second, 

each of these data sets have been gathered and refined with extremely sophisticated data 

acquisition instruments, not readily available at the University. Last, and most importantly, these 

model inputs have been tested and proven to be of utility in the scientific community. They were 

gathered with sophisticated technology and instrumentation and proven to be robust through 

several studies and applications of each respective model. As such, rather than simply 

reproducing others work, the next logical step is to build upon what is known and create new 

knowledge.  With that said, several enhancements and improvements have been incorporated 

into the HSM that improve upon both pre-existing data sets as a direct result of combining these 

two pre-existing data sets. For example, the psoas muscle now undergoes length changes and 

anatomical positioning that was not possible with the spine model alone. In the same way the 

TLEM now has a psoas muscle that responds to spine posture and muscle length changes. 

Likewise, the TLEM now has more accurate muscle parameters with wrapping and length 

estimation improvements more closely matching the anatomical function of psoas, iliacus, as well 

as the gluteal and hamstring muscle groups. 
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Further refinements and improvements make this model unique in comparison to others and 

enhancing the contribution of the model development section of this thesis. For example, in the 

hip, there were occasions which required wrapping spheres to ensure the anatomical and 

functional relationships were maintained as the model was pushed to its full range of motion. 

These spheres augmented the length of the muscle parts and these improvements resulted in 

longer muscle paths which were incorporated into the model calculations of muscle force. The 

wrapping spheres did not affect muscle force directly since the force vector was considered at 

the most proximal muscle segment applying force to the rigid segment (i.e. the bone). In this way 

the wrapping spheres only influenced muscle force indirectly through altering muscle length, 

though they have a profound effect on joint load as they are highly influential to moment arm 

length and therefore joint moment.  By testing passive ROM profiles and taking this model to 

higher demands then previously tested offered the opportunity for serendipitous discovery of 

the model limitations and anatomical assumptions which is another major contribution of this 

thesis.  

One major limitation of the HSM is the lack of available data to build a unique female model. 

The majority of anatomical data is on males and therefore the biological models build with this 

data are focused on males. While addressing this gap in the literature is beyond the scope of this 

thesis the intension to address this in the future will add to the scientific community in a 

meaningful way. This will in the current stages remain a future ambition of model development. 

Future examination of the model will investigate EMG-assisted optimization approaches and 

compare them to the currently proposed method. There is some uncertainty of the best 
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approach for establishing the criterion measure for adjusting the muscle gain. Three options 

exist, including satisfying the hip or spine moment and then setting the gain, or some 

combination of a weighted hip and spine gain. These approaches will be considered and 

examined in the further development and testing of the model as the model is subjected to more 

subjects and tests in more situations.  

This ambitious model development has the advantage of facilitating sensitivity analysis of the 

many subcomponents together with providing insight into how hips influence spine mechanics 

and vice-versa. But the trade-off lies in the number of assumptions that must be made. Only 

future analysis will reveal these trade-offs. The development of this model in its current state, 

including overcoming deficits in the pervious datasets (TLEM), is a significant achievement and 

more insights into hip and spine function as well as the interaction between these joints will be 

enhanced by this undertaking. Furthermore, at the very least we now have a vehicle to take us 

along this journey to probe, provoke and investigate the relationship between the hips and spine.  
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4.0 Study 2: Passive Moment-Angle Curves and Joint Rotational 

Stiffness of the Hip in the sagittal and frontal planes: 

Implications for modelling and model evaluation, sex 

comparisons, and injury mechanisms.  

4.1 Introduction 

Biomechanical investigation of the hip often considers modelling approaches to estimate 

tissue loading due to the practical limitations in obtaining these measures in vivo. The passive 

tissue contribution to joint loading is often neglected in lower limb models under the assumption 

that the passive tissue contribution to total joint load is negligible. This assumption is mainly 

driven by the predominance of gait related lower limb modelling applications. In a broader range 

of human movement, which involves large amplitude ranges of motion (ROM), bolstering the 

analysis of passive tissue properties is needed to capture end-range stiffness. This knowledge will 

enhance the biofidelity of passive tissue properties in modelling approaches.  

Establishing changes in muscle lengths over the hip range of joint motion, as an example, is 

an important parameter in the EMG-to-force estimation. Hence, there is a potential to enhance 

the understanding and the confidence in model predictions of the passive and active force 

estimates with the improved accuracy of optimal muscle length estimations. In addition, to the 

potential contribution to modelling, examining passive tissue characteristics in the hip is a worthy 

endeavour in its own right and can be further enhanced with comparisons between the sexes in 

vivo.  This information may then lead to improvements in the estimation of load distribution and 
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may provide insights into normal mechanics and injury mechanisms through a range of human 

movement.  

Examining regional interdependency in joint mechanics has lead to new discoveries and 

deeper understanding of injury mechanism. Movement requires careful control of the available 

degrees of freedom at each joint with joint sitffness but complexity increases when the joints 

along the linkage increase. For example, stiffness in the foot is associated with a higher arch 

height (Williams et al. 2004), which in turn has been linked to the subgrouping of lower limb 

injuries among runners (Williams et al. 2001). There are also examples of this at the hip. Both 

patellofemoral pain (Roach et al. 2014) and patients experiencing back pain (Roach et al. 2015) 

have been reported to have decreased hip ROM on average. Moreover, postoperative success 

after hip replacement surgery was highly dependent on the restoration of hip mobility (Davis et 

al. 2007). On the other hand, compromise in the ability to control hip mobility also leads to other 

injuries like those observed at the knee, such as, ACL injuries (Hewett et al. 2005) and 

patellofemoral syndrome (Powers 2003). It appears that the synergies between joints in the 

kinetic and kinematic chains rely on an optimum of mobility and stability to achieve skilled 

movement within the margin of safety afforded by the joint and tissue capacities. Further 

understanding will be obtained with understanding of the passive contribution to joint rotational 

stiffness (JRS) at the hip.  

Few studies have examined passive hip moments in vivo (Vrahas et al. 1990; Yoon & 

Mansour 1982), even fewer have examined more than simply sagittal plane motion, and fewer 

still have compared males and females. Early work in this area neglected to measure the end 
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range of motion. Yoon & Mansour (1982) tested hip ROM until the passive resistance of the hip 

overcame passive resistance in the inactivated spine creating spine motion. This limited their 

analysis to ~12° of extension and ~55° of flexion at the hip. However, understanding how hip 

mechanics are linked with regional mechanisms such as how back pain might be provoked by hip 

endrange mechanics will be critical.  

The global objectives of this study were to investigate passive joint loading. A rubric referred 

to as a ‘passive ROM profile’ was utilised to describe the passive hip joint characteristics and 

facilitate comparisons between groups. A schematic representation of a moment-angle curve 

illustrates the outcomes variables of interest, which make up the ‘passive ROM profile’ and serve 

to guide the investigation (i.e., peak moment, peak angle, neutral zone barrier, neutral zone 

width; see Figure 4.1). The specific objectives of this study were the following: (1) Describe the 

hip moment-angle curves in the sagittal and frontal planes as well as passive hip joint rotational 

stiffness (JRS). (2) Compare male and female passive ROM profiles. (3) Evaluate the model 

performance estimating moment-angle curves for the average male. A series of research 

questions follows from these objectives:  

1. Do the passive moment-angle curves appropriately reflect passive tissue behaviour?  

2. Do differences exist between male and female passive ROM profiles? 

3. Does the Hip-Spine Model (HSM) sufficiently predict the total passive hip moment? 
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Figure 4.1: Schematic diagram of the passive ROM profile characteristics on a generic extension-

flexion moment-angle curve. (A) Peak Moment; (B) Peak Angle; (C) Neutral Zone 

Barrier (NZB) ; (D) Neutral Zone Width (NZW). Note: Not included on the curve is the 

exponential curve fit M=aebϴ . 

 

Theses questions probe the mechanical properties of the passive tissues. Each of these research 

questions leads to a series of hypotheses which are listed below: 

1. An exponentially fitted curve will predict the passive ROM for each plane of motion 

and direction for both males and females.     

2. The passive ROM profile will differ for males and females. 

a. Males will have a larger peak moment in all planes of motion and direction.  
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b. Females will have a larger angle at peak moment in all planes of motion and 

direction.   

c. Females will have a larger angle at the NZB.  

d. Therefore, females will also have a wider NZW.  

*Note: Some research questions are not amenable to a tesTable statistic, their analysis will 

rely on descriptives of behaviour to assess differences and similarities.  

4.2 Methods  

Participants partook in a series of passive resistance trials in the sagittal and frontal plane 

while recording three-dimensional (3D) body segment kinematics and force measures were taken 

while monitoring muscle activity.  Moment arm measures were also taken for each direction of 

motion from the point of force application (leg strap) to the greater trochanter (GT).  

 4.2.1 Participants 

Fifteen healthy young females (20.6 (1.2) years of age with an average height of 166.7 

(5.7) cm, and average weight of 65.0 (10.8) kg) and 17 healthy young males (20.9 (2.0) years of 

age with an average height of 177.9 (6.8) cm, and average weight of 79.3 (9.8) kg) participated in 

this study. Participants were given a verbal and written explanation of the experimental 

procedures and set-up prior to providing written informed consent approved by the University 

of Research Ethics (ORE) Board. Participants were absent of low back and lower limb pain and 

injury and had no history of trauma or damage to the soft tissues nor surgery in any of these 

areas. By chance, all participants were right leg dominate when asked, “which leg would you used 

to kick a soccer ball.”  
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4.2.2 Data Collection Procedures & Equipment  

Participants were first prepared for electrode placement by shaving, abrading the skin with 

Nuprep® and cleaning with a 50/50 ethanol/water solution. The electrodes were placed 

bilaterally over the muscle bellies of Adductor Longus (AL), Biceps Femoris (BF), Gluteus Medius 

(GMed), Tensor Fascia Latae (TFL) and Rectus Femoris (RF). A bipolar electrode configuration was 

achieved using Ag-AgCl (Meditrace 130 Ag/AgCL electrodes, Covidien, MA, USA) self-adhesive 

electordes. EMG was collected using 32 channels which were differentially amplified (CMRR of 

115dß at 60Hz; input impedance: 10MΩ; Model AMT-8, Bortec Biomedical, Calgary, Canada) and 

then passed through an A/D converter sampled at 2160 Hz (16 bit, 64 channels with an input 

impedance of 1 MΩ and a common sampling rate) and collected on a Vicon Antec® Intel® Core™ 

2 Duo PC using Vicon Nexus 1.8.5 software. EMG was required to ensure passive stiffness was 

recorded without the influence of muscle activation.  

Next, maximal voluntary contractions (MVCs) were performed for physiologic 

normalization of each muscle (or muscle group for GMed and TFL) with the experimenter 

providing external resistance to a coached maximal exertion. Once the MVCs were completed 

the participants were prepared for motion capture using 10 mm diameter reflective markers and 

marker-clusters. The Nexus software was also used to collect kinematic data from the reflective 

markers, sampled at 60 Hz from eight optoelectronic cameras. The data was then saved and 

stored for processing and analysis. First, Visual 3D was used to calculate joint angles and then in 

MATLAB (version R2015a) using custom-written programs for EMG analysis and post-processing 

calculations and analysis. A general layout of the experimental data collection set-up is illustrated 

in Figure 4.2.  
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Figure 4.2: Experimental set-up, (A) Kinematic clusters, (B) Suspension Straps in-line with 

adjusTable connectors and suspension ropes, (C) Pelvic restraint(s). 

 

A schematic of the hip stiffness apperauts is shown in Figures 4.3 and 4.4 for the sagittal and 

frontal planes of motion, respectively. Two suspension ropes were hung from the ceiling, at the 

top end, and each was attached to a separate sling harness, at the bottom end. The slings 

supported the weight of the thigh and shank, independently. The height of the ceiling attachment 

to the participant leg was approximately 270-280 cm. The floor jig was covered in foam, and had 

two pelvic braces with a strap connecting them, to secure the torso and pelvis during testing. 

When mesuring the frontal plane motion the floor jig was equiped with a removable lower body 

segment to allow the freedom of movement in the testing leg as well as the reposition of the left 

leg to remove any potnetial for collision during testing. 
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Figure 4.3: Experimental set-up for 

measuring sagittal motion 

(flexion and extension) 

moment-angle curves.  

Figure 4.4: Experimental set-up for 

measuring frontal plane 

motion (abduction and 

adduction) moment-angle 

curves. 

 

 

Two planes of motion at the hip, sagittal and frontal, were measured bi-directionally, with 

two conditions for hip flexion (straight leg and knee bent). The hip was pulled passive through 

the range of motion by the investigator at a slow and constant rate of 5-15°/sec. Passive hip 

resistance trials followed a series of light exercises (measured as part of studies in chapter 5 and 

6) which served to privde a light tissue warm-up prior to testing passive hip stiffness. Each passive 

motion task (flexion straight leg (FSL), flexion knee bent (FKB), extension (Ext), abduction (Abd), 

adduction (Add) was performed a minimum of three times. Additional trials were collected if 

required if for example, monitored muscle activity was observed, or the knee buckled into flexion 

during the hip flexion straight leg condition due to “tight hamstrings”. There were never more 

than 6 trials required to complete three acceptable  collections. A load cell (Transducer 
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Techniques™, Temecula, CA, USA) was used to collect the passive resistive force of the hip. The 

load cell was placed in-line with a leg strap and attached to rope which was pulled in a 

perpendicular direction to the leg. The load cell was calibrated in the laboratory with known 

weights after each testing session. The following sections describe the techniques used to 

measure each consition. 

4.2.2.1 Hip Flexion Straight Leg (FSL) 

Participants were set-up, side-lying in the passive hip testing apparatus (Figure 4.3) with the 

right leg suspended from the ceiling. The pulling rope was connected to the leg strap on the shank 

and held in-line with the load cell. The strap placed on the shank was measured to the greater 

trochanter and recorded for later moment calculations (Figure 4.5). In the rare occasion, if the 

knee buckled under tension of the hamstrings and posterior soft tissues the trial was repeated.  

4.2.2.2 Hip Flexion Knee Bent (FKB) 

Participants were set-up, side-lying in the passive hip testing apparatus (Figure 4.3) with the 

right leg suspended from the ceiling. The pulling rope was connected to the leg strap on the thigh 

and held in-line with the load cell. The strap placed on the thigh was measured to the greater 

trochanter and recorded for later moment calculations. The shank was not restrained allowing 

the hamstrings and posterior soft tissues to flex the knee without resistance allowing the hip to 

experience a full range of flexion (Figure 4.5).  

4.2.2.3 Hip Extension (Ext) 

Participants were set-up, side-lying in the passive hip testing apparatus (Figure 4.5) with the 

right leg suspended from the ceiling. The pulling rope was connected to the leg strap on the thigh 

and held in-line with the load cell. The distance from the greater trochanter to the point of 
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application (the thigh strap) was measured and recorded for later moment calculations. The 

shank was unrestrained during passive hip extension (see Figure 4.5).  

 

 
 

Figure 4.5: Schematic diagram of flexion and extension procedures for measuring angle-moment 

curves. Left – Extension, Middle – Flexion (Knee Bent), Right – Flexion (Straight Leg).   

 

4.2.2.4 Hip Abduction (Abd) & Adduction (Add)  

Participants were set-up, lying prone in the passive hip testing apparatus (Figure 4.6) with the 

right leg suspended from the ceiling. The pulling rope was connected to the leg strap on the shank 

and held in-line with the load cell. The strap was placed on the leg, just inferior to the knee joint 

on the shank, and the distance from the greater trochanter to the point of application (the leg 

strap) was measured and recorded for later moment calculations. The shank was not restrained. 

However, the knee was typically lockout at 0° due to the weight of the segments and the carefully 

adjusted sling heights and anatomical constraints in the knee; it remained in anatomical position 

during the passive pulls.  
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Figure 4.6: Schematic diagram of adduction (left) and abduction (right) procedures for 

measuring angle-moment curves.  

 

4.2.3 Data Analysis  

Load cell data and kinematic data were both filtered using a lowpass Butterworth first order 

digital filter at 2Hz (dual pass, effectively producing a second order zero lag filter). Several 

frequencies were reviewed to minimise noise and while maintaining peak magnitudes in the 

signals (see Appendix F) but ultimately a 2Hz cutoff was selected to maintain the physiological 

interpretation of the data while minimising noise and error.  

To make comparisons between groups the data were analysed with individual means of the 

three trials collected and then group means were calculated from the individual means. Means 

were used to minimise random errors in the stiffness profiles of the data, yet still represented 

the individual physiological patterns in the data (Appendix D). The mean for each subject was 

used to calculate the mean of each group (male and female) and the fitted exponential curves 

were fitted to the group means. Finally, to evaluate the model performance with the group mean 
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angle-moment data the model was virtually moved in the identical range of motion as the mean 

passive ROM for the male subjects.  

4.2.4 Statistical Analysis  

Independent samples T-test were used to evaluate differences in peak moment, peak hip angle, 

neutral zone barriers (NZB), and the neutral zone width (NZW). All T-test comparisons were first analysed 

for equality of variances using Levene’s Test, and the appropriate statistic (adjusted or not) were analysed 

with respect to the F-statistic and significance of p<0.5.  

4.2 Results 

4.3.1 Hip passive ROM profile.  

The data are presented in several forms, to best represent the behaviour of the passive 

resistive moment. First, Figure 4.7 displays the torque-angle data by subject. Considering the 

variability of initial angle, peak angle and peak moment individual behaviour on the torque-angle 

curves follow the expeted characteristics for all subjects, planes of motion and direction.  

The next series of plots shown in Figure 4.8-10 illustrate how the data were fitted to an 

exponential curve. A non-linear least squares exponential equation was fit to the mean data plot. 

The details of the coefficients and goodness of fit are seen in Table 4.1. The exponential equation 

was as follows: 

8 = 9D�� 

 

 

(eq. 4.1) 
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Where, M, is the joint rotational moment (Nm), and, a and b are the coefficients. Next, the 

passive moment-angle resistance behaviour are shown with mean and standard deviation curves 

in Figures 4.11 to 4.15. In order to compare across groups and individuals and to control for ROM 

differences, when considering sex differences, the moment-angle curves were normalised by 

angle to %ROM. The individual data for moment-ROM data is presented in Figure 4.16 followed 

by the mean and standard deviation (for moment only since data are normalised to angle) in 

Figure 4.17 and the fitted exponential curves are shown in Figure 4.18. Exponential curves were 

also fit the moment-ROM data and the coefficients and goodness of fit for both moment-angle 

data fitted to the mean and moment-ROM data fitted to the individual trials at in Tables 4.2 and 

4.3. The moment-ROM data was evaluated fitting the exponetional equation to the group data 

as a whole as well as the mean data for the group (Figure 4.19). Finally, the passive joint rotational 

stiffness curves are shown in Figure 4.20. The equation used to derive the stiffness curves was 

the eq 4.1 by taking its derivative, which created the second equation:  

u = 9OD�� 

Where, k, is the joint rotation stiffness. Peak passive joint rotational stiffness (PJRS) for FSL was 

more then three times higher then for FKB. While Add had the highest PJRS and FKB had the 

least.  

(eq. 4.2) 
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Figure 4.7: Subjects’ mean troque-angle plots for (a) FSL, (b) FKB, (c) Ext, (d) Abd, (e) Add. 
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Figure 4.8: Passive hip resistance trials flexion straight leg (left) and flexion knee bent (right), 

individual means, and group means with a fitted exponential for the group mean.  

 

 
 

Figure 4.9: Passive hip resistance trials, abduction (left) and adduction (right), individual means, 

and group means with a fitted exponential for the group mean.  
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Figure 4.10: Passive hip resistance extension trials, individual means, and group means with a 

fitted exponential for the group mean.  

 

 

 
 

Figure 4.11: Mean male angle-moment curve for Flexion-Straight Leg and one standard 

deviation (Std) for both angle and moment data. 
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Figure 4.12: Mean male angle-moment curve for Flexion-Knee Bent and one standard deviation 

(Std) for both angle and moment data. 

 

 
 

Figure 4.13: Mean male angle-moment curve for Extension and one standard deviation (Std) for 

both angle and moment data. 
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Figure 4.14: Mean male angle-moment curve for Extension and one standard deviation (Std) for 

both angle and moment data. 

 
Figure 4.15: Mean male angle-moment curve for Extension and standard deviation (Std) for both 

angle and moment data. 
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Table 4.1: Equations of curve fit and goodness of fit measures for mean angle-

moment data (males).  

 Exponential Coefficients (M=aebϴ ) 
sse R2 rmse 

 a b 

Flexion – Straight 

Leg 
-3.7976 0.0372 237.8109 0.9954 1.5499 

Flexion – Knee 

Bent 
-3.1057 0.0241 25.2350 0.9975 0.5049 

Extension 12.5522 0.0572 103.8286 0.9942 1.0541 

Abduction 5.6952 0.0447 42.4679 0.9980 0.6550 

Adduction -5.5518 0.0809 6.9356 0.9996 0.2647 
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Figure 4.16: Subjects’ mean torque-ROM plots for (a) FSL, (b) FKB, (c) Ext, (d) Abd, (e) Add. 
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Figure 4.17: Mean male ROM-moment curve (black) with one standard deviation (Std) for 

moment data (grey ticks) for (a) FSL, (b) FKB, (c) Ext, (d) Abd, (e) Add. 
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Figure 4.18: Torque-ROM curves with exponential curves fitted (black) to the individual trials 

(light grey) for (a) FSL, (b) FKB, (c) Ext, (d) Abd, (e) Add.  
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Table 4.2: Coefficients and goodness of fit measures for mean moment-ROM 

data (males).  

 Exponential Coefficients (M=aebϴ ) 
sse R2 rmse 

 a b 

Flexion – Straight 

Leg 
-3.7976 0.0372 237.8 0.9954 1.5499 

Flexion – Knee 

Bent 
-3.1057 0.0241 25.2 0.9975 0.5049 

Extension 12.5522 0.0572 103.8 0.9942 1.0541 

Abduction 5.6952 0.0447 42.4 0.9980 0.6550 

Adduction -5.5518 0.0809 6.9 0.9996 0.2647 

 

 

 

Table 4.3: Coefficients and goodness of fit measures for moment-ROM curves of 

each trial (females).  

 Exponential Coefficients (M=aebϴ ) 
sse R2 rmse 

 a b 

Flexion – Straight 

Leg 
-8.4942 0.0213 55061. 8 0.9223 6.03 

Flexion – Knee 

Bent 
-7.3281 0.0168 16717.8 0.9167 3.12 

Extension 43.8502 0.0212 42968.6 0.8670 5.01 

Abduction 8.1027 0.0181 22937.3 0.9344 3.6571 

Adduction -7.6689 0.0182 33834.9 0.8971 4.4417 
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Figure 4.19: Angle-moment plots for males with fitted curves to the exponential function 

M=aebϴ. Subplots are defined as (a) Flexion – straight leg; (b) Flexion – bent knee; 

(c) Abduction; (d) Adduction; (e) Extension curves with mean experimental data 

(grey) and fitted curve (black). 
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Figure 4.20: Passive hip joint rotational stiffness (k=abebϴ), subplots are defined as (a) Flexion – 

straight leg; (b) Flexion – bent knee; (c) Abduction; (d) Adduction; (e) Extension 

(males). 

 

4.3.2 Compare male and female passive ROM profile  

Overall, comparisons of the ‘passive ROM profile’ differed significantly between males and 

females. Comparisons of peak passive angle and neutral zone boundaries demonstrated 

differences between sexes as shown in Tables 4.1 and 4.2, respectively. Levene’s test was not 
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significant for any comparison, and therefore an equal variance was assumed for all comparisons. 

Females had higher peak angles in both flexion conditions (straight leg and knee bent); while 

peak extension and abduction were similar between sexes, and peak abduction angle was also 

greater in females. Only extension and adduction borders of the neutral zone differed between 

sexes. Males extension neutral zone was more biased to flexion (~17°) compared to females at 

(~6°). Similarly, females’ adduction neutral zone border was shifted towards adduction at ~10° 

compared to males who were more neutral on average at ~2°. Comparisons of neutral zone 

widths are displayed in Table 4.3. Levene’s test was significant for comparisons between FSL-EXT 

and ABD-ADD. Therefore, the adjusted t-test statistics were evaluated base on the assumptions 

the variances were different for these comparisons. Males had considerably tighter neutral zones 

in FKB-EXT of approximately ~60% smaller (t=-2.872, p <0.01) and ABD-ADD of approximately 

44% smaller (t=5.437, p <0.01) and strong trends of a smaller neutral zone in FSL-EXT 

approximately 54% smaller on average (t=-1.855, p=0.076). Interestingly there were no gender 

differences for any range of motion with respect to peak moment (Table 4.7). Male and female 

mean and standard deviations are graphically displayed in Figures 4.21-4.25 with side-by-side 

comparisons over the moment-angle curves. The ability of the fitted exponential curve to capture 

the behaviour of the passive hip resistance is shown in Figure 4.26. Table 4.8 provides the 

coefficients and goodness of fit values for the female data. Finally, Figure 4.27 provides a 

comparison of the male and female passive hip stiffness (PHS) with the stiffness-angle curves. 

The group trends show males have higher PHS at a given angle. The end range of hip extension 

appears to be the exception to this general observation.  
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Table 4.4: Comparison of neutral zone angle widths for passive resistance of the 

hip between sexes. 

 Sex Mean (Deg) Std t-test p-value 

NZ_FSL_EXT* 
Male 6.90 6.32 

-1.855 0.076 
Female 12.47 9.99 

NZ_FKB_EXT 
Male 14.16 7.09 

-2.872 0.007 
Female 23.36 10.86 

NZ_ABD_ADD* 
Male -6.50 2.89 

5.437 <0.001 
Female -14.73 5.19 

*Levene’s Test of Homogeneity of Variances were significant, and the adjusted t-test statistic was 

evaluated.  

 

Table 4.5: Comparison of peak hip angle for passive resistance between sexes. 

 Sex Mean (Deg) Std t-test p-value 

FSL_max 
Male 81.08 13.46 

-4.894 <0.001 
Female 103.35 12.12 

FKB_max 
Male 103.71 12.61 

-2.185 0.037 
Female 112.26 8.94 

EXT_max 
Male -22.31 12.05 

0.243 0.810 
Female -23.17 6.82 

ABD_max 
Male -49.02 8.18 

1.081 0.288 
Female -52.84 11.66 

ADD_max 
Male 26.98 5.79 

-4.823 <0.001 
Female 38.56 7.75 

Note: Levene’s Test for Equality of Variances was non-significant in all comparisons.  
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Table 4.6: Comparison of hip angle neutral zone barrier for passive resistance 

between sexes. 

 Sex Mean (Deg) Std t-test p-value 

FSL_min 
Male 23.72 7.51 

1.675 0.104 
Female 18.65 9.60 

FKB_min 
Male 30.99 8.43 

0.420 0.677 
Female 29.55 10.95 

EXT_min 
Male 16.83 6.85 

4.615 <0.001 
Female 6.19 6.10 

ABD_min 
Male -4.82 4.54 

-0.101 0.920 
Female -4.61 7.18 

ADD_min 
Male 1.68 4.45 

-4.846 <0.001 
Female 10.12 5.40 

Note: Levene’s Test for Equality of Variances was non-significant in all comparisons.  

Table 4.7: Comparison of peak hip moment for passive resistance between 

sexes. 

 Sex Mean (Deg) Std t-test p-value 

FSL_max 
Male 76.8 10.96 

1.371 0.18 
Female 71.82 9.30 

FKB_max 
Male 38.49 6.61 

0.804 0.427 
Female 36.37 8.30 

EXT_max* 
Male 46.71 6.38 

0.156 0.878 
Female 46.22 10.59 

ABD_max 
Male 50.99 7.56 

-0.218 0.829 
Female 51.63 8.93 

ADD_max 
Male 49.08 11.21 

1.631 0.113 
Female 43.62 6.88 

*Levene’s Test of Homogeneity of Variances were significant and the adjusted t-test statistic was 

evaluated.  



 

 

139 

 

 

 
Figure 4.21: Mean male (blue) and female (magenta) angle-moment curves for hip flexion 

straight leg (FSL) with one standard deviation for angle (horizontal) and moment 

(vertical).  

 

 

 
Figure 4.22: Mean male (blue) and female (magenta) angle-moment curves for hip flexion – knee 

bent (FKB) with one standard deviation for angle (horizontal) and moment (vertical).  
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Figure 4.23: Mean male (blue) and female (magenta) angle-moment curves for hip extension 

(Ext) with one standard deviation for angle (horizontal) and moment (vertical).  

 

 
Figure 4.24: Mean male (blue) and female (magenta) angle-moment curves for hip abduction 

(ABD) with one standard deviation for angle (horizontal) and moment (vertical).  
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Figure 4.25: Mean male (blue) and female (magenta) angle-moment curves for hip adduction 

(ADD) with one standard deviation for angle (horizontal) and moment (vertical).  

 

 

 

Table 4.8: Equations of curve fit and goodness of fit measures for mean angle-

moment data (females).  

 Exponential Coefficients (M=aebϴ ) 
sse R2 rmse 

 a b 

Flexion – Straight 

Leg 
-4.4625 0.0256 305.8058 0.9915 1.7575 

Flexion – Knee 

Bent 
-2.8181 0.0212 211.5914 0.9700 1.4619 

Extension 7.1127 0.0771 304.8217 0.9812 0.9810 

Abduction 6.1726 0.0404 78.6805 0.9962 0.8915 

Adduction -3.5614 0.0665 77.0765 0.9945 0.8824 
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Figure 4.26: Female (magenta) and male (blue) moment-angle curves for (a) Flexion – straight 

leg; (b) Flexion – bent knee; (c) Abduction; (d) Adduction; (e) Extension curves with 

mean experimental data (light) and fitted curve (dark). 
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Figure 4.27: Comparison of female (magenta) and male (blue) passive hip joint rotational 

stiffness k=abebϴ. Subplots are defined as (a) Flexion – straight leg; (b) Flexion – bent 

knee; (c) Abduction; (d) Adduction; (e) Extension. 
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4.3.3 Evaluate the model performance estimating angle-moment curves. 

The experimental data was evaluated in relation to the HSM predicted moment-angle curve. In 

general, the predicted HSM passive resistive moment captured the passive tissue resistance behaviour in 

the experimental data extremely well. Figures 4.28 and 4.29 demonstrate the predicted model 

performance with the moment-angle curves for the average male subject for the sagittal and frontal 

planes, respectively. In the sagittal plane, the model was sensitive to the knee flexion angle during both 

the FSL and FKB trials. This provides confidence in the constituent components of the HSM.  

 
Figure 4.28: Experimental data (blue) and model predicted (red) passive hip angle-moment 

curves for extension to flexion straight leg (solid line) and knee bent (dash line).  
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Figure 4.29: Experimental (blue) and model predicted (red) passive hip angle-moment curves for 

abduction and adduction.  

 

4.4 Discussion   

The main objective of this study was to characterise the moment-angle behaviour of the 

passive tissues of the hip in both the sagittal and frontal planes. Many of these observations lent 

themselves to descriptive analysis rather than statistical methods. However, there are areas in 

this analysis where statistical approaches were appropriate for comparison.  

4.4.1 Hip passive ROM profile 

The variance of responses obscured the ability of the fitted curves to represent the underlying 

tissue behaviour characteristics. Attempts were made to fit both exponential curves as well as 

polynomial curves. However, the experimental curve fitting approach was desired for several 
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reasons. Namely, this approach has been used extensively in the past (Yoon & Mansour 1982; S. 

McGill et al. 1994; S. M. McGill et al. 1994; Lee & Munn 2000) and allows the curve to continue 

the trend line behaviour beyond the experimental data range without fear of inflection points in 

the curve where the curve may no longer represent a physiological phenomenon. This is also a 

precaution when taking the derivative the moment-angle curve for joint rotational stiffness 

estimates. The first attempt to quantify group trends of the data using both curve fitting 

approaches exponential and polynomial) failed to capture the individual’s tissue behaviour 

accurately. To correct the ability of the fitted curves to represent the group data equations were 

fit to the group mean rather than the cluster of individual data. The data were normalised to trial 

length, from determined onset, when the moment exceeded 5Nm, to the peak moment, forming 

the end of the trial. The average for each individual was then calculated and each individual’s 

mean was used to create a group (gender) mean. (Note: In one subject only two trials were 

deemed acTable for extension, in another subject, a trial flexion trial was omitted – the curve of 

a single trial was not representative of the other two trials. Their data was omitted under the 

assumption of a collection error.) In this way, each subject was equally represented in the group 

mean. Ultimately, an exponential fit was selected, as the only difference when using a 3rd order 

polynomial was the ability to capture the toe region of the curve. However, the steep fall off 

below 5 Nm was likely non-physiological in the polynomial fit making is less desirable for a 

generalised fit (the exponential and polynomial comparisons are shown in the appendix to this 

section for completeness). The exponential curves fitted to group means were also extremely 

well suited to describe the curve behaviour as evidenced by the high R-squared and low RMSE 

values. Exponential curves have been widely used in the past to capture passive stiffness as well 
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as calculate joint rotational stiffness. This is due to the exponential characteristics of the passive 

tissues in vitro.  

Similar results were observed with the moment-ROM data. Since the data were normalised, 

the fitted curves were calculated with respect to the entire data set rather than the group mean. 

The goodness of fit data more accurately represented the group data rather than the data fit to 

each trial (Table 4.2 and 4.3). When evaluating the moment-ROM curves the variation in data 

decreases compared to the moment-angle curves. This suggests that while absolute ROM in 

degrees may vary between individuals the behaviour when normalised to ROM is consistent 

(Figure 4.18). This being novel work, it is believed that presenting both moment-angle and 

moment-ROM data is desireable for future applications and comparisons.  

4.4.2 Compare male and female passive ROM profile  

Several differences exist between male and female passive hip ROM profiles. Males had 

smaller neutral zones (Table 4.4), and less ROM in flexion, extension and adduction (Table 4.5). 

Passive hip resistance begins at higher flexion angles for extension and more abducted angles for 

adduction. In other words, males have less total ROM in the hip and a smaller area of minimal 

passive resistance (or NZ) as defined here (less than ~5 Nm of resistance). Similarities exist 

between the peak moment at end range. Both males and females tested with similar end-range 

passive moment, though it took females more degrees of motion to achieve that moment. This 

is best shown in the comparison Figures 4.21 to 4.25, and in Figure 4.26 where the exponential 

curves are compared for males and females. The female data is equally well captured by its own 

exponential curve fit, as demonstrated by the R-squared and RMSE data (Table 4.8). Lastly, the 
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joint rotational stiffness curves, while following a similar pattern, show a distinct difference 

between males and females. Males have higher joint rotational stiffness at lower angles of 

motion. Moreover, with the exception of end-range extension, males demonstrate higher peak 

joint rotational stiffness.  

No study, to this authour’s knowledge, has compared male and female passive hip 

moment-angel and joint rotational stiffness in either the sagittal or frontal planes. Of particular 

interest to this comparison is the potential for revealing the underlying injury mechanism given 

the overwhelming discrepancy in prevalence between the sexes in injuries like non-contact ACL 

strain/tear(Ford et al. 2000; Hewett, Myer, et al. 2006b). The dynamic control of the hip or better 

yet, the kinetic chain, requires ongoing feedback to balance the applied forces, moments, and 

stiffness required for controlled movement. The question of injury mechanism in ACL injuries will 

be more directly investigated in the next section of this thesis. However, it is worth mentioning 

the potential contribution of increased joint compliance in females compared to males since the 

hypothesis of increased ACL injury is turning towards a control strategy deficit at the hip. A lack 

of hip control, which is comprised of both active and passive components, could contribute to 

dynamic valgus during a landing activity and predispose one to an ACL injury. Based on these 

results it would appear as though females would require superior active control strategies to 

their male counterpart given the potential deficit in joint compliance. More on this later, for now 

it is important to note the significant differences in passive hip profiles between men and women.  
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4.4.3 Evaluate the model performance estimating angle-moment curves. 

The HSM allows for the understanding of the distribution of load among the various tissues. The 

HSM model was highly congruent with mean male and able to predict differences in both the frontal and 

sagittal planes, and even with changes to knee flexion during hip flexion. As mentioned above this 

enhances the confidence of the model constituents and allows for the examination of synergies and 

mechanics in more detail. For example, comparing the hamstrings group during the FSL and FKB the 

effects of the knee flexion to shorten the hamstrings and therefore create a reduction in the passive 

resistive torque is substantial (Figure 4.30). The model provides a method to probe the mechanical 

interplay of, for example, bi-articulate muscles which is otherwise difficult or impossible to quantify.  

 

 
Figure 4.30: Flexion - extension passive torque-angle curves with both FSL (solid line) and FKB 

(dash-line) respective contribution from Biceps Femoris, Semitendinosus, and 

Semimembranosus. The change in knee angle effects the muscle length enough to 

greatly reduce the predicted hamstring contribution to total hip moment. 
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4.4.4 General Discussion  

Vrahas and colleagues (1990) examined 15 males’ passive hip resistance and found results 

were insensitive to rates of pull from the examiner implying viscosity is not an important 

consideration. Not only is this important when interpreting this study but it is also important 

when comparing between studies. Their results were similar to the current study considering 

they were near ~20 Nm at 60 degrees of hip flexion, with a trend line suggesting an exponential 

increase following this point. Yoon and Mansour (1982) measured ~45 Nm at ~60 degrees of hip 

flexion. This places this study within the variance of previous work. Moreover, both of these 

studies noted similar decreases with knee flexion at end range of flexion to this study.  It should 

also be noted that these examples are taken from “representative” individual of the group and 

not a mean curve as presented in this study. However, the congruency between studies does 

provide confidence that the current data is consistent with the literature. This bolsters 

confidence in the methods used here for the frontal plane since no data is available in the 

literature for comparison. The exponential equations of this study provide moment-angle 

estimates over the full range of motion and can be more readily compared between future 

studies.  

The association between hip mechanics and ACL injuries is thought to contribute to the 

increased prevalence of ACL injury among females. These non-contact ACL injuries are associated 

with dynamic valgus during landing and athletic cutting manoeuvres (i.e. abrupt directional 

changes) in sports like basketball or soccer, for example. One of the few studies to examine 

passive hip stiffness (or more accurately described as passive hip resistance) in males and females 

assesed the cross section of volleyball players (males and females), basketball and futsal (only 
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males) and evaluated the position of the hip passive resistance (PHPR) to gravity (Araújo et al. 

2013). These results were similar to the data presented here, in that the hip resistance was 

greater in males than in females and males achieve less overall ROM during the testing 

procedure. These authors also indicated the potential of injury related to impaired control during 

landings or athletic cutting movements leading to dynamic valgus. Investigations of injury 

mechanisms, comparing male and female hip mechanics, should consider the potential of passive 

hip joint laxity when considering differences in male and female normal mechanics.  

No study is without limitations and this study is no exception. Analysis was limited to a single 

hip and symmetry between sides is inherently assumed. In fact, there is known asymmetry that 

is documented in the pelvis and also highly dependent on ethnicity (Kurki 2017). However, the 

purpose of this work was not to quantify hip asymmetry but to analyze moment-angle behaviour, 

compare males and females, and evaluate model predictions of passive hip resistance. To this 

end, the evaluation of a single hip is justified. Next the apparatus (aka hip stiffness testing jig) 

does apply some force in the plane of action of the moment-angle curve. However, the 

attachment point (see Figure 4.3 and 4.4) of the ropes, located in the ceiling, minimised the 

vector cosine and therefore the potential of the apparatus to causing a significant amount of 

force in the horizontal plane. Lastly, the assumption of the GT as the axis of rotation for the 

moment arm calculation neglects the anatomical variability of, for example, the femoral neck 

angle. Since the length of the moment arm is substantially greater than this potential error 

source, it can be assumed that the error is minimal and therefore has a negligible effect on the 

results. 
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4.5 Conclusion   

 Several important contributions to the understanding of hip mechanics and hip modelling 

arose from this study. (1) Passive hip moment-angle and moment-ROM curves were quantified 

in the sagittal and frontal planes, bi-directionally, for males and females. Exponential curves were 

successfully applied to the experimental data to represent both the moment-angle/moment-

ROM data as well as the passive joint rotational stiffness. (2) Passive hip ROM profiles were 

compared between males and females. Males have smaller NZs and less total ROM as compared 

to females. The definitions of kinematic NZ (degrees relative to the reference frame) are not the 

same as the passive kinetic NZ defined as the range of elastic equilibrium. (3) The HSM as 

described in chapter 3 can successfully estimate passive tissue resistance, which allows for the 

examination of the contribution from the constituent components within the model.  
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5.0    Study 3: Analysis of hip and spine mechanics: Implications 

for the risk for Anterior Cruciate Ligament injury  

5.1 Introduction 

A critical element of injury prevention is understanding injury mechanism. As described in the 

conceptual model presented in chapter three (Figure 3.1), injury occurs when loading demands 

exceed tissue tolerance. Movement and motor patterns modulate tissue loading, thus 

influencing the opportunity to promote or avoid tissue overload and the resultant injury. Infinite 

combinations of motor patterns can produce the same joint movement and an infinite 

combination of joint movements can be achieved through the linkage to produce goal-oriented 

movement. For example, given a similar external loading condition, if the mechanism of injury is 

understood, there is a possibility of modulating tissue load through corrective movement and 

motor patterns thereby redistributing the load concentration and avoiding tissue injury or failure. 

This, in theory, would reduce injury risk by restoring the balance of capacity and demands.   

Injury screening techniques for non-contact ACL injuries, including movement pattern 

observation, have been suggested to provide the appropriate identification of at risk groups 

(Myer et al. 2010b). Among the at-risk group was high level female athletes, participating in 

sports like basketball and soccer, where an increase prevalence of 2.5-7.5 times greater than 

their male counter parts at a similar level and exposure in the NCAA was seen(Arendt et al. 1999; 

Arendt & Dick 1995). When examining non-contact ACL injuries understanding hip function has 

proven to be quite valuable by providing insight into injury mechanism (Hewett & Myer 2011; 

Hewett et al. 2010; Reiman, Bolgla, et al. 2009). Recently, Myers, Hewett and colleges identified 
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two major deficiencies in this population, one, a ‘neuromuscular’ pattern (Hewett et al. 2004) 

and two, a ‘biomechanical’ pattern (Myer et al. 2010a; Myer, Ford, et al. 2011; Myer et al. 2010b) 

both relating to predicting and influencing (Myer et al. 2007b) ACL injury. The next evolution of 

the understanding of these mechanisms is threefold: one, a more biologically driven, robust 

investigation of tissue loading available with the development of the aforementioned model in 

Chapter 3, and two, a more holistic examination of the kinetic chain including hip and spine 

mechanics; and three, a detailed evaluation of neuromuscular control strategy. Ultimately, the 

goal of this work is to improve understanding of at-risk behaviour that may lead to injury.  A 

detailed understanding of the injury mechanism and how it affects joint mechanics will lead to 

superior prevention and management strategies. Only total joint load estimates have been 

evaluated thus far, and it is hypothesized that the use of more sophisticated modeling 

approaches will likely improve the precision of the understanding of ACL injury mechanisms with 

the possibility of improving rehabilitation and prevention techniques. 

Specifically, the research questions and accompanying hypotheses were:  

(1) How do those with high and low knee valgus differ in joint angles, load, and EMG 

profiles? 

i. It is hypothesised that comparing a sub-set of high and low valgus groups will have 

differences in joint angles, joint loads, tissue loads and EMG patterns (Table 5.1). 

  



 

 

155 

 

Table 5.1: Specific Research Questions and Hypothesis for the primary outcome 

measures.  

Specific Questions Related Hypotheses 

Joint Angles:  

- Does flexion angle differ 

between valgus groups?  

Joint Angles:  

- Spine, Hip and Knee Flexion 

angles will be larger in the HVG.  

Joint Loads: 

- Forces: Does AP shear differ 

between valgus groups? 

- Moments: Do moments in the 

spine, hip and knee differ 

between groups? 

Joint Loading: 

- Forces: Joint AP shear will be 

greater in the HVG.  

- Moments: Joint moments in the 

spine, hip and knee will differ 

between groups in all 

directions.  

Motor Patterns (EMG): 

- Do peak EMG and iEMG hip 

abductor muscles (TFL, GMed, 

GMax) differ between the HVG 

and the LVG?  

- Do the QUAD peak and iEMG 

motor patterns differ for the 

HVG and the LVG 

Motor Patterns (EMG): 

- Hip abductor muscles (TFL, 

GMed, GMax) will be greater in 

the LVG for both peak and iEMG 

 

- QUAD activation will be higher 

in the HVL for both peak and 

iEMG 

*Joint implies all joints in analysis, spine, hip, and knee.  

In addition, as part of a secondary analysis, several research questions arose focusing on the 

interpretation of continuous data. These questions and hypotheses are listed here:  

(1) Does dominate knee valgus correlate to non-dominate knee joint valgus? Is it possible to 

predict knee valgus in the non-dominate knee from the dominate knee?  

i. DKV in the dominate limb will correlate with the non-dominate limb.  

ii. DKV can be predicted from the dominate limb to the non-dominate limb.  

(2) What are the strongest predictors (of those recorded) for high dynamic knee valgus?  

i. No single variable will emerge as a single best predictor for DKN.  

ii. The dominate (right) and non-dominate (left) will have a unique set of “best” 

predictors of DKV.  
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(3) Which muscles’ activation pattern best predict dynamic knee valgus?  

i. The abductor group (GMed and TFL) and GMax will best predict DKV.  

5.2 Methods 

A cohort of young adult females participated in a laboratory-based study to investigate non-

contact ACL injury risk. Participants performed jumping and landing tasks while biomechanical 

data was collected.  

5.2.1 Study Design  

 A cross-sectional study design was used to evaluate the mechanics of two sub-groups, high 

and low valgus risk, during a drop vertical jump task (DVJ).  

 5.2.2 Participants  

 Eight-teen female participants (n = 18; age = 20.7 ± 1.3 years; height = 1.64 ± 0.05 m; mass 

= 56.2 ± 11.0 kg) were recruited from the university undergraduate population including both 

recreational and varsity athletes from a variety of sports (soccer, basketball, volleyball, rugby, 

and martial arts). Participants were included between the ages of 18-25 and generally healthy 

enough to participate in moderate exercise. Exclusion criteria included chronic or recurrent lower 

limb and/or back injury, current or chronic pain in the back or lower limb, any pathology related 

to balance impairment or other condition(s) limiting the participant’s ability to participate in 

exercise.  

 5.2.3 Tasks 

The drop vertical jump task was performed using a 31 cm high box and dropping on to two 

adjacent force plates. The participants stood upright with their feet shoulder width apart and 
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toes at the edge of the box. The participant was asked to “drop off the box” using both feet 

simultaneously and asked not to jump up, but rather simply jump forward towards the force 

plates. The landing absorption phase was timed with the counter movement effort of a maximum 

vertical jump. The participant’s feet had to land clearly onto each force plate and with a single 

contact from each foot, in other words, “sticking the landing” with both feet at the same time. 

Finally, they returned to a resting upright standing position with feet approximately shoulder 

width apart.  

 

 

Figure 5.1: The drop vertical jump (DVJ) task is portrayed from start (A) to completion (E). The 

participant makes a small jump off the box (A-B), lands with one foot on each of the 

force plates (C), and performs a maximum vertical jump (D), and lands a second time 

with one foot on each force plate (E). 

5.2.4 Procedures  

Participants were scheduled for a 4-hour data collection. Each participant was familiarized 

with the laboratory and testing procedures. A full written information letter was provided and 

reviewed by each participant before signing an informed consent form. Participants were 

provided with water and washroom breaks as required.  
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Participants wore standard athletic shorts or their own tight-fitting athletic shorts and a 

rolled-up t-shirt or sports top. Prior to electrode placement the skin was abraded with NuprepTM 

abrasive and wiped cleaned with ethanol to clean the skin. Ag-AgCl surface electrodes pairs were 

placed in bi-polar configurations with a center to center distance of 2.5 cm, parallel to the muscle 

fiber orientation. Electrodes were placed on six torso muscle bilaterally including: Rectus 

Abdominis (RA), External Oblique (EO), Internal Oblique (IO), Lower Erector Spinae (LES), Upper 

Erector Spinae (UES) and Latissimus Dorsi (LAT); as well as bilaterally over six hip muscles: Tensor 

Fascia Latae (TFL), Gluteus Medius (GMed), Gluteus Maximus (GMax), Rectus Femoris (QUAD), 

Adductor Longus (ADD), Semitendinosus (HAM). Each electrode was then held in place with 

HypafixTM and the EMG amp was secured with clear tape.  

Each participant performed maximal isometric contractions (MVCs) for each muscle (or 

muscle group) so the biological signals could be normalized. For the abdominal muscles five 

abdominal contractions (flexion, lateral bend right and left, and, twist right and left) in a semi-

recumbent posture sitting on a plinth with hips and knees bent to approximately 90 degrees with 

the ankles held in place by one researcher and upper body restrained by the second researcher. 

The ES muscles were normalized with Biering Sorensen test and a modified Biering Sorensen test, 

(i) back extension and then (ii) back extension, gluteal squeeze and latissimus contraction. The 

LAT and GMax were evaluated during this test and their specific MVC tests – the highest 

contraction level was used for normalization. The ADD muscles were tested in a recumbent 

position with the hips and knees flexed with a foam block used to “squeeze” together as both 

ADD groups (right and left) were normalized with a single hip adduction contraction 

simultaneously. The QUAD muscle was normalized in the sitting position with the research 
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restraining knee extension. GMax and HAM muscle were normalized using (i) a hip extension and 

(ii) hip extension with knee flexion contraction while laying prone. Finally, the LAT muscles were 

resisted by the researcher in a standing position with the should flexed ~75-80 degrees and 

abducted horizontally ~45 degrees. All MVCs were coached with verbal motivation to produce 

maximal effort.  

 

 

Figure 5.2: Twenty-Four EMG channels will be collected including 6 bilateral core muscles 

(Rectus Abdominis (RA), External Oblique (EO), Internal Oblique (IO), Lower Erector 

Spinae (LES), Upper Erector Spinae (UES), and Latissimus Dorsi (LD))  and 6 bilateral 

hip/leg muscles (Rectus Femoris (RF), Tensor Fascia Latae (TFL), Gluteus Medius 

(GMed), Gluteus Maximus (GMax), Biceps Femoris (BF), and Adductor Longus (ADD).  

 

Next the subjects performed a series of tasks in a block randomized order. Note that only the 

DVJ tasks are included in this analysis as this is the first step to evaluating underlying mechanisms 

and currently only the DVJ is used to assess injury risk. To avoid unnecessary complexity the other 
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task (i.e. single leg DVJ were omitted from this analysis. It is also important to note that all 

subjects performed the DVJ tasks first before a series of randomized secondary tasks. When 

performing the DVJ task participants were given a verbal description of the task as well as a visual 

demonstration. No performance criteria were included in the description. A maximum jump was 

requested, and verbal confirmation was requested when motivation or effort seemed less than 

maximum. The performance of each task was observed by a member of the research team to 

ensure the criteria of the task were met each time. Trials were repeated for the following reasons: 

jumping up off the box, landing off the force plate, landing on the same force plate, loss of 

balance, lack of maximum jump height, or, data collection capture error. Feedback was given to 

the participant and once again it only related to task requirements and not performance (i.e. the 

participant was asked to “stick the landing”, or “try that again and try to land with one foot on 

each force plate”). Deviation in task criteria or errors in data collection (EMG drop out, marker 

occlusion, etc) required an additional trail until three “good” attempts were collected. All trials 

both satisfactory and unsatisfactory were saved and examined as necessary in post-collection 

analysis. Data collection capture time was buffered on both sides of the task to ensure 

appropriate post-collection analysis including filtering kinematic and EMG signals (Howarth & 

Callaghan 2009).  

Post collection the trials were evaluated in Visual 3D to quantify the knee excursion relative 

to a body fixed plane. The plane was created using the hip joint center (HJC) and the ankle joint 

center (AJC) and a third arbitrary point anterior to the hip joint center in the local hip coordinate 

system.  These three points created a “hip ankle plane” which was used to evaluate knee valgus 

(Figure 5.3). Groups were created based on individual trials with the intension of capturing 
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‘injurious events’ rather than categorizing individuals since there was a great deal of movement 

variability (Figure 5.4).  

5.2.5 Outcome Measures & Statistical Design 

 The primary outcome measures were to compare high and low valgus trails. ANOVA 

testing was used in IBM SPSS statistics 20® was used to evaluate the differences between groups. 

In addition to this primary goal, secondary analysis was done on the data using continuous data 

with the intension of informing further research. A Pearson Correlation analysis was used to 

address the question of does having one high valgus knee related to having two high valgus 

knees, and a simple regression was used to evaluate if it is possible to predict the predictive ability 

of their second knee moving into valgus based on one knee’s valgus score. A stepwise multiple 

regression model was used to evaluate the best predictors of DKV. Confidence intervals, part and 

partial correlates and collinearity diagnostics were all evaluated including Durbin-Watson post-

hoc analysis with he residuals to examine the potential for serial and auto-correlations. 

Heteroscedasticity was examined with scatter plots of the residuals and predictors, as well as 

histograms and normal probability plots. Also, the standardized Bata values were evaluated since 

the metrics used in the model are not similar qualities and therefore do not have similar 

variances, therefore normalizing the variance is required for meaningful comparisons. Also, as a 

general rule, the final model produced in the stepwise analysis was adopted since it provides the 

“best” predictor of the depend variable.  
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Figure 5.3: A subjected landing in DVJ (top). An accompanying schematic representation of the 

body fixed hip-ankle plane and the perpendicular medial knee displacement which 

quantifies the knee valgus measure (bottom).  
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5.3 Results  

Upon examination of the data it became very clear that classification of a single subject as 

high, low or no valgus would not be possible due to the individual variability and the continuum 

of results. Illustrated in Figure 5.4 are the dynamic valgus measures across all 18 subjects and 

three trials. In light of the unexpected phenomenon, that individuals could be classified as both 

high and low valgus when comparing the right and left side, for example subjects 3, 4, 9, 10, and 

13, and even when considering valgus on the same side, for example subjects 7 and 17, trials 

were evaluated independently. This allows the data to represent what changes with an at-risk 

trial rather than trying to identify an at-risk individual, who may display a variety of movement 

from trial to trail. The primary analysis the data has been divided categorically into ‘Joint Angles’, 

‘Joint Loads’, and ‘EMG Patterns’ where groups of high and low valgus are compared. The 

secondary analysis follows with question specific sections.  

5.3.1 Primary Analysis 

5.3.1.1 Joint Angles  

 Spine motion data was compared with two groups, the Valgus Group (VG, n=42) and the 

No Valgus Group (NVG, n=20). The valgus group consisted of trials with both unilateral and 

bilateral valgus, whereas, the no valgus group had bilateral low valgus. These groups were 

created since either hip has the potential to effect spine motion. Time histories of spine 

flexion/extension motion during the first landing of the DVJ are shown in Figure 5.5. Peak spine 

flexion differed between the NVG and VG (peak means= 27.1 (7.4) and 32.4 (9.9), respectively, 

and t= 2.1, p<0.05).  
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Figure 5.4: Knee displacement during the first landing of the DVJ task. Median (solid) and dashed 

(±20 %) reveal the barrier between high and low valgus, which creates the 

comparison groups.  

 

 

 

 
 

Figure 5.5: Mean and std of spine flexion-extension angles during first land for “valgus group” 

(Unilateral and Bilateral Valgus) vs the No Valgus group. *SSD in peak angles between 

valgus group and no valgus group.  

* 



 

 

165 

 

 Examining the hip and knee kinematic data the right and left sides were collapsed into 

two groups a Low Valgus Group (LVG, n=40) and a High Valgus Group (HVG, n=44). Time histories 

are shown in Figure 5.6 and mean peak angle for hip flexion angle for the LVG were 81.9 (11.7) 

and 95.0 (10.4) for the HVG, which were statistically significantly different (t=-6.235, p<0.001). 

Mean peak angle for the knee were also statistically significantly different (t=2.281, p=0.025) with 

means of 92.7 (9.9) and 98.0 (11.0), for the LVG and HVG, respectively.  

 
 

Figure 5.6: Time histories of the mean (black line) and standard deviation (shaded area) of hip 

(top), and knee (bottom) flexion-extension angles during first land for the high valgus 

group (HVG) and low valgus group (LVG), on left and right respectively. *SSD in peak 

angles between HVG and LVG.  

 

* 

* 
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 Time histories of the hip and knee abduction-adduction angles are shown in Figure 5.7, 

and internal-external rotation in Figure 5.8. There were no differences in abduction-adduction or 

internal-external peak angles between groups for the hip or the knee.  

 
Figure 5.7: Time histories of the mean (black line) and standard deviation (shaded area) of hip 

(top), and knee (bottom) abduction-adduction angles during first land for the high 

valgus group (HVG) and low valgus group (LVG), on left and right respectively.  

 

 

Further examination of the spine angles compared bilateral, unilateral and no valgus 

groups to assess the effects of single and double DKV. Time histories of the kinematic data from 

the three groups for the spine, hip and knee are illustrated in Figure 5.9. Lumbar mean peak 

flexion angles were 27.1 (7.4), 33.2 (11.0), and 31.7 (9.3), for the NVG, UVG, and BVG, 
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respectively. The differences in peak spine angle showed trends (F=2.32 p=0.107) towards less 

spine motion in the NVG. The peak hip flexion angle was 76.0 (11.9), 92.37 (9.8), and 99.0 (10.2), 

for the NVG, UVG, and BVG, respectively. The NVG had significantly less peak hip flexion than 

both the BVG and the UVG (F=26.16, p<0.001, pairwise comparisons Tukey HSD p<0.001, 

p<0.001). Finally, the knee behaviour was similar to the hip with the peak flexion angles for the 

knee were 89.9 (9.4), 96.4 (11.9), and 98.8 (10.9), for the NVG, UVG, and BVG, respectively. 

Similar to the hip the NVG had significantly less peak knee flexion (F=3.91, p=0.025) but this time 

only different from the BVG (Tukey’s HSD, p<0.05). 

 
Figure 5.8: Time histories of the mean (black line) and standard deviation (shaded area) of hip 

(top), and knee (bottom) medial-lateral rotation angles during first land for the high 

valgus group (HVG) and low valgus group (LVG), on left and right respectively.  
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Figure 5.9: Time histories of the mean (black line) and standard deviation (shaded area) of spine 

(top), hip (middle) and knee (bottom) flexion-extension angles during first land for 

the bilateral valgus group (BVG, left), Unilateral Valgus Group (UVG, center), and No 

valgus group (NVG, right), on left and right respectively. *SSD in peak angles between 

NVG and the other two groups.  

 

* 

* 
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5.3.1.2 Joint Loads (Inverse Dynmics)  

Forces. Illustrated in Figure 5.10 is the time histories for the ID force data for the spine, hip 

and knee. Examining peak force data from ID analysis and comparing the HVG and LVG, only peak 

AP shear there was a statistically significant different (t=-5.428, p<0.001), between the HVG and 

the LVG with a mean peak shear of 505.3 (142.6) N, and 357.2 (102.2) N, respectively. No 

differences were observed in ML shear or compression forces. The hip findings were similar to 

the spine with a statistically significant difference (F=-4.741, p<0.001) between the HVG and LVG 

only in peak AP shear with mean peak shear values of 297.8 (91.7) N and 213.1 (69.1) N, 

respectively (Figure 5.10). Anterior shear in the knee was only trending a difference between 

HVG and LVG with mean peaks of 432.1 (64.6) and 403.1 (76.66) for the HVG and LVG, 

respectively (Figure 5.11). These findings are best summarised in Figures 5.12 and 5.13.  

 

Figure 5.10: Comparisons of spine forces (inverse dynamics) between the high and low valgus 

groups. *SSD between LVG and HVG, p<0.05.  

 

 * 
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Figure 5.11: Comparisons of hip forces (inverse dynamics) between the HVG and the LVG. *SSD 

between LVG and HVG, p<0.05.  

 

 

Figure 5.12: Comparisons of knee forces (inverse dynamics) between the HVG and the LVG. *SSD 

between LVG and HVG, p<0.05. 

 * 
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Figure 5.13: Histogram of the peak (maximum) inverse dynamics forces for the spine, hip and 

knee. *SSD between LVG and HVG, p<0.05.  

 

 

 

Figure 5.14: Histogram of the peak (minimum) inverse dynamics forces for the spine, hip and 

knee.  

* 
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Moments.  Time histories are shown for spine (Figure 5.15), hip (Figure 5.16), and knee 

(Figure 5.17) to provide an impression of the comparisons between the HVG and the LVG. While 

Figures 5.18 and 5.19 illustrate the histograms of peak maximum (positive) moments and peak 

minimum (negative) moments, respectively. Peak Maximum Moments. Lumbar spine flexion 

moment was more then 20% higher (t=-3.097, p<0.01) in the HVG (136.7 (52.4) Nm) compared 

to the LVG (107.8 (28.5) Nm). Peak hip moments in flexion-extension (61.4 (22.5) and 47.5 (15.0), 

t=-3.296, p=0.001), abduction-adduction (33.3 (8.6) Nm and 21.6 (7.5) Nm, t=-5.298, p<0.001), 

and internal external rotation (13.0 (8.6) Nm and 7.9 (4.4) Nm, t=-3.394, p=0.001) were all higher 

in the HVG compared to the LVG. Similar to the hip, knee moments in flexion-extension (122.7 

(18.6) and 110.9(22.5) Nm, t=-2.638, p=0.01), abduction-adduction (25.0 (9.2) Nm, and 18.3 (4.7) 

Nm, t=-4.060, p<0.001), and internal external rotation (7.9 (3.9) Nm and 10.3 (3.5) Nm, t=3.032, 

p=0.003) were all higher in the HVG compared to the LVG with the exception of internal-external 

rotation moments which was smaller in the LVG. Peak Minimum Moments. Lumbar spine flexion 

moment was nearly 20% higher (t=-4.364, p<0.001) in the HVG (-176.8 (28.9) Nm) compared to 

the LVG (149.0 (29.6) Nm). Peak hip moments in flexion-extension (117.5 (22.9) and 102.6 (21.6), 

t=-3.052, p=0.003) for the HVG and LVG, respectively. Examining the abduction-adduction the 

HVG was statistically significantly lower than the LVG (21.8 (12.0) Nm and 28.4 (9.7) Nm, t=-2.758, 

p<0.01). Knee moments were only different between group for peak minimum internal-external 

rotation (3.5 (3.1) Nm and 1.2 (3.5) Nm, t=4.076, p<0.001) were all higher in the HVG compared 

to the LVG. 
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Figure 5.15: Lumbar spine moments for the DVJ first landing, initial contact to take-off, for the 

HVG (left) and LVG (right), with flexion across the top, lateral bend in the center, and 

axial twist along the bottom.  

 

 
Figure 5.16: Hip moments for the DVJ first landing, initial contact to take-off, for the HVG (left) 

and LVG (right), with flexion across the top, abduction-adduction in the center, and 

medial-lateral torque along the bottom.  
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Figure 5.17: Knee moments for the DVJ first landing, initial contact to take-off, for the HVG (left) 

and LVG (right), with flexion across the top, abduction-adduction in the center, and 

medial-lateral torque along the bottom. 

 

 
Figure 5.18: Peaks (max) moments for high and low valgus group means with standard error 

bars. * Indicates statically significantly different comparisons (P≤0.01). (L_Flex = 

Lumbar Spine Flexion/Extension Moment; H=Hip; K=Knee) 

 

 

* 

* 

* 

* 

* 

* 
* 
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Figure 5.19: Figure xx: Peaks (min) moments for high and low valgus group means with standard 

error bars. * Indicates statically significantly different comparisons (P≤0.01). (L_Flex 

= Lumbar Spine Flexion/Extension Moment; H=Hip; K=Knee) 

 

5.3.3 Joint Loads Estimates from the HSM  

Spine. Illustrated in Figure 5.20 are the spine compression forces form the DVJ trails among the BVG, 

UVG, and NVG estimated form the HSM. The BVG had -3406 N of spine compression which was 

significantly more than the UVG with -2876 N and the -2533 N (F = 5.894, p = 0.006; pairwise comparisons 

p = 0.032; p = 0.002). The remaining spine forces were not significantly different between groups and the 

data is presented in Table 5.2. Spine flexion moments predicted by the HSM are illustrated in Figure 5.21. 

The BVG had a higher peak moment (F = 3.950, p = 0.027) than the NVG (p < 0.01) and only trending higher 

than the UVG (0.076).  

 

* 

* 

* 

* 
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Figure 5.20: Mean lumbar spine compression force and StE (shaded area) for the DVJ trails 

comparing the high valgus bilateral, unilateral and no valgus groups. ** Indicates 

significantly different from both comparisons for peak minimum compression.  

 

 

 

 

 
 

Figure 5.21: Mean lumbar spine flexion-extension moments and StE (shaded area) for bilateral 

valgus (left), unilateral valgus (middle) and no valgus (right) for the DVJ trails 

comparing the high valgus bilateral and unilateral with low (“No”) valgus groups. 

*Indicates significantly different from “No Valgus” comparison.  

 

 

** 

* 
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Hip. Illustrated in Figure 5.22 are the hip forces between HVG and LVG demonstrated several 

differences which are displayed in Table 5.3 with accompanying statistical results. To summarise the most 

important results the HVG had higher compression at 6479 (3891) N compared to LVG at 4465 (1523) 

which was significantly different (t=3.177, p <0.01); and, the HVG also had lower minimum compression 

force at 22N (472) compared to LVG at 1051 (471) also significantly different (t = 9.981, <0.001). The LVG 

also had the highest posterior shear at -4170 (1399) compared to the HVG at -3119 (1042) which were 

significantly different (t = -3.962, p < 0.001). Furthermore, the HVG had lowest minimum medial shear 

force at -801 (282) compared to LVG -1042 (274), which was also significantly different (t = -3.960, p 

<0.001); similarly the HVG had the lower peak medial shear force at -2300 (735) compared to the LVG -

2981 (1409), which was significantly different (t = -2.815, p < 0.01). With respect to the hip moments 

minimum abduction moment was lower in the HVG -113 (56) Nm compared to the LVG which had 

minimum abduction moment of -192 (230) Nm (Figure 5.23). In addition the minimum external rotation 

moment was smallest in the HVG -66 (38) Nm compared to the LVG -113 (81) Nm, which was significantly 

different (t = -3.427, p = 0.01).  
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Figure 5.22: Mean hip spine forces (Compression (top), AP Shear (middle) and ML shear 

(bottom)) and StE (shaded area) for the DVJ trails comparing the high valgus bilateral 

and unilateral with low (“No”) valgus groups. Note: Left hip forces were normalised 

to the right side (ML shear Left *-1). * Significantly different (p < 0.05), ** significantly 

different (p < 0.01); *above the curve indicates peak max score difference, * below 

the line indicates peak min score difference.  

  

** 

** 

** 

** 

** 
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Figure 5.23: Mean hip moments (Flexion-Extension (top), Abduction-Adduction (middle) and 

Internal-External (bottom)) and StE (shaded area) for the DVJ trails comparing the 

high valgus bilateral and unilateral with low (“No”) valgus groups. Note: Left hip 

forces were normalised to the right side (ML shear Left *-1). * Significantly different 

(p < 0.05), ** significantly different (p < 0.01); *above the curve indicates peak max 

score difference, * below the line indicates peak min score difference. 

 

 

  

* 

** 
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Table 5.2: Mean (SD) of peak spine loads during DVJ first landing for bilateral, 

unilateral and no valgus.   

Load Bilateral Valgus Unilateral Valgus No Valgus 

Max Compression (N) -972 (148) -934 (261) -993(273) 

Max AP Shear (N) 195 (72) 162 (53) 167 (67) 

Max ML Shear (N) 31 (66) 4 (53) -8 (31) 

Max Flex-Ext Moment (Nm) 149 (25)* 124 (30) 108 (53) 

Max Bend Moment (Nm) 17 (16) 13 (12) 7 (7) 

Max Twist (Nm) 2 (6) 5 (10) 6 (13) 

Min Compression (N) -3406 (377)** -2876 (562) -2533 (934) 

Min AP Shear (N) 50 (36) 38 (64) 68 (29) 

Min ML Shear (N) -205 (102) -203 (140) -166 (115) 

Min Flex-Ext Moment (Nm) -5 (19) -6 (16) 1 (11) 

Min Bend Moment (Nm) -27 (14) -32 (35) -23 (20) 

Min Twist (Nm) -15 (10) -14 (6) -15 (7) 

Bold indicates significant difference in omnibus test  

* indicates significantly different in one pairwise comparison (highest vs lowest only) 

** indicates significantly different in both pairwise comparisons  
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Table 5.3: Mean (SD) of peak hip loads during DVJ first landing for bilateral, 

unilateral and no valgus.   

Load High Valgus Low Valgus Statistics* 

Max Compression (N) 6479 (3891) 4465 (1523) t = 3.177, p < 0.01 

Max AP Shear (N) 53 (487) -269 (1048)  

Max ML Shear (N) -801 (283) -1042 (274) t = -3.960, p < 0.001 

Max Flexion-Extension 

Moment (Nm) 
40 (45) 29 (67)  

Max Abduction-Adduction 

Moment (Nm) 
9 (17)  -2 (43)  

Max Medial-Lateral 

Moment (Nm) 
17 (20) 10 (39)  

Min Compression (N) 22 (472) 1051 (471) t = 9.981, p < 0.001 

Min AP Shear (N) -3119 (1042) -4170 (1399) t = -3.962, p < 0.001 

Min ML Shear (N) -2300 (735) -2981 (1409) t = -2.815, p < 0.01 

Min Flexion-Extension 

Moment (Nm) 
-85 (80) -109 (45)  

Min Abduction-Adduction 

Moment (Nm) 
-113 (56) -192 (230) t = -2.201, p < 0 .05 

Min Medial-Lateral 

Moment (Nm) 
-66 (38) -113 (81) t = -3.427, p = 0.01 

* Only statistically significant tests reported  

 

 

5.3.1.4 EMG Patterns 

The final category of parameters to examine the differences between the HVG and LVG as 

part of the primary analysis were the EMG patterns during the DVJ. Peak EMG. Peak EMG during 

the DVJ trials on the first landing are shown in Table 5.4. TFL and GMAX were all statitically 

significantly higher in the HVG compared to the LVG with differences of 9%, and ~23% of MVC in 
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peak EMG, respectively. There were no differences in the ADD, HAM and QUAD neural patterns 

during the first landing. iEMG (% Movement * %EMG). The results of the iEMG are displayed in 

Table 5.5. Similar to the peak EMG, the iEMG for the first landing of the DVJs there was a 

statistical significantly increase in TFL, GMAX, GMED, HAM and QUAD, by approximately 136 %, 

144%, 128%, 133%, and 123% of the HVG, respectively. Only the ADD nueral patterns were not 

different when held to the p < 0.008 standard.  

 

Table 5.4: Peak EMG collapsed across right and left sides. 

 Valgus Condition    

 Low High Independent Samples t-Test 

 Mean (SD) Mean (SD) t df Sig. (2-tailed) 

TFL* 41.7 (16.8) 32.7 (11.7) 2.827 69.217 0.006 

GMAX*  81.7 (42.3)  58.5 (27.0) 2.890 64.510 0.005 

GMED 73.75 (24.9) 71.8 (35.2) 0.266 68 0.791 

ADD 36.7 (19.1) 33.8 (19.4) 0.689 82 0.493 

HAM 47.5 (26.5) 38.6 (22.3) 1.645 80 0.104 

QUAD 141.3 (37.1) 125.2 (27.4) 2.218 65.241 0.030 

*Indicates muscles which were statistically significantly different (p<0.008). 

Note: Levene’s test of equal variance was applied and when required the adjusted values were used. 
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Table 5.5: iEMG (%Movement * %EMG) collapsed across right and left sides. 

 Valgus Condition    

 Low High Independent Samples t-Test 

 Mean (SD) Mean (SD) t df Sig. (2-tailed) 

TFL* 2175 (1131) 1597 (637) 2.852 60.209 0.006 

GMAX* 3405 (1660) 2366 (931) 3.409 59.762 0.001 

GMED* 3227 (826) 2520 (859) 3.204 57 0.002 

ADD* 2463 (1458) 1848 (925) 2.284 64.894 0.026 

HAM 2744 (1375) 2049 (1049) 2.569 72.896 0.012 

QUAD* 8515 (2213) 6911 (1320) 3.864 56.501 <0.001 

*Indicates muscles which were statistically significantly different (0.008). 

Note: Levene’s test of equal variance was applied and when required the adjusted values were used. 

 

 

5.3.2 Secondary Analysis of Continuous Variable Data  

This analysis addressed the question of the which variables relate to dynamic valgus when 

examining all cases of DVJ. Due to sample size limitations in this secondary analysis trials were 

entered independently to form a total of 54 cases. Since classification was not possible and this 

is secondary analysis deemed to inform further research it has been included here and should be 

considered in the context of this limitation.  

5.3.2.1 Does one knee valgus score predict the other knee?  

 The relationship of one knee valgus score with the other knee was significantly, 

moderately correlated (r = 0.420, p < 0.01, df = 54). However, the predictive ability of one knee 

valgus score on the other knee valgus score accounted for less than 20% of the variability (R2 = 

0.176, Adj R2 = 0.160, SEE = 0.034) though this predictive ability was significant (F=11.122, 
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p<0.01). The model predicts an increase in one valgus score by 1 mm would predict an increase 

in the other by 0.36mm (B = 0.364, SE = 0.109, standardize Beta = 0.420, t = 3.335, p < 0.01, 95% 

CI 0.145-0.584). Upon inspection the residual statics mean score is ~0.00 and homoscedasticity 

appears within normal limits (shown in appendix).  

5.3.2.2 What is the overall strongest predictor of DKV?  

 To test the overall best predictors of dynamic knee valgus the biomechanical variables 

were entered into the stepwise regression model with case-wise/pairwise exclusions for missing 

data, separately for each side (dominate vs non-dominate or right vs left). For the right side a 

total of 8 models were evaluated using the stepwise approach and the results of the model 

estimates are shown in Table 5.6 with the corresponding statistical report in Table 5.7 and 5.8; 

and for the left side 6 models were evaluated with the results shown in Tables 5.9-5.11. In both 

analysis the predictive variables of DKV were hip and spine variables (Tables 5.6 and 5.9, for the 

right and left side, respectively).  

Table 5.6: Multiple Regression Models for Right Knee Valgus using a stepwise 

approach.  

 Variables Entered/ 

Removed 
Model Summary 

Model Variable Entered Method R R2 Adj R2 Std Err of the 

Est 

1 R_Hip_AbAd_Min Stepwise 

(Criteria: 

Probability of 

F to enter <= 

0.050, 

Probability of 

F to remove 

>=0.100).  

.793 .628 .619 .033765 

2 R_Hip_Flex_Max .883 .779 .769 .0182325 

3 R_Hip_AbAd_Mom_Max .913 .834 .822 .0159970 

4 LRA_Peak .928 .862 .848 .0147777 

5 RIO_iEMG .949 .900 .888 .0127063 

6 RLES_Peak .967 .936 .925 .0103493 

7 R_Knee_Flex_Min .975 .950 .941 .0092126 

8* RLAT_Peak  .980 .961 .952 .0082778 

*Durbin-Watson = 2.5 indicating no meaningful serial correlations (1.5-2.5 is considered safe).  
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Table 5.7: ANOVA results of the Right Knee Valgus stepwise multiple regression 

models.  

 ANOVA 

Model 

Variable 

Sum of 

Squares 

df Mean 

Square 

F Sig. 

1 Regression  

Residual  

Total  

.040 

.023 

.063 

1 

43 

44 

.04 

.001 

72.624 <0.001b 

2 Regression  

Residual  

Total 

.049 

.014 

.063 

2 

42 

44 

.025 

.000 

74.035 <0.001c 

3 Regression  

Residual  

Total 

.053 

.010 

.063 

3 

41 

44 

.018 

.000 

 

68.634 <0.001d 

4 Regression  

Residual  

Total 

.054 

.009 

.063 

4 

40 

44 

.014 

.000 

62.332 <0.001e 

5 Regression  

Residual  

Total 

.057 

.006 

.063 

5 

39 

44 

.011 

.000 

70.471 <0.001f 

6 Regression  

Residual  

Total 

.059 

.004 

.063 

6 

38 

44 

.010 

.000 

91.984 <0.001g 

7 Regression  

Residual  

Total 

.060 

.003 

.063 

7 

37 

44 

.009 

.000 

101.064 <0.001h 

8 Regression  

Residual  

Total 

.061 

.002 

.063 

8 

36 

44 

.008 

.000 

110.762 <0.001i 

 

 

 

 

 

  

Dependent Variable: Peak_MKD_Ra 

Predictors: (Constant), R_Hip_AbAd_Minb 

Predictors: (Constant), R_Hip_AbAd_Min, R_Hip_Flex_Maxc 

Predictors: (Constant), R_Hip_AbAd_Min, R_Hip_Flex_Max, R_Hip_AbAd_Mom_Maxd 

Predictors: (Constant), R_Hip_AbAd_Min, R_Hip_Flex_Max, R_Hip_AbAd_Mom_Max, 

LRA_Peake 

Predictors: (Constant), R_Hip_AbAd_Min, R_Hip_Flex_Max, R_Hip_AbAd_Mom_Max, 

LRA_Peak, RIO_iEMGf 

Predictors: (Constant), R_Hip_AbAd_Min, R_Hip_Flex_Max, R_Hip_AbAd_Mom_Max, 

LRA_Peak, RIO_iEMG, RLES_Peakg 

Predictors: (Constant), R_Hip_AbAd_Min, R_Hip_Flex_Max, R_Hip_AbAd_Mom_Max, 

LRA_Peak, RIO_iEMG, RLES_Peak, R_Knee_Flex_Minh 

Predictors: (Constant), R_Hip_AbAd_Min, R_Hip_Flex_Max, R_Hip_AbAd_Mom_Max, 

LRA_Peak, RIO_iEMG, RLES_Peak, R_Knee_Flex_Min, RLAT_Peaki 
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Table 5.8: Multiple Regression model analysis of the Right DKV.  

Model 8 

Standardized 

Coefficients 
t Sig. 

Correlations 
Collinearity 

Statistics 

Bata 
Zero-

order 
Partial Part Tolerance VIF 

(Constant)   -5.031 <.001      

R_Hip_AbAd_Min -.602 -11.319 <.001 -.793 -.884 -.373 .383 2.609 

R_Hip_Flex_Max .607 12.710 <.001 .626 .904 .419 .475 2.103 

R_Hip_AbAd_Mom_Max .224 4.745 <.001 .645 .620 .156 .489 2.046 

LRA_Peak -.331 -8.699 <.001 -.135 -.823 -.286 .748 1.336 

RIO_iEMG .352 8.664 <.001 .043 .822 -.285 .657 1.521 

RLES_Peak -.254 -6.044 <.001 .063 -.710 -.199 .614 1.629 

R_Knee_Flex_Min .199 3.877 <.001 -.509 .543 .128 .413 2.423 

RLAT_Peak  .117 3.135 .003 .143 .463 .103 .774 1.293 

 

 

Table 5.9: Multiple Regression Models for Left Knee Valgus using a stepwise 

approach.  

 Variables Entered/ 

Removed 
Model Summary 

Model Variable Entered Method R R2 Adj R2 Std Err of 

the Est 

1 L_Hip_AbAd_Min Stepwise (Criteria: 

Probability of F to 

enter <= 0.050, 

Probability of F to 

remove >=0.100).  

.759 .576 .560 .0232619 

2 L_Hip_In_Ex_Min .875 .766 .748 .0175870 

3 L_Hip_Flex_Max .943 .889 .876 .0123536 

4 Spine_Flex_Min .954 .911 .896 .0113290 

5 L_Knee_InEx_Mom_Max .970 .941 .928 .0094076 

6 L_Knee_ID_ML_Shear_Min .982 .965 .956 .0073730 

*Durbin-Watson = 2.5 indicating no meaningful serial correlations (1.5-2.5 is considered safe).  
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Table 5.10: ANOVA results of the Left Knee Valgus stepwise multiple regression 

models.  

 ANOVA 

Model 

Variable  

Sum of 

Squares 

df Mean 

Square 

F Sig. 

1 Regression  

Residual  

Total  

.020 

.015 

.034 

1 

27 

28 

.020 

.001 

36.618 <0.001b 

2 Regression  

Residual  

Total 

.026 

.008 

.034 

2 

26 

28 

.013 

.000 

42.649 <0.001c 

3 Regression  

Residual  

Total 

.031 

.004 

.034 

3 

25 

28 

.010 

.000 

66.857 <0.001d 

4 Regression  

Residual  

Total 

.031 

.003 

.034 

4 

24 

28 

.008 

.000 

61.055 <0.001e 

5 Regression  

Residual  

Total 

.032 

.002 

.034 

5 

23 

28 

.006 

.00 

73.194 <0.001f 

6 Regression  

Residual  

Total 

.033 

.001 

.034 

6 

22 

28 

.006 

.000 

101.876 <0.001g 

 

 
 

  

Dependent Variable: Peak_MKD_La 

Predictors: (Constant), L_Hip_AbAd_Minb 

Predictors: (Constant), L_Hip_AbAd_Min, L_Hip_In_Ex_Minc 

Predictors: (Constant), L_Hip_AbAd_Min, L_Hip_In_Ex_Min, 

L_Hip_Flex_Maxd 

Predictors: (Constant), L_Hip_AbAd_Min, L_Hip_In_Ex_Min, 

L_Hip_Flex_Max, Spine_Flex_Mine 

Predictors: (Constant), L_Hip_AbAd_Min, L_Hip_In_Ex_Min, 

L_Hip_Flex_Max, Spine_Flex_Min, L_Knee_In_Ex_Mom_Maxf 

Predictors: (Constant), L_Hip_AbAd_Min, L_Hip_In_Ex_Min, 

L_Hip_Flex_Max, Spine_Flex_Min, L_Knee_In_Ex_Mom_Max, 

L_Knee_ID_ML_Shear_Ming 
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Table 5.11: Multple Regression model analysis of the left DKV.  

Model 8 

Standardized 

Coefficients 
t Sig. 

Correlations 
Collinearity 

Statisitics 

Bata 
Zero-

order 
Partial Part Tolerance VIF 

(Constant)   -9.778 <.001      

L_Hip_AbAd_Min -.346 -6.754 <.001 -.759 -.821 -.268 .603 1.659 

L_Hip_In_Ex_Min -.242 -4.263 <.001 -.621 -.673 -.169 .489 2.046 

L_Hip_Flex_Max .372 8.094 <.001 .624 .865 .322 .748 1.337 

Spine_Flex_Min -.359 -6.486 <.001 -.333 -.810 -.258 .515 1.941 

L_Knee_InEx_Mom

_Max 
.272 4.622 <.001 .508 .702 .184 .455 2.199 

L_Knee_ID_ML_ 

Shear_Min 
.195 3.930 .001 .322 .642 .156 .639 1.565 

 

5.3.2.3 What muscles best predict DKV?  

 To examine which muscle patterns best predict DKV the right and left knees were 

examined separately in two stepwise multiple regression analyses. To address these questions 

each trial was included in the analysis. Each hip’s unilateral muscles and bilateral core muscles 

for iEMG and peak EMG were included into the stepwise multiple regression model.  

 The predictive ability of the left hip valgus score by left hip and core muscles was weak 

(R2 = 0.212, Adj R2 = 0.191, SEE = 0.030, N = 40), although the model research statistical 

significance (F=10.232, p<0.01). Based on the stepwise approach to multiple regression, only LTFL 

iEMG parameter was entered into the model and with a mere ~20% of the variance accounted 

for the in the model muscle activity (iEMG and peak EMG) alone is a poor predictor of knee 

valgus. Note that the model was first attempted with GMed peak EMG and iEMG, but then 

attempted again with this muscle excluded since it was not a predictor. Due to drop out the 

increased the samples from N=29 to N=40 justified this exclusion since it was not a predictor in 

the original analysis.  
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 Next, five models were created to predict right DKV. This time the model was statistically 

significantly strong (R2 = 0.578, Adj R2 = 0.544, SEE = 0.0287, N = 41, F=16.894, p<0.001) in the 

five iteration of the stepwise regression model. The final iteration settled on the three best 

predictors RGMED iEMG, RGMED peak EMG, and RGMAX iEMG. The model summaries are 

included in Table 5.12, due to the small sample size the adjusted R2 value was improved with the 

removal of the RQUAD muscle iEMG, however it is worth noting this was also a significant 

predictor of valgus in the right hip in fact it was the best single predictor but this variability was 

capture when the other variables were added to the model.  

Examining the effects of side dominance more closely with the iEMG values (Tables 5.13 

and 5.14) it is apparent that neuromuscular control differs between sides. It seems 

neuromuscular patterns are more responsible for the differences between high and low valgus 

on the dominate side vs non-dominate side. 

Table 5.12: Right Knee Stepwise Regression Analysis Model Summary  

Model 
Variable 

Entered 

Variables 

Removed 
R R2 Std. Error of the 

Estimate (SEE) 
F Sig. 

1 RQUAD iEMG  0.303 0.285 0.0359972 16.914 <0.001 

2 RGMED iEMG  0.402  0.371 0.0337657 12.775 <0.001 

3 RGMED peak   0.528  0.490 0.0304015 13.797 <0.001 

4 RGMAX iEMG  0.584 0.538 0.0289224 12.654 <0.001 

5  RQUAD iEMG 0.578  0.544 0.0287457 16.894 <0.001 
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Table 5.13: iEMG (%Movement * %EMG) on the right side for Hi vs Low Valgus 

on the right knee.  

 Valgus Condition    

 Low High Independent Samples t-Test 

 Mean (SD) Mean (SD) t df Sig. (2-tailed) 

RTFL 2073 (1037) 1675 (657) 1.543 41 0.130 

RGMAX  3595 (1575) 2137 (937) 3.795 41 <0.001* 

RGMed 3334 (845) 2457 (811) 3.439 41 0.001* 

RADD 2178 (765) 1923 (1106) 0.842 41 0.405 

RHAM 2523 (943) 1774 (744) 2.578 39 0.014* 

RQUAD 8121 (1896) 7740 (1628) 4.003 41 <0.001* 

 

 

Table 5.14: iEMG (%Movement * %EMG) on the left side for Hi vs Low Valgus on 

the left knee.  

 Valgus Condition    

 Low High Independent Samples t-Test 

 Mean (SD) Mean (SD) t df Sig. (2-tailed) 

LTFL 2260 (1221) 1494 (613) 2.588 31.876 0.014* 

LGMAX  3242 (1751) 2775 (794) 1.069 29.867 0.293 

LGMed 3099 (813) 3288 (1268) -0.458 23 0.651 

LADD 2696 (1829) 1749 (629) 2.280 26.562 0.031 

LHAM 2257 (1021) 1839 (726) 1.488 39 0.145 

LQUAD 8170 (2253) 7189 (1197) 1.676 27.410 0.105 
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5.4 Discussion  

The most profound findings in this study are the number of differences and the predominance 

of the spine and hip variables which differentiate the HVG and LVG. These have been overlooked 

in the previous studies of the knee. Specifically, the first hypothesis was supported, the spine, hip 

and knee all had increased flexion angles during the DVJ (Figures 5.5 and 5.6). This indicates the 

HVG which is essential frontal plane collapse at the knee joint also had decreased control in the 

sagittal plane at the spine, hip and knee. As expected with the increase in sagittal plane flexion 

angles increases in AP shear at the spine and hip were also predominate in the HVG, this 

hypothesis was also supported. Following this logic further with increased joint angles and 

differences in joint forces, moments would also differ between groups in all directions. This 

hypothesis was conditionally accepted with differences in spine peak (max and min) 

flexion/extension moments as well as maximum (flexion, medial, abduction) hip and knee 

moments in all three planes (Figure 5.19). In contrast the spine lateral bend and axial twist, hip 

lateral, and knee extension, and adduction moments were not statistically different; however, 

spine extension, hip extension adduction and knee external rotation moments were statistically 

different (Figure 5.19). Lastly, the hypothesis related to the isolated examination of the 

neuromuscular control strategy revealed in the EMG patterns was also accepted. Examining the 

peak EMG data the TFL and GMAX were the key differentiators in the control strategy of the hip 

muscles. Moreover, when examining the “work” the muscles were doing during the entire 

landing and propulsion event with the iEMG the TFL, GMAX, GMED, ADD, and QUAD patterns 

were all statistically different between HVG and LVG as well as biologically significant. The LVG 

generally had higher activation in all muscle groups indicating less coordinate control of the joints 
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when landing and jumping. Hence, several important differences were present between the HVG 

and LVG in kinematics, kinetics and neural control strategies. The complexity of the ACL injury 

problem and DKV should not be limited to a simple examination of the knee. In order to 

understand these mechanisms thoroughly a more complete examination of the linkage is 

required.  

Equally impressive is the secondary results which suggest the most meaningful correlations 

are found once again among the spine and hip variables over the knee variables for predicting 

DKV. In both the dominate and non-dominate knees the top three regression model variables 

were related directly to the hip. The next variables were spine variables on both sides and then 

following these were knee variables (Figure 5.4 and 5.7). The next interesting results with 

neuromuscular patterns were the differences in the dominate and non-dominate sides. The non-

dominate side was essentially unpredicTable with respect to DKV while the dominate side was 

highly predicTable neural control strategy related to GMED iEMG, GMAX peak and RGMAX iEMG, 

with the QUAD iEMG excluded from the final model but the strongest single predictor. This is 

hypothesized to relate to the lack of control capability or difference between the dominate and 

non-dominate sides (Figures 5.11 and 5.12). The collapse in the knee is best predicted by motions, 

postures and loads associated with the hip and spine.  

There were of course limitations to this study as with any study. Testing the individuals with 

this robust analysis, 24 channels of EMG, full body kinematics and the in-depth processing and 

analysis is a time intense process. This led to a limitation in sample size. To overcome this 

limitation the assumption was made that the critical features of DKV would be represented on a 
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trial by trial basis rather than an individual basis. In this way only a HKV trial would be deemed 

“at-risk” and not the individual. Since anyone could, in theory, have a good or bad landing. 

However, this does challenge the conventional way of considering independence with respect to 

statistical analysis. There was also EMG drop out in some muscles more than others, for example, 

LGMED which limited the analysis of all data. There is no doubt a significant challenge when 

capturing this amount of data simultaneously. Lastly, we used a group of undergraduate females 

in the kinesiology department with a varied level of athletic ability. We were not able to capture 

a pool of varsity only female basketball and soccer players, however, this pool pf participants 

would likely provide more generalized findings to a broader group of recreational female 

athletes. It is more likely the characteristics of the specific sport put the female athletes at higher 

risk rather than the physical characteristics of the athletes who play those particular sports.  

In comparing the data presented here some interesting comparisons can be made with the 

literature. Early in the quatification of DKV during DVJ was a significant difference in female 

dominate and non-dominate sides. It is also noteworthy this phenomenon of difference in 

dominace was not present in males (Ford et al. 2000). In contrast, there were no obvious 

differences in DKV and leg dominace, however, this work did identify differences in control 

strategy faults leading to DKV. Further contrast with the literature in this area is the 

understanding and quantification of neuromuscular control. Neuromuscular control, in th 

econtext of ACL injury literature, has been quantified through serigates of neuromuscular control 

like movment patterns (Hewett et al. 2004) or exercise training programs (Hewett et al. 2016; 

Myer et al. 2007a). In this work, neuromuscular deficits were directly measured and evaluated, 

it is therefore not possible to compare the reuslts of this studies neuromuscular deficits with 
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those inferred in the literature. This was one of the main motivations for the work of this thesis 

as the major gap in the literature provided great opportunity to shed light onto a neglected area 

of inquiry.  

This study demonstrated a predominance of hip and spine biomechanical and neuromuscular 

control strategies. Spine and hip movement and motor patterns are able to predict and at least 

in part explain the phenomena of DKV or “valgus collapse” as it has been referred to in the 

literature (Quatman & Hewett 2009). It remains clear that neuromuscular control (motor 

patterns) should be a target for clinical intervention to control movement patterns, such as DKV. 

With this new knowledge perhaps more effective ‘neuromuscular training programs’ can be 

designed and implemented with the hopes of improving effectiveness over the current standard 

(Taylor et al. 2018).  

5.5 Conclusions  

 In summary, the hip and spine function to control the distal linkage. This is consistent with 

the biomechanical principle that states proximal stiffness is required to optimize distal mobility 

and athleticism.  Those participants who displayed DKV also displayed more spine and hip 

collapse in the sagittal plane, higher joint loading and divergent neuromuscular patterns. Clinical 

interventions should be designed to directly address these differences in order to better address 

the at-risk movement behaviour of DKV which is thought to be the main contributor to the high 

prevalence of ACL injuries in female athletes.  
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6.0 Study 5: Quantifying the demands and exposures in 

commonly used rehabilitation exercises - Towards the 

development of an atlas of exercises for clinical use 

 6.1 Introduction  

A critical issue for the development of highly effective personalized programs is the 

progression of exercise intensity. Conforming to the most fundamental training principle - 

overload; considerations for the design and implementation of a progressive exercise program is 

essential. As the patient gains in desired variables such as strength or endurance the demands of 

the exercise must also progress to maintain the overload principle. In this population the tipping 

point between too much demand and not enough is a moving target as the patient recovers and 

tissues heal and pain sensitivity decreases. However, often overlooked in the rehabilitation and 

training field is the mechanical cost or demand analysis of the prescribed exercises themselves. 

Expertise in programing requires an understanding of not just increasing intensity but also the 

increasing or changing demands of the exercise on specific surrounding tissues and joints, many 

of which are sensitized and damaged. In other words, striking a balance between exercise 

demands and the patient’s capacity is critical in the designing a successful progressive 

rehabilitation program.   

Providing appropriate graded demands while optimizing exposure and maintaining the 

boundaries of the patient’s capacity is the goal of effective rehabilitation program. To this end, 

there is a scattering of information on hip rehabilitation exercises from several different groups. 

Direct interpretation and comparison between groups is challenging due to different data 

collection techniques and analyzing approaches. A single database with standardized procedures 

would make for a very useful resource to understand the progressions of hip exercises along with 

detailed and accurate understanding of joint and tissue demands. As an example, consider a 
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classic exercise like "hip hikes" shown to target gluteus medius and minimus (hip abductors), 

perhaps thought to be an ideal hip exercises for abductor training (Bolgla & Uhl 2005). However, 

consider the repetitive bending of the spine required to perform this exercise such that this ideal 

muscle targeting exercise may be deemed completely in appropriate for some patient 

populations with motion intolerant low back pain. Thus, muscle activation as well as the resulting 

joint and tissue loading ought to be considered when designing exercise protocols. Providing a 

single source of the most commonly used exercises will enable clinicians to integrate the cost and 

benefit trade-offs of each exercise.  

 The purpose of this study is to quantify the demands and the exposure of commonly used 

rehabilitation exercises in order to inform clinical practice of: one, progressive activation 

strategies for targeted muscle groups and; two, joint kinematic and kinetic demands at the hip 

and spine; collectively in order to elucidate the requirements of popularized rehabilitation 

exercises. This information can then be used to develop clinical recommendations across the 

spectrum of hip and spine conditions. Characterizing and describing these exercises and creating 

an atlas or lookup table so that a clinician can choose an exercise based on what is tolerable, 

determined from a specific assessment of the disorder, thereby increasing the precision of 

exercise prescription for each individual’s specific needs and capabilities.  

The first phase of the Hip Rehabilitation Atlas (HRA) examined the “hip hinge squat” and five 

modifications to this exercise for comparison. It was hypothesized that muscle activation, joint 

movement demands, and joint loads will differ between squat sub-types.  Specific hypotheses to 

each squat type are listed here:  

1. Hip Hinge Squat (HHS) 
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I. Will have moderate peak angles, forces and moments compared to the other 

sub-types of squats.   

2. Bosu Ball Squat (BOSU) 

I. Will have higher muscle activation then HHS in all muscle groups.  

3. Adductor Ring Squat (ARS) 

I. Will have a lower Abduction angle then HHS, BOSU, ABS. 

II. Will have higher ADD activation then HHS.  

III. Will have a higher adduction and medial rotation moment then all other sub-

types.  

4. Single Leg Squat (SLS): 

I. Will have the lowest flexion and abduction angle.  

II. Will have the highest muscle activation in all hip muscles (TLF, GMED, GMAX, 

ADD, HAM, QUAD).   

III. Will have the highest joint compression and medial shear force as well as the 

highest extension and adduction moments and the lowest abduction.  

5. Abductor Band Squat (ABS) 

I. Will have higher GMAX activation than the HHS.  

 6.2 Methods  

A group of healthy males performed a series of hip rehabilitation exercises for the purposes 

of quantifying muscle and joint loading demands. An anatomically detailed model driven with 

biological signals obtained from the individual enables tissue load estimates sensitive to the 

unique strategies employed with each repetition of each exercises in each person.  
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 6.2.1 Participants 

A healthy group of twenty males volunteered to participate in this study forming a sample of 

convenience. Participants were young  and healthy (mean age of 21 (±1.89) years; mean mass of 

81.97 (±15.00) kg; height of 1.78 (±0.07) m) with no current (within the last six months) reports 

of any back or hip injury for which they had required treatment from a health professional. In 

addition, they were not experiencing any form of back, hip or lower limb pain or discomfort. 

Participants were excluded if they had any history of a major injury, surgery, or known congenital 

anomalies of the torso, pelvis hip or lower extremity. Participants were asked refrain from any 

form of moderate to high intensity exercise for a 48-hour period prior to their testing day.  

 6.2.2 Tasks and Apparatus  

Participants were asked to perform a series of exercises after a short accommodation phase 

to refine the technique of each exercise. Each exercise was performed until three satisfactory 

trials were collected. A satisfactory trial was observed when the task was formed, balance was 

maintained, and accurate movement patterns and timing was performed as would be coached 

in a clinical setting. An illustration and description of the exercises can be found in Table 6.1.   

The Bosu™ ball is a semi-domed rubber inflaTable ball with a hard-rigid plastic on one side 

providing a platform for standing. In this study the Bosu™ ball was used with rubber inflaTable 

side down and participants stood on the rigid plastic surface. The Bosu™ is shown in Figure 6.1. 

A Palates adductor ring was used to provide resistance to the adductor squeeze squat. It is a 

standard size and resistance (Figure 6.2). Finally, a green mini-band was used from Perform 

Better™ for the knee abduction squat (Figure 6.3). 
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6.2.3 Procedure   

 Each participant was acquainted with the laboratory, testing procedures and exercises 

prior to signing informed consent documents which were approved by the office of research 

ethics. Participants wore their own tight-fitting shorts or a pair of laboratory bicycle shorts that 

permitted the use of surface EMG recordings and kinematic motion capture. Participants also 

removed their shirt during testing, so it did not obscure the reflective markers for motion 

capture. The subjects were then prepared for electromyographic (EMG) recordings. The skin was 

shaved, cleaned, and abrading with Nuprep to exfoliate the skin, alcohol was used to remove any 

residue and debris. Next, the EMG (Ag-AgCl) surface electrodes pairs were placed in bi-polar 

configurations with a center to center distance of 2.5 cm, parallel to the muscle fiber orientation. 

Electrodes were placed on six torso muscle bilaterally including: Rectus Abdominis (RA), External 

Oblique (EO), Internal Oblique (IO), Lower Erector Spinae (LES), Upper Erector Spinae (UES) and 

Latissimus Dorsi (LAT); as well as bilaterally over six hip muscles: Tensor Fascia Latae (TFL), 

Gluteus Medius (GMed), Gluteus Maximus (GMax), Rectus Femoris (QUAD), Adductor Longus 

(ADD), Semitendinosus (HAM). Each electrode was then held in place with HypafixTM and the EMG 

amp was secured with clear tape (positioning is shown in Figure 6.4).  

 

Figure 6.1: Bosu™ ball with a semi-domed rubber and firm plastic platform.  
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Table 6.1: Squat variations with illustrations and descriptions.  

1) Hip Hinge Squat (HHS) 

 

The hip hinge squat is a common 

rehabilitation pattern. The hip is used as 

the dominate joint sparing the spine and 

knees which only move to accommodate 

motion at the hip joint. The arms were used 

as a counterbalance and take from the side 

to the front as the hips move back and 

down during the squat. This technique 

formed the foundation for each 

modification and was adopted in each sub-

category of squat technique. This would be 

most accurately referred to as the “Hip 

Hinge – Counter Movement Squat”.   

2) Bosu Ball Squat (BOSU) A semi-domed “Bosu” ball with a rigid 

platform was used to perform a squat. The 

air filled dome provides an unsTable 

surface (the rigid plastic surface) requiring 

the participant to balance and control the 

surface while squatting.   

3) Adductor Ring Squat (ARS) A Pilates ring was placed just distal to the 

knee joint on the medial condyles of the 

tibia and the participants were asked to 

squeeze the ring while performing a hip 

hinge squat.  
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4)  Single Leg Squat (SLS)  The single leg squat was performed on the 

right leg. The left leg was lifted and 

projected to the rear the hands again were 

used for counterbalance.  

5) Abductor Band Squat (ABS) A mini band which forms a loop was placed 

immediately distal to the knee joint. The 

knees were abducted against the 

resistance of the band with a continued 

effort to abduct against the resistance 

during the squat.  

 

 

 

  Figure 6.2: Pilates adductor ring with padded handles and ring structure.  
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Figure 6.3: Green Mini-Band from Perform Better™.  

  

Each participant performed maximal isometric contractions (MVCs) for each muscle (or 

muscle group) so the biological signals could be normalized. For the abdominal muscles five 

abdominal contractions (flexion, lateral bend right and left, and, twist right and left) in a semi-

recumbent posture sitting on a plinth with hips and knees bent to approximately 90 degrees with 

the ankles held in place by one researcher and upper body restrained by the second researcher. 

The ES muscles were normalized with Biering Sorensen test and a modified Biering Sorensen test, 

(i) back extension and then (ii) back extension, gluteal squeeze and latissimus contraction. The 

LAT and GMax were evaluated during this test and their specific MVC tests – the highest 

contraction level was used for normalization. The ADD muscles were tested in a recumbent 

position with the hips and knees flexed with a foam block used to “squeeze” together as both 

ADD groups (right and left) were normalized with a single hip adduction contraction 

simultaneously. The QUAD muscle was normalized in the sitting position with the research 

restraining knee extension. GMax and HAM muscle were normalized using (i) a hip extension and 

(ii) hip extension with knee flexion contraction while laying prone. Finally, the LAT muscles were 

resisted by the researcher in a standing position with the shoulder flexed ~75-80 degrees and 

abducted horizontally ~45 degrees. All MVCs were coached with verbal motivation to produce 

maximal effort. Finally, a quite reference collection was collected. The subject laid completely 
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relaxed, prone and then supine, while a short trial was collected for post processing purposes 

after the collection. Finally, the subjects performed a series of exercises outlined in Table 6.1. 

These exercises are commonly prescribed in clinical settings and are familiar to the researcher 

who has had experience in clinical setting prescribing these exercises.  

Analysis of each exercise included EMG muscle activation patterns, kinematic joint angles and 

model driven joint loading (note: the data collection and processing steps are consistent 

throughout the thesis and are detailed in Appendix D). Combined, this analysis categorized this 

data into a number of different classification spectrums allowing clinicians to make customized 

rehabilitation programs tailored to the patient based on some combination of observed clinical 

objectives (i.e. activation profile, joint ROM, loading profile). For example, an elderly patient may 

want low joint load to prevent hip fracture, and moderate gluteal activation to enhance the 

performance of stair ascents. Yet, another patient may wish to maximize external rotation 

capacity without regard for joint loading due to the specific demands of an athletic endeavor. 

This atlas will inform rehabilitation programs and clinical decision making for hip and spine 

conditions beyond anything currently available to the clinician.  

6.2.1. Statistical Analysis  

 One-way repeated measures ANOVA was used to evaluate the five squat types on several 

outcome variables defined in the hypotheses. Testing homogeneity of variance was done with 

Mauchly’s test of Sphericity. If the differences in variance were significant then the Greenhouse-

Geisser modification was used to account for the differences in variance.  The presentation of 

squat type was randomised in a number generator using MATLAB to avoid issues with order 
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effects and learning. Pair-wise differences were evaluated when the ANOVA test indicated a 

difference within the groups and a Least-Significant-Difference was used to evaluate multiple 

comparisons. For the squat pattern types the right-side analysis includes all 5 sub-types. The left 

side purposely omits the SLS as all subjects performed this exercise on only the right side.  

 

Figure 6.4: Twenty-Four EMG channels will be collected including 6 bilateral core muscles 

(Rectus Abdominis (RA), External Oblique (EO), Internal Oblique (IO), Lower Erector 

Spinae (LES), Upper Erector Spinae (UES), and Latissimus Dorsi (LD))  and 6 bilateral 

hip/leg muscles (Rectus Femoris (RF), Tensor Fascia Latae (TFL), Gluteus Medius 

(GMed), Gluteus Maximus (GMax), Biceps Femoris (BF), and Adductor Longus (ADD).  

 

 

6.3 Results  

An overview of the results indicated that neuromuscular patterns and movement patterns 

alter joint and tissue loads. The result will be divided into the following sections: movement 

patterns, motor patterns and joint loads.  

 6.3.1 Movement Patterns 

Hip hinge squats have a low kinematic demand on the spine. The mean (SD) angles during the 

hip hinge squat patterns are shown in Table 6.2. When comparing the peak spine flexion across 



 

 

205 

 

the five squat types showed significantly more spine peak flexion angle in the adductor ring squat 

compared to all other types (Table 6.3).  

 

Table 6.2: Descriptive data for mean spine angle (degree) across five squat sub-

types.  

Squat Type Spine Flex 

(deg) 

Spine Bend 

(deg) 

Spine Twist 

(deg) 

HHS -6.09 (7.9) 0.91 (1.9) 0.11 (1.1) 

BOSU -7.46 (7.4) 0.48 (2.2) 0.21 (1.3) 

ARS -10.64 (8.6) 0.35 (2.1) 0.35 (1.2) 

SLS -6.35 (7.4) 2.30 (1.9) -0.07 (1.1) 

ABS -6.70 (7.61) 0.69 (2.0) 0.31 (1.3) 

 

Table 6.3: Peak spine flexion angle during five squat types and statistical 

analysis.  

Squat Type 

Peak Flexion 

Angle (Deg) 

Mean (SD) 

Repeated Measures 

ANOVA 

Pairwise comparisons 

(ARS vs others) 

HHS -13.18 (9.1) Mauchly’s Test of 

Sphericity = 0.146, 

p=0.005 

 

Greenhouse-Geisser 

F=5.257, df=2.407, 

p=0.007 

0.005 

BOSU -14.99 (10.0) 0.036 

ARS -20.95 (12.8) --- 

SLS -13.73 (9.1) 0.013 

ABS -15.3 (8.8) 0.029 

 

Hip angles differed between squat type. Peak flexion angles were 98.9 (10.9), 98.3 (8.6), 

94.1 (11.6), 91.9 (7.7), and 97.3 (11.6), for the HHS, BOSU, ARS, SLS, ABS, respectively, for the 
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right hip. Mauchly’s Test of Sphericity was not significant (p=0.24). The repeated measures 

ANOVA revealed a significant difference between groups (F=6.004, p < 0.001). Pair-wise 

comparisons with LSD showed that the HHS and BOSU were performed with more hip peak 

flexion than the ARS and SLS (1v3, p < 0.01; 1vs4 p < 0.01; 2v3 p < 0.05; 2v4 p < 0.001). The ARS 

version was also less flexion then the Abductor Squat (p < 0.05). For the left hip peak flexion 

angles were similar with values of 98.1 (11.9), 96.9 (9.8), 89.7 (17.1), and 92.3 (22.8), for the HHS, 

BOSU, ARS, and Abductor Band, respectively, for the right hip. Statistical significance was not 

reached likely due to the higher variability in the left hip peak flexion angle during the ARS, and 

Abductor Band.  

The hip abduction angles also differed significantly between squat types. The right hip 

abduction angles of -18.9 (4.5), -17.4 (7.4), -13.4 (4.4), -6.9 (8.5), and -21.0 (7.9), for the HHS, 

BOSU, ARS, SLS, ABS, respectively. These were different overall according to the ANOVA test 

(F=12.589, df=4, p<0.001). The SLS had the lowest peak abduction angle compared to the HHS (p 

< 0.001), BOSU (p < 0.001), SLS (0.012), ABS (0.001); followed by the ARS compared to the HHS 

(p < 0.001), BOSU (0.045), and Abductor Band (p < 0.01). On the left side there was also observed 

differences with the ANOVA (F=5.010, df=3, p = 0.005). Similarly, the left hip peak abduction was 

smallest in the Adduction Ring squat 15.6 (4.2) degrees compared to the HHS at 20.5 (3.9) 

degrees (p < 0.001) and ABS at 21. 2 (6.5) degrees (p < 0.01).  

There were no differences in the medial and lateral rotation across the hip angles which 

were all relatively neutral in position with peak external rotation angles of -0.8 (7.4), 0.11 (7.3), 

1.9 (8.3), 1.0 (7.8), and 0.8 (6.6) for the HHS, BOSU, ARS, SLS, ABS, respectively, on for the right 
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hip. Similarly, for the left hip the peak external rotation values were relatively neutral at -0.7 

(6.1), 0.3 (6.5), -3.1 (6.1), 0.1 (7.6), respectively, for the HHS, BOSU, ARS, SLS and ABS.  

 

6.3.2 Motor Patterns  

Examining the time histories for the neuromuscular patterns revealed peak EMG would be 

most appropriate measure for analysis given the discrete nature of the squat. Displayed in 

Figure 6.5 are the median of three trail peak EMG for each subject were used to calculate mean 

values with standard deviation (SD) for the group by squat type.  

The right TFL revealed significantly higher peak activation level (Mauchly’s Test = 0.038, p < 

0.001; Greenhouse-Geisser F = 4.738, df = 2.059, p = 0.016) with pairwise comparisons showing 

the ARS produced higher values with a mean score of 20.2 (±20.9) %EMG then the HHS (p < 0.05) 

and the ABS (p = 0.05), and only trending higher than the BOSU (p = 0.063). Similarly, the SLS 

produced higher peak activation levels at 21.6 (±18.0) then the HHS (p < 0.01), BOSU (p < 0.01), 

and the ABS (p = 0.01). GMax on the right side showed a difference between conditions 

(Mauchly’s Test = 0.460, p = 0.385; F = 12.972, df = 4, p <0.001) and pairwise comparisons showing 

both the SLS and the ABS producing higher peak scores (29.6 (15.6) and 18.0 (12.6), respectively) 

than the HHS  (p < 0.001, p < 0.05, respectively), BOSU (p <0.001, p <0.05, respectively) and the 

ARS (p <0.01, p <0.05, respectively). GMed (49.4 (25.8)) on the right side revealed a statistically 

significant difference between conditions (Mauchly’s Test = 0.286, p < 0.08; F = 18.540, df = 4, p 

< 0.001) and pairwise comparisons showed that the SLS was different form all other sub-types 

(HHA 21.3 (26.4), p <0.001; BOSU 20.7 (24.1), p <0.001; ARS 20.4 (17.6), p <0.001; ABS 21.3 (21.7), 
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p <0.001). The right ADD group was not significantly different across sub-types of squats 

(Mauchly’s Test = 0.078, p < 0.001; Greenhouse-Geisser F = 0.989, df = 1.934, p = 0.066). Right 

HAM EMG was similar to GMED with an overall difference (Mauchly’s Test = 0.058, p < 0.001; 

Greenhouse-Geisser F = 7.022, df = 2.474, p = 0.002) and only the SLS (17.8 (13.9)) was different 

than the other sub-types (HHA 9.8 (13.1), p = 0.004; BOSU 11.1 (12.2), p = 0.007; ARS 9.9 (9.2), p 

= 0.008; ABS 7.6 (9.7), p = 0.001). Finally, the right QUAD showed a general trend of progressive 

increases from HHS towards the SLS and ABS. Examining the results with statistical analysis 

showed a difference overall (Mauchly’s Test = 0.376, p < 2.09; F = 4.127, df = 4, p < 0.005). 

Pairwise comparisons showed that the SLS (41.7 (26.7)) was significantly higher activation than 

the HHS (23.8 (20.6) p = 0.007) and the BOSU (30.6 (21.9) p =0.041). Similarly, the ABD at a mean 

activation of 37.5 (27.2) was also different form the HHS (p = 0.020) but only trended different 

form BOSU (p = 0.061).  

 
Figure 6.5: Mean and standard deviation (SD) bars for the median peak EMG values for each 

squat sub-type by neural driver. 

0

10

20

30

40

50

60

70

80

TFL GMAX GMED ADD HAM QUAD

%
 E

M
G

 

Squat Type by Muscle 

Normal Bosu Adductor Ring Single Leg Abductor



 

 

209 

 

 

 6.3.3 Joint Loads  

Examining the HSM estimated spine and hip loads during the squat sub-types demonstrated 

consistent loading profiles for the spine, with the exception of the lateral bend moment in the 

SLS, while migrating joint demands at the hip. Spine loads during the squat variations revealed 

no difference in peak compression (Table 6.4) peak anterior shear (Table 6.5), and peak flexion 

moment (Table 6.6). Spine lateral bend moment was statistically different in the SLS (Table 6.7); 

as would be expected with a single leg support.  

Table 6.4: Spine compression peaks (minimum) estimated from HSM for five 

squat types.  

Squat Type 
Mean (SD) 

Compression (kN) 

Repeated Measures 

ANOVA 

HHS -1.909 (0.790) Mauchly’s Test of 

Sphericity = 0.159            

p= 0.007 

 

Greenhouse-Geisser 

F=1.528, df=2.250, 

p=0.232 

BOSU -1.927 (0.770) 

ARS -1.877 (0.685) 

SLS -2.063 (0.751) 

ABS -1.887 (0.753) 
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Table 6.5: Spine AP shear peaks estimated from HSM for five squat types. 

Squat Type 
Mean (SD) 

AP Shear (N) 

Repeated Measures 

ANOVA 

HHS 109.8 (41.6) 
Mauchly’s Test of 

Sphericity = 0.188              

p = 0.015 

 

Greenhouse-Geisser F= 

0.706, df=2.627, p=0.537 

BOSU 107.7 (29.0) 

ARS 113.0 (23.7) 

SLS 117.7 (40.1) 

ABS 116.7 (35.1) 
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Table 6.6: Spine Flexion Moment peaks estimated from HSM for five squat types.  

Squat Type 

Mean (SD) 

Flexion Moment 

(Nm) 

Repeated Measures 

ANOVA 

HHS 100.5 (46.6) 
Mauchly’s Test of 

Sphericity = 0.217,              

p = 0.027 

 

F=0.765, df=4.474, 

p=0.498 

BOSU 98.4 (42.9) 

ARS 93.3 (38.0) 

SLS 101.8 (40.8) 

ABS 98.0 (44.3) 

 

 

Table 6.7: Spine Lateral Bend Moment peaks estimated from HSM for five squat 

types.  

Squat Type 

Mean (SD) 

Flexion Moment 

(Nm) 

Repeated Measures 

ANOVA 

Pairwise 

comparisons 

(SLS vs 

others) 

HHS -17.0 (10.0) 

Mauchly’s Test of 

Sphericity = 0.545,              

p = 0.584 

 

F=11.783, df=4, p<0.001 

<.001 

BOSU -19.3 (9.6) <.001 

ARS -18.7 (11.5) .001 

SLS -28.0 (12.6) --- 

ABS -19.4 (10.2) .001 
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Hip loads, both forces and moments, differed between squat sub-types in many directions 

and squat-types. Peak compression force of the right hip during the SLS was approximately 

double that of the other squat variations (Table 6.8). Peak anterior shear force showed several 

important differences. Namely, the HSS was less than all types except the BOSU, which was only 

a trending difference; at the other end the SLS and ARS where higher than all other sub-types 

(Table 6.9). While medial shear force was significantly higher once again in the SLS by 

approximately 40% (Table 6.10). Peak hip extension moment for SLS was significantly higher and 

nearly double the other sub-types (Table 6.11). The peak adduction moment in the SLS was 

approximately three times greater than all sub-types and significantly different from the 

comparisons (Table 6.12). The peak medial rotation moment was significantly greater in the ARS 

version compared to the BOSU and SLS, while showing strong trends of a higher magnitude over 

the HHS and ABS. On the other hand, the SLS was significantly lower than all other comparison 

squat-types (Table 6.13). Finally, in the medial-lateral plane: peak medial rotation moment was 

significantly greater in the ARS sub-type (Table 6.14); and the SLS was significantly higher than all 

other comparisons with many additional differences with sub-types demonstrated in Table 6.15. 
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Table 6.8: Right Hip compression peaks estimated from HSM for five squat types.  

Squat Type 
Mean (SD) 

Compression (kN) 

Repeated Measures 

ANOVA 

Pairwise 

comparisons 

(SLS vs others) 

HHS 1.224 (1.1) Mauchly’s Test of 

Sphericity = 0.120, p = 

0.002 

 

Greenhouse-Geisser 

F=16.665, df=2.437,           

p < 0.001 

<0.001 

BOSU 1.209 (0.6) <0.001 

ARS 1.301 (0.5) <0.001 

SLS 2.505 (0.9) --- 

ABS 1.332 (0.8) 0.001 

 

 

Table 6.9: Right Hip AP Shear peaks estimated from HSM for five squat types.  

Squat 

Type 

Mean (SD) 

AP Shear (kN) 

Repeated 

Measures ANOVA 

Pairwise 

comparisons   

(HHS vs 

others) 

Pairwise 

comparisons   

(SLS vs 

others) 

Pairwise 

comparisons   

(ARS vs 

others) 

HHS -1.680 (0.83) Mauchly’s Test of 

Sphericity = 0.218,             

p = 0.027 

 

Greenhouse-

Geisser F= 7.265, 

df=2.138, p=0.002 

--- .000 .002 

BOSU -1.909 (1.02) 0.062 .001 .074 

ARS -2.267 (0.98) 0.002 .280  

SLS -2.410 (1.08) <0.001 --- .280 

ABS -2.024 (1.11) 0.69 .023 .028 
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Table 6.10: Right Hip ML shear peaks estimated from HSM for five squat types.  

Squat Type 
Mean (SD) 

ML Shear (kN) 

Repeated Measures 

ANOVA 

Pairwise 

comparisons 

(SLS vs others) 

HHS -1.394 (0.80) Mauchly’s Test of 

Sphericity = 0.122, p = 

0.002 

 

Greenhouse-Geisser 

F=7.788, df=2.223, 

p=0.001 

0.003 

BOSU -1.309 (0.68) 0.002 

ARS -1.452 (0.44) 0.005 

SLS -2.010 (0.87) --- 

ABS -1.476 (0.63) 0.018 

 

 

Table 6.11: Right hip peak extension moment estimated from HSM for five squat 

types.  

Squat Type 

Mean (SD) 

Extension 

Moment (Nm) 

Repeated Measures 

ANOVA 

Pairwise 

comparisons   

(SLS vs others) 

HHS -52.3 (30.9) Mauchly’s Test of 

Sphericity = 0.103,       

p =0.001 

 

Greenhouse-Geisser   

F= 12.861, df=1.974, 

p<0.001 

<.001 

BOSU -53.8 (34.1 <.001 

ARS -55.33 (33.9) <.001 

SLS -102.5 (52.9) --- 

ABS -64.0 (30.3) .012 
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Table 6.12: Right hip Abduction rotation moment peaks estimated from HSM for 

five squat types.  

Squat Type 
Mean (SD) 

Moment (Nm) 

Repeated Measures 

ANOVA 

Pairwise 

comparisons 

(SLS vs others) 

HHS -27.0 (19.2) 
Mauchly’s Test of 

Sphericity = 0.166, p = 

0.009 

 

Greenhouse-Geisser 

F=17.698, df=2.189, 

p<0.001 

<.001 

BOSU -27.2 (24.0) <.001 

ARS -26.8 (20.1) <.001 

SLS -75.3 (31.5) --- 

ABS -30.9 (21.3) .001 

 

 

 

Table 6.13: Right hip adduction moment peaks estimated from HSM for five 

squat types.  

Squat Type 
Mean (SD) 

Moment (Nm) 

Repeated Measures 

ANOVA 

Pairwise 

comparisons 

(ARS vs others) 

Pairwise 

comparisons 

(SLS vs 

others) 

HHS 12.3 (26.2) Mauchly’s Test of 

Sphericity = 0.165,      

p = 0.008 

 

Greenhouse-Geisser 

F=6.712, df=2.161, 

p=0.003 

.055 .043 

BOSU 13.2 (18.2) .043 .002 

ARS 26.6 (25.8) --- .001 

SLS 2.3 (19.1) .001 --- 

ABS 13.6 (24.7) .051 .007 
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Table 6.14: Right hip medial rotation moment peaks estimated from HSM for 

five squat types.  

Squat Type 
Mean (SD) 

Moment (Nm) 

Repeated Measures 

ANOVA 

Pairwise 

comparisons 

(ARS vs others) 

HHS 11.2 (25.3) Mauchly’s Test of 

Sphericity = 0.066, p < 

0.001 

 

Greenhouse-Geisser 

F=5.131, df=2.387, 

p=0.008 

.011 

BOSU 13.3 (28.7)  .034 

ARS 28.7 (26.4) --- 

SLS 7.2 (22.0) .010 

ABS 9.3 (25.1) .010 

 

 

Table 6.15: Right hip lateral rotation moment peaks estimated from HSM for five 

squat types.  

Squat 

Type 

Mean 

(SD) 

Moment 

(Nm) 

Repeated 

Measures 

ANOVA 

Pairwise 

comparisons 

(HHS vs 

others) 

Pairwise 

comparisons 

(BOSU vs 

others) 

Pairwise 

comparisons 

(ARS vs 

others) 

Pairwise 

comparisons 

(SLS vs 

others) 

HHS 
-25.5 

(8.3) Mauchly’s 

Test of 

Sphericity = 

0.083, p < 

0.001 

 

Greenhouse-

Geisser 

F=16.866, 

df=1.910, 

p<0.001 

--- .018 .003 <.001 

BOSU 
-19.4 

(6.3) 
.018 --- .316 <.001 

ARS 
-17.7 

(8.0) 
.003 .316 --- <.001 

SLS 
-45.3 

(20.5) 
<.001 .000 <.001 --- 

ABS 
-27.4 

(12.3) 
.556 .031 .008 .009 
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6.4 Discussion   

The primary result of this study demonstrates that variations of an exercise influence joint 

angles, muscle activation patterns and joint loads. Specifically, during the squat exercises tested 

here, variation in demands on the spine where relatively low while much more variation existed 

at the hip. The range of motion in the spine were low, with small peak angles and minimal 

deviation from neutral postures. Hip demands were not so straight forward with several 

differences of note between exercises. The neuromuscular demands limited the depth of squat 

during the SLS (reduced hip flexion angle). The SLS was also performed with less abduction angle 

as the mass needed to be stacked over the support limb. Thus, the motor patterns at the hip 

were consistent with the hypotheses, the SLS had increased demand on all muscles with the 

exception of the adductors which were similarly activated among all exercises. GMAX was higher 

in activation during the SLS and the ABS. Interestingly, TFL activation was also high during the 

ARS implying a higher demand of co-contraction then was expected. Finally, examining the 

loading profiles the spine again was very conservative with joint loads well below previously 

established guidelines bases on laboratory standards (3400 N of compression and 500 N of 

anterior shear, McGill 2016). Once again, however, the lessons on the hip are more variable with 

each exercise variation. The SLS had higher compression, anterior and medial shear as 

hypothesized. The extension moment was also higher for SLS, in fact, nearly double the 

comparison squats (6.10). The adduction demand showed the SLS to be the highest indicating 

the high demands for balance and control. While the ARS was a demanding variation creating a 

relatively higher abduction moment compared to the other sub-types. Finally, the medial 
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rotation moment was the highest in ARS as predicted. Summarised below are the results 

referenced to each specific hypothesis:  

1.  Hip Hinge Squat (HHS) 

I. The HHS will have moderate peak angles, forces and moments compared to 

the other sub-types of squats – Accepted.  

2. Bosu Ball Squat (BOSU) 

I. The BOSU will have higher muscle activation then HHS in all muscle groups.  

3. Adductor Ring Squat (ARS)  

I. ARS will have a lower Abduction angle then HHS, BOSU, ABS – Accepted. 

II. ARS will have higher ADD activation then HHS – Rejected.  

III. ARS will have a higher adduction and medial rotation moment then all other 

sub-types – Accepted.  

4. Single Leg Squat (SLS): 

I. SLS will have the lowest flexion and abduction angle – Accepted.  

II. SLS will have the highest muscle activation in all hip muscles (TLF, GMED, 

GMAX, ADD, HAM, QUAD) - Accepted conditionally.  

III. The SLS will have the highest joint compression and medial shear force as well 

as the highest extension and abduction moments and the lowest abduction - 

Accepted Conditionally.  

5. Abductor Band Squat (ABS) 

I. ABS will have higher GMAX activation than the HHS – Accepted.  
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The objective was to rank exercises for movement, load, and muscle activation to guide 

prescription. The data supports the notion that clinicians can preferentially activate lateral hip 

abductors when performing single leg squats justifying its consideration for those patients 

requiring a preferential hip abduction activation strategy. However, the resultant higher levels of 

joint loads may be contraindicated for some. Reviewing the influence of squat type on spine load 

suggests some consideration for biological relevance. The higher demands of a SLS on the spine 

versus the comparisons might have relevant contraindication in some clinical sub-sets. When 

examine loading patterns across all sub-types the HHS and ABS versions were often ranked lower 

(although only trends) this could have biological significance. Both of these techniques are taught 

to patients with back pain in order to reduce symptoms of low back pain associated with ADLs, 

such as, getting in or out of a chair. In this population the biological relevance of a 50% less lateral 

bend moment (or more in some clusters of the population) may make the difference in whether 

pain is triggered – or not. Statistical significance matters little to the patient struggling to tune 

the technique to eliminate pain. Thus, providing clinicians with this robust analysis of motions, 

motor patterns, and loads may facilitate higher efficacy with improved guidance for clinical 

decision making.  

This study is not without limitation. The sample size is small with many comparisons with is 

consideration when examining the results. However, this type of detailed analysis is extensive 

and extremely costly with respect to time and resources. The population studied was healthy 

young males. Extrapolating to the capabilities of all patient populations may be difficult. 

However, this is the first step towards a broadly described atlas of motion, activation patterns 
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and joint loads – more specific details on patient populations can be updated in the future to 

enhance the application of this work to a wider distribution of patients and conditions.  

 The hip rehab atlas will develop in time as other look up Tables for rehabilitation exercises 

have, for example in the spine (McGill 2016). This author is not aware of any other comprehensive 

work that offers detailed description of motions, postures, and loads in one resource. Several 

studies have reported isolated motor patterns during hip rehabilitation but lack description of 

joint and muscle demands. In conclusion, success in progressing rehabilitation exercises require 

an understanding of tolerance and ensuring the dose of demands is below this biological tipping 

point. This data offers guidance to the clinician to arrange tolerable progressions of exercise. 

Future work will expand the atlas for usage with different patients, and different protocols 

considering goals such as enhancing strength, or endurance, or motor control, to name a few. 

This long-term goal is to enhance precision medicine, with precision assessment and precision 

intervention for more effective rehabilitation practices in a patient centered, individualised 

medicine framework.  

  



 

 

221 

 

7.0 Global Discussion of the Thesis: Hip-Spine Mechanics   

This thesis addressed the gap in the current knowledge of the relationships between hip and 

spine mechanics aided with the development of an anatomically detailed, biologically driven, 

HSM. The range of investigation included a continuum from injury mechanisms to rehabilitation 

through to elements of performance enhancement. An examination of passive hip stiffness 

revealed differences between males and females, particularly in neutral zone characteristics and 

end-range of motion was discovered. The model predicted the behaviour of male passive hip 

stiffness when compared to experimental data with reasonably good success. Examining the 

mechanisms underlying ACL injury risk in females revealed that hip and spine variables differed 

in motion and motor patterns between the DKV groups. The differences in DKV provide insight 

into injury risk and patterns associated with injurious movement behaviours though the linkage. 

Finally, the issue of selecting appropriate rehabilitation exercises was assisted with an 

examination of neuromuscular, kinematic and kinetic patterns and their consequences. The 

model development enabled the probing of several issues that recognized individual differences 

are important and that addressing them will lead to enhanced MSK assessment and treatment 

outcomes.  

The development of the unique HSM, sensitive to individual movement and motor control 

strategies was important and essential to enhance understanding of the interactions between 

hip and spine function. No longer can one expect to understand the function of the spine in 

isolation. Several important contributions were made in this section of the thesis. By simply 

adding the models together the enhanced anatomical function of the psoas major is now 

achievable since this muscle cross and interacts with both joints. The model is the first to add 
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ligaments to hip modeling joint loads. This is an important step for mapping stress distributions 

accurately across passive and active components of the joint. In addition, the model has been 

tested and validated with experimental passive angle-motion data to provide confidence in the 

model performance. Geodesics were also added to the model to provide more accurate model 

predictions at the full range of motion – as previous models were only tested in limited range 

tasks like walking. Similarly, muscle parameters (rest length) were improved to deal with muscle 

length changes throughout the range of motion. These were major enhancements to the current 

model from previous versions as this model can now accurately estimate 3D joint kinetics through 

a full range of flexion-extension and adduction-abduction ROM.  Moreover, the model was used 

with subject data and in the process of using the model it is validated through verification initially 

with comparisons with a linked segment model and then tuned to match the RVC to enhance 

model output accuracy. This process of evaluating the gain provides reassurance that the model 

is sufficiently accurate in estimating joint load as the desired gain is 1.0 the closer the gain to 1.0 

the more confidence in the ability of the mode to represent the individual’s anatomy a, with 

mean gains between 0.82 and 1.14 across all three joints (spine, and right and left hip) for both 

males and females. Therefore, the conclusion can be made that the HSM performed very well for 

the majority of subjects, both males and females. These contributions and modelling 

enhancements are significant advancements and contributions directly resulting from this work. 

Looking towards the future the ground is now prepared to investigate issues with gender 

and ethnicity (and other potential sub-groups) that influence differential rates of orthopaedic 

disease and injury. Eventually, the development of scaling factors for the model state variables 

and will enhance predictions and provide insights into patterns of dysfunction that cluster groups 
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of people, and specific sports, and specific occupations. For example, the examination of hip and 

spine function in search for mechanisms which assist in the understanding of ACL injury risk 

revealed a number of statistically and biologically significant factors that dichotomised knee 

valgus groups. This knowledge will lead to the development of more precise intervention 

strategies and rehabilitation approaches to address these mechanisms which contribute to ACL 

injury risk. Finally, analysis utilizing the HSM to assess variables linked with exercise technique 

highlighted the importance in being sensitive to individual differences and movement strategies. 

People are different. Their injury patterns form clusters around their mechanics. This thesis has 

appreciation for the notion that precise prescription of exercise progressions is justifiable once 

the individual differences are recognised.  

More work in the future is needed to refine many assumptions in the model. However, the 

model had given some direction as to where the efforts need to be directed. Creating passive 

stiffness tuning to the individual, adding muscle and joint stiffness predictions, and even 

accounting for asymmetries identified in a clinical examination to model parameters would 

enhance the adaptability of the model to a wider ranger of individuals. Not to mention an option 

for a virtual female pelvis with all the associated anatomy. These advancements will develop in 

time with more access to these base parameters and the pursuit of experimental data to support 

the further development and refinement of the model.  

The contributions from the three, primarily experimental, studies are significant and worth 

mentioning in some detail. The passive angle-moment study was the first attempt to evaluate bi-

planar passive motion at the hip in vivo and it was done in males and females. Normative data 
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now exists for passive ROM and this data has been used to validate the current modelling 

approach. Next, the ACL injury mechanism study was a major step forward to reveal mechanisms 

behind the differences in DKV among females who are at risk for ACL injuries. Identifying the 

motor patterns and resulting EMG driven force profiles which differentiate HVG and LVG has the 

potential to lead to more precise interventions and control strategies to prevent injury and 

enhance performance. Finally, the evaluation of rehabilitation strategy and the modification of 

exercises will lead to the enhancement and refinement of exercise prescription leading to the 

development of more individualised care for improved patient outcomes. All of these 

contributions are highlighted by the ability to capture new information from the utilization of the 

newly developed HSM. The model pulls together movement, neural control, and posture while 

estimated the resulting joint loads providing an enhanced understanding of the function or 

disfunction of the system for the first time all at once.  

In conclusion, the development of the model and respective themes of this study support the 

notion that individualised medicine for MSK disorders, specifically those related to the hip and 

spine, is not only possible but a worthwhile pursuit. Directing interventions to the mechanism of 

injury through matched intervention strategies form rehabilitation beyond recovery and on to 

performance is the overarching goal of this work. This will goal will lead to the improvement in 

precision medicine for hip and spine disorders.  
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Appendix A: Hip Anatomy Parameters  

The following is taken directly from Horseman and colleges (Horsman et al. 2007).  

Table 1: Attachment sites with respect to the global frame for each muscle and muscle 

section (with the leg in the original fixated position). 

Muscle (part) 
Elem. 

# 
Origin    

 
 Insert.   

  

  X(cm) Y(cm) Z(cm) Segm. e(cm) X(cm) Y(cm) Z(cm) Segm e(cm) 

Add. brev. (prox.) 1 4.62 -1.30 -6.92 Pelvis 0.06 -1.85 -8.34 1.81 Femur 0.08 

 2 5.07 -1.32 -7.12 Pelvis  -1.32 -9.52 1.92 Femur  

Add. brev. (mid.) 3 4.57 -1.82 -7.61 Pelvis  -0.96 -10.75 1.99 Femur  

 4 4.93 -1.84 -7.78 Pelvis  -0.68 -12.02 2.01 Femur  

Add. brev. (dist.) 5 3.86 -2.57 -8.34 Pelvis  -0.39 -13.28 1.97 Femur  

 6 4.09 -2.58 -8.45 Pelvis  0.02 -14.52 1.87 Femur  

Add. long. 1 5.25 -0.92 -6.64 Pelvis 0.03 1.54 -17.44 1.68 Femur 0.07 

 2 5.44 -1.16 -6.89 Pelvis  1.84 -18.64 1.52 Femur  

 3 5.57 -1.37 -7.19 Pelvis  2.16 -19.86 1.44 Femur  

 4 5.63 -1.56 -7.51 Pelvis  2.49 -21.09 1.39 Femur  

 5 5.61 -1.73 -7.85 Pelvis  2.80 -22.31 1.29 Femur  

 6 5.50 -1.88 -8.20 Pelvis  3.07 -23.52 1.10 Femur  

Add. magn. (dist.) 1 -2.10 -7.10 -4.85 Pelvis 0.35 5.66 -36.31 -2.54 Tibia 0.38 

 2 -1.51 -6.71 -5.57 Pelvis  5.66 -36.31 -2.54 Tibia  

 3 0.21 -5.78 -7.03 Pelvis  5.66 -36.31 -2.54 Tibia  

Add. magn. (mid.)  1 -2.79 -6.90 -4.94 Pelvis 0.10 1.82 -19.92 1.43 Femur 0.11 

 2 -2.50 -6.68 -4.53 Pelvis  1.82 -19.92 1.43 Femur  

 3 -2.12 -6.60 -5.53 Pelvis  2.65 -23.01 0.99 Femur  

 4 -1.87 -6.42 -5.18 Pelvis  2.65 -23.01 0.99 Femur  

 5 -1.25 -6.21 -6.24 Pelvis  3.41 -26.12 0.90 Femur  

 6 -1.06 -6.07 -5.98 Pelvis  3.41 -26.12 0.90 Femur  

Add. magn.(prox.) 1 1.86 -4.50 -7.74 Pelvis 0.12 0.03 -10.75 1.54 Femur 0.19 

 2 0.39 -5.33 -6.76 Pelvis  0.55 -12.77 1.52 Femur  

 3 1.13 -4.92 -7.25 Pelvis  1.07 -14.80 1.50 Femur  

 4 1.86 -4.50 -7.74 Pelvis  1.58 -16.82 1.48 Femur  

Bic. fem. CL 1 -3.78 -6.09 -1.71 Pelvis 0.50 1.63 -45.15 4.62 Tibia 0.72 

Bic. fem. CB 1 0.58 -19.35 1.77 Femur 0.17 1.63 -45.15 4.62 Tibia 0.72 

 2 1.81 -23.83 1.34 Femur  1.63 -45.15 4.62 Tibia  

 3 2.68 -28.65 1.60 Femur  1.63 -45.15 4.62 Tibia  

Ext. dig. long. 1 2.49 -51.38 3.75 Tibia 0.23 17.36 -96.59 6.79 Phal. 1.90 

 2 2.90 -47.38 4.50 Tibia  17.36 -96.59 6.79 Phal.  

 3 3.39 -44.82 5.18 Tibia  17.36 -96.59 6.79 Phal.  

Ext. hal. long. 1 4.12 -66.43 3.48 Tibia 0.13 21.52 -93.48 4.97 Phal. 0.33 

 2 3.45 -61.01 3.27 Tibia  21.52 -93.48 4.97 Phal.  

 3 2.89 -55.52 3.48 Tibia  21.52 -93.48 4.97 Phal.  

Flex. dig. long. 1 6.40 -54.90 0.81 Tibia 0.12 17.58 -96.88 5.87 Phal. 2.14 

 2 7.16 -60.18 0.93 Tibia  17.58 -96.88 5.87 Phal.  

 3 7.24 -64.27 1.11 Tibia  17.58 -96.88 5.87 Phal.  

Flex. hal. long. 1 2.22 -58.59 2.83 Tibia 0.13 22.00 -94.84 4.55 Phal. 0.32 

 2 3.01 -63.93 2.81 Tibia  22.00 -94.84 4.55 Phal.  

 3 3.80 -69.41 2.81 Tibia  22.00 -94.84 4.55 Phal.  

Gastrocn. (lat.) 1 3.43 -37.75 2.21 Femur 0.58 2.90 -81.98 -1.89 Hindf. 0.47 

Gastrocn. (med.) 1 5.04 -36.71 -1.48 Femur 0.73 3.01 -82.21 -2.74 Hindf. 0.65 

Gemellus (inf.) 1 -6.50 -4.05 -2.86 Pelvis 0.39 -3.24 0.64 4.28 Femur 0.41 

Gemellus (sup.) 1 -5.56 0.86 -5.02 Pelvis 0.39 -2.11 -0.12 3.72 Femur 0.41 

Glut. max. (sup.) 1 -7.91 7.77 -1.57 Pelvis 0.32 -4.04 5.70 7.47 Femur 0.28 

 2 -8.98 5.51 -3.46 Pelvis  -4.31 2.63 7.74 Femur  

 3 -9.64 2.73 -5.01 Pelvis  -4.73 -0.44 7.99 Femur  

 4 -9.13 8.91 -2.68 Pelvis  -2.40 5.45 7.74 Femur  

 5 -10.33 6.77 -4.69 Pelvis  -2.60 2.37 8.02 Femur  
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 6 -10.94 3.94 -6.19 Pelvis  -3.09 -0.69 8.26 Femur  

Glut. max. (inf.) 1 -10.74 -0.83 -7.52 Pelvis 0.25 -5.61 -7.16 4.07 Femur 0.37 

 2 -9.87 -1.49 -7.31 Pelvis  -5.07 -8.47 3.75 Femur  

 3 -9.05 -2.56 -7.35 Pelvis  -3.66 -10.78 3.38 Femur  

 4 -10.25 -0.16 -6.86 Pelvis  -5.61 -7.16 4.07 Femur  

 5 -9.38 -0.82 -6.65 Pelvis  -5.07 -8.47 3.75 Femur  

 6 -8.65 -2.00 -6.80 Pelvis  -3.66 -10.78 3.38 Femur  

Glut. med. (ant.) 1 0.40 9.48 4.46 Pelvis 0.19 -3.03 -0.25 5.90 Femur 0.19 

 2 1.43 9.03 4.56 Pelvis  -2.25 -0.44 6.19 Femur  

 3 2.49 8.19 4.26 Pelvis  -1.53 -0.54 6.42 Femur  

 4 0.93 9.95 5.22 Pelvis  -3.36 -1.09 6.20 Femur  

 5 1.80 9.36 5.09 Pelvis  -2.68 -1.50 6.56 Femur  

 6 2.81 8.47 4.72 Pelvis  -1.96 -1.60 6.79 Femur  

Glut. med. (post.) 1 -3.88 11.87 2.51 Pelvis 0.39 -3.85 0.88 4.50 Femur 0.04 

 2 -6.02 10.15 -0.41 Pelvis  -4.01 0.86 3.97 Femur  

 3 -6.82 7.21 -2.31 Pelvis  -4.24 0.76 3.62 Femur  

 4 -4.81 13.46 2.07 Pelvis  -3.85 0.88 4.50 Femur  

 5 -7.34 12.41 -1.03 Pelvis  -4.51 0.39 4.66 Femur  

 6 -8.41 9.93 -3.06 Pelvis  -4.76 0.26 4.34 Femur  

Glut. min. (ant.) 1 -0.08 7.89 3.31 Pelvis 0.42 -1.50 -2.27 6.16 Femur 0.65 

Glut. min. (mid.) 1 -2.26 7.55 1.73 Pelvis  -1.50 -2.27 6.16 Femur  

Glut. min. (post.) 1 -4.03 6.51 0.07 Pelvis  -1.50 -2.27 6.16 Femur  

Gracilis 1 1.65 -4.88 -7.39 Pelvis 0.18 7.70 -48.16 0.27 Tibia 0.96 

 2 3.67 -3.46 -7.98 Pelvis  7.70 -48.16 0.27 Tibia  

Iliacus (lat.)  1 -2.95 13.23 2.75 Pelvis 0.34 -2.34 -5.12 0.37 Femur 0.82 

 2 -1.13 11.48 2.92 Pelvis  -2.34 -5.12 0.37 Femur  

 3 -0.34 10.01 2.78 Pelvis  -2.34 -5.12 0.37 Femur  

Iliacus (mid.) 1 -5.58 13.54 0.03 Pelvis 0.27 -2.34 -5.12 0.37 Femur 0.82 

 2 -4.32 11.03 -0.21 Pelvis  -2.34 -5.12 0.37 Femur  

 3 -3.08 8.61 -0.38 Pelvis  -2.34 -5.12 0.37 Femur  

Iliacus (med.) 1 -5.27 12.75 -3.90 Pelvis 0.33 -2.34 -5.12 0.37 Femur 0.82 

 2 -4.67 10.77 -3.51 Pelvis  -2.34 -5.12 0.37 Femur  

 3 -3.68 8.13 -3.61 Pelvis  -2.34 -5.12 0.37 Femur  

Obt. ext. (inf.) 1 -0.04 -4.83 -6.75 Pelvis 0.14 -4.50 -5.54 2.77 Femur 0.59 

 2 1.89 -3.95 -7.98 Pelvis  -4.50 -5.54 2.77 Femur  

Obt. ext. (sup.) 1 3.88 -1.77 -8.02 Pelvis 0.29 -3.09 -1.18 2.56 Femur 0.21 

 2 2.11 -3.26 -7.72 Pelvis  -3.09 -1.18 2.56 Femur  

 3 -0.04 -4.33 -6.87 Pelvis  -3.09 -1.18 2.56 Femur  

Obturator int. 1 -2.22 2.19 -4.19 Pelvis 0.39 -2.68 0.26 4.00 Femur 0.82 

 2 -1.98 0.35 -4.92 Pelvis  -2.68 0.26 4.00 Femur  

 3 -0.93 -1.28 -5.90 Pelvis  -2.68 0.26 4.00 Femur  

Pectineus 1 3.47 1.38 -5.13 Pelvis 0.27 -1.82 -7.67 1.58 Femur 0.12 

 2 3.97 1.03 -5.48 Pelvis  -1.66 -8.54 1.59 Femur  

 3 4.47 0.67 -5.83 Pelvis  -1.50 -9.41 1.60 Femur  

 4 4.97 0.32 -6.18 Pelvis  -1.82 -7.67 1.58 Femur  

Peroneus brev. 1 2.59 -60.53 3.39 Tibia 0.08 7.57 -89.43 3.62 Midf. 0.34 

 2 3.16 -65.19 3.29 Tibia  7.57 -89.43 3.62 Midf.  

 3 3.78 -69.69 3.23 Tibia  7.57 -89.43 3.62 Midf.  

Peroneus long. 1 1.67 -48.99 4.08 Tibia 0.20 7.18 -87.15 3.54 Midf. 0.18 

 2 1.90 -52.73 3.73 Tibia  7.18 -87.15 3.54 Midf.  

 3 2.16 -56.43 3.40 Tibia  7.18 -87.15 3.54 Midf.  

Peroneus tert. 1 4.33 -68.61 3.55 Tibia 0.10 11.08 -92.42 4.51 Midf. 0.41 

 2 3.64 -63.48 3.51 Tibia  11.08 -92.42 4.51 Midf.  

 3 3.08 -58.34 3.49 Tibia  11.08 -92.42 4.51 Midf.  

Piriformis 1 -10.07 2.31 -7.42 Pelvis 0.91 -3.48 0.88 2.74 Femur 0.43 

Plantaris 1 2.83 -38.59 3.73 Femur 1.01 4.51 -81.41 -2.33 Hindf. -- 

Popliteus 1 2.74 -41.05 4.49 Femur 0.35 6.21 -51.18 0.37 Tibia 0.70 

 2 2.74 -41.05 4.49 Femur  4.91 -47.08 -0.08 Tibia  

Psoas minor 1 -5.06 25.28 -5.61 Pelvis 0.78 1.59 -1.79 -0.80 Femur 0.20 

Psoas major 1 -5.74 22.64 -5.56 Pelvis 0.26 -2.34 -5.12 0.37 Femur 0.82 

 2 -2.91 18.44 -5.96 Pelvis  -2.34 -5.12 0.37 Femur  

 3 -2.81 14.20 -5.88 Pelvis  -2.34 -5.12 0.37 Femur  
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Quadratis fem. 1 -0.90 -4.98 -6.30 Pelvis 0.43 -4.65 -2.43 2.81 Femur 0.42 

 2 -1.54 -5.24 -5.50 Pelvis  -4.60 -3.22 2.87 Femur  

 3 -2.17 -5.50 -4.69 Pelvis  -4.54 -4.01 2.93 Femur  

 4 -2.80 -5.76 -3.89 Pelvis  -4.48 -4.80 2.99 Femur  

Rectus fem. 1 3.02 4.27 2.03 Pelvis 0.45 9.46 -35.06 3.48 Patella 0.06 

 2 3.02 4.27 2.03 Pelvis  8.86 -35.03 4.48 Patella  

Sartorius (prox.) 1 3.20 7.49 3.50 Pelvis 0.50 7.94 -47.72 0.38 Tibia 1.06 

Sartorius (dist.) 1 3.20 7.49 3.50 Pelvis 0.50 7.94 -47.72 0.38 Tibia 1.06 

Semimembr. 1 -2.80 -6.61 -2.03 Pelvis 0.71 4.12 -43.84 -2.97 Tibia 0.81 

Semitend. 1 -4.03 -6.07 -2.78 Pelvis 0.49 7.22 -49.29 -0.24 Tibia 0.60 

Soleus (med.) 1 1.85 -54.40 2.79 Tibia 0.45 2.90 -81.98 -1.89 Hindf. 0.35 

 2 1.57 -51.72 2.92 Tibia  2.90 -81.98 -1.89 Hindf.  

 3 0.97 -47.81 3.08 Tibia  2.90 -81.98 -1.89 Hindf.  

Soleus (lat.) 4 7.63 -58.10 0.81 Tibia 0.46 4.18 -81.71 -2.71 Hindf. 0.33 

 5 7.21 -54.96 0.57 Tibia  4.18 -81.71 -2.71 Hindf.  

 6 6.50 -52.52 0.27 Tibia  4.18 -81.71 -2.71 Hindf.  

Tensor fasc. l. 1 2.83 7.99 4.76 Pelvis 0.32 4.68 -38.51 5.40 Tibia 0.40 

 2 2.37 9.01 5.13 Pelvis  4.68 -38.51 5.40 Tibia  

Tibialis ant. 1 5.78 -46.65 4.26 Tibia 0.23 14.55 -87.06 1.79 Midf. 0.38 

 2 6.36 -49.36 3.89 Tibia  14.55 -87.06 1.79 Midf.  

 3 6.38 -54.64 2.94 Tibia  14.55 -87.06 1.79 Midf.  

Tibial post. (med.) 1 5.04 -50.06 2.22 Tibia 0.18 11.30 -83.54 1.54 Midf. 0.55 

 2 5.51 -54.88 2.03 Tibia  11.30 -83.54 1.54 Midf.  

 3 6.12 -61.14 2.09 Tibia  11.30 -83.54 1.54 Midf.  

Tibial post. (lat.) 1 2.91 -54.31 3.38 Tibia 0.13 11.30 -83.54 1.54 Midf. 0.55 

 2 3.74 -61.64 3.13 Tibia  11.30 -83.54 1.54 Midf.  

 3 4.64 -68.75 3.29 Tibia  11.30 -83.54 1.54 Midf.  

Vastus interm. 1 5.41 -22.86 2.55 Femur 0.32 9.46 -35.06 3.48 Patella 0.06 

 2 3.71 -17.44 2.95 Femur  9.46 -35.06 3.48 Patella  

 3 1.62 -11.67 3.74 Femur  9.46 -35.06 3.48 Patella  

 4 4.74 -23.17 3.53 Femur  8.86 -35.03 4.48 Patella  

 5 2.92 -17.81 4.11 Femur  8.86 -35.03 4.48 Patella  

 6 1.01 -11.97 4.64 Femur  8.86 -35.03 4.48 Patella  

Vastus lat. (inf.) 1 2.69 -29.27 2.17 Femur 0.27 8.86 -35.03 4.48 Patella -- 

 2 2.09 -24.72 2.18 Femur  8.86 -35.03 4.48 Patella  

 3 1.19 -20.26 2.39 Femur  8.86 -35.03 4.48 Patella  

 4 -0.01 -15.88 2.81 Femur  8.86 -35.03 4.48 Patella  

 5 -1.51 -11.59 3.44 Femur  8.86 -35.03 4.48 Patella  

 6 -3.30 -7.38 4.28 Femur  8.86 -35.03 4.48 Patella  

Vastus lat. (sup.) 7 -2.66 -3.32 6.10 Femur 0.27 8.86 -35.03 4.48 Patella -- 

 8 -0.90 -1.61 5.16 Femur  8.86 -35.03 4.48 Patella  

Vastus med. (inf.) 1 4.17 -29.43 0.75 Femur 0.40 9.46 -35.06 3.48 Patella -- 

 2 5.25 -29.22 0.78 Femur  9.46 -35.06 3.48 Patella  

Vastus med.(mid.) 3 3.68 -24.91 1.22 Femur 0.40 9.46 -35.06 3.48 Patella -- 

 4 4.73 -24.71 1.26 Femur  9.46 -35.06 3.48 Patella  

Vastus med. (sup.) 5 2.59 -19.76 1.76 Femur 0.40 9.46 -35.06 3.48 Patella -- 

 6 3.55 -19.58 1.79 Femur  9.46 -35.06 3.48 Patella  

 7 1.21 -14.60 2.29 Femur  9.46 -35.06 3.48 Patella  

 8 2.17 -14.42 2.32 Femur  9.46 -35.06 3.48 Patella  

 9 -0.08 -8.01 2.98 Femur  9.46 -35.06 3.48 Patella  

 10 0.42 -7.92 2.99 Femur  9.46 -35.06 3.48 Patella  
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Appendix B: Joint Coordinate Systems  

Table B: Comparing the model outputs and biomechanical definitions for the three modelling 

approaches. 

Model Spine Model Hip-Spine Model Visual 3D 

Coordinate system 

(Superior) 

 

 

 

 

(Rt.) 

 

 

 

(Anterior) 

(Superior) 

 

 

 

 

(Rt.) 

 

 

 

(Anterior) 

(Superior) 

 

 

 

 

(Rt.) 

 

 

 

(Anterior) 

Spine Flexion/Extension -z/+z -z/+z -x/x 

Spine Lateral Bend 

Rt. / Lt.  
x/-x x/-x y/-y 

Spine Axial Twist 

Rt./Lt. 
-y/y -y/y -z/z 

Hip 

Flexion/Extension 
 -z/+z -x/x 

Right Hip  

Adduction/Abduction 
 x/-x y/-y 

Left Hip 

Adduction/Abduction 
 -x/x -y/y 

Rt. Hip Axial Rotation 

Medial/Lateral  
 y/-y -z/z 

Lt. Hip Axial Rotation 

Medial/Lateral  
 -y/y z/-z 

Compression -y -y -z 

A-P Shear -x -x -y 

Spine  

M-L Shear (Rt) 
z z x 

Right Hip  

M-L Shear 
 z x 

Left Hip  

M-L Shear  
 -z -x 

*Where possible to avoid confusion data will be presented using naming conventions  

(i.e. compression rather than symbols (–y)). 

**TLEM data is congruent to the SM and HSM coordinate systems, which follows Wu (2002).  

***These conventions are true for angles, but since internal moments are calculated in V3D the 

polarity is reversed.   

y 

x 

z 

z 

y 

x 

y 

x 

z 
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 Appendix C: Passive Tissue Torque-Angle Curves – Tuning the 

model   

This was an initial attempt to evaluate passive torque-angle curves with the HSM prior to the 

enhancements and changes made in this thesis. Notice the behaviour of the model poorly represents the 

biological data and therefore an explanation of this poor fit was examined. Below are the breakdowns of 

passive force by muscle during the virtual motion of the hip and the subsequent forces produced. There 

was a clear issue with the moment arms since the muscle produced smaller and smaller moments while 

at the same time producing more force with more stretch. The geodesics and wrapping techniques used 

here improved the biofidelity of the model estimates. 

 

 
Figure C1: Mean male passive torque-angle curves and model predictions from 30 degrees of 

extension to 115 degrees of flexion. Currently the model under estimates both flexion and 

extension moments at the hip. There is also an inaccurate trend above ~70 degrees of hip flexion. 

This can be explained by the individual muscle moment arms and errors in moment arm 

estimations.   
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Here are the following muscle contributions which sum to the joint moment.  
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Appendix D: Data Collection, Processing and Analysis 

 Data Collection  

Three-dimensional kinematic data was captured using eight optoelectronic motion capture cameras 

(Vicon MX20+, Vicon Motion Systems, Oxford, UK). These cameras monitored the position of reflective 

markers (Vicon, MX, 12.5mm diameter, Vicon Motion Systems, Oxford, UK) in a free marker (adhered 

individually to the skin) and marker-clusters (fixed to a rigid plate and adhered to the subject). Free 

markers defined segment geometry parameters for V3D each segment is described in Table D1. EMG data 

was collected using 3-8 channel differential amplifiers (AMT-8: Bortec Biomedical Ltd., Calgary, AB, 

Canada) . The AMT-8 amplifiers have an input impedance of 10MΩ, a built-in bandpass analog filter from 

10 to 1000Hz, a CMR of 115dB at 60Hz. EMG signals were analog-to-digital converted (Vicon MX 64-

channel analog-to-digital interface unit, Vicon Motion Systems, Oxford, UK) using a 16-bit converter (Vicon 

MX 20 MX control box, Vicon Motion Systems, Oxford, UK) with a ± 2.5 V range. Finally, two force plates, 

mounted in the floor, were used to capture kinetic data (OR6/7 AMTI Force and Motion, Advanced 

Mechanical Technology, Inc. Waterdown, MA, USA). Force plate calibration matrices and the physical 

location in the global space (laboratory) were pre-assigned to the Vicon Nexus software (Vicon Motion 

Systems, Oxford, UK) for real-time calibrated 3D space during data collection. These data were captured 

using Vicon Nexus 1.8.5 software (Vicon Motion Systems, Oxford, UK) and stored for post-collection 

processing.  
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Table D1: Visual 3D Segments  

 Land Marks  Rigid Body Cluster 

Position  

Segment  Proximal End Distal End    

Torso Lateral most 

aspect of Iliac 

crests  

Acromioclavicular 

Joint 

Over the T12-L1 (4 

markers) 

Pelvis  Lateral most 

aspect of Iliac 

crests 

Greater 

Trochanters 

Over the sacrum 

(5 markers)  

Thigh Greater 

Trochanter 

Femoral 

epicondyles  

Laterally over the 

mid thigh (5 

markers)  

Shank  Femoral 

epicondyles 

Malleoli  Laterally over the 

mid-calf (4 

markers)  

Foot Malleoli Head of the 1st 

and 5th Metatarsal  

Superiorly over 

the dorsum of the 

foot.  

  

Data Processing  

Data processing began in the Nexus software with model templates which labelled the reflective 

markers. Gaps in the kinematic data were filled using the "pattern fill" function (an algorithm which 

generates a trajectory based on a second marker - "parent marker"). When gaps appeared in the data less 

than ten frames (0.166 seconds) they were carefully analysed for an appropriate "parent marker" on the 

same rigid cluster, filled and then carefully examined for consistency in trajectory pattern. Gaps greater 

than ten frames rarely occurred, however when gaps exceeded ten frames, they were either filled or left 

unlabeled based on the ability of the "pattern fill" function to accurately project the trajectory. No gap 

larger than thirty frames was ever filled and it is also important to note that these gaps were rarely, if 

ever, seen in segments of critical importance (i.e. most gaps were seen in the quadruped position on the 

foot clusters - ankle joint angles were not required for analysis in these positions).  Redundancy in the 

rigid marker clusters (four or five markers per cluster) allowed for gaps in single marker tracking and un-
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labelling of poorly tracked markers, which typically occurred when only two adjacent cameras were able 

to detect a marker. However, gaps were filled since additional tracking markers will reduce error in 

kinematic processing described below when a least squares function is used to calculate local coordinate 

systems.  

Data was then batch processed from Nexus software and exported for further analysis. Visual3D 

software (Version 4.96.11; C-Motion Inc., Rockville, MD) was used to calculate kinematic and inverse 

dynamics measures. Visual 3D models were built from anatomical markers and clusters were used to track 

segment position and orientation of each segment during the motion trials. Functional joint centers (FJC) 

and functional joint axes (FJA) were computed from "Functional Joint Center" motion trials during the 

calibration process for the hip and knee, respectively.  For the hip FJC, these trails consisted of a 

circumduction motion, five clockwise and five counter clockwise rotations, with a radius of approximately 

20 cm, bilaterally. For the knee FJA, five continuous cycles of flexion and extension were performed, 

typically from zero to 90 degrees of knee flexion, bilaterally. 

Next, segments were defined as listed in Table D1. Additional anthropometric data (including chest 

depth, pelvis depth and trochanteric width) were collected and used as scaling measures in V3D software. 

Each segment was created from the anatomical markers and tracked in the motion trials with the 

segments’ marker cluster.  Joints were then created between adjacent segments automatically and could 

be modified with desired parameters. The spine was kinematically restricted to 3 degrees of freedom (3 

rotations) as was the hip. The knee was unstrained as was the angle.  

Lastly, processing pipelines were created to filter, process and export the desired output variables. 

The kinematic data were low pass filtered at 6 Hz and the kinetic data were low pass filtered at 15 Hz. The 

Visual 3D pipelines were then used to calculate joint angles, forces and moments at the spine, hips and 

knees, which were exported and used for analysis or input variables into the HSM.  
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Appendix E: Model Congruency  

Below are representative Figures of the MATLAB program which was constructed to evaluate moment 

outputs form the HSM and inverse dynamics estimations and select the regions of the moments used to 

calculate the gain factor. As you can see the HSM, driven by EMG, response is less sTable then the inverse 

dynamics estimates. Nonetheless the magnitude and congruence are subjectively excellent. Below – 

Subject 6 ACL setting the “gain” values for RHip, LHip, and Spine.  

 

 
Figure E.1: Screen shot of HSM running a MATLAB script to identify section of the trail used 

to calculate gain between the HSM and ID estimates (right hip). 
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Figure E.2: Screen shot of HSM running a MATLAB script to identify section of the trail used 

to calculate gain between the HSM and ID estimates (left hip). 

 

 
Figure E.3: Screen shot of HSM running a MATLAB script to identify section of the trail used 

to calculate gain between the HSM and ID estimates (spine). 
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Intermediate steps comparing the newly coded MATLAB – HSM with the original Visual basic 

code from the McGill Model. Figure E.4 demonstrates to calculate muscle length from kinematic 

data the two models are an exact match. This confirms the rotations and anatomical details 

between the original model and the current model are perfect.  

 
Figure E.4: A trail of sit-to-stand kinematics used to evaluate the model during a simple 

range of motion task. There models are a perfect match for rectus abdominis.  

 

 
Figure E.5: A trail of sit-to-stand kinematics used to evaluate the model during a simple 

range of motion task. There models are a perfect match for pars lumborum L3 segment.  
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Appendix F: Data from Hip Passive Resistance & Stiffness  

 

Figure F1: Sample of filter effects on load cell data filtered with low pass Butterworth filter at 2Hz 

raw signal (top) and filtered (bottom) (S02 from male data set).  
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 Figure F2: Angle-moment curves of one representative subject (female) for FSL, Ext, Abd, and 

Add. Note: Moments have not be adjusted for joint coordinate system (raw moment = force x distance).   
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Figure F3: Passive hip resistance male flexion straight leg trials, individual means, and group means 

with a fitted polynomial and exponential curve to the group mean.  
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Figure F4: Passive hip resistance male flexion knee bent trials, individual means, and group means 

with a fitted polynomial and exponential curve to the group mean.  

 

 
 

Figure F5: Passive hip resistance male extension trials, individual means, and group means with a 

fitted polynomial and exponential curve to the group mean.  
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Figure F6: Passive hip resistance male abduction trials, individual means, and group means with a 

fitted polynomial and exponential curve to the group mean.  

 

 
  Figure F7: Passive hip resistance male adduction trials, individual means, and group means with a 

fitted polynomial and exponential curve to the group mean.  
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Figure F8:  Torque-ROM curves with exponential curves fitted (blue) to the group mean (dark grey)  

versus the fitted curve (black) to the individual trials (light grey) for  (a) FSL, (b) FKB, (c) Ext, (d) Abd, (e) 

Add.
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 Table D.1a: Equations of curve fit and goodness of fit measures for mean angle-moment data (males).  

 3rd Order Polynomial Equation sse R2 rmse 

Flexion – Straight Leg 
y= -0.00021647x^3 + 0.018558x^2 - 

1.227x + 16.7949 
22.9222 0.9996 0.4861 

Flexion – Knee Bent 
y= -8.1018e-05x^3 + 0.012265x^2 - 

0.89945x + 13.6145 
9.7673 0.9990 0.3173 

Extension 
y= -0.0011079x^3 + 0.018582x^2 - 

0.50637x + 13.1141 
26.5175 0.9985 0.5229 

Abduction 
y= -0.00036213x^3 - 0.012188x^2 - 

0.72577x + 1.6558 
12.5848 0.9994 0.3602 

Adduction 
y= -0.0020913x^3 + 0.031476x^2 - 

1.0146x - 3.6025 
0.3879 1.0000 0.063 

Abduction-Adduction 
y= -0.00041469x^3 - 0.01788x^2 - 

0.92876x - 0.72244 
276.2389 0.9985 1.1812 

 

 

Table D.2: Equations of curve fit and goodness of fit measures for mean moment-ROM data 

(females).  

 3rd Order Polynomial Equation sse R2 rmse 

Flexion – Straight Leg 
y= -0.00021647x^3 + 0.018558x^2 - 

1.227x + 16.7949 
22.9222 0.9996 0.4861 

Flexion – Knee Bent 
y= -8.1018e-05x^3 + 0.012265x^2 - 

0.89945x + 13.6145 
9.7673 0.9990 0.3173 

Extension 
y= -0.0011079x^3 + 0.018582x^2 - 

0.50637x + 13.1141 
26.5175 0.9985 0.5229 

Abduction 
y= -0.00036213x^3 - 0.012188x^2 - 

0.72577x + 1.6558 
12.5848 0.9994 0.3602 

Adduction 
y= -0.0020913x^3 + 0.031476x^2 - 

1.0146x - 3.6025 
0.3879 1.0000 0.063 

Abduction-Adduction 
y= -0.00041469x^3 - 0.01788x^2 - 

0.92876x - 0.72244 
276.2389 0.9985 1.1812 
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Male Passive Hip Resistance Boundaries (N=17) 

 Averaged Peak Hip Joint Angle  Averaged NZ Boundary for the Hip 

Sub FSL_M FKB_M EXT_M ABD_M ADD_M FSL_M FKB_M EXT_M ABD_M ADD_M 

S1 89.66 117.36 -19.46 -62.41 23.68 29.85 29.06 17.61 -10.26 -4.03 

S2 60.90 92.70 -58.99 -44.66 29.61 11.66 23.72 6.69 -1.84 4.32 

S3 62.59 76.70 -22.35 -39.25 20.20 26.14 22.67 18.56 -6.11 -5.53 

S4 85.86 115.90 -25.58 -63.67 22.92 14.38 24.15 15.70 -8.39 -3.32 

S5 65.06 87.40 -20.99 -35.02 22.27 17.43 23.30 17.81 -3.19 2.66 

S6 83.08 95.10 -35.19 -47.58 24.33 18.68 25.22 13.25 -6.66 2.33 

S7 66.82 93.43 -31.24 -52.14 23.39 17.50 23.75 -1.96 -7.93 0.12 

S8 81.28 103.19 -21.51 -40.25 33.16 26.70 33.94 13.09 -1.44 9.44 

S9 76.73 100.85 -19.84 -51.55 29.34 14.23 20.45 12.30 -1.99 1.80 

S10 80.74 115.66 -17.31 -43.04 38.79 29.12 30.66 24.82 5.45 11.41 

S11 92.24 105.27 -14.67 -52.45 39.11 21.16 30.64 20.78 -3.08 3.28 

S12 101.76 125.22 -11.97 -48.32 23.03 34.24 39.38 20.32 -7.82 -1.99 

S13 70.37 95.87 -6.04 -40.34 24.24 25.71 31.77 19.89 1.20 2.87 

S14 110.51 117.31 -28.45 -54.76 23.60 33.39 38.14 17.52 -7.68 2.36 

S15 84.74 110.24 -18.65 -47.43 29.12 21.11 43.27 20.19 -7.23 2.39 

S16 85.67 104.83 -18.20 -59.47 21.32 36.75 51.08 26.04 -12.97 -2.85 

S17 80.38 106.07 -8.86 -51.06 30.62 25.26 35.65 23.50 -1.99 3.31 

 

 Female Passive Hip Resistance Boundaries (N=15) 

 Averaged Peak Hip Joint Angle  Averaged NZ Boundary for the Hip 

Sub FSL_F FKB_F EXT_F ABD_F ADD_F FSL_F FKB_F EXT_F ABD_F ADD_F 

S1 73.43 92.88 -24.02 -59.78 54.46 7.02 10.65 4.68 1.90 14.24 

S2 94.79 115.74 -16.99 -39.58 33.28 8.67 29.73 9.09 3.28 13.08 

S3 109.30 120.31 -20.72 -47.90 48.05 24.73 34.47 15.71 -7.34 16.67 

S4 109.26 109.58 -33.58 -82.27 32.76 4.26 16.02 -5.57 -20.52 -5.41 

S5 110.80 119.07 -26.41 -45.35 38.59 27.27 44.96 4.18 -3.33 13.29 

S6 121.61 115.86 -19.38 -65.81 38.77 7.81 23.38 9.21 1.16 10.96 

S7 106.76 103.55 -27.42 -42.77 45.02 24.87 24.15 -0.10 -4.45 11.23 

S8 104.73 103.05 -23.58 -36.09 42.65 17.23 16.90 6.94 4.57 10.63 

S9 94.11 104.54 -37.54 -54.98 43.14 5.37 21.79 0.45 -6.28 6.34 

S10 107.82 104.70 -26.90 -61.64 25.24 25.43 34.62 -0.37 -13.05 10.66 

S11 115.94 121.86 -23.58 -56.68 28.48 31.63 48.86 6.93 -14.29 6.92 

S12 95.65 117.65 -18.72 -53.84 42.72 24.84 37.19 10.30 0.23 15.62 

S13 112.91 117.26 -9.64 -52.91 31.85 30.74 40.87 5.42 -8.02 8.28 

S14 103.93 112.38 -20.90 -47.49 38.88 20.60 31.17 17.50 1.35 13.31 

S15 89.25 125.51 -18.14 -45.47 34.57 19.32 28.48 8.45 -4.32 5.96 
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Figure F9: Flexion (straight leg) - extension passive torque-angle curves with respective contribution 

from Psoas (5) and Adductor Brevis (5).  
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Figure F10: Flexion (straight leg) - extension passive torque-angle curves with respective 

contribution from Adductor Brevis (1), Adductor Longus (6), and Adductor Magnus (3).  
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Figure F11: Flexion (straight leg) - extension passive torque-angle curves with respective 

contribution from Adductor Magnus (10).  
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Figure F12: Flexion (straight leg) - extension passive torque-angle curves with respective 

contribution from Biceps Femoris, Gemellus (2), and Gluteus Maximus (7).  
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Figure F13: Flexion (straight leg) - extension passive torque-angle curves with respective 

contribution from Gluteus Maximus (5) and Gluteus Medius (5).  
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Figure F14: Flexion (straight leg) - extension passive torque-angle curves with respective 

contribution from Gluteus Medius (7), and Gluteus Minimus (3).  
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Figure F15: Flexion (straight leg) - extension passive torque-angle curves with respective 

contribution from Gracilis (2) and Iliacus (8).  
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Figure F16: Flexion (straight leg) - extension passive torque-angle curves with respective 

contribution from Iliacus (1), Obturator Externus (5), Obturator Internus (3), and Pectineus (1).  
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Figure F17: Flexion (straight leg) - extension passive torque-angle curves with respective 

contribution from Pectineus (3), Piriformis (1), Quadratus Femoris (4), and Recuts Femoris (2).  
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Figure F18: Flexion (straight leg) - extension passive torque-angle curves with respective 

contribution from Sartorius (2), Semimembranosus, Semitendinosus, and Tensor Fasciae Latae (2).   
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Figure F19: Abduction – Adduction passive torque-angle curves with respective contribution from 

Psoas (5) and Adductor Brevis (5).  
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Figure F20: Abduction – Adduction passive torque-angle curves with respective contribution from 

Adductor Brevis (1), Adductor Longus (6), and Adductor Magnus (3).  
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Figure F21: Abduction – Adduction passive torque-angle curves with respective contribution from 

Adducotr Magnus (10).  
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Figure F22: Abduction – Adduction passive torque-angle curves with respective contribution from 

Biceps Femoris, Gemellus (2), Gluteus Maximums (7).  
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Figure F23: Abduction – Adduction passive torque-angle curves with respective contribution from 

Gluteus Maximus (5), and Gluteus Medius (5).  
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Figure F24: Abduction – Adduction passive torque-angle curves with respective contribution from 

Gluteus Medius (7), and Gluteus Minimus (3).  
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Figure F25: Abduction – Adduction passive torque-angle curves with respective contribution from 

Gracilis (2) and Iliacus (8).  
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Figure F26: Abduction – Adduction passive torque-angle curves with respective contribution from 

Iliacus (1), Obturator Externus (4) and Pectineus (1).  
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Figure F27: Abduction – Adduction passive torque-angle curves with respective contribution from 

Pectineus (2), Piriformis, Quadratus Femoris (4), and Rectus Femoris (2).  
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Figure F28: Abduction – Adduction passive torque-angle curves with respective contribution from 

Sartorius (2), Semimembranosus, Semitendinosus, and Tensor Fasciae Latae.   
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Appendix G: Data from ACL study – Tuning the Model   

Example of ACL-S01 Right Hip Moment predictions based on Inverse dynamics (blue) and HSM (red). 

Muscle gain for this subject was set to 1.23, 1.18 and 0.81 for this subject’s right hip, left hip and lumbar 

spine, respectively.  

 

Figure G.1: Screen capture of RVC 2 trial MATLAB program allows user selected points to 

isolate stabilized section of RVC to calculate gain factor based on inverse dynamics and 

HSM predictions of right hip extension moment.  

 

Figure G.2: Screen capture of RVC 2 trial MATLAB program allows user selected points to 

isolate stabilized section of RVC to calculate gain factor based on inverse dynamics and 

HSM predictions of left hip extension moment.  



 

 

289 

 

 

Figure G.3: Screen capture of RVC 2 trial MATLAB program allows user selected points to 

isolate stabilized section of RVC to calculate gain factor based on inverse dynamics and 

HSM predictions of spine extension moment.  

 

 

Figure G.4: Reference voluntary contraction (RVC) positions for evaluating and tuning 

the model, RVC 1 (left) and RVC 2 (Right).   
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Appendix H: Data from ACL study – Statistical Analysis    

Question 1: Does one knee valgus relate and predict the other side? To address these questions a 

Pearson Correlation and a simple regression analysis were used. These procedures generally require 

large sample sizes which were simply not possible for this type of detailed biomechanical investigation. 

One way to artificially enlarge the sample size is to use each trial form the 18 subjects (18 x 3 = 54) to 

get 54 data points with the intent of avoiding type II errors (not rejecting the null hypothesis). 

Considering this option, I examined the descriptive data and model data for both groups (n = 18 and 

n=54). The group data in both circumstances was very similar the difference being the regression model 

did not reach statistical significance (~0.08). Given the similarity between groups the N = 54 group data 

was used in the analysis, however both sets of data are reported here in the appendix for inspection 

Regression – SPSS output Tables and graphs with interpretation. (n=54)  

Table H.1: Descriptive Statistics of the Knee Valgus Peak Scores for the right and left knee on 

first landing.  

Descriptive Statistics 

 Mean Std. Deviation N 

Peak_MKD_R .061529 .0378945 54 

Peak_MKD_L .057744 .0436444 54 

 

Table H.2: Pearson Correlation of the right and left peak valgus score on first landing.  

Correlations 

 Peak_MKD_R Peak_MKD_L 

Pearson Correlation 
Peak_MKD_R 1.000 .420 

Peak_MKD_L .420 1.000 

Sig. (1-tailed) 
Peak_MKD_R . .001 

Peak_MKD_L .001 . 

N 
Peak_MKD_R 54 54 

Peak_MKD_L 54 54 

 

Table H.3: Regression Model Summary  
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Model Summaryb 

Model R R Square Adjusted R 

Square 

Std. Error of the 

Estimate 

1 .420a .176 .160 .0347236 

a. Predictors: (Constant), Peak_MKD_L 

b. Dependent Variable: Peak_MKD_R 

  

 Here we see the correlation is 0.420. The R2 =0.176 meaning that only ~17% of the 

variability is account for in the independent variable. The adj. R2 is lower in this case since even 

at 54 cases this is a small sample size for regression analysis.  

 

 

Table H.4: The ANOVA of the regression model  

ANOVAa 

Model Sum of Squares df Mean Square F Sig. 

1 

Regression .013 1 .013 11.122 .002b 

Residual .063 52 .001   

Total .076 53    

a. Dependent Variable: Peak_MKD_R 

b. Predictors: (Constant), Peak_MKD_L 

 Although the correlation is moderate the about of explained variability is small the model 

is statistically significant p=0.002.  

 

Table H.5: Regression Coefficients  

Coefficientsa 

Model Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. 95.0% Confidence Interval 

for B 

B Std. Error Beta Lower Bound Upper Bound 

1 

(Constant) .040 .008  5.135 .000 .025 .056 

Peak_MKD_

L 
.364 .109 .420 3.335 .002 .145 .584 

a. Dependent Variable: Peak_MKD_R 
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 This is perhaps the most telling output from SPSS. Here we see a rather large 95% 

confidence interval which does not provide much confidence in the ability to predict knee valgus 

in one knee based on the score from the other.  

 

 

Table H.6: Residual Statistics  

Residuals Statisticsa 

 Minimum Maximum Mean Std. Deviation N 

Predicted Value .041481 .108932 .061529 .0159065 54 

Residual -.0580789 .1000593 0E-7 .0343944 54 

Std. Predicted Value -1.260 2.980 .000 1.000 54 

Std. Residual -1.673 2.882 .000 .991 54 

a. Dependent Variable: Peak_MKD_R 

 

 The mean residual score is ~0.000 meaning that the model although it does not predict 

the data well it represents the data well. (This is also shown below in graphical form.)  

 

 

 
 

Figure H.1: Histogram of the Residual Scores  
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Figure H.2: A plot of the predicted and observed scores standardised. The model does a 

reasonably good job of fitting the data.  

 

 
Figure H.3: The Regression Residual and Predicted Values scatter plot. 

 

 In Figure 3 there is a reasonably good spread of the data given the sample size. No further 

analysis of homoscedasticity was performed.  
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Figure H.4: A scatter plot of the peak valgus data for the right and left knee with the regression 

line (R2=0.176).  
 

Regression – SPSS output Tables and graphs with interpretation. (n=18)  

Table H.7: Descriptive Statistics of the Knee Valgus Peak Scores for the right and left knee on 

first landing.  

 

Descriptive Statistics 

 Mean Std. Deviation N 

Peak_MKD_L .057744 .0427296 18 

Peak_MKD_R .061529 .0356297 18 

 

 

Table H.8: Pearson Correlation of the right and left peak valgus score on first landing.  

 

Correlations 

 Peak_MKD_L Peak_MKD_R 

Pearson Correlation 
Peak_MKD_L 1.000 .421 

Peak_MKD_R .421 1.000 

Sig. (1-tailed) 
Peak_MKD_L . .041 

Peak_MKD_R .041 . 

N 
Peak_MKD_L 18 18 

Peak_MKD_R 18 18 
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Table H.9: Regression Model Summary  

 

Model Summaryb 

Model R R Square Adjusted R 

Square 

Std. Error of the 

Estimate 

1 .421a .177 .126 .0399560 

a. Predictors: (Constant), Peak_MKD_R 

b. Dependent Variable: Peak_MKD_L 

 

  

 Here we see the correlation is 0.421. The R2 =0.177 meaning that only ~17% of the 

variability is account for in the independent variable. The adj. R2 is much lower in this case since 

18 cases is an extremely small sample size for regression analysis.  

 

 

Table H.10: The ANOVA of the regression model  

 

ANOVAa 

Model Sum of Squares df Mean Square F Sig. 

1 

Regression .005 1 .005 3.442 .082b 

Residual .026 16 .002   

Total .031 17    

a. Dependent Variable: Peak_MKD_L 

b. Predictors: (Constant), Peak_MKD_R 

 

 

 Not only is the correlation moderate the about of explained variability is small and the 

model is not statistically significant p=0.082. However, given a sample size of n = 18, 

consideration of type II error is appropriate.  
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Table H.11: Regression Coefficients  

 

Coefficientsa 

Model Unstandardized 

Coefficients 

Standardized 

Coefficients 

t 
 

 

Sig. 95.0% Confidence Interval 

for B 

B Std. Error Beta Lower 

Bound 

Upper 

Bound 

1 
(Constant) .027 .019  1.390 .184 -.014 .067 

Peak_MKD_R .505 .272 .421 1.855 .082 -.072 1.081 

a. Dependent Variable: Peak_MKD_L 

 

 This is perhaps the most telling output from SPSS. Here we see a rather large 95% 

confidence interval which does not provide much confidence in the ability to predict knee valgus 

in one knee based on the score from the other.  

 

 

Table H.12: Residual Statistics   

 

Residuals Statisticsa 

 Minimum Maximum Mean Std. Deviation N 

Predicted Value .032719 .094306 .057744 .0179791 18 

Residual -.0653742 .0868473 0E-7 .0387630 18 

Std. Predicted Value -1.392 2.034 .000 1.000 18 

Std. Residual -1.636 2.174 .000 .970 18 

a. Dependent Variable: Peak_MKD_L 

 

 

 The mean residual score is ~0.000 meaning that the model although it does not predict 

the data well it represents the data well. (This is also shown below in graphical form.)  
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Figure H.5: Histogram of the Residual Scores  

 

 
 

 

Figure H.6: A plot of the predicted and observed scores standardised. The model does a 

reasonably good job of fitting the data.  
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Figure H.7: The Regression Residual and Predicted Values scatter plot. 

 

 

 In Figure 3 there is a reasonably good spread of the data given the sample size. No further 

analysis of homoscedasticity was performed.  

 

 
 

Figure H.8: A scatter plot of the peak valgus data for the right and left knee with the regression 

line (R2=0.177).  


