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Abstract 

Extreme rainfall events have a long history of causing large economic damages in urban areas 

and even loss of human life. Reliable estimates of extreme rainfall intensities for different 

rainfall durations are essential for the effective planning of drainage systems under climate 

change to balance the construction costs and potential damages caused by future extreme rainfall 

events. The information required for design rainfall events can be obtained through frequency 

analysis of extreme rainfall. However, extreme rainfall quantiles obtained from the traditional 

approach of frequency analysis have become increasingly unreliable under climate change. With 

increasing global temperatures and the uneven distribution of atmosphere moisture, the 

frequency and magnitude of extreme rainfall events can experience accelerated changes. Thus, 

urban drainage systems designed based on extreme rainfall quantiles obtained from historical 

records are becoming increasingly ineffective. Under the impacts of climate change, extreme 

rainfall events are becoming one of the most destructive natural hazards in the world. 

Frequency analysis of the extreme rainfall events used to estimate the probability of exceedance 

of extreme rainfall events of a given magnitude in the future context can generate unreliable 

estimates under climate change because of two issues. Firstly, there are often insufficient data 

records available for the quantification of extreme rainfall events of interest from a design 

perspective. Since extreme rainfall events are rare, there is large uncertainty in quantile estimates 

obtained from using only the information from the site of interest. Thus, regional frequency 

analysis, which expands the data records through gathering information from sites sharing 

similar rainfall patterns, is widely used and is applied in this research. Secondly, the traditional 

assumption that there is a repetitive pattern in the occurrences of extreme rainfall events has 

become invalid in a nonstationary environment. Since extreme rainfall patterns can be altered in 

the future, estimates for rainfall quantiles obtained from using frequency analysis in a historical 

stationary environment can be unreliable when applied for future conditions. Further research is 

required into applying the regional frequency analysis approach for the estimation of extreme 

rainfall quantiles under climate change.  

To provide reliable regional estimates of rainfall quantiles for different rainfall durations under 

climate change, this research improves regional frequency analysis through exploring the 

following issues: 1) An improved procedure for homogeneous group formation for historical 
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stationary periods. Extreme rainfall events have been affected by climate change. A three-layer 

searching algorithm is proposed for homogeneous group formation in a stationary environment 

for the consideration of climate change impacts on the spatial distribution of extreme rainfall 

events. 2) An adjustment procedure for homogeneous group formation in the future stationary 

environment. Under the assumption that extreme rainfall patterns remain stationary within a 30-

year period, a procedure is proposed to adjust the optimal homogeneous group formation from 

the previous temporal periods to reflect conditions in future 30-year periods. 3) A procedure used 

for rainfall quantile estimation in a future nonstationary environment. Under the assumption that 

the extreme rainfall series exhibit nonstationary behavior during the whole future period, a one-

step forward procedure is constructed based on the unscented Kalman filter to consider the 

potential non-monotonic change behavior of extreme rainfall events at different return periods. 

In this approach, the homogeneous groups are formed using a trend centered pooling approach.  

The proposed methodology fills the gaps of considering climate change impacts on 

homogeneous group formation in both historical and future stationary environments and 

challenges the assumption of monotonic change behavior of extreme rainfall quantiles used in 

the traditional regional frequency analysis for stations exhibiting nonstationary behavior. The 

proposed procedures have been extensively tested using large sets of climate data in both 

historical and future contexts and have been shown to improve the extreme rainfall quantile 

estimates in both historical and future contexts.      
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Chapter 1 Introduction 

Extreme rainfall events, which can lead to extreme floods, have a long history of causing 

devastating impacts on human society. In the last two decades, more than 3,000 flooding events, 

including rainfall-induced and snowmelt floods, have been recorded worldwide, affected the 

lives of 1.5 billion people and caused direct economic damages of $ 656 billion (CRED and 

UNISDR, 2018). In Canada, extreme floods are the most common and largely distributed natural 

hazards to modern society. Many of these floods were caused by extreme rainfall events 

including the historical events in southern Alberta 1929, Toronto region 1954 and 2005, and 

Saguenay 1996 (Gifford, 2004; Library and Archives Canada, 2006). Under the impacts of 

climate change, increasingly frequent extreme rainfall events have caused staggering economic 

losses in the last decades.  In 2012, the year of the urban flood, 206 mm of rainfall accumulated 

over the Thunder Bay area in May and caused extensive damages to both public infrastructure 

and private properties with initial costs exceeding $100 million (Environment and Climate 

Change Canada, 2017).  In 2017, major flooding that was caused by low-pressure systems in 

April led to 155 mm of rain accumulation in May resulting in more than $223 million in insured 

damages in Ontario and Quebec (Insurance Bureau of Canada, 2017).  In 2018, 72 mm of rain on 

August 7th over Toronto caused over $80 million in insured damage (Insurance Bureau of 

Canada, 2018). Furthermore, based on the projected future trends of temperature and 

precipitation in Canada, the frequency of extreme rainfall events of large magnitude are expected 

to increase based on different emission scenarios (Bush et al., 2019).          

To reduce the devastating impacts caused by extreme rainfall events, drainage systems are 

implemented in urban areas for flood mitigation and the minimization of potential economic 

damages. To design an effective urban drainage system for prevention of future flooding, 

accurate estimates of Intensity-Duration-Frequency (IDF) curves are needed. IDF curves are 

used to describe the frequency of occurrence and the intensity of extreme rainfall events for a 

specified rainfall duration and can be obtained through frequency analysis. Rainfall frequency 

analysis, which is conducted under the assumption that historical extreme events are 

representative of future events in a stationary environment, can determine the probability of 

future occurrence of these events based on the patterns exhibited in the historical extreme 

observations (Hosking & Wallis, 1997).  
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At-site frequency analysis is the approach of using the historical extreme rainfall observations 

from the site of interest for the characterization of the extreme rainfall patterns at a specific 

geographic location and is widely used for the estimation of IDF curves. However, a problem 

associated with this approach is that sufficiently long data records are generally unavailable for 

obtaining reliable estimates of the extreme rainfall quantiles that are required for the design of 

urban drainage systems. Regional frequency analysis has often been applied to improve the 

accuracy and reduce the uncertainty in extreme rainfall quantile estimation. Under the 

assumption that extreme rainfall events do not only appear over a single geographic location, the 

rainfall records from sites sharing similar extreme rainfall patterns with the site of interest can be 

collected for the purpose of extreme rainfall characterization at a target site. The regional 

approach of frequency analysis is the focus in this thesis. 

Regional frequency analysis is a well-established method with numerous applications for 

extreme rainfall frequency analysis in the last two decades. The early example for the regional 

approach is the index-event model introduced by Dalrymple (1960), which has become the 

foundation for subsequent developments. In a stationary environment, efforts for improving 

extreme rainfall quantile estimates from using the regional approach can be summarized into the 

following aspects: 1) Increasing the length of input data records by using peaks-over-threshold 

records instead of annual maximum series (Mailhot, et al., 2013). 2) Developing improved 

procedures for identifying rainfall similar stations (Satyanarayana & Srinivas, 2008; Yang et al., 

2010; Gabriele & Chiaravalloti, 2013; Asong et al., 2015). 3) Choosing the best distribution 

model for the calculation of rainfall quantiles (Forestieri et al., 2018). In contrast to the numerous 

developments of the regional approach in a stationary environment, fewer efforts have been 

made in applying a regional approach in a nonstationary environment.  

The exploration of regional frequency analysis in a nonstationary environment is essential for the 

successful design of urban drainage systems under climate change for two reasons: 1) Under the 

impacts of climate change, the frequency and intensity of extreme rainfall events are projected to 

change across Canada in the future (Simonovic, et al., 2017). The current drainage systems in 

urban areas that are designed based on rainfall intensity estimated using historical rainfall 

records are becoming increasingly ineffective in serving the traditional function of flood 

mitigation (D. Sandink, 2016). 2) The current urban drainage systems, which have traditionally 
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only been used for the mitigation of floods in the urban area, serve other functions including 

climate change mitigation, biodiversity enhancement, stormwater management and public health 

improvement (Fletcher et al., 2015). To effectively manage the urban drainage systems to 

achieve an optimal balance amongst different functions and to reduce their construction costs, 

accurate estimates for extreme rainfall quantiles at each temporal period are important.    

This research explores the application of regional frequency analysis of extreme rainfall events 

under climate change and develops a system for extreme rainfall quantile estimation in both 

stationary and nonstationary environments.  This system is applied to a large number of rainfall 

stations in Canada.  This research was funded by the Canadian research network called NSERC 

FloodNet (FloodNet, 2015). FloodNet endeavours to improve the flood forecasting and 

management capacity in Canada and reduce the negative impacts of flood-related disasters on 

both human society and the natural environment. Through using annual maximum rainfall series 

(AMS), the system developed in this research contributes to advancing the understanding of 

extreme rainfall patterns in Canada with focuses on the development of an automatic procedure 

for collecting similar extreme rainfall stations in both historical (stationary) and future 

(stationary) contexts, and dynamic rainfall quantile estimation in a future nonstationary 

environment. 

The system for regional frequency analysis of extreme rainfall events under climate change is 

developed to advance understanding in the following aspects: 

1) The effective selection of similarity indicators for the identification of similar rainfall stations 

for the site of interest in the historical context. Considering the spatial differences among the 

extreme rainfall patterns at various sites of interest, an automatic procedure for the selection 

of effective similarity indicators for the homogeneous group (HG) formation (a group of 

stations that share similar extreme rainfall patterns) was developed. A three-layer design was 

proposed based on the three stages in extreme rainfall formation for distinguishing the 

temporal differences among potential similarity indicators used in HG formation. Then to 

consider the spatial difference of similarity indicators for HG formation at various target 

sites, an automatic feature selection and weighting algorithm, specifically the hybrid 

searching algorithm of Tabu Search, Lagrange Multiplier and Fuzzy C-means clustering, was 
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used for the search for an optimal feature combination at each site. The effectiveness of this 

approach was tested at target sites from eight climate regions.    

2) The improved procedure for the HG formation in historical and future contexts. This work 

focused on improving the automatic procedure used for the HG formation in the historical 

context and adjusting the previous historical homogeneous group for the future context. To 

increase the efficiency of reducing the impacts of feature correlation on the similar rainfall 

stations identification process, the feature weighting method in the previous version of the 

algorithm was replaced by feature extraction techniques. Furthermore, to improve the HG 

formation results, the Region of Influence (ROI) procedure was added as an additional 

procedure for gathering similar rainfall stations. Spatial alterations in future rainfall 

characteristics can directly cause heterogeneity in the previous HGs in the future context. The 

second part of this work focused on adjusting the previous HGs to the new optimality in the 

future context, during which the rainfall statistics from the projected rainfall series in the 

previous HGs served as the new similarity indicators at the target site. The superiority of this 

work was tested at 153 target stations from four climate regions. 

3) The dynamic state estimation for rainfall quantiles in a nonstationary environment. This work 

focuses on the estimation of non-monotonic changes in extreme rainfall quantiles in a 

nonstationary environment. To calculate the extreme rainfall quantiles for the stations 

exhibiting non-stationarity in the future context, the parameters for a regional growth curve at 

sequential temporal steps can be calculated using an unscented Kalman filter based on the 

structure established in the index-event model. A one-step forward procedure using the noise 

covariance estimated from using a Monto Carlo-simulation approach was proposed to 

successfully apply the unscented Kalman filter in regional frequency analysis and reduce the 

possibility of performance degradation caused by using insufficient samples for state 

characterization and inaccurate noise covariance for uncertainty quantification. During the 

process, large sets of resamples for the rainfall records at each temporal step were used in the 

one-step forward procedure to increase the accuracy and reduce the uncertainty for the 

parameter estimates.  The effectiveness of this proposed methodology was tested for three 

homogeneous groups with positive or increasing trends in four climate regions.  

This research is an ongoing effort towards a wider use of the regional approach to frequency 

analysis under climate change and provides automatic procedures for HG formation in the 
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historical stationary context and an adjustment procedure for the previous HGs reaching new 

optimality in the future stationary context, plus the framework of nonstationary rainfall quantile 

calculation using the dynamic state estimation method.  All three segments from the proposed 

system were verified through the comparison with procedures used in a traditional regional 

frequency analysis.       

1.1 Objectives     

The overall objective of this thesis is to develop methodologies for the application of regional 

frequency analysis of extreme rainfall events in a nonstationary environment; the specific 

objectives of this research include: 

1) Chapter 2: The development of a searching algorithm for the selection of similarity indicators 

used for HG formation at various climate regions in the historical stationary context.  

2) Chapter 3: The application of feature extraction techniques and region-of-influence approach 

in the searching algorithm based on the previous proposed framework for improving the HG 

formation in the historical stationary context. 

3) Chapter 3: The development of an adjustment procedure for HG formation in the future 

stationary context. 

4) Chapter 4: The development of a dynamic extreme rainfall quantile estimation procedure for 

regional frequency analysis of extreme rainfall events in a future nonstationary environment. 

1.2 Thesis Organization 

Chapters 2 to 4 of this thesis are provided in the form of manuscripts that have been published or 

submitted to scientific journals. Chapter 2 has been published in Journal of Hydrology (Yang & 

Burn, 2019). Chapter 3 is presented as a manuscript submitted to Advances in Water Resources. 

Chapter 4 is presented as a manuscript submitted to Journal of Hydrology. Transition paragraphs 

are added at the end of each chapter for the transition from each chapter to the next and to 

improve the readability of the thesis. The overall conclusions from this thesis, and potential 

future research, are presented in Chapter 6. The list of references follows Chapter 6. 
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Chapter 2   Automatic Feature Selection and Weighting for the Formation of 

Homogeneous Groups for Regional IDF Estimation 

This chapter is built upon the published article with the same title in the Journal of Hydrology. 

Minor differences between the paper and the chapter have been made to facilitate consistency 

and coherence. 

Yang, Z., & Burn, D. H. (2019). Automatic Feature Selection and Weighting for the Formation 

of Homogeneous Groups for Regional IDF Estimation. Journal of Hydrology, 575(May), 292–

307. https://doi.org/10.1016/j.jhydrol.2019.05.015 

Summary 

The intensity-duration-frequency (IDF) curve has been used as an effective tool to quantify the 

risk associated with the impact of extreme rainfall on civil infrastructure. However, recent 

changes in the rainfall climatology caused by climate change and urbanization have made 

estimates in the stationary environment provided by the traditional regional IDF approach 

increasingly inaccurate. This inaccuracy is mainly caused by the lack of consideration for the 

temporal and spatial difference in the selection of similarity indicators (attributes that are used to 

measure similarity of extreme rainfall patterns among different stations), resulting in ineffective 

formation of a homogeneous group (a group of stations that share similar extreme rainfall 

patterns) at various regions. To consider the temporal differences of similarity indicators, 

including meteorological factors, topographic features and urban impact indicators, a three-layer 

design is proposed based on the three stages in extreme rainfall formation: cloud formation, 

rainfall generation and change of rainfall intensity over an urban surface. During the process, the 

impacts from climate change and urbanization on extreme rainfall patterns are considered 

through the inclusion of potential features that relate to the rainfall mechanism at each layer. The 

spatial differences of similarity indicators for Homogeneous Group Formation (HGF) at various 

regions is resolved by using an automatic feature selection and weighting algorithm, specifically 

the hybrid searching algorithm of Tabu Search, Lagrange Multiplier and Fuzzy C-means 

clustering, to select the optimal combination of features for HGF based on the uncertainty in the 

regional estimates of the rainfall quantiles for a specific site. The proposed methodology fills the 

gap of including the urbanization impacts on the extreme rainfall patterns during HGF process 

and challenges the traditional assumption that the same set of features can be equally effective in 
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generating the optimal homogeneous group in regions with different geographic and 

meteorological characteristics. 

2.1 Introduction 

Extreme rainfall events can result in devastating impacts. Under the influence of climate change, 

more frequent and intensive extreme rainfall events have been observed around the world 

(Seneviratne et al., 2012). In 1998, a series of extreme rainfall events on the Yangtze River 

affected the living situation for more than 223 million people, which caused the estimated 

economic damages at 166,600 million Yuans (Zong & Chen, 2000). In 2005, Canada 

experienced one of the most devastating floods in the province of Alberta and large areas in 

southern Ontario, and suffered CAD 800 million insured damages (Dan Sandink, 2013). In the 

same year, Hurricane Katrina, one of the deadliest and costliest storms in the history of the 

United States, resulted in nearly 1,500 fatalities (Boyd, 2010). In 2013, extreme floods in Central 

Europe, which were caused by long periods of heavy rains, resulted in €12 billion overall losses 

(Khazai et al., 2013). Under the current trend of climate change, the frequency of extreme 

rainfall events is expected to increase in some parts of world (Goswami et al, 2006; Cai et al., 

2014).  Considering the potentially increasing damages that can be caused by future extreme 

rainfall, accurate intensity-duration-frequency (IDF) curves are needed for updating the drainage 

infrastructure especially in urban areas.  

Regional frequency analysis, which extends the data records from one site by gathering the 

observations from sites that share similar rainfall characteristics, is widely used for IDF 

estimation at specific sites. However, the estimates of design rainfall using traditional regional 

IDF curves are becoming increasingly inaccurate in the nonstationary environment. One of the 

major problems that causes this inaccuracy is the ineffective formation of the homogeneous 

region. Normally, the stations in the homogeneous group are selected based on their rainfall 

similarity to the target site. The similarity indicators can be divided into the categories of site 

characteristics and at-site statistics (Hosking & Wallis, 1997). Site characteristics, which are the 

physical representations of the weather stations (such as the geographic location, the orientation 

of the landscape, etc.),  are used in the traditional geographic HGF process under the assumption 

that geographic proximity indicates rainfall similarity ( Hosking & Wallis 1997; Ahmad et al. 
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2013; Burn, 2014; Haddad et al. 2015). However, extreme rainfall events that are assumed to 

remain stationary have been altered by climate change across Canada since 1950, and the 

patterns of their changes are not spatially uniform (Warren & Lemmen, 2014). At a large scale, a 

large increase in precipitation totals is observed in the Arctic,  while decreasing trends have been 

detected in the Prairies region in southern Canada (Zhang et al, 2000). As for the rainfall patterns 

at a local scale, many papers have stated that daily rainfall is affected by the urban surface heat 

fluxes (Shepherd, 2005; Miao et al, 2011; Li et al., 2013). Since the constant site characteristics, 

specifically the geographic features, cannot reveal the possible changes in the rainfall patterns, 

their effectiveness as similarity indicators in the HGF process needs to be questioned.  

Two potential solutions have been proposed to solve this problem. One is to ignore the 

regionalization step, and directly use remote sensing rainfall records at regional scale for the 

regional IDF estimation (Marra et al., 2017). However, this approach is used to provide areal 

information of the IDF curves, and the high uncertainty associated with remote sensing rainfall 

records can still be a huge problem. The other is to search for the more effective similarity 

indicators, which will be the focus in this study. To adjust HGF process under climate change, 

the at-site statistics, such as the mean annual precipitation, the mean number of wet days, the 

ratio of minimum average 2-month precipitation to maximum average 2-month precipitation, the 

parameters of hydrologic distributions etc. (Easterling, 1989; Hosking & Wallis, 1997; Gaál & 

Kyselý, 2009; Yang et al., 2010), have been used as the additional indicators in the process. 

However, the at-sites statistics are only obtainable at the gauged stations and can only achieve 

reliable conclusions when long rainfall records are available. To resolve this issue, atmospheric 

variables have been used as the new similarity indicators. Satyanarayana and Srinivas (2008) 

considered the region’s hydro-meteorology through including monthly mean series of the large-

scale atmospheric variables such as the specific humidity, temperature, precipitable water, wind 

velocity and wind direction, together with the geographical factors as the indicators for the HGF. 

Gabriele and Chiaravalloti (2013) used the Convective Available Potential Energy and the Q 

vector Divergence as indicators in the homogeneous macro region formation, and the Vertically 

Integrated Moisture Flux for the formation of homogeneous sub-regions. These methods are 

conducted under the assumption that the same set of features can serve as the optimal similarity 

indicators to detect rainfall patterns at different stations.  Asong et al. (2015) advanced the 

former approach by using canonical correlation analysis to select atmospheric variables, 
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teleconnection indices and geographical site attributes that could explain the spatial patterns of 

precipitation of rainfall events in Canadian Prairie Provinces. However, the impacts of these 

selected indicators on the monthly precipitation were not consistent at different locations over 

the study area. Since there is a spatial difference among the extreme rainfall patterns at stations 

with different meteorological and geographic characteristics, should this difference be 

considered when selecting the similarity indicators for representing these different extreme 

rainfall patterns at various stations? This paper proposes an objective-oriented automatic feature 

selection and weighting algorithm to select the optimal feature combination for describing the 

rainfall patterns at the target site, which is used to form the homogeneous group that has the 

lowest uncertainty in the quantile estimates.  

In the context of the above research gaps, this proposed methodology seeks to answer the 

following questions: 

1) Do the potential similarity indicators respond to extreme rainfall events on the same temporal 

scale?   

2) Is there a spatial difference in the similarity indicators that are used to distinguish rainfall 

patterns among the input stations at various locations? 

3) Can urbanization alter the extreme rainfall regime, thus changing the frequency and 

magnitude of extreme rainfall events for an urban area? 

These questions are explored through the proposed searching algorithm in a three-layer 

framework. The remainder of the paper is organized as follows. Section 2.2 presents the basic 

procedures for conducting regional IDF analysis. Section 2.3 describes the automatic feature 

selection and weighting algorithm in a three-layer design. Sections 2.4 and 2.5 present the data 

used in the study and the results from the analysis. The paper concludes in Section 2.6 with 

conclusions and a discussion of potential avenues for future work.  

2.2 Regional IDF estimation 

An Intensity-Duration-Frequency (IDF) curve is used to describe the occurrence probability of 

certain rainfall intensity and can provide essential information for civil infrastructure design to 

reduce the potential damage caused by heavy rainfall. To quantify the associated risk of these 

extreme rainfall events and capture the changes of the rainfall temporal distribution, extreme 
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events are commonly described by their return periods (T).  In this research, IDF curves are 

estimated using the annual maximum rainfall series (AMS), which contains independent 

observations generated from different hydro-climatological events. 

Regional frequency analysis is performed under the assumption that rainfall series from all of the 

stations in the homogeneous region share the same frequency distribution. The quantile estimate 

can be described by the following index-event equation (Dalrymple, 1960): 

, ,
ˆ ˆ

T D D T DR R x                                                         (2-1) 

where D indicates the duration of the rainfall events under consideration, ,
ˆ

T DR is the regional 

estimate of T-year event for D duration at a specific site, DR is the site’s index event at D

duration and ,
ˆ

T Dx is the regional estimate of the dimensionless growth curve. The estimates can be 

obtained  through the following steps (Donald H. Burn, 2014): 

1) Data screening. To satisfy the stationary requirement in the traditional frequency analysis, the 

rainfall series with a change point or a trend identified through Pettitt test or Mann–Kendall 

nonparametric test are removed.  

2) Attribute selection. Geographic distance is used to identify stations sharing similar rainfall 

patterns with the target site.  

3) HGF. Homogeneous groups can be formed using the selected indicators through different 

pooling or clustering approaches. 

4) Evaluation of the homogeneous region. A heterogeneity measure is evaluated for the initial 

pooling group and revisions of this group will be conducted if the heterogeneity measure 

does not meet the criteria of homogeneity.  

5) Estimation of quantiles. The scaled time series from the group obtained from step (4) is used 

to identify the appropriate distribution and the corresponding quantile function.  The rainfall 

quantile at a target site can be estimated by applying Equation (2-1) to the distribution 

obtained from step (5). 

6) Uncertainty quantification. Parametric samplings through 1000 simulations are used to 

quantify the uncertainty in the rainfall quantile estimates (Hosking & Wallis, 1997) 
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2.3 Methodology 

To address the research questions and consider the possible alterations in the rainfall regime 

caused by climate change and urbanization, this paper explores the possibility of including 

relevant meteorological factors, topographic features and urban impact indicators as the 

similarity measures for HGF through the feature selection and weighting process in a three-layer 

framework. The procedures in the proposed algorithm can be briefly summarized as: 1) Based on 

the rainfall mechanism, potential similarity indicators at all three layers are selected. 2) The 

relationships between the most responsive indicators to the extreme rainfall events and less 

responsive ones are analyzed to determine their appropriate temporal resolutions (TRs). 3) 

Homogeneous groups are formed using the selected similarity indicators and the uncertainty in 

quantile estimates at the target site is quantified. During the HGF process, feature weighting is 

used to reduce the impact of feature correlation on the formation process.  4) Step (3) is repeated 

multiple times using a search algorithm, and the optimal combination of similarity indicators is 

determined based on the quantified uncertainties.  

The details of the proposed methodology are described in the following sections. Based on the 

mechanism of extreme rainfall events, a three-layer design is proposed in Section 2.3.1, and 

potential features that can affect extreme rainfall events at each layer are identified. To obtain the 

optimal TRs for the potential features at each layer, entropy differences and correlation 

coefficients between the most responsive indicators and less responsive ones at different TRs are 

used as the measures in Section 2.3.2. In Section 2.3.3 and 2.3.4, Fuzzy C-Means clustering is 

proposed as the tool for HGF, and Lagrange Multiplier is used to reduce the impact of feature 

correlation on the clustering results. Tabu Search, which is used as the search algorithm, is 

described in Section 2.3.5.         

2.3.1 Three-layer design 

Three stages can be identified in the process of extreme rainfall formation: cloud formation, 

rainfall generation and the change of rainfall intensity above the urban surface. Based on the 

possible heights of these stages, a three-layer design is proposed as the framework in which 

related features at each stage are selected as shown in Figure 2-1. The primary goal of this design 

is to distinguish the possible temporal differences among the features for the three layers. 



12 
 

The first layer of the proposed framework includes the atmosphere beyond the Planetary 

Boundary Layer (PBL), and is designed to consider the climate change impacts on the formation 

of the clouds that produce the extreme rainfall events at a large scale. Cloud is a suspended water 

or crystal mass in the air, and forms when the water vapor in the atmosphere condenses on the 

nuclei such as dust or ice. 

 

Figure 2- 1 The vertical structure of the three-layer design: Planetary Boundary Layer (PBL), Urban Mixing 

Layer (UML), Urban Surface Layer (USL). In the figure, the green area indicates the height of vegetation 

cover, the dark grey boxes indicate buildings ( Adapted from Figure 1 in Shepherd, 2005) 

Cloud formation is affected by several atmospheric variables including air temperature, 

geopotential height, specific humidity, U-component and V-component of wind velocity. Thus, 

these features at three pressure levels (300hPa, 500hPa and 700hPa) are included as potential 

similarity indicators at this layer. In contrast to the rainfall events that are caused by low level 

clouds, extreme rainfall events are normally caused by two types of clouds located at middle or 

high levels of the troposphere: cumulonimbus and nimbostratus, which are corresponding to the 

production of convective and stratiform rainfall (Houze, 1989; Houze Jr., 1997). Cumulonimbus 

is a multi-level cloud that starts as a low level cloud (cumulonimbus calvus) and expands to the 

middle (cumulonimbus capillatus) even high level (cumulonimbus incus) due to the unstable 
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atmosphere. This cloud type is capable of producing severe convective rainfall events in a short 

period.  Nimbostratus forms in the middle level of the troposphere because of the rising warm 

air, and occurs along a warm or occluded front where the stratiform rainfall can be produced. To 

describe the atmosphere instability in the process of these two cloud formations,  the Convective 

Available Potential Energy (CAPE) index, which represents the amount of energy that would be 

needed to lift a parcel of air through a certain distance in the atmosphere (Moncrieff & Miller, 

1976), is selected and acts as the most responsive similarity indicator to the extreme rainfall 

events in the first layer (Gabriele & Chiaravalloti, 2013a) 

After a cloud is formed, rainfall can be generated when the requirement of cooling is met, which 

happens within the PBL, i.e. in the Urban Mixing Layer (UML) which is the second layer of the 

framework.  As the linkage between the first and third layer, the UML is under the influence 

from both climate change and urbanization at a regional scale (Collier, 2006). Based on the cloud 

types that can be used to generate the extreme rainfall events, the types of rainfall can be divided 

into the convective rainfall, and stratiform rainfall type which can be further divided into relief 

and frontal rainfall depending on the underlying geographic topography. Thus the geographic 

attributes including latitude and longitude of the potential stations, and the same category of 

atmospheric variables used in the first layer but at lower pressure levels (850hPa and 925hPa) are 

collected as potential indicators. What makes the extreme rainfall events different from the 

normal rainfall events is the abundance of water supply to feed the events (Gabriele & 

Chiaravalloti, 2013a).  Thus the vertical integral of divergence of moisture flux, which describes 

the transport of the net atmosphere moisture flux per unit volume, is selected as the most 

responsive indicator in this layer.  

The final layer is the Urban Surface Layer (USL), where rainfall intensity can be affected by the 

urban surface energy in sub-regional or even local scale. Many papers have stated that the local 

rainfall climatology in the urban environment has been altered due to the following mechanisms 

(Li et al., 2013): 1) Urban heat island effects. The presence of high buildings can increase 

surface roughness, and also affect the local energy fluxes or disrupt the thermal balance. This 

results in the locally enhanced convergence and increased surface temperature, which causes 

changes in the rainfall patterns in the urban area (Roth & Oke, 1993; Roth, 2000; Bornstein & 

Lin, 2000; Shepherd, 2005); 2) Urban canopy effects. The lack of the canopy covers and the 
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altered underlying surface characteristics can affect the surface temperatures or even divert 

precipitating systems (Shepherd, 2005; Loughner et al., 2012); 3) Urban aerosol effects. The 

increasing accumulation of aerosols in the atmosphere can both decrease and increase rainfall 

amount because of their radiative and cloud condensation nuclei (CCN) activities (Diem & 

Brown, 2003; Kaufman & Koren, 2006; Jin et al. 2010; Rosenfeld et al., 2014): a) radiation 

effects. On one hand, the aerosols impede the process of solar radiation reaching the land surface 

thus reducing the amount of available water for evaporation and cloud formation. On the other 

hand, aerosols can absorb solar radiation and cause the warming in the lower atmosphere, which 

can strengthen Asia monsoon circulation and increase local precipitation.  b) CCNs activities. 

While the added CCNs can accelerate the process of cloud drops turning into raindrops, they can 

also cause the adverse effects if the cloud drops are too small. Thus relevant features are selected 

as rainfall similarity indicators in the last layer: The urban energy flux including the surface 

sensible heat flux and the surface latent heat flux (Miao et al., 2011), Photosynthetically Active 

Radiation index (PAR), Surface Net Solar Radiation (SNSR), Surface Net Thermal Radiation 

(SNTR) and the Surface Roughness (SR).  Potential features at all three layers are listed in Table 

2-1.  

Table 2- 1 Potential feature dataset for each layer at the three layer design 

Target layer Potential features 

First layer 

Air temperature (Air), Geopotential height (Geo), Specific humidity (Sphu), U-component (Uwind) 

and V- component (Vwind) of the wind velocity (at the 300hPa, 500hPa and 700hPa pressure level), 

Convective Available Potential Energy (CAPE) and Q vector Divergence (QD) 

Second layer 

Air temperature (Air), Geopotential height (Geo), Specific humidity (Sphu), U-component (Uwind) 

and V- component (Vwind) of the wind velocity (at the 850hPa and 925hPa pressure level), Vertical 

Integral of Divergence of Moisture Flux (VIDWV), Latitude, Longitude, Elevation 

Third layer 

Urban Surface Sensible Heat Flux (SHTFL), Urban surface Latent Heat Flux (LHTFL), 

Photosynthetically Active Radiation index (PAR), Surface Net Solar Radiation (SNSR), Surface Net 

Thermal Radiation (SNTR), Surface Roughness (SR) 

2.3.2 TR detection of the features series 

Based on the description in Section 2.3.1, the potential features at each layer are under the 

influence of various phenomena and thus can be related to the rainfall events at different 

temporal scales. It is necessary to obtain representative values of those features at the optimal 
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TRs that can best describe the rainfall related patterns at the different layers. The correlations and 

entropy differences between the most responsive features and the less responsive ones at 

different TRs are used as indicators to measure their similarities and determine the optimal TRs 

at the three layers. While correlation coefficient works best among linear correlated features, the 

entropy difference may provide better explanations when the input features are nonlinearly 

correlated (Quiroz et al., 2011).       

The discrete wavelet decomposition (DWT) is used to obtain the orthonormal bases of feature 

values at different TRs. In the discrete form, the wavelet transform of a function  tf is defined as 

the integral transform as (Kumar & Foufoula-Georgiou 1997): 
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where  f t   indicates the one-dimensional time series;  is the scale parameter; t  is a 

location parameter (indicates time in time series);    t, is the complex conjugate of    t,  

(in this study, the  Least Asymmetric wavelet); wm and n are an integer and 0 is a fixed dilation 

step greater than 1. Details of the multiresolution analysis can referred to Mallat (1989) and 

Daubechies (1990).  

To focus the methodology solely on the annual extreme rainfall events, the feature values 

should match the date of occurrence for the annual extreme rainfall events and be extracted at 

the optimal TRs at each layer. 

2.3.3 Homogeneous group formation 

The primary goal of this study is to obtain homogeneous groups that can generate the lowest 

uncertainty in the quantile estimates. Normally, HGF can be conducted using two approaches: 

pooling and clustering.  The pooling method , such as the Region of Influence (ROI) approach, 

gathers the stations centred around the pre-set target site based on their similarities (Donald H. 
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Burn, 1990). However, the problem of determining the number of stations in the target group to 

achieve the optimal balance between the number of stations in the pooling group and its 

homogeneity is still unsolved (Donald H. Burn, 2014). Here, the clustering, specifically the 

Fuzzy C-Means clustering is used for the HGF (Bezdek et al, 1984). 

Unlike non-overlapping clustering, Fuzzy clustering provides the possibility for one site having 

partial membership in more than one cluster, which has the advantage to form the overlapping 

clusters for undistinctive data with vague boundaries (Bezdek et al, 1984). Furthermore, in the 

situation when only limited number of input stations are available, the possibility of non-target 

site being the cluster centre allows the clustering method to form better groups to generate the 

lowest uncertainty in quantile estimates.  

Fuzzy C-Means clustering is conducted through the minimization of the following objective 

function (Bezdek et al, 1984): 
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where N is the number of stations; C is the number of clusters; iju is the membership value of 

station i  in the cluster j , and can be calculated using Equation (2-5) ; ix is the value of data 

points in station i ; jc is the center value of the cluster j ; and m  is the weighting exponent in 

the Fuzzy C-Means cluster.  

2.3.4 Feature weighting 

To deal with the possible issues caused by feature correlation during clustering, the Lagrange 

Multiplier is used (Borgelt, 2008). The objective function that is used in Lagrange Multiplier can 

be described as: 
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where p is the exponential parameter that is used to control the sparsity of the feature 

weightings. Research has shown that the clustering results remain stable when p  increases to a 

certain value (Xu, et al. 2014), and is set to 6 in this study; V is the number of variables in the 

cluster; Vw  is the weighting value for each variable; N is the number of stations involved in the 

cluster; M  is the number of center groups obtained from clustering; ik  is the belonging value of 

each station to each cluster; 
V

ix is the time series vector for a variable for station i ; 
V

km is the 

time series vector of certain variable for each cluster center k  . 

Based on the objective function in Equation (2-6), the Lagrange formula that will be applied to 

obtain the weighting value for each variable is (Xu, et al., 2014): 
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Based on Equation (2-7), the corresponding weightings can be derived from the derivative and 

are listed as (Xu, et al., 2014): 
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2.3.5 Search algorithm 

To address the first research question and select the optimal combination of similarity indicators 

for HGF, Tabu Search,  which is regarded as the most effective tool to obtain the optimal subsets 

of relevant attributes in the feature selection domain, is used (Zhang & Sun, 2002). The Tabu 

Search is a combinatorial optimization algorithm that avoids the possibility of the searching 

process being stuck in a local optimum by crossing the boundaries of local optimality through 

using the inferior objective values in the process (Glover, 1986).  
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Three types of memory structures are involved in the search process: short, intermediate and 

long-term. The short-term memory or the regency-based memory, which is constantly modified 

in the search, is used to record the Tabu list and guide the search process (Glover, 1989; Zhang 

& Sun 2002). It is constructed by labeling the attributes that have been visited recently as the 

Tabu-active attributes, and these attributes will not be used again in the following search 

(Glover, 1989). While Tabu list is recorded to reduce the visiting of pre-visited attributes, the 

aspiration criteria is used to restrict the pre-visited moves (i.e. the Tabu move), and can be 

updated if the objective function value resulted from using the solution in consideration is better 

than the current aspiration value (Glover, 1989).   In summary, the short-term Tabu Search can 

be carried out through the steps showing in Figure 2-2 (Sait & Youssef, 1999; Zhang & Sun, 

2002). The intermediate memory and long term memory are used in the intensification and 

diversification process separately to either re-evaluate historically good solutions or incorporate 

features that have not been previously included as new solutions (Glover, 1989). 

 

Figure 2- 2 Algorithmic description of Tabu Search (Adapted from Figure 3 in Tahir et al, 2007) 
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Considering the large number of potential features involved in Tabu Search, the process is 

established under the assumption that the best feature combinations that generates the optimal 

objective value at each layer can result in the best final outcome for the whole process.  During 

the process, the searching for the optimal feature combination at each layer will be conducted 

separately, as shown in Figure 2-3. To avoid over-clustering caused by conducting the search at 

every layer, the comparison of the objective values between the groups obtained from the higher 

layer and the lower layer are used as the criteria to determine the necessity of conducting the 

procedure at the lower layer. If the lower layer generates a better objective function value 

compared to that from the higher layer, the search results from the lower layer is acceptable. If 

this condition is not met, the proposed procedure will not be conducted in the lower layer, and 

the algorithm will directly move to the next layer instead. The objective value being used in the 

searching process is the uncertainty of quantile estimates generated from the formed group, i.e., 

the average widths of confidence interval (CI) for the rainfall quantile estimates at different 

return periods.   

2.3.6 Automatic feature selection and weighting algorithm 

Based on the above sections, the automatic feature selection and weighting algorithm can be 

conducted through the following procedures. The flow chart of the proposed search algorithm is 

illustrated in Figure 2-3. 

1) Original Feature Gathering. The time series of the potential rainfall-related features for the 

initial group of stations at all three layers are extracted at available spatial resolutions. 

2) Temporal Scaling.  Based on the method presented in Section 2.3.2, wavelet decomposition 

is used to extract the feature values at different TRs.  

3) Feature Scaling.   The method of scaling to unit length is used to standardize the range of 

each feature value, can be achieved by using equation 
x

x
x

  , where x  is the feature vector 

before scaling, x  is the Euclidean length of the vector, and x is the vector after scaling.   

4) Feature selection and weightings at the first layer or the higher layer. The hybrid searching 

algorithm can be conducted through the following procedures: 

(a) Initial selection of features. Randomly select certain number of features from the 

potential feature datasets in the higher layer, and record them in the Tabu list.  
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(b) Initial equal weightings for the selected features.  

(c) Fuzzy C-Means clustering. Use the weightings from step (b) and the selected features 

from step (a) in the Fuzzy C-Means clustering to form the homogeneous group for the 

target site.  

(d) Features weightings recalculation. Based on the clustering results from step (c), re-

calculated the features weightings using Lagrange Multiplier. 

(e) Repeat step (c) and (d). Use the feature weightings from step (d) as the new weightings, 

and repeat the steps (c) and (d). This process continues until the weighting obtained from 

step (d) is close to the weightings used in step (c). Then use these final weightings in 

step (d) to obtain the final homogeneous group for the target site. 

(f) Objective value calculation. Use the formed group obtained from step (e) for the 

objective value calculation, i.e., the average CI widths for the quantile estimates at 

different return periods. Record this objective value in the searching process. 

(g) Repeat steps (a) – (f) certain times. Based on the recorded memory of the objective 

values and Tabu list, select the next possible combination of features, and repeat the 

above process. 

(h) Searching stop. After the pre-set number of iterations in the search process, select the 

optimal set of features based on the recorded memory of objective values.        

5) Comparison. Compare the formed group from step 4) with the original input group for 

uncertainty in quantile estimates of the target site through the following steps: a) Uncertainty 

quantification. To quantify the uncertainty in the quantile estimates, parametric sampling is 

used to calculate the CI widths (Hosking & Wallis, 1997). b) Uncertainty Comparison. 

Calculate the ratio of the CI widths between the formed homogeneous groups from lower 

layer and the original input group from the higher layer. c) Boxplots. Repeat step b) 1000 

times and box plots are created based on these calculated ratios.  If the median values of the 

ratio in this boxplot was less than one at most of the return periods, the formed group at the 

lower layer would be considered as a better homogeneous group and accepted as the input 

group for repeating step 4) at the next layer. If not, the original group of stations would be 

used as the input for repeating step 4) at the next layer.  

6) Repeat steps 4) and 5) at the second layer using the resulting group from previous layer as 

the input. 
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7) Repeat steps 4) and 5) at the third layer using the resulting group from previous layer as the 

input. 

8) Final homogeneous group is obtained. The resulting group from step 7) will be used as the 

final homogeneous group for the quantile estimation at target site.  

 

Figure 2- 3 The flowchart of Automatic Feature Selection and Weighting algorithm 

2.4 Data and study area 

2.4.1 Study area 

The proposed methodology is tested in four regions in Canada.  Across Canada, there are eight 

different climate regions: Arctic, Pacific Maritime, Cordilleran, Taiga, Boreal, Prairie, 

Southeastern and Atlantic Maritime. To verify the assumption of the proposed methodology that 

different optimal feature combinations can be used as the similarity indicators for HGF with 
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different input stations at various regions, four regions with a large number of rainfall stations 

were selected as the tested regions:  

1) Region 1 is along the west coast and includes the IDF stations from Yukon Territory, 

Northwest Territories and intensive urbanized area in British Columbia.  Due to the close 

proximity to the ocean and unique geographic characteristic in the mountain area, this region 

mainly experiences the Pacific Maritime and Cordilleran climate type; thus stratiform rainfall 

will be the main rainfall type throughout the year.  

2) Region 2 is in the west and specifically includes weather stations from the Prairie and the 

adjacent Boreal climate region, where convective extreme rainfall is the main extreme 

rainfall type in the summer.  

3) Region 3 is in the Boreal and Southeastern regions and includes stations from Ontario and 

Quebec, both of which have some intensive urbanized areas. While convective extreme 

rainfall events may be the main rainfall type in the Boreal region, stratiform rainfall is 

perceived to be more common in the Southeastern region due to its closeness to large water 

bodies.  

4) Region 4 is in the Atlantic region and includes the stations from Nova Scotia, New 

Brunswick, Prince Edward Island and Newfoundland, where rainfall events are affected by 

cyclonic storms from the Atlantic Ocean. Due to the limited number of IDF stations in the 

Atlantic region, some nearby sites from Quebec are also included. 

2.4.2 Extreme rainfall datasets 

Based on the methodology presented in Section 2.3, two categories of information are required 

before conducting the searching process: the values of the extreme rainfall at different durations 

and their corresponding dates of occurrence. The first category of information is used for the 

rainfall quantile estimation during the uncertainty comparison and can be retrieved from the 

Engineering Climate Datasets provided by Environment and Climate Change Canada (ECCC) in 

the form of the annual maximum rainfall series (AMS) at nine durations ranging from 5 min to 

24 h (5, 10, 15, and 30 minutes and 1, 2 6, 12, and 24 h). If the data records were not complete 

during the analysis period, the historical dataset also provided by ECCC could be used as an 

alternative source for providing missing AMS data points for the duration of 24h. For the second 
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category, the corresponding dates of occurrence for the annual extreme rainfall events were 

obtained based on the information provided from both the historical dataset on ECCC website 

and the total precipitation from ERA-Interim database provided by European Centre for 

Medium-Range Weather Forecasts (ECMWF) at the resolution of 0.125 degrees.  

2.4.3 Potential features 

Based on the methodology presented in Section 2.3.1, the potential features that on a yearly basis 

correspond to the date of occurrence for the AMS are extracted at different TRs from two 

sources: NOAA Global Ensemble Forecast System Reforecast (GEFS/R) and ERA-Interim 

Database from ECMWF (Berrisford et al., 2011;Hamill et al., 2013). 

a) GEFS/R:  The geopotential height, temperature, U-component and V-component of the 

wind and the specific humidity were extracted at five pressure levels (925hPa, 850hPa, 700hPa, 

500hPa, 300hPa), plus the convective available potential energy, were collected at a resolution of 

1 degree. All the data were extracted at the 3-hourly temporal interval basis.    

b) ERA-Interim: The second layer indicator Vertical Integral of Divergence of Moisture 

Flux (VIMF) at a resolution of 1 degree, and the third layer indicators including 

Photosynthetically Active Radiation index (PAR), Surface Net Solar Radiation (SNSR), Surface 

Net Thermal Radiation (SNTR) and the Surface Roughness (SR) were extracted at a resolution 

of 0.125 degree. All of these indicators are extracted at the 6-hourly temporal interval basis.    

2.4.4 Data Screening 

Based on the availability of the observations from the above sources, the period for the search 

algorithm was set from 1985 to 2004. However, in the uncertainty comparison among different 

formed groups, all the available data points in the stationary rainfall period from the Engineering 

Climate Datasets were used considering the statistical accuracy that can be achieved with a larger 

sample size. Thus during the process of data screening, the selected stations in each region 

should have stationary extreme rainfall time series for two periods (the period from 1985 to 2004 

and the whole available time period obtained from Engineering Climate Datasets), since the 

extreme rainfall series from shorter period could be regarded as the representatives for the longer 

period if they were both stationary. This objective was achieved through applying Pettitt test and 

Mann–Kendall nonparametric test with the block bootstrap resampling (Donald H. Burn, 2014). 



24 
 

The final number of stations with stationary rainfall series for each region is: 86 stations in 

Region 1 with VANCOUVER INTL A being the target site; 78 stations in Region 2 with the 

CALGARY INT'L being the target station; 162 stations in Region 3 with TORONTO CITY 

being the target station; and 72 stations in Region 4 with GANDER AIRPORT CS being the 

target station.   

2.5 Application 

To demonstrate the effectiveness of the proposed methodology and address all the research 

questions, the analysis in the following sections were conducted: 1) to answer the first research 

question, the methodology in Section 2.3.2 was applied in Section 2.5.1 to distinguish the 

optimal TRs for the features at different layers. 2) To answer the second question, all correlation 

coefficients and entropy differences between the most responsive indicators and less responsive 

ones at the first and second layers for all the stations were compared in Section 2.5.1 to 

demonstrate the spatial differences among their extreme rainfall pattern indicators. 3) To prove 

the necessity of conducting the algorithm at all three layers and answer the third question, the 

uncertainty in the quantile estimates from the homogeneous groups that were generated by using 

the algorithm at lower layer were compared to that in the formed groups from the higher layer in 

Section 2.5.2. 4) To illustrate the effectiveness of the proposed methodology, the algorithm was 

applied to form the homogeneous groups for rainfall events with different durations at four 

different regions in Section 2.5.2 and 2.5.3, and the uncertainty in their quantile estimates were 

compared to that from using at-site analysis and also that in the formed groups generated by 

using a geographic approach in Section 2.5.4.   

2.5.1 Temporal scaling for the potential features  

Both entropy differences and correlation coefficients between the most responsive feature and 

less responsive ones at different TRs are used to determine the optimal TRs at first and second 

layers. Since the relationship among the potential features at each layer may not be linear, 

entropy differences may provide more reliable conclusions than correlation coefficients. In the 

first layer, correlations between the CAPE and the rest of the first layer features at all stations 

reach the highest values at the 128- day TR (level 10 decomposition), and their corresponding 

entropy differences are reasonably small at this level, thus 128 days is selected as the optimal TR 
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for the features at the first layer. This 128-day TR is reasonable for the following reasons: 1) 

While precipitation process is a mesoscale atmospheric processes, it can be affected by the large 

scale phenomena including large clouds formation, warm and cold fronts collision etc. 2) In the 

three-layer design, the features in the first layer are used as the similarity indicators to gather 

stations that share similar extreme-rainfall related atmospheric characteristics at large scales. 3) 

Studies shows that extreme events-related atmospheric movements, specific CAPE-related 

features, are strong seasonal correlated with the seasonal migration of monsoon over West Africa 

and India (Murugavel et al., 2012; Meukaleuni et al., 2016).  

The situation is more complicated at the second layer. For the majority of the stations, the 

correlation coefficients between the VIMF and the rest of features at the second layer increase 

steadily as the decomposition level increases until it reaches either level 10 or 9 (64-day TR) and 

the declines in their corresponding entropy differences become barely noticeable after level 9. 

Thus the 64-day TR is used as the optimal TR for extracting feature values at the second layer. In 

the third layer, the optimal TR is set to the duration of the extreme rainfall events of concern 

(i.e., 24-hour in this case) for two reasons: 1) No universal TR for all the stations can be obtained 

based on the values of entropy differences and correlation coefficients. 2) To meet the needs of 

considering extreme events at different durations for different construction purposes.  

The spatial difference of the correlations between potential features for the stations in Region 1 

is presented in Figure 2-4. Although at each station, the highest correlation coefficient values 

between the most responsive features and less responsive ones were all reached at level 10 or 9 

decomposition for the first or second layers, major differences are still observed among these 

correlation values across different stations. At each station (which is described as each column in 

Figure 2-4), all the potential features at first (Figure 2-4(a)) and second (Figure 2-4(b)) layers 

have different levels of correlations to the extreme rainfall mechanisms. For each potential 

feature (which is described as each row in Figure 2-4), its correlations to extreme rainfall events 

vary largely among different stations at both layers. Thus the assumption of spatial difference for 

similarity indicators existing at different stations is valid. The same situation can be applied in 

Regions 2, 3 and 4. 

However the approach of determining similarity indicators by choosing the ones that have higher 

correlation values at the target site is not suggested for the following reasons: 1) The correlation 
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or entropy differences obtained is not equivalent to the representation of the mutual information 

among different features. 2) Even if the mutual information were used as a potential measure, the 

approach of choosing the features that are highly relevant to the most responsive features might 

result in biased clustering as these features may not represent all aspects in the complex rainfall 

system. 3) In the stations where low correlations have been detected across all the features, such 

as the first column in Figure 2-4 (a), the approach of choosing comparatively higher correlated 

features as the similarity indicators may result in inferior HGF.              

 

 

Figure 2- 4 Graphic display of the correlation coefficient values between the most responsive features and the 

less responsive ones in the first (a) and second (b) layers at level 10 and 9 decomposition from the stations in 

Region 1. The column number indicates the stations in Region 1, and the row number indicates the potential 

features in first and second layers. Each grid represents correlation value between the most responsive 

feature and one of the less responsive ones at one station. 

(a) 

(b) 

(a) 

(b) 
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2.5.2 HGF in Tabu Search 

The cluster number was set to 2 in the Fuzzy C-Means clustering for the following reasons: 1) 

the larger the formed group the lower the uncertainty in the quantile estimates. The goal of this 

study is to form homogeneous groups with the lowest uncertainty in the quantile estimates not to 

find the optimal partition of the input stations in the clustering. In the formed group, both group 

heterogeneity and small group size can increase the uncertainty in the final quantile estimates. 

But the influence from group size normally outweighs the impact from heterogeneity as the 

geographic proximity of the original input group guarantees a certain level of group 

homogeneity. 2) The pre-knowledge of the cluster number for the first two layers. The clustering 

at the first layer is constructed to distinguish the stations whose extreme rainfall events are 

mainly caused by cumulonimbus or nimbostratus clouds. However, the extreme rainfall events at 

certain durations, especially the longer ones, are likely caused by the combination of different 

cumulonimbus or nimbostratus clouds. For those stations whose rainfall events are caused by the 

combination of cumulonimbus and nimbostratus, the second layer is used to further separate the 

input stations into the convective and stratiform rainfall type. For those stations whose rainfall 

events are caused by the nimbostratus, the clustering at the second layer is used to further 

separate rainfall type into relief and frontal rainfall. 3) The validity measures including partition 

coefficient (PC) index, partition entropy (PE) and the modified Xie–Beni index are not very 

effective in determining the optimal cluster number in this study (Xie & Beni, 1991; Wang & 

Zhang, 2007; Satyanarayana & Srinivas, 2011). As a conclusion, to gather a large number of 

stations to form the homogeneous group and reduce the computational cost without jeopardizing 

the search for the optimal feature combination, the search for the optimal feature combination 

was conducted with the fixed value of the weighting exponent (m=2) and the cluster number 

(n=2) for the clustering at all layers.  

Based on the methodology presented in Section 2.3.4 and 2.3.5, the automatic feature selection 

and weighting algorithm is conducted consecutively in three layers. At each layer, the number of 

iterations is set to 60 with 3 repetitions in Tabu Search.  

Two possible issues should be noted when selecting the optimal feature combination based on 

the memories recorded in Tabu Search: 1) Due to the stochastic characteristics in the estimation 

for the objective function values for each homogeneous group formed, one choice of feature 
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combination can repeat several times in the Tabu Search with different objective function values.  

Thus the frequency of the feature combinations appearing in the top 100 in the recorded memory 

is also taken into consideration during the determination of optimal feature selection. 2) The high 

correlations among the input features can cause many sets of feature combinations, with different 

weightings, to generate the same clusters. Thus, the combinations with the minimal number of 

features that can be used to form the homogeneous group is selected as the final choice. The 

selected feature combination with the corresponding weightings are presented in Table 2-2. The 

homogeneous groups at each layer in four regions can then be generated using the selected 

features; the groups are presented in Figure 2-5.  

 

 

Figure 2- 5 Graphic display of homogeneous groups and original input groups for extreme rainfall events at 

24h duration in Region 1, 2, 3 and 4. The circle dots in red, yellow, green and blue in the graph indicate the 

original input stations, while the solid dots at four colors represent the homogeneous groups in four regions. 

The black triangles represent the target sites in four different regions. 
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Table 2- 2  Feature selection and weighting results from Three-layer search algorithm 

(a) results from the procedure at first layer 

  
air300 air500 air700 geo300 geo500 geo700 vw300 vw500 vw700 uw300 uw500 uw700 sphu300 sphu500 sphu700 CAPE 

Region 1 
Selection 0 0 1 0 1 0 0 0 0 1 0 1 0 1 0 0 

Weightings 
  

0.243 
 

0.239 
    

0.167 
 

0.166 
 

0.184 
  

Region 2 
Selection 1 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0 

Weightings 0.242 
  

0.236 
       

0.166 0.177 0.178 
  

Region 3 
Selection 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 

Weightings 
     

0.308 
    

0.233 
   

0.245 0.214 

Region 4 
Selection 0 0 0 1 1 1 0 0 0 0 1 0 0 1 1 0 

Weightings 
   

0.190 0.188 0.185 
    

0.140 
  

0.148 0.149 
 

 

(b) results from the procedure at second layer 

  
air850 air925 geo850 geo925 vw850 vw925 uw850 uw925 sphu850 sphu925 VIMF Latitude Longitude Elevation 

Region 1 
Selection 1 0 1 0 0 1 0 0 1 1 0 0 0 0 

Weightings 0.236 
 

0.235 
  

0.166 
  

0.181 0.181 
    

Region 2 
Selection 1 0 1 0 0 0 0 1 0 0 0 0 0 0 

Weightings 0.366 
 

0.370 
    

0.264 
      

Region 3 
Selection 

              
Weightings 

              

Region 4 
Selection 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

Weightings 
        

1 
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(c) results from the procedure at third layer 

  
LHTFL SHTFL PRS SSR SNR SRH 

Region 1 
Selection 0 0 0 1 0 0 

Weightings 
   

1 
  

Region 2 
Selection 1 1 1 1 0 0 

Weightings 0.239 0.248 0.259 0.254 
  

Region 3 
Selection 1 0 0 0 0 1 

Weightings 0.510 
    

0.490 

Region 4 
Selection 0 0 0 1 0 1 

Weightings 
   

0.520 
 

0.480 
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According to the graphic displays in Figure 2-5 and the boxplots for comparison of uncertainty 

in the quantile estimates in Figure 2-6, several findings can be observed: 1) The algorithm at first 

layer serves its purpose.  As shown in Figure 2-5, all of the stations from each final 

homogeneous group (Groups 1, 2 and 3) in Regions 1, 2 and 3 lie within the same climate region 

and its adjacent area.  In Region 4, the limited number of rainfall stations in the climate region 

are insufficient to produce accurate estimates and stations from other climate regions are also 

included in Group 4 to improve the accuracy of the estimates.  2) The implementation of judging 

criterion is effective. During the searching process in Region 3, the formed group from the 

second layer is not admissible as the uncertainty in its quantile estimates is higher than that from 

the formed group generated from the first layer as shown in the second plot in Figure 2-6 Region 

3. This forces the search process to skip the procedure in the second layer and step directly to the 

third layer. 3) The three-layer framework is effective.  The uncertainty in the quantile estimates 

from the formed groups is decreasing after each layer even when the number of stations in these 

group is also decreasing. 4) The third layer in the proposed algorithm can be equally effective in 

the less urbanized area. In Regions 2 and 4 where most of the stations are located in the less 

urbanized area, only a small number of stations are removed from the formed group generated 

from the procedure at the second layer, and the final homogeneous region resulted from the 

procedure at third layer can still generate the most accurate quantile estimates among all the 

formed groups. 5) Within each homogeneous group, the gathered stations may be located far 

away from the target site for the following reasons: a) the geographic location is just one 

potential similarity indicators used in HGF in the second layer. The final formed group does not 

entirely relied on the geographic proximity. b) The Fuzzy C-Means clustering allows for the 

possibility of non-target site being the centre of the formed group since the generated clusters are 

heavily depending on the information from the input group. In the case where some stations 

locating away from the target site, these stations may still have the feature values that are similar 

to the cluster centre. c) Even under the circumstance that the selected stations are comparatively 

far away from the target station, all the stations in the formed homogeneous group are still 

located in the same climate region. 
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2.5.3 Homogeneous group modification for rainfall series in short durations 

For the rainfall events that have durations shorter than 24h, the three-layer algorithm is 

simplified to the procedure at the first layer, since information about the date of occurrence for 

short duration events is not available. The reasons to only apply the first layer of proposed 

methodology in the HGF are: 1) the temporal step selected to extract feature values is 128-day, 

nearly a four-month period. Considering the extreme rainfall patterns before 2007, there is a 

great chance that the date of occurrence of the short and long extreme rainfall events happen in 

the same four-month period. 2) The first layer is used to gather stations that share similar 

extreme rainfall condition above the PBL. No matter the length of concerned duration, the pre-

conditions for the occurrence of extreme rainfall events especially above the PBL are similar, 

even when the long- and short- duration events do not happen in the same time frame. Thus, the 

approach of using the same feature values as the similarity indicators can be justified. 3) To 

factor the difference in the rainfall amounts among different durations into the HGF for the 

extreme rainfall events at short durations, the annual maximum rainfall series at short durations 

will be used to calculate the objective values in the new searching process.  

Based on the assumption that the shorter duration events occurred in the same four-month time 

window as the 24h duration events, this simplified procedure can be conducted. The 

homogeneous groups for the rainfall events at shorter durations are shown in Figure 2-7, and the 

following findings can be observed: 

1) Region 1: The homogeneous group for the rainfall events in all of shorter durations is the 

same and consists of 38 stations in one climate region shown as the red dots (Group 1) in 

Figure 2-7(a) and 2-7(b). For the 24 hour rainfall series, the homogeneous group obtained 

from the procedure at the first layer consists of 53 stations, and has the same level of 

uncertainty in the quantile estimates as that which resulted from this 38-station group. 

Following the principle of gathering as many stations as possible without increasing the 

uncertainty in the quantile estimate, the 53- station group is regarded as the better 

homogeneous group for the quantile estimates of 24h duration rainfall events. Due to the 

proximity to the ocean, most of extreme rainfall events in this region are caused by stratiform 

rainfall, which can last for a long duration and increases the possibility that rainfall at all 

durations are caused by the same rainfall event and thus share a similar homogeneous region. 
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Region1 
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Figure 2- 6 Boxplots of the ratio of CI widths among different formed groups in Regions 1, 2, 3 and 4 using the AMS at 24-h duration.  The boxplots compare the 

homogeneous group from procedures at higher layer to that from previous lower layer, and numbers in the brackets indicate the number of stations in the formed 

homogeneous groups.  The red line in every boxplot indicates where the value equals to 1. 

Region3 

Region4 
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2) Region 2: The homogeneous groups for the rainfall events that have durations shorter than 1h 

share the same group which consists of 31 stations shown as the yellow dots (Group 2) in 

Figure 2-7(a). For the rainfall at all longer durations, the homogeneous region consists of 42 

stations shown as the yellow dots (Group 2) in Figure 2-7(b). Region 2 is in the Prairies, 

where convective extreme rainfall events occur during shorter time windows. Extreme 

rainfall events at longer durations are likely caused by the stratiform rainfall events or the 

combination of convective and stratiform rainfall events.  

3) Region 3: The same homogeneous group with 93 stations (shown as green dots of Group 3 in 

Figure 2-7(a) and 2-7(b)) for the rainfall events at all durations are identified and are located 

inside the Southeastern region. The main rainfall type in the Southeastern region is stratiform 

rainfall that can last for long durations.  

4) Region 4: The homogeneous group allocation in this region is similar to the situation in 

Region 2. In summary, two homogeneous groups for the rainfall events are identified: 27-

station group for the rainfall events with the durations less than 1h shown as the blue dots in 

Group 4 from Figure 2-7(a), 29-station group for the events with durations between 1h to 12h 

shown as the blue dots in Group 4 from Figure 2-7(b). For the homogeneous region for the 

24h duration rainfall events, the group of 35 stations obtained from the procedure at the first 

layer has the same level of uncertainty as the 29-station group. This situation can be 

explained by the same reasons noted above for Region 2.      

2.5.4 Comparison between proposed approach and traditional geographic approach 

To prove the homogeneity of the formed homogeneous groups in the selected regions, the 

homogeneity (H) test which can be constructed by using L-CV, L-skew or L-kurtosis was used 

(Hosking & Wallis, 1997). Details of the homogeneity test can be found in Appendix 1. If one of 

these three calculated H measures for the formed group is less than 2, the formed groups can be 

regarded as homogeneous. The HGFs for the AMS at 24-h duration in Region 1, 3 and 4 meet 

above requirement as their lowest positive H measures equal to 0.16, 1.80 and 1.18, respectively. 

For the homogeneous group in Region 2, all of the H measures are negative because of the 

positive correlation among the included sites (Castellarin, et al., 2008). 
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(a) 

 

(b) 

Figure 2- 7   Graphic display of homogeneous groups for extreme rainfall events at duration 5 min, 15 

min, and 30 min in (a) and at duration 1h, 2h, 6h and 12h in (b) for Region 1, 2, 3 and 4 The solid dots in 

red, yellow, green and blue represent the homogeneous groups in four regions. The black triangles 

represent the target sites in four different regions. 

To demonstrate the effectiveness of the proposed methodology, the obtained homogeneous 

regions are compared with the pooling groups generated from the traditional geographic 

approach in which the geographic distance from the target stations is used as the similarity 

indicator in the process (Burn, 2014). To reduce the possible impacts from sample size on the 

uncertainty in the quantile estimates, the formed groups from the proposed method and the 

groups generated using the geographic approach have the same number of stations.  
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The boxplots for this comparison of uncertainty in the quantile estimates for the rainfall series at 

24-h duration are shown in Figure 2-8. The median values of the ratios in all boxplots at all 

return periods are less than one, which indicates that the selected features at all three layers are 

more effective than the geographic distance as similarity indicators to form the homogeneous 

regions. In terms of the applicability of the first layer algorithm of proposed methodology for the 

rainfall events at shorter durations, the same procedure is conducted to obtain the boxplots for 

comparison, and the same conclusions are reached. 

To further validate the proposed methodology, two additional comparisons are conducted using 

the AMS at 24-h duration: 1) the comparison of CI widths in the quantile estimates from using 

the at-site approach and the proposed regional methodology. Based on the results shown in 

Figure 2-9, the formed homogeneous groups at four target sites generate narrower CI widths than 

that from using at-site approach for the longer return periods, and generally perform equally or 

inferior for the 2-year return period in terms of the uncertainty in the estimates. 2) The 

comparison of root mean square error (RMSE) in the growth curves of the HGFs from using 

proposed method and the traditional geographic approach. In this study, the RMSEs are the 

average differences between at-site and regional growth curves at different return periods, and 

can be calculated by using the procedures introduced by Mostofi Zadeh, et al. (2019). Based on 

the results shown in Table 2-3, the HGFs from using the proposed methodology generally 

generate lower RMSEs than that from using traditional geographic approach at all return periods. 

Table 2- 3  Summary of RMSEs from using different HGF approaches with the AMS at 24-h duration 

  Return Period  

Testing Regions Approach 2-year 5-year 10-year 25-year 50-year 100-year 

Region 1 
Proposed method 0.016 0.012 0.013 0.030 0.047 0.065 

Traditional geographic method  0.014 0.018 0.036 0.063 0.084 0.107 

Region 2 
Proposed method 0.010 0.006 0.011 0.016 0.019 0.021 

Traditional geographic method  0.017 0.027 0.050 0.078 0.099 0.120 

Region 3 
Proposed method 0.009 0.020 0.030 0.042 0.051 0.059 

Traditional geographic method  0.016 0.019 0.039 0.067 0.089 0.113 

Region 4 
Proposed method 0.017 0.019 0.031 0.051 0.067 0.085 

Traditional geographic method  0.011 0.020 0.037 0.055 0.068 0.081 
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2.6 Conclusions 

A HGF process based on the feature selection and weighting algorithm in a three-layer design is 

proposed to consider the spatial difference of similarity indicators at various regions and reduce 

the uncertainty for the quantile estimation in regional IDF estimation. Based on the stages of the 

extreme rainfall formation at different heights, the process extracted both atmospheric and 

geographic features to consider the possible alteration of rainfall patterns caused by climate 

change and urbanization at certain locations. During the process, the hybrid searching, which is 

the combination of Tabu Search, Fuzzy C-Means clustering and Lagrange multiplier is used to 

select the optimal feature combination and form the homogeneous group that generates the 

lowest uncertainty in the quantile estimates.     

The advantages of the proposed methodology can be summarized into the following points: our 

method 1) considers the possible changes in the homogeneous region for the rainfall events 

causing by climate change and urbanization. 2) Considers spatial difference of the similarity 

indicators at different regions for conducting more effective HGF. 3) Allows the possibility of 

letting the data itself to drive the group centre and best utilize the most information provided 

from the available weather stations. The proposed method is applied in four regions across 

Canada with different rainfall types. The results are evidently superior in comparison with the 

traditional geographic approach. 
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Figure 2- 8  Region 3 and 4  Boxplots of the ratio of CI widths between formed groups obtained from using the proposed approach and the geographic approach in 

Regions 1, 2, 3 and 4 using the AMS at 24-h duration.  The boxplots are conducted at all three layers in which the proposed homogeneous groups are compared with the 

groups that have the same number of stations formed using geographic approach.   The numbers in the brackets indicate the number of stations in the formed 

homogeneous groups.  The red line in every boxplot indicates where the value equals to 1. 

Region3 

Region4 
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                                   Region 1                                                          Region 2 

 

                                  Region 3                                                         Region 4 

Figure 2- 9  Boxplots of the ratio of CI widths between proposed approach and at-site approach for four target 

sites in the selected regions using the AMS at 24-h duration. Each target site contains more than 50 data 

points. 
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Transition Paragraph A  

The three-layer searching algorithm proposed in the previous chapter was successfully applied 

for homogeneous group formation in the historical stationary environment considering the 

impacts of climate change.  However, climate change may result in spatial alteration of extreme 

rainfall patterns from changes in the near-surface moisture and increases in the global 

temperature. Hence, the previously optimal homogeneous groups may no longer be appropriate 

with respect to the accuracy and uncertainty in regional rainfall quantile estimates.  To obtain 

optimal homogeneous groups for different target sites in the future context, an adjustment 

procedure, conditioned upon the previous optimal homogeneous groups, is proposed in this 

chapter.  To enhance the adjusted homogeneous groups in the future context, improvements in 

the previously established three-layer searching algorithm have been made. The improvements 

include the replacement of the feature weighting method with feature extraction techniques to 

deal with the impacts of nonlinear correlation amongst the selected similarity indicators on the 

homogeneous group formation process and the addition of the Region of Influence approach as a 

method for homogeneous group formation. Under the assumption that the extreme rainfall series 

remain stationary within future 30-year periods, the previous optimal homogeneous groups are 

adjusted to the new optimality in a testing loop.   
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  Chapter 3    An improved algorithm for homogeneous group formation for 

regional frequency analysis of extreme rainfall events under climate change 

This chapter is built upon the submitted article with the same title in Global and Planetary 

Change. Minor differences between the submitted paper and the chapter have been made to 

facilitate consistency and coherence. 

Yang, Z., & Burn, D. H. (2019). An improved algorithm for homogeneous group formation for 

regional frequency analysis of extreme rainfall events under climate change. Submitted to Global 

and Planetary Change. 

Summary 

An improved three-layer searching algorithm is proposed to differentiate the impacts of climate 

change and urbanization on the extreme rainfall patterns at target sites in regional frequency 

analysis. Previously, it has been shown that fuzzy c-mean clustering coupled with Lagrange 

multiplier is capable of forming effective homogeneous groups for the extreme rainfall events 

while reducing the correlation impacts. While feature weighting is relatively inferior to feature 

extraction on the effectiveness of extracting non-redundant information from the selected 

similarity indicators, the clustering approach in the homogeneous group formation is heavily 

dependent on the original group of input stations. Additionally, the homogeneous groups formed 

by using the historical observations may experience spatial alterations under climate change 

impacts. The new version of the three-layer searching algorithm proposed in this paper improves 

the effectiveness of homogeneous group formation in historical and future contexts in a number 

of ways. The approach improves the effectiveness of the non-redundant information extraction 

by using Isometric Feature Mapping, a non-linear dimensional reduction method. The 

effectiveness of the homogeneous group formation is improved by adding the Region of 

Influence (ROI) approach as an additional homogeneous group formation technique in addition 

to fuzzy c mean clustering (FCM). While the groups formed using the FCM approach can be 

characterized by the extreme rainfall patterns at or close to the group center, the extreme rainfall 

characteristics at groups formed using the ROI approach can be described by the patterns at pre-

set target sites. An adjustment procedure is proposed to adjust the homogeneous group in the 

historical context for the consideration of the spatial alteration in the future context. The 

improved group formation process is tested in two regions in Canada with different atmospheric 
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characteristics. The improved version of the three-layer searching algorithm improves the 

performance of the searching algorithm in the historical context and fills the gap of providing a 

homogeneous group formation approach in the future context.   

3.1 Introduction 

Human activities have long been recognized as the main factors behind global climate change 

(Mann et al, 2017). With the increasing amount of human activities altering the natural 

environment around the world, unprecedented extreme weather events caused by climate change 

are expected in the future (Stott et al., 2010; Trenberth, 2011). Many papers have explored the 

patterns of extreme rainfall events around the world and detected temporal changes for many 

areas. Mondal and Mujumdar (2015) used ENSO index, global average surface air temperature 

and local mean temperature changes as the extreme rainfall indicators over India and detected 

non-stationarity at different geographic locations, on a grid scale, for the 100-year extreme 

rainfall event. Simonovic et al. (2017) analyzed the frequency and intensity of extreme rainfall 

events for nine durations across Canada and found extreme precipitation decreases in the west-

central part of the country but increases in the east coast areas. Fernandes and Rodrigues (2017) 

compared the extreme rainfall events over Brazil between two periods, 1979–1999 and 2000–

2015, and concluded that significant alterations had been detected in both the rainfall amount and 

rainfall mechanisms. Ma et al (2015) analyzed the daily rainfall records for 632 stations from 

1969 to 2013 in China and concluded that the frequency of heavy rainfall events was increasing 

over southeast China while the frequency of moderate and small rainfall events was decreasing.  

All of above papers have used an at-site approach to quantify the frequency and intensity of the 

extreme rainfall events at a specific location.  Both at-site and regional frequency analysis for the 

extreme rainfall events are widely applied for the characterization of extreme rainfall patterns. 

While the former utilizes only the records from target site for the quantile estimation, the latter 

utilizes data from stations sharing similar rainfall patterns to provide more accurate estimates for 

the extreme rainfall intensities.   

Different levels of climate change impacts on heavy precipitation events have been observed or 

expected at different temporal periods (IPCC, 2013).  Between 1950 and early 21st century (the 

historical context), low probability of changes have been observed in the frequency of heavy 
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precipitation events on a global scale (IPCC, 2013). Thus, in the historical context, the frequency 

analysis of the extreme rainfall events is normally conducted under the assumption that the 

stations exhibit stationary patterns, in which regional approach is used to improve the rainfall 

quantile estimates (Asong et al., 2015; Easterling, 1989; Gaál & Kyselý, 2009; Hosking & 

Wallis, 1997; Yang et al., 2010; Gabriele & Chiaravalloti, 2013; Satyanarayana & Srinivas, 

2008).  

To improve the regional frequency analysis of the extreme rainfall events in the historical 

context, many papers have explored methods for homogeneous group (HG) formation. Different 

similarity indicators have been used as the representation of the extreme rainfall patterns at 

various geographic locations. In the historical context, the at-site statistics and site 

characteristics, i.e. the mathematical and the physical representations of the extreme rainfall 

patterns for a certain period, can be used as similarity indictors (Hosking and Wallis, 1997). 

Common at-site statistics that can be used in the HG formation are the mean annual precipitation, 

the mean number of wet days etc. (Easterling, 1989; Hosking & Wallis, 1997; Gaál & Kyselý, 

2009; Yang et al., 2010). At-site statistics require long records for calculation and also lack the 

capability to indicate the changes in the extreme rainfall under climate change.  The site 

characteristics, including geographic or atmospheric features (Hosking and Wallis, 1997; 

Satyanarayana and Srinivas, 2008; Ahmad et al., 2013; Gabriele and Chiaravalloti, 2013; Burn, 

2014;  Asong et al., 2015; Haddad et al., 2015), can reveal the potential alterations in the HGs, 

and are preferable choices of similarity indicators for the HGs formation in the historical context. 

Based on the structure of the atmospheric layers, Yang and Burn (2019) proposed a three-layer 

searching algorithm to distinguish the spatial and temporal differences of similarity indicators 

used for HG formation on the various locations using site characteristics. To further improve the 

HG formation in the historical stationary context using the three-layer framework, the first goal 

of this paper is to propose an improved version through using a more efficient feature extraction 

method and adding an additional HG formation technique.              

However, the probability of changes in the frequency of heavy precipitation events is expected to 

increase to the medium level at the early stage of 21st  century, and accelerate to high level at the 

later 21st  first century based on different climate simulations (IPCC, 2013). Thus, in the future 
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context (the majority of the 21st century), nonstationary patterns for the extreme rainfall events 

at different weather stations should be considered in regional frequency analysis.  

Under the impacts of climate change, extreme rainfall systems can experience both spatial 

shifting and temporal changes that may result in changes in magnitudes for regional extreme 

intensities and spatial alterations in the current HGs.  Many papers have stated the possibility of 

spatial changes being detected in the distribution of rain belts caused by global warming (Yang 

et al., 2015; Putnam and Broecker, 2017). The shifted rain belt can cause the redistribution of 

moisture available in the atmosphere and thus changes in extreme rainfall patterns. Mbengue and 

Schneider (2013) have detected shifted storm tracks, which are closely related to the formation 

of extreme cyclones that can result in extreme rainfall events for coastal regions. By ignoring the 

potential changes in the formation process of rainfall HGs, biased and inaccurate quantile 

estimates may be obtained when using a regional approach.  

To conduct regional frequency analysis under climate change and provide more accurate 

estimates for the extreme rainfall intensity, the second goal of this paper is filling the gap of 

searching for HGs that can be used for the frequency analysis of target sites in the future context. 

The unavailability of atmospheric features in the future context means that the approach of using 

site characteristics for the HG formation is impossible, thus the at-site statistics are used instead. 

Conditioned upon the information from previous HGs, the new HGs are adjusted through 

identifying the non-compatible stations within the original HGs and the new compatible sites 

located near to the target stations in terms of similarity distance. To improve the optimality in the 

adjusted HGs, this procedure is conducted in a testing loop until the extreme rainfall patterns 

revealed in the final HGs are consistent with the patterns shown in the relevant rainfall cluster. 

This procedure is also included as a part of the improved version of the three-layer searching 

algorithm.  

By utilizing the improved version of the three-layer searching framework for the HGs in the 

historical and future contexts, this paper seeks to achieve the following goals:   

1) Generate improved HGs in comparison with the original version in the historical context. 

2) Generate new HGs to achieve a new level of optimality in the future context.       
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The rest of this paper is structured as follows: The basic concepts of the original three-layer 

design are introduced in Section 3.2. The approach used to reduce the feature correlation impact 

and the additional homogeneous group formation approach in the improved version is introduced 

in Sections 3.3.1 and 3.3.2. The rationale and details of the adjustment procedures are described 

in Section 3.3.3.  To demonstrate the superiority of the proposed methodology and achieve above 

two goals, study areas are described in Section 3.4 and application is conducted in Section 3.5.                             

3.2 Regional frequency analysis using the three-layer searching algorithm 

Regional frequency analysis is conducted by using all the observations from the rainfall 

homogeneous group that is formed by gathering stations that are similar in terms of rainfall. 

Under the assumption that the stations in the homogeneous group share similar extreme rainfall 

patterns established in the index-event model, the regional rainfall quantile estimates can be 

described as (Dalrymple, 1960): 

P

T

P

T xRR ˆˆ                                                                (3-1)   

Where 
P

TR̂ is the quantile estimate of T-year event for a site, R is the index event; 
P

Tx̂ represents 

the regional growth curve. To form the HGs in a stationary environment, the original version of 

three layer searching algorithm is applied with the annual maximum series (AMS). 

A three-layer searching algorithm, which considers the climate change impacts on the spatial 

distribution of extreme rainfall, is used to form the optimal homogeneous region for a target 

station in a historical stationary environment (Yang and Burn, 2019). This framework is 

established based on the altitudes (heights) for the three possible stages in the formation of 

extreme rainfall processes: cloud formation, rainfall generation and alteration of rainfall intensity 

above the surface (Yang & Burn, 2019). As shown in Figure 2-1, each of these stages occurs 

sequentially at the corresponding layer: the first layer (atmosphere beyond the planetary 

boundary layer), the second layer (Urban Mixing Layer) and the third layer (Urban Surface 

Layer) (Collier, 2006; Shepherd, 2005; Yang & Burn, 2019). In the first layer, relevant features 

such as the Convective Available Potential Energy (CAPE) index and other atmospheric 

attributes between 300hPa height and 700hPa height can be selected as the potential similarity 

indicators to distinguish two types of extreme rainfall-induced clouds: cumulonimbus or 

nimbostratus (Houze, 1989; Houze Jr., 1997), and can be used as indicators to describe the 
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extreme rainfall patterns being affected by climate change (Gabriele & Chiaravalloti, 2013; Yang 

& Burn, 2019). The procedure at the first layer results in a macro homogeneous group that 

delineates the spatial extent of large-scale extreme rainfall events for the target site (Yang & 

Burn, 2019). The second and third layers are set to further distinguish the potential impacts on 

the HGs formation caused by atmospheric and geographic attributes at a regional scale and 

urbanization at a local scale, during which atmospheric attributes at lower heights, geographic 

attributes plus features associated with urban heat effect, urban canopy effect and urban aerosol 

effect, are selected to measure the rainfall similarity among the stations in the HG from the 

previous layer (Collier, 2006; Gabriele & Chiaravalloti, 2013; Li et al., 2013).  The final group 

from the procedures at the third layer, which generates low uncertainty and small Root Mean 

Square Error (RMSE) in the quantile estimates, is regarded as the optimal HG for the regional 

frequency analysis at a target site. The potential features for all three layers are summarized in 

Table 2-1, and the detailed explanations for selecting these features can be found in the original 

paper (Yang & Burn, 2019).  

The HG formation procedures in the original version of three-layer searching algorithm are 

briefly described as the following (Yang and Burn, 2019): 

1) Feature gathering. Based on the structure set by the three-layer framework, the features that 

can be used as the potential similarity indicators in the HGs at each layer are gathered at 

different spatial resolutions.  

2) Temporal resolution determination. The goal of stage separation in the three-layer framework 

is the consideration for the temporal difference for the features at different layers. In the 

original version of the three-layer searching algorithm, the correlations or entropy differences 

among the selected feature values at different temporal resolutions are used to determine the 

optimal temporal resolutions for the features at the first and second layer (Quiroz et al., 

2011).  

3) Feature values at optimal temporal scales. The feature values corresponding to the date of 

occurrences for the extreme rainfall events for the rainfall stations are extracted at the 

optimal temporal step, 128- and 64- day resolutions respectively for the first two-layer 

features. Explanations for selecting these two resolutions can be found in the original paper 

(Yang and Burn, 2019). 
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4) HG formation process at first layer. The extracted feature from previous steps are used in the 

FCM for the HG formation (Bezdek et al, 1984), during which the Lagrange Multiplier is 

used to improve the clustering results through reducing the correlation impacts (Borgelt, 

2008; Xu, et al. 2014).  

5) Feature combination searching. Tabu search, a feature selection technique, is applied to 

search for the optimal feature set to generate low uncertainty in the quantile estimates 

(Glover, 1986; Glover, 1989; Zhang and Sun 2002). The width of confidence intervals (CI) 

for the quantile estimates at target stations are used as the objective function in the search.  

HG formation in the following layers. Repeat Step (4) and (5) at the second and third layers, 

during which the HGs resulting from the higher layer are the input group of the stations at the 

lower layers. The resulting HGs from the last layer are used as the optimal HGs for the target 

sites. The HGs at all the layers are verified by showing narrower CIs than the group resulting 

from the previous layer.              

3.3 Improved Three-layer Searching Algorithm  

This section is used to describe the methodology for the improved version of the three-layer 

algorithm. In Section 3.3.1, the application of the nonlinear dimensional reduction technique, 

Isometric Feature Mapping (ISOMAP), in the extraction of non-redundant feature information is 

introduced. In Section 3.3.2, the reasons and procedures of using both FCM and ROI approaches 

for the HGs formation in the historical context are outlined. In Section 3.3.3, the adjustment 

procedure that uses at-site statistics for the HGs formation in the future context is introduced. 

The verification details and procedure summary are described in Section 3.3.4 and 3.3.5. 

3.3.1 Dimensionality reduction 

To reduce the cross-correlation impacts on the HG formation process and extract the non-

redundant information from possible feature combinations, the feature weighting method, 

Lagrange multiplier, was used in the original version of the three-layer searching algorithm. In 

this study, the nonlinear feature extraction technique Isometric Feature Mapping (ISOMAP) is 

used instead to improve the performance of non-redundant information extraction from the 

potential feature combinations. 
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Feature extraction, the method to extract non-redundant information from the input features, can 

be used to reduce feature correlation impacts on the similar station gathering results. Feature 

extraction can be divided into linear and nonlinear approaches based on the functions that are 

used in the process. Principal component analysis (PCA), as one of the most common feature 

extraction tools in regional rainfall frequency analysis (Baeriswyl and Rebetez, 1997; Chen and 

Hong, 2012), uses the orthogonal transformation to remove the linear correlation among the 

input features and creates a lower dimensional dataset by adopting the eigenvectors from its 

decomposition,  and can work extremely efficiently for normally distributed time series 

(Satyanarayana and Srinivas 2008; Chen and Hong 2012). However, PCA cannot provide 

accurate feature extractions when the input features are highly non-linearly correlated. The 

common nonlinear feature extraction techniques, such as ISOMAP and Locally Linear 

Embedding (LLE), preserve the nonlinear feature structure through using the geometric relations 

between the target point and its neighborhood. LLE is conducted based on the assumption that 

each point can be locally represented by the weighted linear combinations of its neighbor points, 

through which the global nonlinear structure can be preserved by minimizing the reconstruction 

errors from using these weightings (Lee et al., 2004). The weightings can be calculated through 

solving the least-squares problem of the error functions (Roweis and Saul, 2000). However, LLE 

normally requires large input data sets in each dimension to achieve reasonable accuracy, thus is 

more time-consuming compared to ISOMAP. ISOMAP is proposed to be used as the main tool 

to remove information redundancy in this paper. 

ISOMAP is a graph-based algorithm that retains the intrinsic geometry by re-constructing the 

relationships between all pairs of points on a weighted graph using their shortest geodesic 

distances (Tenenbaum et al, 2000). The distance matrix is then double centered before being 

used in eigenvalue decomposition to obtain the low dimension features (Lee et al., 2004). The 

procedures for the ISOMAP approach can be summarized into three steps (Tenenbaum et al, 

2000):  

1) Neighborhood definition. Based on the distance between all pair points on the target 

manifold, the neighbors for certain data point are selected by either choosing the ones whose 

distance are below the pre-set threshold or finding the pre-set number of nearest neighbor 

points. Then weighted graphs G are used as the representations for the relations among these 

selected neighbors. 
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2) Shortest path definition. Based on the weighted graphs on the target manifold obtained from 

the previous step, the shortest distances among all the pairs of points in each neighbourhood 

are computed, and this shortest distance is used as the geodesic distances to form the distance 

matrix   ,G GD d a b between pair of points ,a b . To search for the shortest path, Floyd’s 

algorithm or Dijkstra’s algorithm is applied.  

3) Construct the data on a new dimension. The method of multidimensional scaling is used on 

the distance matrix obtained from step (2). The intrinsic geometry on the target manifold can 

be guaranteed through embedding the data in d-dimensional Euclidean space Y (Wu, et al., 

2004). The new data points in space Y should be minimized using the following equation: 

    2G Y L
E D D                                              (3-2) 

where YD  represents the Euclidean distances matrix   ,Y a bd a b y y  ; In Equation (3-2),  

the 2L
A form represents the matrix norm 

2

,, a ba b
A , and   is the operator that computes 

inner products of the distances. 

The feature correlation can be reduced by applying the ISOMAP procedure to the group of 

gathered feature values in two-dimension data frame at each year. The non-redundant 

information extracted from relevant features will be used as the similarity indicators in the HG 

formation. 

3.3.2 Homogeneous group formation 

The approaches for conducting the HG formation in regional frequency analysis can be divided 

into clustering and pooling methods. The former approach, as an unsupervised method, divides 

the input stations using the selected indicators and can reach the overall optimality among the 

sub-groups.  While the latter method, as a supervised method, is usually preferred for the HG 

formation when enough stations are presented for the identification of similar stations for a target 

station.  

In the original version of the three-layer searching algorithm, FCM, which has been proven to be 

an effective clustering approach in regional frequency analysis (Asong et al., 2015; Goyal & 
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Gupta, 2014;Satyanarayana & Srinivas, 2011),  is applied for the HG formation. The objective 

function that is minimized in the FCM process can be described as (Bezdek et al, 1984; Yang & 

Burn, 2019): 
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where N  and C are the number of stations and clusters; 
iju , which is calculated using Equation 

(3-4), represents the level of membership for station i  in the cluster j ; ix represents each data 

point in station i; jc represents the cluster j  center; and m , which is set to 2 in this study, is the 

weighting exponent (Yang & Burn, 2019).  

To improve the HG formation process, the region of influence approach (ROI) is added as an 

alternative pooling approach for the formation in the historical context.  The ROI pooling 

approach, which is introduced by Burn (1990), is conducted under the assumption that multiple 

stations can experience similar hydro-meteorological patterns. During the HG formation process, 

the decision of whether particular stations can be involved as part of homogeneous region is 

determined by measuring their similarity to the target site and can be calculated by using 

Euclidean distance (Donald H. Burn, 1990): 

 
2

, ,

1

n

pq k p k q

k

dist X X


                                                   (3-5) 

where 𝑋𝑘,𝑝   is the value of 𝑘𝑡ℎ similarity indicator at station 𝑝; and 𝑛  is the total number of 

similarity indicators; 𝑝 represents the target station; 𝑞 represents one of the stations that could be 

a member of the pooling group. Stations with higher similarity with the target site, implying 

lower 𝑑𝑖𝑠𝑡𝑝𝑞values, are first included in the pooling group (Shu & Burn, 2004). The formed 

groups are evaluated using the heterogeneity measure, which can calculated using the following 

equation (Hosking and Wallis, 1997; Castellarin et al., 2008): 
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and the regional value of L-Cv, L-Cs, and L-kurtosis is represented by 2t , 3t and 4t ; the L-

moments at individual station are represented by  2 i
t ,  3 i

t and  4 i
t ; in is the sample size at site i; 

and R represents the station number in the HG. The HG is considered as acceptably 

homogeneous when kH is smaller than 1, and possibly homogeneous when kH is greater  than 1 

but smaller than 2 (Hosking and Wallis, 1997). 

3.3.3 Adjustment Procedure 

The atmospheric conditions for the extreme rainfall event formations are expected to change in 

the future context and these spatial alterations can be categorized into two aspects: 1) potential 

spatial alterations in the extreme cloud formation caused by the increases of CAPE values at a 

large scale. As the warming trends across the tropical and subtropical areas being observed in the 

ensembles of global climate models (GCMs) simulations,  the increases of CAPE extreme values 

in the corresponding areas are detected (Singh, et al., 2017). These CAPE value increases can 

affect the extreme cloud formation at the first layer of the proposed framework as it is the most 

influential feature at that layer. 2) Potential spatial changes in the extreme rainfall intensities is 

driven by the increased variability of the near-surface moisture in the future context at the 

regional or local scale based on climate model simulations (Pendergrass, et al., 2017). This 

variability can cause future heterogeneity in the current HGs. Since extreme rainfall events are 

the results of extreme weather condition happening at appropriate geographic location, which 

allows the large buyout of energy ascending into atmosphere or the occlusion between warm 

fronts and cold fronts, the changes in the extreme weather conditions can disrupt the original 
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mechanism of extreme rainfall event formation over the target sites and furthermore can cause 

heterogeneity or spatial alterations in the current HGs.   

Although non-stationarity has been assumed for the extreme rainfall events under climate change, 

the World Meteorological Organization has suggested using 30-year timeframe for the 

characterization of weather events and the detection of changes in the climate normal under 

climate change (Charron, 2014).  In this study, the HG formations in the future context are 

conducted in 30-year windows: 2011-2040, 2041-2070 and 2071-2100 separately for the 

following reasons:  1) Stationarity in the projected rainfall series can be observed within 30-year 

timeframes under different projected scenarios in Canada, especially for the 24-h rainfall series 

(Mailhot, et al., 2007; Mailhot, et al., 2012; Requena et al., 2019). 2) The 30-year length of data 

records allows reliable regional estimates for the fitted parameters for the regional growth curve.  

In the future 30-year timeframe, different levels of spatial changes can be observed in the HGs 

for various stations within the same extreme rainfall system. In places where the impacts from 

geographic features outweigh those from the atmospheric conditions on the extreme formation 

process, their HGs tend to remain optimal under climate change. In reverse conditions, changed 

atmospheric conditions over the current HGs can cause some of the included stations to be non-

compatible with patterns described at the target site in the future context.  The proposed 

procedures in this section are used to remove these non-compatible stations and add potential 

new compatible ones. Compared to the traditional geographic approach for the HG formation 

that only relies on the geographic proximity to the target sites in the future context, the proposed 

methodology is conducted upon the information from the optimal HGs in the previous period and 

provides more reliable formations.   

To achieve the goal of non-compatible station removal and compatible station addition, a four-

stage procedure is proposed:  

1) Stage 0: Identify similarity indicators. In the historical context, the site characteristics 

including the atmospheric features at the target site are used for the HG formation at the 

target site. However, this approach is not usable in the future context because the same future 

site characteristics are not available. Thus at-site statistics are used instead for the similar 

station gathering in the future context. Traditionally, the at-site statistics are calculated 
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through using the data records from the target site. This approach can be problematic since 

limited records of data are available for the future extreme rainfall characterization at the 

target site. Thus the rainfall statistics calculated from using all the rainfall records from the 

included stations in the HG for the target site at the previous period, i.e. at-group statistics, 

are used as the first similarity indicators for the characterization for the extreme rainfall 

patterns at the target site.  Apart from the at-group statistics, the level of overlapping stations 

among the HGs for different target sites can be used as the second similarity indicator to 

increase the probability that HGs having close rainfall statistic values share similar rainfall 

patterns.    

2) Stage 1: Identify the new extreme rainfall patterns at the target site in the future period. 

Based on the description in Stage 0, at-group statistics are used for HG formation at the 

target site in the future context. However, there is a concern about at-group statistics 

calculated using the previous HG being an inaccurate representation for future extreme 

rainfall patterns at target station, which is reasonable considering the existence of non-

compatible stations within the previous HG in the future period. To reduce negative impacts 

from this concern, stations with close at-group statistics are gathered initially, during which 

fuzzy c mean clustering is used to reach the optimal division of input stations.  

3) Stage 2: Station elimination and adding. The overlapping stations between the HG at the 

target site and the gathered HGs in the relevant cluster are selected as the compatible stations 

in the adjusted HG for the target site.  Although the at-group statistics for similar station 

gathering may be better choice as a similarity indicator than the at-site statistics because of 

less uncertainty using larger samples, it may still cause the gathering of the stations having 

similar rainfall statistics but not sharing similar rainfall patterns because of limited data 

records. Thus the second similarity indicator, the level of overlapping stations between 

different HGs, is used. By using the level of overlapping stations between the HG at the 

target site and the remaining HGs within the same cluster, the non-compatible stations for 

potential removal are the ones showing least level of overlapping, and the compatible stations 

for potential addition are the ones showing high levels of overlapping among the remaining 

HGs.    

4) Stage 3:  Finalize HG at the target site in the future context. In Stage 2), different levels of 

overlapping can be identified for station removal and addition. The selection for the final HG 
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is the one showing the best objective function value with smallest number of station removals 

and additions.    

To further reduce the impacts from the potential inaccurate representation for the future rainfall 

patterns resulting from using the optimal HGs in the previous period, the procedures from Stage 

0 to 3 are used in a testing loop through the following procedures: (1) Identify the HGs that are 

likely to experience spatial alterations in the future context. (2) All the current HGs in the 

historical context are used as the initial groups for the calculation of rainfall statistics and 

extreme rainfall clustering at Stage 1. (3) Using the relevant clusters from step (2), conduct the 

adjustment procedures for the spatial altered HGs. (4) Using the adjusted HGs from step (3), re-

conduct the clustering of extreme rainfall patterns in the future context. (5) Compare the stations 

in the new clusters from step (4) with the previous ones from step (2). If large differences of 

station selections are detected, the new adjusted HGs from step (4) would be used as new input 

HGs in step (2) and repeat step (2) – (5). The loop stops when small or no difference is observed 

between the new clusters and the previous ones. 

3.3.4 Verification  

The verification of the HGs are conducted separately in historical and future contexts. In the 

historical context, the verification process includes the following goals: 1) Goal 1: The 

superiority of the proposed HGs over their geographic counterparts, which can be obtained 

through using geographic proximity as the similarity indicator in the HG formation (Donald H. 

Burn, 2014). 2) Goal 2: The superiority of regional frequency analysis using the proposed HGs 

over at-site frequency analysis at target site. 3) Goal 3: The necessity of constructing three layers 

for the optimal feature selections for the HGs formation.  

To achieve Goal 1, Test 1 is applied to conduct HG comparison using the Root Mean Square 

Error (RMSE), which are average differences between the regional growth curve and reliable at-

site growth curves at stations with long data records at different return periods (Mostofi Zadeh et 

al., 2019). During the process, the average at-site growth curves are calculated using stations 

with no less than 40 years of data records, in the historical context, within the HG. The HG with 

lower average RMSE values at six return periods (2-year, 5-year, 10-year, 25-year, 50-year and 

100-year) can provide more accurate quantile estimates. 
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To achieve Goal 2, Test 2 which calculates the ratio of CI widths between at-site and regional 

quantile estimates is used. In this study, the CI widths for the quantile estimates at six return 

periods for each HG is calculated using the methods introduced by Hosking and Wallis (1997), 

which involves the process of large sample simulation.  In at-site frequency analysis, the 

procedures introduced by Burn (2014), which involves the repetitive random sample generation 

using a nonparametric bootstrap and the calculation of CI widths under the assumption that they 

are asymptotically normally distributed, is used (Stedinger, et al., 1993). This test can only be 

conducted at the target stations with data records longer than 40 years.  

To achieve Goal 3 and identity the main feature influencing the extreme rainfall patterns in 

historical context, the division of extreme rainfall patterns in the testing region is conducted 

using the mutual information among the selected optimal feature combinations at different target 

HGs as similarity indicators in clustering, during which cluster validity indices such as Partition 

Entropy (PE), Partition Coefficient (PC) and Modified Partition Coefficient (MPC) are used to 

determine the optimal number of clusters at each layer (Wang and Zhang, 2007). The mutual 

information content (MIC) can be calculated using the following equations (Shannon, 1948):  
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where H is the entropy of the data with a record length equal to L broken into N bins;  ip  is the 

probability of an observation falling into the bin;  ,i jp x y is the joint probability;  |i jp x y is 

the conditional probability between X  and Y ; X  and Y are the non-redundant information 

extracted from one optimal feature combination being applied at these two target HGs. High 

MIC values indicate high dependence between the tested variables or a large reduction in 

uncertainty, i.e. high similarity between the feature combinations at two target HGs. Since the 

selected feature combinations can be used to represent the extreme rainfall patterns at target 

HGs, high similarity between the extreme rainfall patterns at two target HGs can be assumed.   
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The procedures for constructing the similarity distance matrix that can be used in the clustering 

are: 1) select one HG as the target HG, and record its optimal feature combination. 2) The MIC 

between this target HG and one of the remaining HGs in the test region is measured using the 

extracted non-redundant information from the recorded optimal feature combination from step 1) 

at these two HGs in Equation (3-11). 3) Repeat Step 2) at all the remaining stations in the test 

region. 4) Re-select different target HGs, and repeat Steps 1) to 3).  This procedure stops when it 

has been applied at every station in the testing region.   

In the future context, the verification of the HGs is conducted through comparing the proposed 

HGs with their geographic counterparts using the same Test 1 used in historical context. 

3.3.5 Procedures for the improved three-layer searching algorithm  

The improved version of three-layer searching algorithm for the formation and adjustment of 

HGs in historical and future contexts can be carried out through the following procedures in the 

two stages as shown in Figure 3-1: 

Stage 1: HGs formation in the historical context.  

1) Initialization. To initialize the searching process, the potential similarity indicators including 

atmospheric features and geographic features and the historical rainfall records at the 

included stations from the test region are gathered as input for the searching process.  

2) Feature scaling. Based on the correlation and entropy analysis in the original version, the 

feature values are extracted at 128-day and 64-day resolution for the first and second layer 

respectively, while the feature values at the third layer are extracted at a daily scale (Yang 

and Burn, 2019). The date of occurrence for all of the extracted feature values corresponds to 

that of the extreme rainfall events at 24-h duration (Yang & Burn, 2019).   

3) Feature extraction. To extract non-redundant information, ISOMAP is applied at the two-

dimensional data frame that consists of the extracted feature values at optimal temporal 

resolutions for all input stations. During the extraction, the number of nearest neighbours is 

set to a large percent of the input stations at each layer for the following reasons: a) to 

guarantee the performance for final HG formation, large number of similar stations should be 

included after the procedure at each layer; b) to gather a sufficient number of similar rainfall 
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sites at each layer, the small scale differences among selected features can be smoothed or 

eliminated (Samko, et al., 2006).   

4) HGs formation in the three-layer framework.  The non-redundant information extracted from 

the selected feature combinations are used in both ROI and FCM for the HG formation at 

each layer, during which the HGs from the higher layer are the input groups for conducting 

the HG formation in the lower layers.    

5) Feature selection.  Tabu search, the same feature selection method used in the original 

version of the three-layer searching algorithm, is applied to find the optimal combination of 

similarity indicators that can be used in the similar station gathering process. To guarantee a 

sufficient number of stations in the HGs, the same objective values used in the original 

version, the average CI widths for the rainfall quantile that can be estimated by using the 

approach proposed by Hosking and Wallis (1997) , is used to guide the search (Yang & Burn, 

2019). 

6) Homogeneous group finalization. The HGs from using ROI and FCM are compared in terms 

of their performance, the one with better performance is selected as the final group. 

7) Repeat step 1) to 6) at all the stations included in the test region. 

8) Verification for the HGs in the historical context. 

Stage 2: HGs adjustment in the future context 

9) Identify the HGs that can experience spatial alterations in the next analysis period.  Since the 

determination of optimal HGs in the historical context are selected based on their superiority 

over the geographic counterparts, these selected HGs retain their superiority in the future 

context if they experienced no spatial alterations. Thus the spatial altered HGs in the future 

context are identified by choosing the ones showing higher average RMSE values at six 

return periods (2-year, 5-year, 10-year, 25-year, 50-year and 100-year) compared to their 

geographic counterparts.   

10) Initial identification for potential stations sharing similar extreme rainfall patterns as the 

target sites with spatial altered HGs. In this study, the initial HGs used for the similar rainfall 

station gathering at the next period are the optimal HGs at the current period.    

11) Adjustments for the spatial altered HGs.  The initial similar rainfall stations identified from 

step 10) are used in the four-stage procedures within the testing loop proposed in Section 

3.3.3 for the compatible rainfall stations selection and non-compatible station removal. 
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During the process, the new HG, which consists of the compatible stations, is verified 

through the comparison with the corresponding geographic counterparts in terms of average 

RMSE values.    

12) Verification for the HG adjustment in the future context 

3.4 Study Area and dataset 

3.4.1 Study area 

To test the robustness of the improved three-layer searching algorithm, testing regions with 

different atmospheric and geographic characteristics are selected. Based on the geographic layout 

of climate regions and the available weather stations along the coastal area and inland in Canada, 

two test regions are selected:  

1) Region 1 includes the stations in the Pacific Maritime and Cordilleran climate region (the 

areas in British Columbia and the adjacent province of Alberta), although the proposed 

procedures are only conducted on the 75 stations in British Columbia (BC).  Because of the 

large geographic and atmospheric differences between British Columbia and Alberta, 

different extreme rainfall patterns are expected in these two regions. The inclusion of the 

stations in Alberta in the initial input stations is to test the effectiveness of the proposed 

methodology being able to distinguish different rainfall patterns.   

2) Region 2 locates west-central part of Canada (includes provinces of Alberta, Saskatchewan 

and Manitoba), and includes the stations in the Prairie and the Boreal climate region. 

3.4.2 Datasets 

Based on the proposed methodology for the improved three-layer searching algorithm, the 

datasets are selected for different purposes:  
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Figure 3- 1 The framework of the improved three-layer searching algorithm. 

 

Future Context 
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1) Extract the AMS for different stations in historical context. The same sets of historical AMS 

used in the original version of three-layer searching algorithm is applied here for the test of 

the improved version in historical context (Yang & Burn, 2019). Thus, all the AMS at 

durations 5, 10, 15, and 30 minutes and 1, 2 6, 12, and 24 h, which were retrieved from the 

historical dataset and the Engineering Climate Datasets from Environment and Climate 

Change Canada, and their corresponding dates of occurrence at 24-h duration from 1985 to 

2004, which were extracted from the historical dataset from Environment and Climate 

Change Canada website (http://climate.weather.gc.ca/historical 

data/search_historic_data_e.html/), were applied in this study (Yang & Burn, 2019). The 

corresponding dates of occurrence at 24-h duration from 1985 to 2004 are used for extracting 

feature values.  

2) Select stations with stationary AMS in historical context. To use the proposed methodology 

for the HGs formation in historical stationary context, the change-point detection test (Pettitt 

test) and the trend detection test (Mann–Kendall nonparametric test with the block bootstrap 

resampling) were applied for the purpose of removing stations with nonstationary trends in 

the historical context (Donald H. Burn, 2014). Thus, stations which exhibit stationary 

behavior for the available AMS were selected as inputs in the proposed methodology (Yang 

& Burn, 2019). Details of this step can be found in the original version of three-layer 

searching algorithm (Yang & Burn, 2019).  The final numbers for stations with stationary 

rainfall series at each region are: 102 stations in Region 1; 78 stations in Region 2.   

3) Extract the historical features values at the optimal temporal scales. To demonstrate the 

superiority of the improved version of the three-layer searching algorithm, the same sets of 

potential feature values used for the HG formation in the original version were re-used in this 

study. Using the NOAA Global Ensemble Forecast System Reforecast 

(GEFS/R:.esrl.noaa.gov/psd/forecasts/reforecast2/) and ERA-Interim Database 

(www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim), the feature values 

between 1985 and 2004 were extracted at 128-, 64- and 1- day temporal resolutions for all 

three layers. The details of this process can be found in the original approach (Yang & Burn, 

2019). The reason for choosing time window 1985 to 2004 for extracting the feature values 

has been described in the original approach (Yang & Burn, 2019).   

http://climate.weather.gc.ca/historical%20data/search_historic_data_e.html/
http://climate.weather.gc.ca/historical%20data/search_historic_data_e.html/
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Extract the AMS for selected stations in future context. To adjust the HGs in the future context, 

the daily rainfall series from the NA-CORDEX archive with CanESM2/CanRCM4 model under 

the Representative Concentration Pathway (RCP) 4.5 scenario at 25-km (0.22°) spatial resolution 

were extracted (Bias corrected data records were not available at the time this study was 

conducted). The 24-h AMS rainfall projection series are extracted annually from March to 

November in British Columbia and from April to November in Region 2 (Requena et al., 2019). 

In this study, the adjustments are conducted in 2011-2040, 2041-2070 and 2071-2100 

3.5 Applications 

This section is used for the following tasks: 1) In Section 3.5.1, the improved three-layer 

searching algorithm was applied for HGs formation at every station in two testing regions in 

Canada in the historical context, and the results are compared with that from using the original 

version of the algorithm and a traditional geographic approach. 2) The identification of extreme 

rainfall clusters within each test region in the historical context are determined in Section 3.5.2 

using the HGs from the previous section. 3) The adjustments for the spatially altered HGs in the 

future context are conducted in Section 3.5.3.         

3.5.1. Homogeneous group comparison in the historical context  

 Based on the procedures described in Section 3.3.5, the improved three-layer searching 

algorithm is applied at every station in the testing regions. To test the effectiveness of the 

proposed methodology, Test 1 and 2 described in Section 3.3.4 were applied in the following 

analysis to verify the improvements in the new three-layer searching algorithm using 24-h AMS, 

and the following conclusion can be obtained: 

1) The proposed procedure is effective for gathering stations sharing similar extreme rainfall 

patterns. Although stations from different climate regions are gathered as the initial inputs in 

Region 1, the proposed procedures can remove all the stations from the non-relevant climate 

region in the final HGs for different target stations.   

2) The need for using both pooling and clustering methods as the potential HG formation 

approach.  In the improved version searching algorithm, the ROI approach has been added as 

the additional HG formation technique to increase the station gathering efficiency.  Based on 
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the procedures in Section 3.3.4, the final HG is the one generating lower RMSE values. As 

shown in Figure 3-2, FCM and ROI can be equally effective since the final HGs are the mix 

of groups generated from using FCM and ROI approach: the final HGs for 49 of 75 stations 

reach lower RMSE values when using ROI approach compared to the FCM approach in BC 

province from Region 1, while the final HGs for 29 of 78 stations achieve the same 

conclusion in Region 2. 

 

                                              Region 1                                                                             Region 2 

Figure 3- 2  The selection of the HG formation methods using the improved three-layer searching algorithm 

at different target sites in Region 1 and 2 in the historical context 

3) The new version of three-layer searching algorithm can generate superior HGs for different 

target stations. The superiority of the proposed methodology is proven through applying Test 

1 and 2 in the historical context in three aspects: a) The improved version can generate better 

HGs than that from using the original version in terms of the RMSE values. The improved 

algorithm performs better compared to the original version at 63 out of 75 stations in Region 

1, and at 63 out of 78 stations in Region 2. b) The improved version performs better than the 

traditional geographic approach. Figure 3-3 displays the ratios of the RMSE values for all the 

HGs from using the proposed methodology over the values from using a traditional 

geographic approach in the historical context. In the proposed methodology, the average 

RMSE value at six return periods is used as the selection criterion for the final HGs at 

different target stations. That is the reason for the RMSE ratios at certain return periods for 

some stations staying above 1 in Figure 3-3. However, the results show lower RMSE values 
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in the HGs at six return periods for the majority of stations can be achieved by using the 

improved version of the proposed methodology in both testing regions, as the median values 

of the RMSE ratios maintain below 1 for all return periods. c) The improved version of 

regional frequency analysis performs better than the at-site approach. To compare the CI 

widths generated from using the proposed regional frequency analysis and the at-site 

approach, the information of CI widths at stations with data records longer than 40 years are 

summarized in Figure 3-4. At each station, the median values for the ratios of the CI widths 

from using the proposed regional approach over the at-site approach using a large set of 

bootstrap resamples are calculated at different return periods in the historical context. These 

median values for all the selected stations are presented as boxplots in Figure 3-4. The results 

show the median values of the CI width ratios for all the stations at the return period longer 

than 2-years are below 1, thus the majority of HGs from proposed methodology generate 

lower uncertainty, i.e. narrower CI widths, at return periods longer than 2-years.  

Due to the unavailability of the dates of occurrence information for the AMS at the shorter 

durations in historical context, the procedures described in Section 3.3.5 cannot be performed 

through all three layers for the AMS at the other eight durations. Adopting the assumption that 

the AMS at shorter durations happened in the same four-month period as the ones at 24-h 

duration, which is used in the original version (Yang and Burn, 2019), the obtained feature 

combination rankings that are generated by conducting the procedure for the first layer with 24-h 

AMS in Tabu search, can provide reliable information about the optimal feature combinations 

that can be used for the optimal HGs with AMS at shorter durations.  The HGs through using the 

selected feature combinations generated lower average RMSE values compared to their 

geographic counterparts for the extreme rainfall events at shorter durations. 
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     Region 1                                                                    Region 2 

Figure 3- 3 Boxplots of the ratios of RMSEs among the HGs from the proposed methodology over geographic 

approach with the 24-h AMS in Region 1 and Region 2 in historical context.  The line of value 1 is plotted in 

red in every boxplot. 

  

          Region 1                                                              Region 2 

Figure 3- 4 Boxplots for the median values of the CI width ratios between the HGs from the proposed 

regional approach over the at-site approach at stations with data records longer than 40 years at six return 

periods in historical context with the 24-h AMS in Region 1 and Region 2.  The line of value 1 is plotted in red 

in every boxplot. 
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3.5.2. The division of extreme rainfall pattern in the historical context   

 The division of the extreme rainfall events at 24-h duration are conducted through applying all 

the optimal feature combinations resulting from the proposed algorithm at the first two layers in 

the procedures described in Section 3.3.5. In this section, FCM is used as the choice of clustering 

method, and the division is conducted based on the feature combinations from all the HGs in the 

testing region.  Several points can be observed from the divisions of extreme rainfall patterns at 

first and second layer in testing regions:  

1) The division numbers for the first two layers are set to 2 based on the validity indices. This 

setting is consistent with the purposes of using the proposed procedures at the first two layers 

in the design: the intent to separate the cumulonimbus or nimbostratus caused extreme 

rainfall events at first layer, and the purpose of separating the convective rainfall events from 

the stratiform rainfall at second layer (Yang & Burn, 2019). The divisions resulting from 

conducting the procedures at the first and second layers are shown in Figure 3-5. Due to the 

fact that the HGs at some stations reach the optimality by conducting the proposed 

procedures only at the first layer, these stations are not included in the division process at the 

second layer thus the difference in the number of stations showing in the division graphs for 

the first and second layer.  

2) Different stations are contained in the sub-division for the same centres at different layers. 

The division centres and their corresponding optimal feature combinations in Region 1 and 2 

are shown in Table 3-1. Although the division centres at different layers are similar, 

differences among the constituent stations in each division between two layers are observed. 

This indicates that different information can be revealed when using the feature combinations 

at different layers.  

3) Information overlapping is observed between the optimal feature combinations for the 

division centres at the first two layers. In terms of the cloud and rainfall mechanism at the 

first and second layer, there is a certain level of similarity between the divisions in the testing 

regions as the geographical proximity of included stations in the same climate regions 

indicating rainfall similarity at macro and regional scales. However, the urbanization impacts 

on the extreme rainfall patterns are limited to a local scale, thus completely different 

dominant feature combinations, or low mutual information, have been observed for the last 

layer.  
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4) There are different levels of station dispersions with regard to the divisions at different 

regions. Compared to the station division in Region 1, the gathered stations in each cluster in 

Region 2 are more dispersed since convective rainfall events at small spatial scales are 

common in this climate region. 

  

               Region 1 (a) (First Layer)                                Region 1 (b) (Second Layer)      

                                       
Region 2 (a) (First Layer)                                  Region 2 (b) (Second Layer)       

Figure 3- 5  The rainfall pattern divisions through using the mutual information among the optimal feature 

combination at different HGFs as the similarity indicators at the first layer (Region1 (a) and Region2 (a)) and 

second layer (Region1 (b) and Region2 (b)). 

3.5.3. Homogeneous groups adjustment in the future context  

This section is used to adjust the spatially altered HGs to the new optimality in the future 

context.  
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Regardless of temporal patterns exhibited at different stations in the future context (from 2011 to 

2100), all the selected stations from the historical context are used for the spatial adjustment of 

HGs at this stage for the following reasons: a) the temporal pattern of the target site is not an 

effective indicator for the spatial changes in the corresponding HG. Thus, the approach of 

determining the previous HG experiencing spatial changes based on the trend analysis of the 

target site is not effective. b) the adjustment procedure is conducted under the assumption that 

stationary patterns are exhibited at 30-year window in the future context (Mailhot, et al., 2007; 

Mailhot, et al., 2012; Requena et al., 2019).    

In this study, the acceptable HGs in the future context are the ones that generated lower average 

RMSEs than their geographic counterparts as this criterion is used to determine if the previous 

optimal HGs experience the spatial alterations in the future context.  Thus to search for the future 

optimal homogeneous groups for the extreme rainfall frequency analysis at a target site, the 

procedures introduced in Section 3.3.3 are conducted using all the optimal homogeneous groups 

from the historical context obtained from Section 3.5.1, during which the regional growth curve 

of different quantiles at upper tail are used as the similarity indicators for the initial pattern 

clustering in the future context. Then within the relevant cluster for different target sites, the 

level of overlapping stations is used as the additional indicator to reduce the possibility of non-

pattern-similar stations gathering from only using the first indicator, and to conduct the non-

compatible station removal and compatible station addition.  In the calculation for the average 

RMSE values, the definition for stations with long data records are the ones having no less than 

30 years records in future context, thus the projected rainfall records for all the included stations 

in the HGs are used for the RMSE value calculation. 

However, one problem remains in the application of the adjustment procedure: the identification 

of true rainfall pattern clusters in the future context, i.e., the groups of stations that share similar 

rainfall patterns with different target sites. Since the cluster number selection obtained from the 

validity indices in the FCM results can be questionable and the goal is to form the optimal HGs 

for different target sites, the adjustment procedure is conducted using a range of cluster numbers 

and the final adjustments for the selected HG are the ones generating the lowest average RMSE 

values with a reasonable number of stations (no less than 10). 
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Based on the adjusted HGs and extreme rainfall clusters at different periods, the following 

conclusions can be obtained: 1) Different percentages of the stations experience spatial 

alterations in the HGs in the two regions. The number of stations that experience spatial 

alterations are 23, 11 and 18 for the different 30-year periods in Region 1, while 27 stations 

experience spatial alterations for each 30-year period in Region 2.  The more volatile changes in 

Region 2 can be caused by the fact that small scale extreme rainfall events, i.e., convective 

rainfall, are more common in Region 2 thus more susceptible to alteration under climate change. 

2) The adjustment procedure is effective for two reasons: a) the adjusted HGs can provide lower 

average RMSE values than that from the group using the traditional geographic approach since 

this rule is incorporated in the selection of adjusted HGs in the adjustment procedure; and b) The 

adjusted HGs resulting from the adjustment procedure generate lower RMSE values than their 

original counterparts before the procedure in the two selected regions. Figure 3-6 presents the 

boxplots of the RMSE ratios from adjusted HGs over the original HGs at six return periods in 

three consecutive analysis periods and shows that while the median values of the RMSE ratios 

are below 1 in Region 1 for all return periods, the same median values in Region 2 remain 

smaller than 1 at most return periods apart from the 5-year return period in the first 30-year 

period. 3) Several formed HGs in the historical context show consistent behavior across all 

future analysis periods. The historical HGs for 40 stations in Region 1 and 22 stations in Region 

2 maintain optimality during all three future periods. As shown in Figure 3-7, which displays the 

RMSE ratios from these historical HGs over their geographic counterparts at six return periods in 

three consecutive analysis periods, most of the median values are below 1 apart from the 5-year 

return period in Region 2 at the first and third 30-year periods 

3.6 Conclusions and Discussion  

Considering the impacts from climate change and urbanization, the improved version of the 

three-layer searching algorithm selects atmospheric features as the optimal similarity indicators 

for the HG formation based on the previous established three-layer framework. In the original 

version of three-layer searching algorithm, the feature selection technique, Tabu search, is used 

to consider the spatial distinctions the rainfall similarity indicators at different target sites, while 

the establishment of the three-layer framework is used to distinguish temporal differences among 

the selected atmospheric similarity indicators at different atmospheric heights, during which 
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wavelet analysis is applied to extract feature values at different temporal resolutions (Yang & 

Burn, 2019).  The new version is able to improve the HG formation process in the historical 

context and search for the optimal HGs in the future context.                

Compared to the original version of the three-layer searching algorithm, new version is able to 

improve the HG formation process in the historical and future contexts through the following 

aspects: 1) The feature extraction method, ISOMAP,  replaces the feature weighting techniques 

for the extraction of non-redundant information that is used as the rainfall similarity indicators 

for the target station as ISOMAP can account for the potential nonlinear correlation among 

different similarity indicators and thus improve the efficiency of HG formation process. 2) To 

improve the efficiency in the HG formation process in the historical context, ROI is added as an 

additional formation approach in this new version. 3) Considering the impacts from climate 

change and urbanization on the HG formation process, and the possibility of HGs experiencing 

spatial alternation in the future context, an adjustment procedure is introduced in a testing loop 

that is conditioned on the optimal HGs from the historical context to form new optimal HGs in 

the future context.  While the HG adjustment of this improved three-layer searching algorithm 

can perform efficiently in the future context, the HG formation in the historical context is 

computationally-intensive because of the feature searching process but it is only conducted once 

for each target station.   

The improved version has been tested in four climate regions in Canada that experience different 

extreme rainfall patterns using one rainfall projection scenario. The proposed methodology 

generates evidently superior results in comparison with the traditional geographic approach in 

both historical and future contexts.  Future research could explore the following issues: 1) The 

use of an ensemble of different HGs resulting from using different rainfall projections under the 

same RCP; 2) The application of the proposed methodology using downscaled rainfall 

projections at different geographic locations. 
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Figure 3- 6   Boxplots of the ratios of RMSE between the adjusted HGFs over the original ones using the future 24-h AMS in Region 1 and Region 2.  The line of value 1 

is plotted in red in every boxplot. 

Region 2 

Region 1 
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Figure 3- 7 Boxplots of the ratios of RMSE from the consistent HGFs generating from the proposed methodology over the geographic approach using the historical 24-h 

AMS in Region 1 and Region 2.  The line of value 1 is plotted in red in every boxplot. 

Region 1 

Region 2 
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Table 3- 1 Optimal feature combinations from the division centres at first and second layers using the improved three-layer search algorithm 

First Layer 

 
Feature air300 air500 air700 geo300 geo500 geo700 vw300 vw500 vw700 uw300 uw500 uw700 sphu300 sphu500 sphu700 CAPE 

Region 1 
SURREY KWANTLEN PARK 0 1 0 1 0 1 0 0 0 1 1 0 0 0 1 1 

VERNON 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 0 

Region 2 
LYNN LAKE A 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 

FORT CHIPEWYAN A 1 1 1 0 1 0 0 0 0 0 0 1 0 0 1 0 

Second Layer 

 
Feature air850 air925 geo850 geo925 vw850 vw925 uw850 uw925 sphu850 sphu925 VIMF Elevation Latitude Longitude 

  

Region 1 
SURREY KWANTLEN PARK 0 1 0 0 0 0 0 0 0 1 0 0 0 1 

  

VERNON 0 1 0 1 1 0 1 1 1 1 0 0 0 0 
  

Region 2 
LYNN LAKE A 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

  

FORT CHIPEWYAN A 1 1 0 1 0 0 0 0 0 0 0 0 1 1 
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Transition Paragraph B  

Under the assumption that extreme rainfall series remain stationary within future 30-year 

periods, the proposed methodology in the previous chapter can characterize extreme rainfall 

quantiles under climate change using regional frequency analysis in a stationary environment.  

However, when using a 90-year period as the time frame for the characterization of extreme 

rainfall events, the extreme rainfall records at certain stations can exhibit non-stationarity. 

Traditionally, regional frequency analysis of extreme rainfall events in a nonstationary 

environment is conducted based on the assumption that the parameters in the regional growth 

curve exhibit linear trends on a yearly basis. In this chapter, an alternative framework for the 

quantification of extreme rainfall quantiles in a nonstationary environment is proposed, which 

captures the dynamic changing behavior of extreme rainfall events used in regional frequency 

analysis.  The proposed methodology can be used to described the non-monotonic change 

behavior of extreme rainfall events especially, for short return periods.        
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Chapter 4     The unscented Kalman filter-based algorithm for regional 

frequency analysis of extreme rainfall events in a nonstationary environment 

This chapter is built upon a submitted article with the same title in Journal of Hydrology. Minor 

differences between the submitted paper and the chapter have been made to facilitate consistency 

and coherence. 

Yang, Z. (2019). The application of unscented Kalman filter for regional frequency analysis of 

extreme rainfall events in a nonstationary environment. Submitted to Journal of Hydrology. 

Summary 

For regional frequency analysis of extreme rainfall events in a nonstationary environment, the 

location and scale parameters in the regional growth curves have been described as the weighted 

combinations of at-site estimates from using the time-covariate functions. However, under 

different climate change scenarios, the monotonic trend assumption about the parameters in 

regional growth curves can be questionable. To consider the non-monotonic change behavior of 

extreme rainfall events in a nonstationary environment, an unscented Kalman filter-based 

regional approach, is proposed for location, scale and shape parameters estimation using all the 

stations within a homogeneous group. To consider nonlinear state transition function (STF) and 

measurement function (MF) used for extreme value analysis, the unscented Kalman filter (UKF) 

is applied for the filtering of state estimates in the proposed methodology. To avoid UKF 

performance degradation caused by inaccurate state and measurement noise covariances, a 

Monte Carlo simulation-based procedure is proposed for the noise estimation. To reduce the 

uncertainty associated with the distribution fitting process and consider the spatial correlations 

amongst the stations in a homogeneous group, balancing resamples are used to improve state 

estimates in regional frequency analysis. This UKF-based approach addresses the non-monotonic 

change behavior of the extreme rainfall events in a nonstationary environment, and fills the gap 

of considering spatial correlation for dynamic state estimation in the regional frequency analysis. 

This proposed methodology was successfully applied to three homogeneous groups in Canada, 

and goodness-of-fit tests were used to validate the parameter estimates and prove the superiority 

over traditional covariate approach for providing effective rainfall quantile estimates for the 

upper tail of the distribution. 
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4.1 Introduction 

Extreme rainfall-induced flood has become a life-threatening natural hazard worldwide (Zong & 

Chen, 2000; Boyd, 2010; Khazai et al., 2013; Sandink, 2013). In the last two decades, 3,148 

flooding events (including rainfall-induced and snowmelt events) affected 1.5 billion people with 

direct economic losses of $656 billion (CRED and UNISDR, 2018). This is mainly caused by 

ineffective flood mitigation facilities in both rural and urban areas under climate change. Non-

stationarity in the extreme rainfall events has been observed  in India, Canada, Brazil, and China 

etc. (Ma et al 2015; Mondal and Mujumdar, 2015; Simonovic et al., 2016; Fernandes and 

Rodrigues, 2017). To balance the construction costs of flood mitigation system and the potential 

damages caused by future extreme rainfall events, accurate estimates of extreme rainfall 

quantiles are essential for the sustainable planning of the urban drainage system considering 

engineering, economic, administrative and cultural aspects (Zhou, 2014).  

In a nonstationary environment, several methods have been proposed for the quantification of 

extreme rainfall frequency using at-site or regional frequency approach. at-site approach focuses 

on the estimation of time-dependent location and scale parameters through maximum likelihood 

or Bayesian inference (Katz, et al., 2002; Nadarajah, 2005; Cheng, et al., 2014). Using multiple 

records from stations in a homogeneous group, regional approach considers the time-dependent 

nonstationarity in two components: the parameters in the regional growth curve function; the 

index-event value which represents the mean extreme rainfalls at individual stations (Nam, et al., 

2015).  Assumed that non-stationarity is only detected in the first and second moments of the 

extreme rainfall statistics, Cunderlik and Burn (2003) estimated location and scale parameters 

using the de-trending records within a homogeneous group; O’Brien & Burn (2014) propoesed to 

use the weighted combination of location and scale parameters resulted from applying 

nontationary at-site approach at each station in a homoegenous group; Hanel, et al. (2009) 

considered the non-stationarity in both regional growth curve and index-events values through 

using unscaled records.  

Several issues arise from applying above methods in a nonstationary environment: 1) Insufficient 

data records to quantify the changes in the extreme rainfall events in at-site approach. To reach 

low uncertainty in the quantile estimates at a return period (T), the record length should exceed 
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two times the T (Jacob, et al., 1999). The annual maximum records which satisfy this 

requirement (especially when T equals to 100) are rare. Thus, the regional approach is used in 

this study to reduce the uncertainty in the estimates through gathering records from several 

stations. 2) The linear assumption about the changing patterns in growth curve parameters may 

be impractical. The nonstationary extreme rainfall patterns are caused by changes in the 

interactions amongst synoptic processes, large-scale circulations and anthropogenic aerosols 

(Wang & Zhou, 2005; IPCC, 2013; Ohba, et al., 2015), and  have been observed in historical 

records (Burn, et al., 2011). Gao et al. (2016) addressed this issue using Generalized Additive 

Models for Location, Scale, and Shape (GAMLSS) in at-site approach. Due to the increasing 

variability of near-surface moisture (Pendergrass, et al., 2017), an approach that considers the 

non-monotonic patterns of the parameters in regional growth curve is necessary for the regional 

frequency analysis in a nonstationary environment.  

Dynamic state estimation (DSE) is widely used to estimate the non-monotonic change patterns of 

the extreme values.  In at-site approach, Bayesian inference with linear transition functions 

(Gaetan & Grigoletto, 2004; Johnston & Djurić, 2019), or  particle filtering (Toulemonde, et al., 

2013) have been applied. However, considering the spatial correlation amongst the stations in a 

homogeneous group, these methods are difficult to apply in the regional frequency analysis.  

To conduct the DSE in regional frequency analysis of extreme rainfall in a nonstationary 

environment, UKF-based approach is proposed, and aims to address the following issues that 

cannot be achieved in traditional Kalman filter (Wan & Van Der Merwe, 2000; Hadwin & 

Peterson, 2017): 1) Issue 1: non-Gaussian distributed state parameters and measurements. 2) 

Issue 2: the nonlinear STFs and MFs used for the quantification of extreme rainfall quantiles. 3) 

Issue 3: the unreliable state estimates caused by using insufficient samples at each state. The 

possibility of using large samples to improve Kalman filter is proven in Ensemble Kalman filter. 

But it is not applicable in this study as it is designed for the DSE of Gaussian variables with 

linear STFs and MFs. Particle filtering is another DSE method involves sampling, and is not 

recommended as enormous number of samples are needed to reduce uncertainty (Hadwin & 

Peterson, 2017). 4) Issue 4: the performance degradation caused by inaccurate noises used at 

different states.  
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To address the non-monotonic change patterns of extreme rainfall in a nonstationary 

environment, and fill the gap of considering the spatial correlation for DSE in the regional 

frequency analysis, a one-step forward procedure which is constructed using UKF with 

resamples is proposed in this paper. The rest of this paper is organized in following sequence: 

The traditional method for regional frequency analysis of the extreme rainfall events in a 

nonstationary environment is introduced in Section 4.2. The proposed methodology is described 

in Section 4.3.  Simulations that are used to explore the changes of state noises under different 

scenarios and prove the effectiveness of the proposed methodology are described in Section 4.4. 

The application of the proposed methodology is presented in Section 4.5. The paper concludes in 

section 4.6 with conclusions and a discussion of potential avenues for future works. 

4.2 Regional frequency analysis in a nonstationary environment 

Regional frequency analysis assumes that rainfall series from stations in a homogeneous group 

share the similar extreme rainfall distributions, and are used for the characterization of extreme 

rainfall patterns. Regional approach is advantageous for the reduction of uncertainty in the 

quantile estimates, especially at long return periods, in comparison with at-site approach.  In 

regional frequency analysis, quantile estimates are calculated  using a index-event equation 

(Dalrymple, 1960): 

   i iQ T q T                                                      (4-1) 

where  iQ T is the extreme rainfall quantile of site i  at T-year return period, i is the index-

event of site i , mean of the extreme rainfall records; and  q T is the regional dimensionless 

growth curve.  

In Canada, the extreme rainfall records, the annual maximum rainfall series (AMS) in this study, 

are quantified using the Generalized Extreme Value (GEV) distribution which can be described 

as (Jenkinson, 1955; Alila, 1999): 
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Where ,  and  are the location, scale, and shape parameters respectively.  

In a nonstationary environment, Equation (4-1) is modified to consider the changes in regional 

growth curves (O’Brien & Burn, 2014):  

   , ,i iQ T t q T t                                                        (4-3) 

Where the parameters in  q T  are weighted combination of the estimates from applying 

generalized linear models (GLM) at each station using following equation (O’Brien & Burn, 

2014): 
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                                                       (4-4) 

where  t ,  t  and  t  are the estimates of the location, scale and shape parameters at time

t ; 0 1,u u and 0 1,   are the regression parameters used for the estimation. The parameters 

estimates in Equation (4-4) can be estimated using maximum likelihood (O’Brien & Burn, 2014). 

This traditional GLM-based regional parameter estimation method will be used as the 

comparison approach in application.    

4.3 Methodology 

To consider the non-monotonic change behavior of the extreme rainfall events and fill the gap of 

considering the spatial correlation for DSE in regional frequency analysis of extreme rainfall 

values, a one-step forward procedure is proposed in this section. In Section 4.3.1, the rationale 

and applicability of dynamic state estimation for the regional frequency analysis are explained, 

and the solutions for Issue 1 and 2 are introduced. In Section 4.3.2, UKF algorithm is described, 

and the solution for Issue 3 is proposed. In Section 4.3.3, the Monte Carlo simulation-based 

methods for state and measurement noise estimation are proposed to provide the solution for 

Issue 4. The one-step forward procedure is summarized in Section 4.3.4.  
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4.3.1 Dynamic State Estimation (DSE) 

The DSE technique can be conducted through the following steps (Shivakumar & Jain, 2008) :  

1)  State parameters. In this study, three parameters: location, scale and shape parameters in the 

regional growth curve, are used to represent the statistical characteristics of the system at 

target states. To consider the non-stationarity in regional growth curves, additional regression 

parameters are added as state parameters to reflect their changes between successive states.  

2) Identification of STFs and MFs. The STF which is used to describe the transition of state 

parameters is: 

 1k k kx f x w                                                       (4-5) 

where kx  is the state parameter vector at state k, and contains all the state parameters 

described in Step 1);  ( )f  represents the transition function; kw is the state noise vector at 

state k. 

The MF which is used to connect state parameters with measurements is:   

 k k kz h x v                                                     (4-6) 

where kz is the measurement vector at state k;  h  represents the function used for 

measurement calculation using the state parameters; kv is the measurement noise vector at 

state k. 

3) State Prediction. State parameters at state k can be predicted using STFs (Shivakumar & Jain, 

2008) .  

4) State Filtering and updating. After the state parameters at state k having been predicted, they 

can be filtered when measurements at state k are available to be used in the MF. This filtering 

can be achieved through minimizing the sum of measurement residuals and predicted state 

vector residuals (Shivakumar & Jain, 2008).    

However, because of non-Gaussian and nonlinear problems mentioned in Issue 1 and 2, the DSE 

algorithm, specifically the Kalman filter, may not generate accurate estimates in the regional 

frequency analysis of extreme rainfall events. To resolve these problems, the following 

procedures are proposed: 1) To address Issue 2, the UKF algorithm is adopted for state parameter 

estimation.  UKF algorithm conducts the state propagation using a chosen set of sample points to 
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consider the nonlinearity in STFs and MF, and reduces the inaccurate state estimates caused by 

non-gaussian noises(Wan & Van Der Merwe, 2000). The state approximations using sampling 

points can be accurate to the third order of Taylor series expansion for Gaussian inputs, and 

second order for non-Gaussian inputs (Van Der Merwe & Wan, 2001). 2) To further improve the 

accuracy in state estimates and address Issue 1, state parameters are transformed before being 

used in UKF algorithm. In the GEV distribution, location parameters and log-transformed scale 

parameter can be consider as Gaussian distributed variables (Park, 2005; Yoon et al., 2010). The 

shape parameter follows a beta distribution and needs to be transformed into a Gaussian variable 

through quantile-to-quantile transformation before being used as a state parameter (Park, 2005; 

Yoon et al., 2010). 

The potential STFs for the transformed distribution parameters and regression parameters are 

linear functions (LLL) in Equation (4-7) or quadratic functions (QQQ) in Equation (4-8): 
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where 
1

kPD ,
2

kPD and
3

kPD  represent the state estimates for location, log-transformed scale, and 

Gaussian-transformed shape parameters at state k; 
,1, 1,2,3k

iPR i  , 
,2 , 1,2,3k

iPR i   and 

,3, 1,2,3k

iPR i  represent the estimates of regression parameters for location, log-transformed 

scale, and Gaussian-transformed shape parameters at state k.  

The quantile function of the GEV distribution in regional frequency analysis is used as the MF: 
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where , ,k k k    are the regional estimates of location, scale and shape parameters at state k  and 

can be obtained using the PD estimates in the state parameter vector; kz  contains the annual 

maximum observations from all the stations within a homogeneous group at state k. The extreme 

quantile observations are widely used as measurements in DSE process (Gaetan & Grigoletto, 
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2004; Johnston & Djurić, 2019).  1 , 1,2y j N j N   is a set of space-even probabilities 

and used for measurement calculation, and N is the number of measurements at each state. This 

setting aims to provide a vector of quantile calculations that can be compared with measurements 

for the filtering. 

4.3.2 Unscented Kalman Filter (UKF) 

The standard UKF algorithm can be conducted through the following steps (Meng, et al., 2016; 

Zheng, et al., 2018): 

1) Initialization. Set the values for initial state estimates and state error covariance matrix. 

    0 0 0 0 0 0 0
ˆ ˆ ˆ

T
x E x P E x x x x    

 
                              (4-10) 

where 0x̂  is the initial state estimate; 0P  is the initial state error covariance matrix. 

2) Sigma points selection.  

The unscented transformation (UT), a procedure that can be used to estimate the statistics for a 

random variable experiencing nonlinear transformation (Wan & Van Der Merwe, 2000), is used 

to select sample points. They form a matrix 1 1k k    consisting of  2 1L sigma vectors based on 

the following equations (Julier & Uhlmann, 1997): 
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where 1 1
ˆ

k kx   is the filtered state vector at state 1k  ; 
1 1

ˆ
k k

xxP
 

 is the filtered state error covariance 

at state 1k  ;  2 L L      is a scaling parameter;  is a secondary scaling parameter that is 

set to 0;  indicates the spread of the sigma points around 1 1
ˆ

k kx    and is set to a very small 

positive value;.  

3) Time update 
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the predictions for the state vector / 1k kx  and state error covariance 
/ 1

xx

k kP 
 at state k can be 

conducted (Meng et al., 2016): 
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where kQ is the state noise covariance at state k . iW  represents the weights for selected points 

(    0

m
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used to incorporate prior knowledge of the distribution for the variable and set to 2 for Gaussian 

distributions). 

Predictions for the selected sigma points can be conducted:  
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4) Measurement update 

Predictions for the measurement 
1k kz 

, measurement innovation covariance 
1

zz

k kP 
and cross 

covariance matrix 
1

xz

k kP 
can be conducted: 
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where kR is the measurement noise covariance.  

5) Kalman gain calculation 

Kalman gain, kK , can be calculated using  
1

1 1

xz zz

k k k k kK P P


  , the estimates for the filtered 

values of state vector ˆ
k kx  and  state error covariance matrix ˆ xx

k kP  at state k can be obtained: 

 1 1
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k k k k k k k kx x K z z                                                (4-18) 

 1 1
ˆ Txx xx zz

k k k k k k k kP P K P K                                               (4-19) 

However, high level of uncertainty in the state estimates can be generated from UKF algorithm, 

especially in the quantification of regional growth curves using limited number of measurements. 

In at-site approach, ensemble Kalman filter uses a Monte Carlo simulation to improve the state 

estimates, but is designed for the Gaussian variables propagating through linear transitions 

(Houtekamer & Mitchell, 1998).  

To improve state estimates for regional frequency analysis and consider spatial correlation in 

DSE, a one-step forward procedure using resamples is proposed in this section. This procedure 

can be conducted through applying UKF algorithm through the successive states:  the previous 

and target states, using the following steps: a) resamples at two states. 1000 sets of measurement 

samples, with the same sample size and average cross-correlation value, are generated at each 

state. b) PDs and PRs are estimated at the target state applying UKF algorithm through previous 

and target states using two random sets of samples. Thus, obtain one set of the PDs and PRs 

estimates at target state. c) 1000 sets of PDs estimates can be obtained by repeating step b) with 

1000 sets of samples at each of the two states. d) the average PD values can be obtained from 

1000 state estimates, and are used to quantify the final regional growth curve at target state. This 

one-step forward procedure is conducted sequentially at every target state for the state parameter 

estimation for regional frequency analysis in a nonstationary environment. 
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4.3.3 Estimation of the noise covariance  

To avoid performance degradation in UKF algorithm and provide the solution for Issue 4 (Meng 

et al., 2016; Zheng et al., 2018), noise estimation procedures are proposed.  Several methods 

have been proposed for the noise covariance estimation: 1) online methods. Noise covariances 

for state and measurements are estimated using the information at each state and can be further 

divided into four categories (Bavdekar, et al., 2011): a) correlation methods. Commonly applied 

in linear dynamic systems, noise covariance can be estimated using least-square method based on 

recurrent autocorrelations between error covariance and innovation covariance (Mehra, 1970; 

Bélanger, 1974; Odelson, et al., 2006). b) Bayesian methods. Numerical optimisations or 

expectation-maximization methods are used for noise covariance estimation in nonlinear systems 

through maximizing the likelihood function (Dempster, et al., 1977; Shumway & Stoffer, 2000). 

c) Monte Carlo simulations. Large state samples are generated conditioned upon priori 

knowledge and can be used to determine state noise covariance (Valappil & Georgakis, 2000).   

2) adaptive methods. Based on the state error and innovation covariance,  the adjusted noise 

covariances can be constructed using different methods. Cho and Choi (2006) proposed a sigma-

point based receding-horizon Kalman filter (SPRHKF) to resist the deterioration in the state 

estimates caused by using inaccurate noises. Zheng et al. (2018) presented a covariance 

correction method to adjust the noise covariances through applying a weighting factor. However, 

the adaptive approach is not favourable in this study since high uncertainty and bias can be 

introduced in the noise covariance adjustments from using one limited measurement sample. 

Thus, online method, specifically the Monte Carlo simulations is applied for the noise covariance 

estimation.  

The noise, which can be referred as random error, is used to describe the random differences 

between the estimates and the true values at the target state. To resolve the problem that true 

values are unknown at each state, the noise estimations are conducted with 1000 generated 

samples.  

The state noises are estimated through the following steps:   

1) Sample generation for the measurements at the successive states. Based on the original 

samples at the successive states, one set of measurement samples with the same sample size 

and average cross-correlation value is generated at each of the two states.      
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2) PD sample generation at successive states. To generate reliable samples for the distribution 

parameters and consider the uncertainty associated with using limited number of 

measurements at each state, a Simulation-Based sample generation approach which utilizes 

both sampling prior and fitting prior in the generation is applied (Wang and Gelfand, 2002). 

The sampling prior, which is an informative uniform distribution, can be constructed based 

on the prior knowledge of the distribution parameters and is added to constrain the samples 

to a reliable portion of the parameter space (Wang & Gelfand, 2002). The fitting prior, a 

noninformative vague distribution with large variance, is used to fit the distribution once the 

samples are generated from the sampling prior (Wang & Gelfand, 2002 ). In this study, the 

sampling prior is the confidence intervals for the distribution parameters and constructed 

using the measurements from Step 1), while the fitting priors for location and log-

transformed scale parameters are the normal distribution with mean set to zero and variance 

equalling to 104, and for the shape parameter is the beta distribution with the hyper 

parameters (u, v) set to (6, 9) (Park, 2005; Yoon et al., 2010). Random-walk Metropolis-

Hastings (MS) algorithm is applied to generate distribution parameter samples using these 

two priors. The transition kernels are normally distributed with means set to zero and 

variances set to 0.1, 0.1, and 0.04 respectively for location, scale and shape parameter (Yoon 

et al., 2010).  As a result, 1000 sets of distribution parameter samples at each state can be 

generated using the measurement samples from Step 1), and are transformed into the correct 

forms to be considered as PD samples. Details of the MS algorithm are in Appendix 2 

3) PR calculation between successive states. The PD samples generated in Step 2) are used as 

the inputs in Equations (4-7) or (4-8) for the estimation of PRs. One set of PR samples can be 

obtained from this step  

4) Noise estimation for the PDs. Based on the regression analysis in Step 3), mean squares of 

the differences between the PD estimates from the regression analysis and the PD samples at 

the target states are used as one random set of state noises for the PDs.   

5) Noise estimation for the PRs. For each set of PDs generated in the successive states from 

Step 2), one set of local PRs can be generated to reach the equilibrium state in Equation (4-9) 

while staying close to the true PR values obtained from regression analysis in Step 3). The 
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mean squares of differences between all the local optimal PRs for each set of PDs and true 

PRs for all the PDs are regarded as the state noises for the PRs 

6) Finalization for the PD and PR noise estimates. Repeat steps 1) to 5) 100 times, the average 

values of these 100 sets of noise estimates are used as the diagonal values in the state noise 

covariance matrix (Nilsson, 2006).     

Compared to state noise covariance, measurement noise covariance has less impact on the 

performance of UKF algorithm (Meng et al., 2016). Measurement noises are the random errors 

between the measurement estimates and their true and unbiased values, and can be estimated 

using the input measurements (Valappil & Georgakis, 2000). Measurement noise can be affected 

by the sample size and average cross-correlation value amongst the stations in the homogeneous 

group. Large sets of random samples are used to estimate the measurement noise through 

following steps: 1) Initialization. Using the measurements at target state, the fitted GEV 

distribution and average cross-correlation values can be determined. 2) Sample generation. 1000 

sets of random samples with the same sample size and average cross-correlation value can be 

generated using the parametric sampling based on the fitted GEV distribution from step 1). 

Within each set, the generated samples are arranged in increasing order. 3) Designed quantile 

calculation. Using the fitted GEV distribution in Equation (4-9), a set of quantiles at design 

probabilities can be obtained and are arranged in increasing order.  4) Measurement noise 

calculation. Mean squared value of measurement differences can be obtained using one sample 

sets from step 2) and the empirical quantiles from step 3). 5) Repeat step 4) for all 1000 samples 

from step 2), and the final average value for all the mean squared differences can be used as the 

diagonal values in the measurement noise covariance (Bryson, et al., 2008; Akhlaghi, et al., 2018; 

Zheng et al., 2018). The fitted GEV distribution in Step 1) may be unreliable as samples used in 

the distribution fitting may be insufficient, and this has been reflected in the process.  

4.3.4 UKF application in regional frequency analysis  

The one-step forward procedure for regional frequency analysis of extreme rainfall events in a 

nonstationary environment can be summarized to the following steps as shown in Figure 4-1: 
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Figure 4- 1 The framework of the one-step forward procedure application for the regional frequency analysis 

in a nonstationary environment. 

1) Homogeneous group formation. Trend centered pooling approach proposed  by O’Brien and 

Burn (2014) is used to identify stations sharing similar rainfall patterns with the target site in 

a nonstationary environment.  After applying the Mann–Kendall trend test at stations within 

the similar climate regions, select the stations showing similar trend (i.e. stationary, positive 

and negative trends) with the target site. Then, Region of Influence approach can be applied 

to further select the stations in the homogeneous group for the target site (Burn, 1990).   

2) Observations processing. extreme rainfall series from the homogeneous group from Step 1) 

are scaled by their individual index-event values.      

3) Temporal step selection. Since the proposed methodology is conducted under the assumption 

that the estimated reginal growth curve can be used to represent the extreme rainfall patterns 
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at each state (each temporal period), the number of rainfall observations within the selected 

temporal period should be enough to generate reliable rainfall statistics. In the traditional 

regional approach of frequency analysis, 5T station years should be included in the 

homogeneous group to provide reliable quantile estimates for the T-year return period 

(Robson & Reed, 1999). This rule is applied here for the determination of temporal steps for 

different return-periods.      

4) The construction of State Zero. State Zero is used for the state estimates at State One. In this 

study, the measurements at State Zero are the replicates of the measurements at State One.  

5) Sample generation. To generate reliable measurement samples that can be applied in the one-

step forward procedure, a balanced resampling approach is used (Burn, 2003). Compared to 

the traditional resampling with replacements, this approach achieves a balance in the 

resamples by ensuring that each data point appears the same number of times through 

following steps: a) concatenate 999 copies of the original sample into an extended sample. b)  

randomly rearrange the original order in the extended sample. c) the final samples can be 

obtained through dividing the rearranged extended sample into 999 copies.  Each one of the 

final 999 resamples plus the original sample (i.e. 1000 sets of samples in summary) will be 

used as the measurements for the estimation at each state. Furthermore, to preserve the 

spatial correlations among the stations in a homogeneous group, a vector resampling 

approach, in which balanced resampling procedure is conducted on the given years of the 

included stations, is implemented (Burn, 2003).     

6) Application of the one-step forward procedure at State One. Randomly select the samples 

generated from step 5) at State Zero and One, the one-step forward procedure is applied for 

the PD estimation at State One. The noise covariances for all state parameters and 

measurements are estimated using the procedures described in Section 4.3.3. While the initial 

values for the PDs are the regional estimates through applying the method of L-moments in 

the original sample at State Zero, the initial values are set to 1 for the 
,1iPR and zero for the 

rest of PRs.  

7) Application of the one-step forward procedure at latter states. With the samples generated 

from Step 5), the same one-step forward procedure with 1000 generated samples at each state 
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is applied for the PD estimates at latter states. The average state estimates, and the average 

error covariance for the state parameters and measurements obtained from previous states are 

used in the initial settings for the application of one-step forward procedure in the following 

states.     

8) Uncertainty quantification for the estimated rainfall quantiles. 1000 rainfall quantiles at 

different return periods can be calculated from using 1000 samples of state estimates in the 

application of one-step forward procedure at Step 6) and 7). The 95% confidence intervals 

(CIs) at the target site are calculated based on these quantiles. 

9) Verification and comparison. To verify the estimates of the distribution parameter, the 

goodness-of-fit test, specifically the Anderson-Darling (AD) Test, is used with the original 

samples at each temporal step. The parameter estimates are considered valid if the p-value 

from the AD test is larger than 0.05. To compare the parameter estimates from the proposed 

methodology and the traditional GLM-based method in the regional context, the  AD test at 

the upper tail (ADup), which is conducted through assigning higher weights to the data at 

upper tail of the distribution, is used to compare their goodness-of-fit (Chernobai, et al., 

2015). For details of the ADup test, see Appendix 3. 

4.4 Simulations  

This section is conducted for two purposes: 1) The exploration of state noises under different 

scenarios between successive states.  In Section 4.4.1, different change scenarios for the 

distribution parameters between the successive states were constructed for this exploration.  2) 

The selection of optimal forms for STFs.  In Section 4.4.2, the selection and testing for the ideal 

STF forms that could be used in the proposed methodology were conducted.  

4.4.1. State Noise Estimation 

Since measurement noises are affected by the function used in MF, the measurement sample size 

and average cross-correlation amongst the measurements from included stations, they can be 

considered as the same at different states when the three factors are fixed.  

Th following simulations are used to explore the changes in state noises under different 

scenarios. In regional frequency analysis, four factors may affect the state noises in the proposed 
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methodology: (1) sample size of the extreme rainfall measurements from a homogeneous group, 

(2) magnitudes of changes for the distribution parameters between successive states, (3) average 

cross-correlation values amongst the stations included in the homogeneous group, and (4) the 

forms of STFs used in the UKF algorithm. Among these four factors, sample size has been a 

long-established factor affecting the uncertainty in parameter estimates (Adcock, 1997; Wang & 

Gelfand, 2002). This section explores the impacts from Factors (2), (3) and (4) through the 

following scenarios, in which the values for the three factors are set to: 

1) Factor 2: In each scenario, two of the three parameters used in the regional growth curve 

remain the same at all states, while different magnitudes of changes for the other parameter 

are incorporated between successive states. The parameter values for all three scenarios are 

listed in Table 4-1 and the second state in the two successive states is regarded as the target 

state in the estimation. 

2) Factor 3: For each scenario listed in Table 4-1, the state noises for the PDs and PRs are 

estimated using different average cross-correlation ranging from 0 to 0.6 with 0.1 being as 

the increment.  

3) Factor 4: The two types of STFs described in Equations (4-7) and (4-8) are tested. 

The details of the simulated group at each scenario are as follows:  1) Index-event values. The 

index events are set to 1 at all stations. 2) Station number and sample size. There are 20 stations, 

each with 20 data points at a state. 3) Sample generation. If the average cross-correlation value is 

zero, the 20 data points in each station are random values from a pre-set GEV distribution at each 

state and then multiplied by their index-events.  For non-zero average cross-correlation values, 

samples at each state are generated through following steps: a) Normally-distributed sample 

matrix generation. Generate a group of data points using standard normal distribution, and divide 

them into a 20 by 20 matrix. b) Correlated normal-distributed samples. The sample matrix from 

step a) is multiplied by the Cholesky decomposition of a diagonal matrix with the correlation 

value being as the main diagonal entries. c) The cross-correlated sample that fits a GEV 

distribution. Transform correlated normally-distributed sample to the target GEV distribution.      

To analyse the state noises generating from using the proposed methodology in Section 4.3.3 in 

above simulations, they are summarized and shown as Situation (a) and (b) in Figure 4-2. 

Situation (a): compare state noises with respect to the differences of distribution parameters 



93 
 

between successive states. In each scenario, the noise estimates for PDs and PRs using seven 

correlation values are first averaged at each state. Then for each parameter, a boxplot is created 

based on ratios between the individual average at each state over the overall average for all ten 

states. Situation (b): compare state noises with respect to different cross-correlation values. In 

each scenario, the noise estimates for PDs and PRs in all the ten states are first averaged for each 

cross-correlation value. Then for each parameter, a boxplot is created based on ratios between 

the individual average for each cross-correlation value over the overall average for all seven 

cross-correlation values. All the boxplots are created separately for STFs in LLL and QQQ 

forms.          

The following conclusions can be drawn based on the boxplots in Figure 4-2: 1) The state noises 

are unlikely affected by Factor 2. In LLL (a) situations, for location and scale parameters, the 

interquartile ranges of the ratios for their PDs and PRs in all scenarios are close to zero; for shape 

parameters, slightly wider interquartile ranges are observed. This indicates no obvious change in 

the state noise is observed.  Similar results are observed in QQQ (a) situation. 2) The state noises 

are unlikely affected by Factor 3. In LLL (b) situations, for almost all scenarios, the interquartile 

ranges of the ratios for almost all the state noises are close to zero, and a slightly wider 

interquartile range is observed for the PR3_2 in Scenario 3. Similar results are detected in QQQ 

(b) situation. 3) The state noise is not affected by Factor 4. In Situation (a) and (b), the two 

conclusions from previous analysis can be drawn using different choices of STFs in the proposed 

methodology.     

Based on the simulation results, when the homogeneous group for the target site are fixed across 

different states, the same state and measurement noises can be used in the one-step forward 

procedure for the regional frequency analysis in a nonstationary environment. 
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Table 4- 1 Three synthesized scenarios used for the state noise estimation in Section 4.4.1 

 
Fixed Parameter 

Changing Parameter 
STF Correlation 

State State0 State1 State2 State3 State4 State5 State6 State7 State8 State9 State10 

Scenario1 Scale=0.27 Shape=-0.06 Location 0.670337 0.670337 0.67039 0.67089 0.676 0.686 0.706 0.756 0.856 1.056 1.456 LLL QQQ 0-0.6 

Scenario2 Location=0.87 Shape=-0.06 Scale 0.266221 0.266221 0.26623 0.26633 0.267 0.269 0.274 0.284 0.304 0.354 0.454 LLL QQQ 0-0.6 

Scenario3 Location=0.87 Scale=0.27 Shape 0.07656 0.07656 0.07655 0.07645 0.075 0.073 0.068 0.058 0.038 -0.012 -0.112 LLL QQQ 0-0.6 

  

 
(2) 

(1) 
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Figure 4- 2  Boxplots for the ratio of estimated state noise over average state noise at two categories in three scenarios. Three scenarios have been described in Table 4-1: 

(1) Scenario 1; (2) Scenario 2; (3) Scenario 3. Two categories: (a) state noise summarized for the comparison among different magnitudes of the changes for the 

distribution parameters between successive states. (b) state noise summarized for the comparison among different cross-correlation values. LLL: STF in linear form. 

QQQ: STFs in quadratic form. 

(3) 
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4.4.2. The selection of optimal STFs 

To select the optimal STFs in the one-step forward procedure, the performance of STFs in LLL 

and QQQ forms are evaluated in a simulated homogeneous group. The details of this simulated 

group are as follows:  1) Station number and samples size at each state. There are 20 stations, 

and each with 10 data points at a state. 2) Number of states. 24 states are characterized by 

different GEV distributions. 3) Index-event values. The index events are set to 1 at all stations.  

4) Cross-correlation values. The cross-correlation for this simulated group is set from 0 to 0.6 

with 0.1 being used as the increment.  5)  Sample generation. The same sample generation 

method used in Section 4.4.1 is applied here for the cross-correlated sample generation.       

Table 4- 2 Trend description in three synthesized scenarios used in Section 4.4.2 

  
Period 1 Period 2 Period 3 

 Scenario 1 

Location Sinusoidal Linear Exponential 

Scale Exponential Linear Sinusoidal 

Shape Sinusoidal Linear Exponential 

Scenario 2 

Location Sinusoidal Linear Exponential 

Scale Linear Exponential Sinusoidal 

Shape Sinusoidal Linear Exponential 

Scenario 3 

Location Sinusoidal Linear Exponential 

Scale Exponential in opposite direction Linear Sinusoidal in opposite direction 

Shape Sinusoidal Linear Exponential 

The three scenarios used to evaluate the performance of different STFs is presented in Table 4-2 

and shown as the black lines in Figure 4-3 and 4-4. The reasons for choosing these scenarios are: 

1) To evaluate the performance of the proposed methodology in different trends. Three trends: 

sinusoidal, linear and exponential are incorporated in the design of distribution parameters. The 

linear trends are designed to be in a constant state for evaluating the performance of proposed 

methodology in a stationary environment. 2) To evaluate the performance of proposed 

methodology when the changes in the distribution parameters are not synchronized. While 

location and shape parameter change at the same rate with different magnitudes in all three 

scenarios, the change directions of scale parameter vary: In Scenario 1, the scale parameter 

changes at the same rate and direction as the other distribution parameters but follows different 

trends; In Scenario 2,  during the two thirds of the simulated states, the scale parameter changes 
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at different rates from the other parameters; In Scenario 3, the scale parameter changes at the 

same rates but follows opposite direction and different trends from the other parameters .          

The parameters estimation using the proposed methodology in three scenarios can be conducted 

by following Step 4) to 7) introduced in Section 4.3.4. Based on the conclusions obtained in 

Section 4.4.2, the same state and measurement noises which are estimated using the procedure in 

Section 4.3.3 are applied at different states.     

To select the optimal STFs for the proposed methodology, the estimates of the distribution 

parameters in all scenarios with average cross-correlation value being set to zero are conducted 

using STFs in LLL and QQQ forms. The parameter estimates from using STFs in LLL forms are 

shown in Figure 4-3, while those from using STFs in QQQ forms are shown in the first columns 

of each plot in Figure 4-4.  Several conclusions can be obtained from comparing these estimates: 

1) Trend depiction. The STFs in both LLL and QQQ forms can successfully describe the 

changing trends in location, scale and shape parameters in all three scenarios. 2) Noticeable 

differences are observed in the values of parameter estimates between using STFs in LLL and 

QQQ forms. The STFs in QQQ form generate better parameter estimates by showing values 

close to the design values for all distribution parameters especially for the shape parameter at all 

states, and scale and location parameters at stationary states. Thus, the STFs in QQQ form are 

selected as the optimal STFs in the proposed methodology.            

To further demonstrate the effectiveness of the proposed methodology with STFs in QQQ form, 

it is tested in all three scenarios with different average cross-correlation values. The parameter 

estimates in three scenarios are depicted in Figure 4-4. The following conclusions are obtained: 

1) The proposed methodology can accurately capture the trends for the location and scale 

parameters and reasonably simulate the trends in the shape parameter with different average 

cross-correlation values. 2) The accuracy for both location and scale parameter estimates reach 

the highest levels when average correlation is 0 and decreases when the average correlation value 

increases. The uncertainty for the shape parameter estimates reaches the lowest level when the 

average correlation value is 0.4 and decreases when the correlation value deviates from this 

value. 3) Since small differences are detected between the design values and estimated ones for 

the shape parameter, they have similar levels of goodness-of-fit based on AD test.   



98 
 

4.5 Application 

This section is used to evaluate the proposed methodology, and compare it with the traditional 

GLM-based approach introduced in Section 4.2.          

4.5.1. Study area and data processing 

Following steps are conducted for the initial settings in the application of the proposed 

methodology for regional frequency analysis in a non-stationary environment:  

1) The selection of testing regions.  Two testing regions are selected in Canada: 1) Region 1: 

Includes most of the rainfall stations in British Columbia from Pacific Maritime and 

Cordilleran climate regions. 2) Region 2: Includes rainfall stations in Ontario and Quebec 

from Boreal and Southeastern climate regions 

2) The extraction of 24-h AMS. The AMS of extreme rainfall records at 24-hr duration from 

2011 to 2100 are extracted from the NA-CORDEX archive at 25-km (0.22°) spatial 

resolution using CanESM2/CanRCM4 model under the Representative Concentration 

Pathway (RCP) 4.5 scenario (Bias corrected data records were not available when this study 

was conducted). the 24-h AMS are extracted annually from March to November in British 

Columbia, and from April to November in Ontario and Quebec (Requena et al., 2019).          

3) Trend analysis. Stations exhibiting trends need to first be identified.  The Mann–Kendall 

nonparametric test is applied at every station using the extracted 24-h AMS for the trend 

detection (Mann, 1945; Kendall, 1948). Pettitt test is applied to remove stations with change-

points. Thus, 15 stations with increasing trends are identified in Region 1 and 35 stations are 

identified in Region 2. 

 

.



99 
 

 

Figure 4- 3 The estimates of location, scale and shape parameters in three simulated scenarios (Columns 1, 2, and 3) using STFs in LLL form with average cross 

correlation equal to zero. The red line indicates the true values of the design parameters, while the black line shows the values for the estimates. 
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Scenario 1 
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Scenario 2 
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Scenario 3 

Figure 4- 4  The estimates of location, scale and shape parameters in three simulated scenarios (Scenarios 1, 2 and 3) using STFs in QQQ form with average cross 

correlation equal to 0, 0.4 and 0.6 (Columns 1, 2, and 3). The three scenarios are different in the simulated trends for scale parameter; details are presented in Table 4-2. 

The red line indicates the true values of the design parameters, while the black line shows the values for the estimates. 
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4) Homogeneous group formation. Three homogeneous groups are formed: 1) Small 

homogeneous group for Station 1 (Climate ID: 1060841) in Region 1 (HG1). 6 stations are 

included with a heterogeneity measure of 0.92. 2) Small homogeneous group for Station 2 

(Climate ID: 1160899) in Region 1 (HG2). 6 stations are included with a heterogeneity 

measure of 1.49. 3) Large homogeneous group for Station 3 (Climate ID: 7031375) in 

Region 2 (HG3). 30 stations are included with a heterogeneity measure of 1.2. The 

geographic display of these homogeneous groups is shown in Figure 4-5.  In this step, the 

heterogeneity measure is calculated based on the difference between regional and at-site L-

CVs (Hosking & Wallis, 1997). 

5) the AMS Scaling. The extracted AMS at all selected stations are scaled by their index-event 

values.        

  

Figure 4- 5  Graphic displays of homogeneous groups HG1, HG2 and HG3 for Stations 1, 2 and 3. 

4.5.2. Validation and comparison  

This section is used for two purposes: the verification of the parameter estimates from the 

proposed methodology, and the comparison of goodness-of-fit between estimates from the 

proposed methodology and traditional GLM-based approach at the upper tail of the 
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measurements. Both procedures were conducted at different temporal steps for following 

purposes: 1) To prove the superiority of the proposed methodology over the traditional GLM-

based method. Since the traditional GLM-based method is conducted on a yearly basis, the 

superiority of the proposed methodology can be confirmed when it is proven to provide better 

estimates on 1-year temporal step. 2) To capture the dynamic behavior of distribution parameters 

and reduce the uncertainty in the final quantile estimates. While small temporal steps should be 

used to meet the first requirement, larger uncertainty for the quantile estimates, especially at long 

return periods, can be generated.  To balance these two goals, the 5T rule for gathering data 

records in the regional context is applied for the selection of temporal steps in the application of 

the proposed methodology for quantile estimation at different return periods (2-year, 5-year, 10-

year, 25-year, 50-year and 100-year). Thus, the potential temporal steps used in this section are: 

2-year, 5-year, 9-year, 22-year for the homogeneous groups formed at Station 1 and 2, 1-year, 2-

year, 3-year, 5-year, 9-year and 15-year for the homogeneous groups formed at Station 3.   

The parameter estimates from using the proposed methodology are verified through using AD 

test with the original data records at different temporal steps. The percentages of the valid 

estimates from using the proposed methodology and traditional GLM-based method at different 

temporal steps are shown in Table 4-3. The following conclusions can be obtained: 1) Both the 

proposed methodology and traditional approach can generate high percentages of valid estimates 

at different temporal steps. The proposed methodology is superior by providing higher 

percentages at different temporal steps. 2) The level of homogeneity can affect the validity of the 

parameter estimates in both approaches. The homogeneous group formed for Station 1 has the 

highest level of homogeneity and the highest percentage of valid estimates at different temporal 

steps.                

To prove the superiority of the proposed methodology for providing better parameter estimates 

for the extreme rainfall quantile estimation at the upper tail, the ADup test is used as the 

goodness-of-fit test. The percentages of proposed methodology generating better parameter 

estimates than that from using the traditional GLM-based approach at different temporal steps 

are shown in Table 4-4. The following conclusions can be obtained:  1) Parameter estimates from 

the proposed methodology are better fits for the rainfall quantiles at upper tail than that from the 

traditional GLM-based approach. When using 1-year temporal step, the estimates from proposed 
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methodology are generally better fits at the upper tail as the percentages for being superior are 

higher than 50% for all three groups. For all groups, the level of homogeneity can affect the 

performance of the proposed methodology, since the percentage for parameter estimates being 

superior is the highest at the most homogeneous group for Station 1 while the lowest at the least 

homogeneous group for Station 2. With similar level of homogeneity, the performance of the 

proposed methodology is affected by sample size as the percentages for parameter estimates 

being superior are higher at the homogeneous group for Station 3 than that at Station 2. 2) The 

superiority of the proposed methodology is prominent when the temporal step is larger than 3-

year since most of the percentages for parameter estimates being superior are higher than 80%. 

Table 4- 3 The percentage of the parameter estimates from the proposed and traditional methodology that 

are valid using different temporal steps 

Temporal 

Step 
1-year 2-year 3-year 

  Method Proposed Traditional Proposed Traditional Proposed Traditional 

  Station 1 98.89% 91.11% 100.00% 91.11% 100.00% 100.00% 

  Station 2 92.22% 83.33% 91.11% 82.22% 100.00% 96.67% 

  Station 3 70.00% 65.56% 80.00% 62.22% 96.67% 53.33% 

  Temporal 

Step 
5-year 9-year 15-year 22-year 

Method Proposed Traditional Proposed Traditional Proposed Traditional Proposed Traditional 

Station 1 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 

Station 2 100.00% 88.89% 100.00% 90.00% 100.00% 100.00% 100.00% 100.00% 

Station 3 94.44% 66.67% 100.00% 60.00% 100.00% 66.67% 100.00% 100.00% 

Table 4- 4 The percentage of parameter estimates from the proposed methodology that are superior to that 

from using the traditional method when using different temporal steps 

Temporal Step 1-year 2-year 3-year 5-year 9-year 15-year 22-year 

Station 1 75.56% 51.11% 63.33% 88.89% 90.00% 50.00% 75.00% 

Station 2 58.89% 77.78% 93.33% 100.00% 80.00% 83.33% 75.00% 

Station 3 65.56% 53.33% 83.33% 83.33% 100.00% 83.33% 25.00% 

   Table 4- 5 The temporal steps used for the quantile estimation at different return periods for the three 

selected stations 

Return Period 2-year 5-year 10-year 25-year 50-year 100-year 

Station 1 5-year 9-year 9-year 15-year 22-year 22-year 

Station 2 5-year 9-year 15-year 15-year 22-year 22-year 

Station 3 3-year 3-year 3-year 5-year 9-year 15-year 
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Station 1 
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Station 2 
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Station 3 

Figure 4- 6  Extreme rainfall quantiles and their associated 95% confidence intervals (CI) at Stations 1, 2 and 3 using the proposed methodology and traditional GLM-

based method at different return-periods. The black solid line represents the quantiles estimated from using the proposed methodology; the 95% CI are described using 

the black dashed lines. The red solid line represents the quantiles estimated using the traditional method; the 95% CI are described using the red dashed lines. 
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4.5.3. Quantile estimation  

Based on the comparison shown in Table 4-4 and following the 5T rule, the temporal steps used 

for the quantile estimation for the homogeneous groups at three selected stations are shown in 

Table 4-5. The quantile calculations with the 95% confidence intervals for Stations 1, 2 and 3 at 

different return periods are shown in Figure 4-6. Based on Figure 4-6, the following conclusions 

can be reached: 1) The basic trends of the extreme rainfall quantiles at different return periods 

from using the proposed methodology are consistent with that from using the traditional GLM-

based method. All three homogeneous groups were formed by gathering stations showing 

increasing trends, thus the overall increasing trends of extreme rainfall quantiles at different 

return periods are consistent with the trend analysis. 2) Dynamic behavior of the extreme rainfall 

quantiles can be observed at different return periods. Compared to the linear increasing trend 

depicted in the extreme rainfall quantiles through using the traditional GLM-based method, more 

dynamic behavior for the extreme rainfall quantiles is observed, especially at short return periods 

for Station 1, and 2 and all return periods for Station 3.       

4.6 Conclusions  

Under climate change, the extreme rainfall patterns around the world are changing. The 

traditional GLM-based approach for the regional frequency analysis in a nonstationary 

environment is conducted under the assumption that the parameters in the regional growth curve 

are undergoing monotonic changes, and can be questionable since non-monotonic behavior of 

the extreme rainfall events having been observed.  

To consider the dynamic behavior of the extreme rainfall in regional frequency analysis, a UKF-

based procedure with spatial correlated resamples is established. To accurately capture the highly 

nonlinear relationships amongst the distribution parameters in the regional growth curve and 

consider their nonlinear transitions between successive states, the Unscented Kalman Filter is 

used. To reduce the uncertainty caused by limited number of rainfall records and consider the 

impacts form cross-correlation amongst the input stations, large sets of cross-correlated 

measurement resamples are generated for the quantification of the regional growth curve at each 

state. To reduce the possibility of performance degradation in the UKF application caused using 
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inaccurate noise covariance, Monte Carlo simulation-based method is used to explore the 

patterns of state and measurement noises.  

Compared to the traditional approach, the proposed methodology is demonstrated to: 1) Fully 

utilize the advantage that the rainfall records from multiple stations are available for the 

parameter estimation in regional frequency analysis. 2) Consider the uncertainty associated with 

using limited rainfall records at each temporal period and the impacts from cross-correlation 

amongst the stations within a homogeneous group. 3) Consider the potential non-monotonic 

trends for the extreme rainfall quantiles at different return periods.  The proposed methodology 

has provided reliable parameter estimates for the regional growth curve at stations exhibiting 

increasing trends and captured the non-monotonic change behavior of the extreme rainfall 

quantiles at different return periods      
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Chapter 5 General Conclusions 

Accurate estimates for extreme rainfall intensity for various return periods at different 

geographic locations are essential for the effective planning and design of drainage systems in 

urban areas given the increasing occurrence of extreme rainfall events and the staggering costs 

from the associated damages. In a stationary environment, in which the statistics of the extreme 

rainfall records remain stable, frequency analysis of extreme rainfall events can be conducted 

through the exploration of historical observations. However, the approach of studying past-

records may present unreliable rainfall quantile estimates under climate change since the basic 

assumption in the stationary approach may be violated. This thesis developed techniques to 

improve extreme rainfall quantile estimation in historical and future stationary environments 

through improving the homogeneous group formation process in regional frequency analysis, 

and to improve extreme rainfall quantile estimates in a future nonstationary environment through 

considering the potential non-monotonic change behavior of the parameters in the regional 

growth curve. The effectiveness of the developed approaches was examined using a large dataset 

of historical rainfall observations and projected rainfall series over Canada. The key findings of 

this research are outlined in the following sections. 

5.1. Summary of results and conclusions  

An approach to improve extreme rainfall quantile estimates in the historical stationary context 

through improving the homogeneous group formation using various geographic and atmospheric 

similarity indicators under climate change was developed in Chapter 2.  To improve the 

homogeneous group formation process for target sites, the new approach, which is established 

using a three-layer framework, is used to select the optimal feature combination for representing 

extreme rainfall patterns at the target site. The proposed methodology has been demonstrated to 

provide promising homogeneous groups for four stations, from across Canada, with different 

geographic and atmospheric characteristics. Important findings from this work can be 

summarized as: 

 A three-layer framework was established based on the stages of cloud formation, rainfall 

generation and the change of rainfall intensity over an urban surface, in the formation process 

of extreme rainfall events.    
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 The relationships between the atmospheric similarity indicators and annual extreme rainfall 

statistics were investigated for the first two layers of the three-layer framework. Differences 

were found in the selection of the optimal temporal resolutions used for the extraction of 

feature values at the first two layers, which verifies the necessity for the three-layer design. 

 An automatic feature selection and weighting consisting of the hybrid searching algorithm of 

Tabu Search, Lagrange Multiplier and Fuzzy C-means clustering, was introduced for the 

searching for the optimal feature combination as the extreme rainfall similarity indicators for 

a target site.    

 Optimal feature combinations used for the rainfall homogeneous group formation were 

selected at each of the four target stations. The various features selected for each station and 

the different correlation values with the annual maximum rainfall series demonstrated the 

need to identify similarity indicators for each target station.  

 Less uncertainty and lower RMSE values were found in the homogeneous group generated 

from using the proposed methodology, thus confirming the improved precision of the results.  

Chapter 3 provides a framework for regional rainfall quantile estimates under climate change 

based on the assumption that the extreme rainfall pattern remains stationary during 30-year 

timeframes: 2011 to 2040, 2041 to 2070 and 2071 to 2100.  The improved homogeneous group 

formation procedures based on the three-layer searching framework in the historical stationary 

context, from Chapter 2, and the adjustment procedures for the previously formed homogeneous 

groups reaching new optimality in the future stationary context, were introduced in this chapter. 

To improve the three-layer searching algorithm for the homogeneous group formation in the 

historical context, a nonlinear feature extraction technique replaced the feature weighting method 

for the reduction of feature correlation impacts on the similar rainfall station gathering process 

and the Region of Influence approach was added as an additional homogeneous group formation 

technique for the gathering of similar rainfall stations. To adjust the previous homogeneous 

groups to new optimality in the future stationary context, an adjustment procedure was used 

conditional upon the homogeneous groups from the previous temporal period. During this 

process, the at-group rainfall statistics were used as the new similarity indicators to re-evaluate 

the rainfall similarity between different stations. The conclusions of this chapter are as follows: 

 The application of ISOMAP as the feature extraction tool and the adding of Region of 

Influence as an additional homogeneous group formation method improved the performance 
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of the three-layer searching algorithm based on the resulting RMSE values from the formed 

homogeneous groups. 

 The Fuzzy C-Mean clustering and the Region of Influence approach can be equally effective 

acting as the homogeneous group formation method in the three-layer searching algorithm.  

 Under climate change, the changes in the spatial distribution of available moisture can cause 

spatial alteration of the extreme rainfall system. Thus, the optimal homogeneous groups that 

generate lower RMSE values compared to their geographic counterparts in the historical 

context are no longer optimal in the future context. 

 The adjustment procedure can successfully revise the historical homogeneous groups to the 

new optimality in the future context in a hierarchical process. During the process, the rainfall 

statistics from applying the previous homogeneous groups in the future stationary context 

and the level of overlapping stations among the previous homogeneous groups are used as 

the new similarity indictors. 

Chapter 4 provides an alternative framework for rainfall quantile estimation for stations showing 

significant trends in the future context. An unscented Kalman filter-based method was applied to 

challenge the traditional assumption about monotonic changing behavior for the regional growth 

curve in a future nonstationary environment. By utilizing multiple data points from the 

homogeneous group at different temporal steps, the proposed methodology was able to estimate 

non-monotonic changing parameters in the regional growth curve at different return periods with 

a homogeneous group formed using a trend centered pooling approach.  The conclusions from 

Chapter 4 are presented as follows: 

 The adoption of quadratic functions for the state transitions of the GEV distribution 

parameters can successfully depict the non-monotonic trends in values for the location and 

scale parameter and reasonably estimate the values of the changing shape parameter in 

simulations.    

 The use of large bootstrap resamples in the UKF algorithm can successfully reduce the 

uncertainty caused by quantifying three parameter values using one nonlinear measurement 

function and increase the accuracy in the parameter estimates. 

 A Markov Chain Monte Carlo-based simulation approach was proposed for the estimation of 

the state noise covariance used in UKF. The results indicated stationary state noise 
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covariance for the GEV parameters were observed and were successfully applied for the 

parameter estimation in the proposed methodology. 

 The application of the proposed one-step forward procedure can successfully reduce the 

possibility of performance degradation caused by insufficient samples and inaccurate noise 

covariance in the UKF algorithm.      

 The proposed methodology generates improved parameters in the regional growth curve 

compared with parameter estimates obtained from a traditional method. 

5.2. Future research         

 The system developed in this thesis provides a basic framework for regional frequency analysis 

of extreme rainfall events in a nonstationary environment. Future potential improvements to the 

methodology can be conducted in the following aspects: 

1) The improvement in the identification of similar rainfall stations for the adjustment 

procedure in the short temporal period.  In Chapter 3, the identification of similar rainfall 

stations was conducted using Fuzzy C-Mean clustering with the at-group statistics being used 

as similarity indicators. This procedure can achieve reasonable accuracy when a 30-year 

record length is available for the adjusted period in a stationary environment. However, the 

accuracy of the adjustment process may decrease for shorter record lengths. Furthermore, 

when using the Fuzzy C-Means clustering, the gathering of similar rainfall stations depends 

heavily on the overall information provided from the inputs. Future research will first use the 

dynamic Bayesian network for the identification of stations that can be used to represent the 

extreme rainfall patterns within the adjusted short period, then the Region of Influence 

approach will be applied for the gathering of similar rainfall stations for the identified 

representative stations (i.e., the center stations). Finally, conditional upon the optimal 

homogeneous group in the previous temporal periods and the collected stations for the 

relevant center station at the current adjusted period, the adjustment procedure proposed in 

Chapter 3 can be applied for the homogeneous group formation for the target site for the 

adjusted period. The improvements in the homogeneous group adjustment in the short 

temporal periods facilitate the application of the proposed methodology in Chapter 4 for the 

estimation of non-monotonic behavior of the extreme rainfall quantiles.    
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2) The ensemble estimates of regional rainfall quantiles from using the different projected 

rainfall series under the same climate change scenario. In both Chapters 3 and 4, the 

methodology was tested by using one projected rainfall series under one climate change 

scenario. Future work will endeavour to obtain ensemble estimates of extreme rainfall 

quantiles from using different projected rainfall series under the same climate change 

scenario. Under the impacts of climate change, climate precipitation projections simulated 

using different Global Climate Models (GCM) and downscaled by different Regional 

Climate Models (RCM) are available for the extreme rainfall quantile estimation. To account 

for the different performances of GCMs and RCMs, the weighted average of the extreme 

rainfall quantiles estimated from applying the proposed methodology in Chapter 3 in a 

stationary environment and the proposed methodology in Chapter 4 in a nonstationary 

environment with different rainfall projections, can be calculated.          
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Appendix 1 The Procedure of Heterogeneity Testing 

The probability weighted moments (PWMs) of the random variable X with the cumulative distribution 

function  XF can be defined as (Greenwood et al., 1979): 
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Based on the above equation, the calculation of the L-moments is conducted by implementing the shifted 

Legendre polynomials as the followings   
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So the L-moments of the X can be described as the following equation: 
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The method of L-moments can be considered as the improved technique based on the probability 

weighted moments (PWMs) (Hosking & Wallis, 1997). In the parameter estimation of the GEV model, 

four L-moments are frequently used: 
1 is the L-location or mean of the distribution;

2 is the L-scale; 

is the L-skewness; 3 is the L-skewness; 4 is the L-Kurtosis, which can be calculated based on the 

following equations (Hosking & Wallis, 1997): 

   kk 111                                                       (A1.6) 

    kkk   1212                                                       (A1.7) 
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12                                                                      (A1.8) 

    3213123   kk                                                    (A1.9) 

        kkkk   2121631104154                                  (A1.10) 

After the L-moments being calculated, the following procedures can be used for the Heterogeneity 

Testing: 

1) Calculate the regional coefficient of L-CV, L-CS or L-kurtosis using: 
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where N is the total number of stations in the region; in  is the record length of station i ;  it is the at-

site L-CV, L-CS or L-kurtosis; Rt is the regional L-CV, L-CS or L-kurtosis.  

2) Determine the weighted measures of dispersion (Castellarin et al., 2008): 
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where 32 ,tt and 4t are the regional mean of L-CV, L-CS and L-kurtosis;      iii ttt 432 ,, and in are the 

values of L-CV, L-Cs, L-kurtosis and sample size for site i ; N is the number of sites in the 

homogeneous group. 

3) Estimate the corresponding kappa distribution based on the regional average L-moments.  

4) Determine the theoretical mean V  and variance V  through the repeated simulations based on the 

estimated kappa distribution. 

5)  Calculate the heterogeneity measure based on the following equation: 
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The pooling group can be considered as “acceptably homogeneous” if 1H , “possibly 

heterogeneous” if 21  H , and “definitely heterogeneous” if 2H . 
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Appendix 2 Overview of random-walk Metropolis-Hastings (MS) algorithm 

Generally, the posterior density distribution 
  nyf  of the parameter can be described as: 
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where
 n

y  is the observations with sample size equalling to n; 
  nyf is the marginal distribution of the 

observations;   represents the parameters used in the target distribution;  f  is the prior distribution 

of the parameters (F. Wang & Gelfand, 2002) and can be calculated using: 
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Thus Equation (A2.1) can be translated into the following: 
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where  
  nyf  equals the likelihood function

  nyL  , indicating the probability of the value 
 ny  

given the current parameters  . Applying the above equation in the prior environment, the above 

equation becomes:                                          
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f y

L y f d

 


  



                                       (A2.4) 

Due to the difficulty of calculating the integral in the above posterior distribution, the Markov Chain 

Monte Carlo (MCMC) simulation, specifically the random-walk Metropolis-Hastings (MS) algorithm, is 

used here to generate the samples from this posterior distribution to obtain the relevant sample statistics 

(Yoon et al., 2010).  

The MS algorithm is developed to solve the difficulty of direct sampling in the original MCMC 

algorithm. In the process, an acceptance probability function was introduced to speed the time for the 

MCMC algorithm to converge to the stationary distribution within an acceptable error. 
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where  * is the optimal state of parameters in the previous steps, and  j  is the proposed parameters 

at the current state. The transition kernel for the parameters 
    jq  *

 is used to compare the previous 

optimal state and the current state.   
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Appendix 3 Overview of the Anderson-Darling Statistic 

For a given sample of size n, 1 2, , , nx x x , let 1 2 nx x x   , the empirical distribution function 

(EDF)   nF x can be calculated through the following equations (Chernobai et al., 2005): 

 
1

1

0

1,2, , 1

1

n i i

n

x x
number of observations x

F x i n x x x i n
n

x x






     



         (A3.1) 

To compare the goodness-of-fit of the given sample to a given distribution, the vertical differences 

between the EDF and the cumulative distribution function (CDF)  F x associated with the given 

distribution can be used as the measure. The quadratic class of the vertical differences, which is grouped 

as the Cramer-von Mises family, can be calculated through the following equation (Anna Chernobai et al., 

2005):   

         
2

nQ n F x F x F x dF x  




                                     (A3.2) 

where   F x is a weighted function that assigns weights to sample differences. In the case for 

Anderson-Darling statistics,         
1

1F x F x F x  


  . 

Normally, the AD test outperforms its counterparts through placing higher weights on the upper and 

lower tails and can be calculated through the following equation (Chernobai et al., 2005; Calenda et al., 

2009): 

         2

1 1

1 1
2 2 1 log 1 1 2 log

n n

j j

j j

AD n n j F x j F x
n n

 
 

                 (A3.3) 

This AD test can be modified to place more weight on the upper tail through replacing the weight 

function in Equation (A3.2) with        
2

1F x F x 


  , and the AD statistic at the upper tail can 

be calculated through the following equation (Anna Chernobai et al., 2005):  
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 (u, v) are set to (6, 9) in the beta prior distribution (Park, 2005). 

 

 

 


