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Abstract

One of the complicating factors in treating cancer patients is the different levels of het-
erogeneity involved. In this thesis, we use a combination of mathematical methods (in silico
experiments) and experimental data (in vitro and ex vivo experiments) to study cellular
heterogeneity, treatment design, and immune response in cancer. This thesis demonstrates
the importance and value of interdisciplinary communication and collaboration.

In Chapter 2, we develop a framework that uses in vitro and in silico experiments
to characterize cancer cell lines and investigate the cellular dynamics during early cancer
development for specific cancer cell lines. We demonstrate this process with the breast
cancer cell line, MCF-7, and present evidence that progenitor cells are the significant
cancer subpopulation during early cancer development for MCF-7 cells. In Chapter 3,
we modify and build on the agent-based model of Chapter 2 to characterize the effect of
pressure on mammosphere formation with and without the presence of a chemotherapy
drug. Our results suggest that pressure induces phenotypic plasticity.

In Chapter 4, we identify the Hsp90 protein network as a means by which drug resistance
can be overcome in a DTC. We construct a minimal in silico model of this network to
design a treatment schedule for docetaxel and radicicol. In silico experiments are used to
show that radicicol can overcome the development of drug resistance to docetaxel with the
proper treatment sequence, which can be accomplished with a nanoparticle formulation.
We present evidence that the intake rate and the decay rate of radicicol are drug formulation
properties that will have the greatest impact on increasing the efficacy of the docetaxel-
radicicol treatment sequence.

In Chapter 5, we investigate the variability in immune system response to anti-PD-1
immunotherapy. In this work, we construct a systems biology model and use sensitivity
analysis to identify potential biomarkers for a positive response to anti-PD-1 immunother-
apy. We present evidence of the importance of two interaction networks with regards to
response to anti-PD-1 immunotherapy: 1) the interaction between cancer cells and CD8+

cytotoxic Tc cells, and 2) the balance between CD4+ Th1 and Th2 helper cells.

In each of the chapters, we investigate heterogeneity at a different level: cellular hetero-
geneity with and without the cell microenvironment, variability in protein expression, and
variability in immune system response. By developing an in silico model to describe the
biological phenomena, we can investigate the underlying mechanisms at work and provide
potential biomarkers and potential improvements that can be tested further.
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Chapter 1

Background

1.1 Introduction

In this chapter, we cover the biological background and the mathematical background
for the following chapters. We first discuss the complexity of cancer and the need for
individualized treatment. We then discuss the different levels of heterogeneity involved in
cancer. In particular, we discuss two frameworks of cellular heterogeneity: clonal evolution
and cancer stem cells. Cancer stem cells have been identified in several different types of
cancer, and they play an important role in tumour growth.

In addition to the complex interactions within a tumour, cancer cells interact with and
respond to the tumour microenvironment. We discuss cancer stem cell niches, which are
locations within a tumour that promote the cancer stem cell phenotype. We then discuss
the role that cancer stem cells play in creating their own favourable microenvironment.
Finally, we discuss interstitial fluid pressure as a microenvironmental stressor for cancer
cells.

In the mathematical background section, we discuss the rationale for using mathemat-
ical methods in studying cancer heterogeneity and present the different types of models
that we consider in this thesis: the hierarchy model for the cancer stem cell hypothesis, the
two-compartment model for the cancer stem cell hypothesis, agent-based models for a spa-
tial framework, and systems biology models for protein and signalling networks. We also
discuss two methods that we apply throughout subsequent chapters: parameter estimation
and sensitivity analysis. Finally, we conclude with a thesis outline.
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1.2 Biological background

1.2.1 Cancer

Normal tissues have regulatory mechanisms that maintain homeostasis. In other words,
the body has various ways of checking and ensuring that cells are behaving in a way that is
beneficial for the entire cell population. For example, both growth factors (e.g. EGF [1,2])
and growth suppressors (e.g. RB and TP53 proteins [3]) are regulated to ensure that cells
are dividing in a controlled manner so that the number of cells in a tissue is maintained.
If a cell exhibits abnormal behaviour due to irreparable cell damage, either extracellular
signals (e.g. Fas ligand [3]) or intracellular signals (e.g. proapoptotic triggering proteins
Bax and Bak [3]) are sent to activate apoptosis to keep the tissue healthy [3].

In normal tissue function, DNA mutations can occur during cell division, specifically
during DNA replication. A mutation may result in a competitive advantage, a competitive
disadvantage, or it may not affect the cell’s fitness at all. Cancer arises when a cell has
acquired a series of advantageous mutations that allow the cell(s) to overcome and/or avoid
the tissue’s regulatory mechanisms as well as dominate in the local tissue environment [3].

Cancer includes a variety of diseases that share certain key characteristics, known as
the hallmarks of cancer. These characteristics include (1) evading growth suppressors, (2)
avoiding immune destruction, (3) enabling replicative immortality, (4) tumour-promoting
inflammation, (5) activating invasion and metastasis, (6) inducing angiogenesis, (7) genome
instability and mutation, (8) resisting cell death, (9) deregulating cellular energetics, and
(10) sustaining proliferative signaling as seen in Figure 1.1 [3].

When treating cancer, clinicians use a variety of different therapies including surgery,
chemotherapy, radiotherapy, and immunotherapy [4, 5]. Although clinicians have differ-
ent strategies at their disposal, treatment design can become complex due to the unique
condition of each patient as well as the complexity of the disease. Cancer involves many
different factors and pathways, which are intricately connected in a complex network of
cells, proteins, enzymes, etc. Each of the previously mentioned hallmarks of cancer (as
shown in Figure 1.1) is regulated by redundant signaling pathways, which all need to be
targeted in order to shut down a given aspect of cancer cell functionality. Otherwise, the
selective pressure of targeting a single pathway may result in the adaptation of the can-
cerous cells. Cancer cells may also adapt so that they depend less on a given hallmark
of cancer and more on another, adjusting to the microenvironment or to the administered

2



Figure 1.1: Hallmarks of cancer, Figure 6 taken from Hanahan & Weinberg [3]. Shown
are the hallmarks of cancer as well as examples of therapies that target those specific
hallmarks.
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treatment. Thus, an effective cancer treatment strategy should target various (if not all)
of the different aspects of cancerous behaviour [3].

1.2.2 Heterogeneity in Cancer

In general, cancer treatment should be individualized since there are several levels of
heterogeneity to consider: cancer types are unique enough that they should be treated
as different diseases; each patient responds differently to treatment [3]; and every tumour
responds to treatment differently due to its unique makeup of cells and its unique microen-
vironment. At the level of cells, there are different cell phenotypes which may be due to
genetic or epigenetic differences. Each phenotype has its own set of characteristics with
respect to cell behaviour, such as proliferation and death rate, and may react differently
to a given microenvironment (e.g. acidity [6], hypoxia [7], etc.) [8]. Different phenotypes
within a cell population can play different roles to ensure population growth. Ideally, all
levels of heterogeneity should be considered when designing a model of tumour growth and
its response to treatment.

Inter-patient variability in immune system response

There is considerable inter-patient variability in response to treatment due to a multi-
tude of factors such as age, gender, body weight, health, etc. [9]. In Chapter 5, we explore
inter-patient variability in the immune system’s response to nivolumab, an anti-PD-1 an-
tibody used as immunotherapy. The variability is due to the complex interaction between
the immune system and cancer cells as cancer cells attempt to avoid immune destruction.
Cancer cells have been shown to secrete immunosuppressive factors, such as TGF-β, and
can recruit immunosuppressive cells, e.g. regulatory T cells [3]. Immune escape is also
accomplished through decreased antigen presentation, as observed in cancer patients [10].
Decreased antigen presentation results in less activation of antigen-presenting cells, such as
dendritic cells, which leads to less activation of cytotoxic T cells, which are responsible for
cell-mediated immunity [11]. Overall, these interactions need to be considered in analyzing
the immune response of cancer patients to nivolumab.

4



Cellular heterogeneity

In this section, we present two prominent theories to explain tumour heterogeneity:
clonal evolution [12] and the cancer stem cell hypothesis [13]. In the traditional view of
cancer, known as clonal evolution, tumour heterogeneity is the result of genetic hetero-
geneity within the tumour as shown in Figure 1.2. Cancer is initiated by an advantageous
genetic mutation. As the cancerous cell divides and a mass begins to form, additional
advantageous mutations allow the cancerous cells to become increasingly abnormal and
to develop additional growth advantages over normal cells [12]. The incidence of muta-
tions can also be increased by genomic instability [3]. The large variety of genes allows
the tumour to adapt quickly to the microenvironment to ensure continued survival and
proliferation. In this theory, mutations and natural selection are the driving forces behind
tumour heterogeneity and tumour growth [8].

A more recent view of tumour heterogeneity is known as the cancer stem cell hypothesis
as shown in Figure 1.3, which assumes that cancer cells are hierarchically organized. At
the top of the hierarchy, cancer stem cells exclusively have tumourigenic potential [13].
Since cancer stem cells play an important role in tumour initiation, there may be a larger
proportion of them during tumour initiation. In later stages of tumour development, the
fraction of cancer stem cells may decrease since less cancer stem cells are needed [14]. In
the cancer stem cell hypothesis, tumour heterogeneity is the result of the differentiation of
cancer stem cells [13].

Cancer stem cells

In normal tissue, stem cells are unique in that they have the ability to differentiate into
different kinds of cells [13]. They are at the top of a differentiation hierarchy where a cell’s
progeny is more differentiated than its parent cell. The cells become more differentiated
through division until they are highly specialized. Unlike differentiated cells, stem cells are
immortal, i.e. they can divide an infinite (or very large) number of times, and they exhibit
self-renewal, i.e. they can divide symmetrically or asymmetrically to retain their stem cell
phenotype [15].

Cancer stem cells can be the result of cancerous transformation of normal stem cells or
of progenitor cells that have acquired self-renewing properties [15]. In general, they retain
many of the traits of ordinary stem cells. For example, cancer stem cells initiate a hierarchy
of cancer cells [13]. These cells also have infinite (or very large) proliferative potential due

5



Figure 1.2: Clonal evolution. According to clonal evolution [12], a cancer clone can divide
and spontaneously acquire mutations that result in different subclones. These resulting
subclones may have mutations that are advantageous, disadvantageous, or neutral. The
figure above demonstrates how a cancer cell divides and may undergo mutations that result
in new cancer cell lines (shown as different colours). Some of these subclones will eventually
die out while others will persist and continue to acquire additional mutations. As genetic
instability increases in these subclones, mutations become a more common occurrence,
resulting in increased clonal diversity in the resulting tumour.
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Figure 1.3: Cancer stem cell hypothesis. In the cancer stem cell hypothesis [13], there are
two cancer subpopulations: cancer stem cells (CSCs) (marked S, in pink) and non-CSCs,
a.k.a. progenitor cells (marked P). Models may include all or some of the following phenom-
ena: a hierarchy of cells beginning with CSCs and ending with fully mature cells (top of
figure), progenitor symmetric division into two progenitor cells (shown within hierarchy),
CSC symmetric renewal into two CSCs (bottom left of figure), CSC asymmetric renewal
into one CSC and one progenitor cell (bottom of figure), CSC symmetric differentiation
into two progenitor cells (bottom of figure), and cell death for all or certain types of cells
(not shown here), and cell plasticity between one or both subpopulations (bottom right of
figure).
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to their ability to avoid or prolong telomere shortening and their ability to self-renew
[3]. One characteristic of cancer stem cells that has important therapeutic implications
is increased resistance [16], especially of quiescent cancer stem cells [17]. Cancer stem
cells have more efficient repair mechanisms, including more effective activation of DNA
damage checkpoints [17]. Cancer stem cells also exhibit more drug resistant genes and
more “inhibitor of apoptosis” proteins than non-stem cancer cells [16].

Due to their self-renewal and unlimited proliferation potential, cancer stem cells play an
important role in driving tumour growth [18] and in ensuring that the tumour has the right
phenotypes in play to allow for tumour growth [3]. It has been observed that tumours with a
higher fraction of cancer stem cells (fCSC) are correlated with a more aggressive tumour [19].
They are key players in tumour initiation (also known as mammosphere formation), tumour
resistance, and tumour recurrence [3]. As mentioned above, cancer stem cells are resistant
to treatment due to better repair mechanisms and a higher prevalence of drug resistant
genes [16]. So although a radiotherapy or chemotherapy session may result in reduction of
tumour mass, surviving cancer stem cells may cause the tumour to return [3].

The cancer stem cell hypothesis has been established in certain types of cancers such as
leukemia [20], but also in solid tumours such as breast cancer [21] and brain cancer [19,22].
Cancer stem cells can make up the majority of the tumour, or as little as one percent,
but in any case, they are a possible target for cancer treatment [17]. Therapies have been
developed to target these important cells in the tumour, e.g. targeting LGR5+ in human
colon cancer stem cells. Unfortunately, these therapies are hindered by cell plasticity in
cancer cells [23].

Plasticity refers to the ability of cells to change their phenotype, which may be due
to stochastically acquired genetic or epigenetic changes governing the CSC state. Cell
plasticity can also be viewed as a mechanism that permits cells to modify their roles and
characteristics in order to adapt to their microenvironment [8]. One explanation for cell
plasticity is the EMT, which refers to a cell’s shift from an epithelial phenotype to a
mesenchymal phenotype. Epithelial cells are polarized and need to adhere to other cells in
order to survive. On the other hand, mesenchymal cells are less polarized, are more invasive,
and exhibit stem-like characteristics [24, 25]. More recently, it has been suggested that
non-stem cancer cells may undergo a partial or hybrid epithelial-mesenchymal transition
and still exhibit stem-like characteristics [26]. Epithelial-mesenchymal transition has been
identified as an important mechanism during the process of cancer metastasis, where a
primary tumour sends cells to another part of the body to initiate another tumour [3].

Cell plasticity has a large impact on treatment strategy. If there is no cell plasticity,
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then clinicians can target cancer stem cells to prevent further growth of the tumour. If
there is some or little cell plasticity, then clinicians can decrease the number of cancer stem
cells, but they can never completely eradicate them. Finally, if there is a large amount of
cell plasticity, then targeting cancer stem cells is ineffective since cell plasticity allows them
to be restored [27]. Unfortunately, the degree of plasticity is not easily measured and may
change during the course of cancer growth. As stated earlier, cancer stem cells are more
important during tumour initiation, so they make up a larger proportion of the tumour
during early cancer development. In later stages of tumour progression, the fraction of
cancer stem cells decreases since less cancer stem cells are needed to sustain growth [14].
These changes may be brought about by changes in plasticity as the cancer progresses.

Protein expression in resistant phenotypes

One way in which cancer cells exhibit resistance is through a change in the normal
signaling circuitry. Cancer cells have been shown to lose the function of tumour suppres-
sor genes, increase anti-apoptotic regulators (e.g. Bcl-2, Bcl-xL), increase survival signals
(e.g. Igf1/2), downregulate proapoptotic factors (e.g. Bax, Bim, Puma), and interrupt the
extrinsic ligand-induced death pathway [3]. These changes in signal and protein expres-
sion results in resistance to cell death but also resistance to chemotherapeutic drugs such
as docetaxel as discussed in chapter 4. However, with proper treatment sequencing, the
use of protein activators or inhibitors can help to manage abnormal protein expression,
resensitizing the cancer cells to chemotherapeutic drugs.

1.2.3 Tumour microenvironment

Normal stem cells are maintained and regulated by stem cell niches, which are locations
within normal tissue that maintain stem cell self-renewal and multipotency [28]. Normal
stem cell niches may also promote the development of cancer stem cells since hypoxic
regions that support normal stem cells also promote adaptive gene expression. In the lit-
erature, there has been evidence of cancer stem cell niches, which are areas where cancer
stem cells are supported by the tumour microenvironment through hypoxia [14, 28]. Can-
cer stem cells communicate with the normal cells in the surrounding stroma to create a
microenvironment that both fosters the cancer stem cell phenotype and protects them from
harm, e.g. increasing angiogenesis and hypoxia [29]. Understanding the underlying mech-
anisms and conditions that promote the cancer stem cell phenotype can aid in designing
more efficient cancer treatment strategies.
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Some characteristics of the cancer stem cell niche are angiogenesis, necrosis, and in-
creased hemorrhage in the tumour, which leads to increased hypoxia and angiogenesis.
Cancer stem cells have been observed to be a source of pro-angiogenic growth factors
(AGFs) [30]. Additionally, the hypoxic environment results in uncontrolled angiogenesis
and subsequently in abnormal vasculature. This environment protects cancer stem cells
from harm, adding to the inherent resistance of cancer stem cells. Since cancer stem cells
promote and thrive in these microenvironments, these regions are distributed throughout
the tumour to maintain the cancer stem cell phenotype [31].

Interstitial fluid pressure

Another factor in the tumour microenvironment (for solid tumours) is high IFP, which
has been correlated with poor prognosis. This is an important barrier to treatment since it
prevents the efficient delivery of chemotherapy and immunotherapy drugs. High interstitial
fluid pressure in the tumour is related to abnormal angiogenesis since abnormal blood
vessels are leaky, increasing the amount of fluid in the interstitium. Additionally, tumours
lack lymph vessels to drain out the interstitial fluid. The ineffective blood and lymph
vessels as well as the many cells that congregate in the tumour microenvironment results
in higher interstitial fluid pressure. As a side note, the use of anti-angiogenic treatment,
e.g. VEGF inhibitors, has been shown to normalize vasculature and decrease the interstitial
fluid pressure within a tumour [32].

1.3 Mathematical background

1.3.1 Rationale for mathematical modelling of cancer

In this thesis, we develop mathematical models to better understand tumour hetero-
geneity, the tumour microenvironment, and the effect of treatment on cell death and cancer
progression (or regression). Mathematical models can provide valuable insight into the in-
terplay between different cell phenotypes, proteins, and molecules. It can also help us
understand the effect of microenvironmental stresses like pressure and drug. Finally, it can
help us test and design effective treatment strategies and schedules based on our results
and assumptions about cancer growth, heterogeneity, and the tumour microenvironment.
Overall, mathematical modelling brings us one step closer to individualized treatment.
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1.3.2 Mathematical frameworks for tumour heterogeneity

There are a variety of mathematical models to choose from, e.g. ordinary differential
equations (ODEs), partial differential equations (PDEs), CA models, etc. Each of these
models has strengths and weaknesses, and each of these models is better suited to different
stages or situations of cancer development.

Hierarchy model

Kohandel and Turner [33] developed a hierarchy model for the cancer stem cell hy-
pothesis [13]. As in the cancer stem cell hypohtesis, their model assumes that there exists
a hierarchy of differentiation initiated by cancer stem cells. Cancer stem cells have three
types of divisions: symmetric renewal (resulting in two cancer stem cells), asymmetric
renewal (resulting in one cancer stem cell and one non-stem cancer cell), and symmetric
differentiation (resulting in two non-stem cancer cells). Non-stem cancer cells can only
proliferate to produce two non-stem cancer cells in the next stage of differentiation. This
hierarchy then ends with mature cells which do not divide and eventually die. Cells may
also dedifferentiate and move back in the hierarchy due to plasticity. Finally, non-cancer
stem cells can also “spontaneously” die. See Figure 1.3 for a schematic of the hierarchy
model as well as Table 2.1 for a mathematical description of our modified hierarchy model.

This hierarchical model was used to explore two different scenarios for the link between
cancers stem cells and the epithelial-mesenchymal transition [33]. They used mammosphere
formation assay data to fit the model and completed different computational experiments to
show that the epithelial-mesenchymal transition may be a mechanism for dedifferentiation.

Two-compartment model

When identifying cancer stem cells and non-stem cancer cells experimentally, cell sur-
face biomarkers such as CD44, CD24, or CD133 are used to divide the cells into different
subpopulations [17]. A cancer stem cell is then defined as any cell that falls within the
region of high or low fluorescence with respect to the biomarker profile expected of cancer
stem cells (e.g. CD44+CD24− in breast cancer [21]). In other words, we characterize cells
in a binary fashion, separating cells into cancer stem cells and non-stem cancer cells. Note
that biomarker fluorescence is a spectrum, i.e. some cells have more biomarker receptors
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than others. This implies that there are cells that are more stem-like or less stem-like as
opposed to a strict binary categorization of stem and non-stem cells.

The two-compartment model is a simplification of the hierarchy model that mimics the
in vitro characterization of cells (see Table 3.1) [34]. The model considers two compart-
ments of cells representing the positive cells and the negative cells with respect to the given
biomarker profile. Due to the ambiguity of cell biomarkers, the positive compartment rep-
resents cells that are more stem-like and in the upper half of the cancer stem cell hierarchy,
while the negative compartment represents cells that are less stem-like and in the bottom
half of the cancer stem cell hierarchy. We assume that the cells in each compartment
share the same phenotype so that we only consider two phenotypes. We assume the same
phenomena as in the hierarchy model, but with only two compartments representing the
two groups of cells. We include the additional assumption that positive cells may die since
the positive compartment includes cells that are stem-like but not at the top of the cancer
stem cell hierarchy. See Table 3.1 for more details.

In a previous study [34], the two-compartment model was used to study cancer cell
plasticity, the stochastic effects on cell dynamics, and its effect on mammosphere formation.
They calibrated the model to experimental data [35] to study the dynamics of cancer cells
in the limits of large and small population sizes and to study the effect of cell death and
initial conditions on mammosphere formation efficiency. They found that stochastic effects
play an important role in tumour cell behaviour in small populations.

1.3.3 Agent-based models

Agent-based models are spatial models that simulate the interactions of autonomous
individuals within a complex system by prescribing a set of rules dictating the actions of
each individual agent [36]. This class of models is important because they capture the
spatial, stochastic nature of tumour growth with a small number of cells. These models
can be useful in studying both genotypic and phenotypic heterogeneity.

Poleszczuk and Enderling [37] presented an agent-based model for tumour growth based
on the hierarchy model [33]. In the model, cells are governed by probabilistic rules that
decide the cell’s internal state and its interactions with the cell’s dynamic local environ-
ment. Given its probabilistic nature, it can account for the stochastic nature of single cell
kinetics, which is especially important when considering a small collection of cells as we
would observe in early cancer development. Their model [37] includes dynamically growing
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domains, which provides a computationally efficient framework for in silico simulations of
cellular dynamics and phenotypic heterogeneity in the context of tumour growth.

As in the hierarchy model by Kohandel and Turner [33], two types of cancer cells
are considered: cancer stem cells and non-stem cancer (or progenitor) cells. Each cancer
cell occupies a single grid point on a two-dimensional square lattice. At each time step
(one hour), each cell is updated according to a probability distribution that describes the
possible actions for that particular cell. In addition to the assumptions of the hierarchy
model [33], cells can undergo “spontaneous” cell death and migration. Spontaneous cell
death refers to cell death that is not due to lack of proliferation potential but due to other
factors.

Given the spatial nature of these models, additional assumptions are made with respect
to the local neighbourhood of a cell. In the agent-based model [37], we consider a Moore
neighbourhood for cells, which is the region composed of a central cell and the eight
cells which surround it on a two-dimensional square lattice. We assume that cells that
are completely surrounded by other cells become quiescent in the sense that they can no
longer move, dedifferentiate, or proliferate. It is unclear as to whether cells actively disperse
away during early cancer development within the body, so the migration of cells may be
due to either the physical dispersion of invasive, cancerous cells or due to the pushing of
neighboring proliferating cells.

1.3.4 Systems biology models

The next type of model that we consider are systems biology models. This approach first
involves constructing a network representing the system of interest. The network includes
the relevant interactions between the biological species of interest, e.g. cells, proteins, or
molecules. We then assume that the system is well-mixed, i.e. all species are equally
distributed in the system space. Rate laws are then used to convert the network into a
system of ordinary differential equations. This ordinary differential equation system can
then be used to simulate how the entire system changes with time [38].

Systems biology models are especially important in modelling protein or signalling
networks. In Chapters 4 and 5, we construct systems biology models for two different
contexts: the Hsp90 protein network within a DTC and the immune system’s response to
anti-PD-1 immunotherapy.
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1.3.5 Parameter estimation

When modelling disease, model parameters may not be available since we are modelling
the in vivo behaviour of these cells, proteins, and molecules. Often, most of the model
parameters are unknown a priori due to a lack of direct in vivo or in vitro measurements to
quantify the phenomena at hand. We can apply parameter estimation methods to minimize
an objective function representing the error between model predictions and experimental
observations of more readily measured metrics. These methods identify plausible parameter
values that are consistent with the experimental observations.

When estimating the model parameters, there are two classes of methods at our dis-
posal: global and local. Global methods explore the entire parameter space but can be
computationally expensive. Local methods are generally faster than global methods, but
the resulting set of parameters may only optimize for a region of the parameter space
instead of optimizing across the entire parameter space. There are also hybrid methods
that try to combine the best aspects of global and local methods. A hybrid method starts
with a global method to find promising regions for the minimum then uses a local opti-
mizer on these regions to find the minimum. The method that we focus on in this thesis
is a global method known as the genetic algorithm, ga() in MATLAB, which is a type of
evolutionary algorithm. We use this method since evolutionary algorithms are generally
applicable and are especially efficient with large parameter spaces. It does not guarantee a
global minimum, but it generally works well with a sufficiently large population size [39].

Evolutionary algorithms

Evolutionary algorithms are methods in which each possible parameter set is treated as
a distinct individual within a population. The fitness of these individuals is measured by
considering the objective function, i.e. a parameter set with a small error will be treated
as an individual with a higher fitness [39].

New parameter sets are considered through the selection step, where fit individuals
are chosen to undergo recombination. Selection can happen in different ways: truncation,
roulette-wheel, or tournament. Truncation means that the top k individuals (according
to their fitness) are selected and reproduced until the pool is filled. The roulette-wheel
randomly chooses an individual with greater probability for those with higher fitness, and
those individuals are reproduced until the pool is filled. Finally, tournament involves
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taking K individuals and having them participate in tournaments to decide the winner.
Each tournament results in an individual that can be used to produce new parameters [39].

The next step is to decide how two parent parameter sets will be combined to create
a new individual, i.e. a new parameter set, mimicking the process of sexual reproduction.
Given two parent parameter sets in the parameter space, we can set the recombination to
choose a parameter set along the line between the two parent parameter sets. This can be
a predetermined value, or it can be chosen stochastically. Alternatively, the parameter set
can be chosen anywhere along the line connecting the two parent parameter sets with the
probability decreasing as the distance from the parent parameter sets increases [39].

Finally, there is a small probability of mutation in an individual. Usually, this is
chosen so that the probability of mutation is inversely proportional to the dimension of the
problem. All individuals (old and new) then compete to be in the next generation [39].

1.3.6 Sensitivity analysis

Once we have developed a model framework, we can apply sensitivity analysis. Sensi-
tivity analysis is the study of how uncertainty in the output of a model can be explained
as a result of uncertainty in the model input. Sensitivity analysis can be used for differ-
ent reasons such as factor fixing, factor prioritization, and factor mapping. Factor fixing
reduces the number of parameters in a system by identifying factors that can be fixed
arbitrarily with minimal effect on the output of the system. Inversely, factor prioritization
identifies the factors with the most influence on a given output. In other words, it identifies
the factors that, when fixed, will reduce the variance of the output most. Finally, factor
mapping identifies critical or interesting regions in the parameter space [40]. In this thesis,
we utilize sensitivity analysis to identify the key phenomena of a given model, i.e. factor
prioritization, since we are primarily interested in identifying opportunities for improved
treatment efficacy.

Sensitivity analysis can be differentiated into two types: local and global. Local sensi-
tivities describe the effect of a single small change in an input parameter around a fixed
nominal value for a given output. Global sensitivities, on the other hand, describe the
effect of simultaneous large variations of all parameters on the outputs. Global sensitivity
analysis gives a more comprehensive analysis since it explores more of the parameter space,
but it is more computationally expensive than local sensitivity analysis [41].
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Local sensitivity analysis

For local sensitivity analysis, we start with our nominal parameter set. The absolute
local sensitivity of a given parameter xi for a given output y around a nominal parameter
set ~x is defined in Equation 1.1.

Sabsolute =
∂y(~x)

∂xi
= lim

∆xi→0

y(~x+ ∆xi~ei)− y(~x)

∆xi
(1.1)

We can then approximate the absolute local sensitivity using a first-order forward finite
difference as shown in Equation 1.2,

Sabsolute ≈
y(~x+ ∆xi~ei)− y(~x)

∆xi
(1.2)

where ∆xi is a small perturbation applied to xi in the nominal parameter set ~x. In
other words, Equation 1.1 is the difference in output due to the perturbation divided by
the magnitude of the perturbation. The relative (or normalized) local sensitivity is then
calculated as in Equation 1.3,

Srelative =
y(~x+ ∆xi~ei)− y(~x)

y(~x)
× x∗i

∆xi
= Sabsolute ×

x∗i
y(~x)

(1.3)

where x∗i is the nominal value for xi. In other words, Equation 1.3 is the absolute local
sensitivity scaled by the default parameter and the default output value. The disadvantage
of looking at the local sensitivity is that it only characterizes the parametric sensitivities at a
specific point in the parameter space. If we want to know how the parameter behaves in the
model within the entire parameter space, we need global sensitivity analysis methods [41].

Global sensitivity analysis

One method of global sensitivity analysis is Monte Carlo analysis. We assume that the
parameters are independent with normal distributions. We sample N parameter sets to
produce N output values. We then plot these output values with respect to each of our
parameters and analyze the linearity of the scatterplots [40]. An example from Saltelli et
al. [40] is shown in Figure 1.4.

These scatterplots can be quantified by taking the average output values for each pa-
rameter value and seeing how much the average varies over the parameter space. This
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Figure 1.4: Global sensitivity analysis: scatterplots, Figure 1.6 from [40]. If the scatterplot
reveals a correlation between the output and the parameter (e.g. a linear pattern), the cor-
responding parameter has influence over the output. As the variance due to the parameter
increases (e.g. a steeper slope), the more influential the corresponding parameter is. The
four scatterplots, (a) to (d), are ordered from least influential to most influential.
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Figure 1.5: Global sensitivity analysis: scatterplots with slices, Figure 1.7 from [40]. Shown
is the data from Figure 1.4 with slices where the average of the output data has been taken.
The four scatterplots, (a) to (d), are ordered from least influential to most influential.
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Figure 1.6: Global sensitivity analysis: average of slices, Figure 1.8 from [40]. Shown are
the averages of the slices taken in Figure 1.5. If the pattern is more linear than uniformly
scattered, then the corresponding parameter is more influential for that output. The four
scatterplots, (a) to (d), are ordered from least influential to most influential.
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procedure is shown graphically in Figures 1.4 to 1.6. Mathematically, this is described
as the variance of the expected value of our output at fixed parameter value as shown in
Equation 1.4.

VXi
(EX∼i

(Y |Xi)) (1.4)

Equation 1.4 is known as the first-order effect of Xi (our parameter) on our output. We
then define the first-order sensitivity index of Xi on Y as the first-order effect divided by
the total variance of our output as shown in Equation 1.5.

Si =
VXi

(EX∼i
(Y |Xi))

V (Y )
(1.5)

These definitions as well as higher-order sensitivity indices can be used for factor fixing or
factor prioritization [40].

Sampling techniques

We can improve the global sensitivity analysis by improving our sampling technique so
that it more comprehensively covers the parameter space. A one-dimensional example of
this is shown in Figure 1.7. Different sampling methods include one-at-a-time sampling, full
factorial sampling, fractional factorial sampling, Latin hypercube sampling, and combined
sampling schemes. In this thesis, we utilize Latin hypercube sampling [40]. As discussed
in more detail below, Latin hypercube sampling ensures that we sample each subinterval
(e.g. in Figure 1.7) the same number of times, providing more comprehensive coverage of
the parameter space.

Latin hypercube sampling works by first splitting up each parameter domain into multi-
ple levels or intervals. We then randomize the order in which we sample those intervals for
each model parameter. Then, for n intervals, this process designs kn simulations (k ∈ Z)
where every interval of the parameter domain is sampled k times. We can also additionally
ensure that for every n simulations, every interval is sampled. Within each level, we can
either choose a specific point such as the midpoint (e.g. line four in Figure 1.7) or we can
stochastically choose a point within the interval (line three of Figure 1.7). With these sam-
pling schemes, we can better cover the parameter domain when calculating the sensitivity
indices for each of our parameters [40]. An example of a Latin hypercube sampling scheme
in two dimensions is presented in Figure 1.8 [40].
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Figure 1.7: Sampling techniques, Figure 2.2 from [40]. This figure shows several ways that
a parameter domain from zero to one can be sampled to give a more comprehensive descrip-
tion of the parameter space: (a) sixteen random points are chosen over the entire domain,
(b) the domain is divided into eight subintervals and two points are chosen randomly within
each interval, (c) the domain is divided into sixteen subintervals and one point is chosen
randomly within each interval, (d) the domain is divided into sixteen subintervals and the
midpoint is used for each interval, and (e) the domain is divided into sixteen subintervals
and the endpoints of all the intervals are used, resulting in seventeen points.

1.4 Thesis outline

In Chapter 2, we develop and demonstrate a framework that uses in vitro and in silico
experiments to characterize cancer cell lines and identify the cellular dynamics during early
cancer development. The resulting model can then be subjected to sensitivity analysis
to identify the key cellular behaviours to consider when treating specific cancer cell lines.
Additionally, we justified the use of a spatial framework in studying mammosphere growth.
To our knowledge, this model is the first use of an agent-based model (of the hierarchy
model) to study the early cancer stage of mammosphere formation [42].

We demonstrate this process with the breast cancer cell line, MCF-7, and show how the
resulting characterization was used to give evidence that progenitor cells are the significant
cancer subpopulation during early cancer development for MCF-7 cells. This framework
could be used to objectively compare different cell lines and could be used to translate the
in vitro response to drugs to biopsies from patients.

In Chapter 3, we modify and build on the agent-based model of Chapter 2 to charac-
terize the effect of pressure on mammosphere formation with and without the presence of a
chemotherapy drug. To our knowledge, this is the first study to look at the effect of pressure
(with and without a chemotherapy drug) on mammosphere formation. We hypothesized
that pressure would induce a change in the cellular phenotype from non-resistant (CD44−)
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Figure 1.8: Latin hypercube sampling scheme in two dimensions, part of Figure 2.7 from
[40]. This figure shows a two-dimensional parameter space where the horizontal direction
represents one parameter domain and the vertical direction represents the other parameter
domain. Latin hypercube sampling has been used to ensure that each row and each column
is sampled the same number of times, which more efficiently covers the parameter space.
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to a resistant phenotype (CD44+) since we generally expect adverse conditions to either
result in cell death or result in increased resistance to cell death.

Our results from the in vitro experiments show that pressure did increase apoptosis
but that it did not change the uptake of drug into the cell. Thus, cells in the presence
of pressure are fully capable of taking in drug. The results of our in silico experiments
suggest that pressure more generally increases bidirectional plasticity.

In Chapter 4, we identify the Hsp90 protein network as a means by which drug re-
sistance to the chemotherapy drug docetaxel can be overcome in a DTC. Since Hsp90
expression is increased in cancer cells that are resistant to docetaxel, we hypothesized that
an Hsp90-inhibitor, such as radicicol, could be used to overcome the acquired drug resis-
tance to docetaxel. To test this hypothesis, we develop a minimal systems biology model
of this network to test our hypothesis and design a treatment schedule for docetaxel and
radicicol. To our knowledge, this is the first model to analyze the Hsp90 protein network in
a drug-tolerant cancer cell and design a treatment schedule to overcome its drug resistance.
Additionally, we hypothesized that a nanoparticle administration would be a more effec-
tive drug vehicle compared to a free drug administration due to the different timescales in
which drug would be released into the tumour microenvironment. Finally, we use the in
silico model to identify the most effective improvements that could be made to the drugs
in order to improve the efficacy of the treatment sequence.

The in silico experiments demonstrate that radicicol can overcome the development of
drug resistance in drug-tolerant cancer cells from docetaxel if the treatment sequence takes
advantage of the synergy between the two drugs. We also presented evidence that using
a nanoparticle formulation of the drugs takes better advantage of the synergy between
docetaxel and radicicol compared to the simultaneous release of free drug into the tumour
microenvironment. Finally, we identify the intake rate and the decay rate of radicicol
as drug formulation properties that would have the greatest impact on increasing the
docetaxel-radicicol treatment sequence.

In Chapter 5, we develop a systems biology model to investigate the variability in
immune system response to anti-PD-1 immunotherapy. PD-1 (programmed cell death
protein 1) is a cell surface molecule that is exhibited on cancer cells and activated T cells.
Immune cells that are expressing PD-1 are inhibited when PD-1 is engaged by its ligands
(e.g. PD-L1). Anti-PD1 immunotherapy such as nivolumab has been investigated to
prevent the inhibition of immune cells by PD-1 ligation. Thus, we would expect nivolumab
to result in increased activation of T cells and subsequent cancer regression [43]. However,
anti-PD-1 immuno-therapy treatment has shown both positive and negative results in its
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ability to inhibit tumour growth. We hypothesized that Th1 and Th2 cells determine
the immune response [44]. In this study, we develop a systems biology model and utilize
sensitivity analysis to identify potential biomarkers for a positive immune response as well
as potential networks of interactions that could be investigated further for improved anti-
PD-1 immunotherapy response.

We identified two important interaction networks with regards to response to anti-PD-1
immunotherapy: 1) the interaction between cancer cells and CD8+ cytotoxic Tc cells, and
2) the balance between CD4+ Th1 and Th2 helper cells. The latter network is worthy of
further research since these factors may be responsive to immunotherapy, given that these
cells and cytokines have been studied and modified in other contexts, e.g. autoimmune
diseases [45].

In each of the chapters, we investigate heterogeneity at a different level: cellular het-
erogeneity with and without the effect of the cell microenvironment, variability in protein
expression, and variability in immune system response. By developing an in silico model
to describe the biological phenomena, we can identify the underlying mechanisms at work
and provide potential biomarkers and potential improvements that could be tested further.
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Chapter 2

An agent-based framework of tumour
heterogeneity

In this chapter, we demonstrate a framework that uses in vitro and in silico experiments
to characterize cancer cell lines and identify the cellular dynamics during early cancer
development. We demonstrate this process with the breast cancer cell line, MCF-7, and
give evidence that progenitor cells play an important role in early cancer development
of MCF-7. This framework could also be used to objectively compare different cell lines
and could be used to translate the in vitro response to drugs to biopsies from patients.
Additionally, we justified the use of a spatial framework in studying mammosphere growth.

Dr. Ting Luo was the lab technician of the Mathematical Medicine Laboratory who
collaborated on this project. They completed the in vitro experiments and wrote the
description of the biological experiments. To our knowledge, this model is the first exam-
ple of an agent-based model (of the hierarchy model) to study the early cancer stage of
mammosphere formation. The work presented in this chapter is published [42].

2.1 In vitro experiments

All in vitro experiments were completed using the breast cancer cell line, MCF-7. These
cells were given as a kind gift from Dr. Aaron Goldman at Harvard Medical School.
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2.1.1 Cell culture

The human breast cancer cell lines MCF-7, MDA-MB-231, and SK-BR-3 were obtained
from ATCC and cultured in DMEM with 4.5 g/L Glucose and L-Glutamine, without
Sodium pyruvate (VWR) supplemented with 10% FBS, Certirfied, US Origin, Standard
(Sterile-Filtered) (Gibco). The cell culture was kept at 37 ◦C in an incubator at 5% CO2.

2.1.2 Mammosphere formation assays

Exponentially growing MCF-7 cells were plated in each well of six-well plates at densities
of 100, 200 and 300 cells/cm2. Plates were kept for 10 to 22 days (see Figure 2.3) in an
incubator to allow for the formation of clearly visible clones, which were then fixed with 4%
paraformaldehyde in PBS (1x) (w/o Ca++ and Mg++) (VWR) and stained with 0.5%
(w/v) crystal violet, pure, indicator (AROS Organics) in dH2O. The imaging software
ImageJ [46] was used to count the number of clones and analyze their sizes. These two
measurements corresponded to a cell line’s MFE and AMS (see Section 2.3.1).

2.1.3 Flow cytometry

Exponentially growing MCF-7, MDA-MB-231, and SK-BR-3 cells from ATCC were
fixed with 4% paraformaldehyde in PBS ((1x) (w/o Ca++ and Mg++) (VWR)) for 30
minutes at room temperature and blocked in 10% goat serum (v/v). Following PBS washes,
cells were incubated with CD24-PE and CD44-APC (BD Biosciences, Mississauga, ON,
Canada) overnight at 4 ◦C and analyzed by using an Amnis R© brand ImageStream R© MkII
(EMD Millipore) imaging flow cytometer equipped with 488 nm and 642 nm excitation
lasers. Each laser was used to excite a separate fluorescent biomarker. Samples were ac-
quired at 40× magnification. The software INSPIRE R© (EMD Millipore) was used for data
collection. Image analysis was completed using image-based algorithms in the ImageStream
Data Exploration and Analysis Software (IDEAS R© v6.1, EMD Millipore).

26



2.2 In silico experiments

2.2.1 Model

In addition to the hierarchy model described in Chapter 1, two assumptions were made
when developing this model. First, cells may experience spontaneous death. And second,
progenitor cells may exhibit phenotypic plasticity by reverting to a previous cell differ-
entiation state, i.e. one stage backwards in the differentiation hierarchy. Note that both
these phenomena are assumed to happen with the same probability for both progenitor
and mature cells.

The model summary and parameters are given in Table 2.1 where S represents CSCs,
P represents progenitor cells, and M represents mature cells. The rates of division or pro-
liferation are given by ρS for cancer stem cells and ρP for progenitor cells and mature cells.
We assume that progenitor cells of all stages of differentiation have the same probability of
proliferation. We assume that mature cells have the same probability of division as progen-
itor cells but that the result of the attempted division is cell death since mature cells lack
the proliferative potential to divide. Given that a cancer stem cell has divided, the rates r1,
r2, and r3 represent the probabilities of choosing symmetric self-renewal, asymmetric self-
renewal, and symmetric differentiation respectively. We also require that r1 + r2 + r3 = 1.
Finally, α is the rate of spontaneous death and γ is the rate of dedifferentiation.

As discussed in the section on agent-based models (Section 1.3.3), it is ideal to develop
an agent-based model framework to study mammosphere formation since the probabilistic
nature of the model can capture the stochastic single-cell kinetics. We thus modified the
agent-based framework [37, 47] described in Chapter 1 to study mammosphere formation
by simulating mammosphere formation (starting from an initial cell) and by generating
outputs that are relevant to mammosphere formation assays, i.e. mammosphere formation
efficiency, fraction of cancer stem cells, and average mammosphere size.

To summarize the section on agent-based models (Section 1.3.3), cells are treated as
individual agents that are governed by probabilistic rules that decide the cell’s internal
state and its interactions with the cell’s dynamic local environment. Previous work [37]
with this model framework considered two types of cancer cells: cancer stem cells and
non-stem cancer (or progenitor) cells. These cells are placed on a two-dimensional square
lattice, and at each time step (which corresponds to one simulation hour), each cell’s action
is chosen based on probabilities for all possible actions (e.g. proliferation, spontaneous cell
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Model element Description
CSC hierarchy S → P1 → P2 → ...→ Pn →M → ∅
CSC symmetric self-renewal S → S + S
CSC asymmetric self-renewal S → S + P1

CSC symmetric differentiation S → P1 + P1

Progenitor division Pi → Pi+1 + Pi+1, Pn →M +M
Progenitor dedifferentiation Pi → Pi−1, P1 → S, M → Pn
Cell death S → ∅, Pi → ∅,M → ∅
Migration Rate -
Model element Rate (h−1) Parameter Fit Reference
CSC hierarchy - n = 12 [34]
CSC symmetric self-renewal ρSr1 (0.01)(0.014) fit, [34]
CSC asymmetric self-renewal ρSr2 (0.01)(0.071) fit, [34]
CSC symmetric differentiation ρSr3 (0.01)(0.914) fit, [34]
Progenitor division ρP 0.025 fit
Cell death α 0.01 [37]
Progenitor dedifferentiation γ 0.042 [34]
Mature cell death ρP 0.025 fit
Migration Rate ρmig 0.417 [37]

Table 2.1: Hierarchy model, as presented by Kohandel and Turner [33] with the addition
of migration [47]. S represents CSCs, P represents progenitor cells, and M represents
mature cells. Parameter values are rounded to three decimal places. ρS and ρP were the
two parameters that we varied to fit the experimental data. For each of the CSC divisions,
the parameter fit is shown as the product of the two parameters used.
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death, etc.). One additional assumption for the spatial framework is the potential for
migration.

Given the spatial nature of these models, additional assumptions are made with respect
to the local Moore neighbourhood of a cell. As in previous work [37], we assume that cells
that are completely surrounded by other cells become quiescent in the sense that they can
no longer move, dedifferentiate, or proliferate. It is unclear as to whether cells actively
disperse away during early cancer development within the body, so the migration of cells
may be due to either the physical dispersion of invasive, cancerous cells or due to the
pushing of neighboring proliferating cells. A flowchart of the agent-based model algorithm
is shown in Figure 2.1.

2.2.2 Model parameters

Our full model thus has the following parameters: (1) number of differentiation stages
(N + 1), (2) probability of proliferation for cancer stem cells (ρS), (3) probability of pro-
liferation for non-stem cells (ρP ), (4) probability of spontaneous death (α), (5) probability
of symmetric division (r1), (6) probability of migration (ρmig), (7) probability of full (sym-
metric) differentiation (r3), and (8) probability of dedifferentiation (γ). r2 is not included
as a model parameter since we calculate r2 using r2 = 1− r1 − r3.

Our initial test parameters were taken from previous work: Madani’s temporal model
[34] and Poleszczuk’s agent-based model framework [37]. After testing the effect of changing
each of the parameters, we chose to modify the proliferation parameters (ρS and ρP ) since
they had the most influence on the metrics of mammosphere formation efficiency, fraction
of cancer stem cells, and average mammosphere size. Both parameters were manually
modified over a range of values to match the experimental data of mammosphere formation
efficiency and fraction of cancer stem cells for the breast cancer cell line MCF-7. The
parameter fitting process produced a good (but not necessarily unique) fit for the data,
which is presented in Table 2.1.

The resulting values for the proliferation parameters were ρS = 0.01 and ρP = 0.025.
These values correspond to the cell division rate per hour. The corresponding cell doubling
times are approximately 69 hours and 28 hours respectively. These values fell within the
range of experimental values found in the literature, ranging from cell doubling times for
MCF-7 as short as 24 hours [48] and as long as 72 hours [49].
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Figure 2.1: Agent-based model flowchart for hierarchy model.
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2.2.3 Definitions

In order to compare our in silico experiments with our in vitro experiments, we de-
fined mammosphere, mammosphere formation efficiency, fraction of cancer stem cells, and
average mammosphere size within in silico context.

We defined a mammosphere as a colony of cells (of all types) that reached 25 cells before
(or at) the day of measurement, which was 12 days. Each simulation represented a single
seeded cell in a mammosphere formation assay. The mammosphere formation efficiency
was then calculated as the number of mammospheres divided by the total number of
simulations run for that experiment. This value captured how efficiently the cells (for a
given a parameter set) produced a mammosphere. Each potential parameter set was run
with an ensemble size of 10,000 simulations. Each single simulation ran on the order of
seconds, so the entire ensemble could take several minutes (in the case of a high rate of
spontaneous death) or a few hours (in the case where the cell population is thriving and
producing a large mammosphere with many cells).

We defined the fraction of cancer stem cells as the number of cancer stem cells in a
mammosphere divided by the total number of cells in the mammosphere. In the litera-
ture, sorted subpopulations of the breast cancer cell lines SUM159 and SUM149 return to
equilibrium proportions after six days of growth in culture [35]. However, our simulations
started with a single cell as opposed to a colony of tens of thousands of cells. Thus, our sim-
ulations would most likely take more than six days to reach phenotypic equilibrium. Since
our simulations ran for 30 days and reached thousands of cells on average, we assumed that
the resulting colonies had run for a sufficient length of time and had a sufficient number
of cells for the colony’s subpopulation proportions to reach phenotypic equilibrium. We
considered the average steady state fraction of cancer stem cells over all successful mam-
mospheres in the mammosphere formation assay as the characteristic fraction of cancer
stem cell for that cell line or parameter set. Similarly, the average mammosphere size was
calculated as the average number of cells in a simulation.
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2.3 Results

2.3.1 Mammosphere formation assays

As described in the Methods section, mammosphere formation assays were completed in
the Mathematical Medicine Laboratory at the University of Waterloo run by Dr. Kohandel,
as seen in Figure 2.2. The experimental data from these experiments was then used to fit
our simulation parameters. To simulate the mammosphere formation assay experiments,
we started with a single cancer stem cell and simulated its growth until either the cell count
went to zero (i.e. mammosphere eradication) or the prescribed time had passed. We used
30 days for MFE and fCSCto extend the time to steady state and 20 days for AMS and
one-at-a-time sampling to more closely match the mammospheres formed in the in vitro
experiments. An ensemble was thus generated by performing 10,000 simulations. Each
single simulation ran on the order of seconds, so the entire ensemble could take several
minutes (in the case where many of the cells are dying out) or a few hours (in the case
where the cell population is thriving and producing a large mammosphere with many cells).

As described in Section 2.1.2, in vitro mammosphere formation efficiency was calculated
as the number of mammospheres divided by the number of cells seeded on the dish. The
number of mammospheres was counted by using images processed by ImageJ [46]. The
ImageJ program scanned for the stained cells by identifying darker pixels within the image
and outlining these dark areas within the image. Each outlined dark area corresponded to a
single mammosphere. The number of cells was calculated based on the seeding cell density
and the surface area of the cell dish used. In silico, mammosphere formation efficiency
was calculated as the number of successful mammospheres divided by the number of total
simulations run (10,000 for these experiments). A successful mammosphere was defined as
reaching 25 cells before (or at) the day of measurement, which was 12 days. Note that the
length of time before mammosphere counting varies depending on the cell line and the size
of the mammospheres [50]. This calculation of mammosphere formation efficiency required
computational time ranging from a few seconds to a few minutes.

The simulation was run for 30 days with the set of parameters given in Table 2.1, and
as seen in Figure 2.3, the simulation results agree with the experimental data collected
for mammosphere formation efficiency for the cancer cell line MCF-7. The mammosphere
formation efficiency saturates at about 30%, implying that even with infinite time, only
30% of the seeded cells will produce a mammosphere. These results are based on an
ensemble of 10,000 simulations, which gave us sufficiently smooth results to compare with
the experimental data.
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Figure 2.2: MCF-7 mammosphere formation assays. Each figure shows a mammosphere
formation assay after 18 days of growth for a given seeding density. Cells have been stained
blue and each group of cells represents one mammosphere. We can see that higher seeding
density results in more mammospheres. A scale of 10mm is given.
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Figure 2.3: Mammosphere formation efficiency vs time. Mammosphere formation efficiency
for the simulation are shown for the set of parameters given in Table 2.1 with data points
from experimental MFE data with the MCF-7 cancer cell line. The ensemble size was
10,000 simulations, and a successful mammosphere was defined as reaching 25 cells. We
can see that the simulation results agree with the experimental data collected and that the
mammosphere formation efficiency saturates with time.
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2.3.2 Fraction of cancer stem cells

We utilize two different fluorescent biomarkers, CD24 and CD44, for identifying the
different cell subpopulations. Traditionally, cancer stem cells have been identified as
CD44+CD24− cells [17, 21]. However, CD44+CD24+ cells have also been shown to ex-
hibit stem-like characteristics such as drug resistance [51]. Thus, we considered CD44+

cells as cancer stem cells.

Cells exhibit different amounts of cell surface biomarkers, and we can measure this
using imaging flow cytometry. Fluorescent tags targetting the cell surface biomarkers
are used to label the different cell populations. Imaging flow cytometry then measures
the fluorescence intensity for the two biomarkers for each individual cell. The results are
plotted as a scatterplot as shown in Figure 2.4. For any given cell line, a gate is chosen to
separate the CSCs from the non-CSCs. The result is a number describing the proportion
of cancer stem cells in the tumour growth [52].

In the simulations, an ensemble of 10,000 simulations was run for comparison. Each
single simulation runs on the order of seconds, so the entire ensemble may take several
minutes (in the case where many of the cells are dying out) or a few hours (in the case where
the cell population is thriving and producing a large mammosphere). In the simulations,
the fraction of cancer stem cells was calculated as the number of cancer stem cells in a
mammosphere divided by the total number of cells.

The experimental data of various cell lines showed that the fraction of cancer stem
cells can vary from cell line to cell line (see Appendix A for other cell lines). Note that
these values are also dependent on the gating used for the cell line since there is no current
standard expression level for identifying a cancer stem cell based on its biomarkers [17].
In other words, the gate used to separate the different cell subpopulations could be placed
differently depending on how the cells are distributed in the fluorescence intensity space.
Thus, the measurement of positive cells and negative cells may differ from experimentalist
to experimentalist based on how they choose to configure their measurement.

During the parameter fitting process, we only considered parameter sets that resulted
in a fraction of cancer stem cells less than 30% based on our experimental observations. In
other words, we used the fraction of cancer stem cells data to check that the parameter fit
was biologically relevant. Our simulation (with the set of parameters given in Table 2.1)
had a steady state fraction of cancer stem cells of approximately 5%, which falls in our
acceptable range of values.
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Figure 2.4: Flow cytometry results for breast cancer cell line MCF-7. The biomarkers
CD24 (y-axis) and CD44 (x-axis) were used to identify different cell subpopulations. We
considered CD44+ cells as cancer stem cells since these cells have been shown to exhibit
stem-like properties.
Note that the units for fluorescence intensity are arbitrary since fluorescence is compared

through relative expression. These results are quantified in Table 2.2.
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MCF-7 Cells Colony % Simulation %
All cells 5398 100 % 100 %
CD44− 4796 ∼ 89 % ∼ 95 %
CD44+ 539 ∼ 10 % ∼ 5 %

Table 2.2: Quantification of the flow cytometry results, given in Figure 2.4. We can see
that the subpopulation corresponding to cancer stem cells makes up approximately 10%
of the mammosphere population. In our parameter fitting process, we only considered
parameter sets that resulted in a fraction of cancer stem cells less than 30% due to the
variability in choosing a gate. The simulation results were for the set of parameters given
in Table 2.1, and the simulation fraction of cancer stem cells was approximately 5% on
average after 30 days.

2.3.3 Average mammosphere size

After fitting our parameters to the mammosphere formation efficiency measurement
and ensuring that we had a biologically relevant fraction of cancer stem cells measurement,
we had two possible parameter sets with the same parameters except for the presence or
lack of migration. The final piece of data that we used to fit our data was the average
mammosphere size.

In the experimental studies, the imaging software (ImageJ [46]) was used to count all
the mammospheres in each image and measure their relative sizes. Thus, we had a measure
of the average mammosphere size, as seen in Figure 2.2. In the simulations, each cell was
tracked so that we could check for any changes to its location and state. To measure the
average mammosphere size, the number of cells in each simulation was averaged over all
mammospheres in the ensemble. Like the fCSC, this calculation can take several minutes
to several hours to complete depending on the number of successful mammospheres.

Given that the diameter of an MCF-7 breast cancer cell is ∼20-24 µm and assum-
ing a circular mammosphere shape, d = 1mm corresponds to approximately 41.67 to 50
cell-widths, which corresponds to an area of approximately 1, 363 to 1, 963 cell-widths2 =
O(103) cells. In our simulations, after about 18 days of growth, we had an average mam-
mosphere size of ∼331 cells. Thus, the average diameter size for our mammospheres was
between 0.1 and 1 millimetres. We can compare these results with the experimental results
in Figure 2.2. Although those results are for 14 days, we can see that there are only a few
mammospheres that reach diameters above 1 millimetre, but the majority of the mammo-
spheres are quite small in comparison. Thus, it is reasonable to assume that the average
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mammosphere would be between 0.1 and 1 millimetre in diameter.

Thus, we justified the need for migration as a phenomenon in our model. In the absence
of migration, the average mammosphere size of the mammospheres in our simulation at 18
days is ∼117 cells. This suggests that the average diameter for a given mammosphere is
closer to 0.1 millimetres. Since the result with migration was closer to what was observed in
Figure 2.2, we assumed that migration should be included in our model. The phenomenon
of migration has not been biologically observed in the early stages of tumour growth since
the tumour is not yet detectable, so the migration rate in our simulation could roughly
reflect cells pushing each other to make space for cell division.

When comparing the images of the in vitro mammospheres with the in silico mam-
mospheres after 20 days (see Figure 2.5), we found that including migration resulted in
a more realistic tumour shape and size. Without migration, the mammosphere size was
reduced by self-inhibition, as observed in the literature [37]. As stated earlier, one of the
assumptions of the spatial framework was that a cell that was surrounded by other cells
would go into quiescence. In other words, a cell with no adjacent space can not migrate,
dedifferentiate, or proliferate but can still die spontaneously and go through dedifferentia-
tion. Thus, migration allows cells to move away from the tumour core, creating space for
cells to proliferate and migrate, resulting in faster growth.

In these experiments, we can ignore three-dimensional growth effects since cells in an
in vitro mammosphere formation assay grow in a monolayer until the cell dish approaches
confluence. However, a three-dimensional tumour in vivo would likely experience self-
inhibition if there is no mechanism of migration in the tumour. Biologically, this would
translate to cells pushing outwards during proliferation or to the active dispersal of cells.

2.3.4 One-at-a-time sampling

We performed one-at-a-time sampling on each of the fitted model parameters to obtain
the key parameters in our model [40]. Each of the parameters of our model (see Table 2.1)
was perturbed by ±50%, resulting in a higher value at 150% and a lower value at 50%. A
single exception was made for r3 since the nominal value was r3 = 0.91. A perturbation
of +50% would break the constraint 0 ≤ ri ≤ 1 and r1 + r2 + r3 = 1, so it was set to the
maximum value within constraints, i.e. r3 = 0.99.

For each perturbed parameter set, an ensemble of 10,000 simulations was generated and
the average mammosphere size, fraction of cancer stem cells, and mammosphere formation
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(a) with migration (b) without migration

Figure 2.5: Mammosphere simulations: (left column) with migration, (right column) with-
out migration. Progenitor cells are shown in black, and cancer stem cells are shown in red.
Each plot is shown on a grid that is 90 cell-widths tall and 90 cell-widths wide. These
plots represent growth of successful mammospheres after 20 days of growth. Without mi-
gration, mammosphere growth is reduced by self-inhibition, but with migration, the cells
experience continued growth.
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Figure 2.6: One-at-a-time sampling. Each of the parameters of our model (see Table
2.1) was perturbed by ±50%, resulting in a higher parameter value at 150% and a lower
parameter value at 50%. A single exception was made for the positive perturbation for
r3, which was set to the maximum valid value. For each perturbed parameter set, an
ensemble of 10,000 simulations was generated and the average mammosphere size, fraction
of cancer stem cells, and mammosphere formation efficiency were calculated. The relative
local sensitivity is then calculated and plotted. ρP was the most significant factor for all
properties. Other significant factors included γ, ρS, and α.
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efficiency were measured after 20 days. One-at-a-time sampling was completed and the
resulting metrics of average mammosphere size, fraction of cancer stem cells, and mammo-
sphere formation efficiency were plotted [40]. From our results (as seen in Figure 2.6), we
found that the proliferation of progenitor cells (ρP ) was the most significant factor for all
properties. Other significant factors included the probability of dedifferentiation (γ), the
proliferation rate of cancer stem cells (ρS), and the probability of spontaneous death (α).

We found that the most significant factors in MCF-7 mammosphere formation were
the proliferation of progenitor cells, the probability of dedifferentiation, the proliferation
rate of cancer stem cells, and the probability of spontaneous death. Overall, these four
factors suggest that progenitor cells play an important role in early tumour development
of MCF-7 cells. Even though cancer stem cells have gotten a lot of attention in terms of
targeted therapy, these results give evidence that researchers developing targeted therapy
should investigate the non-stem portion of the tumour when considering how to limit early
MCF-7 cancer growth.

The proliferation of progenitor cells suggests that the primary role of progenitor cells
within the mammosphere is to proliferate often. Thus, the uninhibited initial growth of a
mammosphere is driven by the progenitor cells present.

The probability of dedifferentiation seems to indicate that mammosphere formation
is driven mainly by the progenitor cells that are able to dedifferentiate back to cancer
stem cells as needed. One interesting result is that if progenitor cells are too prone to
dedifferentiation, then this results in a lower mammosphere formation efficiency and lower
average mammosphere size, even though the fraction of cancer stem cells increases. Thus,
cancer stem cells are necessary for continued growth, but excessive dedifferentiation will
deplete the progenitor population and result in eventual annihilation of the colony.

The third most important factor is proliferation of cancer stem cells, which suggests that
the cancer stem cells need to be proliferating enough to get the mammosphere started. It
may also indicate that the cancer stem cell needs to produce an adequate supply of progeni-
tor cells through asymmetric and symmetric differentiation in order for the mammospheres
to succeed. In other words, increased proliferation of cancer stem cells results in more can-
cer stem cells but more importantly, more progenitor cells. Finally, the probability of
spontaneous death suggests that the increased killing of cells is a key factor in controlling
mammosphere formation.
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2.4 Discussion

In this chapter, we have demonstrated a process in which experimental in vitro studies
and computational in silico studies can be used together to characterize breast cancer cell
lines based on their mammosphere formation dynamics. To our knowledge, this model is the
first example of an agent-based model (of the hierarchy model) to study the early cancer
stage of mammosphere formation [42]. Data from mammosphere formation assays and
image flow cytometry can be used to fit the model parameters, giving us a mathematical
description of the cancer cell line under consideration.

The resulting model can then be subjected to one-at-a-time sampling to identify the key
model parameters, which correspond to specific cellular behaviours [40]. The changes in the
key metrics of average mammosphere size, fraction of cancer stem cells, and mammosphere
formation efficiency give an indication of what the key mechanisms are during early cancer
development for that particular cell line. One-at-a-time sampling of similar cancer cell lines
can also give us insight into the factors that should be considered in treatment design.
Hypothetically, one could take a biopsy of a tumour from a patient and compare it to
cell lines that have been previously characterized by their in vitro characteristics. These
comparisons can help us understand what dynamics are at work for a given patient’s
tumour and what treatment options would be most effective to kill the cancerous cells.

In our demonstration using MCF-7 breast cancer cells, we produced a mathematical
description of the growth dynamics of MCF-7 mammosphere formation. With the resulting
model, we gave evidence that progenitor cells are the driving force behind mammosphere
formation in MCF-7. Although cancer stem cells play a key role, these one-at-a-time
sampling results indicate that progenitor cells should be our primary focus for early stages
of MCF-7 growth.

This characterization of cancer cell lines can also be used as a method of objectively
comparing different cell lines. It can be useful to compare the cellular dynamics of different
in vitro cell lines, but it is also valuable to have a method of comparing a patient’s biopsy
with experimental cell lines. This characterization of cell lines is useful in the design of in
vitro experiments but also in treatment design.

The resulting in silico model can be used as a substitute for in vitro experiments. In
silico experiments are more cost-effective and efficient than their in vitro counterparts, so
it is valuable to have an in silico model as an alternative, especially in the early stages of
hypothesis generation and testing.
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Another important result of this work is that we justified the use of a spatial framework
when studying mammosphere growth. The only cellular activity unique to the spatial
model is migration. Migration refers to a cell’s ability to either migrate outwards or
push cells further away to promote further growth. In the absence of this movement or
pushing outwards, we find that tumour development is limited due to self-inhibition. Self-
inhibition refers to the phenomena where cells become quiescent due to lack of space in the
surrounding area. In other words, cells are not able to complete certain actions due to lack
of space. In this study, we gave evidence that migration was a necessary assumption in
order to properly recreate the observed in vitro mammosphere formation dynamics when
we assume that cells experience quiescence when completely surrounded by other cancer
cells.

Biologically, migration may be explained as the cancer’s lack of adhesion inhibition,
in which normal cells stop growing when they are in contact with other cells [53]. Alter-
natively, epithelial-mesenchymal transition may allow tumour cells to physically disperse
from the inner core of the tumour, allowing for accelerated growth [24, 25]. These cancer
characteristics are thus key phenomena in capturing early cancer development dynamics.
As stated earlier in Section 2.3.3, we can ignore three-dimensional growth effects since cells
in an in vitro mammosphere formation assay grow in a monolayer until the cell dish ap-
proaches confluence. However, a three-dimensional tumour in vivo would likely experience
self-inhibition if there is no mechanism of migration in the tumour. Biologically, this would
translate to cells pushing outwards during proliferation or to the active dispersal of cells.

2.4.1 Limitations of the model

One limitation of the model is our choice of initial conditions. In the corresponding
in vitro mammosphere formation assay experiment that we are trying to recreate, the
type of cell to be considered is unknown. In other words, we have no information about
the initial conditions of the in silico experiment. We thus assume that every simulation
begins with a cancer stem cell, which is unlikely to be the case in reality. Alternatively,
we could randomly set the initial conditions to a random type of cell, but then we would
need to make assumptions about the frequencies of each cell type. To avoid the effect of
this assumed distribution, we set the initial condition as a single cancer stem cell.

One spatial assumption of the model that was adopted from previous work is that cells
that are completely surrounded by other cells cannot proliferate, move, or dedifferentiate.
In reality, space is not necessary for dedifferentiation since it reflects either a mutation or
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an epigenetic change in gene expression. It may be more biologically realistic to allow for
dedifferentiation in the absence of space since quiescent cells continue to mutate [54].

In the fraction of cancer stem cells measurement, we used simulations that had run for
30 days and had reached average colony sizes in the order of thousands of cells. However, in
vitro flow cytometry experiments normally require around one million cells to adequately
capture all of the subpopulations. Thus, the resolution of our fraction of cancer stem cell
measurements could be improved by allowing one simulation to run for a longer period of
time so that it reaches a colony size of one million cells.

2.4.2 Future work

Future work with this framework includes applying this framework to other cell lines,
improving the identification of key cellular behaviours by using sensitivity and uncertainty
analyses, incorporating the tumour microenvironment, and modifying the model into three
dimensions. The methodology presented in this work could be applied to other cell lines
(e.g. MDA-MB-231, SKBR3) of breast cancer and of other cancers (e.g. glioblastoma). This
characterization of various cell lines could help us understand the heterogeneity between
cell lines of the same cancer type as well as the inter-patient heterogeneity that is observed
clinically. Understanding the dynamics of tumour heterogeneity could also aid in treatment
design as the key actions taken by cells are identified. In other words, we could understand
the dynamics at work that promote or hinder response to specific drugs by comparing
responsive and unresponsive cell lines. This insight could also aid in the development of
new drugs that can target the key mechanisms at work in different cell lines.

This work could be improved by using sensitivity and uncertainty analyses. In this
work, we used one-at-a-time sampling to identify the key cellular behaviours for a given
cell line [40]. This analysis could be improved by using local sensitivity analysis since local
sensitivity analysis identifies the influential parameters after a very small perturbation
[41]. By only using a small perturbation, we are reducing the likelihood that we have
moved into a parameter subspace than that which characterizes our cell line. Additionally,
uncertainty analysis could be used to evaluate our parameter estimates by calculating the
confidence intervals for each parameter. Thus, we can evaluate the probability that our
set of parameters is an accurate description of a given cell line [55].

In Section 1.2.3, the tumour microenvironment was identified as an important factor
in cell heterogeneity and plasticity [30, 31, 56]. This model could be combined with a

44



partial differential equation model for various microenvironmental factors such as hypoxia,
angiogenesis, drug, or pressure (as in Chapter 3). The resulting hybrid model could then
be fit to in vitro measurements of such phenomena to describe the phenotypic changes as
a result of the microenvironment. Fitting to in vitro data could also help us understand
the spatial factors involved in the development of cancer stem cell niches, as observed in
the literature.

This model could also be extended into three-dimensional space. Ideally, this would be
supported by three-dimensional spheroid in vitro colony data, i.e. the three-dimensional
equivalent of the mammosphere formation assay [57]. One benefit of using a three-
dimensional setup is that we would be measuring anchorage-independent growth, which is
characteristic of cancer stem cells. Thus, three-dimensional tests would be a more robust
test for cancer stem cell activity.
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Chapter 3

The effect of pressure and drug on
mammosphere formation

In this chapter, we modify and build on the agent-based model of Chapter 2 to charac-
terize the effect of pressure on phenotypic plasticity during mammosphere formation with
and without the presence of a chemotherapy drug. We hypothesized that pressure would
induce a change in the cellular phenotype from non-resistant (CD44−) to a resistant phe-
notype (CD44+) since we generally expect adverse conditions to either result in cell death
or result in increased resistance to cell death for cells that survive.

To test our hypothesis, in vitro mammosphere formation assays and flow cytometry
experiments were completed in the presence of pressure. Additionally, cell cycle and drug
uptake data were collected since we hypothesized that pressure would result in increased
apoptosis and decreased drug uptake. Finally, our in silico model was fit to mammosphere
formation and flow cytometry data to characterize the cells under different microenviron-
mental conditions.

Our results from the in vitro experiments give evidence that pressure did increase
apoptosis but that it did not change the uptake of drug into the cell. Thus, cells in
the presence of pressure are fully capable of taking in drug. The results of our in silico
experiments give evidence that pressure more generally increases bidirectional plasticity,
which can both sensitize cells to chemotherapy but can also result in a highly resistant
colony of cells.
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Dr. Ting Luo and Dr. Homeyra Pourmohammadali were the lab technicians of the
Mathematical Medicine Laboratory who collaborated on this project. Dr. Ting Luo com-
pleted the in vitro experiments, and Dr. Homeyra Pourmohammadali assisted in organizing
the in vitro results for analysis. All the experimental details are included in the unpub-
lished manuscript but are not included here. The experimental procedures and data will be
included in full detail in the final publication. Although other microenvironmental factors
have been studied, this is the first time that an experimental-mathematical study has been
used to characterize the effect of pressure on mammosphere formation. The manuscript
for this project is currently in preparation.

3.1 In vitro Experiments

All in vitro experiments were completed using the breast cancer cell line, MCF-7. These
cells were given as a kind gift from Dr. Aaron Goldman at Harvard Medical School.

3.1.1 Mammosphere formation assay

The first set of experiments were mammosphere formation assays as described in Chap-
ter 2 with the additional factors of pressure and drug. Cells were treated with 0 or 20 nM of
docetaxel (Tocris) for 24 hours under normal or high pressure (∼8 kPa) conditions. Pres-
sure conditions were achieved by placing the cell dishes within a pressure chamber that
maintained the pressure levels. The pressure chamber with the contained cell dishes was
then placed in the incubator for the prescribed time of growth. Cells were then collected
and reseeded for mammosphere formation. After staining, colonies were counted using
ImageJ [58]. These in vitro results are shown in Figure 3.4.

3.1.2 Flow cytometry

Our second set of experiments were flow cytometry experiments as described in Chapter
2. Cells were grown under either normal or pressure (∼8 kPa) conditions for five days,
then collected for control conditions or chemotherapy treatment with docetaxel (Tocris)
(20 nM) under normal or high pressure. Twenty-four hours later, cells were located and
stained with a CD44+ biomarker, CD44-APC (BD Biosciences, Mississauga, ON, Canada),
for flow cytometry. These in vitro results are shown in Figure 3.4.
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3.1.3 Cell cycle

The third set of experiments identified the stage of the cell cycle of the cells under
different experimental conditions as shown in Figure 3.1. Cells were treated with 0, 2, or
20 nM docetaxel (Tocris) under normal or high (∼8 kPa) pressure for 24 hours. They were
then collected for cell cycle analysis with PI (FluoroPure) flow cytometric analysis [59],
which measures the DNA content of a cell. Different stages of the cell cycle have different
amounts of DNA as the cell prepares for cell division. Thus, we can classify cells based on
the amount of intracellular DNA.

For our in silico experiments, we looked specifically at the sub-G1 proportion, rep-
resenting apoptotic cells, under normal pressure and under high pressure. If a cell has
reduced DNA content compared to the G1 phase, i.e. sub-G1, then the cell has lost DNA
content and is probably undergoing apoptosis. We found that more cells were in the sub-
G1 subpopulation under higher pressure conditions irrespective of the presence of drug.
Thus, we expected more cell death in the presence of pressure.

3.1.4 Drug uptake

In our final set of in vitro experiments, we tested the drug uptake under all experimental
conditions as shown in Figure 3.2. Cells were treated with either 0 or 100 nM DOX
(TOCRIS) under normal or high (∼8 kPa) pressure for 24 hours, then collected for flow
cytometry (DOX fluorescence). Doxorubicin can be used to test drug uptake due to its
inherent fluorescence [60]. Using flow cytometry, the fluorescence intensity for each of the
experimental conditions was measured and used as a measurement of drug uptake. Results
suggest that cells in the presence of drug undergo increased DOX uptake with or without
pressure. Although this test used a different chemotherapy drug, this experiment suggests
that pressure does not affect drug uptake. Thus, the effect of pressure is more complex
than the exclusion of drug from within cancerous cells. We hypothesized that the effect of
pressure is a microenvironmental stress that may induce cells to change their phenotype,
changing the intra-tumoural cell dynamics.
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Figure 3.1: PI flow cytometric analysis, as described in Section 3.1.3
(a) for normal pressure conditions and (b) for high pressure conditions. Cells were

treated with 0, 2, or 20 nM docetaxel under normal or high (∼8 kPa) pressure for 24
hours. PI flow cytometric analysis was used to classify the cell cycle stage based on the

amount of intracellular DNA content of each cell. We found that sub-G1 proportion
increases with increased pressure. This data was collected and plotted by Dr. Ting Luo.
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Figure 3.2: Average DOX fluorescence intensity under all experimental conditions. Cells
were treated with either 0 or 100 nM doxorubicin under normal or high (∼8 kPa) pressure
for 24 hours, then collected for flow cytometry (DOX fluorescence). We found that DOX
uptake was unaffected by pressure conditions. This data was collected and plotted by Dr.
Ting Luo.
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3.2 Mathematical model

3.2.1 Background

As discussed in Chapter 1, CD44+CD24− cells have been traditionally recognized as the
cancer stem cell biomarker for breast cancer cells [17,21]. Cancer stem cells are cells with
tumour-initiating potential and intrinsic drug-resistant characteristics [61]. CD44+CD24+

cells have been identified as cells that are in a transient, drug-resistant state [51]. Together,
CD44+ cells mark a subpopulation that can make chemotherapy difficult due to different
mechanisms of resistance.

This mathematical model modifies the agent-based model in Chapter 2. The first mod-
ification was to simplify the model into a two-compartment model, as discussed in Chapter
1 Section 1.3.2, since binary results are what is most commonly measured in vitro with
cell surface biomarkers. Note that there are ways of extending to multiple compartments,
but this would require additional biomarkers or more bins along the spectrum of biomarker
expression. Since the two-compartment model was being incorporated into a spatial frame-
work, we added two additional parameters: probability of migration for positive cells, and
probability of migration for negative cells.

This model has eight parameters: (1) probability of spontaneous death for positive and
negative cells respectively, (2) probability of proliferation for positive and negative cells
respectively, (3) probability of conversion for positive and negative cells respectively, and
(4) probability of migration for positive and negative cells respectively. These reactions
are summarized in Table 3.1, and a flowchart of the agent-based model algorithm is shown
in Figure 3.3.
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Variable Description Representation
ρP Positive cell division S → S + S
αP Positive cell death S → ∅
γP Positive cell conversion S → P
mP Positive cell migration -
ρN Negative cell division P → P + P
αN Negative cell death P → ∅
γN Negative cell conversion P → S
mN Negative cell migration -

Table 3.1: Two-compartment model. S (stem) represents positive cells and P (progenitor)
represents negative cells.

3.2.2 Definitions

In order to match our in silico experiments to our in vitro experiments, we defined a
colony or mammosphere to be a collection of cells (starting from a single seeded cell) that
reaches a minimum size of 25 cells within 10 days. This definition was used to calculate
the colony formation efficiency and the fraction of CD44+ cells in our simulations. Note
that this definition differs from the previous chapter (Chapter 2) where we used 12 days of
growth to define a mammosphere. The number of days was chosen arbitrarily since we were
more interested in the change of parameters as opposed to having an exact measurement
of mammosphere formation.

As in Chapter 2, the colony formation efficiency (a.k.a. mammosphere formation effi-
ciency) for a given parameter set is calculated by considering each simulation as the result
of a single seeded cell in a colony formation assay. If the simulation is successful in pro-
ducing a colony as defined above, then we count that as a successful colony. The colony
formation efficiency is then defined as the number of successful colonies divided by the
total number of simulations completed, representing the total number of seeded cells. In
our simulations, we ran each potential parameter set with an ensemble size of 100 and a
timestep of one hour to find the best fit to our in vitro data.

To calculate the fraction of CD44+ cells, we allow a simulation to either run to 1,000,000
cells or for 100 days, starting from a single cell. We assume that the resulting colony has
a sufficient number of cells or has run for a sufficient time for the colonys subpopulation
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Figure 3.3: Agent-based model flowchart for two-compartment model.
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proportions to reach equilibrium. Note that the simulation must run much longer than the
time of the in vitro experiment because the in vitro experiments start with a collection of
cells while a simulation starts with a single cell. We then count the number of CD44+ cells
and divide by the total number of cells to give us the fraction of CD44+ cells in the colony.

3.2.3 Parameter estimation

Given the above assumptions, the mathematical model had 8 parameters, i.e. 4 param-
eters for each subpopulation: proliferation, cell death, migration, and conversion. To fit
these parameters to the in vitro data, we used the genetic algorithm of MATLAB (ga(),
with function tolerance of 10−15) to minimize the error between the in vitro colony forma-
tion efficiency and fraction of CD44+ cells and the in silico colony formation efficiency and
fraction of CD44+ cells. When calculating the error of each set of parameters, we assigned
an error of 0 if the resulting simulated result was within one standard deviation of the
in vitro data to account for the observed variability in measurements. In other words, we
wanted to avoid penalizing results that fell within one standard deviation of the mean since
we were uncertain as to the true value of the measurement. Otherwise, we calculated the
error as the minimum distance of the in silico measurement from ±1 standard deviation
from the in vitro data point. The resulting sets of parameters give us some insight into
what may be happening to the cellular makeup of the colony in response to pressure and
drug exposure.

When fitting the parameters, we made the following additional assumptions. We as-
sumed that all actions were mutually exclusive so that all parameter values for a given cell
phenotype (CD44+ or CD44−) summed up to at most 1, allowing for a probability of no ac-
tion taking place at each timestep (hour). We assumed that the probability of proliferation
at every hour would be between 0.01 and 0.03 divisions per hour, for all conditions. The
range was given to allow for a cell doubling time between 23 and 70 hours since MCF-7
documentation gives an expected doubling time of 38 hours. For normal conditions, we
expected the rate of dedifferentiation, i.e. conversion from a CD44− cell to a CD44+ cell
or - conversion, was between 0.00083 and 0.00167 conversions per hour. These estimates
came from a previous study [62], which estimated a conversion rate between 0.02 and
0.04 conversions per day, i.e. 0.00083 and 0.00167 conversions per hour. We also assumed
that under the effect of drug or pressure individually, the rate of dedifferentiation and the
rate of death for all cells would be greater than those respective rates under normal condi-
tions. We assumed that dedifferentiation would increase under drug and pressure based on
previous observations of increased plasticity under adverse conditions [51]. We expected
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increased death with drug due to its cytotoxic nature. Finally, we assumed increased death
with pressure based on the in vitro cell cycle experiments as described in Section 3.1.3.

3.3 Results

3.3.1 Parameter sets

The resulting sets of parameters had a mean square error of at least O(10−3) and are
presented in Figure 3.5. Some of the sets of parameters were more difficult to fit due to
the very small colony formation efficiency measured in our in vitro experiments (e.g. 0.1%
mammosphere formation efficiency). These small colony formation efficiencies are more
unstable due to the stochasticity of our mathematical model and since we used ensemble
sizes of 100 to fit each condition.

The sets of parameters found had parameter values as shown in the four plots of Figure
3.5. We made the following observations based on these parameter sets. CD44− cells saw
increased death in all non-control conditions. CD44+ cells saw increased activity (pro-
liferation, death, and migration) with pressure, while CD44− cells saw increased activity
(proliferation, death, and migration) with drug. Finally, pressure conditions appear to
induce increased bidirectional conversion, i.e. phenotypic plasticity.

3.3.2 Colony simulations

With each set of parameters, we generated a colony by running a simulation for 100
days as in the fraction of CD44+ cells in silico experiments. Each of the images in Figure
3.6 represents a tumour grown under each of the experimental conditions.

Under control conditions, the resistant, tumour-initiating CD44+ cells make up the core
of the tumour. The CD44+ cells are then surrounded by the more mobile, non-resistant
CD44− cells, which spread out and make up the periphery of the tumour.

In the presence of drug (20nM docetaxel), we find that the less resistant CD44− cells
respond to treatment and are thus less prevalent within the tumour. The resulting colony
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Figure 3.4: Mammosphere formation efficiency and fraction of CD44+ comparison of the in
vitro results (in blue) and the in silico results (in grey), produced through triplicate simu-
lations of the fitted parameter sets (see Figure 3.5) for each of the experimental conditions
(normal or high pressure, 0 or 20nM docetaxel). The resulting sets of parameters had a
mean square error of at least O(10−3). Error bars show the standard deviation for each of
the data points. Note that observed mammosphere formation efficiency values with drug
were difficult to fit due to the stochastic nature of the model, the low observed mammo-
sphere formation efficiency values, and the in silico ensemble size of 100 simulations.
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Figure 3.5: Fitted parameter values for all experimental conditions. The genetic algorithm
of MATLAB (ga(), with function tolerance of 10−15) was used to minimize the error between
the in vitro data colony formation efficiency and fraction of CD44+ cells and the in silico
colony formation efficiency and fraction of CD44+ cells (see Figure 3.4). These four plots
show how each cell behaviour changes under different conditions for both CD44+ cells and
CD44− cells.
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shares the same structure as under normal conditions but is primarily made up of CD44+

resistant and tumour-initiating cells, marking a drug-resistant colony of cancer cells.

Under pressure conditions (∼8 kPa), we see increased plasticity between the two pheno-
types (CD44+ and CD44−), resulting in a more homogeneous tumour. CD44− cells appear
to experience increased conversion, resulting in the loss of the periphery of negative cells
as in the control conditions. Additionally, CD44+ cells appear to experience increased
proliferation, migration, and conversion. This increased activity expands the CD44+ core
to the entire tumour. This is evidence that pressure conditions may shift the tumour to a
CD44+-dominated tumour.

Finally, we have the combined drug and pressure condition. For this last colony, we see
the synergy between the increased plasticity and the CD44− susceptibility to drug. Thus,
our colony of cells consists of less cells, O(104), compared to the other conditions, O(105)
cells. However, the resulting cells are likely very resistant since they have successfully
cultured under the stresses of both drug and pressure.

In summary, our in silico experiments give evidence that pressure and drug increase cell
death for CD44− cancer cells, i.e. non-resistant cells. However, pressure causes increased
activity in CD44+ resistant cancer cells. Pressure also results in increased phenotypic
plasticity, which may explain the increased activity in CD44+ cells since they become a
more dominant force within the tumour. When pressure and drug conditions are combined,
we find synergy between the plasticity induced by pressure and the CD44− cell-killing
induced by drug, resulting in fewer, smaller mammospheres.

3.4 Discussion

In this work, we modified the model from Chapter 2 to characterize the effect of pressure
and drug on mammosphere formation. To our knowledge, this is the first study to look at
the effect of pressure (with and without a chemotherapy drug) on mammosphere formation.

Our results indicate that pressure conditions may induce increased plasticity in cell
phenotype, which can lead to improved response to chemotherapy as observed in the in
vitro experiments. Note however that if the colony of cancer cells is able to persist in the
adverse conditions of pressure and drug, the resulting phenotype would be highly resistant
to cell death.
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(a) NP - 0nM, 39,533 cells (b) NP - 20nM, 55,083 cells

(c) HP - 0nM, 46,852 cells (d) HP - 20nM, 1,583 cells

Figure 3.6: Tumour simulations under all experimental conditions. Each plot shows a
representative tumour after 100 simulated days for one of the experimental conditions
(normal or high pressure, 0 or 20nM docetaxel). CD44+ cells are plotted in red and
CD44− cells in black. Each tumour is plotted on its own scale to best show the tumour
structure. (a) Control conditions, 39,533 cells. (b) Drug (20nM docetaxel) conditions,
55,083 cells. (c) Pressure (∼8 kPa) conditions, 46,852 cells. (d) Both drug and pressure
conditions, 1,583 cells.
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Another result of this work is that drug uptake is not affected by high pressure. Doc-
etaxel is a small molecule drug [63] but it is a BCS class IV drug, i.e. a dissolution-limited
and permeability-limited drug [64]. However, the results of Figure 3.2 give evidence that
pressure on the cells’ exterior does not change the uptake of drug. In the case of intersti-
tial fluid pressure, drug is not able to enter the tumour microenvironment to act on the
cells [32]. However, these results seem to indicate that the cells still possess the ability to
take in drug in the presence of drug. Thus, the reason for less effect in the presence of
interstitial fluid pressure must be the inability of drug to penetrate the tumour microen-
vironment as opposed to the inability of the drug to penetrate the cell.

3.4.1 Limitations of the model

As in chapter 2, one limitation of the model is our choice of initial conditions. In
the corresponding in vitro mammosphere formation assay experiment that we are trying
to recreate, the type of cell to be considered is unknown. In other words, we have no
information about the initial conditions of the in silico experiment. We thus assume that
every simulation begins with a cancer stem cell, which is unlikely to be the case in reality.
Alternatively, we could randomly set the initial conditions to a random type of cell, but
then we would need to make assumptions about the frequencies of each cell type. To avoid
the effect of this assumed distribution, we set the initial condition as a single cancer stem
cell.

One spatial assumption of the model that was adopted from previous work is that cells
that are completely surrounded by other cells cannot proliferate, move, or dedifferentiate.
In reality, space is not necessary for dedifferentiation since it reflects either a mutation or
an epigenetic change in gene expression. It may be more biologically realistic to allow for
dedifferentiation in the absence of space since quiescent cells continue to mutate [54].

3.4.2 Future work

Future work with this framework includes improving the identification of cellular be-
haviours by using sensitivity and uncertainty analyses, introducing spatial heterogeneity in
modelling pressure, distinguishing between different forms of division for CSCs, extending
the model to a three-compartment model of EMT, and investigating combination therapy
within a spatial context.
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Local sensitivity analysis identifies the influential parameters in the tumour’s response
to the tumour microenvironment [41]. Uncertainty analysis could be used to evaluate our
parameter estimates by calculating the confidence intervals for each parameter. Thus, we
can evaluate the probability that our set of parameters is an accurate description of the
tumour’s phenotypic state in response to the microenvironment [55].

One simplification of this experimental setup is the homogeneous effect of pressure
in the in vitro microenvironment. In reality, the effect of pressure on a tumour would
be heterogeneous due to the presence of normal cells, other structures (e.g. bones, blood
vessels, organs) and intracellular fluid [3]. However, in the early stage of mammosphere
formation, the effect of pressure may be homogeneous due to the small area that the
mammosphere takes up within the body.

A more realistic implementation of pressure would allow for heterogeneity. This can
be difficult to manipulate and control in an in vitro setting; however, an in silico model
could be more easily constructed since we can observe and manipulate the pressure con-
ditions at each grid point of the spatial model. A tumour microenvironment could first
be placed (randomly or by design) onto the computational space in which the cells grow.
Then, the cells would choose their parameters based on their location and the surrounding
microenvironment. The microenvironment could then be updated given the presence or
absence of cells in the neighbourhood of a given grid point. An alternative way of incor-
porating heterogeneous pressure in the model is to overlay the agent-based model with
a continuous partial differential equation for pressure as mentioned in Chapter 2. This
in silico extension of the model would allow researchers to perform in silico studies of a
heterogeneous tumour microenvironment without having to work with more complex in
vitro apparatuses.

One simplification of the mathematical model framework is in using the two-compartment
model. The CSC hypothesis assumes that there exists different forms of division for CSCs:
symmetric self-renewal, asymmetric self-renewal, and symmetric differentiation. The two-
compartment model captures these phenomena as a series of reactions. Our in silico
experiments give evidence that pressure increases CSC or positive cell activity, including
positive conversion to negative cells. However, it is not clear as to which form of division
positive cells are using to increase the negative cell population, i.e. symmetric differen-
tiation and asymmetric self-renewal. In the former case, cells are losing their stem cell
phenotype and in the latter case, positive cells are maintaining their subpopulation within
the tumour. Investigating this phenomena more closely can distinguish between the two
reactions to the pressure environment.
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Another possible extension of this model is to extend the two-compartment model into
a three-compartment model. As discussed in Chapter 1, epithelial-mesenchymal transition
is an important mechanism during the process of cancer metastasis but also in other stages
of tumour development [24,25]. It is a mechanism of phenotypic plasticity, and the hybrid
epithelial-mesenchymal state between the two extremes is currently an area of study within
mathematical oncology [26]. A three-compartment extension of this model could be used to
study the effect of pressure on epithelial-mesenchymal transition and it may provide insight
into the role that these hybrid cells play in tumour development. In other words, this in
silico model could be used to answer questions in the epithelial-mesenchymal research
area, such as ‘what role do cells in the hybrid epithelial-mesenchymal state play in cellular
growth dynamics during mammosphere formation?’.

Another possible extension is to consider different single and combined treatment strate-
gies, taking into account the response of each population to a given drug. For example,
it is well known that CSCs are more resistant to standard chemotherapy drugs, so this
heterogeneity can be included in the model [15]. There are also novel treatment strategies
that target dedifferentiation of cells [65]. Finally, some of the drugs can affect the tumour
microenvironment (such as anti-angiogenic treatment) [66]. Our model can be used in
silico to design efficient combinations of these drugs.
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Chapter 4

In silico experiments of an Hsp90
chemical reaction network

In this chapter, we identify the Hsp90 protein network as a means by which drug
resistance can be overcome in a DTC. Since Hsp90 expression is increased in cancer cells
that are resistant to docetaxel, we hypothesized that an Hsp90-inhibitor such as radicicol
could be used to overcome the acquired drug resistance to docetaxel. Thus, we constructed
a minimal in silico model of this network using a systems biology approach to design
a treatment schedule for docetaxel and radicicol. Additionally, we hypothesized that a
nanoparticle administration would be a more effective drug vehicle compared to a free
drug administration due to the different timescales in which drug would be released into
the tumour microenvironment. Finally, we used the in silico model to identify the most
effective improvements that could be made to the drugs in order to improve the efficacy of
the treatment sequence.

For this project, we collaborated with Dr. Aaron Goldman and his team. They pro-
vided the in vitro protein expression data used in fitting the mathematical models. All the
experimental details are included in the unpublished manuscript but are not included here.
The experimental procedures and data will be included in full detail in the final publica-
tion. This study identified a novel treatment sequence that could overcome drug resistance
through the Hsp90 pathway. The work in this chapter has recently been submitted for
publication.
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4.1 Biological background

In developing our in silico model, we first researched several key prosurvival proteins
(Hsp90, Src, ERK, STAT3, and Akt). In the literature, there has been evidence to suggest
that each of the previously listed survival proteins promotes cell survival. These prosurvival
proteins are then related and used in the construction of a minimal Hsp90 chemical reaction
network.

4.1.1 Key proteins

Heat shock protein 90 (Hsp90) is the most abundant chaperone protein in human
cells [67]. In normal healthy cells, it maintains homeostasis and ensures proper folding of
a range of key (but often oncogenic) proteins [68,69]. One of its important functions is the
regulation of apoptosis, which is accomplished by regulating proteins necessary for caspase
activation [69, 70]. In cancerous cells, Hsp90 regulates the abnormal functions of mutated
cells to prevent apoptosis and supports other cancerous properties (e.g. growth, survival,
and infinite replicative potential) [70]. In other words, Hsp90 protects cancer cells from
various oncogenic and microenvironmental stresses so that cell survival is enhanced [67,69].

Src is a regulatory protein that plays a key role in cell differentiation, motility, pro-
liferation, and survival. There has also been evidence that abnormal Src activity induces
anchorage-independent growth [71]. The c-Src proto-oncogene plays a major role in the
development, growth, progression, and metastasis of a wide variety of human cancers.
Inversely, Src inhibition is correlated with antiproliferative activity [72].

ERK is a protein kinase that controls cell cycle progression by regulating signal trans-
duction from the cell surface to the nucleus. More specifically, ERK1/2 and ERK5 signaling
pathways are responsible for cell proliferation and differentiation [68]. Through the acti-
vation of ERK1/2, cells accomplish important functions such as entry and progression
through the G2/M phase, normal microtubular function, and proper functioning of the
mitotic spindle apparatus. In cancer, the activation of ERK1/2 results in a cytoprotective
effect [73].

STAT3 is a transcription factor that is required for cell maintenance and development
in both normal and disease phenotypes [74]. The STAT3 signaling pathway is a crucial
cell survival pathway that inhibits cell apoptosis [75]. More generally, malfunctioning in
STAT3 is associated with oncogenesis and immune disorders [74].
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Akt is a protein kinase that regulates cell signaling pathways that suppress cell death
[76] and promote cell survival, resistance, cell growth [70], proliferation [76, 77], energy
metabolism [76], and motility [78]. Akt also promotes anchorage-independent growth,
which is a characteristic of cancerous cells [70].

4.1.2 Key interactions

Based on the literature, Hsp90 plays a key role in promoting Src, ERK, and Akt
activity. Hsp90 modulates Src activity, specifically the transportation of Src into the
plasma membrane where Src is activated [79]. Hsp90 indirectly regulates ERK activity,
and Hsp90 inhibition results in a decrease of activated ERK through the Raf-MEK-ERK
pathway [68]. Finally, Hsp90 supports and regulates Akt activation as part of its function
of apoptosis regulation [67]. In our model, we consider these reactions by having Hsp90
activate Src, ERK, and Akt.

Src plays a key role in activating ERK, STAT3, and Akt activity. Src kinase is an
activator of ERK since it modulates growth factor-induced activation of the MAPK cascade
[80]. Src directly binds with STAT3, leading to phosphorylation and activation of STAT3
[81], in the cellular processes of cell growth [82]. It has also been shown that STAT3
inhibition is associated with decreased Src activation [83]. Src is an activating kinase
upstream of Akt [84], and inhibition of Src signaling results in decreased Akt [83]. In our
model, we consider these reactions by having Src activate ERK, STAT3, and Akt.

ERK activates STAT3, and STAT3 may mediate ERK activation through cytokines [75].
In our model, we include this by having ERK and STAT3 activate each other. Also, STAT3
activation contributes to Akt phosphorylation, and STAT3 inhibition results in less Akt
activity [85]. In our model, we include this by having STAT3 activate Akt. Since Hsp90,
ERK, STAT3, and Akt are prosurvival proteins, we have each of these proteins inhibiting
Caspase-3 in our model. In addition, an increase in Caspase-3 has been observed with a
decrease in Akt levels [70], so our model includes Caspase-3 inhibiting Akt.

4.1.3 Drug effects

The drugs under consideration are a cytotoxic drug, docetaxel, and an Hsp90-inhibitor,
radicicol. Docetaxel is a drug that induces microtubular stabilization, which leads to cell
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cycle arrest in G2/M phase and eventually apoptosis. When docetaxel is administered,
it results in an activation of ERK and Akt (unless an ERK-inhibitor is administered si-
multaneously). Moreover, reducing ERK through ERK inhibitors enhances cytotoxicity
by docetaxel [73]. Inhibiting Akt also enhances the apoptotic effect of chemotherapy [70].
In the case of a cell that has survived docetaxel treatment, Hsp90 is also increased since
increased drug resistance is associated with increased expression of Hsp90 [86]. Addition-
ally, we assumed that docetaxel shifted the cell phenotype from a drug-naive state to a
drug-tolerant state by sensitizing the cell to the Hsp90 survival pathway. In other words,
we assume that the mechanism for drug resistance is an adaptation to the increased Hsp90
levels.

Radicicol was one of the first drugs used to identify Hsp90 as a drug target. It works
through Hsp90-inhibition, which has an antiproliferative effect and results in cell death in
cancer cells but not normal cells [69]. Since Hsp90 regulates many critical proteins, Hsp90
inhibition has the potential to inhibit a range of critical cancer pathways, leading to the
degradation of survival proteins [68]. This works through the intrinsic apoptotic pathway
(Caspase-9 - Caspase-3 pathway). More specifically, Hsp90 inhibition results in an increase
in Caspase-3 and Caspase-7 and decreases Akt, all of which stop the growth of cells and
increase apoptosis [70]. Hsp90 inhibition also results in a decrease of activated ERK (but
not on total ERK levels) through the Raf-MEK-ERK pathway [68]. These results reiterate
that Hsp90 activates ERK and Akt.

4.2 Mathematical model

4.2.1 Model construction

Using a systems biology approach, we constructed a minimal chemical reaction network
based on the aforementioned proteins, interactions, and drug effects [38]. Each protein can
exist in an active or inactive state, usually corresponding to phosphorylated and dephospho-
rylated states. However, to reduce the complexity of the model, each protein is normalized
and modelled only in its activated state. We assume that the level of activated protein can
be used as a proxy for the level of inactivated protein. We also assume that all proteins
and drugs are well-mixed within the system, so that the spatial component is negligible.

It is assumed that each protein has constant “production” and exponential decay, in
addition to its specific interactions with other proteins and drugs, as illustrated in Figure
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Figure 4.1: Hsp90 chemical reaction network with the effect of drug. Arrows show an
activation relationship and block-headed arrows show an inhibiting relationship. X-headed
arrows show a removal process. Normal processes in the absence of drug are shown in
black, docetaxel activity is shown in red, and radicicol activity is shown in blue. The
corresponding parameters are shown for each reaction.
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4.1. Production is meant to represent a background level of activation for each of the
proteins due to cellular processes other than the activation interactions explicitly included
in our model. Activation rates of proteins are assumed to be dependent on the amount
of inactivated protein available as well as the amount of activator protein available. As
stated earlier, we excluded inactivated states of each of our proteins to reduce the number
of considered species and to limit the number of model parameters. Instead, we assumed
that the amount of activated protein could serve as a proxy for the amount of inactivated
protein. Thus, the activation rates of each of the proteins are assumed to be dependent
on the amount of activated protein available as well as the amount of activator protein
available. Inhibition by proteins is dependent only on the amount of (inhibiting) protein
available. Finally, it is assumed that protein levels are at equilibrium in untreated cells.

To model the drug dynamics, we assumed that the uptake rate of drug into a cell is
constant. The drug is then metabolized and removed from within the cell, leading to ex-
ponential decay. This convention neglects removal of the drug from the microenvironment,
thus assuming that the external drug concentration is constant, which would be the case in
a saturated in vitro environment. It is assumed that the drug is only in the cells microen-
vironment for a finite amount of time, beginning with tstart and ending with tend. These
drug equations are presented in Equations 4.10 - 4.11.

Equations 4.10 - 4.11 correspond to the in vitro experiments where drug is introduced
into the cell microenvironment and then washed out after a specified amount of time (e.g.
two days). Once the drug was washed out, it was no longer in the cell microenvironment
and ceased to enter the cell. As illustrated in the chemical reaction network (Figure 4.1) we
assume that docetaxel activates Hsp90, ERK, and Akt and that radicicol inhibits Hsp90.
We assume that the activation/inhibition rate is dependent only on the amount of drug
available in the cell. In other words, we assume that the increased activation of drug
increases the background activation of Hsp90, ERK, and Akt.

As stated earlier (Section 4.1.3), we assumed docetaxel causes cells to become solely
dependent on the Hsp90-dependent chemical network for survival. In other words, we
assumed that docetaxel shifted the cell phenotype from a drug-naive state to a drug-
tolerant state. We assumed that this change in cell phenotype from drug-naive to drug-
tolerant state is due to a sensitization of the cell to Hsp90 protein survival network. In the
modelling process, we found that the model with only proteins and drug components was
not able to capture any drug synergy.

To capture the change in cell phenotype, an additional species, X, was included in the
model to represent the other survival and anti-apoptotic pathways that are independent of

68



the Hsp90-dependent network. This species, X, is assumed to be constant at a normalized
steady state value of one in the drug-naive state. As docetaxel sensitizes the cell, X is
removed from the network since it is no longer relevant or necessary for the cells survival.
The removal of the X species represents the shift of the cell from a drug-naive to a drug-
tolerant state. We assume that the cell does not return to a drug-naive state within the
timescale of our experiments, so we do not model the return to a drug-naive state.

These reaction rates were used to construct a system of ordinary differential equations
representing the protein and drug dynamics. The naming conventions for the model pa-
rameters are as follows: bprotein for “production” constants into the activated state, bprotein2

for inhibition constants, dprotein for decay constants, kreacting protein -activated protein for reaction
constants, αreacting protein -inhibited protein for inhibition constants, xprotein for activation by do-
cetaxel, and βreacting protein -inhibited protein for removal of protein from the model. The time
evolution of the proteins in the network are described by Equations 4.1 - 4.9.

With regards to the effect of the drug on the chemical reaction network, we made the
following assumptions: a) the initial population of cells are in a drug-naive state; b) as the
cells move through the treatment, DTC are present which are a mixture of intrinsically
resistant cells and cells that have acquired resistance; c) cells in the presence of drug are
not proliferating due to stress; d) docetaxel activates Hsp90, ERK and Akt; e) docetaxel-
treated cells become more dependent on the Hsp90 prosurvival pathway; and f) radicicol
inhibits the activation of Hsp90.

4.2.2 Model equations

Heat shock protein 90 (Hsp90)

d[Hsp90]

dt
=

bH1 + xH [Doc]

bH2 + αRH [Rad]
− dH [Hsp90] (4.1)

We assume that Hsp90 has background activation from cell processes that are not
explicitly included in the model. We assume that this background activation is increased
by the presence of docetaxel within the cell [86]. We also assume that all Hsp90 activation
is inhibited by the presence of radicicol within the cell (first term) [69]. We assume that
Hsp90 undergoes exponential decay (second term).
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Src

d[Src]

dt
= bSr + kHSr[Hsp90][Src]− dSr[Src] (4.2)

We assume that Src has background activation from cell processes that are not explicitly
included in the model. We assume that the presence of Hsp90 results in activation of Src
and that this activation is dependent on both the amount of Hsp90 and the amount of
activated Src within the cell (second term) [79]. We assume that Src undergoes exponential
decay (third term).

ERK

d[ERK]

dt
= bE + xE[Doc] + kHE[Hsp90][ERK] + kSrE[Src][ERK] (4.3)

+ kStE[STAT3][ERK]− dE[ERK] (4.4)

We assume that ERK has background activation from cell processes that are not ex-
plicitly included in the model (first term). We assume that this background activation is
increased by the presence of docetaxel within the cell (second term) [73]. We assume that
the presence of Hsp90 results in activation of ERK and that this activation is dependent
on both the amount of Hsp90 and the amount of activated ERK within the cell (third
term) [68]. We assume similar interactions for Src (fourth term) [80] and STAT3 (fifth
term) [75] respectively. We assume that ERK undergoes exponential decay (sixth term).

STAT3

d[STAT3]

dt
= bSt + kSrSt[Src][STAT3] + kESt[ERK][STAT3]− dSt[STAT3] (4.5)
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We assume that STAT3 has background activation from cell processes that are not
explicitly included in the model (first term). We assume that the presence of Src results
in activation of STAT3 and that this activation is dependent on both the amount of Src
and the amount of STAT3 within the cell (second term) [81, 82]. We assume a similar
interaction for ERK (third term) [75]. We assume that STAT3 undergoes exponential
decay (fourth term).

Akt

d[Akt]

dt
=

bA1 + xA[Doc]

bA2 + αCA[Casp3]
+ kHA[Hsp90][Akt] + kSrA[Src][Akt] + kStA[STAT3][Akt]− dA[Akt]

(4.6)

We assume that Akt has background activation from cell processes that are not ex-
plicitly included in the model. We assume that this background activation is increased by
the presence of docetaxel within the cell [73]. We also assume that all Akt activation is
inhibited by the presence of Caspase-3 within the cell (first term) [70]. We assume that
the presence of Hsp90 results in activation of Akt and that this activation is dependent on
both the amount of Hsp90 and the amount of Akt within the cell (second term) [67]. We
assume similar interactions for Src (third term) [84] and STAT3 (fourth term) [85]. We
assume that Akt undergoes exponential decay (fifth term).

Caspase-3 (Casp3)

d[Casp3]

dt
=

bC1

bC2 + αHC [Hsp90] + αEC [ERK] + αStC [STAT3] + αAC [Akt] + αXC [X]
(4.7)

− dC [Casp3]

(4.8)

We assume that Caspase-3 has background activation from cell processes that are not
explicitly included in the model. We assume that this activation is inhibited by the presence
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of the following prosurvival proteins in the model (line one): Hsp90 [67,69,70], ERK [68,73],
STAT3 [75], Akt [76], and X. We assume that Caspase-3 undergoes exponential decay (line
two).

Other survival pathways (X)

d[X]

dt
= −βDX [X][Doc] (4.9)

We assume that there are other survival and anti-apoptotic pathways that contribute
to an untreated cell’s survival and are independent of the Hsp90 protein network. This
species is assumed to be constant at a normalized steady state value of one in the drug-
naive state. Once docetaxel is introduced into the cell, this species is removed from the
network since it is no longer relevant or necessary for the cell’s survival.

Docetaxel (Doc)

d[Doc]

dt
= bD(t)− dD[Doc] (4.10)

bD(t) =

{
bD tstart ≤ t ≤ tend

0 otherwise

We assume that docetaxel undergoes constant uptake into the cell (first term) and
exponential decay within the cell (second term). We assume that docetaxel is being taken
into the cell only when it is in the cell microenvironment, i.e. tstart ≤ t ≤ tend. Note that
each drug will have its own tstart and tend.
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Radicicol (Rad)

d[Rad]

dt
= bR(t)− dR[Rad] (4.11)

bR(t) =

{
bR tstart ≤ t ≤ tend

0 otherwise

We assume that radicicol undergoes constant uptake into the cell (first term) and
exponential decay within the cell (second term). We assume that radicicol is being taken
into the cell only when it is in the cell microenvironment, i.e. tstart ≤ t ≤ tend. Note that
each drug will have its own tstart and tend.

4.2.3 Parameter estimation

To fit the model parameters, our collaborators collected data from a docetaxel-radicicol
treatment sequence. In their experimental setup, they exposed cells in an assay to 48
hours of docetaxel, followed by drug washout, then 48 hours of radicicol. They collected
Western blot data for the proteins HCK, phosphorylated ERK, phosphorylated STAT3,
and phosphorylated mTOR at t = 48 hours and t = 96 hours. HCK was used as a
proxy for phosphorylated SRC levels, and phosphorylated mTOR was used as a proxy
for phosphorylated Akt levels. With the model, the genetic algorithm [39] in MATLAB
was used to explore the multi-dimensional parameter space to find a local minimum for
the error between the simulation results and the normalized quantification of the Western
blots from the docetaxel-radicicol treatment sequence. The fitted parameters are shown in
Table 4.1.

Given the large parameter space, the following constraints were used to limit the algo-
rithm to relevant parameter possibilities: a) parameters must be strictly positive so that
every reaction is accounted for in the model; b) the network is at equilibrium in a drug-
naive cell, i.e. in the absence of drug, resulting in the constraints given in Equations 4.12 -
4.17 corresponding to Equations 4.1 - 4.7 respectively (calculated by setting the derivatives
to zero with all normalized protein levels equal to one and all drug levels equal to zero); c)
drug decay rates must be sufficiently slow to ensure that there is still drug present in the
cell for at least 12 hours after drug washout; d) drug decay rates must be sufficiently fast to
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# Name Parameter Description Units Value
1 bH2 Inhibition scaling constant for Hsp90 - 8.54
2 bA2 Inhibition scaling constant for Akt - 15.93
3 bC2 Inhibition scaling constant for Caspase-3 - 0.19
4 bD Intake rate of docetaxel mol/hr 2.06
5 bR Intake rate of radicicol mol/hr 1
6 dH Decay rate of Hsp90 hr−1 1.28
7 dSr Decay rate of Src hr−1 1.26
8 dE Decay rate of ERK hr−1 16.69
9 dSt Decay rate of STAT3 hr−1 2.87
10 dA Decay rate of Akt hr−1 17.61
11 dC Decay rate of Caspase-3 hr−1 7.7
12 dD Decay rate of docetaxel hr−1 0.20
13 dR Decay rate of radicicol hr−1 0.26
14 kHE Activation rate of ERK by Hsp90 hr−1 1.6
15 kHSr Activation rate of Src by Hsp90 hr−1 0.35
16 kHA Activation rate of Akt by Hsp90 hr−1 1.36
17 kSrE Activation rate of ERK by Src hr−1 0.53
18 kSrSt Activation rate of STAT3 by Src hr−1 1.00e-6
19 kSrA Activation rate of Akt by Src hr−1 0.85
20 kESt Activation rate of STAT3 by ERK hr−1 1
21 kStE Activation rate of ERK by STAT3 hr−1 1.08
22 kStA Activation rate of Akt by STAT3 hr−1 0.07
23 αHC Inhibition strength of Hsp90 on Caspase-3 - 6.43
24 αEC Inhibition strength of ERK on Caspase-3 - 0.38
25 αStC Inhibition strength of STAT3 on Caspase-3 - 1
26 αAC Inhibition strength of Akt on Caspase-3 - 1.06
27 αCA Inhibition strength of Caspase-3 on Akt - 1.42
28 αRH Inhibition strength of radicicol on Hsp90 mol−1 2.25
29 αXC Inhibition strength of X on Caspase-3 - 2.22
30 xH Activation constant of docetaxel on Hsp90 mol−1· hr−1 1.4
31 xE Activation constant of docetaxel on ERK mol−1· hr−1 0.54
32 xA Activation constant of docetaxel on Akt mol−1· hr−1 14.63

Table 4.1: HSP90 fit parameters, rounded to two decimal places, as a result of the genetic
algorithm in MATLAB.
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Name Parameter Description Units Value
bH1 (Uninhibited) “production” rate of Hsp90 hr−1 10.91
bSr “Production” rate of Src hr−1 0.91
bE “Production” rate of ERK hr−1 13.48
bSt “Production” rate of STAT3 hr−1 1.87
bA1 (Uninhibited) “production” rate of Akt hr−1 265.92
bC1 (Uninhibited) “production” rate of Caspase-3 hr−1 86.83
βDX “Removal” rate of X mol−1· hr−1 1

Table 4.2: Hsp90 set parameters, rounded to two decimal places, as a result of the param-
eter constraints necessary to maintain equilibrium in a drug-naive state.

ensure that drug levels decrease after the drug is no longer being taken in by the cell; and
e) drug intake rates must be sufficiently slow to ensure that the protein levels take at least
12 hours to saturate within the cell, i.e. the protein dynamics are changing/saturating in
a relevant timescale.

bH1 = bH2 (dH) (4.12)

bSr = dSr − kHSr (4.13)

bE = dE − kHE − kSrE − kStE (4.14)

bSt = dSt − kSrSt − kESt (4.15)

bA1 = (bA2 + αCA) (dA − kHA − kSrA − kStA) (4.16)

bC1 = dC (bC2 + αHC + αEC + αStC + αAC + αXC) (4.17)

Although the set of parameters is not unique, it is sufficiently close to model the protein
dynamics and most of the parameters are within the same orders of magnitude as in other
systems biology models, e.g. [87]. Some of the parameter values related to ERK and Akt
have high parameter values, but this is probably due to the fact that these proteins are
key proteins in other survival pathways, i.e. the Raf-MEK-ERK pathway [88] and the
PI3K-Akt pathway [89]. We should note that we are comparing to other systems biology
models that have uncertainty in their model parameters as well. And even if we had a
systems biology model with more confidence in their model parameters, the difference in
model structure complicates any comparison. Our model is a minimal model that simplifies
the relationship between parameters, but in reality, there are additional steps and other
species that are present in the network. Thus, the resulting values for our parameters are
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not easily compared to those in other systems biology models. All model parameters are
shown in Tables 4.1 and 4.2. Additionally, the ad hoc removal rate of X was set arbitrarily
to ensure a smooth and complete transition to a docetaxel-treated cell that is dependent
only on the Hsp90-dependent survival pathways.

4.3 Results

4.3.1 Treatment schedules

After determining the model network, constraints, and parameters, we tested the hy-
pothesis that temporal sequencing of radicicol and docetaxel can overcome the activa-
tion of multiple survival kinases. With the given set of parameters, in silico experiments
were completed to compare the two treatment sequences (docetaxel-radicicol and radicicol-
docetaxel). As stated earlier in Section 4.2.3, we assume that the cells are initially in a
drug-naive state with all proteins at equilibrium.

The results suggest that administering docetaxel first initially increases survival protein
expression in the cell with increased Hsp90 levels. However, this sensitizes the cell so
that radicicol has a significant impact, resulting in increased Caspase-3. In the radicicol-
docetaxel treatment, radicicol is able to moderately increase Caspase-3 levels, but this effect
is largely negated by the “boost” in survival protein expression induced by docetaxel. The
normalized protein levels with respect to time as in the treatment schedules are plotted in
Figure 4.2.

4.3.2 Drug delivery

Given the results in Section 4.3.1, we decided to test the docetaxel-radicicol synergy
in a nanoparticle drug delivery vehicle. To do this, we develop a relationship for the
drug parameters of two different drug deliveries (free drug and nanoparticle) so that the
two different formulations result in the same amount of drug exposure within the cell.
Mathematically, we would like the definite integral of the function representing the drug
amount in the cell over time to be equal for both formulations (also corresponding to having
the same AUC).
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Figure 4.2: The effect of treatment sequencing on the normalized protein levels. In each
treatment sequence, the first drug was administered at t = 0 hours, followed by drug
washout and administration of the second drug at t = 48 hours. The results suggest that
the docetaxel-radicicol treatment schedule results in lower normalized prosurvival protein
levels and a higher normalized Caspase-3 level, signifying increased cell death and greater

treatment efficacy. The model parameters are given in Tables 4.1 and 4.2.
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Figure 4.3: The effect of drug delivery on the normalized protein levels. (left) Normalized
protein levels for free drug (solid lines) and for nanoparticles (dashed lines) for radicicol
only. (right) Normalized protein levels for free drug (solid lines, top plot) and for nanopar-
ticles (dashed lines, bottom plot) for both docetaxel and radicicol. We extended the time
of radicicol uptake by a factor of five for the theoretical nanoparticle formulation and ad-
justed the drug nanoparticle parameters to ensure a fair comparison (see Equation 4.38).
For both cases, the drug was administered at t = 0. We found that nanoparticles better
take advantage of the synergy between docetaxel and radicicol.
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If we consider a drug being administered (e.g. Equations 4.10 and 4.11), we have two dif-
ferent functions, y1(t) and y2(t), to represent the amount of drug within the cell when drug
is available in the microenvironment and when the drug is absent from the microenviron-
ment respectively. Let t∗ be the time when the drug is no longer in the microenvironment.
Thus, assuming that the drug is administered at t = 0, we define y(t), the amount of drug
within the cell, as in Equation 4.18.

y(t) =

{
y1(t) 0 ≤ t ≤ t∗

y2(t) t > t∗
(4.18)

which can be derived from the differential equation 4.19.

dy

dt
= b(t)− δy (4.19)

b(t) =

{
b 0 ≤ t ≤ t∗

0 t > t∗

We require y(t) to be a continuous function, so below, we solve the differential equations
for y1(t) and y2(t) and set the initial conditions so that y1(t∗) = y2(t∗).

When the drug is available in the microenvironment, the change in drug concentration
increases at a drug uptake rate of b and decays at an exponential rate of δ. We assume
that the drug concentration at t = 0 is 0, and we can solve this differential equation to
give us the following equation for y1(t) as shown in Equation 4.20.

dy1

dt
= b− δy1, y1(0) = 0 =⇒ y1(t) =

b

δ
[1− exp(−δt)] (4.20)

When there is no drug available in the microenvironment, then the drug concentration
only changes due to exponential decay at a rate of δ. We can calculate a general solution
to this differential equation, giving us y2(t) as shown in Equation 4.21.

dy2

dt
= −δy2 =⇒ y2(t) = C exp(−δt) (4.21)

Since the drug concentration is continuous for the duration of the treatment, we require the
two functions to be equal at t = t∗, i.e. y2(t∗) = y1(t∗). This becomes an initial condition
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for y2(t), so we solve for y2(t) as calculated in Equations 4.22 - 4.25.

y2(t∗) = y1(t∗) (4.22)

C exp(−δt∗) =
b

δ
[1− exp(−δt∗)] (4.23)

C =
b

δ
[exp(δt∗)− 1] (4.24)

=⇒ y2(t) =
b

δ
[exp(δt∗)− 1] exp(−δt) (4.25)

Thus, the equations for y1(t) and y2(t) are given in Equations 4.26 and 4.27.

y1(t) =
b

δ
[1− exp(−δt)] (4.26)

y2(t) =
b

δ
[exp(δt∗)− 1] exp(−δt) (4.27)

Now that we have the two functions for our drug dynamics, we can integrate them over
their respective domains and add them together to calculate the total amount of drug over
the course of treatment. The calculation is shown in Equations 4.28 - 4.36.∫ t∗

0

b

δ
[1− exp(−δt)] dt =

b

δ

[
t− exp(−δt)

−δ

] ∣∣∣∣t∗
0

(4.28)

=
b

δ

[
t∗ +

exp(−δt∗)
δ

− 1

δ

]
(4.29)

=
b

δ2
[δt∗ + exp(−δt∗)− 1] (4.30)∫ ∞

t∗

b

δ
[exp(δt∗)− 1] exp(−δt)dt = lim

s→∞

∫ s

t∗

b

δ
[exp(δt∗)− 1] exp(−δt)dt (4.31)

= lim
s→∞

b

δ
[exp(δt∗)− 1]

exp(−δt)
−δ

∣∣∣∣s
t∗

(4.32)

= lim
s→∞

b

δ2
[1− exp(δt∗)] (exp(−δs)− exp(−δt∗)) (4.33)

=
b

δ2
[1− exp(−δt∗)] (4.34)

b

δ2
[δt∗ + exp(−δt∗)− 1] +

b

δ2
[1− exp(−δt∗)] =

b

δ2
(δt∗) (4.35)

=
bt∗

δ
(4.36)
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Thus, the total amount of drug over the course of treatment is given by Equation 4.36 and
is independent of the vehicle of drug delivery, i.e. nanoparticle or free drug.

When comparing free drug and nanoparticle formulations of the drug, we set the total
amount of drug for the two cases to be equal. This equality is given in Equation 4.37 and
after simplification, Equation 4.38.

bf tf
δ

=
bNP tNP

δ
(4.37)

bNP =
bf tf
tNP

(4.38)

Thus, we can set the drug intake rate for the nanoparticle case so that the two treatment
formulations result in the same amount of drug exposure.

We assumed that a theoretical nanoparticle formulation of the drug would extend the
time of drug uptake by a factor of five arbitrarily. Using the above equality to ensure
a fair comparison, NP drug delivery and free drug delivery for docetaxel and radicicol
together and radicicol alone were simulated. For both cases, the drug was administered
at the beginning of the experiment. The only difference between the two administrations
was the slower release of radicicol into the cell microenvironment for the nanoparticle drug
delivery due to the cholesterol binding to radicicol in the nanoparticle design. This was
modelled by decreasing the intake rate of radicicol and increasing the time for which the
drug is being taken into the cell so that the total drug exposure within the cell is the same
for free drug and nanoparticle drug delivery.

When we considered radicicol only, we found that the nanoparticle structure resulted
in a lesser but longer lasting effect as shown in Figure 4.3. For docetaxel and radicicol
together, we found that the DocRad-NP took greater advantage of the sensitizing effect
of docetaxel as shown in Figure 4.3. In the free drug case, both drugs were in effect
concurrently, allowing for radicicol to take effect before the cell was completely sensitized
to Hsp90. In the case of the nanoparticle, due to the slow-release kinetics of radicicol,
docetaxel has more time to sensitize the cell to Hsp90 so that radicicol acts on a more
sensitized cell, resulting in increased Caspase-3 levels.

4.3.3 Local sensitivity analysis

Local sensitivity analysis [40] of the Caspase-3 extremum during the docetaxel-radicicol
treatment schedule was completed to identify the key parameters in bringing about cell
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Figure 4.4: Relative local sensitivity coefficients of the Caspase-3 extremum during
docetaxel-radicicol treatment schedule, looking at the relative change in the Caspase-3
extremum (over the course of the experiment) when perturbing each parameter by 1%
(from the fitted parameter values). The parameter numbers and nominal parameter values
are given in Table 4.1. The parameters with the highest relative sensitivities (from highest
to lowest) are parameters 5, 28, 13, and 1.
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death as well as to confirm that our parameters resulted in a realistic representation.
Each parameter was positively perturbed individually by 1% of its nominal value, and the
resulting parameter sets were simulated. In each simulation, the extremum of Caspase-3
(from steady state) was calculated and then used to calculate the change in Caspase-3
extremum (from its nominal value, i.e. using the original set of parameters, see Tables 4.1
and 4.2). The change in Caspase-3 extremum was divided by the change in the parameter
to give us the absolute sensitivity of each parameter. This value was then divided by the
nominal Caspase-3 extremum to calculate the relative sensitivities as shown in Figure 4.4.
The absolute value of each of these relative sensitivities was then calculated to identify the
key parameters and are shown in Figure 4.4. Local sensitivity analysis was repeated for
different perturbation values ranging from 10−5 to 10−2 with qualitatively similar results.

The analysis identified the four most influential parameters (ordered from most to least)
as 5) intake rate of radicicol, 28) inhibition strength of radicicol on Hsp90, 13) decay rate of
radicicol, and 1) inhibition scaling constant for Hsp90. Note that the parameter numbers
correspond to the table of fit parameters (Tables 4.1 and 4.2). As expected, the most
important parameters with respect to cell death are related to the efficacy of radicicol on
Hsp90. The inhibition scaling constant for Hsp90 is inherent to the nature of Hsp90, which
may be outside of our control. However, the intake rate, decay rate, and inhibition strength
of radicicol indicate the importance of radicicol as a follow-up drug to docetaxel in this
treatment sequence. Improving the efficacy of radicicol on Hsp90 in the docetaxel-radicicol
treatment sequence may improve this treatment.

4.4 Discussion

In this study, we identified the Hsp90 protein network as a means by which we can
overcome drug resistance in drug-tolerant cancer cells. In silico experiments were used
to give evidence that radicicol can overcome the development of drug resistance in drug-
tolerant cancer cells from docetaxel if the treatment sequence took advantage of the synergy
between the two drugs. To our knowledge, this is the first model to analyze the Hsp90
protein network in a drug-tolerant cancer cell and design a treatment schedule to overcome
its drug resistance.

Additionally, we considered an alternative drug formulation. Using in silico experi-
ments, we gave evidence that using drug nanoparticles took better advantage of the synergy
between docetaxel and radicicol compared to the simultaneous release of free drug into the
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tumour microenvironment. Due to the slower release of radicicol in the nanoparticles, cells
had more time to develop resistance to docetaxel before radicicol effected the reversal of
resistance in those drug-tolerant cancer cells, resulting in a greater increase of cell death.

Finally, we used the model to identify key mechanisms or factors that would be most
effective in increasing cell death with the docetaxel-radicicol treatment sequence. All the
significant parameters were related to Hsp90 activity, confirming the importance of this
drug in effecting cell death in a drug-tolerant cancer cell. The inhibition strength of
radicicol on Hsp90 and the inhibition scaling constant for Hsp90 are parameters that would
be dependent on the patient characteristics, which is likely outside of the clinician’s control.
On the other hand, the intake rate and the decay rate of radicicol are drug properties. Drug
intake rate is dependent on factors like permeability across cell membranes, while drug
decay rate is dependent on how quickly the drug is metabolized or degraded within the cell.
Thus, radicicol could potentially be improved with respect to these drug characteristics.

4.4.1 Future work

There is further analysis and model improvements or extensions that we can add to
this model. Further analysis includes global sensitivity analysis [40], model reduction
[40], identifiability analysis [39], and uncertainty analysis [55]. Model improvements and
extensions include explicitly modelling the drug in the cell microenvironment, improving
our model assumptions in constructing the model equations, and adding biological details
such as the caspase cascade or other survival pathways.

In this work, we utilized local sensitivity analysis to identify the key parameters in
bringing about cell death during the docetaxel-radicicol treatment sequence. However,
our local sensitivity analysis results are limited due to the uncertainty in our parameter
values. In other words, there is uncertainty that we are in the correct point within the
parameter space. Due to this uncertainty, global sensitivity would better capture the effect
of the model parameters on bringing about cell death. Global sensitivity analysis is used
to identify the most significant parameters across the entire parameter space, as opposed
to local sensitivity analysis, which calculates sensitivities for a specific set of parameters,
i.e. a specific point within the parameter space. Calculating global sensitivities would thus
identify the most significant parameters independent of the particular parameter fit or cell
line that we’re working with. Global sensitivities can also identify the most effective ways
of traversing the parameter space, which can be very useful when trying to modify the
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phenotype or behaviour of a cell line, e.g. manipulating a cell line from a drug-tolerant
state to a drug-responsive state [40].

Along with sensitivity analysis, we could apply a model reduction to this Hsp90 model
by identifying the key reactions necessary to produce the desired output (a proper fit to
in vitro data). This model reduction would reduce the number of parameters and make in
silico experiments more cost-effective with regards to computational time [40].

Identifiability analysis is used to evaluate whether it is theoretically possible to identify
the true values of a model. It is important that we check that our model is identifiable
before assessing the accuracy of our parameters [39]. Once a model has been identified as
identifiable or once it has been modified to be identifiable, uncertainty analysis is used to
evaluate our parameter estimates by calculating the confidence intervals for each parameter.
Thus, we can evaluate the probability that our set of parameters is an accurate description
of the observed phenomenon [55].

This model could also be improved or extended with additional biological details. One
model improvement is to explicitly model the amount of drug in the cell microenvironment.
This additional information could be used to model the diffusion of drug into the cell based
on the drug gradient between the cell and cell microenvironment.

Another model improvement is to remove two of the simplifying assumptions made in
constructing the minimal model. One simplifying assumption made is that the amount of
activated protein can serve as a proxy for the amount of inactivated protein. This is a sim-
plifying assumption that was made to reduce the number of species included in the model,
but it is not supported by any biological evidence. Our phenomenological model currently
uses simple products to capture the correlated activation of key prosurvival proteins. How-
ever, these reactions could be researched further to distinguish between direct or indirect
interactions between proteins. Once these interactions have been clarified, terms specific to
the protein interaction could be used. For our second simplifying assumption, the effect of
docetaxel on Hsp90, ERK, and Akt is included as a simple increase in background activa-
tion that is dependent only on the amount of drug within the cell. These interactions could
also be clarified so that the corresponding terms better reflect the biological phenomena.

We could also explicitly model the caspase cascade by including other kinases and
caspases that are significant in the apoptotic machinery of the cell, such as in Lee et
al. [90]. This would be useful only with additional in vitro measurements since the current
framework already captures a basic trigger for apoptosis. The additional measurements
may identify any additional complexity or nuance in the apoptotic process of a cell.
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We could also explicitly model the other survival pathways represented by X, such as
the EGF signal transduction pathway [91], to better understand and model the Hsp90
sensitization of a drug-tolerant cancer cell through docetaxel. Our current framework
includes this phenomenon simplistically, so it may benefit from a more explicit and detailed
modelling of the sensitization process.
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Chapter 5

Explaining variability in patient
response to anti-PD-1
immunotherapy

In this chapter, we investigate the variability in immune system response to anti-PD-1
immunotherapy. PD-1 (programmed cell death protein 1) is a cell surface molecule that is
exhibited on cancer cells and activated T cells. Immune cells that are expressing PD-1 are
inhibited when PD-1 is engaged by its ligands (e.g. PD-L1). Anti-PD1 immunotherapy
such as nivolumab has been investigated to prevent the inhibition of immune cells by PD-1
ligation. Thus, we would expect nivolumab to result in increased activation of T cells
and subsequent cancer regression [43]. However, anti-PD-1 immunotherapy treatment has
resulted in both positive and negative results in its ability to inhibit tumour growth. We
hypothesized that Th1 and Th2 cells determines immune response [44]. In this work,
we construct a systems biology model and utilize sensitivity analysis to identify potential
biomarkers for a positive response to anti-PD-1 immunotherapy.

This project was done in collaboration with Dr. Michelle Przedborski and Dr. Aaron
Goldman and his team. I completed the research on the biological background involved
in constructing the model. Dr. Michelle Przedborski and I jointly wrote the code for
parameter estimation. I wrote the code for the local sensitivity analysis, and they wrote
the code for the global sensitivity analysis. The discussion of the results was done by me in
this thesis. Dr. Aaron Goldman and his team provided the ex vivo data (cytokine assays
and flow cytometry) used in fitting the model. All the experimental details are included in
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the unpublished manuscript but are not included here. The experimental procedures and
data will be included in full detail in the final publication. This study identified potential
biomarkers of a positive response to anti-PD-1 immunotherapy that could be tested further
by in vitro experiments. The manuscript for this project is currently in preparation.

5.1 Biological background

The immune system involves a variety of cells including T cells, B cells, antigen-
presenting cells (e.g. dendritic cells) [92]. In this project, we focus on T cells as the main
players in the immune system. There are several important T cell subpopulations: CD4+

helper T cells [44], CD8+ cytotoxic T cells [44], and regulatory T cells [93]. Regulatory T
cells prevent the development of autoimmunity, where cells become hypersensitive, and the
immune cells begin to destroy the host’s own normal cells [93]. In this work, we assumed
that regulatory T cells have the same effect on all CD4+ helper Th cells and did not include
them in our model for simplicity. Instead, we focused on the balance between type 1 helper
T cells and type 2 helper T cells as the deciding factor between response and non-response
to anti-PD1 immunotherapy [44].

5.1.1 Cytotoxic T cells

CD8+ cytotoxic T cells (Tc) are the T cells mainly responsible for cell killing [44]. These
cells target specific antigens and release granzyme B and perforin to induce apoptosis in
the targeted cells [94]. For these cells to be activated, other immune cells such as CD4+

type 1 helper T cells (see section 5.1.2) and antigen-presenting cells need to process and
present specific antigens to these cells [92].

5.1.2 Helper T cells

CD4+ helper T cells consist of type 1 helper T cells (Th1) and type 2 helper T cells
(Th2). The primary response of the immune system is dictated by the balance of CD4+

Th1 cells and CD4+ Th2 cells as well as the cytokines that are produced by the antigen
response [44].
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If Th1 cytokines are the primary proteins available in the tumour microenvironment,
Th1 cells are going to be recruited and Th2 cell activity will be inhibited. This will result
in a cell-mediated pro-inflammatory response to the tumour, which generally results in
the activation of T cells, specifically cytotoxic CD8+ Tc cells, and subsequent cancer cell
killing [44].

If Th2 cytokines are the primary proteins available in the tumour microenvironment,
the immune system will respond with Th2 cell activity and inhibited Th1 cell activity,
which results in a humoral immune response. A humoral immune response activates B
cells, which result in antibodies handling the antigen. The lack of cell killing allows the
cancer cells to escape the immune response [44]. This is one mechanism of immune escape
since cancer cells promote this anti-inflammatory environment through expression of Th2
cytokines such as IL-6 [95] as well as expression of PD-L1 [43], as discussed in section 5.1.3.

Note that there are other mechanisms of immune escape. As the cancer progresses,
antigen presentation by cancer cells decreases so that the immune system exhibits less
activated [10]. Also, activated T cells become exhausted and inactivated with prolonged
antigen exposure [96]. In this project, we focus on PD-1 and PD-L1 as the main mechanism
of immune escape and neglect other strategies such as reduced antigen presentation [43].

Cytokines

In the immune system, there are many different cytokines that serve multiple functions
in activation and inhibition of different T cell subpopulations. In this project, we focus
on four specific cytokines: IFNγ [97] and IL-12 [98] as Th1 promoters, and IL-4 [97] and
IL-6 [95] as Th2 promoters.

IFNγ is secreted by CD4+ Th1 cells [97] and CD8+ Tc cells [96]. It promotes differentia-
tion into type 1 helper T cells [95] and inhibits CD4+ Th2 growth [99]. IL-12 is produced by
dendritic cells, which are activated by CD4+ Th1 cells [98]. IL-12 promotes differentiation
into type 1 helper T cells [97] and growth of CD8+ Tc cells [11]. These two cytokines pro-
vide a positive feedback loop to CD4+ Th1 cells and promote a pro-inflammatory tumour
microenvironment.

IL-4 is secreted by CD4+ Th2 cells and serves as an autocrine signal for Th2 cell growth.
It also promotes differentiation into type 2 helper T cells [97]. IL-6 is secreted by CD4+

Th2 cells and produced by antigen-presenting cells specific to cancer. IL-6 promotes IL-4
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cytokine secretion [95]. Both IL-6 and IL-4 with the support of IL-6 provide a positive
feedback loop for Th2 cell expansion. Cytokine expression by Th1 cells is also inhibited
by IL-4 [44] and IL-6 [95].

5.1.3 PD-1, PD-L1, and anti-PD-1 immunotherapy

PD-1 (programmed cell death protein 1) is a cell surface molecule that is expressed
on activated T cells. Immune cells that are expressing PD-1 are inhibited when PD-1 is
engaged by its ligands (e.g. PD-L1) [43]. PD-L1 is also expressed by activated T cells but
also by cancer cells. PD-L1 expression on cancer cells is also upregulated in the presence
of IFNγ, which often signifies a pro-inflammatory response [43]. This form of negative
feedback helps cancer cells accomplish immune escape.

Anti-PD1 antibodies, such as nivolumab [43] or pembrolizumab [100], have been inves-
tigated as a blockade of PD-1 activity, preventing the inhibition of immune cells by PD-1
ligation. However, anti-PD-1 immunotherapy treatment has resulted in both positive and
negative results in its ability to inhibit tumour growth.

5.2 Mathematical model

5.2.1 PD-1 network

The model includes one cancer cell population and five T-cell subpopulations: naive
CD4+ helper T cells (Th0), CD4+ type 1 helper T cells (Th1), CD4+ type 2 helper T cells
(Th2), naive CD8+ T cells, and CD8+ cytotoxic T cells (Tc). We also considered four key
cytokines: IL-12 and IFNγ as Th1 promoters, and IL-4 and IL-6 as Th2 promoters. To
incorporate treatment, PD-1 and PD-L1 surface molecules are modelled as being expressed
by certain cell populations, and nivolumab is modelled as an anti-PD-1 antibody. We
assume that all cells, cytokines, protein, and drug are well-mixed within the system, so
that the spatial component is negligible. After researching the cells and cytokines of the
immune system, the interaction network was constructed with the relevant cell populations
and cytokines, as informed by the available patient data. The figure network is shown in
Figures 5.1 and 5.2.
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Figure 5.1: PD-1 network, part 1. This network of cells and proteins show the immune
system’s response to anti-PD-1 treatment. Cells are shown in ellipses (yellow for T cells
and grey for cancer cells), and cytokines or cell surface molecules are shown in boxes (pink
for pro-Th1 cytokines, blue for pro-Th2 cytokines, and green for cell surface molecules).
Arrows show an activating relationship, and block-headed arrows show an inhibiting rela-
tionship. X-headed arrows show a cell-killing relationship.
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Figure 5.2: PD-1 network, part 2. This network of cells and proteins show the immune
system’s response to anti-PD-1 treatment. T cells are shown in ellipses and cell surface
molecules are shown in green rectangles. Nivolumab, the immunotherapy, is shown in an
orange hexagon. Arrows show an activating relationship, and block-headed arrows show
an inhibiting relationship.
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5.2.2 Model equations

The law of mass action was used to convert each of the interactions into rate laws and
subsequently into a system of coupled ordinary differential equations [38]. Below, we list
the assumptions made for each equation.

Naive CD4+ Th0 cells (TN4)

dTN4

dt
= n4TN4 (5.1)

−
(
d1-12TN4

[IL-12]

qdIL12 + [IL-12]
+ d1-IFNTN4

[IFNγ]

qIFN-1 + [IFNγ]

)(
s1

s1 + [PD-1 : PD-L1]

)
−
(
d2TN4

[IL-4]

qdIL4 + [IL-4]

)(
s2

s2 + [PD-1 : PD-L1]

)

We assume that naive CD4+ Th0 cells grow exponentially through mitosis and experi-
ence exponential decay. The net proliferation of these cells is captured in the parameter
n4 (line one). We assume that naive CD4+ Th0 cells can differentiate into Th1 cells in
the presence of IL-12 [97] or IFNγ [95] (line two). We assume that naive CD4+ Th0 cells
can also differentiate into Th2 cells in the presence of IL-4 (line three) [95,97]. We assume
that this differentiation and subsequent activation of Th1 and Th2 is inhibited by the
PD-1:PD-L1 complex (lines two and three) [43, 96,101].

CD4+ Th1 cells (Th1)

dTh1

dt
= n1Th1 (5.2)

+

(
d1-12TN4

[IL-12]

qdIL12 + [IL-12]
+ d1-IFNTN4

[IFNγ]

qIFN-1 + [IFNγ]

)(
s1

s1 + [PD-1 : PD-L1]

)

We assume that CD4+ Th1 cells grow exponentially through mitosis and experience
exponential decay. The net proliferation of these cells is captured in the parameter n1 (line
one). We assume that Th1 cells differentiate from naive CD4+ Th0 cells in the presence
of IL-12 [97] or IFNγ [95] (line two). We assume that this differentiation and subsequent
activation of Th1 is inhibited by the PD-1:PD-L1 complex (line two) [43,96,101].
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CD4+ Th2 cells (Th2)

dTh2

dt
=

(
g2Th2 + g2-4Th2

[IL-4]

qgIL4 + [IL-4]

)(
rIFN

rIFN + [IFNγ]

)
(5.3)

+

(
d2TN4

[IL-4]

qdIL4 + [IL-4]

)(
s2

s2 + [PD-1 : PD-L1]

)
− δ2Th2

We assume that CD4+ Th2 cells grow exponentially through mitosis and experience
exponential decay (lines one and two). The proliferation of CD4+ Th2 cells is upregulated
by IL-4 (line one) [97]. However, this proliferation was inhibited by IFNγ (line one) [99].
We assume that CD4+ Th2 cells differentiate from naive CD4+ Th0 cells in the presence
of IL-4 (line two) [97]. We assume that this differentiation and subsequent activation of
Th2 is inhibited by the PD-1:PD-L1 complex (line two) [43,96,101].

Naive CD8+ T cells (TN8)

dTN8

dt
= n8TN8 − dCTN8

(
Th1

q1 + Th1

)(
sC

sC + [PD-1 : PD-L1]

)
(5.4)

We assume that naive CD8+ T cells grow exponentially through mitosis and experience
exponential decay. The net proliferation of these cells is captured in the parameter n8

(first term). We assume that naive CD8+ T cells differentiate into cytotoxic Tc cells in
the presence of CD4+ Th1 cells (second term) [11]. We assume that this differentiation
and subsequent activation of cytotoxic Tc cells is inhibited by the PD-1:PD-L1 complex
(second term) [43,96,101].

Cytotoxic CD8+ Tc cells (Tc)

dTc
dt

= nCTc + gC-12TC
[IL-12]

qgIL12 + [IL-12]
+ dCTN8

(
Th1

q1 + Th1

)(
sC

sC + [PD-1 : PD-L1]

)
(5.5)

We assume that cytotoxic CD8+ Tc cells grow exponentially through mitosis and expe-
rience exponential decay. The net proliferation of these cells is captured in the parameter
nC (first term). We assume that the proliferation of cytotoxic CD8+ T cells is upregulated
in the presence of IL-12 (second term). We assume that cytotoxic CD8+ Tc cells differ-
entiate from naive CD8+ T cells in the presence of CD4+ Th1 cells (third term) [11]. We
assume that this differentiation and subsequent activation of cytotoxic Tc cells is inhibited
by the PD-1:PD-L1 complex (third term) [43,96,101].
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Cancer cells (Can)

dC

dt
= nCanC − kCCTc (5.6)

We assume that cancer cells grow exponentially through mitosis and experience ex-
ponential decay. The net proliferation of these cells is captured in the parameter nCan
(first term). We assume that cancer cells are killed by cytotoxic CD8+ Tc cells through
mechanisms such as granzyme/perforin-induced apoptosis (second term) [94].

Interferon gamma (IFNγ)

d[IFNγ]

dt
= p1-IFNTh1

(
rIL4

rIL4 + [IL-4]

)(
rIL6

rIL6 + [IL-6]

)
+ pC-IFNTc − δIFN [IFNγ] (5.7)

We assume that IFNγ is secreted by CD4+ Th1 cells [97] and that this cytokine secretion
is inhibited by the presence of IL-4 [102] and IL-6 [95] (first term). We assume that IFNγ

is also secreted by cytotoxic CD8+ Tc cells (second term) [96]. Finally, we assume that
IFNγ undergoes exponential decay (third term).

Interleukin 4 (IL-4)

d[IL-4]

dt
= p2-4Th2 + p2-4-6Th2

(
[IL-6]

qIL6 + [IL-6]

)
− δIL4[IL-4] (5.8)

We assume that IL-4 is secreted by CD4+ Th2 cells [97] (first term) and that this
secretion is upregulated in the presence of IL-6 [98] (second term). We also assume that
IL-4 undergoes exponential decay (third term).

Interleukin 6 (IL-6)

d[IL-6]

dt
= p2-6Th2 + pCan-6C − δIL6[IL-6] (5.9)

We assume that IL-6 secreted by CD4+ Th2 cells (first term). We additionally assume
that IL-6 is produced by APCs, which are not explicitly modelled. However, we assume that
the number of APCs would be proportional to the cancer cells so that the IL-6 produced
by APCs is proportional to the amount of cancer in the system (second term) [95]. Finally,
we assume IL-6 undergoes exponential decay (third term).
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Interleukin 12 (IL-12)

d[IL-12]

dt
= pCan-12C + p1-12Th1− δIL12[IL-12] (5.10)

We assume that IL-12 is produced by DCs, which are not explicitly modelled. However,
we assume that the amount of DCs is proportional to the number of cancer cells so that
the IL-12 produced by DCs is proportional to the amount of cancer in the system (first
term) [98]. We also assume that DCs are alternatively activated by Th1, so we assume that
IL-12 is produced at a rate proportional to the amount of CD4+ Th1 cells in the system
(second term) [103]. Finally, we assume IL-12 undergoes exponential decay (third term).

Programmed cell death protein 1 (PD-1)

[PD-1] = ρ (Th1 + Th2 + Tc) (5.11)

d[PD-1]

dt
= ρ

(
dTh1

dt
+
dTh2

dt
+
dTC
dt

)
− β+[PD-1][PD-L1] + β−[PD-1 : PD-L1] (5.12)

− α+[PD-1][A] + α−[A : PD-1]

We assume that PD-1 is expressed on all activated T cells, i.e. CD4+ Th1 cells, CD4+

Th2 cells, and cytotoxic CD8+ Tc cells [96], and we additionally assume that the same
amount of PD-1 is expressed on all types of T cells. Thus, the amount of PD-1 is propor-
tional to the sum of these cell populations (Equation 5.11). We assume that PD-1 can bind
to and disassociate from PD-L1 (line one of Equation 5.12) [96] or the anti-PD-1 antibody
(line two of Equation 5.12) [43].

Programmed death-ligand 1 (PD-L1)

[PD-L1] = λ (Th1 + Th2 + Tc + C) + λCan-IFNC

(
[IFNγ]

qIFN-PDL1 + [IFNγ]

)
(5.13)

d[PD-L1]

dt
= λ

(
dTh1

dt
+
dTh2

dt
+
dTC
dt

+
dC

dt

)
(5.14)

+ λCan-IFN
dC

dt

(
[IFNγ]

qIFN-PDL1 + [IFNγ]

)
− β+[PD-1][PD-L1] + β−[PD-1 : PD-L1]
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We assume that PD-L1 is expressed on all activated T cells, i.e. CD4+ Th1 cells, CD4+

Th2 cells, and cytotoxic CD8+ Tc cells, and we additionally assume that the same amount
of PD-L1 is expressed on all types of T cells. We assume that PD-L1 is also expressed
on cancer cells and that this cell surface expression is upregulated by IFNγ (last term of
Equation 5.13). We assume that PD-L1 can bind to and disassociate from PD-1 (line three
of Equation 5.14) [96].

PD-1:PD-L1 complex (PD-1 : PD-L1)

d[PD-1 : PD-L1]

dt
= β+[PD-1][PD-L1]− β−[PD-1 : PD-L1] (5.15)

We assume that the PD-1:PD-L1 complex is the result of the binding between free
PD-1 and free PD-L1. We assume that there is both binding and disassociation with this
binding [96].

Anti-PD-1 antibody (A)

d[A]

dt
= Ã(t)− α+[A][PD-1] + α−[A : PD-1]− δA[A] (5.16)

We assume that the anti-PD-1 antibody is injected into the tumour microenvironment
according to our treatment schedule and is mathematically defined by Ã(t) (first term).
We assume that there is binding and disassociation between the anti-PD-1 antibody and
PD-1, and we assume that the anti-PD-1 antibody binds to PD-1 with a higher affinity
than PD-L1 [43]. Thus, the disassociation constant Kα ≡ α−/α+ � Kβ ≡ β−/β+ (second
and third terms). Finally, we assume that anti-PD-1 undergoes exponential decay (fourth
term).

Anti-PD-1:PD-1 complex (A : PD-1)

d[A : PD-1]

dt
= α+[A][PD-1]− α−[A : PD-1] (5.17)

We assume that the A:PD-1 complex is the result of the binding between free PD-1 and
free anti-PD-1 antibody. We assume that there is both binding and disassociation with
this binding [43].
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5.2.3 Parameter estimation

Tumour samples from fifty different patients with various head and neck cancers were
cultured ex vivo and subjected to control and treatment conditions. Under treatment
conditions, nivolumab, an anti-PD-1 antibody [43], was administered every 24 hours for
three days with drug washout before subsequent drug administration. The experimental
data exhibited a high degree of variability under both control and treatment conditions.

The measurements were measured using Luminex cytokine arrays [104], which mea-
sure the cytokine levels from the media surrounding the tumour sample, and using flow
cytometry [52], which was used to identify the proportion of the tumour that exemplified
biomarkers for specific T cell populations. For the cytokine measurements, IFNγ, IL-12p70,
and IL-6 measurements were taken at the end of each day, i.e. at t = 24, 48, and 72 hours.
Negligible and unreliable data points were removed from the data set, and the average
data and standard deviation were used in the parameter fitting process.

For the T cell subpopulations, the following biomarker expression was used: CD8+

biomarker expression for both naive CD8+ T cells and CD8+ Tc cells. CD8+IFNγ+
biomarker expression for CD8+ Tc cells since activated CD8+ Tc cells should be pro-
ducing IFNγ [11]. CD4+ biomarker expression for naive CD4+ Th0 cells, CD4+ Th1 cells,
and CD4+ Th2 cells [97]. CD4+CD25+ was used to identify regulatory T cells, which is
not included in our model [105]. Thus, we had a measure for the sum of the CD4+ Th
compartments. This data was collected for control conditions and at t = 72 hours for
treatment conditions. Negligible and unreliable was removed from the data set, and the
average data and standard deviation were used in the parameter fitting process.

The parameter fitting process was joint work with Dr. Michelle Przedborski. Given
the in vitro data collected, we needed several simulations to utilize the data appropriately.
First, we assumed that the PD-1, PD-L1, and PD-1:PD-L1 complex would be at steady
state at the beginning of treatment. Since the steady state depends on the kinetic pa-
rameters of PD-1, PD-L1, and the PD-1:PD-L1 complex, which vary from parameter set
to parameter set, we first ran the PD-1, PD-L1, and PD-1:PD-L1 complex equations to
equilibrium.

The next step was to incorporate the cytokine data from the tumour microenvironment.
In the tumour microenvironment, the effect of the cancerous cells is negligible in comparison
to the cytokine activity from circulating T cells. Thus, we ran the treatment simulations
in the absence of cancer.
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Figure 5.3: Method workflow schematics, summarizing the workflows for the following
analyses: (a) parameter estimation, (b) local sensitivity analysis, and (c) global sensitivity
analysis. The schematic was designed by Dr. Michelle Przedborski.
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The final piece of information to incorporate was the flow cytometry data from within
the tumour. We assumed that the protein dynamics of the T cells was the same within the
tumour and circulating in the tumour microenvironment. Thus, the final set of simulations
simulated the dynamics within the tumour with the addition of cancer and its cytokines
and cell surface proteins.

Given this in silico setup, the genetic algorithm, ga(), in MATLAB was used to mini-
mize the r2 error between the in silico cytokine levels and T-cell proportions and within
one standard deviation of the in vitro cytokine levels and T-cell proportions. The genetic
algorithm is a global method in that it explores the entire parameter space, but it only
guarantees a local minimum of the parameter space [39]. And given the variability in the
in vitro data, there may be several sets of parameters that result in zero error. Thus, we
acknowledge that this particular set of parameters is just one possible explanation for the
in silico data (see Tables 5.1- 5.5).

Name Parameter Description Units Value
IFNγ,0 Initial IFNγ levels pg/ml 2.54
IL-120 Initial IL-12 levels pg/ml 5.53e-1
IL-60 Initial IL-6 levels pg/ml 3301.39
IL-40 Initial IL-4 levels pg/ml 113.59

Table 5.1: Experimental data: average of the initial cytokine levels under control condi-
tions, rounded to two decimal places.

Name Parameter Description Units Value
Cfrac Initial cancer fraction cell 3.7e-1

Th1frac Initial Th1 fraction cell 2.46e-2
Th2frac Initial Th2 fraction cell 1.49e-2

Table 5.2: PD-1 parameter fit: initial cell proportions, rounded to two decimal places.
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# Name Parameter Description Units Value
1 n4 Net proliferation of Th0 cells hr−1 9.98e-5
2 n8 Net proliferation of naive CD8+ T cells hr−1 4.57e-4
3 n1 Net proliferation of Th1 cells hr−1 3.82e-4
4 nC Net proliferation of Tc cells hr−1 9.29e-5
5 nCan Net proliferation of cancer cells hr−1 1.36e-3
6 g2 Growth of Th2 cells hr−1 2.81e-4
7 g2-4 Growth of Th2 cells by IL-4 hr−1 1.49e-4
8 gC-12 Growth of Tc cells by IL-12 hr−1 2e-4
9 δ2 Death of Th2 cells hr−1 9.61e-6
10 d1-IFN Differentiation into Th1 cells by IFNγ hr−1 2.11e-4
11 d1-12 Differentiation into Th1 cells by IL-12 hr−1 2.39e-4
12 d2 Differentiation into Th2 cells hr−1 1.24e-4
13 dC Differentiation into Tc cells hr−1 1.5e-4
14 kC Cell killing of cancer cells by Tc cells cell−1· hr−1 1.51e-8
15 p1-IFN Production of IFNγ by Th1 cells pg/(ml·cell·hr) 1.13e-6
16 p2-4-6 Production of IL-4 by Th2 cells by IL-6 pg/(ml·cell·hr) 6.61e-7
17 pCan-6 Production of IL-6 by cancer cells pg/(ml·cell·hr) 2.02e-5
18 pCan-12 Production of IL-12 by cancer cells pg/(ml·cell·hr) 1.5e-9
19 δIFN Decay of IFNγ hr−1 3.74e-3
20 δIL4 Decay of IL-4 hr−1 1.05e-3
21 δIL6 Decay of IL-6 hr−1 4.69e-3
22 δIL12 Decay of IL-12 hr−1 5.01e-4
23 δA Decay of anti-PD-1 antibody hr−1 1.74e-5

Table 5.3: PD-1 parameter fit: kinetic parameters, part 1, rounded to two decimal places.
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Name Parameter Description Units Value
p1-12 Production of IL-12 by CD4+ Th1 cells pg/(ml·cell·hr) 4.54e-7
p2-6 Production of IL-6 by CD4+ Th2 cells pg/(ml·cell·hr) 4.19e-2
p2-4 Production of IL-4 by CD4+ Th2 cells pg/(ml·cell·hr) 3.23e-4

pC-IFN Production of IFNγ by CD8+ cytotoxic Tc cells pg/(ml·cell·hr) 9.07e-7

Table 5.5: PD-1 parameter fit: calculated kinetic parameters, rounded to two decimal
places.

5.3 Sensitivity analysis

5.3.1 Local sensitivity analysis

Given the nominal parameter fit of kinetic parameters and initial cytokine levels, local
sensitivity analysis [41] of the cancer level post-treatment was completed to identify the
key kinetic parameters and key initial conditions in producing successful treatment, which
is defined as a reduction in the cancer level after treatment. The initial T-cell populations
were set to the average of the in vitro control values. Each initial condition and each
kinetic parameter was individually perturbed by 1%, and the resulting set of parameters
was used to simulate the treatment sequence.

The kinetic parameters with the highest local sensitivity coefficients with respect to the
post-treatment number of cancer cells were (from highest to lowest in absolute value) 14)
killing of cancer cells by CD8+ cytotoxic T cells, 5) net proliferation of cancer cells, 4) net
proliferation of CD8+ cytotoxic Tc cells, and 8) upregulation of CD8+ cytotoxic Tc cell
growth by IL-12. The initial condition with the highest local sensitivity coefficient with
respect to the post-treatment number of cancer cells was the initial cancer fraction in the
tumour microenvironment. This process is summarized in Figure 5.3, and these results
can be seen in Figure 5.4.

5.3.2 Global sensitivity analysis

Global sensitivity analysis [40] was completed by Dr. Michelle Przedborski, but the
interpretation of the completed analysis is done below.
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(a) Initial conditions (b) Kinetic parameters

Figure 5.4: PD-1 local sensitivity analysis, with respect to the cancer level post-treatment
(a) of the initial conditions and (b) of the most significant kinetic parameters. Each initial
condition and each kinetic parameter was individually perturbed by 1%, and the resulting
relative sensitivities are plotted on an axis ranging from -15 to 15. The kinetic parameters
with the greatest local sensitivity coefficients (from highest to lowest in absolute value)
are parameters 14, 5, 4, and 8. The initial condition with the highest local sensitivity
coefficient was the initial cancer fraction.
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Variability in the patient data was captured by allowing the initial cytokine levels and
relative T-cell populations to vary within the range of control measurements in the in vitro
data and by allowing the kinetic parameters to vary within large biological ranges. By
allowing the initial cytokine levels and relative T-cell populations to vary within a range
of input values, we can expect the resulting immune responses to exhibit the inter-patient
variability that we would expect in ex vivo experiments or in clinical trials.

Multi-parametric sensitivity analysis [106] with Latin hypercube sampling was used to
efficiently sample the parameter space and calculate the global sensitivities for the kinetic
parameters and for the initial conditions in the simulation of treatment administration.

The results identified the same key kinetic parameters as the local sensitivity analysis.
For the initial conditions, the initial fraction of CD8+ T cells (naive and activated) and
the initial fraction of cancer cells were the key initial conditions. In addition, parameters
controlling the size of the Th1 and Th2 cell populations were also significant. In particular,
the initial CD4+ Th2 levels, the initial IL-12 levels, the initial CD4+ Th1 levels, and the
initial IL-6 levels were identified as important factors in treatment efficacy. This process
is summarized in Figure 5.3, and these results can be seen in Figure 5.5.

5.4 Discussion

In this chapter, we construct a systems biology model to investigate the response of
the immune system to anti-PD-1 cancer treatment. Using sensitivity analysis, we identi-
fied potential biomarkers for a positive response to anti-PD-1 immunotherapy, and these
biomarkers could be investigated further in in vitro experiments. We identified the most im-
portant variables (kinetic parameters and initial conditions) to be those related to cytotoxic
CD8+ Tc cells and cancer cells, as expected. In addition to these expected sensitivities,
the initial CD4+ Th2 levels, the initial IL-12 levels, the initial CD4+ Th1 levels, and the
initial IL-6 levels were identified as important factors in treatment efficacy. These results
reinforce the experimental observation that the variability in patient response is connected
to the upregulation of Th1 levels.

Sensitivity analysis identified the interaction between cancer cells and CD8+ cytotoxic
T cells as an important factor with regards to anti-PD-1 immunotherapy response. Two
of the significant parameters were related to the stage and invasiveness of the cancer cells
(initial cancer fraction in the tumour microenvironment and net proliferation of cancer

105



(a) Initial conditions (b) Kinetic parameters

Figure 5.5: PD-1 global sensitivity analysis, (left) of the initial conditions and (right) of the
most significant kinetic parameters. Initial cytokine levels and relative T-cell populations
were varied within the range of in vitro control measurements and within large biological
ranges, respectively. Multi-parametric sensitivity analysis [106] with Latin hypercube sam-
pling was used to calculate the global sensitivities. The power (base 10) of the results are
plotted on an axis ranging from -2 to 0 on a logarithmic scale. As in the local sensitivity
analysis, the kinetic parameters with the greatest local sensitivity coefficients (from highest
to lowest in absolute value) are parameters 14, 5, 4, and 8. For the initial conditions, the
key initial conditions were the initial fraction of CD8+ T cells (naive and activated) and
the initial cancer fraction. These results were plotted by Dr. Michelle Przedborski.
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cells respectively). The other three significant parameters were related to the efficacy of
the patient’s inherent CD+ cytotoxic Tc cells (killing rate of cancer cells by CD8+ cytotoxic
Tc cells, net proliferation of CD8+ cytotoxic Tc cells, upregulation of CD8+ cytotoxic Tc
cell growth by IL-12). This class of factors is largely outside the clinician’s control since
these characteristics are inherent to the cancer and the patient themselves.

The other significant network of interactions identified by sensitivity analysis were those
between CD4+ Th1 and Th2 helper cells [44]. The pre-treatment fraction of CD4+ Th1
helper cells and CD4+ Th2 helper cells as well as their dominant cytokines, IL-12 and
IL-6 respectively, were identified as potential biomarkers of positive response to anti-PD-1
immunotherapy. This is a more useful result because these factors may be responsive to
immunotherapy since these cells and cytokines have been studied and modified in other
contexts, e.g. autoimmune diseases [45].

5.4.1 Future work

As in Chapter 4, there is further analysis that we can do with this model. These include
model reduction [40], identifiability analysis [39], and uncertainty analysis [55].

Global sensitivity analysis is used to identify the most significant parameters across
the entire parameter space, as opposed to local sensitivity analysis, which calculates sen-
sitivities for a specific set of parameters, i.e. a specific point within the parameter space.
Calculating global sensitivities would thus identify the most significant parameters inde-
pendent of the particular fit or cell line that we’re working with. Global sensitivities can
also identify the most effective ways of traversing the parameter space, which can be very
useful when trying to modify the phenotype or behaviour of a cell line, e.g. manipulating
a cell line from a drug-resistant state to a drug-responsive state [40].

Along with sensitivity analysis, we could apply a model reduction to this PD-1 model
by identifying the key reactions necessary to produce the desired output (a proper fit to
in vitro data). This model reduction would reduce the number of parameters and make in
silico experiments more cost-effective with regards to computational time [40].

Identifiability analysis is used to evaluate whether it is theoretically possible to identify
the true values of a model. It is important that we check that our model is identifiable before
assessing the accuracy of our parameters. Once a model has been identified as identifiable
or once it has been modified to be identifiable, uncertainty analysis is used to evaluate our
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parameter estimates by calculating the confidence intervals for each parameter. Thus, we
can evaluate the probability that our set of parameters is an accurate description of the
observed phenomenon [39].

The model could also be extended with additional biological compartments. A straight-
forward extension would be to include regulatory T cells within the network [105]. The
model could then validate or disprove the model assumption that regulatory T cells act
equally on all T cell compartments.

The model could also be extended by considering other areas of the body. For instance,
we could introduce additional compartments to represent the T cells within the circulating
blood stream [107], the thymus [108], and the blood marrow [109]. This would make our
model more relevant to an in vivo setting. Thus, this model could potentially predict
patient response to treatment in a clinical setting.

We could also extend this model to include different types of therapy. Immunotherapy
is not usually administered in isolation, so it would be more clinically relevant to include
other forms of treatment such as surgery, chemotherapy, and radiation therapy [4, 5]. In
particular, we could study a combination of drugs used to manipulate the Th1-Th2 bal-
ance in combination with anti-PD-1 immunotherapy to improve response to anti-PD-1
immunotherapy [45].
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Chapter 6

Conclusion

In this thesis, we have shown how in silico experiments can be used with in vitro
experiments to study treatment efficacy and inter-tumour and inter-patient heterogeneity.

In Chapter 2, we demonstrated a process in which experimental in vitro studies and
computational in silico studies can be used together to characterize breast cancer cell lines
based on their mammosphere formation dynamics. To our knowledge, this model is the
first example of an agent-based model (of the hierarchy model) to study the early cancer
stage of mammosphere formation [42].

We demonstrated how sensitivity analysis can be used on the resulting in silico model to
identify the key cellular behaviours during early cancer development of any cell line. This
information is valuable in characterizing a patient’s tumour and in designing a suitable
treatment regime. In our demonstration using MCF-7 breast cancer cells, we produced
a mathematical description of the growth dynamics of MCF-7 mammosphere formation.
With the resulting model, we presented evidence that progenitor cells are the driving force
behind mammosphere formation in MCF-7. Although cancer stem cells play a key role,
these sensitivity analysis results indicate that progenitor cells should be our primary focus
for early stages of MCF-7 growth.

Finally, the resulting in silico model can be used as a substitute for in vitro experiments.
In silico experiments are more cost-effective and efficient than their in vitro counterparts,
so it is valuable to have an in silico model as an alternative, especially in the early stages
of hypothesis generation and testing.
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Another important result of Chapter 2 is that we justified the use of a spatial frame-
work when studying mammosphere growth. Migration refers to a cell’s ability to either
migrate outwards or push cells further away to promote further growth. In the absence of
this movement or pushing outwards, we find that tumour development is limited due to
self-inhibition. In this study, we gave evidence that migration was a necessary assumption
in order to properly recreate the observed in vitro mammosphere formation dynamics. Bio-
logically, this may be explained as the cancer’s lack of adhesion inhibition, in which normal
cells stop growing when they are in contact with other cells [53]. Alternatively, epithelial-
mesenchymal transition may allow tumour cells to physically disperse from the inner core
of the tumour, allowing for accelerated growth [24, 25]. These cancer characteristics are
thus key phenomena in capturing early cancer development dynamics.

In Chapter 3, we modified the model from Chapter 2 to characterize the effect of pres-
sure and drug on mammosphere formation. Although other microenvironmentmicroenvironmental
factors have been studied, this is the first time that an experimental-mathematical study
has been used to characterize the effect of pressure (with and without drug) on mammo-
sphere formation. The study gave evidence that pressure conditions may induce increased
plasticity in cell phenotype, which can lead to improved response to chemotherapy as ob-
served in the in vitro experiments. Thus, pressure is an important microenvironmental
factor to consider when studying tumour heterogeneity.

Another interesting result of this work is that high pressure does not affect the uptake of
drug into the cells. This implies that interstitial fluid pressure prevents drug from entering
the tumour microenvironment as opposed to changing the cells’ ability to take in the drug.

In Chapter 4, we identified the Hsp90 protein network as a means by which we can
overcome drug resistance in drug-tolerant cancer cells. An in silico model was used to show
that radicicol can overcome the development of drug resistance in drug-tolerant cancer cells
from docetaxel if the treatment sequence took advantage of the synergy between the two
drugs. To our knowledge, this is the first model to analyze the Hsp90 protein network in a
drug-tolerant cancer cell and design a treatment schedule to overcome its drug resistance.

Additionally, we gave evidence that a nanoparticle formulation took better advantage
of the synergy between docetaxel and radicicol compared to the simultaneous release of
free drug into the tumour microenvironment. Due to the slower release of radicicol in the
nanoparticle formulation, cells had more time to develop resistance to docetaxel before
radicicol effected the reversal of resistance in those drug-tolerant cancer cells, resulting in
a greater increase of cell death.
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Finally, we used the model to identify key mechanisms or factors that would be most
effective in increasing cell death with the docetaxel-radicicol treatment sequence. All the
significant parameters were related to Hsp90 activity, confirming the importance of this
drug in effecting cell death in a drug-tolerant cancer cell. We also identified the drug intake
rate and the decay rate of radicicol as drug formulation properties that could potentially
improve the effect of the docetaxel-radicicol treatment sequence.

In Chapter 5, we constructed a systems biology model to investigate the response of the
immune system to anti-PD-1 cancer treatment. Using sensitivity analysis, we identified
two important interaction networks with regards to response to anti-PD-1 immunotherapy:
1) the interaction between cancer cells and CD8+ cytotoxic Tc cells, and 2) the balance
between CD4+ Th1 and Th2 helper cells. These results reinforce the experimental ob-
servation that the variability in patient response is connected to the upregulation of Th1
levels.

The first network of interactions was between cancer cells and CD8+ cytotoxic T cells.
Some of the significant parameters were related to the stage and invasiveness of the cancer
cells, and some of the significant parameters were related to the efficacy of the patient’s
inherent CD+ cytotoxic Tc cells. These parameters are largely outside the clinician’s
control since these characteristics are inherent to the cancer and the patient themselves.

The other significant network of interactions identified by sensitivity analysis were those
between CD4+ Th1 and Th2 helper cells [44]. The pre-treatment fraction of CD4+ Th1
helper cells and CD4+ Th2 helper cells as well as their dominant cytokines, IL-12 and
IL-6 respectively, were identified as potential biomarkers of positive response to anti-PD-1
immunotherapy. This is a more useful result because these factors may be responsive to
immunotherapy since these cells and cytokines have been studied and modified in other
contexts, e.g. autoimmune diseases [45].

In each of the chapters, we investigate heterogeneity at a different level: cellular het-
erogeneity, variability in protein expression, and variability in immune system response.
We also consider the effect of the microenvironment on cellular dynamics. By developing
an in silico model to describe the biological phenomena, we can identify the underlying
mechanisms at work and provide potential biomarkers and potential improvements that
could be tested further.
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Belda-Iniesta, and Manuel González-Barón. Pi3k/akt signalling pathway and cancer.
Cancer treatment reviews, 30(2):193–204, 2004.

[90] Michael J Lee, S Ye Albert, Alexandra K Gardino, Anne Margriet Heijink, Peter K
Sorger, Gavin MacBeath, and Michael B Yaffe. Sequential application of anticancer

120



drugs enhances cell death by rewiring apoptotic signaling networks. Cell, 149(4):780–
794, 2012.

[91] Alejandra Tomas, Clare E Futter, and Emily R Eden. Egf receptor trafficking: con-
sequences for signaling and cancer. Trends in cell biology, 24(1):26–34, 2014.

[92] Peter J Delves and Ivan M Roitt. The immune system. New England journal of
medicine, 343(1):37–49, 2000.

[93] Dario AA Vignali, Lauren W Collison, and Creg J Workman. How regulatory t cells
work. Nature Reviews Immunology, 8(7):523, 2008.

[94] Joseph A Trapani and Mark J Smyth. Functional significance of the per-
forin/granzyme cell death pathway. Nature Reviews Immunology, 2(10):735, 2002.

[95] Sean Diehl and Mercedes Rincón. The two faces of il-6 on th1/th2 differentiation.
Molecular immunology, 39(9):531–536, 2002.

[96] Gordon J Freeman, E John Wherry, Rafi Ahmed, and Arlene H Sharpe. Rein-
vigorating exhausted hiv-specific t cells via pd-1–pd-1 ligand blockade. Journal of
Experimental Medicine, 203(10):2223–2227, 2006.

[97] Andrew Yates, Claudia Bergmann, J Leo Van Hemmen, Jaroslav Stark, and Robin
Callard. Cytokine-modulated regulation of helper t cell populations. Journal of
theoretical biology, 206(4):539–560, 2000.

[98] Mercedes Rincón, Juan Anguita, Tetsuo Nakamura, Erol Fikrig, and Richard A
Flavell. Interleukin (il)-6 directs the differentiation of il-4–producing cd4+ t cells.
Journal of Experimental Medicine, 185(3):461–470, 1997.

[99] Thomas F Gajewski and Frank W Fitch. Anti-proliferative effect of ifn-gamma in
immune regulation. i. ifn-gamma inhibits the proliferation of th2 but not th1 murine
helper t lymphocyte clones. The Journal of Immunology, 140(12):4245–4252, 1988.

[100] Caroline Robert, Jacob Schachter, Georgina V Long, Ana Arance, Jean Jacques
Grob, Laurent Mortier, Adil Daud, Matteo S Carlino, Catriona McNeil, Michal
Lotem, et al. Pembrolizumab versus ipilimumab in advanced melanoma. New Eng-
land Journal of Medicine, 372(26):2521–2532, 2015.

[101] Taku Okazaki and Tasuku Honjo. The pd-1–pd-l pathway in immunological tolerance.
Trends in immunology, 27(4):195–201, 2006.

121



[102] Michael A Fishman and Alan S Perelson. Th1/th2 differentiation and cross-
regulation. Bulletin of mathematical biology, 61(3):403–436, 1999.

[103] Steven E Macatonia, Nancy A Hosken, Mark Litton, Paulo Vieira, Chyi-Song Hsieh,
Janice A Culpepper, Maria Wysocka, Giorgio Trinchieri, Kenneth M Murphy, and
Anne O’Garra. Dendritic cells produce il-12 and direct the development of th1 cells
from naive cd4+ t cells. The Journal of Immunology, 154(10):5071–5079, 1995.

[104] Joel Fleury Djoba Siawaya, Teri Roberts, Chantal Babb, Gillian Black, Hawa Jande
Golakai, Kim Stanley, Nchinya Bennedict Bapela, Eileen Hoal, Shreemanta Parida,
Paul Van Helden, et al. An evaluation of commercial fluorescent bead-based luminex
cytokine assays. PloS one, 3(7):e2535, 2008.

[105] Shimon Sakaguchi. Regulatory t cells: key controllers of immunologic self-tolerance.
Cell, 101(5):455–458, 2000.

[106] Kwang-Hyun Cho, Sung-Young Shin, Walter Kolch, and Olaf Wolkenhauer. Exper-
imental design in systems biology, based on parameter sensitivity analysis using a
monte carlo method: A case study for the tnfα-mediated nf-κ b signal transduction
pathway. Simulation, 79(12):726–739, 2003.

[107] Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, and
Peter Walter. Lymphocytes and the cellular basis of adaptive immunity. In Molecular
Biology of the Cell. 4th edition. Garland Science, 2002.

[108] Hiroyuki Takaba and Hiroshi Takayanagi. The mechanisms of t cell selection in the
thymus. Trends in immunology, 38(11):805–816, 2017.

[109] Francesca Di Rosa and Reinhard Pabst. The bone marrow: a nest for migratory
memory t cells. Trends in immunology, 26(7):360–366, 2005.

122



APPENDICES

123



Appendix A

Additional flow cytometry data

The following images show flow cytometry results for two other cell lines studied in
the Mathematical Medicine Laboratory: MDA-MB-231 (shown in Figure A.1) and SKBR3
(shown in Figure A.2).
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Figure A.1: Flow cytometry results for breast cancer cell line MDA-MB-231. The biomark-
ers CD24 (y-axis) and CD44 (x-axis) were used to identify the different cell subpopulations.
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Figure A.2: Flow cytometry results for breast cancer cell line SKBR3. The biomarkers
CD24 (y-axis) and CD44 (x-axis) were used to identify the different cell subpopulations.
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Glossary

AGF angiogenic growth factor 10

AMS average mammosphere size 26

angiogenesis The physiological process through which new blood vessels form from pre-
existing vessels 2, 45

antibody A protein produced mainly by plasma cells that is used by the immune system
to neutralize pathogens such as pathogenic bacteria and viruses 4, 89

antigen A toxin or other foreign substance which induces an immune response in the
body, especially the production of antibodies 4, 88

apoptosis The death of cells which occurs as a normal and controlled part of an organism’s
growth or development 2, 46, 64, 88

ATCC American Type Culture Collection 26

AUC area under concentration 76

autocrine A form of cell signaling in which a cell secretes a hormone or chemical messenger
(called the autocrine agent) that binds to autocrine receptors on that same cell,
leading to changes in the cell 89

BCS biopharmaceutical classification system 60

biomarker A measurable substance in an organism whose presence is indicative of some
phenomenon such as disease, infection, or environmental exposure 11, 26, 47, 87, 111

CA cellular automata 11
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cancer stem cell Cancer cells that possess characteristics similar to normal stem cells,
in particular, tumour-initiating potential 1, 27, 51, 109

caspases A family of protease enzymes playing essential roles in apoptosis and in inflam-
mation 64

cell cycle arrest A regulatory process that halts progression through the cell cycle during
one of the normal phases (G1, S, G2, M) 65

chaperone protein A protein that assists the covalent folding or unfolding and the as-
sembly or disassembly of other macromolecular structures 64

chemotherapy The use of any drug to treat a disease 2, 46, 66, 108, 110

CSC cancer stem cell 8, 27, 60

cytokine Any of several substances, such as interferon, interleukin, and growth factors,
which are secreted by certain cells of the immune system and which influence other
cells 24, 65, 87, 111

cytoprotection A process by which chemical compounds provide protection to cells
against harmful agents 64

cytotoxicity The quality of being toxic to cells 4, 55, 65, 88, 111

differentiate To make or become different in the process of growth or development 5, 27,
61, 64, 89

DMEM Dulbecco’s Modified Eagle’s Medium 26

DNA deoxyribonucleic acid 2, 48

DocRad-NP docetaxel-radicicol nanoparticle 81

DOX doxorubicin hydrochloride 48

DTC drug-tolerant cancer cell v, 13, 63

EGF epidermal growth factor 2, 86

EMT epithelial-mesenchymal transition 8, 60

eradication The complete destruction or elimination of something 32
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FBS fetal bovine serum 26

flow cytometry A technique used to detect and measure physical and chemical charac-
teristics of a population of cells or particles 35, 46, 87

fluorescence The emission of light by a substance that has absorbed light or other elec-
tromagnetic radiation 11, 35, 48

hemorrhage An escape of blood from a ruptured blood vessel, especially when profuse
10

heterogeneity The quality or state of being diverse in content 1, 44, 60, 109

homeostasis The ability of an organism or environment to maintain stability in spite of
perturbations or disturbances in the organism or environment 2, 64

homogeneous Consisting of parts all of the same kind 58

hypoxia Deficiency in the amount of oxygen reaching the tissues 4, 45

IFP interstitial fluid pressure 10

immunotherapy The use of natural or artificial substances to boost the immune system’s
response to a disease 2, 87, 111

inflammation The inflammatory response, which occurs when tissues are injured, and
damaged cells release chemicals in response 2

interstitial fluid A thin layer of fluid which surrounds the body’s cells 1, 60, 110

ligand A substance that forms a complex with a biomolecule to serve a biological purpose
2, 87

mammosphere A collection or colony of breast cancer cells that have reached sufficient
size to be detectable by diagnostic imaging 8, 25, 46, 109

metastasis The development of secondary malignant growths at a distance from a primary
site of cancer 2, 62, 64

MFE mammosphere formation efficiency 26
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microenvironment The immediate small-scale environment of an organism 1, 44, 46, 63,
89, 110

mitotic spindle The macromolecular machine that segregates chromosomes to two daugh-
ter cells during mitosis 64

multipotency The characteristic of having the capacity to self-renew by dividing and to
develop into multiple specialized cell types present in a specific tissue or organ 9

necrosis The death of most or all of the cells in an organ or tissue due to disease, injury,
or failure of the blood delivery 10

NP nanoparticle 81

NSERC Natural Sciences and Engineering Research Council vi

ODE ordinary differential equation 11

oncogenic Causing development of a tumor or tumors 64

PBS phosphate buffered saline 26

PDE partial differential equation 11

phenotype The set of observable characteristics of an individual resulting from the inter-
action of its genotype with the environment 1, 27, 46, 64, 107, 110

phosphorylation The chemical addition of a phosphoryl group (PO3-) to an organic
molecule 65

PI propidium iodide 48

plasma membrane The membrane found in all cells that separates the interior of the
cell from the outside environment 65

plasticity The adaptability of an organism to changes in its environment 8, 27, 46, 110

protein kinase An enzyme that regulates the biological activity of proteins by phos-
phorylation of specific amino acids with ATP as the source of phosphate, thereby
inducing a conformational change from an inactive to an active form of the protein
64
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radiotherapy The use of radiation to treat a disease 2

RB retinoblastoma-associated 2

secretion The process by which a substance is made and released by a living thing 4, 89

signal transduction The transmission of molecular signals from a cell’s exterior to its
interior 64

stochasticity The state of being a randomly determined process 8, 27, 55

susceptibility The state or fact of being likely or liable to be influenced or harmed by a
particular thing 58

telomere A region of repetitive nucleotide sequences at each end of a chromosome, which
protects the end of the chromosome from deterioration or from fusion with neighbor-
ing chromosomes 8

transcription factor A protein that controls the rate of transcription of genetic infor-
mation from DNA to messenger RNA, by binding to a specific DNA sequence 64

vasculature The blood vessels or arrangement of blood vessels in an organ or part 10
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