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Abstract

The goal of this thesis is to describe, implement and analyse Monte Carlo (MC) al-
gorithms for simulating the mechanism of diffusion magnetic resonance imaging (dMRI).
As the inverse problem of mapping the sub-voxel micro-structure remains challenging, MC
methods provide an important numerical approach for creating ground-truth data. The
main idea of such simulations is first generating a large sample of independent random
trajectories in a prescribed geometry and then synthesizing the imaging signals according
to given imaging sequences.

The thesis starts by providing a concise introduction of the mathematical background
for understanding dMRI. It then proceeds to describe the workflow and implementation
of the most basic Monte Carlo method with experiments performed on simple geometries.
A theoretical framework for error analysis is introduced, which to the best of the author’s
knowledge, has been absent in the literature. In an effort to mitigate the costly nature
of MC algorithms, the geometrically adaptive fast random walk algorithm (GAFRW) is
implemented, first invented by D.Grebenkov. Additional mathematical justification is
provided in the appendix should the reader find details in the original paper by Grebenkov
lacking. The result suggests that the GAFRW algorithm only provides moderate accuracy
improvement over the crude MC method in the geometry modeled after white matter
fibers. Overall, both approaches are shown to be flexible for a variety of geometries and
pulse sequences.
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Chapter 1

Introduction

Since its advent in the mid-1980s, diffusion magnetic resonance imaging (dMRI) has be-
come the state-of-the-art non-invasive technique for probing the micro-structure of the
central nervous system. dMRI has shown to be capable of revealing cellular morphology
at a finer scale compared to typical MRI resolution. The most widely-applied imaging
technique is diffusion tensor imaging (DTI). Combined with tractography based on DTI
derived quantities, scientists have been able to determine structure of the central nervous
system.

Despite its great advancement and popularity, many questions in dMRI remain open,
the most fundamental one being consistently mapping the diffusion-restricting geometry.
Theoretically answering this question has been proven to be highly challenging. In ad-
dition, research that only uses real images taken from an MRI scanner can be expensive
and sensitive to imaging artifacts. Therefore, numerical experiments is a popular research
method in hope of gaining insights into the largely featureless MR signals.

Among various existing approaches, Monte Carlo methods are used for building a dif-
fusion MR simulator in this study. Our methods are developed based on the fundamental
principles of the formation of MR images. Careful implementation is carried out to per-
form simulations on relatively simple geometries. Mathematical justification are included
wherever approximations are employed. I hope the our simulation schemes can make con-
tribution to the vibrant area of diffusion MRI.

1



Chapter 2

Mathematical Foundation

2.1 Behaviour of protons in magnetic fields

We begin our exploration of the world of magnetic resonance imaging (MRI) by laying out
the physical laws governing elementary particles. One of the most important discoveries
in modern physics is that particles possess a quantum mechanical property known as
spin. Although having no counterpart in classical physics, spin can be understood by the
following two classical analogues:

• Spin induces a magnetic moment for a charged particle. As a consequence, charged
particle can interact with the external magnetic field. This is similar to the everyday
phenomena that a compass needle adjusts its orientation under the influence of the
earth’s magnetic field.

• Elementary particles possess angular momentum, referred to as the intrinsic angular
momentum. This means that an external torque would cause the particle to precess
in the same way that a classical spinning top would behave.

As a result, the external magnetic field can be used to manipulate the motion of pro-
tons. Our discussion will be focused on the spin-bearing water molecules as they are the
main source of signal in diffusion MRI. We will explain how a signal and more importantly,
an image can be generated by applying external magnetic fields of various temporal and
spatial profile. The mathematical machinery needed is introduced along the way. Although
a rigorous treatment of the MR physics requires quantum mechanics (for example, see [6]
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or [7] for an excellent introduction), the theory laid out in this work is classical as it is
sufficient for understanding diffusion MRI.

A modern commercial MRI scanner is able to produce three types of magnetic field:
the main field, the radio frequency (rf) field and the gradient field. The cylindrical magnet
and coils used for generating those fields are organized in a coaxial manner (see [17] for a
scanner schematic). We will illustrate the role each field plays individually.

2.1.1 Main Field: Creating a net magnetization

Main field Generated by the main magnet, the main field or the static field, is the basis
of any nuclear magnetic resonance (NMR) experiment. It is of constant and uniform profile
for the whole duration of the MRI scanning process. It has an exceptionally strong field
strength (1.5 to 3.0 T1), typically denoted as B0. The direction of the main field always
aligns with the axis of the cylindrical shaped scanner, denoted as the z-axis. In addition,
the plane orthogonal to the main field is called the transverse plane, or xy plane.

Spin excess When spins experience no magnetic field, their orientation appears to be
random. Once the main magnet is activated the spins in the scanned sample (e.g, part of
a patient’s body) immediately align themselves either towards or against the direction of
the main field. If a water molecule has its magnetic moment pointing the same direction
of the main field, it is referred as being in the spin-up state. Otherwise it is called to be
in the spin-down state. At thermal equilibrium, more water molecules are in the spin-up
state since it has lower energy, a phenomenon known as the spin excess. A computation
based on statistical mechanics shows that ratio of the numbers of spin-up water molecules
(N+) versus spin down-ones (N−) is given by the Boltzmann factor:

N+

N−
= exp (

γB0~
kBT

), (2.1)

where

• γ = 2.38× 108rad · T−1 · s−1 is the proton gyromagnetic ratio,

• ~ = 1.05× 10−34J · s is the reduced Planck constant,

1Compared to the earth magnetic field strength which is only around 5× 10−5 T.
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• kB = 1.38× 10−23J/K is the Boltzmann constant,

• T is the absolute temperature.

At room temperature this ratio is around 10−6 for B0 = 1.5 T.

In a millimetic sub-sample (known as a voxel in MRI literature), we define the quantity
called the spin magnetization, denoted by M , by summing up the magnetic moment of all
protons within (typically of the number around 1023). Due to spin excess, a magnetization
with the direction of the main field is produced (shown in Figure 2.1). The vector magneti-
zation density m is defined as the magnetization per volume of sample. A derivation based
on statistical mechanics shows that the equilibrium magnetization density is proportional
to B0 and ρ0,

m0 ∝ ρ0
γ2~2B0

kBT
. (2.2)

Figure 2.1: Spin orientations prior and after
applying the main field.

Figure 2.2: Time evolution of the magnetiza-
tion according to the simple Bloch equation.

Unfortunately, it is impossible to measure this induced magnetization experimentally
since its magnitude is extremely small in comparison to the main field strength. However,
if this magnetization vector can be ‘tilted’ off the main field direction, in other words, if
the induced magnetization has a non-zero xy component, there is hope to detect it.

4



Simple Bloch equation The time evolution of magnetization under the influence of an
external magnetic field B is described by the simple Bloch equation:

dm

dt
= γm×B. (2.3)

If the initial value of m(t) is m(0) = (m0x,m0y,m0z)
T , and we set B = B0ẑ, the solution

of the simple Bloch equation can be written in the matrix form:

m(t) = Rz(−ω0t)m(0), (2.4)

where ω = γB0 is called the Larmor frequency and

Rz(θ) =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1


represents the transformation of the counterclockwise rotation about the z−axis by an angle
of θ. Geometrically, the z−component ofm(t) remains constant while the xy-component of
m(t) rotates clockwise about the z-axis at Larmor frequency (shown in Figure 2.2). The z-
and xy-component of m(t) are referred as the longitudinal and transverse magnetizations
respectively. The transverse magnetization will be our main quantity of interest from now
on. Notice that the x- and y- components of equation 2.4 can be combined into a complex
form,

mxy(t) = mxy(0)e−iω0t. (2.5)

The question remains that how a non-zero transverse magnetization can be created in the
first place. This is where the radio frequency (rf) pulse plays its role.

5



2.2 Signal detection

The simple Bloch equation predicts the Larmor precession of spins under influence of
external magnetic field. Additional magnetic fields can be applied to manipulate spin
motions.

2.2.1 Rotating reference frame

We introduce the rotating reference frame, a reference frame that rotates clockwise about
the z-axis at ω0. The time evolution of the magnetization can be described in this new
reference frame. Mathematically, this is equivalent of the change of variable:

m̃(t) = Rz(ω0t)m(t) (2.6)

Taking the time derivative on both sides and plugging into equation 2.3, one gets the simple
Bloch equation in the rotating reference frame:

dm̃

dt
= γm̃(t)×Beff, where Beff = Rz(ω0t)B −

ω0

γ
ẑ. (2.7)

Let B take the form of a perturbed main field so that the effective magnetic field becomes

B = B0ẑ + ∆B ⇒ Beff = Rz(ω0t)∆B + (1− ω0

γB0

)B0ẑ. (2.8)

The choice of ω0 = γB0 makes the second term vanish and the simple Bloch equation in
the rotating frame reads

dm̃

dt
= γm̃×Rz(ω0t)∆B. (2.9)

Unsurprisingly, when ∆B = 0, the solution in the rotating frame is a constant

m̃(t) = m(0).

2.2.2 Radio Frequency Pulses: Letting the spins dance

We now introduce our radio frequency (rf) field as a perturbation of the main field, which
takes the form of

∆B = B1(t)Rz(−ω0t)x̂. (2.10)
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In other words, the rf-field has a potentially time-dependent magnitude2 and a fixed direc-
tion measured in the rotating frame. Plugging into equation 2.9, one has

dm̃

dt
= γm̃× (B1(t)x̂). (2.11)

By comparing equation 2.11 to equation 2.3, one can recognize the interpretation of equa-
tion 2.11: the vector m̃(t) rotates clockwise about the x-axis at an instantaneous angular
velocity of γB1(t). Therefore, the solution of equation 2.11 is

m̃(t) = Rx(−θ(t))m̃(0), (2.12)

where

θ(t) = γ

∫ t

0

B1(t′)dt′ (2.13)

is called the flip angle; and the matrix

Rx(θ) =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 (2.14)

corresponds to the counterclockwise rotation about the x-axis by an angle of θ. Therefore,
the magnetization vector can be tilted away from the z-axis by the applying the rf-field
(the term ‘radio frequency’ is chosen due to the fact that the frequency of the field ω0

falls in the typical frequency range of radio transmission). Moreover, if we want to flip
the equilibrium magnetization to the xy plane, assuming B1 = 50µT being a constant, the
duration of the so-called 90◦ rf-pulse is given by

τπ
2

=
π/2

γB1

= 0.13ms. (2.15)

The process of bring bringing the m vector onto the xy plane is known as excitation. As
we can see the duration of this process is a very short3 so it is treated as approximately
instantaneous throughout the rest of this thesis (Figure 2.3).
The goal of creating a transverse magnetization is now achieved and we shall proceed to
explain how a signal is generated from it.

2In practice, the time profile of B1(t) approximately takes the form of a sinc function.
3In contrast, a typical diffusion encoding gradients (introduced later) lasts tens of milliseconds.
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Figure 2.3: (a) Magnetic fields (measured in the lab frame): B0, the static field; B1, a
rf-pulse. (b) Excitation due to a 90◦ rf-pulse.

Figure 2.4: Oscillating EMF detected by the receiver coil.
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2.2.3 Receiver Coil: measuring signals

A receiver coil surrounding the sample is placed in a MRI scanner in order to detect the
MR signal. The orientation of the coil is orthogonal to the main field. Once the trans-
verse magnetization is created by the 90◦ rf-pulse, it precesses about the z-axis at Larmor
frequency ω0 in the laboratory frame. As a result, a periodic magnetic field exists inside
the receiver coil, which produces a measurable electromotive force (EMF) according to
Faraday induction law (Figure 2.4). This EMF is called a MR signal.

The aforementioned EMF can be expressed mathematically. Let Ω be the whole sam-
ple and the proton density distribution is given by the function ρ(r). Without loss of
generality we let the axis of the receiver coil be the y-axis. The transverse magnetization
density rotates at Larmor frequency (equation 2.5). The magnetic flux goes through the
cross section of the coil and is proportional to the y-component pf the total transverse
magnetization in the sample,

Φ(t) ∝
∫

Ω

ρ(r)Im(mxy(t))dr. (2.16)

The proportionality constant depends on the area of the cross section and the number turns
of the receiver coil. The induced EMF, according to Faraday’s induction law, is written as

EMF(t) = −dΦ

dt
∝ d

dt

∫
Ω

ρ(r)m0 sin (ω0t)dr ∝
∫

Ω

ρ(r) cos (ω0t)dr. (2.17)

For simplicity the cosine function is replaced by a complex exponential. Dropping the
proportional sign the signal measured at time t can be written as

E(t) =

∫
Ω

drρ(r)eiω0t = eiω0t

∫
Ω

drρ(r). (2.18)

The crucial observation here is that the complex exponential factor is taken out of the
integral. This is due to the fact that the local precession frequency is uniform across the
whole sample.

Therefore, the signal generated by spins in a static field is just a sinusoidal function
with a single frequency. This is not very useful in application since the only information
we can extract from this signal is the total number of protons. To address this issue, inho-
mogeneous fields are necessary for encoding spatial information, in other words, producing
an image.
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2.3 The Gradient Field: Forming an Image

The most common inhomogeneous field is the gradient magnetic field. The spatial profile
of a gradient field strength satisfies a linear function at any time. In Cartesian coordinates,
the general expression for its field strength is given by,

Bg(r, t) = 〈G(t) · r〉 = Gx(t)rx +Gy(t)ry +Gz(t)rz, (2.19)

where G(t) = (Gx(t), Gy(t), Gz(t))
T is called the gradient vector.

It is worth pointing out the difference between the magnetic field vector and the gradient
vector: the former is always in the z−direction; while the later, orthogonal to the isosurfaces
of the field strength, can be in arbitrary direction (Figure 2.5).

Figure 2.5: A general gradient field: G, the gradient vector; B, magnetic field vector;
r ·G = const, field strength isosuraces.

Imaging equation In the rotating reference frame, the accumulated phase of the spins
in the vicinity of r during time interval [0, t] is given by

ϕ(r, t) =

∫ t

0

dt′Bg(r, t
′) =

∫ t

0

dt′(Gx(t
′)rx +Gy(t

′)ry +Gz(t
′)rz)

= kxrx + kyry + kzrz = 〈k(t) · r〉,
(2.20)
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where

k(t) = (kx(t), ky(t), kz(t))
T =

∫ t

0

G(t′)dt′. (2.21)

k(t) is called the wave vector and its components are referred to as spatial frequencies, for
reasons which shall soon become clear. The set of all possible values of k = (kx, ky, kz) is
referred to as the k-space.

Therefore, the transverse magnetic moments of the spins in the vicinity of r are pro-
portional to exp(iϕ(r, t)). Let ρ(r) be the spin density distribution, the signal measured
at time t is given by the net transverse magnetization,

S(k) =

∫
Ω

drρ(r)ei〈k·r〉. (2.22)

Equation 2.22 is called the imaging equation. We have shown that the signal is the Fourier
transform of the proton density function. By Fourier inversion theorem, the function ρ(r)
can be reconstructed by taking the inverse Fourier transform of S(k). Ignoring the pro-
portionality constant, one has

ρ(r) =

∫
Ω

dkS(k)e−i〈k·r〉. (2.23)

In practice, a sample of sufficient number of S(k) values, known as a k-space trajectory,
is need for computing the discrete Fourier inverse transform. It is clear that to acquire
higher resolution of images one need a larger size k-space sample points. To execute such
sampling process, an imaging sequence is applied, which consists of delicately designed
combination of gradients and rf-pulses generated at precise moments. Readers interested
in greater details can consult [6].
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2.4 Relaxation

In reality, the simple Bloch equation is an incomplete description for the time evolution of
the magnetization vector. In addition to Larmor precession, experimental evidence indi-
cates that immediately after excitation, the magnetization vector starts gradually restoring
to its equilibrium value (and direction). Such phenomena is referred to as relaxation, which
can be classified into the following two categories:

• T1 relaxation, also known as the longitudinal or spin-lattice relaxation. The effect
of T1 relaxation is that the longitudinal magnetization regrows from zero to its full
strength i.e., equilibrium strength m0. This is caused by the irreversible transfer of
energy from the protons to the surrounding environment;

• T2 relaxation, also known as the transverse or spin-spin relaxation. The effect of T2

relaxation is that the transverse magnetization decays to zero. This occurs due to
the loss of phase cohesion among nuclei.

In the rotating frame the differential equations for modeling those two types of relax-
ations are:

dm̃z

dt
=

1

T1

(m0 − m̃z),
dm̃xy

dt
= −m̃xy

T2

, (2.24)

where T1 and T2 are time constants depending on the type of tissues. For the same tissue
T1 is always greater than T2. Typically T2 is around 100ms while T1 can range from 200ms
to 2s.

If the initial condition for m̃ is (0,m0, 0), the solutions are simply

m̃x(t) = 0, m̃y(t) = m0e
− t
T2 , m̃z(t) = m0(1− e−

t
T1 ). (2.25)

The full Bloch equation in the laboratory frame is given by

dm

dt
= γm×B − 1

T2

(mxx̂+myŷ) +
1

T1

(m0 −mz)mxẑ. (2.26)

Since time constants T1 and T2 are both tissue-dependent4, both relaxation mechanisms
are utilized to create contrasts in MR images.

4Typical magnitudes of T1 and T2 are hundreds and tens of milliseconds respectively, see [5] for a study
on relaxation times of various tissues.
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2.5 Spin Echoes and Diffusion

Twelve years after the discovery of NMR in 1938, it was Hahn who first recognized its
application for studying molecule diffusion[15]. Here we only introduce the phenomenon
of spin echo and the diffusion process qualitatively. The relevant mathematical machinery
will be introduced in later sections.

2.5.1 Spin echo experiment

We present a description of the spin echo experiment to demonstrate the effect of an 180◦

rf-pulse.

Consider a sample of water molecules experiencing a time-independent inhomogeneous
magnetic field (B0 + ∆B(r))ẑ (assuming ∆B(r) � B0 everywhere). At time t = 0 the
usual 90◦ rf-pulse is applied and a measurable signal appears. It can be observed exper-
imentally, that the signal gradually vanishes as time elapses. However, the signal decay
rate can not be fully explained by the T1 and T2 relaxation effects.

Attempting to recover the signal loss, Hahn applied a second rf-pulse with a 180◦ flip
angle5 at t = TE/2. A measurable signal reemerged at t = TE, which is known as the
spin echo phenomenon. The 180◦ rf-pulse is sometimes referred to as the refocusing pulse.
The reemerged signal is appropriately named an echo and TE is the echo time.

Let us examine the mechanism of signal decay and reemergence in the rotating frame
(the tildes over the axis labels in subsection 2.2.1 are dropped for notation simplicity).
A schematic explanation is shown in Figure 2.6. Without loss of generality, at t = 0 all
spins are assumed to be flipped towards the positive y−axis by the 90◦ pulse. The spins
within the vicinity of location r immediately start to precess at the local Larmor frequency,
γ∆B(r). Thus, their accumulated phase at time t, t < TE−/2 is given by

φ(r, t) = π/2− γ∆B(r)t. (2.27)

The of the 180◦ pulse rotates the spin vectors by 180◦ about the x-axis, phase-wise this
means

φ(r, TE+/2) = −φ(r, TE−/2) = −π/2 + γ∆B(r)TE/2. (2.28)

5This can be achieved, for example, by doubling either the duration or strength of the excitation pulse
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The spins proceed to precess at their local Larmor frequencies afterwards. Thus for t >
TE/2, one has

φ(r, t) = φ(r, TE+/2)− γ∆B(r)(t− TE/2) = −π/2 + γ∆B(r)(TE − t). (2.29)

The second term vanishes when t = TE and

φ(r, TE) = −π/2 for all r. (2.30)

Therefore, an echo is observed at echo time.

The above analysis suggests all spin vectors realign at echo time, predicting an identi-
cal signal. However, experimental evidence shows that echo is still weaker than the initial
signal. This discrepancy is due to the unaccounted diffusion of the spin-bearing parti-
cles. Qualitatively speaking, the precise cancellation of the second term in equation (27)
relies on the assumption that the spin stays at location r for the whole duration of the
experiment. On the other hand, if the spins are mobile, the spins will experience different
local precession frequencies along their trajectories. This incomplete phase cancellation is
referred to as the dephase.

Overall, the moral of the story is that the more restricted spin diffusion is, the stronger
signal measured in the spin echo experiment. It is therefore possible to ‘label’ the trajec-
tories of water molecules via a spatially dependent magnetic field. The ultimate goal of
Diffusion MRI is to establish the relationship between the geometry of neural pathways
and the diffusion weighted MR signal.

Figure 2.6: (a) 90◦ pulse applied at t = 0, all spin orientations are set as y+; (b) spins
loses phase cohesion due to field inhomogeneity; (c) 180◦ pulse applied at t = TE/2, spins
rotate 180◦ about x-axis; (d) spins refocus at t = TE.

14



2.5.2 Diffusion: self vs mutual

The term ‘diffusion’ is used with ambiguity in scientific literature. In the context of molec-
ular motions, diffusion may refer to mutual diffusion or self-diffusion, which are two distinct
physical phenomena. It is therefore worth clarifying the difference between them. Read-
ers interested in the exact mechanism of both types of diffusion can find more details in [30].

Mutual-diffusion occurs in systems containing multiple substances. A concentration
inhomogeneity (also known as gradient) of any substance causes mass fluxes in an effort
to nullify the gradient. For example, one can consider the process of ink being poured into
clear water. The mutual diffusion coefficient, DM(m2 · s−1), is used to characterize how
sensitive the mass flux is to the concentration gradient.

Self-diffusion is the random (stochastic) translational motion of molecules due to their
thermal energy and collisions with surrounding molecules or boundaries. The individual
self-diffusing trajectories are highly irregular and unpredictable while their statistical prop-
erties can be well characterized. For example, no net displacement is observed so the diffus-
ing substance makes no net motion. In addition, molecules starting from the same location
‘spread’ out over time and a parameter D(m2 · s−1), known as the self-diffusion coefficient,
is used to quantify how fast such ‘spreading’ takes place. The magnitude of self-diffusion
coefficient ranges from 10−20m2 · s−1 for solids to 1m2 · s−1 for gases. We are mostly inter-
ested in the diffusion of water molecules, whose diffusion coefficient D = 2.3× 10−9m2 · s−1

at room temperature.
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2.6 Mathematical machinery

Ever since the discovery of Brownian motion in 1827, finding an appropriate mathematical
model for such phenomena has attracted great attention from biologists, physicists and
mathematicians alike. In this section, we introduce two of the most prominent tools,
namely the theories of diffusion equation and Markov processes.

2.6.1 Diffusion equation

Derivation We first derive the diffusion equation in the context of mutual diffusion.

Let A, B be two types of substance exist in a solution. As a classical example, one
may think of A as pollen grains and B as water. Let c(r, t) be the time- and spatially-
dependent concentration of A, where c has unit mol ·m−3. The mass flux density J(r, t), a
time-dependent vector field describes the rate of transport of substance A. More precisely,
consider an infinitesimal surface, with area ∆S, passing through point r. The amount of
A particles passing through the tiny surface during time interval [t, t+ ∆t) is equal to the
magnitude of J∆S∆t when ∆S and ∆t are small. The direction of J is orthogonal to the
surface ∆S. Mass conservation gives rise to the continuity equation,

∂c(r, t)

∂t
+∇ · J = 0, (2.31)

where ∇· is the divergence operator.

As mentioned in the previous section, mutual diffusion means particles relocate due to
concentration imbalance. Assuming no net flow (bulk motion) exists in the system, the
most commonly used constitutive relation linking the mass concentration and its flux is
Fick’s law. The relation states that the flux density is a linear function of the negative
concentration gradient:

J = −DM∇c(r, t), (2.32)

where ∇ is the gradient operator and DM is the mutual diffusion coefficient matrix, known
as the diffusion tensor. In general, DM is a symmetric positive-definite and can be spatially
dependent. The diffusion is said to be isotropic if DM is proportional to the identity matrix.
As an example, for diffusion of spherical particles through a liquid with low Reynolds
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number, the diffusion coefficient is given by the Stokes-Einstein relation6:

DM =
kBT

6πηr
, (2.33)

where kB is the Boltzmann’s constant; T is the absolute temperature; η is the viscosity of
the liquid; and r is the spherical radius of the particle.

Combining equations 2.31 and 2.32 yields the well-known diffusion equation:

∂c(r, t)

∂t
= ∇ · (DM∇c(r, t)). (2.34)

In the case of isotropic diffusion, equation 2.34 is reduced to

∂c(r, t)

∂t
= DM∇2c(r, t), (2.35)

where ∇2 is the Laplacian operator.

Boundary conditions In applications, additional information is often needed to find
meaningful solutions of the diffusion equation, which may include initial conditions (ICs)
and boundary conditions (BCs). The initial condition c(r, 0) = c0(r) specifies the con-
centration profile prior to diffusion. The boundary conditions depend on the physical and
chemical nature of the diffusing domain. Common BCs include:

• Dirichlet or the 1st kind, where the value of c(r, t) is prescribed on the boundary.
The homogeneous case reads

c(r, t) = 0 for r ∈ ∂Ω (2.36)

and is associated with an absorbing boundary. Physically, one can the substance
disappears once it touches the boundary, perhaps due to chemical reactions.

• Neumann or the 2nd kind, where the normal component of the boundary mass flux
is prescribed. This is equivalent to specifying the normal derivative of c(r, t). The
homogeneous Neumann BC reads

DM
∂c

∂n
(r, t) = 0 for r ∈ ∂Ω, (2.37)

6Notice that in the formula diffusion coefficient reflects a compromise between the internal energy of
particles and ‘stickiness’ of their surrounding medium.
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where n is the unit exterior normal vector at the boundary. The homogeneous
Neumann BC applies when the boundary is completely insulating and as a result,
the total mass is conserved.

• Robin or the 3rd kind, where the linear combination of c(r, t) and ∂c
∂n

(r, t) is pre-
scribed. In diffusion NMR the most encountered Robin BC reads

DM
∂c

∂n
(r, t) + hc(r, t) = 0 for r ∈ ∂Ω, (2.38)

where the parameter h is a measure of boundary permeability, called the surface
relaxivity in MRI literature. Physically Robin BC’s correspond to scenarios where a
fixed portion of diffusing substance in the vicinity of the boundary is absorbed while
the rest is kept inside the region. Robin BCs reduces to the Neumann BCs When
h = 0 .

Analytical solutions of the diffusion equation in simple geometries are recorded in the clas-
sical text by J.Crank [8], mostly solved by separation of variables and integral transforms7.
Numerically, finite difference and finite element solvers are widely available as well.

7Moreover, [33], a recently published book contains over a thousand analytical solutions.
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2.6.2 Markov processes

The diffusion equations is a continuum model. On the microscopic level, the self-diffusion
of each water molecule is influenced by the constant collisions (of average frequency around
1021Hz) from the surrounding water molecules. The complexity of this many-body problem
makes it hopeless to look for deterministic solutions. On the other hand, at experimental
time scales, the collision forces have short memory8 and thus can be treated as Gaussian
white noise. Thus, at ‘large’ times, molecule positions can be treated as random variables.
The observed trajectories are realizations of a stochastic (or random) process , a continuum
of random variables.

We now present the stochastic formalism of diffusion. Let Ω ⊂ Rd(d = 1, 2, 3) be an
open and connected domain. The position process

{
r(t)

}
t>0

is modeled as a continuous
random walk with potential interactions with the boundary of Ω. The aforementioned
self-diffusion coefficient D is defined as

D = lim
t→∞

E
[
‖r(t)− r0‖2]

2dt
, (2.39)

where E [·] is the expectation operator. Therefore, the self-diffusion coefficient represents
the long-time growth rate of the second moment of the displacement size.

A random walk is an example of Markov processes. Physically, the Markov assumption
asserts that the all future states of the process are statistically independent to its history
with the possible exception of the current state. This is a well-researched area in probability
theory and the literature on the topic is abundant9.

Characterization Only two functions are needed in order to characterise such processes
completely, which are the initial distribution ρ(r0) and the transition probability Gt(r, r

′).
Typically, the initial distribution is assumed to be uniform. The transition probability is
also sometimes called the diffusion propagator or the Green’s function. Gt(r, r

′) has the
following interpretation: Given that the initial position is r, the conditional probability of
r(t) to be found in the ε-ball centered at r′ is proportional to Gt(r, r

′)dr′ as ε→ 0.

8A water molecule almost never gets the chance of moving freely for any experimentally distinguishable
time-scale. That means almost right after one collision, another one occurs. The collision history is
therefore quickly ‘forgotten’.

9See [20] for a full a rigorous treatment and [22],[35] for applications in natural sciences.
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To see why the knowledge of ρ(r0) and Gt(r, r
′) is sufficient for characterizing the

process, we consider a finite set of times of ascending order,

0 < t1 < · · · < tn,

where n = 1, 2, . . . . The n−th order probability density function (pdf) of the random
process

{
r(t)

}
t>0

is defined as the joint density function of variates (r0, r(t1), . . . , r(tn)),

known as a discrete skeleton of the process
{
r(t)

}
t>0

. By applying the law of conditional
probabilities and invoking the Markov assumption, one can write the pdf of any order in
terms of ρ(r0) and Gt(r, r

′):

fn(r0, r1, . . . , rn; t1, . . . , tn) = ρ(r0)Gt1(r0, r1) · · ·Gtn−tn−1(rn−1, rn). (2.40)

The transition probabilities can be thought as the ‘building blocks’ of Markov processes.
Furthermore, the transition probability satisfies the Chapman-Kolmogorov equation, a
semigroup property,

Gt(r0, r2) =

∫
Ω

dr1Gt1(r0, r1)Gt−t1(r1, r2) for any t1 and t s.t. 0 < t1 < t. (2.41)

In applications, the transition probability is the most crucial quantity for studying a
Markov process since it governs the time evolution. In next discussion, it will be shown
that Gt(r, r

′) satisfies the diffusion equation as well.
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2.7 Green’s Function

The relation between the micro- and macroscopic formalism of diffusion explains why the
transition probability Gt(r, r

′) is also referred to as the Green’s function. A heuristic ex-
planation is given below10.

Imagine that one walker is randomly chosen from a large ensemble of walkers. The
walker is labeled so it can be located. We subsequently ‘close our eyes’ for a time duration
of t. At time t we open our eyes and hope to find the walker in the vicinity of r. The
probability of success is proportional to the first order pdf,

f(r, t) =

∫
Ω

dr0ρ(r0)Gt(r0, r). (2.42)

Notice that the initial position r0 is integrated over since the walker is randomly sampled.

As we have no knowledge of the walker’s movement preferences, we can only look for
more populated regions in the hope of increasing our probability of success. Hence, it is
reasonable to assume that such probability is proportional to the concentration c(r, t),

c(r, t) = kf(r, t), k > 0. (2.43)

Substituting equations 2.42,2.43 into the equation 2.35 and replacing DM by D, one gets

0 =
∂c(r, t)

∂t
−D∇2c(r, t) =

∫
Ω

dr0kρ(r0)

(
∂Gt(r0, r)

∂t
−D∇2

r′Gt(r0, r)

)
,

where ∇2
r′ denotes the Laplacian is taken with respect to the second argument of Gt.

Let us assume that ρ(r0) is smooth and compactly supported; Gt(r, r
′) is C1 in t and

C2 in r′11; and Ω is arbitrary. Invoking the fundamental lemma of calculus of variation, one
concludes that the integrand can only be zero. Therefore, Gt(r, r

′) satisfies the diffusion
equation,

∂Gt(r0, r)

∂t
= D∇2

r′Gt(r0, r). (2.44)

10A more rigorous derivation using the Kramers–Moyal expansion can be found in [22].
11Ck means k−th order continuously differentiable.
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The initial condition of Gt(r, r
′) should be the Dirac delta function centred at r,

Go+(r, r′) = δ(r′ − r). (2.45)

To see this is true, we first notice that according to the probabilistic interpretation,
Go+(r, r′) is normalized and equals zero everywhere else except for r = r′, where it blows
up to infinity. Setting t = 0 in equation 2.42 yields

f(r, 0) = ρ(r0) =

∫
Ω

dr0ρ(r0)G0(r0, r), (2.46)

which is exactly the sifting property statement of the delta function.

Combining equations 2.34 and 2.45, we have shown that the transition probability is
in fact the Green’s function of the diffusion equation. Unless stated otherwise, the term
‘diffusion’ in the rest of the thesis means self-diffusion as diffusion NMR/MRI is mostly
applied for studying self-diffusion.

2.7.1 Boundary Conditions for Propagators

Boundary conditions introduced in subsection 2.6.1 can be imposed for Green’s functions.
Their probabilistic interpretation are examined below. We restrict our discussion to only
homogeneous BC’s due to their relevance to diffusion NMR.

Given that a particle’s initial position is r0 ∈ Ω, we are interested in the event where
the particle reaches the boundary for the first time at time t . Let Pt(r0, r) be a function
such that, the probability of the event of interest can be expressed as a surface integral
over ∂Ω, ∫

∂Ω

Pt(r0, r)dr. (2.47)

The integration over the second argument of Pt means that we are not interested in the
position of the arrival point.

On the other hand, consider the opposite of the aforementioned event, namely, the
particle stays in the interior of Ω for the whole duration of (0, t). Its probability is a
volume integral of propagator over Ω,∫

Ω

Gt(r0, r)dr. (2.48)
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Similar to before, the final position is integrated over.

By design, integrals 2.47 and 2.48 should add up to 1,∫
∂Ω

Pt(r0, r)dr +

∫
Ω

Gt(r0, r)dr = 1. (2.49)

Differentiating with respect to time yields∫
∂Ω

∂Pt(r0, r)

∂t
dr +

∫
Ω

∂Gt(r0, r)

∂t
dr = 0. (2.50)

Since Gt(r0, r) satisfies the diffusion equation, the time derivative of Gt can replaced by its
Laplacian (w.r.t.r) times D. Applying the divergence theorem, one can rewrite the second
integral of equation 2.50 as∫

Ω

∂Gt(r0, r)

∂t
dr =

∫
Ω

D∇ · ∇Gt(r0, r)dr =

∫
∂Ω

D∇Gt(r0, r) · ndr =

∫
∂Ω

D
∂Gt(r0, r)

∂n
dr,

where n is the outward normal unit vector of the surface ∂Ω. Therefore,∫
∂Ω

(
∂Pt(r0, r)

∂t
+D

∂Gt(r0, r)

∂n

)
dr = 0. (2.51)

Assuming the integrand in equation 2.51 is continuous and ∂Ω arbitrary, we conclude that

∂Pt(r0, r)

∂t
= −D∂Gt(r0, r)

∂n
for r ∈ ∂Ω. (2.52)

We are can now examine the three main types of boundary conditions individually (r ∈ ∂Ω
for all three cases).

• BC of the 1st kind,
Gt(r0, r) = 0. (2.53)

Rigorously speaking, the arguments of Gt can only be interior points of ∂Ω for dis-
cussing its probabilistic interpretation. Therefore, equation 2.53 should be under-
stood in the limiting sense where the second argument of Gt approaches the bound-
ary,

Gt(r0, r) = lim
r′∈Ω

dist(r′,∂Ω)→0

Gt(r0, r
′) = 0.

The Dirichlet BC suggests that particles are not allowed to stay close to the boundary.
If they do, their Brownian motion shall be terminated. Imposing ‘artificial’ Dirichlet
BC is a common technique for solving first exit problems, since one is only interested
in the part of the trajectory before the first visit to a certain region.
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• BC of the 2nd kind:

D
∂Gt(r0, r)

∂n
= 0. (2.54)

The time derivative of Pt equals zero according to equation 2.52, which means that
Pt must be time independent. Since P0+(r0, r) = 0 (the particle can not jump to
the boundary instantaneously), Pt(r0, r) ≡ 0. This implies that at no time can the
particle ever exit the confining domain. Therefore, a reflection must occur every time
the walker collide with the boundary.

• BC of the 3rd kind:

D
∂Gt(r0, r)

∂n
+ hGt(r0, r) = 0. (2.55)

Using equation 2.52 once again, one obtains

∂Pt(r0, r)

∂t
= hGt(r0, r). (2.56)

Since here Gt(r0, r) can be positive, so is the case for the time derivative of Pt. This
means the Pt (the probability of escaping) grows over time and becomes positive.
Therefore, termination and reflection are both possible at the boundary.

Some problems have mixed boundary conditions, the case where BCs of different kinds hold
for different sections of the boundary.

2.7.2 Gaussian Propagator and Wiener Process

The most famous example of the transition probability is the Gaussian heat kernel, also
known as the fundamental solution of the diffusion equation. In the case of unrestricted
diffusion, Gt is defined in terms of the solution of the following initial value problem:

∂Gt(r, r
′)

∂t
= D∇2Gt(r, r

′), r ∈ Rd

Gt(r, r
′) = δ(r − r′).

(2.57)

This initial value problem can solved by taking the d-dimensional Fourier transform of
both sides of equation 2.57. The fundamental solution turns out to be the pdf of a three-
dimensional Gaussian (or normal) distribution:

Gt(r, r
′) =

1

(4πDt)
d
2

exp (−‖r − r
′‖2

4Dt
). (2.58)
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As a result, it is established that the each component of r − r′, i.e the displacement dur-
ing a time interval of length t, is a Gaussian random variable with mean 0 and variance 2Dt.

The unrestricted diffusion gives rise to the Wiener process, arguably the most famous
continuous-time stochastic process. The significance of Wiener processes in stochastic pro-
cesses is arguably comparable to that of Gaussian distributions in elementary probability
and statistics. One possible way of defining it is the following:

Definition 1. The process {Wt}t>0 is a Wiener process if it satisfies the following condi-
tions:

1. W0 = 0;

2. (independent increment) For ∀n ∈ N and any choice of t1 < · · · < tn the random
variables

(Wt1 −Wt0), (Wt2 −Wt1), . . . , (Wtn −Wtn−1)

are mutually independent;

3. (Gaussian increment) For s < t, random variable (Wt −Ws) is Gaussian with mean
0 and variance (t− s);

4. (continuous path) The probability of a realization of {Wt}t>0(aka, a sample path) to
be a continuous w.r.t. t is one.

Some useful properties of Wiener process are:

1. (auto-covariance) E [Wt1Wt2 ] = min(t1, t2);

2. (regularity) Sample paths of Wiener process are nowhere-differentiable with proba-
bility 1;

3. (Reflection principle) If the path of a Wiener process Wt reaches a value Ws = a at
time t = s, then the subsequent path after time s has the same distribution as the
reflection of the subsequent path about the value a.

A simulated sample path is shown in Figure 2.7. Alternative definitions and additional
properties of the Wiener processes can be found in[35].
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Figure 2.7: Standard Wiener process: a sample path

2.7.3 Summary

To summarize the present and previous sections, here we collect key ingredients required
for formulating a general diffusion problem.

Let Ω ∈ Rd be a open and connected domain, where d = 1, 2, 3. A restricted Brownian
motion (RBM) in Ω,

{
r(t)

}
t>0

, is a Markov process with

• state space Ω ∪ ∂Ω;

• initial distribution ρ(r)0, a probability distribution over Ω;

• transition probabilityGt(r, r
′), the Green’s function for the diffusion equation defined

by equations 2.34,2.45 and some BCs (equation 2.53, 2.54, 2.55).

Our next goal is to combine the theory of NMR with the formulation of restricted Brownian
motions.
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2.8 Diffusion signal

Armed with the mathematics of diffusion, we are now able to define and calculate the signal
attenuation due to spin diffusion (at least theoretically). In particular, the Multiple Cor-
relation Function (MCF) Approach, established by Grebenkov (2007) in[11], is presented
in this section.

Statistical definition First, let us assume an infinite ensemble of spin-bearing particles
undergoes restricted Brownian motions defined in subsection 2.7.3. In addition, during the
time interval [0, T ] an general magnetic field Ω, denoted as Bt(r)ẑ, where T is the time
when the MR signal is measured.

At any time t, a spin-bearing Brownian particle located at r(t) experiences a local,
instantaneous magnetic field strength of Bt(r(t)). Consequently, its instantaneous Larmor
frequency equals to γBt(r(t)). For simpler notation, the constant γ can be absorbed into
Bt(r(t)). Therefore, the total phase accumulation at time T is equal to the following time
integral,

ϕ =

∫ T

0

dtBt(r(t)), (2.59)

which is a random variable as the trajectory r(t) is stochastic. Hence, at time T , the spin
has a transverse magnetic moment of eiϕ. The diffusion weighted signal or simply diffusion
signal12 is defined as the ensemble average of transverse magnetic moments:

S = E
[
eiϕ
]
, (2.60)

where the expectation is taken over all possible trajectories.

Moment expansion In general, this expectation value is very difficult to calculate de-
spite the simple appearance of its definition. This is due to the fact that the expectation is
an integral over uncountably-infinite degrees of freedom as well as the extreme complexity
of the random Brownian trajectories themselves. By Taylor expansion, the signal can be

12In practice, this signal is obtained by taking the ratio of two signals measured with and without the
diffusion encoding gradient (introduced later), denoted as E and E0 respectively. As a result, S sometimes
has the notation of E/E0, which is referred to as the normalized signal or sign attenuation due to diffusion
(as |S| 6 1).
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formally written in terms of contributions from all moments of ϕ:

E
[
eiϕ
]

= E

[
∞∑
n=0

(iϕ)n

n!

]
=
∞∑
n=0

in

n!
E [ϕn] . (2.61)

We turn our attention to the n-th moment of ϕ, which can be written in terms of a n-fold
time integral:

E [ϕn] = E
[∫ T

0

dtBt(r(t))

]n
=

∫ T

0

dt1· · ·
∫ T

0

dtnE [Bt1(r(t1)) . . . Btn(r(tn))]

= n!

∫ T

0

dt1

∫ T

t1

dt2· · ·
∫ T

tn−1

dtnE [Bt1(r(t1))Bt2(r(t2)) . . . Btn(r(tn))] .

(2.62)

Notice that from the second to the third line of the above derivation, the originally un-
ordered dummy variables t1, . . . , tn are arranged into an ascending order. The key obser-
vation justifying this step is that the n-variate integrand,

E [Bt1(r(t1)) . . . Btn(r(tn))] ,

is symmetric, in the sense that switching any pair of dummy variables has no effect on
the integrand’s value. The n-dimensional cube [0, T ]n can be partitioned into n! subsets
in each of which the dummy variables are always in ascending order13. Each one of those
subsets contributes equally to the integral over [0, T ]n, resulting an extra factor of n!.

Multiple Correlation Function Often in practice, the time and spatial dependency of
Bt(r) is multiplicatively separable,

Bt(r(t)) = f(t)B(r), (2.63)

where B(r) and f(t) are called the spatial and the effective temporal profile of the magnetic
field. Taking f(t) outside of the expectation as it is deterministic, one can rewrite 2.62 as,

E [ϕn] = n!

∫ T

0

dt1f(t1)· · ·
∫ T

tn−1

dtnf(tn)E [B(r(t1)) . . . B(r(tn))] . (2.64)

13For example, for an arbitrary point (t1, t2) ∈ (0, T )2, 2! = 2 orderings are possible (t1 < t2, t2 < t1,
ignore equal signs); for (t1, t2, t3) ∈ (0, T )3, 3! = 6 orderings are possible (t1 < t2 < t3, t1 < t3 < t2,
t2 < t1 < t3, t2 < t3 < t1, t3 < t1 < t2, t3 < t2 < t1); etc.
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The integrand above,
E [B(r(t1)) . . . B(r(tn))] , (2.65)

is called the multiple correlation function (MCF)14. To get a more compact expression, we
rewrite equation 2.64 as

E [ϕn] = n!〈E [B(r(t1)) · · ·B(r(tn))]〉n, (2.66)

where 〈· · · 〉n denotes the n-fold ordered time average operator, or simply the time average.
For a function, h(t1, · · · , tn), where t1 < · · · < tn, we define

〈h〉n =

∫ T

0

dt1f(t1)· · ·
∫ T

tn−1

dtnf(tn)h(t1, · · · , tn). (2.67)

2.8.1 Spatial and temporal profiles

In most case, the spatial profile B(r) in equation 2.63 takes the form of a linear gradient
field:

B(r) = r · g, (2.68)

where g is a constant vector known as the diffusion-encoding gradient or simply diffusion
gradient. In dMRI, the imaging sequence is augmented by the diffusion encoding sequence.
Non-linear gradient fields includes parabolic and cosine fields are rarely encountered appli-
cations. Theoretical studies, however, do exist on some special profiles such as parabolic
and cosine profiles[13],[12].

Some common properties of the temporal profile f(t) in equation 2.63 are listed below.
We also consider their physical implications on corresponding sequences. Furthermore,
notable sequences are described.

1. f(t) is a dimensionless scalar function and its maximum absolute value equals one.
In the case where f(t) ≡ 1 for 0 6 t 6 T , the sequence is called the free induction
decay(FID). Physically, the only rf-pluse applied is the 90◦ excitation pulse while a
steady gradient field is present in the whole duration of [0, T ].

14Recall that for a stochastic process with zero mean,
{
X(t)

}
t>0

(E [X(t)] = 0 for all t), its correlation

function is defined as E [r(t1)r(t2)]. The term multiple correlation function is appropriately coined.
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2. f(t) is piecewise continuous and changes its sign at the moments when the 180◦

rf-pulse is applied since physically the sign of the phase particles is inverted instan-
taneously (approximately speaking). For example in spin echo experiments we have

f(T−/2) = −f(T+/2).

Mathematically, the spin echo (SE) sequence is equivalent to the following one known
as gradient echo(GE) sequence: at time t = T/2 the original gradient is turned off
and a new gradient with the exact same spatial profile but with opposite direction is
activated simultaneously15.

3. To form an echo, f(t) needs to satisfy the rephasing condition,∫ T

0

f(t)dt = 0. (2.69)

The rephasing condition ensures that an immobile spin always has zero net phase
gain (recall Figure 2.6). The most common sequence whose temporal profile satisfying
equation 2.69 is the pulse-gradient spin-echo (PGSE) sequence, first introduced by

Stejska and Tanner in 1965[32]. Its f(t) (idealized) consists of two antisymmetic
rectangular pulses. In piecewise form,

f(t) =



0 t < t1

1 t1 < t < t1 + δ

0 t1 + δ < t < t1 + ∆

−1 t1 + δ < t < t1 + ∆ + δ

0 t1 + ∆ + δ < t < TE

,

where sequence paramters δ and ∆ are called the pulse duration and diffusion time.
The first pulse must end in the first half of the sequence, implying that t1 + δ 6
TE/2. The case where t1 = 0, δ = ∆ = TE/2 corresponds to the Hahn’s spin
echo experiment. A less idealized version of f(t) for PGSE uses trapezoidal pulses
instead of rectangular ones, taking the ramp time, the time for the gradient to reach
it maximum strength, into account.

Other commonly used sequences in diffusion MRI can be found in [11].

15GE is actually preferred over SE in imaging since the technology allows responsive gradient control.
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2.8.2 Gaussian diffusion and Stejskal-Tanner formula

In this section, we apply the stochastic formulation to compute the signal due to free
diffusion, as a ‘Hello, World!’ example of diffusion MRI. The result is the celebrated
Stejskal-Tanner (S-T) formula16, which forms the basis of diffusion tensor imaging.

It was shown earlier that for free diffusion (Ω = R3), the position process along any
direction is a Wiener process. If the free diffusion is isotropic, the displacement vector at
time t is given by

r(t)− r0 = ∆r(t) = (W 1
t ,W

2
t ,W

3
t ), (2.70)

where W 1
t ,W

2
t ,W

3
t are independent Gaussian random variables with mean 0 and variance

2Dt. As a result, under the influence of a linear gradient field with gradient vector g and
temporal profile f(t), the dephase is equal to

ϕ =

∫ T

0

dtf(t)(g · r(t)) =

∫ T

0

dtf(t)(g · (r0 + ∆r(t)) =

∫ T

0

dtf(t)g ·∆r(t). (2.71)

The term with r0 vanishes due to the rephasing condition (2.69). In the component form,
equation 2.71 reads

ϕ = g1φ1 + g2φ2 + g3φ3, (2.72)

where

φi =

∫ T

0

f(t)W i
t dt for i = 1, 2, 3. (2.73)

Random variables φi’s are independent since processes W i
t ’s are independent. In addition,

φi’s are Gaussian since it is a linear functional of a Wiener process17. Therefore, ϕ follows
a Gaussian distribution. This significantly simplifies the problem as in general, the exact
distribution of ϕ is untractable even for the simplest geometries.

Consequently, to characterise the distribution of ϕ completely we only need its first two
moments. Using the mean and autocovariance functions of Wiener processes, E [Wt] = 0
and E [Wt1Wt2 ] = 2Dmin(t1, t2), one derives the mean and variance of φi’s,

E [φi] =

∫ T

0

f(t)E [Wt] dt = 0, (2.74)

16In their seminal paper [32], Stejskal and Tanner derived the result using the PDE approach (see section
2.9). The stochastic approach, in the author’s opinion, is more intuitive and physically motivated.

17We can approximate equation 2.73 by its Riemann sum, which is a linear combination of jointly
distributed Gaussian random variables. The Riemann sum is therefore Gaussian. The limit of the Riemann
sum remains Gaussian as well
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E
[
φ2
i

]
=

∫ T

0

dt1f(t1)

∫ T

0

dt2f(t2)E [Wt1Wt2 ]

= 2

∫ T

0

dt1f(t1)

∫ T

t1

dt2f(t2)E [Wt1Wt2 ]

= 2

∫ T

0

dt1f(t1)

∫ T

t1

dt2f(t2)2Dt1

= 4D〈t1〉2.

(2.75)

Therefore, E [ϕ] = 0. Since φi’s are mutually independent, the variance of ϕ is equal to

E
[
ϕ2
]

= 2D
3∑
i=1

g2
iE
[
φ2
i

]
= 4D〈t1〉2(g2

1 + g2
2 + g2

3) = 4Dγ2g2〈t1〉2. (2.76)

Recall that the characteristic function of the Gaussian random variableX followingN(µ, σ2)
is given by

E
[
eitX

]
= exp

(
iµt− 1

2
σ2t2

)
. (2.77)

Setting t = 1 in equation 2.77, the characteristic function has the value of

E
[
eiX
]

= exp

(
iµ− 1

2
σ2

)
. (2.78)

Therefore, the diffusion signal E [eiϕ] equals to

S = E
[
eiϕ
]

= exp (−2Dγ2g2〈t1〉2). (2.79)

The gyromagnetic ratio γ is brought back as we dropped it earlier for the ease of derivation.
The result given by equation 2.79 is the well known Stejskal-Tanner formula.

b-value Isolating the diffusion coefficient D in equation 2.79, all the other factors are
combined into the so-called b-value,

b = 2γ2g2〈t1〉2, (2.80)

and the result 2.79 is written as a simple exponential function of b,

S = exp (−bD). (2.81)
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The b-value ‘summarizes’ the sequence information into a single scalar. It is also an indi-
cator of how sensitive the signal is to the diffusivity.

One may notice that our expression for the b-value seem different compared to the one
in literature[32][7],

b = γ2g2

∫ T

0

dt

(∫ t

0

f(t′)

)2

. (2.82)

They are in fact equivalent. it is shown in [11] that

〈t1 − t2〉2 =

∫ T

0

dt

(∫ t

0

f(t′)

)2

. (2.83)

The left hand side of equation 2.83 can be shown to be equal to 2〈t1〉2. Due to the linearity
of 〈·〉n, we have

2〈t1〉2 − 〈t1 − t2〉2 = 〈t1 + t2〉2

=

∫ T

0

dt1f(t1)

∫ T

t1

dt2f(t2)(t1 + t2)

=
1

2

∫ T

0

dt1f(t1)

∫ T

0

dt2f(t2)(t1 + t2) (the integrand is symmetric)

=
1

2

∫ T

0

dt1f(t1)

∫ T

0

dt2f(t2)t1 +
1

2

∫ T

0

dt1f(t1)

∫ T

0

dt2f(t2)t2.

Both of the double integrals in the last step vanish under the rephasing condition 2.69.
Therefore, the consistency between different forms of b-value is shown.

For a given type of sequence, to derive the closed form expression for b-value, one
needs to calculate the time integral in any of the aforementioned expressions. The most
commonly used b-value in dMRI is the one for PGSE sequences, which states that

b = γ2g2δ2(∆− δ

3
). (2.84)

The b-value for FID is given by
b = γ2g2T 3/3. (2.85)

If the diffusion is anisotropic, the scalar diffusion coefficient is replaced by the diffusion
tensor and the exponent of the S-T formula becomes a quadratic form[26],

S = exp (−bĝTDĝ), (2.86)
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in which we assume that D is a constant matrix.

Even when studying complex confining geometry such as human brain, where the as-
sumption of free diffusion clearly fails, the S-T formula is still taken as the most common
analytic model for the signal. For example, what Diffusion Tensor Imaging (DTI)[2] es-
sentially does is measuring enough signals under various gradient directions in order to fit
the model given by equation 2.86. The estimated diffusion tensor D is computed by the
least square method. From the fitted tensor, one may further compute its eigenvalues and
eigenvectors to find its principal axis orientation, which is then taken as the nerve fiber
orientation at each voxel.
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2.8.3 Spectral Representation

Our utmost interest lies in investigating the case of restricted diffusion. The presence of
interacting boundary complicates the solution of the signal attenuation significantly. Since
the result of Gaussian diffusion is no longer valid, in general, moments of all order E [ϕn]
are now required to compute the signal.

It was established earlier that the n-th order moment is the ordered time average of the
MCF (equation 2.64). We now consider expressing the MCF according to its probabilistic
interpretation.

The MCF (equation 2.65) can be expressed in terms of the joint pdf of random positions
r(t1), . . . , r(tn),

E [B(r(t1)) · · ·B(r(tn))] =

∫
Ω

dr1 · · ·
∫

Ω

drnfn(r1, . . . , rn; t1, . . . , tn)B(r1) · · ·B(rn),

(2.87)
The joint pdf can be constructed using the initial distribution and the Green’s function.
Substituting equation 2.40 into 2.87 and integrating over the initial and final positions,
one arrives at the integral form of the MCF,

E [B(r(t1)) · · ·B(r(tn))] =

∫
Ω

dr0ρ(r0)

∫
Ω

dr1Gt1(r0, r1)B(r1) · · ·∫
Ω

drnGtn−tn−1(rn−1, rn)B(rn)

∫
Ω

drn+1GT−tn(rn, rn+1). (2.88)

The final position, needs to be integrated over in order to address the information that
the particle still remains inside Ω at time tn

18. We can now fully appreciate the seemingly
innocuous step of arranging the dummy variables into ascending order in equation 2.62,
without which the Green’s functions can not be used as the time parameter in Gt(r, r

′)
should be positive.

Using the method of separation of variables, the Green’s function can be expressed in
terms of the Laplacian eigenvalues and eigenfunctions,

Gt(r, r
′) =

∑
m

u∗m(r)e−Dλmtum(r′), (2.89)

18It can be harmlessly omitted boundary is reflective as it is guaranteed that all particles remains inside
at all time.
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where λm and um(r) satisfy the Helmholtz equation with appropriate BC (we use the
Robin BC as an example),

∇2um(r) + λmum(r) = 0, (2.90)

D
∂um(r)

∂n
+ hum(r) = 0, for r ∈ ∂Ω. (2.91)

Depending on the dimension of the domain m can be a multiple index. Plugging equation
2.89 into the integral form of MCF yields the infinite series form, which reads

E [B(r(t1)) · · ·B(r(tn))] =
∑
m1

∑
m2

· · ·
∑
mn+1

Um1e
−Dλm1 t1Bm1m2×

e−Dλm2 (t2−t1)Bm2m3 · · · Bmnmn+1e
−Dλmn+1 (T−tn)Ũ∗mn+1

, (2.92)

where

Um =

∫
Ω

dr0ρ(r0)um(r0);

Ũ∗m =

∫
Ω

dru∗m(r);

(2.93)

and

Bmm′ =

∫
Ω

dru∗m(r)B(r)um′(r). (2.94)

This is also known as the spectral representation of the MCF.

It is well-known that {um(r)}m forms an complete orthonormal basis for the function
space L2(Ω) (after normalization if necessary). We can view coefficients19 Um’s, Ũ∗m’s
as the coordinates of the initial distribution ρ(r0) and the constant function 1(r) = 1
under the eigenbasis. Similarly, coefficients Bmm′ has the interpretation of the eigenbasis
representation of the ‘Larmor precession operator’,

B : L2(Ω) 7→ L2(Ω) [Bχ](r) = B(r)χ(r). (2.95)

In light of the linear algebra analogy, it is natural to introduce the some infinite-dimensional
matrices so we can express the MCF in a compact matrix form.

19They are called the generalized Fourier coefficients.

36



Let Λ = [δmm′λm], U = [Um], B = [Bmm′ ] and Ũ∗ = [Ũ∗m], where δmm′ is the Kronecker
delta so that

E [B(r(t1)) · · ·B(r(tn))] = Ue−DΛt1Be−DΛ(t2−t1)B · · · Be−DΛ(T−tn)Ũ∗. (2.96)

Plugging the expression above into equation 2.61, we arrive at the final expression of the
diffusion signal in all its glory,

E
[
eiϕ
]

=
∞∑
n=0

in〈Ue−DΛt1Be−DΛ(t2−t1)B · · · Be−DΛ(T−tn)Ũ∗〉n. (2.97)

The MCF approach is therefore also known as the matrix formalism.

Theoretically speaking, we reached the conclusion that the Laplacian eigenvalues and
the eigenfuncions for the domain Ω provides the complete, natural language for study-
ing the diffusion signal. Albeit more cumbersome than the stochastic definition (equation
2.59,2.60), the spectral/matrix formalism involves only deterministic quantities.
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2.9 Bloch-Torrey Equation

A mathematically equivalent description for the diffusion NMR phenomenon was proposed
by Torrey[34]. We briefly present it in this section for the sake of completeness though it
does not serve as the theoretical foundation of our study.

To introduce the Bloch-Torrey (BT) equation, we need to return to our view of treating
the diffusing substance as a continuum when we first introduced diffusion equation20. Let
m(r, t) be the time-dependent, complex valued, local transverse magnetization density
(measured in the rotating reference frame); and ω(r, t) be the local precession frequency,
determined by the field inhomegeneity.
The Bloch-Torrey partial differential equation, or simply Bloch-Torrey equation, is given
by

∂m

∂t
= −iω(r, t)m+D∇2m, (2.98)

where D is the diffusion coefficient. The diffusion signal is defined as the total magnetiza-
tion,

S(t) =

∫
Ω

m(r, t)dr. (2.99)

A heuristic derivation is provide below.

The time-evolution of m(r, t) solely due to the magnetic field encoding is described by
the simple Bloch equation:

∂m

∂t
= −iω(r, t)m. (2.100)

Recall two facts we established earlier:

1. At thermal equilibrium, the magnetization is proportional to the concentration of
the spin-bearing substance (see relation 2.2).

2. The concentration satisfies the diffusion equation (given the absence of bulk motion).

As a result, even without the influence of the external inhomegeneous field, local magneti-
zation changes alongside with the spin concentration (in other words, diffusion). Hence, it

20The respective points of view represented by the stochastic and the PDE formalism is similar to the
dichotomy between the Lagrangian and the Eulerian approaches in fluid dynamics. Namely, the focus of
an observer is either a fluid particle or a specific location
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is reasonbale to assume that the time evolution of m(r, t) due to diffusion is governed by
its Laplacian.
The BT-equation combines the effects both driving forces via a simple addition, since the
spin precession does not affect diffusion in anyway and vice versa.

Relaxation effects can also be incorporated. For example, if T2(r) is the local transverse
relaxation rate the Bloch-Torrey PDE becomes

∂m

∂t
= −iω(r, t)m+D∇2m− m

T2(r)
. (2.101)

The same three kinds of BCs discussed before can be imposed on the boundary, depending
on the physical property of the membrane. If t = 0 is the exact moment of excitation by
the 90◦ rf-pulse, m(r, 0) is taken as uniform since the initial concentration is uniform and
all magentizations share the same initial phase (recall Figure 2.3).

Remark Having covered the fundamentals of dMRI, we would like to reminder readers
that despite the same underlying physical processes, different equations describing various
measurement outcomes are only meaningful at the length scales of those measurements
take place.

Within the duration of a typical MRI sequence, spin displacements defined in subsection
2.7.3 are of several mircometers, a length scale we call microscopic; diffusion signals defined
by equation 2.60 or 2.99 have contribution from spins within a voxel of several millimeters,
a length scale we call macroscopic; the magnetization density in the BT equation are
measured over regions whose length scales fall somewhere in between, which are referred
to as mesoscopic21; and finally, the signal in the imaging equation 2.22 contains the spatial
information of the whole sample (such as a part of the brain), which has the length scale
of several centimeters.

21If the regions are so small that the diffusing substance can longer be viewed as a continuum, the notion
of ‘density’ breaks down. On the other hand, if the regions are so large that most of the spins are not
able to escape (within the sequence duration), spatial variation of m(r, t) becomes negligible and the PDE
degenerates into an ODE.
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2.9.1 New results

Some interesting theoretical developments happened in recent years. The sketched descrip-
tion of two of those are included below.

An alternative matrix formalism of the diffusion weighted signal is proposed[18], in
which the basis functions are chosen as the eigenfucntions of the BT operator,

L = iω(r, t) +D∇2, (2.102)

instead of the Laplacian eigenfunctions used for expressing the MCF. Compared to the
MCF approach, the computation of the time evolution using this new matrix formalism
is trivial, as one only needs to multiply the each BT eigenfunctions by an exponential
decay factor and take superposition. The trade-off however, is that the coordinates of the
initial profile in the eigenbasis are much harder to compute. The reason for that is the BT
eigenfunctions are non-orthogonal since the BT operator is not Hermitian.

A generalization of the Bloch-Torrey equation was proposed in [31]. Its basic idea treats
the position r and the spin magnetization m as coordinates in the phase space 22. Since
the process r(t) is the reflected Brownian motion and m(t)) evolves according to local
Larmor frequencies, the time evolution of the joint process (r(t),m(t)) is governed by a
system of stochastic differential equations. The generalised Bloch-Torrey PDE is defined
as the Fokker-Planck equation describing the time evolution of the joint pdf of the paired
processes23.

22Analogous to the position and momentum pair in Hamiltonian dynamics.
23An analogy is the Kramers’ equation, the PDE describing the joint process of velocity and position of

Brownian motions. see [22] for a treatment of Fokker-Planck equations.
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2.10 Summary and comparison

So far, it has been shown that the diffusion signal can be defined or calculated by three
distinct approaches:

1. Statistical approach: Signal is the ensemble average of time integrals along Brownian
trajectories (equation 2.59,2.60);

2. PDE approach: Signal is the volume integral of the solution of the Bloch-Torrey
equation (equation 2.98.2.99).

3. MCF (or Matrix, Spectral) apporach: Signal is given by the contributions from all
moments, which are in turn expressed as products of infinite-dimensional matrices
(equation 2.97).

we would like compare those three approaches in terms of their mathematical consistencies
and applications in numerical computations.

2.10.1 Relations between the three approaches

All formalisms can be derived from one another.

The matrix formalism can be alternatively derived from the PDE approach[11]. After
expanding the magnetization function (m(r, t) in 2.98)in the Laplacian eigenbasis, one can
plug the expansion into the Bloch-Torrey PDE. By comparing coefficients on both sides,
one realises that the time dependent coefficients satisfy a linear system of infinitely many
coupled ordinary differential equations (ODE). Rewriting the system of ODEs into its ma-
trix form, one can formally express its solution as a matrix exponential.

On the other hand, it is well-known that linear parabolic PDEs and stochastic differ-
ential equations are linked through the Feynman-Kac formula [29], which states that the
solution of the PDEs are in fact the conditional expectation of some stochastic processes.
The statistical and the PDE formalism are almost certainly linked by the complexed version
of Feynmann-Kac formula, which is still not yet proven. Further investigation is beyond
the scope of this study.
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2.10.2 Numerical computation

All three approaches can serve as the basis of numerical computation. We here discuss
their advantages, difficulties and weaknesses individually.

MC simulation The stochastic formulation naturally gives rise to Monte Carlo (MC)
simulation schemes, where the integral 2.59 and the expectation 2.60 are approximated by
their finite-dimensional counterparts. In principle, MC simulations are intuitive to imple-
ment and enjoy the greatest flexibility since its large number of degree of freedom allows
researchers to control physical processes at the most fundamental level. For example, it
is straightforward to modify the MC simulation scheme should the diffusion is modeled
as fractional Brownian motion instead. As for MC methods in general, they do not suffer
from the curse of dimensionality since their convergence rates are determined by the central
limit theorem. An additional perk of MC methods is that once the dephase distributions
are well sampled in all spatial dimensions, the computation of signals in arbitrary gradi-
ent directions is trivial. Therefore, the focus in our simulations is to obtain the empirical
dephase distribution.

For MC simulations in complex geometries, collision detection between spins and bound-
aries can be tricky to implement. The main disadvantages of MC simulations are low
accuracy and high computation cost. In later chapters, we shall discuss those advantages
and shortcomings in greater detail.

Camino[16], an open-sourced24 toolkit originally designed for dMRI processing, now
includes the functionality for MC simulations. To improve the computational efficiency for
collision detection, works such as [36], [28] used the octree data structure to partition the
3D space.

Solving BT equation The PDE-based approach is currently the most popular choice
for diffusion NMR/MRI simulations. Thanks to the maturity of algorithms for solving
parabolic PDEs such as finite difference and finite element methods, a well-designed Bloch-
Torrey PDE solver can simulate the diffusion signal accurately and at a low cost. Further-
more, in cases where one only interested in the total signal, but also the local magnetization
density25, solving BT equations is the only viable option. Unlike MC schemes however,

24http://camino.cs.ucl.ac.uk/index.php?n=Tutorials.MCSimulator
25in the mesoscopical sense
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PDE-based simulations do suffer from the curse of dimensionality since the spatial grid
size increases exponentially w.r.t the number of dimensions. As the grid sizes grows, so
does the size of the linear system governing the time evolution. Previous studies on this
approach includes [27] and [4], etc.

Matrix products Within simple geometries exhibiting high degrees of symmetry, sim-
ulation base on the matrix approach is highly efficient and accurate. Thanks of the rapid
growth of Laplacian eigenvalues w.r.t their indices, the matrix exponentials in 2.97 can be
well approximated by their low-dimensional truncations. Therefore, the computation boils
down to multiplications and additions of matrices provided the solutions to the eigenvalue
problem are known. For slabs, disks and spheres, the Laplacian eigenfunctions are well-
known special functions. The values of eigenvalues are zeros of the eigenfunctions, which
depend on the boundary conditions26. Closed-form expressions for the matrix elements
2.93, 2.94 are available for the aforementioned geometries [11] and their derivations can be
quite involved (see Appendix B). MCFAL, a MATLAB package that implements matrix-
based simulation, is available27.

Apart from the obvious limitation of being ill-adapted to general geometries, another
weakness of matrix-based simulations is that they become unfeasible in case where gradients
are strong28, as a large number of higher order moments are required for good accuracy. In
fact, diffusion under the influence of strong gradients is an active area of dMRI research.

26The zeros are not well-known under Robin boundary conditions and must be solved numerically.
27https://pmc.polytechnique.fr/pagesperso/dg/MCF/MCF_e.htm
28The Taylor series 2.61 works well for small ϕ
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Chapter 3

Basic Monte Carlo Simulation

3.1 Workflow

This chapter covers MC simulations of dMR images in the most general setting. The
current section discuss the general framework of the simulation. Section 3.2 describes the
algorithm for simulating diffusion encoding. Section 3.3 demonstrated the implementations
and results in three prototypical geometries. The final section 3.4 is devoted to the analysis
of simulation accuracy.

Prior to running simulations, some preparatory works need to be done. This include
defining the sequences for both image- and diffusion encoding, as well as specifying the
ground truth information of the sample of interest. As the image formation and diffusion
encoding capture information at different length scales (recall section 2.9), we organize the
ground truth in a two level hierarchy.

Global ground truth consists of the shape of the sample, a bounded 2-dimensional
domain D and parameters for describing the macroscopic magnetization. For clinical
applications, D corresponds to organ/tissue of interest. In simulations, D is rasterized
/triangularized into a set of square or triangular meshes {Ki} called pixels. The size of the
meshes1 indicates our desired resolution of the simulated image, which in turn imposes re-
quirements on the design of imaging sequences (see [6] for datails). Typical resolutions are

1Defined by, for example, the maximum diameter of {Ki}.
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around a millimeter and the thickness of selected slices are within similar ranges. There-
fore, the signal at one pixel actually contains the information from a volumetric element,
known as the voxel. The shape of a voxel can either be a cube or a triangular prism. The
voxelwise-defined parameters (ρi, T1,i, T2,i) correspond to the the spin densities and time
constants for relaxations.

Within each voxel, there is microstructure that restricts the diffusion of water molecules,
which is modeled by a collection of disjoint open sets along with prescribed BCs on their
boundaries. Intravoxel geometry serves as the ‘playground’ for the diffusing spins. The
main algorithm for diffusion encoding is given in the next section.

As an analogy, readers may compare our diffusion simulation paradigm with the pro-
cess of making an aquarium at home. One first sets up a fish tank (voxel) of a chosen size
(determined by the k-space trajectory). Then one may proceed to add some decorations
such as cemented castles or shipwrecks (microstructure). After filling up the tank with
water and putting in some fish (diffusing spins), the owner now may sit back and enjoy
watching the movement of fish (computing spin paths).

Therefore, to summarize, the main steps of the simulation are given below:

1. Specify the ground truth information of the sample at both global and local length
scales;

2. Specify an imaging sequence augmented with diffusion encoding gradients;

3. Perform voxel-wise MC simulation for diffusion encoding and compute the diffusion
signal

4. Multiply the DW factor by the spin density and relaxtion factors. Given a k−space
trajectory, the MR image in associated with each k-space coordinate is computed
according to the imaging equation.

5. Compute the image in physical space by taking inverse discrete Fourier transform.
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3.2 Diffusion Encoding

Suppose that the domain for diffusion simulation is Ω of dimension d2 and Initial spin
positions follow the distribution ρ(r0). Local Larmor frequencies are ω(r, t), r ∈ Ω.

Let the number of sample paths be Nwalker and the sequence duration is divided evenly
into Ntime time steps of size ∆t. The statistical definition of diffusion signals naturally
suggests the following MC simulation algorithm:

S.1 Sample initial positions {r0}Nwalkern=1 from the initial distribution ρ(r0);

S.2 For each given initial position, generate a sample path {rj}Ntime
j=1 , where the position

update rule at j-th iteration is:

(i) Generate a step vector, ∆rj with uniformly random direction and root mean
square (rms) length of

ds =
√

2dD∆t; (3.1)

(ii) Compute the naive update, r′j+1 = rj + ∆rj;

(iii) Checking for collision with the boundary, in other words, whether or not r′j+1 ∈
Ω. If there is no collision, the new position rj+1 = r′j+1;

(iv) If collision does occur, take the appropriate action based on the boundary con-
dition:

BC.1 If ∂Ω is absorbing, discard the current sample path;

BC.2 If ∂Ω is reflective, rj+1 is taken as r′j+1 reflected w.r.t. ∂Ω;

BC.3 If ∂Ω is partially reflective, generate a Bernoulli random variable U with a
prescribed probability p (explained later); If U = 1, go to S.1; otherwise go
to S.2.

S.3 Compute the dephase ϕ accumulated along the sample path {rj} by numerical inte-
gration. For example, the rectangular rule yields

ϕ =

Ntime∑
j=0

ω(rj, tj)∆t, (3.2)

where tj = j∆t;

2In general d equals 3 but may be reduced be exploiting the symmetry of the domain
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S.4 Repeat S.2, S.3 for all spins to the dephase sample {ϕn}.

S.5 Calculate the diffusion signal,

Ssim = exp (iϕn), (3.3)

where the overscore stands for the arithmetic mean.

The prescribed probability p in BC.3 of S.2 is called the termination probability and
depends on the surface relaxivity h in Robin BCs (equation 2.38). Our choice of p is given
by

p = 2h

√
∆t

πD
. (3.4)

This model for p assumes that

• the local boundary is approximately flat;

• the characteristic length scale of the domain is so much greater than ds that within
one time step Ω can be treated as semi-infinite.

A full justification of equation 3.4 requires solving an initial boundary value problem,
shown in Appendix D.

Although the natural MC algorithms are the most flexible, they rely on the accurate
simulation of detailed Brownian trajectories. In order to make sure that {rj} is a reasonable
approximation of the discrete sample path, ∆t needs to be chosen small. Coupled with
the complexity of collision detection in complex geometries, this makes ‘brute force’ MC
simulations highly expensive in general. Therefore, they are often used as a last resort.
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3.3 Experiments

Here we illustrate the implementation of diffusion encoding under various confining ge-
ometries. All simulations in this work were conducted on a machine with two 8-core Intel
Xeon E5-2640 CPUs and 256 GB RAM.

3.3.1 Free Space

We begin our discussion on the implementation of Monte Carlo simulation by considering
the simplest case, diffusion in the free space.

As shown in Chapter 2, it suffices to fix the initial position at the origin and only
consider the increment process. Therefore, the sampling of initial positions is skipped for
free diffusion. Random positional increments, also referred to as ’jumps’, are generated by
the MATLAB function ‘MakeSteps.mat’ (Appendix F). The function allows users to specify
the increment distribution and the root mean square (rms) length of the increments in each
dimension, denoted as ds. In particular, the step size for uniform jumps is computed via

r =
√
d+ 2ds

d
√
U, (3.5)

where U follows Unif [0, 1] and d = 2, 3 is the dimension of the jump vector. We briefly
show this is correct:
Let the maximum jump size be R. Since the area/volume element formula in d-dimension
is proportional to rd−1, the cumulative distribution for r should be (r/R)d. Therefore, the
variance of r satisfies:

dds2 = E
[
r2
]

=

∫ R

0

r2d
rd−1

Rd
dr =

d

d+ 2
R2.

Solving for R yields R =
√
d+ 2ds.

The trajectory, as the time integral of the jumps, can be approximated using the trape-
zoidal rule. Subsequently, the same numerical integration technique is applied for approx-
imating the dephase since it is the time integral of the trajectory (weighted by the discrete
time-profile). For a single spin, a sample path of dephase time evolution is shown in Figure
3.1, which shows a clear deviation from the same process experienced by an immobile spin
(recall the spin-echo experiment). The empirical dephase distribution for a large ensemble
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of spins is summarized in a histogram (Figure 3.2). Unsurprisingly, the empirical dephase
distribution is also Gaussian. Finally, it can be verified that the simulated signal is in
agreement with the Stejskal-Tanner formula.

Figure 3.1: Dephase evolution experienced
by a diffusing spin compared against an im-
mobile one.

Figure 3.2: empirical dephase distribution
under free diffusion.
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3.3.2 Polygonal Domains

Our next step is to implement simulations in confined geometries. Boundaries specified
by polygons and circular/spherical surfaces are considered. More general shapes can be
constructed using splines or Bézier curves but are beyond the scope of this study. Let our
confining domain in this section be a simple (non-self-intersecting) planar polygonal. Its
vertex coordinates are given and fixed.

Initialization We first describe our method for initialization. Sampling of uniformly-
distributed initial positions can be performed in a divide-and-conquer manner. First, the
polygon is partitioned into a set of triangles (for example, the pentagon in Figure 3.3 is
divided into three triangles by two of its diagonals). Second, one of the triangles is ran-
domly selected with probability proportional to its area (for example it can be 4V1V4V5).
Finally, the desired initial position is taken as a random point inside the triangle.

How can we ensure that in our last step, the interior point is truly uniformly-distributed?
Recall that for a triangle, the coordinate of any of its interior points can be written as a
weighted average of its vertex coordinates3. For example in Figure 3.3, one has:

P = c1V1 + c2V4 + c3V5, for c1, c2, c3 > 0, c1 + c2 + c3 = 1. (3.6)

The set of weight coefficients (c1, c2, c3) is known as the standard 2−simplex. The uniform
distribution over the standard 2−simplex is the flat Dirichlet distribution, which has pdf
of

f(c1, c2, c3) = 2c1c2c3. (3.7)

With a source of Gamma-distributed random variates, one can sample a random vector
following Dirichlet distribution by simply dividing the aforementioned variates by their
sum (see for [9] a proof). Furthermore, in the flat case, the Gamma variates in fact follows
exponential distribution with parameter 1.

Therefore, we have the following recipe for position initialization (for the pentagon in
Figure 3.3):

1. Partition the pentagon V1 . . . V5 and calculateA1, A2, A3, the area of41 = 4V1V2V3,42 =
4V1V3V4,43 = 4V1V4V5;

3This is known as the barycentric coordinate system.
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2. pi = Ai/
∑3

i=1 Ai and let I1 = [0, p1), I2 = [p1, p1 + p2), I3 = [p1 + p2, 1];

3. Generate V∼ Unif [0, 1] and let (X, Y, Z) be the vertices of 4i if V ∈ Ii, i = 1, 2, 3;

4. Generate Uj
i.i.d∼ Unif [0, 1], j = 1, 2, 3 and let xj = − log(Uj);

5. cj = xj/
∑3

j=1 xj.

6. Compute P = c1X + c2Y + c3Z.

Neumann BCs We then describe the two-staged position-update rule. First, compute
the ‘naive update’ (new position if there is no collision), r′ = r + ∆r and check if it is
within the polygon. Take the pentagon in Figure 3.3 as an example, to check if the point
P is inside, do:

1. Compute Si, the sighted areas of 4PViVi+1, i = 1, .., 5(P5 = P1) using the determi-
nant method;

2. If all Si > 0, conclude that P is inside; Otherwise, if Si < 0, P needs to be reflected
w.r.t to the side ViVi+1.

Whenever collision is confirmed, the position update follows the classical reflection law in
optics (incident angles equal to reflection ones). Defensive programming is necessary to
address possible multiple reflections within a single update (Figure 3.4). Failure to do so
will result in spins escaping from the domain, leading to a loss of signal.

Results As an example, we let our domain be the unit triangle in the first quadrant. The
numbers of spins and time steps are both chosen to be 10000 in the simulation. The whole
simulation process took 0.28 seconds. The MATLAB codes for this example are supplied
in Appendix F. A sample walker trajectory and the empirical dephase distribution are
shown in Figure 3.5 and 3.6, respectively. Surprisingly, the empirical density function of
the dephase also has roughly the shape of a triangle (!). A mathematical investigation will
be conducted.
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Figure 3.3: The partition of a polygon. Figure 3.4: Multiple reflections.

Figure 3.5: Random walk in a triangle: a
sample path.

Figure 3.6: Empirical dephase distribution:
triangular domain.

3.3.3 Single fiber Bundle

Nerve fibers or axons make up the most of the white matter. Nerve fibers connect gray
matter areas (the locations of nerve cell bodies) of the brain to each other, and carry nerve
impulses between neurons. The in-vivo detection of their geometrical and topological
properties are of great interest.

Geometrical specification Within a voxel, the geometry of individual nerve fiber bun-
dle can be modeled as equidistant, identical, parallel, infinite cylindrical shells with thick-
ness (Figure 3.7). We further assume that no mobile water molecule is present within the
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shell layer. Therefore, specifying the geometry requires the following parameters:

• û, a 3D unit vector along the fiber direction;

• d, halved fiber separation;

• Rin, fiber interior radius;

• Rout, fiber exterior radius.

Figure 3.7: Model of one fiber bundle.

The simulation of Brownian trajectories under general orientation û can be algebraically
complicated. We avoid this problem by first running the simulation under the assumption
that the fiber orientation aligns with the z−axis, and then applying a rotation transfor-
mation to the simulated trajectories so that ẑ = (0, 0, 1) becomes û.

Notice the structure of interest exhibits symmetry in two ways. First, translational
invariance holds in the axial direction of the cylinders. This implies that the random walk
can be orthogonally decomposed into two independent processes, namely the restricted
motion in the transverse plane and the free diffusion in the longitudinal direction. Second,
the transverse cross section shows periodic pattern. Therefore, to simulate the 2D random
walks in the cross-section, the problem can be reformulated inside a minimal cell, refereed
to as a lattice 4. The side length of the square-shaped lattice equals to the fiber separation.
A single ring is centrally placed inside the lattice. Boundary conditions required include
periodic BCs imposed on the lattice boundary, along with Neumann BCs on both circles
of the ring.

4similar to a crystal lattice in chemistry.
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Initialization Initial positions are generated in a straight forward acceptance-rejection
(A-R) fashion. A candidate point is uniformly sampled within the lattice square and is
accepted unless it is within the cylindrical shell. Such action is repeat until a desired
number of initial positions (Nwalker) are sampled. Since typically the shell layer occupies
only a small fraction of the lattice volume, the A-R sampling is efficient.

Intra-axonal updates Position updates of the 2D restricted random walk are are treated
separately for intra-axonal and extra-axonal cases. At any iteration, let the current position
be r and the jump vector be ∆r. In the intra-axonal case, at each step, one only needs to
check for collision against the inner circle. Whenever the ‘naive’ update, r′ = r+ ∆r, has
norm greater than Rin, one needs to solve an equation to find the collision point:

‖r + t∆r‖ = R, (3.8)

where t is a scalar and R = Rin. This leads to a quadratic equation:

‖∆r‖2 t2 + 2r ·∆rt+ ‖r‖2 −R2 = 0. (3.9)

The positive root is chosen (Figure 3.8) for obvious reason. The collision point is then
treated as the new starting position and the remainder of the initial jump, (1 − t)∆r, is
taken as the new jump after reflection with respect to the tangent line. Similar to the
triangle example, the problem of multiple reflections5 needs to be addressed. Figure 3.3.3
shows a sample trajectory for the intra-axonal case.

Extra-axonal updates For the extra-axonal case, a walker may transit across several
lattices. There are multiple possible implementations of the periodic BC. Here we describe
our solution. First, locate the lattice containing the current position, represented by an
index. Then, check for collision against the outer layer of the ring in the lattice.

The lattice containing all the initial positions is the region {(x, y) :| x |< d, | y |< d}
and its index is designated as (0, 0). For an arbitrary point (x, y), it is located in the
(i, j)−th lattice (i, j ∈ Z) if its coordinates satisfy inequalities:

{(x, y) :| x− 2id |< d, | y − 2jd |< d}. (3.10)

It can be easily verified that

(i, j) =

⌊
(x, y)/d+ 1

2

⌋
, (3.11)

5Multiple reflections can in fact occur in any convex domain.
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Figure 3.8: Interior collision: the larger root
of equation 3.9 is chosen.

Figure 3.9: Exterior collision: the smaller
root of equation 3.9 is chosen.

where b·c is the floor function. The local coordinates of the walker (and the ‘naive’ update)
are then computed w.r.t to the lattice center:

rloc = r − 2d(i, j). (3.12)

Collision the local coordinates is handled almost identically to the treatment for the intra-
axonal case, with two exceptions. First, the smaller root of the equation ?? is taken for
computing the collision point (Figure 3.9). Second, multiple collision is impossible.

Adjusting for fibre axes Finally, as promised, the simulated trajectories need to be
adjusted in accordance to the prescribed fiber orientation û. One way of achieving this is
using the Rodrigues’ rotation formula6. It states the following: If v ∈ R3 and k̂ is a unit
vector describing an axis of rotation about which v rotates by an angle θ according to the
right hand rule, the rotated vector vrot can written as

vrot = v cos θ + (k̂ × v) sin θ + k̂(k̂ · v)(1− cos θ). (3.13)

6Other methods include using quaternions, Euler angles etc.

55



Figure 3.10: Intra-axonal diffusion: a sample
path.

Figure 3.11: Rotation: adjusting trajectories
for fiber orientation.

Since our desired transformation rotates ẑ into û, the (pre-normalized) rotation axis and
the rotation angle are determined by (Figure 3.11):

k = ẑ × û,
cos θ = ẑ · û.

Notice that ‖k‖ = sin θ, the second term on the RHS of equation 3.13 becomes k × v.

Rewriting equation 3.13 into a matrix form is convenient for computer programming.
Using the matrix notation of taking cross-product:

f × v = [k]×v, (3.14)

where [k]× =

 0 −kz ky
kz 0 −kx
−ky kx 0

 , and the fact that since k itself is a cross product, [k]×

can be written as7

[k]× = ûẑT − ẑûT .

Furthermore, simplifying the third term of the RHS of equation 3.13 yeilds

k̂(k̂ · v)(1− cos θ) = (1− cos θ)k̂(k̂
T
v) =

(1− cos θ)

sin2 θ
(kkT )v =

1

1 + cos θ
(kkT )v.

7https://en.wikipedia.org/wiki/Cross product#Alternative ways to compute the cross product

56



Therefore, the desired rotation matrix can be written as

Rk = cos θ13 + (ûẑT − ẑûT ) +
1

1 + cos θ
(kkT ), (3.15)

where 13 is the 3× 3 identity matrix. The desired transform is simply

vrot = Rkv. (3.16)

Results As an example, we consider a geometry with specifications û = x̂, (Rin, Rout, d) =
(2.4, 2.5, d)µm, where x̂ = (1, 0, 0)T . Again we used simulation parameters Nwalker =
Ntime = 10000 and the whole simulation took 288s. In Appendix F, the reader can find the
core MATLAB codes for simulation in such geometry. As one can see from the outputs, the
dephase distribution in the transverse direction (yz−plane) shows a non-Gaussian profile
and has much a smaller variance than the one in the longitudinal direction. Measured
diffusion signals and their corresponding dephase distributions are shown in Table 4.1 and
Figure 3.12.

Figure 3.12: Dephase distribution (ĝ = x̂, ŷ, (cos (70◦), sin (70◦), 0)T , from left to right).

Gradient Direction Diffusion Signal
(1, 0, 0)T 0.0019
(0, 1, 0)T 0.0065
(cos (70◦), sin (70◦), 0)T 0.0051

Table 3.1: Diffusion signals (single fiber bundle).
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3.4 Timestepping Error

In this section, the theoretical framework for analysing the error due to timestepping is laid
out8. It suffices to consider a scalar-valued position process although the same calculation
steps apply to vector-valued processes as well.

Let {Xt} be a partially-reflected Brownian motion in domain Ω ⊂ R with initial dis-
tribution ρ0(x) and propagator Gt(x, x

′). A linear diffusion-weighing gradient is present
during a time interval [0, T ] with strength g and temporal profile f(t). Therefore, the total
dephase at t = T is given by

ϕ = γg

∫ T

0

Xtf(t)dt. (3.17)

In basic Monte Carlo simulations, the time interval is divided into a fine mesh as follows:

0 = t0 < t1 < · · · < tk = T, (3.18)

which typically has uniform time steps ∆t = T
k

= tj − tj−1, j = 0, 1, · · ·. To quantify the
discretization error, let us first assume that the realizations of at the time nodes are given,
denoted by

{Xj} = X0, X1, X2, · · · , Xk, where Xj = Xtj . (3.19)

This means that for now, the sample paths of {Xt} are pinned at locations9 {Xj}kj=0. If we
approximate the time integral for ϕ by the right rectangular rule, the simulated dephase
is given by

ϕ̂ = γg
k∑
j=1

Xjf(tj)(tj − tj−1). (3.20)

The error, given that the skeleton trajectory is {xj}, is the difference between the extact
integral and its numerical approximation,

(ϕ− ϕ̂)|{Xj = xj} = γg

k∑
j=1

∫ tj

tj−1

(X
(j)
t f(t)− xjf(tj))dt, (3.21)

8As the name sugguests, the root of this error is purely because of discretization. In other words, this
is the error we get if we collect infinitely many sample trajectories, which needless to say, is always lower
than the actual error.

9In the analysis we assume that Xj ’s are simulated exactly. In other words given that initial position
is x0, X1 is sampled from the exact distribution Gt1(x0, x1) (with the proper normalisation constant), etc.
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where {X(j)
t }

tj
t=tj−1

, the j−th segment of the position process, satisfies initial and final con-

ditions X
(j)
tj−1

= xj−1, X
j
tj = xj. The accuracy of the simulation is ultimately quantified by

the distribution of the random variable (ϕ − ϕ̂). For that, we would like to evaluate its
moments.

Due to the Markov property of {Xt}’s, all of its segments are mutually independent and
consequently so are the time integrals in the summation above. In addition, the density of
X

(j)
t is equal to

f (j)(x, t) =
Gt−tj−1

(xj−1, x)Gtj−t(x, xj)

Gtj−tj−1
(xj−1, xj)

, (3.22)

where the denominator (normalisation constant) is determined from the Chapman-Kolmogorov
equation. Densities of arbitrary orders can be expressed in similar fashion. As a result, the
mean and auto-covariance functions of X

(j)
t can be expressed in terms of the propagator:

m(j)(t) = E(X
(j)
t ) =

∫
Ω

x
Gt−tj−1

(xj−1, xj)Gtj−t(x, xj)

Gtj−tj−1
(xj−1, xj)

dx, tj−1 < t < tj,

C(j)(t, t′) = E
[
(X

(j)
t −m(j)(t))(X

(j)
t′ −m

(j)(t′))
]

=

∫∫
Ω2

(x−m(j)(t))(x′ −m(j)(t′))
Gt−tj−1

(xj−1, x)Gt′−t(x, x
′)Gtj−t′(x

′, xj)

Gtj−tj−1
(xj−1, xj)

dxdx′,

tj−1 < t 6 t′ < tj.

(3.23)

Therefore given the skeleton trajectory, the timestepping error has conditional mean

E ((ϕ− ϕ̂)|{Xj = xj}) = γg
k∑
j=1

∫ tj

tj−1

(m(j)(t)f(t)− xjf(tj))dt (3.24)

and conditional variance

Var ((ϕ− ϕ̂)|{Xj = xj}) = γ2g2

k∑
j=1

E

(∫ tj

tj−1

(
Xj
t −m(j)(t)

)
f(t)dt

)2

= 2γ2g2

k∑
j=1

∫ tj

tj−1

dtf(t)

∫ tj

t

dt′f(t′)C(j)(t, t′).

(3.25)
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The bias due to time discretization is defined as the mean of the error. By the law of total
expectation, it equal to the conditional mean averaged over all possible skeletons:

Bias = E(ϕ− ϕ̂) = E [E ((ϕ− ϕ̂)|{Xj})]

=

∫
Ω

dx0ρ0(x0)

∫
· · ·
∫

Ωk
dx1 · · · dxkGt1(x0, x1)Gt2−t1(x1, x2)

× · · ·Gtk−tk−1
(xk−1, xk)E

(
(ϕ− ϕ̂)|{Xj = xj}kj=0

)
.

(3.26)

The (k + 1)-fold integral arises from the joint density of the skeleton. Finally, the (uncon-
ditional) variance of the discretization error is given by the law of total variance:

Var(ϕ− ϕ̂) = Var [E ((ϕ− ϕ̂)|{Xj})] + E [Var ((ϕ− ϕ̂)|{Xj})] , (3.27)

where both terms are computed using the joint density of {Xj}kj=0, similar to the compu-
tation of the bias.

3.4.1 Application: free diffusion

We would like to apply the described general paradigm to assess our simulation of the free
diffusion. In this case, it suffices to let {Xt} be its increment process {Xt −X0} since the
position process is spatially homogeneous and the initial position has zero contribution to
the dephase. The increment process is the scaled Wiener process. Therefore, {X(j)

t } is
recognized as the generalised Brownian bridge,

X(j)(t) = xj−1 + ∆xjτ +
√

2D(tj − tj−1)B(τ), (3.28)

where τ =
t−tj−1

tj−tj−1
is the normalised time and ∆xj = xj−xj−1. Here {B(τ)} is the standard

Brownian bridge defined by

B(τ) = Wτ |(W1 = 0), 0 6 τ 6 1, (3.29)

where {Wt} is the standard Wiener process.

It is well-known that the Brownian bridge has mean and auto-covariance functions

E (B(τ)) ≡ 0;

E (B(τ)B(τ ′)) = τ(1− τ ′), τ < τ ′.
(3.30)
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Thus we obtain functions m(j)(t) and C(j)(t, t′) without using the propagator of Xt:

m(j)(t) = xj−1 + ∆xjτ,

C(j)(t, t′) = 2D(tj − tj−1)τ(1− τ ′), t < t′,
(3.31)

where τ ′ =
t′−tj−1

tj−tj−1
. Assume [0, T ] is discretized by a uniform grid of unit spacing ∆t = T

k

and denote q = γg∆t, s =
√

2D∆t. The conditional mean and variance of the error become

E ((ϕ− ϕ̂)|{Xj = xj}) = γg
k∑
j=1

∫ 1

0

((xj−1 + ∆xjτ)f(tj−1 + ∆tτ)− (xj−1 + ∆xj)f(tj)) ∆tdτ

= q
k∑
j=1

(ajxj−1 + bj∆xj),

Var ((ϕ− ϕ̂)|{Xj = xj}) = 2q2s2

k∑
j=1

cj,

(3.32)

where the coefficients are

aj =

∫ 1

0

(f(tj−1 + ∆tτ)− f(tj))dτ ;

bj =

∫ 1

0

(τf(tj−1 + ∆tτ)− f(tj))dτ ;

cj =

∫ 1

0

dττf(tj−1 + ∆tτ)

∫ 1

τ

dτ ′f(tj−1 + ∆tτ ′)(1− τ ′).

(3.33)

In our simulation, x0 = 0, ∆xj = szj, xj = xj−1 + ∆xj, where zj’s are independently
drawn from the standard Gaussian distribution. Therefore, E(Xj) = 0 for all j and it is
established that ϕ̂ is an unbiased estimate for ϕ (no systematic error):

Bias = E [E ((ϕ− ϕ̂)|{Xj})]

= q

k∑
j=1

(ajE(Xj−1) + bjE(∆Xj)) = 0.
(3.34)

Lastly, to compute the variance of the error, we first calculate the variance of the conditional

61



mean:

Var [E ((ϕ− ϕ̂)|{Xj})] = q2

k∑
j=1

Var (ajXj−1 + bj∆Xj) + 2q2

×
∑∑
16i<j6k

E (aiajXi−1Xj−1 + aibjXi−1∆Xj + biajXj−1∆Xi + bibj∆Xi∆Xj)

= q2

k∑
j=1

(
a2
js

2(j − 1) + b2
js

2
)

+ 2q2
∑∑
16i<j6k

(
aiajs

2(i− 1) + biajs
2
)
.

(3.35)

The relations invoked are

E (XiXj) = s2 min (i, j), E (∆Xi∆Xj) = s2δij, E(Xi∆Xj) = s2
1i>j, (3.36)

where δij and 1 are Kronecker delta and indicator functions respectively.

Since the conditional variance is position-independent, its average over {Xj} is trivial.
Combining both terms in the total variance formula, one gets

Var(ϕ− ϕ̂) = 2q2s2

k∑
j=1

cj + q2s2

k∑
j=1

(
a2
j(j − 1) + b2

j

)
+ 2q2s2

∑∑
16i<j6k

(aiaj(i− 1) + biaj) .

(3.37)

Since we know that in the case of free diffusion, both ϕ and ϕ̂ are Gaussian, the error itself
must be Gaussian. Therefore, we conclude that

(ϕ− ϕ̂) ∼ N(0,Var(ϕ− ϕ̂)). (3.38)

Assuming a constant temporal profile, i.e f(t) ≡ 1, a direct computation yields aj = 0, bj =
−1

2
, cj = 1

24
. Thus, the variance of the error is reduced to

Var(ϕ− ϕ̂) =
1

3
q2s2k =

2

3
Dγ2g2T∆t2 ∝ ∆t2. (3.39)

Therefore, in the case of free diffusion, the discretization error converges linearly in time
step (in L2 sense).
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3.4.2 Effect of Reflective BCs

It turns out that the presence of a reflective boundary substantially degrades the accuracy.
Consider a reflected Brownian motion on the non-negative real line denoted as {Xt}. Its
skeleton trajectory is sample as follows: Draw a uniform random point on the non-negative
axis X0. The random jump size and the position updates are given by

∆Xj =
√

2D∆tZj, Xj = |Xj−1 + ∆Xj|, j = 0, 1, · · · , k, (3.40)

where Zj’s are independent standard Gaussian random variables. [3] states that the ‘global
truncation error’ of such scheme is approximately proportionate to the square-root of the
grid size, (in L1 sense). In our notation, this result reads

E|X(j)
t −Xj| ' const

√
∆t, tj−1 6 t 6 tj. (3.41)

As a result, assuming a constant temporal profile, the discretization error of the dephase
has the following L1-estimate:

E|ϕ− ϕ̂| 6 γg
k∑
j=1

∫ tj

tj−1

E|X(j)
t −Xj|dt ' const× γgk∆t

√
∆t ∝

√
∆t. (3.42)

This slow convergence rate is both interesting and disappointing compared to the result
established in the free diffusion case. This signifies the intrinsic difficulty of Monte Carlo
methods.
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Chapter 4

Improved Monte Carlo Method

4.1 Objective

As demonstrated in the last chapter, MC simulations of diffusion weighted MR signal can
be computationally expensive. Roughly speaking, the simulation time is proportional to
the product of the number of independent trajectories Nwalker and the number of time
steps Rtime. Unfortunately, little can be done to reduce Nwalker. It is however, possible to
reduce the number of time steps by considering some ‘maximum free space’ surrounding
the particle (the meaning of which will be elaborate later). This leads to the geometrically
adaptive fast random walk (GAFRW) algorithm, first introduced in [14].

First, let us consider an analogy in numerical integration (for deterministic integrands).
Newton-Cotes methods1 use equispaced grids, compared to Gaussian quadrature rules
where ingeniously designed, uneven grids are used. While Newton-Cotes methods are
more general, Gaussian quadrature rules are much more efficient when integrands can be
well approximated by polynomials.

In our problem 2.59, the integrand is stochastic. The MC schemes we showed in Chap-
ter 3 uses uniform time steps regardless of the nature of the path. If somehow we know
that the diffusion in certain areas is more ‘free’ then others, analytical results can then be
employed to avoid simulating detailed trajectories.

1Trapezoidal rules, simpson rules are all examples of Newton-Cotes methods
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The original algorithm simulates the diffusion signal under the FID sequence. In this
chapter, GAFAW is generalized for sequences with piecewise constant temporal profiles
such as FID, rectangular PGSE and CPMG sequences. The experiment in this chapter
uses the PGSE sequence.

The structure of the present chapter is the following: Section 4.2 introduces the idea
of position-dependent time steps. Section 4.4 covers how phase updates are calculated
in. Section 4.5 explains how certain functions defined in previous sections are tabulated.
Section 4.6 demonstrates an experiment using the improved scheme for crossing fibers.
Lastly, section 4.7 briefly covers a potential generalization to the Robin case, which will
soon be finalized.

Figure 4.1: PGSE sequence under NPA
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4.2 Geometrically adaptive time steps

Let Ω be the confining domain with a reflective boundary ∂Ω. For pedagogical reasons, we
first consider an important limiting temporal profile called the narrow pulse approximation
(NPA). As we shall see, the advantage of spatially adaptive time steps is evident.

As its name suggests, NPA is valid when the pulse duration is much smaller than the
diffusion time (Figure 4.1),

δ � ∆, (4.1)

while the ‘impulse’ q = gδ is non-negligible2. Physically, NPA is interesting since it
simplifies the calculation for phase accumulation since spins can be treated as immobile
during short pulses. For the PGSE sequences under NPA, the dephase only depends on
the total displacement travelled during the diffusion time,

ϕ =

∫ T

0

dtf(t)g · r(t) = δg · (r(∆)− r(0)) = q · (r(∆)− r(0)), (4.2)

where r(t) is a sample path of RBM.

Suppose that the initial positions are sampled (uniformly), only the final positions are
needed to calculate the dephases. Doing so by using the paradigm in Chapter 3, one has
no choice but to generate the entire trajectory. Therefore, our goal is to bypass as many
intermediate positions as possible.

The FRW algorithm determines the time and position update based on whether or
not the position at the current step is near the boundary. In addition, the generation of
the final position requires a special treatment. The instructions for all cases are provided
below.

4.2.1 Non-boundary case

Boundary layer thickness In GAFRW algorithm, positions that are not within a ‘layer’
centered at ∂Ω are considered ‘far away’ from the boundary. To establish a concrete cri-
teria, the layer thickness, ε, is introduced as a numerical parameter. ε is chosen to be

2Under NPA, numerically solving the BT equation is difficult as δ needs to be finely discretized
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extremely small compared to to L, the characteristic length of the domain.

The distance function computing the Euclidean distance between an interior point of
Ω and ∂Ω is defined as

d∂Ω : Ω 7→ R+, d∂Ω(r) = inf
r′∈∂Ω

‖r − r′‖ . (4.3)

A point r is considered to be far away from ∂Ω if

d∂Ω(r) > ε, (4.4)

For the time being, the initial position r0 is assume to satisfy the inequality 4.4.

Time steps In this case, let S0 be the sphere centered at r0 with radius d. Clearly, S0

is tangent to ∂Ω. As long as the diffusing particle stays inside S0, there is no chance for
it to collide with the boundary. After a random amount of time t1, the Brownian particle
reaches the surface of S0 for the first time. The exit point r1 is uniformly random on ∂S0

due to radial symmetry. By solving a first exit problem, the exact cumulative distribution
function of t1 can be derived (in the next section). The cdf of the dimensionless first exit
time is given by3

Fτ (t) = 1− 2
∞∑
n=1

(−1)n+1e−n
2π2t t > 0. (4.5)

Therefore, t1 can be generated via the inverse CDF technique and taken as our first time
step. The numerical evaluation of both Fτ (t) and its inverse is covered in section 4.5. In
fact, the tabulated values of Fτ (t) and all other ’special functions’ in terms of infinite series
are computed once and forever to save the cost of the Monte Carlo simulation.

Non-final updates If t1 has not exceeded Tmax, a prescribed maximum time, the par-
ticle will continue its random walk until the time runs out. Since the random walk is
Markov, r1 can be treated as the initial position and the same calculations are repeated to
generate the new time steps and new positions, producing a finite sequence {(rn, Tn)}n>0,
where Tn = t1 + t2 + · · ·+ tn. This ‘spherical process’ is illustrated in Figure 4.2.

3Fτ

(
π
√

t
2

)
is in fact the cdf of the Kolmogorov distribution, used in the Kolmogorov-Smirnov test in

statistics.
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Figure 4.2: In the geometrically adaptive fast random walk algorithm, we only simulate
the positions at time points when collision with the boundary is possible. The random
first exit times for leaving spheres S0, S1, . . . , Sn are chosen as time steps.

Final update It is expected that for some n, Tn < Tmax < Tn+1, which implies that the
particle does not have enough time to escape the sphere Sn. Therefore, the final position
can only to take interior points of Sn (Figure 4.3). Therefore, the final time update is just

Figure 4.3: The final position update.

tn+1 = Tmax−Tn and the average displacement is zero due to symmetry. We therefore want
to study the conditional distribution of the final position if we are to provide a non-trivial
position update rule.

Since the exact conditional CDF of the displacement size ∆r is time-dependent, using
the inverse CDF technique in general would be highly inefficient since tabulated values
need to be stored for a large number of time steps, say t’s. We avoid this problem by
consider t’s in different regimes. If tn+1 is small, intuitively, the walker can barely ‘feel’
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the boundary of Sn at all so the diffusion is approximately free (Gaussian). For large t’s,
it turns out that the conditional pdf is time-independent and we can generate ∆r using
the inverse CDF technique. Lastly, in the intermediate regime, the jump size is taken as
its time-dependent mean,

R(t) = 1− 8M(t)

S0(t)
, (4.6)

where S0(t) = 1− Fτ (t) and

M(t) =
∑

n=1,3,5,...

e−n
2π2t

n2π2
. (4.7)

Overall, for a given final time step, we have the following function for generating the
dimensionless final jump size,

function: FinalJump (t)

Case.i If t < tsmall, generate a standard 3D Gaussian random vector R and keep computing

∆r =
√

2t ‖R‖ (4.8)

until ∆rn 6 1 (fail-safe);

Case.ii If t > tlarge, generate U following Unif [0, 1] and take ∆r as the solution to the
transcendental equation

U = FR(r) ≡ sin (πr)− πr cos (πr)

π
; (4.9)

Case.iii Otherwise, compute
∆r = R(t). (4.10)

end

Overall, given that the current position r is not close to the boundary ∂Ω. The time
and position updates are performed according to the following scheme:
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Scheme 1 Inputs: r, tmax (time remaining); output: rnew, t (geometrically adaptive
time step).

S.1 Compute the distance between the boundary and the current position,

ρ = d∂Ω(r); (4.11)

S.2 Generate U following Unif [0, 1] and then compute the time step

t = F−1
τ (U)

ρ2

D
, (4.12)

where D is the diffusion coefficient;

S.3 Generate a uniformly random direction û in R3, if

Case.i t < tmax, compute
rnew = r + ûρ; (4.13)

Case.ii t > tmax, rewrite t as tmax and compute

rnew = r + û · ρ× FinalJump(t). (4.14)

end

4.2.2 Boundary case

Release radius If the current position r, fails to satisfy inequality 4.4, the particle is
considered to be close to the boundary.

If the boundary is absorbing (Dirichlet BCs), the random walk simply gets terminated.
For reflective BCs however, it would be inefficient to generate the same ‘spherical processes’
described in the non-boundary case. This is because the spheres generated for the next
several steps would approximately be of size ε (Figure 4.4, (a)), which leads to simulations
of detailed trajectories near the boundary.

To overcome this issue, the release radius Rrls, another numerical parameter, is intro-
duced, which satisfies

ε� Rrls � L, (4.15)

where L is the local radius of curvature of ∂Ω evaluated at the point on ∂Ω closest to
the current position. The right inequality ensures that the base, the region ∂Ω ∩ Sn is
approximately flat (Figure 4.4 (b)), where Sn = {r : ‖r − rn‖ < Rrls}.
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Figure 4.4: (a) When the newly updated position is close to the boundary, the regular
position update method would generate tiny jumps in the next couple of steps, thus slowing
down the simulation. (b) Instead, the jump size is set to be equal to the release radius R.
If the uniformly sampled new position is outside Ω, it simply gets reflected.

Neumann BC It is known that the components of a 3D Brownian motion in all orthog-
onal directions are mutually independent. Thus, the random walk in tangent directions of
the base are unaffected by the boundary.

On the other hand, the normal component of the Brownian motion is subject to a
reflective boundary at the center of the base. Recall the Reflection Principle of the Wiener
process (subsection 2.7.2) and we can implement the Neumann BC in the following way:
Assuming for now that the reflective boundary is absent, we let the random walk continue
freely inside Sn until it reaches ∂Sn. A uniformly random point on ∂Sn is taken as updated
position if it is inside Ω. Otherwise, the reflection of the aforementioned point w.r.t. the
base is chosen instead.

Such choice is justified as probabilistically, the reflected trajectory of free random walk
is equivalent to random walk subject to Neumann BCs. The method for time update is
identical to the non-boundary case and it is assumed that within the final time step t, the
walker is always able to reach ∂Sn. Since Rrls is chosen to be small, t is small as well so that
the accumulated time is extremely unlikely to exceed the maximum time. Therefore, it
is safe not to include a special treatment addressing the final update for the boundary case.
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Overall, we have the following scheme for the time and position update for the boundary
case:

Scheme 2 Input: r (current position); output: rnew, t (time step).

S.1 Compute n̂, the interior normal unit vector of ∂Ω at r (approximately);

S.2 Generate a uniformly random direction û in R3 and if û · n̂ < 0, overwrite û by4

û = û− 2(û · n̂)n̂; (4.16)

S.3 Compute
rn+1 = rn + ûRrls; (4.17)

S.4 Generate U following Unif [0, 1] and compute

t = F−1
τ (U)

R2
rls

D
. (4.18)

end

4.2.3 Interlude: q-space Imaging

NPA naturally leads to an imaging technique called the q-space imaging (QSI), which has
the potential of overcoming certain weakness of traditional DTI.

The key foundation of QSI is that NPA implies the Fourier duality between the diffusion
signal and the ‘average’ propagator. To see this, Rename the initial and final positions
in equation 4.2 as r, r′ respectively and plug into equation 2.60, we obtain the diffusion
signal,

S(q,∆) = E
[
eiϕ}

]
= E

[
eiq·(r

′−r)
]

=

∫
Ω

dr

∫
Ω

dr′f(r, r′; ∆)eiq·(r
′−r),

(4.19)

4It is known as the Householder transformation
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where f(r, r′; ∆) is the joint pdf of random positions r and r′, which can be expressed as

f(r, r′; ∆) = ρ(r)G∆(r, r′), (4.20)

provided that the process is Markov. Plugging equation 4.20 into equation 4.19, the signal
becomes

S(q,∆) =

∫
R3

dr1G∆(r1)e−iq·r1 , (4.21)

where r1 = r′−r is the displacement vector and G∆(r1) is the ensemble average propagator
(EAP) defined as

G∆(r1) =

∫
Ω

drG∆(r, r + r1). (4.22)

Equation 4.21 states that the signal is the Fourier transform of the EAP, which is analogous
to the imaging equation 2.22. Similar to k-space, q-space consists of all possible values of q.

EAP, obtained by taking the inverse Fourier transform of 4.21, is expected to carry
spatial information about the confining geometry5. Qualitatively speaking, since the dif-
fusion propagator is the likelihood of transition, its values increases in directions in which
the diffusion is less restricted. Hence, q-space imaging has the potential of detecting mul-
tiple fiber orientation within voxels (Figure64.5).[23] shows that QSI can be used to infer
geometric parameters of brain cells.

Figure 4.5: q-space imaging: (a) crossing fibers (the ground truth); (b) Diffusion signal in
q-space; (c) EAP recovered by Fourier inversion; (d) directional EAP.

5In applications of QSI, NPA may not hold
6 Source of the image:http://dsi-studio.labsolver.org/course/q-space-imaging-1
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4.2.4 Summary

Combining all cases covered so far, the GAFRW algorithm for time and position update is
summarized below.

Algorithm 4.1 Inputs: T (maximum diffusion time), rini (initial position); output: rfin

(final position).

S.1 Set n = 0, rn = rini, Tn = 0;

S.2 While Tn 6 T , do

Case.i If rn is far from ∂Ω, execute Scheme 1;

Case.ii If rn is close to ∂Ω, execute Scheme 2;

S.3 return rfin = rn.

end

Under NPA, the following steps calculate the simulated diffusion signal:

Algorithm 4.2 Inputs: Nwalker, q (sequence impulse); output: S.

S.1 Generate a uniformly random point in Ω, r0;

S.2 Apply Algorithm 4.1 with inputs ∆, r0 to obtain final position r(∆);

S.3 Compute the dephase ϕ according to equation 4.2;

S.4 Repeat S.1 to S.3 Nwalker, obtain a sequence {ϕk}.

S.5 Compute the diffusion signal
S = exp (iϕk). (4.23)

end
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4.3 Derivation of relevant distributions

4.3.1 First exit problem in unit sphere

Given that a random walker starts from the origin, we are interested in τ , the random
amount of time need for the walker to exit the unit sphere,

B = {r : ‖r‖ < 1}. (4.24)

In other words,
τ = min{t : r(t) ∈ ∂B}. (4.25)

Figure 4.6 shows a sample path of the described process.

Figure 4.6: A simulated Brownian trajectory
inside a unit disk (dt = 0.001, D = 1, ds =√

4Ddt. First exit occurs at τ = 0.2620.

Figure 4.7: Graph of S0(t) for 0.001 < t < 1,
we can see that S0(1) decays extremely fast
and is almost zero even for t = 1.

Position distribution Let u(r, t) be the pdf of the random position of the walker r at
time t. In other words, u(r, t) = Gt(0, r), where Gt(r, r

′) is the Green’s function of the
diffusion equation in the unit ball subject to absorbing boundary condition. Notice that
the solution for u(r, t) should not depend on angular coordinates θ and φ due to the radial
symmetry of the initial and boundary conditions. Therefore, denote u(r, t) as u(r, t), r > 0
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which satisfies the initial boundary problem (IBVP),

∂u

∂t
=

1

r2

∂

∂r
(r2∂u

∂r
)

u(r, 0) = δ3(r)

u(1, t) = 0 for t > 0,

(4.26)

where δ3(r) satisfies

1 =

∫ ∞
0

4πr2δ3(r)dr. (4.27)

Introduce a change of variable

u =
p

r
⇒ ut =

pt
r
,

∂

∂r
(r2∂u

∂r
) = prrr.

The PDE for p(r, t) is equivalent to the heat equation in a slab. The IBVP for p can be
written as

pt = prr

p(r, 0) =
δ3(r)

r
p(1, t) = 0 for t > 0.

(4.28)

Applying the standard separation of variables procedure and multipling the solution of
p(r, t) by r, we acquire the solution for u(r, t),

u(r, t) =
π

2

∞∑
n=1

e−n
2π2tsinc(nπr).

where sinc(x) = sin (x)
x

. Integrating u over θ and φ (which is simply multiplying u by 4πr2)
yields the radial distribution function,

f(r, t) = 2
∞∑
n=1

e−n
2π2tnπr sin (nπr). (4.29)

4.3.2 First Exit Time distribution

Inverse CDF technique As mentioned previously, the time steps GAFRW are random
first exit times. We show that τ can be generated by inverting its cumulative distribution
function (CDF),

Fτ (t) = P(τ 6 t). (4.30)
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To see why it works, suppose that a random variable U follows Unif [0, 1] and let T =
F−1
τ (U), where F−1

τ is the inverse of Fτ . It can be shown that T follows the same distri-
bution of τ :

P(T 6 t) = P(F−1
τ (U) 6 t) = P(U 6 Fτ (t)) = Fτ (t).

CDF of τ Fτ (t) can be calculated through its probabilistic meaning:

Fτ (t) = P(τ 6 t) = 1− P(τ > t)

= 1− P(t < the shortest time it takes for r(t′) to reach ∂B)

= 1− P(r(t′) ∈ B for ∀ 0 6 t′ 6 t)

= 1− S0(t),

(4.31)

where S0(t) is the survival probability, the probability that the random walker remains
inside the unit sphere during the whole duration of [0, t]. It is equal to the integral of
u(r, t) over B:

S0(t) =

∫
Ω

u(r, t)dr =

∫ 1

0

f(r, t)dr. (4.32)

The integration above is elementary and we have,

S0(t) = 2
∞∑
n=1

(−1)n+1e−n
2π2t. (4.33)

In the long-time limit, the series is dominated by the first term:

S0(t) ≈ 2e−π
2t, for t→∞. (4.34)

The graph of S0(t) is shown in Figure 4.7.

Short-time behaviour However, series 4.33 is ill-suited evaluating S0(t) when t is small
(In fact if we set t = 0 we get 2

∑∞
n=1(−1)n, a divergent series!). Therefore, an alternative

expression for S0(t) is needed. Taking the Laplace Transform of S0(t), we get

L{S0}(s) = 2
∞∑
n=1

(−1)n+1

s+ n2π2
, (4.35)

which can be evaluated explicitly by using the residue summation technique described in
Appendix C,

L{S0}(s) =
1

s
− 1√

s sinh (
√
s)
. (4.36)
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The initial value theorem of the Laplace transform states that the short-time behaviour
of S0(t) depends on L{S0}(s) when s is large. Applying geometric series, we have the
expansion,

1√
s sinh (

√
s)

=
2√

s(e
√
s − e−

√
s)

=
2√
se
√
s

1

1− e−2
√
s

=
2√
se
√
s

∞∑
n=0

e−2n
√
s = 2

∞∑
n=0

e−(2n+1)
√
s

√
s

.

(4.37)

The expansion is valid since e−
√
s � 1 when s is large. Taking the inverse Laplace transform

of 4.37, we get

S0(t) = 1− 2
∞∑
n=0

1√
πt
e−

(2n+1)2

4t , (4.38)

in which the relation

L−1

{
e−β

√
s

√
s

}
=

1√
πt
e−

β2

4t (4.39)

was invoked. The general terms in series 4.38 are extremely small when t approaches zero.
Therefore, the short-time limit of S0(t) is given by

S0(t) ≈ 1− 2√
πt
e−

1
4t , for t→ 0. (4.40)

4.3.3 Conditional radial distribution

Given that the particle stays inside the unit ball for the whole duration of [0, t], what would
be an ‘educated guess’ for its final position at time t? This is the problem encountered in
the final position update (subsection 4.2.1).

Due to radial symmetry, the direction of the jump should be uniformly random. On the
other hand, the distribution of the jump size should be the conditional radial distribution
given that first exit has not yet occurred at time t,

ft(r|r(t′) ∈ B for ∀ 0 6 t′ 6 t) =
f(r, t)

S0(t)
, (4.41)

where f(r, t) is given by series 4.29. As discussed earlier, we would like to investigate the
behaviour of 4.41 in different regimes of t. Figure 4.8 shows that the conditional radial pdf
shifts to the right as time evolves.
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Figure 4.8: The pdfs of the conditional ra-
dial distribution for small and large t.

Figure 4.9: Graph of R(t). The dotted red

curve is the short-time limit, 4
√

t
π
. R(t) ap-

proximately plateaus after reaching t = 0.15.

Long-time regime For large values of t, f(r, t) has the approximation

f(r, t) ≈ 2e−π
2tπr sin (nπr), (4.42)

which has the same decay rate as S0(t) does (4.40). Therefore, in the long-time limit, the
conditional radial distribution becomes time-independent,

f(r, t)

S0(t)
≈ πr sin (nπr). (4.43)

Integrating the asymptotic pdf above, one arrive at the corresponding conditional CDF
FR(r) in equation 4.9.

Intermediate regime The conditional CDF for intermediate values of t admits no sim-
ple expression. We therefore consider taking the conditional mean as our educated guess
for r,

R(t) =
1

S0(t)

∫ 1

0

rf(r, t)dr. (4.44)

Using elementary methods for integration, one arrives at equation 4.6. Figure 4.9 shows
the graph of R(t).
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Short-time regime We witnessed the power of Laplace transform in terms analysing
short-time asymptotics of S0(t). We wish to do the same to R(t).

The Laplace transform of M(t) given by 4.7 is given by

L{M(t)} =
∑

n=1,3,5,...

1

n2π2(s+ n2π2)
, (4.45)

which can be explicitly summed by using the summation formula C.157,

L{M(t)} ==
1

8s
−

tanh
(√

s
2

)
4s

3
2

. (4.46)

Taking the inverse Laplace transform and multiplying by 8, we get

8M(t) = 1− 2L−1

{
1

s
3
2

1− e−
√
s

1 + e−
√
s

}
= 1− 2L−1

{
1

s
3
2

(1− 2e−
√
s + o(e−2

√
s))

}
= 1− 4

√
t

π
+ 4L−1

{
1

s
3
2

(e−
√
s + o(e−2

√
s))}

}
.

(4.47)

The relation L−1{s−β} = tβ−1

Γ(β)
is used in the last step, where Γ(z) is the Gamma function.

It is also known that8

L−1

{
e−k
√
s

s
3
2

}
= 2

√
t

π
e−

k2

4t − k
(

k

2
√
t

)
, (4.48)

where k is a positive constant and (x) is the complementary error function. the asymptotic
relation

x =
e−x

2

x
√
π

(
1− o(x−1)

)
holds when x is large. Thus when t→ 0, we have

L−1

{
e−k
√
s

s
3
2

}
(t) = o(t)e−

k2

4t

7Choose y(z) = cos (z/2) and G(z) = y′(z)/y(z)
8Formula 29.3.85 of Abramowitz and Stegan, 1964.
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Therefore,

M(t) = 1− 4

√
t

π
+ o(t)e−

k2

4t . (4.49)

Combining with 1
S0(t)

= 1 + o(t) (a very conservative estimate), we obtain the short-time
asymptotic,

R(t) = 4

√
t

π
+ o(t). (4.50)

The square root of t dependency in the short-time limit of R(t) agrees with the rms dis-
placement of Brownian motions: Let r = (X, Y, Z) be a random vectors whose components
are independent Gaussian random variables with mean zero and variance σ2 = 2t. r then
has pdf

1

(2π)
3
2σ3

exp

(
−x

2 + y2 + z2

2σ2

)
=

1

(2π)
3
2σ3

exp− r2

2σ2
. (4.51)

Multiplying the pdf by 4πr2 yields the marginal distribution of the length r,

f(r) =

√
2

π

r2

σ3
e−

r2

2σ2 , (4.52)

whose mean is given by

E{r} =

∫ ∞
0

√
2

π

r3

σ3
e−

r2

2σ2 dr = 2σ

√
2

π
= 4

√
t

π
. (4.53)

The Gaussian integral formula,∫ ∞
0

x2n+1e−ax
2

dx =
n!

2an+1
,

was invoked in the calculation above.
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4.4 Phase Update

Let us now return to the case where a general PGSE sequence is applied (δ no longer
small).
To simulate the signal, it is natural to partition the diffusion encoding duration [0,∆ + δ]
into intervals where the time profile are constants, namely [0, δ), [δ,∆), [∆,∆ + δ]. In
each interval, time and position updates are identical to Algorithm 4.1. For intervals with
non-zero time profile however, the GAFRW algorithm now needs to include phase updates.

Contrary to the basic Monte Carlo method, phases can no longer be calculated via rect-
angular/trapezoidal rules as the time steps can potentially be large. The phase increments
are instead nonlinear functions of the time step, which are derived by using the matrix
formalism in [14] and will not be reproduced here. The original derivation is terse so we
provide supplementary explanation for the mathematics involved in Appendix B and C.
Further extension the GAFRW algorithm requires a solid understanding of the derivation.

As usual, the phase increment ∆ϕ are calculated separately for non-boundary and
boundary cases.

4.4.1 Non-boundary Case

Non-final updates Let {X(t′)}tt′=0 be the underlying position process during a non-final
update in Scheme 1, which by design satisfies

Cond.1 initial condition X(0) = r;

Cond.2 final condition X(t) = rnew;

Cond.3 ‖X(t′)− r‖ < ρ, 0 6 t′ < t.

The random phase increment is therefore given by the time integral,

∆ϕ̃ =

∫ t

0

dt′X(t′) · g, (4.54)

where g is the diffusion gradient times the gyromagnetic ration γ.
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The exact distribution for the phase increment during each update is analytically in-
tractable. The main idea is to use moments under given conditions as approximations9.
Although the moment calculations are still challenging, it is a considerable simplification.
The integral 4.54 is approximated by its first moment given conditions Cond.1 to Cond.3,

∆ϕ = tr · g +
ρ2

D
Φ1

(
Dt

ρ2

)
(rnew − r) · g, (4.55)

where the function Φ1(τ) is the normalized first moment 10, given by

Φ1(τ) =
1

−2S ′0(τ)

(
3

2
S0(τ)−

∞∑
k=0

(−1)k
√
λ1k + 1e−λ1kτ

)
, (4.56)

where the set {λnk}n,k>0 is the Dirichlet spectrum of the Laplacian associated with the
unit sphere B.

It is well-known that the eigenvalues λnk are squares of the positive zeros of spherical
Bessel function of the first kind,

λnk = α2
nk, jn(αnk) = 0, (4.57)

where for a fixed n, αnk’s increase w.r.t. k. In particular, α0k = (k + 1)π, k > 0

Same as functions given by infinite series before, values of Φ1(t) are tabulated once and
forever and are loaded prior to the Monte Carlo simulation to save computation time. The
graph of Φ1(t) is shown in Figure 4.11.

Remarks regarding formula 4.55 :

• The second term can be thought of the adjustment to the rectangular rule used in
basic Monte Carlo methods, given by the first term;

• Two orthogonal components of {X(t)} contribute independently to the phase incre-
ment. In other words,

X(t) = X‖(t)ĝ +X⊥(t), (4.58)

where {X⊥(t)} is orthogonal to the gradient direction ĝ (Figure 4.10).

9This is a common approach in statistical inference known as the ‘method of moments’.
10’normalized’ means that the pdf used for calculating the moment is normalized
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1. Due to the initial condition X(0) = r, {X⊥(t)} stays in the plane,

{r′ : (r′ − r) · g = 0} , (4.59)

on which the gradient field is of constant strength r · g. Therefore, the phase
contribution due to the component {X⊥(t)} is simply tr · g.

2. On the other hand, it is unsurprising that the contribution due to X‖(t)ĝ is
proportional to the projection of the displacement vector onto the gradient
vector, which is the second, nonlinear term.

Figure 4.10: The component ofX(t) orthog-
onal to the gradient direction.

Figure 4.11: Graph of Φ1(t) along with its
short-time approximation Φ1(t) ≈ 1

2
t(1−2t).

Final update If {X(t′)}tt′=0 is the underlying position process during the final update.
According to our analysis in subsection 4.2.1, {X(t′)}tt=0 only satisfies Cond.1 and Cond.3
(with a modification 0 6 t′ 6 t).

The phase increment defined by integral 4.54 has zero conditional mean since E{X(t)} =
0 for all t due to radial symmetry. A non-trivial estimate of the phase increment is given
via Gaussian phase approximation. More specifically, ∆ϕ is treated as a Gaussian random
variable with zero mean and variance of to the conditional second moment of integral 4.5411.

11The Gaussian phase approximation is valid when the gradient strength is not particularly high. See
[11] for a detailed discussion on Gaussian phase approximation.
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The final phase increment is given by

∆ϕ = tr · g + Z̃ × ρ2

D
Φ2

(
Dt

ρ2

)
g · (1, 1, 1)T , (4.60)

where T stands for matrix transpose and Z̃ is a standard Gaussian random variable. The
normalized standard deviation of the dephase, Φ2(τ) (Figure 4.12), is defined as ,

Φ2(τ) =

√
S2(τ)

S0(τ)
, (4.61)

where S2(t) is the pre-normalized second moment,

S2(τ) =
1

24

∞∑
k=0

(−1)k(−λ−1
0k + 17λ−2

0k − 174λ−3
0k )e−λ0kτ +

5

12

∞∑
k=0

(−1)k
√
λ1k + 1

λ2
1k

e−λ1kτ

+
τ

12

∞∑
k=0

(−1)k(4λ−1
0k + 3λ−2

0k )e−λ0kτ .

(4.62)

Notice that in the last phase increment, contrary to formula 4.55, the nonlinear component
is independent of the final position. This is because we assume that the final position
rfin = X(t) is unspecified and is therefore integrated over the sphere Bρ(r) in the derivation
of the second moment (Appendix B).
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4.4.2 Boundary Case

As the updated position in the boundary case is on a hemisphere of prescribed radius,
a rigorous consideration for the phase update analogous to the non-boundary case would
consists of the following steps. First, find the Laplacian eigenvalues and eigenfunctions
of the hemispherical domain subject to mixed boundary conditions, which are Dirichlet
BC on the hemisphere and Neumann BC on its base. Second, compute matrix elements
of B, U, Ũ in subsection 2.8.3. Lastly, impose initial and final conditions on the position
process and calculate the first conditional moment. However, this approach turns out to
be unwieldy cumbersome.

Once again, we look at the Reflection Principle for inspiration. Let {X(t′)}tt′=0 be
the underlying position process during updates of boundary case, excluding the reflection.
In other words, {X(t′)}tt′=0 is simply the free diffusion inside Sn, satisfying Cond.1 to
Cond.3.

If we are to use X(t) to compute the equivalent phase increment due the reflected
position process, the spatial profile of the effective magnetic field inside Sn needs to be
symmetric w.r.t. the base 12. This effective (or ‘reflected’) spatial profile is therefore no
longer linear and its piecewise form is given by

Beff(r′) =

{
r′ · g if (r′ − r) · n̂ > 0;

(r′ − 2((r′ − r) · n̂))n̂) · g if (r′ − r) · n̂ 6 0,
(4.63)

where n̂ is the interior unit normal vector of Ω, evaluated near r.

Orthogonal decomposition of g The gradient g can be decomposed to directions that
are orthogonal or tangent to the base,

g = g⊥ + g‖, (4.64)

where g⊥ ≡ (g · n̂)n̂, g‖ ≡ g − (g · n̂)n̂13. With some algebra, equation 4.63 can be
rewritten in terms of g⊥ and g‖,

Beff(r) = (rn−1 · g⊥ + r · g‖)︸ ︷︷ ︸
linear gradient

+ |(r − rn−1) · n̂|(g · n̂)︸ ︷︷ ︸
‘V-shaped’ gradient

, r ∈ Sn. (4.65)

12Effective magnetic field strength at positions symmetric about the base must be the same.
13Treat the subscripts ‖ and ⊥ as operators. It is easy to verify that they are both Hermitian operators,

i.e. for a, b ∈ R3, a⊥ · b = a · b⊥ , a‖ · b = a · b‖ .
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Figure 4.12: The graph of the standard de-
viation function Φ2(t).

Figure 4.13: Beff at a Neumann boundary: a
superposition of a linear gradient field (g‖)
and a ’V-shaped’ field (±g⊥ on either side
of the base).

This representation suggests that Beff(r) is equivalent to the superposition of two fields
(Figure 4.13). They are:

1. a linear field with gradient g‖;

2. a ‘V-shaped’ field 14 with opposite gradients, ±g⊥ on either side of the base. Its
strength varies linearly on the distance towards the base.

Since the dephase is a linear functional of the magnetic field, the total dephase be written
as the sum of the contributions from the two aforementioned fields. Let us look into the
phase contribution from each field in detail.

1. The contribution from the linear field is estimated by its first conditional moment
given the final condition X(t) = rnew. This is identical to the cased covered by
formula 4.55 under the gradient g‖,

∆ϕ‖ = tr · g‖ +
R2

rls

D
Φ1

(
D

R2
rls

)
(rnew − r) · g‖. (4.66)

14due to the shape of the absolute value function
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2. The contribution from the ‘V-shaped’ field is estimated by its first conditional mo-
ment under a weaker final condition: X(t) ∈ ∂Sn. The accuracy should not suffer
‘too much’ as we do not expect a large number of iterations are of the boundary
case. Therefore rnew is integrated over Sn in the derivation. Under the weakened
final condition, the conditional mean can be greatly simplified and is in fact a linear
function (!) of t,

∆ϕ⊥ = tr · g⊥ +
1

4
Rrlst(n̂ · g⊥). (4.67)

Finally, combining the two contributions, we obtain the total phase increment during the
reflection step:

∆ϕ = tr · g +
1

4
Rrlstn̂ · g +

R2
rls

D
Φ1

(
Dt

R2

)
(rnew − r)‖ · g. (4.68)

Remark It is worth noticing that g can be factored out in all formulae for the dephase
increments. This means that we can perform all dot product operations with g after our
simulation. This can be advantageous in certain situations. For example, to simulated a
q-space image, DW signal needs to be calculated for a large number of q vectors to recover
the EAP. In Monte Carlo simulations the signal calculation is trivial once the sequence of
position and time pairs are obtained.15 The solutions of BT equation on the other hand
need to be recalculated for each gradient direction since the PDE changes.

4.4.3 Summary: full GAFRW algorithm

We conclude this section with a summary combining all cases. Suppose that a constant
diffusion encoding gradient g is present during a time interval [0, T ] and the initial position
of a walker is r0.

15Given a fixed geometry, basic Monte Carlo method generates a large sample of detailed trajectories.
From that the signal can be obtained for varying spatial and temporal profile (for example in a PGSE
squence, changing while keeping ∆ + δ fixed). For the GAFRW algorithm however, for a new time profile,
a brand new simulation is needed.
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Algorithm 4.3 Inputs T, g, rini, ϕini; outputs: rfin, ϕfin.

S.1 Set n = 0, Tn = 0, rn = rini, ϕn = ϕini;

S.2 While Tn 6 T , do

(a) If rn is far from ∂Ω, execute Scheme 1 and compute 4.55 or 4.60;

(b) If rn is close to ∂Ω, execute Scheme 2 and compute 4.68;

S.3 return rfin = rn, ϕfin = ϕn.

end

Under PGSE sequences, the steps for simulating diffusion signals summarized given
below.

Algorithm 4.4 Inputs: Nwalker, δ/∆/g (sequence parameters); output: S

S.1 Generate a uniformly random point in Ω, r0;

S.2 Apply Algorithm 4.3 with inputs δ, g, r0, 0, obtain outputs r(δ), ϕ+;

S.3 Apply Algorithm 4.1 with inputs (∆− δ), r(δ), obtain outputs r(∆);

S.4 Apply Algorithm 4.2 with inputs δ, −g, r(∆), ϕ+, obtain outputs r(δ + ∆), ϕ;

S.5 Repeat S.1 to S.4 Nwalker times, obtain a sequence {ϕk}.

S.6 Compute the diffusion signal,
S = exp (iϕk). (4.69)

end
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4.5 Numerical Evaluation

Numerical evaluations of the functions defined in terms of infinite series are calculated
mainly based on finite truncation. Whenever such basic approach proves to be numeri-
cally unstable or there exists convenient approximations, asymptotic formulae are derived
instead.

The input range for tabulation [tmin, tmax] is chosen to be sufficiently wide so that the
probability of t falling outside of such range is negligible. For untabulated inputs, the
function outputs are taken as the interpolation of their neighboring tabulated values.

4.5.1 S(t)

Both series representations of S0(t), series 4.38 and 4.33 are used for evaluating S0(t).

Let SNlong(t) be the partial sum of series 4.33,

SNlong(t) = 2
N∑
n=1

(−1)n+1e−n
2π2t. (4.70)

According to the alternating series estimation theorem, an upper bound for the truncation
error is simply the absolute value of (N + 1)-th term,

|S0(t)− SNlong(t)| 6 2e−(N+1)2π2t. (4.71)

On the other hand, the truncation error of using the partial sum of the short-time repre-
sentation, 4.38, is given by

|S0(t)− SNshort| 6
2e−

2N+2
t

√
πt(1− e− 2

t )
, (4.72)

where

SNshort(t) = 1− 2√
πt

N∑
n=0

e−
(2n+1)2

4t . (4.73)

To obtain the upper bound in 4.72, we use the inequality (2n + 1)2 > 8n and geometric
series:

|S0(t)− SNshort(t)| =
2√
πt

∞∑
n=N+1

e−
(2n+1)2

4t 6
2√
πt

∞∑
n=N+1

e−
2n
t 6

2e−
2N+2
t

√
πt(1− e− 2

t )
.
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For N = 0 specifically, we have

|S0(t)− S0
short(t)| 6

2e−
2
t

√
πt(1− e− 2

t )
.

Numerical calculation shows that for t 6 0.1155, the approximation S0
short(t) = 1− 2√

πt
e−

1
4t

has error less than 10−7. For t > 0.1155, SNlong(t) is used for N 6 3.

4.5.2 F−1
τ

Once S0(t) is tabulated within a desired accuracy, we can subsequently compute Fτ (t) =
1−S0(t) and its inverse. When U is close to 0 or 1, Fτ has vanishing derivatives. To avoid
numerical division by zero, closed-form asymptotics of

U = Fτ (t) (4.74)

are used for the short- and long-time regimes.

When U is small, the short-time limit of 4.74 is the transcendental equation,

U =
2e−

1
4t

√
πt

, (4.75)

which can be rearranged to
f(t) = t ln (t) + A = 0, (4.76)

where A = 2 ln U
√
π

2
+ 1

2
. Applying Newton’s method with initial guess t = 1, we have the

scheme,

t0 = 1;

do tn+1 = tn −
tn ln tn + A

ln tn + 1
, n > 0,

until ε = 10−4 > |tn+1 − tn|.

(4.77)

On the other hand, when U is close to 1, the equation 4.74 is reduced to its long-time limit,

U = 1− 2e−π
2t. (4.78)

It can be solved algebraically and

t = − 1

π2
ln

(
1− U

2

)
. (4.79)

For intermediate values of U , F−1
τ (U) are evaluated by a simple lookup table.
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4.5.3 R(t)

The tabulation of R(t) (4.6) is only required for intermediate values of t. Since we have
computed the values of S0(t) only the values of M(t) (4.7) are to be tabulated.

The partial sum of 4.7 and its truncation error of are given by

MN(t) =
N∑
l=1

e−(2l−1)2π2t

(2l − 1)2π2
, M(t)−MN(t) =

∞∑
l=N+1

e−(2l−1)2π2t

(2l − 1)2π2
, (4.80)

respectively. The truncation error for N > 2 has upper bound,

|M(t)−MN(t)| 6 min

{
1

2π2(2N − 1)
,

e−(2N+1)2π2t

(2N + 1)2π2(1− e−4(2N+1)π2t)

}
. (4.81)

To show this we notice that, on one hand, by the integral test for convergence,

|M(t)−MN(t)| 6
∞∑

l=N+1

1

(2l − 1)2π2
6
∫ ∞
N

1

(2x− 1)2π2
dx =

1

2π2(2N − 1)
.

On the other hand, by geometric series,

|M(t)−MN(t)| 6 1

(2N + 1)2π2

∞∑
l=N+1

e−(2l−1)2π2t =
1

(2N + 1)2π2

∞∑
n=0

e−(2n+2N+1)2π2t

6
e−(2N+1)2π2t

(2N + 1)2π2

∞∑
n=0

e−4(2N+1)nπ2t =
e−(2N+1)2π2t

(2N + 1)2π2(1− e−4(2N+1)π2t)
.

We used the inequality,

(2n+ 2N + 1)2 − (2N + 1)2 = 4(2N + 1)n+ 4n2 > 4(2N + 1)n.

Hence the error bound is established. In our computation we always keep at least the first
two terms in the partial sum.

4.5.4 F−1
R

When solving the transcendental equation 4.9, special treatments are required when U is
close to 0 or 1 once again due to vanishing derivatives. We employ appropriate Taylor
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expansions to avoid this issue.

Since sin (x)−x cos (x) = 1
3
x3 + o(x3), for small U , equation 4.9 approximately reduces

to the simple equation, U = π2

3
r3, which has the root,

r =

(
3U

π2

) 1
3

. (4.82)

In addition sin (x)− x cos (x) admits the expansion at x = π,

sin (x)− x cos (x) = π − 1

2
π(x− π)2.

Hence, for U close to 1, equation 4.9 approximately reduces to

U = 1− 1

2
π2(1− r)2,

which has the root,

r = 1−
√

2(1− U)

π
. (4.83)

For intermediate values of U , we applying Newton’s method with initial guess 0.5:

x0 = 0.5;

do xn+1 = xn −
sinxn − xn cosxn − πU

xn sin (xn)
, n > 0

until ε > |xn+1 − xn|,

return r =
xn
π
.

(4.84)

4.5.5 {α1k}

The MATLAB function for finding approximate roots of j1(z), written by Greg von Winckel,
is available online16. The function uses simple equations to approximate the first three ze-
ros. The forth and higher zeros are obtained from Halley’s method.

16https://www.mathworks.com/matlabcentral/fileexchange/6794-bessel-function-zeros
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4.5.6 Φ1(t)

When tabulating Φ1(t) based on equation 4.56, the upper bound of truncation error is
hard to estimate due to the fact it is a ratio of two infinite series. Moreover, equation 4.56
performs poorly for small t’s sincere both the numerator and denominator are extremely
small so the division is numerically unstable17.

Therefore, for small t18, we employ the short-time asymptotic,

Φ1(t) ≈ 1

2
t(1− 2t), (4.85)

as t → 0. The quadratic asymptotic time-dependency makes sense heuristically. To see
this, given that the Brownian particle has to exit the unit sphere in a short time t, its
trajectory (continuous with probability 1) should almost be a straight line segment con-
necting the initial and exit points. As a result, the accumulated phase is an integral of a
linear function of time (B(r(t)) is linear since both B(r) and r(t) are linear), which has
to be quadratic in t.

Now we derive 4.85 by again using Laplace transform. For the denominator in Φ1,
termwise differentiating the series 4.38 yields

2S ′0(t) =
1√
πt5

∞∑
k=0

e−
(2k+1)2

4t (2t− (2k + 1)2) ≈ 1√
πt5

e−
1
4t (2t− 1). (4.86)

On the other hand, denote the numerator as

S1(t) =
3

2
S0(t)− I(t), (4.87)

where

I(t) =
∞∑
k=0

(−1)k
√
α2

1k + 1e−α
2
0kt. (4.88)

Taking the Laplace transform and applying the residume summation technique, we have

L{S1}(s) =

√
s

2(
√
s cosh (

√
s)− sinh (

√
s))
− 3

2
√
s sinh (

√
s)
. (4.89)

17As one can observe from Figure 4.7, the denominator S′0(t) (the slope of S0(t)) is almost zero as t gets
close to 0.

18In our calculation, the threshold is taken where S′0(t) is lower than 10−10.
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Since sinh (x) ≈ cosh (x) ≈ ex

2
as x→∞, for large s, we have the approximation,

L{S1}(s) ≈ e−
√
s 1

1− 1√
s

−3e−
√
s = e−

√
s(1+

1√
s

+o(
1√
s

))−3
e−
√
s

√
s

= e−
√
s(1− 2√

s
+o(

1√
s

))).

(4.90)
Thus as t→ 0, an approximation for S1(t) is

S1(t) =
e−

1
4t

2
√
πt

3
2

(1− 4t+ o(t)). (4.91)

The desired short-time asymptotic is obtained by taking the ratio of equation 4.91 and
4.86,

Φ1(t) =
S1(t)

−2S ′0(t)
≈ t(1− 4t+ o(t))

2(1− 2t)

=
1

2
t(1− 4t+ o(t))(1 + 2t+ o(t))

=
1

2
t(1− 2t+ o(t)),

(4.92)

where geometric series is used in the second last step. On the other hand, Simply keeping
only leading exponential terms in equations 4.33 and 4.88 yields the long-time approxima-
tion,

Φ1(t) =
3

4π2
−
√
α2

10 + 1

4π2
e−(α2

10−π2)t. (4.93)

4.5.7 Φ2(t)

We only need to compute S2(t) as the S0(t) is tabulated earlier. Although all three series
in the expression of S2(t) look complicated, their evaluation is actually a simple matter due
to their fast convergence speed (even for small values of t). Since they are all alternating
series, an upper bound of the truncation error is easy to obtain and is omitted here.
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4.6 Experiment: orthogonal fiber bundles

In applications, one voxel may contain more than one bundle of fibers (Figure 4.14). In
diffusion MRI reconstruction and tractography, this presents a fundamental challenge as
currently there exists no method capable of mapping multiple neural paths consistently.
We would like to simulate diffusion encoding processes in such environment by applying
the GAFAW algorithm. Let us introduce the infinite cylinder model established in section
3.3.3 with an additional bundle of orthogonally placed fibers.

Figure 4.14: Crossing fibers: real microstructure and its geometric idealization.

Here, we assume that for each group of fibers, the horizontal separation is 2d. The verti-
cal separation of horizontal ‘layers’ of fibers is also 2d. The fibers regardless of orientations
all have inner and outer radius of Rin, Rout respectively. Recognizing the periodicity of the
structure, we formulate the simulation problem in a cube-shaped minimal lattice (Figure
4.15). Let us place the center of the lattice at the origin. Inside the lattice, we have four
(quartered) finite cylindrical surfaces. The axes of the quartered cylinders coincide with
four of the lattice sides. The positions of all axes can be easily read from Figure 4.15. For
example, axis x1 has vertices d(1,−1,−1), d(−1,−1,−1).
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Figure 4.15: Lattice for orthogonal fibers
(thickness not shown).

Figure 4.16: Exclude jump directions falling
between the two green dotted lines.

4.6.1 Implementation and Results

Assuming Neumann boundary condition on the cylinders, the whole simulation proce-
dure can be divided into intra-axonal and extra-axonal cases, two independent procedures.
Therefore, we define a geometry class for each domain equipped with its own functions for
calculating distance, surface normal vector and uniformly-sampled initial positions.

Due to translation and rotational symmetry, intra-axonal diffusion can be simulated
within a single infinite cylinder with a default orientation (such as z-axis). The computed
dephase sample is then transformed according to the Rodrigues’ rotation formula described
in section 3.3.3. The MATLAB implementation for the extra-axonal domain can be found
in section F.6.1. Notice that, as before, the structural periodicity is handled compactly by
using the floor function in the distance calculation.

Position initialization is performed as following: We first specify Nwalker, the total num-
ber of spins. The number of intra-axonal walkers, Nin is propertional to the volume fraction,

V F =
πR2

out

4d2
. The extra-axonal walkers have a population size of (Nwalker − Nin) and are

sampled by using the acceptance-rejection (A-R) method19. Lastly, Nin initial positions
are generated inside a z−oriented infinite cylinder with radius Rin.

The MATLAB function for the full fast random walk algorithm is shown in section F.6.
We make one extra comment on the treatment for the boundary case. For boundary points

19A-R methods can be inefficient when V F is large due to large number of rejected samples. However,
as of now, a more efficient scheme does not seem available.
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whose associated local curvature vector pointing towards the interior of the confining do-
main, we want to avoid jumps whose direction are ‘almost tangent’ to the boundary. As
an example, consider Figure 4.16. Starting from a boundary point C, the position update,
as described earlier, should be a point on the release sphere with prescribed radius Rrls

(reflected when necessary). Notice that if the jump vector falls between the two green
dotted lines, even after reflection, the new position would still be outside of the domain.
Therefore, the aforementioned jumps are prohibited in the simulation. Since the angle is
typically small, it is reasonable to assume that no significant bias is caused.

In our experiment, geometric parameters are set as (d,Rout, Rin) = (2, 1.7, 1.6)µm. For
both intra- and extra-axonal domains, their boundary layer thickness and release radius
are defined as (ε, Rrls) = R(10−4, 0.05), where R = Rin, Rout respectively. Sequence pa-
rameters, except for directions, are the same as the ones in Chapter 3. The size of the
simulation Nwalker equals to 1000 and (Nin, Nout) = (433, 567). The extra- and intra-axonal
simulation lasted 7848s and 4168s respectively.

The simulated signals for gradient direction being x̂, ŷ, ẑ are shown in Table. The
dephase distributions in all directions exhibit significant non-Gaussian behavior (Figure
4.17).

Figure 4.17: Dephase distribution (ĝ = x̂, ŷ, ẑ), from left to right).

Gradient Direction Diffusion Signal
(1, 0, 0)T 0.0193
(0, 1, 0)T 0.0214
(0, 0, 1)T 0.0143

Table 4.1: Diffusion signals (orthogonal fiber bundles).
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4.7 Possible Extension for Robin BCs

In applications, an important source of magnetization loss is due to surface relaxation,
modeled by Robin BCs. Therefore, it is valuable to incorporate its implementation into
GAFRW. The basic idea appears to be theoretically sound and is presented here.

Release Cylinder Suppose that the Robin BC (equation 2.38) holds on a boundary
∂Ω. Similar to our treatment of Neumann BC, numerical parameters ε and Rrls are intro-
duced to avoid detailed simulations near the boundary. We introduce another length scale
ρ = min

(
D
h
, Rrls

)
20.

Consider a point P close to the boundary with coordinate rP (In the sense that in-
equality 4.4 is false.). Construct a cylinder (Figure 4.18), Σ, with the height ρ; the axis n,
where n is the local interior unit normal vector of the boundary; the lower base,

S = {r : ‖r − rP‖ 6 Rrls, (r − rP ) · n = 0}; (4.94)

and the upper base, which is just S translated in direction n by distance ρ. We refer this

Figure 4.18: First exit problems inside the release cylinder.

20D
h is the distance a spin should travel near the boundary before the surface relaxivity reduces its

expected magnetic moment[13].
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cylinder as the release cylinder and consider the following first exit problem: Given that S
is semi-absorbing and the rest portion of Σ’s boundary is fully absorbing. How long would
it take for a random walker to exit Σ if its initial position is P?

The exit point can either be located on the side of Σ, or on any of its two bases. By
orthogonal decomposition of Brownian motions, the original first exit time t is in fact the
minimum of the following two independent first exit times:

1. Given that rS(t) is a 2D random walk starting from the origin, tS is the minimum
amount of time s.t. ‖S(tS)‖ = Rrls;

2. Consider the interval Iρ = [0, ρ] whose left and right end points are semi-absorbing
and fully absorbing, respectively. tI is the first exit time for a 1D random walk X(t)
to leave Iρ (X(0) = 0).

Both tS and tI have analytically tractable CDFs and thus can be generated via the Inverse
CDF technique.

Position and phase updates Since t = min(tS, tI) is our time step, the rule for position
update will depend on which of the aforementioned first exit events occurs first.

Case 1 If tS = min(tS, tI), the exit point will be on the side of Σ. Thus, the updated
position is taken as,

rnew = rP + ûRrls + n× E [X(tS)|tS < tI ] , (4.95)

where û is a random unit vector in R2. As we can see, the magnitude of the vertical
displacement is taken as the conditional first moment of X(t), a value within I.

Case 2 If tI = min(tS, tI), we need to decide which base the exit point will be located
on. If X(tI) = 0, it implies that the random walker is absorbed by the semi-absorbing
boundary and the random walk gets terminated. Generate a Bernoulli variate U with
parameter p0(tS), where p0(t) is the time-dependent termination probability. If U = 1,
discard the current iteration; if U = 0, the updated position is taken as,

rnew = rP + û
√

E
[
‖rS(tI)‖2 |tI < tS

]
+ nρ. (4.96)
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As we can see, similar to our treatment of the final update, the size of the tangential
displacement is estimated by its rms value. The conditional moments (dimensionless) as
functions of time (dimensionless) will be derived and tabulated once and forever.

As for the phase increment, the contribution due to the random walk in S is derived in
[14]. For the contribution due to the 1D random walk, consider the random time integral,∫ t

0

X(t′)dt′. (4.97)

For case 1, take the rms value of integral 4.97; for case 2 where U = 0, take its first
conditional moment instead.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

This section summarizes the main achievements of this thesis.

• As a pedagogical contribution, Chapter 2 of this thesis is aimed at concisely cover-
ing the mathematical physics of dMRI for new researchers. Readers familiar with
undergraduate-level differential equations and probability theory should find the ma-
terial accessible.

• Numerically, both the basic and improved algorithms are programmed and tested
(Chapter 3 and 4). Careful considerations are taken for accurate evaluation of func-
tions defined in terms of infinite series. Numerical experiments showed that the
computational cost saved by choosing the improved algorithm over the basic one is
only moderate in typical geometries arise from dMRI of white matter.

• Methodologically, using the proposed error analysis arguments, we showed that the
basic Monte Carlo method is of first order or worse (Chapter 3).

• Mathematically, the residue method for evaluating infinite series is modified and
applied to problems of moment calculation.
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5.2 Future Work

This section discusses the prospect of further research to come based on this study.

5.2.1 Software optimization

The computer programs in this study are written in MATLAB for purpose of high read-
ability and short development time. For large scale simulation, however, languages such
as C++ or Fortran should be more efficient. Employing techniques such as multithreading
can also be helpful for performance improvement.

5.2.2 Implementation of Robin BCs

GAFRW so far are only implemented for Dirichlet and Neumann BCs. In future studies,
an extension addressing Robin BCs will be worked out in details based on the main idea
discussed in section 4.7. As usual, analytical formulae for calculating escape probabilities
and conditional moments can be derived using the MCF formalism.

5.2.3 Inverse problems

This thesis focus entirely on the direct problem in dMRI, namely the question, ‘how to
compute diffusion signals given a confining geometry’. The holy grail however, is the
inverse problem, ’to what extend can a general confining geometry be inferred by the dif-
fusion signal?’. In this subsection, we discuss recent advancement of the inverse problem.
In addition, a weaker inverse problem is proposed in hopes of bringing new light to the topic.

The spectral formalism (section 2.8.3) inevitably begs the comparison between the in-

verse problem in dMRI and the celebrated question posed by Kac[21]. Although the original
Kac question has a negative answer[10], the situation in dMRI is slightly different due to
the augmented complex ‘reaction’ term in the BT equation1. Recent studies have shown
that at least for closed domains, it is possible to recovery of their geometries completely
(e.g. see [24]). The key observation is that sequences with anti-symmetrical time profiles

1The MCF approach express the solution to the direct probelm entirely in terms of diffusion propagators
(equation 2.88) and can be therefore thought as a perturbation approach of solving the BT equation (w.r.t
to pure diffusion)
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(such PGSE) are in fact ill-suited for shape estimation2. An experimental imaging tech-
nique called diffusion pore imaging (DPI) uses a weak, long pulse followed by a strong,

short pulse in the opposite direction and has shown great promises[25]. In future studies
we wish to explore this phenomena through MC simulation.

Real microstructures of white matter is way more complex than what can be described
as closed pores. In the foreseeable future, determining their ‘exact’ geometries still faces
great challenges. We consider an less ambitious approach inspired by the particle in a box
model in introductory quantum mechanics.

Mathematically, the particle in a box problem can be formulated by the Schrödinger
equation with free Hamiltonian, subject to Dirichlet BCs. On the other hand, the ‘hard
boundary’, namely the interval containing the quantum particle, can be represented by an
infinite potential well. This means that, formally, BCs can be removed if the potential
term can be incorporated into the Hamiltonian (although mathematically the equation is
ill-defined).

Returning to our discussion of restricted spin diffusion in magnetic fields, it is logi-
cal to model geometric restrictions as some potential landscape V (r). In order to have
a well-defined ‘Hamiltonian’ to work with, V (r) needs to be smooth3. This implies that
we essentially give up the notion of ‘confining geometry’ in its rigorous sense (defined by
BCs) and instead define our problem in free spaces instead. Quantitatively, V (r) should
be ‘steep’ at positions close to the physical boundary.

In the absence of magnetic fields, diffusion under the influence of a deterministic
potential is described by the Smoluchowski equation[22]. Applying the similar heuris-
tic argument4 used in section 2.9, we model the time evolution of magnetization density
m(r, t), (r ∈ R3) by an augmented BT equation,

∂m

∂t
= D∇2m+∇ · (∇V (r)m)− iω(r, t)m, for r ∈ Rd, (5.1)

2Phase information is cancelled under PGSE. One may imagine attempting to reconstruct images only
from power spectrum densities. Unsurprisingly, the result will be poor.

3or at least differentiable in some weak sense
4We interpreted BT equation as ‘free diffusion plus spin precession’. Here in equation 5.1, we have

‘diffusion with drift plus spin precession’
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where d = 1, 2, 3. The three terms on the RHS of equation 5.1 represent the influence due
to free diffusion, boundary and magnetic field encoding respectively. The resulting signal
is the total magnetization,

S[ω] =

∫
Rd
m(r, TE)dr, (5.2)

where TE is the echo time. Notice that in our notation above, we purposefully treat the
signal as a functional of the input function ω(r, t).

We now formulate the weaker problem in terms of the following PDE inverse coefficient
problem.

Inverse Problem Suppose that m(r, t) satisfies equation 5.1 and D, ω(r, t) are known,
can V (r) be recovered by measuring S[ω], defined by equation 5.2?

If the answer is yes5, we wish to answer a second inverse problem,

Optimization problem What kind of ω(r, t)’s are the most ‘effective’ in terms of their
ability to recover V (r)?

Notice that the answer to the second inverse problem will depend on the choice of cost
function. Meaningful choices for the cost function may address factors such as reconstruc-
tion accuracy, hardware limitations, etc.

Since for given ground truth, MC simulators should produce corresponding diffusion
signals. The simulation schemes and synthesized data presented in this work can be useful
for investigating the proposed inverse problems.

5And chances are it will be, considering the effectiveness of DPI for simple domains.
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Appendix A

Generating Uniformly Random
Directions

In this appendix, we provide a scheme for generating uniformly random points on S2, the
unit sphere in R3.
One may be tempted to draw 3D standard Gaussian variates and then normalize them,
which would be theoretically correct. However, there is a significant chance that the
Gaussian variates have short length and the problem of numerical division by zero arises.
Notice that the joint pdf of standard Gaussian distribution satisfies radial symmetry,

f(x, y, z) =
1√
2π
e−

x2

2
1√
2π
e−

y2

2
1√
2π
e−

z2

2 =
1

(2π)
3
2

e−
r2

2 . (A.1)

The normalization condition of f(x, y, z) in spherical coordinates can be written as

1 =

∫
R3

f(x, y, z)dxdydz

=

∫
R3

1

(2π)
3
2

e−
r2

2 r2 sin θdrdθdφ.

The integrand in the last equation is of the form of the product of single-variable functions
of coordinates r, θ (inclination angle) and φ (azimuth angle), which implies that random
variables r, θ and φ are mutually independent. Therefore, the pdfs of θ and φ are propor-
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tional to 1 and sin θ, respectively. After normalizing, one gets pdfs

f1(φ) =
1

2π
for 0 6 φ 6 2π, (A.2)

f2(θ) =
1

2
sin θ for 0 6 θ 6 π. (A.3)

It is straightforward to show that z = cos θ, the z-component of a point on S2, follows the
uniform distribution over [−1, 1]:

P(Z 6 z) = P(cos θ 6 z) = P(θ > arccos (z))

=

∫ π

arccos (z)

1

2
sin θdθ =

1

2
(1 + z).

Therefore, we have the following scheme for generating a uniformly distributed 3D random
unit vector:

1. Generate U1, U2 iid U [0, 1];

2. Z = 2U1 − 1;

3. (X, Y ) =
√

1− Z2(cos (2πU2), sin (2πU2);

4. Return (X, Y, Z).
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Appendix B

Derivation of Moments

The conditional 1st and 2nd moments of the dephase used in GAFRW are derived by using
the matrix-formalism in [14]. More details of their derivations are provided in the present
and next appendix as they are crucial for any further extension of the fast random walk
algorithm. Guiding ideas of the derivation are explained in this appendix.

First and the second order MCFs Recall the non-dimensionalized first exit problem
stated in subsection 4.3.1.

First moments are used in all but the last update. For the non-boundary case, the final
condition is that the walker exited the sphere at time t at position r. On the other hand,
for the boundary case, at time t the walker still exit the unit sphere yet the exact exit
point is unspecified. Using the general MCF in its matrix form (2.96), we can formally
write down the first order MCF,

E [B(r(t1))] = Ue−Λt1Be−Λ(t−t1)V, (B.1)

where matrices U consists of the generalized Fourier coefficients of the Dirac delta function
centered at 0 for both cases; and the entries of V are the normal directional derivative of
the eigenfunctions

• evaluated at the exit point, for the boundary case;

• averaged over the unit sphere, for the non-boundary case.
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The definition of V is justified by our discussion on BCs for the propagator (subsection
2.7.1).

The second moment is used in the last update, in which the final condition is that the
walker has not yet exit the sphere by the time t. The 2nd order MCF is therefore,

E [B(r(t1))B(r(t2))] = Ue−Λt1Be−Λ(t2−t1)Be−Λ(t−t2)Ũ∗, (B.2)

where U has the same definition in equation B.1 and Ũ∗ is defined in 2.93.

Time average As established in section 2.8, the moments of ϕ are the time average of
MCFs. In GAFRW, at each update the gradient stays constant (FID sequence), thus the
1st and 2nd order time average operators for our problem are

〈h〉1 =

∫ t

0

dt1h(t1);

〈h〉2 =

∫ t

0

dt1

∫ t

t1

dt2h(t1, t2).

(B.3)

MCFs B.1, B.2 can then be expanded in the same manner as series 2.92. Applying the
operators 〈·〉1, 〈·〉2 to the expanded MCF of corresponding order, one may notice some
cancellation which reduces the number of sums to be evaluated.

Matrix B Recall that the matrix B is the coordinate representation of the gradient field
in the eigenbasis.

It is obvious that the choice of coordinate system does not affect the amount of spin
dephase. In the computation of B, we used the spherical coordinate system whose zenith
direction (z-axis) is the gradient direction. This choice is made solely for simplifying the
calculation of integrals and should not be confused with the convention in NMR literature
of z-axis being the direction of the main field. Consequently, the linear spatial profile of
the DW gradient has the form

B(r) = r cos θ, (B.4)

where θ is the inclination angle. The following sections discuss the quantities and tech-
niques required for calculating matrix B in detail.
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It is worth noticing that, the final analytical results in terms of infinite series may still
be ill-suited for numerical evaluation, especially for small values of t. For that reason,
asymptotic formulae are derived.

B.1 Normalized Eigenfunctions

We briefly present the well-known solution of the Laplacian eigenvalue problem in the unit
sphere B = {r : ‖r‖ < 1}.

The azimuth angle, ϕ, is omitted since the magnetic field spatial profile does not de-
pendent on it. The Helmholtz’s equation ∇2u+ λu = 0 becomes

1

r2

∂

∂r

(
r2∂u

∂r

)
+ λr2 +

1

r2 sin θ

∂

∂θ

(
θ
∂u

∂θ

)
= 0, (B.5)

subject to the Dirichlet BC,

u(1, θ) = 0, for 0 < θ < π. (B.6)

Applying the method of separation of variables, the eigenfunctions are of the form

unk(r, θ) = βnkjn(αnkr)Pn(cos θ) for n, k = 0, 1, 2, . . . (B.7)

where

• jn(z) is the n-th order spherical bessel function of the 1st kind;

• αnk’s are the positive zeros of jn(z);

• Pn(x) is the n-th order Legendre polynomial;

• βnk is the normalization constant.

To calculate βnk, we need to evaluate the integral∫
Ω

u2
nk(r)dr = 2πβ2

nk

∫ 1

0

j2
n(αnkr)r

2dr

∫ π

0

P 2
n(cos θ) sin θdθ. (B.8)

115



The angular integral is equal to 2
2n+1

due to the orthogonality condition:∫ 1

−1

Pm(x)Pn(x)dx =
2δmn

2n+ 1
,

The radial integral is obtained by using the following technique: First by using the fact
that spherical Bessel functions are related to the standard Bessel functions via relation:

jn(z) =

√
π

2z
Jn+ 1

2
(z), (B.9)

one can rewrite the radial integral into∫ 1

0

j2
n(αnkr)r

2dr =
π

2α3
nk

∫ αnk

0

J2
n+ 1

2
(z)zdz (B.10)

Secondly, Jn+ 1
2

is a solution of the Bessel DE:

z2J ′′ + zJ ′ + (z2 − l2)J = 0, where l = n+
1

2
,

and we then manipulate the DE so that the integrand of the RHS of equation B.10 can be
expressed as a derivative. By multiplying 2J ′, one gets

[(J ′)2z2]′ + z2(J2)′ − l2(J2)′ = 0,

⇒ [(J ′)2z2]′ + (z2J2)′ − 2zJ2 − l2(J2)′ = 0.

As as result, one has

2zJ2
n+ 1

2
= [(J ′

n+ 1
2
)2z2 + z2J2

n+ 1
2
− l2(J2

n+ 1
2
)]′. (B.11)

Rewrite the right hand side above in terms of jn(z) then integrate and use jn(αnk) = 0,
one gets ∫ αnk

0

2zJ2
n+ 1

2
dz =

2

π

(
1

2
zjn(z) + z

3
2 j′n(z)

)2

+ (z2 − l2)
2z

π
j2
n(x)

∣∣∣αnk
0

=
2

π
α3
nk(j

′
n(αnk))

2.

(B.12)

Combine the radial and angular integral, we have

βnk =

√
2n+ 1

2π

1

j′n(αnk)
. (B.13)
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B.2 Elements of the Matrix B

The integral defining the elements of the matrix B for the linear gradient fieldB(r) = r cos θ
expressed in spherical coordinates is expressed as

Bnk,n′k′ = 2πβnkβn′k′

∫ 1

0

jn(αnkr)jn′(αn′k′r))r
3dr

∫ π

0

Pn(cos θ)Pn′(cos θ) cos θ sin θdθ.

(B.14)

B.2.1 Integral over θ

The angular integral in easy to evaluate. Using the recurrence relations of Legendre poly-
nomials,

(2n+ 1)xPn(x) = (n+ 1)Pn+1(x) + nPn−1(x),

and the orthogonality condition,∫ 1

−1

Pm(x)Pn(x) =
2δmn

2n+ 1
,

where δmn is the Kronecker delta, one gets∫ π

0

Pn(cos θ)Pn′(cos θ) cos θ sin θdθ

=

∫ 1

−1

Pn(x)Pn′(x)xdx

=
1

2n′ + 1

(
(n′ + 1)

∫ 1

−1

Pn(x)Pn′+1(x)dx+ n′
∫ 1

−1

Pn(x)Pn′−1(x)dx

)
=

2

2n′ + 1

(
(n′ + 1)δn,n′+1

2(n′ + 1) + 1
+

n′δn,n′−1

2(n′ − 1) + 1

)
.

(B.15)

Writing out the results for n = n′ + 1 and n = n′− 1 separately and combining them with
a single Kronecker delta, one gets∫ π

0

Pn(cos θ)Pn′(cos θ) cos θ sin θdθ = δn,n±1
n+ n′ + 1

(2n+ 1)(2n′ + 1)
. (B.16)
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B.2.2 Integral over r

It is much more difficult to evaluate the radial integral in equation B.14. See [13] for details
for this computation. The basic idea is to once again exploit the fact that vnk(r) = jn(αnkr)
satisfying the underlying DE,

(r2v′)′ + (α2
nkr

2 − n(n+ 1))v = 0 for k = 0, 1, 2, . . . (B.17)

subject to BCs
v(0) <∞, v(1) = 0. (B.18)

Consider the integral

(α2
nk − α2

n′k′)
2

∫ 1

0

r3vnk(r)vn′k′(r)dr. (B.19)

Using the DE in B.17 to isolate α2
nkr

2vnk(r) and its primed counterparts. we can remove
the derivatives in the ‘integrand’ via integration by parts. Under the condition n = n′ ± 1
the radial integral has a closed form result:∫ 1

0

jn(αnkr)jn′(αn′k′r))r
3dr =

j′n(αnk)j
′
n′(αn′k′)αnkαn′k′

(α2
nk − α2

n′k′)
2

. (B.20)
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Appendix C

Residue Summation Technique

Analytical results regarding the conditional moments of dephases are crucial to GAFRW.
Explicit evaluations of infinite series involving zeroes of Bessel functions are frequently
encountered. Techniques from elementary calculus are mostly ineffective for computing
those summations. Fortunately, with the help of Residue and Mittag-Leffler theorem in
complex analysis, we are able to derive closed-form results for those series. The techniques
demonstrated in the present appendix are heavily inspired by [19], [11].

In this appendix, we first briefly review some fundamentals of complex analysis. Section
C.2 sketches the main idea of the summation procedure. Section C.3 shows how specific
moments are calculated.

C.1 Some complex analysis

We first briefly review some basics concepts and results about complex functions. A de-
tailed treatment can be found in [1].

Definition of a Residue Let f(z) be a meromorphic function a punctured disk centred
at z = z0. It then admits a Laurent series expansion,

f(z) =
∞∑

n=−∞

cn(z − z0)n. (C.1)
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The residue of f(z) at z0 is defined as the coefficient c−1,

Res(f ; z0) = c−1. (C.2)

The notation for residue can be abbreviated to Res(z0) if there is no ambiguity regarding
the function of interest.

Residues at poles If the function

(z − z0)nf(z) (C.3)

is holomorphic and non-zero in the neighborhood of z0, z0 is called a pole of order n. For
calculating residues at poles, apart from directly computing the Laurent series, another
common method is to use the following formula,

Res(z0) = lim
z→z0

1

(n− 1)!

dn−1

dzn−1
[(z − z0)nf(z)]. (C.4)

In particular, when n=1,
Res(z0) = lim

z→z0
(z − z0)f(z), (C.5)

in which z0 is referred to as a simple pole.

Residue Theorem Residues are significant due to their roles in calculating contour
integrals. Let Γ is a positively oriented, simple closed contour. The celebrated Residue
theorem states that ∮

Γ

f(z)dz = 2πi
∑
k

Res(zk), (C.6)

where zk’s are poles of f(z) enclosed by Γ.

Mittag-Leffler Theorem When studying rational functions, it is often useful to rewrite
a rational function in terms of a sum of polynomials of simpler fractions, a technique called
partial fraction decomposition. The Mittag-Leffler Theorem in complex analysis is con-
cerned with an analogous procedure for meromorphic functions, known as the pole expan-
sion.
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Let D ⊂ C be an open set and E ⊂ D a closed discrete subset. For each a ∈ E, let pa
be a polynomial with a zero constant term.

The Mittag-Leffler Theorem states that there exists a meromorphic function f on D
s.t. for each a ∈ E, the function

f(z)− pa((z − a)−1) (C.7)

only has a removable singularity at a. Furthermore, if E is unbounded, f(z) admits the
expansion1,

f(z) = h(z) +
∑
a∈E

[
pa((z − a)−1) + ga(z)

]
, (C.8)

where h(z) is an entire function and for each a, ga(z) is a polynomial.

In particular, the rational function

pa((z − a)−1) (C.9)

is referred to as the principal part of f(z) at z = a, which in other words is the negative-
power portion of the Laurent series of f(z) about z = a.

The Residue and Mittag-Leffler Theorem serve as the foundation for our summation
technique. Although the technique is quite general, meticulous justifications are needed
for individual cases.

C.2 Main idea

Summation problem Let f(z) be meromorphic function with non-removable singular-
ities at {pi} and {zk} be a prescribed discrete set of complex numbers with increasing
moduli. Assuming that {pi}∩{zk} = ∅ 2, compute the sum,∑

k

f(zk). (C.10)

1Here the equal sign should be understood as uniform convergence for arbitrary compact set K ⊂ D.
2otherwise certain terms in equation C.10 may blow up
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Basic idea Suppose that there exists a meromorphic function G(z) s.t.

P.1 G(z) has simple poles at precisely the points {zk};

P.2 The residues of G(z) at {zk} are all equal to 1.

Let {ΓN} be a sequence of simple, closed, positively oriented contours so that ΓN encloses
exactly z1, . . . , zN out of all zk’s.

3. Consider the contour integral∮
ΓN

f(z)G(z)dz (C.11)

and apply Residue Theorem, we get∮
ΓN

f(z)G(z)dz = 2πi
∑

Res(f(z)G(z); poles of f(z)G(z) enclosed by ΓN)

= 2πi
∑

Res(f(z)G(z); pi) + 2πi
N∑
k=1

Res(f(z)G(z); zk).

(C.12)

The second sum in the last step equals to

N∑
k=1

f(zk) (C.13)

since

Res(G(z)f(z); zk) = lim
z→zk

(z − zk)G(z)f(z) = Res(G(z); zk)f(zk) = f(zk). (C.14)

If the contour integral on the LHS of the equation C.12 vanishes as N approaches infinity,
we have the following Residue Summation Formula, given by∑

k

f(zk) = −
∑
i

Res(G(z)f(z); pi), (C.15)

where G(z) satisfies P.1, P.2.

3For example , {ΓN} can be concentric circles centred at the origin with radius RN →∞ as N →∞

122



Existence and construction of G(z) However, questions remain whether the function
G(z) exists and if so how we can construct it. In cases where the set {zk} is finite, both
questions are trivial and we simply choose

G(z) =
n∑
k=1

1

z − zk
. (C.16)

In cases where {zk} is infinite however, there is both good news and bad news.

The good news is that G(z) always exists. The Mittag-Leffler Theorem ensures that it
is always possible to construct a meromorphic function with prescribed poles and principal
parts at those poles, provided {zk} is unbounded.

However, the bad news is that in general, the construction of G(s) can be difficult. If
one naively choose

G(z) =
∞∑
k=1

1

z − zk
, (C.17)

there is guarantee that equation C.17 will converge. In the present appendix, we limit our
discussion within a special case where zk’s are simple zeroes of some entire function. For
our application this turns out to be sufficient.

A special case Let y(z) be an entire function having only simple zeroes at precisely
{zk}. Furthermore, y(z) is assumed to admit the following infinite product form,

y(z) =
∏
k

(z − zk). (C.18)

Then its logarithmic derivative can be written in terms of pole expansion:

y′(z)

y(z)
=
∑
k

1

z − zk
. (C.19)

The left hand side is our desired G(z). The convergence can be assured if {zk} is un-
bounded and

∑
k

1
|zk|

=∞.

Thus Residue Summation Formula C.15 is then written as∑
k

f(zk) = −
∑
i

Res

(
y′(z)

y(z)
f(z); pi

)
. (C.20)
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Lastly, one needs to check that as RN →∞,∣∣∣ ∮
ΓN

f(z)G(z)dz
∣∣∣→ 0, (C.21)

which is done by using an estimation lemma.

C.3 Application to moment calculations

Summations involving zeros of spherical Bessel functions jn(z) are common in computing
moments of dephase ϕ. Let {αnk} be the positive zeroes of jn(z), n = 0, 1. We shall
examine how the Residue Summation Formula applies for both values of n.

Sums involving {α0k} Since j0 is in fact the sinc function,

j0(z) =
sin z

z
, (C.22)

we know that {α0k} = {(k + 1)π, k = 0, 1, 2, . . . }, which are in turn positive zeroes of
y(z) = sin z. We thus choose

G(z) =
y′(z)

y(z)
= cot z. (C.23)

Since the zero set of y(z) is 4

y−1[{0}] = {0} ∪ {±α0k} (C.24)

Formally, the Residue Summation Formula (equation C.15) reads∑
zk∈y−1(0)

f(zk) = −
∑
i

Res(cot (z)f(z); pi)

⇒ f(0) +
∞∑
k=0

[f(−α0k) + f(α0k)] = −
∑
i

Res(cot (z)f(z); pi).

(C.25)

The validity of equation C.25 depends on the choice of f(z). In similar fashion, another
useful formula can be derived for evaluate alternating series of the form,∑

zk∈y−1[{0}]

(−1)kf(zk). (C.26)

4f−1[A] stands for the inverse image of the set A.
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Noticing that sec (α0k) = (−1)k+1, we apply equation C.25 to function sec (z)f(z),

f(0) +
∞∑
k=0

(−1)k+1[f(−α0k) + f(α0k)] = −
∑
i

Res(cot (z) sec (z)f(z); pi)

= −
∑
i

Res(csc (z)f(z); pi).

(C.27)

Sums involving {α1k} The positive zeros of the function

j1(z) =
sin z

z2
− cos z

z
(C.28)

are the positive roots of a transcendental equation. More specifically,

{α1k} = x > 0 : tan (x) = x. (C.29)

We would like to evaluate sums of the form∑
zk∈j−1

1 [{0}]

f(zk) (C.30)

by using equation C.15. By choosing G(z) as the logarithmic derivative of j1(z), which can
be written as

G(z) =
j′1(z)

j1(z)
=
j0(z)

j1(z)
− 2

z
. (C.31)

Since j1(z) is an odd function, its full zero set also includes 0 the opposites of α1k. Applying
the summation formula C.15, we arrive at

f(0) +
∞∑
k=0

[f(−α1k) + f(α1k)] = −
∑
i

Res

((
j0(z)

j1(z)
− 2

z

)
f(z); pi

)
. (C.32)

In the next section, we proceed to use the tools developed to evaluate a concrete example.
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C.4 An Example

In subsection 4.5.6, we wish evaluate the series ??. The numerator of the general term
may seem daunting at first glance since it involves a radicals which is not meromorphic.
One can avoid this nuisance can be avoided by noticing that α1k’s satisfies tan (x) = x.
In addition, since {sinα1k}k alternates its sign w.r.t the index k, we have the following
relation

csc (α1k) = (−1)k+1

√
1 + α2

1k

α1k

for k = 0, 1, . . . , (C.33)

which not removes not only the radical but also the alternating sign (−1)k as well. We
thus have the following simplified problem:

Evaluate

Ĩ(s) =
∞∑
k=0

α1k csc(α1k)

s+ α2
1k

. (C.34)

Solution Let f(z) = z csc (z)
s+z2

. Since this is a series involving {α1k}, the Residue Summa-
tion Formula C.32 will be used, which calls for the residues of the function

j′1(z)

j1(z)
f(z) =

(
j0(z)

j1(z)
− 2

z

)
z csc (z)

s+ z2
=

(
1

j1(z)
− 2 csc (z)

)
1

s+ z2
(C.35)

at the poles of f(z), which are

{±i
√
s} ∪ {nπ : n ∈ Z \ {0}}. (C.36)

The residues at the two imaginary poles can be calculated by using formula C.5:

Res(±i
√
s) = lim

z→±i
√
s

z ∓ i
√
s

s+ z2

(
1

j1(z)
− 2 csc (z)

)

=


1

2i
√
s

(
1

j1(i
√
s)
− 2 csc (i

√
s)
)

if +

1
−2i
√
s

(
1

j1(−i
√
s)
− 2 csc (−i

√
s)
)

if −

=
1

2j1(i
√
s)i
√
s
− csc (i

√
s)

i
√
s

=

√
s

2(sinh
√
s−
√
s cosh

√
s)

+
1√

s sinh (
√
s)
.

(C.37)
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In the last step, relations between hyperbolic and trigonometric functions

sinh (x) = −i sin (ix), and cosh (x) = cos (ix) (C.38)

are invoked to eliminate the imaginary unit. Similarly, we obtain the residues at the real
poles:

Res(nπ) = lim
z→nπ

z − nπ
s+ z2

(
1

j1(z)
− 2 csc (z)

)
= −2 lim

z→nπ

z − nπ
sin(z)(s+ z2)

=
−2

s+ z2
lim
z→nπ

1

cos (z)
=

2(−1)n+1

s+ n2π2
.

(C.39)

We are now ready to write down both sides of the formula C.32. Noticing that f(z) is an
even function and f(0) = 1

s
, we have

1

s
+ Ĩ(s) = −(Res(−i

√
s) + Res(i

√
s) +

∑
n 6=0

Res(nπ))

= −
√
s

sinh
√
s−
√
s cosh

√
s
− 2√

s sinh (
√
s)
− 2

∑
n6=0

(−1)n+1

s+ n2π2
.

(C.40)

The alternating series on the RHS involves {α0k},

∑
n6=0

(−1)n

s+ n2π2
= 2

∞∑
k=0

(−1)k+1

s+ α2
0k

. (C.41)

Using equation C.27, we have

1

s
+ 2

∞∑
k=0

(−1)k+1

s+ α2
0k

=
∑
±

Res

(
csc (z)

s+ z2
;±i
√
s

)
. (C.42)

Both residues of the RHS are equal to csc (i
√
s)

2i
√
s

. Applying relations C.38 once again to
eliminate complex numbers, C.42 can be rearranged into,∑

n6=0

(−1)n

s+ n2π2
= −1

s
+

1√
s sinh (

√
s)

(C.43)
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Plugging equation C.43 into equation C.40, we arrive at the closed-form expression of C.34:

Ĩ(s) =

√
s

2(sinh (
√
s)−

√
s cosh (

√
s))

+
3

2s
. (C.44)

Both applications of the Residue Summation Formula (C.35, C.42) are justified. Here we
only show the first one. The proof is a modification of the proof for Lemma 3.1 in [19].

Claim There exists a family of contours {ΓN} s.t. the contour integral∮
ΓN

(
1

j1(z)
− 2 csc(z)

)
1

s+ z2
dz → 0, (C.45)

as N →∞.

Proof Let ΓN (Figure C.1) be a positively oriented square with vertices

A1 = R(1 + i), A2 = R(−1 + i), A3 = R(−1− i), A4 = R(1− i), (C.46)

where R = (N + 1
4
)π, N = 1, 2, . . . .

We shall split the contour integral of interest C.45 into two parts,∮
ΓN

1

j1(z)(s+ z2)
dz + 2

∮
ΓN

csc(z)

s+ z2
dz. (C.47)

Second integral The second part of C.47 has the following estimate,∣∣∣∣∮
ΓN

csc z

s+ z2
dz

∣∣∣∣ 6 max
z∈ΓN

1

|sin z|
1

|s+ z2|
8R. (C.48)

Let N to be sufficiently large so that ΓN encloses ±
√
i, the two imaginary poles. Since

|z| > R2 on GammaN , using the triangle inequality, we have

|s+ z2| > |z|2 − |s| > R2 − |s|. (C.49)

We wish to establish a lower bound for |sin z| for z ∈ ΓN . Since our contour is a square, we
consider expressing the complex sine function in its rectangular form. Plugging z = x+ iy
(x, y ∈ R) into

sin z =
eiz − e−iz

2i
(C.50)
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Figure C.1: ΓN : an illustration

and using Euler’s relation eθ = cos θ + i sin θ, we have

sin z = sinx cosh y + i cosx sinh y. (C.51)

Noticing that when x = ±R, sin2 x = cos2 x = 1
2
, thus the modulus of sin z can be simplified

as,

|sin z|2 = |sinx cosh y + i cosx sinh y|2

= sin2 x cosh2 y + cos2 x sinh2 y

=
1

2
(cosh2 y + sinh2 y) =

1

2
cosh 2y.

(C.52)

Since for real arguments, hyperbolic cosines have lower bound of 1, one the two vertical
sides of ΓN , sin z has the estimate,

|sin z| > 1√
2
. (C.53)

One the horizontal sides of ΓN , y = ±R and sin z has the estimate |sin z| > sinhR since

|sin z|2 = sin2 x cosh2 y + cos2 x sinh2 y

> (sin2 x+ cos2 x) sinh2 y > sinh2 y.
(C.54)
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As R→∞,
|sin z| > min(1/

√
2, sinhR) = sinhR, (C.55)

for z ∈ ΓN . Therefore, by combining inequalities C.48, C.49, C.55, we have the convergence
result for the second part of C.47,∣∣∣∣∮

ΓN

csc z

s+ z2
dz

∣∣∣∣ 6 8R

sinhR(R2 − |s|)
→ 0, for R→∞. (C.56)

First integral For the first part of C.47, one notices that cos z
z

should dominate j1(z) as
|z| gets large. To express this idea rigorously, we rewrite

1

j1(x)
=

1
sin z
z2
− cos z

z

= − z

cos z

1(
1− tan z

z

) . (C.57)

Applying the complex geometric series, one can write

1(
1− tan z

z

) = 1 + o(1), for z ∈ ΓN . (C.58)

This is true because |tan z|
|z| < 1 for z = x + iy ∈ ΓN . To see this is true, we once again

investigate bounds on vertical and horizontal parts of ΓN individually. The rectangular
form of cos z is given by

cos z = cosx cosh y − i sinx sinh y. (C.59)

• If x = ±R, then

tan z =
sinx cosh y + i cosx sinh y

cosx cosh y − i sinx sinh y
=

tanx cosh y + i sinh y

cosh y − i tanx sinh y

=
tan
(
±(N + 1

4
)π
)

cosh y + i sinh y

cosh y − i tan
(
±(N + 1

4
)π
)

sinh y

=
± cosh y + i sinh y

cosh y ∓ i sinh y

⇒ |tan z| = 1.

• If y = ±R, then

|tan z| = |e
iz − e−iz|
|eiz + e−iz|

=
|eix−y − e−ix+y|
|eix−y + e−ix+y|

6
|eix−y|+ |e−ix+y|
||eix−y| − |e−ix+y||

=
e−y + ey

|e−y − ey|
= |coth y|

⇒ |tan z| 6 cothR.
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Combing both cases, we have |tan z| 6 max(1, cothR) and thus as R→∞,

|tan z|
|z|

6
cothR

R
< 1.

Hence, we obtained the following rigorous estimate for the reciprocal of j1(z):

∃C > 0 s.t.

∣∣∣∣ 1

j1(z)

∣∣∣∣ 6 C|z sec z| for z ∈ ΓN . (C.60)

Hence, the second contour integral has the following estimate :∣∣∣∣∮
ΓN

1

j1(z)(s+ z2)
dz

∣∣∣∣ 6 C max
z∈ΓN

|z|
|s+ z2|

∣∣∣∣∮
ΓN

sec zdz

∣∣∣∣ 6 C
√

2R

R2 − |s|

∣∣∣∣∮
ΓN

sec zdz

∣∣∣∣ . (C.61)

The fraction in the RHS of equation C.61 goes to zero. Unfortunately, the contour integral
of sec z does not vanishes as ΓN grows. The reason is that while on the most part of ΓN
sec z is negligible, it is not the case for points close to the x axis.

It turns out that the contour integral of sec z is bounded by a non-zero constant instead.
To show this, we need to pay special attention to the sections of ΓN within the strip between
y = ±1

2
. Let {A3, A4, A7, A8} = {z = x + iy ∈ ΓN : |y| = 1

2
}. On ΓN , results similar to

C.52 and C.54 can be derived for the modulus of cos z, which are

|cos z|2 =
1

2
cosh 2y, for |x| = R;

|cos z| > sinhR, for |y| = R;
(C.62)

Case: horizontal sides Similar to estimating the first contour integral when Im(z) =
±R, we have ∣∣∣∣∫ A2

A1

sec zdz

∣∣∣∣ 6 2R

sinhR
. (C.63)

The same upper bound holds for the integral from A5 to A6.

Case: vertical sides (|Im(z)| > 1
2
) We use the inequality

|cos z|2 =
1

2
cosh 2y >

1

4
e2y ⇒ |sec z| 6 2e−|y|. (C.64)
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Thus, ∣∣∣∣∫ A1

A8

sec zdz

∣∣∣∣ 6 ∫ A1

A8

|sec z|dy 6
∫ R

1/2

2e−ydy = 2(e−
1
2 − e−R). (C.65)

The same upper bound holds for the integral from A2 to A3, from A4 to A5 and from A6

to A7.

Case: vertical sides (|Im(z)| < 1
2
) We use a more conservative estimate of cos z,

|cos z|2 =
1

2
cosh 2y >

1

2
⇒ |sec z| 6

√
2, (C.66)

which implies ∣∣∣∣∫ A8

A7

sec zdz

∣∣∣∣ 6 √2 · 1. (C.67)

The same upper bound holds for the integral from A3 to A4.

Combining inequalities C.64, C.65, C.67, one has∣∣∣∣∮
ΓN

sec zdz

∣∣∣∣ 6 2 · 2 · 2R

sinhR
+ 4 · 2(e−

1
2 − e−R) + 2 ·

√
2 · 1→ const (C.68)

as R → ∞. As a result, the first part of the integral C.47 vanishes as well. And we are
done.

C.5 More summations

C.5.1 High Order Poles

In applications, it is sometimes required to compute residues at high orders. To do so, it
often more convenient to directly compute the Laurent series expansion than using formula
C.4. An example is given below.

Evaluate

Sk =
∞∑
k′=0

α0k′

j1(α0k′)

1

(α2
1k − α2

0k′)
3
. (C.69)

This infinite series is encountered in the derivation of the first moment of the dephase
(Appendix A.3 of [14]).
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Solution Plugging α0k′ = (k′ + 1)π into equation C.28 yields the result,

j1(α0k′) =
(−1)k

′

α0k′
, k = 0, 1, 2, . . . . (C.70)

The series of interest turns out to be an alternating series involving {α0k},

Sk =
∞∑
k′=0

(−1)k
′
α2

0k′

(a2 − α2
0k′)

3
, (C.71)

where a = α1k. Naturally, our plan is to apply formula C.27.

Let f(z) = z2

(a2−z2)3
. The residue summation technique calls for the residues of the

function,

h(z) = csc (z)f(z) =
csc (z)z2

(a2 − z2)3
(C.72)

at the poles of f(z), z = ±a, which are poles of order 3. Obviously, differentiating (z ±
a)3h(z) twice can lead to cumbersome expressions. Instead, we aim to use its Laurent
series expansion. Introducing a change of variable t = z − a, we have

h(z) =
csc (z)z2

(a+ z)3(a− z)3
=

csc (t+ a)(t+ a)2

−t3(t+ 2a)3
≡ g(t). (C.73)

The Laurent series of g(t) about t = 0 can be obtained by multiplying simpler series. The
following taylor expansions are calculated by the software Maple:

•
csc (t+ a) = b0 + b1t+ b2t

2 + o(t3), (C.74)

where b0 = csc a, b1 = − cot a csc a, b2 = csc3 a
4

(cos 2a+ 3);

•
(t+ a)2

(t+ 2a)3
= c0 + c1t+ c2t

2 + o(t3), (C.75)

where c0 = 1
8a
, c1 = 1

16a2
, c2 = − 1

16a3
.

Multiplying the two series as well as the factor −1/t3, we get

h(z) = − 1

t3
(b0 + b1t+ b2t

2 + o(t3))(c0 + c1t+ c2t
2 + o(t3)). (C.76)
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By definition, the desired residue at z = a
π

is the coefficient of t−1 in the series above. A
direct computation yeilds

Res(a) = −(b0c2 + b1c1 + b2c0). (C.77)

The exact same technique can be used to compute the residue at z = −a and it turns out
that both residues are equal,

Res(a) = Res(−a). (C.78)

Applying formula C.27 and noticing that f(z) is even and f(0) = 0, we have

2Sk = −(Res(−a) + Res(a)) = 2(b0c2 + b1c1 + b2c0). (C.79)

The closed-form expression of Sk is now obtained. The only work left is to plugging in the
b’s and c’s to simplify the result:

Sk = b0c2 + b1c1 + b2c0

= −csc a

16a3
− cot a csc a

16a2
+

csc3 a(cos (2a) + 3)

32a

=
csc a

32a

(
− 2

a2
− 2 cot a

a
+ csc2 a(4− 2 sin2 a)

)
.

(C.80)

Recall that a satisfies tan a = a. In the long bracket of the RHS, we can replace trigono-
metric functions by algebraic one by using relations,

cot a =
1

a
, csc2 a =

1

sin2 a
=

1

a2
+ 1. (C.81)

Therefore,

Sk =
csc a

16a
= (−1)k+1

√
1 + α2

1k

16α2
1k

. (C.82)

The alternating sign stems from the fact that the sign of sin(α1k) alternates w.r.t the parity
of k: when k’s are even, sin (α1k)’s are negative; when k’s are odd, sin (α1k)’s are positive.

The Reside Summation Formula is valid for our problem due to Corollary 5.1 in [19]
since |f(z)| = O( 1

|k|4 ) for |k| sufficiently large.
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C.5.2 Summation via Partial Fraction

An alternative to the residue summation technique for evaluating certain series involving
Laplacian eigenvalues {λk}k>0 is to use partial fraction decomposition. We assume that
the series of interest has the form,

S =
∑
k

P (λk)

Q(λk)
, (C.83)

in which P (z), Q(z) are polynomials and the general term is of irreducible form. Further-
more, it is assumed that the series converges. Here we explain the recipe and provide one
more example arising from moment calculation.

Let the eigenvalues λk = α2
k, where {αk} are the positive zeros of an even or odd entire

function y(z). The key idea is, if the pole expansion of the logarithmic derivative of y(z)
is valid then we can derive a basic series involving λk’s.

z = 0 is a zero of y(z) Applying equation C.19, we have

y′(z)

y(z)
=
∑
k

1

z + αk
+

1

z
+
∑
k

1

z − αk
=

1

z
+
∑
k

2z

z2 − α2
k

. (C.84)

Replacing z by
√
z, we have the following basic series:

η(z) =
∑
k

1

z − λk
=

y′(
√
z)

2y(
√
z)
√
z
− 1

2z
. (C.85)

z = 0 is not a zero of y(z) , we have

η(z) =
∑
k

1

z − λk
=

y′(
√
z)

2y(
√
z)
√
z
. (C.86)

If Q(z) can be written as a polynomial of the simple fraction (z − λk)
−1 using partial

fraction decomposition, η(z) and its derivatives

η(n)(z) =
∑
k

(−1)nn!

(z − λk)n+1
(C.87)

can serve as building blocks of the closed-form expression of S. An example is given below.

135



Evaluate

Sk =
∞∑
k′=0

α2
1k′

(α2
0k − α2

1k′)
3
. (C.88)

This is another series encountered in the derivation of the first moment (Appendix A.3 of
[14]).

Solution Denote z = α2
0k and λk = α2

1k′ . This is a series involving {α1k}. We therefore
consider the basic series,

η(z) =
∑
k

1

z − λk
=

j′1(
√
z)

2j1(
√
z)
√
z
− 1

2z

=
sin
√
z

2(sin
√
z −
√
z cos

√
z)
− 3

2z
.

(C.89)

Assuming that the general term admits partial fraction decomposition,

λk
(z − λk)3

=
A

z − λk
+

B

(z − λk)2
+

C

(z − λk)3
, (C.90)

the coefficients can solved using standard methods:

A = 0, B = −1, C = z. (C.91)

Therefore, Sk can be written in closed form:

Sk = −η′(z) +
z

2
η′′(z)

∣∣∣
z=α2

0k

. (C.92)

A tedious but routine calculation yields

Sk = − 3

16α2
0k

. (C.93)
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Appendix D

Survival Probability under Robin
BCs

This appendix demonstrate a probabilistic interpretation of the relaxation rate h. It also
provides a justification for the implementation of Robin BCs in section 3.2.

Propagator Consider the partially-reflected Brownian motion on the positive real line,
where the random walk can either be absorbed or reflected at x = 0. Let the initial
position be x0. The propagator of the RBM g(x, t) solves the following initial boundary
value problem (IBVP), 

∂g
∂t

(x, t) = D ∂2g
∂x2

(x, t) x, t > 0

g(x, 0) = δ(x− x0)

hg(0, t) = D ∂g
∂x

(0, t)

g(∞, t) = 0

, (D.1)

where δ(x) is the Dirac delta function and h,D are positive constants. We are interested
in the survival probability at time t, defined as

Px0(t) =

∫ ∞
0

g(x, t)dx, (D.2)

which is the probability of the random walker still ‘alive’ at time t.
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To solve the IBVP, we consider taking the Laplace transform of g(x, t) with respect to
t,

Lt{g(x, t)} =

∫ ∞
0

g(x, t)e−stdt ≡ G(x, s). (D.3)

To simplify notations, we omit the dependence of G on s temporarily. Employ the initial
condition of g(x, t) yields the following ODE,

d2G

dx2
(x)− s

D
G(x) = − 1

D
δ(x− x0). (D.4)

It is well-known that the associated homogeneous ODE has two linearly independent solu-

tions e±
√

s
D
x. To simplify calculations for our particular problem, we define basis solutions,

G1(x) = sinh

(√
s

D
(x− x0)

)
, G2(x) = cosh

(√
s

D
(x− x0)

)
, (D.5)

which are both linear combinations of e±
√

s
D
x.

Since the delta inhomogeneous term vanishes whenever x 6= x0, the general solution to
the ODE is

G(x) =

{
A1G1(x) +B1G2(x) if x < x0

A2G1(x) +B2G2(x) if x > x0

, (D.6)

where the constants A1, A2, B1, B2. To determine them, we first notice that at x = x0, G
is continuous and G′ experience a jump by − 1

D
thanks to the delta inhomogeneous term,

the following matching conditions hold,{
G(x+

0 ) = G(x−0 )

G′(x+
0 ) = G′(x−0 )− 1

D

. (D.7)

Plugging equation D.6 into D.7 and exploiting these facts,

G1(x0) = 0, G2(x0) = 1, G′1(x) =

√
s

D
G2(x), G′2(x) =

√
s

D
G1(x), (D.8)

one arrives at relations below,

B2 = B1 ≡ B√
s

D
A2 =

√
s

D
A1 −

1

D

(D.9)
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Denoting A ≡ A2 and plugging relations D.9 into D.6, G(x) now has only two unknown
constants A,B,

G(x) =

{(
A+ 1√

Ds

)
G1(x) +BG2(x) if x < x0

AG1(x) +BG2(x) if x > x0

. (D.10)

On the other hand, we also have boundary conditions at x = 0,∞,{
hG(0) = DG′(0)

G(∞) = 0
. (D.11)

The second equation of D.11 implies

A = −B, (D.12)

since the positive exponents in G1(x) and G2(x) must cancel. Thus, G(x) now only has
one unknown constant and D.10 becomes

G(x) =

{(
−B + 1√

Ds

)
G1(x) +BG2(x) if x < x0

B exp
[
−
√

s
D

(x− x0)
]

if x > x0

. (D.13)

B can now be solved by the Robin BC at t = 0, which reads

h

[(
−B +

1√
Ds

)
G1(0) +BG2(0)

]
= D

[(
−B +

1√
Ds

)√
s

D
G2(0) +B

√
s

D
G1(0)

]
.

(D.14)
Rearranging D.14 yields

B =

h√
Ds

sinh
(√

s
D
x0

)
+ cosh

(√
s
D
x0

)
(h+

√
Ds) exp

[√
s
D
x0

] . (D.15)

Therefore, G(x) is now fully solved.

Bring the argument s back into G(x), the solution for g(x, t) can be obtained by taking
the inverse Laplace transform of G(x, s),

g(x, t) = L−1{G(x, s)}, (D.16)

where G(x, s) is give by equations D.13, D.15.
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Neumann case The exact expression of g(x, t) for general values of h is intractable. For
the special case where h = 0 (pure reflection) however, g(x, t) does have a closed form
solution. Setting h = 0 in equation D.15 yields

B|h=0 =
cosh

(√
s
D
x0

)
√
Dse
√

s
D
x0
, (D.17)

and G(x, s) becomes

G(x, s)|h=0 =


cosh (
√

s
D
x)

√
Dse

√
s
D
x0

if x < x0

cosh (
√

s
D
x0)

√
Dse

√
s
D
x

if x > x0

=
1

2
√
Ds

[
e−
√

s
D

(x+x0) + e−
√

s
D
|x−x0|

]
.

(D.18)

Inverse Laplace transform shows that the propagator is a sum of two Gaussian pdfs1,

g(x, t)|h=0 =
1

2
√
Dπt

[
e−

(x+x0)
2

4Dt + e−
(x−x0)

2

4Dt

]
, x > 0. (D.19)

The recovery of the solution under Neumann BC convinces us that our solution for g(x, t)
is indeed correct, despite the fact that a direct verification is impossible.

Survival probability In particular, we would like to investigate the survival probability
when x0 = 0. In such case, G(x, s) becomes

G(x, s) =
1

(h+
√
Ds)

e−
√

s
D
x, for x > 0. (D.20)

The Laplace transform of the desired survival probability is therefore

Lt{P0(t)}(s) =

∫ ∞
0

G(x, s)dx =
1

(h+
√
Ds)

√
D

s
. (D.21)

When t is small, the asymptotic expression for P0(t) can be derived from its Laplace
transform when s is large:

Lt{P0(t)}(s) =
1

s

1

1 + h√
Ds

≈ s−1 − h√
D
s−

3
2 . (D.22)

1This result is often demonstrated as an example of solving PDEs using the method of ‘images’.
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Inverse Laplace transform yields

P0(t) ≈ 1− 2h

√
t

πD
, for t→ 0, (D.23)

in which the relation L−1
{

2
√

t
π

}
= s−

3
2 is invoked.

Probabilistic interpretation of h and its significance to simulations Therefore,
equation D.23 shows that in the short-time regime, the survival probability at the bound-
ary decreases linearly with respect to the relaxation rate h, which gives the relaxation rate
h a probabilistic interpretation.

Moreover, equation D.23 sugguets a possible implementation for simulation of random
walk under Robin BCs. By definition, 1 − P0(t) is the termination probability. Given a
sufficiently small time step ∆t, the random variable U satisfying

U ∼ Bernoulli

(
2h

√
∆t

πD

)
(D.24)

serves as the decision maker on whether or not the current sample path should be discarded.

Other asymptotics of P0(t) In addition, it is worth noting that survival probability
decreases extremely quickly w.r.t to t in the short-time regime (infinity at t = 0 in fact).
This behaviour agrees with our physical intuition: given that the initial position is at to
the boundary, the walker is likely to collide against the boundary multiple times during a
short period of time, thus increasing the chance of absorption.

It is in fact possible to obtain an exact expression for P0(t) (Figure D.1),

P0(t) = exp

(
h2t

D

)
erfc

(
h

√
t

D

)
, t > 0, (D.25)

where erfc(x) is the complementary error function. We make several concluding remarks:

• The survival probability under Neumann and Dirichlet boundary conditions are re-
covered is recovered by setting h = 0 and h→∞ respectively:

P0(t) ≡

{
1 if h = 0;

0 if h→∞
t > 0. (D.26)
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• Using the asymptotic expression of (x), we obtain the following long-time behaviour
of the survival probability:

P0(t) ≈ 1

h

√
D

πt
, for t→∞. (D.27)

This implies that the first exit time follows a heavy-tail distribution.

Figure D.1: The graph of P0(t) (set time unit D
h2

= 0.5s).
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Appendix E

Mesh-wise Fourier Integral

To form an MR image, the total transverse magnetization of a sample is required (equa-
tion 2.22). This is in contrast to diffusion signals which are computed for individual voxels.
Let {(kx, ky)} be a k-space trajectory (recall section 2.3) and Fourier integrals need to be
computed for each (kx, ky)

1. To do this, we adopt a strategy inspired by the preprocessing
step in finite element methods: first partitioning the sample into meshes and then compute
mesh-wise Fourier integrals.

Meshifying 2D domains is a well studied problem in computational geometry and can
be solved the Delaunay triangulation algorithm2. Let us suppose our sample (the selected
slice) Ω ⊂ R2 is partitioned into N triangular meshes, {Kj}Nj=1 and each mesh has uniform
spin density of ρj.

We now calculate mesh-wise contributions to the total Fourier integral. Let K be a
triangle with vertices qi = (xi, yi) for i = 1, 2, 3 and we wish to evaluate

SK(kx, ky) =

∫
K

ei(kxx+kyy)dxdy. (E.1)

Consider K̂, the unit triangle on the ξ, η plane with vertices (0, 0), (1, 0) and (0, 1). We
would like to express the integral E.1 as a integral over K̂. To do this, we define an affine

1Assuming that slice selection is done
2Documentation of DT (the MATLAB function for Delaunay triangulation): https://www.mathworks.

com/help/matlab/math/delaunay-triangulation.html
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transformation T ,

T : K̂ 7→ K, T

([
ξ
η

])
=

[
x1

y2

]
+

[
x2 − x1 x3 − x1

y2 − y1 y3 − y1

] [
ξ
η

]
. (E.2)

Introducing vector notations for the wave vector, two sides of K starting from q1, an
arbitrary point in K̂,

k =

[
kx
ky

]
, a =

[
x2 − x1

y2 − y1

]
, b =

[
x3 − x1

y3 − y1

]
, ξ =

[
ξ
η

]
; (E.3)

and the Jacobian matrix of T ,
JT = [a b]. (E.4)

The desired Fourier integral E.1 can be written as

SK(k) = det (JT )ei〈k,q1〉I(α, β), (E.5)

where α = i〈k · a〉, β = i〈k · b〉 and I(α, β) is a Fourier integral over K̂,

I(α, β) =

∫
K̂

dξdηei〈k,Jξ〉 =

∫ 1

0

dξeαξ
∫ 1−ξ

0

dηeβη. (E.6)

A direct computation yields

I(α, β) =



1
2
, if β = α = 0,
eα−1
α2 − 1

α
, if β = 0, α 6= 0

1
β

(
eβ−1
β
− 1
)
, if β 6= 0, α = 0

1
β

(
eβ(β−1)

β
+ 1

β

)
, if β 6= 0, α = β

1
β

(
eα−eβ
α−β −

eα−1
α

)
, β 6= 0, α 6= 0 and α 6= β

. (E.7)

In addition, we notice that the Jacobian of T is in fact twice of the signed area of K
(denoted as |K|),

det (JT ) =

∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣ = 2|K|. (E.8)

Hence, mesh-wise contributions can be calculated by analytical formulae. Combing all
contributions, we obtain the total Fourier integral,

SΩ(k) = 2
N∑
j=1

ρj|Kj|ei〈k,q1,j〉I(αj, βj), (E.9)
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referred to as the discrete imaging equation. To incorporate diffusion effect, each term in
E.9 needs to be multiplied by the voxel-wise diffusion signal computed via MC simulations.

Furthermore, if transverse relaxation also needs to be incorporated, mesh-wise Fourier

intergals are simply multiplied by their corresponding T2 decay factors, e
− TE
T2,j ’s.

Figure E.1: T maps the unit triangle to a physical ‘element’.
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Appendix F

Selected MATLAB Codes

The author is aware that there is room for improvement for these codes in terms of opti-
mization, style and documentation and is continuously refining them. All programs in this
work will eventually be made public on Github 1.

F.1 Preparation

F.1.1 Loading constants

1 c l a s s d e f const
2 p r o p e r t i e s ( Constant )
3 D = 2.3 % mu mˆ2/ms
4 gamma = 2.675 e5 ; % rad/ms/T
5 end
6 end

F.1.2 Defining sequences

1 c l a s s d e f STsequence
2 % D i f f u s i o n grad i en t : S t e j s k a l−Tanner Pulsed−Gradient Spin

Echo
3 p r o p e r t i e s % Sequence Parameters

1https://github.com/hilroy?tab=repositories
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4 Delta ; % uni t = ms , s epa ra t i on o f the two
p u l s e s

5 de l t a ; % uni t = ms , durat ion o f the g rad i en t
6 Ttot ;
7 s t r ength ; % t y p i c a l va lue ˜ e−8T/mu m
8 d i r e c t i o n ; % l i s t o f g rad i en t d i r e c t i o n s , colums

are un i t vec to r
9 bvalue ; % S t e j s k a l−Tanner formula ( without gamma

)
10 end
11

12 methods
13 f unc t i on dgrad ient = STsequence ( Delta , de l ta , s t rength ,

d i r e c t i o n , const )
14 dgrad ient . Delta = Delta ;
15 dgrad ient . d e l t a = de l t a ;
16 dgrad ient . Ttot = Delta + de l t a ;
17 dgrad ient . s t r ength = st r ength ;
18 dgrad ient . d i r e c t i o n = d i r e c t i o n ;
19 dgrad ient . bvalue = ( const . gamma∗ s t r ength ∗ de l t a )

ˆ2∗( Delta−de l t a /3) ;
20 end
21

22 f unc t i on [ s e q d i s c r e t e , dt , ds ] = t i m e d i s c r e t i z e ( dgrad ,
N time , const )

23 % d i s c r e t i z e d time p r o f i l e , time step , rms jump s i z e
24 dt = dgrad . Ttot/N time ;
25 ds = s q r t (2∗ const .D∗dt ) ;
26 s e q d i s c r e t e = ze ro s (1 , N time ) ;
27 N d = round ( dgrad . d e l t a /dt ) ;
28 N D = round ( dgrad . Delta /dt ) ;
29 s e q d i s c r e t e (1 : N d) = 1 ;
30 s e q d i s c r e t e (N D : N time ) = −1;
31 end
32

33 f unc t i on [ dephase , DWsignal ] = CalcS igna l (Ph , dgrad , const )
34 % c a l c u l a t e d i f f u s i o n−weighted s i g n a l
35 dephase = const . gamma∗dgrad . s t r ength ∗dgrad . d i r e c t i o n
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’∗Ph ;
36 DWsignal = abs ( r e a l (mean( exp (1 i ∗ dephase ) ,2 ) ) ) ;
37 end
38 end
39 end

F.2 Random steps generation

1 f unc t i on s t ep s = MakeSteps ( ds , dim , N time , N walker , type )
2 % ds : rms jump s i z e
3 % dim : dimension o f the s tep ve c t o r s ( 1 , 2 , 3 ) ;
4 % type : gauss ian , uniform , e q u i s i z e d
5 % step s : s i z e = dim ∗ N time ∗ N walker
6 % f i r s t generate d i r e c t i o n s
7 N steps = N time ∗ N walker ;
8 U = rand (1 , N steps ) ;
9 i f dim == 1

10 d i r = U;
11 d i r ( d i r < 0 . 5 ) = −1;
12 d i r ( d i r >= 0 . 5 ) = 1 ;
13 e l s e i f dim == 2
14 theta = exp (2∗1 i ∗ pi ∗U) ;
15 d i r = [ r e a l ( theta ) ; imag ( theta ) ] ;
16 e l s e i f dim == 3
17 % mathematica l ly proven in Appendix A
18 Z = U;
19 r xy = s q r t (1 − Z . ˆ 2 ) ;
20 U = rand (1 , N steps ) ;
21 XY = r xy .∗ exp (2∗1 i ∗ pi ∗U) ;
22 d i r = [ r e a l (XY) ; imag (XY) ; Z ] ;
23 end
24 % then mult ip ly d i r by appropr ia t e jump s i z e
25 i f strcmp ( type , ’ e q u i s i z e d ’ ) == 1
26 rho = ds ∗ ones (1 , N steps ) ;
27 e l s e i f strcmp ( type , ’ uniform ’ ) == 1
28 U = rand (1 , N steps ) ;
29 rho = s q r t (dim+2) ∗ ds ∗ nthroot (U, dim) ;
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30 e l s e i f strcmp ( type , ’ gauss ian ’ ) == 1
31 U = chi2rnd (dim , [ 1 N steps ] ) ;
32 rho = ds ∗ s q r t (U) ;
33 end
34 s t ep s = bsxfun ( @times , d i r , rho ) ;
35 s t ep s = reshape ( steps , [ dim N time N walker ] ) ;
36 end

F.3 Case: free space

1 f unc t i on Ph = RW free ( steps , dt , s e q d i s )
2 % f r e e d i f f u s i o n , no need f o r c o l l i s i o n check ing
3 % step s : dim ∗ N time ∗ N walker
4 t r a j = trapz ( steps , 2 ) ;
5 dph = dt ∗ bsxfun ( @times , t r a j , s e q d i s ) ;
6 Ph = trapz (dph , 2 ) ;
7 Ph = reshape (Ph , [ s i z e ( steps , 1 ) , s i z e ( steps , 3 ) ] ) ;
8 end

F.4 Case: unit triangle

F.4.1 Main script

1 % d e f i n e geometry
2 p1 = [ 1 ; 0 ] ;
3 p2 = [ 0 ; 1 ] ;
4 p3 = [ 0 ; 0 ] ;
5 t r i g = t r i a n g l e ( p1 , p2 , p3 ) ;
6

7 % generate i n i t i a l p o s i t i o n s
8 N walker = 10000 ;
9

10 r i n i = u n i f ( t r i g , N walker ) ;
11

12 % d e f i n e d i f f u s i o n g rad i en t
13 Delta = 20 ;
14 de l t a = 10 ;
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15 s t r ength = 4e−4; % t h i s i s a b i t h igher than t y p i c a l va lue s
16 d i r e c t i o n = [ 0 ; 1 ] ;
17 dgrad = STsequence ( Delta , de l ta , s t rength , d i r e c t i o n ) ;
18

19 % d i s c r e t i z a t i o n
20 N time = 10000 ;
21 [ dgrad dis , dt , ds ] = t i m e d i s c r e t i z e ( dgrad , N time ) ;
22

23 s t ep s = ds ∗ randn (2 , N time , N walker ) ; % huge ! ! !
24

25 % compute phase gain
26 t i c
27 Ph sample = BasicMC( t r i g , r i n i , s teps , dt , dg rad d i s ) ;
28 toc
29

30 % c a l c u l a t e s i g n a l
31 load ( ’ Phys ica lConstants . mat ’ )
32 dephase = gamma ∗ dgrad . s t r ength ∗ dgrad . d i r e c t i o n ’ ∗ Ph sample ;
33 s i g n a l = r e a l (mean( exp (1 i ∗ dephase ) ) ) ;
34 histogram ( dephase )

F.4.2 Domain

1 c l a s s d e f t r i a n g l e
2 p r o p e r t i e s
3 V1 ; V2 ; V3 ;% v e r t i c e s , 2 dim
4 R1 ; R2 ; R3 ; % Householder r e f l e c t i o n matr i ce s f o r each s ide

, 2 by 2
5 end
6

7 methods
8 f unc t i on t r i g = t r i a n g l e ( p1 , p2 , p3 )
9 % cons t ruc to r

10 t r i g . V1 = p1 ;
11 t r i g . V2 = p2 ;
12 t r i g . V3 = p3 ;
13 u = ( p2−p1 ) /norm( p2−p1 ) ; % uni t tangent vec to r o f an

edge
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14 u = [ 0 −1;1 0 ]∗u ; % normal vec to r
15 t r i g . R3 = eye (2 ) − 2∗u∗u ’ ;
16 u = ( p3−p2 ) /norm( p3−p2 ) ;
17 u = [ 0 −1;1 0 ]∗u ;
18 t r i g . R1 = eye (2 ) − 2∗u∗u ’ ;
19 u = ( p1−p3 ) /norm( p1−p3 ) ;
20 u = [ 0 −1;1 0 ]∗u ;
21 t r i g . R2 = eye (2 ) − 2∗u∗u ’ ;
22 end
23

24 f unc t i on r i n i = u n i f ( t r i g , N walker )
25 % generate i n i t i a l p o s i t i o n s
26 V = [ t r i g . V1 t r i g . V2 t r i g . V3 ] ;
27 U = log ( rand (3 , N walker ) ) ;
28 C = U. / sum(U) ; % f l a t D i r i c h l e t d i s t r i b u t i o n
29 r i n i = V∗C;
30 end
31

32 f unc t i on [ r new , ph new ] = update ( t r i g , r , ph , dr , i s g r a d
)

33 p1 = t r i g . V1 ; p2 = t r i g . V2 ; p3 = t r i g . V3 ;
34 H1 = t r i g . R1 ; H2 = t r i g . R2 ; H3 = t r i g . R3 ;
35 r = r + dr ;
36 [ r new , ph new ] = t r i a n g l e r e f l ( p1 , p2 , p3 , H1 , H2 , H3 , r , ph

, i s g r a d ) ;
37 end
38

39 f unc t i on Ph sample = BasicMC( t r i g , r i n i , s teps , dt ,
s e q d i s )

40 N = s i z e ( r i n i , 2 ) ;
41 Ph sample = ze ro s (2 ,N) ;
42 T = s i z e ( s e q d i s ) ;
43 f o r n = 1 : N
44 r = r i n i ( : , n ) ;
45 ph = Ph sample ( : , n ) ;
46 f o r t = 1 : T
47 [ r , ph ] = update ( t r i g , r , ph , s t ep s ( : , t , n ) ,

s e q d i s ( t ) ) ;

151



48 end
49 Ph sample ( : , n ) = ph ∗ dt ;
50 end
51 end
52 end
53 end

F.4.3 Helper function: Neumann BC

1 f unc t i on [ r new , ph new ] = t r i a n g l e r e f l ( p1 , p2 , p3 , H1 , H2 , H3 , r , ph ,
i s g r a d )

2 % check f o r i n t e r a c t i o n s aga in s t a l l s i d e s
3 A3 = det ( [ r ’ 1 ; p1 ’ 1 ; p2 ’ 1 ] ) ;
4 % A3 = signed area o f t r i a n g l e r p1 p2 ;
5 % A3 < 0 means that r i s on the e x t e r i o r s i d e o f p1p2
6 A1 = det ( [ r ’ 1 ; p2 ’ 1 ; p3 ’ 1 ] ) ;
7 A2 = det ( [ r ’ 1 ; p3 ’ 1 ; p1 ’ 1 ] ) ;
8 whi le A3 < 0 | | A1 < 0 | | A2 < 0
9 % keep r e f l e c t i n g r u n t i l i t r eaches the i n s i d e

10 i f A3 < 0
11 r = H3∗( r − p1 ) + p1 ;
12 end
13 i f A1 < 0
14 r = H1∗( r − p2 ) + p2 ;
15 end
16 i f A2 < 0
17 r = H2∗( r − p3 ) + p3 ;
18 end
19 A3 = det ( [ r ’ 1 ; p1 ’ 1 ; p2 ’ 1 ] ) ;
20 A1 = det ( [ r ’ 1 ; p2 ’ 1 ; p3 ’ 1 ] ) ;
21 A2 = det ( [ r ’ 1 ; p3 ’ 1 ; p1 ’ 1 ] ) ;
22 end
23 r new = r ;
24 ph new = ph + ( r + r new )∗ i s g r a d /2 ; % t r a p e z o i d a l i n t e g r a t i o n
25 end
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F.5 Case: single fiber bundle

F.5.1 Helper function: Neumann BC for the interior cylinder

1 f unc t i on [ r new , ph new ] = FiberBundle update in ( r , ph , dr ,R,
i s g r a d i e n t )

2 % case : cur r ent p o s i t i o n r i s i n s i d e cy inder with rad iu s R
3 % update sp in p o s i t i o n and dephase
4 r i n pu t = r ;
5 r pr ime = r + dr ;
6

7 i f norm( r pr ime ) < R
8 % no r e f l e c t i o n
9 r new = r pr ime ;

10 e l s e
11 % to f i n d the c o l l i s i o n point , need to s o l v e a quadrat i c

equat ion
12 c o e f f = [ dot ( dr , dr ) 2∗dot ( r , dr ) dot ( r , r ) − Rˆ 2 ] ; %

equat ion (∗ )
13 % take the p o s i t i v e root
14 t = roo t s ( c o e f f ) ;
15 t = t ( t > 0) ;
16 % overwr i t e : r = c o l l i s i o n point , dr = remaining step (

r e f l e c t e d )
17 r = r + t ∗ dr ;
18 normal = − r / R;
19 Ref l = eye (2 ) − 2 ∗ ( normal ∗ normal ’ ) ;
20 dr = Ref l ∗ ( (1 − t ) ∗ dr ) ;
21 r pr ime = r + dr ;
22 whi le norm( r pr ime ) > R % mul t ip l e c o l l i s i o n conf irmed
23 % f o r subsequent c o l l i s i o n s , (∗ ) reduced to a l i n e a r

equat ion
24 t = − 2∗dot ( r , dr ) / dot ( dr , dr ) ;
25 % repeat prev ious s t ep s
26 r = r + t ∗ dr ;
27 normal = − r / R;
28 Ref l = eye (2 ) − 2 ∗ ( normal ∗ normal ’ ) ;
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29 dr = Ref l ∗ ( (1 − t ) ∗ dr ) ;
30 r pr ime = r + dr ;
31 end
32 r new = r pr ime ;
33 end
34 ph new = ph + ( r i n pu t + r new ) ∗ i s g r a d i e n t /2 ; % phase update

: t r a p e z o i d a l r u l e
35 end

F.6 GAFRW

1 f unc t i on s p i n f i n = FastRandomWalk ( geometry , spin , N walker , t max ,
i sgrad , const )

2 % Fast Random Walk algor ithm , producing the f i n a l sp in s t a t e s
3 % geometry : an ob j e c t ( methods : d i s t , u n i f )
4 % spin : array o f s t r u c t u r e s ( f i e l d s : pos , phi ) , l ength =

N walker
5 % t max : max durat ion o f a constant pu l s e
6 % i s g r a d : 1 ,0 ,−1;
7 % const : tabu lated va lue s o f moment f u n c t i o n s
8 s p i n f i n = sp in ;
9 f o r n w = 1 : N walker

10 t rem = t max ;
11 r = sp in ( n w ) . pos ;
12 ph = sp in ( n w ) . phi ;
13 whi le t rem > 0
14 [ d , nv ] = d i s t ( geometry , r ) ;
15 tau = gen tau ( const ) ;
16 u = RandDir ;
17 i f d > geometry . d bd % non−boundary case
18 t u n i t = dˆ2/ const .D;
19 dt = t u n i t ∗ tau ;
20 i f dt < t rem
21 t rem = t rem − dt ; % r new i s on the

i n s c r i b e d sphere
22 r = r + d ∗ u ;
23 i f i s g r a d ˜= 0 % ’ nl ’ s tands f o r
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non l in ea r
24 dph nl = evalPhi1 ( const , tau )∗ d ∗ t u n i t

∗ u ;
25 ph = ph + ( dt ∗ r + dph nl ) ∗ i s g r a d ;
26 end
27 e l s e
28 dt = t rem ;
29 t rem = 0 ;
30 tau = t rem / t u n i t ;
31 r = r + d∗ gen r ( tau , const )∗u ; % r new i s

i n s i d e the i n s c r i b e d sphere
32 i f i s g r a d ˜= 0
33 % dph i n l ˜ N(0 , sigma ) , where sigma i s

p r op o r t i o na l to Phi2
34 dph nl = evalPhi2 ( const , tau )∗ randn ∗ d ∗

t u n i t ∗ ones (3 , 1 ) ;
35 ph = ph + ( dt ∗ r + dph nl ) ∗ i s g r a d ;
36 end
37 end
38 e l s e % boundary case
39 R r l s = geometry . R r l s ;
40 t u n i t = R r l s ˆ2/ const .D;
41 i f geometry . i s cvx == true (1 )
42 whi le abs ( dot (u , nv ) ) < 1/20 % avoid sp in s ’

l eak ing ’ out !
43 u = RandDir ;
44 end
45 end
46 % As R r l s << R in , we assume the walker i s always

ab le to reach the
47 % r e l e a s e hemisphere .
48 dt = tau ∗ t u n i t ;
49 t rem = t rem − dt ;
50 co sang l e = dot (u , nv ) ;
51 tg t = u − co sang l e ∗ nv ;
52 tg t = tgt / norm( tg t ) ;
53 i f i s g r a d ˜= 0
54 dph nl = ( nv∗ tau/4+tgt ∗ evalPhi1 ( const , tau ) ) ∗
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R r l s ∗ t u n i t ;
55 ph = ph + ( dt ∗ r + dph nl ) ∗ i s g r a d ;
56 end
57 i f c o sang l e < 0
58 u = u − 2∗ co sang l e ∗nv ;
59 end
60 r = r + u∗R r l s ;
61 end
62 end
63 s p i n f i n ( n w ) . pos = r ;
64 s p i n f i n ( n w ) . phi = ph ;
65 i f rem(n w , 1 0 ) == 0
66 f p r i n t f ( ’%d out o f %d i t e r a t i o n s completed .\n ’ , n w ,

N walker )
67 end
68 end
69 end

F.6.1 Orthogonal fibres: extra-axonal geometry

1 c l a s s d e f CrossFiber
2 % orthogona l ly−c r o s s i n g F iber s
3 p r o p e r t i e s
4 i s c vx ; % i s the geometry convex ?
5 d l a t ; % halved l a t t i c e s i d e l ength
6 a x i s ; % 4 axes ( s ee schemat ics ) , r ep r e s en ted by

segment end po in t s
7 R out ; % outer rad iu s
8 VF out % volume f r a c t i o n o f the extra−axonal space
9 d bd ; % boundary l a y e r t h i c k n e s s

10 R r l s ; % r e l e a s e rad iu s
11 end
12

13 methods
14 f unc t i on l a t t i c e = CrossFiber (d , R out )
15 l a t t i c e . i s cvx = f a l s e (1 ) ;
16 l a t t i c e . d l a t = d ;
17 A = ze ro s (3 , 2 , 4 ) ;
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18 A( : , : , 1 ) = d∗ [ 1 −1; 1 1 ; −1 −1]; % x1
19 A( : , : , 2 ) = d∗ [ 1 −1; −1 −1; −1 −1]; % x2
20 A( : , : , 3 ) = d∗[−1 −1; 1 −1; 1 1 ] ; % y1
21 A( : , : , 4 ) = d∗ [ 1 1 ; 1 −1; 1 1 ] ; % y2
22 l a t t i c e . a x i s = A;
23 l a t t i c e . R out = R out ;
24 l a t t i c e . VF out = 1 − ( p i /4) ∗( R out/d) ˆ2 ;
25 l a t t i c e . d bd = R out ∗ 1e−4;
26 l a t t i c e . R r l s = R out ∗ 0 . 0 5 ;
27 end
28

29 f unc t i on [ d out , n out ] = d i s t ( l a t , pt )
30 % d i s t ( pt , an extra−axonal point , boundary )
31 % here pt are the l o c a l c oo rd ina t e s wrt to the

l a t t i c e conta in ing
32 % the spin , i f d i s t i s ’ small ’ , r e turn a nonzero

normal vec to r
33 ax = l a t . a x i s ;
34 d = l a t . d l a t ;
35 index = f l o o r ( ( ( pt/d)+1)/2) ; % addre s s ing p e r i o d i c i t y
36 pt = pt − 2∗d∗ index ;
37 s i d e s = pt − reshape ( ax , [ 3 , 8 ] ) ;
38 s i d e1 = s i d e s ( : , 1 : 2 : end−1) ;
39 s i d e2 = s i d e s ( : , 2 : 2 : end ) ;
40 Dis tA l l = vecnorm ( c r o s s ( s ide1 , s i d e2 ) ) /(2∗d) − l a t .

R out ;
41 d out = min ( D i s tA l l ) ;
42 n out = ze ro s (3 , 1 ) ; % d e f a u l t va lue
43 i f 0 <= d out && d out < l a t . d bd
44 c l o s e s t = f i n d ( D i s tA l l == d out ) ;
45 axd i r = d i f f ( ax ( : , : , c l o s e s t ) , 1 , 2 ) ;
46 s i d e = pt − ax ( : , 1 , c l o s e s t ) ;
47 n out = s i d e − dot ( s ide , axd i r )∗ axd i r /(4∗dˆ2) ;
48 n out = n out /norm( n out ) ;
49 end
50 end
51

52 f unc t i on [ r i n i o u t , N out , N in ] = u n i f ( l a t , N walker )
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53 % generate i n i t i a l p o s i t i o n s
54 d = l a t . d l a t ;
55 N out = round ( N walker ∗ l a t . VF out ) ;
56 r i n i o u t = ze ro s (3 , 1 , N out ) ;
57 n out = 0 ;
58 whi le n out < N out % A−R scheme .
59 r = d ∗ (2∗ rand (3 , 1 )−1) ;
60 [ d out , ˜ ] = d i s t ( l a t , r ) ;
61 i f d out > 0
62 n out = n out + 1 ;
63 r i n i o u t ( : , 1 , n out ) = r ;
64 end
65 % expect a l o t o f unwanted samples . . .
66 end
67 N in = N walker − N out ;
68 end
69 end
70 end
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