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be mentioned for his guidance at different stages, from building the experimental setup

to analysis of the results. Moreover, Jeff Salvail should be noted for his contribution in

building the 4f pulse shaper.

iv



Abstract

The biexciton-exciton cascade in quantum dots (QDs) yields entangled photon pairs,

and recent developments in engineering photonic structures around the dot for efficient

light extraction and proper control of the fine-structure splitting, has led to significant

breakthroughs in achieving an ideal entangled photon source – exhibiting properties such

as high extraction efficiency, low multi-photon emission and high entanglement fidelity.

This thesis presents our development in enhancing the performance of entangled photon

generation of QDs towards near-unity efficiency and fidelity. We study InAsP quantum

dots in photonic nanowires for efficient light extraction and to reveal the effect of a quantum

dot with high nuclear spin on the entanglement fidelity.

Revealing the ultimate limit of entanglement in QDs is still a challenge, and it is

generally believed that a sample made of atoms possessing high nuclear spins exhibits

limited entanglement due to the dephasing caused by spin-spin interactions. Moreover, it

is assumed that the fine-structure splitting of QDs degrades the entanglement fidelity, as it

introduces a which-path information in the biexciton-exciton cascade. We have performed

two-photon state tomography on InAsP QDs in InP nanowires, comprising of nuclear spin

9/2, and have realized that such a source is capable of generating entangled photon pairs

with negligible dephasing during the emission lifetime, with a peak concurrence C = 77%

and a count-weighted average concurrence C̄ = 62%. This result was obtained by comparing

the outcome of our measurements with a theoretical model that assumes no dephasing,

however, takes into account the details of the detection system, i.e., dark-count rates and

timing resolution, as well as, specific features of the QD, e.g., emission lifetime, fine-

structure splitting, multi-photon emission probability, etc. Proper engineering of tapered

nanowires allows for extraction of the emitted photons with high efficiency, which makes it

possible to perform a complete two-photon state tomography and monitoring the evolution

of the exciton state, as well as, the entanglement fidelity of the photon-pair, during the

emission lifetime. This enabled us to reveal the effect of an imperfect detection system, as

well as, multi-photon emission in recording low values for entanglement fidelity. Moreover,

our calculations show that proper analysis of the time-energy uncertainty relation provides
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the necessary means to measure a high entanglement fidelity even in the presence of fine-

structure splitting; since, a detection system with high timing resolution can overlook the

which-path information, as the uncertainty in measuring the energy of the photons will

be larger than the fine-structure splitting. Therefore, realizing near-unity entanglement

fidelity using QDs is merely a technical challenge, i.e., resonant excitation of the QD, in

order to suppress multi-photon emission, and use of a detection system with low timing

jitter and dark-count rates.

As a next step to achieve this goal, we have performed the resonant two-photon ex-

citation scheme for the first time on a QD in a photonic nanowire, which resulted in an

enhancement of the performance of our source. We managed to improve the single-photon

purity of the source, g(2)(0), by two orders of magnitude; moreover, analysis of the emission

spectrum reveals that this scheme increases the pair-production efficiency to values above

93% for the biexciton-exciton cascade. Taking the efficiency of our experimental setup

into consideration, the results indicate an approximately eight-fold enhancement of the

pair-extraction efficiency as compared to the quasi-resonant excitation scheme (12.55% vs.

1.6%). Based on these results, two-photon state tomography on our source, under resonant

two-photon excitation and performed by a detection system with high timing resolution

and low dark-count rates, yields near-unity entanglement fidelity. By considering the en-

hancement in pair-extraction efficiency that we obtained, QDs in photonic nanowires can

surpass the performance of spontaneous parametric down conversion sources in terms of

entanglement fidelity and pair-extraction efficiency.

Even though we have shown a finite fine-structure splitting does not degrade the en-

tanglement fidelity in QDs, for various application in quantum information removing the

fine-structure splitting is beneficial. Therefore, we have proposed a universal all-optical ap-

proach for removing the fine-structure splitting. In this scheme, the energy of the photons

are shifted by using a pair of quarter-wave plates and fast-rotating half-wave plates after

they have been emitted; and as a result, the energy difference between the two decay paths

in the biexciton-exciton cascade is erased. This method is applicable to any QD source and

can be easily implemented using the currently available technology; moreover, no further

sample processing will be required in order to achieve zero fine-structure splitting.
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Chapter 1

Introduction

Photons can be easily manipulated and have negligible interaction with the environment

[1]; thus, realization of entangled photon pairs has allowed for conduction of various ex-

periments in quantum foundations [2, 3, 4, 5], quantum communication [6, 7], quantum

key distribution [8, 9], and linear-optic quantum computing [10, 11]. Besides, photons

are, in principle, capable of encoding infinite amount of information in different forms

such as polarization, temporal and spatial modes [12]. Hence, engineering of high-quality

entangled-photon sources has become one of the main goals of the quantum community.

1.1 Early Steps

The first successful realization of an entangled photon-pair source [13], used cascade tran-

sition of atoms. This achievement opened up new doors in quantum optics, including the

very first tests of Bell-type inequalities [14, 15]. However, such sources exhibited a low

photon generation efficiency, ε ∼ E-10 [15], and their emission was governed by the density

and transition times, τ ≈ 5ns [15], of the atoms which could not be controlled [1, 16].

A major breakthrough came about by the introduction of spontaneous parametric down

conversion (SPDC) sources [17, 18, 19]. Shining a coherent laser on a non-linear crystal can
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lead to absorption of a photon, and generation of a pair of photons, idler and the signal, with

lower energies, according to conservation of energy and momentum. The emitted photons

are strongly correlated in time, and exhibit high fidelity in polarization entanglement; also,

detection of the idler photon can turn the signal photon into a heralded single-photon. For

these reasons, such sources remained as the back-bone of experiments in quantum optics

for decades [1]. However, SPDC sources suffer from some fundamental drawbacks which

limit their applicability for quantum communication purposes. The number of photon-

pairs generated per mode follows a thermal distribution during the coherence time of the

photons and then a Poisson distribution for longer time scales [20]; this means that in

order to keep the source operating at high single-photon purity and avoid emission of more

than one photon-pair per excitation pulse, one has to use low intensity pulses resulting

in extremely low efficiencies, i.e., pair-generation probability p < 1% per excitation pulse

[21].

1.2 State-of-the-Art

There are certain features that we can attribute to an ideal entangled photon source:

• High entanglement fidelity: emitted photons should be entangled with near-unity

entanglement fidelity;

• Single-photon purity: one, and only one, photon should be emitted in each emission

mode;

• On-demand generation: excitation of the source and collection of the emitted photons

should be possible with 100% efficiency;

• High brightness: high rates of photon-pairs are necessary in order to overcome noise

from the environment;

• Coherence: each mode of the emitted photons should be monochromatic with no

inhomogeneous broadening, i.e., Fourier-limited photons;
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• Tunability: in order to interfere photons from different sources, e.g., for entanglement

swapping, each emitter should be tunable separately;

• Gaussian emission mode: for efficient coupling to optical fibers, emitted photons

should have a Gaussian emission mode;

• Indistinguishability: for performing quantum protocols, the successive photons in

each emission mode should be indistinguishable, i.e., successive photons should ex-

hibit the same energy, linewidth, coherence length, etc.;

• Compatibility with integrated photonics: a feature necessary for performing quantum

computing on a chip.

To overcome the probabilistic generation process of SPDC and thus avoid multiphoton

emission there has been extensive research in engineering on-demand entangled photon

sources based on semiconductor quantum dots. These quantum dot based sources exhibit

features closest to an ideal entangled photon source [16]; however, reaching near-unity

entanglement fidelity and efficiency has remained elusive. The very first such sources de-

veloped were self-assembled QDs [22], which have been shown to generate pairs of entangled

photons [23]. However, self-assembled QDs suffer from an extremely low light extraction

efficiency since they are embedded in a bulk material with high refractive index. The

emitted photons experience total internal reflection at the semiconductor-air interface and

only a small fraction can be extracted, typically ∼ 1% for each emission line [24].

In order to address this issue, different photonic structures have been engineered; as a

result, photon extraction efficiencies up to 80%, by growing the QD inside a micropillar

cavity [25], up to 72%, by embedding the QD inside a photonic nanowire [26], and up to

65%, by attaching the QD to a dielectric photonic antenna [24], have been reported. More-

over, Müller et al. [27], have succeeded in near-unity photon-pair generation, ε ≈ 98%, and

an extremely high single-photon purity, g2(0) ≈ 7.5E-5, has been achieved in QDs inside

photonic cavities [28]. The micropillar cavities engineered by Somaschi et al. [29], allows

for electrical control of the charge noise around the QD as well as enhancing its spontaneous
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emission; as a result, emitted photons show near-unity photon indistinguishability upon

resonant excitation. Bulgarini et al. [30], have shown that tapered nanowires can guide

the emitted photons into a Gaussian emission mode with a fidelity of 99%, which paves

the way for fiber-based quantum communication. Furthermore, Elshaari et al. [31], have

managed to take an important step in performing on-chip quantum optics using nanowire

QDs. Also, energy-tuning of exciton and biexciton emission lines, as well as, removal of

the exciton fine-structure splitting have been demonstrated [32, 33, 34].

As for the generation of entangled photon-pairs, the first measurements performed on

self-assembled QDs [35, 36] reported values F ∼ 0.70 for entanglement fidelity. The early

generations of self-assembled QDs suffered from a high value of fine-structure splitting,

FSS ∼ 30µev, and therefore non-classical correlations could only be observed once the

FSS was tuned to zero via application of electric or magnetic fields. However, the early

measurements suffered from a large level of uncorrelated coincidence counts (> 14%), which

were rooted in either the environment light or multi-photon emission of the source, leading

to a low measured fidelity. New generations of self-assembled QDs [37], have resulted in

measuring entanglement fidelity values up to F ≈ 0.98. However, as mentioned earlier,

these structure suffer from a very low pair-extraction efficiency, εe ∼ 0.0001(1% × 1%).

Detection of entangled photon-pairs from QDs in photonic structures was first reported

in the work of Dousse et al. [38], where, by coupling a pair of micropillar cavities, they

managed to extract both X’s and XX’s from the QD. They succeeded to extract 12% of

the emitted photon pairs, with a measured entanglement fidelity F = 67%. Even though,

Micro-pillar cavities are proper structures for extraction of single-photons from QDs, the

narrow bandwidth of the structures makes photon-pair extraction a huge challenge. Use

of other alternative structures, together with resonant two-photon excitation, have helped

researchers to generate entangled photon-pairs at much higher rates and fidelities. Chen

et al., [24], and Wang et al., [39] managed to reach a pair-extraction efficiency εe ≈ 36%

with fidelity F = 0.90, using a broadband dielectric antenna and circular Bragg grating

bull’s-eye cavity, respectively.

All of the aforementioned achievements suggest the extreme potential of QDs for quan-

tum information and quantum computing purposes. In the research performed under
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supervision of Dr. Michael E. Reimer, presented in this thesis, we have shown the path for

generating entangled photon-pairs with near-unity entanglement fidelity for QDs embedded

in photonic nanowires. We have managed to give a complete picture of the evolution of the

state of the emitted photons, as well as, shedding light on the effect of the imperfections of

the measuring apparatus on calculation of the entanglement fidelity, which was generally

ignored in the community. Besides, we managed to enhance the performance of the QD by

applying resonant two-photon excitation. Moreover, we have improved the pair-extraction

efficiency of the source by one order of magnitude. The results obtained imply that it is

possible to surpass the performance of the SPDC sources in terms of both entanglement

fidelity and photon-pair extraction efficiency.

In Chapter 2, we lay the theoretical background for the materials presented in the fol-

lowing chapters. We will discuss the elementary features of a QD, e.g., electronic structure,

emission spectrum, fine-structure splitting etc., as well as, measures of entanglement and

the two-photon state tomography scheme for calculating the density matrix of the emitted

photon-pair. Chapter 3 is concerned with entanglement measurements and quantum state

tomography of our QD under quasi-resonant excitation. We show that the QD under study

exhibits an entangled state which is free from dephasing during the emission lifetime of the

exciton state. We infer that once the source is excited via a two-photon resonant excitation

scheme, performing the two-photon tomography with a fast detector yields near-unity en-

tanglement fidelity. Performance of our QD under resonant two-photon excitation (TPE)

is presented in Chapter 4. The results indicate a strong suppression of multi-photon emis-

sion and an enhancement in pair-extraction efficiency. This is an important step towards

measuring near-unity entanglement fidelity with unprecedented efficiency using QDs in

photonic nanowires. In Chapter 5, we present the all-optical universal method for erasing

the fine-structure splitting of a QD. We propose that combining a diffraction grating, a

pair of quarter-wave plates, and two electro-optical modulators can tune the fine-structure

splitting to zero. Chapter 6 summarizes the results presented in this thesis and future

research directions are discussed.
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Chapter 2

Background

This chapter lays out the theoretical background of the work presented in the following

chapters. We start with explaining the general characteristics of the source; then, the

definition used for measuring entanglement is explained; and lastly, the approach for cal-

culating the density matrix of the two-photon state is presented.

2.1 General properties of semiconductor quantum dots

A quantum dot (QD) is a nanoscale region of three dimensional confinement, which can

trap electrons and/or holes in discreet energy levels upon excitation and emit quantum

states of light upon relaxation to the ground state. Such a structure can be obtained by

embedding a low-bandgap semiconductor, e.g. InAs, inside a high-bandgap semiconductor,

e.g. InP. Since the sample used in our study is an InAsP/InP QD in a wurtzite InP photonic

nanowire [40], in this section we focus on type-I QDs, which show a perfect overlap between

the conduction and valence band.
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2.1.1 Quantum dot confinement

Confinement modifies the electronic structure of the conduction band, CB, and the valence

band, VB. The continuous energy levels found in the bulk will be lifted and form discrete

energy levels due to confinement. An excited QD will have at least one electron, e, in its

CB. The absence of the electron in the VB can be treated as existence of a psuedo-particle

of positive charge ‘hole’, h. Fig.2.1 shows a schematic energy band diagram (not to scale) of

a typical wurtzite InAsP/InP QD and an SEM image of a wurtzite InP tapered nanowire.

(a)

e:

h:

≈ 1.49 ev≈ 0.46 ev≈ 1.38 ev

Conduction Band

Valence Band

InPInP
InAs

(b)

Figure 2.1: Energy schematics and image of the source under study. (a) Band

energy diagram of wurtzite InAsP/InP QD. The strong confinement along the z direction

allows for only one bound energy level, which is split further into a few sublevels according

to the lateral confinement potential. Values for the bandgaps are taken from Ref.[41]. (b)

SEM image of a typical nanowire which embeds the QD. The QD is depicted as a blue

cylinder, ≈ 500 nm from the bottom. The tailoring of the nanowire tip allows for efficient

photon extraction [40].
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The degree of confinement in a QD is determined by the relative size of the QD, d,

and the carriers’ Bohr radius, a0. As discussed in Ref.[42], a typical QD of this type has

a height h ≈ 6nm and a diameter d ≈ 30nm. In this geometry, with a0 ≈ 25nm [43], the

strongest confinement comes from the z-direction. Heights bellow 10nm allow for only one

single z-confined energy level for electrons and holes inside the quantum dot. However,

the weaker confinement in the lateral direction leads to formation of sublevels, {s-, p-, ...}
shells. In the lateral direction, the potential energy can be modeled as a simple two-

dimensional harmonic oscillator, V (r) = 1
2
m∗ω2r2, with m∗ being the effective mass of e

or h [42]. This potential gives rise to states known as Fock-Darwin states, with the energy

En,l = (2n+ |l|+ 1)~ω, in the absence of an external magnetic field. Here, n(= 0, 1, 2, ...)

represents the radial quantum number, l(= 0,±1,±2, ...) represents the orbital angular

momentum quantum number of the sublevel, and ~ω is the quantum of energy for e or

h in the lateral degree of freedom. Now, using the convention in atomic physics, we can

name the state with the lowest energy level, E0,0, as the s-shell, the first excited degenerate

states, E0,1 and E0,−1, as p-shell, and the second degenerate excited states, E0,2, E1,0 and

E0,2, as the d-shell, etc. In such a structure, the energy difference between the s-shell and

p-shell is ≈ 25mev [42].

d-shell

p-shell

s-shell

Figure 2.2: Shell model for the CB. Assuming a two-dimensional simple harmonic

oscillator potential in the lateral direction results in Fock-Darwin states, which, can be

grouped into different shells. A similar configuration can be represented for the VB as

well.

8



The energy diagram of the electrons in the QD’s CB is depicted in Fig.2.2. A similar

diagram can be drawn for the VB addressing the holes.

2.1.2 QD’s emission

In a simple scenario, excitation of the QD can lead to the generation of an electron-hole, e-h,

pair. This pair is confined within the boundaries of the QD and has a particular lifetime.

Relaxation of the electron back to the VB, e-h recombination, and photon generation

should preserve the total angular momentum; therefore, a detailed study of the angular

momentum of the electrons and holes in the QD is necessary.

Angular Momentum, Effective Mass & Energy Splitting

For each particle, the total angular momentum, J, consists of three parts: the spin angular

momentum, S; the intrinsic band angular momentum, Lband; and the orbital angular

momentum from the shells of the Fock-Darwin states, Lshell. Therefore, the total angular

momentum operator can be written as:

J = Lband + Lshell + S, (2.1)

with the quantum numbers j, lband. lshell and s, denoting each operator, respectively. Also,

the projection of the total angular momentum along z direction, Jz, can be represented by

the quantum number jz ∈ {−j,−j + 1, ... , j − 1, j}.

Both electrons and holes are spin-1
2

particles, i.e., s = 1
2
. The lowest state of the CB

exhibits an s-like orbital, thus for the excited electrons Lband = 0. Now, by limiting

ourselves to the s-shell of the QD, i.e., Lshell = 0, the total angular momentum quantum

number of the electrons will be J = S; meaning j = s = 1
2
, and jz = ±1

2
. On the other hand,

the holes in the highest state of the VB occupy a p-like orbital, i.e., lband = 1. Therefore, for

the case of the QD’s s-shell, the total angular momentum of the holes will be J = Lband+S,

with {j} = {|lband + s|, |lband − s|} = {3
2
, 1

2
}, and {jz} = {{−3

2
,−1

2
, 1

2
, 3

2
}, {−1

2
, 1

2
}} for the

two possible j’s [44].
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The band structure for electrons and holes in the QD is depicted in Fig.2.3. The CB

only shows one curve corresponding to an electron with j = 1
2
; however, the holes in the

VB are split into three regimes each with a particular energy splitting.

e

CB

VB hh

lh

𝑗ℎ =
1

2

k

E

∆ℎℎ−𝑙ℎ

∆𝑆𝑂

𝑗ℎ =
3

2

Figure 2.3: Engery band structure for the CB and VB. There is only one curve

attributed to the electron in the CB with jz = 1
2
. In the valence band, on the other

hand, the holes with j = 1
2

are separated from holes with j = 3
2

by ∆SO according to the

spin-orbit coupling. Furthermore, the j = 3
2

holes are split into heavy-holes, hh’s, and

light-holes, lh’s, which are separated by ∆hh−lh.

The spin-orbit coupling and strain play an important role in the energy level struc-

ture for holes possessing different angular momentum. In the case of a nearly isotropic

interaction in the crystal, the spin-orbit coupling can be represented approximately by

[44]:

Hso ≈ λsoL.S =
1

2
λso(J

2 − L2 − S2) (2.2)

where, λso is a constant determined by the atomistic details of the QD. Based on eq.2.2, it is

easy to verify that the spin-orbit interaction leads to an energy difference of ∆so = 3~2λso/2
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between holes with j = 3/2 and j = 1/2. In InAs/InP QDs, ∆so > 100 mev and thus can

be neglected once dealing with the QD’s lowest energy transitions [45, 46].

Furthermore, holes with j = 3
2

can be divided into two categories; the heavy-holes, hh,

with jz = ±3
2
, and the light-holes, lh, with jz = ±1

2
. In a crystal structure, the effective

mass of a charge carrier in band b, m∗b , along a particular direction αβ, is calculated from

the curvature of its E-k energy band diagram [44]:

[(m∗b)
−1]αβ =

1

~2

∂2Eb(k)

∂kα∂kβ
. (2.3)

The difference in the curvature of the energy band diagrams for hh’s and lh’s, Fig.2.3,

results in a difference in their effective masses, with m∗hh ≈ 8m∗lh [42], and hence their

names. Even though, in principle, the inter-subband interactions can lead to mixing of the

lh and hh states, strain causes weakening of the strength of such interactions [42]; also,

some experimental results suggest that the inter-subband interactions are negligible [47].

Lastly, due to strain and confinement, there’s a energy difference between lh’s and hh’s,

∆hh−lh, in the order of tens of meV [45, 46]; which, combined with the spin-orbit splitting

of holes with j = 1
2
, means that the optical transitions for the lowest energy level can be

solely attributed to electrons with jz = ±1
2
, and heavy-holes with jz = ±3

2
. Since we will

only be dealing with the heavy-holes, from here onward, for the sake of simplicity, we will

refer to the heavy-holes as simply holes.

Emission Spectrum

The CB electron and the VB hole, can become bound together via Coulomb interaction and

form an e-h pair named an exciton, |X〉. Then, through the e-h recombination process, a

circularly polarized photon will be emitted. For the case of InAs/InP QDs, withm∗h ≈ 10m∗e

[42], one can think of |X〉 as the excited state of a hydrogen-like atom with a particular

lifetime [44]. Different configurations of the electron and the hole in the e-h pair, will

result in four possible exciton states with jz ∈ {+2,+1,−1,−2}. Now, by representing the

set of hole states as {|h〉} = {|⇑〉 , |⇓〉} for jz ∈ {+3
2
,−3

2
}, and the set of electron states
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as {|e〉} = {|↑〉 , |↓〉} for jz ∈ {+1
2
,−1

2
}, respectively, the possible exciton states can be

written as:

|+2〉 ≡ |↑⇑〉 = |↑〉e + |⇑〉h , (2.4)

|+1〉 ≡ |↓⇑〉 = |↓〉e + |⇑〉h , (2.5)

|−1〉 ≡ |↑⇓〉 = |↑〉e + |⇓〉h , (2.6)

|−2〉 ≡ |↓⇓〉 = |↓〉e + |⇓〉h . (2.7)

Since a circularly polarized photon carries a total angular momentum of ±~, and has

a total spin of zero, the following selection rules should be obeyed so that the e-h recom-

bination results in emission of a photon:

∆jz = ±1, (2.8)

∆s = 0. (2.9)

As it is clear, out of the four possible exciton states only two, |X〉 = |↓⇑〉 and

|X〉 = |↑⇓〉, can lead to emission of a photon, and thus are called bright excitons; the

recombination of the other two states, which are called dark excitons, are optically forbid-

den.

In addition to the different spin configurations within an e-h pair, different charge

configurations will result in different excitonic states. The s-shell can host up to two

electrons and two holes. Formation of an |X〉 in the presence of extra charge carriers can

lead to more sophisticated Coulomb interactions which can shift the energy of the emitted

photon. Fig.2.4a, shows different charge configurations for the s-shell.

The simplest case is an e-h pair without any adjacent charges, |X〉. An exciton in the

presence of an extra charge is called a trion, |X∗〉; which, can be either be |X+〉 or |X−〉,
depending on whether the extra charge is a hole or an electron, respectively. Lastly, the

s-shell can have two e-h pairs, or in other words a bi-exciton, |XX〉; we shall only consider

a neutral biexciton, i.e., there are no other charge carriers in the higher shells. The energy
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Figure 2.4: Charge configurations of the s-shell and the emission spectrum of

the QD. (a) The four possible charge configurations in the s-shell. The double sided

arrows indicate possibility of a spin-up and spin-down configuration. (b) Spectrum of an

InAsP/InP QD in a wurtzite InP nanowire under quasi-resonant excitation [48]. The lines

other than the four configurations may be associated with presence of charges in higher

shells.

of these four possible configurations can be written as:

E|X〉 = Ee + Eh − Veh (2.10)

E|X+〉 = Ee + 2Eh + Vhh − Veh (2.11)

E|X−〉 = 2Ee + Eh + Vee − Veh (2.12)

E|XX〉 = 2Ee + 2Eh + Vee + Vhh − 2Veh, (2.13)

with Ee and Eh being the confinement energies of electrons and holes, respectively, and

the Coulomb interaction energies represented by Veh, Vee and Vhh with the general form:

Vij =
e2

4πε
〈ψiψj|

1

|ri − rj|
|ψiψj〉 . (2.14)
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In order to investigate the emission spectrum of a QD we have to consider the change

in the energy of these four states after recombination of an e-h pair. The transitions will

be:

|X〉 → |G〉 , (2.15)∣∣X+
〉
→ |h〉 , (2.16)∣∣X−〉→ |e〉 , (2.17)

|XX〉 → |X〉 , (2.18)

with |G〉 being the ground state, |e〉 the s-shell with only one electron, and |h〉 the s-shell

with only one hole. We shall call these transitions simply X, X+, X− and XX transition,

respectively. Setting EG = 0, it is straightforward to see that the energies of these four

transitions are:

∆EX ≡ ∆E|X〉→|G〉 = EX , (2.19)

∆EX+ ≡ ∆E|X+〉→|h〉 = EX + Vhh − Veh, (2.20)

∆EX− ≡ ∆E|X−〉→|e〉 = EX + Vee − Veh, (2.21)

∆EXX ≡ ∆E|XX〉→|X〉 = EX + Vhh + Vee − 2Veh. (2.22)

Now, by considering the fact that the hole, due to its heavier mass, is more bound

compared to the electron, according to eq.2.14, we will have the condition Vhh > Veh > Vee.

Therefore, compared to the X transition, the X+ and X− transitions will be blue-shifted

and red-shifted respectively. The difference in the energies of the X and XX transitions,

i.e., ∆EX - ∆EXX , is called the biexciton binding energy. Depending on the confinement

conditions, we might have Vhh + Vee − 2Veh greater or smaller than zero, i.e., a positive or

negative biexciton binding energy [44]. Therefore, in the QD’s spectrum the XX transition

might have a higher or lower wavelength compared to that of the X transition. A typical

spectrum of a QD is presented in Fig.2.4b.

14



The XX-X Cascade and Polarization Entanglement

Starting with a filled s-shell, the QD will emit a photon according to the energy and lifetime

of |XX〉 and relax to |X〉. Now, depending on the charge environment and the possibility

of trapping of either an electron or a hole, the QD can take different paths to reach the

ground state:

|XX〉 → |X〉 → |G〉 , (2.23)

|XX〉 → |X〉 +h−→
∣∣X+

〉
→ |h〉 , (2.24)

|XX〉 → |X〉 +e−→
∣∣X−〉→ |e〉 . (2.25)

Among these different possible transitions, the direct one, |XX〉 → |X〉 → |G〉, has the

highest probability; since, for all the other cases, a surrounding charge has to be trapped

by the QD within the lifetime of |X〉. We shall call this transition sequence the biexciton-

exciton, XX-X, cascade. Also, the cascade itself, by considering the spin configuration

of |XX〉 and |X〉, can be represented by a superposition of two separate path-ways. This

cascade is shown schematically in Fig.5.1.

The biexciton state is composed of two e-h pairs with opposite angular momentum,

jz = ±1, represented by |+1〉 and |−1〉 according to Eq.2.5 and Eq.2.6. Thus, the XX

transition can either generate a left circularly polarized photon, |L〉, or a right circularly

polarized photon |R〉, for the cases of |+1〉 and |−1〉 respectively. This leads to two different

scenarios for the emission of the X transition as well; by emission of an |L〉 photon from the

XX transition, we will end up with an e-h pair with jz = −1, and emission of a subsequent

|R〉 photon. And alternatively, emission of an |R〉 photon from the XX transition will lead

to emission of an |L〉 photon from the X transition. In an ideal situation, there will be no

which-path information regarding these two possible scenarios; and this lack of information,

as first proposed by Benson et al. [23], will result in generation of a pair of polarization

entangled photons with the wave function:

|Ψ〉 =
1

2
(|RL〉+ |LR〉). (2.26)
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Figure 2.5: The XX-X cascade. Depending on which of the two e-h pairs recombine

first, the cascade will follow two different path-ways. The final state will be a superposition

of these two paths, i.e., |Ψ〉 = 1√
2
(|RL〉+ |LR〉).
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Trapping of extra charges after the XX transition, Eq.2.24 and Eq.2.25, will reduce

the efficiency in generation of the entangled photon pairs; since, the polarization of the

generated photon from X+ and X− transitions will no longer be correlated with the po-

larization of the photon generated from the XX transition, and the emission energies will

also shift. Furthermore, it is possible that the QD traps another e-h pair and fill the s-shell

again after it has relaxed to |X〉. This process, called re-excitation of the biexciton state,

can lead to emission of two subsequent photons attributed to the XX transition. This

scenario results in degradation of single-photon purity of the source and also the measured

entanglement fidelity of the XX-X cascade [48].

Exciton’s Fine-structure Splitting

In addition to the Coulomb interaction, the exchange interaction between the electron and

the hole of the exciton state can give rise to finer changes in energy, i.e., the fine-structure

splitting (FSS). The FSS is orders of magnitude smaller than the lh-hh and the spin-

orbit splitting, and falls in a range from a few µeV up to a few hundred µeV [49, 50, 51].

Generally speaking, any sort of asymmetry in the QD, e.g., caused by strain, crystal

structure, macroscopic geometry of the QD, etc., can result in lifting of the degeneracy of

the X state, and, thus, observation of the FSS. Once dealing with generation of entangled

photons with a QD, the FSS can be a significant challenge; since, in the case that the

FSS is larger than line-widths of the emitted photons (∼ 1µev), a which-path information

between the two transition path-ways in the XX-X cascade will emerge, and the measured

entanglement fidelity of the source degrades [48, 51, 52].

The e-h exchange interaction can be written as [51, 53]:

Eex ∝
∫ ∫

d3red
3rhΨ

∗
X(re, rh)

1

|re − rh|
ΨX(rh, re), (2.27)

where, re/h represent the position vector of electron/hole, and ΨX(rh, re) represents the

exciton wave function. The integral can be split into two parts; (i.) the short-range

interaction; which, deals with the electron and hole both existing in the same Wigner-Seitz

unit cell, and (ii.) the long-range interaction; which, deals with finding the electron and
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hole in different Wigner-Seitz unit cells. The short-range interaction is mainly affected

by the symmetry of the QD at the atomistic level, i.e., crystal symmetry, whereas the

long-range interaction deals with symmetry at the macroscopic geometry of the QD, i.e.,

circularity of QD’s base [51].

The short-range interaction of Eq.2.27 can also be written in terms of coupling of the

spins of the electron and hole forming the exciton [53, 54]:

Hex = −
∑
i=x,y,z

(aiJh,iSe,i + biJ
3
h,iSe,i) (2.28)

where ai and bi, {i = x, y, z}, are the coupling constants, and Jh,i and Se,i are the an-

gular momentum and spin operators in three dimensions for the hole and electron, re-

spectively. Here, the z direction is considered to be along the growth direction of the

QD. The long-range interaction may as well be written in a similar form with the corre-

sponding coupling constants. Now, by limiting ourselves to the heavy-holes, and choosing

|+1〉 , |−1〉 , |+2〉& |−2〉 (Eq.2.4 - Eq.2.7) as the basis, the short-range interaction can be

represented by the matrix [53]:

Hshort−range
ex =

1

2


+δ0 +δ1 0 0

+δ1 +δ0 0 0

0 0 −δ0 +δ2

0 0 +δ2 −δ0

 , (2.29)

where, δ0 = 1.5(az + 2.25bz), δ1 = 0.75(bx− by), and δ2 = 0.75(bx + by). We can refer to the

top left 2×2 block as the bright-block, and the bottom right 2×2 block as the dark-block.

The short-range interaction gives rise to splitting of energy between the bright and dark

states, with ∆E = δ0; as well as, mixing of the states within the bright- and dark-blocks,

i.e., the off-diagonal terms δ1 and δ2.

The long-range part of the exchange Hamiltonian will only affect the bright states [53];

it will enhance the energy splitting between the bright and dark states by lifting the energy

of the bright states; and also, strengthen the mixing of the states within the bright-block by
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increasing the off-diagonal terms. Eventually, the overall exchange Hamiltonian of Eq.2.27

can be represented by:

Hex =
1

2


+δ

′
0 +δ

′
1 0 0

+δ
′
1 +δ

′
0 0 0

0 0 −δ0 +δ2

0 0 +δ2 −δ0

 , (2.30)

with δ
′
0 = δ0 + γ0, where γ0 is the contribution of the long-range interaction to the energy

of the bright states; and δ
′
1 = δ1 + γ1, with γ1 = γx − γy being the contribution of the

long-range interaction to FSS. γi {i = x, y} are the coupling constants of the long-range

interaction. The long-range e-h exchange interaction is shown to be the dominant factor

in the exchange Hamiltonian [55], i.e., γ1 � δ1, which means in terms of symmetry, the

macroscopic geometry of the QD plays the main role.

In the case of a QD with high degree of symmetry, e.g. D2d or C3V symmetry groups

which show an in-plane rotation invariance [51, 53], the x-y plane coupling constants follow

the conditions:

bx = by, (2.31)

γx = γy. (2.32)

In other words, δ1 = γ1 = 0. In this case, the circularly polarized |+1〉 and |−1〉 states will

not be coupled and remain as the degenerate eigenstates of the bright-block. In the case

of a low degree of symmetry, e.g., C2V , C2, C1 etc. [51, 53], δ′1 6= 0 and the bright states

will be mixed into:

|+〉 ≡ 1√
2

(|+1〉+ |−1〉) (2.33)

|−〉 ≡ 1√
2

(|+1〉 − |−1〉), (2.34)

which will form the linearly polarized non-degenerate eigenstates of the bright-block, with

energies equal to E+ = 1
2
δ′0 + 1

2
δ′1 and E− = 1

2
δ′0 − 1

2
δ′1, and an FSS = E+ − E− = δ

′
1. We
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shall represent the fine-structure splitting simply as δ. In the case of an elliptical QD, the

intrinsic polarizations |+〉 and |−〉 will lie along the major and minor axis, respectively

[44]. We shall refer to these two polarization states simply as horizontal, |H〉, and vertical,

|V 〉.

FSS and XX-X cascade

The FSS and mixing of the bright |X〉 states will also affect the recombination of the e-h

pairs in the XX transition. Mixing of the |+1〉 and |−1〉 can be thought of as precession of

|X〉 between these two states at a rate proportional to the FSS. This precession is analogous

to precession of Sx of an electron around a magnetic field B = Bẑ. This means that once

the XX transition results in an |L〉 photon the X transition will no longer emit solely an

|R〉 photon. Instead, before its emission, |X〉 can precess to the other path-way and have a

finite probability of emitting again another |L〉. A similar situation can take place starting

with an |R〉 photon from the XX transition. This means that the XX-X cascade will no

longer be a simple superposition of the two path-ways, |LR〉 + |RL〉; instead, two other

transition path-ways are possible in the XX-X cascade, i.e., |R〉 → |R〉 and |L〉 → |L〉,
with oscillations between these two possible cascades, i.e., between (|LR〉 + |RL〉) and

(|LL〉+ |RR〉). The oscillations can be observed in the |R〉/|L〉 basis; however, projections

along the intrinsic polarizations of the QD will not show such oscillations, since |H〉 and

|V 〉 are the eigenstates of the bright-block in the exchange-interaction Hamiltonian matrix,

Eq.2.30. But, such projections will yield photons with different energies separated by the

FSS. Taking these facts into consideration, the two-photon state from the XX-X cascade

represented by Eq.2.26 will be modified to:

|Ψ̃〉 =
1√
2

(|HH〉+ ei
δ
2~ t |V V 〉) (2.35)

= cos(
δ

2~
t) |Ψ〉+ isin(

δ

2~
t) |Φ〉 ,

where |Ψ〉 = 1√
2
(|RL〉+|LR〉), |Φ〉 = 1√

2
(|RR〉+|LL〉), and δ = FSS. The schematics of the

XX-X cascade in the presence of a non-zero FSS is represented in Fig.2.6. One important
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point to consider is the fact that presence of FSS does not destroy the entanglement. The

precession between the two entangled states |Ψ〉 and |Φ〉, does not affect the entanglement;

the two-photon state stays as a superposition of the two entangled states with oscillating

probability amplitudes.

(a)
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ۧ|𝑅ۧ|𝐿
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ۧ|G
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Figure 2.6: XX-X cascade in presence of FSS. (a) |R〉 and |L〉 basis will be mixed

and a precession between the two path-ways will be observed. (b) In the |H〉 − |V 〉 basis,

the transitions will be split by FSS=δ.

2.2 Second-order coherence measurement

In order to investigate whether an emitter is generating quantum states of light, one has

to measure the second-order coherence function of the emitted light, defined as [56]:

g(2)(τ) =
〈I(t)I(t+ τ)〉
〈I(t)〉〈I(t+ τ)〉

(2.36)

where, I(t) indicates the intensity of light at time t. The nominator corresponds to the

correlation between the intensity of light at some time t and some later time t+ τ , and the
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denominator serves as a normalization factor. Hanbury Brown and Twiss [57], motivated

by improving stellar interferometry, pioneered a simple method for calculating g(2)(τ). By

correlating the intensities registered on the two separate photodiodes, Hanbury Brown

and Twiss managed to improve the Michelson interferometer in terms of stability and

resolution. The experimental setup is made of a beam-splitter, which divides the incoming

light beam into two separate paths, and two detectors to timetag the intensity fluctuations

in the field. A schematic view of the setup is given in Fig. 2.7.

Correlator

Detectors

Figure 2.7: Schematics of Hanbury Brown-Twiss setup. Light is directed towards a

beam-splitter, and the timetagged intensities measured by the two detectors are correlated

in order to calculate the g(2)(τ) function.

For a quantum state of light, written in terms of photon number states |n〉 (n ∈
{0, 1, ...}), intensity of light in a time period is proportional to the average number of

photons in that particular time bin. Therefore Eq. 2.36 can be rewritten as:

g(2)(τ) =
〈n̂1(t)n̂2(t+ τ)〉
〈n̂1(t)〉〈n̂2(t+ τ)〉

, (2.37)

where n̂i(i = 1, 2) is the photon number operator for each path.

In practice, the value we are after is the value of the second-order coherence function

at zero time delay, i.e., τ = 0. Considering a single photon, once the photon hits the

beam-splitter, the particle nature of the photon will dictate that the detection will be
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Figure 2.8: Results from HBT measuring setup. Upon excitation of the quantum light

emitter by a pulsed laser source, one expects to detect single-photons at a certain frequency

f , here f ≈ 76 MHz. The nominator in Eq. 2.37 can be calculated by summing the

coincidence counts in the proximity of t = 0, and the denominator in Eq. 2.37 is obtained

by taking the averaged sum of the coincidence counts in the side peaks.

made by either detector 1, or detector 2, and never by both at the same time. In other

words, once a single photon is sent to the Hanbury Brown-Twiss (HBT) setup, there will

be no coincidence between the two detectors at zero time delay, i.e., g(2)(0) = 0. Thus,

any deviation of g(2)(0) from zero reveals the probability of multi-photon emission of the

source. A typical histogram acquired from the HBT setup, with pulsed excitation of the

source, is shown in Fig 2.8; g(2)(0) can be calculated by dividing the sum of the coincidence

counts in the central region, by the averaged sum of coincidence counts in the adjacent side

peaks. However, in a realistic scenario, one has to take the effect of detectors’ dark-counts

into consideration, as they will add false coincidence counts in each time bin.
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2.3 Measuring Entanglement

Proper definition, measurement and analysis has to be presented in order to investigate

the degree of entanglement in quantum light sources. Here, we will follow the works by

Bennett et al. [58], S. Hill & W. K. Wootters [59], W. K. Wootters [60], and F. Verstraet

& H. Verschelde [61], to introduce measures for entanglement of a pure state. Afterwards,

following the work of James et al. [62], we present a method for calculating the density

matrix of a pure state, which enables us to extract the strength of its entanglement. We

limit our discussion to a two-qubit state, consisting of two particles each having only two

degrees of freedom, e.g., two spin-1
2

electrons.

2.3.1 Entanglement Definition, Concurrence & Fidelity

A bipartite system of two subsystems Alice (A) & Bob (B) are called entangled, if and

only if, the joint Hilbert space cannot be decomposed into a tensor product of two separate

Hilbert spaces [58]. In other words, the overall state |Ψ〉 cannot be written as a product

of two pure states, |ψ〉A⊗ |ψ〉B. A simple example of such a state is |Φ〉 = 1√
2
(|↑↓〉− |↓↑〉),

for a system of two electrons with two possible spin orientations along the z axis, |↑〉 and

|↓〉. It is worth noting that an entangled state cannot be generated through any series

of separate local operations on unentangled particles [58]. This definition can be easily

extended to multi-particle systems.

The level of entanglement existent in a bipartite system is measured by calculating the

entropy of the reduced density matrix [58, 60]:

E(ρ̂) = S(ρ̂A) = S(ρ̂B) (2.38)

where E(ρ̂) is the level of entanglement in the pure state |Ψ〉 with density matrix ρ̂ =

|Ψ〉 〈Ψ|, ρ̂A = TrB |Ψ〉 〈Ψ| is Alice’s reduced density matrix acquired by tracing the density

matrix of the whole state over Bob’s degrees of freedom, and S(ρ̂A) = −Tr(ρ̂A log2 ρ̂A) is

the entropy of Alice’s reduced density matrix. Similar definitions hold for ρ̂B and S(ρ̂B).

The quantity E(ρ̂), which from now on we simply call entanglement, can range from zero,
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for a product state |ψ〉A⊗ |ψ〉B, up to log2N , for a system of two N-state particles [58]. In

the case of the entangled state |Φ〉, E(ρ̂) will be equal to 1. Furthermore, entanglement

of independent systems is additive, and also for each system the value of entanglement

is invariant under local unitary transformations, U = UA ⊗ UB [58]. The motivation

behind such a definition of entanglement comes from entanglement purification protocols.

Consider n pairs of qubits, each in some arbitary state |Ψ〉. Alice and Bob, which are

spatially separated, each possess one qubit of each pair. Now, if each pair of qubits has an

entanglement value E < 1, it can be shown that, by means of purely local operations and

classical communications between Alice and Bob, out of these n pairs, m pairs of qubits,

each in the state |Φ〉, can be extracted with m
n
→ E and fidelity of conversion approaching

unity for large n [58, 59]. In other words, n pairs of non-maximally entangled qubits, with

entanglement E < 1, are equivalent to m=nE pairs of maximally entangled qubit pairs,

when n→∞.

The space of bipartite pure states can be spanned over four specific orthogonal entangled

states, known as the Bell states:

|e1〉 =
1√
2

(|↑↓〉+ |↓↑〉) (2.39)

|e2〉 =
1√
2

(|↑↓〉 − |↓↑〉) (2.40)

|e3〉 =
1√
2

(|↑↑〉+ |↓↓〉) (2.41)

|e4〉 =
1√
2

(|↑↑〉 − |↓↓〉). (2.42)

Now, any pure state of a two-qubit system can be written as |Ψ〉 =
∑

i αi |ei〉 with αi ∈ C.

By defining the parameter C(ρ̂) = |
∑

i α
2
i |, as the concurrence of the state |Ψ〉, one can

rewrite Eq.2.38 as [58]:

E(ρ̂) = H(
1 +

√
1− C(ρ̂)2

2
) (2.43)

where H(x) = −xlog2x− (1− x)log2(1− x), is the binary entropy function. Concurrence

of a state lies in the range [0,1], with 0 being the concurrence of a pure product state and

1 being the concurrence of a pure entangled state; also, E(ρ̂) is a monotonically increasing
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function of C(ρ̂) with the same range, [0,1]. Hence, one may as well use the quantity C(ρ̂)

as a measure of the entanglement of a state.

Alternatively, concurrence of a state can be calculated using the density matrix ap-

proach, which might be more suitable for analyzing the experimental results and ad-

dressing situations involving mixed states. For this matter, we first start with the spin-

flipped wave function of the bipartite system, |Ψ̃〉 = σy |Ψ〉, with the density matrix

ˆ̃ρ = (σy ⊗ σy)ρ̂∗(σy ⊗ σy), where ρ̂∗ = (|Ψ〉 〈Ψ|)∗, and σy being the y Pauli matrix. The

concurrence can then be written as [60]:

C(ρ̂) =
∣∣∣〈Ψ

∣∣∣Ψ̃〉∣∣∣. (2.44)

In other words, the concurrence is the absolute value of the overlap between |Ψ〉 and its

spin-flipped counterpart. This relation can be shown to be equivalent to [60]:

C(ρ̂) = max{0, λ1 − λ2 − λ3 − λ4}, (2.45)

where λis are the eigenvalues of the matrix R ≡
√√

ρ̂ ˆ̃ρ
√
ρ̂, in a descending order [60]. In

the case of the maximally entangled state |Φ〉 mentioned earlier, flipping the spins of the

two particles yields |Φ̃〉 = − |Φ〉, which indicates C(ρ̂) = 1. The situation is the same for

all the Bell states.

Another important parameter for defining the degree of entanglement of a quantum

state, with density matrix ρ̂, known as fidelity of entanglement, F , and is defined as the

maximum overlap of ρ̂ with a maximally entangled state |Θ〉 [61]:

F (ρ̂) = max 〈Θ| ρ̂ |Θ〉 . (2.46)

We may as well think of the states |Θ〉 as any possible unitary transformation of any

of the Bell states defined in Eq.2.39-Eq.2.42. An alternative representation of fidelity of

entanglement has been obtained by Badziag et al. [63]:

F (ρ̂) =
1 + λ1 + λ2 − sgn[det(R̃)]λ3

4
, (2.47)

26



where R̃ is a 3×3 matrix with elements defined as:

R̃i,j ≡ Tr(ρ̂σi ⊗ σj). (2.48)

Here, {σi, i = 1, 2, 3} are the Pauli matrices, and {λi, i = 1, 2, 3} are the ordered singular

values of R̃, and sgn[det(R̃)] is the sign of the determinant of R̃.

2.3.2 Two-photon State Tomography

As it is clear from Sec.2.3.1, in order to calculate the entanglement concurrence or fidelity

of a two-qubit system, we have to first find its density matrix, ρ̂. The method proposed

by James et al. [62], starts with an initial guess for the density matrix, and then by

optimizing a maximum likelihood function, that links the evaluated density matrix to the

measurement results, a density matrix which best describes the system will be achieved.

General Form of the Density Matrix

A physical density matrix must satisfy the following conditions:

I. ρ̂ is non-negative definite, i.e., for any state |ψ〉 we have:

〈ψ| ρ̂ |ψ〉 ≥ 0. (2.49)

II. ρ̂ is Hermitian:

ρ̂† = ρ̂. (2.50)

III. ρ̂ is normalized,:

Tr(ρ̂) = 1. (2.51)

It is straightforward to show that any matrix written in the form Ĝ = T̂ †T̂ can exhibit

the features we require. Regarding condition I., we will find:

〈ψ| Ĝ |ψ〉 = 〈ψ| T̂ †T̂ |ψ〉 = 〈ψ′ |ψ′〉 ≥ 0, (2.52)
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with |ψ′〉 = T̂ |ψ〉. Also:

Ĝ† = (T̂ †T̂ )† = T̂ †(T̂ †)† = Ĝ; (2.53)

therefore, Ĝ is Hermitian. Now, division of Ĝ by its own trace will give us a normalized

non-negative definite Hermitian operator:

ĝ ≡ Ĝ

Tr(Ĝ)
=

T̂ †T̂

T r(T̂ †T̂ )
. (2.54)

For a two-qubit system, ρ̂ is a 4× 4 matrix with 15 independent free parameters. One

convenient representation of T̂ is a tridiagonal matrix of the form:

T̂ (t) =


t1 0 0 0

t5 + i t6 t2 0 0

t11 + i t12 t7 + i t8 t3 0

t15 + i t16 t13 + i t14 t9 + i t10 t4

 , (2.55)

with t = {t1, t2, ..., t16} being the set of 16 parameters, out of which, 15 will be independent.

Therefore, the density matrix of a two-qubit system will be written as:

ρ̂(t) =
T̂ †(t)T̂ (t)

Tr[T̂ †(t)T̂ (t)]
. (2.56)

Projection Measurements

The Stokes parameters [64] can provide us with complete information about the polariza-

tion state of a light beam. Inspired by this fact, complete tomography of a two-qubit system

can be achieved by performing multiple separate projection measurements in a combination

of horizontal and vertical polarization basis, |H〉& |V 〉, diagonal and anti-diagonal polar-

ization basis, |D〉& |A〉, and right circular and left circular polarization basis, |R〉& |L〉,
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on the two subsystems. The polarization basis are defined as:

|H〉 ≡

(
1

0

)
(2.57)

|V 〉 ≡

(
0

1

)
(2.58)

|D〉 ≡ |H〉+ |V 〉√
2

, (2.59)

|A〉 ≡ |H〉 − |V 〉√
2

, (2.60)

|R〉 ≡ |H〉 − i |V 〉√
2

, (2.61)

|L〉 ≡ |H〉+ i |V 〉√
2

. (2.62)

We shall represent the set of these six polarization basis as P = {|H〉 , |V 〉 , ... , |L〉}.
These six basis, give rise to a maximum of 36 possible projection measurements for a two-

qubit system to be performed, i.e., projections along the states |HH〉 , |HV 〉 , etc. Use of a

half-wave plate, HWP, a quarter-wave plate, QWP, and a linear polarizer provides us with

all the sufficient needs to conduct such measurements. Fig.2.9 shows a schematic view of

the experimental setup.

For a single-qubit, in the |H〉 / |V 〉 basis, the operators attributed to a HWP, ÛHWP ,

and a QWP, ÛQWP , can be written as [62]:

ÛHWP (α) =

(
cos(2α) −sin(2α)

−sin(2α) −cos(2α)

)
, (2.63)

ÛQWP (β) =
1√
2

(
i− cos(2β) sin(2β)

sin(2β) i+ cos(2β)

)
, (2.64)
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photon-pair 
source Correlator

Detector 1

Detector 2

Figure 2.9: Schematic veiw of the experimental setup for two-photon state to-

mography. A half-wave plate, HWP, a quarter-wave plate, QWP, and a polarizer, Pol.,

is used to perform a projection measurement on each photon. The correlation between the

separate projection measurements, gives the information we need to construct the density

matrix of the two-qubit state. Image taken from Ref. [62].
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where, α and β are the angles the HWP and the QWP make with the vertical axis,

respectively. For any arbitary input polarization state |ψ〉, the effect of passing through a

HWP−QWP setup can be written in the general form:

ÛHWP (α).ÛQWP (β) |ψ〉 = a(α, β) |H〉+ b(α, β) |V 〉 , (2.65)

where, a and b are complex-valued functions of α and β. The set of angles (α, β) gives us the

complete freedom to project any arbitary input state onto a reference linear polarization

state, e.g., |H〉, which matches the direction of the linear polarizer. In other words, one

can think of a particular combination of the angles (α, β)ν , as a projection measurement

µ̂ν = |ψν〉 〈ψν |, with |ψν〉 ∈ P. For the case of having the linear polarizer aligned with |H〉,
sets of angles for different projection measurements are given in Table.2.1.

Table 2.1: Set of angles for each single-qubit projection measurement. Note that in general

the set of angles is not unique.

|ψν〉 α β

|H〉 0◦ 0◦

|V 〉 45◦ 0◦

|D〉 22.5◦ -45◦

|A〉 -22.5◦ -45◦

|R〉 0◦ -45◦

|L〉 −22.5◦ 0◦

The joint projection measurement of the two subsystems A and B, M̂ν,γ = |Ψν,γ〉 〈Ψν,γ|,
can be performed by the set of angles [(α1, β1)ν , (α2, β2)γ] for HWP1, QWP1, HWP2

and QWP2, respectively. Such a combination will project the two-qubit state |Ψ〉 onto

|Ψν,γ〉 = |ψν〉A ⊗ |ψγ〉B ∈ P ⊗ P = {|HH〉 , |HV 〉 , ...}; where, the indices shows which

subsystem is projected onto what state.
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The Likelihood Function

In each case, the expectation value, n̄ν,γ, of the projection measurement is given by:

n̄ν,γ = N Tr(ρ̂, M̂ν,γ) = N 〈Ψν,γ|ρ̂|Ψν,γ〉 , (2.66)

where ρ̂ is the density matrix of the two-qubit state and N is a constant dependant on

the emission rate of the source and the efficiency of the setup and detectors. The 15

independent parameters of the density matrix and the constant N make a total of 16

unknowns to be sought after. This means there should be a minimum of 16 projection

measurements in order to achieve a full tomography of the two-qubit state. For the sake

of simplicity, lets number the projection measurements M̂ν,γ as M̂i, projected states
∣∣Ψν,γ

〉
as |Ψi〉 and the expectation values n̄ν,γ as n̄i; with i ∈ {1, 2, 3, ... N}, where N is the total

number of performed projection measurements and in the range 16 ≤ N ≤ 36.

By assuming a Gaussian probability distribution for the measured coincidence counts,

the probability of gaining a particular value of coincidence count ni for the projection

measurement M̂i is given by:

pi ∝ exp

[
−(n̄i − ni)2

2σ2
i

]
, (2.67)

where σi ≈
√
ni is the standard deviation of the coincidence counts. Now, for a given set

of measured coincidence counts n = {n1, n2, ..., nN}, the probability that a density matrix

ρ̂(t), described by Eq.2.56, will explain the measured results is given by:

P (t,n) ∝
N∏
i=1

exp

[
−(N 〈Ψi|ρ̂(t)|Ψi〉 − ni)2

2N 〈Ψi|ρ̂(t)|Ψi〉

]
. (2.68)

The optimized set of parameters topt = {topt1 , topt2 , ...} will result in a maximum value for

P (t,n), and the resultant density matrix ρ̂(topt) is the density matrix that most likely

describes the two-qubit state. However, it is computationally much simpler, but, mathe-

matically equivalent, to maximize

ln [P (t,n)] = −
N∑
i=1

[
(N 〈Ψi|ρ̂(t)|Ψi〉 − ni)2

2N 〈Ψi|ρ̂(t)|Ψi〉

]
+ c, (2.69)
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instead of P (t,n) itself. With c being a constant, the optimization problem is reduced to

finding the set topt which minimizes the function:

L(t) =
N∑
i=1

[
(N 〈Ψi|ρ̂(t)|Ψi〉 − ni)2

2N 〈Ψi|ρ̂(t)|Ψi〉

]
. (2.70)

The optimization was carried out in Python computing language, by a routine minimize()

function from the scipy.optimize library. We used the ”Powell” method to execute the

minimization function. Initially, the set of parameters t is set to 1, i.e., t = {1, 1, ... 1}.
At each iteration, the normalization factor N is calculated from the set t in the following

way:

N =

∑N
i=1 ni∑N

i=1 〈Ψi|ρ̂(t)|Ψi〉
, (2.71)

and substituted back to Eq.2.70.
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Chapter 3

Dephasing free photon entanglement

with a quantum dot

Generation of photon pairs from quantum dots with near-unity entanglement fidelity has

been a long-standing scientific challenge. It is generally thought that the nuclear spins limit

the entanglement fidelity through spin flip dephasing processes. However, this assumption

lacks experimental support. Here, we show two-photon entanglement with negligible de-

phasing from an Indium rich single quantum dot comprising of nuclear spin 9/2 when

excited quasi-resonantly. This finding is based on a significantly close match between our

entanglement measurements and our model that assumes no dephasing and takes into ac-

count the detection system’s timing jitter and dark-counts. We suggest that neglecting the

detection system is responsible for the degradation of the measured entanglement fidelity

in the past and not the nuclear spins. Therefore, the key to unity entanglement from quan-

tum dots comprises of a resonant excitation scheme and a detection system with ultra-low

timing jitter and dark-counts.
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3.1 Introduction

Quantum dots can generate polarization entangled photons through the biexciton-exciton

cascade [23, 65, 66]. Understanding how this process can yield perfect polarization en-

tanglement has been a significant scientific challenge for more than a decade. Still, the

experimental demonstration of perfect entanglement from quantum dots (QDs) remains

elusive [67, 68]. The reason is twofold. First, QDs must emit perfectly entangled photons,

and second, the detection system must be capable of measuring it without degrading its

value [69]. Up to now, the detrimental effects of the detection system have been mostly

ignored. Nonetheless, they are of equal importance to the photon generation process as

timing jitter and dark-counts can spoil the measured entanglement. Here, we show that it

is possible to reach entanglement with negligible dephasing from QDs by considering both

the generation and detection processes of the entangled photons. We construct a model

assuming no dephasing and demonstrate a high degree of agreement with our measure-

ments indicating that the investigated quantum dot possesses negligible dephasing. The

discovery of dephasing free entanglement generation from a QD makes reaching perfect

entanglement in the future merely a technical one.

3.2 Results

3.2.1 Dephasing

We start by discussing the physics of how perfect entanglement between the biexciton and

the exciton photon can be degraded. Due to the optical selection rules, the spin orientation

of the decaying biexciton or exciton electron-hole pair projects onto a certain polarization

state. Therefore, we must only analyze how the spins of the biexciton and exciton can

loose their spin information.

For that, it is crucial to understand that the spin information, responsible for the

entanglement generation, can only be destroyed through magnetic fields interacting with
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the exciton spin. The biexciton remains unaffected as its singlet state does not allow spin

flips nor is its energy split through magnetic fields. Thus, we can solely focus our analysis

on the exciton with its net one spin. The exciton is influenced by two kinds of magnetic

fields. First, nearby spins carried by free or trapped [70] charge carriers or nuclei can lead

to an interaction via spin flips. Second, effective magnetic fields caused by electric fields

through the spin-orbit coupling can interact with the exciton spin. These electric fields can

be decomposed into a static and a time varying contribution. Static fields can reduce the

symmetry of the crystal field and are responsible for the so-called fine-structure splitting

[71] leading to a precession of the exciton spin [72, 73]. Still, this effect is only unitary

and leaves the entanglement of the state unaffected, and the possibility of reducing it to

approximately zero values (' 0.1µeV) has been predicted theoretically as well as shown

experimentally [74, 37, 43, 52, 75, 76, 77]. However, fluctuating fields from free charge

carriers and their spins can lead to dephasing of the quantum state. With a (quasi)-resonant

excitation scheme spin and charge noise from free carriers can be greatly suppressed [27].

Thus, under a (quasi)-resonant excitation scheme the magnetic field fluctuations from

the nuclei should be the only remaining significant source of dephasing. In contrast to

assumptions in other works [67, 68, 78] we find that this is not a significant source of

dephasing and reveal that these interactions are negligible.

In a previous work, it was shown that the nuclear field affects neutral excitons much

less than charged exciton complexes [79]. Therefore, the neutral exciton should dephase

on an even longer timescale than a charged exciton complex and be negligible during the

radiative exciton decay of ∼ 1 ns. This argumentation has been shown to be valid by

a study revealing that the neutral exciton spin in InAs quantum dots is not affected by

dephasing during the entire radiative lifetime of ∼ 2.5 ns [80]. Remarkably, this result

was measured on a system with a large Indium content, an element with a significant

nuclear spin of 9/2, which has been previously thought to limit dephasing free entanglement

[67, 68, 78]. Furthermore, spin-noise measurements [81] suggest a strong noise suppression

at frequencies on the timescale of the exciton lifetime. Our measurements on a wurtzite

InAsP quantum dot in a tapered InP nanowire [82] are in good agreement with the above

argumentation and reveal that under quasi-resonant excitation the exciton spin does not
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dephase over the entire exciton decay time of ∼ 5 ns. On the contrary, when excited

non-resonantly the excess charges introduce significant dephasing setting in after ∼ 0.5 ns.

3.2.2 Quasi-resonant versus non-resonant excitation

Fig.3.1(a) shows a photoluminescence (PL) spectrum of the QD under study indicating

the resonances and the QD s-shell transitions. The peak at 830 nm is the wurtzite InP

nanowire band-gap transition [82] and we excited the quantum dot at this wavelength

to study the effect of dephasing. In contrast, for the dephasing free measurements we

excited at ∼ 870 nm where there are a manifold of peaks which stem from donor-acceptor

transitions and not from the QD’s p-shell transitions since these lines were uncorrelated

with the QD s-shell transitions [46, 82]. Due to the background n-doping (≈ 1 · 1016 cm−3,

Supplementary Information of Ref. [83]) of the nanowire the PL spectrum for the two

excitation schemes is quite different. In the case of non-resonant excitation, shown in

Fig.3.1(b), only three clean peaks from the QD are visible attributed to the exciton (X),

the biexciton (XX), and the negatively charged exciton (X−). In case of quasi-resonant

excitation (870 nm), Fig.3.1(c), the X− is suppressed as the quantum dot s-shell is already

filled with electrons due to the background n-doping and holes are more mobile so they

can more readily relax into the quantum dot. Here, the positively charged exciton (X+)

dominates the X− line.
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Figure 3.1: QD emission spectra. (a) Wideband emission spectrum excited with a

green laser. For the entanglement measurements two excitation wavelengths have been

used indicated by an arrow at 830 nm and at 870 nm. (b) Higher resolution spectrum of

the QD emission at 830 nm excitation showing three clean peaks attributed to the exciton

(X), biexciton (XX), and negatively charged exciton (X−) at saturation. (c) Increasing

the excitation wavelength to 870 nm leads to a different spectrum where X− is suppressed

and the positively charged exciton (X+) appears. All spectra in panels a-c were recorded

at saturation.
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Figure 3.2: Dephasing free entanglement. (a) Two-photon correlation measurements

depicting the sum of the HH plus V V projections together with (RL+ LR)− (RR + LL)

showing quantum oscillations. The quantum oscillations appear because the latter term

is proportional to the difference of the Bell states Φ+ = 1/
√

2 (|RL〉+ |LR〉) and Φ− =

1/
√

2 (|RR〉+ |LL〉). The gray shaded areas indicate times with the highest concurrence

(A) and times with the smallest imaginary value of the density matrix (B - D). (b)

The concurrence extracted from the measurement as a function of time delay, t, for all

36 projections. Each data point contains the correlation counts for a ∆t = 100 ps time

window. The gray area indicates a 2σ concurrence error based on counting statistics. (c)

The simulation shows the outcome of a fit free model of the quantum dot which is in close

agreement with the measurement shown in (a). The gray shaded areas indicate times with

the highest concurrence (A) and times with the smallest imaginary value of the density

matrix (B - D). (d) The concurrence measurement (green solid circles) is superimposed

with the simulation (solid red line). The simulation is in very good agreement with the

measurement over the entire exciton lifetime indicating dephasing free entangled photon

generation.
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At XX saturation, detected count rates of 940 kCnts/s for the X and 400 kCnts/s for

the XX have been recorded with pulsed quasi-resonant excitation at a 76.2 MHz repetition

rate and with the quantum state analysis optics removed. The setup efficiency in that case

was 6.3 % from the first lens until a detected photon. This detected count rate corresponds

to a high photon-pair source efficiency of 1.63 %, which is two orders of magnitude brighter

than a quantum dot entangled photon source in the bulk [84].

In the following, we show that our results exhibit a strong indication of a dephasing

free source of entangled photons. This finding suggests that it is possible to reach perfect

entanglement from quantum dots, which is in stark contrast to the common understand-

ing [67, 68, 78] that quantum dots cannot reach ‘perfect’ entanglement due to dephasing

mechanisms such as interaction with nuclei. To explain our findings we use a model of

a dephasing free biexciton-exciton cascade. First, we focus on the results of the quasi-

resonant excitation scheme and find a close match to the dephasing free model. Second,

we compare this quasi-resonant excitation scheme with non-resonant excitation at 830 nm

to show the effect of dephasing.

3.2.3 Quasi-resonant excitation matches dephasing free model

The entanglement results of the quasi-resonant excitation scheme are shown in Fig. 3.2

while the comparison between these two excitation schemes will be discussed subsequently.

For the biexciton-exciton cascade we expect to measure a quantum state of the form [69]:

|Ψ(t, δ)〉 =
1√
2

(
|HH〉+ e−i

δ
~ t |V V 〉

)
Θ(t), (3.1)

where δ represents the fine-structure splitting (FSS) energy, t the time after the biexciton

emission, and Θ(t) the Heaviside step function accounting for the fact that the X photon

is created after the XX photon. We denote here the 36 possible correlations within a time

interval ∆t as Nij with i, j ∈ {H, V,D,A,R, L} the measurement polarization projections

as H/V (horizontal/vertical), D/A (diagonal/anti-diagonal), and R/L (right/left). Here,

i and j represent polarization of the X and XX analyzer, respectively. With that, the
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likelihood pij of measuring a correlation in the projection 〈ij| within ∆t reads as

pij =
(
| 〈ij|Ψ(t, δ)〉 |2 n(t, τX)

)
∗ g(t)∆t, (3.2)

where n(t, τX) = 1/τXe
−t/τX describes the probability of an exciton decay with time con-

stant τX , ∗ the convolution, and g(t) denotes the detector systems’ time resolution function.

Therefore, the number of measured correlation counts per time bin becomes Nij = pijN0∆t

where N0 is the number of collected biexciton-exciton pairs.

Based on this mathematical description, the decay of the sum of the correlation counts

HH + V V is proportional to the exciton lifetime, τX . We plotted the sum of these cor-

relation counts, HH + V V , with blue squares in Fig. 3.2 (a) from which we extracted

τX = 847± 6 ps. Furthermore, equation A.1 describes an oscillation of the quantum state

between the two Bell states |Φ+〉 = 1√
2

(|RL〉+ |LR〉) and |Φ−〉 = 1√
2

(|RR〉+ |LL〉) with

a period of ~/δ. Therefore, plotting the measured correlations (RL+ LR) − (RR + LL)

reveals quantum oscillations [72, 73] between the two Bell states as shown by red circles

in Fig. 3.2 (a). The quantum oscillation allowed us to accurately measure the FSS to be

795.52±0.35 MHz, an accuracy which is unachievable with typical spectroscopic techniques

[85]. We note that the exciton lifetime and FSS completely describe the quantum state

evolution as noted in equation A.1.

For the entanglement measurements in Fig. 3.2 the QD was excited very close to

saturation with an excitation power of 112 nW. The correlations between the X and XX

photons were measured in all possible 36 projections [86] |ij〉, instead of the minimal

necessary [62] 16. This enabled us to perform a better density matrix reconstruction based

on a maximum likelihood approximation [62, 87]. We calculated the density matrices

using multiple time windows with a width of ∆t = 100 ps during the radiative decay

of the exciton. Four representative density matrices are shown in the inset of Fig. 3.2.

Inset A represents the density matrix at the highest measured concurrence. Interestingly,

there is an imaginary contribution even though equation A.1 predicts no imaginary part

at t = 0. The cause of this effect is the finite time resolution of the employed avalanche

photodiode single photon detectors that averages the phase of the exciton spin precession.

In contrast, the density matrices presented in insets B, C, and D were chosen with the
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smallest imaginary parts. Similarly, the finite detector time resolution is responsible that

smallest imaginary parts are not observed at the extrema of the quantum oscillations, but

slightly time delayed.

For a complete picture of the entanglement time evolution the concurrence C(ρ), defined

in Ref. [60], is a more suitable way of analyzing the entanglement strength of the density

matrix ρ. The concurrence scales between zero and one [60], whereby it is one in the case of

the system being fully entangled and zero if the system exhibits only classical correlations.

Fig. 3.2 (b) shows the concurrence evolution as a function of time delay where each

point was calculated based on the correlations within a ∆t = 100 ps time window. The

concurrence reaches a maximum of C = 0.77 ± 0.02, while a counts weighted concurrence

average over the whole time window yields C̄ = 0.62± 0.03.

In Fig. 3.2 (c-d) we compare the measured result with a simulation assuming a de-

phasing free QD without any free parameters. Our model, based on equation A.2, only

considers the finite detection time response, the dark-counts, the FSS, the finite g(2)(0) of

the XX photon, the detected count rates, and the exciton lifetime that were all determined

from the experimentally measured ones. To get a more realistic implementation we added

the detectors’ dark-counts to the number of correlations of each projection (Nij) before cal-

culating the density matrix ρdc based on a maximum likelihood approximation. The finite

g
(2)
XX(0) of the biexciton will spoil the entanglement generation in g

(2)
XX(0)-fraction of the

cases. This degrades the entanglement fidelity, but is not a source of dephasing. As shown

in Fig. A.1 the power dependent g(2) remains flat at a level of g(2)(0) = 0.003± 0.003 for

the X and g(2)(0) = 0.10± 0.01 for the XX up until the XX saturation point of 640 nW.

Therefore, we can add-mix uncorrelated light to ρdc as

ρsim(t) =
(

1− g(2)
XX(0)

)
ρdc(t) + g

(2)
XX(0)

I
4
, (3.3)

where ρsim(t) is the result of the simulation, and I/4 is the density matrix for uncorrelated

light, 1
4

[|HH〉 〈HH|+ |HV 〉 〈HV |+ |V H〉 〈V H|+ |V V 〉 〈V V |].

As it can be seen, a high degree of agreement between the model and measurement is

achieved without any free parameters. To get a more quantitative number it is best to
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compare the correlation counts weighted concurrence average C̄ over the full time window.

From the simulation we obtain C̄(ρsim) = 0.61 ± 0.01, whereas from the measurement

this yields C̄(ρ) = 0.62 ± 0.03. These results agree within their error bounds, further

exemplifying their very good agreement. We therefore conclude that our quantum dot

shows negligible dephasing over its entire lifetime.

In addition to the very good agreement of the concurrence, we also see that the density

matrices match well between the measurement and the simulation as shown in the insets

of A-D. Of particular interest is inset A. Both the simulation as well as the measurement

exhibit non-vanishing imaginary parts. The reason for this observation is phase averaging

during the exciton precession caused by the finite time resolution of the detectors. This

effect has been seen before [73], but a convincing explanation has remained elusive.

Another supporting fact is the close to perfect agreement of the concurrence simulation

with the concurrence extracted from the measurement depicted in Fig. 3.2 (d). Here,

we identify three regimes: (1) the ‘top’-part; (2) the ‘flat’-part; and (3) ‘roll-off’-part.

The ‘top’-part exhibits a concurrence maximum because the concurrence first rises as the

detector response function g(t) samples more and more correlation counts with evolving

time, t. At a certain level; however, the phase averaging of the exponential term in equation

A.1 dominates and the concurrence falls. Once the whole g(t) function samples the state

evolution, the phase averaging remains constant, named the ‘flat’-part. With evolving time

less correlations are measured due to the exponential decay of the X photon, which is when

we enter the ‘roll-off’-part where the concurrence drops due to the detector dark-counts.

It is important to note that the whole entanglement evolution with its three parts can be

completely described without any dephasing from the QD. The three regimes are solely

caused by the finite time resolution and dark-counts from the detection system.
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3.2.4 Non-resonant excitation induces dephasing
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Figure 3.3: Power dependent entanglement measurements. (a) Peak concurrence

calculated based on the two-photon correlation counts measured within a 200 ps wide win-

dow for both the quasi- and non-resonant case. There is no significant difference between

the case of quasi-resonant excitation (870 nm) and non-resonant excitation (830 nm). (b)

Counts averaged concurrence over the entire time window for 830 nm and 870 nm exci-

tation. In this situation, the non-resonant (830 nm) is smaller than the quasi-resonant

(870 nm) excitation highlighting the effect of exciton dephasing. (c) The dephasing can

also be visualized directly based on the normalized quantum oscillations when comparing

both excitation schemes. The data is taken at the same excitation power as highlighted in

gray from panel (b).

We now repeat the experiment with non-resonant excitation and compare it with the quasi-

resonant excitation scheme. Fig. A.1(a) depicts the peak concurrence for the two different

excitation schemes as a function of excitation power. Each data point is constructed by

analyzing the correlation counts within a ∆t = 200 ps time window centered at t = 0.

The integration window is increased here to better cope with count differences in the

power dependent measurements spanning more than a decade, but does not influence the

outcome of the analysis otherwise. The result reveals that both excitation schemes provide
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the same power dependent peak concurrence measurement. The cause for the concurrence

to drop at higher excitation power is the increase of the biexciton g(2)-value which is not a

dephasing effect. The situation is quite different when we compare the correlation weighted

concurrence average over the full time window as presented in Fig. A.1 (b). Clearly, the

data for 830 nm excitation shows ∼ 15 % smaller concurrence as compared to the quasi-

resonant case at low powers, while deviating further at higher powers. This result is

expected from the excess charges generated by non-resonant excitation. First, the spin

of these charges can cause direct spin flip-flop processes with the exciton spin. Second,

fluctuating electric fields caused by the excess charges can result in an effective magnetic

field via the spin-orbit interaction and alter the exciton spin. This situation is directly

visible in Fig. A.1 (c) where the normalized quantum oscillations are compared with each

other. The two curves were recorded at the same power level highlighted by the shaded

region in Fig. A.1 (b). The 830 nm data clearly damps out faster than the 870 nm one,

which is the fingerprint for dephasing.

To show the dephasing effect more quantitatively we simulated the two cases as pre-

sented in Fig. 3.4. Please note that Fig. 3.4 (a)/(b) were recorded at the same excitation

power (118 nW) indicated with the gray bar in Fig. A.1 (b) whereas the data in Fig.

3.2 (a) was recorded at a slightly lower power (112 nW). Again, the model in Fig. 3.4 (a)

agrees with the quasi-resonant excitation scheme within error bars indicative for dephasing

free entanglement. In contrast, the situation is very different for non-resonant excitation

(Fig. 3.4 (b)) where the simulation clearly overestimates the measurement exemplifying

dephasing.
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3.2.5 The influence of the detection system
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Figure 3.4: Towards near-unity entanglement: comparison of dephasing and de-

phasing free entanglement. (a) At quasi-resonant excitation the measured concurrence

evolution agrees with the simulation within error bars, thus signifying dephasing free en-

tanglement. (b) At non-resonant excitation the measured concurrence evolution does not

match with the simulation indicating dephasing. The data in both (a) and (b) was taken

from the two points highlighted in the gray region of Fig. 3b. (c) Four simulation curves

illustrating the effect of finite detection time resolution and multiphoton emission of the

biexciton photon. The red graph depicts the same simulation as already presented in Fig.

3.2 (d) with finite g
(2)
XX = 0.1 and the yellow graph the case for zero g

(2)
XX = 0 in both

cases for a slow detection system based on an avalanche photodiode single-photon detector

(APD) as a reference. The blue curve shows the outcome of a simulation similar to the red

curve with finite g
(2)
XX = 0.1, but with a fast detection system based on a superconducting

nanowire single photon detector (SNSPD) with 30 ps timing resolution. The cyan curve

is the same as the blue curve with SNSPD, but for pure single photon emission of the

biexciton photon (i .e., with g
(2)
XX(0) = 0). Remarkably, with a fast detection system and

perfect g
(2)
XX , near-unity entanglement is expected. dark-counts used in the simulation for

the APDs are 36.3 s−1 and 18.2 s−1 for the X and XX detector respectively and for the

SNSPDs are 1 s−1.
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Finally, we investigate how the concurrence evolution of the data presented in Fig. 3.2

would look like if we were to measure with an emerging detection system employing a

better timing resolution and lower dark-count rate. We assume a time resolution of 30 ps

full width at half maximum and a dark-count rate of 1 Hz, values which can be met by

recently available superconducting nanowire single photon detectors. The outcome of such

simulations are plotted in Fig. 3.4 (c) for g
(2)
XX(0) = 0 and g

(2)
XX(0) = 0.1 and are compared

to the case when measuring with our APDs in the situation of zero or finite g
(2)
XX(0) = 0.1

(i .e., with the same plot as in Fig. 3.2 (d)). With APDs we get a peak concurrence of

C = 0.75 ± 0.01 at finite g
(2)
XX(0) and in case of zero g

(2)
XX(0) the simulation predicts that

we would measure a peak concurrence of C = 0.89 ± 0.01 but maintain the overall shape

of the concurrence evolution. In both cases with 30 ps timing resolution, i .e., with zero

g
(2)
XX(0) and finite g

(2)
XX(0), the difference to the simulation with APDs is quite striking.

First, the peak concurrence for finite g
(2)
XX(0) = 0.1 (C = 0.849 ± 0.001) and g

(2)
XX(0) = 0

(C = 0.999 ± 0.001) is significantly larger than for the case of measuring with APDs and

finite g
(2)
XX(0). Remarkably, the concurrence reaches near-unity for zero g(2)(0). Second, the

shape of the curves have changed significantly. The ‘top’-part is completely suppressed.

Instead, only the ‘flat’- and ‘roll-off’-parts remain. It is interesting to note that even the

small dark-count rate of 1 Hz is inducing a resolvable entanglement roll-off. However, this

decrease at the end has minimal effect to the overall concurrence and a count averaged

concurrence of C̄ = 0.996+0.004
−0.008 for zero g

(2)
XX(0) and C̄ = 0.847 ± 0.007 in case of finite

g
(2)
XX(0) is obtained. The slight oscillations visible in the concurrence’s error for the high

temporal resolution simulation are not artefacts. They are caused by counting statistics

since every time one of the 36 simulated correlations reaches zero the concurrence can be

less accurately estimated. This happens with a frequency four times larger then the FSS.

In fact, this effect is visible in other groups’ measurements, for example in the fidelity

evolution of Ref. [72]. For a slower detection system, such as our APDs, this effect is

averaged out.
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3.3 Discussion

We have shown that our model is capable of explaining our measurement results in great

detail. The question arises why dephasing free entanglement from QDs has not been

observed before. The reason is that a QD with a long X decay time of τX ∼ 1 ns is needed

in conjunction with a (quasi)-resonant excitation scheme. For example, in Refs. [27, 67] a

resonant excitation scheme was employed, but the QDs had a τX ∼ 200 ps which makes it

very difficult to separate the detrimental effects from the detection system. However, based

on model calculations, we predict that the QDs investigated in these aforementioned works

of Refs. [27, 67] should also be dephasing free. Therefore, the occurrence of dephasing free

entanglement is not at all limited to InAsP QDs, but should be equally achievable in other

QD materials such as InGaAs [27], and GaAs [67].

Even though our results suggest existence of dephasing free entanglement, we have

not yet shown unity concurrence. The reduction of the measured concurrence from unity

comes mainly from the detectors’ timing resolution, finite g
(2)
XX-value of the QD, and dark-

counts. Still, g(2)-values of both the exciton and biexciton can be brought to zero by

resonant excitation [27, 67, 29]. Therefore, in principle, the problem of reaching perfect

entanglement using QDs should now be merely a technical one, which, in future work, can

be resolved by combining the right source and excitation scheme with a state-of-the-art

detection system. However, there are always challenges regarding the re-excitation of the

s-shell[88], which may be addressed by using proper protocols [28, 89, 90].

3.4 Conclusion

We have established a precise model of the entanglement measurement in which the gener-

ation and the detection processes of entangled photon pairs are of equal importance. Based

on this knowledge we could show that a QD containing Indium generates photon entan-

glement with negligible dephasing over the entire exciton decay time even though its large

nuclear spin of 9/2. This result is remarkable as it indicates that perfect entanglement is
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achievable in QDs in spite of interaction with nuclei possessing large nuclear spins. The

conditions needed to resolve dephasing free entanglement are (quasi)-resonant excitation

and a precise knowledge of the employed detection system. This new insight will allow to

make an ideal entangled photon source based on QDs. Based on our model, we suggest

that dephasing free entanglement should also be found in materials other than InAsP, such

as InGaAs [27] and GaAs [67] QDs. However, the actual evidence can be presented once

the resonant excitation schemes, as well as fast detectors with low dark-counts, are used

to repeat the measurements.

3.5 Methods

3.5.1 Quantum Dot

The quantum dot growth is described in the Methods section of Ref. [85].

3.5.2 Measurement

We used a standard micro-PL setup where the nanowire sample was kept at a base temper-

ature of 4.5 K. The light from a picosecond pulsed laser was filtered with a 1200 lines/mm

grating to reduce the effect of laser background fluorescence before it was used to excite the

QD. For the quantum state tomography we used a similar system as in Ref. [84] with the

difference that the waveplates where mounted in high-precision motorized mounts crucial

for the repeatability of the experiment. The first beam splitter used to excite the QD had

30 % reflection and 70 % transmission. The excitation was performed in all cases with s-

polarized light to prevent nuclear polarization [91]. All correlation data was sampled with

16 ps resolution.

The data presented in Fig. 3.2 was excited with a power of 112 nW and integrated for

370 s per projection. Count rates were in HH projection 71 kCnt/s for the X and 8 kCnts/s

for the XX. The data presented in Fig. 3.4 (a)/(b) was excited with a power of 118 nW and

49



integrated for 342 s per projection. In case of Fig. 3.4 (a) this resulted in a HH projection

count rate of 85 kCnt/s for the X and 11 kCnts/s for the XX and for (b) in a HH projection

count rate of 73 kCnt/s for the X and 4.4 kCnts/s for the XX.

The employed avalanche single-photon detectors (APDs) had a dark-count rate of

36.3 s−1 for the detector measuring the exciton and 18.2 s−1 for the biexciton detector

with a time resolution of 290 ps full width at half maximum, compare Fig. 10 in the

Supporting Information.

3.5.3 Simulation

For the simulation in the text we used a FSS = 795.520 MHz, a dark-count rate of 36.3 s−1

for the exciton and 18.2 s−1 of the biexciton detector, a exciton lifetime of τX = 847 ps, a

g
(2)
XX = 0.1, g

(2)
X = 0, and a laser repetition rate of 76.2 MHz. The used count rates and

integration times are stated in the Measurement section. In case of Fig. 3.2 (b) an exciton

lifetime of τX = 753 ps was used.

The density matrix reconstruction was performed based on the code from Ref. [87]. The

method of how to acquire the system’s time resolution g(t) is described in the Supporting

Information.

The error of the concurrence is estimated based on a Monte-Carlo simulation assuming

counting statistics. For each concurrence value the simulation was performed with 1000

repetitions.
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Chapter 4

Resonant Two-photon Excitation

Here, we analyze the emission properties, e.g., pair-production efficiency, single-photon

purity, etc., of an InAsP quantum dot (QD) in an InP photonic nanowire under resonant

two-photon excitation (TPE). It is a first time report on resonant TPE of such sources.

We have observed that, the multi-photon emission probability of the source is suppressed

significantly as compared to non-resonant excitation of the same source, g(2)(0) = 0.0024

and g(2)(0) = 0.0055 for exciton and biexciton emissions, respectively; also, pair-production

efficiencies above 93% is achieved. Moreover, by considering the efficiency of the setup,

a pair-extraction efficiency ε = 12.55% is achieved which suggests QDs can outperform

spontaneous parametric down conversion sources in terms of entanglement fidelity vs. pair-

extraction efficiency. These results indicate the powerful features of nanowire QDs, and

bring us one step closer to a bright entangled photon source with near-unity entanglement

fidelity.

4.1 Introduction

During the past couple of decades quantum dots (QDs) have been shown to be promising

candidates for an ideal photon source [92], showing a high degree of single-photon purity
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[28] and high degree of photon indistinguishability [29, 24]. In addition, it is possible to

control different features of the QDs such as the wavelength of emitted photons [34, 33],

flow and level of free charge carriers [29, 90], and remove the fine-structure splitting (FSS)

[43, 52, 93, 76]. These features combined with the fact that QDs are capable of deterministic

generation of pairs of entangled photons, through the biexciton(XX )-exciton(X ) cascade,

with high fidelity and negligible dephasing [37, 48], puts QDs as one of the most reliable

photon sources for various applications in quantum information, quantum computing and

quantum sensing.

Enhancing the emission quality of the QDs is done through both the improvement

of the growth procedures, as well as excitation methods. Proper engineering of photonic

structures around the QD can enhance the photon extraction efficiency [29, 24, 40], and also

can reduce the emission time jitter by accelerating the spontaneous emission rate [29, 24,

94]. By applying an electric field to such structures the charge environment surrounding

the QDs can also be controlled, which has been utilized to suppress the inhomogenous

broadening of the emission lines and strengthen the indistinguishability of the photons

[29].

On the other hand, proper schemes for excitation of the QDs are also needed to reveal

the ultimate potential qualities of these quantum light sources. Until recently, off-resonant

excitation was the main method used to excite the QDs. During this process, the charge

carriers are excited to energy levels above the QD’s s-shell, e.g., higher electronic shells

(p-, d-) or band-gap of the host material, and then, through interaction with the phonons,

the carriers will relax into the s-shell of the QD, recombine and emit light. This process,

due to being incoherent, introduces detrimental effects originated in the abundance of

the excessive charge carriers and their interaction with phonons; leading to flaws such as

broadening of the emission lines [83], low single-photon purity due to re-excitation processes

[95], emission time jitter [96], and low entanglement fidelity [48].

In order to overcome these challenges, specifically suppression of multi-photon emission

and enhancing the pair-production efficiency of the QDs, a resonant two-photon excitation

(TPE) scheme has been proposed. Over the past few decades, the two-photon absorption of
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the neutral biexciton state, |XX〉, has been extensively studied in different semiconductor

structures [97, 98, 99, 100]. Whereas, direct resonant excitation of |XX〉 is forbidden due to

the optical selection rules, two-photon absorption, which is rooted in the specific symmetry

of |XX〉 [101], can be used to coherently couple the ground state of the QD to its biexciton

state and is referred to as resonant two-photon excitation (TPE). This process, exhibits the

familiar Rabi oscillations in the population of the states with increasing excitation pulse

area; however, in contrast to single-exciton Rabi oscillations, it is not purely sinusoidal

[102]. Fig.4.1 shows a schematic view of the process. Initially, a laser pulse is tuned to a

virtual state with the energy equal to (E|XX〉 − E|G〉)/2, where E|XX〉 corresponds to the

total energy of the biexciton state and E|G〉 corresponds to the energy of the ground state.

This energy level may as well be thought of as the energy level half-way between the energy

of neutral exciton transition, X ≡ |X〉 → |G〉, and neutral biexciton transition, XX ≡
|XX〉 → |X〉. In other words, a laser pulse excites |XX〉 without being resonant to either

X nor XX transition lines. This fact gives two-photon resonant excitation an advantage

over the usual resonant excitation, since there will be no need for extinguishing the reflected

laser pulse via polarizatoin suppression methods which can alter the polarization state of

the emitted photons [103]. Furthermore, in order to create two electron-hole pairs with

jz = ±1, the laser pulse should be linearly polarized, a superposition of |L〉 ≡ |+1〉 and

|R〉 ≡ |−1〉 polarizations.

In order to describe the dynamics of the system under resonant TPE, one can consider

a Hamiltonian of the form:

H =
~Ω(t)

2
(σG,X + σ†G,X) +

~Ω(t)

2
(σX,XX + σ†X,XX) + ~∆XσX,X (4.1)

where Ω(t) is the Rabi frequency of the driving field, σi,j = |i〉〈j|, represent the transition

operators, and ∆X is the difference between the energy of the TPE resonance and the

X state. This difference can also be thought of as a detuning of the laser to the direct

resonant excitation of the exciton state [103].

Furthermore, coupling of the carriers to the acoustic phonons, which are shown to be

the dominant source of dephasing [104, 105], should also be considered. The strength of

this coupling, and thus the attributed dephasing, depends on temperature and the driving

53



ۧ|𝑅 ۧ|𝐿

biexciton
𝑋𝑋

exciton
𝑋

ۧ|𝑅ۧ|𝐿

Ground

hole:

electron:

E
n
erg
y

Figure 4.1: The scheme for resonant two-photon excitation. Mediated by a virtual state,

dashed blue line, the ground state is coherently coupled to the XX state via absorption of

two photons from a linearly polarized laser pulse. The laser pulse is tuned to the energy

half-way between that of the X and XX emission lines.

field intensity. As a result, for higher field intensities, Ω(t) > π, and higher temperatures

a reduction in state population efficiency is observed [104, 106]. However, the same phe-

nomenon creates states at the proximity of QD’s s-shell, with δE ∼ 1mev, which can be

used to populate |XX〉 through an incoherent two-photon process, referred to as phonon-

assisted two-photon excitation[107, 108]. This method can in principle populate the |XX〉
with near unity fidelity, and slight fluctuations in field intensity and energy is not detri-

mental to state population; whereas, for resonant TPE, a proper control over the field

intensity and energy is needed in order to achieve a high population efficiency [109, 110].

In this work, we present the results of resonant two-photon excitation of a QD inside

a photonic nanowire for the first time, and investigate different features of the emitted

photons under this scheme. The results indicate an enhancement in the quality of the QD in

terms of pair-production efficiency as well as single-photon purity. We observe a significant

suppression of multi-photon emission of the source, up to two orders of magnitude; as well
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as, more than a five-fold enhancement in the pair-extraction efficiency as compared to

non-resonant excitation [48].

4.2 Results

The Source

The source under study is an InAsP QD embedded in a wurtzite InP nanowire [40]. The

emission spectrum exhibits an emission line at λ ≈ 830nm, belonging to the wurtzite

InP; and two s-shell emission lines at Es-shell ≈ 1.38ev, λX = 893.32nm and λXX =

894.77nm for X and XX transitions, respectively. Based on these values, the resonant

TPE occurs at λ = 894.05nm. There are also emission lines due to charged exciton states.

In addition, there are several lines attributed to donor/acceptor transitions in the range

λD./A. ≈ 860nm − 870nm, which can also be used to excite the quantum dot [48]. We

call excitation at the wurtzite InP bandgap and the donor/acceptor levels, off-resonant

excitation and quasi-resonant excitation, respectively.

Fig.4.2a shows the emission spectrum of the source under excitation above the wurtzite

InP bandgap. The three emission regimes, i.e., wurtzite InP, donor/acceptor levels, and

QD’s s-shell, are clearly observed. Fig.4.2b focuses on the s-shell’s emission under dif-

ferent excitation schemes, i.e., non-resonant, quasi-resonant, and resonant TPE. Under

non-resonant excitation, the emission of the negatively charged exciton, X−, is signifi-

cantly higher as compared to X. Under quasi-resonant excitation, the charge environment

surrounding the QD changes, and more emission lines appear in the spectrum. Here, there

is an emission line which is attributed to a positively charged exciton, X+, transition.

Moreover, there is another emission line adjacent to XX transition which may be due to

a charged biexciton transition. Overall, the charge noise under quasi-resonant excitation

is believed to be lower than the non-resonant excitation, since, the entanglement fidelity

measurements yield values equal to that of a source exhibiting no dephasing, even though,

the imperfect g(2)(0) of XX photons limits the measured entanglement fidelity [48]. In
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Figure 4.2: QD’s emission spectrum under different excitation schemes. (a) Spec-

trum for above-bandgap excitation via a green laser, λexc. = 530nm. From the spectrum

the emission lines attributed to the wurtzite InP nanowire, λ ≈ 830nm, the emission lines

attributed to the donors and acceptors, λD./A. ≈ 860nm−870nm, and QD’s s-shell emission

are visible. (b) QD’s s-shell emission under non-resonant excitation, left, quasi-resonant

excitation, middle, and resonant TPE, right.

both of these cases, the intensity of the XX transition is relatively low as compared to the

X transition, which shows a poor pair-production efficiency. In other words, only a small

fraction of X photons belong to a XX-X cascade. Under resonant TPE, the charge noise

is substantially suppressed, and also, the intensities of XX and X transitions are close to

each other, meaning, most of the excitons and biexcitons belong to the same cascade and

are correlated.
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4.2.1 State Population

In order to investigate the behavior of the QD under resonant excitation, both phonon-

assisted and two-photon resonance excitation was conducted. For this matter, the pulsed

laser is passed through a regular 4f-pulse-shaper, by which the bandwidth of the pulse was

varied in order to reach efficient population.
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Figure 4.3: Comparison between XX power dependent count rate using TPE (red) and

phonon-assisted (blue) excitation. The laser was tuned to 893.95nm for the case of phonon-

assisted excitation.

Fig.4.3 shows the comparison between the power-dependant count rate measurement

for XX when excited via resonant TPE (blue curve) and phonon-assisted TPE (red curve)

excitation. The count rates are normalized to the maximum number of counts for each case

and does not indicate 100% population of |XX〉. By a slight shift from the two-photon

resonant point (≈0.15mev) the behavior of the QD changes and Rabi oscillations, which

are indications of the resonance TPE, disappear. With the pulse area being proportional

to the square root of the excitation power, it is seen that the phonon-assisted two-photon

excitation reaches its saturation point at a power ≈10 times that of the π pulse. A similar

behavior and a state population as high as 80% via phonon-assisted TPE has been previ-

ously reported [109]. In the case of resonant two-photon excitation, population efficiencies
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as high as 98% has been reported [27]. In addition to the energy of the exciting pulse,

the length and bandwidth of the pulse should also be optimized in order to suppress the

interaction with phonons and populate the XX state solely through resonant TPE. In the

latter case, reduction of the laser pulse bandwidth from 0.49mev, 119.64GHZ, down to

0.30mev, 72.65GHz resulted in the highest biexciton state population at the π-pulse. The

temporal length of the pulse was not measured directly; however, considering a close to

Fourier-limited pulse, which is justified by absence of chirp in the 4f-pulse-shaper and a r2

value of greater than 0.99 by fitting the intensity profile of the pulse to a Gaussian distri-

bution, the temporal length, ∆t, can be estimated to be ≈ 7ps, since the time-bandwidth

product, ∆t∆ν, for such a pulse is 0.441.

4.2.2 Linewidth and Pair-production

In order to see the effect of different excitation schemes on the emission linewidth, the QD

emission lines were fitted to a Voigt distribution, V (x, σ, γ) = G(x, σ) ∗L(x, γ), which is a

convlution between a Gaussiang distribution, G(x, σ), with the variance equal to σ, and a

Cauchy-Lorentz distribution, L(x, γ), with the linewidth equal to 2γ.

Upon resonant two-photon excitation, the linewidths for XX and X transition lines

are measured to be 8.05GHz, 33.24µev, and 11.62GHz, 48.06µev, respectively. It should

be noted that the resolution of the spectrometer is ≈ 7GHz. Under phonon-assisted TPE

the linewidths are 10.10GHz and 7.10GHz for X and XX lines, respectively. Comparison

of these values with the spectrum of the QD from off-resonant excitation yields interesting

results. In the latter case an increase in excitation power can reduce the charge noise by

filling the charge traps and thus shrink the emission linewidth [83]. For this sample, the

emission spectrum from off-resonant and quasi-resonant excitation were analyzed. For the

case of off-resonant excitation, linewidths as low as 10.29GHz and 9.00GHz, for X and XX

lines, respectively, are observed. Previously, by using Michelson interferometry, linewidths

as low as ≈ 1GHz for the X emission line has been reported for a similar source upon

off-resonant excitation [83]. But, for the case of quasi-resonant excitation, X and XX

linewidths are 10.89GHz and 10.20GHz, respectively.
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Furthermore, we calculated the QD’s pair-production efficiency, total XX emission

divided by total X emission [111]. This was done by calculating the area under the Voigt

distributions fitted to the emission lines. Basically, this number specifies what percentage

of excitons belong to a XX-X cascade. We have achieved pair-production efficiencies

as high as 84.09%(±2.40%) and 93.66%(±2.56%), for the cases of phonon-assited TPE

and resonant TPE respectively. A degradation of pair-production efficiency in the phonon-

assisted scheme is expected; since, the two-photon excitation can simultaneously be thought

of as a detuned excitation of the |X〉 state. As the detuning is reduced and the probability

of direct excitation of the exciton state through a detuned direct resonant excitation,

increases. By considering the total efficiency of the experimental setup, in the case of

resonant TPE at π-pulse, an overall pair extraction efficiency of 12.55% is obtained which

shows an enhancement by a factor of ≈ 8 as compared to the case of quasi-resonant

excitation in the same quantum dot sample [48].

4.2.3 Second-order Correlation

Lastly, we investigated the single-photon purity of our source under resonant TPE excita-

tion. Considering a time window according to the lifetime of the emission lines, ±1ns

for X and ±0.5ns for XX, yields values of g(2)(0) = 0.0024(±0.0002) and g(2)(0) =

0.0055(±0.0005) for X and XX lines, respectively, under resonant TPE at the π-pulse.

Values are without any background subtraction and show more than one order of magni-

tude enhancement in the single-photon purity as compared to quasi-resonant excitation,

which shows g(2)(0) = 0.10 and g(2)(0) = 0.01 for XX and X, respectively, with a time

window of ±50ps [48]. Fig.4.4a and Fig.4.4b show comparisons between the g(2)(0) mea-

surements obtained under resonant TPE and quasi-resonant excitation for the X and XX

emission lines, respectively.
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Figure 4.4: Second-order correlation measurements Comparison of g(2)(0) measure-

ments obtained under resonant TPE and quasi-resonant excitation for X, (a), and XX,

(b). The results clearly show the significant enhancement of the single-photon purity under

resonant TPE.

4.3 Conclusion and Discussion

In this work we have investigated a QD inside a photonic nanowire under resonant two-

photon excitation, which occurs at the energy half-way between that of X and XX tran-

sitions, as well as phonon-assisted two-photon excitation, which occurs at energies slightly

blue-shifted from that of the resonant TPE. In both of these schemes, the linewidth for

the X line exhibits a larger linewidth as compared to XX line, ≈ 10.8GHz vs. ≈ 7.5GHz.

phonon-assisted TPE is observed to bring the XX to saturation at powers equal to ≈10π,

and the population efficiency at saturation is more stable upon slight changes in pulse

power or energy. However, we have observed that phonon-assisted TPE is less efficient

in pair-production as compared with resonant TPE, 84.09% vs. 93.66%. Resonant TPE

shows a pair extraction efficiency of 12.55%, which is almost an eight-fold enhancement as

compared to quasi-resonant excitation. In terms of single-photon purity, resonant TPE has

improved the quality of our source by two orders of magnitude. Second-order correlation,

g(2)(0), of the emission lines yields values as low as 24E−4 and 55E−4 for X and XX
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respectively. These results show the potential of QDs embedded in photonic nanowires

as a promising quantum light source; where, proper engineering of a photonic waveguide

and excitation scheme results in a high pair-production and extraction efficiency, narrow

emission linewidths, and low multi-photon emission probability.
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Figure 4.5: Entanglement fidelity of quantum light sources. Comparison of the

performance of entangled photon sources consisting of quantum dots embedded in different

nanostructures, red triangles, and actual performance of SPDC sources, blue circles. The

dashed line indicates the theoretical upper limit for the performance of SPDC sources. The

results obtained here and the analysis performed by Fognini et al. [48], suggest that the

source under study, red square, is capable of surpassing the limit imposed on the SPDC

sources, the hollow red square. This graph is adapted and modified from Ref.[84].

Fig.4.5 shows a comparison of the measured entanglement fidelity for different quantum

light sources vs. their reported pair-extraction efficiency. Spontaneous parametric down-

conversion (SPDC) sources has been the main sources of entangled photon pairs. However,

such sources show a degradation of single-photon purity for high brightness, and thus, a

reduction in entanglement fidelity. For QDs there is no theoretical limit on entanglement

fidelity and extraction efficiency; however, engineering a photonic structure to have the QD
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exhibit a high extraction efficiency, vanishing FSS, and near-unity entanglement fidelity is

still a huge challenge. Based on the analysis performed by Fognini et al. [48], the sample

under study is capable of generating entangled photon pairs with near-unity fidelity once

the source is excited resonantly, resulting in g(2)(0) � 1, and measured by single-photon

detectors with a low timing jitter, e.g., super conducting nanowire single-photon detectors.

The results obtained here suggests that this sample is capable of surpassing the limit

imposed on SPDC sources; however, a measurement of entanglement fidelity of the source

via resonant TPE and low-jitter detectors is yet to be performed.
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Chapter 5

Universal finestructure eraser for

quantum dots

We analyze the degree of entanglement measurable from a quantum dot via the biexciton-

exciton cascade as a function of the exciton fine-structure splitting and the detection time

resolution. We show that the time-energy uncertainty relation provides means to measure

a high entanglement even in presence of a finite fine-structure splitting when a detection

system with high temporal resolution is employed. Still, in many applications it would be

beneficial if the finestructure splitting could be compensated to zero. To solve this problem,

we propose an all optical approach with rotating waveplates to erase this fine-structure

splitting completely and allows to obtain a high degree of entanglement with near-unity

efficiency. Our optical approach is possible with current technology and is also compatible

with any quantum dot showing finestructure splitting. This bears the advantage that for

example the finestructure splitting of quantum dots in nanowires and micropillars can be

directly compensated without the need for further sample processing.
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5.1 Introduction

Semiconductor quantum dots (QDs) allow for the generation of polarization entangled pho-

tons [23, 66, 65] through the biexciton-exciton cascade [116]. Effects such as QD shape

elongation [117, 71], piezoelectric fields [117], inhomogeneous alloy composition [73, 71],

strain fields [118], or more generally all effects lowering the symmetry of the exciton’s

trapping potential [71] lead to a splitting of the exciton state. The spin-degeneracy of the

bright exciton level is therefore normally split in QDs due to the spin-orbit interaction

[119]. This splitting is called the fine-structure splitting (FSS) and its energy scale typi-

cally lies between 0− 100µeV in the case of III-V semiconductor quantum dots [73]. The

FSS introduces a which-path information during the biexciton-exciton decay but only in

the limit of slow photon detection. Yet, it was argued as being one of the main reasons

for lowering the polarization entanglement [120, 35]. QD growth methods have been suc-

cessfully developed to minimize the FSS [78, 121, 85], but reaching vanishing FSS remains

a significant challenge. Consequently, several post-growth techniques have been developed

to solve this problem by tuning the FSS to zero. Compensation has been achieved through

external strain fields [118, 33], magnetic fields [35], electric fields [122, 123], annealing [124],

or a combination of these approaches [77]. Typically, these techniques act macroscopically

on the sample and only fully compensate one out of millions of QDs. Scaling up to many

quantum dots on the same sample is a challenge. Furthermore, the well established strain

compensation technique [118, 33] is difficult to adapt for QDs embedded in photonic nanos-

tructures [85, 73, 29, 125, 126] due to strain relaxation over a length scale of ≈ 100 nm

[125]. Quantum dots embedded in nanowires [85, 126, 125, 73] and micropillar cavities

[25, 29]; however, possess several benefits such as enhanced photon extraction due to direc-

tional emission and near-unity single mode fiber coupling [30, 127]. Therefore, a universal

FSS compensation technique easily applicable to QDs would be of great value.

In this chapter we introduce a novel FSS universal eraser technique which solves above

problems and enhances the measurable entanglement towards unity by using frequency

shifting capabilities of rotating λ/2-waveplates applied to both X and XX photons. Of

particular significance, this frequency conversion process occurs without loss of photons due
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to only unitary optical manipulations. FSS compensation techniques [128, 75, 129, 130, 131]

have been proposed but our approach differs from Ref. [128] as it can be implemented with

current technology, is not intrinsically slow (≈ 10 kHz) due to high voltage sweeps, and

does not rely on the splitting of different polarization modes [75]. Furthermore, we are not

suffering from photon loss and can compensate an arbitrarily small FSS in contrast to the

scheme proposed in Ref. [129]. The reason is that we are not relying on stochastic sideband

scattering [130] and don’t need an additional filter system to select the right scattered

lines preventing compensation in case the FSS is comparable with the QD linewidth. In

addition, our approach differs from the phase compensation technique outlined in Ref.

[131] as it allows to reach unity fidelity regardless of the FSS value, whereas with the phase

compensation technique the fidelity can only be enhanced but cannot be brought to unity

with a finite FSS.

We start our analysis by discussing the influence of the detection system’s time resolution

on the measurable entanglement.

5.2 The influence of time resolution on entanglement

The term detection system includes every component used to detect the arrival time of

the two photons from the cascade, e.g., detector time jitter, the electronics to correlate the

arrival times of the biexciton and exciton photons, and dispersion in optical components.

We define the full width at half maximum of the correlation time distribution of such a

system as the time resolution τ . For the sake of clarity we only consider FSS for reducing the

measurable entanglement by phase averaging and do not consider dephasing mechanisms

[132]. Fig. 5.1 (a) depicts the biexciton-exciton cascade without FSS. The cascade starts

by the radiative decay of the biexciton (XX) state. Either a right- or left polarized single

photon is emitted (R, L) [117]. After the emission of the XX photon the system is in

the exciton state (X). This level is degenerate and ↑⇓, ↓⇑ are the state’s eigenfunctions

in spin space [117]. Here, ↑, ↓ and ⇑,⇓ denote the electron and hole spins, respectively.

Since we assumed zero FSS, it is impossible to know whether a spin up or down electron

has recombined. This lack of knowledge entangles the photons to Φ = 1√
2

(RL+ LR).
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Figure 5.1: Representation of the biexciton (XX) exciton (X) emission. (a) In case of zero

FSS the X-levels are degenerate and the two decay paths are indistinguishable which creates

the entangled photon state 1√
2

(RL+ LR). (b) For non-zero FSS the X-level is split by δ and

the quantum state will precess between these two states. However, with a fast measurement

(∆E ≥ δ) the two X states (in H/V basis) cannot be resolved anymore and removes the

which-path information. The uncertainty introduced through the measurement process is

indicated by the wavy gray background.

In this situation, the detection system’s time resolution does not affect the measurable

entanglement of this state since it does not change over time. The situation is quite different

in the case of finite FSS, as illustrated in Fig. 5.1 (b). Due to spin-orbit interaction the

exciton states mix and the new eigenfunctions become 1√
2

(↓⇑ − ↑⇓) and 1√
2

(↓⇑+ ↑⇓)

[133]. After the XX decay the X will precess between these two eigenfunctions until it also

decays. This evolution makes the quantum state time dependent [69] and reads as

Ψ(t, δ) =
1√
2

(
HH + e−i

δ
~ tV V

)
, (5.1)
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where δ is the FSS energy, and H and V denote horizontally and vertically polarized single

photon states. Equation 5.1 describes a fully entangled state even with finite FSS as shown

by Stevenson et al. [69]. In fact, a slow detection system (τ � ~/δ) will average out the

exponential phase term [69] in equation 5.1 and only classical correlations are detected

[134]. In contrast, a fast detection system (τ � ~/δ) will render the two decay pathways

indistinguishable since the energy uncertainty relation ∆E ≥ ~
2τ

does not allow for a precise

energy measurement anymore. This point of view is complementary to spectral filtering

[135, 136] where only states with the same energy are analyzed but at the expense of filtering

off many entangled photons. Please note that compared to employing spectral filtering a

detection system with a high time resolution does not loose any photons, only each time bin

will have a different phase (compare equation 5.1), as shown by several experiments [73, 69]

resolving the so-called quantum oscillations. Nevertheless, a finite detector time resolution

always introduces phase averaging and inevitably reduces the measurable entanglement.

In the following we will quantify this effect of reduced measured entanglement between

the excitons in case of finite FSS with a photon detector of finite time resolution. In a

quantum state tomography measurement [62] the state described in equation 5.1 is pro-

jected on the measurement basis ij, where i, j ∈ H,V,D,A,R, L with D, A denoting the

diagonal and antidiagonal polarization states, respectively. We define the time evolution of

the measured biexciton-exciton pair rate as n(t, τX) = N0

τX
e−t/τX for t ≥ 0 and n(t, τX) = 0

otherwise. Here, t denotes the time after biexciton emission, τX the lifetime of the exciton

level, and N0 the number of detected photon pairs. In case of perfect time resolution we

get a time dependent correlation rate in each projection i, j as

ni,j(t, δ, τX) = |ij|Ψ(t, δ)|2n(t, τX). (5.2)

The effect of finite time resolution of the detection system is modeled by g(t, τ), a Gaussian

with full width at half maximum of τ . In such circumstances the detected projections are

given by a convolution of the detection time resolution with equation 5.2 yielding

mi,j(t, δ, τ, τX) = ni,j(t, δ, τX) ∗ g(t, τ). (5.3)

The amount of entanglement which remains in mi,j(t, δ, τ, τX) can be quantified by its

concurrence C which lies between zero and one [60]. One in case the system is fully
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Figure 5.2: The measurable entanglement represented as the averaged concurrence C̄ as a

function of the detector time resolution (τ) and fine-structure splitting (FSS) in case of an

exciton lifetime of τX = 1 ns. The white dashed line is a guide to the eye for the examples

in the text and the white solid line highlights the 0.99 contour line.

entangled and zero if there are only classical correlations present. Since the state with

finite FSS is evolving in time we define the time averaged concurrence C̄ weighted with the

amount of detected photons per infinitesimal time bin as

C̄(δ, τ, τX) := lim
T→∞

1

N0

∫ T

−T
n(t)C (ρ (mi,j)) dt, (5.4)

where ρ(mi,j) denotes the density matrix reconstructed from mi,j(t, δ, τ, τX). Equation 5.4

is evaluated numerically1 for an exciton lifetime of τX = 1 ns and the result is presented in

Fig. 5.2. The result indicates that with sufficiently fast detection, perfect entanglement can

be reconstructed. With a state of the art detection system a time resolution of τ = 20 ps

is possible. A FSS of δ = 1 GHz (white dashed line in Fig. 5.2), yields a measurement of

C̄ = 0.999 very close to unity. With regular avalanche photodiodes of τ = 300 ps this value

already reduces to C̄ = 0.77. Worsening the detection system resolution further to a time

1Tomography library: https://github.com/afognini/Tomography
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resolution of τ = 1 ns yields almost no entanglement. In this latter case, the concurrence

significantly reduces to C̄ = 0.19. However, the latter nanosecond time resolution would be

preferred in applications regarding secure communication protocols where accurate timing

on picoseconds over kilometers [6] becomes difficult. To solve this issue, we developed

a fully optical compensation technique which reduces the FSS to zero. This allows the

application of a photon detection system with less stringent time resolution requirements

while maintaining near unity concurrence measurements.

5.3 Compensating the FSS

In the following we introduce a method to compensate the FSS, making it possible to em-

ploy detection systems with any timing resolution smaller than the QD’s photon repetition

period such that no overlap between adjacent pulses occur. The evolution of equation 5.1

with finite FSS is unitary due to the time evolving exponential phase factor. Thus, it

must be possible [69] to undo this phase evolution by suitable unitary optical components.

The main component to achieve complete removal is a rotating λ/2-waveplate. Such an

optical component acts on circularly polarized light as a single sideband frequency shifter

[137, 138]. A λ/2-waveplate spinning with angular frequency ω acting on a photon state

can thus be described by the following operator

Λ1/2 (ω) =
∑
k

a†
k+ 2ω

c
,L
ak,R + a†

k− 2ω
c
,R
ak,L, (5.5)

where only k-vectors (k) perpendicular to the plane of the waveplate are considered. Here,

c denotes the speed of light, and ak,λ, a
†
k,λ denote anhilation and creation operators of

photons with wavevector of length k and right or left circular polarization λ ∈ {R,L},
respectively. The action of a rotating λ/2-waveplate as described by equation 5.5 will up-

convert R photons by the energy 2~ω and down-convert L photons by the same amount.

Remarkably, this process can be achieved with unity efficiency. With the help of two
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Figure 5.3: Proposed optical setup to compensate for a finite FSS. First, a polarization

insensitive transmission grating splits the biexciton (XX) from the exciton (X) line. Next,

a λ/4-plate transforms the X and XX photons into the circular basis. Finally, a λ/2-plate

(one for each photon) rotating with an angular frequency of f = δ
8π~ compensates for the

FSS. The polarization of the photons are indicated underneath the optical path after each

waveplate. The length of the arrows is indicative for the photon energy. For convenience

possible mirrors have been omitted.
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λ/4-waveplates the XX and the X state transform into

Φ(t, δ) = Λ1/4(−π/4)⊗ Λ1/4(π/4)Ψ(t, δ)

=
1√
2

(
LR + e−i

δ
~ tRL

)
,

(5.6)

where the angles ±π/4 are oriented with respect to the horizontal orientation.

Now, sending this new state Φ(t, δ) through a spinning λ/2-waveplate rotating with

angular frequency of ω = δ
4~ yields an entangled Bell state

Ξ = Λ1/2

(
δ

4~

)
⊗ Λ1/2

(
δ

4~

)
Φ(t, δ)

=
1√
2

(RL+ LR) ,

(5.7)

where the time dependent phase factor has been completely removed. Here, Λ1/2(ω) rep-

resents the operator from equation 5.5. For a detailed derivation of equation 5.7 see the

Appendix. A possible setup to erase the FSS is depicted in Fig. 5.3. First, a dispersive

element, such as a high efficiency transmission grating, splits the XX line from the X line.

Next, the XX (X) photon is sent through a fixed λ/4 waveplate offset from the horizontal

direction by −π/4 (π/4). The photon state at this stage is represented by equation 5.6.

Finally, letting them both pass through a rotating λ/2-waveplate with angular frequency

ω = δ
4~ removes the FSS completely. A rotating λ/2-waveplate can be implemented with

electro-optical modulators (EOM) [139, 140]. In this case, the conversion efficiency is only

limited by the transmission through the EOM. In fact, owing to the high transparency of

EOMs a 95 % conversion efficiency was achieved [141].

Note, in contrast to a rotating λ/2-waveplate the EOM approach needs twice the an-

gular frequency to obtain the same frequency shift [139]. For example, the RF frequency

(f = ω
π

= δ
4π~) necessary to compensate a FSS of 10µeV with the EOM approach is

1209 MHz, which is easily achievable with current EOM technology [139] reaching tens of

GHz modulation bandwidth.

As the proposed technique is not invasive on the sample containing the QDs it is possible

to compensate for the FSS of every QD as long as the EOM’s frequency can be tuned to
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compensate the FSS of the QD under study. This feature renders our approach universally

applicable as simply a different RF frequency needs to be applied to compensate the FSS

of a different QD.

5.4 Conclusions

In summary, we have analyzed the effect of finite FSS and the influence of the detection

time resolution on the measurable entanglement from a single QD via the biexciton-exciton

cascade. The uncertainty in energy and time in the measurement allows the emitted

QD photons to be entangled when a detection system with sufficient timing resolution is

employed. However, the precise timing requirement on a picosecond level is hampering

the progress in making the entanglement useful for applications and research. We have

proposed a universal optical setup to completely remove the FSS based on a rotating λ/2-

plate, which can be implemented with current EOM technology. The proposed technique

will allow to make the entanglement created from QDs available for many applications like

quantum communication, sensing, and imaging.
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Chapter 6

Conclusions and outlook

6.1 Summary

The work presented in this thesis reveals the potential quality of a InAs/InP QDs embedded

inside a wurtzite InP photonic nanowire, for quantum information and quantum computing

purposes. High brightness of the source, due to a tapered nanowire which acts a waveguide

for the emitted light from the QD, allows for performing a complete two-photon tomography

of the source and recording a detailed evolution of its state. Furthermore, the performance

of the source was enhanced upon a resonant two-photon excitation. The results obtained

can be listed as:

• Charge noise surrounding the QD can alter the biexciton and exciton state by

introducin dephasing via spin-spin interactions and generating fluctuating electro-

magnetic fields. However, it was observed that proper excitation scheme, quasi-

resonant vs. off-resonant, can reduce the charge noise to a level where dephasing

becomes negligible and the source acts as a dephasing-free entangled-photon source.

A fact which was inferred by comparing the measurement with a theoretical model

which does not include any dephasing terms.
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• Exciton state’s fine-structure splitting does not lead to degredation of the entangle-

ment fidelity of the source, as it is a unitary process and only causes the precession

of the state. However, a detector with low timing resolution can lead to introduction

of a which-path information between the two eigen-states of exciton, leading to a low

measured entanglement fidelity value. Using a fast detector will erase the which-path

information and the entanglement will be retrieved.

• Exciting the QD via resonant TPE scheme, results in a substantial suppression of

multi-photon emission, which in turn leads to an enhancement of the measured en-

tanglement fidelity. Moreover, the pair-production efficiency of the source will be

improved to a degree, that performing two-photon tomography under resonant TPE

and by using a fast detector with low dark-counts, can yield results surpassing the

performance of SPDC sources.

• An all-optical approach is possible in order to achieve a universal method for removing

the FSS of the exciton state, after the photons are emitted from the source. This

approach is feasible, as it does not require manipulation of the source and can be

performed using the available technology.

6.2 Future outlook

The research presented in this thesis, opens room for further investigations on QDs in

photonic nanowires. The first obvious research to be performed is conducting two-photon

state tomography, once the source is excited via resonant TPE and detected exhibiting low

timing jitter and low dark count rates, e.g., superconducting nanowire detectors [28], in

order to test the prediction that QDs in nanowires are capable of generating photon-pairs

exhibiting near-unity entanglement fidelity under such conditions. In order to enhance

the efficiency of the setup, notch filters and tunable band-pass filters can be used in order

to bypass the spectrometers, which exhibit low transmission efficiencies, ε < 10%. A

proposed setup for performing the two-photon state tomography is presented in Fig. 6.1.
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The emitted photons pass through a set of notch filters, which will block the reflected

laser pulse, and then will pass through the state tomography optics, quarter-wave plates,

half-wave plates, and polarizers. These optics are put along the transmission path of the

non-polarizing beam-splitter, since, on the reflection path photons will gain an arbitary

phase and the projection measurement will no longer be accurate. Lastly, since the tunable

band-pass filters available to the lab are fiber coupled, the photons are coupled to single-

mode fibers. At the last stage, fiber-coupled detectors collected the projected photons and

are in turn correlated to build statistics on the correlation of different two-photon basis.
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Figure 6.1: Schematic setup for two-photon state tomography under resonant

TPE. The notch filter helps with suppression of the reflected laser light. The wave plates

are all put along the transmission of the second NPBS, since the photons gain some phase

upon reflection and the projection will no longer be accurate. Based on the tunable band-

pass filters available, the photons have to be first coupled to a single-mode fiber and then

passed through the band-pass filters, and then fed to fiber-coupled detectors.

Another experiment to be run as an extension to the results presented in this thesis, is

implementing the all-optical approach for removing the FSS of exciton state. An electro-
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optic modulator base on lithium niobate [142] can act as a fast rotating half-wave plate by

applying an oscillating electric field through its electrodes. Such a device, similar to the

device used by Qin et al., [139], is now available in our lab. Three electrodes adjacent to the

zinc oxide difused waveguide control the refractive index of the crystal in two dimensions

as explained by Simon Daley [143]. As proposed by fognini et al., [52], in order to perform

the experiment, the exciton and biexciton photons have to be separated, passed through

a quarter-wave plate, and then enter the fast-rotating half-wave plate. Success of the

protocol can be tested by monitoring the frequency of oscillations observed in Fig. 3.2, for

which projection measurements in |R〉 / |L〉 basis is required.

Besides the immediate experiments along the lines of this thesis, QDs in nanowires

open different possibilities for quantum communication. One line of research can be dedi-

cated to combining QDs in nanowires with quantum memories in order to build quantum

repeaters [144]. Recently conversion of a near infrared photon to telecom-wavelength, as

well as, storage of the photon in a quantum memory with high fidelity and lifetime as been

achieved [145]; also, resonant TPE of QDs in nanowires can provide us with photon-pairs

exhibiting high single-photon purity and entanglement fidelity. A long term project can

be entanglement swapping between two separate sources [146]. Two single photons, each

part of an entangled photon pair emitted from two different sources, can be stored in a

quantum memory in order to achieve perfect timing, then retrieved and interfered in a

Bell measurement, in order to entangled the two other photons which have not interacted.

For this purpose, some initial steps has to be taken. First, the two sources have to be

manipulated in order to emit photon-pairs at exactly similar wavelengths. Trotta et al.,

[33], have proposed a method in order to achieve entangled photon-pairs with on-demand

wavelength for self-assembled quantum dots; however, such a scheme has not yet been

provided for QDs in nanowires. Besides, experiments for measuring indistinguishability of

the successive photons from one source, as well as, photons from separate sources have to

be performed under resonant TPE. A previous study [83] on indistinguishability of such a

source, relied on off-resonant excitation and low laser repetition rate, f = 20MHz, which

intensifies photon emission jitter and the detrimental effects of the charge noise around

the QD, as well as, the environment in which each photon has to be delayed. Under such
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circumstances, visibilities above 80% has been reported, by inclusion of < 4% of the total

counts; however, these results does not reveal the ultimate value achievable with QDs in

nanowires. Using resonant TPE and a pump laser with a repetition rate of 76MHz, can

enhance the results significantly.
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Appendix A

Supplementary information for

Chapter3

A.1 Power Dependence of Exciton and Biexciton

Fig. A.1 (a) depicts the power dependent g(2) of the exciton excited at 870 nm, and Fig.

A.1 (b) shows the same for the biexciton line. The single photon purity of the exciton lies

below 1 %, even above saturation, whereas for the biexciton it saturates at 10 % because of

reexcitation. Fig. A.1 (c) shows the detected count rates of the X and XX line at 830 nm

excitation as a function of excitation power. The numbers indicate the slopes of the curves

in the log-log graph, which are close to what is expected (slope of 1 for the exciton and

2 for the biexciton). Fig. A.1 (d) shows the detected count rates for X and XX in the

case of 870 nm excitation as a function of excitation power. Here, the slopes as well as the

saturation behavior differ from Fig. A.1 (c). The slopes are smaller and the saturation

is less pronounced. In case of non-resonant excitation at the saturation power the single

photon purity of the exciton is still below 1 % and the biexciton yields g
(2)
XX = 0.1.
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Figure A.1: Power dependence of the g(2)(0) excited at quasi resonance (870 nm) for (a)

the exciton, and (b) the biexciton. (c) Power dependence dependent count rates of the

exciton and the biexciton line at non-resonant excitation (830 nm). (d) Power dependent

count rates of the exciton and the biexciton line at quasi-resonant excitation (870 nm).

The numbers next to the lines indicate the slope on the log-log plot.

97



A.2 Quantum Dot Characteristics

The QD spectrum changed considerably by tuning from non-resonant excitation (830 nm)

to quasi-resonant (870 nm), compare Fig. 1 in the main text.

We wanted to know whether the line at which we excited at 870 nm originated from

the QD’s p-shell or from donor/acceptor exciton transitions [147] within the InP nanowire.

We investigated this question by exciting the QD at low power (∼ 15nW) at 820 nm. If

it was a p-shell transition the line should disappear since an exciton in the p-shell would

immediately relax to the s-shell. In our case, we still see the line at low power indicative

for a donor/acceptor exciton transition [147]. This implies that we did not excite directly

at the p-level. This conclusion is further corroborated by cross-correlation measurements

where we found that all of the emission lines around 870 nm were uncorrelated with the

QD s-shell.

We further investigated the dynamics of the InAsP QD at quasi-resonance by perform-

ing cross-correlations between all of the emission lines in the QD s-shell. Fig. A.2 shows

the result of the cross-correlations between X,XX,X−, and X+. The cascades were fitted

using an exponential-Gaussian hybrid [148]. In each cascade the area of the center peak

was compared to the average area of the side peaks (uncorrelated coincidence counts) by

calculating their ratio. We have defined the area as the part until the curve falls below

the full width at half maximum (FWHM) point. In this way, we can circumvent problems

when the lifetime overlaps with the adjacent peak (e.g. Fig. A.2 (e)). These measurements

imply that the holes are trapped at a higher rate than electrons. This finding is in agree-

ment with our sample being unintentionally n-doped whereby the QD’s s-level is already

filled with electrons without laser excitation.

In summary we find:

1. The lines at 870 nm are not p-shell resonances from the QD, but donor/acceptor

exciton transitions [147] within the wurtzite InP nanowire.
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2. Both electrons and/or holes get trapped in the QD after a radiative decay.

3. Holes are trapped faster than electrons as indicated by the shorter decay time of

0.81 ns in Fig. A.2 (d) as compared to 5.5 ns in Fig. A.2 (e).
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Figure A.2: In all figures τ is the time scale of the decay and Ac is the area in the FWHM

region for the central peak, whereas As is the area in the FWHM region for the side peak.

(a) Shows the XX −X cascade as a reference. (b) Shows the cascade between XX and

X+ (starting on XX and stopping on X+). This shows that after the emission of XX,

in a time scale of about 1 ns, a hole can get trapped in the QD. (c) Depicts the cross-

correlation between the XX and X−. It suggests that the trapping of an electron after

a XX decay is almost equally likely as a hole, compare (b). (d) Shows cross-correlations

between X− and X. (e) Shows the correlations between X+ and X. Comparing this graph

with (d) indicates that the rate at which electrons get trapped is slower than holes (0.83 ns

compared to 5.5 ns). (f) Shows the X− to X+ cross-correlations. The numbers indicate

that the process of trapping two holes within the laser repetition rate is suppressed. In all

panels the first state is the start photon and the second state is the stop photon for the

cross-correlation measurements.
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A.3 Tomography Setup Calibration

The quantum state tomography setup was built according to Ref. [84], compare Fig. A.3.

A crucial part before performing the correlation measurements is the calibration of the

waveplates and polarizers. Any miscalibration reduces the quality of the quantum state

tomography.

QWP1 HWP1

Polarizer1NPBS

Correlator

Spectrometer + 
Detector

Photon 
Source

HWP2QWP2 Polarizer2

Figure A.3: Schematic view of the setup used to analyze the entangled photon pairs follow-

ing Ref. [84]. The setup includes a pair of polarizers, a pair of half-waveplates (HWPs), a

pair of quarter-waveplates (QWPs), a non-polarizing beam splitter (NPBS), a pair of spec-

trometers, single photon detectors, and finally a correlator to build the histogram from the

signals of the detectors. The two polarizers are set to H polarization.

The calibration was performed in three steps:

1. Polarization reference: A polarizing beamsplitter served as the vertical polariza-

tion (V) reference. It was directly placed on the optical table and aligned carefully

along the incoming laser beam (870 nm). In this case it only transmitted V-polarized

light and we used it as the polarization reference for the polarizer calibration.
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2. Polarizer calibration: The polarizers were calibrated to H-polarization (defined to

be parallel to the optical table). The polarizers were adjusted until the V-polarized

light transmission was minimal.

3. Waveplate calibration: Each of the two λ/2 and λ/4-waveplates were calibrated

individually to find their zero-point. They were placed between the polarizing beam-

splitter and the aligned polarizer. They were rotated till minimal light transmission

through the polarizer was achieved which is their zero-point.

To test the waveplate’s and polarizer’s calibration we performed state tomography in

all 36 bases (HH, HV, ...) on classical H-polarized laser light (870 nm). The measurement

result is depicted in Fig. A.4 and shows only a clean peak at |HH〉 〈HH| highlighting a

very good calibration of our tomography setup. The fidelity between the measured density

matrix and the density matrix describing purely H polarized light is 0.993. This very high

number (in the ideal case one) reveals a very well aligned setup.
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Figure A.4: Tomography of H polarized laser pulses. The fidelity between the measured

density matrix and a density matrix describing purely H polarized light is 0.993.

The waveplate settings to perform the 36 bases quantum tomography are listed in Table

A.1. They were calculated based on Ref. [149].
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Table A.1: Summarizing all waveplate angle settings in degrees used to perform the full

set of correlation measurements. Here, QP and HP are the abbreviations for λ/4- and

λ/2-waveplates, respectively. The subscript numbers match the numbers in the setup

schematic, compare Fig. A.3.

Basis QP1 HP1 QP2 HP2 Basis QP1 HP1 QP2 HP2

HH 0 0 0 0 HV 0 0 0 45

HD 0 0 −45 0 HA 0 0 0 −22.5

HR 0 0 −45 −22.5 HL 0 0 −45 22.5

VH 0 45 0 45 VV 0 45 0 0

VD 0 45 −45 0 VA 0 45 0 −22.5

VR 0 45 −45 22.5 VL 0 45 −45 −22.5

DH −45 22.5 −45 0 DV −45 22.5 0 −22.5

DD −45 22.5 0 0 DA −45 22.5 0 45

DR −45 22.5 −45 22.5 DL −45 22.5 −45 −22.5

AH −45 −22.5 −45 0 AV −45 −22.5 0 −22.5

AD −45 −22.5 0 45 AA −45 −22.5 0 0

AR −45 −22.5 −45 −22.5 AL −45 −22.5 −45 22.5

RH −45 0 −45 0 RV −45 0 0 −22.5

RD −45 0 −45 −22.5 RA −45 0 −45 22.5

RR −45 0 0 0 RL −45 0 0 45

LH 0 −22.5 −45 −22.5 LV 0 −22.5 −45 22.5

LD 0 −22.5 −45 0 LA 0 −22.5 0 −22.5

LR 0 −22.5 0 45 LL 0 −22.5 0 0

A.4 Correlation Measurements

Fig. A.5, A.6, and A.7 depict the raw data of all 36 correlation measurements used for the

quantum state tomography shown in Fig. 2, 4 (a), and 4 (b) in the main text, respectively.

The data was recorded with 16 ps time bins.
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Figure A.5: Quasi-resonant excitation at 870 nm was employed. The figure depicts the

raw data used for the quantum state tomography measurements presented in Fig. 2 of the

main text. The integration time per basis was 370 s.
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Figure A.6: Quasi-resonant excitation at 870 nm was employed. The figure depicts the raw

data used for the quantum state tomography measurements presented in Fig. 4 (a) of the

main text. The integration time per basis was 342 s.
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Figure A.7: Non-resonant excitation at 830 nm. The figure depicts the raw data used for

the quantum state tomography measurements presented in Fig. 4 (b) of the main text.

The integration time per basis was 342 s.

A.5 Birefringence

Previous studies on InAsP/InP nanowire quantum dots [85, 84] have shown the effect of

birefringence in the nanowire on the quantum state. We investigated if this is also the case

in our nanowire. We applied a magnetic field of 4 T along the nanowire’s growth direction

and analyzed the polarization state of the split exciton (X) and biexciton line (XX).

In case of no birefringence, we expect the Zeeman-split lines to be fully circularly polar-

ized because of angular momentum conservation. Fig. A.8 depicts the photoluminescence

(PL) recorded at 830 nm excitation and an applied magnetic field of 4 T. The red line

shows the PL when the polarization analyzer only passed right polarized (R) photons and

the dashed blue line if the analyzer only passed left polarized (L) photons. We observe that

the Zeeman-split lines are either R- or L-polarized, compare Tab. A.2 for the extinction

ratio values. This shows that our investigated nanowire induces an insignificant amount of

106



birefringence.

This implies that we expect to measure a quantum state of the form

|Ψ〉 =
1√
2

(|RL〉+ |LR〉) =
1√
2

(|HH〉+ |V V 〉) , (A.1)

in the case of no fine-structure splitting.
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Figure A.8: Excitation at 830 nm with an applied magnetic field of 4 T along the nanowire’s

growth direction. The exciton (X), the biexciton (XX), and the trion (X−) split in two

lines.

Table A.2: Polarization extinctions for the exciton (X) and biexciton (XX) lines shown in

Fig. A.8. The extinction ratio is defined here as the power of the suppressed peak divided

by the power of the cross-polarized peak.

Peak Extinction ratio in %

X Left 1.03± 0.03

X Right 3.32± 0.08

XX Left 0.85± 0.06

XX Right 3.76± 0.12
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A.6 Detector Time Resolution Function

The simulation crucially depends on the used detection system’s time resolution function

g(t). It cannot be measured with picosecond laser pulses as these pulses are spectrally

too different from the QD’s emission profile. The reason is that chirp introduced at the

spectrometer’s gratings changes the pulse length too much in case of short laser pulses. The

only valid way to extract the detection time resolution function is directly from the set of

correlation measurements. Namely, the rising part of the correlations without oscillations,

e.g., the HH and V V correlations, allow the extraction of the system’s time resolution

function g(t). The HH and V V correlation counts are of the form

f(t) = Θ(t)e−t/τX ∗ g(t), (A.2)

where, Θ(t) is the Heaviside function, τX the exciton lifetime, and ∗ denotes the convolution

operator. To simplify the deconvolution process we can approximate equation A.2 around

time zero as

f(t) ≈ Θ(t) ∗ g(t). (A.3)

This approach is valid when the half width at half maximum of g(t) (∼ 100 ps) is smaller

than τX (847 ps). This is fulfilled in our case. The differentiation of f(t) in equation A.3

will then directly yield g(t).
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Figure A.9: Procedure to acquire the detection system’s time resolution function g(t) in

order to perform the simulate the concurrence evolution shown in Fig. 2 of the main text.

(a) The sum of the HH and V V correlations (dots) are smoothed with a Savitzki-Golay

filter (red curve) with a polynomial of degree 6 and a window length of 65. (b) The filtered

correlation data is numerically differentiated (dots) and the part till the maximum (red

curve) is the rising part of g(t). (c) The dots represent the mirrored g̃(t). g̃(t) is fitted

with the function from Eq.A.5 and depicted with the red line. A perfect fit is achieved

with an R2-value of 0.998.

Numerically we performed the following algorithm: The sum of HH and V V correlation

yields a better signal to noise ratio than only HH or V V alone. Therefore, we use

f̃(t) = HH + V V. (A.4)

Since f̃(t) is subjected to noise we use use a Savitzki-Golay filter to smoothen f̃(t) and

yield f(t). This procedure is depicted in Fig. A.9 (a). As a next step we perform a

numerical stepwise differentiation of f(t) and yield the data in Fig. A.9 (b). From df(t)/dt

we consider the part from negative times until the maximum, which we call g̃(t). This

function contains the full information of the detection time resolution function g(t). In our

case g(t) is a symmetric function since both APDs show the same impulse response, see

Fig. A.10.

Therefore, we can reconstruct the raw g(t) by mirroring g̃(t) along its maximum, see

Fig. A.9 (c). Since the raw g(t) is subjected to noise we fit it with
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Figure A.10: APD responses to picosecond laser pulses (center wavelength 870 nm) mea-

sured after the spectrometers tuned to the laser wavelength. The two APDs have a mostly

congruent pulse shape which justifies the assumption of a symmetric detection response

function g(t). The full width at half maximum is for both pulses 290 ps.

gf (t, t0, a, σ) =
a(

cosh
(
t−t0
σ

))2 (A.5)

where a is the amplitude, and t0 the time origin. The fit to the data is in excellent

agreement, compare Fig. A.9 (c). By normalizing gf we yield the detection system’s time

resolution function as

g(t) =
gf (t)∫∞

−∞ gf (t)dt
. (A.6)

Based on g(t) the simulation is performed as described in the main text. This procedure

has been applied for all the simulation in the text with a Savitzki-Golay filter with a

polynomial of degree 6 and a window length of 65. For the data presented in Fig. 2 of the

main text the fit’s R2-value is 0.998.
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A.7 Count Averaged Concurrence

The count averaged concurrence C̄ in the text is defined as:

C̄ :=

∑
tk
N tkC (ρ (ijtk))∑

tk
N tk

, (A.7)

where ρ(ijtk) is the density matrix based on the correlation counts ijtk within a time bin

at time tk (i, j ∈ {H, V,D,A,R, L}), C denotes the concurrence [60], and Ntk is the total

correlation counts within a time bin at time index tk, N
tk =

∑
i,j ij

tk .
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Appendix B

Supporting information for Chapter4

B.1 Experimental Setup

In order to perform the resonant TPE scheme, proper steps have to be taken in order to

suppress the excitation laser light reflected off of the sample surface. Since the intensity of

the laser is orders of magnitude greater than that of the emitted photons, the reflected light

will saturate the spectrometers’ and distinguishing the photons from the excitation pulse

becomes impossible. One way to overcome this challenge, is to excite in one polarization,

e.g., H, and collect photons in the perpendicular polarization, V . This way, a huge portion

of the reflected laser light will be blocked by a polarizer set at a polarization perpendicular

to that of the incoming laser pulse. Moreover, spacial filtering is also necessary in order to

achieve a clean emission background in the spectrum. The emitted photons from nanowire

QDs exhibit a Gaussian profile [30] and can be coupled to a single-mode fiber (SMF)

with high efficiency, however, the reflected light, as it is scattered off the surface of the

sample, will couple to an SMF poorly. An schematic view of our experimental setup is

shown in Fig. B.1. One polarizer sets the polarization of the laser pulse at H, and a

combination of a half-wave plate and a second polarizer acts as a control for the input

power. On the collection side, a combination of the quarter-wave plate, half-wave plate

and a polarizer rejects the reflected laser light, and a spacial filtering via an SMF further
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Figure B.1: Schematic view of the resonant TPE setup. The excitation pulse is

passed through a combination of two polarizers and one half-wave plate. The polarizers

are set at H polarization. Rotation of the half-wave plate will control the excitation power.

A combination of quarter-wave plate, half-wave plate, polarizer and an SMF will suppress

the reflected laser light.

clears the background noise.

B.2 SMF coupling

In order to have a high efficiency coupling to the SMF, a proper choice for the lens in front

of the SMF has to be made. Two factors has to be considered; first, the size of the beam

at the focal point of the lens must match the mode field diameter (MFD) of the fiber, and

second, the numerical aperture (NA) of the fiber must be at least greater than the NA of
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the focused beam. In other words [150]:

ω0,f =
λf

πω0,i

< MFD (B.1)

NAl =
ω0,i

2f
< NASMF, (B.2)

where, ω0,i and ω0,f are the waist size of the beam right before and at the focal point of the

lens, respectively, λ is the wavelength of light, ≈ 894nm, f is the focal length of the lens,

and NAl and NASMF are the numerical apertures of the lens and the single-mode fiber,

respectively. It is straightforward to realize the condition for a proper lens is:

ω0,i

2NASMF

< f <
πω0,i

MFDλ
. (B.3)

By imaging the emission of our nanowire QD on a CCD, the diameter of the emitted

beam is found to be ω0,i ≈ 0.75mm±0.05mm. For the fiber used in our setup NASMf = 0.13,

and MFD = 5µm. Thus the focal length of the lens falls in the range 5mm < f < 26.2mm.

Considering all the components, we have reached a setup transmission efficiency of ε =

0.27%.
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Appendix C

Supporting information for Chapter5

To understand in detail the compensation procedure the typical equation of the entangled

state with finestructure splitting δ, written as

Ψ(t, δ) =
1√
2

(
HH + e−i

δ
~ tV V

)
, (C.1)

needs to be rewritten in terms of creation operators a†z,k,λ since equation C.1 is ambigu-

ous about the time ordering of the excitons (biexciton is emitted before the exciton) and

their energies. The first index of the creation operator z represent the position of the pho-

ton perpendicular to waveplate orientation, k the wave vector, and λ the polarization state.

For the sake of clarity and taking in to account the actual experimental implementation,

we only consider photons traveling perpendicular to the waveplate orientation and neglect

any vector representation in the following. To capture the photon ordering the emission

times of the biexciton t and the exciton tX are introduced. The time t as in equation C.1

is defined as t := tX − t. The energies of the excitons are described by their wave vectors

k and kX , respectively. For photons in vacuum the dispersion relation holds

E = ~ω = ~kc, (C.2)

with c the speed of light. Furthermore, for the sake of clarity the FSS is expressed as

∆k = δ
2~c . With these definitions at hand we can write the entangled state in equation C.1
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as

Ψ(z, t, tX , k, kX ,∆k) =
1√
2

(
a†z−tc,k+∆k,Ha

†
z−tXc,kX−∆k,H

+ a†z−tc,k−∆k,V a
†
z−tXc,kX+∆k,V

)
(C.3)

Which can be shown to be equal to equation C.1

Ψ(z, t, tX , k, kX ,∆k) =
1√
2

(
a†z,k,He

i(z∆k−tkc−t∆kc)a†z,kX ,He
i(−z∆k−tXkXc+tX∆kc)

+ a†z,k,He
i(−z∆k−tkc+t∆kc)a†z,kX ,He

i(z∆k−tXkXc−tX∆kc)
)

=
1√
2

(
a†z,k,Ha

†
z,kX ,H

+ e−i2∆ktca†z,k,V a
†
z,kX ,V

)
,

(C.4)

where we have used the fact that overall phases can be factorized out.

Now we are ready to show the compensation procedure. As explained in the manuscript

we first have to transform from H/V basis to R/L by means of two λ/4 plates. One λ/4

waveplate, represented by the operator Λ1/4, will act on the XX and with an angle offset

from the horizontal direction of −π/4 and the other on the X with an offset of π/4. In this

way, horizontal and vertical polarization states are transformed to circular basis necessary

for the compatibility with the the rotating λ/2 waveplate frequency shifter. In the following

equation the action of the two λ/4 waveplates upon the quantum state C.3 is calculated:

Φ(z, t, tX , k, kX ,∆k) = Λ1/4(−π/4)⊗ Λ1/4(π/4)Ψ(z, t, tX , k, kX ,∆k)

=
1√
2

(
a†z,k,Le

i(z∆k−tkc−t∆kc)a†z,kX ,Re
i(−z∆k−tXkXc+tX∆kc)

+ a†z,k,Re
i(−z∆k−tkc+t∆kc)a†z,kX ,Le

i(+z∆k−tXkXc−tX∆kc)
)

=
1√
2

(
a†z,k,La

†
z,kX ,R

+ e−i2∆ktca†z,k,Ra
†
z,kX ,L

)
.

(C.5)
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For convenience we can in equation C.5 omit z and replace t and tX with t, then the

quantum state reads

Φ(t, k, kX ,∆k) =
1√
2

(
a†k,La

†
kX ,R

+ e−i2∆ktca†k,Ra
†
kX ,L

)
.

(C.6)

The rotating λ/2-waveplate, represented by the operator

Λ1/2 (ω) =
∑
k

a†
k+ 2ω

c
,L
ak,R + a†

k− 2ω
c
,R
ak,L, (C.7)

where ω represents the angular rotation frequency, will consequently remove the effect of

the finestructure splitting if ω = δ
4~ :

Ξ(k, kX) = Λ1/2

(
δ

4~

)
⊗ Λ1/2

(
δ

4~

)
Φ(z, t, tX , k, kX ,∆k)

= Λ1/2

(
δ

4~

)
⊗ Λ1/2

(
δ

4~

)
1√
2

(
a†z−tc,k+∆k,La

†
z−tXc,kX−∆k,R

+ a†z−tc,k−∆k,Ra
†
z−tXc,kX+∆k,L

)
=

1√
2

(
a†z−tc,k,Ra

†
z−tXc,kX ,L + a†z−tc,k,La

†
z−tXc,kX ,R

)
=

1√
2

(
a†z,k,Ra

†
z,kX ,L

e−iktXXc−ikX tXc + a†z,k,La
†
z,kX ,R

e−iktXXc−ikX tXc
)

=
1√
2

(
a†z,k,Ra

†
z,kX ,L

+ a†z,k,La
†
z,kX ,R

)
.

(C.8)

The last line in equation C.8 is a fully entangled state without FSS in circular basis.

Therefore, it is not yet precisely the starting state as described in equation C.1 without

the exponential phase term. But with the addition of two λ/4-waveplates the state can be

translated in to H/V basis and is then equivalent to our initial state described in equation

C.1 without FSS:

Λ1/4 (−π/4)⊗ Λ1/4 (π/4) Ξ(k, kX) =
1√
2

(
a†z,k,Ha

†
z,kX ,H

+ a†z,k,V a
†
z,kX ,V

)
. (C.9)
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