
API Parameter Recommendation
Based on Documentation Analysis

by

Yuan Xi

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2019

c© Yuan Xi 2019

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Application Programming Interfaces (APIs) are widely used in today’s software devel-
opment, as they provide a easy and safe way to build more powerful applications with less
code. However, learning how to use an API function correctly can sometimes be difficult.
Software developers may spend a lot of time to learn a new library before they can be-
come productive. When an unfamiliar API is to be used, they usually have to chase down
documentation and code samples to figure out how to use the API correctly. This thesis
proposes a new approach based on documentation analysis, helping developers learn to
use APIs by recommending likely parameter candidates. Our approach analyzes the docu-
mentation information, extracts possible candidates from code context, and gives them as
parameter suggestions.

To test the effectiveness of our approach, we process the documentation of 5 popular
JavaScript libraries, and evaluate the approach on top 1,000 JavaScript projects from
GitHub. We used 1,681 instances of API function calls for testing in total. On average,
over 60% of the time the correct parameter is in the suggestion set generated by our
approach.

iii

Acknowledgments

Firstly, I want to thank my supervisors–Professor Lin Tan, Professor Michael Godfrey,
and Professor Meiyappan Nagappan for their patience and help to my research work. They
work hard to provide a good research environment for every team member and give valuable
suggestions when we meet problems. I sincerely appreciate the opportunity to work with
them.

I want to thank for my parents and my girlfriend, who always love and support me.
Without their support, I cannot finish my study successfully.

Thanks to all my friends I met in Waterloo. I enjoy my graduate study time with all
of them.

This thesis is dedicated to the ones I love and the ones who love me.

iv

Table of Contents

List of Tables vii

List of Figures viii

1 Introduction 1

1.1 Research Contributions . 3

1.2 Thesis Organization . 3

2 Background 4

2.1 Statically Typed Languages and Dynamically Typed Languages 4

2.1.1 Statically Typed Languages . 4

2.1.2 Dynamically Typed Languages . 5

2.2 API Documentation . 6

2.3 Lodash: A Modern JavaScript Utility Library 6

2.4 API Parameter Suggestion . 6

3 Related Work 10

3.1 API Usage Patterns . 10

3.2 Software Text Analysis . 11

3.3 Code Completion System . 11

3.4 API Usage Recommendation . 12

3.5 API Parameter Recommendation . 12

v

4 Approaches 14

4.1 Overview . 14

4.2 Preprocessing . 15

4.3 Analysing the Project Source Code . 18

4.4 Approach for Non-function-type Parameter 20

4.5 Approach for Function-type Parameter . 23

5 Experimental Setup 26

5.1 Research Questions . 26

5.2 Data Sets Collecting . 27

5.2.1 API Documentation Data Set . 27

5.2.2 JavaScript Project Data Set . 29

5.3 Generating Abstract Syntax Tree . 30

5.3.1 API Parameter Suggestion . 33

6 Experiment Results 34

6.1 RQ1: How accurate are the parameter suggestions of the approach? 34

6.2 RQ2: How many suggestions does the approach generate for input source
code files? . 38

7 Threats to Validity 42

7.1 Data Set Selection . 42

7.2 API Documentation Information Collection 43

8 Conclusion and Future Works 44

8.1 Conclusion . 44

8.2 Future Works . 45

Bibliography 46

vi

List of Tables

1.1 Statistics on API Function Declarations and Invocations 2

2.1 Statistics on API Function Declarations and Invocations 7

5.1 JavaScript Libraries Used as API Documentation Data Set 27

5.2 API Functions Found in the GitHub Projects 33

6.1 Parameter Suggestion Accuracy for Lodash 35

6.2 Parameter Suggestion Accuracy for Vue.js 35

6.3 Parameter Suggestion Accuracy for AngularJS 36

6.4 Parameter Suggestion Accuracy for Async 36

6.5 Parameter Suggestion Accuracy for Zlib 37

6.6 Overall Parameter Suggestion Accuracy for Target Libraries 37

6.7 Reasons for Fail Cases . 38

6.8 Number of Parameter Suggestions Statistics for Lodash 38

6.9 Number of Parameter Suggestions Statistics for Vue.js 39

6.10 Number of Parameter Suggestions Statistics for AngularJS 39

6.11 Number of Parameter Suggestions Statistics for Async 40

6.12 Number of Parameter Suggestions Statistics for Zlib 41

vii

List of Figures

2.1 Lodash Online Documentation for API Function “filter” 7

4.1 Workflow of API Parameter Recommendation 14

4.2 Preprocess: Step 1 . 16

4.3 Preprocess: Step 2 . 17

4.4 Lodash Documentation Example . 18

4.5 Vue.js Documentation Example . 19

4.6 Number of Arguments for Function-type Parameter in Lodash Documentation 20

4.7 Number of Arguments for Function-type Parameter in AngularJS Documen-
tation . 21

4.8 Analyse the Project Source Code . 22

4.9 Approach for Non-function-type Parameter 23

4.10 Approach for Function-type Parameter . 24

6.1 Distribution of Numbers of Suggestions . 41

viii

Chapter 1

Introduction

To improve software productivity, today’s programs use Application Programming Inter-
faces (APIs) extensively, because APIs provide the reuse of the code and can release the
project developers from some trivial and repetitive work. Thanks to the success of soft-
ware communities and platforms such as Github, developers today can find a large number
of libraries which provide various APIs with plenty of functionalities and are suitable for
different development environments.

There are many advantages for software developers to use existing APIs from well-
known libraries and frameworks rather than write their own code with the same function-
alities. Using APIs can not only reduce repetitive work, but also make programs more
robust, since API developers are always trying their best to improve the qualities and
reliability of their APIs.

Although the utiliazation of APIs can lessen the workload of developers and provide
various functionalities, it still may introduce new problems; for example, a library upgrade
may cause backward compatibility issues [38], and API dependency chains could bring a
lot of setup problems to developers before they can actually use the APIs [21]. One main
challenge is that correctly and efficiently using APIs from unfamiliar libraries and frame-
works is nontrivial. Because there are numerous APIs providing different functionalities,
it is very common for developers to encounter unfamiliar APIs in their work. Working
with complex APIs in an unfamiliar library presents many barriers: programmers have to
choose not only the right method to call, but also the correct parameters for a method
call in an API usage. When programmers want to use a new API function, they often
need to carefully read the documentations and inspect code examples to learn the actual

1

Table 1.1: Statistics on API Function Declarations and Invocations

Project Parameterized
Declaration

Non-
parameterized

Declaration

Parameterized
Invocation

Non-
parameterized

Invocation

Eclipse 3.6.2 64% 36% 57% 43%
Tomcat 7.0 49% 51% 60% 40%
JBoss 5.0 58% 42% 60% 40%

average 57% 43% 59% 41%

meaning of each parameter, and search the entire context code to see which variables fit
the arguments.

In order to help programmers use unfamiliar APIs better, a number of techniques have
been proposed [44], [11], [45]. Among these, Buse et al. [11] and Zhong et al. [45] investigate
finding examples or usage patterns to guide developers to correctly use the APIs. Another
kind of approach is a code completion system or API suggestion system, which promptly
provides developers with programming suggestions, such as which API functions to call
and which expressions to use as parameters.

Most existing API suggestion techniques focus on telling developers which is the right
API method to call [42], [19]. However, previous research has also emphasized the impor-
tance of helping developers choose the right parameters for an API method call [10], [27].

Zhang et al. [44] investigate the statistics of API function declarations and invocations
in the code of Eclipse 3.6.2 [1], Tomcat 7.0 [5], and JBoss 5.0 [3]. Table 1.1 displays
their findings. According to Table 1.1, for both API declarations and API invocations,
API functions with one or more parameters are more common than that without any
parameters. Thus, helping developers choose the right API functions is not enough, and
recommending the right parameters can be another non-trivial topic.

Nowadays libraries usually provide documentation for programmers to learn how to use
them, and these are usually highly reliable because they are provided by the developers of
the libraries, who fully understand how to use the APIs correctly. Previous work shows
that API documentations have a significant impact on API usability [14]. When having to
use an unfamiliar library, the first thing for most programmers to do is to search for the
corresponding documentations and read them.

2

In this paper, we propose and evaluate an approach to let computers learn the documen-
tation and suggest the correct arguments when using a certain API. It will help developers
save a lot of time and reduce bugs when they need to use some unfamiliar APIs.

1.1 Research Contributions

In this thesis, I make the following contributions:

• We collect two data sets: one data set of JavaScript API documentation and one
of real-world JavaScript projects. The API documentation data set consists of five
popular JavaScript third-party libraries, and the project data set consists of top 1,000
JavaScript projects based on their star ratings. These two data sets can be used for
future research on API suggestions and documentation analysis.

• We propose an approach to generate parameter suggestions for API function calls
based on API documentation analysis. The approach does not require too many code
examples, and can be generalized to other programming languages.

• We conduct experiments evaluating the performance of our API parameter suggestion
approach.

1.2 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 and Chapter 3 discuss the back-
ground and related work respectively. Chapter 4 describes our approach for choosing the
right parameters for an API method. Chapter 5 shows the setup of experiments to eval-
uate the proposed approaches. We show and analyze experimental results in Chapter 6.
In Chapter 7, we present the threats to validity in our work. Chapter 8 summarizes our
work, and sketches possible future research in this area.

3

Chapter 2

Background

This section provides the background of statically typed languages and dynamically typed
languages, API documentation, the API library used in this research, and the overview of
the research problem.

2.1 Statically Typed Languages and Dynamically Typed

Languages

2.1.1 Statically Typed Languages

A language is statically typed if the type of a variable is known at compile time, and will not
change after being declared. For some languages this means that you as the programmer
must specify what type each variable is (e.g., Java, C); other languages offer some form
of type inference, the capability of the type system to deduce the type of a variable (e.g.:
OCaml, Haskell, Scala, Kotlin).

A more formal way to define statically typed language is that a programming language
is considered as statically typed if it does type checking at compile-time. This process
verifies the type safety of a program based on analysis of a program’s source code. If a
program passes a static type checker, then the program is guaranteed to satisfy some set
of type safety properties for all possible inputs [43].

The main advantage here is that many kinds of checking can be done by the compiler,
and therefore a lot of trivial bugs can be caught at a very early stage [6]. However, many

4

languages with static type checking provide a way to bypass the type checker. Some
languages allow programmers to choose between static and dynamic type safety. For
example, C# distinguishes between statically-typed and dynamically-typed variables. Uses
of the former are checked statically, whereas uses of the latter are checked dynamically.
Other languages allow writing code that is not type-safe; for example, in C, programmers
can freely cast a value between any two types that have the same size, effectively subverting
the type concept.

Statically typed languages come out earlier than dynamically typed languages. The
first statically typed language is Fortran [8], which is developed by IBM in 1957, and it is
also known as the first high-level programming language.

2.1.2 Dynamically Typed Languages

A language is dynamically typed if the type is associated with run-time values, and not
named variables/fields/etc. This means that the type of a variable may change after being
declared. For example, JavaScript is a dynamically typed language, and in JavaScript, you
can assign a numeric value to a variable when being declared, and assign a string value to
it later. Typically you as a programmer do not have to specify types every. Here are some
famous dynamically typed languages: JavaScript, Perl, Ruby, Python.

A dynamically typed language performs type checking at runtime. Implementations of
dynamically type-checked languages generally associate each runtime object with a type tag
(i.e., a reference to a type) containing its type information [43]. Most type-safe languages
include some form of dynamic type checking, even if they also have a static type checker.
This is because that many useful features or properties are difficult or impossible to verify
statically. Most scripting languages have this feature as there is no compiler to do static
type-checking anyway, but you may find yourself searching for a bug that is due to the
interpreter misinterpreting the type of a variable. Luckily, scripts tend to be small so bugs
have not so many places to hide.

By definition, dynamic type checking may cause a program to fail at runtime. In some
programming languages, it is possible to anticipate and recover from these failures. In
others, type-checking errors are considered fatal.

Most dynamically typed languages do allow you to provide type information, but do
not require it. One language that is currently being developed, Rascal, takes a hybrid
approach allowing dynamic typing within functions but enforcing static typing for the
function signature.

5

The first dynamically typed language is Lisp, which was invented by John McCarthy
in 1958 [20]. Lisp is the second-oldest high-level programming language in widespread use
today, and Fortran is the only older one, by one year in 1957.

2.2 API Documentation

Since APIs are designed to be consumed, it is important to make sure that the clients, or
consumers, are able to quickly learn an API and understand what they can do with it.
Most of consumers will never read the source code of the API libraries they use. It is always
too tidious for them to know how to implement it. Instead, they want to understand how
to use the API quickly and efficiently, which is where API documentation comes into the
picture.

API documentation is a technical content deliverable, containing instructions about how
to effectively use and integrate with an API. It is a concise reference manual containing all
the information required to work with the API, with details about the functions, classes,
return types, arguments and more, supported by tutorials and examples.

Figure 2.1 gives an example of an online API documentation.

2.3 Lodash: A Modern JavaScript Utility Library

Lodash is a JavaScript library that provides utility functions for common programming
tasks. It evolves from Underscore.js and now receives maintenance from the original con-
tributors to Underscore.js.

Lodash is one of the most popular JavaScript libraries now. Its number of weekly
downloads is around 15,000,000 on NPM platform.

Table 2.1 shows some basic information about Lodash.

2.4 API Parameter Suggestion

This section illustrates API parameter suggestion problem with a use case example.

Imagine that a developer, Pat is writing a JavaScript project, and learning to use the
JavaScript library Lodash. Pat is currently working on a new feature for their website that

6

Figure 2.1: Lodash Online Documentation for API Function “filter”

Table 2.1: Statistics on API Function Declarations and Invocations

Name Lodash
Original author John-David Dalton
Initial release April 23, 2012
Current version 4.17.10
Written in JavaScript
License MIT
Website lodash.com
Lines of codes 17,105
Number of API elements 287

will display the usernames of all active users. Pat currently has an array of users, where
each user is an object with attributes “name” and “gender”.

7

var users = [

{ ‘name’: ‘Jack’, ‘gender’: ‘Male’ },

{ ‘name’: ‘Susan’, ‘gender’: ‘Female’ },

{ ‘name’: ‘Bob’, ‘gender’: ‘Male’ },

{ ‘name’: ‘Alex’, ‘gender’: ‘Non-binary’}

];

Now Pat wants to only keep all the male users from the list, and Pat knows that the
API function filter Lodash library will be helpful, so Pat starts writing:

var male_users = filter(

However, Pat forgets what are the parameters for the function filter. Therefore, Pat
opens a web browser and begins to search for the correct way o filter data using Lodash.
Pat searches for ”Lodash” in Google, opens the home page of textttlodash.com, locates the
page containing API documentation, and finds hundreds of Lodash API functions. It takes
a few minutes for Pat to locate the documentation for the API method filter (shown as
Fig 2.1). Pat learns from the documentation that the filter method takes two parameters:
a collection and a predicate. The collection can be either an array or an object, and the
predicate is a function used to filter the array. Having found the needed information, Pat
returns from the journey back to editing the JavaScript document, where Pat completes
the method call.

Consider how the above use case would be different if Pat had a plugin to automatically
read the Lodash documentation and provide intelligent parameter suggestions:

1. Pat writes var male users = filter(

2. The variable users pops up as a suggestion for the first parameter

3. Pat chooses users and press ENTER

4. The function isMale(user) pops up as a suggestion for the second parameter

5. Pat choose isMale(user) and presses ENTER

8

With only 5 steps, an unfamiliar API function call is completed, and John never loses
focus on his current task.

The following chapters will introduce some related works and show how our documentation-
based API parameter suggestions work.

9

Chapter 3

Related Work

3.1 API Usage Patterns

API usage patterns are patterns that guide consumers how to use APIs to achieve their
goals. They show the sequences of API function calls for developers. For example, if a
developer want to write something into a file, an API usage pattern will tell him/her which
API function should be called first to open the file, then which API function should be
called to write text content, and which function should be invoked finally to close the file.

In 2005, Holmes et al. [18] proposed Strathcona that helps developers by automatically
locating source code examples that are relevant to their work. In 2009, Zhong et al. [45]
proposed an approach called MAPO that mines API usage patterns and uses mined pat-
terns as an index for recommending associated code snippets to aid programming. Buse
et al. [11] tried to build API usage patterns by synthesizing code examples from docu-
mentation and online question and answering forums like StackOverflow. Saied et al. [31]
proposed a technique for mining multi-level API usage patterns to exhibit the co-usage
relationships between methods of the API of interest across interfering usage scenarios. In
2003, Montandon et al. [22] described a platform that instruments the standard Java-based
API documentation format with concrete examples of usage and can also be applied to
Android APIs. Nguyen et al. [25] proposed GrouMiner, a graph-based approach that rep-
resents usage patterns as graphs for mining. Wang et al. [39] presented UP-Miner to mine
succinct and high-coverage patterns from source code by clustering API call sequences. In
2014, a new method called Baker was proposed to link up-to-date source code examples to
API documentation [33]. In 2016, Fowkes et al. [16] designed a parameter-free probabilistic

10

API mining algorithm, PAM, that uses a novel probabilistic model based on a set of API
patterns and a set of probabilities to infer the most interesting API patterns.

3.2 Software Text Analysis

Documentation contains a lot of useful information. Forward et al. [15] pointed out that
documentation content is relevant and important in their research. They also found that
good software documentation technologies should be more aware of professionals’ require-
ments, opposed to blindly enforce documentation formats or tools.

A lot of useful technologies have been proposed to analyse software documentation.
Rubio-González et al. [30] used static program analysis to examine mismatches between
documented and actual error codes. Many techniques have been proposed to automatically
analyze comments and detect inconsistencies between comments and source code [35], [36],
[37]. Dalip et al. [13] proposed an approach that automatically estimates the quality of
the documents in the digital library. DMOSS [12] is a toolkit that can systematically
assess the quality of non source code text found in software packages. Schiller et al. [32]
investigated code contracts of 90 C# open-source projects. Wong et al. [40] designed an
approach called DASE to improve the performance of symbolic execution for automatic
test generation and bug detection. DASE can automatically extract input constraints from
documents of a software project, and use these constraints to find out core execution paths
in the program. Blasi et al. [9] presents an approach, Jdoctor, that translates Javadoc
comments into executable procedure specifications written as Java expressions. Yang et
al. [41] designed D2Spec for extracting web API specifications from the documentation
pages based on machine learning.

3.3 Code Completion System

Enhancing current completion systems to work more effectively with large APIs have been
investigated in previous studies [24], [10]. These studies made use of database of API usage
recommendation, type hierarchy, context filtering and API methods functional roles for
improving the performance of API method call completion. Calcite is an Eclipse plugin that
helps developers instantiate classes by adding Java API suggestions to the code completion
menu [23]. Omar et al. [26] designed Graphite, an active code completion tool allowing
Java library developers to introduce interactive and highly-specialized code generation
interfaces directly into the editor. Robbes et al. [29] proposed an approach to improve

11

code completion with program history. Ginzberg et al. [17] proposed an automatic code
completion approach by developing an LSTM model. Asaduzzaman et al. [7] proposed a
context sensitive code completion technique that uses, in addition to the aforementioned
information, the context of the target method call. Recently, Pythia, a novel AI-assisted
code completion system developed by Microsoft, has been available as part of Intellicode
extension in Visual Studio Code IDE [34].

3.4 API Usage Recommendation

Most of the current API recommendation techniques focus on API usage recommendation,
which tells the consumers which is the right API method to call [28], [42], [19]. These
techniques explore the relationship among the API functions and the context of real world
source code that invokes the APIs and make use of these relations to give recommendation.
Rahman et al. [28] proposed RACK that recommends a list of relevant APIs for a natural
language query for code search by exploiting keyword-API associations from the crowd-
sourced knowledge of StackOverflow. LibraryGuru [42] recommends suitable Android APIs
for given functionality descriptions. Ma et al. [19] proposed an approach ServRel to recom-
mend relevant Web APIs based on the proposed service cooperative network for a target
Web API.

3.5 API Parameter Recommendation

Another kind of techniques are used for helping developers choose the right parameters
for an API method call. Previous researches show that compared with suggesting the
right API method to call, software developers like a tool that can recommend the right
parameter much more [10], [27]. However, there are only few studies on it. Zhang et al. [44]
proposed an approach, Precise for recommending API parameters by mining existing code
bases, and 53% of the recommendations are exactly the same as the actual parameters.
However, Precise can only work for Java projects and requires existing code examples that
use the APIs.

As discussed in Section 2.1, statically typed languages like Java and dynamically typed
languages like JavaScript are different. Precise makes use of the property of statically typed
languages that the type of a variable is fixed, and will not change after being declared.
After getting the abstract syntax tree (AST) of the program, Precise can easily know the
type of each API parameter and each variable. However, for dynamically typed languages,

12

type information is not contained in the AST, so Precise cannot work for dynamically
typed languages. In addition, Precise is based on machine learning technologies, which
need lots of usage examples as training data. It will be difficult to extend Precise for the
API libraries that are less popular or do not have enough code examples.

13

Chapter 4

Approaches

In this chapter, we describe our approach for giving suggestions for API parameters.

4.1 Overview

Figure 4.1: Workflow of API Parameter Recommendation

Figure 4.1 shows the workflow of the entire process. Our approach can be divided
into three parts: preprocessing, analysing the project source code, and generating param-
eter candidates. First, we collect and preprocess the library documents to build an API

14

database that stores the essential information of each API functions, such as method name,
number of arguments, etc. Once the API database is set up, we need to analyse the source
code for each parameter suggestion query. In this part, abstract syntax tree (AST) data
will be generated for each source code file. The final step is to use the API data and AST
data to generate parameter candidates for the suggestion query. This part involves two
different approaches depending on whether the parameter in the query is non-function-type
or function-type.

Section 4.2 describes the preprocessing part. Section 4.3 shows the detail of how to anal-
yse the source code for each project that uses the APIs. Section 4.4 and Section 4.5 explains
the candidate generating approaches for non-function-type parameter and function-type
parameter respectively.

4.2 Preprocessing

Preprocessing is the first part of our approach. Figure 4.2 and Figure 4.3 demonstrate the
workflow of the preprocessing step.

From the library documentation, we can get lots of information about an API element,
including its arguments, what it returns, some description about the API, and some ex-
ample code telling developers how to use the API in practice. This information is always
provided, and we can use a web crawler to collect them from the online documents. We
note that this collection step only needs to be performed once per library if we build these
information into a database, then the documentation data can be reused for each API
parameter suggestion query. Figure 4.2 shows how we build the database and what is
contained in our database.

We study documents of many famous JavaScript libraries in our research. Although
these documents are in different format, most of them are all well-structured. Some exam-
ples are shown as Figure 4.4 and Figure 4.5. Thus, although we have to write a different
web crawler for each library, the task is relatively straightforward.

As shown in Figure 4.2, for each API element, we only store four basic kinds of infor-
mation in our databse: argument, description, return, and example. Most documents such
as Figure 4.4 and Figure 4.5 will provide this information. So this step can be used on
most of popular libraries today.

Once we set up the database, we go to step 2, which is shown as Figure 4.3.

15

Figure 4.2: Preprocess: Step 1

Since we store argument information in our database, we can easily get the name and
the type of the argument. In JavaScript, there are 6 basic types: Numeric, String, Boolean,
Object, Array, and Function.

For our approach, we deal with Function-type arguments differently from other types,
so here for each argument in each API function, we have to decide whether it should be
function-type or non-function-type (Numeric, String, Boolean, Object, or Array) according
to the documentation.

If the target argument is a non-function-type argument, we should use the approach
for non-function-type parameter in Section 4.3 to give the suggestions.

If the target argument is a function-type argument, we should first take the name of
the target argument and the description part of the API, and analyze the description
part to see if there are any descriptions about how many parameters this function (the
function-type argument) should have. We study a lot of popular JavaScript libraries, and
find most of the documents will provide this kind of information although the ways of

16

Figure 4.3: Preprocess: Step 2

their expressions may be different. Figure 4.6 shows the related description in Lodash
document, and Figure 4.7 shows the related decription in AngularJS document. So for
different libraries, we have to build a different analyzer to get how many parameters the
function-type argument should have. Once we get this number of parameters, n, we use
the approach for function-type parameter in Section 4.5 to give the suggestions.

We use the API documentation in Figure 4.6 as an example to illustrate the preprocess
step. Using a web crawler, we can easily collect the arguments, description, return, and
example of the API function assignInWith. This function has three arguments: object,
sources, and customizer. The types of first two arguments are both Object, and the third
argument is a Function. So the third argument is a function-type parameter, and the first
two arguments are non-function-type. We check all the sentences in the description part,
and the last two sentences both mention customizer. From the last sentence, using simple
string match techniques, we get to know that customizer is a function that should have
five arguments, so the number of parameters, n, of it will be 5. All the information of
assignInWith will be stored in the API database.

17

Figure 4.4: Lodash Documentation Example

4.3 Analysing the Project Source Code

After setting up the database for the library, we use the information to give the API
parameter suggestions. Given a project that invoke an API, we have to analyze the source
code. Figure 4.8 shows the approach for analysing the source code of project which uses
the APIs.

18

Figure 4.5: Vue.js Documentation Example

For our approach, we only take the source code in the same file with the API call.
We first need to use a JavaScript parser to parse the source code and get the abstract
syntax tree (AST) of it. Once we have the AST, we use an AST parser to collect some

19

Figure 4.6: Number of Arguments for Function-type Parameter in Lodash Documentation

important information, including all the APIs that are imported in the file, a set of variables
that represent Functions, a set of variables that represent Numerics, a set of variables that
represent Booleans, a set of variables that represent Strings, a set of variables that represent
Objects, and a set of variables that represent Arrays. We can use these information and
the information from the database in Section 4.2 to give the API parameter suggestions.

4.4 Approach for Non-function-type Parameter

Figure 4.9 demonstrates the approach for suggesting candidates for a non-function-type
parameter.

20

Figure 4.7: Number of Arguments for Function-type Parameter in AngularJS Documenta-
tion

We can easily look up the type of the parameter we want to recommend in the database
in Section 4.2, and we call the type X, which can be either one of Numeric, String, Boolean,
Object, or Array. Because we classify the variables according to their types in Section 4.3,
we can pick out a set of variable that represent type X, and these variables can be part of
the candidate set.

We also need to check all the imported APIs in Section 4.2. We look up their return
types in the database. If their return values are type X, then these API calls can also be
part of the candidate set.

For each of the imported API, we should calculate the similarity between the target
API and it. If we find a similar API to the target API, we can use the actual value of
the similar argument as a suggestion for the target parameter. For example, we want to
recommend a value for the first parameter of an API function, pullAllWith, and we check

21

Figure 4.8: Analyse the Project Source Code

all the imported APIs and find one API function called pullAllBy. We look them up in
the database, and find that not only their function names are similar, but also the first
arguments of them have the same name and the same type, so we think these two APIs are
similar, and we can use the actual value of the first parameter of pullAllBy as a suggestion
for the first argument of pullAllWith. In this way, similar arguments from similar API
functions can be used as part of the candidate set.

In addition, we use constants of type X as our default options so that when our approach
cannot find any variables that satisfy the requirements, we can still give some suggestions.

We use the following code snippet as an example to illustrate how the approach works.

var arr = [1];

var other = concat(arr, 2, [3], [[4]], ‘’);

var num = 5;

compact(?);

22

Figure 4.9: Approach for Non-function-type Parameter

We need to generate the suggestion candidates for the first parameter of compact, the
documentation of which can be found in Figure 4.4. From Figure 4.4, we know that the
type of the first parameter is Array. After source code analysis, we can know that arr is
an Array, and num is a Number. We also need to check another imported API function
concat. It is also a Lodash API function, which returns an Array. Therefore, it is easy to
infer that the type of other is Array. We should suggest an array constant as our default
option as well, and we usually choose an empty array. So for this query, we will generate
a candidate set that consists of arr, other, and an empty array.

4.5 Approach for Function-type Parameter

Figure 4.10 demonstrates the approach for suggesting candidates for a function-type pa-
rameter.

23

Figure 4.10: Approach for Function-type Parameter

The approach for Function-type parameter is similar to that for non-function-type
parameter.

Because it is only for function-type parameter, we only need to pick the set of functions
from the AST data in Section 4.3. As described in Section 4.2, we can know the number
of parameters, n, for the function-type parameter. So we should check all the variables
which represent functions to see if there are any functions called with n parameters. These
variables which represent functions with n parameters should be part of the candidate set.

Similarly, We also need to check all the imported APIs in Section 4.2. We look up their
argument information in the database. If they have n parameters, then these API calls
can also be part of the candidate set.

And for each of the imported APIs, we calculate the similar parameters of similar
API functions to our target API. The way to find similar arguments is similar to the
corresponding descriptions in Section 4.4, so we do not repeat it here.

24

Since it is for function-type parameter, we use anonymous functions as our default
options here.

We use the following code snippet as an example to illustrate how the approach works.

function mutate(o1, o2, mutation, cond) {

if (cond) {

return assignWith(o1, o2, mutation);

} else {

return assignInWith(o2, o1, ?);

}

}

We need to generate the suggestion candidates for the third parameter of assignInWith,
the documentation of which can be found in Figure 4.6. From Figure 4.6, we know that it is
a function-type parameter, and it requires five parameters. After source code analysis, we
can find two function-type variables: mutate and assignWith, but none of them have five
parameters. Then we check other imported API functions and find assignWith. It takes
three arguments and returns an Object. We cannot find any suggestion candidates until
now. However, when we calculate the similarity between assignWith and assignInWith,
we find they are similar APIs, and their third arguments are also similar. So we put the
third argument of assignWith, mutation into the candidate set. In addition, We should
suggest an anonymous function as our default option. So for this query, we will generate
a candidate set that consists of mutation, and an anonymous function.

25

Chapter 5

Experimental Setup

In this section, we will explain how we conduct experiments to evaluate the performance
of our approach.

5.1 Research Questions

The objective of our experiments is to investigate how useful our approach can be applied
for generating parameter suggestions to API users. So we investigate two research questions
and design the experiments aims to answer them:

• RQ1: How accurate are the parameter suggestions of the approach?

• RQ2: How many suggestions does the approach generate for input source code files?

The motivation for the first research question is to assess the accuracy of the parameter
suggestion approach. It help us know if our approach can generate good suggestions for
use cases in real projects.

The motivation for the second research question is to evaluate the efficiency of our
parameter suggestion approach. Usually our approach gives more than one suggested
variables for one parameter query. However, if our approach gives too many suggestions,
it will be difficult for program developers to pick the right variable. Therefore, we want to
know if number of suggestions that our approach generates is practical for most real-world
situations.

26

Table 5.1: JavaScript Libraries Used as API Documentation Data Set

Library Version

Lodash 4.17.10
Vue.js 2.5
AngularJS 1.7.8
Async 2.6.2
Zlib 1.0.5

5.2 Data Sets Collecting

To evaluate the accuracy and efficiency of our API parameter suggestion approach, we
attempt to predict the parameters of different API functions from different libraries, using
JavaScript source code from real-world open source projects.

5.2.1 API Documentation Data Set

The first step of the experiment is to collect the documentation information of five different
third-party JavaScript libraries. The libraries are selected based on community popularity
and frequency of use. The list of libraries selected is displayed in Table 5.1. For each
library, the following information of each API method’s documentation are collected and
stored in a JSON file:

• Function name

• Function description

• Return type

• Return description

• Argument types

• Argument names

• Argument descriptions

27

• Number of parameters for any function-type parameters

• Method signature

• Code examples

There are two ways to collect these information.

For some libraries, a web crawler can be used to extract the necessary information from
their online documentation if the documentation are well-structured. The web crawlers are
written in Python and based on the Scrapy framework [4]. Because each library’s online
documentation is formatted differently, we have to write a different web crawler for each
library.

Another way to collect the documentation information is to manually copy-and-paste
this information. This is used when either the library contains only few methods or the
online documentation is not well-structured. For libraries with few API functions, it would
be more time-consuming to write a web crawler. For badly-structured online documen-
tation, it is hard to write a web crawler that works perfectly, so manually collecting the
information is easier and better. In an ideal world, this information might be easily ex-
tractable from a website that uses tags or makes the API details easy to access in some
other way.

Here is an example of the JSON file 1 of the API function, assignInWith, the documen-
tation of which is shown in Figure 4.6:

{

"return": {

"type": "Object",

"description": "Returns object."

},

"description": "This method is like _.assignIn except that it

accepts customizer which is invoked to produce the

assigned values. If customizer returns undefined,

assignment is handled by the method instead. The

customizer is invoked with five arguments:

(objValue, srcValue, key, object, source).

1The example code is utf-8 encoded, so it is human unreadable.

28

Note: This method mutates object.",

"arguments": [

{

"type": "Object",

"name": "object",

"description": "The destination object."

},

{

"type": "Object",

"name": "sources",

"description": "The source objects."

},

{

"type": "Function",

"name": "customizer",

"description": "The function to customize assigned values."

}

],

"signature": "_.assignInWith(object, sources, [customizer])",

"example": "function\u00a0customizer(objValue,\u00a0srcValue)\u00a0

{\n\u00a0\u00a0return\u00a0_.isUndefined(objValue)\u00a

0?\u00a0srcValue\u00a0:\u00a0objValue;\n}\n\u00a0\nvar\

u00a0defaults\u00a0=\u00a0_.partialRight(_.assignInWith

,\u00a0customizer);\n\u00a0\ndefaults({\u00a0’a’:\u00a0

1\u00a0},\u00a0{\u00a0’b’:\u00a02\u00a0},\u00a0{\u00a0’

a’:\u00a03\u00a0});\n//\u00a0=>\u00a0{\u00a0’a’:\u00a01

,\u00a0’b’:\u00a02\u00a0}\n",

"name": "assignInWith"

}

5.2.2 JavaScript Project Data Set

Once the documentation had been summarized for each API method, we need a large
repository of JavaScript files to test against. Therefore, we choose to clone the top 1,000

29

JavaScript projects from GitHub ordered by their star ratings. In total, the top 1000
projects from GitHub contain over 200,000 JavaScript files.

Because not all these JavaScript files include the target API libraries in the previous
data set, we can filter out the files that do not use any target APIs. We use a keyword
search to locate every file that uses at least one of the target libraries. This can be done
by using a UNIX grep command to locate all files containing import statements for target
libraries. In the end, we found 1,023 files which make at least one call to a function
contained in any of the target library APIs.

5.3 Generating Abstract Syntax Tree

According to our approach introduced in Section 4.3 (referring to Figure 4.8), all the
JavaScript source code files from Section 5.2.2 must be converted into abstract syntax
trees (AST).

We implement our JavaScript parser based on the Esprima framework [2] to generate
the AST for each source code file and store it as a JSON file.

Given an example of JavaScript source code file as following:

function addOne(a) {

return a + 1;

}

var b = addOne(3);

Here is the JSON file of the AST generated for the example above:

{

"type": "Program",

"body": [

{

"type": "FunctionDeclaration",

"id": {

"type": "Identifier",

30

"name": "addOne"

},

"params": [

{

"type": "Identifier",

"name": "a"

}

],

"body": {

"type": "BlockStatement",

"body": [

{

"type": "ReturnStatement",

"argument": {

"type": "BinaryExpression",

"operator": "+",

"left": {

"type": "Identifier",

"name": "a"

},

"right": {

"type": "Literal",

"value": 1,

"raw": "1"

}

}

}

]

},

"generator": false,

"expression": false,

"async": false

},

{

"type": "VariableDeclaration",

"declarations": [

31

{

"type": "VariableDeclarator",

"id": {

"type": "Identifier",

"name": "b"

},

"init": {

"type": "CallExpression",

"callee": {

"type": "Identifier",

"name": "addOne"

},

"arguments": [

{

"type": "Literal",

"value": 3,

"raw": "3"

}

]

}

}

],

"kind": "var"

}

],

"sourceType": "script"

}

After generating ASTs for the source code files, we note that only a fraction of each
library’s API functions are discovered in the GitHub projects we collected. The number of
unique methods and number of method instances that were found for each library is shown
in Table 5.2. In total, 43 unique functions from the 5 libraries are discovered.

32

Table 5.2: API Functions Found in the GitHub Projects

Library
Total number of
functions in library

Unique functions found Function instances found

Lodash 574 10 875
Vue.js 10 10 561
AngularJS 9 9 200
Async 78 11 39
Zlib 7 3 6

5.3.1 API Parameter Suggestion

We implement an analyzer based on the our approach introduced in Section 4.4 and Sec-
tion 4.5, which takes the AST file and the API documentation information as inputs, and
outputs a CSV file which contains the parameter prediction results. Each row in the output
file contains a set of suggestions for a single argument, the target API function, the target
file, the argument number, the actual parameter value, the number of suggestions, and a
list of suggestions.

Then we analyze the CSV file containing the predictions to answer our research ques-
tions:

• RQ1: How accurate are the parameter suggestions of the approach?

• RQ2: How many suggestions does the approach generate for input source code files?

In RQ1 we compute the accuracy of our prediction results. A given parameter prediction
is considered successful if the actual value from the source code file is present in the list of
suggestions, otherwise considered failed. To compute the accuracy for each API parameter
prediction, we divide the number of successes by the total number of API function calls
(the sum of successes and fails for each API function parameter).

In RQ2 we count the number of our suggestions for each API parameter prediction
query. For each API parameter, we calculate the median and maximum number of sugges-
tions.

33

Chapter 6

Experiment Results

Based on our experimental results, we are willing to answer the following research questions:

• RQ1: How accurate are the parameter suggestions of the approach?

• RQ2: How many suggestions does the approach generate for input source code files?

6.1 RQ1: How accurate are the parameter sugges-

tions of the approach?

To calculate the accuracy of our API parameter suggestion approach, the actual parameter
values used in the source code are compared to the list of suggestions. For each parameter,
if the list of suggestions contains the actual value, then consider it as successful; if not
then it fails. To compute the overall accuracy for each library, we divide the number of
successes by the total number of API function calls of the library.

The detailed results for each target library are shown in Table 6.1, Table 6.2, Table 6.3,
Table 6.4, and Table 6.5 respectively. The overall results are shown in Table 6.6.

The overall suggestion accuracy of our approach for the target libraries is 64.6%, and
our approach achieves an accuracy over 50% for 4 out of 5 libraries. For the most successful
library, Async, the accuracy is 81.3%.

However, when we look at the detailed results for each target library, we see a lot
of predictions with 0.0% accuracy, which means our approach cannot give any correct

34

Table 6.1: Parameter Suggestion Accuracy for Lodash

Function Name
Suggestion Accuracy (%)

Number of API calls
1st Parameter 2nd Parameter

filter 46.7 93.3 105
reduce 35.4 95.1 82
some 52.2 78.9 90
times 80.7 100.0 31
transform 80.0 100.0 5
partition 16.7 100.0 6
find 45.3 91.5 351
map 35.0 83.8 160
remove 45.5 63.6 11
every 67.7 70.6 34

Table 6.2: Parameter Suggestion Accuracy for Vue.js

Function Name
Suggestion Accuracy (%)

Number of API calls
1st Parameter 2nd Parameter 3rd Parameter

extend 95.2 - - 103
filter 66.7 0.0 - 12
component 90.4 32.5 - 114
mixin 76.9 - - 26
directive 100.0 66.7 - 9
compile 100.0 - - 2
use 4.6 - - 176
delete 60.7 85.7 - 28
set 47.3 81.8 81.8 55
nextTick 77.8 72.2 - 36

suggestion for these parameters even once. This unexpected huge variance in accuracy for
different parameters needs further investigation.

35

Table 6.3: Parameter Suggestion Accuracy for AngularJS

Function Name
Suggestion Accuracy (%)

Number of API calls
1st Parameter 2nd Parameter

toJson 12.5 100.0 24
forEach 66.7 100.0 3
module 98.1 100.0 52
equals 0.0 0.0 3
isDefined 0.0 - 3
isString 0.0 - 1
isUndefined 0.0 - 2
copy 31.0 66.7 29
element 43.4 - 83

Table 6.4: Parameter Suggestion Accuracy for Async

Function Name
Suggestion Accuracy (%) Number of

API calls1st Parameter 2nd Parameter 3rd Parameter 4th Parameter

times 100.0 100.0 100.0 - 1
eachSeries 66.7 100.0 100.0 - 6
parallel 100.0 100.0 - - 3
series 66.7 100.0 - - 3
waterfall 100.0 50.0 - - 2
eachLimit 40.0 66.7 100.0 100.0 15
tryEach 100.0 100.0 - - 2
map 50.0 100.0 100.0 - 4
each 0.0 100.0 0.0 - 1
timesLimit 0.0 100.0 100.0 100.0 1
whilst 100.0 100.0 100.0 - 1

To find out why the accuracy for different parameters varies so widely, we manually
check all the cases where the accuracy is 0.0%. After manual analysis, we find that the
reasons for these failures can be classified into 4 types:

36

Table 6.5: Parameter Suggestion Accuracy for Zlib

Function Name
Suggestion Accuracy (%)

Number of API calls
1st Parameter 2nd Parameter

deflate 100.0 0.0 1
gzip 66.7 0.0 3
deflateRaw 100.0 0.0 2

Table 6.6: Overall Parameter Suggestion Accuracy for Target Libraries

Library Overall Accuracy (%)

Lodash 67.0
Vue.js 57.7
AngularJS 64.3
Async 81.3
Zlib 41.7

Overall 64.6

1. The parameter is imported from another file or library.

2. The parameter is contained within a dictionary.

3. The parameter is a property of an object.

4. It is difficult to infer the type of the right parameter from given code context.

The statistics of the reasons are displayed in Table 6.7. The major reasons are that
the parameter is an object property, and that it is difficult to infer the type of the right
parameter. To solve these problems, we need to improve the type analysis techniques on
JavaScript source code, but this requires significant effort so we leave it as possible future
work.

Our documentation based API parameter suggestion approach can give good suggestions
in most cases. On average, the probability that the correct parameter is in our generated
suggestion list is 64.6%.

37

Table 6.7: Reasons for Fail Cases

Reason Count Percentage

Imported 6 18.2%
Dictionary member 1 3.0%
Object property 13 39.4%
Type not detected 13 39.4%

6.2 RQ2: How many suggestions does the approach

generate for input source code files?

We use this research question to investigate To answer RQ2, we compute the median and
maximum number of suggestions for each API function parameters. Median numbers can
reflect the efficiency of our approach in average cases, and maximum numbers can show
the situation of the worst cases. All these results for different target libraries are displayed
in Table 6.8, Table 6.9, Table 6.10, Table 6.11, and Table 6.12 respectively.

Table 6.8: Number of Parameter Suggestions Statistics for Lodash

Function Name
Median of Suggestions Maximum of Suggestions

1st Parameter 2nd Parameter 1st Parameter 2nd Parameter

filter 9 5 46 18
reduce 8 1 46 4
some 7 5 36 30
times 2 4 5 23
transform 7 1 10 1
partition 7 5 34 14
find 5 4 46 31
map 9 4 47 31
remove 6 3 15 8
every 13 8 45 31

38

Table 6.9: Number of Parameter Suggestions Statistics for Vue.js

Function Name
Median of Suggestions Maximum of Suggestions

1st Para 2nd Para 3rd Para 1st Para 2nd Para 3rd Para

extend 2 - - 8 - -
filter 1 3 - 2 16 -
component 1 10 - 9 52 -
mixin 1 - - 3 - -
directive 1 5 - 1 7 -
compile 1 - - 1 - -
use 4 - - 55 - -
delete 2 1 - 9 3 -
set 2 1 8 10 3 21
nextTick 2 2 - 4 3 -

Table 6.10: Number of Parameter Suggestions Statistics for AngularJS

Function Name
Median of Suggestions Maximum of Suggestions

1st Parameter 2nd Parameter 1st Parameter 2nd Parameter

toJson 6 6 21 9
forEach 2 4 2 7
module 2 1 6 5
equals 16 17 42 43
isDefined 13 - 14 -
isString 3 - 3 -
isUndefined 3 - 3 -
copy 13 29 57 35
element 2 - 7 -

From the detailed tables, we find that the median number of suggestions are usually
smaller than or equal to 10 (an acceptable number of suggestions), which means our ap-
proach does not give too many suggestions overall. However, the maximum number of
suggestions for each parameter can be much larger. It can be even as high as 57 for the

39

Table 6.11: Number of Parameter Suggestions Statistics for Async

Function
Name

Median of Suggestions Maximum of Suggestions
1st Para 2nd Para 3rd Para 4th Para 1st Para 2nd Para 3rd Para 4th Para

times 4 14 14 - 4 14 14 -
eachSeries 3 13 13 - 4 13 13 -
parallel 3 10 - - 8 18 - -
series 10 21 - - 18 30 - -
waterfall 4 19 - - 4 19 - -
eachLimit 5 2 20 20 20 7 30 30
tryEach 1 11 - - 1 11 - -
map 10 11 11 - 11 11 11 -
each 1 4 4 - 1 4 4 -
timesLimit 4 5 29 29 4 5 29 29
whilst 8 8 8 - 8 8 8 -

worst case. So for this kind of cases with too many suggestions, our approach still needs
to be refined.

We also draw a bar chart Figure 6.1 to display the distribution of numbers of sugges-
tions. In Figure 6.1, blue bars shows the distribution for only successful cases in Section 6.1,
and red bars shows the distribution for all the cases. The numbers on the horizontal axis
represent the number of suggestions. We aggregate the numbers larger than or equal to
15 together as “>= 15”. The height of each bar represents the percentage of number of
suggestions occurs. For example, the first blue bar in Figure 6.1 means that 21.4% of
parameter predictions give only 1 suggestion when considering only successful cases.

Comparing the blue and red bars, we do not see any significant difference. Over 60%
predictions suggest at most 5 variables, and over 80% suggest at most 10 variables. Both
charts show that our approach is much more likely to give a smaller amount of suggestions,
which is more efficient and more helpful for developers. Therefore, in general our approach
is efficient and usually do not generate excessive amount of suggestions.

Our documentation-based API parameter suggestion approach usually does not generate
too many suggestions. On average, over 60% predictions suggest at most 5 variables,
and over 80% suggest at most 10 variables.

40

Table 6.12: Number of Parameter Suggestions Statistics for Zlib

Function Name
Median of Suggestions Maximum of Suggestions

1st Parameter 2nd Parameter 1st Parameter 2nd Parameter

deflate 2 1 2 1
gzip 2 1 4 2
deflateRaw 11 6 11 6

Figure 6.1: Distribution of Numbers of Suggestions

41

Chapter 7

Threats to Validity

7.1 Data Set Selection

In the data collection process, we collect the documentation information for 5 third-party
JavaScript libraries, and 1,000 JavaScript projects from GitHub.

For this research, we focused on a single programming language: JavaScript. While our
approach can be generalized to other languages since it does not require any JavaScript
specific properties, we suspect that our experimental results from this thesis might be quite
different for other programming languages.

Since our approach is based on documentation analysis, the quality of API documenta-
tion is an important factor that will impact our experimental results. Because we want our
results to be more representative, we choose our target libraries based on their community
popularity and frequency of use. However, it still causes some bias since most well-known
and popular third-party libraries are also well-documented. It is hard to avoid, and what
we can do is only to strike a balance.

We believe our sample of libraries is representative of most JavaScript APIs since we
choose them based on their popularity. However, there are too many JavaScript APIs in
real-world. Therefore, further research is required to get a more complete picture of typical
API usage.

Similarly, although we tried to avoid bias when collecting testing projects, by picking
the top 1,000 JavaScript projects on GitHub according to their star rating, there are much
more projects in real-world, and not all of them are on GitHub. We also notice that not
all of the API functions in the five libraries are covered in our testing projects. Therefore,

42

further research on more real-world projects can be conducted to get more generalizable
results.

7.2 API Documentation Information Collection

Threats may also come from our data mining and analysis techniques. To collect docu-
mentation information for each library, we used a combination of web crawler scripts and
manual analysis. If there are any errors copying the documentation information, it would
definitely influence the accuracy of our results. We examine the JSON files of manually
created documentation information, making sure there is no such error.

43

Chapter 8

Conclusion and Future Works

8.1 Conclusion

APIs are highly beneficial to modern software development, as they free software developers
from writing repetitive code, and provides more robust implementations. They improve
the efficiency of software development. However, learning how to use an API effectively can
be slow and tedious. When an unfamiliar API library is to be used for the first time, the
developer must typically pause their current task to chase down documentation and code
samples that describe the input, output, and intended use of the desired API methods.
Since developers use APIs so frequently in their daily work, the time they spend searching
for API information and learning has a considerable impact on their productivity.

Trying to solve this usability barrier caused by unfamiliar libraries, this thesis proposes
an approach to predict the parameters when calling an API function. Our approach pre-
processes API documentation, and help developers extract possible parameter candidates
from the code context, and give them as suggestions.

Unlike other existing approach [44], our approach is based on API documentation anal-
ysis, so it does not require a lot example use cases to study from. Also [44] can only
be used for Java projects, but our approach can be used for both statically-typed and
dynamically-typed languages.

To evaluate the accuracy of our approach, we analyzed over 200,000 files from the top
1,000 JavaScript projects on GitHub. We parsed every file and predicted the parameters of
every function belonging to any of 5 popular JavaScript libraries. 1,681 instances of target
functions are discovered. We compare each prediction to the parameter that the developer

44

actually used in the source code file to compute the accuracy. On average, the probability
that the correct parameter is in our generated suggestion list is 64.6%.

8.2 Future Works

For future works, we plan to explore the following aspects:

Applying to other programming languages: Although we test our approach on
JavaScript libraries and projects, it can be applied to other programming languages as
well, because it does not require any language specific properties. We believe that this
approach can also perform well on other languages, but future experiments are still needed
to validate it.

API documentation quality: The quality of API documentation can influence the
documentation based API suggestion approaches, so on the other hand, these documenta-
tion based approaches can help examining and improving the quality of API documenta-
tion.

45

Bibliography

[1] Eclipse 3.6.2. https://archive.eclipse.org/eclipse/downloads/drops/R-3.6.

2-201102101200.

[2] Esprima. https://esprima.org.

[3] JBoss 5.0. https://docs.jboss.org/jbossas/docs/Server_Configuration_

Guide/beta500/html/index.html.

[4] Scrapy. https://scrapy.org.

[5] Tomcat 7.0. http://tomcat.apache.org/tomcat-7.0-doc.

[6] M. Abadi, L. Cardelli, B. Pierce, B. Pierce, and G. Plotkin. Dynamic typing in a
statically typed language. ACM Trans. Program. Lang. Syst., 13(2):237–268, Apr.
1991.

[7] M. Asaduzzaman, C. Roy, K. Schneider, and D. Hou. Cscc: Simple, efficient, context
sensitive code completion. Proceedings - 30th International Conference on Software
Maintenance and Evolution, ICSME 2014, pages 71–80, 12 2014.

[8] J. W. Backus, R. J. Beeber, S. Best, R. Goldberg, L. M. Haibt, H. L. Herrick, R. A.
Nelson, D. Sayre, P. B. Sheridan, H. Stern, I. Ziller, R. A. Hughes, and R. Nutt. The
fortran automatic coding system. In Papers Presented at the February 26-28, 1957,
Western Joint Computer Conference: Techniques for Reliability, IRE-AIEE-ACM ’57
(Western), pages 188–198, New York, NY, USA, 1957. ACM.

[9] A. Blasi, A. Goffi, K. Kuznetsov, A. Gorla, M. D. Ernst, M. Pezzè, and S. D. Castel-
lanos. Translating code comments to procedure specifications. In Proceedings of the
27th ACM SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA 2018, page 242–253, New York, NY, USA, 2018. Association for Computing
Machinery.

46

https://archive.eclipse.org/eclipse/downloads/drops/R-3.6.2-201102101200
https://archive.eclipse.org/eclipse/downloads/drops/R-3.6.2-201102101200
https://esprima.org
https://docs.jboss.org/jbossas/docs/Server_Configuration_Guide/beta500/html/index.html
https://docs.jboss.org/jbossas/docs/Server_Configuration_Guide/beta500/html/index.html
https://scrapy.org
http://tomcat.apache.org/tomcat-7.0-doc

[10] M. Bruch, M. Monperrus, and M. Mezini. Learning from examples to improve code
completion systems. In Proceedings of the 7th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on The Foundations of
Software Engineering, ESEC/FSE ’09, pages 213–222, New York, NY, USA, 2009.
ACM.

[11] R. P. L. Buse and W. Weimer. Synthesizing api usage examples. In Proceedings of
the 34th International Conference on Software Engineering, ICSE ’12, pages 782–792,
Piscataway, NJ, USA, 2012. IEEE Press.

[12] N. R. Carvalho, A. Simões, and J. J. Almeida. Open source software documentation
mining for quality assessment. In Advances in Information Systems and Technologies,
pages 785–794. Springer, 2013.

[13] D. H. Dalip, M. A. Gonçalves, M. Cristo, and P. Calado. Automatic assessment
of document quality in web collaborative digital libraries. J. Data and Information
Quality, 2(3):14:1–14:30, Dec. 2011.

[14] S. Endrikat, S. Hanenberg, R. Robbes, and A. Stefik. How do api documentation and
static typing affect api usability? In Proceedings of the 36th International Conference
on Software Engineering, ICSE 2014, pages 632–642, New York, NY, USA, 2014.
ACM.

[15] A. Forward and T. C. Lethbridge. The relevance of software documentation, tools and
technologies: A survey. In Proceedings of the 2002 ACM Symposium on Document
Engineering, DocEng ’02, pages 26–33, New York, NY, USA, 2002. ACM.

[16] J. M. Fowkes and C. A. Sutton. Parameter-free probabilistic api mining across github.
In FSE 2016, 2016.

[17] A. Ginzberg, L. Kostas, and T. Balakrishnan. Automatic code completion. Technical
report, Technical Report. Stanford CS224n Class Project, 2017.

[18] R. Holmes, R. J. Walker, and G. C. Murphy. Strathcona example recommenda-
tion tool. In Proceedings of the 10th European Software Engineering Conference Held
Jointly with 13th ACM SIGSOFT International Symposium on Foundations of Soft-
ware Engineering, ESEC/FSE-13, pages 237–240, New York, NY, USA, 2005. ACM.

[19] S.-P. Ma, H.-J. Lin, C.-A. Yu, and C.-Y. Lee. Web api recommendation based on
service cooperative network. pages 1922–1925, 05 2017.

47

[20] J. McCarthy. Lisp: A programming system for symbolic manipulations. In Preprints
of Papers Presented at the 14th National Meeting of the Association for Computing
Machinery, ACM ’59, pages 1–4, New York, NY, USA, 1959. ACM.

[21] Y. M. Mileva, V. Dallmeier, M. Burger, and A. Zeller. Mining trends of library
usage. In Proceedings of the Joint International and Annual ERCIM Workshops on
Principles of Software Evolution (IWPSE) and Software Evolution (Evol) Workshops,
IWPSE-Evol ’09, pages 57–62, New York, NY, USA, 2009. ACM.

[22] J. Montandon, H. Borges, D. Felix, and M. Valente. Documenting apis with examples:
Lessons learned with the apiminer platform. 10 2013.

[23] M. Mooty, A. Faulring, J. Stylos, and B. A. Myers. Calcite: Completing code comple-
tion for constructors using crowds. In Proceedings of the 2010 IEEE Symposium on
Visual Languages and Human-Centric Computing, VLHCC ’10, pages 15–22, Wash-
ington, DC, USA, 2010. IEEE Computer Society.

[24] A. T. Nguyen, T. T. Nguyen, H. A. Nguyen, A. Tamrawi, H. V. Nguyen, J. Al-
Kofahi, and T. N. Nguyen. Graph-based pattern-oriented, context-sensitive source
code completion. In Proceedings of the 34th International Conference on Software
Engineering, ICSE ’12, pages 69–79, Piscataway, NJ, USA, 2012. IEEE Press.

[25] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-Kofahi, and T. N. Nguyen. Graph-
based mining of multiple object usage patterns. In Proceedings of the 7th Joint Meeting
of the European Software Engineering Conference and the ACM SIGSOFT Symposium
on The Foundations of Software Engineering, ESEC/FSE ’09, page 383–392, New
York, NY, USA, 2009. Association for Computing Machinery.

[26] C. Omar, Y. Yoon, T. D. LaToza, and B. A. Myers. Active code completion. In
Proceedings of the 34th International Conference on Software Engineering, ICSE ’12,
page 859–869. IEEE Press, 2012.

[27] M. Pradel and T. R. Gross. Detecting anomalies in the order of equally-typed method
arguments. In Proceedings of the 2011 International Symposium on Software Testing
and Analysis, ISSTA ’11, pages 232–242, New York, NY, USA, 2011. ACM.

[28] M. M. Rahman, C. K. Roy, and D. Lo. Rack: Automatic api recommendation using
crowdsourced knowledge. In 2016 IEEE 23rd International Conference on Software
Analysis, Evolution, and Reengineering (SANER), volume 1, pages 349–359. IEEE,
2016.

48

[29] R. Robbes and M. Lanza. How program history can improve code completion. In
Proceedings of the 2008 23rd IEEE/ACM International Conference on Automated
Software Engineering, ASE ’08, page 317–326, USA, 2008. IEEE Computer Society.

[30] C. Rubio-González and B. Liblit. Expect the unexpected: Error code mismatches
between documentation and the real world. pages 73–80, 12 2010.

[31] M. Saied, O. Benomar, H. Abdeen, and H. Diro. Mining multi-level api usage patterns.
03 2015.

[32] T. W. Schiller, K. Donohue, F. Coward, and M. D. Ernst. Case studies and tools for
contract specifications. In Proceedings of the 36th International Conference on Soft-
ware Engineering, ICSE 2014, page 596–607, New York, NY, USA, 2014. Association
for Computing Machinery.

[33] S. Subramanian, L. Inozemtseva, and R. Holmes. Live api documentation. In Pro-
ceedings of the 36th International Conference on Software Engineering, pages 643–652.
ACM, 2014.

[34] A. Svyatkovskiy, Y. Zhao, S. Fu, and N. Sundaresan. Pythia: Ai-assisted code com-
pletion system. In Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pages 2727–2735. ACM, 2019.

[35] L. Tan, D. Yuan, and G. Krishna. /*icomment: bugs or bad comments?*/. volume 41,
pages 145–158, 01 2007.

[36] L. Tan, Y. Zhou, and Y. Padioleau. Acomment: Mining annotations from comments
and code to detect interrupt related concurrency bugs. In Proceedings of the 33rd
International Conference on Software Engineering, ICSE ’11, page 11–20, New York,
NY, USA, 2011. Association for Computing Machinery.

[37] S. H. Tan, D. Marinov, L. Tan, and G. T. Leavens. @tcomment: Testing javadoc
comments to detect comment-code inconsistencies. In Proceedings of the 2012 IEEE
Fifth International Conference on Software Testing, Verification and Validation, ICST
’12, page 260–269, USA, 2012. IEEE Computer Society.

[38] J. Visser, A. van Deursen, and S. Raemaekers. Measuring software library stability
through historical version analysis. In Proceedings of the 2012 IEEE International
Conference on Software Maintenance (ICSM), ICSM ’12, pages 378–387, Washington,
DC, USA, 2012. IEEE Computer Society.

49

[39] J. Wang, Y. Dang, H. Zhang, K. Chen, T. Xie, and D. Zhang. Mining succinct and
high-coverage api usage patterns from source code. pages 319–328, 01 2013.

[40] E. Wong, L. Zhang, S. Wang, T. Liu, and L. Tan. Dase: Document-assisted symbolic
execution for improving automated software testing. In Proceedings of the 37th Inter-
national Conference on Software Engineering - Volume 1, ICSE ’15, pages 620–631,
Piscataway, NJ, USA, 2015. IEEE Press.

[41] J. Yang, E. Wittern, A. T. T. Ying, J. Dolby, and L. Tan. Towards extracting web api
specifications from documentation. In Proceedings of the 15th International Confer-
ence on Mining Software Repositories, MSR ’18, page 454–464, New York, NY, USA,
2018. Association for Computing Machinery.

[42] W. Yuan, H. H. Nguyen, L. Jiang, and Y. Chen. Libraryguru: Api recommendation for
android developers. In Proceedings of the 40th International Conference on Software
Engineering: Companion Proceeedings, ICSE ’18, pages 364–365, New York, NY, USA,
2018. ACM.

[43] M. Zelkowitz. Advances in Computers, Volume 77. Academic Press, Inc., Orlando,
FL, USA, 1st edition, 2009.

[44] C. Zhang, J. Yang, Y. Zhang, J. Fan, X. Zhang, J. Zhao, and P. Ou. Automatic
parameter recommendation for practical api usage. In Proceedings of the 34th Inter-
national Conference on Software Engineering, ICSE ’12, pages 826–836, Piscataway,
NJ, USA, 2012. IEEE Press.

[45] H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei. Mapo: Mining and recommending
api usage patterns. In Proceedings of the 23rd European Conference on ECOOP 2009
— Object-Oriented Programming, Genoa, pages 318–343, Berlin, Heidelberg, 2009.
Springer-Verlag.

50

	List of Tables
	List of Figures
	Introduction
	Research Contributions
	Thesis Organization

	Background
	Statically Typed Languages and Dynamically Typed Languages
	Statically Typed Languages
	Dynamically Typed Languages

	API Documentation
	Lodash: A Modern JavaScript Utility Library
	API Parameter Suggestion

	Related Work
	API Usage Patterns
	Software Text Analysis
	Code Completion System
	API Usage Recommendation
	API Parameter Recommendation

	Approaches
	Overview
	Preprocessing
	Analysing the Project Source Code
	Approach for Non-function-type Parameter
	Approach for Function-type Parameter

	Experimental Setup
	Research Questions
	Data Sets Collecting
	API Documentation Data Set
	JavaScript Project Data Set

	Generating Abstract Syntax Tree
	API Parameter Suggestion

	Experiment Results
	RQ1: How accurate are the parameter suggestions of the approach?
	RQ2: How many suggestions does the approach generate for input source code files?

	Threats to Validity
	Data Set Selection
	API Documentation Information Collection

	Conclusion and Future Works
	Conclusion
	Future Works

	Bibliography

