Microbial communities of wastewater in

the Canadian Arctic

by

Monica Gromala

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Science

in

Biology

Waterloo, Ontario, Canada, 2019

© Monica Gromala 2019

Author's Declaration

This thesis consists of material all of which I authored or co-authored: see Statement of Contributions included in the thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Statement of Contributions

Dr. Brendan McConkey and Jared Ellenor assisted with collection of samples in Baker Lake. Members of the Wong lab at the University of Manitoba collected samples in Cambridge Bay.

Rosie Smith and Dr. Heidi Swanson collected samples in Kugluktuk.

Sura Ali assisted with DNA extractions and preparation of samples for sequencing.

Metagenomic sequencing was performed by the Farncombe Metagenomics Facility at McMaster University.

Abstract

Wastewater management in the Canadian Arctic is challenging due to the extreme climate and lack of conventional treatment system infrastructure. To resolve these issues, most Northern communities use waste stabilization ponds (WSPs) as their sole form of wastewater management. In this type of system, wastewater is collected directly from buildings yearround and is transported to the WSP where it is discharged directly into the environment. For approximately nine months of the year, the wastewater remains frozen due to sub-zero temperatures. As the temperature increases in the spring, ice begins to melt, allowing the wastewater to thaw and flow into downstream lakes. Increased sunlight and increased water temperatures stimulate microorganisms to naturally breakdown the various components of the wastewater and reduce concentrations of macronutrients, such as nitrogen and phosphorus. The two to three months during which temperatures remain above zero are collectively referred to as the treatment season as the majority of aerobic and anaerobic degradation occurs during this time.

Currently, the microbial communities of Arctic WSPs are not well understood. Identifying the major microorganisms in the microbial communities of these WSPs is important for understanding whether the wastewater treatment system is effective in the removal of wastewater contaminants from effluent water flowing into downstream lakes. This research aims to characterize the microbial community and identify wastewater indicator organisms of three Arctic WSPs in Baker Lake, Cambridge Bay, and Kugluktuk in Nunavut, Canada, with a focus on the Baker Lake WSP and the downstream lake system. In Baker Lake, wastewater is discharged into a lagoon, where water is able to flow into downstream lakes before ultimately discharging into Baker Lake. Several sites across this entire system, as well as three reference sites were sampled and analyzed to produce baseline taxonomic profiles. This was achieved through 16S rRNA gene and metagenome sequencing, and subsequent taxonomic assignment to 16S rRNA gene amplicons, metagenome sequences corresponding to the *rpoB* gene, and metagenome-assembled genomes (MAGs).

Both temporal and spatial variation were observed across Baker Lake sampling sites, with clear differences in microbial community composition at samplings sites at the phylum, family, and ASV levels. These trends were observed in each of the 16S rRNA gene, *rpoB* gene, and MAG taxonomic assignments. Wastewater indicator species were identified for the Baker Lake WSP and these indicator microorganisms were not detected in most downstream sites. The three WSPs were also found to have very different microbial communities, with few overlapping ASVs. Despite these differences at the ASV level, the three WSPs contained common groups of microorganisms and microbial community profiles were distinct from Arctic freshwater lake samples. Most of the ASVs detected in all three WSPs belonged to the phylum *Proteobacteria*, which had a relative abundance of >50% in nearly all WSP samples. The proportion of *Proteobacteria* was much lower in lakes found downstream of the Baker Lake WSP. In receiving waters and reference lakes, *Bacteroidetes, Actinobacteria, Planctomycetes*, and *Verrucomicrobia* were more prevalent.

Wastewater is known to be a hotspot for antibiotic resistance gene (ARG) dissemination and evolution. This thesis also aimed to identify and quantify ARGs within the WSPs, receiving waters, and reference lakes to determine if ARGs were enriched in samples containing wastewater. Eight gene families related to macrolide resistance, and one gene related to class A betalactamases were detected at higher abundance in wastewater samples than in downstream and reference lakes. Metagenome sequences related to these ARGs were also found to be in bins associated with five MAGs.

This research is an important step in the characterization of microbial communities of wastewater in Arctic WSPs. The taxonomic profiles of the WSPs from Baker Lake, Cambridge Bay, and Kugluktuk provide important baseline data that will assist with monitoring of the wastewater system and gives insights into the efficacy of WSPs as the sole wastewater treatment system for communities in the Arctic. This research will aid in tracking changes in microbial communities as operational and infrastructure upgrades are made to the Baker Lake waste treatment system, to help with developing a safe and effective wastewater treatment system.

Acknowledgements

I would like to thank all of the amazing people that have supported me through this journey.

First, I would like to thank Dr. Brendan McConkey and Dr. Josh Neufeld for their guidance and enthusiasm, and for providing me with the opportunity to work on a such a unique and exciting project. Your constant support fueled my determination and pushed me to work harder than I ever have. I would also like to thank Dr. Laura Hug and Dr. Wayne Parker for being on my committee and providing me with advice and insight.

I would also like to thank the community of Baker Lake, Cambridge Bay, and Kugluktuk for kindly allowing us to sample their waters.

I would also like to thank Sura Ali and Jared Ellenor for their help with lab and field work. Thank you for putting up with me through all of my frustration.

I would also like to thank the many members of the McConkey and Neufeld labs for their continual support and advice. You all kept me smiling throughout this crazy journey, even during the toughest days in the lab. I especially want to thank Katja Engel and Jackson Tsuji for being amazing mentors and assisting me in all of the many times I had to troubleshoot putting up with my constant questions, and for helping me with my scripts. I would like to thank my office mates in the McConkey lab, Janet Lorv, Karsten Rinas, and Mark Lubberts, for always listening to my rants and giving me honest opinions, especially when I was being stubborn.

Finally, I would like to thank my family and friends for supporting me through all of the good times and bad. I could not have accomplished what I did without each and every one of you.

Table of Contents

Author's Declaration	ii
Statement of Contributions	iii
Abstract	iv
Acknowledgements	vii
List of Figures	xi
List of Tables	xiv
List of Abbreviations	XV
Chapter 1 Introduction	1
1.1 Municipal Wastewater Effluent and Eutrophication	1
1.1.1 Impact of MWWE on Microbial Communities	2
1.1.2 Role of Microorganisms in Reducing Wastewater Nutrient Contaminants	3
1.1.3 Wastewater and Antibiotic Resistance	4
1.2 Waste Stabilization Ponds	6
1.2.1 Facultative Waste Stabilization Ponds	7
1.2.2 Nutrient Removal in WSPs	8
1.3 Wastewater Treatment in the Canadian Arctic	9
1.3.1 Factors Affecting Construction of Wastewater Treatment Plants	9
1.3.2 Collection and Transport of Wastewater in Nunavut	10
1.3.3 Microorganisms in Arctic Environments and Arctic Wastewater	11
1.4 Microbial Community Analysis	13

1.4.1 16S rRNA Gene Amplicon Sequencing	
1.4.2 Metagenome Sequencing	14
1.5 Thesis Objectives	15
Chapter 2 Methods	17
2.1 Study Locations	17
2.1.1 Baker Lake, Nunavut	
2.1.2 Cambridge Bay, Nunavut	19
2.1.3 Kugluktuk, Nunavut	20
2.2 Sample Collection and Environmental Data Collection	20
2.3 DNA Extractions	21
2.4 16S rRNA Gene Amplicon Library Preparation and Sequencing	23
2.5 QIIME2 Analysis	24
2.6 Indicator Species Analysis	25
2.7 Metagenome Sequencing	25
2.8 MetAnnotate Analysis	
2.9 Metagenome Assembly and Binning	26
2.10 Mantel Test and Hierarchical Clustering	27
2.11 Identification of ARGs using ShortBRED	
Chapter 3 Results and Discussion	29
3.1 Wastewater Treatment System of Baker Lake, Nunavut	29
3.1.1 Temporal Variability	

3.1.2 Spatial Variability	40
3.1.3 Wastewater Indicators	41
3.2 Comparison of WSPs from Baker Lake, Cambridge Bay, and Kugluktuk	47
3.3 Comparison of 16S rRNA Genes and Metagenomes	52
3.3.1 Consistent Taxonomic Profiles	53
3.4 Antibiotic Resistance Genes in Metagenomes	66
3.4.1 CARB-16	71
3.4.2 <i>ermB</i> and <i>ermF</i>	71
3.4.3 <i>mefA</i> and <i>mel</i>	72
3.4.4 <i>mphE</i> and <i>msrE</i>	73
3.4.5 <i>mphA</i> and <i>mrx</i>	73
Chapter 4 Conclusions and Future Directions	75
Bibliography	79
Appendix A1	94

List of Figures

Figure 1.1: Schematic diagram of a facultative waste stabilization pond	8
Figure 2.1: Map of study locations in Nunavut, Canada	.17
Figure 2.2: Map of Baker Lake, Nunavut	.19
Figure 2.3: Flowchart of DNA processing methods	.22
Figure 3.1: Principal coordinates analysis (PCoA) using (A) weighted and (B) unweighted	
UniFrac distances based on amplicon sequence variants (ASVs) from 16S rRNA gene	
amplicons for sites in Baker Lake, Nunavut	.33
Figure 3.2: Relative abundance of phyla present at each site in Baker Lake, Nunavut	.34
Figure 3.3: Relative abundance of families present at $>0.1\%$ abundance at each site in Bake	er
Lake, Nunavut	.37
Figure 3.4: Relative abundance of amplicon sequence variants (ASVs) present at >0.1%	
abundance at each site in Baker Lake, Nunavut.	.39
Figure 3.5:Presence/absence heatmap of wastewater indicator amplicon sequence variants	
(ASVs) at all sites in Baker Lake, Nunavut	.45
Figure 3.6: Principal coordinates analysis (PCoA) ordination plots using (A) weighted and	
(B) unweighted UniFrac distances based on amplicon sequence variants (ASVs) from 16S	
rRNA gene amplicons for waste stabilization pond (WSP) sites in Baker Lake, Cambridge	
Bay, and Kugluktuk	.47

Figure 3.7: Relative abundance of phyla present at waste stabilization pond (WSP) sites in
Baker Lake, Cambridge Bay, and Kugluktuk50
Figure 3.8: Relative abundance of amplicon sequence variants (ASVs) present at >1%
abundance at waste stabilization pond (WSP) sites in Baker Lake, Cambridge Bay, and
Kugluktuk
Figure 3.9: Principal coordinates analysis (PCoA) ordination plots using Bray-Curtis
distances based on (A) amplicon sequence variants (ASVs) from 16S rRNA gene amplicons,
(B) taxonomic assignments to metagenome sequences corresponding to the rpoB hidden
Markov model (HMM), and (C) taxonomic assignments to metagenome-assembled genomes
(MAGs)
Figure 3.10: Relative abundance of phyla present at metagenome sequenced sites from Baker
Lake samples collected between July 13-16, 201855
Figure 3.11: Relative abundance of phyla present at metagenome sequenced sites from Baker
Lake samples collected between July 22-24, 2018
Figure 3.12: Relative abundance of phyla present at metagenome sequenced sites from the
WSPs in Cambridge Bay, and Kugluktuk56
Figure 3.13: Relative abundance of families present at >1% abundance in metagenome
sequenced sites from Baker Lake, Cambridge Bay, and Kugluktuk, based on 16S rRNA gene
amplicons

Figure 3.14: Relative abundance of families present at $>1\%$ abundance in metagenome	
sequenced sites from Baker Lake, Cambridge Bay, and Kugluktuk, based on taxonomic	
assignments to reads corresponding to the rpoB hidden Markov model (HMM)6	1
Figure 3.15: Relative abundance of families present at metagenome sequenced sites from	
Baker Lake, Cambridge Bay, and Kugluktuk, based on taxonomic assignments to	
metagenome-assembled genomes (MAGs)6	2
Figure 3.16: Dendrograms based on hierarchical clustering done using the average	
agglomeration method and Bray-Curtis distances for (A) 16S rRNA gene amplicons, (B)	
taxonomic assignment to sequences corresponding to the rpoB hidden Markov model	
(HMM), and (C) taxonomic assignment to metagenome-assembled genomes (MAGs)6	5
Figure 3.17: Heatmap of log10-transformed RPKM values of antibiotic resistance gene	
(ARG) families based on raw metagenomic reads	8

List of Tables

Table 3.1: 16S rRNA gene sequence read counts for all samples	31
Table 3.2: Indicator species analysis results for wastewater amplicon sequence variants	
(ASVs) in Baker Lake, Nunavut.	43
Table 3.3: Metagenome assembled genomes (MAGs) with unresolved family-level	
taxonomy	63
Table 3.4: Mantel test results comparing distance matrices for each pair based on 16S rRN	JA
gene amplicons, taxonomic assignment to sequences corresponding to the rpoB hidden	
Markov model (HMM), and taxonomic assignment to metagenome-assembled genomes	
(MAGs)	64
Table 3.5: Abundant antibiotic resistance gene (ARG) families selected for downstream	
analysis	69
Table 3.6: Metagenome-assembled genomes (MAGs) identified as being associated with b	oins
that contain reads corresponding to antibiotic resistance genes (ARGs).	70
Table A1: Environmental data from sites in Baker Lake, Nunavut.	94
Table A2: Manually assigned resistance classes for gene families identified by ShortBREI	D
for antibiotic resistance gene (ARG) families based on CARD gene family classifications	
including NCBI and CARD identifiers.	95

List of Abbreviations

AOA	Ammonia-oxidizing archaea
AOB	Ammonia-oxidizing bacteria
ARB	Antibiotic resistant bacteria
ARG	Antibiotic resistance gene
ASV	Amplicon sequence variant
BNR	Biological nitrogen removal
BOD	Biochemical oxygen demand
CARD	Comprehensive Antibiotic Resistance Database
COD	Chemical oxygen demand
dNTP	Deoxynucleotide triphosphate
DO	Dissolved oxygen
EBPR	Enhanced biological phosphorus removal
HMM	Hidden Markov model
HGT	Horizontal gene transfer
IndVal	Indicator value
ISA	Indicator species analysis
MAG	Metagenome-assembled genome
MSA	Multiple sequence alignment
MWWE	Municipal wastewater effluent

ORF	Open reading frame
OTU	Operational taxonomic unit
PCoA	Principal coordinates analysis
PCR	Polymerase chain reaction
RPKM	Reads per kilobase of reference sequence per million sample reads
rpoB	Beta subunit of bacterial RNA polymerase
rRNA	Ribosomal RNA
TDS	Total dissolved solids
TSS	Total suspended solids
WSP	Waste stabilization pond
WWTP	Wastewater treatment plant
UPGMA	Unweighted pair group method with arithmetic mean

Chapter 1

Introduction

1.1 Municipal Wastewater Effluent and Eutrophication

More than 80% of Canadians benefit from wastewater treatment system facilities¹. Effluent from these facilities can deteriorate water quality of receiving waters². Municipal wastewater effluent (MWWE) composition varies depending on region, but in general, MWWE contains solids, dissolved and particulate matter, nutrients, pathogenic and non-pathogenic bacteria, organic chemicals, metals, oils, and plastics¹. Wastewater treatment plants (WWTPs) aim to reduce as many of these components as possible, focusing on reducing total suspended solids (TSS), chemical and biochemical oxygen demand (COD and BOD, respectively), nitrogen and phosphorus, pathogenic bacteria, and plastics¹. Chemical oxygen demand is a measure of the amount of oxygen required to chemically oxidize organic matter, whereas BOD is the amount of dissolved oxygen required by microorganisms to oxidize organic matter³.

When treated improperly, municipal wastewater effluent is a major cause of eutrophication, or nutrient enrichment, of many lakes, ponds, and rivers⁴. MWWE can contain increased concentrations of nitrogen and phosphorus, as well as other micronutrients, that are discharged into receiving waters^{4,5}. The amount of nutrients present plays an important role in shaping the biological community composition, and nutrient enrichment can cause both direct and indirect biological changes, such as stimulation of algal growth or changes in fish communities caused by reduced oxygen⁴. Often, the growth of organisms is limited by the amount of nutrients present. In conditions where nutrients are the limiting factor, eutrophication can stimulate the growth of algal species. This may include species that produce toxins, such as the diatom *Pseudo-nitzschia*, that are released into the water, as well as those that produce large amounts of biomass, such as the green macroalga *Cladophora*, which can cause hypoxia of other aquatic organisms, including microorganisms^{4,6}. Fish communities of receiving waters are typically impacted by algal blooms, with increased fish kills in these circumstances⁴.

1.1.1 Impact of MWWE on Microbial Communities

Many studies have documented impacts of wastewater effluent on receiving waters. For example, shifts in microbial communities can be detected at the phylum level when comparing wastewater effluent to downstream sites⁷, microbial counts increase at sites downstream of wastewater effluent discharge sites⁸, and microorganisms from the effluent itself are able to persist at these downstream sites⁹. In addition, microbial community diversity decreases in sediment of downstream sites¹⁰ and these impacted sediment sites are associated with decreased abundances of sulfate reducers, denitrifiers, and methanogens in comparison to sediments of upstream sites¹¹. Microplastics from wastewater effluent positively influence the ability of microorganisms to form biofilms and increase the ability of these microorganisms to survive downstream¹². Overall, microbial community composition is impacted by wastewater effluent discharge.

1.1.2 Role of Microorganisms in Reducing Wastewater Nutrient Contaminants

Microorganisms play an important role in the reduction of nutrients from wastewater and reduce the potential for eutrophication. Specifically, the removal of nitrogen and phosphorus is an important role played by microorganisms in wastewater treatment¹³.

Wastewater nitrogen exists primarily as organic nitrogen, ammonia, nitrite, and nitrate¹⁴. Unionized ammonia is an important contributor to wastewater effluent toxicity, both directly to fish, and also because nitrification decreases the amount of available oxygen for other organisms^{15,16}. Because of this, WWTPs commonly employ biological nitrogen removal (BNR) processes in the form of activated sludge to reduce the amount of nitrogen being released into the environment¹⁷. During BNR, microorganisms in the activated sludge perform both nitrification and denitrification to help reduce inorganic nitrogen¹⁷. In the process of nitrification, ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA), use oxygen to convert ammonia to nitrite^{16,18}. Nitrite is then oxidized by nitrite-oxidizing bacteria, such as those in the genera *Nitrobacter* and *Nitrospira*, into nitrate¹⁶. Both nitrification, which then dissipates¹⁶. The most common denitrifying bacteria are facultative anaerobes, which are able to reduce nitrate and nitrite in both oxic and anoxic conditions^{16,19}.

Phosphorus is a critical limiting macronutrient for algal growth, and phosphorus removal is also important for reducing eutrophication in receiving waters²⁰. The most common form of phosphorus in wastewater is orthophosphate²¹. The biological process to remove phosphorus is referred to as enhanced biological phosphorus removal (EBPR)²². Phosphorus removal by EBPR is first done anaerobically, followed by aerobic stages of

treatment²¹. The anaerobic steps cause phosphates to be released from the activated sludge into solution, which is then aerated to stimulate phosphate uptake in higher concentrations than required by the microorganisms²¹. EBPR has been shown to remove more than 90% of soluble phosphorus²¹. Microorganisms involved in this process are primarily associated with *Betaproteobacteria* and *Actinobacteria*²². Chemical precipitation is also a commonly used process for the removal of phosphorus, where metal salts are applied to produce metal phosphates, which can then be removed from the water^{23,24}.

1.1.3 Wastewater and Antibiotic Resistance

Antibiotic resistance has become a growing problem for society due to the frequent misuse of antibiotics. Although antibiotics originate from environmental bacteria, humans have provided strong selective pressures for antibiotic resistance genes (ARGs) since antibiotics were first used to treat and prevent infections²⁵. As antibiotics became more prevalent in medical settings, selection of antibiotic resistant bacteria (ARB) and antibiotic resistance genes also increased²⁶. These ARGs were thought to have first arisen within antibiotic-producing bacteria, which would allow the microorganisms to protect themselves from the antibiotics²⁵. Fecal bacteria also play a role in the selection of ARGs because they may have been exposed to high concentrations of antibiotics²⁷.

Because ARGs are commonly associated with plasmids that transfer between different bacteria through horizontal gene transfer (HGT), this has led to further dissemination of ARGs, and therefore ARB²⁸. Microorganisms can transfer genes by HGT using three different methods: conjugation, transformation, and transduction²⁹. During conjugation, cells interact with one another via a conjugative pilus, which transfers genetic material from a donor to a recipient cell^{29,30}. Transformation, in contrast, is limited to naturally competent bacterial cells incorporating free environmental DNA and is far less common mechanism ³¹. Transduction occurs when genetic material from a host bacterium is accidentally packaged alongside viral DNA into viral capsids, and transferred to a new recipient by infection via the bacteriophage transducing particle²⁹. Within the context of wastewater treatment environments, conjugation is thought to be the primary mechanism for ARG transmission between bacteria through the use of conjugative plasmids³².

Wastewater has been considered a hotspot for the dissemination and evolution of antibiotic resistance because most antibiotics used by humans appear in and are processed through municipal wastewater³³. Here, bacteria from a variety of sources are exposed to sublethal concentrations of antibiotics and are able to develop antibiotic resistance. These ARB can pass their ARGs to non-resistant bacteria from different sources through HGT to produce new ARB³⁴. This is especially a concern for human pathogens that may be present in wastewater, which also have the potential to acquire ARGs.

With the regular identification of new ARGs, various databases have been created to gather information about ARG classes and further incorporate data about the associated proteins and literature. In particular, the Comprehensive Antibiotic Resistance Database (CARD) is manually curated to provide an updated database of all antibiotic resistance genes and associated metadata³⁵. In the CARD, ARGs have been divided into commonly known classes such as aminoglycosides, β-lactams, chloramphenicol, macrolides, tetracyclines, and sulfonamides³⁵. This database identifies ARGs from metagenome reads using a tool called

Short, Better Representative Extract Dataset (ShortBRED)³⁶. The ShortBRED tool produces protein-family specific marker sequences by first clustering user proteins of interest into families using CD-HIT^{36–38}. Multiple sequences alignments (MSA) are then made for each family using MUSCLE³⁹ and Biopython⁴⁰ to produce a consensus sequence for each family. These consensus sequences are then compared against one another as well as against a reference database using BLAST⁴¹, and sequences that are unique, or have minimal overlap from other protein families are identified. The identified marker sequences are then used to determine the relative abundance of the protein families in whole metagenome sequence data using USEARCH⁴². The raw number of hits is converted to a normalized count in reads per kilobase of reference sequence per million sample reads (RPKMs), which are output into a relative abundance table, which can be compared between different samples³⁶.

1.2 Waste Stabilization Ponds

Waste stabilization ponds (WSPs) are the simplest forms of wastewater management⁴³. Most wastewater treatment systems with WSPs require little or no equipment for treatment to occur^{43,44}. These ponds are often engineered such that wastewater is stabilized through aerobic and anaerobic processes occurring naturally by microorganisms in the environment. Multiple WSPs can also be combined, each for the removal of different pollutants within the wastewater⁴⁵. For example, facultative and anaerobic ponds are specifically designed for the removal of BOD, whereas aerobic ponds are better for removing pathogens⁴⁵. Although WSPs remove contaminants efficiently, they are optimal for locations with a climate characterized by adequate sunlight exposure and high temperatures⁴³. This is due to poor

biological activity in extremely cold conditions, such as those in Arctic environments, where there is limited sunlight and monthly average temperatures below zero for most of the year⁴⁶. Sunlight is also a major factor governing the efficiency of WSPs in the removal of pathogens. Bacteria such as *Escherichia coli*, *Campylobacter jejuni*, and *Salmonella enterica* are sensitive to sunlight, which causes UV-associated DNA damage⁴⁷. Bacteria are also able to repair UV damage in dark conditions, and therefore WSPs that have higher sunlight exposure are expected to be more efficient in the sustained removal of pathogens⁴⁷. There are several types of WSPs, with the most common being facultative ponds, anaerobic ponds, aerated lagoons, maturation ponds, and high-rate algal ponds (HRAPs)⁴⁷.

1.2.1 Facultative Waste Stabilization Ponds

The most common type of WSP is facultative WSPs (Figure 1.1). In Arctic settings, these WSPs are often used alone, with effluent discharged directly into the ocean, or with downstream water systems such that multiple stages of treatment can occur. Solid organic material settles to the bottom of the facultative WSP and forms a sludge. The bottom layer of the WSP is anoxic, allowing for anaerobic microorganisms to grow and digest the sludge. Organic carbon is ultimately converted to carbon dioxide and methane through combined anaerobic metabolic processes (e.g., fermentation and methanogenesis) and together, these help deplete organic material from wastewater. In the top layer of the pond, oxygen supports aerobic and facultative microorganisms through the mixing of water by wind and continued discharge of wastewater into the pond⁴³. Oxygen also diffuses directly from the air and is produced by photosynthetic organisms, such as cyanobacteria and algae. With increased

sunlight during the treatment season, oxygen levels are highest during this time period, and therefore aerobic respiration decomposes much of the organic material in this layer^{45,46,48}. In the most efficient systems, anaerobic and aerobic degradation are able to reduce up to 75% of the BOD⁴⁵. Importantly, Arctic WSP systems are expected to be far less efficient in reducing BOD than temperate WSPs due to the influence of sub-zero temperatures on microbial activity⁴⁶.

Figure 1.1: Schematic diagram of a facultative waste stabilization pond. Figure adapted from Tilley et al.⁴⁵

1.2.2 Nutrient Removal in WSPs

Given the importance of removing macronutrients from wastewater to prevent eutrophication in receiving waters, important design objectives for WSPs include the capacity for nitrogen and phosphorus removal. Nitrogen is removed in a similar fashion in WSPs as in conventional WWTPs, using a combination of nitrification and denitrification. However, additional physical and biological mechanisms may also be important for WSP treatment. The most important WSP mechanism for nitrogen removal is ammonia stripping⁴³. This process works by converting ammonium into its unionized form. Higher concentrations of unionized ammonia are achieved with increased temperature and pH⁴⁹. Unionized ammonia is a gas that can thus be released from the system⁴⁹. Increased pH is achieved in facultative ponds by photosynthesis. Indeed, in highly photosynthetic ponds the pH can increase to values above 9.0⁴³. Photosynthetic algae also assimilate ammonia and nitrate directly⁴³, which can further deplete wastewater of nitrogen in WSPs.

Phosphorus removal in WSPs occurs by two mechanisms: organic phosphorus is incorporated into algal and bacterial biomass and removed in effluent water, or phosphate precipitation under conditions with high pH⁴³. The latter mechanism is more efficient if the pH is above 9.0, and is therefore more efficient in highly photosynthetic ponds, removing up to 80% of the phosphorus in very shallow ponds. However, in facultative ponds, the efficiency can substantially decrease to below 35% phosphorus removed⁴³.

1.3 Wastewater Treatment in the Canadian Arctic

1.3.1 Factors Affecting Construction of Wastewater Treatment Plants

Wastewater management in northern Canadian communities is limited due to the extreme climate of the Arctic. These communities also have relatively small populations and are isolated from the rest of Canada^{50,51}. Because conventional WWTPs are not typically feasible to construct and operate in the Arctic, unique factors must be considered when establishing wastewater management facilities. Waste management solutions for the Arctic seek to minimize costs, prevent deterioration of water quality by eutrophication, and protect communities have a majority Inuit population, and many continue to follow traditions and regularly hunt and fish in the area. Many locals also collect their own drinking water directly from rivers which increases potential for exposure to pathogenic microorganisms⁴⁸.

To combat these difficulties, many northern Canadian communities use facultative waste stabilization ponds, also referred to as sewage lagoons or wastewater lagoons, for wastewater treatment^{46,48}. Wastewater is discharged directly into the environment, and treatment occurs passively through natural biological processes⁴⁷. However, as described previously, Arctic WSPs are far less efficient than temperate WSPs due to sub-zero temperatures and limited sunlight for most of the year. Unfortunately, few studies have explored the efficiency of Arctic WSPs, and these systems are still poorly understood. There is also limited information about the microorganisms found in Arctic WSPs.

1.3.2 Collection and Transport of Wastewater in Nunavut

Many communities in Nunavut use a truck transportation system where sewage is collected directly from buildings. Each building is equipped with two separate storage tanks, one for the delivery of drinking water and another for wastewater collection^{52,53}. The trucks remove wastewater from each building several times a week, and discharge it into the designated WSP where it remains frozen for approximately nine months of the year due to extremely cold temperatures of the region⁵³. As the temperature increases in the spring, ice begins to thaw and wastewater moves into downstream lakes and streams. The wastewater can either be continuously discharged into downstream bodies of water or retained and discharged once per year. The temperature in the region remains above zero for approximately two to three months. This time period is collectively referred to as the treatment season, during which water temperature increases and longer periods of daylight occur⁴⁸. The warmer conditions and increased light are more favourable for microorganisms to perform aerobic and anaerobic

degradation of organic matter and therefore remove potentially harmful materials from the water system⁴⁵.

The Canadian government has established strict guidelines for effluent water quality from wastewater systems. The current national standard for wastewater effluent requires that water not exceed a BOD of 25 mg/L, an average concentration of total suspended solids of 25 mg/L, an average total residual chlorine of 0.02 mg/L, and an unionized ammonia concentration of 1.25 mg/L at 15°C⁵⁴. Due to the factors precluding the construction of WWTPs, the Canadian government has exempted Nunavut from these regulations. Instead, Nunavut must ensure that wastewater does not exceed a maximum TSS of 180 mg/L, and BOD of 120 mg/L⁴⁶.

1.3.3 Microorganisms in Arctic Environments and Arctic Wastewater

Numerous studies focusing on the microbial diversity of Arctic soil and permafrost have been done over the past 15 years^{55–61}. Many studies agree that *Actinobacteria* is the dominant phylum present within permafrost-affected soil samples. It is thought that *Actinobacteria* are prevalent in these environments due to the ability of *Actinobacteria* species to form cysts, catabolize a wide range of carbon sources, and grow at low temperatures^{55,56}.

Due to the extreme climate of Arctic environments, microorganisms inhabiting Arctic water bodies require adaptations that allow them to remain viable in the frigid temperatures⁶². Although the diversity of Arctic microbial communities is still not fully understood, interest in climate change has increased focus on the microbiology of Arctic environments. For example, Yergeau and colleagues explored Canadian high-Arctic seawater and found that the

seawater was dominated by operational taxonomic units (OTUs) affiliated with *Nitrosopumilus, Flavobacteriales,* and *Oceanospirillaceae*⁶³. However, the dominant taxa in these samples made up less than 60% of the predicted microbial community at the sampled sites⁶³. Cyanobacteria are also highly abundant in Arctic freshwater and play an important role as primary producers ⁶⁴. An Arctic freshwater lake in Alaska was dominated by members of the *Actinobacteria, Betaproteobacteria, Bacteroidetes,* and *Alphaproteobacteria,* which made up approximately 80% of the detected bacterial community⁶⁵.

Microorganisms in Arctic WSPs are not well understood. One study by Gonzalez-Martinez and coworkers identified several dominant OTUs in Arctic influent sewage. The most abundant OTUs were associated with the genera *Trichococcus, Methylorosula, Polaromonas,* and *Arcobacter*, as well as family members of *Leptotrichiaceae, Comamonadaceae, Alcaligenaceae,* and *Holophagaceae*⁶⁶. Another study explored 20 wastewater treatment plants in Denmark and revealed *Tetrasphaera, Trichococcus, Candidatus* Microthrix, *Rhodoferax,* and *Rhodobacter* as the most abundant genera in these activated sludge samples⁶⁷.

Waterborne diseases are thought to be more prevalent in Arctic Canada in comparison to other parts of Canada⁵⁰. Although WSPs are able to efficiently remove pathogens in warmer climate locations, relatively little is known about the ability of Arctic WSPs to remove pathogenic microorganisms⁶⁸. Outbreaks of waterborne diseases are common in Arctic communities. Pathogens, such as enterohemorrhagic *Escherichia coli* O157:H7, *Salmonella* spp., *Campylobacter* spp., and *Helicobacter pylori*, have been detected in community water supplies and stool samples⁴⁸. This contamination may have been caused by the inability of current wastewater treatment systems to remove pathogenic microorganisms.

The limited number of studies done in Arctic environments has only just begun to elucidate the microbiomes and the ability of Arctic WSPs to remove wastewater-associated microorganisms. Understanding the microbiota of WSPs and their downstream water bodies is important for characterizing the impact of wastewater discharge on the environment and local community, as well as predicting the impacts of future infrastructure upgrades on Arctic WSP performance.

1.4 Microbial Community Analysis

Studying the microbial communities of wastewater can help with monitoring of wastewater management and determining the effectiveness of treatment systems. Identifying dominant microorganisms in wastewater, as well as determining the presence of potential pathogens, aides with the construction of safer wastewater management systems for Arctic communities. With the improvements in DNA sequencing technologies over the past few decades, studying microbial diversity has become easier⁶⁹. Various methods and pipelines have been developed to simplify the analysis of microbial communities. In particular, amplicon and metagenome sequencing are two very useful approaches for profiling microbial communities^{70,71}.

1.4.1 16S rRNA Gene Amplicon Sequencing

Amplification and sequencing of the 16S rRNA genes is commonplace for microbial community characterization because of its universal distribution among prokaryotes and relatively slow evolution of the gene sequence⁷². Although much of the 16S rRNA gene is

highly conserved, there are nine variable regions that can be used to distinguish different species of bacteria and archaea⁷³. Although the entire 16S rRNA gene can be sequenced, it is also reasonable to amplify a smaller portion of the gene using PCR to produce amplicons that can be subsequently sequenced⁷⁰. This is a targeted approach for profiling microorganisms in communities from many samples, without sequencing entire genomes of constituent members⁷⁴.

Post-sequencing analyses of amplicons involves comparing sequences to a database of 16S rRNA gene sequences, such as the SILVA database⁷⁵, and assigning taxonomy based on the best database hit. A frequently used analytical pipeline for this task is Quantitative Insights into Microbial Ecology version 2 (QIIME2), combined with a denoising and error correction tool called DADA2^{76,77}. Using these tools, it is possible to distinguish 16S rRNA gene amplicons into amplicon sequence variants (ASVs), which are unique sequences that differ by as little as one nucleotide⁷⁸. The relative abundance of microorganisms can then be compared between different samples and locations by multivariate statistical approaches to identify significant differences in community composition.

1.4.2 Metagenome Sequencing

Metagenome sequencing is another common method for studying microbial communities. A metagenome is produced by sequencing all of the genetic material from a single sample⁷⁹. In this approach, metagenomic DNA is sequenced, followed by analysis, and/or assembled and binned into metagenome-assembled genomes (MAGs). Several computational tools have

been developed for metagenome sequence analysis, such as ATLAS⁸⁰, which performs the assembly, annotation, and binning of metagenome sequences⁸⁰.

The ATLAS pipeline first begins with quality control using various tools in the BBTools suite to remove adapters, filter and trim reads, and perform error correction⁸¹. In a typical pipeline, *de novo* assembly is then done using either MEGAHIT or metaSPAdes, followed by binning with metabat2, maxbin2, or concoct^{82–87}. Binning involves grouping contigs that belong together to make up the genomes of single populations⁸⁸. The DASTool software is also available as a final binner that compares outputs from each of the binning approaches used to produce high quality bins⁸⁹. Once final bins are established, dRep is used to select the best bin for each MAG⁹⁰. Functional annotation is then performed using Prodigal for identifying open reading frames (ORFs), which are translated and mapped to the eggNOG catalogue using DIAMOND to identify genes^{91–93}. Finally, taxonomy is inferred using BAT to map genes to GenBank^{94,95}.

1.5 Thesis Objectives

Currently there is a large gap in knowledge regarding the microbial communities of Arctic wastewater, specifically microorganisms associated with Arctic WSPs. This study aims to identify the major taxa in a representative Arctic WSP systems in Baker Lake, Nunavut to establish a baseline characterization and test the hypothesis that wastewater-associated microorganisms are enriched in wastewater and receiving waters relative to reference lakes, and determine whether these organisms are detected downstream of the WSP. This research

will also identify and relatively quantify antibiotic resistance genes within metagenomes and observe the prevalence of ARGs in the WSPs in comparison to downstream sites.

Chapter 2

Methods

2.1 Study Locations

This study sampled the microbial communities of wastewater lagoons and receiving waters in three traditional indigenous territories in Nunavut (Figure 2.1): Baker Lake, Cambridge Bay, and Kugluktuk. The main focus was on Baker Lake with comparisons to the WSPs in Cambridge Bay and Kugluktuk. The territory of Nunavut has a population of about 37,000 people in 25 communities, with populations ranging from about 150 to 7,500 people per community. Baker Lake, Cambridge Bay and Kugluktuk have populations of approximately 2,000, 1,700, and 1,600 people, respectively⁹⁶.

Figure 2.1: Map of study locations in Nunavut, Canada. This map was adapted from Google Maps⁹⁷.

2.1.1 Baker Lake, Nunavut

Baker Lake is the only inland community in Nunavut, located west of Hudson's Bay in the Kivallig region. In Baker Lake, trucks collect wastewater from each building every two to three days and discharge it directly into the wastewater lagoon, located around one kilometre north of the community. The WSP freezes near the end of September and remains frozen until June. Over the nine months when temperatures are sub-zero, the wastewater accumulates in an ice block that spans a field leading down into Lagoon Lake. During the spring thaw in mid-June, water flow is relatively high and first flows into Lagoon Lake. From there, the water flows into Finger Lake, followed by Airplane Lake, and finally discharges into Baker Lake. There are two lakes upstream of Lagoon lake and one lake upstream of Airplane Lake that were used as reference sites that appear to be unaffected by the WSP. Sample collection was carried out at each of the major lakes downstream of the WSP in Baker Lake, Nunavut, as well as three reference lakes (Figure 2.2). Sampling occurred at two times points from July 13th-16th, 2018 and July 22nd-24th, 2018. Samples were labelled according to time points; samples containing the number "1" before site name belong to the group of samples collected July 13th-16, 2018, and samples containing the number "2" before site name correspond to the July 22nd-24th, 2018 sampling time point. Duplicates were indicated by an "A" or "B" following the site name in labels. For example, the first duplicate of the WSP at the first time point is labelled as 1WWLA.

Figure 2.2: Map of Baker Lake, Nunavut. Sampling sites are identified by yellow pins and labeled by sample name. Samples have been grouped by lakes as indicated by the coloured circles. Magenta is the Baker Lake wastewater lagoon, turquoise is Lagoon Lake, blue is Finger Lake, red is Airplane Lake, orange is Baker Lake, and green are the references. This map was adapted from Google Earth⁹⁸.

2.1.2 Cambridge Bay, Nunavut

Cambridge Bay is located on Victoria Island in the Kitikmeot region of Nunavut. Throughout the year, wastewater is dumped into a WSP where primary treatment occurs. The wastewater is discharged once a year during the summer, where it passes through a natural tundra wetland that eventually leads into Cambridge Bay. The WSP is located approximately one kilometer north-east of the community. Samples were also taken from the WSP at Cambridge Bay for comparison at two time points on July 4th, 2018 and July 25th, 2018. WSP samples from Cambridge Bay were labelled as CBL for the site name. Similar to the Baker Lake

samples, July 4th, 2018 samples contain a "1" before the site name and July 25th, 2018 samples contain a "2" instead. Duplicates are distinguished by an "A" or "B" following the site name.

2.1.3 Kugluktuk, Nunavut

Kugluktuk is located at the mouth of the Coppermine River in the Kitikmeot region of Nunavut. The community dumps their wastewater into a single-cell, lined sewage lagoon. Similar to Cambridge Bay, the water is discharged once a year through a natural tundra wetland from the northwest corner of the lagoon. After passing through the wetland, the water flows into Coronation Gulf as the receiving water body. Samples were taken from the WSP at Kuglukluk at a single time point on August 16th, 2018. WSP samples from Kugluktuk were labelled as KWWL for the site name. Because only one time point was used, both sample labels contain a "1" before the site, and duplicates are distinguished with an "A" or "B" following the site name.

2.2 Sample Collection and Environmental Data Collection

Water from each sampling site was collected 4-5 m from the shoreline using a telescoping swing sampler and attached bottle to avoid disturbance of sediments. Samples were collected in duplicate from approximately 5-10 cm below the water's surface. The bottle was rinsed multiple times at each sampling site before collecting water. The two sites ALE and BL at Baker Lake were only taken at a single time point due to limited access. For these sites, a boat was taken offshore and anchored. The ALE site samples were taken approximately 20 m offshore, whereas BL was taken approximately 300 m offshore. Water samples for these two
sites were collected using a sample bottle only at about 5-10 cm below the water's surface. Water was filtered through a sterile 0.22 µm Sterivex-GV Pressure Filter Unit (EMD Millipore Corporation, MA, USA) using a 60-ml Luer-Lok Tip Syringe (Becton Dickinson, NJ, USA). Filtration was done until filter pores were plugged or a maximum of 500 ml was filtered. After filtration, residual water was expelled from the filter, leaving minimal amounts of water within the filter unit, then filter units were stored in Ziplock bags surrounded by ice packs. Samples were kept in a cooler and surrounded by frozen ice packs until delivered to the lab. Once received by the lab, samples were stored at -20°C until analyzed.

Environmental data was also collected at each of the sampling sites. Latitude and Longitude were determined using the Gaia GPS app (TrailBehind Inc.). The PC100 Model pH/Conductivity Meter (Cole-Parmer, Montreal, Canada), was used to measure pH, conductivity, total dissolved solids, and salinity. Temperature was also measured on this meter using the pH probe. Dissolved oxygen was measured using the Traceable Dissolved Oxygen Pocket Tester with Calibration (Cole Parmer).

2.3 DNA Extractions

A summary of methods used to process environmental DNA samples in this study is shown in Figure 2.3.

Filter unit housings were opened and filters removed aseptically. Each filter was cut in half, with one half stored at -20°C and the other half used for DNA extraction. Each half used for DNA extraction was cut into smaller pieces to increase extraction efficiency. Although all DNA extractions were done using the PowerSoil DNA Isolation Kit (MO BIO, CA, USA)

following the manufacturer's instructions, PowerBead tubes were heated at 70°C for 10 minutes prior to beadbeating with a FastPrep-24 (MP Biomedicals, CA, USA) at 5.5 m/s for 45 seconds. Extraction kit negative controls were processed alongside samples and were "KC" followed by a number. Genomic DNA was quantified using a NanoDrop 2000 (Thermo Scientific, MA, USA) and Qubit dsDNA High Sensitivity Assay Kit (Thermo Scientific). All genomic DNA samples were stored at -20°C in a sealed 96-well plate until further processing.

Figure 2.3: Flowchart of DNA processing methods

2.4 16S rRNA Gene Amplicon Library Preparation and Sequencing

Using a modification of a previously published amplification and sequencing method⁹⁹, the V4-V5 regions of the 16S rRNA gene were amplified from the genomic DNA extracts using primers 515F-Y/926R^{100,101}. Each 25 µl PCR contained 2.5 µl of 10x ThermoPol Reaction Buffer (New England Biolabs, MA, USA), 1.5 µl of 10 mg/ml bovine serum albumin, 0.2 µM 515F primer, 0.2 µM 926R primer, 0.2 mM dNTPs, 0.625 units of *Taq* DNA polymerase (New England Biolabs), 2-50 ng of genomic DNA as template in HyPure Molecular Biology Grade Water (GE Healthcare Life Sciences, UT, USA). Reactions were conducted in triplicate on a T100 Thermal Cycler (BioRad, CA, USA) or DNAEngine Peltier Thermal Cycler (BioRad) and conditions used for PCR were 95°C for 3 minutes, followed by 35 cycles of 95°C for 30 seconds, 50°C for 30 seconds, and 68°C for 1 minute, finishing with 68°C for 7 minutes. Samples were randomly assigned barcodes to avoid bias.

Following PCR, triplicate PCR products were run separately on a 1% agarose gel then pooled. Equal amounts of DNA from each sample were combined prior to sequencing. Nontemplate negative controls were added as 5 µl volumes, and positive controls were added at half the amount of the DNA samples. Negative controls were labelled as "NTC". Positive controls contained equal amounts of *Thermus aquaticus* and *Aliivibrio fischeri* and were labelled as "PC". Pooled samples were then run on another 1% agarose gel and bands corresponding to the 16S rRNA gene amplicons were extracted and purified using the Wizard SV Gel and PCR Clean-Up System (Promega, WI, USA). The eluted DNA library was stored at -20°C until further processing. The library was prepared for sequencing on a MiSeq (Illumina, CA, USA) using the provided HT1 buffer to dilute the library to about 6 pM. The PhiX library was also added such that it made up 15% of the final library. Paired-end sequencing (2 x 250 bases) was performed on a MiSeq, generating ~18 million paired-end reads. Sequences are available in the Sequence Read Archive (SRA) at NCBI under accession number PRJNA600216 (https://www.ncbi.nlm.nih.gov/sra/PRJNA600216).

2.5 QIIME2 Analysis

Paired-end reads were demultiplexed using the MiSeq Reporter software. Subsequent FASTQ files were imported into QIIME2, and adapter and primer sequences were removed using cutadapt¹⁰². Reads were then trimmed, denoised, dereplicated, and merged using DADA2 within QIIME2. Reads were trimmed based on a minimum quality score of 25 for the nucleotide position. This produced a feature table containing amplicon sequence variants (ASVs). The April 2018 SILVA release 132, 97% taxonomy classification for the 16S rRNA gene was used to train the Naïve Bayes classifier, and taxonomy was assigned to sequence variants within the feature table. The feature table was collapsed to the phylum level, and the uncollapsed ASV table was rarefied to a sampling depth based on the sample with the lowest number of reads and exported to visualize microbial community diversity in bar plots and bubble plots.

A beta diversity analysis was conducted with scripts contained within the QIIME2 pipeline. Phylogenetic trees were created using the ASV table and beta diversity analysis was performed using the same sampling depth as for rarefaction. Principal coordinates analysis

(PCoA) was performed using the weighted and unweighted UniFrac distance metrics. The PCoA results were visualized using a custom R script.

2.6 Indicator Species Analysis

Rarefied ASV tables exported from QIIME2 were used for an indicator species analysis $(ISA)^{103}$, using only Baker Lake WSP samples, Lagoon Lake samples, and reference lake samples. The Baker Lake WSP and Lagoon Lake samples were assigned to one group, and reference lake samples were assigned to another group. Indicator species are species, or in this study, ASVs, that are associated with, or indicative of, an assigned group of samples¹⁰⁴. Indicator values (IndVals) for each ASV within these samples were calculated using the multipatt function from the indicspecies R package¹⁰⁵; 1000 permutations were tested to determine statistical significance. The ASVs with an IndVal of at least 0.9 and *p* value < 0.05 were considered as indicator species and used for subsequent analysis and data visualizations.

2.7 Metagenome Sequencing

Genomic DNA was aliquoted for a subset of samples. Each sample location selected was sequenced in duplicate for all time points available. Sampling sites selected from Baker Lake included both time points and duplicates from WWL, LL, FLO, ALO, DWI, REF1, REF2. All available samples for the WSPs in Cambridge Bay and Kugluktuk were also sequenced. This gave a total of 34 samples that were aliquoted and sent to the Farncombe Metagenomics Facility at McMaster University for library preparation, quality control, and whole metagenome shotgun sequencing. The NEBNext Ultra II DNA Library Prep Kit (New England Biolabs) was used to prepare the library for sequencing and paired-end sequencing (2 x 250 bases) was performed on two lanes of a HiSeq 1500 (Illumina) generating a total of ~500 million paired-end reads. Sequences are available in the Sequence Read Archive (SRA) at NCBI under accession number PRJNA600216 (https://www.ncbi.nlm.nih.gov/sra/PRJNA600216).

2.8 MetAnnotate Analysis

Raw metagenomic reads were analyzed using a development version of MetAnnotate¹⁰⁶ (available at <u>https://github.com/MetAnnotate/MetAnnotate/tree/develop</u>, commit ID: 6e92c0e). A hidden Markov model (HMM) for the gene for the beta subunit of bacterial RNA polymerase (*rpoB*) was downloaded from the TIGRFAMs database¹⁰⁷ and was used to profile the metagenomes by assigning taxonomy to reads identified as hits to the HMM. Forward and reverse reads were analyzed separately using HMM e values \leq 1e-3 and RefSeq HMM e values \leq 1e-6. Default values were used for all other parameters. The *rpoB* output table was then analyzed using a custom R script (available at

<u>https://github.com/jmtsuji/metannotate-analysis</u>) to produce taxonomy abundance tables for comparison to 16S rRNA gene taxonomic assignments. Bar plots and bubble plots showing taxonomic profiles were produced with a custom R script.

2.9 Metagenome Assembly and Binning

Metagenomic reads were processed using the ATLAS release 2.0.6, which performs quality control, assembly, annotation, binning, and read mapping⁸⁰. Quality control was performed by the BBtools suite⁸¹ tools to eliminate adapters, remove PCR duplicates, then trim and

filter reads based on quality scores and length of reads. Paired-end reads were assembled using the metaSPAdes⁸⁴ assembly tool. Prodigal⁹¹ was used to predict ORFs in contigs and translated gene products were mapped to the eggNOG⁹² catalogue using DIAMOND⁹³. Taxonomy was assigned using BAT⁹⁴, mapping genes to the Genbank protein database⁹⁵. Contigs were then binned using metabat2⁸⁵ and maxbin2⁸⁶, followed by DASTool⁸⁹ as a final binner to dereplicate, aggregate, and score the bins and create high-quality metagenome-assembled genomes (MAGs). Because some of the same genomes were identified in multiple samples, resulting in multiple bins for the same MAG, dRep⁹⁰ was also used to select the best bin for each MAG. The MAG tables were then generated using a custom R script (available at <u>https://github.com/jmtsuji/atlas2-helpers</u>), and bar plots and bubble plots were produced with a separate custom R script.

2.10 Mantel Test and Hierarchical Clustering

The ASV tables, *rpoB* tables, and MAG tables were compared to one another with a Mantel test to assess correlations between the three datasets. Bray-Curtis dissimilarity matrices were produced for each of the three tables in R using the vegdist function in the vegan package¹⁰⁸. The Mantel test was then performed on each pair of matrices using the mantel.rtest function from the ade4 R package¹⁰⁹, with 1000 permutations to verify statistical significance.

Hierarchichal clustering was then performed on each distance matrix using the hclust function in the stats R package¹¹⁰. The group average agglomeration method was used, which is equivalent to the unweighted pair-group method (UPGMA) whereby the distance between groups is calculated by averaging all of the distances for all pairs of individuals, assigning one for each group¹¹¹. Hierarchical clustering results for each dataset were plotted in dendrograms.

2.11 Identification of ARGs using ShortBRED

Forward and reverse reads from each set of paired-end metagenomic read files were analyzed separately to identify and quantify antibiotic resistance genes. This was done using the precomputed 2017 Antibiotic Resistance Factors marker collection from the ShortBRED³⁶ documentation pages (available at <u>http://huttenhower.sph.harvard.edu/shortbred</u>). This marker set is based on the CARD. The shortbred-quantify.py function from ShortBRED quantifies the relative abundance of each of the markers in the metagenomic reads. This function also normalizes the counts based on marker length and sequencing depth, giving a normalized count value in reads per kilobase of reference sequence per million sample reads (RPKM). Gene families were grouped manually into larger groups based on CARD information (Appendix 1). The tables of RPKM values were modified in a custom R script to factor in the gene family groupings and plotted in a heatmap with dendrograms produced by hierarchical clustering using the "ward.D2" agglomeration method.

Groupings that appeared to be enriched in wastewater sites were examined in closer detail. The most abundant ARGs in the wastewater samples were selected as genes of interest, and reads from those samples were extracted for further investigation. The extracted reads were mapped to their contigs based on the metagenome assembles done previously. These contigs were then mapped to their bins, and the bins were then mapped to the MAGs to identify which MAGs contained the ARGs that were enriched in wastewater samples.

Chapter 3

Results and Discussion

Arctic wastewater systems are currently not well characterized, and the microbial communities of these systems are not well understood. This study aimed to develop a taxonomic profile of microorganisms within three Arctic WSPs and receiving waters in Baker Lake, Cambridge Bay, and Kugluktuk in the territory of Nunavut, with a focus on Baker Lake. To determine the major taxa present within Arctic wastewaters and verify the presence or absence of these groups in receiving waters, 16S rRNA gene amplicons and metagenomes were sequenced and taxonomy was assigned. Antibiotic resistance genes were also identified and quantified from metagenome sequences. The frequent misuse of antibiotics has created a growing problem of ARB, and this study aims to assess the enrichment of ARGs in wastewater, and determine if these ARGs are also accumulating in receiving waters. Overall, the research presented here will give a better understanding of the efficiency of WSP systems in Arctic conditions, and give insight into future improvements that can be made to the infrastructure of Baker Lake's wastewater management system.

3.1 Wastewater Treatment System of Baker Lake, Nunavut

High-throughput 16S rRNA gene sequencing generated ~18 million paired-end reads, resulting in ~37,000 ASVs from all samples, including those from Cambridge Bay and Kugkluktuk, Nunavut. Read counts varied among samples, with a minimum read count of ~19,000 reads and a maximum read count of ~310,000 (Table 3.1). Almost all negative controls, with the exception of one extraction kit control (KC3), had lower read counts and

possessed ASV profiles that were distinct from samples. Positive controls contained only *Thermus aquaticus* and *Aliivibrio fischeri*, as expected. All ASVs detected were used for ordinations using weighted and unweighted UniFrac distance metrics. Both weighted and unweighted UniFrac distances factor in phylogenetic distance of ASVs present in each sample. Weighted UniFrac distances also consider the abundance of these ASVs instead of just presence or absence. In later analyses, only ASVs with >0.1% abundance in WSP samples were included, excluding sample 2WWLB for filtering steps because it was considered an outlier based on relative abundances of phyla in that samples (Figure 3.2). This reduced the number of ASVs to 71 that were included in the analysis for the Baker Lake WSP. However, other lakes in Baker Lake contained more ASVs at >0.1% abundance that were not found in the WSP, and these ASVs were not studied in detail.

Table 3.1: 16S rRNA	gene sequence read counts for all samp	les
---------------------	--	-----

	Read Count	e sequence read co Sample	Read Count	Sample	Read Count
	111 491	2W/WI A	152 433		60 033
1W/W/I B	145 748	2000LA	162,400		59 544
111 A	87 581	211 A	135 617	KC1	977
111 B	89,989	211 B	155 740	KC2	1 048
1FLIA	74 401	2ELB 2FLIA	116 295	KC3	13 402
1FLIB	110 023	2FLIB	71 642	KC4	491
1FLOA	68.450	2FLOA	37.586	KC5	3.490
1FLOB	190.174	2FLOB	98.601	PCa	112.403
1ALIA	40,696	2ALIA	116,772	PCb	124,341
1ALIB	51,116	2ALIB	104,529	PCc	167,680
1ALOA	60,715	2ALOA	170,630	PCa2	170,665
1ALOB	135,713	2ALOB	117,446	PCb2	168,867
1ALEA	222,454	2ACOA	243,037	PCc2	260,504
1ALEB	108,408	2ACOB	98,806	NTC1a	495
1ACOA	309,507	2BLPA	38,480	NTC1b	254
1ACOB	128,386	2BLPB	176,123	NTC1c	82
1BLPA	95,702	2BLMA	58,054	NTC1a2	2,720
1BLPB	135,337	2BLMB	130,378	NTC1b2	1,094
1BLMA	195,020	2HCOA	33,895	NTC1c2	3,270
1BLMB	239,541	2HCOB	77,445	NTC2a2	793
1HCOA	219,146	2DWIA	36,393	NTC2b2	1,254
1HCOB	84,125	2DWIB	154,192	NTC2c2	3,805
1BLA	81,945	2BLCA	77,511	NTC3	1,020
1BLB	57,651	2BLCB	148,365	NTC3a2	2,288
1DWIA	94,338	2REF1A	108,036	NTC3b2	826
1DWIB	68,186	2REF1B	127,099	NTC3c2	592
1BLCA	19,131	2REF2A	109,562		
1BLCB	47,988	2REF2B	102,131		
1REF1A	72,729	2REF3A	85,693		
1REF1B	126,370	2REF3B	89,265		
1REF2A	100,937	1CBLA	164,233		
1REF2B	176,910	1CBLB	259,568		
1REF3A	47,514	2CBLA	132,595		
1REF3B	146,462	2CBLB	83,738		

3.1.1 Temporal Variability

Microbial community profiling of the wastewater treatment system in Baker Lake, Nunavut, as well as the receiving waters, identified changes in 16S rRNA gene profiles that were influenced by temporal and spatial factors. Specifically, ordinations based on both weighted and unweighted UniFrac metrics (Figure 3.1) demonstrated that samples from the first time point (July 13-16, 2018) separated from samples from the second time point (July 22-24, 2018), with highly similar profiles for replicate samples. Greater variation in the data was explained by the first two ordination axes of the weighted distance metric (50.4%), compared to the unweighted distance metric (24.0%). Samples from Airplane Lake and Baker Lake substantially overlapped in ordination space (Figure 3.1). In general, there are many ASVs in common between these sets of samples. Particularly for the first time point, Airplane Lake and Baker Lake samples have very similar taxonomic profiles (Figure 3.4). This result was expected because incoming water from sources other than the WSP dilute the wastewater such that dominant wastewater microorganisms become less prevalent when mixed with upstream freshwater microbial communities.

Figure 3.1: Principal coordinates analysis (PCoA) using (A) weighted and (B) unweighted UniFrac distances based on amplicon sequence variants (ASVs) from 16S rRNA gene amplicons for sites in Baker Lake, Nunavut.

A temporal shift in microbial community composition for most samples collected from the Baker Lake site is also reflected at the phylum level. Over the 10-day period between sampling time points, a shift in abundance of each phylum occurred for the majority of sample sites. Most sites shifted from being dominated by *Bacteroidetes* to containing higher levels of *Actinobacteria*, *Cyanobacteria*, and *Verrucomicrobia* (Figure 3.2). The most obvious shift occurred for samples collected from Finger Lake, Airplane Lake, and Baker Lake. In Airplane Lake and Baker Lake samples, members of the *Bacteroidetes* represented ~75% of the detected microbial communities in samples from the first time point, yet decreased to as low as 4% relative abundance at some sampling sites. For samples collected at several of these sites, *Cyanobacteria*, *Patescibacteria*, *Planctomycetes*, and *Verrucomicrobia* were not detected, or were found at very low relative abundance for the first time point. The microbial communities profiled for Finger Lake samples demonstrated a shift from being almost completely composed of *Bacteroidetes* and *Proteobacteria*, to containing far more *Actinobacteria*. This is particularly noticeable in the samples 2FLIA and 2FLIB, which contained over 50% *Actinobacteria* despite the phylum not being detected at >1% relative abundance at the same site for the first time point (Figure 3.2). The Baker Lake WSP and Lagoon Lake samples were consistent temporally, with the exception of 2WWLB, which contained far more *Firmicutes* than any other Baker Lake samples.

Figure 3.2: Relative abundance of phyla present at each site in Baker Lake, Nunavut. (A) Samples collected between July 13-16, 2018. (B) Samples collected between July 22-24, 2018. Sample names correspond to sites indicated on the map in Figure 2.2. Sample names beginning with 1 correspond to samples collected during the first time point, and samples names beginning with 2 correspond to samples collected during the second time point. Letters A and B at the end of sample names refer to replicates at the same site and time point. Corresponding lake names are indicated above bars.

Many of the highly abundant ASVs that affiliated with the *Bacteroidetes* also belonged to the *Flavobacteriaceae* family (Figure 3.3), of which multiple species, particularly those in the genus *Flavobacterium*, have been characterized as being

psychrophilic or psychrotolerant organisms^{112,113}. There were two ASVs associated with Flavobacterium and Janthinobacterium that were more abundant at the first time point than the second time point, particularly for Airplane Lake, Baker Lake, and the reference lake samples. In particular, ASVs affiliated with *Janthinobacterium* were highly abundant in Baker Lake and reference lakes, but decreased in abundance for second time point samples (Figure 3.4). Strains of *Janthinobacterium* (within the Flavobacteriaceae family) have also been identified as psychrotolerant^{114,115}. These psychrotolerant bacteria may have been present during the first sampling time point because water temperatures were still relatively cold. However, water temperatures gradually increased over the 10 days between sampling times. The most substantial temperature change occurred for the Baker Lake HCO site, increasing by 5°C over the 10-day period (Table A1). This temperature change may have impacted the microbial community because >60% of the community at the HCO site was dominated by *Flavobacteriaceae*, but this decreased to as low as 2% abundance for samples collected at the second time point (Figure 3.3). The increase in temperature may have induced the growth of other microorganisms, resulting in many low abundance organisms appearing at the second time point that were not detected earlier.

Figure 3.3: Relative abundance of families present at >0.1% abundance at each site in Baker Lake, Nunavut. (A) Samples collected between July 13-16, 2018. (B) Samples collected between July 22-24, 2018. Sample names correspond to sites indicated on the map in Figure 2.2. Sample names beginning with 1 correspond to samples collected during the first time point, and samples names beginning with 2 correspond to samples collected during the second time point. Letters A and B at the end of sample names refer to replicates at the same site and time point. Corresponding lake names are indicated above columns.

Taxonomic affiliation

38

Figure 3.4: Relative abundance of amplicon sequence variants (ASVs) present at >0.1% abundance at each site in Baker Lake, Nunavut. (A) Samples collected between July 13-16, 2018. (B) Samples collected between July 22-24, 2018. ASVs with <0.1% abundance in 1WWLA, 1WWLB, and 2WWLA were not included. Samples that did not contain >0.1% abundance of any of these ASVs were not included. Sample names correspond to sites indicated on the map in Figure 2.2. Sample names beginning with 1 correspond to samples collected during the first time point, and samples names beginning with 2 correspond to samples collected during the second time point. Letters A and B at the end of sample names refer to replicates at the same site and time point. Lake names are indicated above columns.

3.1.2 Spatial Variability

Taxonomic profiling of the WSP lakes system in Baker Lake also revealed spatial variations of the microbial communities in the WSP and downstream lakes. The weighted and unweighted UniFrac ordinations demonstrate that samples are broadly arranged based on their distance from the WSP (Figure 3.1). Sample sites that were geographically closer to the WSP also appeared closer to the WSP within ordination space, with reference sites grouping among the more distant sites, and this was consistent among replicates. Overall, spatial trends appear to be comparable between both ordinations with the exception of the WWL and LL samples, which grouped closer together on the unweighted UniFrac ordination, and separated from the other lakes (Figure 3.1).

Spatial variability was also apparent at the phylum level of community composition. Samples from the WSP had *Proteobacteria* comprising the majority of detected microbial communities, whereas downstream site samples had less *Proteobacteria* and more *Bacteroidetes* for the first time point. However, the second time point samples contained more *Actinobacteria, Verrucomicrobia,* and *Planctomycetes* in sites downstream of the WSP (Figure 3.2). Spatial variability was less apparent when visualized at the ASV and family levels (Figures 3.3 and 3.4). Focusing on microorganisms detected in the Baker Lake WSP at >0.1% abundance, many of the ASVs from the WSP samples were also present in Lagoon Lake samples, albeit at low abundance, but not detected at all in lakes further downstream (Figure 3.4). This may be due to dilution effects caused by inflowing water from the upstream reference lake into Lagoon Lake. At the family level, ~85% of microorganisms in the WSP appear to be related to *Moraxellaceae* and *Pseudomonadaceae* (Figure 3.3). Both of

these groups decreased to below 1% abundance in Lagoon Lake, which may have been caused by differences in both pH and temperature. The lower temperature, and higher pH in Lagoon Lake may have been less favourable to the bacteria affiliated with *Moraxellaceae* and *Pseudomonas*, and more favourable to other microorganisms, causing a shift in microbial community composition as water flowed from the WSP to Lagoon Lake. Lagoon Lake samples also appear to have multiple families in common with both the WSP samples as well as the upstream reference lakes (Figure 3.3). Flavobacteriaceae and Burkholderiacea were the two most abundant families shared by Lagoon Lake and the reference lakes. In comparison, the WSP contained both of these families in lower abundance than in both Lagoon Lake and the reference lakes. In general, the WSP and Lagoon Lake shared more families that were detected in lower abundance. Although Lagoon Lake receives water from both the WSP and upstream lakes and is expected to contain microbial inputs from both systems, the microorganisms detected in the WSP do not persist in higher abundance than the microorganisms found in the upstream reference lakes. Microorganisms introduced to the environment through the WSP and are likely outcompeted by the microorganisms that are naturally present in the environment.

3.1.3 Wastewater Indicators

An indicator species analysis (ISA) identified ASVs specific to WSP-associated samples. An ISA produces indicator values for each ASV found within each group, which are assigned prior to analysis. These indicator values are determined by calculating proportional abundance of an ASV across all groups followed by calculating proportional frequency of the

ASV in each group. These two proportions are combined and ASVs with the highest indicator values are considered to be indicator species for a specific group. Statistical significance is then calculated using a Monte Carlo test to determine whether the observed indicator values are higher than expected by chance¹¹¹. Using indicator values >0.9 and pvalues <0.05, 46 ASVs were identified as indicator species for wastewater (Table 3.2). Several species of the genera associated with these ASVs were identified previously in wastewater, including Acinetobacter¹¹⁶, Trichococcus⁶⁶, and Pseudomonas^{117,118}. Other species have been identified in human fecal matter, including *Bifidobacterium*¹¹⁹, *Ruminococcus*¹¹⁹, and *Enterococcus*¹²⁰. Although the majority of these ASVs were detected with greater than 10 reads in at least one sample, two ASVs associated with the genera *Kaistia* and *Enterobacteriaceae* had fewer than 10 reads in all samples (Figure 3.5). Out of the 46 indicator ASVs, 17 were identified at sites downstream of Lagoon Lake. However, 13 of these indicator ASVs were found in a single site downstream of Lagoon Lake (i.e. 2ACOB). This sample could be considered an outlier with potential WSP contamination because the replicate (i.e. 2ACOA) did not contain these same wastewater indicator ASVs, except for Acinetobacter, which was also detected in other samples.

Table 3.2: Indicator species analysis results for wastewater amplicon sequence variants (ASVs) in Baker Lake, Nunavut. WWL and LL samples were grouped and compared to REFx samples (x indicating lake number). ASVs with an IndVal >0.9 and p value <0.05 were included. Asterisks beside ASVs indicate they were found at >0.1% abundance in the waste stabilization pond (WSP).

Taxonomic Affiliation	IndVal	p value
Bifidobacterium_45*	1.000	0.001
Pseudomonas_53*	1.000	0.001
Trichococcus_90*	1.000	0.001
Eubacteriaceae_100*	1.000	0.001
Enterococcus_162*	1.000	0.001
Bifidobacterium_185*	1.000	0.001
Subdoligranulum_353*	1.000	0.001
Eubacterium_356*	1.000	0.001
Ettlia oleoabundans_390	1.000	0.001
Erysipelotrichaceae_425	1.000	0.001
Acetoanaerobium_439*	1.000	0.001
Subdoligranulum_506	1.000	0.001
Streptococcus salivarius subspp542	1.000	0.001
Tepidiphilus_557*	1.000	0.001
Pleomorphomonas_815*	1.000	0.001
Rhodobacteraceae_848	1.000	0.001
Christensenellaceae_877	1.000	0.001
Lactococcus lactis_881	1.000	0.001
Pseudomonas_955*	1.000	0.001
Akkermansia_1070	1.000	0.001
Bifidobacterium_73*	1.000	0.001
Psychrobacter_2*	1.000	0.001
Acinetobacter_6*	0.997	0.004
Acidovorax_36*	0.935	0.001
Caulobacter_57	0.935	0.001
Brevundimonas_191*	0.935	0.001
Kaistia_290	0.935	0.001
Rhodobacteraceae_402*	0.935	0.001
Ruminococcus_504	0.935	0.001
Holdemanella_508	0.935	0.002
Rhodobacteraceae_618	0.935	0.001
Akkermansia_659	0.935	0.001
Catenibacterium_708	0.935	0.002
Burkholderiaceae_849	0.935	0.001
Proteiniclasticum_892	0.935	0.002
Veillonellaceae_933	0.935	0.001
Microbacterium_951	0.935	0.001
Coprothermobacter_1051	0.935	0.001
Methanobrevibacter_1110	0.935	0.001
Anaerofilum_1139	0.935	0.002
Sphingomonadaceae_1160	0.935	0.001
Christensenellaceae_1178	0.935	0.001
Gastranaerophilales_1229	0.935	0.001
Enterobacteriaceae_1515	0.935	0.001
Enterobacteriaceae_1638	0.935	0.001
Pseudomonas_364*	0.933	0.001

44

Figure 3.5:Presence/absence heatmap of wastewater indicator amplicon sequence variants (ASVs) at all sites in Baker Lake, Nunavut. (A) Samples collected between July 13-16, 2018. (B) Samples collected between July 22-24, 2018. Sample names correspond to sites indicated on the map in Figure 2.2. Sample names beginning with 1 correspond to samples collected during the first time point, and samples names beginning with 2 correspond to samples collected during the second time point. Letters A and B at the end of sample names refer to replicates at the same site and time point. Lake names are indicated above columns. Boxes were filled in if the ASV had at least 10 reads at that site.

Although many of the indicator ASVs were detected at very low relative abundance, 19 out of the 46 ASVs were detected at >0.1% abundance (Table 3.2 and Figure 3.4). Many of these ASVs were detected in the WSP or Lagoon Lake but were not found in downstream sites. This means that wastewater may not be impacting downstream sites as heavily as expected, and that dilution of the wastewater leaving the WSP may be enough to reduce wastewater organisms in downstream sites below detectable levels.

A single wastewater indicator ASV was detected in reference lakes as well as in the WSP. This ASV was associated with the genus *Acinetobacter* and was detected in the WSP at ~60% relative abundance. Species within this genus are relatively ubiquitous¹²¹, and therefore it is not surprising that this ASV was detected in every lake examined, albeit at below 1% abundance for samples taken from most sites. This could be a potential health concern because a number of species within this genus are human pathogens and several of which have been associated with multi-drug resistant infections^{121,122}. However, the source of this ASV cannot be directly associated with wastewaters because it was also found in samples from reference sites, which should have no wastewater input. Further testing would need to be done to identify the origin of this ASV. Species-level classification was not identified for the majority of ASVs, and therefore it is not possible to know whether this ASV was a potential pathogen, and further tests would also need to be performed to better characterize the *Acinetobacter*-affiliated taxa detected in the wastewater.

3.2 Comparison of WSPs from Baker Lake, Cambridge Bay, and Kugluktuk

Ordinations prepared with WSP samples from Baker Lake, Cambridge Bay, and Kugluktuk demonstrated that samples grouped distinctly based on WSP location on both axes (Figure 3.6), with the exception being that first time point Cambridge Bay WSP samples grouped with the Baker Lake WSP samples. The weighted UniFrac ordination grouped these samples closer together than the unweighted UniFrac ordination. In total, ~75.5% of the variance was explained on the first two axes of the weighted UniFrac ordination, compared to only ~46.7% of the variance explained on the first two axes of the unweighted UniFrac ordination. The weighted UniFrac ordination also separated the Baker Lake sample, 2WWLB, from the other Baker Lake samples. Sample 2WWLB was previously established as an outlier, so this trend was expected. The Kugluktuk samples also did not group with any other samples from different sampling sites (Figure 3.6).

Figure 3.6: Principal coordinates analysis (PCoA) ordination plots using (A) weighted and (B) unweighted UniFrac distances based on amplicon sequence variants (ASVs) from 16S rRNA gene amplicons for waste stabilization pond (WSP) sites in Baker Lake, Cambridge Bay, and Kugluktuk.

Despite site-specific grouping within ordination space, samples from the three WSPs had similar taxonomic profiles, with Proteobacteria representing >75% of the microbial communities detected for all samples, except 2WWLB and the samples from the second time point of Cambridge Bay (Figure 3.7). As expected based on the ordinations, microbial community ASV profiles detected for Kugluktuk samples were distinct (Figure 3.8), with only two ASVs at >1% abundance in common for the other two locations. These two ASVs were associated with the genus *Pseudorhodobacter*, which was in common with the Cambridge Bay WSP and the genus *Brevundimonas*, which was shared with the Baker Lake WSP. The most abundant ASVs in the Kugluktuk WSP were affiliated with Acidovorax and *Rhodoferax* genera. Multiple strains of *Acidovorax* were reported for activated sludge samples from municipal WWTPs, and are known to be denitrifiers^{123,124}. Strains of *Rhodoferax* have also been identified as denitrifiers involved in the removal of nitrogen in WWTPs¹²⁵, and several strains have also been described as psychrotolerant^{126,127}. It is likely that these samples contained a mixture of wastewater and sludge, indicating disturbance of the sediments within the WSP caused by the continuous dumping of new wastewater into the WSP.

The first time point Cambridge Bay samples grouped more closely to samples from Baker Lake than to the second time point Cambridge Bay samples (Figures 3.6). The second time point Cambridge Bay samples contained more phyla than identified in the first time point, including *Cyanobacteria*, *Planctomycetes*, and *Verrucomicrobia* (Figure 3.7). *Actinobacteria* ASVs were also present in higher proportions for second time point Cambridge Bay samples than in the rest of the samples, apart from 2WWLB. Differences in

microbial community profiles for Cambridge Bay samples were likely linked to temporal factors. The first set of WSP samples from Cambridge Bay were collected prior to wastewater discharge and the second set of samples were collected after the initial release of wastewater had occurred. The lagoon became shallower as a result of the release, presumably allowing for a rapid water temperature increase. Previous research showed that *Cyanobacteria* increased in shallow lakes with higher temperature¹²⁸, and thus may have proliferated in the Cambridge Bay WSP as water levels decreased. This same growth induction may have occurred for other microorganisms as temperatures increased. The dominant ASV for the first time point was associated with *Psychrobacter*, at a relative abundance of >80% (Figure 3.8), yet, this ASV was not detected in the second time point. Instead, ASVs associated with other genera became more prevalent such that none of the ASVs identified during the second time point were identified in the first at an abundance of >1%. *Psychrobacter* species have been identified as psychrophiles¹¹² and a shift from colder to warmer temperatures is highly likely associated with these abundance changes. Unfortunately, temperature measurements were not taken for either time point due to sampling logistics constraints and therefore this cannot be verified.

Figure 3.7: Relative abundance of phyla present at waste stabilization pond (WSP) sites in Baker Lake, Cambridge Bay, and Kugluktuk. (A) Samples collected from the WSP at Baker Lake. (B) Samples collected from the WSP at Cambridge Bay. (C) Samples collected from the WSP at Kugluktuk. Sample names beginning with 1 correspond to samples collected during the first time point, and samples names beginning with 2 correspond to samples collected during the second time point. Letters A and B at the end of sample names refer to replicates at the same site and time point.

Figure 3.8: Relative abundance of amplicon sequence variants (ASVs) present at >1% abundance at waste stabilization pond (WSP) sites in Baker Lake, Cambridge Bay, and Kugluktuk. (A) Samples collected from the WSP at Baker Lake. (B) Samples collected from the WSP at Cambridge Bay. (C) Samples collected from the WSP at Kugluktuk. Sample names beginning with 1 correspond to samples collected during the first time point, and samples names beginning with 2 correspond to samples collected during the second time point. Letters A and B at the end of sample names refer to replicates at the same site and time point.

3.3 Comparison of 16S rRNA Genes and Metagenomes

A subset of the samples that were analyzed to compare 16S rRNA gene profiles were selected for metagenomic sequencing, including a single sample from each of the lakes downstream of the Baker Lake WSP, as well as from the WSP itself. The sampling sites closest to the outflow of those lakes were selected. The DWI site in Baker Lake was selected because it is located near the water intake pipe for the community. Two out of the three reference sites were included for comparison. The Cambridge Bay and Kugluktuk WSP samples were also sequenced. For each of the sites selected from Baker Lake and Cambridge Bay, duplicates at both time points were sequenced. Because Kugluktuk only had a single time point sampled, there were only duplicates sequenced.

Metagenome sequencing generated ~600 million paired-end reads. Raw reads were analyzed using MetAnnotate¹⁰⁶, which identified all sequences that matched with the *rpoB* gene HMM. This produced a microbial community profile that could be compared to the 16S rRNA gene profile. All reads were also assembled using the ATLAS 2.0 pipeline⁸⁰, and MAGs were generated. The ATLAS 2.0 pipeline also assigns taxonomy to the MAGs based on taxonomic assignments to all binned genes. Although these profiles were also compared to the 16S rRNA gene profiles, only a portion of the reads were assigned to bins. This portion of unassigned reads varied between samples, ranging between 20-80% of reads. These reads were labelled as "unclassified" (Figures 3.10C-12C). Therefore, the MAG taxonomic profiles reflect a subset of DNA sequences obtained.

3.3.1 Consistent Taxonomic Profiles

Taxonomic profiles based on 16S rRNA gene amplicons, taxonomic assignments to sequences associated with *rpoB*, and taxonomic assignments to MAGs showed similar groupings of samples (Figure 3.9). Each of the ordinations display spatial variability with regards to geographic distance of sampling sites from one another. The WSP samples were more similar to sample sites located geographically closer to Baker Lake's WSP samples than Airplane Lake, Baker Lake, and reference lake samples. This gradient was expected because wastewater entering the downstream lake systems is diluted, and therefore microbial communities associated with the wastewater are also diluted and outcompeted by other microorganisms. The Baker Lake WSP grouped closely with the first time point of the Cambridge Bay WSP, whereas the Kugluktuk WSP and the second time point of the Cambridge Bay WSP grouped more closely with Lagoon Lake and Finger Lake samples. Based on the phylum-level taxonomic profiles (Figures 3.10-12), this grouping was expected because similar proportions of each phyla were observed for samples that grouped together.

Figure 3.9: Principal coordinates analysis (PCoA) ordination plots using Bray-Curtis distances based on (A) amplicon sequence variants (ASVs) from 16S rRNA gene amplicons, (B) taxonomic assignments to metagenome sequences corresponding to the rpoB hidden Markov model (HMM), and (C) taxonomic assignments to metagenome-assembled genomes (MAGs).

In general, similar proportions of phyla for the same samples occurred when comparing the 16S rRNA gene taxonomic assignments and *rpoB* gene taxonomic assignments (Figures 3.10-12). However, this pattern was not as clear when observing MAG taxonomic assignments. Only a small proportion of all metagenomic reads were assigned to bins, and therefore many reads were not classified. However, similar ratios of the phyla that were detected in each sample were still observed when comparing MAG taxonomic assignments to the other two datasets. *Proteobacteria* was the dominant phylum in WSP samples within all three datasets. *Bacteroidetes* and *Actinobacteria* are also highly abundant phyla in the 16S rRNA gene taxonomic assignments as well as in the *rpoB* gene taxonomic assignments. However, these groups are underrepresented in the MAG taxonomic assignments, likely due to the low proportion of mapped reads. The only difference with the *rpoB* taxonomic classifications is that the *Actinobacteria* phylum was more prominent than displayed in the 16S rRNA gene taxonomic assignments. This is most noticeable in the first Baker Lake time point where relative abundance of the phylum is only as high as ~5% in the sample 1ALOA based on the 16S rRNA genes, but reaches up to ~30% for the same sample based on the *rpoB* gene (Figure 3.10). Forward and reverse metagenomic reads were used separately to identify taxa present based on the *rpoB* HMM. Both sets of reads also had consistent taxonomic profiles.

Figure 3.10: Relative abundance of phyla present at metagenome sequenced sites from Baker Lake samples collected between July 13-16, 2018. (A) Taxonomic assignments to 16S rRNA gene amplicons. (B) Taxonomic assignments to sequences corresponding to the *rpoB* hidden Markov model (HMM). (C) Taxonomic assignments to metagenome-assembled genomes (MAGs). Sample names correspond to sites indicated in Figure 2.2. Letters A and B at the end of sample names refer to replicates at the same site and time point. R1 and R2 refer to forward and reverse reads, respectively. Lake names are indicated above bars.

Figure 3.11: Relative abundance of phyla present at metagenome sequenced sites from Baker Lake samples collected between July 22-24, 2018. (A) Taxonomic assignments to 16S rRNA gene amplicons. (B) Taxonomic assignments to sequences corresponding to the *rpoB* hidden Markov model. (C) Taxonomic assignments to metagenome-assembled genomes (MAGs). Sample names correspond to sites indicated in Figure 2.2. Letters A and B at the end of sample names refer to replicates at the same site and time point. R1 and R2 forward and reverse reads, respectively. Lake names are indicated above bars.

Figure 3.12: Relative abundance of phyla present at metagenome sequenced sites from the WSPs in Cambridge Bay, and Kugluktuk. (A) Taxonomic assignments to 16S rRNA gene amplicons. (B) Taxonomic assignments to sequences corresponding to the *rpoB* hidden Markov model. (C) Taxonomic assignments to metagenome-assembled genomes (MAGs). Sample names correspond to sites indicated in Figure 2.2. Sample names beginning with 1 correspond to samples collected during the first time point, and samples names beginning with 2 correspond to samples collected during the second time point. Letters A and B at the end of sample names refer to replicates at the same site and time point. R1 and R2 refer to forward and reverse reads, respectively. Lake names are indicated above bars.
Comparing these 16S rRNA gene, *rpoB* gene, and MAG datasets at the family level, the *rpoB* gene taxonomic assignment identified the most families (Figures 3.13-15). The *rpoB* gene taxonomic assignment identified 82 families, while only 56 were identified using the 16S rRNA gene, and 28 were identified using MAG taxonomy. Studies have shown that assigning taxonomy using *rpoB* gene amplicons allows for the identification of more species^{129,130}. In this research, *rpoB* genes were identified using HMMs; however, the larger number of detected taxa may be attributed to *rpoB* providing better resolution among species, although this does not explain why bacteria from families such as *Comamonadaceae* were detected at relatively high abundance in the *rpoB* and MAG taxonomic assignment, but were not detected at all in the 16S rRNA gene analysis. However, the 16S rRNA gene analysis may have not detected the *Comamonadaceae* family due to primer bias against the 16S rRNA genes of the family.

Overall, seven of the most abundant taxa were identified in all three datasets, which includes *Bifidobacteriaceae*, *Carnobacteriaceae*, *Caulobacteriaceae*, *Flavobacteriaceae*, *Moraxellaceae*, *Pseudomonadaceae*, *Rhodobacteraceae*, and *Sphingomonadaceae*. *Moraxellaceae* was the dominant family in the Cambridge Bay WSP at the first time point as well as in both time points in the Baker Lake WSP. The *Sphingomonadaceae* family was highly abundant in Finger Lake samples, and *Flavobacteriaceae* was identified at high proportions in nearly all samples from Baker Lake. In contrast, *Burkholderiaceae* was identified in the 16S rRNA gene and *rpoB* gene analysis, but was not in the MAG taxonomy assignment. This may be due to the large number of reads that were not mapped to bins and thus many reads that were not assigned to a MAG may correspond to this family. This may

also have been caused by the inability to resolve taxonomic assignments to lower levels, and therefore some of the MAGs unresolved to the family level might also be associated with *Burkholderiaceae*, specifically those within the *Burkholderiales* order (Table 3.3).

Sample

Figure 3.13: Relative abundance of families present at >1% abundance in metagenome sequenced sites from Baker Lake, Cambridge Bay, and Kugluktuk, based on 16S rRNA gene amplicons. (A) Samples collected between July 13-16, 2018. (B) Samples collected between July 22-24, 2018. (C) Samples collected from the Cambridge Bay and Kugluktuk waste stabilization ponds (WSPs). Baker Lake sample names correspond to sites indicated in Figure 2.2. Sample names beginning with 1 correspond to samples collected during the first time point, and those beginning with 2 correspond to samples collected during the second time point. Letters A and B at the end of sample names refer to replicates at the same site and time point. Lake names are indicated above columns.

Taxonomic Affiliation

60

Figure 3.14: Relative abundance of families present at >1% abundance in metagenome sequenced sites from Baker Lake, Cambridge Bay, and Kugluktuk, based on taxonomic assignments to reads corresponding to the rpoB hidden Markov model (HMM). (A) Samples collected between July 13-16, 2018. (B) Samples collected between July 22-24, 2018. (C) Samples collected from the Cambridge Bay and Kugluktuk waste stabilization ponds (WSPs). Baker Lake sample names correspond to sites indicated in Figure 2.2. Sample names beginning with 1 correspond to samples collected during the first time point, and those beginning with 2 correspond to samples collected during the second time point. Letters A and B at the end of sample names refer to replicates at the same site and time point. R1 and R2 refer to forward and reverse reads, respectively. Lake names are indicated above columns.

Figure 3.15: Relative abundance of families present at metagenome sequenced sites from Baker Lake, Cambridge Bay, and Kugluktuk, based on taxonomic assignments to metagenome-assembled genomes (MAGs). Samples collected between July 13-16, 2018. (B) Samples collected between July 22-24, 2018. (C) Samples collected from the Cambridge Bay and Kugluktuk waste stabilization ponds (WSPs). MAGs with unresolved taxonomic assignment at the family level were grouped into "Unresolved_MAGs". Baker Lake sample names correspond to sites indicated in Figure 2.2. Sample names beginning with 1 correspond to samples collected during the first time point, and samples names beginning with 2 correspond to samples collected during the second time point. A and B at the end of sample names refer to replicates at the same site and time point. Lake names are indicated above columns.

Table 3.3: Metagenome assembled genomes (MAGs) with unresolved family-level taxonomy. The entry with an asterisk indicates insufficient data for classification for the Bin Annotation Tool (BAT) during assembly.

Number T of MAGs	Faxonomic Affiliation	MAG IDs
22 A	Actinobacteria	MAG001;MAG004;MAG024;MAG027;MAG037; MAG038:MAG049:MAG059:MAG062:MAG078:
		MAG079;MAG085;MAG087;MAG088;MAG089;
		MAG098;MAG100;MAG108;MAG130;MAG132;
0 5		MAG135;MAG137
2 E	Bacteroidetes	MAG094;MAG109
5 E	Betaproteobacteria	MAG011;MAG033;MAG083;MAG091;MAG103;
10 E	Burkholderiales	MAG006;MAG016;MAG044;MAG077;MAG096;
		MAG102;MAG107;MAG116;MAG121;MAG124
1 (Candidatus	MAG084
F	Parcubacteria	
2 (Clostridiales	MAG018;MAG090
2 N	Micrococcales	MAG069;MAG133
8 F	Planctomycetes	MAG021;MAG046;MAG050;MAG053;MAG092;
		MAG106;MAG139;MAG140
1 F	Rhizobiales	MAG020
6 5	Solirubrobacterales*	MAG010;MAG026;MAG057;MAG113;MAG119;
		MAG142
1 5	Sphingobacteriales	MAG048
3 \	/errucomicrobia	MAG047;MAG095;MAG123

To determine how similar these three datasets are to one another, hierarchical

clustering and the Mantel tests were conducted. The Mantel test determined, based on distance matrices for all samples from each dataset, that the *rpoB* dataset and 16S rRNA gene dataset were most similar, with a statistically significant observed correlation (Table 3.4). This is a strong positive correlation, indicating that samples within each dataset had similar distances to one another. The MAG dataset had a weaker correlation with the *rpoB* and 16S rRNA gene datasets (Table 3.4), but these were still considered significantly positive correlations. Again, this is likely due to the underrepresentation of taxa in the MAG dataset as a result of fewer reads mapping to the MAGs.

Table 3.4: Mantel test results comparing distance matrices for each pair based on 16S rRNA gene amplicons, taxonomic assignment to sequences corresponding to the rpoB hidden Markov model (HMM), and taxonomic assignment to metagenome-assembled genomes (MAGs).

	16S rRNA gene vs. <i>rpoB</i> gene	16S rRNA gene vs. MAGs	<i>rpoB</i> gene vs. MAGs
Observed Correlation	0.83	0.63	0.52
<i>p</i> value	0.001	0.001	0.001

The average agglomeration method was used for hierarchical clustering of samples. Clustering performed using the single and complete agglomeration methods produced similar dendrograms. Although hierarchical clustering produced similar clusters of samples among different datasets, there were discrepancies in the clusters generated from the *rpoB* dataset in comparison to the other two datasets. The dendrograms all consistently clustered Baker Lake WSP samples with samples from the first time point from the Cambridge Bay WSP (Figure 3.16). This trend was consistent across all analyses done, indicating that those samples were more similar to each other than to other samples, despite having few ASVs in common. Inconsistencies occur with Lagoon Lake samples that clustered with Baker Lake and reference lakes samples in the *rpoB* dendrogram, but clustered more closely with Kugluktuk WSP and Cambridge Bay WSP second time point samples in the other dendrograms. The family-level profile shows that Lagoon Lake samples had many families in common with the microbial communities of Airplane Lake, Baker Lake, and reference lakes (Figure 3.14).

Figure 3.16: Dendrograms based on hierarchical clustering done using the average agglomeration method and Bray-Curtis distances for (A) 16S rRNA gene amplicons, (B) taxonomic assignment to sequences corresponding to the rpoB hidden Markov model (HMM), and (C) taxonomic assignment to metagenome-assembled genomes (MAGs). Baker Lake sample names correspond to sites indicated in Figure 2.2. CBL refers to the Cambridge Bay waste stabilization pond (WSP). KWWL refers to the Kugluktuk WSP. Sample names beginning with 1 correspond to samples collected during the first time point, and samples names beginning with 2 correspond to samples collected during the second time point. Letters A and B at the end of sample names refer to replicates at the same site and time point.

3.4 Antibiotic Resistance Genes in Metagenomes

Antibiotic resistance genes were identified and quantified from metagenomic reads using ShortBRED³⁶. The ShortBRED tool was used with pre-computed markers for ARGs based on the CARD to search through forward and reverse metagenomic reads separately and quantify relative abundances of ARG families within the reads. These relative abundances were normalized to RPKM and visualized (Figure 3.17). The RPKM values of forward and reverse reads for each sample were summed to determine which genes to use in downstream analyses.

Detection and quantification of antibiotic resistance genes from raw metagenomic reads revealed an enrichment of ARGs in WSP samples (Figure 3.17). The pre-computed ARG markers used were manually grouped into larger classes (Table A2). Although many sequences associated with the class "genes modulating resistance" were identified, the three WSPs and Lagoon Lake appeared to have an increased abundance of genes related to macrolide resistance, class A beta-lactamases, ABC-F ribosomal protection, and rRNA methyltransferases. Within these four ARG classes, nine genes were selected for further analysis because they were present at a level of >10 RPKMs in at least two sample sites (Table 3.5). Background abundances were calculated using all samples that did not cluster with the WSPs and Lagoon Lake, including both duplicates of the second time point from the Cambridge Bay WSP (Figure 3.17). The reads containing these nine gene families were mapped to bins associated with the MAGs that were selected as the best bin during dereplication, it is still possible that the representative best bins contain these genes. Further

investigation needs to be done to better connect the resistome to microbial community members.

Four of the five ARG-containing MAGs were associated with genera that had been identified in the indicator species analysis (Table 3.2). These included *Psychrobacter*, *Trichococcus*, *Acetoanaerobium*, and *Enterococcus* (Table 3.6). The MAG associated with *Psychrobacter* (MAG030) was highly abundant in the Cambridge Bay WSP, whereas the other three MAGs associated with indicator species were found at much lower abundances. Although it has not been confirmed whether these bacteria contained the highly abundant ARGs, there is some evidence that wastewater indicator species encode ARGs. However, the wastewater indicators, as previously described, appear to be contained within the Baker Lake WSP and Lagoon Lake, and are only found at very low abundance at further downstream sites. Therefore, the Baker Lake WSP system may limit the spread of potentially pathogenic microorganisms containing ARGs into bodies of water that are regularly used for recreational purposes.

Figure 3.17: Heatmap of log10-transformed RPKM values of antibiotic resistance gene (ARG) families based on raw metagenomic reads. Baker Lake sample names correspond to sites indicated in Figure 2.2. CBL refers to the Cambridge Bay waste stabilization pond (WSP). KWWL refers to the Kugluktuk WSP. Sample names beginning with the number 1 correspond to samples collected during the first time point, and those beginning with the number 2 correspond to samples collected during the second time point. The letters A and B at the end of sample names refer to replicates at the same site and time point. Dendrograms for samples and ARG families have also been included **Table 3.5:** Abundant antibiotic resistance gene (ARG) families selected for downstream analysis. The RPKM values for forward and reverse reads from the same sampling site were summed. The RPKM ranges for duplicates were included for waste stabilization pond (WSP) and Lagoon Lake sampling sites that clustered together (Figure 3.17). Background abundances were also determined by calculating the average and standard deviation using all other samples. Bolded entries refer to those that contained >10 RPKMs in at least one of the duplicates.

		RPKMs						
Resistance Class	CARD gene family	Background abundance	Time Point 1			Time Point 2		
			Cambridge Bay WSP	Kugluktuk WSP	Lagoon Lake	Baker Lake WSP	Lagoon Lake	Baker Lake WSP
Class A Beta-Lactamase	CARB-16	0	25.03-29.69	0	0	189.08-727.71	0-13.82	124.43-630.88
rRNA Methyltransferase	ermB	0	1.87-2.94	0	1.26-1.66	97.94-264.40	0-4.73	28.52-236.33
rRNA Methyltransferase	ermF	1.38 ± 4.02	0-2.50	0	71.78-77.04	204.94-307.13	0-26.09	3.43-5.03
ABC-F Ribosomal Protection	mefA	0	2.53-2.65	4.06-4.39	0	12.05-16.19	0	11.58-53.21
ABC-F Ribosomal Protection	mel	0	0-11.50	0	0	0-6.15	0	1.93-15.11
Macrolide Resistance	mphA	0	0-1.82	0-1.78	34.63-34.76	5.34-58.25	16.98-75.90	4.70-5.63
Macrolide Resistance	mphE	1.99 ± 7.93	1883.07-1918.60	115.00-164.04	21.80-25.77	964.03-2437.73	7.03-31.61	249.08-1213.86
Macrolide Resistance	mrx	0	0-1.59	0	11.89-19.68	4.74-35.69	10.24-40.80	5.22-6.96
ABC-F Ribosomal Protection	msrE	1.61 ± 6.08	1508.78-1524.03	100.46-132.75	18.00-23.17	801.25-1892.30	6.13-36.00	184.63-1009.19

Table 3.6: Metagenome-assembled genomes (MAGs) identified as being associated with bins that contain reads corresponding to antibiotic resistance genes (ARGs). Asterisks indicate taxonomic classifications that were previously identified as wastewater indicator organisms.

MAG ID	Associated Taxonomy
MAG030	Psychrobacter*
MAG040	Trichococcus*
MAG058	Acetoanaerobium sticklandii*
MAG063	Mycobacteriaceae
MAG080	Enterococcus*

Of the nine most abundant ARG families (Table 3.5), all but CARB-16 confer resistance to macrolide antibiotics. These ARG families were found in higher abundances in Baker Lake WSP samples than in other WSP and Lagoon Lake samples (Table 3.5). Macrolide antibiotics have been used to treat clinical infections for several decades¹³¹ and are most commonly used to treat infections of the upper respiratory tract and skin infections¹³². In 2016 there was an outbreak of whooping cough among community members in Baker Lake¹³³. Currently, common treatment for whooping cough includes taking antibiotics such as azithromycin, clarithromycin, or erythromycin, all of which are macrolide antibiotics¹³⁴. Although speculative, it is possible that Baker Lake residents were prescribed macrolide antibiotics to treat various illnesses, which may have included whooping cough, thus releasing low concentrations of antibiotics into the environment that accumulated over time. This may have caused selection of bacteria containing ARGs and transfer of these genes to other bacteria through HGT, thus creating an abundance of ARGs concentrated in the WSP. The ARBs may also have the opportunity to transfer resistance genes to pathogenic bacteria, specifically human pathogens, which coexist with other ARB and ARGs in wastewater¹³⁵.

3.4.1 CARB-16

CARB-16, also referred to as *bla_{RTG-6}*, belongs to a group of Class A beta-lactamases that are able to hydrolyze carbenicillin¹³⁶. This gene has been identified on the pKLH80 plasmid, which is able to replicate in strains of *Acinetobacter* and *Psychrobacter*¹³⁷. The plasmid itself was isolated from a psychrotolerant strain of *Psychrobacter maritimus* from permafrost¹³⁷. Bins associated with MAG030, but not picked as the representative bin, contained the most abundant ARGs (Table 3.5). This MAG was found to be associated with the genus *Psychrobacter* and was detected within the Baker Lake WSP but was not detected further downstream. Large proportions of *Acinetobacter* were also identified within the microbial community of the Baker Lake WSP. This is concerning as species of *Acinetobacter* have been identified as human pathogens¹²¹ and if *Psychrobacter* species, this could create an antibiotic resistant strain of a potential human pathogen. However, further investigation must be done in order to confirm the presence of a CARB-16 gene, and possibly the pKLH80 plasmid itself, within the genome of a *Psychrobacter* species.

3.4.2 ermB and ermF

Erm antibiotic resistance genes are a family of 23S methyltransferases that methylate the 23S rRNA gene, reducing the affinity of macrolide antibiotics to bacterial ribosomes¹³⁸.

The *ermB* gene is known to be induced by the presence of erythromycin¹³⁹. Both *ermB* and *ermF* have been detected in various *Enterococcus* species, some of which are important human pathogens^{140,141}. MAG080, corresponding to the genus *Enterococcus*, was associated with bins containing the most abundant ARGs (Table 3.6), and was also detected in the Baker Lake WSP. An ASV corresponding to *Enterococcus* was also identified as a wastewater indicator species (Figure 3.6). However, MAG080 and the indicator ASV corresponding to *Enterococcus* were not detected at sites downstream of the WSP, and therefore the WSP system may be removing potentially pathogenic species of *Enterococcus* from the lake system. Alternatively, dilution effects may be decreasing the abundance of this ASV to below detection limits.

3.4.3 mefA and mel

The *mefA* and *mel* genes are a part of the same operon as $mefE^{142}$. The most current version of the CARD classifies these genes under the same accession number, possibly due to their similarities in function and sequence. These genes encode ATP-binding cassette (ABC) ribosomal protection proteins that catalyze macrolide efflux¹⁴². However, the expression of *mel* is insufficient to confer resistance to macrolides and also requires *mefE* expression for efflux¹⁴². The *mel* gene was found in lower abundance than the other highly abundant ARGs (Table 3.5), which may be due to the lack of *mefE*, and therefore there is likely no resistance conferred to organisms within the metagenomes containing the *mel* gene. The *mefA* gene was also found in relatively low abundance compared to the other highly abundant ARGs. However, the *mefE* gene has also been described as a subclass of the *mefA*

gene¹⁴³, suggesting that *mefA* and *mefE* may be the same gene. If this is the case, *mel* combined with *mefA* would be sufficient to confer resistance to macrolides. Further investigation must be done in order to determine if these genes were found within the same bacteria, whether they are able to cause resistance to macrolides together.

3.4.4 mphE and msrE

The *mphE* and *msrE* genes have been found in close proximity on a plasmid in an *Acinetobacter baumannii* isolate¹⁴⁴, as well as on plasmids found in *Klebsiella pneumoniae*, *Escherichia coli*, and *Citrobacter freundii*¹⁴⁵. The *mphE* gene encodes a macrolide kinase that phosphorylates the 2'-hydroxyl group of macrolide antibiotics¹⁴⁶. The *msrE* gene encodes an ABC ribosomal protection protein that protects ribosomes by binding to macrolides and reducing affinity of the antibiotics to the ribosomes¹⁴⁷. These genes were found at similar abundance in the metagenomes of Baker Lake's WSP, the first time point of Cambridge Bay's WSP, Kugluktuk's WSP and Lagoon Lake, which could be indicative of co-occurrence within the same bacteria, possibly on the same plasmids.

3.4.5 mphA and mrx

The *mphA* gene encodes a macrolide 2'-phosphotransferase that inactivates macrolide antibiotics¹⁴⁸. However, the protein encoded by the *mrx* gene is an unidentified hydrophobic protein¹⁴⁸. Although the *mrx* gene no longer exists in the CARD, it has been found to occur on the same operon as *mphA*, and both genes are thought to be required for

macrolide resistance^{148,149}. These two genes were also found at similar abundance to one another within metagenomes corresponding to the Baker Lake WSP and Lagoon Lake.

Chapter 4

Conclusions and Future Directions

The unique and frigid climate of Arctic environments provides the need for specialized wastewater treatment solutions. In general, the microbial communities of Arctic WSPs are not well understood. This research has provided important insight into the composition of microbial communities in Arctic WSPs through 16S rRNA gene amplicon and metagenome analysis. The dominant phylum identified within the WSPs was *Proteobacteria*, which was consistent across all three WSPs observed in this study, with high abundances of ASVs associated with the family Moraxellaceae in both Baker Lake and Cambridge Bay samples. These results were consistent across 16S rRNA gene amplicons, taxonomic assignments to sequences identified by the *rpoB* HMM and taxonomic assignments to MAGs. Despite these similarities across the different WSPs, at the ASV level, the microbial communities were found to be quite different, with very few overlapping ASVs. The dominant ASV in the Baker Lake WSP was *Acinetobacter*, which was found at >50% relative abundance, whereas *Psychrobacter* was the dominant ASV in the Cambridge Bay WSP, at >80% relative abundance. Although the Kugluktuk WSP did not have a single, dominant ASV at the family level, Burkholderiaceae and Caulobacteraceae were the most prominent families, according to 16S rRNA gene amplicons. This research demonstrated that, despite the many differences in community composition at the ASV level, wastewater from different locations contain common groups of bacteria that are distinct from other Arctic freshwater sites. Future research involving the three WSPs observed should aim to compare the downstream lake or

wetland systems of the WSPs in detail to determine the efficiency of each WSP in the removal of potentially harmful wastewater microorganisms.

This research characterized the microbial communities of Arctic wastewater, with a focus on the Baker Lake WSP system. Over the next five years, the Baker Lake WSP system will likely undergo infrastructure upgrades to improve the performance of the system in the removal of wastewater contaminants from the environment, in an attempt to meet government guidelines with respect to wastewater effluent standards. The research presented here reveals both spatial and temporal changes in microbial communities across the Baker Lake WSP and downstream lake systems (Figures 3.1-3.4). The microbial communities of sites located further downstream from the WSP are less similar to sites located closer to the WSP, as well as the WSP itself. Temporally, shifts in relative abundance were observed at the phylum level where ten days between sampling times produced very different taxonomic profiles. In lakes downstream of the WSP, microbial communities shifted from being dominated by microorganisms associated with *Bacteroidetes*, to containing higher levels of organisms associated with Actinobacteria, Cyanobacteria, Patescibacteria, and *Verrucomicrobia*. These patterns were consistent across the three different datasets, which was further confirmed with Mantel tests providing significant, positive correlations. This research has also shown that many wastewater indicator ASVs were not detected in downstream lakes, demonstrating that the WSP effluent dilutes effectively within downstream receiving waters. Future research should ideally test whether these results are consistent across a multi-year timeframe and in multiple seasons.

Another important objective of this research was to identify and quantify antibiotic resistance genes within the three WSPs, as well as sites downstream of the Baker Lake WSP. Wastewater is known as a hotspot for ARG dissemination and evolution. This was further confirmed through this research, because an enrichment of ARGs was detected within WSP samples. This was consistent across all three WSPs. In particular, genes related to macrolide resistance were highly abundant in all three WSPs (Table 3.5). Although this may be related to the use of antibiotics within the local community, no information about the administration of antibiotics in Arctic communities was found. This research also displayed evidence of ARGs associated with specific MAGs within the metagenomes. Five MAGs were identified as being associated with bins that contained reads identified as ARG sequences. However, more evidence is required to better connect the genes identified with their respective hosts. This could be accomplished by sequencing plasmids and associating them with their host by observing DNA methylation patterns using methods proposed by Beaulaurier and colleagues¹⁵⁰. Plasmids could also be assembled using the metaplasmidSPAdes tool¹⁵¹, which could potentially be incorporated into the ATLAS pipeline used in this research.

Overall, this research has demonstrated the composition of microbial communities in the Canadian Arctic, specifically focusing on the unique microbial assemblages in Arctic WSPs and associated freshwater lakes. The 16S rRNA gene amplicon and metagenome sequencing approaches allowed for in-depth profiling of the microbial communities. Although further research is required to be able to fully understand the microorganisms in Arctic wastewater, and the efficiency of WSPs in the removal of wastewater contaminants, this study has provided a baseline characterization of microbial communities in Arctic WSPs which will aid the future development of a safe and effective wastewater treatment system for the Baker Lake community.

Bibliography

- 1. Chambers, P. A. *et al.* Impacts of municipal wastewater effluents on Canadian waters: a review. *Water Qual. Res. J. Canada* **32**, 659–713 (1997).
- Gunnarsdóttir, R., Jenssen, P. D., Erland Jensen, P., Villumsen, A. & Kallenborn, R. A review of wastewater handling in the Arctic with special reference to pharmaceuticals and personal care products (PPCPs) and microbial pollution. *Ecol. Eng.* 50, 76–85 (2013).
- Samudro, G. & Mangkoedihardjo, S. Review on BOD, COD and BOD/COD ratio: a triangle zone for toxic, biodegradable and stable levels. *Int. J. Acad. Res.* 2, 235–239 (2010).
- Harper, D. What is eutrophication? in *Eutrophication of Freshwaters* 1–28 (Springer Netherlands, 1992).
- Hu, Z., Houweling, D. & Dold, P. Biological nutrient removal in municipal wastewater treatment: new directions in sustainability. *J. Environ. Eng.* 138, 307–317 (2012).
- Heisler, J. *et al.* Eutrophication and harmful algal blooms: A scientific consensus. *Harmful Algae* 8, 3–13 (2008).
- Wakelin, S. A., Colloff, M. J. & Kookana, R. S. Effect of wastewater treatment plant effluent on microbial function and community structure in the sediment of a freshwater stream with variable seasonal flow. *Appl. Environ. Microbiol.* 74, 2659–68 (2008).
- Cébron, A., Coci, M., Garnier, J. & Laanbroek, H. J. Denaturing gradient gel electrophoretic analysis of ammonia-oxidizing bacterial community structure in the lower Seine River: impact of Paris wastewater effluents. *Appl. Environ. Microbiol.* 70, 6726–37 (2004).

- Goni-Urriza, M., Capdepuy, M., Raymond, N., Quentin, C. & Caumette, P. Impact of an urban effluent on the bacterial community structure in the Arga River (Spain), with special references to culturable Gram-negative rods. *Can. J. Microbiol.* 45, 826–832 (1999).
- Drury, B., Rosi-Marshall, E. & Kelly, J. J. Wastewater treatment effluent reduces the abundance and diversity of benthic bacterial communities in urban and suburban rivers. *Appl. Environ. Microbiol.* **79**, 1897–905 (2013).
- Atashgahi, S. *et al.* Impact of a wastewater treatment plant on microbial community composition and function in a hyporheic zone of a eutrophic river. *Sci. Rep.* 5, 17284 (2015).
- Eckert, E. M. *et al.* Microplastics increase impact of treated wastewater on freshwater microbial community. *Environ. Pollut.* 234, 495–502 (2018).
- 13. Henze, M., van Loosdrecht, M. C. M., Ekama, G. A. & Brdjanovic, D. *Biological wastewater treatment: principles, modelling and design.* (IWA Publishing, 2008).
- Akpor, O. B. Wastewater effluent discharge: effects and treatment processes. in Proceedings of 2011 3rd International Conference on Chemical, Biological and Environmental Engineering (ICBEE 2011) 85–91 (2011).
- Holeton, C., Chambers, P. A. & Grace, L. Wastewater release and its impacts on Canadian waters. *Can. J. Fish. Aquat. Sci.* 68, 1836–1859 (2011).
- Wiesmann, U. Biological nitrogen removal from wastewater. in 113–154 (Springer, Berlin, Heidelberg, 1994).
- Czerwionka, K., Makinia, J., Pagilla, K. R. & Stensel, H. D. Characteristics and fate of organic nitrogen in municipal biological nutrient removal wastewater treatment plants. *Water Res.* 46, 2057–2066 (2012).
- Yin, Z., Bi, X. & Xu, C. Ammonia-Oxidizing Archaea (AOA) play with Ammonia-Oxidizing Bacteria (AOB) in nitrogen removal from Wastewater. *Archaea* 2018, 1–9

(2018).

- Lu, H., Chandran, K. & Stensel, D. Microbial ecology of denitrification in biological wastewater treatment. *Water Res.* 64, 237–254 (2014).
- Schindler, D. W. Eutrophication and recovery in experimental lakes: implications for lake management. *Science (80-.).* 184, 897–899 (1974).
- 21. Yeoman, S., Stephenson, T., Lester, J. N. & Perry, R. The removal of phosphorus during wastewater treatment: a review. *Environ. Pollut.* **49**, 183–233 (1988).
- Bond, P. L., Erhart, R., Wagner, M., Keller, J. & Blackall, L. L. Identification of some of the major groups of bacteria in efficient and nonefficient biological phosphorus removal activated sludge systems. *Appl. Environ. Microbiol.* 65, 4077–84 (1999).
- 23. Sun, W. *et al.* Effective treatment of high phosphorus pharmaceutical wastewater by chemical precipitation. *Can. J. Chem. Eng.* **95**, 1585–1593 (2017).
- 24. Oleszkiewicz, J. Options for improved nutrient removale and recovery from municipal wastewater in the Canadian context. (2015).
- Alonso, A., Sanchez, P. & Martinez, J. L. Environmental selection of antibiotic resistance genes. *Environ. Microbiol.* 3, 1–9 (2001).
- 26. Finley, R. L. *et al.* The scourge of antibiotic resistance: the important role of the environment. *Clin. Infect. Dis.* **57**, 704–710 (2013).
- 27. Garcia-Armisen, T. *et al.* Antimicrobial resistance of heterotrophic bacteria in sewagecontaminated rivers. *Water Res.* **45**, 788–796 (2011).
- Karkman, A., Do, T. T., Walsh, F. & Virta, M. P. J. Antibiotic-resistance genes in waste water. *Trends Microbiol.* 26, 220–228 (2018).
- 29. Huddleston, J. R. Horizontal gene transfer in the human gastrointestinal tract: potential spread of antibiotic resistance genes. *Infect. Drug Resist.* **7**, 167–76 (2014).
- 30. Soucy, S. M., Huang, J. & Gogarten, J. P. Horizontal gene transfer: building the web

of life. Nat. Rev. Genet. 16, 472-482 (2015).

- Thomas, C. M. & Nielsen, K. M. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. *Nat. Rev. Microbiol.* 3, 711–721 (2005).
- 32. Jacquiod, S. *et al.* Deciphering conjugative plasmid permissiveness in wastewater microbiomes. *Mol. Ecol.* **26**, 3556–3571 (2017).
- 33. Li, A.-D. *et al.* Effects of sample preservation and DNA extraction on enumeration of antibiotic resistance genes in wastewater. *FEMS Microbiol. Ecol.* (2017).
- 34. Bueno, I. *et al.* Impact of point sources on antibiotic resistance genes in the natural environment: a systematic review of the evidence. *Anim. Heal. Res. Rev.* 1–16 (2017).
- McArthur, A. G. *et al.* The comprehensive antibiotic resistance database. *Antimicrob. Agents Chemother.* 57, 3348–57 (2013).
- 36. Kaminski, J. *et al.* High-specificity targeted functional profiling in microbial communities with ShortBRED. *PLOS Comput. Biol.* **11**, e1004557 (2015).
- Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. *Bioinformatics* 22, 1658–1659 (2006).
- 38. Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the nextgeneration sequencing data. *Bioinformatics* **28**, 3150–3152 (2012).
- Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. *Nucleic Acids Res.* 32, 1792–1797 (2004).
- 40. Cock, P. J. A. *et al.* Biopython: freely available Python tools for computational molecular biology and bioinformatics. *Bioinformatics* **25**, 1422–1423 (2009).
- 41. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. *J. Mol. Biol.* **215**, 403–410 (1990).
- 42. Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. *Bioinformatics* **26**, 2460–2461 (2010).

- 43. von Sperling, M. *Biological wastewater wreatment series: volume three waste stabilisation ponds.* (IWA Publishing, 2007).
- Tartakovsky, B., Kleiner, Y. & Manuel, M.-F. Bioelectrochemical anaerobic sewage treatment technology for Arctic communities. *Environ. Sci. Pollut. Res.* 25, 32844– 32850 (2018).
- 45. Tilley, E., Ulrich, L., Lüthi, C., Reymond, P. & Zurbrügg, C. Compendium of sanitation systems and technologies. (2014).
- Ragush, C. M. *et al.* Performance of municipal waste stabilization ponds in the Canadian Arctic. *Ecol. Eng.* 83, 413–421 (2015).
- Verbyla, M., von Sperling, M. & Maiga, Y. Waste Stabilization Ponds. in *Global Water Pathogen Project* 3–18 (2017).
- Huang, Y., Truelstrup Hansen, L., Ragush, C. M. & Jamieson, R. C. Disinfection and removal of human pathogenic bacteria in Arctic waste stabilization ponds. *Environ. Sci. Pollut. Res. Int.* (2017).
- 49. Zhang, L., Lee, Y.-W. & Jahng, D. Ammonia stripping for enhanced biomethanization of piggery wastewater. *J. Hazard. Mater.* **199–200**, 36–42 (2012).
- Daley, K., Jamieson, R., Rainham, D. & Truelstrup Hansen, L. Wastewater treatment and public health in Nunavut: a microbial risk assessment framework for the Canadian Arctic. *Environ. Sci. Pollut. Res. Int.* 25, 32860–32872 (2018).
- 51. Krkosek, W. H. *et al.* Treatment performance of wastewater stabilization ponds in Canada's far North. in *Cold Regions Engineering 2012* (2012).
- Hayward, J. L., Jackson, A. J., Yost, C. K., Truelstrup Hansen, L. & Jamieson, R. C. Fate of antibiotic resistance genes in two Arctic tundra wetlands impacted by municipal wastewater. *Sci. Total Environ.* 642, 1415–1428 (2018).
- 53. Neudorf, K. D. *et al.* Antibiotic resistance genes in municipal wastewater treatment systems and receiving waters in Arctic Canada. *Sci. Total Environ.* **598**, 1085–1094

(2017).

- 54. Department of Fisheries and Oceans. Fisheries Act: wastewater systems effluent regulations. *Canada Gaz. Part II* **146**, (2012).
- 55. Frank-Fahle, B. A., Yergeau, É., Greer, C. W., Lantuit, H. & Wagner, D. Microbial functional potential and community composition in permafrost-affected soils of the NW Canadian Arctic. *PLoS One* 9, e84761 (2014).
- 56. Hansen, A. A. *et al.* Viability, diversity and composition of the bacterial community in a high Arctic permafrost soil from Spitsbergen, Northern Norway. *Environ. Microbiol.* 9, 2870–2884 (2007).
- Larose, C., Dommergue, A. & Vogel, T. M. The dynamic Arctic snow pack: an unexplored environment for microbial diversity and activity. *Biol. 2013, Vol. 2, Pages 317-330* 2, 317–330 (2013).
- 58. Nemergut, D. R. *et al.* Structure and function of alpine and arctic soil microbial communities. *Res. Microbiol.* **156**, 775–784 (2005).
- Wilhelm, R. C., Niederberger, T. D., Greer, C. & Whyte, L. G. Microbial diversity of active layer and permafrost in an acidic wetland from the Canadian High Arctic. *Can. J. Microbiol.* 57, 303–315 (2011).
- Steven, B., Pollard, W. H., Greer, C. W. & Whyte, L. G. Microbial diversity and activity through a permafrost/ground ice core profile from the Canadian high Arctic. *Environ. Microbiol.* 10, 3388–3403 (2008).
- 61. Steven, B. *et al.* Characterization of the microbial diversity in a permafrost sample from the Canadian high Arctic using culture-dependent and culture-independent methods. *FEMS Microbiol. Ecol.* **59**, 513–523 (2007).
- Methé, B. A. *et al.* The psychrophilic lifestyle as revealed by the genome sequence of *Colwellia psychrerythraea* 34H through genomic and proteomic analyses. *Proc. Natl. Acad. Sci. U. S. A.* 102, 10913–10918 (2005).

- Yergeau, E. *et al.* Metagenomic survey of the taxonomic and functional microbial communities of seawater and sea ice from the Canadian Arctic. *Sci. Rep.* 7, 42242 (2017).
- Chrismas, N. A. M., Barker, G., Anesio, A. M. & Sánchez-Baracaldo, P. Genomic mechanisms for cold tolerance and production of exopolysaccharides in the Arctic cyanobacterium *Phormidesmis priestleyi* BC1401. *BMC Genomics* 17, 533 (2016).
- Crump, B. C., Amaral-Zettler, L. A. & Kling, G. W. Microbial diversity in arctic freshwaters is structured by inoculation of microbes from soils. *ISME J.* 6, 1629–1639 (2012).
- Gonzalez-Martinez, A. *et al.* Microbial ecology of full-scale wastewater treatment systems in the Polar Arctic Circle: archaea, bacteria and fungi. *Sci. Rep.* 8, 2208 (2018).
- 67. McIlroy, S. J. *et al.* MiDAS: the field guide to the microbes of activated sludge. *Database (Oxford).* **2015**, bav062 (2015).
- Huang, Y. *et al.* Removal of human pathogens in wastewater stabilization ponds in Nunavut. in *CSCE 2014 13th International Environmental Specialty Conference* (2014).
- Reuter, J. A., Spacek, D. V & Snyder, M. P. High-throughput sequencing technologies. *Mol. Cell* 58, 586–97 (2015).
- Lundberg, D. S., Yourstone, S., Mieczkowski, P., Jones, C. D. & Dangl, J. L. Practical innovations for high-throughput amplicon sequencing. *Nat. Methods* 10, 999–1002 (2013).
- Chen, K. & Pachter, L. Bioinformatics for whole-genome shotgun sequencing of microbial communities. *PLoS Comput. Biol.* 1, e24 (2005).
- 72. Ward, D. M., Weller, R. & Bateson, M. M. 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. *Nature* **345**, 63–65 (1990).

- Gray, M. W., Sankoff, D. & Cedergren, R. J. On the evolutionary descent of organisms and organelles: a global phylogeny based on a highly conserved structural core in small subunit ribosomal RNA. *Nucleic Acids Res.* 12, 5837–52 (1984).
- 74. Zaheer, R. *et al.* Impact of sequencing depth on the characterization of the microbiome and resistome. *Sci. Rep.* **8**, 5890 (2018).
- 75. Quast, C. *et al.* The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. *Nucleic Acids Res.* **41**, D590–D596 (2012).
- Bolyen, E. *et al.* Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. *Nat. Biotechnol.* 37, 852–857 (2019).
- 77. Callahan, B. J. *et al.* DADA2: High-resolution sample inference from Illumina amplicon data. *Nat. Methods* **13**, 581–583 (2016).
- Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. *ISME J.* 11, 2639– 2643 (2017).
- Handelsman, J., Rondon, M. R., Brady, S. F., Clardy, J. & Goodman, R. M. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. *Chem. Biol.* 5, R245-9 (1998).
- Kieser, S., Brown, J., Zdobnov, E. M., Trajkovski, M. & McCue, L. A. ATLAS: a Snakemake workflow for assembly, annotation, and genomic binning of metagenome sequence data. *bioRxiv* 737528 (2019).
- 81. Bushnell, B. BBTools. (2019). Available at: sourceforge.net/projects/bbmap/.
- Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. *Bioinformatics* 31, 1674–1676 (2015).
- Li, D. *et al.* MEGAHIT v1.0: A fast and scalable metagenome assembler driven by advanced methodologies and community practices. *Methods* 102, 3–11 (2016).

- Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a new versatile metagenomic assembler. *Genome Res.* 27, 824–834 (2017).
- Kang, D. D., Froula, J., Egan, R. & Wang, Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. *PeerJ* 3, e1165 (2015).
- Wu, Y.-W., Simmons, B. A. & Singer, S. W. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. *Bioinformatics* 32, 605–607 (2016).
- Alneberg, J. *et al.* Binning metagenomic contigs by coverage and composition. *Nat. Methods* 11, 1144–1146 (2014).
- 88. Strous, M., Kraft, B., Bisdorf, R. & Tegetmeyer, H. E. The binning of metagenomic contigs for microbial physiology of mixed cultures. *Front. Microbiol.* **3**, 410 (2012).
- Sieber, C. M. K. *et al.* Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. *Nat. Microbiol.* 3, 836–843 (2018).
- 90. Olm, M. R., Brown, C. T., Brooks, B. & Banfield, J. F. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. *ISME J.* 11, 2864–2868 (2017).
- 91. Hyatt, D. *et al.* Prodigal: prokaryotic gene recognition and translation initiation site identification. *BMC Bioinformatics* **11**, 119 (2010).
- Huerta-Cepas, J. *et al.* eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. *Nucleic Acids Res.* 44, D286–D293 (2016).
- Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. *Nat. Methods* 12, 59–60 (2015).
- 94. von Meijenfeldt, F. A. B. von, Arkhipova, K., Cambuy, D. D., Coutinho, F. H. &
 Dutilh, B. E. Robust taxonomic classification of uncharted microbial sequences and

bins with CAT and BAT. bioRxiv 530188 (2019).

- 95. NCBI Resource Coordinators. Database resources of the National Center for Biotechnology Information. *Nucleic Acids Res.* **44**, D7–D19 (2016).
- 96. Nunavut Bureau of Statistics. Population estimates. 2017, (2016).
- 97. Google Maps. Nunavut. (2018). Available at: https://www.google.ca/maps/place/Nunavut/@67.3334876,-103.3705765,4.7z/data=!4m5!3m4!1s0x4d0823492a24a5ed:0xffd371054ff1a9b6!8m2 !3d70.2997711!4d-83.107577. (Accessed: 15th February 2018)
- 98. Google Earth 7.3.2. Baker Lake, Nunavut, Canada, 64°19'7.40"N, 96° 0'37.94"W.
 (2019).
- Bartram, A. K., Lynch, M. D. J., Stearns, J. C., Moreno-Hagelsieb, G. & Neufeld, J. D. Generation of multimillion-sequence 16S rRNA gene libraries from complex microbial communities by assembling paired-end illumina reads. *Appl. Environ. Microbiol.* 77, 3846–52 (2011).
- 100. Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. *Environ. Microbiol.* 18, 1403–1414 (2016).
- 101. Quince, C., Lanzen, A., Davenport, R. J. & Turnbaugh, P. J. Removing noise from pyrosequenced amplicons. *BMC Bioinformatics* **12**, 38 (2011).
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. *EMBnet.journal* 17, 10–12 (2011).
- Dufrêne, M. & Legendre, P. Species assemblages and indicator species: the need for a flexible asymmetrical approach. *Ecol. Monogr.* 67, 345–366 (1997).
- Bakker, J. D. Increasing the utility of Indicator Species Analysis. J. Appl. Ecol. 45, 1829–1835 (2008).

- De Cáceres, M. & Legendre, P. Associations between species and groups of sites: indices and statistical inference. *Ecology* 90, 3566–3574 (2009).
- Petrenko, P., Lobb, B., Kurtz, D. A., Neufeld, J. D. & Doxey, A. C. MetAnnotate: function-specific taxonomic profiling and comparison of metagenomes. *BMC Biol.* 13, 92 (2015).
- Haft, D. H., Selengut, J. D. & White, O. The TIGRFAMs database of protein families. *Nucleic Acids Res.* 31, 371–3 (2003).
- Oksanen, J. *et al.* vegan: community ecology package. R package version 2.5-6.
 (2019).
- Bougeard, S. & Dray, S. Supervised multiblock analysis in R with the ade4 package. J. Stat. Softw. 86, 1–17 (2018).
- 110. R Core Team. R: A language and environment for statistical computing. (2019).
- McCune, B. & Grace, J. B. *Analysis of ecological communities*. (MjM Software Design, 2002).
- Moyer, C. L. & Morita, R. Y. Psychrophiles and psychrotrophs. in *Encyclopedia of Life Sciences* (John Wiley & Sons, Ltd, 2007).
- Bernardet, J.-F. & Nakagawa, Y. An introduction to the family *Flavobacteriaceae*. in *The Prokaryotes* 455–480 (Springer New York, 2006).
- 114. Gong, X. *et al.* High quality draft genome sequence of *Janthinobacterium psychrotolerans* sp. nov., isolated from a frozen freshwater pond. *Stand. Genomic Sci.* 12, 8 (2017).
- Schloss, P. D. *et al.* Psychrotrophic strain of *Janthinobacterium lividum* from a cold Alaskan soil produces prodigiosin. *DNA Cell Biol.* 29, 533–541 (2010).
- 116. Wiedmann-al-Ahmad, M., Tichy, H. V & Schön, G. Characterization of *Acinetobacter* type strains and isolates obtained from wastewater treatment plants by PCR

fingerprinting. Appl. Environ. Microbiol. 60, 4066-71 (1994).

- 117. Slekovec, C. *et al.* Tracking down antibiotic-resistant *Pseudomonas aeruginosa* isolates in a wastewater network. *PLoS One* **7**, e49300 (2012).
- 118. Igbinosa, I. H., Nwodo, U. U., Sosa, A., Tom, M. & Okoh, A. I. Commensal *Pseudomonas* species isolated from wastewater and freshwater milieus in the Eastern Cape Province, South Africa, as reservoir of antibiotic resistant determinants. *Int. J. Environ. Res. Public Health* 9, 2537–49 (2012).
- Ng, C. *et al.* Characterization of metagenomes in urban aquatic compartments reveals high prevalence of clinically relevant antibiotic resistance genes in wastewaters. *Front. Microbiol.* 8, 2200 (2017).
- Beukers, A. G. *et al.* Comparative genomics of *Enterococcus* spp. isolated from bovine feces. *BMC Microbiol.* 17, 52 (2017).
- Al Atrouni, A., Joly-Guillou, M.-L., Hamze, M. & Kempf, M. Reservoirs of Nonbaumannii Acinetobacter species. Front. Microbiol. 7, 49 (2016).
- 122. Higgins, P. G., Hrenovic, J., Seifert, H. & Dekic, S. Characterization of *Acinetobacter baumannii* from water and sludge line of secondary wastewater treatment plant. *Water Res.* 140, 261–267 (2018).
- Heylen, K., Lebbe, L. & De Vos, P. *Acidovorax caeni* sp. nov., a denitrifying species with genetically diverse isolates from activated sludge. *Int. J. Syst. Evol. Microbiol.* 58, 73–77 (2008).
- Schulze, R. *et al.* Genotypic diversity of *Acidovorax* strains isolated from activated sludge and description of *Acidovorax defluvii* sp. nov. *Syst. Appl. Microbiol.* 22, 205–214 (1999).
- McIlroy, S. J. *et al.* Identification of active denitrifiers in full-scale nutrient removal wastewater treatment systems. *Environ. Microbiol.* 18, 50–64 (2016).
- 126. Kaden, R., Sproer, C., Beyer, D. & Krolla-Sidenstein, P. Rhodoferax saidenbachensis 90

sp. nov., a psychrotolerant very slowly growing bacterium within the family *Comamonadaceae*, proposal of appropriate taxonomic position of *Albidiferax ferrireducens* strain T118T in the genus *Rhodoferax*. *Int. J. Syst. Evol. Microbiol.* **64**, 1186–1193 (2014).

- 127. Finneran, K. T., Johnsen, C. V & Lovley, D. R. *Rhodoferax ferrireducens* sp. nov., a psychrotolerant, facultatively anaerobic bacterium that oxidizes acetate with the reduction of Fe(III). *Int. J. Syst. Evol. Microbiol.* **53**, 669–673 (2003).
- Kosten, S. *et al.* Warmer climates boost cyanobacterial dominance in shallow lakes. *Glob. Chang. Biol.* 18, 118–126 (2012).
- 129. Vos, M., Quince, C., Pijl, A. S., de Hollander, M. & Kowalchuk, G. A. A comparison of *rpoB* and 16S rRNA as markers in pyrosequencing studies of bacterial diversity. *PLoS One* 7, e30600 (2012).
- Khamis, A., Raoult, D. & La Scola, B. Comparison between *rpoB* and 16S rRNA gene sequencing for molecular identification of 168 clinical isolates of *Corynebacterium*. *J. Clin. Microbiol.* 43, 1934–6 (2005).
- 131. Omura, S. Macrolide antibiotics : chemistry, biology, and practice. (Academic, 2002).
- 132. Sturgill, M. G. & Rapp, R. P. Clarithromycin: review of a new macrolide antibiotic with improved microbiologic spectrum and favorable pharmacokinetic and adverse effect profiles. *Ann. Pharmacother.* 26, 1099–1108 (1992).
- 133. The Government of Nunavut Department of Health. *Confirmed cases of whooping cough in Baker Lake and Rankin Inlet.* (2016).
- Gopal, D. P., Barber, J. & Toeg, D. Pertussis (whooping cough). *BMJ* 364, 1401 (2019).
- 135. Nnadozie, C. F., Kumari, S. & Bux, F. Status of pathogens, antibiotic resistance genes and antibiotic residues in wastewater treatment systems. *Reviews in Environmental Science and Biotechnology* 16, 491–515 (2017).

- 136. Labia, R., Guionie, M., Barthélémy, M. & Philippon, A. Properties of three carbenicillin-hydrolysing β-lactamases (CARB) from *Pseudomonas aeruginosa* : identification of a new enzyme. *J. Antimicrob. Chemother.* 7, 49–56 (1981).
- 137. Petrova, M., Kurakov, A., Shcherbatova, N. & Mindlin, S. Genetic structure and biological properties of the first ancient multiresistance plasmid pKLH80 isolated from a permafrost bacterium. *Microbiology* 160, 2253–2263 (2014).
- Dzyubak, E. & Yap, M. N. The expression of antibiotic resistance methyltransferase correlates with mRNA stability independently of ribosome stalling. *Antimicrob. Agents Chemother.* 60, 7178–7188 (2016).
- 139. Min, Y.-H., Kwon, A.-R., Yoon, E.-J., Shim, M.-J. & Choi, E.-C. Translational attenuation and mRNA stabilization as mechanisms of *erm(B)* induction by erythromycin. *Antimicrob. Agents Chemother.* **52**, 1782–9 (2008).
- Portillo, A. *et al.* Macrolide resistance genes in *Enterococcus* spp. *Antimicrob. Agents Chemother.* 44, 967–71 (2000).
- 141. Nowakiewicz, A. *et al.* Characterization of multidrug resistant *E. faecalis* strains from pigs of local origin by ADSRRS-fingerprinting and MALDI-TOF MS; evaluation of the compatibility of methods employed for multidrug resistance analysis. *PLoS One* 12, e0171160 (2017).
- 142. Ambrose, K. D., Nisbet, R. & Stephens, D. S. Macrolide efflux in *Streptococcus pneumoniae* is mediated by a dual efflux pump (*mel* and *mef*) and is erythromycin inducible. *Antimicrob. Agents Chemother.* 49, 4203–9 (2005).
- 143. Ardanuy, C. *et al.* Distribution of subclasses *mefA* and *mefE* of the *mefA* gene among clinical isolates of macrolide-resistant (M-phenotype) Streptococcus pneumoniae, viridans group streptococci, and Streptococcus pyogenes. Antimicrob. Agents Chemother. 49, 827–9 (2005).
- 144. Blackwell, G. A. & Hall, R. M. The tet39 determinant and the msrE-mphE genes in
Acinetobacter plasmids are each part of discrete modules flanked by inversely oriented *pdif* (XerC-XerD) Sites. *Antimicrob. Agents Chemother.* **61**, (2017).

- 145. Bonnin, R. A., Nordmann, P., Carattoli, A. & Poirel, L. Comparative genomics of IncL/M-type plasmids: evolution by acquisition of resistance genes and insertion sequences. *Antimicrob. Agents Chemother.* 57, 674–6 (2013).
- 146. Pawlowski, A. C. *et al.* The evolution of substrate discrimination in macrolide antibiotic resistance enzymes. *Nat. Commun.* **9**, 112 (2018).
- 147. Dinos, G. P. The macrolide antibiotic renaissance. *Br. J. Pharmacol.* 174, 2967–2983 (2017).
- Noguchi, N. *et al.* Nucleotide sequence and characterization of erythromycin resistance determinant that encodes macrolide 2'-phosphotransferase I in Escherichia coli. *Antimicrob. Agents Chemother.* **39**, 2359 (1995).
- Papagiannitsis, C. C., Miriagou, V., Giakkoupi, P., Tzouvelekis, L. S. & Vatopoulos,
 A. C. Characterization of pKP1780, a novel IncR plasmid from the emerging *Klebsiella pneumoniae* ST147, encoding the VIM-1 metallo-β-lactamase. *J. Antimicrob. Chemother.* 68, 2259–2262 (2013).
- 150. Beaulaurier, J. *et al.* Metagenomic binning and association of plasmids with bacterial host genomes using DNA methylation. *Nat. Biotechnol.* **36**, 61–69 (2018).
- 151. Antipov, D., Raiko, M., Lapidus, A. & Pevzner, P. A. Plasmid detection and assembly in genomic and metagenomic data sets. *Genome Res.* **29**, 961–968 (2019).

Appendix A1

Table A1: Environmental data from sites in Baker Lake, Nunavut. Site names correspond to those on the map in Figure 2.2. Data from both sampling time points has been included.

			Tempe (°(erature C)	р	Н	Condu (µS	uctivity /cm)	TDS (mg/L)	Salinit	ty (ppt)	DO (I	mg/L)
Site			July	July	July	July	July	July	July	July	July	July	July	July
Name	Latitude	Longitude	13-16	22-24	13-16	22-24	13-16	22-24	13-16	22-24	13-16	22-24	13-16	22-24
REF1	64.33715	-95.96131	12.6	15.2	7.07	7.59	81.6	84.1	59.0	59.7	0.04	0.04	9.5	8.2
REF2	64.336836	-96.016599	14.8	16.1	7.38	7.72	112.3	60.4	80.0	43.0	0.06	0.03	9.8	9.1
REF3	64.33707	-96.02652	16.1	16.7	7.62	8.06	101.0	73.8	71.4	52.3	0.05	0.04	9.3	9.7
DWI	64.31557	-96.01727	10.1	11.1	6.94	7.31	108.2	31.0	77.1	22.0	0.05	0.02	10.9	11.0
HCO	64.31519	-96.01374	6.1	11.1	7.14	7.59	231	48.6	165	34.7	0.12	0.02	11.8	11.4
BLM	64.311844	-95.993918	6.1	9.5	6.96	7.47	158.6	31.0	113	22.0	0.08	0.02	12.4	10.9
BLP	64.30668	-95.96240	7.0	9.9	7.02	7.51	142.1	33.0	101	23.7	0.07	0.02	12.8	10.3
ACO	64.30960	-95.97852	8.3	9.2	7.04	7.48	149.7	34.3	107	24.4	0.08	0.02	12.3	11.6
ALO	64.31702	-95.97436	14.6	12.9	9.06	7.62	86.4	79.7	61.2	56.5	0.04	0.04	10.5	11.3
ALI	64.32044	-95.97424	16.2	14.5	9.06	7.73	94.6	82.7	67.4	58.8	0.05	0.04	10.7	10.5
FLI	64.32967	-95.99605	17.2	15.0	9.04	7.16	166.5	202	119	143	0.08	0.10	9.6	7.7
FLO	64.32796	-95.98515	17.4	15.1	9.64	9.13	164	215	117	152	0.08	0.11	10.1	10.8
LL	64.33113	-96.00263	16.1	17.6	9.40	8.95	188.0	289	134	205	0.09	0.14	14.3	10.3
WWL	64.32971	-96.00595	18.7	21.3	7.84	7.79	928	1125	670	794	0.47	0.56	3.3	6.7
BLC	64.31625	-96.04948	10.3	11.5	7.40	7.52	231	44.5	164	31.6	0.12	0.02	10.9	10.9
BL	64.31300	-96.02019	6.2	N/A	7.42	N/A	64.2	N/A	45.5	N/A	0.03	N/A	10.7	N/A
ALE	64.32290	-95.95353	14.7	N/A	8.15	N/A	78.6	N/A	55.8	N/A	0.04	N/A	9.7	N/A

Resistance Class	NCBI Identifier	CARD Identifier	ARG Family
Aminoglycoside Acetyltransferase	AAA03550_1	3002523	AAC(2_)-la
Aminoglycoside Acetyltransferase	AAC44793_1	3002524	AAC(2_)-Ib
Aminoglycoside Acetyltransferase	CCP42991_1	3002525	AAC(2_)-Ic
Aminoglycoside Acetyltransferase	AAB41701_1	3002526	AAC(2_)-Id
Aminoglycoside Acetyltransferase	APB03221_1	3003988	AAC(2_)-IIb
Aminoglycoside Acetyltransferase	AAG15269_1	3002528	AAC(3)-la
Aminoglycoside Acetyltransferase	AAL82588_1	3002600	AAC(3)-Ib_AAC(6_)-Ib
Aminoglycoside Acetyltransferase	CAD53575_1	3002531	AAC(3)-Ic
Aminoglycoside Acetyltransferase	AAR21614_1	3002529	AAC(3)-Id
Aminoglycoside Acetyltransferase	AAA26548_1	3002534	AAC(3)-IIb
Aminoglycoside Acetyltransferase	CAA38525_1	3002535	AAC(3)-IIc
Aminoglycoside Acetyltransferase	CAA39184_1	3002536	AAC(3)-IIIa
Aminoglycoside Acetyltransferase	AAA25683_1	3002538	AAC(3)-IIIc
Aminoglycoside Acetyltransferase	ABB43029_1	3002539	AAC(3)-IV
Aminoglycoside Acetyltransferase	AAA25334_1	3002543	AAC(3)-IXa
Aminoglycoside Acetyltransferase	AAA16194_1	3002540	AAC(3)-Vla
Aminoglycoside Acetyltransferase	AAA88552_1	3002541	AAC(3)-VIIa
Aminoglycoside Acetyltransferase	AAA26685_1	3002542	AAC(3)-VIIIa
Aminoglycoside Acetyltransferase	BAA78619_1	3002544	AAC(3)-Xa
Aminoglycoside Acetyltransferase	AAK26252_2	3002583	AAC(6_)-29a
Aminoglycoside Acetyltransferase	CAE48335_2	3002599	AAC(6_)-30_AAC(6_)-lb_
Aminoglycoside Acetyltransferase	CAK55563_1	3002585	AAC(6_)-31
Aminoglycoside Acetyltransferase	ABR10839_1	3002586	AAC(6_)-32
Aminoglycoside Acetyltransferase	APB03223_1	3003989	AAC(6_)-34
Aminoglycoside Acetyltransferase	AAP43642_1	3002588	AAC(6_)-I30
Aminoglycoside Acetyltransferase	AAA98298_1	3002545	AAC(6_)-la
Aminoglycoside Acetyltransferase	NP_460578_1	3002571	AAC(6_)-laa
Aminoglycoside Acetyltransferase	BAD12078_1	3002572	AAC(6_)-lad
Aminoglycoside Acetyltransferase	BAD14386_1	3002573	AAC(6_)-lae
Aminoglycoside Acetyltransferase	ACI28880_1	3002575	AAC(6_)-lai
Aminoglycoside Acetyltransferase	BAM46120_1	3003677	AAC(6_)-laj
Aminoglycoside Acetyltransferase	BAO21229_1	3003199	AAC(6_)-lak
Aminoglycoside Acetyltransferase	BAD11815_1	3002593	AAC(6_)-Ib-SK
Aminoglycoside Acetyltransferase	AKN19287_1	3002578	AAC(6_)-Ib7
Aminoglycoside Acetyltransferase	AAA26549_1	3002549	AAC(6_)-Ic
Aminoglycoside Acetyltransferase	NP_863643_1	3002597	AAC(6_)-Ie-APH(2)-Ia
Aminoglycoside Acetyltransferase	CAA39038_1	3002553	AAC(6_)-If
Aminoglycoside Acetyltransferase	AAA21889_1	3002554	AAC(6_)-Ig

Table A2: Manually assigned resistance classes for gene families identified by ShortBRED for antibiotic resistance gene (ARG) families based on CARD gene family classifications including NCBI and CARD identifiers.

Aminoglycoside Acetyltransferase	AAB63533_1	3002556	AAC(6_)-li
Aminoglycoside Acetyltransferase	AAM92464_1	3002594	AAC(6_)-IIa
Aminoglycoside Acetyltransferase	AAA25680_1	3002595	AAC(6_)-IIb
Aminoglycoside Acetyltransferase	AAD46626_1	3002596	AAC(6_)-IIc
Aminoglycoside Acetyltransferase	CAE50925_1	3002589	AAC(6_)-lid
Aminoglycoside Acetyltransferase	CAE50926_1	3002590	AAC(6_)-lih
Aminoglycoside Acetyltransferase	AAC41392_1	3002557	AAC(6_)-Ij
Aminoglycoside Acetyltransferase	AAA87229_1	3002558	AAC(6_)-Ik
Aminoglycoside Acetyltransferase	AAK63041_1	3002559	AAC(6_)-Ip
Aminoglycoside Acetyltransferase	CAA91010_1	3002559	AAC(6_)-Ip
Aminoglycoside Acetyltransferase	AAC25500_1	3002560	AAC(6_)-Iq
Aminoglycoside Acetyltransferase	AAD03490_1	3002561	AAC(6_)-Ir
Aminoglycoside Acetyltransferase	AAD03491_1	3002562	AAC(6_)-Is
Aminoglycoside Acetyltransferase	BAD10948_2	3002563	AAC(6_)-Isa
Aminoglycoside Acetyltransferase	AAD03494_1	3002566	AAC(6_)-Iv
Aminoglycoside Acetyltransferase	AAD03495_1	3002567	AAC(6_)-Iw
Aminoglycoside Nucleotidyltransferase	AAU10334_1	3002628	aad(6)
Aminoglycoside Nucleotidyltransferase	YP_009081591_1	3002613	aadA13
Aminoglycoside Nucleotidyltransferase	CAI57696_1	3002614	aadA14
Aminoglycoside Nucleotidyltransferase	ACF17980_1	3002616	aadA16
Aminoglycoside Nucleotidyltransferase	AET15272_1	3003197	aadA25
Aminoglycoside Nucleotidyltransferase	AAF17880_1	3002605	aadA5
Aminoglycoside Nucleotidyltransferase	BAD00739_1	3002607	aadA7
Aminoglycoside Nucleotidyltransferase	ABG49324_1	3002609	aadA9
Aminoglycoside Nucleotidyltransferase	CAB14620_1	3002627	aadK
Gene Modulating Resistance	XP_753111_1	3003942	abcA
MATE Transporter	BAD89844_2	3000753	abeM
SMR Antibiotic Efflux	YP_002325052_1	3000768	abeS
Class C Beta-Lactamase	AAF86691_1	3001816	ACC-2
RND Antibiotic Efflux	NP_414995_1	3000216	acrB
RND Antibiotic Efflux	YP_490697_1	3000491	acrD
RND Antibiotic Efflux	AAC76297_1	3000499	acrE
RND Antibiotic Efflux	AAC76298_1	3000502	acrF
RND Antibiotic Efflux	AAC76296_1	3000656	acrS
Class C Beta-Lactamase	WP_004746565_1	3003848	ADC-2
RND Antibiotic Efflux	YP_002325610_1	3000774	adeA
RND Antibiotic Efflux	YP_002325611_1	3000775	adeB
RND Antibiotic Efflux	ALX99516_1	3003811	adeC
RND Antibiotic Efflux	YP_001706894_1	3000777	adeF
RND Antibiotic Efflux	YP_001706893_1	3000778	adeG

RND Antibiotic Efflux AAX14802_1 3000781 adeJ RND Antibiotic Efflux AAX14803_1 3000782 adeK RND Antibiotic Efflux AL422601_1 3000559 adeN RND Antibiotic Efflux ADW32606_1 3000553 adeR RND Antibiotic Efflux ADW32606_1 3002481 AER-1 Class A Beta-Lactamase CAC5340_1 3002481 AER-1 Class A Beta-Lactamase CAC63435_1 3002282 amrA Aminoglycoside Nucleodidyltransferase AAC64355_1 3000288 ANT(2_)Ha Aminoglycoside Nucleodidyltransferase ENU31137 3004098 ANT(3_)Hi Aminoglycoside Nucleodidyltransferase ENU31733 3004091 ANT(3_)Hi Aminoglycoside Nucleodidyltransferase ENU31733 3004091 ANT(4_)Ha Aminoglycoside Nucleodidyltransferase AAC25717_1 3002620 ANT(4_)Ha Aminoglycoside Nucleodidyltransferase AAU25717_1 3002620 ANT(4_)Ha Aminoglycoside Nucleodidyltransferase AAU25717_1 3002620 ANT(4_)Ha Aminoglycoside Nu	RND Antibiotic Efflux	YP_002320475_1	3000780	adel
RND Antibiotic Efflux AAX14803_1 3000782 adek RND Antibiotic Efflux ALH22601_1 3000620 adeL RND Antibiotic Efflux ADM92605_1 3000553 adeR RND Antibiotic Efflux ADM92605_1 3000549 adeS Class A Beta-Lactamase CA053840_1 3000853 AIM-1 RND Antibiotic Efflux NP_250709_1 3002882 amrA Aminoglycoside Nucleotidyltransferase CA053840_1 3000230 ANT(3_)-I+AC(6_)-I/d Aminoglycoside Nucleotidyltransferase EEX02086 3004099 ANT(3_)-I+AC(6_)-I/d Aminoglycoside Nucleotidyltransferase ENU37733 3004091 ANT(3_)-I/L Aminoglycoside Nucleotidyltransferase ENU37733 3004091 ANT(3_)-I/L Aminoglycoside Nucleotidyltransferase AAX26717_1 3002622 ANT(4_)-I/L Aminoglycoside Nucleotidyltransferase AAX76670_1 3002625 ANT(4_)-I/L Aminoglycoside Nucleotidyltransferase AAX26717_1 3002620 ANT(6)-I/L Aminoglycoside Nucleotidyltransferase AAX76170_1 3002625 ANT(4_)-I/L	RND Antibiotic Efflux	AAX14802_1	3000781	adeJ
RND Antibiotic Efflux ALH22601_1 3000620 adeL RND Antibiotic Efflux AGV28567_1 3000553 adeR RND Antibiotic Efflux ADM92606_1 3000553 adeR RND Antibiotic Efflux ADM92606_1 3000549 adeS Class A Beta-Lactamase AC09015_1 3002481 AER-1 Class B Beta-Lactamase CAQ53840_1 3000532 AINT_3 Aminoglycoside Nucleotidyltransferase AAC64365_1 3000298 amrA Aminoglycoside Nucleotidyltransferase EEX02086 3004099 ANT(3_)-IIa Aminoglycoside Nucleotidyltransferase ENU37733 3004091 ANT(3_)-IIa Aminoglycoside Nucleotidyltransferase AAAC5717_1 3002625 ANT(4_)-Ia Aminoglycoside Nucleotidyltransferase AAA25717_1 3002625 ANT(4_)-IIa Aminoglycoside Nucleotidyltransferase AAA25711_1 3002625 ANT(6)-Ia Aminoglycoside Nucleotidyltransferase AAA25711_1 3002625 ANT(6)-Ia Aminoglycoside Nucleotidyltransferase CBH5182_1 3002620 ANT(6)-Ia	RND Antibiotic Efflux	AAX14803_1	3000782	adeK
RND Antibiotic Efflux AGV2867_1 3000559 adeN RND Antibiotic Efflux ADM92605_1 3000531 adeR RND Antibiotic Efflux ADM92606_1 3000481 AER-1 Class A Beta-Lactamase CAC53840_1 300282 amrA Aminoglycoside Nucleotidyltransferase CAC63365_1 3002982 amrA Aminoglycoside Nucleotidyltransferase EEX02086 3004099 ANT(3	RND Antibiotic Efflux	ALH22601_1	3000620	adeL
RND Antibiotic Efflux ADM92605_1 3000553 adeR RND Antibiotic Efflux ADM92606_1 300049 adeS Class A Beta-Lactamase AAC09015_1 300241 AER-1 Class B Beta-Lactamase CAQ53840_1 3002982 amrA Aminoglycoside Nucleotidyltransferase AAC64365_1 300230 ANT(3Ha Aminoglycoside Nucleotidyltransferase EX02086 3004089 ANT(3Ha Aminoglycoside Nucleotidyltransferase ENU91773 3004090 ANT(3Ha Aminoglycoside Nucleotidyltransferase ENU91773 3004090 ANT(3Ha Aminoglycoside Nucleotidyltransferase AA083986_1 3002623 ANT(4Ha Aminoglycoside Nucleotidyltransferase YP_00897281_1 3002624 ANT(4Ha Aminoglycoside Nucleotidyltransferase YP_00897281_1 3002629 ANT(6_Ha Aminoglycoside Nucleotidyltransferase YP_00897281_1 3002629 ANT(6_Ha Aminoglycoside Nucleotidyltransferase AUZ7543_1 3002629 ANT(6_Ha Aminoglycoside Nucleotidyltransferase AVI3505_1 3002630	RND Antibiotic Efflux	AGV28567_1	3000559	adeN
RND Antibiotic Efflux ADM92606_1 3000549 ades Class A Beta-Lactamase AC09015_1 3002481 AER-1 Class B Beta-Lactamase CAQ53840_1 3000283 AIM-1 RND Antibiotic Efflux NP_250709_1 300230 ANT(2_)-Ia Aminoglycoside Nucleotidyltransferase AAC64365_1 3000230 ANT(3_)-Ii-AAC(6_)-Iid Aminoglycoside Nucleotidyltransferase ENU91137 3004091 ANT(3_)-Iia Aminoglycoside Nucleotidyltransferase ENU91137 3002623 ANT(4_)-Ia Aminoglycoside Nucleotidyltransferase ENU91137 3002624 ANT(4_)-Ia Aminoglycoside Nucleotidyltransferase AAA683986_1 3002624 ANT(4_)-Ia Aminoglycoside Nucleotidyltransferase AAA25717_1 3002625 ANT(4_)-Ib Aminoglycoside Nucleotidyltransferase ANU7670_1 3002629 ANT(4_)-Ib Aminoglycoside Nucleotidyltransferase AL927543_1 3002630 ANT(4_)-Ia Aminoglycoside Nucleotidyltransferase AL927643_1 3002630 ANT(4_)-Ia Aminoglycoside Nucleotidyltransferase AL927641_1 <	RND Antibiotic Efflux	ADM92605_1	3000553	adeR
Class A Beta-Lactamase AAC09015_1 3002481 AER-1 Class B Beta-Lactamase CAC5340_1 3002982 amrA Aminoglycoside Nucleotidyltransferase AAC64365_1 3002938 ANT(3_)-lia Aminoglycoside Nucleotidyltransferase AAC54365_1 3002988 ANT(3_)-lia Aminoglycoside Nucleotidyltransferase EX02086 300409 ANT(3_)-lia Aminoglycoside Nucleotidyltransferase ENU91137 300409 ANT(3_)-lia Aminoglycoside Nucleotidyltransferase ENU37733 3004091 ANT(4_)-la Aminoglycoside Nucleotidyltransferase YP_00633481_1 3002623 ANT(4_)-la Aminoglycoside Nucleotidyltransferase YP_008997281_1 3002626 ANT(4_)-la Aminoglycoside Nucleotidyltransferase XP_008997281_1 3002620 ANT(6)-la Aminoglycoside Nucleotidyltransferase CBF1824_1 3002620 ANT(6)-la Aminoglycoside Nucleotidyltransferase CBF1824_1 3002630 ANT(9)-la Gene Modulating Resistance NP_415611_1 3002640 ANT(9)-la Gene Modulating Resistance NP_415604_1	RND Antibiotic Efflux	ADM92606_1	3000549	adeS
Class B Beta-Lactamase CAQ53840_1 3000853 AIM-1 RND Antibicite Efflux NP_250709_1 3002822 amrA Aminoglycoside Nucleotidyltransferase AAC64365_11 3002983 ANT(2_)-Ia Aminoglycoside Nucleotidyltransferase AAL51021_2 3002993 ANT(3_)-II-AAC(6_)-IId Aminoglycoside Nucleotidyltransferase ENU37733 3004090 ANT(3_)-IIa Aminoglycoside Nucleotidyltransferase ENU37733 3002622 ANT(4_)-Ia Aminoglycoside Nucleotidyltransferase AAA25717_1 3002622 ANT(4_)-Ia Aminoglycoside Nucleotidyltransferase AAA25717_1 3002629 ANT(4_)-Ia Aminoglycoside Nucleotidyltransferase YP_006938491_1 3002629 ANT(4_)-Ia Aminoglycoside Nucleotidyltransferase YP_00897281_1 3002629 ANT(4_)-Ia Aminoglycoside Nucleotidyltransferase YP_00897281_1 3002629 ANT(4_)-Ia Aminoglycoside Nucleotidyltransferase VP_01897281_1 3002629 ANT(4_)-Ia Aminoglycoside Nucleotidyltransferase NP_41561_1 3002630 ANT(4_)-Ia Aminoglycoside Nucleotidyl	Class A Beta-Lactamase	AAC09015_1	3002481	AER-1
RND Antibiotic Efflux NP_250709_1 3002962 amrA Aminoglycoside Nucleotidyltransferase AAC64365_1 300230 ANT(2_)-la Aminoglycoside Nucleotidyltransferase AAL51021_2 3002598 ANT(3_)-li-AAC(6_)-lid Aminoglycoside Nucleotidyltransferase EX02066 3004090 ANT(3_)-lib Aminoglycoside Nucleotidyltransferase ENU37733 3004091 ANT(4_)-la Aminoglycoside Nucleotidyltransferase AA083986_1 3002623 ANT(4_)-la Aminoglycoside Nucleotidyltransferase YP_006938491_1 3002626 ANT(4_)-la Aminoglycoside Nucleotidyltransferase YP_00897281_1 3002626 ANT(4_)-la Aminoglycoside Nucleotidyltransferase AL27543_1 3002620 ANT(6_)-lb Aminoglycoside Nucleotidyltransferase AFU35063_1 3002630 ANT(9_)-la Aminoglycoside P	Class B Beta-Lactamase	CAQ53840_1	3000853	AIM-1
Aminoglycoside NucleotidyltransferaseAAC64365_13000230ANT(2_)-laAminoglycoside NucleotidyltransferaseAAL51021_23002598ANT(3_)-l1+AAC(6_)-lldAminoglycoside NucleotidyltransferaseENU911373004090ANT(3_)-llaAminoglycoside NucleotidyltransferaseENU911373004090ANT(3_)-llaAminoglycoside NucleotidyltransferaseENU377333004091ANT(4_)-laAminoglycoside NucleotidyltransferaseAAC63986_13002623ANT(4_)-laAminoglycoside NucleotidyltransferaseAAA25717_13002624ANT(4_)-llaAminoglycoside NucleotidyltransferaseAAM76670_13002625ANT(6)-lbAminoglycoside NucleotidyltransferaseAHJ27543_13002629ANT(6)-lbAminoglycoside NucleotidyltransferaseAHJ27543_13002629ANT(6)-lbAminoglycoside NucleotidyltransferaseCBH51824_13002629ANT(6)-lbAminoglycoside NucleotidyltransferaseAAX38178_13002634APH(2_)-leAminoglycoside PhosphotransferaseAAK63040_13002635APH(2_)-leAminoglycoside PhosphotransferaseAAK63040_13002635APH(2_)-llaAminoglycoside PhosphotransferaseAAK63040_13002638APH(2_)-llaAminoglycoside PhosphotransferaseAAK63040_13002636APH(2_)-llaAminoglycoside PhosphotransferaseAAE605_13002640APH(3_)-laAminoglycoside PhosphotransferaseAAE605_13002643APH(2_)-llaAminoglycoside PhosphotransferaseAAE605_13002644APH(3_)-la </td <td>RND Antibiotic Efflux</td> <td>NP_250709_1</td> <td>3002982</td> <td>amrA</td>	RND Antibiotic Efflux	NP_250709_1	3002982	amrA
Aminoglycoside NucleotidyltransferaseAAL51021_23002598ANT(3_hl-AAC(6_hldAminoglycoside NucleotidyltransferaseEX020863004089ANT(3_hlaAminoglycoside NucleotidyltransferaseENU911373004091ANT(3_hldAminoglycoside NucleotidyltransferaseENU377333004091ANT(3_hldAminoglycoside NucleotidyltransferaseAA083986_13002623ANT(4_hldAminoglycoside NucleotidyltransferaseAA083986_113002623ANT(4_hldAminoglycoside NucleotidyltransferaseAAA25717_13002624ANT(4_hldAminoglycoside NucleotidyltransferaseAAA7670_113002625ANT(4_hldAminoglycoside NucleotidyltransferaseAVT64_13002625ANT(6)-lbAminoglycoside NucleotidyltransferaseAJ27543_13002629ANT(6)-lbAminoglycoside NucleotidyltransferaseCBH51824_13002629ANT(6)-lbAminoglycoside NucleotidyltransferaseAK03063_13002630ANT(9)-laGene Modulating ResistanceNP_415601_13002634APH(2_)-leAminoglycoside PhosphotransferaseAAK63040_13002635APH(2_)-leAminoglycoside PhosphotransferaseAAK63040_13002636APH(2_)-laAminoglycoside PhosphotransferaseAAK63040_13002636APH(2_)-laAminoglycoside PhosphotransferaseAAK63040_13002636APH(2_)-laAminoglycoside PhosphotransferaseAAK63040_13002636APH(2_)-laAminoglycoside PhosphotransferaseAAK63040_13002636APH(2_)-laAminogl	Aminoglycoside Nucleotidyltransferase	AAC64365_1	3000230	ANT(2)-la
Aminoglycoside NucleotidyltransferaseEEX020863004089ANT(3)IIaAminoglycoside NucleotidyltransferaseENU911373004090ANT(3)IIbAminoglycoside NucleotidyltransferaseENU37733300401ANT(3)IIcAminoglycoside NucleotidyltransferaseAVA083986.13002623ANT(4_)-IaAminoglycoside NucleotidyltransferaseYP_00993491_13003005ANT(4_)-IbAminoglycoside NucleotidyltransferaseAAA25717_13002624ANT(4_)-IIaAminoglycoside NucleotidyltransferaseYP_008997281_13002625ANT(6)-IaAminoglycoside NucleotidyltransferaseYP_008997281_13002629ANT(6)-IbAminoglycoside NucleotidyltransferaseCBH51824_13002629ANT(6)-IbAminoglycoside NucleotidyltransferaseCBH51824_13002630ANT(9)-IaGene Modulating ResistanceNP_415611_13004049fabGGene Modulating ResistanceNP_41564_13002634APH(2_)-IeAminoglycoside PhosphotransferaseAAK38178_13002636APH(2_)-IaAminoglycoside PhosphotransferaseAAK63040_13002635APH(2_)-IaAminoglycoside PhosphotransferaseAAK63040_13002634APH(2_)-IaAminoglycoside PhosphotransferaseAAK63040_13002634APH(2_)-IaAminoglycoside PhosphotransferaseAAE68330_13002640APH(3_)-IaAminoglycoside PhosphotransferaseCAA37605_13002640APH(3_)-IaAminoglycoside PhosphotransferaseAAE68330_13002641APH(3_)-IaAminoglyc	Aminoglycoside Nucleotidyltransferase	AAL51021_2	3002598	ANT(3)-li-AAC(6_)-lld
Aminoglycoside NucleotidyltransferaseENU911373004090ANT(3_)-IIbAminoglycoside NucleotidyltransferaseENU377333004091ANT(3_)-IIcAminoglycoside NucleotidyltransferaseAAO83986_13002623ANT(4_)-IaAminoglycoside NucleotidyltransferaseAAA25717_13002624ANT(4_)-IIaAminoglycoside NucleotidyltransferaseAAA25717_13002625ANT(4_)-IIaAminoglycoside NucleotidyltransferaseAAM76670_13002626ANT(6)-IaAminoglycoside NucleotidyltransferaseAIJ27543_13002629ANT(6)-IbAminoglycoside NucleotidyltransferaseCBH51824_13002620ANT(6)-IbAminoglycoside NucleotidyltransferaseCBH51824_113002630ANT(9)-IaGene Modulating ResistanceNP_415611_13004045fabIAminoglycoside PhosphotransferaseAAX38178_13002636APH(2_)-IeAminoglycoside PhosphotransferaseAAK63040_13002636APH(2_)-IIaAminoglycoside PhosphotransferaseAAK63040_13002636APH(2_)-IIaAminoglycoside PhosphotransferaseAAK63040_13002638APH(3_)-IaAminoglycoside PhosphotransferaseAAK6305_13002640APH(3_)-IaAminoglycoside PhosphotransferaseAAC65113002640APH(3_)-IaAminoglycoside PhosphotransferaseAAC6435_13002640APH(3_)-IaAminoglycoside PhosphotransferaseAAC426112_13002641APH(3_)-IaAminoglycoside PhosphotransferaseAAC42612_13002644APH(3_)-IaAminoglycoside P	Aminoglycoside Nucleotidyltransferase	EEX02086	3004089	ANT(3)-IIa
Aminoglycoside NucleotidyltransferaseENU377333004091ANT(3_)-IIcAminoglycoside NucleotidyltransferaseAAO83986_13002623ANT(4_)-IaAminoglycoside NucleotidyltransferaseYP_006938491_13003905ANT(4_)-IbAminoglycoside NucleotidyltransferaseAAA25717_13002624ANT(4_)-IIaAminoglycoside NucleotidyltransferaseAAM76670_13002625ANT(4_)-IIbAminoglycoside NucleotidyltransferaseAU27543_13002629ANT(6)-IbAminoglycoside NucleotidyltransferaseCBH51824_13002629ANT(6)-IbAminoglycoside NucleotidyltransferaseAFU35063_13002630ANT(9)-IaGene Modulating ResistanceNP_415611_13004045fabIAminoglycoside PhosphotransferaseAAX38178_13002636APH(2_)-IeAminoglycoside PhosphotransferaseAAK63040_113002636APH(2_)-IaAminoglycoside PhosphotransferaseAAK63040_113002638APH(2_)-IaAminoglycoside PhosphotransferaseAAA26405_113002638APH(3_)-IaAminoglycoside PhosphotransferaseAAA26412_13002641APH(3_)-IaAminoglycoside PhosphotransferaseAAA26412_13002642APH(3_)-IaAminoglycoside PhosphotransferaseAAC6305_13002641APH(3_)-IaAminoglycoside PhosphotransferaseAAC6412_13002642APH(3_)-IaAminoglycoside PhosphotransferaseAAA26412_13002642APH(3_)-IaAminoglycoside PhosphotransferaseAAA26412_13002644APH(3_)-IaAminoglycosid	Aminoglycoside Nucleotidyltransferase	ENU91137	3004090	ANT(3)-IIb
Aminoglycoside NucleotidyltransferaseAAO83986_13002623ANT(4_)-laAminoglycoside NucleotidyltransferaseYP_006938491_13003905ANT(4_)-lbAminoglycoside NucleotidyltransferaseAAA25717_13002624ANT(4_)-llaAminoglycoside NucleotidyltransferaseAAM76670_13002625ANT(4_)-llaAminoglycoside NucleotidyltransferaseYP_00897281_13002626ANT(6)-laAminoglycoside NucleotidyltransferaseAIJ27543_13002629ANT(6)-lbAminoglycoside NucleotidyltransferaseAFU35063_13002630ANT(9)-laGene Modulating ResistanceNP_415611_13004045fablAminoglycoside PhosphotransferaseAAX38178_13002634APH(2)-leAminoglycoside PhosphotransferaseAGV10818_13002636APH(2)-laAminoglycoside PhosphotransferaseAAK63040_13002636APH(2)-laAminoglycoside PhosphotransferaseAAK63040_13002636APH(3)-laAminoglycoside PhosphotransferaseAAK6304_13002638APH(3)-laAminoglycoside PhosphotransferaseAAK6304_13002638APH(3)-laAminoglycoside PhosphotransferaseAAE49832_13002638APH(3)-laAminoglycoside PhosphotransferaseAAE4630_13002639APH(3)-laAminoglycoside PhosphotransferaseAAE68330_13002640APH(3)-laAminoglycoside PhosphotransferaseAA26412_13002644APH(3)-laAminoglycoside PhosphotransferaseAAA26412_13002645APH(3)-laAminog	Aminoglycoside Nucleotidyltransferase	ENU37733	3004091	ANT(3)-IIc
Aminoglycoside NucleotidyltransferaseYP_006938491_13003905ANT(4_)-lbAminoglycoside NucleotidyltransferaseAAA25717_13002624ANT(4_)-llaAminoglycoside NucleotidyltransferaseAAM76670_13002625ANT(4_)-llbAminoglycoside NucleotidyltransferaseYP_008997281_13002629ANT(6)-laAminoglycoside NucleotidyltransferaseAlJ27543_13002629ANT(6)-lbAminoglycoside NucleotidyltransferaseCBH51824_13002629ANT(9)-laGene Modulating ResistanceNP_415611_13004049fabGGene Modulating ResistanceNP_415804_13002634APH(2_)-leAminoglycoside PhosphotransferaseAAK63040_13002635APH(2_)-laAminoglycoside PhosphotransferaseAAK63040_13002636APH(2_)-laAminoglycoside PhosphotransferaseAAK63040_13002636APH(2_)-laAminoglycoside PhosphotransferaseAAK63040_13002636APH(2_)-laAminoglycoside PhosphotransferaseAAK63040_13002636APH(2_)-laAminoglycoside PhosphotransferaseAAE46302_13002636APH(3_)-laAminoglycoside PhosphotransferaseAAE46330_13002640APH(3_)-laAminoglycoside PhosphotransferaseAAE4612_13002642APH(3_)-laAminoglycoside PhosphotransferaseAAA26412_13002644APH(3_)-laAminoglycoside PhosphotransferaseAAA26412_13002645APH(3_)-laAminoglycoside PhosphotransferaseAAA26412_13002645APH(3_)-laAminoglycoside Phosphot	Aminoglycoside Nucleotidyltransferase	AAO83986_1	3002623	ANT(4_)-la
Aminoglycoside NucleotidyltransferaseAAA25717_13002624ANT(4_)-llaAminoglycoside NucleotidyltransferaseAM76670_13002625ANT(4_)-llbAminoglycoside NucleotidyltransferaseYP_008997281_13002626ANT(6)-laAminoglycoside NucleotidyltransferaseALJ27543_13002629ANT(6)-lbAminoglycoside NucleotidyltransferaseCBH51824_13002629ANT(6)-lbAminoglycoside NucleotidyltransferaseCBH51824_13002630ANT(9)-laGene Modulating ResistanceNP_415611_13004045fablGene Modulating ResistanceNP_415804_13002634APH(2)-leAminoglycoside PhosphotransferaseAAK63040_13002635APH(2)-lgAminoglycoside PhosphotransferaseAAK63040_13002636APH(2)-laAminoglycoside PhosphotransferaseAAK63040_13002636APH(2)-laAminoglycoside PhosphotransferaseAAK63040_13002636APH(2)-laAminoglycoside PhosphotransferaseCAA37605_13002638APH(3)-laAminoglycoside PhosphotransferaseABK33456_13002640APH(3)-laAminoglycoside PhosphotransferaseCAE51638_13002641APH(3_)-laAminoglycoside PhosphotransferaseCAE51638_13002644APH(3_)-laAminoglycoside PhosphotransferaseCAA62365_13002644APH(3_)-llaAminoglycoside PhosphotransferaseCAA62365_13002645APH(3_)-llaAminoglycoside PhosphotransferaseCAA62365_13002645APH(3_)-llaAminoglycoside Pho	Aminoglycoside Nucleotidyltransferase	YP_006938491_1	3003905	ANT(4_)-Ib
Aminoglycoside NucleotidyltransferaseAAM76670_13002625ANT(4_)-IIbAminoglycoside NucleotidyltransferaseYP_008997281_13002626ANT(6)-IaAminoglycoside NucleotidyltransferaseAJJ27543_13002629ANT(6)-IbAminoglycoside NucleotidyltransferaseCBH51824_13002620ANT(6)-IbAminoglycoside NucleotidyltransferaseAFU35063_13002630ANT(9)-IaGene Modulating ResistanceNP_415611_13004049fabGGene Modulating ResistanceNP_415804_113002634APH(2_)-IeAminoglycoside PhosphotransferaseAGV10818_13002635APH(2_)-IgAminoglycoside PhosphotransferaseAAK63040_13002636APH(2_)-IIaAminoglycoside PhosphotransferaseAAK63040_13002636APH(2_)-IIaAminoglycoside PhosphotransferaseAAK63040_13002638APH(2_)-IIaAminoglycoside PhosphotransferaseCAA37605_13002638APH(3_)-IaAminoglycoside PhosphotransferaseABC68330_13002640APH(3_)-IaAminoglycoside PhosphotransferaseCAE51638_13002641APH(3_)-IaAminoglycoside PhosphotransferaseCAA26412_13002642APH(3_)-IaAminoglycoside PhosphotransferaseCAA62365_13002644APH(3_)-IIaAminoglycoside PhosphotransferaseCAA26412_13002644APH(3_)-IIaAminoglycoside PhosphotransferaseCAA2635_13002644APH(3_)-IIaAminoglycoside PhosphotransferaseCAA62365_13002646APH(3_)-IIaAminoglycoside Phosphotra	Aminoglycoside Nucleotidyltransferase	AAA25717_1	3002624	ANT(4_)-IIa
Aminoglycoside NucleotidyltransferaseYP_008997281_13002626ANT(6)-laAminoglycoside NucleotidyltransferaseAlJ27543_13002629ANT(6)-lbAminoglycoside NucleotidyltransferaseCBH51824_13002620ANT(6)-lbAminoglycoside NucleotidyltransferaseAFU35063_13002630ANT(9)-laGene Modulating ResistanceNP_415611_13004049fabGGene Modulating ResistanceNP_415804_13002634APH(2_)-leAminoglycoside PhosphotransferaseAAX38178_13002635APH(2_)-lgAminoglycoside PhosphotransferaseAGV10818_13002636APH(2_)-lgAminoglycoside PhosphotransferaseAAK63040_13002636APH(2_)-llaAminoglycoside PhosphotransferaseCAA37605_13002636APH(2_)-llaAminoglycoside PhosphotransferaseCAA37605_13002639APH(3_)-laAminoglycoside PhosphotransferaseABC68330_13002640APH(3_)-laAminoglycoside PhosphotransferaseCAA2761_13002642APH(3_)-laAminoglycoside PhosphotransferaseCAA26412_13002644APH(3_)-laAminoglycoside PhosphotransferaseCAA62365_13002644APH(3_)-llaAminoglycoside PhosphotransferaseCAA2625_13002644APH(3_)-llaAminoglycoside PhosphotransferaseCAA2706_113002644APH(3_)-llaAminoglycoside PhosphotransferaseCAA2706_113002644APH(3_)-llaAminoglycoside PhosphotransferaseCAA2706_113002648APH(3_)-llaAminoglycoside Phosphotransferas	Aminoglycoside Nucleotidyltransferase	AAM76670_1	3002625	ANT(4_)-IIb
Aminoglycoside NucleotidyltransferaseAlJ27543_13002629ANT(6)-lbAminoglycoside NucleotidyltransferaseCBH51824_13002630ANT(9)-laGene Modulating ResistanceNP_415611_13004049fabGGene Modulating ResistanceNP_415804_13002634APH(2_)-leAminoglycoside PhosphotransferaseAAX38178_13002635APH(2_)-leAminoglycoside PhosphotransferaseAGV10818_13002635APH(2_)-laAminoglycoside PhosphotransferaseAAK63040_13002636APH(2_)-laAminoglycoside PhosphotransferaseAAK63040_13002636APH(2_)-laAminoglycoside PhosphotransferaseCAA37605_13002636APH(2_)-laAminoglycoside PhosphotransferaseCAA37605_13002638APH(3_)-laAminoglycoside PhosphotransferaseABK33456_113002640APH(3_)-laAminoglycoside PhosphotransferaseCAE51638_13002640APH(3_)-laAminoglycoside PhosphotransferaseCAE51638_13002642APH(3_)-laAminoglycoside PhosphotransferaseCAA62365_13002645APH(3_)-llaAminoglycoside PhosphotransferaseCAA62365_13002646APH(3_)-llaAminoglycoside PhosphotransferaseADU43421_13002646APH(3_)-llaAminoglycoside PhosphotransferaseADU43421_13002646APH(3_)-llaAminoglycoside PhosphotransferaseADU43421_13002646APH(3_)-llaAminoglycoside PhosphotransferaseADU43421_13002646APH(3_)-llaAminoglycoside Phosphotransferase <t< td=""><td>Aminoglycoside Nucleotidyltransferase</td><td>YP_008997281_1</td><td>3002626</td><td>ANT(6)-la</td></t<>	Aminoglycoside Nucleotidyltransferase	YP_008997281_1	3002626	ANT(6)-la
Aminoglycoside NucleotidyltransferaseCBH51824_13002629ANT(6)-lbAminoglycoside NucleotidyltransferaseAFU35063_13002630ANT(9)-laGene Modulating ResistanceNP_415611_13004049fabGGene Modulating ResistanceNP_415804_13002634APH(2_)-leAminoglycoside PhosphotransferaseAAX38178_13002635APH(2_)-lgAminoglycoside PhosphotransferaseAGV10818_13002635APH(2_)-lgAminoglycoside PhosphotransferaseAAK63040_13002635APH(2_)-llaAminoglycoside PhosphotransferaseCAA37605_13002638APH(3_)-laAminoglycoside PhosphotransferaseCAA37605_13002640APH(3_)-laAminoglycoside PhosphotransferaseABK33456_13002640APH(3_)-laAminoglycoside PhosphotransferaseCAE51638_13002640APH(3_)-laAminoglycoside PhosphotransferaseCAE51638_13002641APH(3_)-laAminoglycoside PhosphotransferaseCAA26412_13002642APH(3_)-laAminoglycoside PhosphotransferaseCAA62365_13002644APH(3_)-llaAminoglycoside PhosphotransferaseADQ43421_13002646APH(3_)-llaAminoglycoside PhosphotransferaseAGV10830_13002647APH(3_)-llaAminoglycoside PhosphotransferaseCAA27061_13002648APH(3_)-lNaAminoglycoside PhosphotransferaseCAA27061_13002648APH(3_)-lNaAminoglycoside PhosphotransferaseCAA27061_13002649APH(3_)-lNaAminoglycoside Phosphotransferase <t< td=""><td>Aminoglycoside Nucleotidyltransferase</td><td>AIJ27543_1</td><td>3002629</td><td>ANT(6)-Ib</td></t<>	Aminoglycoside Nucleotidyltransferase	AIJ27543_1	3002629	ANT(6)-Ib
Aminoglycoside NucleotidyltransferaseAFU35063_13002630ANT(9)-laGene Modulating ResistanceNP_415611_13004049fabGGene Modulating ResistanceNP_415804_13004045fablAminoglycoside PhosphotransferaseAAX38178_13002634APH(2)-leAminoglycoside PhosphotransferaseAGV10818_13002635APH(2)-lgAminoglycoside PhosphotransferaseAAK63040_13002635APH(2)-llaAminoglycoside PhosphotransferaseAAK63040_13002636APH(2)-llaAminoglycoside PhosphotransferaseCAA37605_13002638APH(3)-laAminoglycoside PhosphotransferaseABK33456_113002639APH(3)-laAminoglycoside PhosphotransferaseABC68330_13002640APH(3)-laAminoglycoside PhosphotransferaseCAE51638_13002641APH(3)-laAminoglycoside PhosphotransferaseCAE51638_113002642APH(3)-laAminoglycoside PhosphotransferaseCAA62365_13002644APH(3)-laAminoglycoside PhosphotransferaseCAA62365_13002645APH(3)-llaAminoglycoside PhosphotransferaseADQ43421_13002646APH(3)-llaAminoglycoside PhosphotransferaseCAA27061_13002648APH(3)-llaAminoglycoside PhosphotransferaseCAA27061_13002648APH(3)-lVaAminoglycoside PhosphotransferaseCAA27061_13002648APH(3)-lVaAminoglycoside PhosphotransferaseCAA27061_13002648APH(3)-lVaAminoglycoside Phosphotransfer	Aminoglycoside Nucleotidyltransferase	CBH51824_1	3002629	ANT(6)-Ib
Gene Modulating ResistanceNP_415611_13004049fabGGene Modulating ResistanceNP_415804_13004045fabIAminoglycoside PhosphotransferaseAAX38178_13002634APH(2_)-leAminoglycoside PhosphotransferaseAGV10818_13002669APH(2_)-lgAminoglycoside PhosphotransferaseAAK63040_13002635APH(2_)-IlaAminoglycoside PhosphotransferaseAAA89832_13002636APH(2_)-IllaAminoglycoside PhosphotransferaseCAA37605_113002638APH(3_)-laAminoglycoside PhosphotransferaseABC68330_113002640APH(3_)-laAminoglycoside PhosphotransferaseCAE51638_113002641APH(3_)-laAminoglycoside PhosphotransferaseCAE51638_113002644APH(3_)-laAminoglycoside PhosphotransferaseCAA62365_113002645APH(3_)-llaAminoglycoside PhosphotransferaseCAA62365_113002645APH(3_)-llaAminoglycoside PhosphotransferaseCAA62365_113002645APH(3_)-llaAminoglycoside PhosphotransferaseCAA62365_113002645APH(3_)-llaAminoglycoside PhosphotransferaseADQ43421_13002646APH(3_)-llcAminoglycoside PhosphotransferaseCAA27061_113002648APH(3_)-lVaAminoglycoside PhosphotransferaseCAA27061_113002648APH(3_)-lVaAminoglycoside PhosphotransferaseCAA27061_113002649APH(3_)-lXAminoglycoside PhosphotransferaseCAA27061_113002649APH(3_)-lXAminoglycoside Phosphotransferase <td>Aminoglycoside Nucleotidyltransferase</td> <td>AFU35063_1</td> <td>3002630</td> <td>ANT(9)-la</td>	Aminoglycoside Nucleotidyltransferase	AFU35063_1	3002630	ANT(9)-la
Gene Modulating ResistanceNP_415804_13004045fablAminoglycoside PhosphotransferaseAAX38178_13002634APH(2_)-leAminoglycoside PhosphotransferaseAGV10818_13002669APH(2_)-lgAminoglycoside PhosphotransferaseAAK63040_13002635APH(2_)-llaAminoglycoside PhosphotransferaseAAAB49832_13002636APH(2_)-llaAminoglycoside PhosphotransferaseCAA37605_13002638APH(3_)-laAminoglycoside PhosphotransferaseABK33456_13002639APH(3_)-lbAminoglycoside PhosphotransferaseABC68330_13002640APH(3_)-lcAminoglycoside PhosphotransferaseCAE51638_13002641APH(3_)-laAminoglycoside PhosphotransferaseCAA26412_13002645APH(3_)-laAminoglycoside PhosphotransferaseCAA62365_13002645APH(3_)-llaAminoglycoside PhosphotransferaseCAA62365_13002645APH(3_)-llaAminoglycoside PhosphotransferaseCAA62365_13002646APH(3_)-llaAminoglycoside PhosphotransferaseADQ43421_13002646APH(3_)-llaAminoglycoside PhosphotransferaseAGV10830_13002647APH(3_)-llaAminoglycoside PhosphotransferaseCAA27061_13002648APH(3_)-lVaAminoglycoside PhosphotransferaseENV340353004087APH(3_)-lXAminoglycoside PhosphotransferaseCAA27061_13002649APH(3_)-lXAminoglycoside PhosphotransferaseAA26699_13002649APH(3_)-lX	Gene Modulating Resistance	NP_415611_1	3004049	fabG
Aminoglycoside PhosphotransferaseAAX38178_13002634APH(2_)-leAminoglycoside PhosphotransferaseAGV10818_13002669APH(2_)-lgAminoglycoside PhosphotransferaseAAK63040_13002635APH(2_)-llaAminoglycoside PhosphotransferaseAAB49832_13002636APH(2_)-llaAminoglycoside PhosphotransferaseCAA37605_13002638APH(3_)-laAminoglycoside PhosphotransferaseABK33456_13002640APH(3_)-laAminoglycoside PhosphotransferaseABC68330_13002640APH(3_)-laAminoglycoside PhosphotransferaseCAE51638_13002641APH(3_)-laAminoglycoside PhosphotransferaseCAE51638_13002642APH(3_)-laAminoglycoside PhosphotransferaseCAA62412_13002644APH(3_)-laAminoglycoside PhosphotransferaseCAA62365_13002645APH(3_)-llaAminoglycoside PhosphotransferaseADQ43421_13002646APH(3_)-llaAminoglycoside PhosphotransferaseAGV10830_13002647APH(3_)-llaAminoglycoside PhosphotransferaseCAA27061_13002648APH(3_)-llaAminoglycoside PhosphotransferaseCAA27061_13002648APH(3_)-lVaAminoglycoside PhosphotransferaseCAA27061_13002649APH(3_)-lXAminoglycoside PhosphotransferaseAAA26699_13002649APH(3_)-Va	Gene Modulating Resistance	NP_415804_1	3004045	fabl
Aminoglycoside PhosphotransferaseAGV10818_13002669APH(2_)-lgAminoglycoside PhosphotransferaseAAK63040_13002635APH(2_)-llaAminoglycoside PhosphotransferaseAAB49832_13002636APH(2_)-lllaAminoglycoside PhosphotransferaseCAA37605_13002638APH(3_)-laAminoglycoside PhosphotransferaseABK33456_13002639APH(3_)-laAminoglycoside PhosphotransferaseABC68330_13002640APH(3_)-lcAminoglycoside PhosphotransferaseCAE51638_13002641APH(3_)-laAminoglycoside PhosphotransferaseCAE51638_113002642APH(3_)-laAminoglycoside PhosphotransferaseCAA26412_13002644APH(3_)-laAminoglycoside PhosphotransferaseCAA62365_13002645APH(3_)-llaAminoglycoside PhosphotransferaseCAA62365_13002646APH(3_)-llcAminoglycoside PhosphotransferaseAQV10830_13002647APH(3_)-llaAminoglycoside PhosphotransferaseCAA27061_13002648APH(3_)-lVaAminoglycoside PhosphotransferaseCAA27061_13002648APH(3_)-lXAminoglycoside PhosphotransferaseCAA27061_13002649APH(3_)-lXAminoglycoside PhosphotransferaseAA26699_13002649APH(3_)-lX	Aminoglycoside Phosphotransferase	AAX38178_1	3002634	APH(2)-le
Aminoglycoside PhosphotransferaseAAK63040_13002635APH(2_)-IlaAminoglycoside PhosphotransferaseAAB49832_13002636APH(2_)-IllaAminoglycoside PhosphotransferaseCAA37605_13002638APH(3_)-IaAminoglycoside PhosphotransferaseABK33456_13002640APH(3_)-IbAminoglycoside PhosphotransferaseABC68330_13002641APH(3_)-IcAminoglycoside PhosphotransferaseCAE51638_13002642APH(3_)-IaAminoglycoside PhosphotransferaseCAE51638_13002642APH(3_)-IbAminoglycoside PhosphotransferaseCAA62412_13002644APH(3_)-IbAminoglycoside PhosphotransferaseCAA62365_13002645APH(3_)-IlaAminoglycoside PhosphotransferaseCAA62365_13002646APH(3_)-IlbAminoglycoside PhosphotransferaseADQ43421_13002646APH(3_)-IlcAminoglycoside PhosphotransferaseCAA27061_13002648APH(3_)-IVaAminoglycoside PhosphotransferaseCAA27061_13002648APH(3_)-IVaAminoglycoside PhosphotransferaseAAA26699_13002649APH(3_)-IX	Aminoglycoside Phosphotransferase	AGV10818_1	3002669	APH(2)-Ig
Aminoglycoside PhosphotransferaseAAB49832_13002636APH(2_)-IllaAminoglycoside PhosphotransferaseCAA37605_13002638APH(3_)-IaAminoglycoside PhosphotransferaseABK33456_13002639APH(3_)-IbAminoglycoside PhosphotransferaseABC68330_13002640APH(3_)-IcAminoglycoside PhosphotransferaseCAE51638_13002641APH(3_)-IaAminoglycoside PhosphotransferaseCAA26412_13002642APH(3_)-IbAminoglycoside PhosphotransferaseWP_000572405_13002644APH(3_)-IlaAminoglycoside PhosphotransferaseCAA62365_13002645APH(3_)-IlbAminoglycoside PhosphotransferaseADQ43421_13002646APH(3_)-IlcAminoglycoside PhosphotransferaseAGV10830_13002647APH(3_)-IlaAminoglycoside PhosphotransferaseCAA27061_13002648APH(3_)-IVaAminoglycoside PhosphotransferaseENV340353004087APH(3_)-IXAminoglycoside PhosphotransferaseAA26699_13002649APH(3_)-Va	Aminoglycoside Phosphotransferase	AAK63040_1	3002635	APH(2)-IIa
Aminoglycoside PhosphotransferaseCAA37605_13002638APH(3_)-laAminoglycoside PhosphotransferaseABK33456_13002639APH(3_)-lbAminoglycoside PhosphotransferaseABC68330_13002640APH(3_)-lcAminoglycoside PhosphotransferaseCAE51638_13002641APH(3_)-laAminoglycoside PhosphotransferaseAAA26412_13002642APH(3_)-lbAminoglycoside PhosphotransferaseWP_000572405_13002644APH(3_)-llaAminoglycoside PhosphotransferaseCAA62365_13002645APH(3_)-llbAminoglycoside PhosphotransferaseADQ43421_13002646APH(3_)-llcAminoglycoside PhosphotransferaseAGV10830_13002647APH(3_)-llaAminoglycoside PhosphotransferaseCAA27061_13002648APH(3_)-lVaAminoglycoside PhosphotransferaseCAA27061_13002649APH(3_)-lXAminoglycoside PhosphotransferaseAAA26699_13002649APH(3_)-lX	Aminoglycoside Phosphotransferase	AAB49832_1	3002636	APH(2)-Illa
Aminoglycoside PhosphotransferaseABK33456_13002639APH(3_)-lbAminoglycoside PhosphotransferaseABC68330_13002640APH(3_)-lcAminoglycoside PhosphotransferaseCAE51638_13002641APH(3_)-laAminoglycoside PhosphotransferaseAAA26412_13002642APH(3_)-lbAminoglycoside PhosphotransferaseWP_000572405_13002644APH(3_)-llaAminoglycoside PhosphotransferaseCAA62365_13002645APH(3_)-llbAminoglycoside PhosphotransferaseADQ43421_13002646APH(3_)-llcAminoglycoside PhosphotransferaseAGV10830_13002647APH(3_)-llaAminoglycoside PhosphotransferaseCAA27061_13002648APH(3_)-lVaAminoglycoside PhosphotransferaseCAA27061_13004087APH(3_)-lXAminoglycoside PhosphotransferaseAAA26699_13002649APH(3_)-Va	Aminoglycoside Phosphotransferase	CAA37605_1	3002638	APH(3)-la
Aminoglycoside PhosphotransferaseABC68330_13002640APH(3_)-lcAminoglycoside PhosphotransferaseCAE51638_13002641APH(3_)-laAminoglycoside PhosphotransferaseAAA26412_13002642APH(3_)-lbAminoglycoside PhosphotransferaseWP_000572405_13002644APH(3_)-llaAminoglycoside PhosphotransferaseCAA62365_13002645APH(3_)-llbAminoglycoside PhosphotransferaseADQ43421_13002646APH(3_)-llcAminoglycoside PhosphotransferaseAGV10830_13002647APH(3_)-llaAminoglycoside PhosphotransferaseCAA27061_13002648APH(3_)-lVaAminoglycoside PhosphotransferaseCAA27061_13004087APH(3_)-lXAminoglycoside PhosphotransferaseAAA26699_13002649APH(3_)-lX	Aminoglycoside Phosphotransferase	ABK33456_1	3002639	APH(3)-lb
Aminoglycoside PhosphotransferaseCAE51638_13002641APH(3_)-laAminoglycoside PhosphotransferaseAAA26412_13002642APH(3_)-lbAminoglycoside PhosphotransferaseWP_000572405_13002644APH(3_)-llaAminoglycoside PhosphotransferaseCAA62365_13002645APH(3_)-llbAminoglycoside PhosphotransferaseADQ43421_13002646APH(3_)-llcAminoglycoside PhosphotransferaseAGV10830_13002647APH(3_)-llaAminoglycoside PhosphotransferaseCAA27061_13002648APH(3_)-lVaAminoglycoside PhosphotransferaseENV340353004087APH(3_)-lXAminoglycoside PhosphotransferaseAAA26699_13002649APH(3_)-Va	Aminoglycoside Phosphotransferase	ABC68330_1	3002640	APH(3)-Ic
Aminoglycoside PhosphotransferaseAAA26412_13002642APH(3_)-lbAminoglycoside PhosphotransferaseWP_000572405_13002644APH(3_)-llaAminoglycoside PhosphotransferaseCAA62365_13002645APH(3_)-llbAminoglycoside PhosphotransferaseADQ43421_13002646APH(3_)-llcAminoglycoside PhosphotransferaseAGV10830_13002647APH(3_)-llaAminoglycoside PhosphotransferaseCAA27061_13002648APH(3_)-llaAminoglycoside PhosphotransferaseCAA27061_13002648APH(3_)-lVaAminoglycoside PhosphotransferaseENV340353004087APH(3_)-lXAminoglycoside PhosphotransferaseAAA26699_13002649APH(3_)-Va	Aminoglycoside Phosphotransferase	CAE51638_1	3002641	APH(3_)-la
Aminoglycoside PhosphotransferaseWP_000572405_13002644APH(3_)-IIaAminoglycoside PhosphotransferaseCAA62365_13002645APH(3_)-IIbAminoglycoside PhosphotransferaseADQ43421_13002646APH(3_)-IIcAminoglycoside PhosphotransferaseAGV10830_13002647APH(3_)-IIlaAminoglycoside PhosphotransferaseCAA27061_13002648APH(3_)-IVaAminoglycoside PhosphotransferaseENV340353004087APH(3_)-IXAminoglycoside PhosphotransferaseAAA26699_13002649APH(3_)-Va	Aminoglycoside Phosphotransferase	AAA26412_1	3002642	APH(3_)-Ib
Aminoglycoside PhosphotransferaseCAA62365_13002645APH(3_)-IIbAminoglycoside PhosphotransferaseADQ43421_13002646APH(3_)-IIcAminoglycoside PhosphotransferaseAGV10830_13002647APH(3_)-IIIaAminoglycoside PhosphotransferaseCAA27061_13002648APH(3_)-IVaAminoglycoside PhosphotransferaseENV340353004087APH(3_)-IXAminoglycoside PhosphotransferaseAAA26699_13002649APH(3_)-Va	Aminoglycoside Phosphotransferase	WP_000572405_1	3002644	APH(3_)-IIa
Aminoglycoside PhosphotransferaseADQ43421_13002646APH(3_)-IIcAminoglycoside PhosphotransferaseAGV10830_13002647APH(3_)-IIlaAminoglycoside PhosphotransferaseCAA27061_13002648APH(3_)-IVaAminoglycoside PhosphotransferaseENV340353004087APH(3_)-IXAminoglycoside PhosphotransferaseAAA26699_13002649APH(3_)-Va	Aminoglycoside Phosphotransferase	CAA62365_1	3002645	APH(3_)-IIb
Aminoglycoside PhosphotransferaseAGV10830_13002647APH(3_)-IIIaAminoglycoside PhosphotransferaseCAA27061_13002648APH(3_)-IVaAminoglycoside PhosphotransferaseENV340353004087APH(3_)-IXAminoglycoside PhosphotransferaseAAA26699_13002649APH(3_)-Va	Aminoglycoside Phosphotransferase	ADQ43421_1	3002646	APH(3_)-IIc
Aminoglycoside PhosphotransferaseCAA27061_13002648APH(3_)-IVaAminoglycoside PhosphotransferaseENV340353004087APH(3_)-IXAminoglycoside PhosphotransferaseAAA26699_13002649APH(3_)-Va	Aminoglycoside Phosphotransferase	AGV10830_1	3002647	APH(3_)-IIIa
Aminoglycoside PhosphotransferaseENV340353004087APH(3_)-IXAminoglycoside PhosphotransferaseAAA26699_13002649APH(3_)-Va	Aminoglycoside Phosphotransferase	CAA27061_1	3002648	APH(3_)-IVa
Aminoglycoside Phosphotransferase AAA26699_1 3002649 APH(3_)-Va	Aminoglycoside Phosphotransferase	ENV34035	3004087	APH(3_)-IX
	Aminoglycoside Phosphotransferase	AAA26699_1	3002649	APH(3_)-Va

Aminoglycoside Phosphotransferase	AAC32025_1	3002650	APH(3_)-Vb
Aminoglycoside Phosphotransferase	AAB21326_1	3002651	APH(3_)-Vc
Aminoglycoside Phosphotransferase	AGI04227_1	3003687	APH(3_)-VI
Aminoglycoside Phosphotransferase	AAA76822_1	3002654	APH(3_)-VIIa
Aminoglycoside Phosphotransferase	EPF73263	3004086	APH(3_)-VIII
Aminoglycoside Phosphotransferase	CAA24743_1	3002655	APH(4)-Ia
Aminoglycoside Phosphotransferase	CAA52372_1	3002656	APH(4)-Ib
Aminoglycoside Phosphotransferase	CAA68516_1	3002657	APH(6)-Ia
Aminoglycoside Phosphotransferase	CAA29136_1	3002658	APH(6)-Ib
Aminoglycoside Phosphotransferase	CAA25854_1	3002659	APH(6)-Ic
Aminoglycoside Phosphotransferase	AAC23556_1	3002660	APH(6)-Id
Aminoglycoside Phosphotransferase	CAA27276_1	3002661	APH(7)-la
Aminoglycoside Phosphotransferase	AAB58447_1	3002662	APH(9)-la
Aminoglycoside Phosphotransferase	AAB66655_1	3002663	APH(9)-Ib
Other ARG	CBL58181_1	3003918	apmA
Class C Beta-Lactamase	BAM76830_1	3002993	AQU-1
MFS Antibiotic Efflux	YP_001332362_1	3000838	arlR
MFS Antibiotic Efflux	YP_499945_1	3000839	arlS
rRNA Methyltransferase	ADC55560_1	3000858	armA
RND Antibiotic Efflux	NP_252408_1	3004056	ArmR
Other ARG	AAC75315_1	3002985	arnA
Other ARG	NP_252244	3002985	arnA
Rifampin Resistance	AAC05822_1	3002846	arr-1
Rifampin Resistance	AAC64366_1	3002847	arr-2
Rifampin Resistance	ABV26707_1	3002850	arr-5
Rifampin Resistance	CAZ48628_1	3002852	arr-7
Rifampin Resistance	AGC29882_1	3002853	arr-8
Gene Modulating Resistance	AAC76093_1	3002986	bacA
Gene Modulating Resistance	CAX52582_1	3003324	mprF
Macrolide Resistance	EEL41021_1	3003072	mphL
Macrolide Resistance	EOO80837_1	3003767	mphM
RND Antibiotic Efflux	YP_490321_1	3000828	baeR
RND Antibiotic Efflux	BAA15934_1	3000829	baeS
Other ARG	APB03218_1	3003984	BahA
Gene Modulating Resistance	AAL82403_1	3003297	gyrA
Gene Modulating Resistance	WP_005768149_1	3003302	gyrB
Other ARG	NP_253464_1	3003582	basR
Other ARG	AEX49906_1	3003583	basS
Class B Beta-Lactamase	AAA22562 1	3002878	Bcll
	—		
Gene Modulating Resistance	 AAA99504_1	3002987	bcrA

Gene Modulating Resistance	AAA99503_1	3003250	bcrC
Class A Beta-Lactamase	ACT09140_1	3002387	BEL-3
Gene Modulating Resistance	YP_003971446	3003730	ileS
Class B Beta-Lactamase	BAL75272_1	3000856	BJP-1
Class A Beta-Lactamase	AAR20595_1	3000090	BLA1
Class B Beta-Lactamase	WP_024565805_1	3000579	BlaB
Class A Beta-Lactamase	ABU39978_1	3000160	blal
Class A Beta-Lactamase	ABU39979_1	3000217	blaR1
MFS Antibiotic Efflux	AAC36944_1	3003006	blt
MFS Antibiotic Efflux	AAA22277_1	3003007	bmr
Gene Modulating Resistance	Q8FW76	3003772	mprF
Gene Modulating Resistance	YP_002344422_1	3003789	gyrA
Gene Modulating Resistance	EEK14408_1	3003931	gyrA
ABC-F Ribosomal Protection	AAC32027_1	3002817	carA
Class A Beta-Lactamase	CCW43444_1	3002255	CARB-16
Class A Beta-Lactamase	AHJ02283_1	3003186	CARB-23
Class A Beta-Lactamase	AAB19430_2	3002242	CARB-3
Class A Beta-Lactamase	AAP22374_1	3002248	CARB-9
Chloramphenicol Resistance	AAA22081_1	3002670	cat
Chloramphenicol Resistance	AAA23018_1	3002670	cat
Chloramphenicol Resistance	AAA25655_1	3002670	cat
Chloramphenicol Resistance	AAA26613_1	3002670	cat
Chloramphenicol Resistance	AAB23649_1	3002670	cat
Chloramphenicol Resistance	AAL08441_1	3002670	cat
Chloramphenicol Resistance	AAQ63644_1	3002670	cat
Chloramphenicol Resistance	CAA63498_1	3002670	cat
Chloramphenicol Resistance	AAB53259_1	3002671	cat-TC
Chloramphenicol Resistance	AAA22289_1	3002672	cat86
Chloramphenicol Resistance	AAA73865_1	3002674	catB
Chloramphenicol Resistance	CAI47810_1	3003110	catB10
Chloramphenicol Resistance	NP_848167_1	3002675	catB2
Chloramphenicol Resistance	NP_249397_1	3002679	catB7
Chloramphenicol Resistance	YP_009077553_1	3002680	catB8
Chloramphenicol Resistance	AAL68645_1	3002681	catB9
Chloramphenicol Resistance	CAA37806_1	3002684	catll
Chloramphenicol Resistance	CAA30695_1	3002685	catIII
Chloramphenicol Resistance	AAB51421_1;	3002686	catP catD
Chloramphenicol Resistance	AAF66228_1 AAA23215_1	3002687	catQ
Chloramphenicol Resistance	CAA52904_1	3002688	catS
Chloramphenicol Resistance	APB03217_1	3003983	CatU
Class B Beta-Lactamase	CAC87665_1	3000855	CAU-1

Class A Beta-Lactamase	ACT97415_1	3002999	CbIA-1
Class B Beta-Lactamase	AAA22904_1	3000578	CcrA
MATE Transporter	CAE00499_1	3003835	cdeA
RND Antibiotic Efflux	AAB58160_1	3003009	ceoA
RND Antibiotic Efflux	AAB58161_1	3003010	ceoB
Class A Beta-Lactamase	AAA21532_1	3003559	серА
Class C Beta-Lactamase	CAA56561_1	3003553	CepS
rRNA Methyltransferase	CAL64019_1	3003441	cfrA
Class A Beta-Lactamase	ACT97371_1	3003097	CfxA6
Class B Beta-Lactamase	ABS29619_1	3000841	CGB-1
Other ARG	AAN28945	3003785	murA
rRNA Methyltransferase	AAS79458_1	3001302	chrB
rRNA Methyltransferase	WP_015735625_1	3003907	cipA
rRNA Methyltransferase	YP_001420189_1	3002814	clbA
rRNA Methyltransferase	YP_002773985_1	3002815	clbB
rRNA Methyltransferase	YP_174574_1	3002816	clbC
Gene Modulating Resistance	Q0SSM7	3003773	mprF
Gene Modulating Resistance	WP_009887863_1	3003357	EF-Tu
Gene Modulating Resistance	YP_001086469_1	3003995	gyrA
RND Antibiotic Efflux	ABS43901_1	3000783	cmeA
RND Antibiotic Efflux	ABS43151_1	3000784	cmeB
RND Antibiotic Efflux	BAO79432_1	3000785	cmeC
RND Antibiotic Efflux	YP_002343805_1	3000526	cmeR
Chloramphenicol Resistance	AAB36568_1	3002700	cmlv
Class C Beta-Lactamase	BAJ17544_1	3002069	CMY-59
Class C Beta-Lactamase	AAD50818_2	3002019	CMY-8
Other ARG	APB03224_1	3003994	сраА
Class B Beta-Lactamase	AJP77054	3003716	CPS-1
RND Antibiotic Efflux	NP_312864_1	3000830	срхА
RND Antibiotic Efflux	BAE77933_1	3000518	CRP
Class A Beta-Lactamase	CBW46935_1	3001959	CTX-M-100
Class A Beta-Lactamase	AEM44648_1	3001970	CTX-M-110
Class A Beta-Lactamase	BAP34782_1	3002008	CTX-M-151
Class A Beta-Lactamase	ABD73290_1	3001920	CTX-M-59
Class A Beta-Lactamase	AAV97957_1	3001933	CTX-M-72
Glycopeptide Resistance	AAN62561_1	3003970	D-Ala-D-Ala
Glycopeptide Resistance	YP_007652797_1	3001205	BRP(MBL)
Gene Modulating Resistance	CAC19929_1	3002854	dfrA1
Gene Modulating Resistance	AHG97174_1	3003011	dfrA10
Gene Modulating Resistance	AHW42429_1	3002858	dfrA12
Gene Modulating Resistance	ACI32877_1	3002859	dfrA14

Gene Modulating Resistance AHB39758_1	3003013	dfrA15
Gene Modulating Resistance AAK60186_1	3003014	dfrA16
Gene Modulating Resistance ABG91835_1	3002860	dfrA17
Gene Modulating Resistance CAC81324_1	3003015	dfrA19
Gene Modulating Resistance CAE53424_1	3003016	dfrA20
Gene Modulating Resistance CAP69659_1	3003017	dfrA21
Gene Modulating Resistance CAG34233_2	3003019	dfrA23
Gene Modulating Resistance CAI99385_1	3002856	dfrA24
Gene Modulating Resistance ABB71176_1	3003020	dfrA25
Gene Modulating Resistance CAL48457_1	3002857	dfrA26
Gene Modulating Resistance AAA25550_1	3003105	dfrA3
Gene Modulating Resistance AHV80711_1	3002863	dfrA8
Gene Modulating Resistance AAN41433_1	3002864	dfrB1
Gene Modulating Resistance ACR57831_1	3003022	dfrB3
Gene Modulating Resistance AAO04716_1	3002865	dfrC
Gene Modulating Resistance AAA85213_1	3002866	dfrD
Gene Modulating Resistance AAD01867_1	3002875	dfrE
Gene Modulating Resistance AAD01868_1	3002867	dfrF
Gene Modulating Resistance BAE15963_1	3002868	dfrG
Class C Beta-Lactamase AIT76100_1	3002152	DHA-21
Class B Beta-Lactamase AGC92784_1	3000848	DIM-1
Class B Beta-Lactamase AAN32638_1	3000842	EBR-1
Other ARG AHH86051_1	3004063	EdeQ
MFS Antibiotic Efflux BAG75524_1	3003954	efmA
MFS Antibiotic Efflux NP_217362_1	3003955	efpA
Gene Modulating Resistance CDO61513_1	3003948	efrA
Gene Modulating Resistance CDO61516_1	3003949	efrB
MATE Transporter BAC11911_1	3003551	emeA
MFS Antibiotic Efflux BAA16547_1	3000027	emrA
MFS Antibiotic Efflux AAC75733_1	3000074	emrB
MFS Antibiotic Efflux EFF04178_1	3000309	emrD
MFS Antibiotic Efflux BAA11236_1	3000206	emrK
MFS Antibiotic Efflux NP_417169_1	3000516	emrR
MFS Antibiotic Efflux BAA11237_1	3000254	emrY
General Bacterial Porin AAK11270_1	3003385	Omp36
RND Antibiotic Efflux ABG77965_1	3004042	acrA
Gene Modulating Resistance AFK58561_1	3003079	liaS
Gene Modulating Resistance AFK58562_1	3003078	liaR
Gene Modulating Resistance ALL09868	3003092	cls
Gene Modulating Resistance YP_006374661_1	3003438	EF-Tu
Macrolide Resistance AAC78336_1	3002826	EreA2

Macrolide Resistance CAA01212_1 3000363 EreB rRNA Methyltransferase AAC69328_1 3001265 Erm(31) rRNA Methyltransferase NP_399170_1 3000599 Erm(33) rRNA Methyltransferase NAP74657_1 3000600 Erm(34) rRNA Methyltransferase AAL68827_1 3000605 Erm(36) rRNA Methyltransferase AAL68827_1 3000605 Erm(37) rRNA Methyltransferase CCP44758_1 3000602 Erm(39) rRNA Methyltransferase CAR92235_1 3000602 Erm(43) rRNA Methyltransferase CAP77552_1 3003005 Erm(42) rRNA Methyltransferase CCF55073_1 3003205 Erm(43) rRNA Methyltransferase CVP37476_1 300370 Erm(47) rRNA Methyltransferase AAP66219_1 3000250 ErmC rRNA Methyltransferase AAP68256_1 3000265 ErmC rRNA Methyltransferase AAP682519_1 3000476 ErmB rRNA Methyltransferase AAA26257_1 300496 ErmD <t< th=""><th></th><th></th><th></th><th></th></t<>				
rRNA Methyltransferase AAC69327_1 3001265 Erm(30) rRNA Methyltransferase NP_899170_1 3000598 Erm(31) rRNA Methyltransferase AAC74657_1 3000600 Erm(33) rRNA Methyltransferase AAK07612_1 3000600 Erm(36) rRNA Methyltransferase AAK07612_1 3000602 Erm(37) rRNA Methyltransferase AAK0837_1 3000602 Erm(38) rRNA Methyltransferase AAN86837_1 3000602 Erm(39) rRNA Methyltransferase ABW06859_1 3000602 Erm(41) rRNA Methyltransferase CCP547552_1 3003205 Erm(42) rRNA Methyltransferase CUU57654_1 3003205 Erm(43) rRNA Methyltransferase CUU57654_1 3003205 Erm(47) rRNA Methyltransferase PP_001315192_1 3000320 Erm(47) rRNA Methyltransferase AAA2257_1 3003205 ErmA rRNA Methyltransferase AAA2257_1 3003205 ErmA rRNA Methyltransferase AAA22672_1 3000320 ErmE <	Macrolide Resistance	CAA01212_1	3000363	EreB
rRNA Methyltransferase AAC69327_1 3000598 Erm(3) rRNA Methyltransferase NP_999170_1 3000600 Erm(3) rRNA Methyltransferase AAK07612_1 3000600 Erm(36) rRNA Methyltransferase AAL68827_1 3000601 Erm(37) rRNA Methyltransferase CCP44758_1 3000601 Erm(37) rRNA Methyltransferase CCP44758_1 3000601 Erm(37) rRNA Methyltransferase CCP5073_1 3003020 Erm(41) rRNA Methyltransferase CCP55073_1 3003205 Erm(43) rRNA Methyltransferase CUU37654_1 3003908 Erm(77) rRNA Methyltransferase AAX2597_1 3000375 Erm67 rRNA Methyltransferase AAA82259_1 3000250 ErmC rRNA Methyltransferase AAA82259_1 3000252 ErmG	rRNA Methyltransferase	AAC69328_1	3001265	Erm(30)
rRNA Methyltransferase NP_899170_1 3000599 Erm(33) rRNA Methyltransferase AAP74657_1 3000600 Erm(34) rRNA Methyltransferase AAL68827_1 3000600 Erm(37) rRNA Methyltransferase CCP44758_1 3000601 Erm(38) rRNA Methyltransferase CCP44758_1 3000602 Erm(37) rRNA Methyltransferase AAR92235_1 3000602 Erm(39) rRNA Methyltransferase CCP44758_1 3000602 Erm(41) rRNA Methyltransferase CBY77552_1 3003205 Erm(42) rRNA Methyltransferase CCU675073_1 3003205 Erm(42) rRNA Methyltransferase ANZ79476_1 300370 Erm(47) rRNA Methyltransferase AAA82296_1 3000250 Erm(47) rRNA Methyltransferase AAA822597_1 3000426 ErmE rRNA Methyltransferase AAC30204_1 3000250 Erm(47) rRNA Methyltransferase AAC30204_1 3000250 Erm(47) rRNA Methyltransferase AAC30204_1 300052 ErmE	rRNA Methyltransferase	AAC69327_1	3000598	Erm(31)
rRNA Methyltransferase AAP74657_1 3000600 Erm(34) rRNA Methyltransferase AAK07612_1 3000604 Erm(36) rRNA Methyltransferase AAL68827_1 3000605 Erm(38) rRNA Methyltransferase AAR92235_1 3000602 Erm(39) rRNA Methyltransferase ABW06859_1 3000602 Erm(41) rRNA Methyltransferase CEF5073_1 3003205 Erm(42) rRNA Methyltransferase CCD55073_1 3003908 Erm(42) rRNA Methyltransferase CCD1654_1 3003908 Erm(47) rRNA Methyltransferase CN279476_1 3003908 Erm(47) rRNA Methyltransferase AAP8259_1 3000375 ErmB rRNA Methyltransferase AAA98259_1 3000205 ErmE rRNA Methyltransferase AAA22597_11 3000326 ErmE rRNA Methyltransferase AAA32026_1 3000226 ErmE rRNA Methyltransferase CAA6307_1 3000592 ErmB rRNA Methyltransferase AAC37034_1 3000592 ErmN	rRNA Methyltransferase	NP_899170_1	3000599	Erm(33)
rRNA Methyltransferase AAK07612_1 3000605 Erm(35) rRNA Methyltransferase AAL68827_1 3000605 Erm(37) rRNA Methyltransferase CCP44758_1 3000603 Erm(38) rRNA Methyltransferase AAN86837_1 3000603 Erm(39) rRNA Methyltransferase AAN80659_1 3000603 Erm(41) rRNA Methyltransferase CCF55073_1 3003205 Erm(42) rRNA Methyltransferase CCF55073_1 3003008 Erm(47) rRNA Methyltransferase CCF55073_1 3003008 Erm(47) rRNA Methyltransferase CCF55073_1 3003008 Erm(47) rRNA Methyltransferase ANZ79476_1 3003075 Erm(47) rRNA Methyltransferase AAR86219_1 3000375 Erm(47) rRNA Methyltransferase AAA82567_1 3000498 Erm rRNA Methyltransferase AAA2637034_1 3000522 Erm rRNA Methyltransferase AAA26771 3000269 Erm rRNA Methyltransferase AAA26772_1 3000592 Erm <	rRNA Methyltransferase	AAP74657_1	3000600	Erm(34)
rRNA Methyltransferase AAL68827_1 3000605 Erm(36) rRNA Methyltransferase CCP44758_1 3000392 Erm(37) rRNA Methyltransferase AAN86837_1 3000601 Erm(38) rRNA Methyltransferase AAN86837_1 3000602 Erm(39) rRNA Methyltransferase AAN86837_1 3003060 Erm(41) rRNA Methyltransferase CBY77552_1 3003005 Erm(42) rRNA Methyltransferase CUG7654_1 3003908 Erm(47) rRNA Methyltransferase ANZ9476_1 3003908 Erm(47) rRNA Methyltransferase AAF66219_1 3000375 Erm(47) rRNA Methyltransferase AAA6867_1 3000495 ErmD rRNA Methyltransferase AAA2675_1 3000498 ErmE rRNA Methyltransferase AAA2675_1 3000522 ErmA rRNA Methyltransferase AAA2670_1 3000522 ErmA rRNA Methyltransferase AAA26779_1 3000592 ErmN rRNA Methyltransferase AAA26779_1 3000592 ErmN	rRNA Methyltransferase	AAK07612_1	3000604	Erm(35)
rRNA Methyltransferase CCP44758_1 3000392 Erm(37) rRNA Methyltransferase AAR82235_1 3000601 Erm(38) rRNA Methyltransferase ABV06859_1 3000603 Erm(41) rRNA Methyltransferase CD57552_1 3003106 Erm(42) rRNA Methyltransferase CCF55073_1 3003205 Erm(42) rRNA Methyltransferase CUU67654_1 3003908 Erm(47) rRNA Methyltransferase CUU67654_1 3000305 Erm(47) rRNA Methyltransferase ANZ79476_1 3000375 ErmB rRNA Methyltransferase AAA88295_1 3000437 ErmC rRNA Methyltransferase AAA88295_1 3000435 ErmD rRNA Methyltransferase CAB60001_1 3000326 ErmE rRNA Methyltransferase AAC32026_1 3000495 ErmD rRNA Methyltransferase AAC32026_1 3000252 ErmN rRNA Methyltransferase AAC3207_1 3000592 ErmN rRNA Methyltransferase AAC3677_1 3001303 ErmQ	rRNA Methyltransferase	AAL68827_1	3000605	Erm(36)
rRNA Methyltransferase AAR92235_1 3000601 Erm(38) rRNA Methyltransferase AAR92235_1 3000603 Erm(34) rRNA Methyltransferase CBV77552_1 3003106 Erm(42) rRNA Methyltransferase CCF55073_1 3003205 Erm(42) rRNA Methyltransferase CU07654_1 3003205 Erm(42) rRNA Methyltransferase CU07654_1 3003308 Erm(47) rRNA Methyltransferase CU07654_1 3000377 ErmA rRNA Methyltransferase ANZ79476_1 3000375 ErmB rRNA Methyltransferase AAA88296_1 3000250 ErmC rRNA Methyltransferase AAA82297_1 3000495 ErmD rRNA Methyltransferase CA860001_1 3000282 ErmB rRNA Methyltransferase AAC37034_1 3000522 ErmN rRNA Methyltransferase AAC32026_1 3000592 ErmN rRNA Methyltransferase AAC3607_1 3000592 ErmN rRNA Methyltransferase AAC36915_1 3000592 ErmN <td< td=""><td>rRNA Methyltransferase</td><td>CCP44758_1</td><td>3000392</td><td>Erm(37)</td></td<>	rRNA Methyltransferase	CCP44758_1	3000392	Erm(37)
rRNA Methyltransferase AAR92235_1 3000602 Erm(39) rRNA Methyltransferase ABW06859_1 3000602 Erm(41) rRNA Methyltransferase CBY77552_1 3003106 Erm(42) rRNA Methyltransferase CCF55073_1 3003205 Erm(43) rRNA Methyltransferase CUU67654_1 3003908 Erm(47) rRNA Methyltransferase ANZ79476_1 3003071 erm(47) rRNA Methyltransferase AAF86219_1 3000375 ErmB rRNA Methyltransferase AAA98226_1 3000250 ErmC rRNA Methyltransferase AAA98261_1 3000326 ErmC rRNA Methyltransferase AAA82597_1 3000495 ErmD rRNA Methyltransferase AAA8675_1 3000522 ErmG rRNA Methyltransferase AAC32026_1 300252 ErmG rRNA Methyltransferase AAC32026_1 3000522 ErmG rRNA Methyltransferase AAC32026_1 3000522 ErmR rRNA Methyltransferase AAC32026_1 3000523 ErmR rRNA Methyltransferase AAC32026_1 3000533 ErmQ	rRNA Methyltransferase	AAN86837_1	3000601	Erm(38)
rRNA Methyltransferase ABW06859_1 3000603 Erm(41) rRNA Methyltransferase CBY77552_1 3003105 Erm(42) rRNA Methyltransferase CUU67654_1 3003971 erm(43) rRNA Methyltransferase CUU67654_1 3003971 erm(47) rRNA Methyltransferase ANZ79476_1 3003037 ErmA rRNA Methyltransferase AAF86219_1 3000375 ErmB rRNA Methyltransferase AAA82296_1 3000205 ErmC rRNA Methyltransferase AAA22597_1 3000495 ErmD rRNA Methyltransferase CAB60001_1 3000326 ErmE rRNA Methyltransferase AAA22307_1 300252 ErmB rRNA Methyltransferase AAC3026_1 300252 ErmN rRNA Methyltransferase AAA26779_1 3001303 ErmQ rRNA Methyltransferase AAA26742_1 3001303 ErmQ rRNA Methyltransferase AAA26742_1 3001305 ErmU rRNA Methyltransferase AAA26742_1 3001305 ErmU rRNA Methyltransferase AAA26742_1 3001305 ErmU	rRNA Methyltransferase	AAR92235_1	3000602	Erm(39)
rRNA Methyltransferase CBY77552_1 3003106 Erm(42) rRNA Methyltransferase CUC755073_1 3003205 Erm(43) rRNA Methyltransferase CUU67654_1 3003908 Erm(47) rRNA Methyltransferase ANZ79476_1 30030308 Erm(47) rRNA Methyltransferase YP_001315192_1 3000375 ErmB rRNA Methyltransferase AAA88296_1 3000250 ErmC rRNA Methyltransferase AAA22597_1 3000495 ErmD rRNA Methyltransferase CAB60001_1 3000226 ErmE rRNA Methyltransferase AAA30226_1 3000498 ErmF rRNA Methyltransferase AAC30226_1 3002823 ErmH rRNA Methyltransferase AAC30206_1 300292 ErmN rRNA Methyltransferase AAC30274_1 3001303 ErmQ rRNA Methyltransferase AAC36915_1 3001304 ErmR rRNA Methyltransferase AAA26742_1 3001303 ErmQ rRNA Methyltransferase AAA26742_1 3001305 ErmT	rRNA Methyltransferase	ABW06859_1	3000603	Erm(41)
rRNA Methyltransferase CCF55073_1 3003205 Erm(43) rRNA Methyltransferase CUU67654_1 3003971 erm(44) rRNA Methyltransferase ANZ79476_1 300308 Erm(47) rRNA Methyltransferase YP_001315192_1 3000375 ErmA rRNA Methyltransferase AAF86219_1 3000250 ErmC rRNA Methyltransferase AAA88296_1 3000260 ErmC rRNA Methyltransferase AAA88075_1 3003206 ErmE rRNA Methyltransferase AAA88675_1 3000495 ErmG rRNA Methyltransferase AAA63001_1 3000522 ErmG rRNA Methyltransferase AAC32026_1 3002823 ErmH rRNA Methyltransferase AAC3601_1 300592 ErmN rRNA Methyltransferase AAA26779_1 3001303 ErmQ rRNA Methyltransferase AAA26742_1 3001304 ErmS rRNA Methyltransferase AAA26742_1 3001304 ErmS rRNA Methyltransferase AAA80605_1 3000595 ErmT rRN	rRNA Methyltransferase	CBY77552_1	3003106	Erm(42)
rRNA Methyltransferase CUU67654_1 3003971 erm(44) rRNA Methyltransferase ANZ79476_1 3003908 Erm(47) rRNA Methyltransferase YP_001315192_1 300377 ErmA rRNA Methyltransferase AAF86219_1 3000375 ErmB rRNA Methyltransferase AAA98296_1 3000250 ErmC rRNA Methyltransferase AAA982597_1 3000495 ErmB rRNA Methyltransferase AAA82597_1 3000495 ErmE rRNA Methyltransferase AAA83206_5_1 3000498 ErmF rRNA Methyltransferase AAC37034_1 3000522 ErmG rRNA Methyltransferase AAC32026_1 3002592 ErmN rRNA Methyltransferase AAC36915_1 3000593 ErmQ rRNA Methyltransferase AAC36915_1 3001303 ErmS rRNA Methyltransferase AAC36742_1 3001304 ErmS rRNA Methyltransferase AAA98096_1 3001305 ErmU rRNA Methyltransferase AAA980367_1 3001305 ErmU	rRNA Methyltransferase	CCF55073_1	3003205	Erm(43)
rRNA Methyltransferase ANZ79476_1 3003908 Erm(47) rRNA Methyltransferase YP_001315192_1 3000347 ErmA rRNA Methyltransferase AAF86219_1 3000375 ErmB rRNA Methyltransferase AAA98296_1 3000250 ErmC rRNA Methyltransferase AAA92597_1 3000495 ErmD rRNA Methyltransferase CAB60001_1 3000326 ErmE rRNA Methyltransferase AAA22597_1 3000498 ErmF rRNA Methyltransferase CAB60001_1 3000522 ErmG rRNA Methyltransferase AAC32026_1 3002823 ErmH rRNA Methyltransferase AAC36017_1 3000592 ErmN rRNA Methyltransferase AAC36915_1 3000593 ErmQ rRNA Methyltransferase AAC36779_1 3001303 ErmS rRNA Methyltransferase AAC36742_1 3001304 ErmU rRNA Methyltransferase AAA30402_1 3002824 ErmV rRNA Methyltransferase AAG3357_1 3000596 ErmX rRNA Me	rRNA Methyltransferase	CUU67654_1	3003971	erm(44)
rRNA Methyltransferase YP_001315192_1 3000347 ErmA rRNA Methyltransferase AAF86219_1 3000375 ErmB rRNA Methyltransferase AAA98296_1 3000250 ErmC rRNA Methyltransferase AAA25597_1 300495 ErmD rRNA Methyltransferase CAB60001_1 3000226 ErmE rRNA Methyltransferase AAA32597_1 3000498 ErmF rRNA Methyltransferase AAA30226_1 300222 ErmG rRNA Methyltransferase AAC37034_1 300522 ErmF rRNA Methyltransferase AAC37026_1 300283 ErmH rRNA Methyltransferase AAC36015_1 300592 ErmN rRNA Methyltransferase AA26779_1 301303 ErmQ rRNA Methyltransferase AA26742_1 3001304 ErmS rRNA Methyltransferase AAA26742_1 3001305 ErmU rRNA Methyltransferase AAA0300_1 3002824 ErmV rRNA Methyltransferase AAA03357_1 3001306 ErmW rRNA Methyltransfe	rRNA Methyltransferase	ANZ79476_1	3003908	Erm(47)
rRNA Methyltransferase AAF86219_1 3000375 ErmB rRNA Methyltransferase AAA98296_1 3000250 ErmC rRNA Methyltransferase AAA22597_1 3000495 ErmD rRNA Methyltransferase CAB60001_1 3000326 ErmE rRNA Methyltransferase CAB6001_1 3000498 ErmF rRNA Methyltransferase AAC37034_1 3000522 ErmG rRNA Methyltransferase AAC32026_1 3002823 ErmH rRNA Methyltransferase CAA66307_1 3001303 ErmQ rRNA Methyltransferase AAC36915_1 300592 ErmR rRNA Methyltransferase AAC36915_1 3001303 ErmQ rRNA Methyltransferase AAA26742_1 3001304 ErmS rRNA Methyltransferase AAA98096_11 3002824 ErmV rRNA Methyltransferase AAA26742_1 3001304 ErmS rRNA Methyltransferase AAA03402_1 3001305 ErmU rRNA Methyltransferase AAA03357_11 3002825 ErmV rRNA Methyltr	rRNA Methyltransferase	YP_001315192_1	3000347	ErmA
rRNA Methyltransferase AAA98296_1 3000250 ErmC rRNA Methyltransferase AAA22597_1 3000495 ErmD rRNA Methyltransferase CAB60001_1 3000326 ErmE rRNA Methyltransferase AAA88675_1 3000498 ErmF rRNA Methyltransferase AAC37034_1 300522 ErmG rRNA Methyltransferase AAC32026_1 3002823 ErmH rRNA Methyltransferase AAC32026_1 3000592 ErmN rRNA Methyltransferase AAC360307_1 3001303 ErmQ rRNA Methyltransferase AAA26779_1 3001303 ErmR rRNA Methyltransferase AAA26742_1 3001304 ErmS rRNA Methyltransferase AAA98096_1 3000595 ErmU rRNA Methyltransferase AAA96742_1 3001305 ErmU rRNA Methyltransferase AAA96742_1 3001305 ErmU rRNA Methyltransferase AAA93402_1 3001305 ErmU rRNA Methyltransferase AAG03357_1 300356 ErmX rRNA Methyltra	rRNA Methyltransferase	AAF86219_1	3000375	ErmB
rRNA Methyltransferase AAA22597_1 3000495 ErmD rRNA Methyltransferase CAB60001_1 3000326 ErmE rRNA Methyltransferase AAA88675_1 3000498 ErmF rRNA Methyltransferase AAC37034_1 3000522 ErmG rRNA Methyltransferase AAC32026_1 3002823 ErmH rRNA Methyltransferase CAA66307_1 3001302 ErmO rRNA Methyltransferase AAA26779_1 3001303 ErmQ rRNA Methyltransferase AAA26779_1 3001304 ErmS rRNA Methyltransferase AAA26742_1 3001304 ErmS rRNA Methyltransferase AAA98096_11 300595 ErmU rRNA Methyltransferase CAA4667_1 3001305 ErmU rRNA Methyltransferase CAA4667_1 3001305 ErmU rRNA Methyltransferase AAG03357_1 3001306 ErmW rRNA Methyltransferase AAG03357_1 300338 marA rRNA Methyltransferase AAC7403_2 3003378 marA rRNA Methyltransf	rRNA Methyltransferase	AAA98296_1	3000250	ErmC
rRNA Methyltransferase CAB60001_1 3000326 ErmE rRNA Methyltransferase AAA88675_1 3000498 ErmF rRNA Methyltransferase AAC37034_1 3000522 ErmG rRNA Methyltransferase AAC32026_1 3002823 ErmH rRNA Methyltransferase CAA66307_1 3000592 ErmN rRNA Methyltransferase AAA26779_1 3001303 ErmO rRNA Methyltransferase AAC30915_1 3000593 ErmQ rRNA Methyltransferase AAA26742_1 3001304 ErmS rRNA Methyltransferase AAA8906_1 3001305 ErmU rRNA Methyltransferase CAA44667_1 3001305 ErmU rRNA Methyltransferase CAA44667_1 3001305 ErmU rRNA Methyltransferase BAA03402_1 3001305 ErmW rRNA Methyltransferase BAA03402_1 3001305 ErmV rRNA Methyltransferase BAA03357_1 3000596 ErmX rRNA Methyltransferase BAA03402_1 3001376 ErmV rRNA Methyltra	rRNA Methyltransferase	AAA22597_1	3000495	ErmD
rRNA Methyltransferase AAA88675_1 3000498 ErmF rRNA Methyltransferase AAC37034_1 3000522 ErmG rRNA Methyltransferase AAC32026_1 3002823 ErmH rRNA Methyltransferase CAA66307_1 3000592 ErmN rRNA Methyltransferase CAA66307_1 3001303 ErmO rRNA Methyltransferase AAC36915_1 3000593 ErmQ rRNA Methyltransferase AAC36742_1 3001304 ErmS rRNA Methyltransferase AAA26742_1 3001305 ErmT rRNA Methyltransferase AAA26742_1 3001305 ErmU rRNA Methyltransferase CAA44667_1 3001305 ErmV rRNA Methyltransferase CAA44667_1 3001305 ErmW rRNA Methyltransferase BAA03402_1 3001306 ErmW rRNA Methyltransferase BAA03357_1 3002825 ErmY rRNA Methyltransferase BAB20748_1 3002825 ErmY RND Antibiotic Efflux AAC7703_1 3003381 soxR Gene Modulating Antibiotic Efflux AAC7703_1 3003369 EF-Tu	rRNA Methyltransferase	CAB60001_1	3000326	ErmE
rRNA Methyltransferase AAC37034_1 3000522 ErmG rRNA Methyltransferase AAC32026_1 3002823 ErmH rRNA Methyltransferase CAA66307_1 3000592 ErmN rRNA Methyltransferase AAA26779_1 3001303 ErmQ rRNA Methyltransferase AAC36915_1 3000593 ErmQ rRNA Methyltransferase AAC36915_1 3000594 ErmR rRNA Methyltransferase AAA26742_1 3001304 ErmS rRNA Methyltransferase AAA898096_1 3000595 ErmU rRNA Methyltransferase CAA44667_1 3001305 ErmU rRNA Methyltransferase CAA44667_1 3001306 ErmV rRNA Methyltransferase AA03402_1 3001306 ErmW rRNA Methyltransferase BA603357_1 3001306 ErmX rRNA Methyltransferase BA603402_1 3001305 ErmW rRNA Methyltransferase BA603357_1 3002825 ErmY rRNA Methyltransferase BA820748_1 3002825 ErmY RND Antibiotic Efflux AAC7403_2 3003378 marA G	rRNA Methyltransferase	AAA88675_1	3000498	ErmF
rRNA MethyltransferaseAAC32026_13002823ErmHrRNA MethyltransferaseCAA66307_13000592ErmNrRNA MethyltransferaseAAA26779_13001303ErmQrRNA MethyltransferaseAAC36915_13000593ErmQrRNA MethyltransferaseAAC36915_13000594ErmRrRNA MethyltransferaseAAA26742_13001304ErmSrRNA MethyltransferaseAAA98096_13000595ErmUrRNA MethyltransferaseCAA44667_13001305ErmUrRNA MethyltransferaseCAA44667_13001305ErmUrRNA MethyltransferaseAAB51440_13002824ErmVrRNA MethyltransferaseBAA03402_13001306ErmWrRNA MethyltransferaseBA80357_13000596ErmXrRNA MethyltransferaseBA820748_13002825ErmYrRNA MethyltransferaseBA820748_13003381soxRGene Modulating Antibiotic EffluxAAC77033_13003381soxRGene Modulating ResistanceAAN82549_113003303gyrBSMR Antibiotic EffluxCAA77936_13003030gyrBSMR Antibiotic EffluxCAA77936_13003089GlpT	rRNA Methyltransferase	AAC37034_1	3000522	ErmG
rRNA Methyltransferase CAA66307_1 3000592 ErmN rRNA Methyltransferase AAA26779_1 3001303 ErmO rRNA Methyltransferase AAC36915_1 3000593 ErmQ rRNA Methyltransferase ALX06067_1 3001304 ErmR rRNA Methyltransferase AAA26742_1 3001304 ErmS rRNA Methyltransferase AAA98096_1 300595 ErmT rRNA Methyltransferase CAA44667_1 3001305 ErmU rRNA Methyltransferase AAB51440_1 3002824 ErmV rRNA Methyltransferase BAA03402_1 3001306 ErmW rRNA Methyltransferase BAB20748_1 3002825 ErmY rRNA Methyltransferase BAB20748_1 3003378 marA Gene Modulating Antibiotic Efflux AAC77033_1 3003369 EF-Tu Other ARG AIL15701 3003303 gyrB SMR Antibiotic Efflux CAA77936_1 3004399 emrE Gene Modulating Resistance CAA77936_1 3003303 gyrB	rRNA Methyltransferase	AAC32026_1	3002823	ErmH
rRNA MethyltransferaseAAA26779_13001303ErmQrRNA MethyltransferaseAAC36915_13000593ErmQrRNA MethyltransferaseALX06067_13000594ErmRrRNA MethyltransferaseAAA26742_13001304ErmSrRNA MethyltransferaseAAA98096_1300595ErmTrRNA MethyltransferaseCAA44667_13001305ErmUrRNA MethyltransferaseAAA98096_113002824ErmVrRNA MethyltransferaseAAB51440_113002824ErmVrRNA MethyltransferaseBAA03402_113001306ErmWrRNA MethyltransferaseBAA0337_130030596ErmXrRNA MethyltransferaseBAB20748_113002825ErmYRNA MethyltransferaseBAAC74603_23003378marAGene Modulating Antibiotic EffluxAAC77033_113003369EF-TuOther ARGAIL157013003303gyrBSMR Antibiotic EffluxCAA77936_113004399emrEGene Modulating ResistanceBAE7555_113003303gyrBSMR Antibiotic EffluxCAA77936_113004399emrEGene Modulating ResistanceCDJ725933003889GlpT	rRNA Methyltransferase	CAA66307_1	3000592	ErmN
rRNA Methyltransferase AAC36915_1 3000593 ErmQ rRNA Methyltransferase ALX06067_1 3001594 ErmR rRNA Methyltransferase AAA26742_1 3001304 ErmS rRNA Methyltransferase AAA98096_1 3000595 ErmT rRNA Methyltransferase CAA44667_1 3001305 ErmU rRNA Methyltransferase CAA44667_1 3001306 ErmV rRNA Methyltransferase CAA44667_1 3001306 ErmU rRNA Methyltransferase AAB51440_1 3002824 ErmV rRNA Methyltransferase BAA03402_1 3001306 ErmW rRNA Methyltransferase BAA03357_1 3002825 ErmY rRNA Methyltransferase BAB20748_1 3002825 ErmY RND Antibiotic Efflux AAC7603_2 3003378 marA Gene Modulating Antibiotic Efflux AAC77033_11 3003369 EF-Tu Other ARG AlL15701 3003303 gyrB SMR Antibiotic Efflux CAA77936_11 3004039 emrE Gene Modulating R	rRNA Methyltransferase	AAA26779_1	3001303	ErmO
rRNA MethyltransferaseALX06067_13000594ErmRrRNA MethyltransferaseAAA26742_13001304ErmSrRNA MethyltransferaseAAA98096_13000595ErmTrRNA MethyltransferaseCAA44667_13001305ErmUrRNA MethyltransferaseAAB51440_13002824ErmVrRNA MethyltransferaseBAA03402_13001306ErmWrRNA MethyltransferaseBAA03402_1300596ErmVrRNA MethyltransferaseBAB20748_13002825ErmVrRNA MethyltransferaseBAB20748_13002825ErmYrRNA MethyltransferaseBAB20748_13003378marAGene Modulating Antibiotic EffluxAAC74603_23003381soxRGene Modulating ResistanceAAN82549_1130033775murAGene Modulating ResistanceBAE77595_13003303gyrBSMR Antibiotic EffluxCAA77936_13004399emrEGene Modulating ResistanceCDJ725933003889GlpT	rRNA Methyltransferase	AAC36915_1	3000593	ErmQ
rRNA MethyltransferaseAAA26742_13001304ErmSrRNA MethyltransferaseAAA98096_13000595ErmTrRNA MethyltransferaseCAA44667_13001305ErmUrRNA MethyltransferaseAAB51440_13002824ErmVrRNA MethyltransferaseBAA03402_13001306ErmWrRNA MethyltransferaseAAG03357_13000596ErmXrRNA MethyltransferaseBAB20748_13002825ErmYrRNA MethyltransferaseBAB20748_13003378marAGene Modulating Antibiotic EffluxAAC77033_13003381soxRGene Modulating ResistanceAAN82549_13003375murAGene Modulating ResistanceBAE77595_13003303gyrBSMR Antibiotic EffluxCAA77936_13004039emrEGene Modulating ResistanceCDJ725933003889GlpT	rRNA Methyltransferase	ALX06067_1	3000594	ErmR
rRNA MethyltransferaseAAA98096_13000595ErmTrRNA MethyltransferaseCAA44667_13001305ErmUrRNA MethyltransferaseAAB51440_13002824ErmVrRNA MethyltransferaseBAA03402_13001306ErmWrRNA MethyltransferaseAAG03357_13000596ErmXrRNA MethyltransferaseBAB20748_13002825ErmYrRNA MethyltransferaseBAB20748_13003378marAGene Modulating Antibiotic EffluxAAC74603_23003381soxRGene Modulating ResistanceAAN82549_13003375murAGene Modulating ResistanceBAE77595_13003303gyrBSMR Antibiotic EffluxCAA77936_13003889GlpT	rRNA Methyltransferase	AAA26742_1	3001304	ErmS
rRNA MethyltransferaseCAA44667_13001305ErmUrRNA MethyltransferaseAAB51440_13002824ErmVrRNA MethyltransferaseBAA03402_13001306ErmWrRNA MethyltransferaseAAG03357_13000596ErmXrRNA MethyltransferaseBAB20748_13002825ErmYRND Antibiotic EffluxAAC74603_23003378marAGene Modulating Antibiotic EffluxAAC77033_13003369EF-TuOther ARGAIL157013003775murAGene Modulating ResistanceBAE77595_13003303gyrBSMR Antibiotic EffluxCAA77936_13003889GlpT	rRNA Methyltransferase	AAA98096_1	3000595	ErmT
rRNA MethyltransferaseAAB51440_13002824ErmVrRNA MethyltransferaseBAA03402_13001306ErmWrRNA MethyltransferaseAAG03357_13000596ErmXrRNA MethyltransferaseBAB20748_13002825ErmYRND Antibiotic EffluxAAC74603_23003378marAGene Modulating Antibiotic EffluxAAC77033_13003361soxRGene Modulating ResistanceAAN82549_113003375murAOther ARGAIL157013003775murAGene Modulating ResistanceBAE77595_13003303gyrBSMR Antibiotic EffluxCAA77936_13003889GlpT	rRNA Methyltransferase	CAA44667_1	3001305	ErmU
rRNA MethyltransferaseBAA03402_13001306ErmWrRNA MethyltransferaseAAG03357_1300596ErmXrRNA MethyltransferaseBAB20748_13002825ErmYRND Antibiotic EffluxAAC74603_23003378marAGene Modulating Antibiotic EffluxAAC77033_13003381soxRGene Modulating ResistanceAAN82549_113003369EF-TuOther ARGAIL157013003775murAGene Modulating ResistanceBAE77595_113003303gyrBSMR Antibiotic EffluxCAA77936_113003889GlpT	rRNA Methyltransferase	AAB51440_1	3002824	ErmV
rRNA MethyltransferaseAAG03357_13000596ErmXrRNA MethyltransferaseBAB20748_13002825ErmYRND Antibiotic EffluxAAC74603_23003378marAGene Modulating Antibiotic EffluxAAC77033_13003381soxRGene Modulating ResistanceAAN82549_13003369EF-TuOther ARGAIL1570130033775murAGene Modulating ResistanceBAE77595_13003303gyrBSMR Antibiotic EffluxCAA77936_13004039emrEGene Modulating ResistanceCDJ725933003889GlpT	rRNA Methyltransferase	BAA03402_1	3001306	ErmW
rRNA MethyltransferaseBAB20748_13002825ErmYRND Antibiotic EffluxAAC74603_23003378marAGene Modulating Antibiotic EffluxAAC77033_13003381soxRGene Modulating ResistanceAAN82549_13003369EF-TuOther ARGAIL157013003775murAGene Modulating ResistanceBAE77595_113003303gyrBSMR Antibiotic EffluxCAA77936_113004039emrEGene Modulating ResistanceCDJ725933003889GlpT	rRNA Methyltransferase	AAG03357_1	3000596	ErmX
RND Antibiotic EffluxAAC74603_23003378marAGene Modulating Antibiotic EffluxAAC77033_13003381soxRGene Modulating ResistanceAAN82549_13003369EF-TuOther ARGAIL157013003775murAGene Modulating ResistanceBAE77595_13003303gyrBSMR Antibiotic EffluxCAA77936_13004039emrEGene Modulating ResistanceCDJ725933003889GlpT	rRNA Methyltransferase	BAB20748_1	3002825	ErmY
Gene Modulating Antibiotic EffluxAAC77033_13003381soxRGene Modulating ResistanceAAN82549_13003369EF-TuOther ARGAIL157013003775murAGene Modulating ResistanceBAE77595_13003303gyrBSMR Antibiotic EffluxCAA77936_13004039emrEGene Modulating ResistanceCDJ725933003889GlpT	RND Antibiotic Efflux	AAC74603_2	3003378	marA
Gene Modulating ResistanceAAN82549_13003369EF-TuOther ARGAIL157013003775murAGene Modulating ResistanceBAE77595_13003303gyrBSMR Antibiotic EffluxCAA77936_13004039emrEGene Modulating ResistanceCDJ725933003889GlpT	Gene Modulating Antibiotic Efflux	AAC77033_1	3003381	soxR
Other ARGAlL157013003775murAGene Modulating ResistanceBAE77595_13003303gyrBSMR Antibiotic EffluxCAA77936_13004039emrEGene Modulating ResistanceCDJ725933003889GlpT	Gene Modulating Resistance	AAN82549_1	3003369	EF-Tu
Gene Modulating ResistanceBAE77595_13003303gyrBSMR Antibiotic EffluxCAA77936_13004039emrEGene Modulating ResistanceCDJ725933003889GlpT	Other ARG	AIL15701	3003775	murA
SMR Antibiotic EffluxCAA77936_13004039emrEGene Modulating ResistanceCDJ725933003889GlpT	Gene Modulating Resistance	BAE77595_1	3003303	gyrB
Gene Modulating Resistance CDJ72593 3003889 GlpT	SMR Antibiotic Efflux	CAA77936_1	3004039	emrE
	Gene Modulating Resistance	CDJ72593	3003889	GlpT

Gene Modulating Resistance	CDJ73208	3003890	UhpT
Gene Modulating Resistance	NP_312937_1	3003288	rpoB
RND Antibiotic Efflux	NP_414997_1	3003807	acrR
Gene Modulating Resistance	NP_415372_1	3003751	nfsA
Gene Modulating Antibiotic Efflux	NP_418486_1	3003511	soxS
General Bacterial Porin	YP_489201_1	3003390	ompF
Gene Modulating Resistance	YP_491362_1	3003386	folP
Class B Beta-Lactamase	AJP77085	3003717	ESP-1
Gene Modulating Antibiotic Efflux	NP_311275_1	3000832	evgA
Gene Modulating Antibiotic Efflux	AAC75429_1	3000833	evgS
Class A Beta-Lactamase	AAA26775_1	3003564	EXO
MFS Antibiotic Efflux	AFK80333_1	3001313	facT
MFS Antibiotic Efflux	NP_273367_1	3003961	farA
MFS Antibiotic Efflux	NP_273368_1	3003962	farB
Class B Beta-Lactamase	CAB96921_1	3000606	FEZ-1
MFS Antibiotic Efflux	AAG16656_1	3002705	floR
Other ARG	BAA32493_1	3000423	FomA
Other ARG	BAA32494_1	3000449	FomB
Fosfomycin Resistance	NP_249820_1	3000149	FosA
Fosfomycin Resistance	ACC85616_1	3002804	FosA2
Fosfomycin Resistance	BAP18892_1	3003210	FosA4
Fosfomycin Resistance	AJE60855_1	3003209	FosA5
Fosfomycin Resistance	NP_831795_1	3000172	FosB
Fosfomycin Resistance	YP_001715981_1	3000172	FosB
Fosfomycin Resistance	ADX95999_1	3002873	FosB3
Fosfomycin Resistance	CAA83855_1	3000380	FosC
Fosfomycin Resistance	BAJ10053_1	3002874	FosC2
Fosfomycin Resistance	BAO79518_1	3003207	FosK
Fosfomycin Resistance	CWV56762_1	3000198	FosX
Class C Beta-Lactamase	CAA71325_1	3002156	FOX-2
Other ARG	AAL12234_1	3003552	fusB
Other ARG	WP 011303797	3003731	fusD
Other ARG	CAA90432 1	3003026	fusH
RND Antibiotic Efflux	 NP 417969 1	3003834	gadE
RND Antibiotic Efflux	 ANK04027 1	3003838	gadW
RND Antibiotic Efflux	 YP 491919 1	3000508	gadX
Class A Beta-Lactamase	 ADZ48685 1	3002346	GES-17
Class B Beta-Lactamase		3003194	GIM-2
Macrolide Resistance	CAA11707 1	3000463	gimA
	AAE0//58_1	3000850	GOB-1
Class B Beta-Lactamase		0000000	

Gene Modulating Antibiotic Efflux	NP_309766_1	3000676	H-NS
Gene Modulating Resistance	WP_014065640_1	3003924	gyrA
Gene Modulating Resistance	WP_041918279_1	3003925	parC
Class B Beta-Lactamase	AMY61250_1	3004092	HMB-1
MATE Transporter	WP_014550864_1	3003953	hmrM
MFS Antibiotic Efflux	NP_207972_1	3003964	hp1181
MATE Transporter	NP_207975_1	3003965	hp1184
Class A Beta-Lactamase	ACX71212_1	3001860	IMI-3
Class B Beta-Lactamase	CAA71441_1	3003095	imiS
Class B Beta-Lactamase	ABC88434_1	3002213	IMP-22
Class B Beta-Lactamase	AEH41427_1	3002218	IMP-27
Class B Beta-Lactamase	AGS82587_1	3002222	IMP-31
Class B Beta-Lactamase	BAM38093_1	3002225	IMP-34
Class B Beta-Lactamase	AFP97028_1	3002228	IMP-37
Class B Beta-Lactamase	AIA58910_1	3002236	IMP-45
Class B Beta-Lactamase	AIT76110_1	3002239	IMP-48
Class B Beta-Lactamase	ADK25051_1	3002268	IND-12
Class B Beta-Lactamase	AAG29761_2	3002259	IND-3
Class B Beta-Lactamase	AAG29765_2	3002260	IND-4
Class B Beta-Lactamase	ACZ65153_1	3002265	IND-9
Rifampin Resistance	AAB41059_1	3002884	iri
Class B Beta-Lactamase	AAK38324_1	3000840	JOHN-1
Other ARG	NP_415222_1	3003841	kdpE
Class B Beta-Lactamase	BAF91108_1	3000847	KHM-1
RND Antibiotic Efflux	ABR75897_1	3003373	acrR
RND Antibiotic Efflux	ABR76005_1	3003380	ramR
RND Antibiotic Efflux	CAC41008_1	3004041	acrA
Gene Modulating Resistance	CDO13981_1	3003585	PhoP
General Bacterial Porin	YP_005226137_1	3003966	OmpK35
General Bacterial Porin	YP_005228001_1	3003968	OmpK36
Class A Beta-Lactamase	ACE62798_1	3002317	KPC-7
Class B Beta-Lactamase	CAB75346_1	3000582	L1
Class D Beta-Lactamase	CAA40146_1	3002997	LCR-1
MFS Antibiotic Efflux	NP_414618_4	3003843	leuO
Gene Modulating Resistance	NP_465220	3003770	mprF
rRNA Methyltransferase	APB03216_1	3003982	LImA
Gene Modulating Resistance	CAB12062_1	3003028	ImrA
Gene Modulating Resistance	KIX81495_1	3002813	lmrB
ABC-F Ribosomal Protection	ABF66011_1	3002881	lmrC
Gene Modulating Resistance	ABF66027_1	3002882	lmrD
MFS Antibiotic Efflux	ABF33001 1	3003969	ImrP

Lincosamide Nucleotidyltransferase	CAL44992_1	3002835	InuA
Lincosamide Nucleotidyltransferase	AGI42804_1	3002836	InuB
Lincosamide Nucleotidyltransferase	AAY32951_1	3002837	InuC
Lincosamide Nucleotidyltransferase	ABR14060_1	3002838	InuD
Lincosamide Nucleotidyltransferase	AGT57825	3003762	InuE
∟incosamide Nucleotidyltransferase	CAD91132_1	3002839	InuF
Lincosamide Nucleotidyltransferase	WP_002333496_1	3004085	InuG
Other ARG	AJF82049_1	3003573	LpxA
Other ARG	AJF83452_1	3003574	LpxC
Class A Beta-Lactamase	ACH58980_1	3002482	LRA-1
Class C Beta-Lactamase	ACH58999_1	3002489	LRA-10
Class B Beta-Lactamase	ACH58990_1	3002511	LRA-12
Class C Beta-Lactamase	ACH58991_1	3002484	LRA-13
Class B Beta-Lactamase	ACH58994_1	3002512	LRA-17
Class C Beta-Lactamase	ACH58997_1	3002492	LRA-18
Class B Beta-Lactamase	ACH59005_1	3002513	LRA-19
Class B Beta-Lactamase	ACH58985_1	3002485	LRA-2
Class B Beta-Lactamase	ACH58987_1	3002510	LRA-3
Class A Beta-Lactamase	ACH59002_1	3002483	LRA-5
Class B Beta-Lactamase	ACH58998_1	3002486	LRA-7
Class B Beta-Lactamase	ACH58988_1	3002487	LRA-8
MFS Antibiotic Efflux	AAC43550_1	3003967	IrfA
ABC-F Ribosomal Protection	AAT46077_1	3000300	IsaA
ABC-F Ribosomal Protection	NP_899166_1	3003111	IsaB
ABC-F Ribosomal Protection	AEA37904_1	3003112	lsaC
ABC-F Ribosomal Protection	AFU35065_1	3003206	lsaE
Gene Modulating Resistance	AAV85981_1	3000533	macA
Gene Modulating Resistance	AAV85982_1	3000535	macB
Gene Modulating Antibiotic Efflux	YP_489794_1	3000263	marA
Other ARG	AKF16168	3003689	MCR-1
MFS Antibiotic Efflux	AFH35853_1	3001328	mdfA
RND Antibiotic Efflux	NP_459347_2	3000789	mdsA
RND Antibiotic Efflux	NP_459346_1	3000790	mdsB
RND Antibiotic Efflux	NP_459345_2	3000791	mdsC
RND Antibiotic Efflux	AAC75135_2	3000792	mdtA
RND Antibiotic Efflux	AAC75136_1	3000793	mdtB
RND Antibiotic Efflux	AAC75137_1	3000794	mdtC
RND Antibiotic Efflux		3001330	mdtD
RND Antibiotic Efflux		3000796	mdtF
	AAC70539_1	5000750	maa
MFS Antibiotic Efflux	YP_489321_1	3001329	mdtG

MATE Transporter	AML99881_1	3001327	mdtK
MFS Antibiotic Efflux	AAC76733_1	3001215	mdtL
MFS Antibiotic Efflux	AAC77293_1	3001214	mdtM
MFS Antibiotic Efflux	BAE78084_1	3003548	mdtN
MFS Antibiotic Efflux	BAE78083_1	3003549	mdtO
MFS Antibiotic Efflux	BAE78082_1	3003550	mdtP
Penicillin-binding Protein	AGC51118_1	3000617	mecA
Penicillin-binding Protein	BAI83385_1	3003440	mecB
Penicillin-binding Protein	WP_000725529_1	3001209	mecC
Penicillin-binding Protein	NP_373280_1	3000124	mecl
Penicillin-binding Protein	YP_001245420_1	3000215	mecR1
ABC-F Ribosomal Protection	YP_008997285_1	3000615	mefA
MFS Antibiotic Efflux	ACJ63262_1	3003107	mefB
MFS Antibiotic Efflux	BAL43360	3003745	mefC
MFS Antibiotic Efflux	NP_358565_1	3000614	mefE
ABC-F Ribosomal Protection	YP_002743273_1	3000616	mel
MATE Transporter	AAU95768_1	3000026	mepA
MATE Transporter	YP_001440920_1	3000746	mepR
RND Antibiotic Efflux	NP_249116_1	3000377	MexA
RND Antibiotic Efflux	AAA74437_1	3000378	MexB
RND Antibiotic Efflux	AAB41956_1	3000800	MexC
RND Antibiotic Efflux	AAB41957_1	3000801	MexD
RND Antibiotic Efflux	NP_251183_1	3000803	MexE
RND Antibiotic Efflux	NP_251184_1	3000804	MexF
RND Antibiotic Efflux	NP_252894_1	3000806	mexG
RND Antibiotic Efflux	NP_252895_1	3000807	mexH
RND Antibiotic Efflux	NP_252896_1	3000808	mexl
RND Antibiotic Efflux	NP_252367_1	3003692	mexJ
RND Antibiotic Efflux	AAG07064_1	3003693	mexK
RND Antibiotic Efflux	NP 252368 1	3003710	mexL
RND Antibiotic Efflux	 BAE06005_1	3003704	mexM
RND Antibiotic Efflux	BAE06006 1	3003705	mexN
RND Antibiotic Efflux	BAE06007 1	3003698	mexP
RND Antibiotic Efflux	 BAE06008_1	3003699	mexQ
RND Antibiotic Efflux		3000506	mexR
RND Antibiotic Efflux	ADT64081 1	3000813	MexS
RND Antibiotic Efflux	NP 251182 1	3000814	MexT
RND Antibiotic Efflux	AAG07762 1	3003030	mexV
RND Antibiotic Efflux	AAG07763 1	3003031	mexW
RND Antibiotic Efflux	BAA34300 1	3003033	mexY
RND Antibiotic Efflux	NP 250710 1	3003709	mex7
		0000709	

Quinolone Resistance	NP_415632_1	3003844	mfd
Quinolone Resistance	CCP46182_1	3003035	mfpA
Gene Modulating Antibiotic Efflux	YP_003281576_1	3000815	mgrA
Macrolide Resistance	ABA28305_2	3000462	mgtA
Class A Beta-Lactamase	AIT76113_1	3002174	MIR-9
Gene Modulating Resistance	YP_007503908_1	3003306	gyrB
Class A Beta-Lactamase	ACS44784_1	3002185	MOX-6
Class D Beta-Lactamase	WP_042649345	3002191	MOX-9
Macrolide Resistance	BAA03776_1	3000316	mphA
Macrolide Resistance	BAA12910_1	3000318	mphB
Macrolide Resistance	CAJ51085_1	3000319	mphC
Macrolide Resistance	ANP63073_1	3003741	mphE
Macrolide Resistance	WP_010550189_1	3003071	mphE
Macrolide Resistance	BAL43359	3003742	mphG
Macrolide Resistance	APB03226_1	3003991	mphl
Macrolide Resistance	AAS13767_1	3003839	Mrx
Gene Modulating Resistance	NP_415434_1	3003950	msbA
Class B Beta-Lactamase	AJP77057	3003718	MSI-1
Class B Beta-Lactamase	AJP77058	3003719	MSI-OXA
ABC-F Ribosomal Protection	CCQ20328_1	3000251	msrA
ABC-F Ribosomal Protection	NP_416292_1	3002818	msrB
ABC-F Ribosomal Protection	AAK01167_1	3002819	msrC
ABC-F Ribosomal Protection	YP_724476_1	3003109	msrE
RND Antibiotic Efflux	CCP46065_1	3000816	mtrA
RND Antibiotic Efflux	NP_274719_1	3000810	mtrC
RND Antibiotic Efflux	NP_274718_1	3000811	mtrD
RND Antibiotic Efflux	CAA64891_1	3000812	mtrE
RND Antibiotic Efflux	YP_002002225_1	3000817	mtrR
Class B Beta-Lactamase	WP_063860852	3003842	MUS-2
RND Antibiotic Efflux	NP_251218_1	3004073	MuxA
RND Antibiotic Efflux	NP_251217_1	3004074	MuxB
RND Antibiotic Efflux	NP_251216_1	3004075	MuxC
RND Antibiotic Efflux	NP 253005 1	3004069	MvaT
Gene Modulating Resistance	 AAK44936 1	3003395	rpsL
Gene Modulating Resistance		3003445	tlyA
Gene Modulating Resistance		3003458	ethA
Gene Modulating Resistance		3003327	embC
Gene Modulating Resistance		3003453	embA
Gene Modulating Resistance	CAA55486_1	3003459	avrB
		0000.00	
Gene Modulating Resistance	CAC29732 1	3003389	folP

Other ARG	CCE36834	3003784	murA
Gene Modulating Resistance	CCP42728 1	3003295	gyrA
Gene Modulating Resistance	CCP43072 1	3003448	iniA
Gene Modulating Resistance	CCP43073 1	3003451	iniC
Gene Modulating Resistance	CCP44023 1	3003455	embR
Gene Modulating Resistance	 CCP44244_1	3003393	inhA
Gene Modulating Resistance	CCP44620 1	3003461	ndh
Gene Modulating Resistance	CCP44816 1	3003394	pncA
Gene Modulating Resistance	CCP45025 1	3003463	kasA
Gene Modulating Resistance	 CCP46624_1;	3003326:3003465	embB
	AAK48268_1		
Gene Modulating Resistance	CCP46748_1	3003470	gidB
Gene Modulating Resistance	NP_216424_1	3003392	katG
Gene Modulating Resistance	CAC29514_1	3003298	gyrA
Gene Modulating Resistance	AKJ52802_1	3003310	parC
rRNA Methyltransferase	BAA03674_1	3001300	myrA
RND Antibiotic Efflux	NP_252410_1	3000818	nalC
RND Antibiotic Efflux	NP_252264_1	3000819	nalD
Class B Beta-Lactamase	BAO79439_1	3002362	NDM-12
General Bacterial Porin	AAB57788_1	3000464	por
Penicillin-binding Protein	NP_273462_1	3003937	PBP2
Gene Modulating Resistance	YP_207769_1	3003928	gyrA
Gene Modulating Resistance	YP_208330_1	3003929	parC
RND Antibiotic Efflux	NP_253290_1	3000820;3004059 ;3004060	nfxB TypeA NfxB TypeB NfxB
Class A Beta-Lactamase	CAA79966_1	3003665	NmcR
MFS Antibiotic Efflux	AAS68233_1	3000391	norA
MFS Antibiotic Efflux	CCQ22388_1	3000421	norB
Gene Modulating Resistance	AAF67494_2	3002522	novA
rRNA Methyltransferase	BAF80809_1	3002665	npmA
Class D Beta-Lactamase	CAA33795_1	3003563	NPS
Class C Beta-Lactamase	ABF50909_1	3002521	OCH-8
Class A Beta-Lactamase	CAP12359_2	3002452	OKP-B-19
ABC-F Ribosomal Protection	AAA50325_1	3003036	oleB
Gene Modulating Resistance	AAA26793	3003748	oleC
Other ARG	ABA42119_1	3000865	oleD
Other ARG	ABA42118_2	3000866	olel
RND Antibiotic Efflux	AAC43969_1	3003037	орсМ
RND Antibiotic Efflux	NP_251215_1	3004072	OpmB
RND Antibiotic Efflux	NP_252897_1	3000809	opmD
RND Antibiotic Efflux	BAE06009_1	3003700	opmE
RND Antibiotic Efflux	NP 253661 1	3003682	OpmH

RND Antibiotic Efflux	BAM10414_1	3003039	oprA
RND Antibiotic Efflux	AAB41958_1	3000802	OprJ
RND Antibiotic Efflux	NP_249118_1	3000379	OprM
RND Antibiotic Efflux	NP_251185_1	3000805	OprN
RND Antibiotic Efflux	YP_001693237_1	3003922	Axpo
RND Antibiotic Efflux	YP_001693238	3003923	oqxB
Tetracycline Resistance	CAA37477_1	3002891	otr(A)
MFS Antibiotic Efflux	AAD04032_1	3002892	otr(B)
Gene Modulating Resistance	AAR96051_1	3002894	otrC
Class D Beta-Lactamase	AIA58911_1	3001396	OXA-1
Class D Beta-Lactamase	ABW70410_1	3001644	OXA-113
Class D Beta-Lactamase	AAN41427_1	3001775	OXA-119
Class D Beta-Lactamase	AAA83417_1	3001407	OXA-12
Class D Beta-Lactamase	AAC46344_1	3001408	OXA-13
Class D Beta-Lactamase	ACI28281_1	3001779	OXA-146
Class D Beta-Lactamase	AAB58555_1	3001413	OXA-18
Class D Beta-Lactamase	AFO09968_1	3001476	OXA-184
Class D Beta-Lactamase	ADZ54048_1	3001766	OXA-192
Class D Beta-Lactamase	ADT70779_1	3001805	OXA-198
Class D Beta-Lactamase	AEM66528_1	3001809	OXA-209
Class D Beta-Lactamase	AEV91550_1	3001710	OXA-211
Class D Beta-Lactamase	AEV91554_1	3001714	OXA-215
Class D Beta-Lactamase	AAD12233_1	3001417	OXA-22
Class D Beta-Lactamase	AFQ90085_1	3001610	OXA-243
Class D Beta-Lactamase	AGC60012_1	3001786	OXA-244
Class D Beta-Lactamase	CCE73593_2	3001503	OXA-258
Class D Beta-Lactamase	AAG35608_1	3001421	OXA-26
Class D Beta-Lactamase	CAC35728_1	3001424	OXA-29
Class D Beta-Lactamase	AAC41449_1	3001398	OXA-3
Class D Beta-Lactamase	AET35493_1	3001777	OXA-347
Class D Beta-Lactamase	AGW83449_1	3001538	OXA-351
Class D Beta-Lactamase	AHA11126_1	3001550	OXA-363
Class D Beta-Lactamase	AAG33665_1	3001431	OXA-37
Class D Beta-Lactamase	AIN56719_1	3002496	OXA-418
Class D Beta-Lactamase	BAP28835_1	3003116	OXA-420
Class D Beta-Lactamase	CAD32565_1	3001770	OXA-43
Class D Beta-Lactamase	CAD58780_1	3001794	OXA-45
Class D Beta-Lactamase	CAA41211_1	3001400	OXA-5
Class D Beta-Lactamase	AAQ76277_1	3001796	OXA-50
Class D Beta-Lactamase		2001012	0)/4 55
	AAR03105_1	3001013	OXA-55

Class D Beta-Lactamase AAT01092_1 3001773 OXA-61 Class D Beta-Lactamase AAR69916_1 3001780 OXA-62 Class D Beta-Lactamase AAA98406_1 3001780 OXA-85 Class D Beta-Lactamase AAA98406_1 3001740 OXA-9 Class A Beta-Lactamase AAA7275_1 3000239 OXT-13 Gene Modulating Resistance NP_358969_1 3000220 patA Gene Modulating Resistance NP_201659085_1 3000250 pDC-5 Class A Beta-Lactamase AJP77059 3003717 PEDO-1 Class B Beta-Lactamase AJP77076 3003210 PED-2 Class B Beta-Lactamase CAA79968_1 3002320 PBD-3 Class B Beta-Lactamase CAA79968_1 3002376 PED-0 Class A Beta-Lactamase CAA79968_1 3003276 PmrA Other ARG BAE78116_1 3003576 PmrC Other ARG BAC75089_1 3003576 PmrF Gene Modulating Resistance NP_249870_1 3003886 opT Gene Modulat				
Class D Beta-Lactamase AAR32134_1 3001792 OXA-82 Class D Beta-Lactamase AAA96961_1 3001760 OXA-85 Class A Beta-Lactamase AAA98406_1 300140 OXA-9 Class A Beta-Lactamase AAA98406_1 3001204 patA Gene Modulating Resistance NP_417544_5 300022 patB Class A Beta-Lactamase AP_001569085_1 3000621 PC1 Class A Beta-Lactamase AC282810_1 300370 PEDO-1 Class B Beta-Lactamase AJP77059 3003715 PEDO-3 Class B Beta-Lactamase AJP77076 3003715 PEDO-3 Class B Beta-Lactamase AJP77076 3003707 PmpM MTE Transporter NP_250052_1 3004077 PmpM MFS Antibiotic Efflux NP_358469_1 3003576 PmrC Other ARG AAC75089_1 300378 PmrF Gene Modulating Resistance MP_249670_1 300386 opD Gene Modulating Resistance NP_251858_1 300386 prO Gene Modulating R	Class D Beta-Lactamase	AAT01092_1	3001773	OXA-61
Class D Beta-Lactamase AAP69916_1 3001780 OXA-85 Class D Beta-Lactamase AAA98406_1 3001404 OXA-9 Class A Beta-Lactamase AAI78275_1 300231 OXY-1-3 Gene Modulating Resistance NP_417544_5 3000025 path Class A Beta-Lactamase VP_001569085_1 3000621 PC1 Class A Beta-Lactamase AVP77059 3003670 PEDO-1 Class B Beta-Lactamase AVP77076 3003715 PEDO-2 Class B Beta-Lactamase AVP77076 3003715 PEDO-3 Class A Beta-Lactamase AVP77076 3003716 PEDO-3 Class A Beta-Lactamase CAA79968_1 300220 ppB MATE Transporter NP_250052_1 3004077 PmpM MFS Antibiotic Effux NP_358469_1 3003578 PmrC Other ARG AAC75314_1 3003576 PmrC Other ARG NP_249649_1 3003866 prD Gene Modulating Resistance NP_249871_1 3003866 prD Gene Modulating Resistance <td>Class D Beta-Lactamase</td> <td>AAR32134_1</td> <td>3001792</td> <td>OXA-62</td>	Class D Beta-Lactamase	AAR32134_1	3001792	OXA-62
Class D Beta-Lactamase AAA9406_1 3001404 OXX-9 Class A Beta-Lactamase AAL78275_1 3002391 OXY-1-3 Gene Modulating Resistance NP_417544_5 3000024 patA Gene Modulating Resistance NP_358969_1 3000621 PC1 Class A Beta-Lactamase AVC082810_1 3002502 PDC-5 Class B Beta-Lactamase AJP77059 3003710 PEDO-1 Class B Beta-Lactamase AJP77076 3003715 PEDO-3 Class B Beta-Lactamase AJP77076 3003716 PEDO-3 Class A Beta-Lactamase CAA79968_1 3002320 pgpE MATE Transporter NP_250052_1 3004077 PmpM MFS Antibiotic Efflux NP_358469_1 3003576 PmrC Other ARG BAC75314_1 3003577 PmrE Other ARG AAC75849_1 3003578 PmrF Gene Modulating Resistance WP_20253066_1 300370 gyrA Gene Modulating Resistance NP_249870_1 3003866 opD Gene Modulating Resi	Class D Beta-Lactamase	AAP69916_1	3001780	OXA-85
Class A Beta-Lactamase AAL78275_1 3002391 OXY1-13 Gene Modulating Resistance NP_417544_5 3000024 patA Gene Modulating Resistance NP_358969_1 3000621 PC1 Class A Beta-Lactamase YP_001569085_1 3000520 PDC-5 Class B Beta-Lactamase AU77059 3003714 PEDO-1 Class B Beta-Lactamase AUP77076 3003715 PEDO-2 Class B Beta-Lactamase CAX9968_1 3003203 PgR-1 Other ARG BAG33043_1 3003202 pgpB MATE Transporter NP_250052_1 3004077 PmpM MFS Antibiotic Efflux NP_358469_1 3003576 PmrC Other ARG BAC75314_1 3003577 PmrE Other ARG NP_249649_1 3003866 oprD Gene Modulating Resistance NP_249871_1 3003895 PhoQ Gene Modulating Resistance NP_251858_1 3003686 oprD Gene Modulating Resistance NP_253677_1 3004054 cpxR Gene Modulating Resistanc	Class D Beta-Lactamase	AAA98406_1	3001404	OXA-9
Gene Modulating Resistance NP_417544_5 3000025 patA Gene Modulating Resistance NP_358966_1 300025 patB Class A Beta-Lactamase AC082810_1 3003620 PDC-5 Class B Beta-Lactamase AJP77059 3003710 PEDO-1 Class B Beta-Lactamase AJP77076 3003715 PEDO-3 Class B Beta-Lactamase AJP77076 3003820 pgpB Mate Lactamase CAA79968_1 3003202 pgpB Mate T ransporter NP_256052_1 3004077 PmpM Other ARG BAE78116_1 3003576 PmrC Other ARG AAC75089_1 3003702 gyrA Gene Modulating Resistance BA37152_1 3003702 gyrA Gene Modulating Resistance NP_249870_1 3003866 opT Gene Modulating Resistance NP_249870_1 3003868 pyrA Gene Modulating Resistance NP_253654_1 3003865 parE SMR Antibiotic Efflux NP_253654_1 3003686 pyrR Gene Modulating Resistance	Class A Beta-Lactamase	AAL78275_1	3002391	OXY-1-3
Gene Modulating Resistance NP_358969_1 3000025 patB Class A Beta-Lactamase YP_001569085_1 3000621 PC1-5 Class B Beta-Lactamase AJP77059 3003714 PEDO-1 Class B Beta-Lactamase AJP77071 3003714 PEDO-2 Class B Beta-Lactamase AJP77076 3003715 PEDO-3 Class A Beta-Lactamase AJP77076 3003200 pgB MATE Transporter NP_250052_1 3004077 PmpM MFS Antibiotic Efflux NP_358469_1 3003577 PmrE Other ARG BAC75089_1 3003774 gyrA Gene Modulating Resistance WP_002530866_1 3003577 PmrF Gene Modulating Resistance NP_249649_1 3003805 PmO Gene Modulating Resistance NP_249671 3003686 oprA Gene Modulating Resistance NP_253677_1 3003684 gyrA Gene Modulating Resistance NP_253677_1 3003686 parE RND Antibiotic Efflux NP253677_1 3003868 parE	Gene Modulating Resistance	NP_417544_5	3000024	patA
Class A Beta-Lactamase YP_001569085_1 3000621 PC1 Class C Beta-Lactamase AC082810_1 3002602 PDC-5 Class B Beta-Lactamase AJP77059 3003670 PEDO-1 Class B Beta-Lactamase AJP77076 3003714 PEDO-2 Class B Beta-Lactamase CA79968_1 3003200 pgpB Other ARG BAG33043_1 3003202 pgpB MATE Transporter NP_25052_1 3004077 PmpM MFS Antibiotic Efflux NP_358469_1 3003576 PmrC Other ARG BAC75314_1 3003577 PmrE Other ARG AAC75314_1 3003702 gyrA parC Other ARG NP_2496491 3003895 PhoP Gene Modulating Resistance NP_249870_1 3003896 phoQ Gene Modulating Resistance NP_258677_1 3003886 pyrA Gene Modulating Resistance NP_258677_1 3003868 gyrA Gene Modulating Resistance NP_253677_1 3003868 gacA SMR Antibiotic Efflux NP25	Gene Modulating Resistance	NP_358969_1	3000025	patB
Class C Beta-Lactamase ACQ82810_1 3002502 PDC-5 Class B Beta-Lactamase AJP7705 3003714 PEDO-1 Class B Beta-Lactamase AJP77076 3003714 PEDO-3 Class B Beta-Lactamase AJP77076 3003715 PEDO-3 Class A Beta-Lactamase CAA79968_1 3002363 PER-1 Other ARG BAG33043_1 3003920 pgpB MATE Transporter NP_250052_1 3004077 PmpM MFS Antibiotic Efflux NP_358469_1 3003576 PmrC Other ARG BAC75141_1 3003577 PmrE Other ARG AAC75034_1 3003779 gyrA Gene Modulating Resistance WP_0025030866_1 3003770 gyrAparC Other ARG NP_249649_1 3003866 opt Gene Modulating Resistance NP_249871_1 3003886 PhoQ Gene Modulating Resistance NP_253677_1 3004084 gyrA Gene Modulating Resistance NP_2536654_1 3003468 garH NPA Antibiotic Efflux N	Class A Beta-Lactamase	YP_001569085_1	3000621	PC1
Class B Beta-Lactamase AJP77059 3003670 PEDC-1 Class B Beta-Lactamase AJP77071 3003714 PEDC-2 Class B Beta-Lactamase AJP77076 3003715 PEDC-3 Class A Beta-Lactamase CAA79968_11 3003203 PER-1 Other ARG BAG33043_1 3003920 pgpB MATE Transporter NP_250052_1 3004077 PmpM Other ARG BAC75089_1 3003576 PmrC Other ARG AAC75089_1 3003577 PmrE Other ARG AAC75039_1 300377 gyrAparc Other ARG AAC75314_1 300377 gyrAparc Other ARG NP_249649_1 3003878 pmrF Gene Modulating Resistance NP_249649_1 3003868 oprD Gene Modulating Resistance NP_253654_1 3003868 parE SMR Antibiotic Efflux NP_253637_1 3004054 CpxR Other ARG AAM15533_1 3003648 parA RND Antibiotic Efflux SIP52035_1 3004054 <t< td=""><td>Class C Beta-Lactamase</td><td>ACQ82810_1</td><td>3002502</td><td>PDC-5</td></t<>	Class C Beta-Lactamase	ACQ82810_1	3002502	PDC-5
Class B Beta-Lactamase AJP77071 3003714 PEDO-2 Class B Beta-Lactamase AJP77076 3003715 PEDO-3 Class A Beta-Lactamase CAA79968_1 3003302 PER-1 Other ARG BAG33043_1 3003920 pgpB MATE Transporter NP_250052_1 3004077 PmpM MFS Antibiotic Efflux NP_358469_1 3003576 PmrC Other ARG BAC75314_1 3003777 PmrE Other ARG AAC7508_11 3003778 PmrF Gene Modulating Resistance WP_002530866_1 3003878 PmrF Gene Modulating Resistance NP_249649_1 3003686 opD Gene Modulating Resistance NP_249870_1 3003866 opD Gene Modulating Resistance NP_249871_1 3003686 prF SMR Antibiotic Efflux NP_253677_1 3004038 emrE SMR Antibiotic Efflux SPS2035_1 300376 queA Other ARG AAM15533_1 3004048 qeA MFS Antibiotic Efflux AZ42322_1	Class B Beta-Lactamase	AJP77059	3003670	PEDO-1
Class B Beta-Lactamase AJP77076 3003715 PEDO-3 Class A Beta-Lactamase CAA79968_1 3002363 PER-1 Other ARG BAG33043_1 300300 pgpB MATE Transporter NP_250052_1 3004077 PmpM MFS Antibiotic Efflux NP_368469_1 3003576 PmrC Other ARG BAE78116_1 3003577 PmrE Other ARG AAC75089_1 300371 gyrA Gene Modulating Resistance WP_002530866_1 300374 gyrA Gene Modulating Resistance NP_249649_1 3003868 oprD Other ARG NP_249870_1 3003868 prF Gene Modulating Resistance NP_253654_11 3003684 gyrA Gene Modulating Resistance NP_253654_11 3003684 gyrA Gene Modulating Resistance NP_253654_11 3003686 parE SMR Antibiotic Efflux SIP52035_1 3004054 CpxR Other ARG AAM15533_11 3003868 qerA MFS Antibiotic Efflux BAJ09383_11 <td>Class B Beta-Lactamase</td> <td>AJP77071</td> <td>3003714</td> <td>PEDO-2</td>	Class B Beta-Lactamase	AJP77071	3003714	PEDO-2
Class A Beta-Lactamase CAA79968_1 3002363 PER-1 Other ARG BAG33043_1 3003920 pgpB MATE Transporter NP_250052_1 3004077 PmpM MFS Antibiotic Efflux NP_358469_1 300822 pmrA Other ARG BAE78116_1 3003576 PmrC Other ARG AAC75089_1 300377 PmrF Gene Modulating Resistance WP_002530866_1 3003702 gyrAlparC Gene Modulating Resistance BA37152_1 3003702 gyrAlparC Gene Modulating Resistance NP_249649_1 3003686 oprD Gene Modulating Resistance NP_249870_1 3003885 PhoQ Gene Modulating Resistance NP_249871_1 3003684 gyrA Gene Modulating Resistance NP_253657_1 3004038 emrE SMR Antibiotic Efflux NP253651_1 3004054 CpxR Other ARG AM15533_1 3003464 gacH MFS Antibiotic Efflux AAZ43222_1 3003836 gacH MFS Antibiotic Efflux	Class B Beta-Lactamase	AJP77076	3003715	PEDO-3
Other ARG BAG33043_1 3003920 pgpB MATE Transporter NP_250052_1 3004077 PmpM MFS Antibiotic Efflux NP_358469_11 300822 pmrA Other ARG BAE78116_1 3003576 PmrC Other ARG AAC75089_1 3003577 PmrE Other ARG AAC75314_1 3003702 gyrA Gene Modulating Resistance BAA37152_1 3003876 oprO Other ARG NP_249649_1 3003866 oprD Gene Modulating Resistance NP_249870_1 3003896 PhoQ Gene Modulating Resistance NP_253654_1 3003686 parE Gene Modulating Resistance NP_253654_1 3003685 parE SMR Antibiotic Efflux NP_253651 3004054 CpxR Other ARG AAM1553_1 3003468 gacA SMR Antibiotic Efflux BAJ09383_1 3003468 gacA MFS Antibiotic Efflux AZ2322_1 300346 gacA MFS Antibiotic Efflux AEZ36150_1 300276	Class A Beta-Lactamase	CAA79968_1	3002363	PER-1
MATE Transporter NP_250052_1 3004077 PmpM MFS Antibiotic Efflux NP_358469_1 300822 pmrA Other ARG BAE78116_1 3003576 PmrC Other ARG AAC75089_1 3003577 PmrE Other ARG AAC75314_1 3003578 PmrF Gene Modulating Resistance WP_002530866_1 3003974 gyrA Gene Modulating Resistance BAA37152_1 3003686 oprD Other ARG NP_249649_1 3003868 oprD Gene Modulating Resistance NP_249870_1 3003868 PhoP Gene Modulating Resistance NP_253684_1 3003684 gyrA Gene Modulating Resistance NP_253677_11 3004038 emrE SMR Antibiotic Efflux NP_253671_1 3003688 PvrR RND Antibiotic Efflux SIP52035_1 3004054 CpxR Other ARG AAM15533_1 3003046 qacA MFS Antibiotic Efflux BAJ09383_1 3003046 qacA MFS Antibiotic Efflux AEZ6150_1	Other ARG	BAG33043_1	3003920	рдрВ
MFS Antibiotic Efflux NP_358469_1 300822 pmrA Other ARG BAE78116_1 3003576 PmrC Other ARG AAC75089_1 3003577 PmrE Other ARG AAC75314_1 300378 PmrF Gene Modulating Resistance WP_002530866_1 3003702 gyrA Gene Modulating Resistance BA37152_1 3003866 oprD Other ARG NP_249870_1 3003866 oprD Gene Modulating Resistance NP_249871_1 3003886 pyrA Gene Modulating Resistance NP_251858_1 3003684 gyrA Gene Modulating Resistance NP_253677_1 3004038 emrE SMR Antibiotic Efflux NP_253677_1 3004034 cpxR Other ARG AAM15533_1 3003464 gacA SMR Antibiotic Efflux BAJ09383_1 3003448 qepA Quinolone Resistance AEI3150_1 3003448 qepA Quinolone Resistance AEC7316_1 3002707 QnrA1 Quinolone Resistance ACG70184_1	MATE Transporter	NP_250052_1	3004077	PmpM
Other ARG BAE78116_1 3003576 PmrC Other ARG AAC75089_1 3003577 PmrE Other ARG AAC75314_1 3003578 PmrF Gene Modulating Resistance WP_002500866_1 3003774 gyrA Gene Modulating Resistance BAA37152_1 3003702 gyrAparC Other ARG NP_249649_1 3003866 oprD Gene Modulating Resistance NP_249870_1 3003895 PhoP Gene Modulating Resistance NP_249871_1 3003886 PyrA Gene Modulating Resistance NP_251858_1 3003688 gyrA Gene Modulating Resistance NP_253677_1 3004054 CpxR SMR Antibiotic Efflux NP_253677_1 3004054 CpxR Other ARG AAM15533_11 3003466 qacA SMR Antibiotic Efflux BAJ09383_1 3003046 qacA MFS Antibiotic Efflux AZ2322_1 3003836 qacH MFS Antibiotic Efflux AZ236150_1 3002707 QmrA1 Quinolone Resistance ABI504	MFS Antibiotic Efflux	NP_358469_1	3000822	pmrA
Other ARG AAC75089_1 3003577 PmrE Other ARG AAC75314_1 3003578 PmrF Gene Modulating Resistance WP_002530866_1 3003774 gyrA Gene Modulating Resistance BAA37152_1 3003702 gyrA parC Other ARG NP_249649_1 3003686 oprD Gene Modulating Resistance NP_249870_1 3003896 PhoQ Gene Modulating Resistance NP_249871_1 3003886 PyrA Gene Modulating Resistance NP_251858_1 3003686 pyrA Gene Modulating Resistance NP_253677_1 3004084 gyrA Gene Modulating Resistance NP_253677_1 3004054 CpxR RND Antibiotic Efflux SIP52035_1 3004054 CpxR Other ARG AAM15533_11 3003046 qacA MFS Antibiotic Efflux BAJ09383_1 3003046 qacA SMR Antibiotic Efflux AEZ36150_1 3002707 QmrA1 Quinolone Resistance ABIS0486_1 3002707 QmrA1 Quinolone Resistance <td>Other ARG</td> <td>BAE78116_1</td> <td>3003576</td> <td>PmrC</td>	Other ARG	BAE78116_1	3003576	PmrC
Other ARG AAC75314_1 3003578 PmrF Gene Modulating Resistance WP_002530866_1 3003974 gyrA Gene Modulating Resistance BAA37152_1 3003702 gyrA parC Other ARG NP_249649_1 3003686 oprD Gene Modulating Resistance NP_249870_1 3003895 PhoP Gene Modulating Resistance NP_249871_1 3003686 gyrA Gene Modulating Resistance NP_253654_1 3003685 parE SMR Antibiotic Efflux NP_253677_1 3004038 emrE RND Antibiotic Efflux SIP52035_1 3003068 pvrR Other ARG AAM15533_1 3003046 qacA SMR Antibiotic Efflux BAJ09383_1 3003046 qacA SMR Antibiotic Efflux AZ42322_1 3003836 qacH MFS Antibiotic Efflux AEZ36150_1 3002707 QnrA1 Quinolone Resistance AEG7141 3002776 QnrE41 Quinolone Resistance ACG70184_1 3002777 QnrC4 Quinolone Resistance	Other ARG	AAC75089_1	3003577	PmrE
Gene Modulating Resistance WP_002530866_1 3003974 gyrA Gene Modulating Resistance BAA37152_1 3003702 gyrA parC Other ARG NP_249649_1 3003686 oprD Gene Modulating Resistance NP_249870_1 3003895 PhoP Gene Modulating Resistance NP_249871_1 3003866 gyrA Gene Modulating Resistance NP_251858_1 3003685 parE SMR Antibiotic Efflux NP_253677_1 3004038 emrE RND Antibiotic Efflux SIP52035_1 3003668 PvrR Other ARG AAM15533_1 3003046 qacA MFS Antibiotic Efflux BAJ09383_1 3003046 qacA SMR Antibiotic Efflux AAZ42322_1 3003836 qacH MFS Antibiotic Efflux AEZ36150_1 3002707 QnrA1 Quinolone Resistance AEI31272_1 3002766 QnrB41 Quinolone Resistance ACK75961_1 3002787 QnrC Quinolone Resistance ACG70184_1 3002784 QnrC5 Quinolone Re	Other ARG	AAC75314_1	3003578	PmrF
Gene Modulating Resistance BAA37152_1 3003702 gyrA parC Other ARG NP_249649_1 3003686 oprD Gene Modulating Resistance NP_249870_1 3003895 PhoP Gene Modulating Resistance NP_249871_1 3003884 gyrA Gene Modulating Resistance NP_251858_1 3003685 parE SMR Antibiotic Efflux NP_253677_1 3004038 emrE RND Antibiotic Efflux SIP52035_11 3003464 qacA Other ARG AAM15533_11 30030468 pvrR MFS Antibiotic Efflux BAJ09383_11 3003046 qacA SMR Antibiotic Efflux AAZ42322_11 3003836 qacH MFS Antibiotic Efflux AEZ36150_11 3002707 QmrA1 Quinolone Resistance AEI31272_1 3002776 QmrE41 Quinolone Resistance ACK75961_1 3002787 QmrC Quinolone Resistance ACG70184_1 3002794 QmrS5 Quinolone Resistance AEG74319_1 3002794 QmrS5 Quinolone Resis	Gene Modulating Resistance	WP_002530866_1	3003974	gyrA
Other ARG NP_249649_1 3003686 oprD Gene Modulating Resistance NP_249870_1 3003895 PhoP Gene Modulating Resistance NP_249871_1 3003884 gyrA Gene Modulating Resistance NP_251858_1 3003685 parE SMR Antibiotic Efflux NP_253654_1 3004038 emrE RND Antibiotic Efflux NP_253677_1 3004034 cpxR Other ARG AAM15533_1 3003686 pvrR MFS Antibiotic Efflux BAJ09383_11 3003046 qacA SMR Antibiotic Efflux AAZ42322_1 3003484 qepA Quinolone Resistance ABI50486_11 3002707 QmrA1 Quinolone Resistance AEL31272_1 3002787 QmrC Quinolone Resistance ACK75961_1 3002788 QmrD1 Quinolone Resistance AEG74319_1 3002794 QmrS5 Quinolone Resistance AEG74319_1 3002794 QmrS5 Quinolone Resistance AJA36815_1 3003193 QmrVC7 Quinolone Resistance	Gene Modulating Resistance	BAA37152_1	3003702	gyrA parC
Gene Modulating ResistanceNP_249870_13003895PhoPGene Modulating ResistanceNP_249871_13003896PhoQGene Modulating ResistanceNP_251858_13003684gyrAGene Modulating ResistanceNP_253674_13004038emrESMR Antibiotic EffluxNP_253677_13004038emrERND Antibiotic EffluxSIP52035_13004054CpxROther ARGAAM15533_113003046qacASMR Antibiotic EffluxBAJ09383_113003046qacASMR Antibiotic EffluxAAZ42322_13003836qacHMFS Antibiotic EffluxAEZ36150_13002707QnrA1Quinolone ResistanceABI50486_113002770QnrA1Quinolone ResistanceACK75961_13002788QnrD1Quinolone ResistanceAEG74319_13002794QnrS5Quinolone ResistanceAEG74319_13002800QnrVC3Quinolone ResistanceAJA36815_13003193QnrVC7Class A Beta-LactamaseCAA37699_13003565r39Gene Modulating Antibiotic EffluxAFK13828_1300823ramA	Other ARG	NP_249649_1	3003686	oprD
Gene Modulating ResistanceNP_249871_13003896PhoQGene Modulating ResistanceNP_251858_13003684gyrAGene Modulating ResistanceNP_253654_13003685parESMR Antibiotic EffluxNP_253677_13004038emrERND Antibiotic EffluxSIP52035_13004054CpxROther ARGAAM15533_13003046qacASMR Antibiotic EffluxBAJ09383_13003886qarASMR Antibiotic EffluxAAZ42322_13003836qacHMFS Antibiotic EffluxAAZ42322_13003448qepAQuinolone ResistanceABI50486_113002707QnrA1Quinolone ResistanceACK75961_13002776QnrC1Quinolone ResistanceACG70184_113002788QnrD1Quinolone ResistanceAEG74319_13002800QnrVC3Quinolone ResistanceAJA36815_13003193QnrVC7Class A Beta-LactamaseCAA37699_13003565r39Gene Modulating Antibiotic EffluxAFK13828_1300823ramA	Gene Modulating Resistance	NP_249870_1	3003895	PhoP
Gene Modulating ResistanceNP_251858_13003684gyrAGene Modulating ResistanceNP_253654_13003685parESMR Antibiotic EffluxNP_253677_13004038emrERND Antibiotic EffluxSIP52035_13004054CpxROther ARGAAM15533_13003688PvrRMFS Antibiotic EffluxBAJ09383_13003046qacASMR Antibiotic EffluxAAZ42322_13003836qacHMFS Antibiotic EffluxAEZ36150_13000448qepAQuinolone ResistanceABI50486_113002707QnrA1Quinolone ResistanceACK75961_13002787QnrCQuinolone ResistanceACG70184_113002788QnrD1Quinolone ResistanceAEG74319_13002794QnrS5Quinolone ResistanceAJ36815_13003193QnrVC7Class A Beta-LactamaseCAA37699_13003565r39Gene Modulating Antibiotic EffluxAFK13828_13000823ramA	Gene Modulating Resistance	NP_249871_1	3003896	PhoQ
Gene Modulating ResistanceNP_253654_13003685parESMR Antibiotic EffluxNP_253677_13004038emrERND Antibiotic EffluxSIP52035_13004054CpxROther ARGAAM15533_13003688PvrRMFS Antibiotic EffluxBAJ09383_13003046qacASMR Antibiotic EffluxAAZ42322_13003836qacHMFS Antibiotic EffluxAAZ42322_1300448qepAQuinolone ResistanceABI50486_13002707QnrA1Quinolone ResistanceAEL31272_13002786QnrB41Quinolone ResistanceACK75961_13002788QnrD1Quinolone ResistanceAEG74319_13002784QnrS5Quinolone ResistanceADI81040_13002800QnrVC3Quinolone ResistanceAJA36815_13003193QnrVC7Class A Beta-LactamaseCAA37699_13003565r39Gene Modulating Antibiotic EffluxAFK13828_1300823ramA	Gene Modulating Resistance	NP_251858_1	3003684	gyrA
SMR Antibiotic EffluxNP_253677_13004038emrERND Antibiotic EffluxSIP52035_13004054CpxROther ARGAAM15533_13003688PvrRMFS Antibiotic EffluxBAJ09383_13003046qacASMR Antibiotic EffluxAAZ42322_13003836qacHMFS Antibiotic EffluxAEZ36150_13002707QnrA1Quinolone ResistanceABI50486_13002707QnrA1Quinolone ResistanceACK75961_13002787QnrCQuinolone ResistanceACG70184_13002788QnrD1Quinolone ResistanceAEG74319_13002704QnrS5Quinolone ResistanceADI81040_13002800QnrVC3Quinolone ResistanceAJA36815_113003193QnrVC7Class A Beta-LactamaseCAA37699_13003823ramA	Gene Modulating Resistance	NP_253654_1	3003685	parE
RND Antibiotic EffluxSIP52035_13004054CpxROther ARGAAM15533_13003688PvrRMFS Antibiotic EffluxBAJ09383_13003046qacASMR Antibiotic EffluxAAZ42322_13003836qacHMFS Antibiotic EffluxAEZ36150_13000448qepAQuinolone ResistanceABI50486_13002707QnrA1Quinolone ResistanceAEL31272_13002786QnrB41Quinolone ResistanceACK75961_13002787QnrCQuinolone ResistanceACG70184_13002788QnrD1Quinolone ResistanceAEG74319_13002794QnrS5Quinolone ResistanceAJA36815_13003193QnrVC7Class A Beta-LactamaseCAA37699_13003825r39Gene Modulating Antibiotic EffluxAFK13828_13000823ramA	SMR Antibiotic Efflux	NP_253677_1	3004038	emrE
Other ARGAAM15533_13003688PvrRMFS Antibiotic EffluxBAJ09383_13003046qacASMR Antibiotic EffluxAAZ42322_13003836qacHMFS Antibiotic EffluxAEZ36150_13000448qepAQuinolone ResistanceABI50486_13002707QnrA1Quinolone ResistanceAEL31272_13002787QnrB41Quinolone ResistanceACK75961_13002787QnrCQuinolone ResistanceACG70184_13002794QnrD1Quinolone ResistanceAEG74319_13002709QnrVC3Quinolone ResistanceAJA36815_13003193QnrVC7Class A Beta-LactamaseCAA37699_13003565r39Gene Modulating Antibiotic EffluxAFK13828_1300823ramA	RND Antibiotic Efflux	SIP52035_1	3004054	CpxR
MFS Antibiotic EffluxBAJ09383_13003046qacASMR Antibiotic EffluxAAZ42322_13003836qacHMFS Antibiotic EffluxAEZ36150_13000448qepAQuinolone ResistanceABI50486_13002707QnrA1Quinolone ResistanceAEL31272_13002787QnrB41Quinolone ResistanceACK75961_13002787QnrCQuinolone ResistanceACG70184_13002788QnrD1Quinolone ResistanceAEG74319_13002794QnrS5Quinolone ResistanceADI81040_13002800QnrVC3Quinolone ResistanceAJA36815_13003193QnrVC7Class A Beta-LactamaseCAA37699_13003265r39Gene Modulating Antibiotic EffluxAFK13828_13000823ramA	Other ARG	AAM15533_1	3003688	PvrR
SMR Antibiotic EffluxAAZ42322_13003836qacHMFS Antibiotic EffluxAEZ36150_13000448qepAQuinolone ResistanceABI50486_13002707QnrA1Quinolone ResistanceAEL31272_13002756QnrB41Quinolone ResistanceACK75961_13002787QnrCQuinolone ResistanceACG70184_13002788QnrD1Quinolone ResistanceAEG74319_13002794QnrS5Quinolone ResistanceADI81040_13002800QnrVC3Quinolone ResistanceAJA36815_13003193QnrVC7Class A Beta-LactamaseCAA37699_13003565r39Gene Modulating Antibiotic EffluxAFK13828_13000823ramA	MFS Antibiotic Efflux	BAJ09383_1	3003046	qacA
MFS Antibiotic EffluxAEZ36150_13000448qepAQuinolone ResistanceABI50486_13002707QnrA1Quinolone ResistanceAEL31272_13002787QnrB41Quinolone ResistanceACK75961_13002787QnrCQuinolone ResistanceACG70184_13002788QnrD1Quinolone ResistanceAEG74319_13002794QnrS5Quinolone ResistanceADI81040_13002800QnrVC3Quinolone ResistanceAJA36815_13003193QnrVC7Class A Beta-LactamaseCAA37699_13003565r39Gene Modulating Antibiotic EffluxAFK13828_1300823ramA	SMR Antibiotic Efflux	AAZ42322_1	3003836	qacH
Quinolone ResistanceABI50486_13002707QnrA1Quinolone ResistanceAEL31272_13002756QnrB41Quinolone ResistanceACK75961_13002787QnrCQuinolone ResistanceACG70184_13002788QnrD1Quinolone ResistanceAEG74319_13002794QnrS5Quinolone ResistanceADI81040_13002800QnrVC3Quinolone ResistanceAJA36815_13003193QnrVC7Class A Beta-LactamaseCAA37699_13003565r39Gene Modulating Antibiotic EffluxAFK13828_1300823ramA	MFS Antibiotic Efflux	AEZ36150_1	3000448	qepA
Quinolone ResistanceAEL31272_13002756QnrB41Quinolone ResistanceACK75961_13002787QnrCQuinolone ResistanceACG70184_13002788QnrD1Quinolone ResistanceAEG74319_13002794QnrS5Quinolone ResistanceADI81040_13002800QnrVC3Quinolone ResistanceAJA36815_13003193QnrVC7Class A Beta-LactamaseCAA37699_13003565r39Gene Modulating Antibiotic EffluxAFK13828_1300823ramA	Quinolone Resistance	ABI50486_1	3002707	QnrA1
Quinolone ResistanceACK75961_13002787QnrCQuinolone ResistanceACG70184_13002788QnrD1Quinolone ResistanceAEG74319_13002794QnrS5Quinolone ResistanceADI81040_13002800QnrVC3Quinolone ResistanceAJA36815_13003193QnrVC7Class A Beta-LactamaseCAA37699_13003565r39Gene Modulating Antibiotic EffluxAFK13828_1300823ramA	Quinolone Resistance	AEL31272_1	3002756	QnrB41
Quinolone ResistanceACG70184_13002788QnrD1Quinolone ResistanceAEG74319_13002794QnrS5Quinolone ResistanceADI81040_13002800QnrVC3Quinolone ResistanceAJA36815_13003193QnrVC7Class A Beta-LactamaseCAA37699_13003565r39Gene Modulating Antibiotic EffluxAFK13828_1300823ramA	Quinolone Resistance	ACK75961_1	3002787	QnrC
Quinolone ResistanceAEG74319_13002794QnrS5Quinolone ResistanceADI81040_13002800QnrVC3Quinolone ResistanceAJA36815_13003193QnrVC7Class A Beta-LactamaseCAA37699_13003565r39Gene Modulating Antibiotic EffluxAFK13828_13000823ramA	Quinolone Resistance	ACG70184_1	3002788	QnrD1
Quinolone ResistanceADI81040_13002800QnrVC3Quinolone ResistanceAJA36815_13003193QnrVC7Class A Beta-LactamaseCAA37699_13003565r39Gene Modulating Antibiotic EffluxAFK13828_13000823ramA	Quinolone Resistance	AEG74319_1	3002794	QnrS5
Quinolone ResistanceAJA36815_13003193QnrVC7Class A Beta-LactamaseCAA37699_13003565r39Gene Modulating Antibiotic EffluxAFK13828_13000823ramA	Quinolone Resistance	ADI81040_1	3002800	QnrVC3
Class A Beta-LactamaseCAA37699_13003565r39Gene Modulating Antibiotic EffluxAFK13828_13000823ramA	Quinolone Resistance	AJA36815_1	3003193	QnrVC7
Gene Modulating Antibiotic Efflux AFK13828_1 3000823 ramA	Class A Beta-Lactamase	CAA37699_1	3003565	r39
	Gene Modulating Antibiotic Efflux	AFK13828_1	3000823	ramA

Other ARG	ADV91011_1	3000245	RbpA
Rifampin Resistance	AFO53532_1	3002883	rgt1438
RNA Methyltransferase	AJD73064_1	3001301	RImA(II)
Class B Beta-Lactamase	AGU01679_2	3003894	Rm3
RNA Methyltransferase	BAC20579_1	3000859	rmtA
RNA Methyltransferase	YP_001816610_1	3000860	rmtB
RNA Methyltransferase	AIA09786_1	3000861	rmtC
RNA Methyltransferase	ABY64751_1	3002667	rmtD
RNA Methyltransferase	AFJ11385_1	3002666	rmtF
RNA Methyltransferase	AGE00988_1	3002668	rmtG
RNA Methyltransferase	AGH19769_1	3003198	rmtH
Class A Beta-Lactamase	CAA37052_1	3002995	ROB-1
RND Antibiotic Efflux	AFK13827_1	3000825	robA
IFS Antibiotic Efflux	AAC60781_1	3003048	rosA
IFS Antibiotic Efflux	AAC60780_1	3003049	rosB
Rifampin Resistance	AIA08936_1	3000444	rphA
Rifampin Resistance	APB03222_1	3003992	rphB
etracycline Resistance	YP_208874_1	3003930	rpsJ
BC-F Ribosomal Protection	AGN74946	3003749	salA
RND Antibiotic Efflux	ACH50230_1	3003379	ramR
Gene Modulating Resistance	NP_461214_1	3003926	gyrA
Sene Modulating Resistance	NP_462089_1	3003939	parC
Sene Modulating Resistance	NP_462096_1	3003317	parE
Other ARG	BAD95494_1	3002895	SAT-1
Other ARG	CAA88265_1	3002898	SAT-3
Other ARG	AAB53445_1	3002897	SAT-4
Gene Modulating Resistance	YP_186749_1	3000489	sav1866
RND Antibiotic Efflux	NP_460903_1	3000826	sdiA
Class A Beta-Lactamase	AAK63223_1	3003561	Sed1
Class B Beta-Lactamase	AAT90847_1	3003557	SFB-1
Class B Beta-Lactamase	AAF09244_1	3000849	SFH-1
RNA Methyltransferase	WP_063978071_1	3000862	sgm
Class A Beta-Lactamase	CAQ03505_1	3001338	SHV-100
Class B Beta-Lactamase	ACT66697_1	3000846	SIM-1
Class B Beta-Lactamase	AAT90846_1	3003556	SLB-1
Class B Beta-Lactamase	BAL14456_1	3000854	SMB-1
Class A Beta-Lactamase	AAG29813_1	3002380	SME-2
RND Antibiotic Efflux	 AAD51344_1	3003051	smeA
RND Antibiotic Efflux		3003052	smeB
RND Antibiotic Efflux	 AAD51346_1	3003053	smeC
RND Antibiotic Efflux	 CAC14594_1	3003055	smeD

RND Antibiotic Efflux	CAC14595_1	3003056	smeE
RND Antibiotic Efflux	CAC14596_1	3003057	smeF
RND Antibiotic Efflux	AAD51348_1	3003066	smeR
RND Antibiotic Efflux	AAD51347_1	3003067	smeS
Aminoglycoside Nucleotidyltransferase	AGW81558_1	3002631	spd
Class B Beta-Lactamase	AJP77080	3003720	SPG-1
Class B Beta-Lactamase	CAD37801_1	3003793	SPM-1
ABC-F Ribosomal Protection	CAA45050_1	3002828	srmB
Class A Beta-Lactamase	BAA23130_1	3002493	SRT-1
Gene Modulating Resistance	ADJ67256	3003319	mprF
Gene Modulating Resistance	WP_001025093	3003323	pgsA
Gene Modulating Resistance	YP_039482_1	3003301	gyrB
Gene Modulating Resistance	YP_039483_1	3003296	gyrA
Gene Modulating Resistance	YP_039996_1	3003285;3003287	rpoB
Gene Modulating Resistance	YP_039997_1	3003291	rpoC
Gene Modulating Resistance	YP_040771_1	3003315	parE
Gene Modulating Resistance	YP_500802_1	3003074	cls
Gene Modulating Resistance	AAK74984_1	3003311	parC
Gene Modulating Resistance	AAL97684_1	3003387	folP
Penicillin-binding Protein	AFC91828_1	3003041	PBP1a
Penicillin-binding Protein	AFC91898_1	3003043	PBP2x
Penicillin-binding Protein	NP_359110_1	3003042	PBP2b
Gene Modulating Resistance	Q8DWT2	3003774	mprF
Gene Modulating Resistance	AAO47226_2	3003318	parY
Gene Modulating Resistance	CAA67349_1	3003359	EF-Tu
Gene Modulating Resistance	AEJ33969_1	3000410	sul1
Gene Modulating Resistance	AAL59753_1	3000412	sul2
Gene Modulating Resistance	ACJ63260_1	3000413	sul3
Gene Modulating Resistance	APB03219_1	3003986	TaeA
MFS Antibiotic Efflux	CAA03986_1	3000343	tap
MFS Antibiotic Efflux	AAA67509_1	3003554	tcmA
MFS Antibiotic Efflux	BAA07390_1	3002893	tcr3
Class A Beta-Lactamase	AHA80960_1	3001388	TEM-211
MFS Antibiotic Efflux	AAD09860_1	3000561	tet(30)
MFS Antibiotic Efflux	CAC80727_1	3000476	tet(31)
MFS Antibiotic Efflux	CAD12227_1	3000478	tet(33)
Gene Modulating Resistance	AAK37619_1	3000481	tet(35)
MFS Antibiotic Efflux	AAV80464_1	3000565	tet(38)
MFS Antibiotic Efflux	AAW66497_1	3000566	tet(39)
MFS Antibiotic Efflux	AFK31666_1	3000567	tet(40)

MFS Antibiotic Efflux	ACD35503_1	3000572	tet(42)
MFS Antibiotic Efflux	ACS83748_1	3000573	tet(43)
MFS Antibiotic Efflux	ADE08374_2	3003196	tet(45)
MFS Antibiotic Efflux	YP_007503840_1	3000165	tet(A)
MFS Antibiotic Efflux	AAO16462_1	3000167	tet(C)
MFS Antibiotic Efflux	CAE51745_1	3000168	tet(D)
MFS Antibiotic Efflux	AAA71915_1	3000173	tet(E)
MFS Antibiotic Efflux	AAD25538_1	3000174	tet(G)
MFS Antibiotic Efflux	CAA75663_1	3000175	tet(H)
MFS Antibiotic Efflux	AAD12753_1	3000177	tet(J)
MFS Antibiotic Efflux	YP_003283625_1	3000178	tet(K)
VFS Antibiotic Efflux	AAA22851_1	3000179	tet(L)
MFS Antibiotic Efflux	AAB84282_1	3000181	tet(V)
MFS Antibiotic Efflux	AAC72341_1	3000182	tet(Y)
VIFS Antibiotic Efflux	AAD25063_1	3000183	tet(Z)
Tetracycline Resistance	CAC41371_1	3000196	tet32
Tetracycline Resistance	BAB59035_1	3002870	tet34
Tetracycline Resistance	CAD55718_1	3000197	tet36
Fetracycline Resistance	AAN28721_1	3002871	tet37
Tetracycline Resistance	CBH51823_1	3000556	tet44
Gene Modulating Resistance	AET10444_1	3004032	tetA(46)
MFS Antibiotic Efflux	APB03214_1	3003980	tetA(48)
Gene Modulating Resistance	ANZ79240_1	3004035	tetA(60)
VIFS Antibiotic Efflux	AAA20116_1	3000180	tetA(P)
Gene Modulating Resistance	AET10445_1	3004033	tetB(46)
MFS Antibiotic Efflux	APB03215_1	3003981	tetB(48)
Gene Modulating Resistance	ANZ79241_1	3004036	tetB(60)
Tetracycline Resistance	AAA20117_1	3000195	tetB(P)
Fetracycline Resistance	CAJ67339 1	3000186	tetM
Tetracycline Resistance	AAA23033_1	3000190	tetO
Tetracycline Resistance	 CAA79727_1	3000191	tetQ
MFS Antibiotic Efflux	CAD09823_1	3003479	tetR
Tetracycline Resistance		3000192	tetS
Tetracycline Resistance	 AAF01499 1	3000193	tetT
Tetracycline Resistance		3000194	tetW
retracycline Resistance	 AAA27471 1	3000205	tetX
Class B Beta-Lactamase	 CAC33832_1	3000851	THIN-B
Class A Beta-Lactamase		3003202	TLA-1
	· · · · · · · · · · · · · · · · · · ·		
Class A Beta-Lactamase	CAG27800 1	3003203	TLA-2
Class A Beta-Lactamase Class A Beta-Lactamase	CAG27800_1 AAA19882 1	3003203 3003562	TLA-2 TLE

Dick ARG CAB12108_2 S00224 uit Gene Medulating Resistance ACN32294_11 3000379 TriA RND Antibiotic Efflux NP_248846_11 3003680 TriB RND Antibiotic Efflux NP_248846_11 3003680 TriB RND Antibiotic Efflux NP_248846_11 3003680 TriB RND Antibiotic Efflux NP_248847_11 3003080 TriC Gane Medulating Resistance WP_04025678_11 3003030 gyrB Gene Modulating Resistance WP_010891766_1 3003000 vanA Glycopeptide Resistance AAA65956_1 3000010 vanA Glycopeptide Resistance AAA24786_1 3000290 vanD Glycopeptide Resistance AAA24786_1 3002909 vanD Glycopeptide Resistance AAA24786_1 3002909 vanH Glycopeptide Resistance AAA58603_1 3002909 vanH Glycopeptide Resistance AAA58602_1 3002942 vanHB Glycopeptide Resistance AAA69562_1 3002944 vanHG	ABC-E Ribosomal Protection	AAA26832 1	3002827	tirC
Chen McG Chen Z 100_2 300003 Initial Gene Modulating Resistance NP_248846_1 3000237 TriA RND Antibiotic Efflux NP_248846_1 3000380 TriB RND Antibiotic Efflux NP_248846_1 3000380 TriB RND Antibiotic Efflux NP_248846_1 3000380 tsrr Class B Beta-Lactamase CCP44409_1 3000306 tsrr Class B Beta-Lactamase AN83648_1 3000305 gyrB Gene Modulating Resistance WP_010891786_1 3003005 yarA Glycopeptide Resistance AAA65956_1 3000010 vanA Glycopeptide Resistance AAA63956_1 3000005 vanD Glycopeptide Resistance AAA424786_1 3000290 vanE Glycopeptide Resistance AAA09849_1 3000290 vanB Glycopeptide Resistance AAA65955_1 3002290 vanG Glycopeptide Resistance AAA65952_1 3002942 vanHA Glycopeptide Resistance AAA65952_1 3002944 vanHD G	Other APG	CAR12108 2	3002027	tmrB
Cande modulating Resistance ACR0253-1 300327 TriA RND Artibiotic Efflux NP_248846_11 3003680 TriB RND Artibiotic Efflux NP_248846_11 3003681 TriC RND Artibiotic Efflux NP_248846_11 3003681 TriC Class B Beta-Lactamase ANA63648_1 3003006 tsnr Class B Beta-Lactamase ANA63648_1 30030300 garC Gene Modulating Resistance WP_004025678_11 3003001 vanA Glycopeptide Resistance AAA635956_1 3000010 vanA Glycopeptide Resistance AAA24766_1 3000058 vanC Glycopeptide Resistance AAA24746_1 3002907 vanE Glycopeptide Resistance AAA247456_1 3002909 vanG Glycopeptide Resistance AAA65955_1 3002909 vanG Glycopeptide Resistance AAA65955_1 3002942 vanHA Glycopeptide Resistance AAA089860_1 3002942 vanHB Glycopeptide Resistance AAA65955_1 3002942 vanHG	Cone Modulating Posistance	ACN32204 1	3003039	talC
NHD Antibiotic Efflux NP_248847_1 300369 TriB RND Antibiotic Efflux NP_248847_11 3003681 TriC RND Antibiotic Efflux NP_248848_11 3003681 TriC Class B Beta-Ladmase CCP44409_1 300305 gyrB Gene Modulating Resistance WP_010891786_1 300305 gyrB Gene Modulating Resistance AA65956_1 3003010 vanA Glycopeptide Resistance AAA4786_1 3000010 vanB Glycopeptide Resistance AAA24786_1 3002908 vanC Glycopeptide Resistance AAA24786_1 3002907 vanE Glycopeptide Resistance AAA27442_1 3002907 vanF Glycopeptide Resistance AAA55802_1 3002942 vanHA Glycopeptide Resistance AAA65955_1 3002944 vanHA Glycopeptide Resistance AAA65950_1 3002944 vanHA Glycopeptide Resistance AAA41409_1 3002944 vanHA Glycopeptide Resistance AAA247863_1 3002914 vanIA		ND 248846 1	3003670	
NND Antibiotic Efflux NP_248848_1 3003061 TriC rRND Antibiotic Efflux NP_248848_1 3003060 tsnr Class B beta-Lactamase AAN3648_1 3003030 psr Gene Modulating Resistance WP_004025678_1 3003309 parC Glycopeptide Resistance WP_010891786_1 30030010 vanA Glycopeptide Resistance AAA65956_1 3000010 vanA Glycopeptide Resistance AAA424786_1 3002007 vanB Glycopeptide Resistance AAA24786_1 3002007 vanE Glycopeptide Resistance AAA24786_1 3002907 vanE Glycopeptide Resistance AAA65955_1 3002940 vanF Glycopeptide Resistance AAB65955_1 3002941 vanHD Glycopeptide Resistance AAA65960_1 3002942 vanHD Glycopeptide Resistance AAA65960_1 3002945 vanHD Glycopeptide Resistance APA478602_1 3002945 vanHD Glycopeptide Resistance APA56802_1 3002747 vanHD	RND Antibiotic Efflux	NF_240040_1 NF 248847_1	3003680	TriB
NRD Attributor Eliniza NP_240405_1 3003001 INC RNA Methylityransferase CCP44409_1 3003000 tsnr Class B Beta-Lactamase AAN63648_1 3003305 gyrB Gene Modulating Resistance WP_010891786_1 3003010 vanA Glycopeptide Resistance AAA65956_1 3000101 vanA Glycopeptide Resistance AAA27476_1 3002007 vanB Glycopeptide Resistance AAA27442_1 3002007 vanD Glycopeptide Resistance AAA27442_1 3002909 vanG Glycopeptide Resistance AAA65956_1 3002909 vanG Glycopeptide Resistance AAA27442_1 3002909 vanG Glycopeptide Resistance AAA65956_1 3002942 vanHA Glycopeptide Resistance AAB05626_1 3002942 vanHA Glycopeptide Resistance AAA65960_1 3002944 vanHB Glycopeptide Resistance AAC6260_1 3002947 vanHF Glycopeptide Resistance APE36802_1 3002947 vanH	RND Antibiotic Efflux	NI _248047_1	3003681	
NAM. methylitalistase COL 94402_1 3000084 TUS-1 Gene Modulating Resistance WP_004025678_1 3003030 gyrB Gene Modulating Resistance WP_010891786_1 3003010 vanA Glycopeptide Resistance AAA65956_1 3000010 vanA Glycopeptide Resistance AAA24786_1 3000010 vanB Glycopeptide Resistance AAA24786_1 3000200 vanE Glycopeptide Resistance AAA24786_1 3002900 vanE Glycopeptide Resistance AAA24786_1 3002900 vanE Glycopeptide Resistance AAA595601 3002909 vanH Glycopeptide Resistance AAA65955_1 3002942 vanHB Glycopeptide Resistance AAA65950_1 3002944 vanHD Glycopeptide Resistance AAC42860_1 3002947 vanHG Glycopeptide Resistance ACL22960_1 3002947 vanHG Glycopeptide Resistance AP629633_1 3003723 vanI Glycopeptide Resistance AP629787 3002941 vanJ	rRNA Methyltransferase	$CCP_{14400} 1$	3003060	tenr
Class D Detail: Stature VP_004025678_1 3030305 gyrB Gene Modulating Resistance WP_010891786_1 3003305 gyrB Gene Modulating Resistance AAA65956_1 3000010 vanA Glycopeptide Resistance AAA424786_1 3000015 vanB Glycopeptide Resistance AAA04786_1 3002907 vanE Glycopeptide Resistance AAA34786_1 3002909 vanG Glycopeptide Resistance AAA34786_1 3002909 vanF Glycopeptide Resistance AAA34786_1 3002909 vanF Glycopeptide Resistance AAA65955_1 3002942 vanHA Glycopeptide Resistance AAA699850_1 3002944 vanHB Glycopeptide Resistance AAA698051_1 3002947 vanHB Glycopeptide Resistance ACL82960_1 3002947 vanHM Glycopeptide Resistance APG96393_1 3003723 vanI Glycopeptide Resistance APE96393_1 3002914 vanJ Glycopeptide Resistance ABS4687_1 3002911 vanM	Class B Bata I actamase	AAN63648 1	3000844	
Contention (1) Contention (1) Contention (1) Contention (1) Contention (1) Contention (1) Glycopeptide Resistance AAA65956_1 3000010 vanA Glycopeptide Resistance AAA64786_1 3000005 vanD Glycopeptide Resistance AAA04786_1 3000005 vanD Glycopeptide Resistance AAA127442_1 3002907 vanE Glycopeptide Resistance AAA54786_1 3002909 vanF Glycopeptide Resistance AAA65955_1 3002942 vanHA Glycopeptide Resistance AAA65955_1 3002943 vanHB Glycopeptide Resistance AAA65955_1 3002944 vanHD Glycopeptide Resistance AAA65962_1 3002944 vanHD Glycopeptide Resistance AAF36802_1 3002944 vanHD Glycopeptide Resistance AAA441499_1 3002944 vanHO Glycopeptide Resistance APA36305 3003723 vanI Glycopeptide Resistance ABA54687_1 3002914 vanJ Glycopeptide Resistance	Gene Modulating Resistance	WP 004025678 1	3003305	avrB
Continuouting iterationContentionContentionGlycopeptide ResistanceAAA65956_13000010vanAGlycopeptide ResistanceAAA624786_13000036vanCGlycopeptide ResistanceAAA24786_13000200vanEGlycopeptide ResistanceAAA24786_13002907vanEGlycopeptide ResistanceAAA736803_13002909vanFGlycopeptide ResistanceAAA65955_13002942vanHAGlycopeptide ResistanceAAA65955_13002943vanHBGlycopeptide ResistanceAAA659050_13002944vanHDGlycopeptide ResistanceAAF36802_13002944vanHDGlycopeptide ResistanceAAF36802_13002944vanHDGlycopeptide ResistanceAAF36802_13002944vanHCGlycopeptide ResistanceAAF36802_13002944vanHGGlycopeptide ResistanceAF2690_13002947vanHGGlycopeptide ResistanceAF296393_13003727vanKIGlycopeptide ResistanceNP_6277873002914vanJGlycopeptide ResistanceACL82961_13002910vanLGlycopeptide ResistanceACL82961_13002911vanOGlycopeptide ResistanceAAA65953_13002912vanRGlycopeptide ResistanceAAA65953_13002912vanRGlycopeptide ResistanceAAA65953_13002922vanREGlycopeptide ResistanceAAA65953_13002922vanRGGlycopeptide ResistanceAAA65953_13002924vanR	Gene Modulating Resistance	WP 010891786 1	3003309	parC
Biological ProductionBiological ProductionGlycopeptide ResistanceAH483938_113000013vanBGlycopeptide ResistanceAAA24786_13002005vanDGlycopeptide ResistanceAAL27442_13002907vanEGlycopeptide ResistanceAAF36803_113002908vanFGlycopeptide ResistanceAAA65955_13002942vanHAGlycopeptide ResistanceAAA65955_13002943vanHBGlycopeptide ResistanceAAA66955_13002944vanHDGlycopeptide ResistanceAAA66955_13002944vanHDGlycopeptide ResistanceAAA609850_13002944vanHDGlycopeptide ResistanceAAA68950_13002945vanHGGlycopeptide ResistanceAAA29860_13002947vanHMGlycopeptide ResistanceACL82960_13002947vanHMGlycopeptide ResistanceAPA677873002914vanJGlycopeptide ResistanceNP_6277873002914vanJGlycopeptide ResistanceACL82961_13002911vanMGlycopeptide ResistanceACL82961_13002912vanNGlycopeptide ResistanceAAA65953_13002912vanNGlycopeptide ResistanceAAA65953_13002922vanREGlycopeptide ResistanceAAA65953_13002922vanREGlycopeptide ResistanceAAA65953_13002922vanREGlycopeptide ResistanceAAA65953_13002924vanREGlycopeptide ResistanceAAA65953_13002924vanRE <td>Glycopentide Resistance</td> <td>AAA65956 1</td> <td>3000010</td> <td>vanA</td>	Glycopentide Resistance	AAA65956 1	3000010	vanA
BiosphereAAA24766_1300036vanCGlycopeptide ResistanceAAA27442_13002907vanDGlycopeptide ResistanceAAL27442_13002907vanEGlycopeptide ResistanceAAA27442_13002908vanFGlycopeptide ResistanceAAA65955_13002908vanHAGlycopeptide ResistanceAAA65955_13002942vanHAGlycopeptide ResistanceAAA65955_13002944vanHBGlycopeptide ResistanceAAA65950_13002944vanHBGlycopeptide ResistanceAAA636802_13002947vanHBGlycopeptide ResistanceAAC36802_13002947vanHGGlycopeptide ResistanceAAA63983_13003723vanHGlycopeptide ResistanceAFA41499_13002947vanHGGlycopeptide ResistanceNP_6277873002914vanJGlycopeptide ResistanceNP_6277873002910vanLGlycopeptide ResistanceACL82960_13003727vanKIGlycopeptide ResistanceAAA65953_13002910vanLGlycopeptide ResistanceAAA65953_13002910vanLGlycopeptide ResistanceAAA65953_13002921vanRAGlycopeptide ResistanceAAA65953_13002921vanRAGlycopeptide ResistanceAAA65953_13002921vanRAGlycopeptide ResistanceAAA65953_13002921vanRCGlycopeptide ResistanceAAA65953_13002921vanRCGlycopeptide ResistanceAAA65951_13002922vanRC <td>Glycopeptide Resistance</td> <td>AHH83938 1</td> <td>3000013</td> <td>vanB</td>	Glycopeptide Resistance	AHH83938 1	3000013	vanB
Clycopeptide ResistanceAAM09849_13000005vanDGlycopeptide ResistanceAAL27442_13002907vanEGlycopeptide ResistanceAAF36803_13002908vanFGlycopeptide ResistanceAAA65955_13002942vanHAGlycopeptide ResistanceAAA65955_13002942vanHBGlycopeptide ResistanceAAB05626_13002944vanHBGlycopeptide ResistanceAAB05626_13002944vanHBGlycopeptide ResistanceAAA639850_13002945vanHFGlycopeptide ResistanceAAF36802_113002947vanHFGlycopeptide ResistanceAAF36802_113002948vanHOGlycopeptide ResistanceAAF36802_113002947vanHGlycopeptide ResistanceAPP6393_13003723vanIGlycopeptide ResistanceAPA277873002914vanJGlycopeptide ResistanceWP_0114613063003727vanKIGlycopeptide ResistanceACL82961_13002911vanMGlycopeptide ResistanceAAA65953_13002911vanNGlycopeptide ResistanceAAA65953_13002919vanRGlycopeptide ResistanceAAA65953_130029219vanRGlycopeptide ResistanceAAA65953_130029219vanRGlycopeptide ResistanceAAA65953_130029219vanRGlycopeptide ResistanceAAA65953_130029219vanRGlycopeptide ResistanceAAA65953_13002922vanRCGlycopeptide ResistanceAAAF36641_13002	Glycopeptide Resistance	AAA24786 1	3000368	vanC
Glycopeptide ResistanceAAL27442_13002907vanEGlycopeptide ResistanceAAF36803_13002908vanFGlycopeptide ResistanceAAA65955_13002942vanHAGlycopeptide ResistanceAAA65955_13002943vanHBGlycopeptide ResistanceAAA009850_13002944vanHBGlycopeptide ResistanceAAM09850_13002944vanHDGlycopeptide ResistanceAAF36802_13002945vanHFGlycopeptide ResistanceAAF36802_13002947vanHDGlycopeptide ResistanceACL82960_13002948vanHOGlycopeptide ResistanceAL277873002914vanJGlycopeptide ResistanceNP_6277873002914vanJGlycopeptide ResistanceABX64687_13002910vanLGlycopeptide ResistanceABX64687_13002910vanLGlycopeptide ResistanceAAA65953_13002912vanNGlycopeptide ResistanceAAA65953_13002919vanRGlycopeptide ResistanceAAA65953_13002919vanRGlycopeptide ResistanceAAA65953_13002919vanRAGlycopeptide ResistanceAAA65953_13002921vanRBGlycopeptide ResistanceAAA65641_13002922vanRBGlycopeptide ResistanceAAA65641_13002923vanRBGlycopeptide ResistanceAAA65641_13002924vanREGlycopeptide ResistanceAAA65641_13002925vanRGGlycopeptide ResistanceAAA65641_13002925 <td>Glycopeptide Resistance</td> <td>AAM09849 1</td> <td>3000005</td> <td>vanD</td>	Glycopeptide Resistance	AAM09849 1	3000005	vanD
Glycopeptide ResistanceAAF36803_13002909vanFGlycopeptide ResistanceABA71731_13002909vanGGlycopeptide ResistanceAAA65955_13002942vanHBGlycopeptide ResistanceAAB05626_13002943vanHBGlycopeptide ResistanceAAM09850_13002945vanHDGlycopeptide ResistanceAAF36802_13002947vanHFGlycopeptide ResistanceACL82960_13002947vanHGGlycopeptide ResistanceAF36803_113002948vanHOGlycopeptide ResistanceAEP66393_13003723vanIGlycopeptide ResistanceAEP66393_13003723vanIGlycopeptide ResistanceNP_6277873002914vanJGlycopeptide ResistanceNP_6277873002910vanLGlycopeptide ResistanceACL82961_13002910vanLGlycopeptide ResistanceACL82961_13002911vanMGlycopeptide ResistanceAAA65953_13002912vanNGlycopeptide ResistanceAAA65953_13002913vanOGlycopeptide ResistanceAAA65953_13002921vanRBGlycopeptide ResistanceAAA65953_13002921vanRBGlycopeptide ResistanceAAA65953_13002922vanRCGlycopeptide ResistanceAAA6641_13002922vanRCGlycopeptide ResistanceAAA86641_13002925vanREGlycopeptide ResistanceAAR84672_13002925vanRGGlycopeptide ResistanceAAR84672_13002925	Glycopeptide Resistance	AAL27442 1	3002907	vanE
Glycopeptide Resistance ABA71731_1 300290 vanG Glycopeptide Resistance AAA65955_1 3002942 vanHA Glycopeptide Resistance AAB05626_1 3002943 vanHB Glycopeptide Resistance AAF36802_1 3002944 vanHD Glycopeptide Resistance AAF36802_1 3002947 vanHK Glycopeptide Resistance ACL82960_1 3002947 vanHM Glycopeptide Resistance AFA41499_1 3002947 vanHM Glycopeptide Resistance AFA736802_1 3002947 vanHM Glycopeptide Resistance AFA736802_1 3002947 vanHM Glycopeptide Resistance AFA63803_1 3003723 vanI Glycopeptide Resistance NP_627787 3002914 vanJ Glycopeptide Resistance MP_011461306 3003727 vanKI Glycopeptide Resistance AEX54687_1 3002910 vanL Glycopeptide Resistance AFA41500_1 3002910 vanL Glycopeptide Resistance AFA41500_1 3002912 vanN Glycopeptide Resistance AFA65953_1 3002919 vanRA Glycopeptide Resistance AFA65953_1 3002919 vanRA Glycopeptide Resistance AAA65953_1 3002919 vanRA Glycopeptide Resistance AAA65953_1 3002912 vanN Glycopeptide Resistance AAA65953_1 3002912 vanR Glycopeptide Resistance AAA6657_1 3002921 vanRB Glycopeptide Resistance AAA6657_1 3002921 vanRB Glycopeptide Resistance AAA66562_1 3002921 vanRB Glycopeptide Resistance AAA65953_1 3002921 vanRB Glycopeptide Resistance AAA66562_1 3002922 vanRC Glycopeptide Resistance AAA66562_1 3002922 vanRC Glycopeptide Resistance AAA65651_1 3002922 vanRC Glycopeptide Resistance AAA66641_1 3002922 vanRC Glycopeptide Resistance AAA6647_1 3002922 vanRC Glycopeptide Resistance AAA6647_1 3002922 vanRC Glycopeptide Resistance AAA6562_1 3002922 vanRC Glycopeptide Resistance AAA6567_1 3002922 vanRC Glycopeptide Resistance AAR6467_1 3002925 vanRF Glycopeptide Resistance AAR64672_1 3002927 vanRL Glycopeptide Resistance ABA7172_1 3002926 vanRG Glycopeptide Resistance ABA7172_1 3002927 vanRL Glycopeptide Resistance ABA54691_1 3002927 vanRL Glycopeptide Resistance AB254691_1 3002927 vanRL Glycopeptide Resistance AB254691_1 3002927 vanRL	Glycopeptide Resistance	 AAF36803_1	3002908	vanF
Glycopeptide ResistanceAAA65955_13002942vanHAGlycopeptide ResistanceAAB05626_13002943vanHBGlycopeptide ResistanceAAM09850_13002944vanHDGlycopeptide ResistanceAAF36802_13002945vanHFGlycopeptide ResistanceAACL82960_13002947vanHMGlycopeptide ResistanceAAL41499_13002948vanHOGlycopeptide ResistanceAHA41499_13003723vanIGlycopeptide ResistanceAPE96393_13003723vanIGlycopeptide ResistanceNP_6277873002914vanJGlycopeptide ResistanceWP_0114613063003727vanKIGlycopeptide ResistanceAEX54687_13002910vanLGlycopeptide ResistanceAEA65953_13002912vanNGlycopeptide ResistanceAAA65953_13002912vanNGlycopeptide ResistanceAAA65953_13002919vanRAGlycopeptide ResistanceAAA65622_13002912vanRBGlycopeptide ResistanceAAA65622_13002922vanRCGlycopeptide ResistanceAAA6562_13002922vanRCGlycopeptide ResistanceAAA6672_13002924vanREGlycopeptide ResistanceAAA84672_13002925vanRFGlycopeptide ResistanceAAR84672_13002927vanRIGlycopeptide ResistanceAAR4672_13002927vanRIGlycopeptide ResistanceAAR4672_13002927vanRIGlycopeptide ResistanceABA71727_13002928	Glycopeptide Resistance	ABA71731 1	3002909	vanG
DescriptionDescriptionGlycopeptide ResistanceAAB05626_13002943vanHBGlycopeptide ResistanceAAF36802_13002945vanHFGlycopeptide ResistanceACL82960_13002947vanHMGlycopeptide ResistanceACL82960_13002948vanHOGlycopeptide ResistanceAHA41499_13002948vanHOGlycopeptide ResistanceAEP96393_13003723vanIGlycopeptide ResistanceNP_6277873002914vanJGlycopeptide ResistanceWP_0114613063003727vanKIGlycopeptide ResistanceARS4687_13002910vanLGlycopeptide ResistanceACL82961_13002911vanMGlycopeptide ResistanceACL82961_13002912vanNGlycopeptide ResistanceAAE74050_13002913vanOGlycopeptide ResistanceAAA65953_13002913vanOGlycopeptide ResistanceAAA65953_13002921vanRBGlycopeptide ResistanceAAA80562_13002922vanRCGlycopeptide ResistanceAAA86641_13002922vanREGlycopeptide ResistanceAAA84672_13002924vanREGlycopeptide ResistanceAAR84672_13002925vanRFGlycopeptide ResistanceAAR84672_13002927vanRIGlycopeptide ResistanceAAR84672_13002927vanRIGlycopeptide ResistanceAAR84672_13002927vanRIGlycopeptide ResistanceAAR84672_13002927vanRIGlycopep	Glycopeptide Resistance	AAA65955 1	3002942	vanHA
Giycopeptide ResistanceAAM09850_13002944vanHDGiycopeptide ResistanceAAF36802_13002945vanHFGiycopeptide ResistanceACL82960_13002947vanHMGiycopeptide ResistanceAL2960_13002948vanHOGiycopeptide ResistanceAEP96393_13003723vanIGiycopeptide ResistanceNP_6277873002914vanJGiycopeptide ResistanceWP_0114613063003727vanKIGiycopeptide ResistanceABX54687_13002910vanLGiycopeptide ResistanceACL82961_13002911vanMGiycopeptide ResistanceAEP40500_13002912vanNGiycopeptide ResistanceAAA65953_13002913vanOGiycopeptide ResistanceAAA65953_13002919vanRAGiycopeptide ResistanceAAA65953_13002921vanRBGiycopeptide ResistanceAAA65953_13002921vanRCGiycopeptide ResistanceAAA65953_13002922vanRCGiycopeptide ResistanceAAA8651_13002922vanRCGiycopeptide ResistanceAAA1727_13002925vanRFGiycopeptide ResistanceAAR84672_13002925vanRGGiycopeptide ResistanceABX54691_13002927vanRIGiycopeptide ResistanceABX54691_13002927vanRIGiycopeptide ResistanceABX54691_13002927vanRIGiycopeptide ResistanceABX54691_13002927vanRIGiycopeptide ResistanceABX54691_13002927<	Glycopeptide Resistance	 AAB05626 1	3002943	vanHB
Glycopeptide Resistance AAF36802_1 3002945 vanHF Glycopeptide Resistance ACL82960_1 3002947 vanHM Glycopeptide Resistance AHA41499_1 3002948 vanHO Glycopeptide Resistance AEP96393_1 3003723 vanI Glycopeptide Resistance NP_627787 3002914 vanJ Glycopeptide Resistance WP_011461306 3003727 vanKI Glycopeptide Resistance ABX54687_1 3002910 vanL Glycopeptide Resistance ACL82961_1 3002911 vanM Glycopeptide Resistance AEP40500_1 3002912 vanN Glycopeptide Resistance AAA65953_11 3002913 vanO Glycopeptide Resistance AAA65953_11 3002921 vanRB Glycopeptide Resistance AAA65953_11 3002922 vanRC Glycopeptide Resistance AAAF86641_1 3002923 vanRD Glycopeptide Resistance AAR48672_1 3002924 vanRE Glycopeptide Resistance ABA71727_1 3002925 vanRI <	Glycopeptide Resistance	 AAM09850_1	3002944	vanHD
Glycopeptide ResistanceACL82960_13002947vanHMGlycopeptide ResistanceAHA41499_13002948vanHOGlycopeptide ResistanceAEP96393_13003723vanIGlycopeptide ResistanceNP_6277873002914vanJGlycopeptide ResistanceWP_0114613063003727vanKIGlycopeptide ResistanceABX54687_13002910vanLGlycopeptide ResistanceACL82961_13002911vanMGlycopeptide ResistanceACL82961_13002912vanNGlycopeptide ResistanceAEP40500_13002913vanOGlycopeptide ResistanceAAA65953_13002919vanRAGlycopeptide ResistanceAAA65953_13002921vanRBGlycopeptide ResistanceAAA65953_13002922vanRCGlycopeptide ResistanceAAA69553_13002923vanRDGlycopeptide ResistanceAAA806522_13002923vanRDGlycopeptide ResistanceAAA86641_13002923vanRDGlycopeptide ResistanceAAAR86672_13002924vanREGlycopeptide ResistanceAAR84672_13002925vanRGGlycopeptide ResistanceABA71727_13002926vanRIGlycopeptide ResistanceABX54691_13002927vanRIGlycopeptide ResistanceABX54691_13002927vanRIGlycopeptide ResistanceABX54691_13002928vanRIGlycopeptide ResistanceACL82957_13002929vanRIGlycopeptide ResistanceACL82957_130	Glycopeptide Resistance	AAF36802_1	3002945	vanHF
Glycopeptide ResistanceAHA41499_13002948vanHOGlycopeptide ResistanceAEP96393_13003723vanIGlycopeptide ResistanceNP_6277873002914vanJGlycopeptide ResistanceWP_0114613063003727vanKIGlycopeptide ResistanceABX54687_13002910vanLGlycopeptide ResistanceACL82961_13002912vanNGlycopeptide ResistanceACL82961_13002912vanNGlycopeptide ResistanceAHA41500_13002913vanOGlycopeptide ResistanceAAA65953_13002919vanRAGlycopeptide ResistanceAAA65953_13002921vanRBGlycopeptide ResistanceAAA695622_13002922vanRCGlycopeptide ResistanceAAA69851_13002922vanRCGlycopeptide ResistanceAAAR9861_13002925vanREGlycopeptide ResistanceAAR84672_13002925vanRFGlycopeptide ResistanceABA71727_13002926vanRGGlycopeptide ResistanceABX54691_13002927vanRIGlycopeptide ResistanceABX54691_13002927vanRIGlycopeptide ResistanceACL82957_13002928vanRIGlycopeptide ResistanceACL82957_13002929vanRIGlycopeptide ResistanceAEP40503_13002929vanRI	Glycopeptide Resistance	ACL82960_1	3002947	vanHM
Glycopeptide ResistanceAEP96393_13003723vanlGlycopeptide ResistanceNP_6277873002914vanJGlycopeptide ResistanceWP_0114613063003727vanKIGlycopeptide ResistanceABX54687_13002910vanLGlycopeptide ResistanceACL82961_13002911vanMGlycopeptide ResistanceAEP40500_13002912vanNGlycopeptide ResistanceAHA41500_13002913vanOGlycopeptide ResistanceAAA65953_13002919vanRAGlycopeptide ResistanceAAA65622_13002921vanRBGlycopeptide ResistanceAAA68641_13002922vanRCGlycopeptide ResistanceAAA786641_13002923vanRDGlycopeptide ResistanceAAA784672_13002924vanREGlycopeptide ResistanceAAR84672_13002925vanRFGlycopeptide ResistanceABX71727_13002926vanRGGlycopeptide ResistanceABX54691_13002927vanRIGlycopeptide ResistanceABX54691_13002927vanRLGlycopeptide ResistanceACL82957_13002928vanRMGlycopeptide ResistanceACL82957_13002929vanR	Glycopeptide Resistance	AHA41499_1	3002948	vanHO
Glycopeptide ResistanceNP_6277873002914vanJGlycopeptide ResistanceWP_0114613063003727vanKIGlycopeptide ResistanceABX54687_13002910vanLGlycopeptide ResistanceACL82961_13002911vanMGlycopeptide ResistanceAEP40500_13002912vanNGlycopeptide ResistanceAHA41500_13002913vanOGlycopeptide ResistanceAAA65953_13002919vanRAGlycopeptide ResistanceAAA65953_13002921vanRBGlycopeptide ResistanceAAA65953_13002922vanRCGlycopeptide ResistanceAAA65953_13002923vanREGlycopeptide ResistanceAAA68672_13002924vanREGlycopeptide ResistanceAAR84672_13002926vanRGGlycopeptide ResistanceABX54691_13002926vanRGGlycopeptide ResistanceABX54691_13002927vanRIGlycopeptide ResistanceABX54691_13002927vanRIGlycopeptide ResistanceACL82957_13002928vanRMGlycopeptide ResistanceACL82957_13002929vanRI	Glycopeptide Resistance	AEP96393_1	3003723	vanl
Glycopeptide ResistanceWP_0114613063003727vanKlGlycopeptide ResistanceABX54687_13002910vanLGlycopeptide ResistanceACL82961_13002911vanMGlycopeptide ResistanceAEP40500_13002912vanNGlycopeptide ResistanceAHA41500_13002913vanOGlycopeptide ResistanceAAA65953_13002921vanRAGlycopeptide ResistanceAAA65953_13002922vanRAGlycopeptide ResistanceAAA65953_13002922vanRAGlycopeptide ResistanceAAA65953_13002922vanRBGlycopeptide ResistanceAAA65953_13002922vanRDGlycopeptide ResistanceAAA65953_13002923vanRDGlycopeptide ResistanceAAA65641_13002923vanRDGlycopeptide ResistanceAAA7445_13002924vanREGlycopeptide ResistanceAAR84672_13002925vanRGGlycopeptide ResistanceABA71727_13002926vanRIGlycopeptide ResistanceABX54691_13002927vanRIGlycopeptide ResistanceABX54691_13002927vanRIGlycopeptide ResistanceACL82957_13002928vanRMGlycopeptide ResistanceAEP40503_13002929vanRN	Glycopeptide Resistance	NP_627787	3002914	vanJ
Glycopeptide ResistanceABX54687_13002910vanLGlycopeptide ResistanceACL82961_13002911vanMGlycopeptide ResistanceAEP40500_13002912vanNGlycopeptide ResistanceAHA41500_13002913vanOGlycopeptide ResistanceAAA65953_13002919vanRAGlycopeptide ResistanceAAB05622_13002921vanRBGlycopeptide ResistanceAAF86641_13002922vanRCGlycopeptide ResistanceAAM09851_13002923vanRDGlycopeptide ResistanceAAR4672_13002925vanREGlycopeptide ResistanceABX71727_13002926vanRGGlycopeptide ResistanceABX54691_13002927vanRIGlycopeptide ResistanceABX54691_13002927vanRIGlycopeptide ResistanceABX54691_13002927vanRIGlycopeptide ResistanceAEY0114613033003728vanRIGlycopeptide ResistanceAEX54691_13002927vanRIGlycopeptide ResistanceACL82957_13002928vanRMGlycopeptide ResistanceACL82957_13002929vanRI	Glycopeptide Resistance	WP_011461306	3003727	vanKl
Glycopeptide ResistanceACL82961_13002911vanMGlycopeptide ResistanceAEP40500_13002912vanNGlycopeptide ResistanceAHA41500_13002913vanOGlycopeptide ResistanceAAA65953_13002919vanRAGlycopeptide ResistanceAAA65952_13002921vanRBGlycopeptide ResistanceAAF86641_13002922vanRCGlycopeptide ResistanceAAF86641_13002923vanRDGlycopeptide ResistanceAAK9851_13002924vanREGlycopeptide ResistanceAAR27445_13002925vanRFGlycopeptide ResistanceAAR84672_13002926vanRFGlycopeptide ResistanceABA71727_13002926vanRIGlycopeptide ResistanceABX54691_13002927vanRIGlycopeptide ResistanceAEX54691_13002928vanRIGlycopeptide ResistanceAEX54691_13002928vanRIGlycopeptide ResistanceACL82957_13002929vanRN	Glycopeptide Resistance	ABX54687_1	3002910	vanL
Glycopeptide ResistanceAEP40500_13002912vanNGlycopeptide ResistanceAHA41500_13002913vanOGlycopeptide ResistanceAAA65953_13002919vanRAGlycopeptide ResistanceAAB05622_13002921vanRBGlycopeptide ResistanceAAF86641_13002922vanRCGlycopeptide ResistanceAAM09851_13002923vanRDGlycopeptide ResistanceAAL27445_13002924vanREGlycopeptide ResistanceAAR84672_13002925vanRFGlycopeptide ResistanceABA71727_13002926vanRIGlycopeptide ResistanceABX54691_13002927vanRIGlycopeptide ResistanceAEX54691_13002927vanRIGlycopeptide ResistanceAEX54691_13002928vanRIGlycopeptide ResistanceACL82957_13002928vanRN	Glycopeptide Resistance	ACL82961_1	3002911	vanM
Glycopeptide ResistanceAHA41500_13002913vanOGlycopeptide ResistanceAAA65953_13002919vanRAGlycopeptide ResistanceAAB05622_13002921vanRBGlycopeptide ResistanceAAF86641_13002922vanRCGlycopeptide ResistanceAAF86641_13002923vanRDGlycopeptide ResistanceAAL27445_13002924vanREGlycopeptide ResistanceAAR84672_13002925vanRFGlycopeptide ResistanceABA71727_13002926vanRGGlycopeptide ResistanceABX54691_13002927vanRIGlycopeptide ResistanceAEX54691_13002927vanRLGlycopeptide ResistanceACL82957_13002928vanRMGlycopeptide ResistanceACL82957_13002929vanRN	Glycopeptide Resistance	AEP40500_1	3002912	vanN
Glycopeptide ResistanceAAA65953_13002919vanRAGlycopeptide ResistanceAAB05622_13002921vanRBGlycopeptide ResistanceAAF86641_13002922vanRCGlycopeptide ResistanceAAM09851_13002923vanRDGlycopeptide ResistanceAAL27445_13002924vanREGlycopeptide ResistanceAAR84672_13002925vanRFGlycopeptide ResistanceABA71727_13002926vanRGGlycopeptide ResistanceABX54691_13002927vanRIGlycopeptide ResistanceABX54691_13002927vanRLGlycopeptide ResistanceACL82957_13002928vanRMGlycopeptide ResistanceAEP40503_13002929vanRN	Glycopeptide Resistance	AHA41500_1	3002913	vanO
Glycopeptide ResistanceAAB05622_13002921vanRBGlycopeptide ResistanceAAF86641_13002922vanRCGlycopeptide ResistanceAAM09851_13002923vanRDGlycopeptide ResistanceAAL27445_13002924vanREGlycopeptide ResistanceAAR84672_13002925vanRFGlycopeptide ResistanceABA71727_13002926vanRGGlycopeptide ResistanceABA71727_13003728vanRIGlycopeptide ResistanceABX54691_13002927vanRLGlycopeptide ResistanceAEX54691_13002928vanRMGlycopeptide ResistanceACL82957_13002928vanRM	Glycopeptide Resistance	AAA65953_1	3002919	vanRA
Glycopeptide ResistanceAAF86641_13002922vanRCGlycopeptide ResistanceAAM09851_13002923vanRDGlycopeptide ResistanceAAL27445_13002924vanREGlycopeptide ResistanceAAR84672_13002925vanRFGlycopeptide ResistanceABA71727_13002926vanRGGlycopeptide ResistanceWP_0114613033003728vanRIGlycopeptide ResistanceABX54691_13002927vanRLGlycopeptide ResistanceAEX54691_13002928vanRMGlycopeptide ResistanceACL82957_13002928vanRM	Glycopeptide Resistance	AAB05622_1	3002921	vanRB
Glycopeptide ResistanceAAM09851_13002923vanRDGlycopeptide ResistanceAAL27445_13002924vanREGlycopeptide ResistanceAAR84672_13002925vanRFGlycopeptide ResistanceABA71727_13002926vanRGGlycopeptide ResistanceWP_0114613033003728vanRIGlycopeptide ResistanceABX54691_13002927vanRLGlycopeptide ResistanceACL82957_13002928vanRMGlycopeptide ResistanceAEP40503_13002929vanRN	Glycopeptide Resistance	AAF86641_1	3002922	vanRC
Glycopeptide ResistanceAAL27445_13002924vanREGlycopeptide ResistanceAAR84672_13002925vanRFGlycopeptide ResistanceABA71727_13002926vanRGGlycopeptide ResistanceWP_0114613033003728vanRIGlycopeptide ResistanceABX54691_13002927vanRLGlycopeptide ResistanceACL82957_13002928vanRMGlycopeptide ResistanceAEP40503_13002929vanRN	Glycopeptide Resistance	AAM09851_1	3002923	vanRD
Glycopeptide ResistanceAAR84672_13002925vanRFGlycopeptide ResistanceABA71727_13002926vanRGGlycopeptide ResistanceWP_0114613033003728vanRIGlycopeptide ResistanceABX54691_13002927vanRLGlycopeptide ResistanceACL82957_13002928vanRMGlycopeptide ResistanceAEP40503_13002929vanRN	Glycopeptide Resistance	AAL27445_1	3002924	vanRE
Glycopeptide ResistanceABA71727_13002926vanRGGlycopeptide ResistanceWP_0114613033003728vanRIGlycopeptide ResistanceABX54691_13002927vanRLGlycopeptide ResistanceACL82957_13002928vanRMGlycopeptide ResistanceAEP40503_13002929vanRN	Glycopeptide Resistance	AAR84672_1	3002925	vanRF
Glycopeptide ResistanceWP_0114613033003728vanRIGlycopeptide ResistanceABX54691_13002927vanRLGlycopeptide ResistanceACL82957_13002928vanRMGlycopeptide ResistanceAEP40503_13002929vanRN	Glycopeptide Resistance	ABA71727_1	3002926	vanRG
Glycopeptide ResistanceABX54691_13002927vanRLGlycopeptide ResistanceACL82957_13002928vanRMGlycopeptide ResistanceAEP40503_13002929vanRN	Glycopeptide Resistance	WP_011461303	3003728	vanRl
Glycopeptide ResistanceACL82957_13002928vanRMGlycopeptide ResistanceAEP40503_13002929vanRN	Glycopeptide Resistance	ABX54691_1	3002927	vanRL
Glycopeptide Resistance AEP40503_1 3002929 vanRN	Glycopeptide Resistance	ACL82957_1	3002928	vanRM
	Glycopeptide Resistance	AEP40503_1	3002929	vanRN

Glycopeptide Resistance	AHA41505_1	3002930	vanRO
Glycopeptide Resistance	AAA65954_1	3002931	vanSA
Glycopeptide Resistance	AAB05623_1	3002932	vanSB
Glycopeptide Resistance	AAF86642_1	3002933	vanSC
Glycopeptide Resistance	ACM47284	3002934	vanSD
Glycopeptide Resistance	AAL27446_1	3002935	vanSE
Glycopeptide Resistance	AAR84673_1	3002936	vanSF
Glycopeptide Resistance	ABA71728_1	3002937	vanSG
Glycopeptide Resistance	WP_011461302_1	3003726	vanSI
Glycopeptide Resistance	ABX54692_1	3002938	vanSL
Glycopeptide Resistance	ACL82958_1	3002939	vanSM
Glycopeptide Resistance	AEP40504_1	3002940	vanSN
Glycopeptide Resistance	AHA41504_1	3002941	vanSO
Glycopeptide Resistance	AAD22403_1	3002970	vanTC
Glycopeptide Resistance	AAL27444_1	3002971	vanTE
Glycopeptide Resistance	ABA71733_1	3002972	vanTG
Glycopeptide Resistance	ABX54689_1	3002973	vanTmL
Glycopeptide Resistance	AEP40502_2	3002975	vanTN
Glycopeptide Resistance	ABX54690_1	3002974	vanTrL
Glycopeptide Resistance	ABA71726_1	3000575	vanU
Glycopeptide Resistance	AAO82019_1	3002916	vanV
Glycopeptide Resistance	AAB05625_1	3002964	vanWB
Glycopeptide Resistance	ABA71730_1	3002965	vanWG
Blycopeptide Resistance	WP_005813024_1	3003724	vanWI
Blycopeptide Resistance	AAA65957_1	3002949	vanXA
Glycopeptide Resistance	AAB05628_1	3002950	vanXB
Glycopeptide Resistance	AAM09852_1	3003070	vanXD
Glycopeptide Resistance	AAF36804_1	3002952	vanXF
Glycopeptide Resistance	WP_015943580_1	3003725	vanXI
Glycopeptide Resistance	ACL82962_1	3002953	vanXM
Glycopeptide Resistance	AHA41501_1	3002954	vanXO
Glycopeptide Resistance	AAF61331_1	3002966	vanXYC
Glycopeptide Resistance	AAL27443_1	3002967	vanXYE
Glycopeptide Resistance	ABA71732_1	3003069	vanXYG
Glycopeptide Resistance	ABX54688_1	3002968	vanXYL
Glycopeptide Resistance	AEP40501_1	3002969	vanXYN
Glycopeptide Resistance	AAA65958_1	3002955	vanYA
Glycopeptide Resistance	AAB05624_1	3002956	vanYB
Glycopeptide Resistance	AAM09853_1	3002957	vanYD
Glycopeptide Resistance	AAF36805_1	3002958	vanYF
Glycopentide Resistance	ABA71729 1	3002959	vanYG1

Glycopeptide Resistance	ACL82959_1	3002961	vanYM
Glycopeptide Resistance	AAA65959_1	3002962	vanZA
Glycopeptide Resistance	AAF36806_1	3002963	vanZF
Other ARG	AAA26683_1	3002840	vatA
Other ARG	AAA86871_1	3002841	vatB
Other ARG	AAC61671_1	3002842	vatC
Other ARG	AAK84316_1	3002843	vatD
Other ARG	AAF86220_1	3002844	vatE
Other ARG	AAF63432	3003744	vatF
Other ARG	ACX92987_1	3002845	vatH
Other ARG	APB03220_1	3003987	Vatl
Class A Beta-Lactamase	ALU64000	3003713	VCC-1
Class A Beta-Lactamase	AAK14293_1	3002378;3003711	VEB-9 VEB-1a
ABC-F Ribosomal Protection	AGN33258_1	3002829	vgaA
ABC-F Ribosomal Protection	AAB95639_1	3000118	vgaB
ABC-F Ribosomal Protection	AMP35312_1	3002831	vgaC
ABC-F Ribosomal Protection	ACX92986_2	3002832	vgaD
ABC-F Ribosomal Protection	CBY88983_1	3002833	vgaE
Other ARG	AAA98349_1	3001307	VgbA
Other ARG	AAC61670_1	3001308	VgbB
Other ARG	APB03225_1	3003990	VgbC
Class B Beta-Lactamase	AAN52134_1	3002275	VIM-5
Class B Beta-Lactamase	CAD61201_1	3002277	VIM-7
Other ARG	CAA26235_1	3003061	vph
Class A Beta-Lactamase	AAX55643_1	3003558	y56
SMR Antibiotic Efflux	CAB13166_1	3003063	ykkC
SMR Antibiotic Efflux	CAB13167_1	3003064	ykkD
Gene Modulating Resistance	NP_416715_1	3003952	Yojl