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Abstract

Entanglement is a rare resource only a select few people worldwide can create. Its funda-

mentally non-classical behavior seeds a tree of ideas from which transformative technologies

in information processing, communication, and imaging grow. Particularly interesting is

entanglement between photons in a pair made by a quantum dot, the most competitive

contender among quantum photonic devices.

A strength of semiconductor quantum dots is their deterministic reliability and potential

for production at scale. The associated price is anchored in their inherent flaw: sensitivity

to imperfections in their shape puts the entanglement they generate in motion. Thus,

unless a specific entangled photon pair is caught at just the right moment, it will appear

as though it is in fact not entangled at all.

Ingenious methods for making quantum dots perfect again have been devised, almost

exclusively built around reshaping the dot by physical, electric, or magnetic means. One

completely different proposal stands out, which instead stops the entanglement’s motion

once it has already been created. As a purely optical technique it can be used for any

quantum dot and is completely non-intrusive. This is the method of the rotating half-wave

plate [1].

The entanglement between photons in a pair revolves up to a few billion times per

second and halting it requires a correction one-half that rate. Physically spinning a crystal

waveplate at that tremendous speed is impossible, but if the properties of a crystal are

spun in an identical way such quickly varying entanglement can be restored to its starting

point with ease. This is the principle of electro-optic modulation.

This thesis shows the very first demonstration of slowing the frequency of single photons

in a stream by using an electro-optical rotating half-wave plate prototype. Initial results

show a reduction in frequency by 127.75 million oscillations per second. Any quantum dot

whose entanglement precesses no more quickly than 255.5 MHz can thus directly make use

of the technique contained herein.
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Chapter 1

Introduction: Quantum Information

and Entanglement

Light is a physical phenomenon abundant in daily life, often taken for granted without a

further thought yet laden with clues about our universe which the curious can endlessly

explore. Its intriguing nature has captured significant attention from thinkers seeking

to characterize the sense of sight: Euclid’s Optics circa 300 BC was perhaps the first

mathematical treatment on the subject. A progression of understanding led scientists to

two central and seemingly incompatible theories, and concurrently contributed to creations

like magnifying telescopes and cameras.

The first theory is founded on the idea that light is composed of particles, and was

supported by Newton in his 1704 book Opticks. The competing theory presents light

as wave-like, which Huygens elaborates in the 1690 publication of Traité de la Lumière.

Support for the two theories was divided, and as experimental observations of interference

emerged from Young’s double-slit experiment in 1801, an impossibility if light were made

of particles, the wave theory gained wider acceptance. The competing theories would not

be reconciled until the emergence of a quantum theory for light in the early 1900s. Therein,

indivisible photons, the “particles” or quanta of light energy proposed by Einstein [2], also

exhibit wave behavior.

Before the quantum theory was formed, though, Maxwell bolstered the wave theory of
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light when his work on electromagnetism led him to determine electromagnetic waves can

propagate self consistently, and at a calculated speed in agreement with measured values

for the speed of light [3]. Visible light, fundamental for sight, is then a specific range of

frequencies of electromagnetic radiation that human vision perceives as colors, showing

there is a deeper relationship between electricity, magnetism, and light than initially meets

the eye. Indeed, Maxwell’s equations are directly responsible for phenomenal advances in

electrical engineering like wireless radio communication and electric motors.

This thesis gives experimental proof of a new way to change the color of single photons

in a precise and tunable manner using electricity, bringing together electrical engineering

from Maxwell, optics from Newton and Huygens, and quantum principles from Einstein.

The technique can be applied universally to any photon making it super, positioning it as

an integral tool in the quantum mechanic’s toolbox. Of particular relevance is a proposal

that uses the color conversion here demonstrated to freeze the entanglement between two

photons to a most desirable and high-quality reference state [1], thereby delivering abun-

dant and reliable on-demand quantum entanglement as a resource, for which no current

satisfactory solution exists. Cutting-edge revolutionary technologies for which entangle-

ment is a prerequisite will then be made feasible.

The five chapters which follow build the background and framework for the climactic

result just described. The reader will find an overview of the field of quantum informa-

tion in this chapter, including an introduction to qubits and motivation for entanglement.

Chapter 2 follows with a foray into the field of nanowire quantum dots, whence entangled

photon pairs emerge. A change of pace in chapter 3 reviews electrically induced alterations

in the optical properties of crystals, with specific focus on the necessary conditions for cre-

ating a rotating half-wave plate (HWP) with lithium niobate (LiNbO3). The theory is

then put to the test in chapter 4, where frequency shifting is evidenced with experimental

observations showing 92% conversion efficiency. Finally, a complete assembly combining

the critical components results in conclusive data corroborating the color change challenge

in chapter 5.
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1.1 The Qubit

The launch point for a discussion on quantum information is necessarily the qubit. With

a name as imagination-inciting as it is descriptive, the qubit, or quantum bit, builds on

the classical concept most familiar in the digital age. Where a classical bit represents a

yes or a no, a 1 or a 0, qubit can represent the same, with a |1〉 and |0〉 state holding the

yes-or-no information. The |x〉 notation represents a quantum state with the label x, and

can be thought of as a vector. The notation will be used throughout this chapter, with

examples demonstrating its usage.

The qubit is more complex than, and arguably more capable than a classical bit is,

for any one qubit can also represent information “between” |1〉 and |0〉. A unique prop-

erty about information stored in a quantum way is the necessity of explicitly considering

measurement as part of the process: an answer becomes definite when it is inquired of.

Starting simply, in the case of the |1〉 qubit prepared over and over, every measurement

will always come back “yes” for a one will be found. Conversely, a zero will always appear

when looking at a |0〉 qubit. In our quantum computer holding a qubit with something

that is not exactly a |1〉 nor a |0〉 we will still be limited to measuring only one or zero in

any single measurement.

Determining a qubit state precisely when it is prepared to some specific intermediate

value as we are imagining requires repeatedly measuring and collecting the findings into a

table. As more trials are recorded, a clear trend will begin to emerge, for example that the

value 1 appears 64 out of every 100 trials, while the other 36 give a zero. Logically, with

this information in hand we can determine we must be dealing with a process probabilistic

in nature.

The qubit just described could be given a name a and written mathematically as

|a〉 =
8

10
|1〉+

6

10
|0〉. (1.1)

Each of |1〉 and |0〉 has a coefficient called a probability amplitude that, when squared,

gives their observed probabilities of 0.64 (64/100) and 0.36 (36/100) respectively. Also, as a

sanity check, the sum of the two is exactly unity, meaning we never measure something
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other than zero or one. Confusingly, the same observed distribution of results would be

found by applying the above rule for a different state b written as

|b〉 =
8

10
|1〉 − 6

10
|0〉

since squaring −6/10 equally gives a probability of 36/100.

This begs the following question: if only ones and zeros can be found upon measurement

of |a〉 or |b〉 and their statistics are identical, is there any way to distinguish one from the

other? The answer is affirmative, and the remarkable result uniquely quantum. The next

section establishes some mathematics and visualizations for imagining qubit states that will

help answer the question. Following that, subsection 1.1.2 describes probability amplitudes

and their relationship to measurement probabilities more rigorously, going beyond the

simplified scenario just described.

1.1.1 Poincaré Sphere

So far, the qubit has been discussed in the abstract, and most textbooks on quantum

information continue as such. This thesis is about experimentation, though, so here is the

perfect opportunity to position the photon as an implementation for a qubit. Whereas

photons have many degrees of freedom in which to express quantum information, we will

only consider encoding information in polarization.

The polarization of a photon describes its direction of electric field as it propagates

through space. A convention must be chosen, so throughout this thesis an electric field

that remains parallel to the floor is called horizontal, while the vertical polarization points

up and down. A qubit’s |0〉 and |1〉 states can be mapped from the photon’s polarization

as

|H〉 7→ |0〉, |V 〉 7→ |1〉.

A measurement is done by passing the photon qubit through a polarizing filter followed

by a single photon detector. For example, setting the polarizer such that it only passes

light with an electric field oriented in the horizontal direction |H〉 means a detector click

will tell us we measured a zero. Under ideal conditions, the absence of a click means we

4



Figure 1.1: The Poincaré sphere pictured with various polarizations and their associated

qubit representations.
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measured a one. We could equivalently have set the polarizer so it passes the vertical

polarization |V 〉 such that a click instead represents measuring a one.

Returning to the example of |a〉 and |b〉, each can be written in terms of polarization

as

|a〉 =
6

10
|H〉+

8

10
|V 〉, |b〉 = − 6

10
|H〉+

8

10
|V 〉.

Each of |a〉 and |b〉 now looks like a linear combination of horizontal and vertical polariza-

tions. Indeed, |H〉, |V 〉, and any other general qubit state |ψ〉 are in fact unit vectors in a

two-dimensional space, and follow the familiar rules of linear algebra. The notation |·〉 is

called a ket and was popularized by Dirac. It is conventional to choose the kets |H〉 and

|V 〉 as the basis vectors

|H〉 =

[
1

0

]
, |V 〉 =

[
0

1

]
,

which are orthogonal and normalized to a length of 1.

A different orthonormal basis could equally be chosen for the two dimensional vector

space, such as the vectors

|D〉 =
1√
2

[
1

1

]
=

1√
2

([
1

0

]
+

[
0

1

])
=

1√
2

(|H〉+ |V 〉) ,

|A〉 =
1√
2

[
1

−1

]
=

1√
2

([
1

0

]
−
[

0

1

])
=

1√
2

(|H〉 − |V 〉) .

The two states |D〉 and |A〉 represent diagonal and anti-diagonal polarizations where the di-

agonal polarization is rotated positively from horizontal by 45°. The associated abstractly-

named qubit vectors are |+〉 and |−〉 for obvious reason, thus

|D〉 7→ |+〉 =
1√
2

(|0〉+ |1〉) , |A〉 7→ |−〉 =
1√
2

(|0〉 − |1〉) .

One can reverse the relationship and instead write |H〉 and |V 〉 in terms of |D〉 and |A〉

|H〉 =
1√
2

(|D〉+ |A〉) , |V 〉 =
1√
2

(|D〉 − |A〉) .

With polarization qubits it is easy to directly measure in the {|D〉, |A〉} basis: one just

rotates the polarizing filter in front of the photon detector by 45° to align with |D〉. Passing
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a photon through the measurement system will then give a click if a diagonal polarization

was measured, and no click otherwise. Writing each of |a〉 and |b〉 in terms of |D〉 and |A〉
is a linear-algebraic exercise of change of basis and results in

|a〉 =
6

10
|H〉+

8

10
|V 〉

=
6

10

1√
2

(|D〉+ |A〉) +
8

10

1√
2

(|D〉 − |A〉)

=

√
2

10
(3|D〉+ 3|A〉+ 4|D〉 − 4|A〉)

=
7
√

2

10
|D〉 −

√
2

10
|A〉

|b〉 = − 6

10
|H〉+

8

10
|V 〉

= − 6

10

1√
2

(|D〉+ |A〉) +
8

10

1√
2

(|D〉 − |A〉)

=

√
2

10
(−3|D〉 − 3|A〉+ 4|D〉 − 4|A〉)

=

√
2

10
|D〉 − 7

√
2

10
|A〉

(1.2)

Now it is clear that the measurements looking for |D〉 on photons carrying state |a〉 will

click almost incessantly since squaring the |D〉 coefficient results in a click probability of(
7
√
2

10

)2
= 98

100
. On the contrary, the detector will click only twice for every 100 trials

if the state was initially |b〉. Therefore it is now clear that although |a〉 and |b〉 were

indistinguishable when measured in the |0〉 and |1〉 or equivalently |H〉 and |V 〉 basis, they

give completely different results when the measurement basis is changed.

The various possible polarizations can be pictured on the Poincaré sphere, shown in

Figure 1.1. While the sphere usually bears Poincaré’s name for polarization states of light,

qubit states can be represented in the abstract on a similar sphere using combinations

of |0〉 and |1〉. This is instead known as the Bloch sphere, and is more often used when

referring to spin-1
2

quantum systems like electron spins. For clarity, the labels in Figure 1.1

show both the polarization and qubit states.

The Bloch sphere is a very powerful visualization tool for a single qubit. Any pure

qubit state |ψ〉 = α|0〉 + β|1〉 can be decomposed into spherical coordinates r, θ, φ with

7



Figure 1.2: The two states |a〉 and |b〉 shown on the Poincaré sphere.

r = 1 that mark a point on the surface of the Bloch sphere. A statistical mixture of qubits,

for example |a〉 half of the time and |b〉 the other half, will appear inside the block sphere,

with r ≤ 1. The relationship between α, β, θ, and φ is

α = cos

(
θ

2

)
, β = eiφ sin

(
θ

2

)
.

The states |a〉 and |b〉 are shown as the two blue arrows in Figure 1.2. The arrows

are known as Bloch vectors, and in this case have the spherical coordinates (r, θ, φ)|a〉 =

(1, 106°, 0°) and (r, θ, φ)|b〉 = (1,−106°, 0°) respectively. Until now we have only consid-

ered real-valued probability amplitudes which represent the linear polarizations around

the equator of the Poincaré sphere, but in general the amplitudes can be complex meaning

the general state |ψ〉 is actually a vector in the two-dimensional complex vector space C2.
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As such, the basis vectors

|+i〉 =
1√
2

(|0〉+ i|1〉) , |−i〉 =
1√
2

(|0〉 − i|1〉)

are an equally valid choice, and can be mapped from left- and right-circularly polarized

light respectively

|L〉 7→ |+i〉, |R〉 7→ |−i〉.

These basis vectors are drawn at the north and south poles of the Poincaré sphere in

Figure 1.1.

A broken blue circle is drawn in Figure 1.2 on which the Bloch vectors for |a〉 and

|b〉 lie. Returning to the initial question of distinguishing one state from the other given

the ability to measure in the {|0〉, |1〉} basis, it can now be noted that any state on this

circle will also initially appear identical. The only way to distinguish among them is to

also tabulate measurement results from the {|+〉, |−〉} and {|+i〉, |−i〉} bases. This process

of determining a qubit’s state by repeated measurement in various orthonormal bases is

termed state tomography [4].

It was previously mentioned that measurement is a fundamental part of quantum me-

chanics. Proceeding with the newly established intuition about how information is stored

in qubits and how we can retrieve it from them, the next section explores quantum mea-

surement in more mathematical detail.

1.1.2 Qubit Measurement

Armed with the mathematical representation of a qubit set forth in subsection 1.1.1, a

more formal description of the qubit measurement process can now be established. This

section will introduce the three operators X, Y , and Z, and relate them to their observable

measurement outcomes.

Referring back to Figure 1.1, it seems natural to describe the measurement process as

determining “the amount” along each of the x, y, and z axes shown that contribute to

a state given by a Bloch vector. We found that the state |a〉 introduced in Equation 1.1
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seemed to have somewhat more of a contribution from −z than +z with a 64% to 36%

split in measurement results, and decidedly more along +x than −x at 98%.

It was simple to compute the probabilities of measuring the two states |0〉 and |1〉
on opposite ends of the z-axis of the Bloch sphere given |a〉, whereas determining the

probabilities for |+〉 and |−〉 along the x-axis took more work. The simplicity of the

calculation for the z component stems from having been provided the state |a〉 in terms

of the basis vectors |0〉 and |1〉, which are eigenvectors of the Z operator. This basis is

sometimes termed the computational basis.

Z =

[
1 0

0 −1

]
, |0〉 =

[
1

0

]
, |1〉 =

[
0

1

]
,

Z|0〉 = |0〉
Z|1〉 = −|1〉

(1.3)

The eigenvectors of a linear operator are those that do not change “direction” when op-

erated on, but are instead equal to the original vector up to a scalar factor called the

eigenvalue. Here, the eigenvalues for |0〉 and |1〉 are λ0 = 1 and λ1 = −1 which can be

verified by doing the matrix multiplication in Equation 1.3.

Before going further though it is worth pointing out some key characteristics the Z

operator has. First, it is Hermitian, in that it is equal to its adjoint, otherwise know as

the transpose of its complex conjugate

Z = Z† where Z† = (Z∗)T .

It is also normal, as all Hermitian matrices are, which means that operating on a vector

with Z and then Z† gives an equivalent result to having done it the other way around

Z†Z = ZZ†.

Every normal matrix can be decomposed into a sum of orthogonal projectors onto its

eigenspaces, with each projector scaled by its eigenvalue. It has already been determined

that |0〉 and |1〉 are the eigenvectors with corresponding eigenvalues of λ0 = 1 and λ1 = −1

in Equation 1.3, so Z can be decomposed using the two projectors onto the eigenspaces

for λ0 and λ1 spanned by |0〉 and |1〉 respectively. The associated projectors are

P0 = |0〉〈0| =
[

1 0

0 0

]
, P1 = |1〉〈1| =

[
0 0

0 1

]

10



where the left-pointing 〈0| and 〈1| are called bras and are the row vectors equal to the

conjugate-transpose of the |0〉 and |1〉 column vectors.

〈0| = |0〉† =
[
1 0

]
, 〈1| = |1〉† =

[
0 1

]

The decomposition for Z then proceeds

Z =

[
1 0

0 −1

]

=

[
1 0

0 0

]
−
[

0 0

0 1

]

=

[
1

0

] [
1 0

]
−
[

0

1

] [
0 1

]

= 1 · |0〉〈0|+ (−1) · |1〉〈1|
= 1 · P0 + (−1) · P1

=
∑

i

λiPi =
∑

i

λi|i〉〈i|, i ∈ {0, 1}.

With this new information in hand it is possible to return to the question of calculating

the probability of measuring |0〉 or |1〉 given the state |a〉. The probability for an outcome

is given by the overlap between the state in question before and after it has been projected

onto the eigenspace for that outcome. For example, given the state |0〉, we may be in-

terested in learning the probability of measuring a result from the λ0 eigenspace. As just

described, the projector to use is then P0, and the resulting projected vector is P0|0〉. The

overlap between two states |u〉 and |v〉 is then their inner product given by 〈u| · |v〉 = 〈u|v〉.
Putting everything together, the probability for outcome 0 is found to be

p(0) = 〈0| · P0|0〉 = 〈0| · |0〉〈0|0〉 = 〈0| · 〈0|0〉|0〉 = 〈0| · 1|0〉 = 〈0| · |0〉 = 〈0|0〉 = 1

where the inner product 〈0|0〉 = [ 1 0 ] [ 10 ] = 1 was used twice. Since the inner product is a

scalar, it can be moved freely within the expression, shown in the third equality.

This result seems natural, and is what should be expected. Conversely, the probability

for a measurement outcome of 1 given state |0〉 is

p(1) = 〈0| · P1|0〉 = 〈0| · |1〉〈1|0〉 = 〈0| · 〈1|0〉|1〉 = 〈0| · 0|1〉 = 0
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since the vectors |0〉 and |1〉 are orthogonal and their inner product is zero, as can be verified

by 〈0|1〉 = [ 1 0 ] [ 01 ] = 0. It is also good to see that the total probability of measuring either

a 0 or a 1 for our qubit is unity, for any other conclusion would certainly be suspect!

Using the same procedure on our vector of interest |a〉 = 6
10
|0〉+ 8

10
|1〉, we find

p(0)|a〉 = 〈a|P0|a〉

= 〈a|P0

(
6

10
|0〉+

8

10
|1〉
)

= 〈a|
(

6

10
P0|0〉+

8

10
P0|1〉

)

= 〈a|
(

6

10
|0〉〈0|0〉+

8

10
|0〉〈0|1〉

)

=

((
6

10

)∗
〈0|+

(
8

10

)∗
〈1|
)

6

10
|0〉〈0|0〉

=
6 · 6

10 · 10
〈0|0〉〈0|0〉+

8 · 6
10 · 10

〈1|0〉〈0|0〉

=
36

100
〈0|0〉〈0|0〉

=
36

100

in agreement with the probability initially found in section 1.1. Similarly, when measuring

for a 1 instead the expected probability of 64
100

is found.

p(1)|a〉 = 〈a|P1|a〉 = 〈a|
(

6

10
P1|0〉+

8

10
P1|1〉

)
=

8

10
〈a|1〉 =

∣∣∣∣
8

10

∣∣∣∣
2

〈1|1〉 =
64

100

Performing the same calculation using state |b〉 = − 6
10
|0〉+ 8

10
|1〉 instead gives identical

results to |a〉, which can be seen by going through the preceding procedure and observing

that the negative sign cancels when the probability amplitudes for 〈0| and |0〉 are multiplied.

p(0)|b〉 = 〈b|P0|b〉 = 〈b|
(−6

10
P0|0〉+

8

10
P0|1〉

)
=
−6

10
〈b|0〉 =

−6 · −6

10 · 10
〈0|0〉 =

36

100

p(1)|b〉 = 〈b|P1|b〉 = 〈b|
(−6

10
P1|0〉+

8

10
P1|1〉

)
=

8

10
〈b|1〉 =

∣∣∣∣
8

10

∣∣∣∣
2

〈1|1〉 =
64

100
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However, by using a measurement along the x axis it was shown that the two states

|a〉 and |b〉 could be distinguished. This change of basis was done in Equation 1.2, where

the kets |D〉 and |A〉 map to |+〉 and |−〉 and are the eigenkets of the X operator with

eigenvalues λ+ = 1 and λ− = −1.

X =

[
0 1

1 0

]
, |+〉 =

1√
2

[
1

1

]
, |−〉 =

1√
2

[
1

−1

]
,

X|+〉 = |+〉
X|−〉 = −|−〉

The measurement for |a〉 = 7
√
2

10
|+〉 −

√
2

10
|−〉 and |b〉 =

√
2

10
|+〉 − 7

√
2

10
|−〉 then proceeds with

probabilities

p(+)|a〉 = 〈a|P+|a〉

= 〈a|
(

7
√

2

10
P+|+〉 −

√
2

10
P+|−〉

)
= 〈a|

(
7
√

2

10
|+〉〈+|+〉 −

√
2

10
|+〉〈+|−〉

)

=
7
√

2

10
〈a|+〉 =

∣∣∣∣∣
7
√

2

10

∣∣∣∣∣

2

〈+|+〉 =
98

100

p(+)|b〉 = 〈b|P+|b〉 = 〈b|
(√

2

10
P+|+〉 −

7
√

2

10
P+|−〉

)
=

√
2

10
〈b|+〉 =

∣∣∣∣∣

√
2

10

∣∣∣∣∣

2

〈+|+〉 =
2

100
,

easily distinguishing one state from the other.

As has been done for the z and x axes of the Bloch sphere, a measurement can also be

performed along y. Following the now-familiar steps, the Y operator has eigenstates along

the y-axis of the Bloch sphere, which correspond to |+i〉 and |−i〉. These two vectors can

be written in the {|0〉, |1〉} basis as

|+i〉 =
1√
2

(|0〉+ i|1〉)

|−i〉 =
1√
2

(|0〉 − i|1〉)
=⇒

|0〉 =
1√
2

(|+i〉+ |−i〉)

|1〉 =
−i√

2
(|+i〉 − |−i〉)

leading to the Y operator

Y =

[
0 −i
i 0

]
, |+i〉 =

1√
2

[
1

i

]
, |−i〉 =

1√
2

[
1

−i

]
,

Y |+i〉 = |+i〉
Y |−i〉 = −|−i〉.
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Computing |a〉 in terms of {|+i〉, |−i〉} gives

|a〉 =
6

10
|0〉+

8

10
|1〉

=
6

10
√

2
(|+i〉+ |−i〉)− i 8

10
√

2
(|+i〉 − |−i〉)

=

√
2

10
(3|+i〉+ 3|−i〉 − i4|+i〉+ i4|−i〉)

=
(3− i4)

√
2

10
|+i〉 − (3 + i4)

√
2

10
|−i〉

which leads to the positive measurement probability along y of

p(+i)|a〉 = 〈a|P+i|a〉

= 〈a|
(

(3− i4)
√

2

10
P+i|+i〉 −

(3 + i4)
√

2

10
P+i|−i〉

)

= 〈a|
(

(3− i4)
√

2

10
|+i〉〈+i|+i〉 − (3 + i4)

√
2

10
|+i〉〈+i|−i〉

)

= 〈a|
(

(3− i4)
√

2

10
|+i〉

)

=

(
(3− i4)∗

√
2

10
〈+i| − (3 + i4)∗

√
2

10
〈−i|

)(
(3− i4)

√
2

10
|+i〉

)

=
(3 + i4)

√
2

10
· (3− i4)

√
2

10

=
2 · |3 + i4|2

100
=

2 · 52

100
=

2 · 25

100
=

50

100
.

Therefore, there is an exactly even chance of making a +i or−imeasurement. Looking back

at Figure 1.2 this result works well with the intuition gained throughout subsection 1.1.1

as the Bloch vector for |a〉 sits precisely half way between the poles labeled |+i〉 and |−i〉.
The main point of this section was to tackle the idea of measuring a quantum state

with more rigor, and a clear mathematical process has now been established. The three

quantum operators which surfaced as useful in the context of describing a quantum state

are in fact the Pauli spin matrices, and are important in describing quantum algorithms
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and qubit control. Here they are again, summarized.

X =

[
0 1

1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0

0 −1

]
.

Further information on these topics appears in, for example, ref. [5], which is highly en-

couraged reading.

The next section moves on to describe two-qubit quantum systems and introduces the

idea of quantum entanglement, the pursuit of which the work in this thesis is positioned

to accelerate.

1.2 Two-Qubit Systems and Quantum Entanglement

Just as in classical information systems where meaningful computation relies on many bits,

quantum information systems also come into their own when data from two or more qubits

can be combined together. The Bloch-sphere discussed in the previous section made it

possible to visualize the state of a single qubit in 3 physical dimensions, and was helpful in

determining the measurement statistics of a qubit. Since the same visualization technique

does not naturally extend to multi-qubit states, it is helpful to rely more heavily on the

mathematics which brings with it an understanding of these more complex systems.

For the purpose of this thesis, it is sufficient to investigate the dynamics of just two

qubits, although the concepts as they are presented here do extend naturally to more qubits

as well. The motivation for this specific choice of system is that the photonic sources

featured in chapter 2 naturally produce entangled photon pairs, which are inherently two-

qubit systems.

To begin, section 1.1 presented a single qubit state |ψ〉a as a two-dimensional unit vector

in C2
a. Qubits a and b in states |ψ〉a and |φ〉b when considered together have a combined

state that resides in the four-dimensional complex vector space C2·2
ab = C2

a ⊗ C2
b formed

from the tensor product of C2
a and C2

b , where the label {a, b} denotes which system the

space belongs to. This new vector space grows exponentially as other qubits are added,

with each new qubit q appending another tensor product ⊗C2
q.
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The basis vectors for C4
ab are composed of pairs of vectors with one element of the

pair from an orthonormal basis on C2
a and the other from an orthornormal basis on C2

b .

For example, choosing the computational basis for each, an orthonormal basis set for the

two-qubit state space is {(|0〉a, |0〉b), (|0〉a, |1〉b), (|1〉a, |0〉b), (|1〉a, |1〉b)}. The overall basis

vector is written as the tensor product of the two vectors in the pair as in |i〉a ⊗ |j〉b ∈
C2
a⊗C2

b . Often, the ⊗ symbol is simply implied, and the two vectors can be combined like

|i〉a ⊗ |j〉b = |i〉a|j〉b = |ij〉ab.
Tensor products between linear operators S and T , when written out in matrix form,

feature a replica of the second operator T placed in a block matrix at every location (i, j)

for the sij entries of the first operator S, and scaled by sij.

S =



s00 s01 · · ·
s10 s11
...

. . .


 −→ S ⊗ T =



s00T s01T · · ·
s10T s11T

...
. . .




Explicitly writing out the basis vectors gives a very nice computational basis over the

whole two-qubit space.

|00〉 =




1

0

0

0


 , |01〉 =




0

1

0

0


 , |10〉 =




0

0

1

0


 , |11〉 =




0

0

0

1


 .

Determining the measurement statistics of one of the two qubits proceeds almost iden-

tically as described in subsection 1.1.2. First, given a system with two qubits, one picks

a qubit to measure as well as a basis to measure in. Say, for example, the state |00〉 is

prepared, and the first qubit is sent to a measurement apparatus. This could be done with

a pair of photons set up to encode qubits in their polarization like in section 1.1. The

measurement would then proceed by sending the first photon through a polarizing filter to

a photodetector. The photon state before detection would be |HH〉 7→ |00〉. If measuring

along Z with the polarizing filter set to pass |H〉, we find

ab〈HH| (PHa ⊗ Ib) |HH〉ab = a〈H|PHa|H〉ab〈H|Ib|H〉b = a〈H|H〉aa〈H|H〉a · 1b = 1.
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The projective measurement was only made on the subspace corresponding to qubit a

by “filling out” the horizontal projection operator PHa to the full two-qubit state space

using the identity operator Ib to act on the second qubit. The projection operator then only

acts on a, while the identity only acts on b. It is clear that the discovered probability does

not depend on the state of b in any way: it could equally have been set to an arbitrary state

|ψ〉b since 〈ψ|I|ψ〉 = 1 for any normalized state |ψ〉. In the above equation, the subscript

b on 1b is included to explicitly label this result. Had we wished to measure b instead of a

along Z, the measurement would have proceeded using the two-qubit operator Ia ⊗ PHb.

Since the preceding measurement was just on qubit a, it must still be possible to

continue working with and eventually measure qubit b, which means the quantum system

must still be in some state following the measurement. The post-measurement state is

given for the measurement operator M by

M |ψ〉√
〈ψ|M |ψ〉

where the square root factor in the denominator renormalizes the state so it remains a unit

vector. For the example with the |Hψ〉 two-photon state we find

(PHa ⊗ Ib) (|H〉a ⊗ |ψ〉b)√
ab〈Hψ| (PHa ⊗ Ib) |Hψ〉ab

=
PHa|H〉a ⊗ Ib|ψ〉b√

1
= |H〉aa〈H|H〉a ⊗ |ψ〉b = |H〉a ⊗ |ψ〉b

following a measurement. In other words, where the measured qubit was already exactly

equal to the value the measurement was looking for, the entire post-measurement state is

unchanged.

Trying the same calculation for the probability of measuring the first qubit in the

horizontal polarization given the state |Dψ〉ab we find

ab〈Dψ| (PHa ⊗ Ib) |Dψ〉ab = a〈D|PHa|D〉a =
1√
2
√

2
(〈H|+ 〈V |)PH (|H〉+ |V 〉) =

1

2

and a post-measurement state of

(PHa ⊗ Ib) (|D〉a ⊗ |ψ〉b)√
ab〈Dψ| (PHa ⊗ Ib) |Dψ〉ab

=
PHa

1√
2

(|H〉a + |V 〉a)⊗ |ψ〉b√
1/2

= |H〉a ⊗ |ψ〉b.
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This time, when the first qubit was measured, the state of qubit b remains the same however

a is changed from |D〉 to |H〉.
So far while measuring qubit a the two-qubit system has behaved as though qubit b

could be ignored completely. Consider an example where the two qubit state |χ〉 cannot

be decomposed into a product state |α〉a⊗ |β〉b. This is the case for the famous Bell states

∣∣Φ+
〉

=
1√
2

(|HH〉ab + |V V 〉ab)
∣∣Ψ+

〉
=

1√
2

(|HV 〉ab + |V H〉ab)
∣∣Φ−

〉
=

1√
2

(|HH〉ab − |V V 〉ab)
∣∣Ψ−

〉
=

1√
2

(|HV 〉ab − |V H〉ab) .

The probability of measuring qubit a in the horizontal polarization is again considered,

but this time using |Φ+〉.

p(H)a = ab

〈
Φ+
∣∣ [(PHa ⊗ Ib)

∣∣Φ+
〉
ab

]

= ab

〈
Φ+
∣∣
[
(PHa ⊗ Ib)

1√
2

(|HH〉ab + |V V 〉ab)
]

= ab

〈
Φ+
∣∣
[

1√
2

(
(PHa ⊗ Ib) |HH〉ab + (PHa ⊗ Ib) |V V 〉ab

)]

=
1√
2

(ab〈HH|+ ab〈V V |)
[

1√
2
|HH〉ab

]

=
1

2
ab〈HH|HH〉ab +

1

2
ab〈V V |HH〉ab

=
1

2
a〈H|H〉ab〈H|H〉b +

1

2
a〈V |H〉ab〈V |H〉b

=
1

2

(1.4)

Thus we find a similar measurement probability to when the first qubit was in |D〉. What

makes this Bell state more interesting becomes clear by inspecting the state once the first

qubit is found to be horizontally polarized.

(PHa ⊗ Ib) |Φ+〉ab√
ab〈Φ+| (PHa ⊗ Ib) |Φ+〉ab

=
1√
1/2

[
1√
2
|HH〉ab

]
= |HH〉ab. (1.5)

It is now clear that if one checks the polarization for qubit b it will most definitely

register as horizontally polarized as well! It can be checked that if the first qubit were to
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be measured as vertically polarized, so too would the second. Therefore, the results for

the two qubits are very correlated.

As great as this result is, though, one could achieve the same thing by getting a classical

computer to generate two-bit strings from the set {00, 11} with equal probability and then

have a look whether or not the first bit was on. A second person could inspect the second

bit, and record the result. Each of the two people would find that their bit was off half of

the time and on the other half, which is the same as we found for the probability of seeing

the first qubit horizontally polarized. With enough trials, it would also become clear to

the two experimenters that the first and second bits were perfectly correlated, which is the

same conclusion we drew about the |Φ+〉 Bell state.

What makes the quantum case intriguing is that there are other choices for measure-

ment bases, as was seen in subsection 1.1.2, and nothing requires that the two qubits be

measured in the same basis as was just done. This same freedom is not available to the

two experimenters studying their classical bits.

If, for example, one experimenter was given qubit a and measured it to be horizontally

polarized, a second experimenter, looking for |D〉 in b, would succeed with a probability,

starting from the result in Equation 1.5, of

ab〈HH| (Ia ⊗ PDb) |HH〉ab = a〈H|PDa|H〉a =
1√
2
√

2
(〈D|+ 〈A|)PD (|D〉+ |A〉) =

1

2
.

Recalling that the initial probability of the first experimenter finding a in |H〉 was also
1
2
, the two experimenters will find no correlations at all: each of their results are entirely

random.

As written, the Bell states are in the basis of the Z operator, but just as single qubit

states could be expanded into the bases of X or Y instead, so too can the two-qubit states.

For |Φ+〉, this looks like

∣∣Φ+
〉

=
1√
2

(|HH〉+ |V V 〉) =
1√
2

(|DD〉+ |AA〉) =
1√
2

(|RL〉+ |LR〉)

from which one can gather by following a similar line of thinking that the correlations in

measurement aren’t limited to just the {|H〉, |V 〉} basis: choosing to measure a and b both

in the {|D〉, |A〉} or {|L〉, |R〉} bases will also reveal strong correlations.
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In addition, it is worth underscoring that the correlations remain regardless of which

basis the state was originally prepared in. This is an example where the experimenters’

observations go well beyond the realm of the classically explainable, and for this reason

the Bell states are said to have quantum entanglement. Even stronger than that, no other

two-qubit state can be more entangled than the Bell states, thus they are sometimes called

the maximally entangled states.

The maximally entangled state is essential for some applications of quantum infor-

mation processing, including superdense coding or quantum teleportation. Solutions to

some traditional classical problems can also be improved when quantum entanglement is

permitted, making the maximally entangled quantum state a desirable resource to have.

In general, it is experimentally difficult to create an exact Bell state. A few differ-

ent measures are available for researchers to quantify created entangled states, including

concurrence and fidelity. Just as it was mentioned the Bell states cannot be written as a

product of two pure states, concurrence quantifies to what degree a state is separable into

a product. Highly entangled states are not separable, so a high concurrence reveals the

state under study is entangled.

Fidelity is instead a measure of how easily two quantum states can be confused by

measurement. Given two qubits with density matrices ρ and σ, the fidelity of one to the

other is given by

F (ρ, σ) ≡ tr
√
ρ1/2σρ1/2.

A common way of applying fidelity is to choose the reference state σ as one of the Bell

states. The resulting number is then stated as “the fidelity to |Φ+〉”, for example.

The purpose of this chapter was to establish what quantum entanglement is and why

it is a worthwhile resource to create. Chapter 2 pivots the discussion about creating

entanglement into the physical world, investigating the evolution of systems which can

produce entangled photon pairs. As will be seen, quantum dots are attractive sources

of entanglement, but in general produce entangled states that carry an undesirable time

dependence like |ψ(t)〉 = 1√
2

(
|HH〉+ e

i
~ δt|V V 〉

)
. The motivation for the fast rotating

half-wave plate in chapter 3 is that it can counter the time-dependent phase, consistently

returning the entangled state to the Bell state 1√
2

(|HH〉+ |V V 〉).
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Chapter 2

Quantum Photonic Devices

Through the evolution of physical understanding in the early 20th century came the idea

that the smallest energy packets of light, called photons, behaved in ways unexplainable by

everyday experience. Chapter 1 introduced the wave-particle duality of photons, which has

since been the subject of rigorous experimental testing using a wide variety of techniques for

photon creation. The first conclusive demonstration of a single photon emitter that refutes

any classical description was by Clauser in 1974 [6] using an atomic cascade in mercury

atoms, so is a good starting point for a discussion about quantum photonic devices.

This chapter reviews the progress made since then focusing specifically on quantum

dots embedded in semiconducting nanowire antennas as the prime candidate for a modern

source able to create photon pairs entangled in the Bell state introduced in section 1.2.

As will be seen, the fabrication process for quantum dots can create an undesired physical

asymmetry in the dot that makes its entangled state depend on the elapsed time between

the first and second photons in a photon pair. The technology studied in the remainder of

this thesis seeks to offer a corrective tool for precisely this difficulty, and will be equally

effective for nanowire quantum dots as for any other.

21



2.1 Photon Sources

2.1.1 Emission from Atoms

The photon emission mechanism for atoms involves the transition of an electron from a

higher energy orbital to one with lower energy. Obeying energy conservation, the lost

energy, equal to Ephoton = hν = hc
λ

with ν the frequency in Hz and λ the wavelength, is

radiated from the atom in the form of a photon, which for certain atomic transitions is

in the visible spectrum. For example, the atomic transitions involved in the cascade for

mercury in ref. [6] create a yellow and a violet photon with wavelengths λ1 = 567.6 nm and

λ2 = 435.8 nm.

For this transition to happen two electrons must first acquire extra energy so they can

reside in the higher energy orbital. Electron bombardment is one technique for delivering

the requisite energy surplus and was used in ref. [6] and [7], while other schemes rely on

photon absorption, that is the reverse process of emission, as in the 1981 experiment by

Aspect et at. where atoms were used in an experimental violation of the generalized Bell’s

inequalities [8]. In either case the experimenter must hold the emitting atom at a specific

region in space where the excitation can take place and the emission occur.

All three of the experiments just cited achieve this by creating a cloud of atoms inside

a vacuum tube where the vapor pressure is low enough that only a single atom will be

excited at a time. A different approach was used by Kimble, Dagenais, and Mandel in

1977 where a sparse stream of sodium atoms was fired through a precisely tuned excitation

laser such that only a single atom was excited by the laser while passing through it [9].

The trouble with using atoms as a single photon source is they tend not to stay still,

making it difficult to isolate just a single one. Single photon sources embedded in crystal

avoid this problem by their nature of being at a fixed location in space, an idea which has

gained significant traction in the past two decades. The leading two technologies are formed

from defects in crystals, like nitrogen vacancy (NV) centres in diamond, and quantum dots.

Quantum dots will be the main focus of this chapter, but before investigating them in more

depth it is rewarding to take a brief tour of diamond quantum emitters.
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2.1.2 Emission from Nitrogen Vacancy Centres in Diamond

Diamond is a dense crystal structure of carbon in which is it possible to embed different

isolated atoms such as nitrogen. Where carbon has four valence electrons each participating

in a covalent bond with a neighboring carbon, nitrogen has five electrons and thus disrupts

the crystal structure. Carbon atoms can be missing in the lattice structure and this

kind of crystal defect is known as a vacancy. At 800 ◦C vacancies within the carbon

lattice are mobile and tend to shift toward an embedded nitrogen atom [10]. Three of the

nitrogen’s electrons participate in covalent bonding with neighboring carbon atoms while

the remaining two are non-bonding.

The vacancy located beside the nitrogen would have previously been occupied by a

carbon atom again with four covalent bonds. With the carbon absent at the vacancy

site next to the nitrogen, one of the four bonds was replaced by the lone nitrogen pair,

meaning three sp3 electrons are to be accounted for from the remaining carbon neighbors of

the vacancy site. It is understood that NV centres become negatively charged, for example

if an electric bias is applied to the crystal or when a neighboring nitrogen donates its

additional free electron, resulting in a total of six electrons in the lattice vacancy.

The electronic structure in a negatively charged NV centre can be analyzed as though

the six electrons are represented instead by two holes with quantized orbitals and a total

magnetization spin of S = 1 [10] [11]. The result is two singlet-triplets with the lower-

energy triplet as the ground state and an energy separation in the optical spectrum. Optical

excitation and emission happens between lower and higher energy triplets as well as between

the singlets. Since NV centers have quantized energy levels like the electron orbitals in

single atoms they can be used for single photon generation.

The first demonstration of non-classical light using a single NV center in diamond was

by Kurtsiefer et al. in 2000 [12]. Their results showed clear photon antibunching in a

Hanbury Brown–Twiss experiment with a g(2)(τ=0) = 0.26, a measure of how “single” a

single photon is. Pure single photons have a g(2)(0) = 0, while light in the classical picture

always has g(2)(0) ≥ 1. A key figure of merit for sources of single photons is then how low

g(2)(0) can be reduced.

1Reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer Nature,
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Figure 2.1: A diamond with

one NV centre embedded in

it is shown. The dome-like

structure is a lens for improv-

ing the light collection effi-

ciency of the NV centre’s pho-

tons. A pair of grey elec-

trodes at the image’s top cre-

ate an electrical bias across

the crystal so the NV center

becomes negatively charged.

The gold electrode on the

bottom is used to transi-

tion the qubit’s state between

levels in the ground triplet

by driving it with RF sig-

nals. The crystal was used

for the spin-spin entangle-

ment experiment from [13]1.

Nitrogen vacancy centres in diamond have been a gem

in experimental quantum information processing yielding

brilliant results due to their stability as compared to nat-

ural atoms, relative ease of fabrication, pure single-photon

emission, and provision of an accessible nuclear spin qubit

memory in addition to the already discussed electron spin

qubit. They have been used to generate entanglement be-

tween a photon and an NV centre spin [14], a prerequisite

for follow-up experiments that necessitate entanglement.

For example, in 2013 a pair of NV centres were used to

transfer the entanglement between a spin and photon from

each into entanglement between the spin of one and the spin

of the other three metres away [13]. Additionally using the

nuclear spin of the adjacent nitrogen atom as a qubit, a

2014 study showed teleportation of the nitrogen’s quantum

state across a similar three meter distance [15]. Finally,

NV centres were the workhorse in a noteworthy publication

from 2015 showing entanglement between states separated

by 1.3 km in a loophole-free violation of the CHSH-Bell

inequality [16].

Although NV centres offer entangled states to the ex-

perimenter, they do so only in the form of spin-to-photon

entanglement and do not produce entangled photon pairs.

This means NV centres cannot easily be used as a source

for distributing entanglement to two remote parties, unlike

natural atoms in subsection 2.1.1 for which this is possi-

ble. This naturally raises the question about what other

solid state quantum sources can be conceived for entangled

photon-pair creation that more similarly mimic the behavior of a natural atom. Quantum

“Heralded entanglement between solid-state qubits separated by three metres”, H. Bernien et al., Copyright

2013.
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dots are the answer, and are the feature of the next section.

2.1.3 Emission from Quantum Dots

Atoms can create entangled photon pairs by a cascade in electron configurations from a

high energy state to a ground state via an intermediate orbital, however engineering the

isolation of individual atoms is experimentally difficult to achieve. NV centers resolve this

by the tangible macroscopic nature of their host material, but do not feature the same

photon cascade offered by individual atoms. Quantum dots, sometimes called artificial

atoms, strike a balance by creating an imitation of the electron orbitals found in a single

atom except within the solid confines of a semiconducting crystal.

Quantum dots and atoms are similar in that they create an electrical potential in space

which is an attractive place for electrons to reside. In the case of an atom, a positively

charged nucleus creates an electrically attractive force for negatively charged electrons,

which then fill quantized orbitals until the atom’s overall charge is neutralized. Said equiv-

alently, the atom creates a potential energy well, or a region of lower total potential energy,

for the electron to become trapped in. The electrons can transition between higher and

lower orbitals as they gain or lose energy, for example by heat or by external optical

pumping.

In an analogous way, electrons in a semiconducting crystal lattice are subject to vari-

ations in electrical potential that is a function of material composition, shape, and strain,

as well as other factors including electric field. In a perfect crystal such as the diamond

discussed in subsection 2.1.2, each atom will be bound to its neighbors through covalent

bonds formed from one atom’s electrons and the next.

The energy required to break a bond depends on the atoms involved and their structure,

and is a defining property of semiconductors called the band gap Eg. Using diamond as

an example with strong bonds, a lot of energy is required to free a bound electron, leaving

behind an electronic hole, so the band gap in diamond is very large around Eg ≈ 5.5 eV.

That corresponds to the energy carried by ultraviolet light with a wavelength of λ =

225 nm. Band gaps for various semiconductors are shown with respect to their lattice

constants in Figure 2.2.
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Figure 2.2: [Left] Semiconductor bandgaps depend on material composition. Nanowire

quantum dots can be made from a small InAsP section embedded in an InP nanowire

waveguide. InP can be seen at the centre of the figure. By Marcel Törpe. Reproduced

from [17] under the Creative Commons CC BY-NC-ND 4.0 Licence.

Figure 2.3: [Right] A scanning tunneling microscope image of a quantum dot made from

InAs on top of GaAs before a top layer of more GaAs is added. The dot forms by itself

due to the lattice constant mismatch between the two crystals and is thus called a self-

assembled quantum dot. Reprinted from J. Márquez et al., “Atomically resolved structure

of InAs quantum dots,” Applied Physics Letters, vol. 78, no. 16, pp. 2309–2311, 2001,

with the permission of AIP Publishing [18].

26



For this reason diamond does not absorb lower-energy light and is thus transparent in

the visible spectrum. By contrast, the semiconducting nanowire photonic device studied in

this thesis is made of pure wurtzite InP, with exception of the quantum dot embedded in

it, and has a near-infrared bandgap of Eg ≈ 1.50 eV meaning electrons can be energized to

the conduction band and leave behind a hole quite easily [19]. This efficient electron-hole

creation mechanism is called above-band optical excitation.

Embedding a different material inside the InP nanowire with an even lower bandgap,

like InAsP, creates a localized potential well. When the InAsP crystal is sufficiently small

in size and completely surrounded in all directions by InP, the electron wavefunctions are

restricted to quantized energy levels which can each be occupied by at most two electrons

of opposite spin due to the Pauli exclusion principle. This is the essence of a quantum dot.

The image in Figure 2.3 shows an InAs quantum dot on a GaAs substrate from [18].

An inverted potential well in the valence band can trap holes, which are also quantized

and follow the Pauli exclusion principle, in the same restricted region as the trapped

electrons. An electron in the quantum dot can then recombine with a hole, falling from

a high energy configuration to a lower one and radiating the lost energy in the form of a

photon. Two opposite-spin electrons in the lowest energy level of the conduction band can

each recombine with two holes confined to the highest energy level of the valence band,

creating a pair of photons in the process.

Each photon in the pair will be a slightly different energy, since the presence of an

electron in the quantum dot changes the potential energy seen by the second electron just

slightly through a Coulomb interaction. The same is true for the two positively charged

holes. The two photons can be distinguished by their energy, thus very pure single-photon

emission can be created by filtering on wavelength: the single photon nature is guaranteed

by the quantized energy levels in the quantum dot as long as the quantum dot (QD) is not

re-excited while the emission is happening.

The first demonstration of single-photon emission from a QD was at room temperature

in 2000 by Michler et al. using small amounts of CdSe in ZnS. The photons were sent to a

Hanbury Brown–Twiss (HBT) experiment and a clear dip in the second order correlation

was observed, for a g(2)(0) = 0.47(2). Quickly thereafter, Michler et al. published a single
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photon emitter with a quantum dot coupled to a high-Q resonator. Their device was cooled

to 4 K and pumped with a continuous-wave laser. Again by way of a HBT experiment they

found an exciton g(2)(0) ≈ 0.25.

Of specific appeal is that the two photons produced in the biexciton-exciton cascade are

entangled in polarization, as in the |HH〉+|V V 〉 state discussed in section 1.2. With a high

level understanding of the motivation and principles underlying quantum dot single-photon

emitters in place, the following section proceeds with an overview of the functionality an

ideal entangled photon source should offer as well as how individual characteristics can

be quantified. Section 2.3 then delves further into a discussion of the theory behind the

quantum dot confining potential and the resulting photon cascade.

2.2 Photon Source Wishlist

The three photonic platforms visited in section 2.1 each have advantages and disadvantages,

and although the purpose was to explore the history of single photon emitters as well

as some ways of quantifying their characteristics, not much detail was provided. It is

important to develop standard language with which to discuss the attributes a certain

photon source has and how it performs since doing so allows a fair comparison of competing

technologies. In addition, each attribute should be determined in a consistent way so it’s

possible to measure progress and reward technological advances.

The purpose of this section is to summarize the key features a photon source should

possess, as they have largely been agreed upon by the photonic community [20] [21] [22]

[23] [24] [25] [26]. Although the success criteria for single- and entangled-photon sources

differs slightly there is enough commonality between them that it makes sense to aggregate

the two wishlists.

Eight different attractive properties for photonic devices are presented. The first is

that photons should be produced on demand – flipping a switch causes a single photon

to be emitted with high reliability. It should be possible to flip the switch often making

the photon source bright, so it produces enough photons that it could be integrated into

meaningful future technology. The photons it emits should be single, pure and simple.
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Successive photons should not be distinguishable from one another. It should be possible

to tune the energy of the emitted photons. Real-world integration of photon sources into

new technologies will require coupling to fibre-optic cable, which necessitates a Gaussian

far-field. Ideally, the photonic device meeting the criteria so far also emits entangled photon

pairs. Finally, an electrical excitation scheme is desirable for its smaller form factor.

2.2.1 On Demand

A photon source is deemed on-demand if it produces a photon exclusively when triggered.

The idea of a trigger is an abstraction from any specific physical implementation, but

could be, for example, the rising edge of a digital clock. Equally, it could be a manual

push-button that an experimenter controls, debatable in usefulness though that may be.

In principle, any photonic device that is silent until a photon is requested of it, at which

point only a single photon is produced, will be on-demand. Likewise, the principle of an

on-demand source can be extended to entangled photon pairs, where instead of a single

photon the experimenter receives two and they’re entangled.

The primary motivation for the on-demand criteria is the deterministic ability to then

produce quantum interference such as by overlapping photons at a beam splitter. Experi-

ments like boson sampling [27] and linear optical quantum computing [28] [29] pass photons

through an optical network and benefit directly if the precise timing of photon creation

can be preset. Quantum repeaters, required to extend the distance entangled states can be

distributed, rely on the same principle and again will be made significantly more successful

with an on-demand source.

On-demand photon generation with quantum dots can largely be broken into two cat-

egories based on their excitation scheme. Optical excitation is done using a laser to create

an electron-hole pair which then produce a photon upon recombination. By selecting a

pulsed laser which delivers energy with a well-defined repetition rate the electron-hole pair

will only be created when a pulse arrives, making an on-demand source possible. This

strategy works for both single photon generation [30] [31] [32] [33] [34] [24] as well as for

entangled photon pair sources [23] [35] [22] [25].
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Alternatively, it is possible to create on-demand photons or photon pairs from quan-

tum dots using electrical excitation [36] [37] [38]. Advantages of electrical generation is

the flexible control over the excitation trigger, as well as higher trigger rates. Schemes

using electrical excitation tend to cause fluctuations in the local charge environment of the

quantum dot, though, which reduces indistinguishably.

Figure 2.4: Lifetime measure-

ments of three different quan-

tum dots. Reproduced from

[31]1.

One way to demonstrate that a particular photonic

device is producing on-demand photons is to trigger one

and start a timer, stopping it when a single photon de-

tector clicks. Repeated trials can then be used to create

a histogram of clicks versus delay time, an example of

which is shown in Figure 2.4. The characteristic peak

with an exponentially decaying tail represents the tem-

poral profile of a single photon, where the 1/e point on

the tail is the lifetime of the electron-hole pair. A pho-

ton source that isn’t deterministic would not show a clear

correlation between start time and photon detection.

Spontaneous parametric down-conversion (SPDC) in

a nonlinear crystal is commonly used as a source of single

photons or entangled photon pairs. The process is Poissonian in nature and thus creates

photons in a probabilistic fashion. By contrast, the pulsed optical and electrical excitation

schemes for quantum dots create photons in a triggered, deterministic way. Since the

SPDC sources do not meet the on-demand criterion for an ideal single photon source, they

are not considered any further in this thesis.

2.2.2 Bright

Somewhat related to the discussion about on-demand photon generation is the requirement

that a photon source be bright. Whereas an on-demand source can create more intense

1Reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer Nature,

“Indistinguishable photons from a single-photon device”, C. Santori et al., Copyright 2002.
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Figure 2.5: [Left] Schematic of a quantum dot embedded in a micropillar cavity with

DBRs on the top and bottom. Photons are emitted upward. [Right] Variation in photons

collected from a quantum dot embedded in a micropillar cavity as pump power is varied.

The peak is exactly a π pulse, taking the Bloch vector from |0〉 to |1〉. Reprinted figure

with permission from [33]. Copyright 2016 by the American Physical Society.

light, characterized by a higher photon flux or photon counts per second (CPS), by in-

creasing the frequency at which it is triggered, this does little good if only a small fraction

of the photons are captured into an optical system for real use. Bright photon sources are

thus those for which a high percentage of emitted photons are directed into an operator’s

lens, rendering them available for him to use, which in turn boosts the on-demand photon

production probability to unity.

The brightness of a photonic source is characterized by the fraction of photons coupled

into the first lens of a measurement system for a given triggered pulse. Two main factors

come into play for overall source efficiency: how well an excited state is populated, and

how well the resulting photon can be collected. The overall efficiency is then formed from

the product of these two.

Improvements to the population efficiency in a quantum dot are done through precise

choice of excitation method. For example, with resonant pulsed excitation as in refs. [32],

[33], and [23], the power for the laser pulse is chosen so as to maximally populate the
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quantum dot’s excited state. An example of counts vs excitation power is shown at right

in Figure 2.5.

Extraction efficiency for quantum dots embedded in their bulk material is extremely

poor, as the semiconductors in question have a high index of refraction and the quantum

dots emit photons in all directions. The semiconductor-air interface thus reflects most of

the photons back into the bulk material due to total internal reflection, allowing only a

small fraction photons emitted practically perpendicular to the boundary to escape. Of

those, again only a fraction can be collected by a microscope objective lens.

Consider the quantum dot embedded in the micropost photonic device pictured in

Figure 2.5. The DBRs on the top and bottom create a cavity into which the quantum dot

can emit a photon, from where it escapes through the thinner top reflector. This design

gives the photon a preferred direction which significantly boots the fraction that can be

collected into a lens. At the optimal driving power more than 3.7 million photons per

second are detected. The authors excite the quantum dot 81 million times per second, so

the overall efficiency is 4.57%. They estimate the generation efficiency is 96% while the

extraction efficiency is 66%.

A disadvantage of the micropillar approach is that the high Q-factor cavity shown

can only be tuned to either the exciton or bi-exciton energy, but not both at the same

time. This prohibits the entangled photon pairs from being emitted from the design as

considered. Alternative strategies that boost collection efficiency of both photons in an

entangled pair are termed broadband photonic devices. Several different proposals have

been tested and Figure 2.6 shows three of the most promising ones.

Since the main challenge hindering high light extraction efficiency from a quantum dot

is total internal reflection, one idea is to plaster a layer of quantum dots directly to the

bottom of a small solid immersion lens (SIL), eliminating the air gap. This allows the

light to escape the semiconductor crystal at a comparatively wide angle which can then be

collected into a microscope objective. A mirror below the quantum dot layer additionally

reflects downward-emitted light back up and into the first lens instead. Chen et al. studied

a photonic device based on this exact design in 2018 with good results, achieving 65%

single-photon extraction efficiency. Pair efficiency, where both the exciton and biexciton
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Figure 2.6: Three designs for broadband photon collection. [Left] A nano-scale photonic

wire with a quantum dot embedded in it. This is the photonic device studied in chapter 5.

Reproduced from [40] under the Creative Commons CC BY 4.0 license. [Center] A layer

of self-assembled quantum dots, along with a bottom mirror, glued to a solid immersion

lens. Reproduced from [39] under the Creative Commons CC BY 4.0 license. [Right] A

broadband bullseye cavity with a quantum dot at the center. Reprinted by permission

from Springer Nature Customer Service Centre GmbH: Springer Nature Nanotechnology,

“A solid-state source of strongly entangled photon pairs with high brightness and indistin-

guishability” J. Liu et al., Copyright 2019 [41].

are extracted, was found to be 37.2% [39]. A schematic is shown at centre in Figure 2.6.

The results presented in chapter 5 use the exciton from the nanowire quantum dot

photon source at left in Figure 2.6. Its photon pair extraction efficiency is 18% [40].

2.2.3 Highly Pure

One killer application of single photon sources is the use in next-generation cryptographic

schemes as a provably secure way of distributing encryption keys. The security of single-

photon protocols like this relies on the fundamental indivisibility of a photon: if a receiver

receives his photon he can be certain no one else has also previously measured it, or if they
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have, the original photon’s state could not have been identically replicated. As soon as

more than one photon carries the same information, though, one can be intercepted in an

attack called photon splitting.

This motivates the criteria of high photon purity. A pure photon source will emit only

one photon at a time, meaning that two or more photons should never emerge from it in

unison. Quantum dots provide this guarantee due to the Pauli exclusion principle, which

limits the number of electron-hole pairs in the s-shell of the QD to two. Since the energies

of the biexciton and exciton photons are slightly different, they can each be isolated by

spectral filtering and thus are each pure single photons.

Single photon purity is measured by way of an HBT setup [42] [9]. The purpose of

the original experiment was to use two different detectors separated by some distance to

observe the star Sirius in the night sky with better resolution than was possible at the

time. Correlating the results from the two detectors gave Hanbury Brown and Twiss the

possibility of measuring Sirius’ precise size. This principle was based on the tendency

of photons from a thermal source like a star to arrive in bunches, resulting in positive

correlation events.

The opposite effect is expected from a pure single-photon source, where photons should

have strong anti-bunching, or anti-correlation events. Qualitatively this means that one

should not be able to measure a second photon from a single photon source in the same

time interval as one was just found. To test this, a stream of single photons is sent

through a beam splitter with one single-photon detector at each output port, as shown in

Figure 2.7. The two detectors then register clicks, and the time difference between two

clicks is recorded. A designated detector is defined as the zero reference meaning a positive

delay is recorded if it clicks first; otherwise the delay is negative. The resulting histogram

should be symmetric, with g(2)(τ) = g(2)(−τ).

The key indicator of anti-bunched light is the absence of two simultaneous photon

detection events. At right in Figure 2.7, the biexciton and exciton from the bullseye

quantum dot source in Figure 2.6 were each correlated individually in HBT experiments.

The absence of a centre peak for both cases shows very pure single photon creation. This is

quantified by the second order correlation g(2)(τ), with τ the delay time between detection
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Figure 2.7: A schematic showing the measurement for quantifying single photon purity

using a HBT experiment. Reprinted by permission from Springer Nature Customer Ser-

vice Centre GmbH: Springer Nature Nanotechnology, “High-performance semiconductor

quantum-dot single-photon sources” P. Senellart et al., Copyright 2017 [25]. Results for

both the biexciton (XX) and exciton (X) from the bullseye cavity at right in Figure 2.6.

Reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer

Nature Nanotechnology, “A solid-state source of strongly entangled photon pairs with high

brightness and indistinguishability” J. Liu et al., Copyright 2019 [41].

events.

The HBT experiment is a means to an end, which is to determine whether a given state

of light is single-photon or not. Mathematically the same information can be gained by

studying the beam prior to it entering the beam splitter. In this scheme, a perfect single

detector capable of multi-photon detection is placed in the beam and its clicks are recorded

with their time.

Formally, for a classical field in front of the beam splitter, the second order correlation

function gives the expected value of the joint intensities measured on the detector at time

t and at time t = τ , normalized to the product of the expected value of the intensity at

each respective time 〈I(t)〉 = 〈I(t+ τ)〉 = Ī. For a stationary beam, that is one whose

intensity doesn’t vary with time, the average intensity at two different times is equal, as
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shown. Then,

g(2)(τ) =
〈I(t)I(t+ τ)〉
〈I(t)〉 〈I(t+ τ)〉 =

〈I(t)I(t+ τ)〉
Ī2

.

When the expected intensities at time t and t + τ are uncorrelated, say for example

when the time delay τ is much longer than the coherence time of the light under study τc,

the numerator reduces to 〈I(t)I(t+ τ)〉τ�τc = 〈I(t)〉〈I(t+ τ)〉 = Ī2 for a g(0)(τ) = 1.

In the opposite limit with τ = 0 < τc, the numerator becomes 〈I(t)2〉, an average of the

product of intensities. Splitting I(t) into average and fluctuating parts as I(t) = Ī + ∆I(t)

results in

〈I(t)2〉 =
〈
(Ī + ∆I(t))2

〉
= Ī2 + 2Ī 〈∆I(t)〉+

〈
∆I(t)2

〉
= Ī2 +

〈
∆I(t)2

〉

where the fluctuation varies equally above and below zero for a time-averaged value of

〈∆I(t)〉 = 0. The square of the fluctuation is always positive, though, meaning 〈∆I(t)2〉 ≥
0 with equality only if there is no fluctuation in intensity at all, say for a very stable

monochromatic beam. Thus it is found that

g(2)(τ = 0) =
〈I(t)I(t+ τ)〉

Ī2
=
Ī2 + 〈∆I(t)2〉

Ī2
= 1 +

〈∆I(t)2〉
Ī2

≥ 1.

The conclusion is that classical light cannot have a g(2)(0) < 1.

By contrast, after quantizing the electric field, g(2)(τ) can be written in terms of the

photon creation and annihilation operators â† and â, and it will be found that the single-

photon state |1〉 has a very characteristic nonclassical feature where g(2)(0) = 0. The

expected intensity in the quantum picture is proportional to the number of photons per

unit time, or photon flux 〈I(t)〉 ∝ 〈n̂〉 = 〈â†â〉. Here, n̂ = â†â is the photon number

operator.

Similarly, investigating only the case for τ = 0, the numerator of g(2)(0) is written

〈â†â†ââ〉. The second order correlation function in the quantized theory is thus

g(2)(0) =
〈â†â†ââ〉
〈â†â〉2 =

〈n̂(n̂− 1)〉
〈n̂〉2 .

The last step used the commutation relation [â, â†] = ââ†− â†â = 1. Here, the expectation

values are all taken in their quantum-mechanical form as 〈Ô〉ρ = tr(ρÔ) for the observable
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Ô. Using the photon number state |n〉 as the number of photons in a mode, some further

properties of the creation and annihilation operators are

â|n〉 =
√
n|n− 1〉

â†|n− 1〉 =
√
n|n〉

â|α〉 = α|α〉

(â|n〉)† = 〈n|â† =
√
n〈n− 1|

(â†|n− 1〉)† = 〈n− 1|â =
√
n〈n|

where |α〉 is the coherent state, produced by an ideal continuous-wave laser.

To gain some intuition about the g(2)(0) for the quantized field it helps to view some

properties of the number operator n̂ too.

n̂|n〉 = n|n〉
〈n|n̂|n〉 = n

〈0|n̂(n̂− 1)|0〉 = 0

〈1|n̂(n̂− 1)|1〉 = 0

n̂(n̂− 1)|n〉 = n̂2|n〉 − n̂|n〉 = (n2 − n)|n〉
〈n|n̂(n̂− 1)|n〉 = n2 − n
〈2|n̂(n̂− 1)|2〉 = 2

〈3|n̂(n̂− 1)|3〉 = 6

A way to understand the expectation value in the numerator of g(2)(0) is as two times

the rate at which the single-photon detectors click simultaneously for pairs of photons.

The formula 1
2
n(n − 1) is recognizable as a specific case of n choose two, which gives the

possible number of ways of forming pairs between photons. With n = 1, no pairs can be

formed, while for n = 2 one pair is possible and n = 3 can have three pairs. There are then

two photons in a pair contributing to that measured intensity, so the numerator values for

states |1〉, |2〉, and |3〉 are 〈n̂(n̂− 1)〉|n〉 = 0, 2, 6 respectively.

Thus, for the single photon state |1〉, it is now clear that only one detection event at

time t is possible, meaning g(2)(0) = 0, a nice nonclassical result.

Experimentally, it isn’t possible to detect multiple photons with infinitesimal time

resolution at the same location, so in practice the HBT configuration with a beam splitter

and two detectors is used. The result is the same as can be confirmed by substituting the

creation operators for the two output modes of the beam splitter ĉ† and d̂† in place of â†

as

ĉ† =
1√
2

(
â† − b̂†

)
d̂† =

1√
2

(
â† + b̂†

)
,
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along with the vacuum input of |0〉 on port b. Here, a is the incoming port with the field

of interest, b is the second beamsplitter input, c is the transmitted port from a while d is

the last output.

Figure 2.8: A

g(2)(τ) mea-

surement for a

turnstile quan-

tum dot. The

dip below 1 is

characteristic of

a nonclassical

field. From P.

Michler et al.,

“A quantum dot

single-photon

turnstile device,”

Science, vol. 290,

no. 5500, pp.

2282–2285, 2000

[43]. Reprinted

with permission

from AAAS.

With theory of the HBT experiment now well understood, the ex-

perimenter must determine how their g(2)(0) should be calculated in

practice. The methodology is different for continuous wave excitation

compared with pulsed excitation, since the pulsed case does not meet

the criteria of a stationary field – one of the initial assumptions for this

analysis of g(2)(τ).

Under continuous wave excitation, one will collect a curve of co-

incidence counts that appears like in Figure 2.8. When properly nor-

malized the g(2)(0) can be read from the height of the time bin at zero

delay. A common strategy is to fit the dip with a pair of exponentials

to extract the photon’s lifetime.

A second order correlation measurement on a single photon source

using resonant excitation will result in the histogram pictured in Fig-

ure 2.7. The main feature of this graph is a pulse train with the centre

peak at τ = 0 missing. The authors calculated g
(2)
X (0) = 0.001 and

g
(2)
XX(0) = 0.007 by integrating the centre peak and dividing it by the

mean of the neighboring peaks [41].

Resonant excitation is a great choice when considering alternative

excitation methods as it very reliably populates just the energy levels

used in creating the single photons. In addition, it significantly sup-

presses re-excitation of the quantum dot, which is a key contributor to

multi-photon emission. As in [41], very low values for g(2)(0) are being

demonstrated in state-of-the-art photonic devices.
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Figure 2.9: HOM experiment and example coincidence measurements for a single photon

source in a micropillar cavity. Reprinted by permission from Springer Nature Customer

Service Centre GmbH: Springer Nature, “Indistinguishable photons from a single-photon

device”, C. Santori et al., Copyright 2002 [31].

2.2.4 Indistinguishable

A use case for single photons that has garnered a lot of attention is the prospect of using

them for linear optical quantum computing (LOQC) [28] [29]. The gates implemented in

LOQC in part depend on the quantum behavior of destructive interference photons exhibit

when overlapped on a beam splitter. Hong, Ou, and Mandel first showed in 1987 that when

indistinguishable, photons are observed to exit a beam splitter by a mutual port [44]. This

interesting feature places some requirements on the photons in question, which will be

discussed briefly.

Photons are said to be indistinguishable if they are the same in every respect. As men-

tioned in chapter 1, photons have many degrees of freedom in which quantum information

can be encoded. That discussion proceeded assuming a qubit was stored using the polar-

ization state of a photon. In addition, photons have a distribution of frequencies around

a centre, a distribution of electric field in space, and a temporal shape. When none of

these characteristics can be used to discern one photon’s wave packet from another the two

are said to be indistinguishable. Then, and only then, can the destructive interference of

probability amplitudes at a beam splitter come into effect.

The typical method of quantifying indistinguishability is to use a similar correlating
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technique as in subsection 2.2.3 with two detectors at the output of a beamsplitter, except

with the modification that two separate photons are sent into the two input ports. When

the two photons feature perfect wavefunction overlap they will both exit the beamsplitter

on the same port and no two-photon coincidence measurements will take place. This is

known as the HOM dip.

A schematic of the experiment is shown in Figure 2.9. A quantum dot is driven at

13 ns intervals by two pulses separated by 2 ns. Each of the two pulses creates a single

photon, which are then sent through a beam splitter twice. The output from the first pass

through the beam splitter is redirected back through it a second time, but with one arm

at a 2 ns time delay. The second time through the beam splitter there is the potential for

two successive photons to overlap.

The overlap will only occur under the condition that the first photon takes the longer

delay path, transmitted straight through the beam splitter in the experiment. The second

photon must then take the short path. Upon meeting at the beam splitter the two photons

will overlap in time and will thus be given a chance to destructively interfere. When they

do, they will both be directed toward the same photon counter, making only that single

counter click.

Peak 3 in Figure 2.9b is at the middle of the centre grouping and corresponds to the

two-photon coincidences. In this experiment it is visibly lower than the two adjacent peaks

2 and 4. A coincidence will occur in peak two and four if both photons take the same arm

through the interferometer. Peaks one and five happen when the first photon takes the

short arm and the second takes the long one.

Using the procedure described in [31] the authors calculated a wavepacket overlap of

0.81. This particular experiment was done using pulsed, but not resonant excitation.

Switching to resonant excitation as well as designing the photonic devices to limit the

charge noise contribution to dephasing and spectral walking has significantly increased the

indistinguishability achievable from quantum dots, with recent reports as high as 0.9956(45)

[34], an exceptional result.
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2.2.5 Tunable

Traditional communication systems span vast distances. Whether in the form of radio

waves in free space, electrical signals in cables, or light in fibre optic cable, the key to

success on such a large scale is the ability to replicate data. This makes a faint signal

recoverable through amplification and noise reduction. However, quantum states cannot

be cloned and must thus be relayed by other means. This is especially true given that

losses in optical fibre make long-distance communication infeasible over distances larger

than one hundred kilometers.

Current proposals rely on entanglement swapping, whereby two remote sources of en-

tangled flying qubits, like photons, each emit a pair of photons in lock step. One photon

from the pair is sent to a receiving party while the second from each pair is overlapped on a

beam splitter. Under the condition that it is impossible to determine which photon at the

beam splitter’s exit came from which of the two sources, the entanglement is transferred

to the two remaining photons, now twice the distance apart.

The quantum interference at the beam splitter is of the same type as was described

in subsection 2.2.4. One of the criteria for indistinguishability is that the photons in

question must have identical frequencies. From subsection 2.1.3, the photons created in a

quantum dot depend on the band gap of the material, so not all quantum dots will create

photons at the same frequency. In addition, local fluctuations in the confining potential

of the quantum dot or the electrostatic environment surrounding the quantum dot can

vary photon frequency. For example, heating a crystal will cause it to undergo thermal

expansion, increasing the size of the QD and thus reducing the confinement slightly. This

then equivalently lowers the quantum dot’s emission energy.

To meet the requirements of a quantum relay a photonic device should be able to have

its photons tuned in energy without affecting the quality of entanglement. Several ideas

have been demonstrated, such as tuning with temperature [43] [45] [46], a.c. Stark effect

[47], electric field [48] [49] [50], magnetic field [51], strain [52] [38] [53] [54] [55], device

shape [19] or even using the sidebands of the Mollow triplet [56] as a source of single

photons. Each method complements other design choices, and the upshot is that quantum

dot sources can be tuned sufficiently well for real-world applications.
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Figure 2.10: Image of a nanowire quantum dot’s far field showing a very Gaussian shape.

Reprinted (adapted) with permission from G. Bulgarini et al., “Nanowire waveguides

launching single photons in a gaussian mode for ideal fiber coupling,” Nano Letters, vol.

14, no. 7, pp. 4102– 4106, 2014 [57]. Copyright 2014, American Chemical Society.

2.2.6 Gaussian Far-Field

One appeal of using light to carry a quantum state is its compatibility with the optical

infrastructure already in place today. In order to interface with this existing optical tech-

nology it must be possible to extract the light from a photonic device and then couple it

into a channel for processing and distribution.

Two main methods exist for achieving this goal. The first relies on the pattern of the

far-field emission from the photonic device. If suitable, a fibre optic cable and in-coupling

lens can be set up in the beam path from the photonic device to capture the emitted

photons. A gaussian emission profile is highly desirable because it can be coupled into

fibre optic cabling with high efficiency.

Integrated optics offers an alternative approach [58] [59]. Given that a photonic de-

vice is compatible with on-chip waveguides, photons can then be smoothly coupled into

a fibre using existing fabrication techniques. Processing can also be done using on-chip

components prior to sending a photon over large distances.

The image in Figure 2.10 is the mode profile emitted from a quantum dot in a tapered

nanowire. It has a 98.8% overlap with Gaussian form, and the authors achieved fibre

coupling efficiencies of the quantum dot’s emission of 93.3%.
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2.2.7 Entangled

Although already discussed in chapter 1, subsection 2.1.3, and subsection 2.2.2, the criteria

of entanglement additionally deserves a place in the photonic device wishlist. The reason

is that single photon sources can be very high quality but not emit entangled photons. NV

centers fall into this category, as do the photonic devices with quantum dots embedded in

micropillars such as ref. [34] or other high-Q cavities [24].

The entanglement-generating criterion often requires imposing compromises on the de-

sign of a photon source, as the parameters that would be optimal for one of the two photons

in an entangled pair may not be optimal for the other. For example, in the quantum dot

biexciton-exciton cascade, the two emitted photons do not have the same energy, which, for

them to be bright, necessitates a broadband light extraction mechanism. QDs embedded

in tapered nanowires are good broadband sources of entangled photons, but care must be

taken when creating them to avoid introducing carrier traps in the vicinity of the QD [40]

[60].

Reversing the perspective, it shouldn’t be assumed that a photonic device which pro-

duces good entangled photon pairs is also a good single photon emitter. While the individ-

ual photons in a pair can be used separately, as has been done to demonstrate frequency

shifting in chapter 5, the entangled-photon source may fall behind an optimized single-

photon source on metrics such as purity, indistinguishability, and brightness.

Creating perfectly symmetric confining potentials for the QDs in a nanowire is chal-

lenging, so by their nature they have fine structure splitting which impacts the state of the

emitted entangled photon pairs. This topic will be discussed further in section 2.3, but

warrants mention here too.

2.2.8 Electrically Driven

While other items could also be considered for inclusion on a photonic source wishlist,

the central outstanding item is that a photonic source be electrically driven. Such a

source significantly advantages the form-factor and space imprint required to create single

or entangled photon pairs. In addition, it gives the photonic device operator access to
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extremely high repetition rates sooner limited by the lifetime of the quantum states than

by the electronics involved.

Most experimental results for quantum dots are published using optical excitation.

However, the technical requirements for optical excitation are relatively high, and make

for a relatively large physical footprint of supporting equipment. Resonant excitation

in particular necessitates tuning a laser to a very precise frequency and then carefully

controlling its excitation power to deliver exactly a π-pulse.

Advances have been made on electrical excitation for quantum dots by bonding contacts

to the photonic device [36] [37] [61] [38]. This excitation scheme usually relies on above

band carrier injection, so although it can produce pulsed output there has to date not been

a demonstration of electrical excitation with performance comparable to optical resonant

excitation.

An alternative idea is to replace the large Ti:Sapphire laser that is a staple in optics

laboratories by a small nW laser on the same chip as the quantum dot. The micro-laser

could then be driven electrically and its output used to resonantly excite the single photon

emitter.

This is a fascinating building block that could see accelerated adoption in a real-world

setting, and has already been demonstrated in a proof-of-concept by ref. [62]. Their report

is run at a 156 MHz repetition rate, whereas most Ti:Sapphire lasers are operated near

81 MHz. The microlaser and quantum dot source both still require cryogenic temperatures,

necessitating quite a large operating footprint regardless.

Designing a photon source to meet all the requirements just presented is extremely

challenging and there doesn’t yet appear to be one clear dominant technology. Further

discovery and technical ingenuity will certainly lead to refinements on existing form factors,

as well as perhaps unearth previously unexplored avenues to single photon generation as

well. For the remainder of the thesis the scope of discussion will be limited to the nanowire

quantum dot photon source as it is a tried and true photonic device that has proven very

good for the creation of engangled photon pairs [40] [60].
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Figure 2.11: The confining potential in a semiconductor quantum dot is approximated by a

harmonic oscillator. The s-shell in the conduction band can hold two electrons of opposite

spin, while the valence band can hold two heavy holes also of opposite spin. The light

holes have a lower energy still and do not enter the picture.

2.3 Nanowire Quantum Dots

The quantum photonic device featured in this thesis is a nanowire quantum dot. As briefly

explained, the quantum dot creates a quantized energy level structure in a semiconductor

crystal, limiting the energy levels electrons and holes can occupy. This is a result of its

confining potential, approximated by a harmonic oscillator [63].

Created from adding a small amount of arsenic to InP, the quantum dot’s energy

transitions are found in the near-infrared around 890 nm. A diagram of the confining

potential filled with an electron pair and a hole pair is shown in Figure 2.11. The electrons

have an intrinsic angular momentum of 1
2
, so one electron in the s-shell will be spin-up

with Sz = +1
2

while the other will be spin-down with Sz = −1
2
. Conversely, the heavy

holes are spin-3
2

quasiparticles and have spins of Sz = ±3
2
.

When combined, the total spin of an electron-hole pair, or exciton, can be −2, −1, 1

or 2. Only the spins of ±1 from the |↑⇓〉 and |↓⇑〉 states couple to an optical field, and

the ±2 combinations like |↑⇑〉 and |↓⇓〉 are thus called the dark states. Note that the
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light holes are also spin-1
2
, so a bright state can also be created by | ↑⇑ 1

2
〉 and | ↓⇓ 1

2
〉, but

since the light holes don’t frequently appear with energies near the valence band edge this

occurrence is rare. When it happens, the phenomenon is called heavy-light hole mixing.

The quantum dot emits light when an exciton recombines. As discussed in subsec-

tion 2.2.2, the typical semiconductors used for creating quantum dots have a high index

of refraction which inhibits the created photons from being extracted. In the nanowire

photonic source, the photons are given a preferred direction of emission along the length

of the wire. A critical design parameter is the tapering angle on the top, which avoids

an abrupt transition at the air interface and allows the electromagnetic field to leak out

gradually, minimizing reflections.

Initially nanowires were created by locating a quantum dot on a layer of self-assembled

quantum dots and etching a stucture around it. This top-down approach demonstrated the

proof of principle but couldn’t create the ideal tapering angle of 2°. Instead, a deterministic

bottom-up growth technique was developed which could create the more gradual tapering

angle [64].

A pioneering study of bottom-up pure-wurtzite nanowire quantum dot sources showed

a g(2)(0) = 0.12 under continuous-wave excitation, an exciton lifetime of 1.7(1) ns, a 30%

extraction efficiency, and significantly improved exciton linewidth [65] [66]. The mode was

found to be very nearly Gaussian [57], and as a broadband photonic structure it produces

high-quality entangled photon pairs [40] [60] [67]. The best values for g(2)(0) are found using

quasi-resonant excitation at 870 nm to be g
(2)
X (0) = 0.003±0.003 and g

(2)
XX(0) = 0.10±0.01

for the exciton and biexciton respectively.

The entanglement between photons produced by this quantum dot source is a by prod-

uct of the biexciton-exciton cascade, pictured in Figure 2.12. To start the cascade, the

s-shell of the quantum dot’s conduction band is filled with two electrons, while the valence

band is occupied by two heavy holes. This is the biexciton state (XX). One of the electron

hole pairs recombines and emits a circularly polarized photon, leaving just one remaining

electron and hole in the confining potential as an exciton (X). A short time later the ex-

citon recombines, emitting another circularly polarized photon with opposite polarization

to the first.
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X

Figure 2.12: The biexciton-exciton cascade pictured without (left) and with (right) an

energy splitting δ in the exciton’s fine structure.
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Two possibilities exist in the recombination of the first exciton pair. The initial state

in the quantum dot is |↑⇓⇑↓〉 and the photons’ mode is in the vacuum state |0〉, for a

combined state of |↑⇓⇑↓, 0〉. Either the |↑⇓〉 or |↓⇑〉 electron-hole pair can recombine

first, meaning the two possible exciton states are |↑⇓, RXX〉 and |↓⇑, LXX〉. Finally, after

the second recombination takes place the system’s state is 1√
2

(|g,RXXLX〉+ |g, LXXRX〉),
with the quantum dot at its ground level and two photons entangled in polarization. This

is the case shown at left in Figure 2.12.

It is expected that pure-wurtzite nanowires with a quantum dot embedded will not have

any splitting in the fine structure, and measurements have confirmed that it is quite low at

1.2 µeV [40]. The quantum dot tested in chapter 5 has been found to have a fine structure

splitting (FSS) of δ = 795.52(35) MHz [67]. When this occurs the stationary states of the

system are no longer in the {|R〉, |L〉} basis, and are instead found in a rectilinear basis

like {|H〉, |V 〉}. This is due to the exchange interaction between the electron and heavy

hole [68]. The energy diagram in this case is better represented by that on the right of

Figure 2.12.

In both figures, the bold arrows show that the photon emitted by the exciton has a

higher energy than the exciton from the biexciton. The difference stems from the Coulomb

interaction between them. In the left figure, the arrows showing the transitions are related

to the colors of the electrons and holes in the parabolic potentials. In the diagram with

the fine structure the exciton level is represented by a pair of lines split by an energy δ. In

this system the individual electron and hole spins are not good quantum numbers, and the

stationary states are better represented by the superpositions |⇑↓〉 ± |↑⇓〉. This resulting

two-photon state is still entangled, but precesses with time as indicated. The four arrows

are no longer blue and red to show that the emission is not from any particular exciton,

however the transitions with bold arrows remain higher energy.

To show that point, a spectrum was collected from the nanowire quantum dot studied

in chapter 5 and is shown in Figure 2.13. It emits the first photon in a pair from the

biexciton XX at EXX = 1.3867 eV → λXX = 894.11 nm and the second from the exciton

X at EX = 1.3889 eV → λX = 892.67 nm. The other sharp line is labeled X− and is

associated with the negatively charged exciton, where a recombination from the exciton

happens in the presence of another electron.
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InAsP Quantum Dot Spectrum with Above Band Excitation

Figure 2.13: Spectrum collected from an InAsP quantum dot embedded in a pure wurtzite

InP nanowire using above-band optical excitation at 830 nm. A pair of photons, one

biexciton labeled “XX” and one exciton labeled “X” is emitted for every completed cascade.

The next chapter tackles the somewhat different topic of electro-optic modulation, with

specific interest of using it to implement a rotating half-wave plate.
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Chapter 3

Frequency Shifting by Electro-Optic

Modulation: The Rotating

Half-Wave Plate

3.1 Introduction

Crystals are considered precious in society due to their beauty in the presence of light.

An engineer might instead wonder: given the properties of a crystal, what are the possi-

ble ways light can be strategically controlled with it? Many crystals are transparent in

the optical or infrared spectrum, and due to their high index of refraction, feature good

optical confinement. This chapter explores how one can up- or down-shift the frequency

of light propagating through a lithium niobate (LiNbO3) crystal waveguide by applying

in-quadrature electric fields across the guiding region.

The most common example of guided light today is in the telecommunications industry,

where optical fibres form the backbone of high-capacity links. These, however, are not made

with crystals: most fibre-optic cables use silica glass for the core and cladding [69]. The

guidance principles are similar for silica glass and lithium niobate, in that a waveguide core

is doped to make its index of refraction higher than the surrounding material, which then
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confines light due to total internal reflection. Crystal waveguides are typically inflexible,

while silica glass can be bent, making the glass ideal for long fibre-optic cables.

On the other hand, lithium niobate is of particular interest as its index of refraction

changes depending on an applied electric field. Additionally, the electric field’s direction can

control the birefringence of the crystal, making lithium niobate suitable for implementing

a half-wave plate. A number of commercial optoelectronic devices, including amplitude

and phase modulators, have been built based on these concepts ([70] Ch. 12, [71]).

The remainder of this chapter will present the mathematical concepts needed to show

how a lithium niobate waveguide is capable of changing the frequency of light. First, in

section 3.2 an introduction to the index ellipsoid and its relationship to electro-optically

sensitive crystal waveguides is presented. Following that, section 3.3 discusses the Jones

matrix approach to describing optical components and is used to show how a lithium

niobate waveguide configured as a rotating half-wave plate changes an incident circularly-

polarized beam. Section 3.4 goes on to discuss a specific physical implementation of the

rotating half-wave plate.

3.2 Electro-Optic Effects in LiNbO3

Maxwell’s equations relate electric and magnetic fields E and H in a medium or free space.

Electric fields result from the presence of electrical charges, and Gauss’s law succinctly

states that the divergence of the electric displacement flux density D, related to electric

field through the constitutive relationship D = εE, is equal to the charge density at the

same point, that is ∆ · D = ρ. Here, ε is a rank two tensor describing the permittivity

of the material and ρ is the charge density at the point in question. The permittivity of

free space is a constant relative to which other material permittivities are defined, and has

been measured to be ε0 ≈ 1
36π
× 10−9 F

m
.

Most of the time, Gauss’s law is applied for isotropic materials, in other words, materials

in which the relationship between electric field strength and displacement flux density is

independent of direction. Under these conditions, D = εE reduces to D = εE, where ε is

a scalar constant. The reason lithium niobate is chosen for creating a rotating half-wave
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plate is that it is not isotropic, and beyond that the permittivity along various axes is

controllable by applying an external electric field.

To gain an understanding of lithium niobate’s unique properties, it serves to investigate

its index ellipsoid. Chuang discusses the index ellipsoid in Ch. 6 and Ch. 12 of ref. [70],

and some of the same steps are followed here.

3.2.1 The Index Ellipsoid

An index ellipsoid describes the directional-dependence of the index of refraction of a

material. To begin, consider the diagonal permittivity tensor and its inverse, called the

impermeability matrix K, for a material whose permeability is the same as that of free space

µ = µ0. Using the definition for index of refraction ni =
√

εiµi
ε0µ0

=
√

εi
ε0

for i ∈ {x, y, z}, we

find that

ε =



εx 0 0

0 εy 0

0 0 εz


 = ε0



n2
x 0 0

0 n2
y 0

0 0 n2
z


 , K = ε

−1
=

1

ε0




1
n2
x

0 0

0 1
n2
y

0

0 0 1
n2
z


 .

In general, the permittivity tensor can be given with off-diagonal elements, however it

is diagonalizable by choosing the right coordinate system for x, y, and z. This is called

the principle coordinate system. Uniaxial medium have a recognizable optical axis in the

principle coordinate system, a characteristic relationship captured by εx = εy = ε 6= εz.

The index ellipsoid is then defined using the impermeability matrix as ε0
∑3

i,j=1Kijcicj =

1, where ci represents the ith element of the tuple (x, y, z), and Kij is the element from

row i at column j of the impermeability matrix K. Expanding in the principle axes for a

uniaxial medium gives

ε0

3∑

i,j=1

Kijcicj =
x2

n2
o

+
y2

n2
o

+
z2

n2
e

= 1, (3.1)

which is the equation for an ellipsoid in three dimensions. We have used the definition

of no = nx = ny for the ordinary wave solution and ne = nz for the extraordinary wave.

The distinction between ordinary and extraordinary waves is that the electric field of an
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Index Ellipsoid for 633 nm light in Lithium Niobate

Figure 3.1: The index ellipsoid for lithium niobate.

ordinary wave has no component parallel to the optical axis. The shape of the ellipsoid

helps gain intuition for how the index of refraction of a material is different for different

directions of propagating electromagnetic waves.

The index ellipsoid for lithium niobate in the absence of an electric field is shown in

Figure 3.1. The index of refraction for the ordinary and extraordinary waves have been

measured for light at 633 nm to be no = 2.297 and ne = 2.208. These two numbers are

quite close in magnitude meaning the resulting ellipsoid is almost a sphere. Looking from

the front as in Figure 3.1b one can see the ellipsoid fills a perfect circle, outlined in black. In

contrast, the circle is not completely filled when looking from the top down in Figure 3.1c.

This shows that the index ellipsoid is slightly compressed along the z-axis.
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It starts to become interesting when the values Kij depend on an external electric field

applied to the crystal. To study this phenomenon, it helps to define K = K0 + ∆K, where

K0 is the impermeability matrix in the absence of an electric field and ∆K describes the

change when a field is present. Pockels characterized this relationship between the elements

of ∆K and an applied voltage E = Exx̂ + Eyŷ + Ez ẑ using what are now called Pockels’

coefficients, rIk. The index I ranges from 1 to 6 instead of the usual 1 to 3, and in fact

represents index pairs from our original ij labeling through the mapping

(ij) =




11 12 13

21 22 23

31 32 33


↔




1 6 5

6 2 4

5 4 3


 = (I).

Only six indices are required for I as crystals exhibit symmetry in their structure,

making the off-diagonal terms equivalent. Then ∆K, whose elements are given by ∆Kij =

∆KI = 1
ε0

∑3
k=1 rIkEk, becomes

∆K =
1

ε0



r11Ex + r12Ey + r13Ez r61Ex + r62Ey + r63Ez r51Ex + r52Ey + r53Ez

r61Ex + r62Ey + r63Ez r21Ex + r22Ey + r23Ez r41Ex + r42Ey + r43Ez

r51Ex + r52Ey + r53Ez r41Ex + r42Ey + r43Ez r31Ex + r32Ey + r33Ez




=




∆K1 ∆K6 ∆K5

∆K6 ∆K2 ∆K4

∆K5 ∆K4 ∆K3


 −−−→




∆K1

∆K2

∆K3

∆K4

∆K5

∆K6




=
1

ε0




r11 r12 r13

r21 r22 r23

r31 r32 r33

r41 r42 r43

r51 r52 r53

r61 r62 r63






Ex

Ey

Ez


 .

Pockel’s coefficients are measured experimentally, and when needed are found in a

database cataloging material properties. For lithium niobate, the nonzero Pockel’s co-

efficients are, in units of 10−12 m V−1: r13 = r23 = 8.6, r33 = 30.8, r42 = r51 = 28,

r22 = −r12 = −r61 = 3.4, leading to the electro-optic tensor representation of ∆K given
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by 


∆K1

∆K2

∆K3

∆K4

∆K5

∆K6




=
1

ε0




0 −r22 r13

0 r22 r13

0 0 r33

0 r42 0

r42 0 0

−r22 0 0






Ex

Ey

Ez




Therefore it is now possible to put all the pieces together and find the general index

ellipsoid. First write K as

K = K0 + ∆K =
1

ε0




1
n2
o

0 0

0 1
n2
o

0

0 0 1
n2
e


+

1

ε0



−r22Ey + r13Ez −r22Ex r42Ex

−r22Ex r22Ey + r13Ez r42Ey

r42Ex r42Ey r33Ez




then use Equation 3.1 for the index ellipsoid to find

ε0

3∑

i,j=1

Kijcicj = x2
(

1

n2
o

− r22Ey + r13Ez

)
+ y2

(
1

n2
o

+ r22Ey + r13Ez

)
+ z2

(
1

n2
e

+ r33Ez

)

− xy (2r22Ex) + yz (2r42Ey) + xz (2r42Ex) = 1.

3.2.2 Index Ellipse for z-Propagation in LiNbO3

It now helps define some further properties of our waveguide, to simplify the index ellipsoid.

In particular, the waveguide is designed to propagate light along the z-axis, so we can

remove the elements that don’t contribute to permittivity in the xy-plane, that is we can

set z = 0. Additionally, for our application the electric field will not be applied along the

z-axis, meaning we can set Ez = 0. These changes result in a 2-dimensional ellipse, instead

of the usual 3-dimensional ellipsoid, given by

x2
(

1

n2
o

− r22Ey
)

+ y2
(

1

n2
o

+ r22Ey

)
− xy (2r22Ex) = 1. (3.2)

Using our knowledge about the index ellipsoid, we can see that with a nonexistant

electric field, the principle axes of the crystal are aligned along the natural principle axes,
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and the index ellipse actually describes a circle.

x2

n2
o

+
y2

n2
o

= 1. (3.3)

This means the fast and slow axes propagate the phase of the light at the same velocity:

there is no birefringence.
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LiNbO3 Index Ellipse for an Electric Field Ey when Ex is Zero

Figure 3.2: The index ellipse for lithium niobate in the presence of a y-directed electric

field. In a), the fast axis is vertical and the slow axis is horizontal, meaning the vertical

polarization of a propagating light wave will travel through the material faster than the

horizontal component. The ellipse in b) is actually a circle, so lithium niobate is not

birefringent for light traveling along z (out of the page) when Ey is zero. Making Ey

negative as in c) results in the fast and slow axes switching such that the horizontal

component of a propagating light wave will travel faster than the vertical component.

When an electric field is applied only along the y-axis, that is Ey becomes non-zero,

the principle axes stay the same, however the equation becomes an ellipse compressed or

stretched in the vertical (ŷ) direction.

x2
(

1

n2
o

− r22Ey
)

+ y2
(

1

n2
o

+ r22Ey

)
= 1 (3.4)
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In this case we can define different indices of refraction for the x̂ and ŷ directions like

1

n2
x

=
1

n2
o

− r22Ey
1

n2
y

=
1

n2
o

+ r22Ey

−−−→
nx =

no√
1− r22Eyn2

o

ny =
no√

1 + r22Eyn2
o

,

allowing us to see that as Ey is increased, the denominator of nx will decrease while the

denominator of ny will increase, therefore increasing nx and decreasing ny. A lower n

results in a faster phase velocity for light, meaning that for high Ey, the y-axis will be the

fast axis, while the x-axis will be the slow axis. If the polarity of Ey is switched, that is it

is increased in the negative direction, the fast and slow axes will switch. These results for

different values of Ey are pictured in Figure 3.2.

When an electric field is applied along the x̂ direction, a different picture emerges. The

index ellipse reduces to
x2

n2
o

+
y2

n2
o

− xy (2r22Ex) = 1.

It is clear that in this case, if we were to work backward to find the corresponding coef-

ficients in the ε matrix, it would no longer be diagonal, meaning the principle axes have

changed. Observe that by applying the transformation

x =
1√
2

(x′ − y′) , y =
1√
2

(x′ + y′) ,

to the index ellipse, we arrive at a new index ellipse equation

x′2
(

1

n2
o

− r22Ex
)

+ y′2
(

1

n2
o

+ r22Ex

)
= 1.

Intuitively, the transformation sets up the (x′, y′) axes rotated counter-clockwise relative

to the (x, y) axes by an angle of π
4
. After the transformation, the index ellipse is diagonal

with respect to the original x and y axes and features its principal axes along x̂′ and ŷ′.

By a similar line of reasoning as presented above for nx and ny, we find that the fast axis

is along the ŷ′ direction when a positive electric field is applied along x̂, Ex > 0, while the

slow axis is along x̂′. This follows from an analogous analysis of n′x and n′y and is shown

in Figure 3.3.
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Figure 3.3: Applying an electric field along x causes the principal axes of the index ellipse

to be rotated.

1

n′2x
=

1

n2
o

− r22Ex
1

n′2y
=

1

n2
o

+ r22Ex

−−−→
n′x =

no√
1− r22Exn2

o

n′y =
no√

1 + r22Exn2
o

Using Ex and Ey as two control knobs it is possible to completely control the angle θ

between the slow axis and x̂. Since an ellipse is symmetric across its major and minor axes,

rotations of nπ are indistinguishable, where n ∈ Z is an integer value. Figure 3.4 shows

how the index ellipse can be rotated through an angle of π by setting Ey to a positive

value, followed by Ex, then setting each of them negative in that same order.

Additionally, increasing the magnitudes of Ex and Ey causes an increasing phase dif-

ference to accumulate between the fast and slow components of a propagating light beam.

Choosing the right values for Ex and Ey, it is possible to delay the phase of the component

along the slow axis by exactly half of a wavelength, creating a have-wave plate rotated at

an arbitrary angle θ. The next section builds on this concept to show how, by changing θ

with respect to time, it is possible to make the half-wave plate spin.
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Figure 3.4: The index ellipse of LiNbO3 can be rotated through an angle of π by varying

each of Ex and Ey in sequence. Only ellipses where a single x̂ or ŷ component of electric

field is non-zero are shown. Intermediate angles with the same birefringence not featured

in the diagram can be formed by creating a linear combination of electric field along x̂

and ŷ so long as the total electric field, that is the Euclidean norm of E =
[
Ex
Ey

]
given by

‖E‖ =
√
E2
x + E2

y , is held constant.
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3.3 Rotating Half-Wave Plate

In the previous section we developed the mathematical tools required to describe a lithium

niobate waveguide, and found that it is possible to create birefringence by applying an

electric field in the xy-plane when light travels along ẑ. In this section, the goal is to

determine what the field must look like if we want to fix the index ellipse’s eccentricity but

continually rotate it in time with some frequency ωr. In other words, we want to make the

ellipse’s angle equal to θ = ωrt and hold ‖E‖ constant.

Before jumping in, however, it is worth taking a moment to discuss some motivation

for this device. To do so, it helps to understand the polarization of light. For an electro-

magnetic wave propagating in free space, the polarization describes the ordered direction

of the wave’s electric field over adjacent wavelengths in a region of space. When light

is polarized, its electric field has a pattern in space that repeats as one goes from one

wavelength to the next. For example, the electric field vector for linearly polarized light

propagating toward z, when projected onto the xy-plane, always points along a single di-

rection r̂(α) = (cosα x̂, sinα ŷ). The magnitude of the projection varies depending on the

choice of z and time t with a sinusoidal scalar amplitude E(z, t) = A cos(ωt− kzz) giving

E = Er̂.

Light from the sun and from most common light sources like light bulbs is unpolar-

ized, in that the direction of the electric field at a certain place and moment in time is

unpredictable and therefore doesn’t have the order in its electric field as just described

for polarized light. It is possible to polarize unpolarized light by using a polarizing filter,

which rejects electromagnetic radiation unless its electric field is parallel to the permitted

axis. This restores order in the electric field, so the output of a polarizing filter is linearly

polarized light.

3.3.1 Jones Calculus

It helps to introduce some mathematical notation for describing light. Jones calculus,

from ref. [72], is applicable in our case, where a beam with some wavevector (0, 0, kz) and a

particular frequency ω propagates in the +ẑ direction of the lab frame (toward an observer).
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In an isotropic material, its electric field will reside in the xy-plane. Our propagating wave

can then be generally written
[
A0xe

i(ωt−kzz+φx)

A0ye
i(ωt−kzz+φy)

]
=

[
A0xe

iφx

A0ye
iφy

]
ei(ωt−kzz)

where A0x is the amplitude of the sinusoidally varying electric field in the x̂ direction, while

φx is its phase offset. A negative phase φx < 0 represents a delay on the x-component’s

amplitude since for a chosen absolute phase one needs to advance time a little to offset

increasingly more negative values of φx. A0x and φx are both real. The same hold true for

the variables in the ŷ direction. It is worth noting that the Collett convention is used here

for the phase term ωt− kzz instead of the alternative Hecht convention of kzz − ωt.
Consider first the case where the electric field only exists along the x-axis for all values of

z. In the laboratory frame this would be horizontally polarized light, and can be described

by the Jones vector εH =
[
A0xeiφx

0

]
. Conventionally, one will define a reference intensity

(equal to the sum of the squares of the components of E) and phase relative to which

the other electric fields will be taken. In our case, after normalization, we find that the

horizontally polarized case is just εH = |H〉 = [ 10 ]. The ket |H〉 is Dirac notation for a

column vector. The orthogonal polarization to |H〉 is vertical in the lab frame, and only has

an electric field along ŷ for all values of z. Its Jones vector is |V 〉 = [ 01 ]. Observe that |H〉
and |V 〉 are linearly independent and form an orthonormal basis for the two-dimensional

complex vector space C2 we’re concerned with here.

So far, we have not encountered a case where the relative phase between the x̂ and

ŷ components was important. Consider the Jones vector |D〉 = 1√
2

[ 11 ]. Since no phase

difference exists between the horizontal and vertical components, this vector represents

linearly polarized light with an equal component of electric field in the x̂ and ŷ directions.

The factor of 1√
2

appears because of the normalization condition. In this case, the linearly

polarized light is diagonal, with the electric field’s direction at an angle exactly π
4

from

both the x̂ and ŷ axes. We can also define the antidiagonal Jones vector as |A〉 = 1√
2

[ 1
−1 ].

Again, |D〉 and |A〉 are linearly independent, and form another orthonormal basis for C2.

Finally, we come to an example with a relative phase shift between the horizontal and

vertical components of the electric field. Circularly polarized light has an electric field
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vector whose length is constant for a given pair of space and time values (z, t), but whose

angle swings around the propagation axis.

For fixed moment in time, this can be pictured as a corkscrew pattern. Our Jones

vectors use a right handed coordinate system as viewed from z = +∞, so a right-

handed circularly polarized beam, whose most positive ŷ component is delayed by a quar-

ter wave length with respect to the position of the most positive field on x̂, is written

|R〉 = 1√
2

[
1

e−i
π
2

]
= 1√

2
[ 1
−i ]. This can be visualized by pointing one’s right thumb in the

+ẑ direction with extended fingers along +x̂. Assuming that one’s hand is fixed at a

position z where the electric field is initially at its maximum along x̂, by making a fist,

one’s fingertips trace out the tip of the electric field vector as time advances: the positive

ŷ component is delayed with respect to x̂. Conversely, a left-handed circularly polarized

beam is |L〉 = 1√
2

[ 1i ].

Any lossless optical rotator or retardation plate can be represented by a 2× 2 unitary

matrix, called a Jones matrix. The unitary property enforces its lossless quality, in that

the total intensity of the beam before and after the optical component will be preserved.

The matrix representing our plate of interest, the half-wave plate, can be decomposed in

to a phase difference along a specific set of axes, W (φ) =
[
e−iφ/2 0

0 eiφ/2

]
and a rotation into

the axes of interest R(θ) =
[
cos θ − sin θ
sin θ cos θ

]
. The phase difference φ is applied by delaying

the component along x̂ by φ
2

and advancing the component along ŷ by an equal amount.

The rotator rotates a particular vector counter-clockwise by the angle θ. Thus we find the

expression for a half wave plate rotated with its slow axis at an angle θ with respect to x̂

to be
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HWP(θ) = R(θ)W(π)R(−θ)

=

[
cos θ − sin θ

sin θ cos θ

][
e−i

π
2 0

0 ei
π
2

][
cos(−θ) − sin(−θ)
sin(−θ) cos(−θ)

]

=

[
e−i

π
2 cos θ −eiπ2 sin θ

e−i
π
2 sin θ ei

π
2 cos θ

][
cos θ sin θ

− sin θ cos θ

]

=

[
e−i

π
2 cos2 θ + ei

π
2 sin2 θ e−i

π
2 cos θ sin θ − eiπ2 cos θ sin θ

e−i
π
2 cos θ sin θ − eiπ2 cos θ sin θ e−i

π
2 cos2 θ + ei

π
2 sin2 θ

]

=

[
cos π

2
− i sin π

2
cos 2θ −i sin π

2
sin 2θ

−i sin π
2

sin 2θ cos π
2

+ i sin π
2

cos 2θ

]

=

[
−i cos 2θ −i sin 2θ

−i sin 2θ i cos 2θ

]

= −i
[

cos 2θ sin 2θ

sin 2θ − cos 2θ

]

Again, the input variable θ is the angle between the slow axis and x̂. The fourth step

used the double angle formulas and collected the conjugate exponential terms into sines

and cosines. Only the final step made use of the specific value of the phase delay, and we

could have equivalently used a generic phase φ instead.

To perform a sanity check, let’s pick an angle for θ and observe how our half-wave plate

modifies different input polarizations. Try θ = 0, which represents a half-wave plate whose

slow axis is along x̂. In this case, any x̂ component of an incoming beam’s electric field

should be delayed by a phase of φ = π with respect to the ŷ component. A Jones matrix is

applied to a Jones vector by multiplying on the left. Therefore, for an arbitrary normalized

input |ψ〉 = α |H〉+ β |V 〉, where α, β ∈ C and |α|2 + |β|2 = 1, we have

HWP(0) |ψ〉 = −i
[

1 0

0 −1

][
α

β

]
=

[
−iα
iβ

]
.

It is clear that the x̂ component acquires a phase of −i = e−i
π
2 , and is therefore delayed

by φx = −π
2
, whereas the ŷ component is advanced by π

2
, or in other words φy = π

2
. The
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total phase difference acquired by passing through the half-wave plate then is a total of π,

representing a half wavelength, as desired.

Consider now the effect of rotating the half wave plate counterclockwise at some fre-

quency ωr, such that θ = ωrt. The resulting Jones matrix is

RHWP(ωr) = −i
[

cos 2ωrt sin 2ωrt

sin 2ωrt − cos 2ωrt

]
,

and we can inspect its effect on an incoming circularly polarized beam. The calculation

looks like

RHWP(ωr) |R〉 = −i
[

cos 2ωrt sin 2ωrt

sin 2ωrt − cos 2ωrt

]
1√
2

[
1

−i

]
=
−ie−i2ωrt√

2

[
1

i

]
= −ie−i2ωrt |L〉 .

Therefore, in passing through the rotating half wave plate, a right circularly polarized

wave is turned into a left circularly polarized wave with an additional global phase. The

global phase consists of a fixed component, −i, and a time-dependent component, e−i2ωrt.

Working backwards to find the electric fields of the wave results in the Jones vector

[
A0

A0e
iπ
2

]
ei((ω−2ωr)t−kzz−

π
2
). (3.5)

The resulting wave has had its frequency converted to the a new, lower frequency ωc =

ω − 2ωr. Working through the same process for an input of |L〉 gives

RHWP(ωr) |L〉 = −i
[

cos 2ωrt sin 2ωrt

sin 2ωrt − cos 2ωrt

]
1√
2

[
1

i

]
=
−iei2ωrt√

2

[
1

i

]
= −iei2ωrt |R〉 .

We find that in this case the polarization is once again changed to the its orthogonal pair,

however the rotation of the half-wave plate has added energy to the light.

Our objective is to accomplish this same result using the litium niobate waveguide as

discussed in section 3.2. The following section studies how such a device needs to be driven

to achieve a rotating half-wave plate effect.
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3.3.2 Electrically Driving a LiNbO3 Rotating Half-Wave Plate

Now that we have a direction in sight, we must find what electrical amplitudes to apply

to our lithium niobate waveguide such that its optical axes rotate at a frequency ωr. The

constraint is that the index ellipse’s eccentricity remains constant throughout the rotation.

Recall the general form for the index ellipse in lithium niobate from equation 3.2:

x2
(

1

n2
o

− r22Ey
)

+ y2
(

1

n2
o

+ r22Ey

)
− xy (2r22Ex) = 1.

We must find a general set of principle axes which diagonalizes the index ellipse. They will

take the form

x = x′ cos θ − y′ sin θ, y = x′ sin θ + y′ cos θ

where again θ is the angle by which the (x′, y′) axes are rotated counterclockwise with

respect to (x, y). The resulting index ellipse in the (x′, y′) coordinate system is

x′2
(
cos2 θ(n−2o − r22Ey) + sin2 θ(n−20 + r22Ey)− sin(2θ)r22Ex

)

+ y′2
(
sin2 θ(n−2o − r22Ey) + cos2 θ(n−20 + r22Ey) + sin(2θ)r22Ex

)

+ 2r22x
′y′ (Ey sin 2θ − Ex cos 2θ) = 1,

and by setting Ey sin 2θ = Ex cos 2θ we can eliminate the cross term and resolve the

principle axes. Therefore, Ex = Ey
sin 2θ
cos 2θ

, and we are left with

x′2
(

1

n2
o

− r22Ey
cos 2θ

)
+ y′2

(
1

n2
o

+
r22Ey
cos 2θ

)
= 1.

We can interpret the result as follows. The principle axes of lithium niobate can be

set to an arbitrary angle θ with respect to the laboratory frame. The birefringence of the

waveguide, given by the orientation and eccentricity of the index ellipse, then depends on

both the angle θ and the applied electric field in the ŷ direction Ey. The choice for the

electric field along x̂ is fixed by the relationship Ex = Ey
sin 2θ
cos 2θ

.

For our rotating wave plate to feature a constant phase delay throughout its entire

operation we know that the eccentricity of the ellipse must remain independent of θ. This
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will only be true if

Ey = E0 cos 2θ

Ex = Ey
sin 2θ

cos 2θ
= E0 sin 2θ

−−−→ x′2
(
n−2o − r22E0

)
+ y′2

(
n−2o + r22E0

)
= 1.

Additionally, since we want our rotating half-wave plate’s principle axes to change with

time, we can plug in θ = ωrt and arrive at our final result for the shape of the applied

electric field

Ex = E0 sin 2ωrt, Ey = E0 cos 2ωrt.

The final requirement our rotating half-wave plate must satisfy is that it should in fact

be a half-wave plate. The total phase delay for the lithium niobate device is a function of the

index ellipse, which describes the speed at which different linear polarization components

travel in the material, and device length L, or how long the light travels in the material

for. Since device length is typically fixed, the half-wave condition can be met by choosing

a value for E0 that gives the desired difference in index of refraction for the fast and slow

axes. We can calculate nx′ and ny′ to help determine the best choice of E0.

1

n2
x′

= n−2o − r22E0

1

n2
y′

= n−2o + r22E0

−→
nx′ =

no√
1− r22E0n2

o

ny′ =
no√

1 + r22E0n2
o

∆n = nx′ − ny′ =
no√

1− r22E0n2
o

− no√
1 + r22E0n2

o

Then, using the equation for phase retardation given by Γ = ω
c

(ns − nf )L, where c is

the speed of light in free space and ns and nf are the indices of refraction for the slow and

fast axes, and setting Γ = π for a half-wave delay we find

1√
1− r22E0n2

o

− 1√
1 + r22E0n2

o

=
cπ

Lωno
(3.6)

.

This equation can be solved numerically to determine the right E0 to use for the wave-

guide in question. As an example, using a device length of L = 3 cm and light with a
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Figure 3.5: The numerical solution for E0 is shown for a device length of L = 3 cm and

633 nm light. This is done by plotting the indicated equation and looking for a zero

crossing. In this case the result is E0 = 256 kV
m

.

wavelength λ = 633 nm, we find the required electric field strength is E0 = 256 kV
m

. The

solution is pictured in Figure 3.5

At this point all of the required constraints for the rotating half-wave plate have been

satisfied. The main conclusion is that applying an in-quadrature electric field with magni-

tude E0 given by Equation 3.6 and frequency 2ωr will cause an incident circularly polarized

beam to be shifted in frequency by 2ωr and reversed in polarization.
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Figure 3.6: A to-scale drawing of the SRICO EOM. [Left] Dimensions of the device. [Cen-

ter] A differential voltage creates a field in the y direction. [Right] Conversely, an x-directed

field is created with a common voltage. An insulating layer of silicon dioxide separates the

electrodes from the lithium niobate crystal.
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3.4 SRICO Device

Chapter 4 and chapter 5 show experimental results of frequency shifting using an electro-

optically modulated rotating half-wave plate. The EOM in question was a prototype

produced by SRICO1. A schematic of the device’s electrode configuration is shown in

Figure 3.6.

The image shows the crystal as looking at one of its faces. The waveguided region is

shaded in blue and sits just underneath a gold ground electrode. The top and bottom

electrodes are driven independently. When the electrodes have opposite voltages they

create a y-directed electric field in the waveguiding region, whereas a common voltage on

both induces an x-directed electric field, indicated by the red lines.

Axes are indicated on the figure and show the choice of xyz. It has been conveniently

chosen to be the same as xyz in the lab frame. Positioned looking at the page the reader

is thus placed at the observing position of z = +∞, consistent with the earlier analysis in

this section. Applying a positive voltage to channel B in the differential case thus creates

a positive electric field in the y direction.

Given the configuration of the electrodes it should not be expected that a similar-

strength common or differential voltage each create the same magnitude field in the wave-

guide region. It is instead expected that much larger differential voltages are required to

maintain the constant magnitude of the E field as compared to common voltage, VD > VC .

However, the in-quadrature condition for the E field can be maintained even if the voltage

amplitudes required are not equal so long as the correct phase delay between the signal on

A and B is chosen.

1https://www.srico.com
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Figure 3.7: An in-quadrature drive signal for channels A and B.

Ex = |E| cos(2ωrt) = αVC

Ey = |E| sin(2ωrt) = βVD
−→

VC =
|E|
α

cos(2ωrt)

VD =
|E|
β

sin(2ωrt)

VA = VC − VD
VB = VC + VD

−→
VA = |E|

√
1

α2
+

1

β2
cos

(
2ωrt− arctan

α

β

)

VB = |E|
√

1

α2
+

1

β2
sin

(
2ωrt+ arctan

α

β

)

This way the voltage magnitude on channel A and B can be equal, but the corresponding

ratio of common and differential voltages are adjustable. The phase adjustment required

is dictated by the ratio of α to β as shown.

The graph in Figure 3.7 displays a sinusoidal signal that has been found to produce

good results with the procedure in subsection 4.4.1. The frequency is set to 325 MHz, and

channel B is delayed by a 95° phase shift. The common and differential voltage points are

indicated, along with the electric field direction they create.

Following the significant points it can be seen that the electric field in the waveguide

region rotates counter clockwise in the lab frame at positive angular velocity 2ωr, making
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the half-wave plate rotate at one-half that, or ωr. Referring back to Equation 3.5 it can

be seen that a counter-clockwise rotation like this is expected to reduce the frequency of

right-hand circularly polarized light by 2ωr, which will be found is the exact result observed

in subsection 4.4.2.

3.5 Conclusion

It has long been known that by rotating a half-wave plate one can change the frequency of

electromagnetic radiation. In 1947, Fox put forward a variable microwave phase changer

built on this principle [73], however mechanically rotating the waveguide limited the fre-

quency by which waves could be up- or down-converted. Use of the electro-optic effect for

this purpose was demonstrated in 1962 in ref. [74], however peak-to-peak voltages of 2000

V were required, again limiting the usability of frequency conversion.

A different approach is to use a device like Qin et al. tested in ref. [75]. They demon-

strated successful frequency conversion of 100 MHz and 2 GHz, for 780 nm light, with a

voltage of 18 V. In the 2 GHz case, their extinction ratio between the desired peak and the

first harmonic was greater than 20 dB. While 2 GHz is still a very small frequency shift in

optical terms, it is enough to be applied in experiments involving quantum optics.

In particular, quantum dots are capable of producing entangled photon pairs through a

process known as the biexciton-exciton cascade. Due to unavoidable imperfections resulting

from the fabrication process, a fine structure is induced in the otherwise degenerate exciton

levels, causing a precession of the excitonic state for an unpredictable duration before the

exciton spontaneously decays. This causes a large proportion of the emitted entangled

photon pairs to be unusable, as they are not all a consistent Bell state. Since the fine

structure for some quantum dots is only on the order of 800 MHz [67] it can be corrected

for with an electro-optically controlled rotating half-wave plate [1]. While the theory

supports this, the real truth will emerge from the experiment!
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Chapter 4

Frequency Shifting a Narrow-Band

Laser

The first experimental step toward frequency-shifting photons from a quantum dot is to

demonstrate the proof-of-principle on a monochromatic beam of light. To that end, this

chapter presents the building blocks for operating the EOM, and shows how it affects

near-infrared light from a narrow-band laser. First, the EOM is driven with slowly varying

voltages to help gain an understanding of its operating principles, and then higher frequency

RF signals are used to create a rotating half-wave plate as described in chapter 3. Data

collected from both experiments is analyzed and discussed herein.

The EOM was produced by SRICO1.

4.1 Experimental Setup

The objective of this chapter is to show that an EOM can indeed convert the frequency

of light up or down by a precise and controllable amount ω0. To begin, the experiment

requires a light source with a well-defined frequency. A detector for measuring the light’s

intensity at the output of the EOM is also necessary.

1https://www.srico.com
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As presented in chapter 3, a direct current (DC) voltage on the EOM’s electrodes causes

birefringence in the crystal, which makes it act like a waveplate of some retardance at some

angle. The experimental setup must allow us to quantify both the retardance and angle

with respect to applied electrode voltages.

Once it has been demonstrated that the EOM can indeed behave like a half-wave plate

under DC conditions, and that the angle of the waveplate’s fast axis can be set arbitrarily,

we can proceed with an experiment studying the EOM’s behavior under alternating current

(AC) drive signals. According to the theory, it should be possible to then observe the up-

or down-conversion of light from our monochromatic source.

Many components required for these two experiments are similar. In particular, a

Thorlabs DBR852P narrow-band near-infrared diode laser was selected as the light source.

Its linewidth is 10 MHz, and the wavelength can be tuned using temperature adjustments

around 852± 0.7 nm. This wavelength is near enough the QD’s exciton line, which sits at

892.3 nm. The EOM’s waveguide was designed to be single mode for both the laser and

the quantum dot’s exciton emission.

Both the DC and AC experiments require precise control and measurement of polariza-

tion, and as such a selection of polarizing beam splitters (PBSs), HWPs, and quarter-wave

plates (QWPs) were acquired. The PBSs were purchased from Thorlabs (PBS252), and

are broadband optical components transmitting only one polarization with an extinction

ratio of 1000:1. The waveplates are achromatic, and are designed for light between 700

and 1000 nm.

In order to set the beam’s path, irises were also ordered and put on the optical table.

Their function was twofold: they provided a way align the beam when placing mirrors,

and also acted as spatial filters for the stray light exiting the EOM’s crystal. Coupling in

and out of the waveguide on the EOM is discussed further in section 4.2.

Finally, in each experiment, the output signal must be measured. Since the laser’s

output power is on the order of milliwatts, it is detectable by a standard photodiode.

To collect polarization tomography data from the DC voltage experiment, one amplified

photodiode was used.

The AC experiment additionally required a way to quantify the spectral components of
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the light following propagation through the EOM. The right tool for the job is a scanning

Fabry-Perot (FP) interferometer. For this experiment, an FP with an free spectral range

(FSR) of 1.5 GHz was sufficient, since the target value for ω0 is no more than 0.5 GHz,

which is less than half the FSR. The result is that our desired signal’s sidebands will not

overlap with the sidebands from the next neighboring peak in the output signal from the

scanning FP. A second run of this same experiment using an FP with a 10 GHz FSR is

also discussed.

Both the DC and AC experiments first require light coupled into the waveguide on the

EOM, a topic which the next section addresses.

4.2 Waveguide Coupling

The most basic experiment with the EOM involves sending light through its waveguide

and observing the mode. Once this step is complete, voltages can be applied to the EOM’s

electrodes and the polarization change can be quantified.

Before any other experiment with the EOM can be run, it must be shown that light

from the laser can be coupled into the waveguide and the result observed. To do so, the

EOM was mounted on a five-axis stage with a 3 cm lens positioned at the waveguide’s

output to collimate the beam. A microscope objective lens (Olympus LMPLN5XIR) was

mounted on an additional four-axis stage in front of the EOM to focus the incoming beam

onto the waveguide’s front facet. Both stages and coupling lenses can be seen in Figure 4.1.

The stages were mounted on a portable optical breadboard making it easy to build the

preliminary experimental setup for the EOM on an auxiliary optical table before transi-

tioning the EOM and associated coupling optics to the optical table housing the quantum

dot. Form-factor measurements were taken so as to minimize the adjustments necessary

for the transition: the beam height on the two tables was chosen to be the same and

was based on the height of the spectrometer inputs on the main optical table, while the

width and length of the breadboard were chosen as a function of the space available. This

accelerated integration of the EOM into the experiment performed in chapter 5.
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Figure 4.1: Pictures of the EOM on its 5 axis stage.

In order to maximize coupling efficiency, the mode field diameter (MFD) of the incoming

beam must match that of the waveguide, and the numerical aperture (NA) of the objective

lens must be greater than or equal to that of the waveguide. Coupling efficiency is less

of a concern for the experiments using the narrow-band laser since a strong output signal

can still be observed even if the mode overlap is partially mismatched. When studying

the exciton emission from the quantum dot, however, a mismatch in MFD will result in a

large reduction in counts, and the characteristics of the coupling optics must be carefully

calculated. See section section 5.1 for further discussion.

A camera was placed on the output side of the waveguide to help align the coupling
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Figure 4.2: The output mode of the waveguide for horizontal and vertical input polariza-

tions.

optics. In addition to making alignment easier, the camera also provided a view of the

waveguide’s mode. Figure 4.2 shows two focused images, one for each polarization, of the

light after passing through the 3 cm collimating lens at the output of the waveguide.

The mode profile has a Gaussian shape, but features some asymmetry in the horizontal

direction. In the images, the crystal-air interface is vertical, with air on the left and the

crystal on the right. This contributes to the observed asymmetry since the change in

index of refraction between the crystal and air is larger than the crystal in and out of the

waveguide. Since the waveguide’s output is not perfectly aligned with the centre of the

3 cm lens the mode’s shape may additionally be skewed. As expected, the vertical cuts

for both polarizations are symmetric. The image for the vertical polarization looks larger

because of the image’s crop factor, but the two polarizations are largely consistent in size

and mode profile.

After confirming it was possible to couple light into the waveguide, the next step was

to test the electro-optic effect by applying slowly-varying voltages to the electrodes. The

next section presents the procedure and results.
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4.3 DC Electrode Drive Signals

4.3.1 Experimental Setup

The first milestone for creating a rotating HWP is to determine what voltage is required

to induce a relative phase shift of π of one polarization component with respect to the

other. The resultant voltage, termed Vπ, will then be used to specify the amplitude for the

in-quadrature AC drive signals.

As explained in chapter 3, the EOM has three electrodes running along the length of

the waveguide. The centre electrode is soldered to the metal case of the EOM, and provides

a ground reference. The two outer electrodes have an SMA connector on each end of them,

so can be configured with a source on one side and a load on the other, or can be driven

in an open circuit configuration. For the DC experiment the open circuit configuration

was chosen: the two terminals were tied together and connected to a signal generator.

This means minimal current would flow through the device during the experiment. An

alternative configuration connecting just one pin for each electrode and allowing the other

to float would give an equivalent result.

A schematic showing the DC experiment is given in Figure 4.3. The two electrodes,

labeled Channel A and Channel B, are drawn with independent voltage sources, which is

necessary for inducing a specific effective waveplate birefringence and angle. For practical-

ity, only two polarization tomography experiments were performed.

The first applies a common voltage to both Channel A and Channel B, VB = VA, where

Channel A is considered the master and Channel B the slave. This is done by using a

single voltage source with a T junction to split the signal. The second experiment applies

equal and opposite voltages to the two electrodes VB = −VA. An inverting op-amp circuit

was used to create the signals in this differential configuration. In the common case the

master voltage was swept through a range of −7.5 V ≤ VA ≤ 7.5 V, while in the differential

case a range of −10 V ≤ VA ≤ 10 V was used.
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Figure 4.3: The experimental setup for a DC drive voltage.

Figure 4.4: Optical intensity (red line) when sending in |H〉 and measuring |H〉 (left) or

measuring |L〉 (right) while varying the common voltage (blue line) on the EOM.
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4.3.2 Results

A sample graph of a simple result is shown in Figure 4.4. In total 18 different mea-

surements were made, each time sending in one of {|H〉, |D〉, |R〉} and measuring from

{|H〉, |V 〉, |D〉, |A〉, |R〉, |L〉}. Using the raw data it was possible to reconstruct the state

of the output signal for each input and voltage. The graphs in Figure 4.6 show the output

polarizations for the device in both the common and differential drive configuration for

varying voltages. The top rows show a 3D visualization of how the EOM squeezes the

polarization when voltage is varied, while the bottom rows present the data in graphical

form for easier analysis.

Polarization Ellipse Angles

Figure 4.5: The an-

gles ψ and χ define

the polarization ellipse

for completely polar-

ized light. Positive χ

is more right circularly

polarized than left, as

indicated by the arrow

on the ellipse.

In the graphs one can see both the polarization angle ψ and

its ellipticity χ. As seen in Figure 4.5, the linear polarizations

have χ = 0°, while right circularly polarized light is characterized

by χ = 45° and left circular is χ = −45°. With respect to the

linear polarizations, horizontal is ψ = 0°, diagonal is ψ = 45°,
antidiagonal is ψ = −45°, and vertical is ψ = ±90°.

The first observation is that in each measurement the data at

zero voltage matches. This makes sense and boosts our confidence

in the data since it is the one voltage point that appears on both

graphs. In addition, it is seen that only |H〉 emerges without

much change when zero volts is applied whereas |D〉 → |R〉 and

|R〉 → |A〉. This is very valuable information since immediately

it can be seen that the waveguide has some built-in birefringence,

and since it takes one basis vector almost exactly to another it is

relatively easy to reason about.

In this case, to take |D〉, a linear polarization, to |R〉, a circular

polarization, the birefringence must contribute a phase delay of

around π
4
, equivalent to a quarter waveplate. In addition, the

effective quarter waveplate’s angle must be 45° with respect to

the linear polarization of |D〉, thus aligned either along the x- or

y-axis parallel or perpendicular to |H〉. This makes sense since |H〉 → |H〉 at V = 0.
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Figure 4.6: Polarization transformation plots for various input polarizations when the DC

voltage on the EOM is varied in the common electrode configuration.
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By looking at the plot for |R〉 at zero volts it can be found that the effective quarter

waveplate’s slow axis is vertical in the lab frame, along y, or in other words parallel to

|V 〉. If it were parallel to x instead, the output for the |R〉 case would be polarized in

|D〉, not |A〉 as is observed. Note that the orientation of the fast and slow axes is not

surprising, given the symmetry of the waveguide and the fact that the crystal is mounted

with its longer face dimension along y in the lab frame. It is however surprising that the

magnitude of the delay introduced by the birefringence is so close to a π
2

shift.

The second observation is that the polarization hardly changes angle or ellipticity with

a differential voltage applied to the electrodes when |H〉 is sent in. This means that the

axes along which the birefringence is changing in this case must be well aligned along

|H〉. Since the differential voltage creates an electric field in the lab’s y direction, it can

be determined that this choice of y coincides with the y shown in Figure 3.2 along the

crystal’s natural principle axes. Thus, the conclusion is that the orientation of the axes of

the crystal’s xyz-axes coincide with the choice of xyz in the lab frame.

Finally, the graphs in Figure 4.6 can be used to extract the information about Vπ. Since

it is clear there is a built-in birefringence in the device, the value of Vπ can only be found,

using the collected data, along the direction of said birefringence. This is because applying

an electric field along that same axis can cancel the built-in birefringence almost exactly.

This roughly happens where |D〉 → |D〉 and |R〉 → |R〉. Reading directly from the plots,

the differential voltage at which this occurs is VA0 = 3 V. Equivalently, the voltage that

leads to a π phase delay is VAπ = −3V , at which point |D〉 → |A〉 and |R〉 → |L〉 while

|H〉 is largely unchanged.

The voltage necessary for a half-wave phase delay with the electric field applied in the

y direction is therefore the total voltage it takes to go from zero phase delay to a π delay,

thus Vπ = VA0 − VAπ = 6V .

From the electrode configuration of the device it is a reasonable assumption that a

similar or lower voltage would be required along x for the same effect, but this information

is not readily available from the data as collected. The way to determine this is to again

run the tomography measurement with voltage sweeps but with an additional fixed voltage

offset of VA = 3 V and VB = −3 V to cancel the built-in birefringence.
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With the target drive voltage Vπ = 6 V in hand, the experiment can be reconfigured to

test whether a laser can indeed be shifted in frequency as predicted by the theory. This is

the topic of the following section.

4.4 AC Electrode Drive Signals

As presented in chapter 3, LiNbO3 can be used to create a rotating half-wave plate which

in turn acts as a frequency shifter on circularly polarized light. This section aims to provide

a demonstration of exactly this phenomenon using light from a narrow-band laser. The

experimental configuration is presented in subsection 4.4.1 along with a short discussion

of the challenges encountered. Section 4.4.2 then shows two sets of collected results and

provides a commentary about them.

4.4.1 Experimental Setup

The experimental setup for frequency shifting a laser is very similar to that used for the

DC case in section 4.3. In this case the only polarizations required are circular, either

right or left, both for sending into the EOM as well as for observing at the output. As

such, a PBS and QWP1 are placed before the EOM, with QWP1 set with its slow axis at

45° with respect to x̂. This configuration produces right-hand circular light as defined in

subsection 3.3.1. Alternatively QWP1 can be turned around to instead have its slow axis

at 135° with respect to x̂, which produces left-hand circular light.

A camera is again placed at the output of the EOM to help maintain light coupling

into the waveguide. After the camera, the beam is sent either directly to a scanning FP

interferometer, or to the FP after a QWP2 and a PBS. With the PBS and QWP2 in place

only the circular components of the beam will be allowed to pass depending on how QWP2

is set. When it has its slow axis at 45° it will take |R〉 → |V 〉 which will then be reflected

by the PBS. This configuration thus measures |L〉, the remaining component. In contrast,

setting the angle of QWP2 to 135° measures |R〉.
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Figure 4.7: Experimental schematic for frequency shifting the narrow-band laser.

The scanning FP interferometer is used to investigate the spectral composition of a

beam of light. It generates interference inside the cavity, allowing, in the ideal case,

only light with an integer multiple of half wavelengths to positively interfere and thus be

transmitted. Assuming the cavity length is such that a particular beam of monochromatic

light is transmitted, the cavity can be expanded by exactly a half wavelength for the same

beam to be transmitted once again. This distance is called the FSR, and is specified by

the FP manufacturer.

In practice, since the cavity has a confocal design, the actual distance between sup-

ported modes is a quarter wavelength and it is this confocal-FSR that is quoted. For

practical purposes this does not change the analysis, as eliminating the transmission peaks

from the additional confocal modes requires extremely precise mode matching to the cavity

and is unlikely to happen.

Two FP cavities are available for use in the experiment, one with a (confocal) FSR

of 1.5 GHz and the other with 10 GHz. The 1.5 GHz FP gives much nicer resolution for
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Figure 4.8: Electronic configuration attempts for create the rotating half-wave plate. a)

Co-propagating wave configuration with the electrical drive on one end of the electrode

and an isolated 50 Ω terminator on the other. An impedance matching circuit is shown in

pale and can be included or removed. b) Electrodes tied together and driven from both

terminals in unison. c) Close-up schematic of the LiNbO3 crystal with the three electrodes

patterned on it. The centre electrode overlaps the waveguide and is the ground reference.

In this case the inputs and outputs of each electrode are connected together, the same as

in b).

narrow peaks like the laser in this experiment, so it was chosen for collecting the initial

dataset.

The analysis in chapter 3 made clear that the two electrodes must be driven in quadra-

ture, with the sinusoidal signal on one advanced or delayed by 90° with respect to the

other. The ideal configuration is thus as shown in Figure 4.8a, with the channel inputs

connected to two signal generators, each equipped with a DC offset in order to compensate

for the built-in waveguide birefringence of the EOM. Channel B additionally has a variable

phase delay which can be used to adjust it relative to Channel A. The electrode outputs

are then passed through a DC block and a 50 Ω load to ground. The purpose of the block

is to prevent the constant flow of direct current through the electrodes on the EOM when

a DC offset is used.

The electronic components used in the final experimental setup are shown in Figure 4.9.
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Figure 4.9: The components used for generating the RF signal on the waveguide. From left

to right the components are a Texas Instruments Digital to Analog Converter Evaluation

Module, an interchangeable attenuator, a 20 W high power amplifier, and finally a bias-tee

with a DC voltage source.

As illustrated, a 20 W (43 dBm) 50 dB amplifier boosts the signal from the digital-to-analog

converter (DAC) after some attenuation, required to avoid over-driving the amplifier. Since

the DAC can output at most 1.733 dBm, a −10 dB attenuator followed by a 50 dB amplifi-

cation leads to an output power of less than 42 dBm, which is within the rated 43 dBm. A

−13 dB attenuator is shown in the diagram, though it is interchangeable and is considered

one of the parameters of the experiment. The DAC can produce arbitrary signals with

frequency components up to 2.66 GHz, and was configured as a sine wave generator using

the PyDualDDS code written by Andreas Fognini [76].

With that said, the initial experiments presented in this section make use of a less-

powerful 2 W (33 dBm) 29 dB Mini-Circuits ZHL-1-2W+ which can be driven directly

from the DAC.

In a perfect world all of the components in the circuit would be rated for 50 Ω minimizing

standing waves and promoting optimal power transfer. The EOM was supposed to also

have been designed for 50 Ω, however in configuring the electronics it was found that a lot

of power was being reflected from the EOM’s input port. Nonetheless, the full experiment

was run by sending circularly polarized light into the waveguide, driving the electrodes

in quadrature, and analyzing the whole signal at the output with the scanning FP. It

was observed that roughly 10% of the laser’s power was shifted into a sideband, and the
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sideband was either higher or lower in energy depending on whether right- or left-circularly

polarized light was used, consistent with the theory.

An RF spectrum analyzer was acquired and used to verify the impedance of the EOM.

The discovery was that ports A and B had slightly different impedances, and neither was

near the expected 50 Ω. The measured values at 400 MHz were instead ZA = 18.5+j18.0 Ω

and ZB = 22.3 + j28.5 Ω. Thus, the standing wave ratios for electrodes A and B are

VSWRA = 3.1 and VSWRB = 3.09 and the reflection coefficients are ΓA = 0.5122 and

ΓB = 0.5114 respectively. Thus, at the boundary, 51% of the voltage magnitude was being

reflected back to the source – quite a lot. In addition, it was theorized that the voltage

that was entering the device dropped along the length of the electrode due to its resistance.

Based on this hypothesis, the EOM was connected such that the electrode input and

output were driven by the same signal, as shown in Figure 4.8b and c. The theory is that

since the electrodes are essentially open circuits the device should then not consume any

real power but there should nonetheless be large voltage fluctuations on the electrodes.

This in turn leads to a large electric field in the waveguide region as required. It should

then be possible to place a voltage antinode at the interface by adjusting the length of the

transmission line connected to the device or alternatively changing the driving frequency.

Using the configuration as in Figure 4.8b an increase the optical power conversion was

observed, up to 50% at maximum amplification with the 2 W amplifier. Note that this ap-

proach can only be used for sub-gigahertz driving frequencies before the electric field begins

to vary appreciably as the optical field travels through the device. Operation above giga-

hertz is still viable, but requires co-propagating electric and optical waves. Recommended

reading for this scenario is ref. [77] chapter 9.

Despite the new electrical configuration it was apparent that insufficient electric field

was being created in the waveguide region. An impedance matching circuit was created

for the EOM in order to bring its impedance closer to 50 Ω therefore reducing reflections.

Smith charts are shown in Figure 4.10 with the impedance matching circuits attached

to both channel A and channel B, as shown in Figure 4.8a. By using the circuit it was

possible to bring the device very close to 50 Ω matched with ZA = 52.8 − j3.7 Ω and

ZB = 51.0 + j7.3 Ω. This change created an increase in converted light once again, with
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Channel A Channel B

EOM Impedance with Matching Circuit

Figure 4.10: Impedance of the EOM with an impedance matching circuit for both channel

A and channel B. The desired drive frequency is 400 MHz, which was chosen as the centre

of the sweep which ranges from 300 MHz through 500 MHz.

up to 75% of the optical power in the desired sideband.

Figure 4.11:

Multimode beam

after overheating

the electrodes by

impedance matching.

Unfortunately, this experiment also caused the device to be-

come extremely hot. Temperatures at the surface of the crystal

were in excess of 110 ◦C, as measured by an infrared thermome-

ter. Following this experiment the conversion efficiency dropped

significantly and it was eventually determined that the waveguide

on the chip now supported multiple optical modes, as seen in Fig-

ure 4.11.

The source of the problem was determined to be the thick-

ness of the gold electrodes on the crystal surface. While initially

thought to be 10 µm, it was established that only 1 µm had been

deposited which caused Joule heating at the drive voltages re-

quired for complete frequency shifting with the co-propagating

wave configuration. The excess heat caused the waveguide dopant

to diffuse further into the crystal, leading to multimode operation
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Figure 4.12: Shifting the laser line to the right by 350 MHz. This data is collected using

a Fabry-Perot cavity with a 1.5 GHz free spectral range, meaning the peak separation is

very clearly visible.

and decreased performance.

Since the device didn’t accumulate heat when driven with the electrodes tied together

as in Figure 4.8b, this configuration was used along with larger amplifiers to reach the

necessary Vπ electrode voltage in spite of the significant electrical reflection.

4.4.2 Results

With the more powerful 20 W amplifiers in place the full experiment was run again. The

DC offsets on channel A and channel B were precisely tuned and the curve in Figure 4.12

obtained. The parameters for the experiment were 0.257 mVRMS (1.209 dBm, 0.95 in the
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code) input at 350 MHz, a 36 dB amplification, channel A and channel B DC offset of

VA,DC = −13.19 V and VB,DC = 15.73 V, and a phase offset between channel A and B of

350°. The frequency was chosen to be 350 MHz by trial and error, optimizing for conversion

efficiency.

The blue curve is the signal from the 1.5 GHz FP with no electro-optic modulation or

polarization filtering. Conversely, the red line shows the effect with the EOM running.

Almost all of the power is shifted to a higher energy, although a small peak is visible at

the centre as well as on the side opposite. Using the value specified for FSR and the next

neighboring peak as a reference (not shown), it was verified that the frequency shift is

352(4) MHz, in excellent agreement with the expected frequency shift of 350 MHz. Each

point in the dataset represents a 4 MHz wide frequency bin.

The area in the higher-energy sideband was calculated to be 92.6% [63], a very good

conversion efficiency. Adding the QWP and PBS helped resolve the polarization compo-

nents in the sideband, showing that the light is still predominantly circularly polarized.

The expected findings did not match what is observed, though, as the polarization in the

shifted beam remained right-hand circular, whereas left-hand circular was expected. It is

hypothesized that this observation results from the very high DC offsets applied to each

channel – each is well above what was determined to offset any waveguide birefringence

in subsection 4.3.2. In addition, the phase difference between the channels is far from an

in-quadrature drive.

The experiment was run a second time with different parameters in order to iden-

tify whether the polarization handedness could be made to match expectations, and to

demonstrate that conversion is possible into the lower-energy sideband. This time the

lower resolution 10 GHz FP cavity was used. The findings are shown in Figure 4.13, which

incorporates a sweep through the full cavity FSR.

The parameters for the experiment better matched what is expected for the creation of

a rotating half-wave plate. The input voltage amplitude from the source is 0.254 mVRMS

(1.107 dBm, 0.93 in the code) while the amplification is set at 37 dB using 13 dB of attenu-

ation before the amplifier. A 105° phase was chosen between channel A and channel B. The

DC offsets were adjusted to VA,DC = −4.79 V and VB,DC = 10.22 V. Again, right-circularly
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|R〉 and |L〉

|R〉 only (original laser polarization)

Frequency Shifting the Narrow Band Laser

Figure 4.13: Shifting the laser line lower in energy (to the left) by 325 MHz. A scan of the

full FSR of the FP cavity is pictured, allowing the magnitude of frequency shifting to be

determined. The figure shows the original data with no polarization filtering (blue), the

same curve after denoising (orange) and a fit using a combination of Lorentzians (red).

In addition, the green line shows the right circularly polarized component of the other

curves. The original laser center is the fourth peak from the right side in each peak group,

indicated. As measured, the shifted peak is 319.4(7) MHz lower in energy than the original

center as extracted from the left peak grouping.
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polarized light was used at the EOM’s input.

Much more noise is observable in the data set from Figure 4.13 than was seen in Fig-

ure 4.12. The reason for this is a change in the detection system. In short, an amplified

photodiode was used and the signal was captured in free space. This change was com-

pounded by a lower input laser intensity for the experiment. Details on the free-space

measurement scheme are described further in chapter 5.

The graphic shows four curves, vertically offset from one another. The top three curves

represent the same data, at various stages of processing. The raw signal is shown on top

in blue. It was interpolated using a polynomial spline in order to denoise the data, which

is shown just below in orange. From the denoised data it was possible to extract a fitted

curve using a series of Lorentzian peaks, shown in red.

The data for the top three curves was collected while the EOM was running and without

any polarization filtering in place on the output side. Contrary to the data collected in

Figure 4.12, this time the optical power was transferred to a lower energy sideband, showing

that the EOM can both up- and down-convert light.

Another difference between the two results is that when the right-circular polarized

component of the output signal is isolated, shown in the bottom-most curve in green, it

contains very little optical power: the majority of the power is left-circular. This matches

with the expectations from the theory in chapter 3. For this reason, these results are

considered an upgrade with respect to those collected in Figure 4.12.

Obviously, though, the EOM’s parameters were not as optimized this time since it is

apparent that a lot of optical power is shifted into the other harmonics. It is believed that

further tuning of the parameters can fully resolve this.

Since it has now been proven that the EOM can be used to frequency shift light,

chapter 5 goes on to explore the effect when the same technique is applied to individual

photons.
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Chapter 5

Converting Individual Photons

The central objective of this thesis is to demonstrate experimental evidence that a rotating

half-wave plate can tune the energy of a photon. This chapter brings together the building

blocks from each of the previous chapters to show that it is indeed possible, and discusses

the associated successes and challenges.

The first step toward frequency shifting individual photons is to maximize the number of

photons that travel through the EOM. Section 5.1 focuses on this aspect of the experiment

and discusses the design of the coupling optics and shows a calculation of coupling efficiency.

The next milestone is to measure the fine structure splitting of the QD’s exciton, which is

presented in section 5.2. Finally, with a target in mind, the QD’s single photon emission

is shifted by the same technique demonstrated in chapter 4.

5.1 Photon Coupling

5.1.1 Designing for Optimal Coupling

In section 4.2 the topic of coupling light into the EOM’s waveguide was discussed, however

the abundance of optical power from the laser made real coupling optimization unnecessary.

Given that the current objective is to experiment with the quantum dot’s single photon
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Figure 5.1: An image of the quantum dot’s emission profile taken by the CCD camera in a

spectrometer. The input slit was fully opened. Performing a Gaussian fit reveals that the

e−2 mode field diameter is 1.48 mm.

emission, more care must be taken to ensure that the largest number of photons possible

make it through the EOM. Optimizing the counts like this directly reduces the measurement

time needed for any given experiment involving single photons and the EOM.

Importantly, one can choose the coupling optics to specifically make sure the modes

of the waveguide and the exciton’s beam are ideally matched. To do so, it is important

to know what the exciton’s beam size is and what the mode field of the waveguide looks

like along with its MFD. Since the waveguide is single mode for our operating wavelength

around 892 nm, the ideal mode field matching can be done given the waveguide’s NA.

With this knowledge, it is possible to proceed with designing the optical configuration at

the input of the waveguide.

The exciton’s beam size can be measured by sending a collimated beam from the

QD into a spectrometer with a charge coupled device (CCD) camera installed. If the

spectrometer’s input slit is opened wide enough that the full beam can propagate through,

one can determine the mode field diameter by capturing the profile of the spot as seen on

the CCD. For a spot with a Gaussian intensity profile, one can then measure the mode field

radius as the distance between the beam’s centre and a point 1
e2

times the mode’s intensity

at the centre point. The MFD is then twice this radius. For our QD, the exciton’s mode

field diameter as just defined is 1.48 mm, and a picture captured by the CCD camera is

shown in Figure 5.1.

Next, the NA of the waveguide must be determined. This data is provided by the

device manufacturer, and has been taken as the average over four test samples with 7

µm waveguides identical to that in the EOM. Based on their measurements, it was found

that the mode field is elliptical with an ellipticity of 1.5, and the corresponding MFD is
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Figure 5.2: Coupling light in and out of the EOM’s’s waveguide.

11.7 µm along the vertical direction in our lab frame, and 7.7 µm along the horizontal

direction. This corresponds to vertical and horizontal values for NA of NAV = 0.065 and

NAH = 0.077 respectively. As discussed in section 4.2, the mode profile is the same for

both |H〉 and |V 〉 polarizations, not to be confused with H and V as used to describe the

horizontal and vertical extents of the waveguide’s NA. Surrounding context should make

the meaning of H and V clear throughout this text.

It is now possible to choose a microscope objective lens for the input coupling to the

EOM. It must have high transmittance for near-infrared light, a relatively long focal length,

or working distance (WD), to ease alignment and focus adjustments, and an NA greater

than NAH = 0.077, the larger of the two NAs. The right lens is an Olympus LMPLN5XIR,

which has an NA of 0.1, a 23 mm WD, and around 93% transmittance at 892 nm.

The coupling optics for the waveguide are pictured in Figure 5.2. In particular, the

objective lens on the input side is shown, as is the 30 mm collimating lens at the waveguide’s

output. The horizontal and vertical 1
e2

mode field diameters before entering the objective

lens are shown, which were back calculated from the waveguide’s NA values using the

formula MFD = 2×NA× f . The results are MFDH = 2× 0.077× 23 mm = 3.54 mm and

MFDV = 2× 0.065× 23 mm = 2.99 mm.

Now that a target input beam size has been found, the exciton’s original beam size

must be expanded to create an ideal matching. In the process, though, the emission from

the QD must be passed through a transmission grating in order to spatially separate the

exciton from the biexciton. The grating in question (LightSmyth T-1500-875) has 1500
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Figure 5.3: An OSLO simulation showing the 5x beam expanding telescope. Passing the

quantum dot’s emission through these lenses changes the beam size from 1.48 mm to 7.23

mm.

grooves per millimeter, is designed for near-infrared light at 875(20) nm, and, critically, has

an equal efficiency for all polarizations. Before passing through the grating, the beam from

the QD is expanded by 5× with a telescope consisting of two lenses: a 3 cm lens at the

input and a 15 cm lens at the output. The telescope expands the original 1.48 mm beam

to 7.23 mm, as pictured in Figure 5.3.

The purpose of the transmission grating is to create different paths for the exciton

and biexciton. Only the exciton’s path is used for the single photon frequency shifting

experiment, but both paths will be required when implementing the full universal fine-

structure eraser for perfect entanglement. Even though the biexcitons will be discarded in

this experiment, the transmission grating is a key component of the optical setup since it

prevents the other optical frequencies emitted from the QD, nanowire, and substrate from

coupling into the EOMs waveguide: they will no longer be properly mode matched.

Since the two beams propagate with a very slight angle between them after the grating,

they must travel a relatively long distance before becoming ideally separated. Passing

them each through the same 1 m lens will allow the beams enough space to diverge, while

also focusing them in unison so they can be cleanly sent in opposite directions. The actual

separation is done using a knife-edge right-angle prism mirror (Thorlabs MRAK25-E03)

set at the focal point of the 1 m lens. Figure 5.4 shows the components used to separate

the exciton and biexciton.
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Figure 5.4: Separating the exciton (X) and biexciton (XX) with a transmission grating,

one metre lens, and a triangular prism.

Now the final design step can be resolved: set the beam size after the knife-edge prism

to the 2.99 mm or 3.54 mm required for optimal coupling to the EOM. Simulations with

OSLO determine the right choice is to place a 40 cm lens one focal length away from the

knife-edge prism. This creates a beam size of 2.85 mm, which is close to the required

vertical beam size of 2.99 mm. A set of cylindrical lenses can then be used to create the

elliptical beam shape, expanding the horizontal MFD to 3.36 mm; again, this is close to

the 3.54 mm target beam diameter. Figure 5.5 shows the two lenses and beam shaper in

action.

5.1.2 Testing Coupling Efficiency

With the optical components determined, testing the setup required three actions. The

first is to excite the quantum dot and measure the number of exciton counts per second

when sent directly to a spectrometer. This measured number will be the benchmark for

counts received through the EOM’s waveguide. Once the benchmark is done, the exciton

counts are again optimized on the path passing through the waveguide. Finally, the losses

for each component in the system are determined from theoretical values and used to

compute the total loss for the EOM.

The main challenge in measuring the frequency shift of single photons is to acquire a
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Figure 5.5: A 40 cm lens sets the beam size to 2.85 mm after it has been focused and split

by the knife-edge prism. Two cylindrical lenses then shape the mode field to match the

ellipticity of the EOM’s waveguide.

strong signal once they are sent through a FP interferometer. Since the interferometer

passes only a fraction of the photons’ linewidth at any instant, the most important criteria

for the quantum dot’s emission is total counts per second.

A selection of excitation schemes have been studied for quantum dots [59], including

above bandgap excitation at 830 nm, quasi-resonant at 870 nm, and resonant excitation

near 893 nm. The highest counts are achieved using the above-band scheme, with an

830 nm continuous wave laser. Optimizing the exciton counts on a spectrometer just after

passing through the 5x telescope results in the spectrum initially presented in Figure 2.13,

reproduced in Figure 5.6 for convenience. The high rate of exciton detection events per

second is evident on this graph, shown for the “X” line as 625100 cps at the peak. A total

count rate of 1440960 cps is calculated by integrating the exciton line.

Of greater interest, though, is the spectrum after the beam is coupled through the

waveguide on the EOM’s lithium niobate crystal. In particular, the measured number of

counts per second should remain high, and all the emission with exception of the exciton

should be filtered out. Figure 5.7 presents the spectrum collected directly after the colli-

mating lens at the output of the waveguide. Notably, the exciton counts are very high with
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Figure 5.6: Spectrum collected from the quantum dot using above band excitation at 830

nm. The exciton line is labeled “X” and is measured with a peak at 625 thousand times

per second on the CCD camera. When integrated, which represents the total counts per

second for the exciton line, 1440960 counts per second are observed.
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Figure 5.7: A sharp line showing that the exciton is the only spectral portion of the

quantum dot’s signal that passes through the EOM’s waveguide. Its peak is at 457 thousand

counts per second, observed on the spectrometer’s CCD camera. The integrated area of

the exciton line gives 836940 counts per second.
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457380 detection events per second at the peak and an integrated count rate of 836940. In

addition, the exciton line appears as the only feature in the spectrum, which is a desirable

property.

When considering optical losses, it is worth noting that the data collected in Figure 5.7

also required that the exciton pass through the transmission grating, the additional 1 m

and 40 cm lenses, and the microscope objective, in addition to the EOM. In contrast, these

optical elements were bypassed for the data shown in Figure 5.6. Note that the cylindrical

lens beam shaper was not used, and is left as a future refinement to further optimize the

number of detection events on the EOM’s path.

Table 5.1 presents each of the optical components in the setup along with their theoret-

ical efficiencies. There are two paths of importance: one directly from the cryostat housing

the quantum dot to the spectrometer and the second from the cryostat, through the EOM

and its associated optics, and then to the spectrometer. The optics from the cryostat are

common to both paths, and the calculated CPS along this common path is shown above

the first centred horizontal line in the table. The rows below the line have their columns

split into either the direct path or the path through the EOM, appropriately.

The exciton counts per second at the spectrometer are known for both of the paths

in question from their measurement using the spectrometer’s CCD. Those numbers are

entered in the last row of Table 5.1. The count rate measured in the direct path is used to

calculate most of the other rates in the table, including the common path from the cryostat.

The count rate at the input to the EOM is also calculated using the counts measured on

the direct path by propagating the calculated count rate from the first location common

along both paths through to the EOM using the theoretical efficiencies.

The result is 1091851 counts per second at the EOM’s input and 938769 counts per

second at the output, for a calculated optical efficiency of 86%. This figure includes both

the losses from coupling as well as optical losses from propagation through the lithium

niobate crystal, and is sufficiently high to allow good data collection, as will be shown in

section 5.2. As such, with a good signal from the quantum dot observable through the

EOM, the next step is to configure an FP interferometer in order to analyze the exciton’s

spectral composition more precisely.
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Component Theoretical Efficiency Calculated CPS Note

Direct via EOM

Cryostat aperture 2631526 Both paths are identical to start

70/30 Beam Splitter 0.65 1710492

Mirrors (2x) 0.9506 1626036

5× Telescope 0.9865 1604158

↑
Mirrors (2x) 0.9506 1524952 → 1524952 Counts calculated using direct path

Mirrors (2x) 0.9506 1449658 ↓
Grating 0.95 1448704

Mirrors (2x) 0.9506 1377175

100 cm Lens 0.95 1308316

Prism and Mirror 0.9506 1243718

40 cm Lens and Mirror (2x) 0.9440 1174033

Olympus Objective Lens 0.93 1091851 Forward calculation from direct path

Electro-Optic Modulator 0.8600 (calculated) 938769 Back calculation from measurement

3 cm Lens 0.9925 931729

Mirrors (4x) 0.9037 841992

↑ ↑
Spectrometer Input Lens 0.994 1440960 836940 Measured CPS used to back calculate

Table 5.1: Overall efficiency of the EOM is calculated from integrated exciton count rate

data in the direct path to the spectrometer as compared with that from the path via the

EOM. Measured count rates are taken from the data in Figure 5.6 and Figure 5.7, and

appear in the last row of the table. Theoretical component efficiencies are then used to

calculate the photon count rates at the input and output of the EOM by following the

indicating arrows. The resultant EOM input and output count rates are coloured red in

the table, as is the calculated overall 86% optical efficiency of the EOM, found from their

ratio.
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5.2 Measuring the Exciton Fine Structure

The overarching objective of this thesis is to demonstrate that a rotating half wave plate

can be used to correct for the exciton’s FSS in a InAsP quantum dot, which will render the

quantum entanglement present in every emitted photon pair usable in real applications.

Previous studies have measured the FSS in the particular QD under study to be δ =

795.52(35) MHz [67]. This section studies another method of measuring the FSS by using

an FP cavity and shows that the results obtained largely agree.

The FP was already introduced in subsection 4.4.2, and a similar strategy will be used to

collect the data herein. The photodetector built in to the FP is not able to detect photons

in the single-photon regime, so the experimental method that follows differs somewhat and

is the topic of the following section.

5.2.1 The Fabry-Perot Interferometer

The selection of scanning FP interferometers from Thorlabs is limited to two at our wave-

length of interest which primarily differ in their FSR: one has an FSR of 1.5 GHz (Thorlabs

SA200-8B) and the other 10 GHz (Thorlabs SA210-8B). The choice should be made based

on the linewidth of the signal one desires to measure. A high-finesse cavity with a 1.5 GHz

FSR is great for resolving closely spaced peaks with narrow linewidth, such as the narrow-

band diode laser used in chapter 4. Studies on other InAsP quantum dots reveal that the

exciton’s linewidth is on the order of 1 GHz, which is too broad for the 1.5 GHz cavity.

Luckily, the 10 GHz option is a good choice for accomodating the exciton’s wider line.

Each of the two FPs come with a built-in photodiode which one can connect to an os-

cilloscope for fast experimentation. Indeed, this is how the curves in subsection 4.4.2 were

collected, and works so long as the light source has sufficient intensity. Unfortunately,

the QD’s exciton line is not intense, so a different detection scheme must be devised.

Luckily, the photodiode can be removed from the FP housing, which makes it possible

to re-collimate the transmitted photons for detection by an avalanche photodiode (APD).

Figure 5.8 shows the 10 GHz FP aligned in the beam’s path as it travels toward the spec-

trometer.
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Figure 5.8: Images of the 10 GHz Fabry-Perot interferometer and the two 10 cm lenses used

to focus the beam in and out. The FP was aligned directly with the spectrometer (seen

in the top right photo, at far right). An amplified photodetector was used to measure the

output signal from the FP (bottom right).

Aligning the FP cavity was made relatively easy by using the diode laser from chapter 4

as a guide. First, the laser was coupled into the EOM’s waveguide and then sent directly to

the spectrometer. This reference path was marked with three irises, visible in Figure 5.8.

Two 10 cm lenses are required for focusing the beam into and out of the centre of the

FP cavity, and were placed 20 cm apart along the path, with the beam passing straight

through the centre of each. They were adjusted until the beam was again aligned through

the reference irises. Finally, the FP was placed at the focal point exactly half way between

the two lenses.

The FP’s built-in photodiode was placed at its output in order to gain crude alignment.

The method was to adjust the position of two translation stages and the FP’s tip/tilt

kinematic mount while scanning the cavity length until a clean peak was observed on the

photodiode, as pictured in Figure 5.9a). Once a good position was found, the build-in

photodiode was removed and the beam was sent to the spectrometer’s CCD camera for

fine tuning.
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a)

Built-in Detector

b)

Amplified Detector

c)

CCD Camera

d)

Avalanche Photodiode

Transmitted Intensity vs FP Cavity Length for Four Different Detectors

Figure 5.9: Detecting the intensity of light transmitted through the 10 GHz FP on four

different photodetectors as cavity length is changed. The light source is the narrow band

852 nm diode laser used in chapter 4. Each plot shows a pair of peaks which correspond

to adjacent modes in the confocal FP cavity.

In total, the experimental setup has four different detectors that can be used with the

signal transmitted through the FP: the built-in detector, the free-space amplified detector

(Thorlabs PDA100A2) pictured at bottom right in Figure 5.8, the spectrometer’s CCD

camera, and the APD at the spectrometer’s second output port. To verify that the exper-

imental setup is consistent, it should be possible to reproduce a similar curve to that seen

on the FP’s built-in photodetector by using each of the other detectors. The four plots

shown in Figure 5.9 qualitatively compare these curves.

It is clear that each of the three additional detectors in Figure 5.9 b), c), and d)

produces a curve resembling that of the original built-in detector in a), and immediately

some qualitative differences become evident. The first observation is that the line shape in

a) has a large tail to the right, whereas the other three do not. The tail is exponential in

character and represents the recovery time of the detector once a high output is produced.

Each of the amplified detector, CCD camera, and APD are able to reset much more quickly

and therefore output narrower peaks with much nicer symmetry.
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Also of interest is the large noise character for both detectors in a) and b). Both the

CCD and APD are very well isolated from ambient light yet are very sensitive, and are

thus able to create a very clean signal. The trade-off, however, is that they do not provide

feedback to an experimenter very quickly: the graphs in c) and d) take a few seconds to

produce even for a light source of ample intensity like the diode laser. This is the reason for

which an amplified photodetector is included in the experiment: it can provide the graph

in b) with an update rate of 40 Hz or more. Configuring the EOM’s parameters so as to

create a rotating half-wave plate requires this instantaneous feedback.

Finally, each of the graphs in b), c), and d) show a similar curve shape. Specifically, it is

worth noting that the width of the peaks as compared to the peak spacing is consistent for

all three. Since each of the detectors are very responsive, the measured linewidth should be

a convolution of the laser’s linewidth, specified as 10 MHz, and the FP’s resolution, which

is 67 MHz. In this case, the FP’s resolution will be the dominant contributor to measured

linewidth.

With the alignment of the FP complete and the setup’s integrity verified, the spectral

decomposition of the exciton line can now be studied.

5.2.2 Fine Structure Measurement

The significant building blocks for measuring the exciton’s fine structure have at this point

been assembled, and in order to collect the appropriate data it suffices to repeat the

experiment in subsection 5.2.1 many times over using various polarizations of light from

the quantum dot instead of the laser.

Since the polarization of the photons emitted by the two exciton recombination path-

ways discussed in the section 2.3 are linear and orthogonal, passing the beam from the

quantum dot through a polarizing filter performs a projective measurement onto a linear

polarization basis rotated by some controllable angle α with respect to the lab frame. Each

of the pathways has a slightly different energy which should be possible to observe using

the scanning FP interferometer. This is expected because the FP’s resolution is 67 MHz,

while the FSS as previously measured is an order of magnitude larger at ∼800 MHz.
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Figure 5.10: Experimental setup used to measure the exciton’s FSS. Since the two

biexciton-exciton recombination pathways result in orthogonal polarizations and slightly

different energies, it is expected that the transmitted signals for various angles α/2 of the

HWP will show a slight shift relative to each other.

The polarization selection is done by using a polarizing beamsplitter placed immediately

at the exit of the cryostat, which only allows the polarization state |H〉 horizontal in the

lab frame to pass. As viewed from the observer positioned at +∞ ẑ, |H〉 is the linear

polarization defined with the propagating wave’s electric field vector parallel to the lab

floor and pointing to the right, which corresponds with the positive direction along the

x-axis. Consistent with a right handed coordinate system, |V 〉 is the orthogonal linear

polarization and has its electric field vector pointing toward the lab ceiling, positive along

the y-axis.

A HWP placed just before the PBS rotates a precise linear polarization to |H〉, allowing

the polarization measured to be deliberately selected. For example, to measure |V 〉, which

has its electric field vector rotated by α = π
2

counterclockwise around +ẑ, one would

position the HWP with its slow axis at an angle of α
2

= π
4

with respect to the x-axis.

Similarly, the diagonal and antidiagonal polarizations |D〉 and |A〉 can be measured by

rotating the HWP’s slow axis to π
8

and 3π
8

respectively. Functionally, the HWP/PBS

combination acts like a polarizing filter, except where most polarizers cause a slight beam

deflection, the wave-plate and beam cube do not. This is important because the tolerance

on beam location for optimal coupling into the EOM’s waveguide as discussed in section 5.1

is extremely tight.
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The diagram in Figure 5.10 shows the components involved in measuring the exciton’s

FSS. The HWP and PBS are used for polarization selection, as just discussed, while the

scanning FP cavity and APD are studied in subsection 5.2.1. The EOM is included in

the experiment simply because it will become useful when actually shifting the exciton’s

frequency. Running the current experiment while passing the photons through the EOM’s

waveguide further validates that a sufficiently strong signal is present to proceed with the

frequency shifting explored in section 5.3.

With everything in place, ten measurements were taken for polarization angles varying

from α = 0°..180° in 20° increments. Figure 5.11a) shows the fitted datapoints from the ten

different angles for FP voltages between 0 ≤ VFP ≤ 10. Photon counts were collected from

the APD during a 0.4 s integration time every 0.03 V and are plotted with higher counts

further right on the x-axis. The trials took under 3 minutes each and are offset from one

another for clarity.

The easiest data to extract from the ten plots in Figure 5.11a) is the relationship

between energy and the voltage applied to the FP. Visible in each plot is a repeating

pattern, a similar characteristic as was found in Figure 5.9. In this case the peaks H and

v are much broader as compared to their spacing, and their centres can be found by doing

a least-squares fit to a set of peaks with Voigt profiles. The best-fit curve for each dataset

is shown as a solid line, and each Voigt component is also plotted in dashes.

The difference between centres for H and v is, just as in subsection 5.2.1, equivalent

to an energy difference of one FSR, or 10 GHz for this FP. The corresponding voltages

are distilled in Table 5.2, given as negative values since higher voltages represent a lower

cavity resonance energy for the same mode. On average, one volt is equivalent to a shift

in energy of ∆E = −2.030 GHz.

The next interesting feature of Figure 5.11a) is that the curves for different polariza-

tions appear shifted with respect to one another. Centre values and linewidths for the

peaks marked H and v are plotted respectively in Figure 5.11b) and c) along with their

1σ confidence intervals. In both cases the peaks exhibit similar changes with respect to

polarization: the energy for angle 100° is highest (its peaks’ centres are lowest overall in

terms of FP voltage), while the energy for 0° and 180° are lowest. The peak energies for
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Fabry-Perot Voltage vs Counts for Various Angles α of Linear Polarization

Figure 5.11: One scan of the Fabry-Perot for various input polarization angles. See main

text for detailed discussion.
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Polarization Angle 0° 20° 40° 60° 80° 100° 120° 140° 160° 180° Average

Volts per 10 GHz -4.862 -4.852 -4.960 -4.991 -4.987 -4.984 -4.965 -4.848 -4.931 -4.873 -4.9253

GHz per Volt -2.057 -2.061 -2.016 -2.004 -2.005 -2.006 -2.014 -2.063 -2.028 -2.052 -2.030

Table 5.2: Calculating the relationship between volts supplied to the scanning FP cavity

and change in transmitted signal energy. The numbers in the Volts per 10 GHz column

are the differences in voltage of the fitted peak centers for peaks H and v in Figure 5.11.

That separation corresponds to a change of energy equal to the FP’s FSR, which is 10 GHz

in this case. Note that higher voltages correspond to lower energy for the same FP mode,

making the Volts per 10 GHz numbers negative.

the intermediate polarizations fall in the middle and form an almost sinusoidal pattern.

Since the energy for the peak at 100° is a unique extremum in the dataset, it was chosen

as the energy reference relative to which the energy of peaks in other polarizations are

determined.

Additionally, the 100° dataset is special because it has the absolute lowest measured

peak linewidth ΓX for H at 1.840(85) GHz. The second absolute lowest is also H but for

80° at 2.01(8) GHz. Looking at peak v for 80° and 100° shows the same characteristic

smaller-than-average linewidth at 2.22(9) GHz and 2.33(8) GHz respectively, but peak v’s

lowest overall linewidth is 2.16(9) GHz for the 180° line.

It is expected that the smallest linewidth will correspond to a maximum or minimum

in terms of energy, since this will be the polarization setting that performs a projective

measurement maximizing the probability of seeing only one of the two exciton recombi-

nation pathways. Looking at Figure 5.11b) and c), this appears to be the case with the

narrow peaks for 0° and 180° (|H〉 and −|H〉 in the lab frame) corresponding to the lowest

energies while 80° and 100° (±10° from |V 〉) correspond to the highest. The relative energy

measured for peak 0° appears to be an outlier because it doesn’t fit the trend of the other

nine datasets, including the redundant measurement for |H〉 at 180°, so it will be neglected

in the calculation for the exciton’s FSS.

It should be noted that there is no reason |H〉 and |V 〉 in the lab frame should be the

polarization eigenstates of the exciton. Due to the non-zero FSS and absence of birefrin-

gence in the nanowire waveguide [67], it is expected that the stationary polarization states
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Pol. Angle 100° 180° Measured FSS

∆E Peak H 0 GHz −0.804(25) GHz 0.804(25) GHz

∆E Peak v 0 GHz −1.029(26) GHz 1.029(26) GHz

Table 5.3: The spacing in energy between the highest and lowest peaks for H and v.

The highest energy peaks are in the 1.029(26) GHz 100° dataset, while the lowest energy

peaks are in 180° (discounting the dataset collected for 0°, see main text). The associated

polarizations are |V 〉+ 10° and |H〉 in the lab frame respectively.

for the photons emitted by exciton’s recombination are linear, but the fact that that set of

linear bases largely agree with the chosen |H〉 and |V 〉 bases in the lab frame means that

the dipole created by the electron and hole in the quantum dot must be oriented just so.

Also, since |H〉 and |V 〉 in the lab frame are the stationary states of the biexciton-

exciton cascade, the wider peaks in the exciton spectrum for the curves corresponding to

|D〉 and |A〉 at 45° and 135° should actually be the composition of two separate narrower

peaks of similar amplitude: the one higher in energy for |V 〉 and the one lower in energy

for |H〉. In fact, using a little imagination, one can almost see the two peaks emerge in the

datapoints for peak H at 60° and 140°, and likewise for v at 40°. The Raleigh criterion

requires that in order to be resolvable, two peaks of full-width at half maxmium ΓFWHM

must have their centres separated by at least ΓFWHM. In our case, the lowest linewidth is

Γ|V 〉 = 1.84 GHz, so the peaks energies must be at least this far apart for both to emerge.

This naturally leads to the fundamental question of this section: what is the separation

in energy of the two exciton eigenstates? Answering that requires finding the energy

difference between the two polarization eigenstates, which should also correspond to the

largest and smallest energies measured. Those are found in the 100° and 180° measurements

respectively. As in Figure 5.11b) and c), the energies given are relative to the peak centres

found for the 100° polarization, and are tabulated in Table 5.3.

Depending on the choice of peak, we find that the FSS for the exciton is FSS =

0.804(25) GHz or FSS = 1.029(26) GHz. This is a positive result since it reaffirms the

previous measurement of FSS equal to 795.52(35) MHz [67]. It also explains why the two

individual peaks in the |D〉 and |A〉 datasets cannot be resolved: the fine structure splitting

110



+

Exciton From
Cryostat

PBS
Scanning 

Fabry-Perot

‒

V
FP

Avalanche 
Photodetector

QWP

CH B
+

+‒

‒

QWP

HWP

Figure 5.12: Experimental schematic for energy shifting the exciton using an EOM config-

ured as a rotating half-wave plate.

is smaller than the exciton’s linewidth ΓX ≈ 2 GHz by about half, so the Raleigh criterion

is not met.

Note that in general this procedure cannot be used, as it will tend to underestimate

the real FSS [19]. The reason is that although the QD’s eigenstates are rectilinear, the

nanowire may introduce a birefringence that causes them to be emitted elliptically. Thus,

performing energy measurements in a strictly rectilinear basis will not capture the larger

energy splitting that could be hiding in two orthogonal elliptically polarized states. Fortu-

nately, the nanowire under study has been carefully grown such that it does not have any

birefringence meaning the measurements as performed are representative.

With the encouragement that the experimental setup appears valid for accurately mea-

suring small changes in the exciton’s energy, we have reached the main undertaking of

this thesis: demonstrating frequency shifting of single photons using a quickly rotating

half-wave plate.

5.3 Frequency Shifting Single Photons

All of the relevant background material for frequency shifting single photons is now clear

and the necessary experimental components are in place, so it is appropriate to commence
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the true test. The key components for the experiment are organized as pictured in Fig-

ure 5.12. The PBS and QWP are used to create right-circularly polarized light, while the

HWP is rotated until the counts on the APD are maximized.

Performing the maximization like this does not necessarily select one of the two branches

of the biexciton-exciton cascade, since the optical components between the cryostat and

the HWP/PBS combination are equivalent to a unitary operation and do not necessarily

maintain what were the horizontal and vertical polarizations when the FSS measurement

was done in section 5.2. In this case this isn’t a concern: the result is that the measured

exciton linewidth will be composed of the two slightly-different exciton energies and thus be

broader than in the ideal case. A demonstration of frequency shifting will still be possible,

though.

To first get an idea of what successful frequency shifting would look like, an exciton

line shape was extracted with a least-squares Voigt fit to a data set collected from the FP.

This line shape will then be used for a simulation.

In order to create a reasonable simulated shift, data was extracted from the second

dataset in subsection 4.4.2. Using the left-hand bank of seven Lorentzian peaks in the fit

from Figure 4.13 (red line), a convolutional kernel was created. The kernel is the result

of integrating the area of each of the seven peaks and concentrating them at the peaks’

respective centers, followed by a normalization step. The reasoning is that the observed

linewidth in Figure 4.13 is primarily due to the 67 MHz resolution of the FP cavity, and

thus the peaks’ widths can be reasonably compressed.

The convolutional kernel was then applied to the exciton lineshape, as shown in blue

in Figure 5.13. The convolutional kernel is displayed in the inset, also in blue, along with

the original Lorentzian fit in orange. After convolving the exciton with the kernel, the

result of which is shown in red, a new fit was done with another Voigt profile, dashed

brown. Its centre as well as the original centre are drawn on the graph, and it was found

that the difference in energy between them is 137.5 MHz. In addition, the linewidth of

the converted peak has been broadened. It was confirmed that the integrated area of the

exciton peak before and after the operation is identical. Note that higher Fabry-Perot

voltages correspond to lower energies, so a rightward shift is to a lower frequency.
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Figure 5.13: Simulating the expected frequency shift for the inset applied EOM signal from

subsection 4.4.2.

113



A lower magnitude shift appeared in the simulated results than the expected 325 MHz

at which the EOM was driven for the second dataset in subsection 4.4.2. The reason is clear

from looking at the convolutional kernel, which on average shifts the energy to the right but

also spreads it across a range of 2 GHz. This same energy spreading was not apparent in

the first dataset from subsection 4.4.2 shown in Figure 4.12, meaning an optimistic outlook

is reasonable on the grounds that significant improvements can be made.

Single photon data was collected on the APD for photons traveling through the EOM,

just as in subsection 5.2.2, over seven different runs of the experiment. The first data

collection sequence was with the EOM off, while the second was with it turned on. The

following five data sets then followed the off-on pattern. Each of the datasets was then

analyzed with a least-squares fit to a series of Voigt lineshapes, from which the peak

centres were extracted. Adjacent datasets were then plotted together along with the fits.

The complete figure is shown in Figure 5.14.

In graph a), the first trial, the blue dataset was the first to be collected, while the

red points were second. In graph b), the second trial, the red data points are the same

as in graph a), as can be seen by looking at the peak centres. The blue points, however,

corresponds to the third collection run. Following the pattern, graph c) features the same

blue points as in graph b), but new red points. In total, six comparisons can be created

from seven collection sequences. The purpose of interleaving results like this is to avoid

an accidental bias introduced by experimental methods, providing better uniformity in the

possible sources of noise and experimental error. In each case, the data points taken while

the EOM is on are expected to be red shifted (to the right), and are thus appropriately

colored.

The parameters for the experiment are very similar to those used for collecting the

simulation’s convolutional kernel. To be rigorously complete, the EOM was driven with

0.254 mVRMS (1.107 dBm, 0.93 in the code) from the DAC with a 105° phase difference

between channels A and B. The signal was amplified 37 dB, as in subsection 4.4.2. Channel

A’s offset was VA,DC = −5.80 V while for channel B it was VB,DC = 7.68 V.

The quantum dot was excited using a Ti:Sapphire laser set to 830 nm with a laser

power of 74.6 nW (174 nW displayed on the 70% monitoring output of a non-polarizing
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Figure 5.14: A sequence of trials with the EOM off and on. Critically, the centers for the

red lines are consistently right of the blue centers, which is exactly what was predicted by

the simulation in Figure 5.13. Every trial shares a dataset with the next, which can be

seen by comparing the centre lines. For example Trial 1 and Trial 2 feature the same data

for the EOM on, in red. This shows that the results are not an artifact of the measurement

order.
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Trial 1 2 3 4 5 6 Average

∆Ev (MHz) -388.8 -318.6 -142.7 -751.2 -447.7 -218.9 -377.98

∆EH (MHz) -318.8 -216.1 134.6 -128.8 -78.7 -158.7 -127.75

Combined: -252.87

Table 5.4: Energy differences extracted from the peak centres of each trial. The negative

signs denote a shift toward lower frequency with respect to the unshifted data.

beam splitter prior to entering the cryostat). The data points are spaced by positive

increments of 0.03 V between 0 V and 10 V on the scanning FP piezo motor. Each cavity

length was held steady for a 0.4 s integration time before advancing to the next higher

voltage, for a total experiment time of around 3 min per collection sequence.

The 150 groove per mm grating was chosen in the spectrometer to maximize counts to

the APD. A slit in front of the APD was opened to 70 µm, and positioned at 894.1 nm,

corresponding to the exciton’s wavelength. This is a different value than was found in

the spectrum from Figure 5.7, and is due to the choice of grating and a slight wavelength

mismatch between collection with the CCD and the APD.

In almost every case it is apparent that the centre of the peaks with the EOM running

appear to the right of those when it isn’t, consistent with the simulation. The one outlier

is peak H in trial 3, where the red centre is left of the blue reference. Also consistent with

the simulation is the broader average linewidth of the peaks in the red dataset. Another

observation is that the peaks are more closely spaced for peak H than for peak v, and on

average tend to drift toward the left across trials.

Extracting the energy difference between peaks just as was done in the simulation led

to the values populated in Table 5.4. Taking the global average over the six comparisons,

it is determined that the exciton line has indeed been down-converted by 252.87 MHz.

This is confirmation that the rotating half-wave plate is functioning as a frequency shifter.

However, this measured value is larger than the 137.5 MHz value that was expected based

on the simulation in Figure 5.13. Instead, the average value for peak H matches much

more closely with an average 127.75 MHz shift.

Interestingly, this observation is consistent with the measurements using the FP in
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subsection 5.2.2, where peak v had quite a large mismatch between the obtained and

expected value, whereas peak H matched very well. The conclusion is that the FP collects

more accurate results away from its starting voltage, which could be an artifact of hysteresis

in the piezo cavity length adjuster. Thus, in the future the FP should be primed prior

to running a data collection sequence. A direct consequence of this is the measurements

relating the FP’s free spectral range to energy may have a larger error on them since the

first peak in the FSR pair may not be accurately positioned.

5.4 Conclusion

The conclusion that can be drawn from the data as analyzed is that an electro-optic mod-

ulator is indeed a viable method for controlling the energy of single photons. Though the

frequency shift shown here is less than the 400 MHz required to correct for the exciton’s

fine structure, the theory and modeling very consistently matched with the results, pro-

viding high confidence that refinements in the technique can indeed be used to perfectly

correct for the quantum dot’s FSS. As such, it is expected that application of this tech-

nique will restore perfect entanglement for photon pairs created by the biexciton-exciton

cascade, favourably positioning this on-demand source of entangled photons for use in

ground-breaking future quantum technologies.
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“On-demand single photons with high extraction efficiency and near-unity

indistinguishability from a resonantly driven quantum dot in a micropillar,”

Phys. Rev. Lett., vol. 116, p. 020401, Jan 2016. [Online]. Available: https:

//link.aps.org/doi/10.1103/PhysRevLett.116.020401

[34] N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker,

S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes,

N. D. Lanzillotti-Kimura, A. Lemáıtre, A. Auffeves, A. G. White, L. Lanco,

and P. Senellart, “Near-optimal single-photon sources in the solid state,”

Nature Photonics, vol. 10, no. 5, pp. 340–345, May 2016. [Online]. Available:

https://doi.org/10.1038/nphoton.2016.23

[35] D. Huber, M. Reindl, Y. Huo, H. Huang, J. S. Wildmann, O. G. Schmidt,

A. Rastelli, and R. Trotta, “Highly indistinguishable and strongly entangled photons

123

https://link.aps.org/doi/10.1103/RevModPhys.79.135
https://link.aps.org/doi/10.1103/PhysRevLett.86.1502
https://doi.org/10.1038/nature01086
https://doi.org/10.1038/nnano.2012.262
https://link.aps.org/doi/10.1103/PhysRevLett.116.020401
https://link.aps.org/doi/10.1103/PhysRevLett.116.020401
https://doi.org/10.1038/nphoton.2016.23


from symmetric gaas quantum dots,” Nature Communications, vol. 8, no. 1, p.

15506, May 2017. [Online]. Available: https://doi.org/10.1038/ncomms15506

[36] O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled

photons from a single quantum dot,” Phys. Rev. Lett., vol. 84, pp. 2513–2516, Mar

2000. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.84.2513

[37] C. L. Salter, R. M. Stevenson, I. Farrer, C. A. Nicoll, D. A. Ritchie, and

A. J. Shields, “An entangled-light-emitting diode,” Nature, vol. 465, no. 7298, pp.

594–597, Jun 2010. [Online]. Available: https://doi.org/10.1038/nature09078

[38] J. Zhang, J. S. Wildmann, F. Ding, R. Trotta, Y. Huo, E. Zallo, D. Huber,

A. Rastelli, and O. G. Schmidt, “High yield and ultrafast sources of electrically

triggered entangled-photon pairs based on strain-tunable quantum dots,” Nature

Communications, vol. 6, no. 1, p. 10067, Dec 2015. [Online]. Available:

https://doi.org/10.1038/ncomms10067

[39] Y. Chen, M. Zopf, R. Keil, F. Ding, and O. G. Schmidt, “Highly-efficient extraction

of entangled photons from quantum dots using a broadband optical antenna,”

Nature Communications, vol. 9, no. 1, p. 2994, Jul 2018. [Online]. Available:

https://doi.org/10.1038/s41467-018-05456-2

[40] M. A. M. Versteegh, M. E. Reimer, K. D. Jöns, D. Dalacu, P. J. Poole, A. Gulinatti,
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and F. Schäfer, “Fine structure of neutral and charged excitons in self-assembled

In(Ga)As/(Al)GaAs quantum dots,” Phys. Rev. B, vol. 65, p. 195315, May 2002.

[Online]. Available: https://link.aps.org/doi/10.1103/PhysRevB.65.195315

[69] R. Paschotta, “Fibre core,” RP Photonics Encyclopedia [Online] https://www.

rp-photonics.com/fiber core.html, [Accessed: 7- Apr- 2018].

128

https://doi.org/10.1038/s41377-018-0045-6
https://doi.org/10.1063/1.3600777
https://doi.org/10.1021/nl303327h
https://doi.org/10.1038/ncomms1746
https://doi.org/10.1021/acsphotonics.8b01496
https://link.aps.org/doi/10.1103/PhysRevB.65.195315
https://www.rp-photonics.com/fiber_core.html
https://www.rp-photonics.com/fiber_core.html


[70] S. Chuang, Physics of Optoelectronic Devices. New York: John Wiley & Sons, 1995.

[71] C. Q. et al, “Power-efficient electro-optical single-tone optical-frequency shifter us-

ing x-cut y-propagating lithium tantalate waveguide emulating a rotating half-wave-

plate,” in Presented at Opt. Fib. Commun. Conf., 2017.

[72] R. Jones, “A new calculus for the treatment of optical systems,” J. Opt. Soc. Am.,

vol. 31, no. 7, pp. 488–493, 1941.

[73] A. Fox, “An adjustable wave-guide phase changer,” Proc. of the I.R.E., vol. 35, pp.

1489–1498, 1947.

[74] E. C. C. Buhrer, D. Baird, “Optical frequency shifting by electro-optic effect,” Appl.

Phys. Lett., vol. 1, pp. 46–49, 1962.

[75] C. Q. et al, “Single-tone optical frequency shifting and nonmagnetic optical isolation

by electro-optical emulation of a rotating half-wave plate in a traveling-wave lithium

niobate waveguide,” IEEE Photon. J., vol. 9, no. 3, 2017.

[76] A. Fognini, “Pydualdds,” 2018. [Online]. Available: https://github.com/afognini/

PyDualDDS

[77] A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications.

New York: Oxford University Press, 2006.

[78] M. Varnava, D. E. Browne, and T. Rudolph, “How good must single photon

sources and detectors be for efficient linear optical quantum computation?”

Phys. Rev. Lett., vol. 100, p. 060502, Feb 2008. [Online]. Available: https:

//link.aps.org/doi/10.1103/PhysRevLett.100.060502

[79] P. Page and H. Pursey, “Tunable single sideband electro-optic ring modulator,” Opto-

electronics, vol. 2, pp. 1–4, 1970.

[80] J. Campbell and W. Steier, “Rotating-waveplate optical-frequency shifting in lithium

niobate,” IEEE J. Quant. Elec., vol. 7, pp. 450–457, 1971.

129

https://github.com/afognini/PyDualDDS
https://github.com/afognini/PyDualDDS
https://link.aps.org/doi/10.1103/PhysRevLett.100.060502
https://link.aps.org/doi/10.1103/PhysRevLett.100.060502


[81] G. Sommargren, “Up/down frequency shifter for optical heterodyne interferometry,”

J. Opt. Soc. Am., vol. 65, no. 8, pp. 960–961, 1975.

[82] B. Garetz and S. Arnold, “Variable frequency shifting of circularly polarized laser

radiation via a rotating half-wave retardation plate,” Opt. Comm., vol. 31, no. 1, pp.

1–3, 1979.

[83] M. Kothiyal and C. Delisle, “Optical frequency shifter for heterodyne interferometry

using counterrotating wave plates,” Opt. Lett., vol. 9, no. 8, pp. 319–321, 1984.

[84] L. Z. P. Gangding, H. Shangyuan, “Application of electro-optic frequency shifters in

heterodyne interferometric systems,” Electron. Lett., vol. 22, no. 23, pp. 1215–1216,

1986.

[85] R. Noe and D. Smith, “Integrated-optic rotating waveplate frequency shifter,” Elec-

tron. Lett., vol. 24, no. 21, pp. 1348–1349, 1988.

[86] Z. A. G. Smith, D. Novak, “Technique for optical ssb generation to overcome dis-

persion penalties in fibre-radio systems,” Electron. Lett., vol. 33, no. 1, pp. 74–75,

1997.

[87] R. S. et al, “Evolution of entanglement between distinguishable light states,” Phys.

Rev. Lett., vol. 101, no. 170501, 2008.

[88] S. Sanna and W. Schmidt, “Lithium niobate x-cut, y-cut, and z-cut surfaces from ab

initio theory,” Phys. Rev. B, vol. 81, no. 214116, 2010.

[89] P. Caroff, J. Bolinsson, and J. Johansson, “Crystal phases in iii–v nanowires: From

random toward engineered polytypism,” IEEE Journal of Selected Topics in Quan-

tum Electronics, vol. 17, no. 4, pp. 829–846, July 2011.

[90] R. Singh and G. Bester, “Nanowire quantum dots as an ideal source of entangled

photon pairs,” Phys. Rev. Lett., vol. 103, p. 063601, Aug 2009. [Online]. Available:

https://link.aps.org/doi/10.1103/PhysRevLett.103.063601

130

https://link.aps.org/doi/10.1103/PhysRevLett.103.063601


[91] Z. He, J. Yang, L. Zhou, Y. Chen, T. Zhao, Y. Yu, and J. Liu,

“Broadband photonic structures for quantum light sources,” Journal of

Semiconductors, vol. 40, no. 7, p. 071905, jul 2019. [Online]. Available:

https://doi.org/10.1088%2F1674-4926%2F40%2F7%2F071905
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