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Abstract

Since its conception in the 1960s, digital computation has experienced both 
exponential growth in power and reduction in cost. This has allowed the production 
of  relatively cheap electronics, which are now integrated ubiquitously in daily life. 
With so much computational data and an ever-increasing accessibility to intelligent 
objects, the potential for integrating such technologies within architectural systems 
becomes increasingly viable. Today, dynamic architecture is already emerging across 
the world; it is inevitable that one day computation will be fully integrated within the 
infrastructures of  our cities. 

However, as these new forms of  dynamic architecture becomes increasingly 
commonplace, the standard static medium of  architectural visualization is no longer 
satisfactory for representing and visualizing these dynamic spaces, let alone the 
human interactions within them. Occupancy within a space is already inherently 
dynamic and becomes even more so with the introduction of  these new forms of  
architecture. This in turn challenges our conventional means of  visualizing spaces 
both in design and communication. To fully represent dynamic architecture, the 
visualization must be dynamic as well. As such, current single image rendering 
methods within most existing architectural design pipelines becomes inadequate in 
portraying both the architectural dynamics of  the space, as well as the interaction 
and influences these dynamics will have with the occupants.

This thesis aims to mitigate these shortcomings in architectural visualization by 
investigating the creation of  a crowd simulation tool to facilitate a foundation for 
a visualization framework that can be continuously built upon based on project 
needs, which answers the question of  how one can utilize current technologies 
to not only better represent responsive architecture but also to optimize existing 
visualization methodologies. By using an interdisciplinary approach that brings 
together architecture, computer science, and game design, it becomes possible to 
establish a more powerful, flexible, and efficient workflow in creating architectural 
visualizations. 

Part One will establish a foundation to this thesis by looking at the state of  
the current world, its buildings in the sense of  dynamic, and the current state of  
visualization technologies that are being utilized both within architectural design 
as well as outside of  it. Part Two will investigate complex systems and simulation 
models, as well as investigating ways of  integrating them with human behaviors to 
establish a methodology for creating a working crowd simulation system. Part Three 
will take the methodology developed within Part Two and integrate it within modern 
game engines, with the intent of  creating an architectural visualization pipeline that 
can utilize the game engine for both crowd analytics as well as visualization. Part 
Four will look at some of  the various spatial typologies that can be visualized with 
this tool. Finally, Part Five will speculate on various future directions to improve this 
tool beyond the current scope of  this thesis. 
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Wikimedia Commons, accessed December 28, 2019, https://commons.wikimedia.org/wiki/File:Grasshopper_
MainWindow.png.

135	 Figure 3.1.2	 Material node system within 3ds Max
0	 Screen-captured by Author.
135	 Figure 3.1.3	 Scripting node system within Unreal Engine 4
0	 Default character asset script within UE4, screen-captured by Author.
139	 Figure 3.2.1	 Game assets within project browser
0	 Screen-captured by Author.
141	 Figure 3.3.1	 How each asset will be utilized within this software environment
0	 Illustrated by Author.
143	 Figure 3.3.2	 AI perception
0	 Simulated and screen-recorded by Author.
143	 Figure 3.3.3	 EQS trace test
0	 From “Environment Query System Overview,” Unreal Engine Documentation, accessed December 28, 2019, https://

docs.unrealengine.com/en-US/Engine/ArtificialIntelligence/EQS/EQSOverview/index.html.
145	 Figure 3.3.4	 Simplified visual scripting process within UE4
0	 Illustrated by Author.
147	 Figure 3.3.5	 Decision Network
0	 Screen-captured by Author.
148	 Figure 3.3.6	 Event Node begins the execution line
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0	 Screen-captured and edited by Author.
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0	 Frame-captured by Author.
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0	 Frame-captured by Author.
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0	 Simulated and screen-recorded by Author.
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0	 Frame-captured by Author.
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0	 Simulated and screen-recorded by Author.
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0	 Frame-captured by Author.
230	 Figure 4.1.5	 Intersection Condition
0	 Simulated and screen-recorded by Author.
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0	 Frame-captured by Author.
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0	 Simulated and screen-recorded by Author.
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0	 Frame-captured by Author.
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0	 Simulated and screen-recorded by Author.
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0	 Frame-captured by Author.
235	 Figure 4.1.11	 Grand Central Station time-lapse
0	 From Rocketboom, “Time Lapse Grand Central Station,” YouTube, 2:54, accessed December 28, 2019, https://www.

youtube.com/watch?v=eimuAboXSdo&feature=youtu.be.
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0	 Frame-captured by Author, from Rocketboom, “Time Lapse Grand Central Station.”
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0	 Simulated and screen-recorded by Author.
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0	 Frame-captured by Author.
238	 Figure 4.2.1	 Cushion Revit model
0	 Screen-captured by Author.
239	 Figure 4.2.2	 Cushion Floor Plan
0	 Illustrated by Author, CAD file obtained from the Cushion team.
240	 Figure 4.2.3	 Cushion crowd simulation
0	 Simulated and screen-recorded by Author.
241	 Figure 4.2.4	 Cushion crowd simulation analytical frames
0	 Frame-captured by Author.
242	 Figure 4.2.5	 Cushion agent-comfort map
0	 Simulated and screen-recorded by Author.
243	 Figure 4.2.6	 Cushion agent-comfort map analytical frames
0	 Frame-captured by Author.
244	 Figure 4.2.7	 Cushion real world footage
0	 Filmed by Author.
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0	 Frame-captured by Author.
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0	 Simulated by Author.
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0	 Frame-captured by Author.
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0	 Simulated by Author.
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0	 Frame-captured by Author.
248	 Figure 4.3.1	 Riverside Gallery Revit model
0	 Screen-captured by Author.
249	 Figure 4.3.2	 Riverside Gallery Floor Plan
0	 Illustrated by Author, PDF file obtained from “Floor Plans,” Plant Operations, accessed 28, 2019, https://uwaterloo.ca/

plant-operations/floor-plans.
250	 Figure 4.3.3	 Riverside Gallery crowd simulation
0	 Simulated and screen-recorded by Author.
251	 Figure 4.3.4	 Riverside Gallery crowd simulation analytical frames 
0	 Frame-captured by Author.
252	 Figure 4.3.5	 Riverside Gallery agent-comfort map
0	 Simulated and screen-recorded by Author.
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253	 Figure 4.3.6	 Riverside Gallery agent-comfort map analytical frames
0	 Frame-captured by Author.
254	 Figure 4.3.7	 Riverside Gallery real world footage
0	 Filmed by Author.
254	 Figure 4.3.8	 Riverside Gallery real world footage analytical frames
0	 Frame-captured by Author.
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0	 Simulated by Author.
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0	 Frame-captured by Author.
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0	 Simulated by Author.
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0	 Frame-captured by Author.
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263	 Figure 5.1.1	 Blueprint scripting vs C++ scripting
0	 From Jayanam, frame-captured and edited by Author, “Unreal Engine 4 : C++ and Blueprints Tutorial,” YouTube, 7:36, 

accessed January 1, 2020, https://www.youtube.com/watch?v=SW09W182Ws0.
265	 Figure 5.1.2	 An airport is one example of a dynamic space that requires multiple layers of queuing, and many 

groupings of occupants
0	 By John Amis, from Don Schanche Jr., “Airlines Struggle to Get Back on Schedule after Atlanta Fire,” December 18, 

2017, FWBP, accessed January 1, 2020, http://www.fortworthbusiness.com/news/airlines-struggle-to-get-back-on-
schedule-after-atlanta-fire/article_c1ce0496-e41b-11e7-8980-5b5f5acbd106.html.

267	 Figure 5.2.1	 Photogrammetry recreates an object by capturing multiple images of the object in various angles
0	 From Joseph Azzam, “Everything You Need to Know about Photogrammetry I Hope,” January 10, 2017, Gamasutra, 

accessed January 1, 2020, https://www.gamasutra.com/blogs/JosephAzzam/20170110/288899/Everything_You_Need_
to_Know_about_Photogrammetry_I_hope.php.

268	 Figure 5.2.2	 Star Wars Battlefront Photogrammetry Mod
0	 From Martin Bergman, trimmed by Author, “STAR WARS™ Battlefront: Toddyhancer Showcase (Less Filmic Version),” 

YouTube, 0:52, accessed January 1, 2020, https://www.youtube.com/watch?v=a72hU_l6mKc.
268	 Figure 5.2.3	 Rebirth photorealism within UE4 demo
0	 From Quixel, trimmed by Author, “Rebirth: Introducing Photorealism in UE4,” YouTube, 2:24, accessed January 1, 

2020, https://www.youtube.com/watch?v=9fC20NWhx4s.
269	 Figure 5.2.4	 Star Wars realtime Ray-tracing demo
0	 Trimmed by Author, videos from moviemaniacsDE, “Star Wars: Reflections | Official Unreal Engine Real-Time Ray-

Tracing Demo (2018),” YouTube, 4:09, accessed January 1, 2020, https://www.youtube.com/watch?v=AV279wThmVU, 
and Unreal Engine, “Reflections Real-Time Ray Tracing Demo | Project Spotlight | Unreal Engine,” YouTube, 1:04, 
accessed January 1, 2020, https://www.youtube.com/watch?v=J3ue35ago3Y.

271	 Figure 5.3.1	 Tiltbrush is one example of an VR painting application
0	 From “Tilt Brush by Google,” accessed January 1, 2020, https://www.tiltbrush.com/.
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Traditionally, buildings have been very static elements within society, however, 
technological advancements in recent years have allowed faster, smaller, and 
cheaper electronics to be embedded within architectural systems. As a result, coded 
infrastructures are emerging, allowing the creation of dynamic architectural spaces 
throughout the world. Now as humanity enters the information age, new tools, 
knowledge, and technologies have made it possible to create and visualize new forms 
of architectural spaces unlike ever before. 

These new spaces bring about complexities both in operation and design, which 
in turn demands a higher standard of visualization to fully portray the occupant 
interactions within the space. The inherent dynamics of human occupancy are 
already challenging to portray with current visualization methods—especially within 
the ‘fast-paced’ design phases of most architectural projects—but becomes even more 
so with the introduction of these increasingly complex interactions within these 
increasingly dynamic spaces.

A solution to these problems may lie within the game design industry. Since video 
games rely largely on real-time interactions, the tools for their creation require an 
emphasis on both rendering speed and scripting. These characteristics are in line 
with the requirements of simulating and visualizing occupancy interactions within 
dynamic architectural spaces, and as such offer a valid direction of investigation.

This section of the thesis will investigate these claims to provide a foundation for this 
thesis. Chapter 1.1 will first define the interpretation of dynamic architecture within 
the context of this thesis. It will then investigate the formalities of what makes a space 
dynamic by supporting it with various logical tests and real-world examples. Chapter 
1.2 will then investigate the progression of visualization both within the world and 
within architectural visualization. From this, it intends to deduce the reasons behind 
the current inadequacies of current visualizations in portraying these new dynamic 
spaces, as well as the lack of crowd dynamics within them. Chapter 1.3 will then 
investigate the advent of the game engine and examine why it may be a suitable tool 
to make up for these shortcomings. Chapter 1.4 will then consider all these points 
and propose a methodology and framework for this thesis.

Why do we Need a New Workflow?
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Chapter 1.1 | Emergence of Interactive and 
Dynamic Architecture 
Dynamic, as defined by the Oxford English Dictionary, is: “Of or pertaining 
to force producing motion: often opposed to static.”[1] From this definition, 
it is then possible to interpret dynamic architecture as a class of architecture 
pertaining to a space that is able to employ motion. This contrasts with the 
conventional static sense of architecture, where people typically associate 
buildings with defined walls and thresholds. The origin of this association 
perhaps comes from the origin of architecture itself, where its purpose was 
that of a shelter against the unstable nature, to allow humanity to live in a 
space of control and order. Abraham Akkerman briefly touched upon this in 
his article “Urban Void and the Deconstruction of Neo-Platonic City-Form,” 
in which he relates the two facets of city form—urban constructs and urban 
voids—with what Friedrich Nietzsche showed as the two impulses of human 
psyche—the Apollonian and the Dionysian. 

“He called the two impulses the Apollonian and the Dionysian, 
respectively. The spatial attributes of the human temperament, 
epitomized by Apollo, the god of colonies and of city-walls, 
correspond to harmony, order, reason, certainty and stability. 
Capriciousness and turbulence, expressive of Dionysus, the 
bisexual god of wine, on the other hand animate euphoric 
and rapturous attributes of the human character, involving 
unpredictable outbursts tempered by intervals of quiet (Zeitlin, 
1982). It is only a small conceptual step to relate the mind’s spatial 
disposition to a planned shelter and its temporal outlook to raw 
nature and open space. […] It is from within the tension between 
the turbulence and uncertainty of nature’s ferocity, and the 
firmness and security of a human-made shell, that the intellectual 
quandary of uniformity amid diversity, and of permanence amid 
change, arose. […] The origin of the mind city composite, thus, 
seems to be traceable to mutual relationship between nature’s 
peril and a thought about, or a metal image of, a shelter against 
it.”[2]

Akkerman contrasts the “firmness and security of a human-made shell,” to the 
“turbulence and uncertainty of nature’s ferocity;” describing the shelter with 
words such as harmony, order, reason, certainty and stability, while describing 
nature as raw and open, relating it to that of Dionysus, who can be expressed 
by words such as capriciousness and turbulence. While it is unlikely Akkerman 
had dynamic architecture in mind, it can be inferred from his passage the 
archetypal static quality of architecture and the dynamic quality of nature. 
Dynamic architecture then can adopt both archetypes, becoming a more fluid 
form of stability and security. This merger of the two archetypes presents 
an interesting repositioning of agency, which proposes a mirror of what 
1	  “Dynamic, Adj. and n.,” in OED Online (Oxford University Press), accessed October 18, 2019, 

http://www.oed.com/view/Entry/58818.
2	  Abraham Akkerman, “Urban Void and the Deconstruction of Neo-Platonic City-Form,” Ethics, 

Place & Environment 12, no. 2 (2009): 207-208, https://doi.org/10.1080/13668790902863416.

“Increasingly active, responsive, and kinetic, the material of the built environment is 
being animated in the truest sense of the word. Architecture imbued with autonomy, and 
uncanny sense of life, challenges us to look beyond design disciplines to understand the 
perceptual, emotional, and social effects of these pervasive technologies.”[1] 

1	  Michael Fox, Interactive Architecture: Adaptive World (New York: Princeton Architectural Press, 2016), 7.

http://www.oed.com/view/Entry/58818
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Akkerman phrases as “the intellectual quandary of uniformity amid diversity, 
and of permanence amid change.”[3] Instead of “uniformity amid diversity,” 
dynamic architecture would instead potentially introduce uncertainty within 
stability. However, while the stability gained by removing the agency of 
nature provided the basis of a valid shelter, the potential for controlled 
dynamics gained by translocating agency from the occupants back into the 
architecture can be just as, if not more, compelling. It can be seen within 
life that occupancy within a space is inherently dynamic, and as such, the 
demand and functions of a space can change throughout its use. People are 
dynamic, crowds are dynamic, and sometimes the static nature of traditional 
architecture cannot fully accommodate the dynamic nature of its occupants. 
Dynamics can disrupt the stability and order of architectural spaces, but when 
done right, they can actually enhance it.

Architectural space, when broken down to its components, can be categorized 
into various elements. When considering a typical house, one might notice 
elements such as furniture, thresholds, lights, windows, etc. These elements 
are generally what define a space; a kitchen might have elements such as a 
fridge, sink, microwave, etc. whereas a living room would have elements such 
as a couch, coffee table, and television. At present, these elements are relatively 
simple, but even so, they can range in complexity from static tables and chairs 
to more interactive devices such as televisions and computers. While these 
higher complexity elements are still limited by their lack of physical motion, 
the photonic and acoustic stimuli they can release within a space go beyond 
what a static piece of furniture can accomplish. A television that is turned on 
will introduce motion to the room by virtue of light and sound. Therefore, 
a television that is turned on can be considered dynamic while a television 
that is turned off can be considered static. Accordingly, a living room with a 
television that is turned on will feel more dynamic compared to a living room 
with a television that is turned off. (Fig. 1.1.1 - 2) From this, it can then be 
argued that the introduction of dynamic elements within the space can cause 
an initially static space to become dynamic. While natural elements such a 
wind and light can also influence this space dynamic due to the time of day 
and the seasons, these elements are both less deliberate (unless controlled by a 
dynamic element) and more subtle (due to their effect over a greater timeframe 
when compared to the immediate stimuli delta of the television example). 

In these instances, the semantics of dynamic spaces may differ based on the 
threshold at which the space is classified to be dynamic, but if one deems 
the threshold of dynamic to be anything above static within a perceivable 
timeframe, then it can be reasoned that it only takes one dynamic element 
to convert a space from static to dynamic—whether it is an element like a 
television that introduces dynamics, or some kind of screen element that 
can dynamically affect natural elements such as light and wind. This can be 
further demonstrated by comparing a room with a lightbulb versus a room 
with a fireplace. (Fig. 1.1.3 - 6) While both elements provide a light source 
to the room, the light fixture provides a constant static lighting whereas the 
fire dances, changing shape from convectional air currents within the space. 

3	  Akkerman, “Urban Void and the Deconstruction of Neo-Platonic City-Form,” 208.

Figure 1.1.1	 A static living room with the Television turned off
Photographed by Author.

Figure 1.1.2	 A static living room with the Television turned on feels more dynamic by comparison
Filmed by Author.
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Figure 1.1.3 - 1.1.4
This is a virtual study of a room with either a static light bulb or a dynamic 
fire. It can be seen here that while the fire is technologically primitive com-
pared to the light-bulb, it causes the space to feel much more dynamic.

Figure 1.1.5 - 1.1.6
The same study, but within the Physical world. Here it can be seen that the 
same ideology applies to these spaces even at this smaller scale.

Figure 1.1.3	 Virtual Rendering showing a static light source within a room
Rendered by Author.

Figure 1.1.4	 Virtual Rendering showing a dynamic light source within a room.
Simulated by Author.

Figure 1.1.5	 Physical Study showing a static light within a space.
Photographed by Author.

Figure 1.1.6	 Physical Study showing a dynamic light within a space.
Filmed by Author.
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Whether the fire or television is sufficient to convert the room into a dynamic 
space is debatable, but what is clear is that the fire is more dynamic than the 
lightbulb, and the room with the fire will feel more dynamic than the room 
with the lightbulb; Conversely, the television is more dynamic when turned 
on then off, and the room with the television turned on is more dynamic than 
with the television turned off.

Both the room with fire and the room with television analogies are generic 
examples by logic, but more substantial examples of these elementary dynamic 
spaces can be dated back throughout history, such as the beacon towers of the 
Great Wall of China,[4] the drawbridges of medieval castles, and lighthouses 
throughout the world. (Fig. 1.1.7 - 9) These forms of architecture represent 
the most basic uses of dynamic elements, where their utility focused on a 
singular function. While this is a valid use case, the potential of dynamics 
becomes much greater with the addition of multiple dynamic elements. Prime 
examples of this can be observed in the form of the Zen garden in the Ryoan-
ji Shrine in Kyoto, Japan, and the multitude of fountains at the Villa d’Este 
in Tivoli, Italy. These spaces utilize multiple dynamic elements—deriving its 
dynamics from nature such as the gravel within the gardens, the leaves within 
the trees, and the water within the fountains—to enhance the space for the 
occupants. (Fig. 1.1.10 - 15)

4	  Cheng Dalin, “The Great Wall of China,” in Borders and Border Politics in a Globalizing World, ed. 
Paul Ganster and David E. Lorey (Lanham, MD: SR Books, 2005), 12-13.

Figure 1.1.8	 Smoke Signals of the Great wall of china
From “Smoke Signals - 900 B.C.,” The History of Media (The Beginning-1950 A.D.), accessed December 
17, 2019, http://thehistoryofmedia.weebly.com/smoke-signals.html.

Figure 1.1.9	 Drawbridge at the fort of Ponta da Bandeira
By Georges Jansoone, “File:Lagos48.jpg,” Entrance with Drawbridge; Forte Da Ponta Da Bandeira; Lagos, 
Portugal, September 24, 2006, Wikimedia Commons, accessed December 17, 2019, https://commons.
wikimedia.org/wiki/File:Lagos48.jpg.

Figure 1.1.7	 Rotating light of lighthouse
From Antoni Cladera, “Milky Way Photography: The Definitive Guide (2019),” PhotoPills, accessed December 17, 2019, https://www.photopills.com/
articles/milky-way-photography-guide.

Figure 1.1.7 - 1.1.9
These three structures are ex-
amples of simple dynamics be-
ing utilized for a specific func-
tion. The great wall of china 
made use of smoke signals 
on top of its watch towers to 
signal of incoming invasions. 
Draw bridges of medieval 
castles utilized a hinge system 
to control passage into the 
castle. Light houses utilized a 
light source such as fire or a 
rotating mirror to signal 
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Figure 1.1.10	The fountain of Neptune
By KatDevsGames, “File:Villa d’Este 01.Jpg,” Wikimedia Commons, accessed December 18, 2019, https://
commons.wikimedia.org/wiki/File:Villa_d%27Este_01.jpg.

Figure 1.1.11	One hundred fountains walkway
By Wknight94, “File:Villa d’Este fountains 6.jpg,” Fountains at Villa d’Este in Tivoli, April 29, 
2008, Wikimedia Commons, accessed December 18, 2019, https://commons.wikimedia.org/wiki/
File:Villa_d%27Este_fountains_6.jpg.

Figure 1.1.12	Oval Fountain
By Dnalor 01, “File:Tivoli, Villa d’Este, Fontana dell’Ovato.jpg,” Deutsch: Tivoli, Villa d’Este, Fontana 
Dell’Ovato, May 15, 2005, Wikimedia Commons, accessed December 18, 2019, https://commons.
wikimedia.org/wiki/File:Tivoli,_Villa_d%27Este,_Fontana_dell%27Ovato.jpg.

Figure 1.1.13	Spectators viewing the Rock Gardens from the veranda 
By Sean Pavone, from Don George, “Finding Peace in 21st-Century Kyoto,” National Geographic, 
July 7, 2015, accessed December 18, 2019, https://www.nationalgeographic.com/travel/intelligent-
travel/2015/07/07/finding-peace-in-21st-century-kyoto/.

Figure 1.1.14	Cherry blossoms hang over the rock garden, bringing 
the dynamics of nature further into the space
By Bjørn Christian Tørrissen, “File:Ryoan-ji-Garden-2018.jpg,” Stones in the Zen Garden/Rock Garden at 
the Ryōan-Ji Temple in Kyoto, Japan, May 11, 2018, Wikimedia Commons, accessed December 18, 2019, 
https://commons.wikimedia.org/wiki/File:Ryoan-ji-Garden-2018.jpg.

Figure 1.1.15	Cherry blossoms hang over the rock garden, bringing 
the dynamics of nature further into the space
By Didier Moïse, “File:Cherry blossom at the rock garden of Ryōan-ji Temple in Kyoto, Japan.jpg,” Cherry 
Blossom at the Rock Garden of Ryōan-Ji Temple in Kyoto, Japan, April 12, 2005, Wikimedia Commons, 
accessed December 18, 2019, https://commons.wikimedia.org/wiki/File:Cherry_blossom_at_the_rock_
garden_of_Ry%C5%8Dan-ji_Temple_in_Kyoto,_Japan.jpg.

Figure 1.1.10 - 1.1.12
Villa D’Este in Tivoli Italy, erected in 
the 16th century, makes use of many 
water features throughout its property. 
The use of water creates spaces that are 
inherent static but becomes dynamic as 
the fluid not only reacts to the archi-
tecture, but also the occupants. This 
in turn floods the senses with dynamic 
sounds, temperature changes, as well as 
providing the occupants with an inter-
active medium to manipulate.

Figure 1.1.13 - 1.1.15
The Ryoan-Ji shrine in Kyoto Japan, 
erected in the 13th century, is famous 
for its rock garden which provides an 
ever-changing space within the premise. 
While the garden is simply meant to 
be viewed by the public, its changing 
arrangements along with its natural 
provides a  more dynamic environment 
compared to traditional architecture.
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With the addition of technology, however, the potential use cases of dynamics 
become even greater. Digital computation of integrated circuits has continued 
to progress, experiencing an exponential growth in power and a reduction 
in cost, creating a chain reaction where advancements in one field can 
drive advancements in another. Gordon E. Moore states in his 1965 paper 
“Cramming More Components onto Integrated Circuits:”

“Integrated electronics will make electronic techniques more generally 
available throughout all of society, performing many functions that 
presently are done inadequately by other techniques or not done 
at all. […] Reduced cost is one of the big attractions of integrated 
electronics, and the cost advantage continues to increase as the 
technology evolves toward the production of larger and larger circuit 
functions on a single semiconductor substrate. […] The complexity 
for minimum component costs has increased at a rate of roughly a 
factor of two per year (see graph). Certainly over the short term this 
rate can be expected to continue, if not to increase. Over the longer 
term, the rate of increase is a bit more uncertain, although there is 
no reason to believe it will not remain nearly constant for at least ten 
years.”[5] 

Moore’s Law, although not a law by the traditional definition, is a perceived 
rate of technological growth based on these observations. According to 
Moore, technological progression will continue to grow where the number of 
transistors within an integrated circuit (therefore, computational power) will 
double approximately every year. He later updates this observation to every two 
years in 1975.[6] While Moore’s Law is by no means certain, this observation 
has proven to be fairly accurate from the technological progressions of the past 
decades. (Fig. 1.1.16 - 17) 

This has allowed the production of relatively cheap electronics, which are now 
integrated throughout people’s everyday lives. It can be seen as smartphones in 
people’s hands, appliances in various homes, computers in various offices, and 
as streetlights around the world. Michael Fox states in Interactive Architecture: 
Adaptive World, “The field of industrial design came to engage with tangible 
interaction out of necessity as appliances became progressively ‘intelligent’ 
containing more and more electronic and digital components,”[7] which not 
only substantiates this observation of technological integration amongst the 
populace but also mentions the influence of this technological procession on 
other fields, which shows the significance of this technological revolution 
on the world.  With so much computational data around us, and the ever-
increasing accessibility of intelligent objects, the potential for integrating such 
technologies within architectural systems becomes increasingly powerful. 
Many architectural elements are already making use of these technological 
5	  Gordon E. Moore, “Cramming More Components onto Integrated Circuits,” Proceedings of the 

IEEE 86, no. 1 (1998): 83, https://doi.org/10.1109/jproc.1998.658762.
6	  Gordon E. Moore, “Progress in Digital Integrated Electronics [Technical Literaiture, Copyright 

1975 IEEE. Reprinted, with Permission. Technical Digest. International Electron Devices Meeting, 
IEEE, 1975, Pp. 11-13.],” IEEE Solid-State Circuits Society Newsletter 11, no. 3 (2006): 37, https://
doi.org/10.1109/n-ssc.2006.4804410.

7	  Michael Fox, Interactive Architecture: Adaptive World (New York: Princeton Architectural Press, 
2016), 12.

Figure 1.1.16	Silicon transistor progression through the years
From “Happy birthday transistor!,” translated with Google Translate, accessed December 18, 2019, http://astron.dmitryshevchenko.com/2017/12/19/transistor/.

Figure 1.1.17	This graph shows the progression of transistor count within integrated circuit chips through the years, as described 
by Moore’s Law
From Max Roser and Hannah Ritchie, “Technological Progress,” May 11, 2013, Our World in Data, accessed December 18, 2019, https://ourworldindata.org/technological-progress.
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improvements, from standard functional elements such as elevators and 
automatic doors, to more complicated constructed elements such as the solar 
responsive façades of the Al Bahr Towers in Abu Dhabi,[8] the shading umbrellas 
in Medina,[9] and the operable roof of the Rogers Centre in Toronto.[10] (Fig. 
1.1.18 - 20)  These examples are all valid ways of embedding technology 
within architecture and could very well be only the beginning of what will 
be possible in the near future. If technology continues to follow the trend 
observed by Moore’s Law, this current level of coded infrastructure will seem 
minuscule to what’s to come. 

Even now, prefabricated Do-It-Yourself (DIY) solutions such as Sonoff smart 
controllers,[11] Raspberry Pi computers,[12]  and Arduino micro-controllers[13] 
are becoming increasingly accessible to the general public. This is facilitated 
not only by the reduction in cost of micro-controllers but also the increasing 
accessibility to information as a result of more people having access to high 
speed Internet. The world is becoming increasingly connected, and as a result 
of this connection, these various electronic and digital components will 
gain the ability to communicate with one another. The Internet of Things 
refers to an emerging global internet-based information architecture that 
is slowly developing, allowing the networked interconnection of everyday 
objects, vehicles, and buildings with embedded intelligence. As defined by 
the International Telecommunication Union, the Internet of Things is “a 
global infrastructure for the information society.”[14] This has the potential to 
transition current infrastructures into smart grids, where the integration of 
physical and digital systems will allow the automation of everyday tasks and 
open new forms of digital and physical communication.  Privacy concerns 
aside, this new level of worldwide connectivity will allow higher potential 
flexibility within architectural design, allowing the possibility of altering both 
the occupant’s perception of the space, as well as the functionalities of the 
space. In Fox’s words: 

“The influence of technological and economic feasibility within a 
connected world has resulted in the explosion of current exploration 
with the foundations of interaction design in architecture. The Internet 
of Things (IoT) has quite rapidly come to define the technological 
context of interactive design as all-inclusive, existing within this 
connectedness in a way that affects essentially everything, from 
graphics to objects to buildings to cities. […] Interactive are no longer 
limited to those of people interacting with an object, environment, or 

8	  Russell Fortmeyer and Charles D. Linn, “Abu Dhabi Investment Council Headquarters” in Kinetic 
Architecture: Designs for Active Envelopes (Mulgrave: Images Publishing, 2014), 176-183.

9	  Michael Barnes and Michael Dickson, Widespan Roof Structures (London: Telford, 2000), 14-16.
10	  Andrew H Frazer, “Design Considerations for Retractable-roof Stadia” (Master’s thesis, 2005), 8-11, 

accessed July 23, 2019, https://dspace.mit.edu/handle/1721.1/31119.
11	  “DIY A Temperature Controlled Smart Lock,” Sonoff, accessed July 23, 2019, https://sonoff.itead.

cc/en/news/266-diy-a-temperature-controlled-smart-lock.
12	  “Raspberry Pi Blog - News, Announcements, and Ideas,” accessed July 23, 2019, Raspberry Pi, 

https://www.raspberrypi.org/blog/.
13	  “What Is Arduino?,” Arduino, accessed July 23, 2019, https://www.arduino.cc/en/Guide/

Introduction.
14	  “Internet of Things Global Standards Initiative.” ITU, accessed July 23, 2019, https://www.itu.int/

en/ITU-T/gsi/iot/Pages/default.aspx.

Figure 1.1.18	The Al Bahar Towers Facades utilizes motorized 
folding louvers to control the amount of sunlight that can pass through.
From “Al Bahar Towers Responsive Facade / Aedas,” September 5, 2012, ArchDaily, accessed December 18, 
2019, http://www.archdaily.com/270592/al-bahar-towers-responsive-facade-aedas/.

Figure 1.1.20	The Roof of the Rogers Center in Toronto opens and 
closes to provide outdoor or indoor experiences depending on the 
exterior conditions.
From Laura Armstrong, “Rogers Centre Roof to Be Opened for Blue Jays Game Tonight,” The Star, accessed 
December 18, 2019, https://www.thestar.com/sports/bluejays/2016/05/27/rogers-centre-roof-to-be-opened-

Figure 1.1.19	The Umbrellas in Medina opens and closes to open up 
the space as well as offer environmental protection depending on the 
weather and time of day.
From “Umbrellas in the Mosque of the Prophet’s Courtyard and Surrounding Open Spaces,” Abdullatif Al 
Fozan Award for Mosque Architecture, accessed December 18, 2019, https://alfozanaward.org/mosques/
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building, but can now be carried out as part of a larger ecosystem of 
connected objects, environments, and buildings that autonomously 
interact with each other.”[15]

These spaces, the spaces previously only associated with science fiction, are 
becoming increasingly possible as newer and cheaper technology becomes 
available. Imagine spaces where furniture moves to accommodate the number 
of occupants, where the lighting changes depending on identity, and the walls 
flex to accommodate circulation. Imagine elevators that can sense the flow of 
people arriving and adjust accordingly, spaces that know the identity of its 
occupants and tailor its functionality for them, and infrastructure that can 
perform certain tasks depending on the time of day and where its occupants 
are located.

While some of these technologies are still in their infancy, more and more 
people are beginning to experiment with these new forms of spaces. Every 
year, art festivals such as Nuit Blanche Toronto[16] allow artists and designers 
to prototype new forms of dynamic spaces (Fig. 1.1.21 - 23) and conferences 
such as ACADIA (Association for Computer Aided Design in Architecture)[17] 
are showcase new forms of spaces and technology integration in utility and 
planning. (Fig. 1.1.24 - 26) In the book Alive: Advancements in adaptive 
architecture, Manuel Kretzer and Ludger Hovestadt assemble a collection of 
essays that challenge questions concerning “temporality and decay, or concepts 
dealing with performance, feedback, and progression” categorized into the 
following chapters from the Alive 2013 symposium: 

“Bioinspiration highlights a sensitive observation of biological 
processes and their transfer into novel design methodologies for the 
creation of innovative architectural explorations. […] Materiability 
addresses the potential to control and design matter at a nano—or 
micro—scale and construct materials that are dynamic, active, and 
responsive to environmental conditions. […] Interaction elaborates 
on concepts concerning interaction and adaptation that exceed pure 
control and automation mechanisms but attempt to change, learn, 
and evolve dynamically.”[18] 

This collection shows the variety of spaces that these technologies can influence 
and the vast amount of strategies that can be utilized to create them. Annual 
collaborations such as these act as platforms and environments that allow 
architects to push technology to new bounds, creating prototype spaces and 
tools that forecast what the future of architecture may hold.

15	  Fox, Interactive Architecture: Adaptive World, 11.
16	  “Nuit Blanche,” City of Toronto, accessed October 10, 2019, https://www.toronto.ca/explore-enjoy/

festivals-events/nuitblanche/.
17	  “About ACADIA,” ACADIA, accessed October 16, 2019, http://acadia.org/.
18	  Manuel Kretzer and Ludger Hovestadt, ALIVE: Advancements in Adaptive Architecture (Basel: 

Birkhäuser, 2014), 21-22.

Figure 1.1.21	Starscape
Photographed by Author.

Figure 1.1.22	Ocean
Photographed by Author.

Figure 1.1.23	Cushion
Photographed by Author.

Figure 1.1.21 - 1.1.23
These are three examples of 
installations displayed at Nuit 
Blanche in Toronto every year. 
Each of them contains unique 
elements that utilizes tech-
nology to engage the crowd 
as they navigate through the 
space.
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Figure 1.1.24	Acadia conference in Michigan
Photographed by Author.

Figure 1.1.25	Acadia lecture in Michigan
Photographed by Author.

Figure 1.1.26	Acadia 2013 poster
From Sebastian Jordana, “Adaptive Architecture ACADIA 2013,” October 3, 2013, ArchDaily, accessed December 18, 2019, http://www.archdaily.
com/434672/adaptive-architecture-acadia-2013/.

Figure 1.1.24 - 1.1.26
ACADIA stands for the Association for Computer Aided Design In Architecture. Every 
year, digital design researchers and professionals hold a conference to facilitate critical inves-
tigation into the role of computation in architecture.
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Figure 1.2.1	 Vanishing point, depicted in Della Pittura by Alberti
By Leon Battista Alberti, Della pittura e della statua di Leonbatista Alberti (Milano : Società tipografica de’Classici italiani, 1804), 
http://archive.org/details/dellapitturaedel00albe.

Figure 1.2.2	 Perspective pillars on grid, depicted in Della Pittura 
by Alterbi.
By Alberti, Della pittura e della statua di Leonbatista Alberti.

Chapter 1.2 | Inadequacy of Current 
Visualization Methods 
With these new forms of dynamic architecture comes increased complexity 
in both operation and design. As such, current visualization workflows must 
be updated to accommodate this development. Fortunately, technological 
progression benefits not only the construction of these new dynamic spaces 
but also the tools for designing and visualizing them. Richard Sennet states 
in The Craftsman: “We need to visualize what is difficult in order to address 
it. This is probably the greatest challenge facing any good craftsman: to see 
in the mind’s eye where the difficulties lie.”[1] From this, one can infer that 
visualization can facilitate access to complexity, which in turn will allow the 
development of new technologies that can develop even better visualization 
tools. This concept, where one development feeding into another as a cyclical 
progression is nothing new, as visualization methods have progressed as such 
throughout history. 

The first of these progressive leaps in regards to architectural visualization was 
perhaps the development of linear perspective in the 1400s by Italian architect 
Filippo Brunelleschi.[2] This method was later documented within the treatise 
Della Pittura (On Painting) by Leon Battista Alberti[3] that established the 
preservation and accessibility of this knowledge to later generations. John R. 
Spencer noted within his translation of Alberti’s De pictura that “By substituting 
the pyramid for a cone Alberti made the one-point perspective system possible, 
for in pyramidal vision the size of the object seen varies as the height of the 
observer’s eye and the distance to the object. Although he was physiologically 
incorrect, Alberti made it possible to represent objects on a plane surface with 
greater apparent exactitude.”[4] (Fig. 1.2.1 - 2) Before this development, most 
art and visualization depictions consisted of mostly two-dimensional images 
with little attempt to portray depth or three-dimensionality, and where such 
attempts within medieval paintings, were exceedingly incorrect. (Fig. 1.2.3 - 
4) With “this greater apparent exactitude” however, visualization evolved to 
better portray the dimensionality of the world and, in essence, the architecture 
within the world. 

1	  Richard Sennett, The Craftsman (London: Penguin, 2009), 230.
2	  “Early Applications of Linear Perspective.” Khan Academy, accessed July 26, 2019, https://www.

khanacademy.org/humanities/renaissance-reformation/early-renaissance1/beginners-renaissance-
florence/a/early-applications-of-linear-perspective.

3	  Khan Academy, “Early Applications of Linear Perspective.”
4	  Leon Battista Alberti, On Painting, trans. with an Introduction and Notes by John R Spencer (New 

Haven, 1966), 103.
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Figure 1.2.3	 The calling of the Apostles Peter and Andrew by Duccio, 1308-11
By Duccio di Buoninsegna, The Calling of the Apostles Peter and Andrew, 1308-1311, tempera on panel, 42.7 × 45.5 cm, Samuel H. Kress Collection, 
National Gallery of Art, accessed December 18, 2019, https://www.nga.gov/collection/art-object-page.282.html.

Figure 1.2.4	 The Last Supper by Leonardo Da Vinci, 1495-96
By Leonardo Da Vinci, from Paris Orlando, “File:Last Supper by Leonardo da Vinci.jpg,” November 10, 2019, Wikimedia Commons, accessed December 18, 2019, https://commons.wikimedia.
org/wiki/File:Last_Supper_by_Leonardo_da_Vinci.jpg.

Figure 1.2.3 - 1.2.4
These figures compare an medieval painting from before the 
development of linear perspective to an Renaissance painting 
from the time after. While they are produced by different 
artists, it is interesting to note the increased realism within the 
portrayed proportions.
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Figure 1.2.5	 Photograph of Bibliothèque Sainte-Geneviève by Bisson Frères
By Bisson Frères, from Neil Levine, “The Template of Photography in Nineteenth-Century Architectural Representation,” Journal 
of the Society of Architectural Historians 71, no. 3 (January 2012), https://doi.org/10.1525/jsah.2012.71.3.306.

Figure 1.2.5 - 1.2.6
These figures shows how 
Labrouste removed all traces 
of human activity in prepara-
tion of engraving the photo. 
In doing so, he reinforced the 
clarity of the design.

Figure 1.2.6	 Perspective view of Bibliothèque Sainte-Geneviève, traced from 
Bisson Frères’ photograph by Henri Labrouste, engraving by Jacques-Joseph Huguenet
By Henri Labrouste, traced from photograph by Bisson Frères, and engraved by Jacques-Joseph Huguenet, from Levine, “The 
Template of Photography in Nineteenth-Century Architectural Representation.” 

This capability of portrayal was enhanced even further with the invention 
of photography in the 1800s.[5] In a drawing, every line is deliberate, but 
a photograph captures the location with context, whether accidental or 
deliberate. This aspect of photography gained it its credibility as a tool for 
documentation, as it was a way to confirm and validate, but at the cost of visual 
flexibility.[6] It wasn’t until French architect Henri Labrouste and his deliberate 
tracing of photographs that allowed the removal of unwanted features and the 
highlighting of important details to regain that visual flexibility. (Fig. 1.2.5 - 
6) Neil Levine describes Labrouste’s tracings in The Template of Photography in 
Nineteenth-century Architectural Representation: 

“Labrouste’s tracing of the photograph involved more than removing 
unwanted features. His redrawing highlighted important aspects of the 
building that were somewhat indistinct in the photograph. The lack of 
clarity of detail in parts of the photograph is ironic given the emphasis 
on the medium’s ‘precision’ and ‘exactitude’ in the photographic 
discourse. […] Labrouste built on photography’s putative strengths 
to give the image an even greater degree of precision, exactitude, 
and mechanical definition than the photograph itself provided. […] 
Finally, the removal of all trace of human occupation transformed the 
photographic scene into an abstracted, airless, uncanny representation 
of reality combining in almost equal measure the rational character 
of the building’s design with its pronounced structural expression.”[7] 

Within this passage, Levine notes the irony of Labrouste’s tracings: how by 
removing features—thus reducing the clarity of the photograph—he was able 
to enhance the clarity of the building design by highlighting the “important 
aspects of the building.” This of course benefited greatly in architectural 
visualizations as it allowed designers to visualize what is important in the 
design while keeping the building within context—essentially becoming an 
early form of architectural rendering.

Although each of these advancements facilitated progression, none of them have 
influenced the modern world as rapidly and profoundly as digital computation. 
Since its conception in the mid-1900s, many industries conformed by moving 
towards digital mediums, changing not only architectural visualization, but the 
rest of the world as well. Christoph Schindler gives a brief summary of these 
developments in his dissertation Information-Tool-Technology: Contemporary 
digital fabrication as part of a continuous development of process technology as 
illustrated with the example of timber construction: 

5	  “Invention of Photography,” The British Library, accessed July 28, 2019, https://www.bl.uk/
learning/timeline/item106980.html.

6	  Neil Levine, “The Template of Photography in Nineteenth-Century Architectural 
Representation,” Journal of the Society of Architectural Historians 71, no. 3 (January 2012): 308, 
https://doi.org/10.1525/jsah.2012.71.3.306.

7	  Levine, “The Template of Photography in Nineteenth-Century Architectural Representation,” 308.
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“William Shockley developed the first efficient transistor in 1947 at 
the US Bell Laboratories; in 1958 Jack Kilby started to cast integral 
circuits into a germanium ‘microchip’; and in 1970 IBM produced 
the first silicon ‘microprocessor chip’. From this point onwards the 
agenda was set to produce computers small and low priced enough 
to be built into machines to automate complex formalized processes 
economically.”[8] 

By observing the delta in time between these developments, it can be seen 
how rapidly technology has progressed in the past hundred years relative 
to human history. Even before the observation of Moore’s Law, within 30 
years, computation production went from the first efficient transistor to an 
agenda of producing smaller and cheaper computers. Comparing this to 
the few hundred years between the development of linear perspective and 
photography, it can be presumed just how fast visualization progression will 
not only continue but accelerate from this point onwards. 

Schindler views this technological progress in the context of timber construction 
as waves of development “divided into three essential production technologies 
in the history of mankind: hand-tool-technology, machine-tool-technology, 
[and] information-tool-technology.”[9] He states, “to this extent the three 
‘waves’ of technology are not to be understood as competing, incompatible 
principles, but rather as the gradual substitution of formalized physical and 
later also formalized intellectual operations by machines. Man is not replaced, 
but revalued. His function shifts from processor to process designer.”[10] This 
view highlights how the progression of these new technologies can gradually 
allow the outsourcing of tedious work away from low-efficiency humans to 
high-efficiency computers, thus not only improving efficiency in mundane 
tasks but also allowing humans to focus on more purposeful work—both of 
which can drive progression even faster than it is now.

The potential ramifications of these new technologies generated excitement, 
invoking avant-garde movements such as neo-futurism, where designers began 
thinking new ways of programming spaces, facilitating new architectural ideas 
that transcended norms. The London-based architecture group Archigram 
was one such example, where they published a series of magazines throughout 
the 1960s, featuring futuristic concept designs on what they imagined 
computation could bring to architecture. (Fig. 1.2.7 - 11) Within Beyond 
Archigram, Hadas Steiner notes an excerpt from Design Quarterly in an IDEA 
conference pamphlet in 1966 that “the strength of Archigram’s appeal stems 
from many things … But chiefly it offers an image-starved world a new 
vision of the city of the future, a city of components on racks, components 
in stacks, components plugged into networks and grids, a city of components 
8	  Christoph Schindler, “Information-Tool-Technology: Contemporary digital fabrication as part 

of a continuous development of process technology as illustrated with the example of timber 
construction,” (PhD diss., 2007), 12, accessed June 26, 2019, http://www.caad.arch.ethz.ch/wiki/
uploads/Organisation/2007_Schindler_Information-tool-technology.pdf.

9	  Schindler, “Information-Tool-Technology: Contemporary digital fabrication as part of a continuous 
development of process technology as illustrated with the example of timber construction,” 2.

10	  Schindler, “Information-Tool-Technology: Contemporary digital fabrication as part of a continuous 
development of process technology as illustrated with the example of timber construction,” 17.

Figure 1.2.7	 Archigram Information Tear-off Sheet
From “Archigram: Tear-off Information Sheets,” BALTIC Centre for Contemporary Art, accessed December 18, 2019, http://balticplus.uk/archigram-
tear-off-information-sheets-c8292/.
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Figure 1.2.8	 Plugin City concept by Peter Cook (Archigram), 1964
By Peter Cook, “Plug-In_City, Max. Pressure Area, Long Section,” 1964, photochemical print overdrawn with ink and gouache, 1159 x 552 mm, Archigram Archives, accessed December 18, 2019, 
http://archigram.net/portfolio.html.

Figure 1.2.11	Computer City concept by Dennis Crompton (Archigram), 1964
By Dennis Crompton, “Computer City,”1964, photochemical print mounted on board, 887 x 697 mm, Archigram Archives, accessed December 18, 
2019, http://archigram.net/portfolio.html.

Figure 1.2.10	Instant City concept by Peter Cook (Archigram), 1969
By Peter Cook, from “‘Instant City’ Travelling Exhibition, Now at Collège Maximilien de Sully,” December 19, 2015, BMIAA, accessed December 18, 
2019, https://www.bmiaa.com/instant-city-travelling-exhibition-now-at-college-maximilien-de-sully/.

Figure 1.2.9	 Walking City Concept by Ron Herron (Archigram), 1964
By Ron Herron, from Rowan Moore, “The World According to Archigram,” November 18, 2018, The Observer, accessed December 18, 2019, https://www.theguardian.com/artanddesign/2018/
nov/18/archigram-60s-architects-vision-urban-living-the-book.
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Figure 1.2.12 - 1.2.14
These figures show how new 
software has facilitated pro-
gression in visualization from 
2d virtual spaces to 3d virtual 
spaces to photo-realistic ren-
dered visualizations.

being swung into place by cranes.” [11] This excerpt highlights the reason for 
Archigram’s success, which stems from—amongst many cultural drivers such 
as new technologies and the world wars—satisfying the world’s aspirations for 
the future; how this new mindset of embracing change allows the mere idea 
of new technologies to drive new forms of creation, further reinforcing the 
observed influence of new technologies on the world.

Nevertheless, as technology continues to progress at an exponential rate, more 
of these seemly quixotic designs become increasingly possible. The advent of 
Computer Aided Design (CAD) software facilitated more efficient workflows 
that increased the productivity, quality, and communication of ideas, allowing 
the production of better tools and materials. Michelle Addington and Daniel 
Schodek notes in Smart Materials and New Technologies: For the Architecture 
and Design Professions that “through advancements in CAD/CAM (Computer 
Aided Design/Computer Aided Manufacturing) technologies, engineering 
materials such as aluminum and titanium can now be efficiently and easily 
employed as building skins, allowing an unprecedented range of building 
facades and forms.”[12] Sennet’s view is in line with this, stating that: 

“Thanks to the revolution in micro computing, […] modern 
machinery is not static; Though feedback loops machines can learn 
from their experiences. […] Computer-assisted design has become 
nearly universal in architectural offices because it is swift and precise. 
[…] The modern material world could not exist without the marvels 
of CAD. It enables instant modeling of products from screws to 
automobiles, specifies precisely their engineering, and commands 
their actual production.”[13] 

This once again has enormous potential in not only building design but also 
building construction, which in itself also benefits building design. As such, 
architects now have faster ways to design and visualize, as well as a plethora 
of new materials to choose from. This multidisciplinary progression further 
illustrates the aforementioned claim of cyclical progression at the beginning 
of this chapter. CAD software evolved from 2D to 3D. (Fig. 1.2.12 - 13) The 
addition of this spatial dimension allowed architects to simulate buildings in 
virtual space, where one can program an environment with complete creative 
freedom with essentially no physical limitations or cost associations. These 
virtual spaces have the potential to not only simulate the building form but 
also its materials and lighting. With this, comes the emergence of modern 
photorealistic renderings. (Fig. 1.2.14)

Even with these new technologies, however, the majority of commercially 
produced present-day architectural visualizations are still static images. While 
modern visualizations have become increasingly photorealistic and more 
efficient to produce, their static nature still limits the amount of information 
they can communicate. The problem with this is that the real world is rarely 

11	  Hadas A. Steiner, Beyond Archigram: The Structure of Circulation (New York: Routledge, 2009), 202.
12	  D. Michelle Addington and Daniel L. Schodek, Smart Materials and New Technologies: For the 

Architecture and Design Professions (London: Routledge, 2016), 3.
13	  Sennett, The Craftsman, 38-39.

Figure 1.2.12	2D floorplans, created within Autodesk AutoCAD.
From mtcarrillo, “Creating Basic Floor Plans From an Architectural Drawing in AutoCAD,” Instructables, accessed December 18, 
2019, https://www.instructables.com/id/Creating-Basic-Floor-Plans-from-an-Architectural-D/.

Figure 1.2.13	A building model rendered within 3D space on a viewport in 
Autodesk 3DS Max
By Ronen Bekerman, “Making of MS House at Dusk, Part 2,” October 23, 2009, Ronen Bekerman - 3D Architectural 
Visualization & Rendering Blog, accessed December 18, 2019, https://www.ronenbekerman.com/making-of-ms-house-at-dusk-
part-2/.

Figure 1.2.14	The same building model rendered out with Vray
By Bekerman, “Making of MS House at Dusk, Part 2.” 
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static. Rudolf Arnheim states in The Dynamics of Architectural Form, “A 
building […] is an experience of the senses of sight and sound of touch and 
heat and cold and muscular behavior, as well as of the resultant thoughts 
and strivings.”[14] This means that buildings invoke senses beyond just human 
sight, and as such, require more than a static frame to portray its full effect. 
People are inherently dynamic, thus, even in static spaces, once they become 
occupied, they also become dynamic. Singular images only show a snapshot of 
the design frozen in time, which makes it challenging to capture the dynamic 
impact of occupants. While this is acceptable for portraying unoccupied static 
spaces, it falls short at portraying anything more. This issue then becomes 
compounded with the introduction of dynamic architecture, as now there 
are two dynamic systems interacting with each other, bringing additional 
complexities that render current methods further inadequate at spatial 
representation.

Although motion can be suggested within a single frame through means such 
as motion blur, (Fig. 1.2.15 - 17) the more accurate way to represent such 
motion is to simply add more images as the scene changes. (Fig. 1.2.18 - 
19) This concept, again, is nothing new, as there are entire industries focused 
on videography and cinematography. The issue, however, is the way this is 
utilized within architectural visualization. Since the late 1900s, there has been 
a plethora of films with visualizations that are borderline photorealistic, yet 
there have only been a select few architectural visualizations that could be 
said to rival this quality. By comparing a rendered architecture video against a 
film in the early 2000s, it is evident that the architectural rendering is severely 
lacking in terms of spatial and environmental representation. (Fig. 1.2.20 - 
21) 

14	  Rudolf Arnheim, The Dynamics of Architectural Form (Berkeley: University of California Press, 
2009), 4.

Figure 1.2.15	People moving through a gallery space  within the 
Solomon R. Guggenheim Museum in NYC
Photographed by Author

Figure 1.2.16	Macy’s Thanksgiving Day parade, NYC
Photographed by Author

Figure 1.2.15 - 1.2.17
These photographs convey 
the movement of people by 
utilizing motion blur within a 
single image.

Figure 1.2.17	People moving through a gallery space  within the 
MOMA in NYC
Photographed by Author
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Figure 1.2.18	The Horse in Motion cabinet cards by Eadweard Muybridge, 1878
By Eadweard Muybridge, from Neil Patrick, “FIlmed in 1878, ‘The Galloping Horse’ Is the First Motion Picture Ever Made,” June 27, 2016, The Vintage 
News (blog), accessed December 18, 2019, https://www.thevintagenews.com/2016/06/27/46591-2/.

Figure 1.2.19	Animation made from Eadweard Muybridge’s cards
From silentfilmhouse, “Race Horse First Film Ever 1878 Eadweard Muybridge,” YouTube, 0:15, accessed December 18, 2019, https://www.youtube.
com/watch?v=IEqccPhsqgA.

Figure 1.2.20	Lord of the rings Return of the King, 2003
From Film Radar, trimmed by Author, “Special Effects in The Lord of the Rings: The Essence of Movie Magic,” YouTube, 12:08, accessed December 18, 2019, https://www.
youtube.com/watch?v=p6M8Yem5j0s&vl=en.

Figure 1.2.21	Royal Ontario Museum architectural walk-through, 2003
Obtained from supervisor, created by B+H Architects.

Figure 1.2.20 - 1.2.21
These 2 figures shows the difference in quality between a film from 2003 and an architectural walk 
through video from the same year. It can be seen that the quality is vastly different between the 2 in not 
only the rendering aspect, but also the crowd dynamics.

https://youtu.be/p6M8Yem5j0s?t=406
https://youtu.be/IEqccPhsqgA
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Since then, architectural visualization has somewhat caught up in terms of 
rendering capabilities, the most notable of which being Alex Roman’s short 
film the third and the seventh.[15] (Fig. 1.2.22) Although Roman’s film exhibits 
excellent visuals that are comparable to the film industry, it can also be argued 
that this film is more of a passion project, thus it does not have the same 
constraints and limitations compared to an average commercial project. 
Comparing this then, to various architectural commercial animations, the 
relative degradation of quality appears once again. (Fig. 1.2.23 - 24) Further 
comparing these visualizations to a rasterized viewport screen capture—which 
is what is generally used as visualization tools during the design phase—the 
degradation of quality becomes even more apparent. (Fig. 1.2.25)

While this might not seem like a fair comparison due to the differing priorities 
and budgets within the respective industries, clients—who for the most part 
does not understand these technology and industry specific limitations—are 
so accustomed to seeing the higher quality images that they somewhat expect 
architectural images to be of the same quality. As such, these comparisons 
can provide some insight to identify a few of the problems present in current 
visualization methods. It can then be speculated that this is the difference 
between what is used as a final product, as a pitch, and as a design tool. 
Analyzing these examples further, one can see that a commonality between 
them is the lack of occupancy dynamics in some form or another. This causes 
the potential utility of these extra frames to be wasted as they are only utilized 
to show the spatial qualities of the space instead of the ambiance and dynamic 
interactions within the space. 

15	  Alex Roman, “The Third & The Seventh,” uploaded November 24, 2009, Vimeo, 12:29, accessed 
July 26, 2019, https://vimeo.com/7809605.

Figure 1.2.22	The 3rd and the Seventh by Alex Roman, 2009
This Short Film is comparable to the film industry, however, the occupancy dynamics portrayed is fairly 
simple and this does not have the same time constraints as most commercial projects.
By Alex Roman, trimmed by Author, “The Third & The Seventh,” uploaded November 24, 2009, Vimeo, 12:29, accessed December 18, 2019, https://vimeo.com/7809605.

Figure 1.2.23	Architecture Walk-through by Framemakers Creative SB, 2015
While the visualization here looks decently photorealistic, the lack of people makes the space feel empty 
and desolate. 
From Framemakers Creative SB, trimmed by Author, “Star Residences 3D Animation Walkthrough Video,” YouTube, 3:05, accessed December 18, 2019, https://www.
youtube.com/watch?v=8qU2xhZlsJE.

Figure 1.2.24	Architecture Walk-through by Momo Graphics, 2016
This walk-through does include people to convey a more believable space, however, it is easy to notice how 
these people are manually placed in, instead of actually utilizing the environment. This not only produces 
weaker visuals, but also takes quite a bit of time to do.
By Momo Graphics, from Kenny Khoo, trimmed by Author, “3d Architecture Walkthrough Flythrough Animation Service Singapore Building Interior Exterior,” YouTube, 
2:09, accessed December 18, 2019, https://www.youtube.com/watch?v=fC1OtZ4kAJs&t=1s&pbjreload=10.

Figure 1.2.22 - 1.2.24
These 3 figures shows some of 
the shortcomings in current 
architectural visualization ren-
derings. While their quality 
have gotten better significant-
ly over the years, they are still 
playing catchup to the film 
industry from 15 years ago.

https://vimeo.com/7809605
https://youtu.be/fC1OtZ4kAJs?t=92
https://youtu.be/8qU2xhZlsJE?t=53
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Figure 1.2.25	Revit Perspective Viewport
During the design phase, most architects would simply utilize the shaded view within their drafting 
software to get a sense of the current building. While this is quick and effective in getting feedback for the 
design, it is still lacking in dynamics, materiality, and atmosphere.
Sample Architecture Project from Revit, screen-captured by Author.

The main culprit of this large discrepancy in rendering quality between 
the film and architecture industries is likely a combination of budget and 
time constraints. While videography consisted of simply pointing a video 
camera at the scene, animation requires creating and rendering the scene 
from scratch. This requires vastly more time expenditure compared to single 
images, as one would need to render a minimum of twenty-four images to 
provide a single second of video. (Fig. 1.2.26) To put this into perspective, 
with current architectural rendering methods, if a single frame takes 10 
minutes to render, then a 1-minute video would take 10 days, not counting 
the post processing that goes with it. Because of this time expense, it is often 
unrealistic to utilize this medium within architectural design, where deadlines 
are consistently present. In the few projects that do utilize architectural videos 
for client pitches, architects often do not have the time or budget to allocate 
the resources required to make these visualizations at the same visual quality 
as films, let alone animating crowd dynamics on top of this. Film studios are 
tasked with delivering the resulting video; therefore, it makes sense that they 
will allocate the majority of their budget to perfecting the final video file, and 
thus have the capacity and flexibility to absorb this large time expenditure in 
animation, or avoid animation entirely by utilizing extras and practical effects. 

In contrast, architecture firms are tasked with developing a design, where 
their visualization mediums are merely methods used to communicate said 
design; therefore, it should make sense that architectural visualizations are 
of lower priority than the actual design. What usually happens during the 
design phase is that the perspective visualizations are often ignored until the 
design needs to be communicated externally to another person or client. 
This is done once again not because perspectives are unnecessary during the 
design phase, but because of the additional time required to produce them 
compared to orthographic drawings. While the design phase is arguably the 
most important phase—since it will influence all the other phases after it, 
thus having the largest impact on the resulting building—most architects 
are forced to spend less time on it due to budget constraints. By the time 
adequate visuals are required to portray the space, they are often rushed due 
to time limitations. On top of this, architecture projects can operate at many 
scales ranging from exterior site planning to interior designs, and anything 
in-between. This further forces architects to prioritize their renderings on the 
larger scales first to convey the overall design intent, while allocating less time 
to the interior visualizations even though the interiors might have a higher 
impact on occupancy. 

Figure 1.2.26	Security footage showing various frame rates
From daksec1, trimmed by Author, “IP Video Frame Rate Demo,” YouTube, 0:50, accessed December 18, 2019, https://www.youtube.com/watch?v=XRaDV8YADiQ.

https://youtu.be/XRaDV8YADiQ
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This is made worse by the fact that the bulk of the architect’s fees actually 
come from the production of construction documents, where most of the 
detailed design is to be conveyed through orthographic drawings. (Fig. 1.2.27 
- 28) Comparing this to perspective drawings—which not only take longer 
to produce but are also not required within a construction documentation 
package—it makes sense that the visualization budget within architecture 
firms is much smaller than that of film studios. 

Because of these factors, architects are usually so stripped of time that they 
must prioritize on visualizing the architecture rather than how the architecture 
will be used, having no choice but to throw people into the final rendering as 
an afterthought, or even leaving them out completely, resulting in a barren, 
lifeless space. What this means is not only are architects rushing to introduce 
them at the end of the project, thus compromising the quality of their pitch, 
but they are also not visualizing them as they design, thus compromising the 
design’s potential. 

While this lack of occupancy visualization is not the end of the project, it does 
not change the fact that people will occupy these exterior and interior spaces 
in the physical world. As such, ignoring the ability to portray crowd dynamics 
at these varying scales would be ignoring a large aspect of both interior crowd 
interactions as well as exterior crowd flows from the surrounding context. 
These concerns become even more substantial with dynamic spaces due to the 
increasing interactions between people and architecture. It is disheartening 
that architects design buildings to be occupied by people yet don’t have the 
time to consider them within their visualization tools. If architects can barely 
afford the time to even produce static perspectives, then it is by no means 
a surprise that many firms are choosing to not utilize dynamic perspective 
videos within their design workflows and client pitches. 

Architects are hired to provide good designs to clients, meaning clients hire 
architects because they trust them to provide high quality design. However, now 
as the film and gaming industries expand, client expectations for visualizations 
may also become higher due to their increased exposure to everyday media. 
Good renderings have become ordinary and commonplace, as such, to keep 
up with these expectations, architecture must also adopt better visualization 
methods.

Figure 1.2.27	Typical breakdown of architectural fees
By Jorge Fontan, “Architectural Fees,” February 7, 2018, Fontan Architecture, accessed December 18, 2019, https://jorgefontan.
com/architectural-fees/.

Figure 1.2.28	Typical time-line of architectural design phases
By HMH Modern Architecture, from “Architectural Phases,” Ibello Architect, accessed December 18, 2019, https://www.ibelloarchitects.com/architectural-phases/.
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“sensory and responsive technologies expose new and surprising ways to make connections 
across disparate fields”[1] 

“Video games do not constitute finished text presented to an audience, but a system or a 
world with which players interact. The creation of video games can be described as the 
building of a universe of possibilities relying more on systems and cybernetic principles 
than on aesthetic rules attached to the production of an object. Video game creation can 
be described as a process of metacreation where a certain number of possibilities are crafted 
and played upon by game developers and players.”[2] 

1	  Michael Fox, Interactive Architecture: Adaptive World (New York: Princeton Architectural Press, 2016), 7.
2	  Damien Charrieras and Nevena Ivanova, “Emergence in Video Game Production: Video Game Engines 

as Technical Individuals,” Social Science Information 55, no. 3 (September 2016): 338, https://doi.
org/10.1177/0539018416642056.

Chapter 1.3 | Advent and Progression of the 
Gaming Engine
The progression of technology has also facilitated a plethora of new creative 
industries, with game design being one of them. Although architecture has 
been around since the beginning of civilization, digital game design is a 
relatively new field that came about with the onset of the digital revolution. 
Historically, these were very separate fields, with architecture focusing on 
building design and physical drafting and game designers initially focusing 
on developing interactive two-dimensional scenario representations. But as 
technological advancements progressed, both fields have found themselves 
increasingly dependent on digital spatial environments. Architects moved 
from pencil and paper to three-dimensional CAD environments while virtual 
games shifted from two-dimensional representations such as “Pong, Space 
Invaders, PacMan, [and] Donkey Kong” to three-dimensional representations 
such as “Wolfenstein 3D and Catacomb Abyss.”[1] (Fig. 1.3.1 - 4) Now as 
software and hardware continues to improve, both industries are approaching 
the territory of photorealistic visualizations. (Fig. 1.3.5 - 6) However, while 
this is the case, “this rapid development in computer game technology is 
almost unnoticed by the users of professional CAD-, GIS-, and illustration 
software.”[2] Architects, who produce designs for real-world applications, and 
game developers, who produce immersive digital experiences for people, both 
benefit from quality simulations in this modern age, and yet, architecture 
is lagging behind, as investigated in the past chapter (1.2). However, the 
potential to catch up is there. With game developers essentially tasked with 
simulating spaces and architects tasked with designing spaces; along with gaming 
graphics becoming increasingly realistic, and architecture depending more on 
computation; the fields are beginning to overlap, and as such, the integration 
and unification of skill sets, workflows, and tools within these respective 
industries is becoming increasingly beneficiary. 

The most notable of these tools with regards to architectural visualization 
is undoubtedly the game engine, which can be described as a “collection of 
modules of simulation code that do not directly specify the game’s behavior 
(game logic) or [the] game’s environment (level data).”[3] As such, one can 
think of these engines as a form of Integrated Development Environment 
(IDE) that is specialized in game creation, or more generally, “an assemblage 
of reusable software functionalities.”[4]

1	  Andrian Herwig and Philip Paar, “Game Engines: Tools for Landscape Visualization and 
Planning?,” (November 2014): 5, accessed October 16, 2019, https://www.researchgate.net/
publication/268212905_Game_Engines_Tools_for_Landscape_Visualization_and_Planning.

2	  Herwig and Paar, “Game Engines: Tools for Landscape Visualization and Planning?,” 1.
3	  Michael Lewis and Jeffrey Jacobson, “Game Engines in Scientific Research,” Communications of The 

ACM 45, no. 1 (January 2002): 28, accessed October 16, 2019, https://www.cse.unr.edu/~sushil/
class/gas/papers/GameAIp27-lewis.pdf.

4	  Damien Charrieras and Nevena Ivanova, “Emergence in Video Game Production: Video Game 
Engines as Technical Individuals,” Social Science Information 55, no. 3 (September 2016): 341, 
https://doi.org/10.1177/0539018416642056.
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Figure 1.3.1	 Pac-Man, Namco, 1980
From “Original Pac-Man” APKPure, accessed December 19, 2019, https://apkpure.com/original-pac-man/com.classicretrogames.pacman.

Figure 1.3.2	 Catacomb Abyss, Softdisk, 1992
From “The Catacomb Abyss Review,” October 30, 2018, GameFAQs, accessed December 19, 2019, https://gamefaqs.gamespot.com/pc/954269-the-
catacomb-abyss/reviews/167153.

Figure 1.3.3	 Hand Drafted South Elevation of Denver Library by Michael Graves, 1994 
By Michael Graves, Denver Library, South Elevation, 1994, pencil and colored pencil on yellow tracing paper, 14 x 26 inches, from Rory Stott, “Gallery 
of In Honor of Michael Graves, The Architectural League Revisits 200 Years of Drawing,” November 21, 2014, ArchDaily, accessed December 19, 2019, 
https://www.archdaily.com/570439/in-honor-of-michael-graves-the-architectural-league-revisits-200-years-of-drawing/546fa61be58ece2295000037-
denver-library-sout.

Figure 1.3.4	 Creating 3D building walls from a 2D Building plan in virtual space
From “How to Create a 3D Architecture Floor Plan Rendering,” TonyTextures, accessed December 19, 2019, https://www.tonytextures.com/how-to-
create-a-3d-architecture-floor-plan-rendering/.

Figure 1.3.1 - 1.3.2
These 2 figures show how early games transitioned from 2D representations to 3D, better 
portraying the spatial dimensions of real life.

Figure 1.3.3 - 1.3.4
These 2 figures show how Architectural visualizations  transitioned from hand drafting to 
3D virtual modeling.
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Figure 1.3.5	 The Division, Massive Entertainment, 2016
From “Tom Clancy’s The Division (Preowned),” EB Games, accessed December 19, 2019, https://www.ebgames.co.nz/product/ps4/165235-tom-clancys-the-division-
preowned.

Figure 1.3.6	 Hudson Yards Rendering by KPF, 2019
By Kohn Pedersen Fox (KPF), “Hudson Yards,” accessed December 19, 2019, https://www.kpf.com/projects/hudson-yards.

Figure 1.3.5 - 1.3.6
These 2 figures show how both the game design and 
architecture industries are moving towards realistic ren-
derings.
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The origin of these game engines can be described as a product of necessity—
to handle the increased complexity of modern games—as well as cost—to 
provide increased efficiency and cost savings compared to building a game from 
scratch.[5]  It achieves this by prioritizing “concepts such as reusability (a given 
GE is not tied to one game but can be used for different games), modularity 
(how an object can be accessed and modified in the GE) and extensibility 
(the possibility of adding extra functionalities to a given GE).”[6] As such, 
the computational infrastructure of the game engine itself is comprised of 
many sub-systems that are brought together within one application software, 
each responsible for various functionalities such as Audio, Input, Physics, 
Rendering, Artificial Intelligence, Core, Scripting, and Networking.[7] (Fig. 
1.3.7) This allows game engines to utilize various file types in the form of 
assets within the same software, ranging from “texture bitmaps, 3D mesh 
data, animations, audio clips, collision and physics data, game world 
layouts, and [more].”[8] Because of this diverse file type utilization, as well 
as their modularity and reusability, they can be used in multiple disciplines, 
“[operating] at the junction of creative and engineering practices.”[9] Michael 
Lewis and Jeffrey Jacobson outline this nicely in their article “Game Engines 
in Scientific Research”:

“The cost of developing ever more realistic simulations has grown so 
huge that even game developers can no longer rely on recouping their 
entire investment from a single game. This has led to the emergence 
of game engines—modular simulation code—written for a specific 
game but general enough to be used for a family of similar games. This 
separability of function from content is what now allows game code to 
be repurposed for scientific research.”[10]

While this “separability of function” allows game engines to be utilized for 
scientific research—and much more—this aspect is especially potent within 
architectural design. This is evident when considering a video game production 
pipeline:

“Video game production is a complex process involving different 
technical and artistic expertise as well as a diverse range of technologies. 
Several tools can be used at the stage of prototyping (Manker, 2012). 
2D software like Photoshop is used by 2D artists to create textures 
(from photographs sometimes), 3D software is used to produce 3D 
models to be put into the game environment at a later stage. 3D 
animation software (3DS Max, Maya, Blender) involves keyframing 

5	  Charrieras and Ivanova, “Emergence in Video Game Production: Video Game Engines as Technical 
Individuals,” 340-341.

6	  Charrieras and Ivanova, “Emergence in Video Game Production: Video Game Engines as Technical 
Individuals,” 344.

7	  Björn Nilson and Martin Söderberg, “Game Engine Architecture,” (May 26, 
2007): 3-6, accessed October 16, 2019, http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.459.9537&rep=rep1&type=pdf.

8	  Jason Gregory, Game Engine Architecture (Boca Raton; London; New York: CRC Press, 2019), 481.
9	  Charrieras and Ivanova, “Emergence in Video Game Production: Video Game Engines as Technical 

Individuals,” 339.
10	  Lewis and Jacobson, “Game Engines in Scientific Research,” 28.

Figure 1.3.7	 “An abstract model of how an engine might be put together”
By Björn Nilson and Martin Söderberg, “Game Engine Architecture,” (May 26, 2007): 3-6, accessed December 19, 2019, http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.459.9537&rep=rep1&type=pdf.
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(an animation technique based on smooth transition of movements) or 
motion capture data. Surfacing tools like Mudbox (Autodesk) enable 
character artists to sculpt very fine details into the 3D models.”[11]

From this, the amount of software that is utilized within the game design 
industry becomes apparent. What is more noteworthy, however, is how 
much of this software is already utilized within the architectural visualization 
industry. It is clear that transferable skills are present; therefore, the utilization 
of game engines in architecture becomes even more plausible. Software such 
as Photoshop, 3DS Max, and Maya are already used extensively in current 
architectural visualization pipelines as modeling and rendering tools, thus 
implementing the game engine would then allow it to “govern the relations 
between these [modeled] objects to build the game space,”[12] allowing the 
creation of increasingly dynamic simulations and visualizations.

Of course, this becomes even more compelling in the consideration of 
occupancy dynamics, which has been a recurring theme from the visualization 
studies of the previous chapter (1.2). This factor is particularly relevant within 
the game design industry since most games rely on the player interacting with 
NPCs (non-player characters) in one form or another, which, in most cases, 
are simulated people or forms of people. Although early games such as Grand 
Theft Auto 3 (GTA 3) lacked adequate crowd dynamics, much like current 
architectural visualizations, (Fig. 1.3.8) newer games such as The Witcher 3 
are beginning to alleviate this by utilizing better artificial intelligence (AI) tools 
and computational hardware to add more depth and complexity to simulated 
beings. (Fig. 1.3.9) While the quality of these crowds depends on the type of 
game, the budget of the project, and the studio that makes them, it still offers 
a valid confirmation as to what it is possible to create with game engines.

Within the book Game Engine Architecture, Jason Gregory describes games 
as “what computer scientists would call soft real-time interactive agent-
based computer simulations.”[13] He then notes on the game engine’s ability 
to approximate and simplify reality, specifying the various aspects of this 
description: 

“In most video games, some subset of the real world—or an imaginary 
world—is modeled mathematically so that it can be manipulated by a 
computer. The model is an approximation to and a simplification of 
reality (even if it’s an imaginary reality), because it is clearly impractical 
to include every detail down to the level of atoms or quarks. Hence, 
the mathematical model is a simulation of the real or imagined game 
world. […] An agent-based simulation is one in which a number of 
distinct entities know as ‘agents’ interact. This fits the description of 
most three-dimensional computer games very well, […] Given the 
agent-based nature of most games, it should come as no surprise that 
most games nowadays are implemented in an object-oriented, or least 

11	  Charrieras and Ivanova, “Emergence in Video Game Production: Video Game Engines as Technical 
Individuals,” 340.

12	  Charrieras and Ivanova, “Emergence in Video Game Production: Video Game Engines as Technical 
Individuals,” 340.

13	  Gregory, Game Engine Architecture, 9.

Figure 1.3.8	 Grand Theft Auto 3, DMA Design, 2001
From AndromedaDude, trimmed by Author, “Grand Theft Auto III Gameplay (Playstation 2),” YouTube, 10:39, accessed December 19, 2019, https://www.youtube.com/
watch?v=jONTvpvj7DM.

Figure 1.3.9	 The Witcher 3, CD Projekt, 2015
From Im Qith, trimmed by Author, “The Witcher 3, Entering Novigrad (No Commentary),” YouTube, 8:09, accessed December 19, 2019, https://www.youtube.com/
watch?v=MTrxkDLi6sg.

https://youtu.be/jONTvpvj7DM?t=83
https://youtu.be/MTrxkDLi6sg?t=78
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loosely object-based, programming language. […] All interactive 
video games are temporal simulations, meaning that the virtual game 
world model is dynamic […] most video games present their stories 
and respond to player input in real time, making them interactive 
real time simulations. […] A “soft” real-time system is one in which 
missed deadlines are not catastrophic. Hence, all video games are soft 
real-time systems.”[14]

It is evident from these notes how well this description of video games falls in 
line with the required components for simulating occupancy dynamics within 
a virtual space, as well as simulating the space itself as a dynamic architectural 
visualization. This approximation and simplification of reality allows the game 
engine to simulate architectural spaces from the physical world. The object-
oriented agent-based simulation model then allows the creation and visualization 
of crowd dynamics within this simulated architectural space. The dynamic 
interactive real-time aspect of this makes it practical and efficient for simulating 
and visualizing the interactions between the crowd dynamics and the static 
or dynamic architectural elements of these emerging dynamic spaces. The 
“soft” description of this, then means that the creation of this simulation 
model does not need to be too strict in order to function, which increases 
the realistic potential for an architecture student (without a background in 
software development) to utilize and create such a simulation and succeed. 
From these reasons, it is then possible to list the following benefits of utilizing 
game engines within architectural visualization workflows:

Higher abstraction tools for virtual simulations
Perhaps the most valuable aspect of game engines for visualizing 
dynamic spaces is their ability to utilize scripting languages and tools 
alongside various file types within the same software environment.[15] 
This allows the designer to establish interactions between entities 
which allows the creation of various simulation systems within this 
software—essentially becomes a virtual playground for simulating the 
physical world. With this, it is possible to not only script autonomy to 
simulate human crowds and dynamic architectural elements but also 
allow the relatively easy integration of such autonomy with existing 
architectural visualization models and frameworks. This allows the 
simulation of architectural spaces as they are used in the real world 
with little regard to how complex they may become.

Real-time rendering
Beyond these tools, game engines also offer vastly more efficient 
rendering methods compared to traditional CPU based ray-traced 
methods from software such as V-Ray and Mental-Ray.[16] While these 
older methods can produce extraordinary results, they can take hours 
or even days to render a single frame, which can be a time-consuming 
endeavor within the design process. (Fig. 1.3.10)

14	  Gregory, Game Engine Architecture, 9-10.
15	  Gregory, Game Engine Architecture, 481.
16	  Brian Caulfield, “What’s the Difference Between Ray Tracing, Rasterization?,” The Official NVIDIA 

Blog, April 11, 2019, accessed October 16, 2019, https://blogs.nvidia.com/blog/2018/03/19/whats-
difference-between-ray-tracing-rasterization/.

Figure 1.3.10	Rendering a frame from Vray
By Jordivdm, trimmed by Author, “FullHD 3D VRay Render at I7-5820k 6 Cores (12 Virtual Cores),” YouTube, 0:58, accessed December 19, 2019, 
https://www.youtube.com/watch?v=rjvimjwhams.

Figure 1.3.11	Rendering Frames from Unreal Engine 4
Screen-captured by Author.

Games on the other hand must run in real-time due to their reliance 
on interactivity, which (as already mentioned in Chapter 1.2) to the 
human eye is at least 24 frames per second to convey the “illusion of 
motion,”[17] and even more so to not feel delayed when the visualization 
is also required to respond to human input. This is many times faster 
than what can be achieved with traditional rendering methods, and 
as such, the rendering engines that are built into these game engines 
must prioritize speed to meet this demand. (Fig. 1.3.11)

17	  Gregory, Game Engine Architecture, 10.

https://youtu.be/rjvimjwhams
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This rendering speed is largely achieved by utilizing rasterization—
which is a rendering method that approximates lighting by converting 
the vertices of the virtual mesh into pixels[18]—instead of ray tracing—
which is a rendering method that calculates lighting where the paths 
of simulated “light rays” bouncing throughout the environment is 
traced back to the source of the camera.[19] (Fig. 1.3.12 - 13) These 
virtual games also take advantage of the parallelism of GPUs along 
with various techniques—such as precomputing lighting and texture 
baking details onto low poly models—to maximize computational 
efficiency.[20] (Fig. 1.3.14 - 15) These steps greatly reduce unnecessary 
calculations, which allows game engines to render in real-time. The 
downside to this workaround however is the reduced detail within 
the scene such that it only approximates of the scene. As such, the 
resulting renderings still lack a level of realism compared to traditional 
ray tracing methods that calculate the scene “correctly.” 

However, with advancements in both hardware and software, along 
with pipelines that are utilizing Physically Based Rendering (PBR)[21] 
and linear space lighting,[22] Photogrammetry,[23] and even GPU-based 
real time ray tracing,[24] it is possible to obtain results approaching that 
of traditional ray tracing. As technology continues to progress, the 
differences between these two rendering methods are lessening, leaving 
only the benefits of these game engines without the shortcomings. As 
such, this aspect of gaming engines will become increasingly useful as 
their rendering quality begins to catch up with traditional rendering 
engines—even more so for architectural visualization as they do not 
need to be as strict on performance requirements as games do, and 
thus will have more flexibility in pushing the boundaries of utilizing 
the game engine as a simulation tool.

18	  Caulfield, “What’s the Difference Between Ray Tracing, Rasterization?”
19	  Arthur Appel, “Some Techniques for Shading Machine Renderings of Solids,” Proceedings of the 

April 30--May 2, 1968, Spring Joint Computer Conference on - AFIPS 68 (Spring), 1968, https://doi.
org/10.1145/1468075.1468082.

20	  “Optimizing Graphics Performance,” Unity, accessed October 17, 2019, https://docs.unity3d.com/
Manual/OptimizingGraphicsPerformance.html.

21	  “Physically Based Materials,” Unreal Engine Documentation, accessed October 17, 2019, https://
docs.unrealengine.com/en-US/Engine/Rendering/Materials/PhysicallyBased/index.html.

22	  “The PBR Guide - Part 1,” Substance Academy, accessed October 17, 2019, https://academy.
substance3d.com/courses/the-pbr-guide-part-1.

23	  Sébastien Lachambre, Sébastien Lagarde, and Cyril Jover, Photogrammetry Workflow, 2017, accessed 
October 17, 2019, https://unity3d.com/files/solutions/photogrammetry/Unity-Photogrammetry-
Workflow_2017-07_v2.pdf.

24	  David Cardinal, “How Nvidia’s RTX Real-Time Ray Tracing Works,” ExtremeTech, August 21, 
2018, accessed October 17, 2019, https://www.extremetech.com/extreme/266600-nvidias-rtx-
promises-real-time-ray-tracing.

Figure 1.3.12	Ray tracing
By Henrik, “File:Ray trace diagram.svg,” This Diagram Illustrates the Ray Tracing Algorithm for Rendering an Image, April 12, 2008, Wikimedia Commons, 
accessed December 19, 2019, https://commons.wikimedia.org/wiki/File:Ray_trace_diagram.svg.

Figure 1.3.13	Rasterization
From “Rasterization: A Practical Implementation,” Scratchapixel, accessed December 19, 2019, https://
www.scratchapixel.com//lessons/3d-basic-rendering/rasterization-practical-implementation.
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Figure 1.3.14	CPU vs GPU Processing
GPUs have many times more Arithmetic Logic Units (ALU) 
compared to CPUs, which allows it to better process “simple 
operations in parallel.”
From Gino Baltazar, “CPU vs GPU in Machine Learning,” September 13, 2018, Oracle Data Science Blog, 
accessed December 19, 2019, https://blogs.oracle.com/datascience/cpu-vs-gpu-in-machine-learning.

Figure 1.3.15	Texture Baking utilizes normal maps to preserve detail without the additional polygons
By fra3point, “Total Baker - Texture Baking System,” Unity Forum, accessed December 19, 2019, https://forum.unity.com/threads/total-baker-texture-baking-system.546341/.

CPU

GPU
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Figure 1.3.16	A traditional desktop setup with a monitor and various input devices 
such as mouse and keyboard, game controller, and joysticks
By WeazelBear, “I Built My Own Live Edge Desk out of Teak. I Hope You All like It. Album in Comments,” Reddit, accessed 
December 19, 2019, https://www.reddit.com/r/battlestations/comments/7wlsp6/i_built_my_own_live_edge_desk_out_of_teak_i_
hope/.

Figure 1.3.17	Possible VR setup with various trackers for interactive inputs
From “Fully immersive VR Entertainment Solutions,” Cyberith, accessed December 19, 2019, https://www.cyberith.com/
entertainment/.

Interactivity

While the time savings from the increased rendering efficiency would 
be valuable, perhaps what will be more beneficial is the possibility for 
interactivity within architectural visualization. This opens up a wide 
range of mediums to communicate design intentions within current 
architectural pipelines, ranging from simple mouse and keyboard 
inputs with a monitor screen output to fully tracked virtual reality 
(VR) and augmented reality (AR) headsets and various forms of body 
tracking.[25] (Fig. 1.3.16 - 17)

Beyond the static image, and even beyond the animated film, one will 
have the ability to experience these digital environments by directly 
interacting with them. This turns traditional static architectural 
renderings into immersive interactive real-world walkthroughs that 
allow clients and designers to better understand the experiential and 
spatial qualities of the design, adding further utility and credibility to 
the visualizations produced for design and presentation.

With all these benefits, the game engine can be thought of as another 
progression leap in architectural visualization. With so much potential in not 
only current game engines but also the direction of which these technologies 
are heading, it becomes evident how the game design industry may benefit 
the architecture industry. This is already noticed by some architecture firms 
such as HOK, who are already implementing this technology within their 
workflows, albeit still skimming the surface of what game engines are capable 
of.[26] (Fig. 1.3.18) By investigating this overlap of tool utilization, it becomes 
possible to not only close the gap between architectural visualizations and 
films, but also to facilitate new modes of visualization and interaction—thus 
satisfying the increasing expectations of people as a result of the increasing 
general exposure to both film and game media. With the direction that 
technology and coincidently both the architecture and game development 
fields are headed, moving towards the Game Engine for visualization seems to 
be the appropriate direction. 

25	  Pierre Pita, “List of Full Body VR Tracking Solutions,” Virtual Reality Times, February 21, 2017, 
accessed October 17, 2019, https://virtualrealitytimes.com/2017/02/21/list-of-full-body-vr-tracking-
solutions/.

26	  Ken Pimentel, “HOK on Architectural Visualization: Aggregate, Iterate, Communicate,” Unreal 
Engine, March 13, 2019, accessed October 17, 2019, https://www.unrealengine.com/en-US/
spotlights/hok-architectural-visualization-aggregate-iterate-communicate. Figure 1.3.18	Architectural Rendering by HOK

https://www.unrealengine.com/en-US/spotlights/hok-architectural-visualization-aggregate-iterate-communicate
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Chapter 1.4 | Proposed Framework
To move forward, architecture needs to look beyond the static frame, but to 
do that, the issue of time-constrained visualizations needs to be addressed. 
Rather than wait for computation to progress to a point that renderings 
within current native architectural pipelines can be calculated instantly, it is 
possible to reduce the amount of time required by moving towards a more 
efficient visualization pipeline.

As mentioned in Chapter 1.2, current architectural visualization workflows 
have a large disconnect between design and production visualizations, the 
cause of which can be due to the lethargy of current visualization tools, 
which forces compromises throughout the stages of architectural design. 
These problems can be alleviated somewhat by utilizing a more efficient 
visualization workflow. The tools of pitch and design were originally separated 
due to limitations within current software, but now with faster computational 
power, as well as the advent of game engines, there is the potential to integrate 
these tools within the same workflow. In doing so, it becomes possible to 
incorporate dynamic visualizations at the earlier stages of design, which can 
benefit not only the resulting design but also the resulting pitch to the clients.

To be realistic with the scope of this thesis, however, it is necessary to focus on 
a singular beneficial aspect to improve upon within architectural visualization. 
Comparing static and dynamic architectural spaces, the one thing that remains 
consistent is the existence of occupants, and the thing that remains problematic 
when visualizing these spaces is the inadequate portrayal of these occupants. 
No matter the function of architecture, it is usually intended to be designed to 
be inhabited. As stated in Chapter 1.1, occupants are at the root of dynamics 
within the space, even before introducing any dynamic architectural elements. 
People are inherently dynamic, and as such, any space that is occupied, be 
it originally static or dynamic, will naturally become dynamic, for people 
themselves are dynamic elements. 

People are a constant in static and dynamic architecture, as well as exterior and 
interior spaces, therefore, being able to visualize them in these various contexts 
and scales can be practical in both design and communication between the 
architect, client, and user groups. As seen in Chapter 1.2, however, adding 
people to renderings usually seems to be a rushed endeavor which results in a 
lackluster portrayal of how these occupants interact with the space. Architects 
design buildings for occupants to inhabit, and yet they rarely visualize them 
during the design phase due to time constraints and the lack of integration 
within current workflows. While there are commercial crowd simulation 
tools available for architectural visualization—in standalone forms such as 
Massive[1] and Massmotion[2], plug-ins such as Miarmy[3] and Golaem[4], or 
1	  “What Is Massive?,” Massive Software, accessed October 17, 2019, http://www.massivesoftware.

com/applications.html.
2	  “Crowd Simulation Software: MassMotion,” Oasys, accessed October 17, 2019, https://www.oasys-

software.com/products/pedestrian-simulation/massmotion/.
3	  “Miarmy,” Basefount Company, accessed October 17, 2019, http://www.basefount.com/miarmy.

html.
4	  “Digital Extras at Your Fingertips,” Golaem, accessed October 17, 2019, http://golaem.com/.

Figure 1.4.1	 Massive

Figure 1.4.2	 Golaem

Figure 1.4.3	 Miarmy

Figure 1.4.1 - 1.4.3
These are 3 examples of cur-
rent crowd simulation tools 
on the market that are tailored 
towards film production. 
While these are impressive 
tools for generating complex-
ity within crowd simulations, 
they prioritize more on con-
trolling the crowds through 
the space instead of visualizing 
what the crowds might do 
within such a space. On top 
of this, most of them require 
a substantial setup as well 
as rendering time to obtain 
results close to what is shown 
in the films, which makes it 
harder to integrate within cur-
rent architectural visualization 
pipelines. These extra steps 
and time requirements can 
incentivize architects to skip 
visualizing crowds entirely in 
tight deadlines.

https://youtu.be/p6M8Yem5j0s?t=336
https://youtu.be/rr6tDBeNEv0?t=13
https://youtu.be/3wjCwtc_-hk?t=35
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Figure 1.4.4	 Oasys mass motion
This is a stand alone crowd simulation tool where architects must export their model into. 
while there is nothing wrong with this, it is an extra step, which can incentivize architects to 
skip visualizing crowds entirely in tight deadlines.
By TheOasysSoftware, trimmed by Author, “Oasys Software - MassMotion, The World’s Most Advanced Crowd Simulation Software,” YouTube, 2:30, 
accessed December 19, 2019, https://www.youtube.com/watch?v=dR5G5SNI5T4.

built into 3D applications such as 3ds Max[5]—most of them do not consider 
the existence of new forms of dynamic spaces alongside the integration of a 
robust visualization pipeline. (Fig. 1.4.1 - 5) Because of these limitations, 
they are harder to integrate within contemporary architectural workflows 
and are unsuited for portraying the high complexity of emerging intelligent 
spaces, especially during the design phase when changes to the building design 
are constantly made.

For these reasons, this thesis will propose the creation of a means—to both 
analyze and visualize dynamic spaces—by first establishing a methodology for 
simulating human crowds, and then integrating it within a game engine. In 
doing so, it will be shown to be possible to build a foundational framework 
that can be built upon to be tailored to specific needs, from which one can both 
extrapolate information on occupancy as well as visualizations from the same 
workflow. Of course, this is venturing into unknown territories, especially for 
an architecture student with no coding background. Therefore, personally, 
this thesis is an exploration of technology, a learning process, and a challenge 
to oneself. Ideally, this thesis is the creation of a tool and a framework with 
the intent to provide architects with a tool that they can both use during the 
design process and also evolve.

As architecture is evolving, so too must architectural visualization. Technology 
is changing, and this thesis is looks at creating a framework to facilitate that 
change for architectural design workflows. The benefits in doing so set up the 
means to improve efficiency, flexibility, and design, while also providing the 
skill and knowledge to understand, manipulate, and create new tools to tailor 
to any type of project, most particularly during the design process, at a point 
where change can be most easily incorporated. By approaching knowledge in 
an interdisciplinary manner, one can broaden the scope of what is possible 
within the field of architecture.

5	  “Example: Using Populate,” Autodesk Support & Learning, accessed October 17, 2019, https://
knowledge.autodesk.com/support/3ds-max/learn-explore/caas/CloudHelp/cloudhelp/2017/
ENU/3DSMax/files/GUID-BEA89C57-3A7B-4AB5-AAF7-02494AA01CFA-htm.html.

Figure 1.4.5	 A crowd Visualization Tool in Autodesk 3ds Max
Here, the user defines a path where people are generated to follow. This is a simple approach 
for visualizing people for a pitch, but it does not show how the space will be used, rather how 
the architect thinks the space will be used.
From sanvfx, trimmed by Author, “Creating Crowd Simulation in 3ds Max,” YouTube, 23:09, accessed December 19, 2019, https://www.youtube.com/
watch?v=h-PMBi8gze4&t=454s.

https://youtu.be/dR5G5SNI5T4?t=27
https://youtu.be/h-PMBi8gze4?t=454
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To begin this exploration, initial research is required. Therefore, as a starting point to 
creating a crowd simulation tool, it is important to first look at the basis of a computer 
simulation, not just what it is, but how it works at the fundamental level. This section 
then will mainly focus on developing the methodologies required to create a model 
for human crowd simulation. Chapter 2.1 will investigate the concepts to consider 
when creating a simulation model by looking into the different components of a 
simulation and the concept of emergence and how it relates to complex systems and 
human crowds. Chapter 2.2 will then investigate how these concepts can be used 
to create a simulation model for simulating crowds by looking into the concept of 
autonomous agents. Chapter 2.3 will utilize this model to translate human behaviors 
to machine logic by establishing a set of human systems that can drive the agents 
within the simulation model. Chapter 2.4 will investigate a framework for simulating 
a variety of architectural objects by understanding how dynamic elements may work 
and what the resulting spaces may entail. Chapter 2.5 will then take these established 
systems and create a prototype to validate the validity of this model based on the 
framework established within Chapter 2.2.

Analog to Digital
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Chapter 2.1 | Simulations Ideology
A simulation—as defined by Jerry Banks et al. in their book Discrete-Event 
System Simulation—is an “imitation of the operation of a real-world process 
or system over time.”[1] Since the advent of digital computation and computer 
simulations, their utility have become much greater, and are now utilized 
within a wide range of applications, including various types of manufacturing, 
construction engineering, military, logistics, transportation, distribution, 
business processes, and human systems.[2] Because of this array of uses, it is 
important to first determine the type of system that the simulation is required 
to imitate. The system—as defined by Banks et al.—is “a group of objects that 
are joined together in some regular interaction or interdependence toward 
the accomplishment of some purpose.”[3] He states, “In order to understand 
and analyze a system, a number of terms need to be defined. An entity is an 
object of interest in the system. An attribute is a property of an entity. An 
activity represents a time period of specified length. If a bank is being studied, 
customers might be one of the entities, the balance in their checking accounts 
might be an attribute, and making deposits might be an activity.”[4] 

Learning from this, it is then possible to investigate various other systems. 
Within a pool of water, the entities would be the water particles, with their 
location, velocity, and mass being some of the possible attributes, and colliding 
with each other being one of the possible activities. (Fig. 2.1.1) The same can 
be observed in a traffic system, where the cars would be the entities, with their 
location, size, color, and car typology being possible attributes, and starting or 
stopping being possible activities. (Fig. 2.1.2) Taking this investigation then, 
to a crowd of people, it can be abstracted that the individual people would 
be the entities, with their location, gender, height, weight, etc. being possible 
attributes, and their various interactions with one another being activities. 
(Fig. 2.1.3)

Of course, these are just generic assumptions, since “a complete list cannot 
be developed unless the purpose of the study is known.”[5] However, by 
investigating these assumed systems, a pattern can be noticed. From the water 
example, each particle interacts with surrounding particles through collision, 
which are affected by the particle attributes such as velocity and mass. If one 
were to toss a rock into the water, the rock would offset local particles at the 
point of impact, which will interact with particles around it, producing ripple 
waves within the system. From the traffic example, it can be observed that 
when one car slows down the subsequent car slows down as well, producing 
an offset until there is a wave of phantom traffic within the road. From the 
crowd example, it can then be observed that the people, much like the water 
particles, collide into one another, each instigating interaction locally as they 
ripple throughout the space, once again producing a wave-like pattern.

1	  Jerry Banks et al., Discrete-Event System Simulation (Upper Saddle River, NJ: Prentice Hall, 2001), 3.
2	  Banks et al., Discrete-Event System Simulation, 3.
3	  Banks et al., Discrete-Event System Simulation, 10.
4	  Banks et al., Discrete-Event System Simulation, 10.
5	  Banks et al., Discrete-Event System Simulation, 10.

Figure 2.1.3	 This crowded concert shows how the interaction between each 
individual human produces various wave patterns throughout the entire crowd.

Figure 2.1.1	 Various wave patterns seen on-top of the ocean surface
From Alex Green, “An Aerial Birds Eye Shot Of The Ocean and Waves,” YouTube, 0:10, accessed December 25, 2019, https://
www.youtube.com/watch?v=1jUnZ4VnoD4.

Figure 2.1.2	 Video showing phantom traffic jam
From New Scientist, trimmed by Author, “Shockwave Traffic Jams Recreated for First Time,” YouTube, 0:39, accessed December 
25, 2019, https://www.youtube.com/watch?v=Suugn-p5C1M.

Figure 2.1.1 - 2.1.3
These figures shows the similar 
emergent patterns exhibited 
by the particle interactions of 
fluid systems, traffic jams, and 
crowd dynamics.

https://youtu.be/1jUnZ4VnoD4
https://youtu.be/Suugn-p5C1M?t=5
https://www.youtube.com/watch?v=BgpdmAtbhbE&t=8s
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To better understand this phenomenon, it is important to understand 
emergence. This term is generally used to characterize the behavior of systems 
in which its components interact in various ways by following local rules, 
producing nonlinear behaviors often resulting in greater complexity than the 
sum of its parts. Johnson explains this in his book Emergence: The Connected 
Lives of Ants, Brains, Cities: 

“What features do all these systems share? In the simplest terms, they 
solve problems by drawing on masses of relatively stupid elements, 
rather than a single intelligent “executive branch.” They are bottom-
up systems, not top down. They get their smarts from below. In a more 
technical language, they are complex adaptive systems that display 
emergent behavior. In these systems, agents residing on one scale start 
producing behavior that lies one scale above them: ants create colonies; 
urbanites create neighborhoods’ simple pattern-recognition software 
learns how to recommend new books. The movement from low-level 
rules to higher level sophistication is what we call emergence.”[6] 

He then conceptualizes a billiard table with motorized billiard balls 
programmed to alter their movement based on interactions, stating that “such 
a system would define the most elemental form of complex behavior: a system 
with multiple agents dynamically interacting in multiple ways, following local 
rules and oblivious to any higher-level instructions. But it wouldn’t truly be 
considered emergent until those local interactions resulted in some kind of 
discernible macrobehaviour.”[7] 

What can be extracted from this text is that this “movement from low level 
rules to high level sophistication” is what is known as emergence and can be 
observed in various complex system models, as it is a fundamental property of 
the universe. (Fig. 2.1.4 - 6) It can then be observed from these water/traffic/
crowd examples that due to emergence, a wave-like pattern emerges from the 
local interactions of the particles. These interactions, while simple, propagate 
throughout the system using the particles as a medium, producing this wave-
like pattern that can only be observed from a scale larger than the particles but 
can only be understood by looking at the particles themselves. 

While these systems are complex in nature, and can be hard to comprehend, 
they generally exhibit common traits that can be investigated to help break 
down their complexity. By observing these simulations as complex systems, 
it can become easier to understand the basic components that make up the 
system. These basic components can then be modified to create a simulation 
model, meaning that by following this methodology, it is possible to produce 
relatively complex simulations with relatively simple components.

6	  Steven Johnson, Emergence: The Connected Lives of Ants, Brains, Cities, and Software (New York: 
Scribner, 2004), 18.

7	  Steven Johnson, Emergence: The Connected Lives of Ants, Brains, Cities, and Software, 19.

Figure 2.1.4	 Snowflakes
By Wilson Bentley, “File:SnowflakesWilsonBentley.jpg,” Wikimedia Commons, 
accessed December 25, 2019, https://commons.wikimedia.org/wiki/
File:SnowflakesWilsonBentley.jpg.

Figure 2.1.5	 Termite mount 
By Brian Voon Yee Yap, from Yewenyi, “File:Termite Cathedral DSC03570.jpg,” 
Wikimedia Commons, accessed December 25, 2019, https://commons.wikimedia.
org/wiki/File:Termite_Cathedral_DSC03570.jpg.

Figure 2.1.6	 Starling murmurations
From National Geographic, trimmed by Author, “Flight of the Starlings: Watch This Eerie but Beautiful Phenomenon | Short Film Showcase,” YouTube, 2:00, accessed 
December 25, 2019, https://www.youtube.com/watch?v=V4f_1_r80RY.

Figure 2.1.4 - 2.1.6
Emergence is a fundamental 
property of the universe. 
Subatomic particles such as 
protons, neutrons, and elec-
trons combine to form atoms 
that are responsible for all the 
various emergent properties 
of matter that we come in 
contact with on a daily bases. 
These figures show some ex-
amples of emergent behaviors 
within nature from further 
interactions of these emergent 
properties.

https://youtu.be/V4f_1_r80RY?t=5
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This concept is especially important when simulating humans due to their 
inherent complexity. The human brain is a complex object and to this day 
is still not fully understood, therefore, simulating human behaviors perfectly 
is beyond the current capabilities of collective human knowledge. As stated 
by Delaney and Vaccari in Dynamic Models and Discrete Event Simulation: 
“one approach with coping with such difficulties is to relax the requirements 
on the model so that approximation can be employed even though they 
yield fewer and/or less accurate results”[8] This means that simulations can 
vary in levels of complexity, ranging from simple real time calculations for 
approximating visualizations to high accuracy scientific models. Banks et al. 
also acknowledges this, stating: 

“The art of modeling is enhanced by an ability to abstract the essential 
features of a problem, to select and modify basic assumptions that 
characterize the system, and then to enrich and elaborate the model 
until a useful approximation results. Thus, it is best to start with a 
simple model and build towards greater complexity. However, the 
model complexity need not exceed that required to accomplish the 
purposes for which the model is intended. Violation of this principle 
will only add to model-building expenses. It is not necessary to have 
a one-to-one mapping between the model and the real system. Only 
the essence of the real system is needed.”[9] 

It should be noted how this aligns with Jason Gregory’s description of 
video games back in Chapter 1.3, which is a good indication of the validity 
of this approach when the time comes to integrate this model within a 
Game Engine. With this in mind, it can then be determined that a crowd 
simulation for architectural visualization purposes—that can also be evolved 
by architects—would benefit more from simplicity and speed, rather than 
perfect accuracy from the beginning. This is already an improvement over 
not simulating at all, and since the behavior of people is not absolute and 
exact, an approximation is likely sufficient to gauge whether or not a space 
is working properly in a crowd situation. It is not required to figure out all 
the nuances of the system, but instead focus on determining simple agents 
that can utilize emergent behaviors from a bottom-up approach. These agents 
would then act upon simple embedded rules to move around the space, and if 
need be, higher accuracy can be generated by adding additional simple rules 
to these agents. One does not need to simulate behaviors perfectly, but rather 
account for enough variance that the system as a whole is realistic enough to 
provide information and believability to inform the design process. In doing 
so, it makes the creation process much simpler; instead of creating artificial 
intelligence, this simulation can be based on simple rules to give the illusion 
of distributed intelligence. (Fig. 2.1.7 - 8)
 

8	  William Delaney and Erminia Vaccari, Dynamic Models and Discrete Event Simulation (New York: 
M. Dekker, 1989), 323.

9	  Banks et al., Discrete-Event System Simulation, 15.

Figure 2.1.7	 Rule 30 as introduced by Stephen Wolfram, 1983
What is compelling about the phenomenon of emergence in the context of crowd simulations is how one 
can utilize relatively simple logic to generate complex behaviors.
From Eric W. Weisstein, “Rule 30,” Wolfram Math World, accessed December 25, 2019, http://mathworld.wolfram.com/Rule30.html.
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Figure 2.1.8	 250 iterations of Rule 30 
From Eric W. Weisstein, “Rule 30,” Wolfram Math World.
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Chapter 2.2 | Establishing Model 
Methodology
Now that the foundational principles of complex system simulation have been 
investigated, and the plan of utilizing a bottom-up simulation methodology 
has been established, it is possible then to dive deeper into the creation of 
this simulation. Within Discrete-Event System Simulation, Jerry Banks et al. 
determined a set of steps to facilitate a thorough simulation study to aid in 
creating a simulation model.[1] (Fig. 2.2.1) He breaks this down into four 
phases: 

“The first phase, consisting of steps 1 (Problem Formulation) and 2 
(Setting of Objective and Overall Design), is a period of discovery 
or orientation. […] The second phase is related to model building 
and data collection and includes steps 3 (Model Conceptualization), 
4 (Data Collection), 5 (Model Translation), 6 (Verification), and 7 
(Validation). […] The third phase concerns running the model. 
It Involves steps 8 (Experimental Design), 9 (Production Runs 
and Analysis), and 10 (Additional Runs). […] The fourth phase, 
implementation, involves steps 11 (Documentation Reporting) and 
12 (Implementation).”[2] 

These phases describe a very logical approach, as such they line up nicely with 
the chapter structure of this thesis. The first phase of discovery and orientation 
is covered in Part 1: Introduction and Theory, where the proposed framework 
was established; the second phase of model building and data collection is 
covered within this current part (Part 2: Technical Research), as well as Part 3: 
Tool Creation for when the simulation model is updated for the game engine 
environment; The third phase concerning running the model is covered within 
Part 4: Simulation Applications, where the simulation will be utilized within 
a variety of applications to review their effectiveness in architectural crowd 
simulation; The fourth phase of implementation is finalizing the resultant 
simulation as a tool within visualization applications. Since the initial scope 
of this thesis was meant to provide a foundational framework for this tool, the 
full completion of this phase may be beyond the scope of this thesis and would 
be suited to further development at a later date. 

As it can be seen, this relatively simple framework provides a good starting 
point and guideline in creating a custom model for crowd simulation. 
Therefore, by applying this further, it is possible to provide a more thorough 
breakdown of what each step may entail in relation to this thesis.

1	  Banks et al., Discrete-Event System Simulation, 15.
2	  Banks et al., Discrete-Event System Simulation, 19-20.

Figure 2.2.1	 Simulation Study Diagram
From Jerry Banks et al., Discrete-Event System Simulation (Upper Saddle River, NJ: Prentice Hall, 2001), 16.
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Problem formulation: It is important to begin this process by first 
stating the problem. This was already established in Part 1:Introduction 
and Theory by investigating the emergence of dynamic architecture 
in Chapter 1.1, the inadequacy of current visualization methods in 
Chapter 1.2, and the advent of game engines in Chapter 1.3. 

Setting of objectives and overall project plan: This step aims to 
indicate the questions that can be answered with the simulation. In 
the context of this thesis, the objective would then be finding a way 
to simulate and visualize human crowd movements within a dynamic 
architectural space.

Model conceptualization: This step is the most technical, as it deals 
with establishing the various components within the simulation 
model, as well as defining their interactions within the system. This 
is what this current chapter (2.2) will investigate and what the next 
chapter (2.3) will establish. This model will then be updated as the 
thesis moves on from the processing prototype to the game engine 
environment. 

Data Collection: This step focuses on the collection of input data for 
the model, and as such, constant interplay will be present between 
this step and the last. In the context of this thesis, Chapter 2.3 will be 
investigating various properties of human behaviors and how that can 
be utilized and represented within the system model. The initial data 
from this step, as well as the established methodology from the initial 
model conceptualization, will be invaluable when re-establishing the 
model within the game engine environment.

Model Translation: This step deals with the technical translation of 
this simulation model into machine logic. The Java-based program 
processing will be utilized first to prototype this methodology as a 
way to validate the concept of emergent complex systems within 
the context of crowd simulations. Once this processing prototype 
is validated, the model will then be translated into a game engine 
environment to utilize its higher abstraction tools.

Verification: This step mainly focuses on debugging to ensure the 
software operates according to the model. Fixing certain software bugs 
can take minutes to days, therefore, this step arguably provides the 
greatest unknown in terms of time expenditure due to the inherent 
complexity and uncertainty within the debugging process. 

Validation: The aim of this step is to determine whether the 
simulation model is an accurate representation of the real system. As 
such, this step may be repeated until the resulting model accuracy 
is judged acceptable. In the context of this thesis, the processing 
prototype will first need to be validated to confirm that the concept 
of emergent behaviors from autonomous agents is enough to convey 
the movements of human crowds. Then, once the model is re-updated 
for the game engine environment, this step will need to be revisited to 
confirm this new model within the context of human crowds.

Experimental design: This step determines the various alternative 
systems that can be simulated within this model.  This thesis will be 
investigating this in Part 4, where it will be utilizing the developed 
simulation tool within a variety of architectural scenarios to determine 
the usability of this tool within alternative spatial applications.

Production runs and analysis: This step utilizes the simulation to 
estimate measures of performances within these alternative systems. 
This step can be utilized to analyze the architectural scenarios from 
the experimental design step, which can then be used to measure their 
effectiveness in visualizing spatial typologies.

More runs: Additional runs may or may not be required depending 
on the analysis and updates of the previous runs.

Documentation and reporting: The documentation of the 
methodologies and concepts obtains from creating this model will 
allow potential upgrades to the system model in order to provide 
increased accuracy and performance metrics in the future.

Implementation: At this point, it is possible to establish a rough 
workflow within architectural visualization that can benefit with the 
utilization of this crowd simulation tool.

As shown by the various steps of this framework, the next stage in creating this 
crowd simulation—as well as the focus of this and the next few chapters— is 
developing a model for this simulation system. A model as defined by Banks 
et al. is “an abstract representation of a system, usually containing structural, 
logical, or mathematical relationships which describe a system in terms of state, 
entities and their attributes, sets, processes, events, activities, and delays.”[3] 
He remarks, “Just as the components of a system were entities, attributes, 
and activities, Models are represented similarly. However, the model contains 
only those components that are relevant to the study.”[4] Going by this, it 
is then important to first simplify architectural spaces into its fundamental 
relevant components. The purpose of this model, then becomes to define 
the interactions between classes of entities within the system, which can be 
defined as the active human agents and the passive (or active in the case of 
dynamic spaces) architectural objects. 

3	  Banks et al., Discrete-Event System Simulation, 64.
4	  Banks et al., Discrete-Event System Simulation, 13.
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One way to simplify the interactions between these entities may be to 
compare it with a simpler system. By looking back to Chapter 2.1, one can 
re-investigate the similarities between the crowd and water simulations. From 
this, it can then be observed that the crowd simulation, when dense enough, 
can arguably be described as a fluid. Fluid flows can be described in either 
the Lagrangian description—where each fluid particle is calculated as discrete 
particles—or the Eulerian description—where the fluid properties are only 
calculated at the boundary of set volumes.[5] (Fig. 2.2.2 - 3) While there are 
pros and cons to both methods, the Lagrangian methods will provide a more 
accurate model for non-continuum mass as well a more fluid simulation that 
would be more beneficial for crowd simulation. The downside to this is that 
extra computation is required to calculate each particle as more people are 
added into the system. However, by designing this model as a framework 
that can be scaled up, this limitation becomes less of an issue, especially with 
computation becoming faster with technological progression. However, 
humans are undeniably not as elementary as water particles. They do not 
simply flow, but have desires, motives, and goals. While it can be seen from 
the concert example that individuality starts to break down in larger crowds—
and thus began to behave like the flow of water as the forces exerted on the 
individual people move in a direction that is determined by the crowd—it is 
still important to distinguish people in smaller groupings. Therefore, these 
rules at the bottom level will not only need to accommodate movement but 
also human behaviors. To create such a system, one must determine the logic 
behind one’s actions and look at ways to translate them into machine logic, 
essentially breaking them down to their fundamental elements.

5	  John M. Cimbala, “Descriptions of Fluid Flows,” Penn State Engineering, accessed August 3, 2019, 
https://www.mne.psu.edu/cimbala/Learning/Fluid/Introductory/descriptions_of_fluid_flows.htm.

Figure 2.2.2	 The Lagrangian description calculates the position and velocity of 
the individual particles within the fluid
From “Descriptions of Fluid Flows,” accessed December 25, 2019, https://www.me.psu.edu/cimbala/Learning/Fluid/Introductory/
descriptions_of_fluid_flows.htm.

Figure 2.2.3	 The Eulerian description calculates the output velocities from the 
input velocities, in which the space inside the control volume is assumed to be 
completely filled as a continuous mass
From “Descriptions of Fluid Flows.” 
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There are, of course, many ways to do this. A quick investigation reveals a 
plethora of existing simulation methodologies, ranging from Eulerian-
based models such as Cellular Automata,[6][7] to Lagrangian-based particle 
models such as Craig Reynold’s Boids,[8] Helbing’s Social Forces,[9] Van den 
Berg’s Reciprocal Velocity Obstacles,[10] Adaptive Roadmaps,[11] Centroidal 
Particles,[12] and HiDAC.[13] (Fig. 2.2.5 - 10) While all these different methods 
can be overwhelming for someone without an extensive coding background, 
one commonality among these models is the utilization of autonomous 
agents. (Fig. 2.2.4) Taking a cue from the Lagrangian methodology, it is then 
imperative to treat crowd simulations as an example of a multi-agent dynamic 
system, where the overall system can be broken down into agents and operations. 
Much like how the water simulation can be broken down into water particles, 
and the mathematical models used to describe how individual particles affect 
each other, a crowd simulation can be broken down into the people (agents), 
and the human interactions between them (operations). To create this system, 
one must understand the principles of intelligent autonomous agents, which 
are entities that can act in their environment without external influences from 
a leader or global plan. These entities have three key concepts that should be 
kept in mind when establishing them:

“An autonomous agent has a limited ability to perceive the 
environment.”[14]

“An autonomous agent processes the information from its 
environment and calculates an action.”[15]

“An autonomous agent has no leader.”[16]

6	  Jana Dadova, “Cellular Automata Approach for Crowd Simulation” (Master’s thesis, Comenius 
University, Bratislava, 2012), 1-58, accessed August 3, 2019, http://www.sccg.sk/~dadova/phd/
rigorozka_dadova_final.pdf.

7	 Hubert Klüpfel, “A Cellular automaton model for crowd movement and egress simulation,” 
(July 2003): 1-136, accessed December 26, 2019, https://www.researchgate.net/
publication/29800160_A_Cellular_automaton_model_for_crowd_movement_and_egress_
simulation.

8	  Craig W. Reynolds, “Steering Behaviors For Autonomous Characters,” Reynolds Engineering & 
Design, accessed October 17, 2019, http://www.red3d.com/cwr/steer/gdc99/.

9	  Dirk Helbing and Péter Molnár, “Social Force Model for Pedestrian Dynamics,” Physical Review E 
51, no. 5 (1995): 4282-286, doi:10.1103/PhysRevE.51.4282.

10	  Jur Van Den Berg, Ming Lin, and Dinesh Manocha, “Reciprocal Velocity Obstacles for Real-Time 
Multi-Agent Navigation,” 2008 IEEE International Conference on Robotics and Automation, (May 
2008): 1928-1935, https://doi.org/10.1109/robot.2008.4543489.

11	  Avneesh Sud et al., “Real-time Navigation of Independent Agents Using Adaptive Roadmaps,” ACM 
SIGGRAPH 2008, (2008): doi:10.1145/1401132.1401207.

12	  Omar Hesham and Gabriel Wainer, “Centroidal Particles for Interactive Crowd Simulation,” 2016 
Summer Computer Simulation Conference (SCSC 2016), (2016): https://doi.org/10.22360/
summersim.2016.scsc.012.

13	  Nuria Pelechano, Jan M. Allbeck, & Norman I. Badler, “Controlling Individual Agents in High-
Density Crowd Simulation,” Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on 
Computer Animation, (2007): 99-108, http://repository.upenn.edu/hms/210.

14	  Daniel Shiffman, “Chapter 6. Autonomous Agents,” in The Nature of Code (United States: 
D. Shiffman, 2012), accessed October 17, 2019, https://natureofcode.com/book/chapter-6-
autonomous-agents/.

15	  Shiffman, “Chapter 6. Autonomous Agents.”
16	  Shiffman, “Chapter 6. Autonomous Agents.”

Figure 2.2.4	 Much like how humans interact with spaces, Autonomous Agents act within the 
simulation through its perception of the environment
By Stuart Russell and Peter Novig, “Intelligent Agents - Chapter 2,” from Artificial Intelligence: A 
Modern Approach, obtained from “Agents: Artificial Intelligence,” accessed December 25, 2019, 
https://www.doc.ic.ac.uk/project/examples/2005/163/g0516334/.
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Figure 2.2.7	 Reciprocal Velocity Obstacles
The RVO approach accounts for the reactive behavior of other agents by assuming that 
all agents make similar collision-avoidance reasonings within navigation. The diagrams 
above shows how the paths of two agents have opposite preferred velocities and how each 
agent calculates a combined velocity from the union of velocities from other agents.
From Jur Van Den Berg, Ming Lin, and Dinesh Manocha, “Reciprocal Velocity Obstacles for Real-Time Multi-Agent Navigation,” 2008 IEEE 
International Conference on Robotics and Automation, (May 2008): 1928-1932, https://doi.org/10.1109/robot.2008.4543489.

Figure 2.2.5	 2-Dimensional Cellular Automata 
The Cellular Automata approach divides a space into a grid of cells. Rule 30 (introduced 
at the end of chapter 2.1) is an example of a 1-Dimensional Cellular Automata that 
utilizes simple rules to specify the next color of a cell based on its color and its neighbors. 
This concept can then be used to calculate position amongst the grid as a way to establish 
pathfinding.
From Hubert Klüpfel, “A Cellular automaton model for crowd movement and egress simulation,” (July 2003): 33-35, accessed December 26, 
2019, https://www.researchgate.net/publication/29800160_A_Cellular_automaton_model_for_crowd_movement_and_egress_simulation.

Figure 2.2.6	 Social Forces
The Social Forces approach utilizes “social forces” that are “a measure for the internal 
motivations of the individuals to perform certain actions.” The diagrams above shows 
how this can produce the formation of lanes as well as follow behaviors for agents with 
the same desired walking directions through narrow doors. 
From Dirk Helbing and Péter Molnár, “Social Force Model for Pedestrian Dynamics,” Physical Review E 51, no. 5 (1995): 15-17, doi:10.1103/
PhysRevE.51.4282.

Figure 2.2.8	 Adaptive Roadmaps
The Adaptive Roadmaps approach utilizes Adaptive Elastic ROadmaps (AERO) to 
perform global path planning for each agent. The diagrams above shows how dynamic 
obsticles such as cars can affect paths leading to the resulting goal.
From Avneesh Sud et al., “Real-time Navigation of Independent Agents Using Adaptive Roadmaps,” ACM SIGGRAPH 2008, (2008): 
doi:10.1145/1401132.1401207.
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Distinguishing these concepts allows the creation of custom categories that are 
specific to crowds, which will ensure a simpler foundation in the translation 
from physical behaviors to virtual code. From here, one can begin to establish 
the systems that allow these autonomous agents to operate as humans within 
the simulation. As such, this simulation model will be focusing on determining 
the interactions between autonomous agents and their environment. 

Ehsan Baharlou states in his thesis Generative Agent-Based Architectural Design 
Computation: Behavioral Strategies for Integrating Material, Fabrication and 
Construction Characteristics in Design Processes: 

“Complex systems, which exhibit holistic behaviors, are difficult 
to comprehend. Complex behaviors, which arise from interactions 
among parts, need a model to gain insight into processes that exhibit 
emergent phenomena. […] Therefore, a model should be simple 
enough to represent its main purpose. The purpose of self-organizing a 
system is adaptation with dynamic complexity arising from emergent 
phenomena. Avoiding unnecessary details allows models to maintain 
a reasonable level of complexity (Miller and Page 2007, pp. 36-37).[17] 
This method of modeling allows further analyses and investigations; 
otherwise, another level of simplification would be required to explain 
the growing complexity.”[18] 

This communicates that there is merit in avoiding unnecessary details in 
order to simplify the model. Complex systems are inherently “difficult to 
comprehend,” as such it becomes more effective to simulate this complexity 
by utilizing the emergent phenomena that is present within self-organized 
adaptive dynamic models. “Once [this] model is deemed valid, it is extendable 
to different variables and parameters,”[19] which allows the process of refinement 
and improvement upon future iterations of this simulation. From this, it 
becomes clear that, at this stage, it is beneficial to not get carried away with 
higher complexity models, and instead investigate a more basic approach, not 
only to simplify the process but also to build a deeper understanding of how 
these systems work at a fundamental level. As such, this thesis will investigate 
and build upon the algorithmic steering behaviors developed by computer 
scientist Craig Reynolds in the late 1980s, specifically for its relatively simple 
and comprehensive nature.[20] While this may not produce results at the level 
of higher complexity models, such as HiDAC that utilizes both “psychological 
and geometrical rules [alongside] social and physical forces,”[21] it will build 
a solid foundation that can be expanded later to encompass additional 
considerations. 

17	  John H. Miller and Scott E. Page, Complex Adaptive Systems: An Introduction to Computational 
Models of Social Life (Princeton, NJ: Princeton University Press, 2007), 36-37.

18	  Ehsan Baharlou, Generative Agent-Based Architectural Design Computation: Behavioral Strategies 
for Integrating Material, Fabrication and Construction Characteristics in Design Processes (Stuttgart: 
Institute for Computational Design and Construction, 2017), 46.

19	  Baharlou, Generative Agent-Based Architectural Design Computation: Behavioral Strategies for 
Integrating Material, Fabrication and Construction Characteristics in Design Processes, 74.

20	  Reynolds, “Steering Behaviors For Autonomous Characters.”
21	  Pelechano, Allbeck, & Badler, “Controlling Individual Agents in High-Density Crowd Simulation.” 

Figure 2.2.9	 Centroidal Particles
The Centroidal Particles approach utilizes personal spaces to calculate compressional forces 
between the agents to calculate agent interactions.
From Omar Hesham and Gabriel Wainer, “Centroidal Particles for Interactive Crowd Simulation,” 2016 Summer Computer Simulation Conference 
(SCSC 2016), (2016): https://doi.org/10.22360/summersim.2016.scsc.012.

Figure 2.2.10	HiDAC
The HiDAC approach utilizes “a combination of psychological and geometrical rules with 
a social and physical forces model” to create a variety of emergent behaviours such as line 
formation and pushing.
From Nuria Pelechano, Jan M. Allbeck, & Norman I. Badler, “Controlling Individual Agents in High-Density Crowd Simulation,” Proceedings of the 
2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, (2007): 99-108, http://repository.upenn.edu/hms/210.
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Figure 2.2.11	Craig Reynold’s flocking Boid flocking model 
describes these complex patterns with 3 simple steps along with 3 
simple steering behaviors
Example code by Daniel Shiffman, executed in processing, screen-recorded by Author. 
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Chapter 2.3 | Abstracting the Human 
Systems 
As stated in Chapter 2.2, occupied architectural space can be broken down 
into its components of active human agents and passive (or active in the case of 
dynamic spaces) architectural objects. This chapter will focus on establishing 
the simulation model for the active human agents by building upon Craig 
Reyonalds’ boids model. Within Reynolds’ paper “Steering Behaviors For 
Autonomous Characters,” he refers to autonomous agents as “idealized 
vehicles” or “boids,” and described their motion as three layers: action selection, 
steering, and locomotion.[1] (Fig. 2.3.1)

Action selection is the process of selecting the action depending on 
the calculated goal of the vehicle.

Steering is the calculated forces that is applied to the vehicle after 
deciding the action.

Locomotion is the method of how the vehicles move to their goals.

Naturally, human agent behaviors are a bit more complex than vehicles. 
The three layers established by Reynolds only described motion; therefore, 
it is vital to build upon this to describe the other attributes of human 
agents. While these three layers present an idea of how the agents can move 
around the environment, the question still remains as to how the agents 
obtain information and decide on their tasks. Considering these functional 
requirements, it is then possible to simplify human behaviors into three main 
systems: the sensory system, the decision logic, and the pathfinding. 

The sensory system allows the agents to see their surroundings.

The decision logic allows the agents to choose a goal based on what 
they see.

The pathfinding allows the agents to find a way to the goal that they 
chose.

These systems function in a hierarchal sense in which one system feeds into 
the next. The agents would utilize the sensory system to obtain information 
from the environment. It would then use this information within the decision 
logic to decide which entity from the environment interests them. It would 
then utilize the pathfinding system to navigate to the entity of interest. By 
acknowledging this, one can begin building the systems by looking from the 
bottom level up. (Fig. 2.3.2 - 3)

1	  Reynolds, “Steering Behaviors For Autonomous Characters.”

Figure 2.3.1	 Three hierarchical layers of motion behaviors
Craig Reynold’s Flocking model describes these complex patterns with 3 simple steps along with 3 simple 
steering behaviours.
From Craig W. Reynolds, “Steering Behaviors For Autonomous Characters,” Reynolds Engineering & Design, accessed October 17, 2019, http://www.red3d.com/cwr/steer/
gdc99/.

Figure 2.3.2	 Three hierarchical layers of human behaviors
Human behaviors can be simplified into 3 main systems: the Sensory System, the Decision Logic, and the 
Pathfinding. Each system requires the consideration of their human counterparts to set up.
Illustrated by Author.

Sensory System Decision Logic

HUMAN BEHAVIOURS

Pathfinding
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Crowds Humans

Sensory System

Decision Logic

Pathfinding

Agents Crowd 
Simulation

ANALOG DIGITAL

Figure 2.3.3	 Analog to Digital
By breaking down the complex analog system of human crowds into its fundamental 
elements and rules, they become simple enough to be translated and approximated 
by machine logic. Then by reintroducing these agents back into the virtual space, it 
becomes possible to rebuild the crowd system from the bottom up.
Illustrated by Author.
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Pathfinding
The Pathfinding system determines how these agents move within the 
simulation. If they decide to go to a door, how do they walk over? If there are 
other people in the way, how do they avoid them? If there are walls, how do 
they not bump into them? While this system is the most technical and dynamic 
of the three—as it deals with real-time calculations due to environmental 
inputs—it is also the most well-established, as it can be described relatively 
intuitively by Craig Reynolds’ description of the three layers of motion: action 
selection, steering, and locomotion. These steps, much like the human systems 
defined earlier in this chapter, are hierarchal and feed into the next. 

Locomotion
The bottom level contains Locomotion, which is the method by which 
the vehicles move to their goals. There are many ways to calculate this 
in machine logic, but relating back to the physical world, its kinematics 
can be broken down into position, velocity, and acceleration.[2] In 
programming, these can be expressed by vectors, which can be 
defined as entities that have both magnitude and direction.[3] These 
vectors can be thought of as the difference between two points, and 
can be used to describe the location and movement of autonomous 
agents within the virtual space.[4] (Fig. 2.3.4 - 6) This virtual space, 
much like the physical world, can be understood in the three spatial 
dimensions of x, y, and z. As such, these vectors can be broken down 
in the same way to describe the agent’s relation within virtual space. 
By familiarizing oneself with these vectors, and their relations within 
these spatial dimensions, one can begin to calculate and manipulate 
these vectors to establish a variety of possible functions.[5] (Fig. 2.3.7 
- 11) 

From this model, it is then possible to describe position with a vector 
that determines a point relative to the origin, whereas velocity can be 
described with a vector that determines a point relative to position 
(the rate of change of position), and acceleration can be described with 
a vector that determines a point relative to velocity (the rate of change 
of velocity). To utilize these vectors in this way, one can add them into 
one another to calculate the resulting position of the agent. In simpler 
terms, the software will take the following steps every frame to achieve 
motion:

1.	 Calculate Acceleration 

2.	 Add Acceleration to Velocity

3.	 Add Velocity to Position

4.	 Draw object at Position.

2	  “Displacement, Velocity, Acceleration,” NASA, accessed August 4, 2019, https://www.grc.nasa.gov/
www/k-12/airplane/disvelac.html.

3	  “Scalars and Vectors,” NASA, accessed August 4, 2019, https://www.grc.nasa.gov/www/k-12/
airplane/vectors.html.

4	  Daniel Shiffman, “Chapter 1. Vectors,” in The Nature of Code (United States: D. Shiffman, 2012), 
accessed October 17, 2019, https://natureofcode.com/book/chapter-1-vectors/.

5	  Shiffman, “Chapter 1. Vectors.”

Figure 2.3.4	 Vectors can be thought of as the difference 
between 2 points.
From Daniel Shiffman, “Chapter 1. Vectors,” in The Nature of Code (United States: D. Shiffman, 2012), 
accessed October 17, 2019, https://natureofcode.com/book/chapter-1-vectors/.

Figure 2.3.5	 Vectors can be described by 2 scaler variables.
From Shiffman, “Chapter 1. Vectors.” 

Figure 2.3.6	 Velocity vector updates position
This figure shows how adding a velocity vector to position vector 
calculates a new position vector for the agent to move to.
From Shiffman, “Chapter 1. Vectors.” 
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add() — add vectors

sub() — subtract vectors

mult() — scale the vector with multiplication

div() — scale the vector with division

mag() — calculate the magnitude of a vector

setMag() - set the magnitude of a vector

normalize() — normalize the vector to a unit length of 1

limit() — limit the magnitude of a vector

heading() — the 2D heading of a vector expressed as an angle

rotate() — rotate a 2D vector by an angle

lerp() — linear interpolate to another vector

dist() — the Euclidean distance between two vectors 
(considered as points)

angleBetween() — find the angle between two vectors

dot() — the dot product of two vectors

cross() — the cross product of two vectors (only relevant in 
three dimensions)

random2D() - make a random 2D vector

random3D() - make a random 3D vector

Figure 2.3.7	 A list of Vector operations that can be used 
within Processing. 
These operations can be defined by simple words within 
processing, but It is important to understand how these 
operations work to understand how to utilize them within 
the simulation.
From Shiffman, “Chapter 1. Vectors.” 

Figure 2.3.8	 Vector Multiplication 
It can be seen from this figure that multiplying a vector 
keeps its direction, but increases its length. As such, 
vector multiplication can be used as a way to scale the 
magnitude of vectors.
From Shiffman, “Chapter 1. Vectors.” 

Figure 2.3.9	 Vector Addition
adding two vectors together results in a new vector location that is the result of going along 
each vector individually. As such this can be utilized to update position by adding additional 
vector forces to it.
From Shiffman, “Chapter 1. Vectors.” 

Figure 2.3.10	Vector Subtraction
Vector subtraction can be used to calculate the distance between two points, which in turn 
have many uses within a crowd simulation, such as determining how far away an object is to 
the agent or calculating a vector that points from the agent to its goal.
From Shiffman, “Chapter 1. Vectors.” 

Figure 2.3.11	Vector Division 
Dividing a vector by a scalar value is similar to multiplying it, except its length is decreased 
instead of increased. Dividing a vector by itself will normalize a vector and result in a 
magnitude of 1. This normalized vector can then be scaled by multiplying the vector by a 
scaler variable in order to control how big a vector can become.
From Shiffman, “Chapter 1. Vectors.” 
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When the software runs, it is essentially re-rendering an object at the 
point of its location every time the frame is refreshed. This means a 
velocity of 0 would entail no change in location from the previous 
frame, and an acceleration of 0 would mean constant velocity. 
(Fig. 2.3.12) This trickledown effect produces non-linearity within 
vehicle movements, producing greater complexity within the system. 
While this non-linearity can provide life-like movements within the 
simulation, there is still a crucial aspect that needs to be considered for 
a crowd simulation. In the physical world, there are limits to forces- a 
ball does not instantly fall to the ground, vehicles do not instantly 
go from 0 to 100km/h, and humans do not instantly get from one 
location to the next. Therefore, an additional scalar variable is needed 
to represent that maximum speed. 

Although humans can move at a large range of speeds, they generally 
have a preferred speed that varies depending on personal factors such 
as value of time,[6] energetics,[7] biomechanics,[8] visual flow,[9] and 
exercise,[10] which in turn can be influenced by environmental or social 
factors such as temperature, “population size, economic conditions, 
and cultural values.”[11] This preferred speed can then be broken 
down into two main modes of locomotion: walking and running.[12] 
Walking is the slower of the two forms, with speeds ranging from 0.3 
to 2.0 m/s, whereas running is the faster state with speeds ranging 
from 2.0 to 5.0 m/s.[13] Of these two modes, walking is the generally 
more preferred mode due to its lower energy usage,[14] with running 
generally reserved for urgency and exercise. Considering this, it is 
then possible to utilize these general statistics as a starting point for 
setting the maximum speed to simulate a believable human crowd. 
While these various factors can all be utilized to calculate this scalar 
value, it would increase the complexity of the model substantially. As 
such, simply predefining an approximate number at this stage should 
suffice for conveying human motion. Translating this into machine 
logic is then a simple case of normalizing the velocity vector variable 
and multiplying it by the maximum speed scalar variable.

6	  Mark Wardman, “Public Transport Values of Time,” Institute of Transport Studies, University of Leeds, 
Working Paper 564 (2001): 1-56, accessed October 17, 2019, http://eprints.whiterose.ac.uk/2062/1/
ITS37_WP564_uploadable.pdf.

7	  R. Mcneill Alexander, “Energetics and Optimization of Human Walking and Running: The 2000 
Raymond Pearl Memorial Lecture,” American Journal of Human Biology 14, no. 5 (2002): 641-48, 
doi:10.1002/ajhb.10067.

8	  J. Maxwell Donelan, Rodger Kram, and Arthur D. Kuo, “Mechanical Work for Step-to-Step 
Transitions Is a Major Determinant of the Metabolic Cost of Human Walking,” The Journal of 
Experimental Biology 205 (August 2002): 3717-3727.

9	  Betty J. Mohler et al., “Visual Flow Influences Gait Transition Speed and Preferred Walking 
Speed,” Experimental Brain Research 181, no. 2 (2007): 221-228, https://doi.org/10.1007/s00221-
007-0917-0.

10	  Catrine Tudor-Locke and David R Bassett, “How Many Steps/Day Are Enough?,” Sports 
Medicine 34, no. 1 (2004): 1-8, https://doi.org/10.2165/00007256-200434010-00001.

11	  Robert V. Levine and Ara Norenzayan, “The Pace of Life in 31 Countries,” Journal of Cross-Cultural 
Psychology 30, no. 2 (1999): 201, doi:10.1177/0022022199030002003.

12	  Mohler et al., “Visual Flow Influences Gait Transition Speed and Preferred Walking Speed,” 221-
222.

13	  A. E. Minetti, “The three modes of terrestrial locomotion,” In Biomechanics and Biology of 
Movement, ed. Benno Maurus Nigg, Brian R. MacIntosh, and Joachim Mester (Human Kinetics, 
2000), 69-72.

14	  Alexander, “Energetics and Optimization of Human Walking and Running: The 2000 Raymond 
Pearl Memorial Lecture,” 641.

Figure 2.3.12	The relationship between distance, velocity, and acceleration
From “Motion Graphs,” accessed December 27, 2019, http://hyperphysics.phy-astr.gsu.edu/hbase/Mechanics/motgraph.html.
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Steering
The next level up is steering, which is the calculated force that is applied 
to the vehicle to tell it how it should move. The key word here is force, 
which in traditional Newtonian motion can be defined as a vector 
that causes an object with mass to accelerate.[15] Looking back at the 
steps in locomotion, it can be seen that step one requires a vector that 
represents acceleration to determine to location of the agent, therefore 
in this stage, it is imperative to find a way to calculate that acceleration. 

Shiffman relates this concept back to the physical world by 
investigating Newton’s second law of motion—which states that Force 
= mass x acceleration ()—and then solving for acceleration, producing 
the formula: acceleration = Force / Mass. From this, Shiffman remarks, 
“Now, in the world of Processing, what is mass anyway? Aren’t we 
dealing with pixels? To start in a simpler place, let’s say that in our 
pretend pixel world, all of our objects have a mass equal to 1. F/ 1 
= F. And so: A = F.”[16] This makes sense in the context of a crowd 
simulation, as the calculated force is a translation of behavior, and not 
a relation to the object’s mass—such as gravity. What this means is 
that to calculate the acceleration vector in locomotion, one must first 
calculate a steering force that can be added to the acceleration vector. 

This steering force can be an accumulation of many forces within the 
system and can represent many things, ranging from wind to friction 
to gravity, etc. depending on the simulation. While these forces 
can seem complex, Craig Reynolds developed a simple formula to 
calculate the steering force within these models:[17] (Fig. 2.3.13 - 14)

Steering Force = Desired Velocity – Current Velocity

This formula then requires two variables: the desired velocity and the 
current velocity. The current velocity can already be derived from the 
last frame of locomotion; therefore, the critical part of this calculation 
is determining the desired velocity. This is a vector that points from 
the agent’s current position to the target position, therefore it can be 
calculated by the formula:[18] (Fig. 2.3.15)

Desired velocity = Target Position – Agent Position

Vectors as stated earlier are entities that have both magnitude and 
direction. With these two equations in place, the direction of the 
steering force can be calculated. One thing to keep in mind, however, 
is the magnitude of such forces. Much like how humans do not 
instantly get from one location to the next, they also do not instantly 
turn from one direction to another. As such, this stage will require 

15	  “Newton’s Second Law,” NASA, accessed August 4, 2019, https://www.grc.nasa.gov/www/k-12/
airplane/newton2.html.

16	  Daniel Shiffman, “Chapter 2. Forces,” in The Nature of Code (United States: D. Shiffman, 2012), 
accessed October 17, 2019, https://natureofcode.com/book/chapter-2-forces/.

17	  Shiffman, “Chapter 6. Autonomous Agents.”
18	  Shiffman, “Chapter 6. Autonomous Agents.”

Figure 2.3.13	The calculated opposing Steering force, when added to current 
velocity, will bring it closer to desired velocity
From Daniel Shiffman, “Chapter 6. Autonomous Agents,” in The Nature of Code (United States: D. Shiffman, 2012), accessed 
October 17, 2019, https://natureofcode.com/book/chapter-6-autonomous-agents/.

Figure 2.3.14	The steering force is pushing down on the vehicle to steer it towards 
desired velocity
From Shiffman, “Chapter 6. Autonomous Agents.”

Figure 2.3.15	Desired velocity can be calculated by obtaining the Vector distance 
between the vehicle position and agent position
From Shiffman, “Chapter 6. Autonomous Agents.”

Figure 2.3.16	We must then limit this distance vector to obtain our desired velocity 
so our vehical, or human, can’t move too fast
From Shiffman, “Chapter 6. Autonomous Agents.”

Figure 2.3.17	How Max force can affect radius
From Shiffman, “Chapter 6. Autonomous Agents.”
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a scalar variable that defines maximum force to limit the forces that 
steer these agents. (Fig. 2.3.16 - 17) This, along with the maximum 
speed defined from the last stage, creates the limits within the system 
that helps define the agents as humans within a crowd.

Setting this maximum force is not as straightforward as the maximum 
speed; in reality, humans in normal locomotion are steered by intent 
rather than forces. What this means is that this way of fabricating 
locomotion by calculating the steering force is simply a way of 
simulating the intent of the agents among the simulation; a way of 
translating human intent into numbers. These forces may exceed 
human limits if it represented things such as hurricane winds, or falling 
due to gravity, but if this model is utilizing forces as a representation 
for human steering, then it is logical to limit them as such. In doing 
so, acquiring this maximum force-defining number becomes a matter 
of trial and error to find a variable that portrays realistic movements 
of human steering.

Once these limits are set, one can begin manipulating the magnitudes 
of these vectors to create both attraction and repulsion forces of 
varying strength. In doing so, it becomes possible to create algorithms 
for simple actions such as seek and flee, to more complex actions 
such as collision avoidance, object avoidance, path following, arrival 
behaviors, as well as the three rules of flocking, all of which can be 
calculated into a steering force and accumulated into the current 
acceleration.[19] (Fig. 2.3.18 - 20)

Action Selection
The last level of defining pathfinding is the action selection, where the 
agents decide what actions to take depending on their desires. These 
actions are ultimately what calculates the final steering force vector 
every frame; therefore, this layer requires the most consideration for 
defining the simulation model of the system. Until this point, other 
than the human limits, the basic calculations from locomotion and 
steering are to a degree universal and can be applied to many types of 
simulation models. (Fig. 2.3.21) Therefore, at this stage, it becomes 
important to determine the elements that define this system as a crowd 
simulation. 

While many of the actions mentioned in the last section (steering) 
may pertain to crowds, it is the manner in which to apply them that 
matters. The particles in a water simulation might only ‘desire’ that 
they do not occupy the same space as another particle, therefore, they 
would utilize functions for collision avoidance; the planets within a 
solar system simulation might desire attraction to the other planets 
while keeping their current momentum, therefore, they would utilize 
functions such as seek to calculate their trajectory; the vehicles in a 
traffic simulation might desire to follow a path as well as not collide 
with other vehicles, in which case they might utilize a combination 
of functions for path following and object avoidance. Compared to 
these examples, however, the people within a crowd simulation carry 
another layer of complexity. People generally have goals that they want 

19	  Shiffman, “Chapter 6. Autonomous Agents.”

Figure 2.3.18	The 3 rules of flocking is defined by Reynolds as Separation, Alignment, and Cohesion 
From Shiffman, “Chapter 6. Autonomous Agents.”

Figure 2.3.19	Arriving behavior once they get to a 
certain distance from target location
From Shiffman, “Chapter 6. Autonomous Agents.”

Figure 2.3.20	Avoiding walking into walls
From Shiffman, “Chapter 6. Autonomous Agents.”

Figure 2.3.21	These same forces are useful in other types of simulations as well, such as planetary 
motion
From Daniel Shiffman, “Chapter 2. Forces,” in The Nature of Code (United States: D. Shiffman, 2012), accessed October 17, 2019, https://natureofcode.com/book/chapter-2-
forces/.
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to achieve on top of their instinctive desires, thus one would need to 
utilize a plethora of functions to calculate a final velocity vector that 
determines their movement. 

To define action selection within a crowd simulation, one must first 
identify the individual goals and desires of the people that make up 
the crowd. These goals and desires will change based on the location 
and type of space that the person is occupying, but at this stage of 
prototyping, it is possible to simply define some generic desires as a 
starting point to approximate human behavior. From here, it is then 
possible to add in other desires as the conditions change and require 
it. These can be separated into conscious goals and subconscious desires, 
which can in turn be calculated separately and added to the individual 
acceleration vectors of the agents. At the conscious level, they might 
have goals such as reaching a destination, doing a task, meeting 
someone, or any combination of these, but at the subconscious level, 
these people may desire to do their task without walking into objects 
such as walls, furniture, or other people.

While action selection is mainly responsible for this unconscious level 
of obstacle interaction, both levels of desire can be influenced by factors 
such as stress, energy, and comfort. An example of such an influence 
would be how people might consciously choose to sit down if their 
energy level is low, but they might also subconsciously take a longer 
route there to avoid higher traffic areas. The correlation between these 
attributes and conscious goals are quite clear but becomes less obvious 
when dealing with subconscious desires. In order to better understand 
the influence of these attributes, one can investigate proxemics, which 
is the study of human spatial requirements, and its effects on behavior 
and social interactions. Edward T. Hall coined this term in 1963 in 
his book The Hidden Dimensions, in which he explores social and 
personal spaces and man’s perception of it. Here, he divides spaces 
into four distinct regions, defining the interpersonal distances of 
man.[20] (Fig. 2.3.22)  Examining these four zones, it can be inferred 
that the inner zones have a higher role in the subconscious desires of 
object and people avoidance, whereas the outer zones have a higher 
role in the conscious desires of tasks and goals. The space within these 
two inner zones is called personal space, which can be described as a 
space around a person they associate as theirs. Entering such spaces 
often indicates familiarity, therefore, it is logical to assume that most 
individuals prefer to be able to control these spaces, and that in an 
unfamiliar crowded public realm, preserving personal space becomes 
an important desire. 

This notion of personal space is a useful consideration not only in how 
it influences human behavior but also how easily it can be described by 
scalar variables as distances around the person. With this deduction, 
one can utilize these defined personal distances as a radius in which 
the agents can interact within the simulation. Translating this into 
machine logic, it can be coded that when another agent or object goes 
within the agent’s personal space, a steering force will be calculated 
in the opposite direction to steer them away, or towards the other 

20	  Edward T. Hall, The Hidden Dimension (Garden City, NY: Doubleday, 1966), 107-122.

Figure 2.3.22	Edward T Hall’s Interpersonal Distances of man
By WebHamster, “File:Personal Space.svg,” Diagram Representation of Personal Space Limits, According 
to Edward T. Hall’s Interpersonal Distances of Man, March 8, 2009, Wikimedia Commons, accessed 
December 25, 2019, https://commons.wikimedia.org/wiki/File:Personal_Space.svg.

Figure 2.3.23	We can use these defined personal spaces to determine 
the area around the agent in which they will be affected
From Shiffman, “Chapter 6. Autonomous Agents.”

Figure 2.3.24	Utilizing Fleeing behaviour to avoid other agents that 
may have entered the Agent’s personal space
From Shiffman, “Chapter 6. Autonomous Agents.”
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agent to interact with them, or anything in between depending on 
the objective. Simply put: if distance is less than r, apply force. (Fig. 
2.3.23 - 24)

This basic distance-based calculation, while simple, is enough to set 
a rule where agents have a higher urge to avoid something the closer 
they are to it, emulating a behavior in the physical world where people 
gradually move to avoid something they see in the distance, but move 
much more quickly if they’re about to walk into it. This can also cover 
physical behaviors, such as congestion when the space around the 
agent becomes limited. (Fig. 2.3.25) In the future however, one can 
consider additional levels of calculation; instead of a direct distance-
to-force correlation, this distance data—which itself can be influenced 
by geography and culture—can instead be used to drive attributes 
such as comfort and stress, which in turn, can be used to manipulate 
the acceleration force that drives the agents. This additional level 
of inference can introduce even more complex behaviors, such as 
leaving if it becomes too uncomfortable, or subconsciously choosing 
the lowest stress path towards their goal as they are moving. For this 
prototype, however, simple distance-based calculations should be 
enough to portray simple crowd movements at a macro scale.

With these three steps of Action selection, Steering, and Locomotion, 
one can create a basic pathfinding system. This gives the agents a 
means of navigation, allowing them to avoid various elements within 
the simulation. (Fig 2.3.26)

Figure 2.3.25	Crowd density vs crowd flow rate graph
This crowd density vs crowd flow rate graph shows one example of how one might establish a correlation 
for the personal spaces that drives the pathfinding of these agents. 
From Keith Still, “Static crowd density (general),” Crowd Safety and Risk Analysis, accessed December 27, 2019, http://www.gkstill.com/Support/crowd-density/
CrowdDensity-1.html.
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Figure 2.3.26	Pathfinding flowchart
Illustrated by Author.
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Figure 2.3.27	Canadian census info-graphic breaking down the population into percentages
From Statistics Canada, “Journey to Work, 2016 Census of Population,” November 29, 2017, Government of Canada, accessed December 27, 2019, 
https://www150.statcan.gc.ca/n1/pub/11-627-m/11-627-m2017038-eng.htm.

Decision Logic
After establishing the foundation that is the pathfinding system, the next 
step is to build upon it by establishing the decision logic system. This system 
determines how the agents choose their actions within the simulation and is 
responsible for providing the main steering force of directing where the agents 
need to go. While the previous section investigated how action selection 
within locomotion dealt with the subconscious in-the-moment calculations 
of deciding which way to turn to avoid an upcoming obstacle, this current 
section will investigate how the decision logic deals with the conscious overall 
goal of the agent within the space. In doing so, the agents can acquire a sense 
of objective instead of mindlessly walking around the space.

The first step is to establish the method by which the agents can decide, which 
at the simplest form, can be defined by a series of logic gates within a decision 
matrix, composing of yes and no outcomes. These gates are created by utilizing 
if/else statements within the programming language and can be controlled 
using probability by generating a number between 0 and 100. This makes it 
possible to define actions based on percentages, which allows for the injection 
of non-uniformity with simple inputs. While this method may seem crude 
in simulating individual human decisions, it is important to remember the 
complexity that comes with human decisions and acknowledge “there are 
certain phenomena and events in any environment where we have to consider 
them as random because we simply have no better way of characterizing 
them.”[21] The validity of this approach is further supported within Design 
and Use of Computer Simulation Models, where they state that “most situations 
in the real world have stochastic (randomly varying) properties because of 
real (or assumed) ignorance of details. Sometimes these properties must be 
modeled explicitly, but it is often sufficient to model situations as if they were 
deterministic by using expected values of the variables.”[22]

Furthermore, the observation that individually can break down in larger 
crowds means that populations can often be broken down into percentages 
as well. The Canadian Census is a good example of this concept, in which 
the population is broken down by categories and numbers. (Fig. 2.3.27) It is 
shown here that in 2016, Canada had an employment rate of around 61%,[23] 
with 74% of Canadians driving to work and 12% using public transit.[24] With 
this, a simple city-sized traffic simulation might be created where each agent 
would have a 61% chance of going to work, with a 74% chance of using a car 
and 12% of taking transit. Even with each individual only utilizing one form 
of transportation, the overall simulation will behave like a collective city. This 
is in line with Sokolowski and C. Banks’ points, where they stated, “Random 

21	  John A. Sokolowski and Catherine M. Banks, Principles of Modeling and Simulation: A 
Multidisciplinary Approach (Hoboken, NJ: John Wiley, 2009), 36.

22	  James R. Emshoff and Roger L. Sisson, Design and Use of Computer Simulation Models (New York: 
MacMillan Etc., 1976), 13.

23	  “Labour Force Characteristics, Monthly, Seasonally Adjusted and Trend-Cycle, Last 5 Months,” 
Statistics Canada, accessed October 17, 2019, https://www150.statcan.gc.ca/t1/tbl1/en/
cv.action?pid=1410028701#timeframe.

24	  “Journey to Work, 2016 Census of Population,” Statistics Canada, November 29, 2017, accessed 
October 17, 2019, https://www150.statcan.gc.ca/n1/pub/11-627-m/11-627-m2017038-eng.htm.
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event refers to occurring without a recognizable pattern. Random events can be 
represented by statistical distributions that allow one to simulate these seemingly 
random occurrences.”[25]

This is, of course, only one example of utilizing population percentages within a 
crowd simulation. Different locations and cultures will need different studies, and as 
such, it is impossible to accommodate all scenarios. This method of using probability 
within decision making, however, can be utilized at varying degrees of scale and 
accuracy, meaning the actual numbers of probability does not need to be 100% 
accurate to create a believable decision within a crowd. Without doing extensive 
population studies, logical assumptions can still be made to supplement these 
variables. This means that at this stage of prototyping, it is possible to use simple 
logical assumptions based on previously-studied crowd behaviors as a starting point. 
It then becomes possible to generate probability variables and tweak it as required 
based on the element within the system. For instance, within a gallery, it can be 
assumed that larger displays will attract more attention than smaller displays; within 
a shopping center, it can be assumed that larger or more general stores will attract 
more attention than smaller or more niche stores; within a train stations, it can be 
assumed that trains heading to downtown will attract more people than trains going 
to the suburbs as a function of the time of day. While the resulting crowd might 
not be as accurate as ones made with specific population studies, it will still have 
enough nonlinearity to establish emergence within the system, allowing it to pass as 
a believable visualization for architectural design.

These probabilities can be further manipulated by variables such as object distances, 
attraction, and crowding, as well as agent energy, comfort, goals, and hunger. For 
example, “[c]ognitive processing theories predict that people who move quickly are less 
likely to find time for social responsibilities, particularly when those responsibilities 
involve strangers.”[26] As such, one of these variables could be correlated to their 
walking speed, where a faster speed would reduce the chance of the agent interacting 
with others. While these additional variables are not mandatory at larger scales to 
create realistic crowds, the consideration of each additional variable would provide 
added complexity and realism at the smaller scale to each individual agent within the 
system. It is, however, not feasible to implement all these considerations at this stage 
of initial prototyping, thus it is important to be selective and focus on implementing 
the more notable ones—such as object distance and crowding. (Fig. 2.3.25) The 
notability of these two particular variables comes from the fact that they relate to 
agent densities. By prioritizing this on the microscale, it is possible to improve agent 
movements within higher traffic spaces on the macro scale. This in turn smooths 
movement flows within the simulation.

Taking all this into account, the decision logic becomes like a probability-based 
choose your own adventure game for the agents. If you are in a room with a door and 
a chair, do you go to the chair? Or do you go to the door? If you choose the door, 
what do you do in the next room? (Fig. 2.3.28 - 29) Each person might choose 
something different, and while it may be impossible to know what each person will 
choose, through the choices of many agents, the overall system will reflect a scenario 
where a certain percentage of the population may choose the chair while another 
25	  Sokolowski and Banks, Principles of Modeling and Simulation: A Multidisciplinary Approach, 49.
26	  Levine and Norenzayan, “The Pace of Life in 31 Countries,” 200.

percentage may choose the door. In an average population there will be a certain 
percentage of people who would choose A, another percentage would choose B, 
and yet another that would choose C. Depending on what these choices represent, 
some of them might have a higher probability of being chosen compared to others. 
None of these choices are right or wrong, but instead are utilized as a way of creating 
distributions within the crowd in order to inform the decision-making process. This 
is the potential of distributed agents; by simplifying these choices into percentages 
on the individual scale, the illusion of choice is created for the individual and the 
illusion of complexity is created within the collective. 

70%

30%

Figure 2.3.28	If you are in a room with a door and a chair, do you go to the chair? Or 
do you go to the door?
Illustrated by Author, chair and door graphics taken from “STEFAN Chair - Brown-Black,” IKEA, accessed December 28, 2019, https://
www.ikea.com/ca/en/p/stefan-chair-brown-black-00211088/, and “ReliaBilt Colonist Primed 6-Panel Hollow Core Molded Composite 
Pre-Hung Door (Common: 30-in x 80-in; Actual: 31.5625-in x 81.6875-in),” Lowe’s, accessed December 28, 2019, https://www.lowes.

Figure 2.3.29	A decision Tree based on percentages
By Chooseco, from Sarah Laskow, “These Maps Reveal the Hidden Structures of ‘Choose Your Own Adventure’ Books,” June 13, 2017, 
Atlas Obscura, accessed December 27, 2019, http://www.atlasobscura.com/articles/cyoa-choose-your-own-adventure-maps.
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Sensory System
The last system to establish is the sensory system, which allows the agents to 
collect input data from the environment, similar to how humans can perceive 
their surroundings. This system functions at the highest level of the human 
systems and is responsible for generating a list of available elements to choose 
from within the space before deciding which task to perform within the 
decision logic system.

The five traditional senses of the human body consist of sight, hearing, taste, 
smell, and touch.[27] Of these five senses, however, the most utilized sense 
in typical crowd navigation is undoubtedly sight. This is evident when one 
considers that while most people would have little trouble walking around 
with headphones on, they would find it much more challenging with their eyes 
closed. For this reason, this prototype will mainly utilize sight for obtaining 
information for the agents within their virtual environment. While there are 
benefits in adding other primary motivators (such as sound-based navigation 
for visually-impaired occupants), it is beneficial to keep the systems simple at 
this proof-of-concept prototyping stage. Much like other aspects, additional 
senses can be introduced later depending on the project and the medium 
being utilized for visualizing said project.

Recalling the introduction of autonomous agents in Chapter 2.2, one of the 
main concepts is that they have a limited ability to perceive the environment. 
Therefore, it is time once again to define some human limits for the system. A 
quick investigation reveals that “the visual field of a normal human eye measures 
(from point of fixation) 100 degrees temporally, 60 nasally, 75 superiorly and 
60 inferiorly. Binocular (using both eyes) visual fields are approximately 200 
degrees wide and 135 degrees tall, with a region of binocular overlap that is 
120 degrees wide.”[28] (Fig. 2.3.30 - 31) These angles can be translated to 
machine logic by utilizing the dot product, which allows the acquisition of 
the angle between any two vectors. In doing so, an if/else condition can be set, 
where only objects within a certain angle of the agent’s line of sight will be 
added to the list of available elements. (Fig. 2.3.32) 

Once a list of objects that the agent can see is acquired, the agent will then 
need to differentiate what those objects are. When an agent sees a door, they 
might be attracted to it, whereas when they see a wall, they might try to 
avoid it. This is of course highly situational to the intended purpose of the 
space; objects within a gallery will attract people as it can be assumed that 
people came to see them, whereas advertisements at a train station might have 
less attraction since they are not the main purpose of the space. Similarly, an 
emergency door might not attract people until there is an emergency, whereas 
a highly ornate wall might attract people even though they cannot go through 
it. Nevertheless, due to these varying requirements, defining categories such 
as walls, thresholds, people, and architectural elements becomes necessary. In 

27	  A. Chapanis, “Review of the Human Senses,” Psychological Bulletin 51, no. 1 (01, 1954): 100-101, 
doi:http://dx.doi.org.proxy.lib.uwaterloo.ca/10.1037/h0050962.

28	  Gislin Dagnelie, Visual Prosthetics: Physiology, Bioengineering and Rehabilitation (New York: Springer, 
2011), 398.

Figure 2.3.30	Human Visual Limit- Top View
From “Environmental Considerations and Human Factors for Videowall Design,” Extron, 
accessed December 28, 2019, https://www.extron.com/article/environconhumanfact.

doing so, the agents will be able to differentiate between the type of object they 
are seeing and calculate an action accordingly. The agent will undoubtedly see 
many elements at once, therefore, the ability to distinguish between these 
objects will allow it to better choose which element they want to interact with. 

The next step is to then identify and categorize the various elements within the 
simulation system. Once this is done, individual IDs can be assigned to each 
class of entities, where other descriptive variables can be assigned to further 
customize these elements depending on their functionality within the space. 
These objects will require customization for each design instance as a function 
of the purpose of the space, which will be discussed further in the next chapter 
(2.4) of this thesis.
 

Figure 2.3.31	Human Visual Limit- Side View
From “Environmental Considerations and Human Factors for Videowall Design.”

Figure 2.3.32	Sensory limit within simulation
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Figure 2.3.33	Human systems flowchart
To summarize, the sensory system allows the 
agent to see the environment, the decision 
logic allows them to choose an action, and the 
pathfinding allows them to perform said action. 
By having many of these Humans interacting 
with each other within the simulation, we 
produce the illusion of a crowd.
Illustrated by Author.
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Chapter 2.4 | Spatial Functions
With the emergence of interactive and dynamic architecture, the occupants 
are no longer the only possible dynamic elements within the space. The 
human systems model that was established in the previous chapter (2.3) may 
have been adequate for visualizing conventional static spaces, but would not 
suffice in fully visualizing dynamic spaces, where elements of the space can 
also change position or level of attraction. Since these interactive spaces are 
dynamic, one must account for this and find a way to translate these dynamics 
into a logic that the machine can understand. As such, much like for human 
behaviors in the last chapter (2.3), the goal of this chapter (2.4) is to unpack 
the methodologies for simulating these dynamic spaces and how they can 
function within the virtual space. 

As mentioned in Chapter 1.1, dynamic spaces can utilize both simple 
passive elements such as water and sand features, as well as more complex 
computational elements such as elevators, motorized louvers, and sensors. 
While these spaces do not necessarily require computation and mechatronics 
to be dynamic, the integration of such technologies greatly increases the 
possibilities of spatial utilities within the space. These systems can incorporate 
many elements with sensors and motors to create features that can respond 
to natural forces, occupants, as well as operate on repetitive patterns. These 
features can come in the form of projections on walls to motorized doors to 
raising floors and ceilings, or anything else that designers can dream of, all of 
which has the potential to communicate with one another, and at a multitude 
of scales ranging from a single system imbedded within a room to networks of 
subsystems that can span entire cities. 

The typology of these elements can be very diverse, and is becoming even 
more so with the addition of data-driven computational systems within 
infrastructure. The problem with this intrinsic diversity is that it causes 
complications in simulating these objects, as the variety of functions makes it 
challenging to develop a singular system that works for every scenario. Since 
each object can potentially have a different function, the software that controls 
them in the physical world would need to be customized and tailored to each 
specific instance, meaning that this logic would then need to be recreated 
within the simulation model depending on the functionality and utility of the 
object. As such, one cannot use the same code for every element, but instead 
must create a generic model and tailor to the functionality of the object, the 
typology of the space, and the specific scenario of the simulation. While it is 
true that this might make it more challenging to find a universal system that 
works for every scenario, one can overcome this by simplifying its processes 
into parts. Much like the process of establishing the human systems in the last 
chapter (2.3), one can create a framework where functionalities can be added 
depending on the typology and functionality of the space and its elements.

A basic understanding of these systems is required to create this framework—
specifically on how they work and what these resulting spaces may entail. 
In Mike Crang and Stephen Graham’s article, “Sentient Cities Ambient 
intelligence and the politics of urban space,” they talk about three different 
typologies in which an urban environment can become automated through 
ubiquitous computing systems.[1]

Augmenting space relies on the fact that the existing environment 
has already been saturated with information. Computing systems 
can utilize this physical information using sensors and tracking to 
overlay new digital media on top of the existing structures. This 
allows users to both see the physical world as well as the dynamic 
graphical information of the virtual world. This produces a 
reactive environment where emphasis is placed on the user’s 
activity.

Enacting space relies on the fact that computation inhabits 
everything around us, ranging from the things we carry on our 
bodies, to the cars on the streets, to the infrastructures of our 
cities. Unlike augmenting space, which emphasizes the user’s 
activity, this approach further utilizes intermediary processes, 
which reallocates agency back to the environment. This allows 
the computer system to suggest through the interaction of space 
or the display of data.

Transducing space relies on the digitalization and identification 
of people, where the layering and cross-referencing of identities 
allow the system to form a technological consciousness through 
the automation of data without cognitive inputs. This type of 
space can recognize its occupants and allow for autonomous tasks 
but comes at the cost of user awareness and user agency.

It is evident that these approaches all utilize data in some form. Environments 
have always been saturated with information in the forms of signage and 
the existence of occupants and objects, but it has only been recently that 
technology has begun to utilize this information by converting it into digital 
data with various sensors, cameras, and machine vision. This translation of 
analog-to-digital allows us to blur the boundary between the physical and the 
virtual, which not only provides greater flexibility in data utilization but also 
allows us to redefine spatial functionalities by creating homogeneous spaces 
of technological integration. By manipulating this data in different ways, it is 
possible to influence the distribution of agency within the space, which can in 
turn affect spatial operation in unforeseen ways.

1	  Mike Crang and Stephen Graham, “Sentient Cities Ambient Intelligence and the Politics of 
Urban Space,” Information Communication and Society 10, no. 6 (2007): 792–794, https://doi.
org/10.1080/13691180701750991.
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This redistribution of agency presents the concept of architectural 
consciousness, which can result from emergence introducing unpredictability 
within the architectural space. It has been shown that it does not take much 
to infer a sense of consciousness in humans, as the human brain has been 
wired to see patterns and relate to them. (Fig. 2.4.1) As such, when a space 
becomes unpredictable, humans instinctively try to create their own patterns 
from what they infer from the environment. This phenomenon can be seen 
in the installation “Fearful Symmetry” by Ruairi Glynn, which consists of 
a moving light that interacts with the public using sensors.[2] (Fig. 2.4.3) 
Through intermediary processes between the human interactions and the 
movement of light, the illusion of personality is given to the object, blurring 
the line between the conscious humans and the unconscious objects. In Fox’s 
words, “as we embrace a world in which the lines between the physical and the 
digital are increasingly blurred, we see a maturing vision for architecture that 
actively participates in our lives.”[3]

If something as simple as a light can infer consciousness to the occupants, 
imagine the potential ramifications when these dynamic objects are connected 
to a network and gain the capacity to communicate with each other. Within 
such a space, the boundary between the occupants and the architecture break 
down as agency is exchanged through interaction. Not only do humans 
have an identity, but the objects have an identity as well. Since everything is 
connected, the system has the capacity to know not only where the user is but 
also where the object is. Because of this, the system can catalog datasets of user 
identity as well as object identity. It is then possible to consider the implications 
of a collective identity, where a database of memory can track the history of 
every object and user within the system. (Fig. 2.4.2)

As current infrastructures become increasingly intelligent, new considerations 
for identity as well as agency becomes increasingly relevant. This city of 
distributed intelligence then becomes the container of the identities of both 
human and objects alike. While not all systems will be this extreme, it is 
important to accommodate for this within the simulation model to maximize 
the variation that can be supported by the framework. A sensory based system 
will function differently than an identity-based system, as such it becomes 
important to consider these aspects when creating the overall system, as they 
have much impact on the space’s overall function. 

This idea of a collective identity also presents an interesting proposition in 
replicating these results within this simulation. Having a database of history for 
not only the objects, but the users as well, means that the physical world begins 
to operate much like the virtual world, which allows a more direct approach to 
simulating these spaces. By utilizing these identities to track, categorize, and 
organize the various entities within the space, a system of interactions can be 
created within the simulation, which further blurs the boundary of human 
occupants and dynamic objects. As these dynamic architectural elements 
become increasingly similar to the human crowds that occupy these spaces, 
2	  Ruairi Glynn, “Fearful Symmetry,” accessed October 18, 2019, http://www.ruairiglynn.co.uk/

portfolio/fsymmetry/.
3	  Fox, Interactive Architecture: Adaptive World, 9.

Figure 2.4.1	 The face on mars
Although simply a rock formation, bears 
resemblance to a human face due to our 
tendencies of seeing patterns within nature. 
This is known as Pareidolia, which is also 
what causes us to see shapes in the clouds.
From “Unmasking the Face on Mars,” NASA Science, accessed 
December 28, 2019, https://science.nasa.gov/science-news/science-at-
nasa/2001/ast24may_1.

Figure 2.4.2	 Google Maps
Google maps is one example of how 
collective identities within a system 
can influence physical spaces. It utilizes 
datasets of maps and users to generate real 
time traffic navigation overlayed ontop of 
updated maps. While entirely digital, it has 
the capacity to influence the physical flow 
of traffic through its distribution of digital 
information to the general population. This 
changes people’s behaviors, which in turn 
allows the virtual platform of information 
to indirectly influence various physical 
platforms of the city.
Google Maps Android application, screen-captured by Author.

Figure 2.4.3	 Fearful Symmetry by Ruairi Glynn
By Ruairi Glynn, “Fearful Symmetry,” accessed October 18, 2019, http://www.ruairiglynn.co.uk/portfolio/fsymmetry/.
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one can revisit the methodologies from establishing the human systems in 
Chapter 2.3 and adopt a similar mindset for simulating these objects. This 
approach allows the adoption of a framework for establishing the entities 
within the system regardless of what typology they may be, whether they are 
the human agents or the architectural objects.

Revisiting the human systems in Chapter 2.3, it can be seen that they are based 
on the concept of autonomous agents, which are defined by their limited 
ability to perceive the environment, their ability to process the information 
from its environment to calculate an action, and their lack of a leader. While 
these three rules all applied to autonomous human crowds, the third rule of 
lacking a leader does not necessarily need to apply to these dynamic objects, 
as they can be programmed to follow a leader if need be. This leaves us with 
the first two rules, which are the limited ability to perceive the environment 
and the ability to process the information to calculate an action. This can be 
broken down further into the basic stages of an input, processing, and an 
action, which allows the deduction of how these systems can be manipulated 
by relating it back to the three human systems that were established within 
Chapter 2.3. 

The input, which is functionally similar to the sensory system of the 
human, determines how the object can perceive the environment 
and what kind of trigger necessitates an interaction from the 
object. This data can be obtained from various sources such as the 
occupants, the environment, or self-generated from algorithms, 
and can be stored as variables for use in the processing stage.

The processing, which is functionally similar to the decision logic 
of the human, determines how the object might utilize the data 
if it has to decide on an action. Within this stage, data is utilized 
to manipulate variables depending on the function of the object. 
This manipulation can be very flexible, ranging from nonexistent 
to space altering; where the input variable is unchanged and 
directly used within the output, to an algorithm where the color 
of a light can correlate to the number of occupants within the 
space.

The action, which is functionally similar to the pathfinding of 
the human, determines how the object might respond due to 
environmental and human contact. These are functions that 
utilize the processed variables to update the attributes of the 
object.

Simplifying this method into its basic stages helps to overcome the potential 
complexities that come with the varied typology of these objects. However, 
while this might be enough for simulating smaller spaces with a limited 
number of objects, for larger, more complex spaces, one will also need to 
account for the whole picture and investigate the organization and movement 
of data throughout the system. In Rob Kitchin and Martin Dodge’s book, 

Code/Space, they talk about software that is embedded in everyday life at four 
levels of activity, terming coded objects, coded infrastructure, coded processes, and 
coded assemblage.[4]

Coded objects rely on software to function, which can include 
credit cards to flash drives to phones. This is the most personal 
level of activity since most objects on this level belong to the 
user. As such, they offer a primary source of identification as the 
user travels throughout the environment. Examples of this can 
be observed in credit cards and how they contain identification 
to bank accounts, or how phones can contain various forms 
of personal information ranging from e-mail accounts to GPS 
locations to microphone recordings. This is also the current 
main form of human computer interaction through electronic 
devices such as personal laptops or phones. This level of activity 
is important as it allows the most precise form of data collection 
in a distributed system, where the identification of the object is 
essentially the identification of the human.

Coded infrastructures are networks that can link coded objects 
together. They are an infrastructure that can be monitored, 
regulated, or interactive. Unlike coded objects, these elements 
are mostly built within the environment, and as such need to be 
integrated directly into the design of the space. As these systems 
are largely physical elements that need to be incorporated into 
spaces, elements within this layer contain the main challenge 
of transitioning an existing space into an intelligent interactive 
space.

Coded processes are the transition of data across coded 
infrastructure. It acts as a technological unconsciousness that 
drives the hardware within everyday space. This invisible layer 
of data is only revealed through the inference of mechanical 
elements or the graphical visualizations of a user interface. It is 
because of this technological unconsciousness that allows these 
complex systems to function as well as to connect to each other.

Coded assemblages are where the convergence of multiple 
sources of coded infrastructure are present to create a nested 
system that is in parallel. These systems include automation of 
local spaces such as hospitals, warehouses, transportation, etc. 
where they essentially allow the organization of local spaces 
within the distributed intelligence as a whole. From this, they 
can form almost-closed systems with minimal input and output 
to minimize impact from external noise.

4	  Rob Kitchin and Matin Dodge, Code/Space: Software and Everyday Life, Software Studies (MIT 
Press, 2011), 5.
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By understanding the various levels of activity that are present within these 
dynamic spaces, one can begin to realize the different ways these objects can 
function not only individually but also together within a space of distributed 
intelligence. With this, all the required concepts of this framework are now 
established. As such, it is now possible to logically deduce the best way of 
simulating these spaces. 

A motorized window louver for example, can operate by time of day, where a 
rotation value is set by a specific time variable; by environmental temperature, 
where the louver communicates with other coded infrastructures such as 
temperature sensors to acquire a temperature variable; or by occupancy 
number, where the amount of people within the space can be determined 
either by coded infrastructure such as proximity sensors, or coded objects 
such as cellphones that the occupants are carrying. Within all three of these 
scenarios, the louver operates at the coded infrastructure level but has the 
option of utilizing different forms of coded processes as well as different 
forms of input to achieve a similar result. The dynamics of these louvers can 
arise as a pre-defined action or as a function of human and environmental 
interaction, where the output action can be as simple as defining a rotational 
degree variable, to additional deployment percentages, opacity, and any other 
attributes depending on the typology of the louver. 

This example is just one possibility, but in reality the typology of these objects 
can be limitless, ranging from lights, to projections, to mechatronics, to 
furniture, all of which may react to sound, temperature, ambient lighting, 
occupancy numbers and identities, or be simply pre-programed from a pattern 
or noise. As already discussed, this diversity poses a challenge for developing 
a singular method for simulating these objects, but fortunately, unlike human 
crowds where one must translate from analog behaviors to digital functions, 
these dynamic objects already operate on a code-based hierarchy. 

This digital to digital translation makes this a much simpler process compared 
to establishing the human systems from the past chapter (2.3). There is no 
longer a need to interpret analog behaviors to create a new system, instead, 
one can replicate directly the digital logic of the software that controls the 
dynamic objects in the physical world. Fox remarks on this by stating, “The 
sensors and robotic components are now both affordable and simple enough 
for the design community to access; and all of the parts can be easily connected 
to each other. Designing interactive architecture in particular is not inventing 
so much as understanding what technology exists and extrapolating from it 
to suit an architectural vision.”[5] What this means is that as long as one has 
a rough understanding of how these objects operate in the physical world, as 
well as considered the different urban typologies that may arise, as well as how 
these objects might be connected within a larger system through software, then 
one can simulate these objects by establishing its input, its processing, and its 
action. In essence, simulating these objects is less about developing a specific 
algorithmic model, but rather developing a methodology to understand and 
simplify these objects into their fundamental qualities.

5	  Fox, Interactive Architecture: Adaptive World, 12.

Therefore, when creating such an object, the steps can be as follows:

1.	 Determine its functionality, whether it is a louver, a light, 
or a piece of furniture. 

2.	 Assign attributes to the object that defines what it can do. 
A light might have an RGB variable as well as a brightness 
variable. A louver might have a rotational degree variable, 
to additional deployment percentages, opacity, and any 
other attributes depending on the typology of the louver. 
A reactive mechatronic sculpture might have a position 
variable along with lighting RGB and brightness, as well 
as a sensor that tracks the number of nearby people.

3.	 Consider its input, whether it is a human intervention 
such as a touch input from touchscreen, or proximity 
sensor, or sound; An environmental intervention such as 
temperature, daylighting, or air pressure; Or predefined 
algorithms such as a written message, or a generated 
pattern.

4.	 Consider its processing in relation to its attributes, whether 
it is a direct translation such as simply displaying the 
temperature on a medium, or if it utilizes intermediary 
processes such as generating a color and a location 
based on the number of occupants within a set space, or 
creating various profiles based on user identities within 
the building.

5.	 Consider its action/output, whether it is simply an object 
that can be moved, or if it lights up from a source, or if 
it projects onto a wall, or if it moves within a space, or if 
it deforms from interaction, or if it does all of these and 
more.

This same methodology can also be utilized to simulate some of the simpler 
elements mentioned in Chapter 1.1 such as a water fountain. Undisturbed, 
the fountain will have a pre-defined function to determine the state of its 
water texture within the environment. Upon a touch input by the occupants, 
however, it will utilize a function to generate ripples, in which it will output 
to the location of the touch input.
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Chapter 2.5 | Prototyping the System Model
Up until this point, the systems that were developed in Chapters 2.3 and 2.4 are 
still theoretical concepts of how behavioral patterns might be translated into 
machine logic and how that might interact with coded infrastructure. Now 
that all the major components of this methodology have been considered and 
developed, we can begin the technical exercise of coding these concepts within 
a simulation system to prototype and assess the validity of this approach. 

At this stage of prototyping, we can utilize Integrated Development 
Environments (IDEs), which are software applications that facilitate the 
development of software.[1] These programs generally include various tools 
built on top of a text-based source code editor to help maximize programmer 
productivity.[2] While there are many forms of IDEs with various degrees of 
technicality and flexibility, the Java-based IDE processing has been chosen for 
this prototype, due to its familiarity (since I have already used this software in 
previous elective courses) and its visual user interface (which better facilitates 
my learning process of computer programming). Because of these aspects, 
I can both assess the validity of these human systems to see if they work in 
practice as well as in principle while I familiarize myself with the fundamentals 
of computer programming, which will be an invaluable skill moving forward 
with the creation of this framework tool and in life.

Within the earlier chapters (2.3 & 2.4) we broke down the simulation into 
the autonomous human agents and static/dynamic architectural elements, 
where they can be further classified as different objects within the system. 
In computer science, this concept is known as object-oriented programming 
(OOP), where the code is organized based on defining individual objects 
to interact with each other within the system. As already suggested by the 
autonomous agents defined in Chapter 2.3: Abstracting the Human Systems, 
and the methodology specified in Chapter 2.4: Spatial Functions, these objects 
themselves can contain attributes in the form of variables that can be modified 
by functions in the form of procedures.[3] Following this approach then allows 
the objects to effectively represent real life entities, which in turn allows us 
to simulate a variety of entities ranging from fluid particles to autonomous 
human agents to both static and dynamic architectural elements, making this 
a highly appropriate method for prototyping such a simulation. 

While this prototype can be somewhat crude, it shows that the concept of 
these human systems is able to produce results somewhat resembling humans 
moving through the space, which demonstrates that there is merit in this 
methodology of simulating complex human crowds by these simple systems. 
(Fig. 2.5.1 - 2)

1	  “What Is an Integrated Development Environment (IDE)?,” Veracode, May 9, 2019, accessed 
October 18, 2019, https://www.veracode.com/security/integrated-development-environment.

2	  “What Is an IDE?,” Codecademy, accessed October 18, 2019, https://www.codecademy.com/
articles/what-is-an-ide.

3	  John Lewis and William Loftus, Java Software Solutions: Foundations of Program Design (Boston: 
Addison-Wesley, 2012), 44-51.

Figure 2.5.2	 Cushion invites people to walk through a narrow corridor. The light filled ballons change color as 
people interact with them.
Filmed by Author.

Figure 2.5.1	 Prototype 2D Simulation created in Processing, based on the Nuit Blanche Installation Cushion
CAD file from the Cushion group, simulated and screen-recorded by Author.



Part 3 | Tool Creation
Constructing the Simulation Tool



133

Constructing the Simulation Tool

This section will focus on translating the methodologies developed throughout Part 
2: Technical Research and integrating them within a game engine. Chapter 3.1 will 
investigate various types of game engines and the reasoning behind choosing a specific 
one. Chapter 3.2 will look into the fundamentals of the chosen game engine to 
establish what is required to create a crowd simulation tool within this new software 
environment. Chapter 3.3 will be focusing on creating the human agents within 
this simulation by re-establishing the human systems model that was defined in 
Chapter 2.3, as well as defining additional considerations and requirements inherent 
in moving to this new Game Engine software environment. Chapter 3.4 will be 
establishing different ways of creating various architectural objects that the human 
agents can interact with, as well as defining some generic base objects within the tool 
that can be utilized for many project scenarios. Chapter 3.5 will investigate ways to 
create and import context from both within and outside of the game engine. Chapter 
3.6 will define a possible workflow for setting up and utilizing this simulation tool 
for practical architectural visualization use. 
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Chapter 3.1 | Utilizing the Gaming Engine 
Now that we have established the methodology of these human systems and 
verified the validity of them within a processing-based simulation prototype, we 
can begin to integrate this within a game development environment to create 
a usable framework for architectural visualization. At this stage, it is possible 
to add extra features to the system to enhance it from a two-dimensional 
dot-based representation of spatial movement to a system that resembles a 
crowded space. There are of course many ways to do this in processing, but 
the problem with this approach lies in the relatively low levels of abstraction 
available compared to other applications such as the game engines mentioned 
in Chapter 1.3. While processing is great for learning the fundamentals of 
programming, the game engine is a much more effective tool to continue 
developing this framework. 

As expected, there is a large variety of game engines, examples of which 
includes the Quake family of engines, Unreal Engine, Half-Life Source Engine, 
DICE’s Frostbite, Rockstar Advanced Game Engine (RAGE), CRYENGINE, 
Sony’s PhyreEngine, Microsoft’s XNA Game Studio, and Unity.[1] While all 
these engines have their own strengths and weaknesses, as well as their own 
production pipelines, I have chosen to utilize Epic Game’s Unreal Engine 4 
(UE4) for its extensive documentation, photorealistic rendering engine, and 
visual scripting system, as these seem most in sync with the expectations of an 
architectural study.

Extensive Documentation: This is an important consideration when 
learning a new software. UE4 offers extensive documentation on their 
website[2] as well as a tutorial series and live training on platforms such 
as YouTube and Vimeo.[3] On top of this, there are also many forms of 
third-party tutorials online from various sources.[4]

Photorealistic Rendering Engine: This feature is important for 
architectural visualization to better situate these visualizations 
within their physical context. UE4 offers many features to aid in the 
production of photorealistic visualizations, including: Physically-
based Materials, pre-calculated bounce light via Lightmass, Stationary 
lights using IES profiles (photometric lights), and post processing, 
reflections.[5]

Visual Scripting System: This is perhaps the most significant reason 
for choosing UE4 in this tool creation. This feature, which is aptly 
named blueprints within UE4, is a Node based graph editor with an 
interface that is very similar to other software such as Grasshopper 
and Dynamo, both of which are utilized within the architectural 

1	  Gregory, Game Engine Architecture, 31-36.
2	  “Unreal Engine 4 Documentation,” Unreal Engine Documentation, accessed October 18, 2019, 

https://docs.unrealengine.com/en-US/index.html.
3	  “Unreal Engine,” YouTube, accessed October 18, 2019, https://www.youtube.com/channel/

UCBobmJyzsJ6Ll7UbfhI4iwQ.
4	  “Unreal Engine Tutorial in Videos on Vimeo,” Vimeo, accessed October 18, 2019, https://vimeo.

com/search/page:2?q=unreal+engine+tutorial.
5	  “Realistic Rendering,” Unreal Engine Documentation, accessed October 18, 2019, https://docs.

unrealengine.com/en-US/Resources/Showcases/RealisticRendering/index.html.

Figure 3.1.1	 Parametric node system within Grasshopper
By David Rutten, “File:Grasshopper MainWindow.png,” A Screen Shot of the Grasshopper Main Window, 
2011, Wikimedia Commons, accessed December 28, 2019, https://commons.wikimedia.org/wiki/
File:Grasshopper_MainWindow.png.

Figure 3.1.2	 Material node system within 3ds Max
Screen-captured by Author.

Figure 3.1.3	 Scripting node system within Unreal Engine 4
Default character asset script within UE4, screen-captured by Author.

https://www.youtube.com/channel/UCBobmJyzsJ6Ll7UbfhI4iwQ
https://www.youtube.com/channel/UCBobmJyzsJ6Ll7UbfhI4iwQ
https://vimeo.com/search/page:2?q=unreal+engine+tutorial
https://vimeo.com/search/page:2?q=unreal+engine+tutorial
https://docs.unrealengine.com/en-US/Resources/Showcases/RealisticRendering/index.html
https://docs.unrealengine.com/en-US/Resources/Showcases/RealisticRendering/index.html
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industry for parametric modeling.[6] (Fig. 3.1.1 - 3) This familiarity 
provides a type of visual scripting that is intuitive for people coming 
from predominantly visual fields such as architecture, which in turn 
provides a smooth translation of skillsets and toolsets already within 
architectural design and visualization. 

While this tool may seem vastly different when compared to processing, 
one should remember that the syntax or the code is not what is important, 
but rather the methodology. Fortunately, we have already established this 
methodology through Part 2: Technical Research of this thesis; as such, this part 
will investigate the utilization of this established methodology to recreate the 
human agents and the spatial entities of this system—within this new software 
environment that is Unreal Engine 4.

6	  “Blueprint Editor Reference,” Unreal Engine Documentation, accessed October 18, 2019, https://
docs.unrealengine.com/en-US/Engine/Blueprints/Editor/index.html.

https://docs.unrealengine.com/en-US/Engine/Blueprints/Editor/index.html
https://docs.unrealengine.com/en-US/Engine/Blueprints/Editor/index.html
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Chapter 3.2 | Asset Creation
The organization of UE4 follows an object-based approach, which is similar 
to the OOP methodologies that were utilized within the processing prototype 
in Chapter 2.5. Because of this, we already have a rough idea of what we need 
to create within this new environment—we just need to familiarize ourselves 
with the local syntax.

Compared to processing, Unreal Engine has a more intuitive file-based system 
for handling entities within its software environment. As such, its base building 
blocks are appropriately referred to as objects.[1] These objects contain much 
of the lower-level code required to provide “under the hood” functionalities, 
and when sterilized to a file, they are referred to as an asset, which is a piece of 
content within Unreal Engine 4.[2] (Fig. 3.2.1) Of these assets, the ones that 
allow additional functions to be scripted are referred to as blueprint classes. 
These blueprint classes can then be broken down into the following generic 
types:[3]

Actor: “[A]n object that can be placed or spawned in the world.”[4]

Pawn: “[A]n Actor that can be “possessed” and receive input from a 
Controller.”[5]

Character: “[A] Pawn that includes the ability to walk, run, jump, 
and more.”[6]

Player Controller: “[A]n Actor responsible for controlling a Pawn 
used by the player.”[7]

Game Mode: “[D]efines the game being played, its rules, scoring, and 
other faces of the game type.”[8]

The fact that assets are objects that are serialized to a file means that they can be 
utilized within many different UE4 projects. Therefore, if we want to create 
a crowd simulation tool that can be used within many types of architectural 
projects, we must create an asset package. As such, this chapter will investigate 
the creation of these assets based on our defined methodologies from Part 2: 
Tool Creation. Looking back at our system model, we then need to establish 
two main asset types within UE4: the human agents and the architectural 
objects.

1	  “Unreal Engine 4 Terminology,” Unreal Engine Documentation, accessed October 18, 2019, 
https://docs.unrealengine.com/en-US/GettingStarted/Terminology/index.html.

2	  “Assets and Packages,” Unreal Engine Documentation, accessed October 18, 2019, https://docs.
unrealengine.com/en-US/Engine/Basics/AssetsAndPackages/index.html.

3	  “Blueprint Class,” Unreal Engine Documentation, accessed October 21, 2019, https://docs.
unrealengine.com/en-US/Engine/Blueprints/UserGuide/Types/ClassBlueprint/index.html.

4	  Unreal Engine Documentation, “Blueprint Class.”
5	  Unreal Engine Documentation, “Blueprint Class.”
6	  Unreal Engine Documentation, “Blueprint Class.”
7	  Unreal Engine Documentation, “Blueprint Class.”
8	  Unreal Engine Documentation, “Blueprint Class.”

Figure 3.2.1	 Game assets within project browser
Screen-captured by Author.

https://docs.unrealengine.com/en-US/GettingStarted/Terminology/index.html
https://docs.unrealengine.com/en-US/Engine/Basics/AssetsAndPackages/index.html
https://docs.unrealengine.com/en-US/Engine/Basics/AssetsAndPackages/index.html
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Chapter 3.3 | Human Agents
The first step to creating the human agents within this software environment 
is to set up the data structure of the agent. As such, we need to create the 
following assets within the content browser: AI Controller, Blackboard, 
Behavior Tree, and Character Class.[1] 

AI controller: This is the blueprint controller that controls the agent’s 
mental actions, which acts as the container for all decision branches 
the agent will utilize. From this, the AI controller will select a resulting 
state according to the agent’s choice and set it within the blackboard.

Blackboard: This is a container to store all the different states the 
agent can be in.

Behavior tree: This is a tool that controls all the physical actions of the 
agents. It will command a series of pre-established actions depending 
on the state of the agent set within the blackboard.

Character class: This blueprint class acts as a container for the physical 
attributes of the agents and is the physical entity that moves within 
the game environment. As such, this class would generally include 
assets such as the 3D model of the agent as well the textures that may 
be associated with it.

With this, we can establish a rough idea of how the agents will function within 
the software. As the agents explore the space, they will receive environmental 
input. They will then use this input to decide what action to take within the 
AI controller. This choice will then be used to set the agent state within the 
blackboard which will then be utilized by the behavior tree to determine a set 
of tasks the agent will perform. Once the agent finishes performing this task, it 
can then do additional tasks or return to a default state, in which the cycle will 
start over. Within the simulation, each agent will have their own independent 
copy of these assets, as such, they will function and interact independently 
from each other—much like how real humans do.

From here, the next step would be to re-establish the human systems from 
Chapter 2.3, which are the sensory system, the decision logic, and the 
pathfinding. We already established the components of this system, however, 
we can revisit our human systems from the top down instead of bottom up. 
This allows us to approach this problem in a sequential logical order to create 
our agents. There are, of course, various tools within UE4 to help us recreate 
these systems; therefore, this chapter will investigate the processes of doing so.

1	  “Behavior Tree Quick Start Guide,” Unreal Engine Documentation, accessed October 18, 
2019, https://docs.unrealengine.com/en-US/Engine/ArtificialIntelligence/BehaviorTrees/
BehaviorTreeQuickStart/index.html.

Figure 3.3.1	 How each asset will be utilized within this software environment
Illustrated by Author.

AI Controller

Acts as the conscious brain of the 
Agent by establishing the 

Decision Logic

Blackboard

Stores Agent Variables that are used
to communicate between the AI
Controller and the Behavior Tree

Behaviour Tree

Tells the Character Class what to do
After the AI Controller makes

a decision

Character Class

Contains the physical attributes of 
the Agent

https://docs.unrealengine.com/en-US/Engine/ArtificialIntelligence/BehaviorTrees/BehaviorTreeQuickStart/index.html
https://docs.unrealengine.com/en-US/Engine/ArtificialIntelligence/BehaviorTrees/BehaviorTreeQuickStart/index.html
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Sensory System
The first and top level of these systems is the sensory system, which allows 
our agents to be able to see the environment. Within processing, we had to 
manually calculate this by utilizing the dot product and then limiting the 
angles with if/else statements, but within UE4, this becomes much easier 
and more intuitive to establish. The reason for this is largely due to the tools 
provided within UE4, such as AI perception and the Environment Query System 
(EQS). 

AI perception is a component that can be added to the AI controller, 
which can then be used to define various senses that the agents can 
utilize. (Fig. 3.3.2) These senses can include traditional ones such as 
sight, hearing, and touch, to nontraditional game-related ones such as 
damage and team.[2] As established in Part 3, sight is by far our most 
dominant sense so at this stage we will only be implementing sight for 
the agents. The agents can then use this to determine the location and 
type of anything they see, as well as the time in which they last saw it.

Environment Query System (EQS) is a feature that allows the agents 
to collect data from the game environment. It does this by performing 
a series of tests to determine the best location option depending on 
the set parameters.[3] The agents can use this system to determine the 
best location around other entities based on a multitude of other 
factors such as distance and sight. (Fig. 3.3.3)

Both of these tools would then be able to return a variable within their 
respective systems, which can then be used within the next stages of these 
human systems.

2	  “AI Perception,” Unreal Engine Documentation, accessed October 18, 2019, https://docs.
unrealengine.com/en-US/Engine/ArtificialIntelligence/AIPerception/index.html.

3	  “Environment Query System Quick Start,” Unreal Engine Documentation, accessed October 18, 
2019, https://docs.unrealengine.com/en-US/Engine/ArtificialIntelligence/EQS/EQSQuickStart/
index.html.

Figure 3.3.2 - 3.3.3
AI perception and EQS offer 
different ways for the agents 
to acquire data from their 
surrounding environment.

Figure 3.3.2	 AI perception
Simulated and screen-recorded by Author.

Figure 3.3.3	 EQS trace test
From “Environment Query System Overview,” Unreal Engine Documentation, accessed December 28, 2019, https://docs.unrealengine.com/en-US/
Engine/ArtificialIntelligence/EQS/EQSOverview/index.html.

https://docs.unrealengine.com/en-US/Engine/ArtificialIntelligence/AIPerception/index.html
https://docs.unrealengine.com/en-US/Engine/ArtificialIntelligence/AIPerception/index.html
https://docs.unrealengine.com/en-US/Engine/ArtificialIntelligence/EQS/EQSQuickStart/index.html
https://docs.unrealengine.com/en-US/Engine/ArtificialIntelligence/EQS/EQSQuickStart/index.html
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Decision Logic
The next level of these systems is the decision logic, which allows our agents to 
choose an action when they see an object within the environment. This can be 
accomplished within the AI controller class, which contains an EventGraph 
that allows a form of visual scripting with various elements such as:[4] 

“Events are nodes that are called from gameplay code to begin 
execution of an individual network within the EventGraph.”[5] 

Functions are node graphs within blueprints that can be executed to 
perform a specific function.[6] These can be utilized throughout the 
EventGraph to change variables and divert the flow of execution.

“Variables are properties that hold a value or reference an Object 
or Actor in the world.” [7] These can be utilized to store or reference 
various types of data within the blueprint.

Components are sub-objects that can be attached to actors. These can 
be used to give additional functionalities to the actor.[8]

There are certainly many more types of elements within these event graphs, 
but for the most part, these are the main elements that make up most of 
this decision logic system. These elements can then be connected to form a 
decision network, which allows the agents to take a step-by-step approach to 
establishing their choices. (Fig. 3.3.5) While this may look very complicated, 
it is a rather straightforward process:

The first step begins with the Event Node. These elements begin the execution 
of nodes down an individual network of functions, and can be triggered in 
many ways, including but not limited to every frame, set time interval, when 
a key is pressed, and in the context of AI perception, whenever the agent sees 
something.[9] 

Once the agent sees something, the AI perception Event Node begins a line of 
execution down the network where we can utilize a number of Boolean-driven 
branch nodes to divert the execution line. (Fig. 3.3.6) The Booleans that drive 
these branch nodes can be defined in various ways, but for this simulation, 
we can utilize the concept of percentages we defined from Chapter 2.3. With 
this, we can generate a random number between 0 and 1, where 1 is 100% 
yes, 0 is 0% yes or 100% no, and 0.56 is 56% yes or 44% no, etc. (Fig. 3.3.7) 
With this we can perform a series of checks throughout the logic network to 

4	  “EventGraph,” Unreal Engine Documentation, accessed October 18, 2019, https://docs.
unrealengine.com/en-US/Engine/Blueprints/UserGuide/EventGraph/index.html.

5	  “Events,” Unreal Engine Documentation, accessed October 18, 2019, https://docs.unrealengine.
com/en-US/Engine/Blueprints/UserGuide/Events/index.html.

6	  “Functions,” Unreal Engine Documentation, accessed October 18, 2019, https://docs.unrealengine.
com/en-US/Engine/Blueprints/UserGuide/Functions/index.html.

7	  “Blueprint Variables,” Unreal Engine Documentation, accessed October 18, 2019, https://docs.
unrealengine.com/en-US/Engine/Blueprints/UserGuide/Variables/index.html.

8	  “Components,” Unreal Engine Documentation, accessed October 18, 2019, https://docs.
unrealengine.com/en-US/Programming/UnrealArchitecture/Actors/Components/index.html.

9	  Unreal Engine Documentation, “Events.”

Figure 3.3.4	 Simplified visual scripting process within UE4
Illustrated by Author.

determine the final action of the agent. Is the agent seeing an object? If yes, 
is the agent currently doing something? If no, is the agent interested in this 
object? If yes, does it want to observe and admire it or interact with it? If 
interact, then set AgentState to Interact. (Fig. 3.3.8) However, if the agent is 
currently busy or is not interested in the object, then the execution line will 
move down and ask if the agent if it is seeing another agent. If yes, is the agent 
current doing something? And so on. It would then continue these checks for 
every type of entity the agent comes across. (Fig. 3.3.9)

This is naturally an oversimplification, as there are other steps required due 
to the various nuances of UE4, but these are the essential steps required to 
create these behaviors to give the illusion of choice to the agents. With this, 
different functions within the blueprint will be triggered depending on the 
path of this execution, therefore allowing us to define the agent actions based 
on these paths.
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https://docs.unrealengine.com/en-US/Engine/Blueprints/UserGuide/EventGraph/index.html
https://docs.unrealengine.com/en-US/Engine/Blueprints/UserGuide/EventGraph/index.html
https://docs.unrealengine.com/en-US/Engine/Blueprints/UserGuide/Events/index.html
https://docs.unrealengine.com/en-US/Engine/Blueprints/UserGuide/Events/index.html
https://docs.unrealengine.com/en-US/Engine/Blueprints/UserGuide/Functions/index.html
https://docs.unrealengine.com/en-US/Engine/Blueprints/UserGuide/Functions/index.html
https://docs.unrealengine.com/en-US/Engine/Blueprints/UserGuide/Variables/index.html
https://docs.unrealengine.com/en-US/Engine/Blueprints/UserGuide/Variables/index.html
https://docs.unrealengine.com/en-US/Programming/UnrealArchitecture/Actors/Components/index.html
https://docs.unrealengine.com/en-US/Programming/UnrealArchitecture/Actors/Components/index.html
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Figure 3.3.5	 Decision Network
This is the node graph that makes up the decision logic of the agents. While 
there are ways to organize the logic better, its current ‘messy’ state is the result 
of experimentation during the prototyping phase.
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Figure 3.3.6	 Event Node begins the execution line
Screen-captured by Author.

Figure 3.3.7	 Boolean percentages controls which path the line takes
Screen-captured by Author.

Figure 3.3.8	 Once the execution line reaches a decision, a node is triggered to set the AgentState 
and then apply a timer to establish how long the agent might be in that state
Screen-captured by Author.

Figure 3.3.9	 The execution line moves down and repeats all the checks for every entity type if it 
does not reach the end of the logic
Screen-captured by Author.
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Figure 3.3.10	Functional Decision Logic during runtime
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Pathfinding
The last human system to reestablish is the pathfinding system. Recalling from 
Chapter 2.3: Abstracting the Human Systems, the purpose of this system is to 
provide a way for the agents to move to their goals through the consideration 
of their subconscious desires, which we achieved by modifying Craig 
Reynolds’ description of the three layers of motion: action selection, steering, 
and locomotion. From this, we investigated Edward T. Hall’s proxemics to 
establish personal space for the agents, where action selection defined their 
subconscious desires of preserving this space, steering provided the forces that 
drove this preservation, and locomotion translated this force into their current 
position within the virtual environment. 

Translating this methodology into UE4 is once again, fairly straightforward, 
considering that the software has a built-in navigation system by means of a 
NavMesh volume within the simulation environment.[10] (Fig. 3.3.11)  As it 
can be seen, compared to simple text-based IDEs such as processing, where 
we had to essentially create everything from the ground up, UE4 offers a 
vastly more efficient workflow. Rather than having to work down the levels 
of code to calculate the vector position of these agents while simultaneously 
implementing various vector calculations to account for collision and 
avoidance, we can now just utilize UE4’s built-in navigation for the agents to 
move to their desired conscious goals. 

In order to implement subconscious goals such as personal space, however, 
we must implement our modified layers of motion on top of this built in 
NavMesh. This can be done by utilizing a Tick Event (which is triggered every 
frame) to trigger an offset position node within the AI controller. In doing so, 
we can utilize a variety of vector calculation nodes to mimic the steering forces 
from Reynolds’ description of motion. (Fig. 3.3.12) This will not only make 
the crowd flow smoother but also more human-like. 

10	  “Navmesh Content Examples,” Unreal Engine Documentation, accessed October 18, 2019, https://
docs.unrealengine.com/en-US/Resources/ContentExamples/NavMesh/index.html.

Figure 3.3.11	Navmesh at work
Simulated and screen-recorded by Author.

Figure 3.3.12	Flocking Behaviors recreated with Vector and World-Offset nodes within UE4
Screen-captured by Author.

https://docs.unrealengine.com/en-US/Resources/ContentExamples/NavMesh/index.html
https://docs.unrealengine.com/en-US/Resources/ContentExamples/NavMesh/index.html


154 155

Tool Creation |Human Agents Tool Creation |Human Agents

Agent-State Actions 
Now that we have established the three human systems within our simulation 
model, our agents should be able to move around freely within the space. 
However, since these agents are no longer simple dot representations—but 
actual human agents walking in a virtual 3D environment—we require 
additional considerations to portray them within the simulation. 

The first of these considerations are the actions the agents need to perform 
once they choose a state from the decision logic. Within our processing 
prototype, they are simply represented by dots that try to avoid one another to 
get to a target. While this was fine when the level of detail was represented by 
dots, it seems rather unrealistic now that these agents are more representative 
of the human form. As such, to retain this credibility, we need to define a set 
of actions for the agents to perform depending on the task that they choose to 
act upon. In doing so, this crowd simulation becomes much more comparable 
to reality.

Fortunately, UE4 provides a useful tool called the Behavior Tree specifically 
for scripting artificial intelligence. This tool—much like blueprints—provides 
a visual method of integrating functionality by utilizing a series of nodes. 
The difference from blueprints, however, is that this Behavior Tree Graph 
executes logic by priority from left to right and top to bottom.[11] (Fig. 3.3.13 
- 14) This allows the Behavior Tree to work alongside the blackboard and AI 
controller to provide an intuitive method of establishing these actions based on 
the choices the agents have made. The decision logic tells the blackboard what 
state the agent is in, and the behavior tree will read that state to determine 
which branch of tasks it should perform. From this, we can define a series of 
states that the agent may be in.

11	  “Behavior Tree Overview,” Unreal Engine Documentation, accessed October 18, 2019, https://docs.
unrealengine.com/en-US/Engine/ArtificialIntelligence/BehaviorTrees/BehaviorTreesOverview/index.
html.

Figure 3.3.13	The Behavior Tree allows a visual way to define AI tasks within UE4
From “Behavior Tree Overview,” Unreal Engine Documentation, accessed October 18, 2019, https://docs.unrealengine.com/en-US/Engine/
ArtificialIntelligence/BehaviorTrees/BehaviorTreesOverview/index.html.

Figure 3.3.14	Behavior Tree Execution Order from top to down and left to right
From “Behavior Tree Overview,” Unreal Engine Documentation, accessed October 18, 2019, https://docs.unrealengine.com/en-US/Engine/
ArtificialIntelligence/BehaviorTrees/BehaviorTreesOverview/index.html.

https://docs.unrealengine.com/en-US/Engine/ArtificialIntelligence/BehaviorTrees/BehaviorTreesOverview/index.html
https://docs.unrealengine.com/en-US/Engine/ArtificialIntelligence/BehaviorTrees/BehaviorTreesOverview/index.html
https://docs.unrealengine.com/en-US/Engine/ArtificialIntelligence/BehaviorTrees/BehaviorTreesOverview/index.html
https://docs.unrealengine.com/en-US/Engine/ArtificialIntelligence/BehaviorTrees/BehaviorTreesOverview/index.html
https://docs.unrealengine.com/en-US/Engine/ArtificialIntelligence/BehaviorTrees/BehaviorTreesOverview/index.html
https://docs.unrealengine.com/en-US/Engine/ArtificialIntelligence/BehaviorTrees/BehaviorTreesOverview/index.html
https://docs.unrealengine.com/en-US/Engine/ArtificialIntelligence/BehaviorTrees/BehaviorTreesOverview/index.html
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Figure 3.3.16	EQS allows us to check the surrounding environment to calculate locations based 
on how far away they are from the agent
Screen-recorded by Author.

Figure 3.3.17	Agent Exploring the space by utilizing this data
Simulated and screen-recorded by Author.

Figure 3.3.15	Explore Tasks defined within the Behaviour Tree
Screen-captured by Author.

Default State
Due to the responsive nature of these agents, one of the important 
questions we must first ask is: What do the agents do when the 
surrounding space is empty? In other words, we must first define a 
base state in which the agents can operate with limited knowledge and 
no environmental information to work from.

In order to define this state, we must make some assumptions. Imagine 
if people were left in an empty room; What would they do? Would 
they do nothing, or would they explore? Chances are, most people 
would explore to see if there is anything around them rather than just 
doing nothing. Ideally, we would be able to perform a survey from a 
population to deduce an average base state, but since this simulation 
only needs to be an approximation, this generic assumption of 
exploration should be adequate to visualize crowd flow.

To simulate this task of exploration, we should ask ourselves what it 
means to explore the space within an empty room. The lack of features 
means that there is nothing to attract our attention, therefore the only 
variance within such a space would be the distance of the agent to the 
boundary of this space. In that context, it makes logical sense that the 
furthest point offers the most mystery; therefore, it should also offer 
the highest incentive to investigate.

Translating this to game engine logic then, we can configure the EQS 
tool to query the environment around the agent every second and 
provide a location that is the farthest point to the agent. (Fig. 3.3.15 
- 16) In doing so, it provides the illusion of exploration. (Fig. 3.3.17)
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Object Looking State
The object looking state defines what happens when an agent chooses 
to admire an object without touching it. Again, a population survey 
based on the location and demographic of the architectural project 
would give the most accurate simulation result within a specific 
context, however, in the ethos of this simulation tool—where there 
is no specific context and the tool is designed to be applicable within 
different typologies—a generic set of actions would provide the most 
flexibility. To establish these generic actions, we can consider a passage 
from The Dynamics of Architectural Form, where Rudolf Arnheim 
states:

“These ‘proxemics’ normals influence also the choice of 
preferred distances between objects, e.g., the placement 
of furniture, and they are likely to affect the way people 
determine and evaluate the distances between buildings. […] 
We feel impelled to juggle the distances between objects until 
they look just right because we experience these distances as 
influencing forces of attraction and repulsion. […] In order 
for an object to be perceived appropriately, its field of forces 
must be respected by the viewer, who must stand at the 
proper distance from it. I would even venture to suggest that 
it is not only the bulk or height of the object that determines 
the range of the surrounding field of forces, but also the 
plainness or richness of its appearance. A very plain façade 
can be viewed from nearby without offense, whereas one rich 
in volumes and articulation has more expansive power and 
thereby asks the viewer to step farther back so that he may 
assume his proper position, prescribed by the reach of the 
building’s visual dynamics.”[12]

From this, Arnheim examines the proxemics described by Edward 
T. Hall (which we have also investigated to establish the personal 
spaces of our agents), and reasons it within the context of object 
distances as well as human distances. While Arnheim is specifically 
referring to the distances between the placement of furniture in this 
case, by changing the reference point of view, it can be argued that 
these distances can also be utilized to describe the preferred viewing 
distances of agents when admiring an object. These viewing distances 
can then be influenced by factors such as the size of the object as well 
“the plainness or richness of its appearance.”

We can then recreate this description by establishing a series of 
movements within the behavior tree. (Fig. 3.3.18) By utilizing the 
EQS, we can first determine a random location around the object. 
(Fig. 3.3.19) From this, we can then tell the agent to move there, turn 
towards the object, and admire it within a randomized timeframe. 
After this timeframe, the agent would then pick a different location 
around the object and repeat the process. From this, we can establish 
the following steps:

12	  Arnheim, The Dynamics of Architectural Form, 20, 28.

Figure 3.3.18	Behavior Tree Object-Looking state tasks
Screen-captured by Author.

1.	 Find location around the object with EQS.

2.	 Move to location.

3.	 Turn towards the object.

4.	 Loop observing animation for randomized time interval.

5.	 Repeat action from step 1, or set AgentState to something 
else (such as ObjectInteract or AgentDefault).

This series of actions would give the illusion of the agents trying to 
“juggle the distances between objects until they look just right.” (Fig. 
3.3.20) Throughout this process, the agent may also decide to interact 
with the object or become bored with the object. While this is by 
no means a perfect representation, it does provide a relatively simple 
and generic approach for portraying this action at this stage of tool 
creation. 
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Figure 3.3.20	Agents ‘juggling’ the distances to the objects until they look right
Simulated and screen-recorded by Author.

Figure 3.3.19	EQS also allows us to calculate a random location that is biased to how far away they are from an object
Screen-recorded by Author.
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Ordering food at a counter on the other hand, would require the agent 
to first check if there is a lineup. If there is, the agent would need to find 
the location of the end of the line and move there. It would then have to 
calculate a new position each time the line updates until it reaches the 
front of the line. Once it is the agent’s turn, it would then need to define 
the location of the counter, move to it, and start playing an animation for 
portraying the action of ordering food. 

1.	 Check if there is a lineup for the counter.

2.	 Get location depending on if there is a lineup.

2a.	 If there is a lineup, get the location for end of line

2b.	 If there is no lineup, get the location of the counter.

3.	 Walk to location.

4.	 Play Animation depending on if there is a lineup or not.

4a.	 Play wait animation and check once per second if the 
line is moving forward. If moving forward, update 
location for the agent to walk to. If the agent is at the 
start of line, and the counter is free, go to step 2b.

4b.	 If there is no lineup, and the agent is at the counter, 
play food ordering animation and loop it for a 
randomized time interval.

5.	 After the agent finishes ordering, set AgentState to another 
task (such as going to food pickup or finding a table).

As it can be seen, all these scenarios follow a similar logic, in which the 
agent requires a location, a direction, and an animation. The use of these 
three attributes within the behavior tree provides us with an intuitive 
method of portraying these agents performing various tasks. With this, 
we can set up a series of nodes that can accommodate any type of object 
interactivity within the simulation environment. (Fig. 3.3.21) It is of 
course unrealistic to account for every scenario within the scope of this 
thesis, therefore the best course of action at this stage of tool creation is to 
establish a generic base object with definable parameters that works with 
a wide range of use cases and can be easily modified depending on future 
use cases and object typologies. 

Object Interact State 
This state defines what the agent does when they choose to interact 
with an object. This process undoubtedly depends on the typology of 
the object; if the object is a book, the agent might go and read it; if the 
object is a touch screen, the agent might go and touch it; if the object 
is a chair, the agent might go and sit on it. 

In all these cases, we would need to break down these tasks into their 
individual logical actions. With the chair example, the agent would 
first need to calculate the location of the chair. It would then need to 
walk to that location and align its body with the chair. Only when all 
these steps are taken would the agent be able to sit on the chair. Once 
the agent sits down, it may then have a randomized range of time 
before the agent decides to get up again. Translating this then into 
machine logic, we would have the following steps: 

1.	 Get location of the front of the object.

2.	 Walk to location.

3.	 Align agent body to the chair.

4.	 Play sitting down animation.

5.	 Play sit animation and loop it for a randomized time 
interval range.

6.	 Play standing up animation.

7.	 Set AgentState to Default State.

Naturally, we would require a version of this state for every typology 
of an object within the simulation. Interacting with a bookshelf for 
example would require the agent to calculate a location in front of the 
bookcase, turn to it, and choose a book. The agent then might quickly 
skim the book before choosing another book and continue to do so 
until the agent finds the right book or becomes uninterested. 

8.	 Get random location in front of the object (depending on 
the size of the bookcase; this can vary a lot)

9.	 Walk to location.

10.	 Turn towards the bookshelf.

11.	 Play retrieve book animation.

12.	 Play reading animation and loop it for a randomized time 
interval.

13.	 Play animation for keeping the book OR putting the 
book back on bookshelf (depending on what the agent 
chooses.

14.	 Set AgentState to Default (or another task) OR repeat step 
one to find another book from the bookshelf.



164 165

Tool Creation |Human Agents Tool Creation |Human Agents

In order to do this, we need to first consider some basic parameters that 
can describe both the most common forms of object interactivity, as well 
as the most influential forms on crowd movement. With this in mind, we 
can logically break down these parameters into the ability to touch, the 
ability to sit, and the need for queuing (lining up). The ability to touch 
would be the default form of interaction, as this can be modified to be 
any other form of interaction (such as typing, taking, painting, pushing, 
etc.) by changing its animation and looping timeframe. The ability to sit 
is perhaps the most common form of interaction amongst varying spatial 
typologies. Since rest is such an important human need, the presence of 
chairs can usually be found no matter what type of space is being designed. 
The need for queuing comes into play when there is overdemand on a 
specific object. This can be seen in scenarios such as checking tickets at 
entrances, ordering food at counters, talking with bank tellers, etc. While 
this won’t be relevant in every space typology, it is common enough in 
public spaces to warrant its consideration. Translating these into the 
behavior tree, we can utilize the following steps: (Fig. 3.3.22 - 24)

1.	 Check to see if the object can be sat upon, or if there is a 
lineup required.

2.	 Define location based on object type.

2a.	 If the object cannot be sat upon, and does not have 
a lineup, Utilize EQS to define a location around the 
object.

2b.	 If the object functions as a seat, define the location in 
front of the seat.

2c.	 If there is a lineup, define the location at the end of 
the lineup.

3.	 Walk to location.

4.	 Set rotation direction of the agent based on object type.

4a.	 If the object cannot be sat upon, and does not have a 
lineup, turn towards the object.

4b.	 If the object functions as a seat, align the agent body 
to the seat.

4c.	 If there is a lineup, turn towards the start of line.

5.	 Perform animation based on object type.

5a.	 If the object cannot be sat upon, and does not have a 
lineup, play touch animation

5b.	 If the object functions as a seat, play sitting animation

5c.	 If there is a lineup, play waiting animation. The agent 
might also need to continuously update its position as 
the line moves forward.

6.	 Wait for randomized time interval based on object type.

Figure 3.3.22	Object-Interact State tasks within behavior tree
Screen-captured by Author.

Figure 3.3.21	Simplified steps for establishing object Interaction tasks
Illustrated by Author.
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6a.	 Touch based objects can vary in length based on the 
object typology (e.g. a simple button will take less time 
to operate compared to navigating a touchscreen to fill 
out a waiver)

6b.	 A seat can vary in length depending on how tired the 
agent is or if the agent is waiting for someone or watching 
something.

6c.	 A lineup can vary in length depending on the space. A 
line at the DMV will probably move slower than a line at 
a grocery store. 

7.	 Repeat task or change to new AgentState.

7a.	 The agent might touch it in 1 spot, then move to another 
spot to touch it again, or it could be done with the task and 
do something else, in which case we can set AgentState to 
something else.

7b.	 When the agent is finished resting, it may get up from the 
chair by playing an animation, and then go do another 
task.

7c.	 When the agent reaches the front of the line, it can then 
go back to step 2a, where it will finally be able to interact 
with the object.

While these three branches won’t cover every scenario within the behavior 
tree, we can always modify or add to them in the future if the need arises. 
Since these steps depend largely on the typology of the object however, we 
will also need to create such an object—which we will establish in Chapter 
3.4—and update this state depending on the requirements of the object. 

Figure 3.3.23	Agent interacting with an object
Simulated and Screen-recorded by Author.

Figure 3.3.24	Agents lining up before interacting with the object
Simulated and Screen-recorded by Author.
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Figure 3.3.25	Agent Interact state tasks within Behavior Tree
Screen-captured by Author.

Figure 3.3.26	Agents interacting with each other
Simulated and Screen-recorded by Author.

Agent Interact State
The agent interact state defines what happens when an agent decides to 
interact with another agent. The methodology for this is similar to what we 
just established within object interact state, except we now must consider 
these steps in the context of human interactions. 

When an agent decides to interact with another agent, this interaction could 
either be with someone the agent knows (an acquaintance) or have never met 
(a stranger). As such, we can logically deduce these interactions into these 
two basic types. When the agent wants to interact with a stranger, they might 
first need to walk up to them before engaging in conversation. However, 
when the agent wants to interact with an acquaintance, they might both 
recognize each other and meet halfway. To simply this into its fundamental 
actions, we can proceed with the following steps: (Fig. 3.3.25 - 26)

1.	 Check if the other agent is facing towards or away the agent (by 
using the dot product).

2.	 Define location depending on the direction of the other agent.

2a.	 If facing away, move to the location of the other agent.

2b.	 If facing towards, define random location between the 
two agents.

3.	 Get attention of the other agent by setting the AgentState of the 
other agent to AgentInteract (with an optional tap animation).

3a.	 If facing away, get their attention after walking to them.

3b.	 If facing towards, get their attention before walking to the 
random location between the two agents.

4.	 Loop talking animation for a random time interval.

5.	 After finished talking, play goodbye animation.

6.	 Set both agents’ AgentState to DefaultState.  

While this method might imply that the people facing away are presumed to 
be strangers, and people facing towards are acquaintances, the fact that the 
location generated in between the two agents are random in step 2b means 
that there is a gradient of possible meeting locations between the agent. This 
gradient then can portray both acquaintances meeting in the middle, or the 
agent going up to a stranger to talk, or the agent signaling a stranger or 
acquaintance to come to them, or anything in between.  

Of course, if other senses, such as sound, were added, we would then need 
to introduce another option, where the first agent might shout at the other 
agent to get their attention, in which the other agent would then turn around 
and they can meet at a random location between them. This being said, to 
keep the simulation simple at this stage, we will mainly be utilizing sight. 
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Threshold State
While explore provides a good generic way for agents to explore the 
space, we should remember that there are other forms of attractors 
other than distance. To accommodate for this, we can define another 
class of objects that represents thresholds. These objects would act 
as doors or openings that offer attraction to passing agents as they 
see it, which allows slightly more control in diversifying the crowd 
movements within the simulation space.

The series of actions required for this state can be thought of as a 
simplified version of the object interact state, as the agents are essentially 
interacting with the door or threshold. As such, we only require a 
slight modification in animation and position when compared to the 
object interact state. To create a series of actions for this then, we can 
define the following steps: (Fig. 3.3.27 - 28)

1.	 Check to see if the threshold is open or closed (if there is 
a door built into the opening)

2.	 Calculate location depending on if there is a door or not.

2a.	 If there is a door that is closed, define a random 
location on the same side of the threshold.

2b.	 If there is no door or if the door is open, define a 
random location on the other side of the threshold.

3.	 Go to location.

4.	 Play animation depending on if there is a door or not.

4a.	 If there is a door, turn towards the door and play 
open door animation. Then go back to step 2b.

4b.	 If there is no door or if the door is open, proceed 
to step 5.

5.	 Change AgentState to DefaultExplore.

With these steps, the agent will walk through the threshold on to the 
other side and continue to explore the space beyond. If there is a door 
in the way, the agent will then proceed to open the door first before 
walking through to the other side. 

Figure 3.3.27	Threshold State tasks within Behavior Tree
Screen-captured by Author.

Figure 3.3.28	Agent moving through threshold
Simulated and Screen-recorded by Author.
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Enter/Exit State
Since most spaces are not closed systems, we will need a way for the 
agents to enter and leave. As such, entrances and exits need to be 
defined within the simulation to establish the crowd flow within 
the space. Because these entrances and exits are essentially a type 
of threshold however, we can use the same methodology defined in 
ThresholdState, with the addition of spawning the agents in the case of 
entering, and de-spawning the agents in the case of exiting. (Fig. 3.3.29 
- 30) From this logic, we can establish the following steps:

Enter State

1.	 Spawn agent along the entrance threshold.

2.	 Check if threshold has a door or not

3.	 Calculate location depending on if there is a door or not.

3a.	 If there is a door, play door opening animation, 
then to go step 2b.

3b.	 If there is no door, set agent rotation to face 
perpendicularly away from the entrance threshold.

4.	 Set AgentState to DefaultExplore. 

Figure 3.3.29	To spawn Agents, we must first make a list of all the Entrance Threshold objects at the start of the 
simulation
Screen-captured by Author.

Figure 3.3.30	Spawning Agents at Entrance Thresholds
Screen-captured by Author.
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Figure 3.3.31	Enter State tasks within the Behavior Tree
Screen-captured by Author.

Figure 3.3.32	Agents entering and exiting the building
Simulated and Screen-recorded by Author.

Exit State

5.	 Check to see if the threshold is open or closed (if there is 
a door built into the opening)

6.	 Calculate location depending on if there is a door or not.

6a.	 If there is a door that is closed, define a random 
location on the same side of the threshold.

6b.	 If there is no door or if the door is open, define a 
random location on the other side of the threshold.

7.	 Go to location.

8.	 Play animation depending on if there is a door or not.

8a.	 If there is a door, turn towards the door and play 
open door animation. Then go back to step 2b.

8b.	 If there is no door, proceed to step 5.

9.	 De-spawn agent.

With these two states, the agents can now enter and exit the simulation. 
(Fig. 3.3.31 - 32) In the case of evacuation however, the agent must 
also remember the location of the last threshold they’ve encountered, 
which can be recorded within their AI controller as an object array. In 
such a case, the agent would simply need to pull up the array to obtain 
the location, and then execute the steps from ExitState. 
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Unstuck State
Since all these states depend on a series of logic to function, there are 
instances where the agents might become stuck within the environment. 
For example, an agent within the ExploreState might become stuck in a 
corner due to the EQS continuously calculating the furthest point in 
front of the agent. (Fig. 3.3.33) Another example might be an EQS 
query establishing a location that is unavailable to the agent, in which 
case the agent might freeze on the spot as it does not know how to get 
there through the pathfinding system. There are certainly many more 
instances when the agents might become stuck, so rather than trying to 
debug every instance, we can simply utilize a state for this. To establish 
this unstuck state, we can perform a check every few seconds based on 
the agent’s location and their desired location. If these locations are 
unchanged for too long when the agent is not interested in an object or 
agent, we can tell the agent to recalculate a location near them that is 
valid and reset their state to DeafultExplore with this new location. (Fig. 
3.3.34)

Because of the higher abstraction of this tool, we do not need to worry about 
the technical aspects of teaching the agents how to walk for each task—since 
this is already taken care of with our new pathfinding system—but rather just 
focus on the sequence of individual actions that they need to do within their 
respective tasks. This allows for a quickly implementable and relatively intuitive 
way to add agent actions to establish them for future use as well. Now that we 
have established the main states, we can put them together within a functioning 
behavior tree. (Fig. 3.3.39)

Figure 3.3.33	Agents sometimes becomes stuck in the corner due to the EQS continuously 
perceiving the corner in front of the agent to be the furtherest point within the environment
Screen-captured by Author.

Figure 3.3.34	Unstuck State within Behavior Tree tells the agent to query a new location behind 
them if they don’t move for longer than a specified time interval
Screen-captured by Author.
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Figure 3.3.35	Bug with obtaining a position vector for establishing agent global offset 
Simulated and Screen-recorded by Author.

Figure 3.3.36	Bug with obtaining a position for the agents to form a line
Simulated and Screen-recorded by Author.

Figure 3.3.37	Bug with animation looping for the Agent Interact State
Simulated and Screen-recorded by Author.

Figure 3.3.38	Another global offset bug when establishing a position vector from the agent’s 
personal space
Simulated and Screen-recorded by Author.

Figure 3.3.35 - 3.3.38
These figures showcase some of the various bugs that are encountered during the prototyping phase. This further 
demonstrates how prototyping can be an unpredictable time-sink since most of these bugs appear at random and thus 
becomes hard to calculate the time-frame it would take to fix them.
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Figure 3.3.39	Functional Behavior Tree during runtime

180 181



182 183

Tool Creation |Human Agents Tool Creation |Human Agents

Character Model and Animation
Beyond the additional consideration of AgentStates, we must also consider the 
physical form of these agents, or rather a virtual description of their physical form. 
To do so, additional assets will be required to define how these agents look as they are 
moving throughout the environment. This can be broken down into skeletal assets 
and animation assets within UE4. 

Skeleton Assets
Skeleton assets within UE4 are comprised of the skeletal mesh and the 
skeleton. This can be described as a set of “meshes bound to a hierarchical 
skeleton of bones which can be animated for the purpose of deforming the 
mesh.”[13] Put simply, the surface of the skeletal mesh asset is responsible for 
the visual representation of the agent, whereas the skeleton asset is responsible 
for translating animation data to this surface mesh. (Fig. 3.3.40)

These assets can be obtained in many ways. UE4 comes with a ready-to-
use solution in the form of a generic humanoid robot model (Fig. 3.3.43); 
however, they can also be created within external applications such as 3ds 
Max and Maya or be purchased and downloaded through various asset stores 
such as Unreal Marketplace[14] and CGTrader[15].

Of these external applications, one tool that may be worth investigating 
further is Autodesk’s web-based character generator.[16] (Fig. 3.3.41) This 
tool allows us to generate a variety of generic character models based on 
their height, gender, facial and body features, and clothing. With this, we 
can quickly export a variety of model assets and create a library of people to 
spawn within the simulation space. While these models are not particularly 
detailed, they are perfectly suited to blend into a simulated human crowd 
where the agents are meant to represent normal everyday people. From here, 
we can then import these models as an FBX file and implement them within 
the character asset.[17]

One thing to keep in mind with these models, however, is the hardware 
limitations present within a multiagent simulation system, where higher 
model detail will increase rendering time and slow down the performance of 
the overall visualization. For this reason, I have decided to stay with UE4’s 
default robot model to prioritize performance, with the intention of utilizing 
more detailed model assets in the future. Once we have access to faster 
hardware and a more optimized simulation code, it may become possible to 
utilize these more detailed model assets in not only final rendering outputs, 
but in the design phase as well. 

13	  “Skeletal Meshes,” Unreal Engine Documentation, accessed October 18, 2019, https://docs.unrealengine.
com/en-US/Engine/Content/Types/SkeletalMeshes/index.html.

14	  “Characters,” Unreal Engine Marketplace, accessed October 18, 2019, https://www.unrealengine.com/
marketplace/en-US/content-cat/assets/characters.

15	  “UASSET 3D models - download UnrealEngine (UASSET) file format 3D assets,” CGTrader, accessed 
October 18, 2019, https://www.cgtrader.com/3d-models/ext/uasset.

16	  “Autodesk Character Generator,” Autodesk, accessed October 18, 2019, https://charactergenerator.autodesk.
com/.

17	  “Setting Up a Character,” Unreal Engine Documentation, accessed October 18, 2019, https://docs.
unrealengine.com/en-US/Engine/Animation/CharacterSetupOverview/index.html.

Figure 3.3.40	UE4 animation system breakdown
From “Animation System Overview,” Unreal Engine Documentation, accessed December 28, 2019, https://docs.unrealengine.com/en-US/Engine/Animation/Overview/index.html.

Figure 3.3.41	Autodesk Character Generator
Screen-captured by Author, from “Autodesk Character Generator,” accessed December 28, 2019, https://charactergenerator.autodesk.com/.

https://docs.unrealengine.com/en-US/Engine/Content/Types/SkeletalMeshes/index.html
https://docs.unrealengine.com/en-US/Engine/Content/Types/SkeletalMeshes/index.html
https://www.unrealengine.com/marketplace/en-US/content-cat/assets/characters
https://www.unrealengine.com/marketplace/en-US/content-cat/assets/characters
https://www.cgtrader.com/3d-models/ext/uasset
https://charactergenerator.autodesk.com/
https://charactergenerator.autodesk.com/
https://docs.unrealengine.com/en-US/Engine/Animation/CharacterSetupOverview/index.html
https://docs.unrealengine.com/en-US/Engine/Animation/CharacterSetupOverview/index.html
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Animation Assets
Beyond the skeletal mesh, animations are also required to fully portray 
these agents. Within the simulation visualization, these animations 
are what allows these human agents to visually differ from dynamic 
architectural elements shaped like humanoids. As such, without this 
step, the agent models will be lifeless objects that float about within 
the simulation. (Fig. 3.3.42)

Within UE4, a single animation asset is referred to as an animation 
sequence. These sequences contain “keyframes that specify the position, 
rotation, and scale of a bone at a specific point in time.”[18] This allows 
these assets to drive the movement of the skeleton asset, which in 
turn drives the movement of the skeletal mesh asset. (Fig. 3.3.43) To 
implement these animations for the agents, we must procure a library 
of various animation sequences for every possible scenario. We can 
then utilize various tools within UE4 to set them up in a way where 
the agents can determine which animation to execute based on the 
task that the agent is currently doing.[19]

The first of these tools is the Blend space. This allows us to blend 
various animations together based on the value of multiple inputs.[20] 
With this, we can combine this collection of animation sequences to 
create transitional animations between different states, allowing the 
agent to move in a smooth and realistic fashion without having to use 
too many hard-coded animation sequences. (Fig. 3.3.44)

In order to set these states, however, we must also utilize animation 
blueprints. With this, we can establish various checks to determine if 
the agent is currently turning, running or falling, etc. Once this is set 
up, we can produce output variables to set various states within a State 
Machine. (Fig. 3.3.45) This then allows the agents to execute various 
animations or Blend Spaces depending on what the agent is physically 
doing within the simulation. For example, if the agent is currently 
turning right, the animation blueprint will check for this and set a 
variable for AgentTurningRight to be true. Once this is true, the state 
machine will go into the TurningRight State, which will tell the agent 
to use the TurningRight animation sequence. If the agent is speeding 
up from a walking speed to a running speed, the animation blueprint 
can normalize the speed between the two states to tell the Blend Space 
to generate an animation that smoothly transitions from the walking 
state to the running state.

Much like the character models, there are many ways to create these 
animation sequences, which can include manual keyframing or 
motion tracking.[21] To simplify this process, however, it is possible to 
download various animation files from sites such as Adobe Maximo. 
(Fig. 3.3.46) With this, we can quickly procure the library of 
animation sequences required to fully animate our agents within their 
tasks.

18	  “Animation Sequences | Unreal Engine Documentation,” Unreal Engine Documentation, accessed 
October 18, 2019, https://docs.unrealengine.com/en-US/Engine/Animation/Sequences/index.html.

19	  “Animation System Overview,” Unreal Engine Documentation, accessed October 18, 2019, https://
docs.unrealengine.com/en-US/Engine/Animation/Overview/index.html.

20	  “Blend Spaces,” Unreal Engine Documentation, accessed October 18, 2019, https://docs.
unrealengine.com/en-US/Engine/Animation/Blendspaces/index.html.

21	  Unreal Engine, “Real Time Motion Capture in Unreal Engine,” YouTube, 1:05:18, accessed October 
18, 2019, https://youtu.be/jRyq5uPC5UY?t=1066.

Figure 3.3.42	Agents become lifeless floating objects without animation
Simulated and Screen-recorded by Author.

Figure 3.3.43	Animation Sequence within UE4 drives the skeletal mesh asset.
Screen-recorded by Author.

https://docs.unrealengine.com/en-US/Engine/Animation/Sequences/index.html
https://docs.unrealengine.com/en-US/Engine/Animation/Overview/index.html
https://docs.unrealengine.com/en-US/Engine/Animation/Overview/index.html
https://docs.unrealengine.com/en-US/Engine/Animation/Blendspaces/index.html
https://docs.unrealengine.com/en-US/Engine/Animation/Blendspaces/index.html
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Figure 3.3.44	Blend Space
Screen-recorded by Author.

Figure 3.3.45	State Machine
Screen-captured by Author.

Figure 3.3.46	Adobe Maximo
Screen-recorded by Author, from “Mixamo,” Adobe, accessed December 28, 2019, https://www.mixamo.com/#/.
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Figure 3.3.47	Animations controlled by 
the State Machine during runtime
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Figure 3.3.48	Flowchart of updated Human Systems within UE4By Author.
Illustrated by Author
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Chapter 3.4 | Architectural Objects
Now that we have re-established the human agents within UE4, it is time 
to do the same to the architectural objects. Creating these objects within 
this software is very similar to creating the human agents. We will continue 
utilizing a pawn asset, along with its blueprint system, however, we will no 
longer require some of the other more complex assets such as the blackboard, 
behavior tree, or AI controller (unless the type of dynamic architectural 
object is complex enough to require it). On top of this, we will also utilize the 
construction script, which allows us to create changeable parameters for these 
objects within the viewport, allowing a much more user-friendly way to set 
up these generic object assets within the actual visualization workflow. (Fig. 
3.4.1 - 2) With this methodology, we can begin recreating these objects that 
the agents can interact with. While there can be a plethora of architectural 
objects within a space, to create a basic working simulation, we will need to 
first establish some basic object typologies in line with the human states we 
defined in Chapter 3.3.

Figure 3.4.1	 The Construction Script is visually very similar to the Blueprint
Screen-captured by Author.

Figure 3.4.2	 The Construction Script allows us to sync model attributes within the game space with variables 
within the Blueprint
Screen-recorded by Author.
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Figure 3.4.3	 Command Center viewport and properties
Screen-captured by Author.

Figure 3.4.4	 The Command Center asset contains the blueprint nodes (as defined in the Enter State on pg. 168) to spawn 
agents at thresholds every game tick during the simulation process 
Screen-captured by Author.

Command Center
While this is not an architectural object, the first object we must create 
is the command center. The purpose of this asset is to handle agent 
spawning throughout the simulation as well as global parameters such 
as the number of agents, their spawn rate, and various toggles for 
analytical and debugging purposes. For this reason, the actual mesh 
of this object does not matter, as it is simply a container for these 
variables. (Fig. 3.4.3) As such, we can simply focus on the event 
graph of this asset, which is required to spawn the agents. To do so, we 
need to create a list of all the entrances/exits within the environment 
and begin to spawn human agents from them depending on the preset 
attraction of the entrances. (Fig. 3.4.4)
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Entrances/Exits 
The first of these required architectural objects are the entrances and exits 
which allow the agents to enter and leave the space. Creating such an asset 
is straightforward, as we simply require a rectangular volume to symbolize 
the area in which the door might exist. From here, we need to establish basic 
parameters such as Width, Height, and Interest. (Fig 3.4.5) We can then 
use the command center to define a random location within this volume 
to spawn the agent. Depending on the typology of the object, we can also 
model-in doors if required. 

Thresholds
The next of these required objects are the thresholds. Much like the entrances/
exits, we will require a basic volume with an optional door mesh, as well as 
parameters such as width, height, and interest. (Fig. 3.4.6) The purpose of 
this object is to allow slightly more control to the crowd flow within the 
simulation. 

Figure 3.4.5	 Entrance/Exit viewport and properties
Screen-captured by Author.

Figure 3.4.6	 Threshold viewport and properties
Screen-captured by Author.
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Architectural Objects
The last of these required objects are the actual interactive objects. 
As already covered in Chapter 2.4, these objects can be quite diverse, 
therefore, what matters at this stage is to familiarize ourselves with the 
utility of the object, as well as the tools of this software. In doing so, 
we can create any type of objects that we desire. With this in mind, 
we will establish the most basic parameters of these objects in order to 
work with the AgentStates from Chapter 3.3, which are the following: 
(Fig. 3.4.7 - 8)

Objective Type determines if the object is a normal object or 
if it can be sat upon or if it requires a lineup.

Probability determines how attractive the object is to passing 
agents, as well as what ratio of agents might want to look at 
the object, versus interacting with it. This can be established 
with a float variable between 0 and 1, where 0 is 0% and 1 is 
100%.

Occupancy determines if there is an occupancy limit to the 
object. For example, a checkout counter may only be able 
to accommodate 1 person at the same time, in which case a 
lineup would be required if there are more people than this 
limit.

Time determines how long an agent might be interested in 
this object. A complex object such as a book might hold 
people’s attention longer than a simple sculpture.

Location determines the interest radius of the object, which 
in itself determines how far away the agents can be before 
they no longer notice the object. A larger object might have a 
larger radius compared to a smaller object.

Graphics determines both the graphical representation of 
limits such as interest radius, as well as physical properties 
such the 3D mesh and the assigned materials of the object.

On top of this, we will also require a basic way for the object to 
respond if an agent decides to interact with it. To do so, we can use an 
asset within UE4 called blueprint interface, which allows blueprints 
to share data with one another.[1] In doing so, we can establish an 
event node within the object blueprint that will trigger whenever an 
agent interacts with it. (Fig. 3.4.9 - 10) We can then add any type of 
function to this event to simulate their use. 

1	  “Blueprint Interface,” Unreal Engine Documentation, accessed October 18, 2019, https://docs.
unrealengine.com/en-US/Engine/Blueprints/UserGuide/Types/Interface/index.html.

Figure 3.4.7	 Architectural Object viewport and properties
Screen-captured by Author.

Figure 3.4.8	 The 3D mesh and materials of the object can be changed in the properties panel depending on the typology of 
the actual object
Screen-captured by Author.

https://docs.unrealengine.com/en-US/Engine/Blueprints/UserGuide/Types/Interface/index.html
https://docs.unrealengine.com/en-US/Engine/Blueprints/UserGuide/Types/Interface/index.html
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Figure 3.4.9 - 3.4.10
The nodes from the Behavior Tree each contains its own blueprint graph. Within 
the interact node, we can utilizes a blueprint interface to communicate with other 
blueprints. This allows us to use an event node within the object blueprint that is 
triggered whenever the Interact blueprint interface node within the Behavior Tree is 
triggered.

Figure 3.4.9	 Blueprint Interface node within the Interact node within the Object Interact State 
of the Behavior Tree. 
Screen-captured and edited by Author.

Figure 3.4.10	The Interact Event within the object blueprint allows it to change the color of its texture whenever the Interact 
node within the behavior tree of the Agent is triggered
Screen-captured by Author.
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Chapter 3.5 | Environment Context
Looking back at the start of Chapter 1.1, the world can be broken down into the 
“firmness and security of a human-made shell” and the “turbulence and uncertainty 
of nature’s ferocity.” As such, the environment context of the simulation can logically 
be broken down into nature and architecture.

Architecture
Creating the architectural context of this simulation is as straightforward as importing 
the building model into Unreal Engine 4. To do so however, we must first consider 
which software we are importing it from, the file type of the exported model, and the 
techniques for preserving collision upon import to allow the game engine to generate 
the pathfinding system.

For this step, I have chosen to utilize Revit as the software to import from, as Building 
Information Modeling (BIM) seems to be the standard that the architecture industry 
is heading towards.[1] In doing so, we can establish a visualization pipeline where 
the Revit model can be imported for basic scaling and geometry, and the details are 
added later in UE4 to maximize visualization quality and rendering efficiency. This 
pipeline can then be described by the following steps: (Fig. 3.5.1 - 2)

1.	 Export model from Revit as an FBX file. (based on families or 
textures)

2.	 Import FBX file into UE4 as a static mesh asset and set the 
correct scale.

3.	 Go into the Static Mesh asset and create a physical material and 
set the collision complexity to “use complex collision as simple.”

From this, the Revit model should be available within UE4 with working collision.  
(Fig. 3.5.3 - 4) It is then possible to apply various material textures to this model 
much like in Revit.

Since beginning this thesis, however, Epic Games has also recognized the merit of 
game engines within architectural visualization. As such, they have created additional 
tools to work alongside Unreal Engine in a package they call Unreal Studio.[2] This 
new software is essentially the Unreal Engine with additional toolsets, templates, 
and libraries to facilitate architectural visualization. One of the key benefits within 
this software is Datasmith,[3] which provides a more efficient and seamless way of 
importing building models into the game development environment.[4] While this 
new software is still in beta testing, it further validates the utilization of this game 
engine for architectural visualization, and is definitely something to investigate 
beyond this thesis.
1	  “About the National BIM Standard-United States®,” National Institute of Building Sciences, accessed October 

18, 2019, https://www.nationalbimstandard.org/about.
2	  “Unreal Studio,” Unreal Engine, accessed October 18, 2019, http://www.unrealengine.com/studio.
3	  “Installing the Datasmith Exporter Plugin for Revit,” Unreal Engine Documentation, accessed October 

18, 2019, https://docs.unrealengine.com/en-US/Studio/Datasmith/SoftwareInteropGuides/Revit/
InstallingExporterPlugin/index.html.

4	  Unreal Engine, “The Journey from Revit to Unreal Studio | Feature Highlight | Unreal Studio,” YouTube, 
1:08:36, accessed October 18, 2019, https://youtu.be/iuqTvvd16UQ?t=435.

Figure 3.5.1	 3ds Max export window
Linking the Revit model to 3ds Max before exporting allows better control in 
the resulting FBX file. The base units for Revit is in feet, and the base units in 
UE4 is in Centimeters. This must be taken into account when exporting the 
FBX file from 3ds Max linked from Revit.
Screen-captured and edited by Author.

Figure 3.5.2	 Static Mesh collision properties
Collision can be auto generated by utilizing a physical material and setting the 
Collision Complexity of it to “use complex collision as simple”
Screen-captured and edited by Author.

https://www.nationalbimstandard.org/about
http://www.unrealengine.com/studio
https://docs.unrealengine.com/en-US/Studio/Datasmith/SoftwareInteropGuides/Revit/InstallingExporterPlugin/index.html
https://docs.unrealengine.com/en-US/Studio/Datasmith/SoftwareInteropGuides/Revit/InstallingExporterPlugin/index.html
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Figure 3.5.3	 Collision lines right after Importing from Revit
By Twiz, “Unreal Engine 4 Tutorial - Export From Revit to UE4,” YouTube, 9:44, accessed December 28, 2019, https://www.youtube.com/
watch?v=Ux_zJ4WJbZg.

Figure 3.5.4	 Fixed collision lines within UE4 with a physical material
By Twiz, “Unreal Engine 4 Tutorial - Export From Revit to UE4.”

Figure 3.5.5	 Landscape Creation in UE4
By Virtus Learning Hub / Creative Tutorials, trimmed by Author, “Populating Scenes With The Foliage Tool - #17 Unreal Engine 4 Level Design Tutorial Series,” YouTube, 
14:18, accessed December 28, 2019, https://www.youtube.com/watch?v=XYYfIYDqsDA.

Nature
Nature has always been a challenge to model in traditional architectural 
visualization workflows due to its complexity and randomization. However, UE4 
provides basic landscaping tools for an easy setup of such an environment, which 
is one of the more powerful tools of this pipeline. With this, we can create a 
basic plane with a contour map and use various brushes and environmental assets 
to shape and randomly scatter vegetation along this plane, allowing for the fast 
creation of complex natural landscapes. (Fig. 3.5.5)

https://youtu.be/XYYfIYDqsDA?t=699
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Chapter 3.6 | Application Methodology
Now that we have established the basic assets of this simulation system, as well 
as a way of importing and creating a context within the virtual environment, 
we can begin developing a workflow pipeline utilizing this software as a 
visualization tool. As such, a basic workflow can be described as the following: 

1.	 Import model from Revit (Fig. 3.6.1 - 2)

2.	 Define the entrance and exits (Fig. 3.6.3 - 4)

3.	 Define the architectural elements (Fig. 3.6.5 - 6)

4.	 Simulate. (Fig. 3.6.7 - 8)

Beyond this, we can also output various points from each agent to provide 
various analytics such as crowd flow, densities, and comfort maps. (Fig. 3.6.9 
- 10) These are useful not only in debugging the simulation but also as a 
rough analytical tool for architectural visualization. While they are currently 
a rough approximation, these visualizations will continue to become more 
accurate as the crowd movement algorithms becomes increasing refined. To 
further help with the usability of this tool, we can create a GUI (Graphical 
User Interface) for simpler control of the simulation global parameters, the 
analytics and debugging visualizations, as well as the sun lighting angles. (Fig. 
3.6.11 - 12) Ultimately, we can utilize this tool to simulate various types of 
spatial scenarios, as well as visualize and interact with them in many different 
ways. (Fig. 3.6.13 - 18)

At its basic level, these simulations will be able to convey the capacity of spaces 
and their ability to accommodate crowds and human movement, as well as 
pinch points and opportunistic or problematic interaction points. Beyond 
this, the possibilities are endless.

Figure 3.6.1	 Step 1: Import FBX model 
Screen-recorded by Author.

Figure 3.6.2	 Step 1 sequential frames
Frame-captured by Author.
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Figure 3.6.1 - 3.6.2
FBX models can be exported 
from various 3D applications 
such as Revit, Rhino, 3ds 
Max, etc. The FBX model can 
be imported by dragging the 
file from the windows folder.  
Textures can then be applied 
to the imported model by 
dragging texture assets from 
the content browser.
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Figure 3.6.3	 Step 2: Define entrances/exits and thresholds 
Screen-recorded by Author.

Figure 3.6.5	 Step 3: Define Interactive Elements 
Screen-recorded by Author.
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Figure 3.6.3 - 3.6.4
Entrances and exits can be defined within the simulation by dragging assets from the content browser. They can then be 
customized depending on their typology and location by adjusting their attributes within the properties menu. 

Figure 3.6.5 - 3.6.6
Similar to the entrances and exits, interactive elements can be defined by dragging assets from the content browser. They 
can then be customized depending on their typology by adjusting their attributes within the properties menu. 

Figure 3.6.4	 Step 2 sequential frames
Frame-captured by Author.

Figure 3.6.6	 Step 3 sequential frames
Frame-captured by Author.
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Figure 3.6.7	 Step 4: Initiate the simulation
Simulated and screen-recorded by Author.

Figure 3.6.8	 Step 4 sequential frames
Frame-captured by Author.

Figure 3.6.7 - 3.6.8
After establishing the space with our predefined elements, we can begin the simulation. 
With a simple press of the play button within the GUI (Graphical User Interface), the 
software begins to generate agents from the entrance/exit thresholds based on global 
variables such as number of people and spawn rate. This gives the illusion of people 
flowing from the thresholds and populating the space in real time.
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Figure 3.6.9	 Various forms of data can be visualized and mapped out during the simulation and toggled on or off via the 
GUI (Graphical User Interface) or hotkeys
Simulated and screen-recorded by Author.

Figure 3.6.10	Data visualization sequential frames
Frame-captured by Author.

Figure 3.6.9 - 3.6.10
Due to the calculated nature of agent-based computer-generated simulations, it
becomes straightforward to render out various forms of data during the simulation
process. One example of such is the agent’s comfort level throughout the space. This
is calculated based on the number of other agents within the agent’s personal space
(visualized by the red bubbles). The more people within this personal space, the less
comfort the agent has, and the redder the resulting trail will become. As seen in
the figure, areas of discomfort appears in red, which can be used to map out crowd
densities where congestion may occur. This map seems to make logical sense in this
case since the location of it is by an object of interest as well as being in the most 
central location of the space. 

This is of course, just one example of how data can be mapped throughout the 
simulation. Depending on the spatial and scenario typologies, multiple layers can be 
visualized and traced based on varying types of occupancy throughout the space. A 
hospital might have different paths for the doctors and the patients; a school might 
have different paths for the teachers, students, and the general public; a store might 
have different paths for employees and shoppers. As such, by visualizing this data in 
real time, it becomes possible to not only better design circulation to accommodate 
everyone during the design phase, but also visualize neglected spaces that can be 
optimized. 
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Figure 3.6.11 - 3.6.12
The GUI can also be scripted to control other aspects of the simulation, such as the 
sun angle and time of day. This interactivity, along with its photorealism capabilities, 
allows UE4 to become a powerful tool for quickly visualizing photorealistic dynamic 
lighting conditions to conduct solar studies. As seen from the figure, the sky changes 
alongside the sun angle, simulating an orange sky during sunset and stars at night. This 
aspect can be further investigated to interact with the crowd dynamics by making the 
occupants seek shading and be less likely to walk in the direct sunlight. This can then 
be further expanded to other environmental factors such as the rain or snow, which 
can serve to visualize and consider the dynamic nature of environmental factors.
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Figure 3.6.11	GUI controlled Solar Studies
Simulated and screen-recorded by Author.

Figure 3.6.12	GUI controlled Solar Studies sequential frames
Frame-captured by Author.
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Figure 3.6.13 - 3.6.14
Various scenarios can be programmed depending on the situation. This figure shows
an example of an evacuation scenario, where each agent tries to make their way to the
nearest exit. With more substantial scripting depending on the project scenario, it then 
becomes possible to simulate specific spatial scenarios beyond simple evacuations, such 
as lectures, outdoor events, gallery talks, performances, New Year’s Eve celebrations, 
etc, as well as more specific spaces that may require additional considerations such as 
checking into airports, hospitals, and so on.
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Figure 3.6.13	The GUI can also be used to control various scripted events, such as an evacuation scenario
Simulated and screen-recorded by Author.

Figure 3.6.14	Scenario programming sequential frames
Frame-captured by Author.
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Figure 3.6.15	The simulation can also be visualized and interacted from different perspectives to better visualize the space
Simulated and screen-recorded by Author.

Figure 3.6.16	Interactive perspective variation sequential frames
Frame-captured by Author.

Figure 3.6.15 - 3.6.16
This software environment also allows us to utilize various forms of interaction and 
visualization mediums beyond just visualizing the space from the top down. This 
opens the possibilities of interacting with the space via mouse and keyboard inputs, 
VR and AR headsets, as well as body tracking technologies. This figure shows an 
example of a 3rd person perspective where someone can control an agent to walk 
around the space, visualizing the simulation from a new perspective. 
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Figure 3.6.17	The virtual camera can be utilized to simulate a real camera to produce cinematic footage
Screen-recorded by Author.

Figure 3.6.18	Virtual camera sequential frames
Frame-captured by Author.

Figure 3.6.17 - 3.6.18
These figures show how we can move the camera to produce cinematic visualizations 
by using techniques such as truck and dolly movements. Much like a physical camera, 
we can also adjust the DOF (depth of field) of the camera by controlling the aperture 
value within the properties. This camera control along with its real-time rendering 
capabilities allows us to produce cinematic visualizations that are comparable to the 
film industry but also rendered at a much faster pace. This faster pace of rendering 
will allow designers to utilize more realistic visualizations that can represent the space 
in real life even during the iterative process of the design phase, which is substantially 
more useful as a tool than simply being used for client pitches that are made after 
the design, such as the examples shown in Chapter 1.2: Inadequacy of Current 
Visualization Methods.
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Simulations of Real-World Spaces



Simulations of Real-World Spaces

This section will evaluate the capabilities of the toolset that was established in Part 3: 
Tool Creation by investigating various architectural applications that this simulation 
framework could be used for. It will do so by first examining generic spatial conditions 
with the toolset to establish a limit of operation potential. It will then utilize the 
toolset to simulate a variety of architectural spaces starting from the smallest scale 
and working its way up to larger scenarios.
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Figure 4.1.2	 Open Space analytical frames
Frame-captured by Author.

Figure 4.1.1 - 4.1.2
The purpose of this scenario is to investigate agent behaviors as well as the overall 
crowd dynamics within an open space without the presence of interactive elements. 
With this, we can observe the agent behaviors in a predominantly agent to agent 
interactive space and fine tune its agent interaction percentage parameters to better 
resemble real world crowds. It can be seen here that a percentage of the agents will 
began talking while others will explore the space before finding an exit and leaving. 
In doing this, we can also observe a rough limit of 100 agents before the simulation 
starts to slow down with current hardware, and a limit of 50 agents if a screen capture 
software is running alongside it.  
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Chapter 4.1 | Spatial Conditions
The first step is to test this tool within some generic conditions to get a sense 
of the crowd flow in various spatial typologies. In doing so, we can confirm 
the agent’s ability to adapt to different spatial scenarios, as well as establish a 
range of operation potential to better understand the limits of this framework 
in its current form.

Figure 4.1.1	 Open Space Condition
Simulated and screen-recorded by Author.
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Figure 4.1.3	 Corridor Condition
Simulated and screen-recorded by Author.

Figure 4.1.4	 Corridor analytical frames
Frame-captured by Author.

Figure 4.1.3 - 4.1.4
These figure looks at how the agents behave within a corridor condition. It can be 
observed that the agents will walk along the corridor geometry, with a much smaller 
percentage of them talking due to the lower amount of agent to agent interactions 
from the smaller more constricted space. It is also interesting to note how the crowd 
dynamics begin to form lanes similar to the social forces model briefly mentioned 
from chapter 2, which can be speculated to be caused by the alignment forces that 
causes people to keep pace with their surroundings.
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Figure 4.1.5	 Intersection Condition
Simulated and screen-recorded by Author.

Figure 4.1.6	 Intersection analytical frames
Frame-captured by Author.

Figure 4.1.5 - 4.1.6
This scenario tests how the agents maneuver through intersections. The agents moving 
through the intersection will subtly change their path to avoid colliding into other 
agents. When the hallway divides into 2, a percentage of the agents will choose 1 path 
while another percent will choose the other path.
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Figure 4.1.7 - 4.1.8
This scenario investigates how the agents move from a constricted space to an open 
space. From these figures, we can observe how the agents fan out to explore as they 
spill into the open space. This shows how the crowd dynamics of these autonomous 
agents can change to accommodate the spatial conditions, as the agents conform to 
the spatial limits of the environment.
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Figure 4.1.7	 Expansion Condition
Simulated and screen-recorded by Author.

Figure 4.1.8	 Expansion analytical frames
Frame-captured by Author.
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Figure 4.1.11	Grand Central Station time-lapse
From Rocketboom, “Time Lapse Grand Central Station,” YouTube, 2:54, accessed December 28, 2019, https://www.youtube.com/watch?v=eimuAboXSdo&feature=youtu.be.

Figure 4.1.9	 Open space condition sped-up 20x
Simulated and screen-recorded by Author.

Figure 4.1.9 - 4.1.12
After confirming the Agent’s ability to adapt to different spatial scenarios, we can create a rough mock-up of a real-
world space to gage how well this crowd simulation can resemble it. Grand Central Station in NYC was chosen for its 
relatively simple spatial typology of being an open box with thresholds along its edges and a centralized object of interest. 
As such, these 2 figures compare the generated crowd movements of a virtual animation with a documented time-lapse 
video of the Grand Central Station. Although the scale of the space and the number of people of the simulation is not 
exact, the emergence of similar movement patterns can be seen from both examples. The waves of high and low-density 
crowd movements alongside agent interactions with the centralized object allows the simulated crowd to resemble the 
real-world crowd dynamics of the space.
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Figure 4.1.10	Open space condition sped-up analytical frames
Frame-captured by Author.

Figure 4.1.12	Grand Central Station time-lapse analytical frames
Frame-captured by Author, from Rocketboom, “Time Lapse Grand Central Station.”

https://youtu.be/eimuAboXSdo?t=85
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Figure 4.1.13 - 4.1.14
Since these agents operate as autonomous agents with sight and decision making, they 
have the ability to react to a changing environment. This not only allows us to test 
different design scenarios and sizes in real time, but also allows the agents themselves 
to interact with scripted dynamic objects within the space, which in turn allows us to 
visualize how these interactive and dynamic spaces may impact the occupants during 
the iterative process of the design phase. With this, the simulation has the potential 
to create an interplay of dynamic systems—people interacting with architecture, and 
architecture interacting with people, which allows us to consider different geometries 
and scenarios based on these interactions during the design phase. 

Figure 4.1.13	The simulated agents will react and adapt to a changing environment in real time.
Note how the green Navmesh area is updated in real time as the space is manipulated.
Simulated and screen-recorded by Author.

Figure 4.1.14	Adaptive agents sequential frames
Frame-captured by Author.
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Figure 4.2.2	 Cushion Floor Plan
Illustrated by Author, CAD file obtained from the Cushion team.

Chapter 4.2 | Nuit Blanche Cushion
After testing the agents within various spatial conditions and establishing their 
limits, we can evaluate this simulation tool for architectural visualization use 
by first simulating architectural spaces at the smallest of scales. To do so, we 
can re-simulate Cushion—the Nuit Blanche Toronto installation space we 
prototyped in chapter 2.5—which allows us to compare our simulation tool 
with our prototype to see its progression. This space also fits our criteria for 
providing a scenario that is both small in scale and inherently involves crowds 
of people interacting with dynamic elements. 

Figure 4.2.1	 Cushion Revit model
Screen-captured by Author.
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Figure 4.2.3	 Cushion crowd simulation
Simulated and screen-recorded by Author.

Figure 4.2.4	 Cushion crowd simulation analytical frames
Frame-captured by Author.

Figure 4.2.3 - 4.2.4
Within this first simulation, we can observe that the agents are behaving as anticipated. 
They are first generated at one end where they can come into the space and explore 
the installation. As they move through the alleyway, they will interact with the various 
cushion objects within the space, which in turn causes the objects to change in color. 
Once they have reached the end, they will exit the space. It is also interesting to note 
how the more open space at the back allows for more agent to agent interactions, 
which in turn facilitates an area of conversation within the space.
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Figure 4.2.5	 Cushion agent-comfort map
Simulated and screen-recorded by Author.

Figure 4.2.6	 Cushion agent-comfort map analytical frames
Frame-captured by Author.

Figure 4.2.5 - 4.2.6
These figures shows how the comfort trails can highlight a potential area of congestion. 
This result makes sense as the congestion area occurs at one of the first bottlenecks of 
the installation plan when entering the space. As such, it can be assumed that placing 
an object of high interest here will worsen the effect.
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Figure 4.2.7	 Cushion real world footage
Filmed by Author.

Figure 4.2.8	 Cushion real world footage analytical frames
Frame-captured by Author.

Figure 4.2.10	Cushion rendered visualization analytical frames
Frame-captured by Author.

Figure 4.2.9	 Cushion rendered visualization
Simulated by Author.

Figure 4.2.7 - 4.2.10
Utilizing virtual cinematic cameras allows us to render out animations in real time. In doing so, we can match our 
visualization to real world footage, which allows us to compare the experiential qualities of the installation versus the 
simulation. From this, we can see that while the simulation is not an exact replica, it is still much better than no agents 
at all at conveying the usability and experiential qualities of the space.
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Figure 4.2.9 - 4.2.12
While it can be argued that the simulated agents are not fully accurate when comparing to the real world, 
comparing them further to the same visualization without the agents reveals how much impact the addition 
of these simulated agents can bring to the resulting spatial visualization. Without the agents, not only does the 
visualization convey less about the experience of the space, but the dynamic interactive elements within the 
simulation also become subdued without the agents providing a source of input to interact with them.

Figure 4.2.9 Cushion rendered visualization Figure 4.2.11	Cushion rendered visualization without simulated crowds
Simulated by Author.

Figure 4.2.12	Cushion rendered visualization analytical frames without simulated crowds
Frame-captured by Author.
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Figure 4.2.10 Cushion rendered visualization analytical frames
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Chapter 4.3 | Riverside Gallery
After investigating the installation space, we can utilize this tool further within a 
larger and more practical context. As such, the Riverside Gallery in Cambridge, 
Ontario was chosen. It is a space that not only fits these criteria of being larger 
and more ‘real world’ than an installation, but its location within the architecture 
school also allows an ease of documentation and translation of this space into the 
virtual environment. 

Figure 4.3.1	 Riverside Gallery Revit model
Screen-captured by Author.
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Figure 4.3.2	 Riverside Gallery Floor Plan
It should be noted that the simulation area does not need to encompass the entire building. The entrance/exit assets can 
be used to define the boundaries of a space as long as it is a closed system.
Illustrated by Author, PDF file obtained from “Floor Plans,” Plant Operations, accessed 28, 2019, https://uwaterloo.ca/plant-operations/floor-plans.
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Figure 4.3.3	 Riverside Gallery crowd simulation
Simulated and screen-recorded by Author.

Figure 4.3.4	 Riverside Gallery crowd simulation analytical frames 
Frame-captured by Author.

Figure 4.3.3 - 4.3.4
This simulation shows how the agents move around within more traditional spaces 
such as an art gallery. While the furniture elements within this gallery—such as 
tables and displays—are not dynamically interactive like the ones seen in cushion, 
they can still be considered interactive objects within the space, since the agents can 
manipulate and move them. This figure shows how the agents are drawn towards the 
gallery as they enter the building, with some of them heading down the hallway to 
the bathrooms or the school. As they walk around the gallery, they will observe and 
interact with the displays within the space, or begin talking with other agents.
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Figure 4.3.5	 Riverside Gallery agent-comfort map
Simulated and screen-recorded by Author.

Figure 4.3.6	 Riverside Gallery agent-comfort map analytical frames
Frame-captured by Author.

Figure 4.3.5 - 4.3.6
The generated comfort trails here highlight a possible area of congestion by the display, 
which makes sense as it is a physical bottleneck around an object of interest near the 
entrance of the gallery space.

1

3

5

7

2

4

6

8



254 255

Tool Evaluation |Riverside Gallery Tool Evaluation |Riverside Gallery

Figure 4.3.7	 Riverside Gallery real world footage
Filmed by Author.

Figure 4.3.8	 Riverside Gallery real world footage analytical frames
Frame-captured by Author.

Figure 4.3.9	 Riverside Gallery rendered visualization
Simulated by Author.

Figure 4.3.10	Riverside Gallery rendered visualization analytical frames
Frame-captured by Author.
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Figure 4.3.7 - 4.3.10
Utilizing the virtual cinematic cameras allows us to once again render out animations in real time. This comparison 
between the real-world footage and the simulation is somewhat more exact, mainly due to the increased model detail of 
the interactive elements within the space.
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Figure 4.3.11	Riverside Gallery rendered visualization without simulated crowds
Simulated by Author.

Figure 4.3.12	Riverside Gallery rendered visualization analytical frames without simulated crowds
Frame-captured by Author.
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Figure 4.3.9 Riverside Gallery rendered visualization
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Figure 4.3.9 - 4.3.12
Once again, comparing this animated visualization to one without agents at all, highlights how even generic humanoid 
agents can better convey the usability and experience of the space. Without these agents, the space feels a lot less authentic 
when compared to the real world.

Figure 4.3.10 Riverside Gallery rendered visualization analytical frames
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What the Future Holds

This section concludes this exploration by acknowledging potential directions to 
investigate and various aspects that can be improved upon in the future. Since the 
initial aim was to create a foundational framework for visualizing dynamic spaces, it 
makes sense that there are many elements that can be improved upon and developed 
beyond the scope of this thesis. As such, improvements to this framework in the near 
future can be broken down into the following categories: Simulation Improvements, 
Photorealism, Virtual Reality, and Workflow Refinements.
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Chapter 5.1 | Simulation Improvements
The first of these improvements is the simulation itself. The last section (Part 4: 
Simulation Applications) investigated various applications that this simulation 
framework could be used for; starting with generic basic conditions to small 
scale installations and working its way up to larger ‘real world’ spaces such 
as galleries. From these investigations, it can be seen that the agents are 
still somewhat unsophisticated with jerky movements when compared to 
people in the physical world. While this is largely unnoticeable when more 
agents are generated within the simulation, it still shows that there is room 
for improvement. At the same time, there also seems to be a limit to the 
number of occupants that can be generated before the entire system slows 
down significantly, which can limit the variety of spaces that this tool can be 
used for. As such, it is evident that this model can be improved both in terms 
of optimization and accuracy. To do so, we must first finalize and organize the 
simulation model. From here, we can optimize performance by utilizing C++ 
and increase accuracy with additional considerations to the simulated agents. 
We can then use this new model to establish new features that can be used for 
architectural visualization. 

Organization: Finalizing the Simulation Model
Before even considering these improvements, however, it is important to first 
organize and simplify the simulation model. At its current state from Chapter 
3.3: Human Agents, these assets are messy with leftover ‘experimental logic’ 
due to the prototyping process, which leaves a lot of unnecessary variables and 
functions to wade through when modifying the logic.

While this was deliberate in learning this software, it becomes inefficient in 
the process of adding additional functionalities. Therefore, the first step that 
should be taken beyond this thesis is to go through the entire logic of the 
simulation model and determine the necessary portions of code. From there, it 
would then become possible to organize the logic into macros and functions in 
order to create a library of reusable nodes for future modifications. Doing this 
will solidify the foundational aspect of this framework, which will facilitate 
an easier process to add additional considerations and features to the crowd 
simulation tool.

Optimization: Blueprints vs C++
Within UE4, when a blueprint is executed, it is calling back to the C++ code 
that was written for it. As such “there is an overhead cost associated with 
executing blueprints that isn’t present with purely native code.”[1] This lack of 
an overhead can allow the native C++ code to outperform blueprints by up to 
10 times, which becomes significant as we begin adding more people to the 
simulation. (Fig. 5.1.1)

1	  Irascible, comment on “[Twitch] Fortnite Developers Discussion - Apr. 17, 2014,” Unreal Engine 
Forums, accessed October 18, 2019, https://forums.unrealengine.com/unreal-engine/events/3192-
twitch-fortnite-developers-discussion-apr-17-2014/page2.

Figure 5.1.1	 Blueprint scripting vs C++ scripting
From Jayanam, frame-captured and edited by Author, “Unreal Engine 4 : C++ and Blueprints Tutorial,” YouTube, 7:36, accessed January 1, 2020, https://www.youtube.com/
watch?v=SW09W182Ws0.

https://forums.unrealengine.com/unreal-engine/events/3192-twitch-fortnite-developers-discussion-apr-17-2014/page2
https://forums.unrealengine.com/unreal-engine/events/3192-twitch-fortnite-developers-discussion-apr-17-2014/page2
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A common approach to this within UE4 is to build prototypes in blueprint 
first and then move some or all of the functionalities to C++ once a “refractor 
point” is reached in which the base functionalities are proven and it becomes 
favorable to solidify the code for other people to use.[2] While this translation 
may take significantly longer than prototyping with blueprints, the increased 
performance will allow the simulation of increasingly bigger crowds, which can 
expand the range of applications of this tool depending on the architectural 
project. 

With our current hardware and setup from Part 3, we have a limitation of 
around 150 people before the system begins to slow down substantially. 
Therefore, by optimizing the logic, it may be possible to increase this limitation 
and increase the range of this application from simulating smaller spaces such 
as galleries and installations to larger spaces such as train stations and malls. In 
doing so, it also becomes possible to utilize more detailed agent Skeletal Mesh 
assets to portray a more realistic variance within the crowd.

Accuracy: Additional Simulation Model Considerations
As already mentioned in Chapter 2.2: Establishing Model Methodology, 
additional variables can be introduced beyond the concept of personal space 
to introduce increased complexity to these agents. For example, variables 
can be created for each agent that states his or her energy, hunger, interest, 
comfort, memory, emotion, and task list. This produces a pseudo-personality 
for each agent, where their task may be altered based on their current physical 
and mental state. An agent that does not have enough energy may be too tired 
and will try to seek seating, whereas an agent who has achieved his or her 
goal within the space may no longer have any interest and choose to seek an 
exit. These can then be mapped during the simulation to visualize areas where 
people may become stressed, hungry, tired, happy, etc. Beyond this, additional 
parameters can also be considered from higher complexity models (also 
mentioned in Chapter 2.2) such as HiDAC, where factors such as pushing, 
falling and panic behaviors can be introduced. This new simulation model 
can then be fine tuned further by doing a series of real world crowd studies 
in different locations, which can introduce other factors to influence crowd 
movements such as geography, culture, average height, population age, etc.  
The foundational framework we developed throughout this thesis then allows 
us to slowly build upon it by adding these features, allowing the simulation 
model to become increasingly capable and accurate over time. 

2	  “Balancing Blueprint and C++,” Unreal Engine Documentation, accessed October 18, 2019, https://
docs.unrealengine.com/en-US/Resources/SampleGames/ARPG/BalancingBlueprintAndCPP/index.
html.

Utility: Additional features for the simulation tool
These improvements in the simulation model can also allow the implementation 
of additional features within the simulation tool—many of which were already 
briefly mentioned in Chapter 3.6: Application Methodology—which can include 
additional ways to visualize solar and thermal comfort, occupancy responses 
and reactions, as well as the ability to layer different types of agent trails 
depending on the persona, typology and groupset of the existing occupants. We 
can also recreate more accurate and additional scenarios to offer unique insight 
for architects during design. Beyond just evacuation we can simulate events 
such as holiday openings, conference lectures, and performances, as well as 
simulate more specific spaces that may require additional considerations such 
as checking into airports, hospitals, event gatherings, and so on. (Fig. 5.1.2) 
These features further contribute to the utility of this tool as an analytical and 
visualization tool for not only interactive dynamic spaces, but also occupied 
static spaces.

Figure 5.1.2	 An airport is one example of a dynamic space that requires multiple layers of queuing, and many 
groupings of occupants
By John Amis, from Don Schanche Jr., “Airlines Struggle to Get Back on Schedule after Atlanta Fire,” December 18, 2017, FWBP, accessed January 1, 2020, http://www.
fortworthbusiness.com/news/airlines-struggle-to-get-back-on-schedule-after-atlanta-fire/article_c1ce0496-e41b-11e7-8980-5b5f5acbd106.html.

https://docs.unrealengine.com/en-US/Resources/SampleGames/ARPG/BalancingBlueprintAndCPP/index.html
https://docs.unrealengine.com/en-US/Resources/SampleGames/ARPG/BalancingBlueprintAndCPP/index.html
https://docs.unrealengine.com/en-US/Resources/SampleGames/ARPG/BalancingBlueprintAndCPP/index.html
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Figure 5.2.1	 Photogrammetry recreates an object by capturing multiple images of the object in various angles
From Joseph Azzam, “Everything You Need to Know about Photogrammetry I Hope,” January 10, 2017, Gamasutra, accessed January 1, 2020, https://www.gamasutra.com/
blogs/JosephAzzam/20170110/288899/Everything_You_Need_to_Know_about_Photogrammetry_I_hope.php.

Chapter 5.2 | Photorealism
The next set of improvements to explore for this pipeline would be photorealistic 
rendering outputs. With hardware becoming increasing powerful and software 
becoming increasingly sophisticated, more photorealistic rendering methods 
are becoming increasingly accessible. While the default visuals of UE4 provided 
adequate results, it is only the beginning of what this game engine is capable 
of. This step of improvements at the base would require investigating various 
ways of material creation, but to fully utilize this software, we would also need 
to investigate more advanced photorealism methods such as photogrammetry 
and real-time ray tracing. In doing so, we can further solidify this framework 
as an efficient way to both analyze and visualize the space within the same 
workflow.

Photogrammetry
Photogrammetry can be defined as “the art, science and technology of 
obtaining reliable information about physical objects and the environment 
through the process of recording, measuring and interpreting photographic 
images and patterns of electromagnetic radiant imagery and other 
phenomena.”[1] Simply put, this allows us to create exceptionally detailed 3D 
models by taking multiple images of the subject from different angles. (Fig. 
5.2.1) While this concept is not new, commercial photogrammetry software 
has only recently become easily accessible. By utilizing software such as Agisoft 
Photoscan, Reality Capture, and Pix4d, we can relatively easily create realistic 
assets that can in turn be used to create visualizations that are almost visually 
on par with traditional ray-traced methods at a fraction of the rendering time. 

[2] (Fig. 5.2.2 - 3) These visualizations are approaching a level of photorealism 
that is hard to distinguish from real life, and as such, the implications of 
this within architectural visualization are undoubtedly significant and will be 
worth investigating.

Real-time ray tracing
As already mentioned in Chapter 1.3: Advent and Progression of the Game 
Engine, ray tracing is a rendering method where the paths of simulated “light 
rays” bouncing throughout the environment are traced back to the source of 
the camera.[3] This technique is what allows traditional architectural rendering 
methods to outperform game engines in terms of photorealistic representation 
as they have the luxury of simulating the lighting based on real-world physics 
instead of faking it with textures. Real-time ray tracing then becomes somewhat 
self-explanatory in its benefits within architectural visualization.

1	  James S. Bethel et al., Manual of Photogrammetry (Bethesda, MD: American Society for 
Photogrammetry and Remote Sensing, 2004), 2.

2	  Joseph Azzam, “Everything You Need to Know about Photogrammetry I Hope,” Gamasutra, 
January 10, 2017, accessed October 18, 2019, https://www.gamasutra.com/blogs/
JosephAzzam/20170110/288899/Everything_You_Need_to_Know_about_Photogrammetry_I_
hope.php.

3	  Appel, “Some Techniques for Shading Machine Renderings of Solids.”

This new technology allows us to output renderings at a much faster pace 
compared to traditional methods, and as such has the potential to further 
blur the line between virtual interactive visualizations and reality. While this 
technology is still relatively new, more and more software—such as UE4, 
albeit this feature is still in beta—are beginning to support it, with demos 
already showing the capabilities of this new technology.[4] (Fig. 5.2.4) This, 
along with Nvidia’s recent introduction of ray tracing specific RTX graphics 
cards shows that the future of real-time ray tracing is right around the corner 
and will only become more powerful as technology improves. 

4	  Unreal Engine, “Reflections Real-Time Ray Tracing Demo | Project Spotlight | Unreal Engine,” 
YouTube, 1:04, accessed October 18, 2019, https://www.youtube.com/watch?v=J3ue35ago3Y.

https://www.gamasutra.com/blogs/JosephAzzam/20170110/288899/Everything_You_Need_to_Know_about_Photogrammetry_I_hope.php
https://www.gamasutra.com/blogs/JosephAzzam/20170110/288899/Everything_You_Need_to_Know_about_Photogrammetry_I_hope.php
https://www.gamasutra.com/blogs/JosephAzzam/20170110/288899/Everything_You_Need_to_Know_about_Photogrammetry_I_hope.php
https://www.youtube.com/watch?v=J3ue35ago3Y
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Figure 5.2.2	 Star Wars Battlefront Photogrammetry Mod
From Martin Bergman, trimmed by Author, “STAR WARS™ Battlefront: Toddyhancer Showcase (Less Filmic Version),” YouTube, 0:52, accessed January 1, 2020, https://www.
youtube.com/watch?v=a72hU_l6mKc.

Figure 5.2.3	 Rebirth photorealism within UE4 demo
From Quixel, trimmed by Author, “Rebirth: Introducing Photorealism in UE4,” YouTube, 2:24, accessed January 1, 2020, https://www.youtube.com/watch?v=9fC20NWhx4s.

Figure 5.2.4	 Star Wars realtime Ray-tracing demo
Trimmed by Author, videos from moviemaniacsDE, “Star Wars: Reflections | Official Unreal Engine Real-Time Ray-Tracing Demo (2018),” YouTube, 4:09, accessed January 1, 2020, https://www.
youtube.com/watch?v=AV279wThmVU, and Unreal Engine, “Reflections Real-Time Ray Tracing Demo | Project Spotlight | Unreal Engine,” YouTube, 1:04, accessed January 1, 2020, https://www.
youtube.com/watch?v=J3ue35ago3Y.

https://youtu.be/9fC20NWhx4s
https://youtu.be/a72hU_l6mKc?t=10
https://youtu.be/AV279wThmVU?t=72
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Figure 5.3.1	 Tiltbrush is one example of an VR painting application
From “Tilt Brush by Google,” accessed January 1, 2020, https://www.tiltbrush.com/.

Chapter 5.3 | Virtual Reality
The real-time rendering and interaction capabilities of this UE4 pipeline 
naturally opens the potential of VR integration, which allows us to synchronize 
the virtual world to the physical.[1] Through VR headsets, we can achieve 
levels of immersion that are unparalleled compared to static or even dynamic 
interactive visualizations on a traditional screen. There are multiple levels of 
immersion to this, ranging from simple rotationally-tracked headgear to full 
body positional tracking, many of which already have some sort of support 
within UE4.[2]

This introduces possibilities of expanding both immersion and production 
aspects within architectural visualization. Simple positionally tracked 
controllers have already been used for applications that allow people to draw 
within a virtual 3D VR environment.[3] (Fig. 5.3.1) Optical trackers such as 
Kinect[4] and leap motion[5] allows us to easily and cheaply track the human 
body and hands, which can be used for both immersive movement control as 
well as animation asset creation.[6] (Fig. 5.3.2 - 3) More advanced rigs can also 
be used to simulate camera movements within the virtual environment that 
are comparable to holding a real camera in the physical world. (Fig. 5.3.4)

By exploring these multiple ways of facilitating physical virtual interactions, 
we will be able to realize a plethora of different options that can be used with 
this software. The benefits of this medium are further justified by Ronald 
Tang’s recently defended M.Arch thesis Step into the Void: A study of spatial 
perception in Virtual Reality, in which he rationalizes the utility of VR as a 
medium within architectural visualization.[7]

Eventually with enough hardware and software improvements, both the 
environment as well as the human agents[8] (Fig. 5.3.5) will become 
indistinguishable from reality, allowing us to fully represent spaces, possibly 
making this the future of architectural visualization. 

1	  “Unreal Engine for AR, VR & MR,” Unreal Engine, accessed October 18, 2019, https://www.
unrealengine.com/en-US/vr.

2	  “Virtual Reality Development,” Unreal Engine Documentation, accessed October 18, 2019, https://
docs.unrealengine.com/en-US/Platforms/VR/index.html.

3	  “Painting from a New Perspective,” Tilt Brush by Google, accessed October 18, 2019, https://www.
tiltbrush.com/.

4	  Kevin Carbotte, “You Can Use A Kinect For Full Body Tracking In SteamVR; Here’s How,” Tom’s 
Hardware, September 16, 2017, https://www.tomshardware.com/news/driver4vr-kinect-full-body-
vr-tracking,35476.html.

5	  “Reach into the Future of Virtual and Augmented Reality,” Leap Motion, accessed October 18, 
2019, https://www.leapmotion.com/.

6	  “Virtual Reality Motion Tracking Technology Has All the Moves,” Virtual Reality Society (blog), May 
5, 2017, https://www.vrs.org.uk/virtual-reality-gear/motion-tracking/.

7	  Ronald Tang, “Step into the Void: A Study of Spatial Perception in Virtual Reality” (Master’s thesis, 
University of Waterloo, Waterloo, 2019), http://hdl.handle.net/10012/14468.

8	  “Siren Real-Time Performance | Project Spotlight | Unreal Engine,” YouTube, 0:41, accessed 
October 18, 2019, https://www.youtube.com/watch?v=9owTAISsvwk.

https://www.unrealengine.com/en-US/vr
https://www.unrealengine.com/en-US/vr
https://docs.unrealengine.com/en-US/Platforms/VR/index.html
https://docs.unrealengine.com/en-US/Platforms/VR/index.html
https://www.tiltbrush.com/
https://www.tiltbrush.com/
https://www.tomshardware.com/news/driver4vr-kinect-full-body-vr-tracking,35476.html
https://www.tomshardware.com/news/driver4vr-kinect-full-body-vr-tracking,35476.html
https://www.leapmotion.com/
https://www.vrs.org.uk/virtual-reality-gear/motion-tracking/
http://hdl.handle.net/10012/14468
https://www.youtube.com/watch?v=9owTAISsvwk
https://www.tiltbrush.com/
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Figure 5.3.4	 Utilizing a VR camera rig in the making of the short film Rebirth in UE4
From Quixel, trimmed by Author, “Create Photoreal Cinematics in UE4: Rebirth Tutorial,” YouTube, 44:56, accessed January 1, 2020, https://www.youtube.com/
watch?v=0iQJkSpOoOQ&feature=youtu.be&t=2215.

Figure 5.3.5	 Project Siren demonstrates real-time face and body tracking alongside photorealistic human 
rendering within UE4
Trimmed by Author, videos from Unreal Engine, “Siren Real-Time Performance | Project Spotlight | Unreal Engine,” YouTube, 0:41, accessed January 1, 2020, https://www.
youtube.com/watch?v=9owTAISsvwk, and “Siren Behind The Scenes | Project Spotlight | Unreal Engine,” YouTube, 0:51, accessed January 1, 2020, https://www.youtube.com/
watch?v=NW6mYurjYZ0.

Figure 5.3.2	 Kinect Body Tracking within UE4
Trimmed by Author, Videos from Opaque Media Group, trimmed by Author, “Kinect 4 Unreal 1.1 - Introduction,” YouTube, 9:17, accessed January 1, 2020, https://
www.youtube.com/watch?v=WHmPvZvRyxc, and Jiayi Wang, “Kinect for UE4 local multi rig tracking test,” YouTube, 1:51, accessed January 1, 2020, https://youtu.be/
KZuauZW8Tgg.

Figure 5.3.3	 Leap Motion Hand Tracking
From Leap Motion, trimmed by Author, “Leap Motion Blocks for Oculus Rift Playthrough,” YouTube, 6:15, accessed January 1, 2020, https://www.youtube.com/
watch?v=oZ_53T2jBGg.

Figure 5.3.2 - 5.3.5
Here we can see various levels of body tracking, which can be as precise as our 
fingers and faces and as inclusive as our whole body. Tracking can also be used on 
objects, which introduces the potential for syncing other tools, objects, and even 
architectural spaces. These new methods of tracking can allow us to both create new 
custom animation assets to further advance the movements of the crowds, as well 
as give us the ability to better interact with the simulation itself. This in turn allows 
us to fully simulate and test new interactive designs in virtual space before actually 
building them.

https://youtu.be/oZ_53T2jBGg
https://youtu.be/KZuauZW8Tgg?t=54
https://www.youtube.com/watch?v=0iQJkSpOoOQ&feature=youtu.be&t=2215
https://youtu.be/NW6mYurjYZ0
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Chapter 5.4 | Workflow Refinements
The last of these aspects worth investigating in the future are workflow refinements, 
which investigates ways to improve the efficiency and potential uses of the workflow 
that we have established in chapter 3.6. One way to do so is to consider Python 
interoperability between applications. Python is a programming language that is 
supported amongst many 3D applications within the media and entertainment 
industries.[1] UE4 is of course no exception, as such, it offers a Python API (Application 
Programming Interface) to help with scripting and automating within Unreal Editor.[2] 
(Fig. 5.4.1)  This allows the scripting of various management systems to automate 
workflows to optimize production pipelines in the future. The Datasmith workflow 
toolkit that was mentioned in chapter 3.5 is one example of such use, where its goal 
is to make “moving data into unreal engine as frictionless as possible.”[3] (Fig. 5.4.2) 
Building upon this, it then becomes theoretically possible to automate the establishment 
of interactive objects and thresholds within UE4 depending on how the families are 
defined within Revit. (Fig. 5.4.3) This will be an important aspect to consider as the 
tool becomes more refined and better utilized for real world practical applications. 
In doing so, it becomes possible to further increase the efficiency of the potential 
visualization pipeline of this framework that this thesis has now established.

1	  “Scripting the Editor Using Python,” Unreal Engine Documentation, accessed October 18, 2019, 
https://docs.unrealengine.com/en-US/Engine/Editor/ScriptingAndAutomation/Python/index.html.

2	  “Unreal Python API Introduction,” Unreal Engine Documentation, accessed October 18, 2019, https://
docs.unrealengine.com/en-US/PythonAPI/introduction.html. 

3	 Ken Pimentel, “Technology Sneak Peek: Python in Unreal Engine,” Unreal Engine, November 15, 2017, 
accessed November 20, 2019, https://www.unrealengine.com/en-US/tech-blog/technology-sneak-peek-
python-in-unreal-engine.

Figure 5.4.1	 Python Editor Script Plugin within UE4
From “Scripting the Editor Using Python,” Unreal Engine Documentation, accessed October 18, 2019, https://docs.unrealengine.com/en-US/Engine/Editor/
ScriptingAndAutomation/Python/index.html.

Figure 5.4.2	 Datasmith is a collection of tools and plugins that automates various tasks from traditional workflows
From Ken Pimentel, “Technology Sneak Peek: Python in Unreal Engine,” Unreal Engine, November 15, 2017, accessed November 20, 2019, https://www.unrealengine.com/en-US/tech-blog/
technology-sneak-peek-python-in-unreal-engine.

Figure 5.4.3	 An example of a Python script used to automatically generate a LOD from a higher complexity mesh
From Pimentel, “Technology Sneak Peek: Python in Unreal Engine.” 

https://docs.unrealengine.com/en-US/Engine/Editor/ScriptingAndAutomation/Python/index.html
https://docs.unrealengine.com/en-US/PythonAPI/introduction.html
https://docs.unrealengine.com/en-US/PythonAPI/introduction.html
https://docs.unrealengine.com/en-US/Engine/Editor/ScriptingAndAutomation/Python/index.html
https://docs.unrealengine.com/en-US/Engine/Editor/ScriptingAndAutomation/Python/index.html
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As demonstrated in this thesis, this virtual software environment is fully 
capable of both simulating and rendering anything we can imagine in real 
time. As long as we can establish a purpose, and a methodology, this crowd 
simulation is just a foundation to what is possible to create in the future.
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https://docs.unrealengine.com/en-US/Engine/Content/Types/SkeletalMeshes/index.html
https://docs.unrealengine.com/en-US/GettingStarted/Terminology/index.html
https://docs.unrealengine.com/en-US/GettingStarted/Terminology/index.html
https://docs.unrealengine.com/en-US/PythonAPI/introduction.html
https://docs.unrealengine.com/en-US/PythonAPI/introduction.html
https://docs.unrealengine.com/en-US/Platforms/VR/index.html
https://docs.unrealengine.com/en-US/Platforms/VR/index.html
https://www.unrealengine.com/marketplace/en-US/content-cat/assets/characters
https://www.unrealengine.com/marketplace/en-US/content-cat/assets/characters
https://www.youtube.com/watch?v=J3ue35ago3Y
https://www.youtube.com/watch?v=9owTAISsvwk
https://www.unrealengine.com/en-US/vr
https://www.unrealengine.com/en-US/vr
http://www.unrealengine.com/studio
https://vimeo.com/search/page:2?q=unreal+engine+tutorial
https://vimeo.com/search/page:2?q=unreal+engine+tutorial
https://www.vrs.org.uk/virtual-reality-gear/motion-tracking/
https://www.vrs.org.uk/virtual-reality-gear/motion-tracking/
https://www.youtube.com/channel/UCBobmJyzsJ6Ll7UbfhI4iwQ
https://www.youtube.com/channel/UCBobmJyzsJ6Ll7UbfhI4iwQ
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This appendix is a zip folder containing various animated video files to 
accompany the corresponding figures throughout this thesis.

The file name of this folder is “AoThesisVideos.zip”, which contains 
various video files titled in the format of “Fig-0-0-0_FigureName.mp4”.

In order to open these video files within the PDF, download this zip 
folder from UWSpace and extract it so that “AoThesisVideos” is in the 
same folder as the PDF file. (Refer to Fig. A.1)

Once extracted to the proper location, you can open these videos by 
clicking on the corresponding figure with an “    ” symbol in front of the 
figure number. This will launch the video in your media player of choice.

Alternatively, these videos can be opened manually by referring to their 
filenames, which will match the figure numbers in the work.

If you accessed this thesis from a source other than the University of 
Waterloo, you may not have access to this file. You may access it by 
searching for this thesis on https://uwspace.uwaterloo.ca.

Appendix A | Multimedia Figures

Figure A.1 The relative folder structure should look like this after extraction
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