
DYNAMIC VISUALIZATIONS
Developing a Framework for Crowd-Based Simulations

by
Ao (Leo) Liu

A thesis
presented to the University of Waterloo

in fulfilment of the
thesis requirement for the degree of

Master of Architecture

Waterloo, Ontario, Canada, 2020
© Ao (Leo) Liu 2020

iii

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Author’s Declaration

v

Abstract

Since its conception in the 1960s, digital computation has experienced both
exponential growth in power and reduction in cost. This has allowed the production
of relatively cheap electronics, which are now integrated ubiquitously in daily life.
With so much computational data and an ever-increasing accessibility to intelligent
objects, the potential for integrating such technologies within architectural systems
becomes increasingly viable. Today, dynamic architecture is already emerging across
the world; it is inevitable that one day computation will be fully integrated within the
infrastructures of our cities.

However, as these new forms of dynamic architecture becomes increasingly
commonplace, the standard static medium of architectural visualization is no longer
satisfactory for representing and visualizing these dynamic spaces, let alone the
human interactions within them. Occupancy within a space is already inherently
dynamic and becomes even more so with the introduction of these new forms of
architecture. This in turn challenges our conventional means of visualizing spaces
both in design and communication. To fully represent dynamic architecture, the
visualization must be dynamic as well. As such, current single image rendering
methods within most existing architectural design pipelines becomes inadequate in
portraying both the architectural dynamics of the space, as well as the interaction
and influences these dynamics will have with the occupants.

This thesis aims to mitigate these shortcomings in architectural visualization by
investigating the creation of a crowd simulation tool to facilitate a foundation for
a visualization framework that can be continuously built upon based on project
needs, which answers the question of how one can utilize current technologies
to not only better represent responsive architecture but also to optimize existing
visualization methodologies. By using an interdisciplinary approach that brings
together architecture, computer science, and game design, it becomes possible to
establish a more powerful, flexible, and efficient workflow in creating architectural
visualizations.

Part One will establish a foundation to this thesis by looking at the state of
the current world, its buildings in the sense of dynamic, and the current state of
visualization technologies that are being utilized both within architectural design
as well as outside of it. Part Two will investigate complex systems and simulation
models, as well as investigating ways of integrating them with human behaviors to
establish a methodology for creating a working crowd simulation system. Part Three
will take the methodology developed within Part Two and integrate it within modern
game engines, with the intent of creating an architectural visualization pipeline that
can utilize the game engine for both crowd analytics as well as visualization. Part
Four will look at some of the various spatial typologies that can be visualized with
this tool. Finally, Part Five will speculate on various future directions to improve this
tool beyond the current scope of this thesis.

vii

Acknowledgments

To my supervisor Terri Boake, thank you for guiding me
throughout this long process. This thesis would not have
been possible without your insight and patience.

To my committee member David Correa, thank you for
your helpful and thorough feedback. The additional
resources you provided me were exceedingly helpful in
finishing this thesis.

To Michelle Bullough, thank you for selflessly offering your
time to edit my writing, even when you are in the process
of finishing your own thesis. Your feedback and suggestions
were very helpful in making this whole thing more coherent.

To Wesley Chu, thank you for putting up with my numerous
questions about page layout options during my process of
putting together the book. Your feedback kept me sane as I
struggled to organize all of these figures.

To the rest of my friends who offered up their couches and
helped me “balance” my thesis life by keeping me company,
thank you.

To my parents, thank you for letting me mooch off your
food and shelter throughout this whole process, all the
while limiting your questions on when I will be done to
only once every other week.

To my past self, thank you for choosing such a “fun” topic.

ix

Table of Contents

Author’s Declaration� iii
Abstract� v
Acknowledgments� vii
List of Figures� xi
List of Abbreviations� xxv
Technical Note� xxvii

Part 1 | Introduction and Theory� 1
Chapter 1.1 | Emergence of Interactive and Dynamic Architecture � 5
Chapter 1.2 | Inadequacy of Current Visualization Methods � 22
Chapter 1.3 | Advent and Progression of the Gaming Engine� 45
Chapter 1.4 | Proposed Framework� 62

Part 2 | Technical Research� 67
Chapter 2.1 | Simulations Ideology� 70
Chapter 2.2 | Establishing Model Methodology� 78
Chapter 2.3 | Abstracting the Human Systems � 92
Chapter 2.4 | Spatial Functions� 120
Chapter 2.5 | Prototyping the System Model� 128

Part 3 | Tool Creation� 131
Chapter 3.1 | Utilizing the Gaming Engine � 134
Chapter 3.2 | Asset Creation� 138
Chapter 3.3 | Human Agents� 140
Chapter 3.4 | Architectural Objects� 192
Chapter 3.5 | Environment Context� 202
Chapter 3.6 | Application Methodology� 206

Part 4 | Tool Evaluation� 223
Chapter 4.1 | Spatial Conditions� 226
Chapter 4.2 | Nuit Blanche Cushion� 238
Chapter 4.3 | Riverside Gallery� 248

Part 5 | Next Steps� 259
Chapter 5.1 | Simulation Improvements� 262
Chapter 5.2 | Photorealism� 266
Chapter 5.3 | Virtual Reality� 270
Chapter 5.4 | Workflow Refinements� 274

Bibliography� 279
Appendix A | Multimedia Figures� 287

xi

List of Figures

Part 1 | Introduction and Theory

7	 Figure 1.1.1	 A static living room with the Television turned off
0	 Photographed by Author.
7	 Figure 1.1.2	 A static living room with the Television turned on feels more dynamic by comparison
0	 Filmed by Author.
8	 Figure 1.1.3	 Virtual Rendering showing a static light source within a room
0	 Rendered by Author.
8	 Figure 1.1.4	 Virtual Rendering showing a dynamic light source within a room.
0	 Simulated by Author.
9	 Figure 1.1.5	 Physical Study showing a static light within a space.
0	 Photographed by Author.
9	 Figure 1.1.6	 Physical Study showing a dynamic light within a space.
0	 Filmed by Author.
10	 Figure 1.1.7	 Rotating light of lighthouse
0	 From Antoni Cladera, “Milky Way Photography: The Definitive Guide (2019),” PhotoPills, accessed December 17,

2019, https://www.photopills.com/articles/milky-way-photography-guide.
11	 Figure 1.1.8	 Smoke Signals of the Great wall of china
0	 From “Smoke Signals - 900 B.C.,” The History of Media (The Beginning-1950 A.D.), accessed December 17, 2019,

http://thehistoryofmedia.weebly.com/smoke-signals.html.
11	 Figure 1.1.9	 Drawbridge at the fort of Ponta da Bandeira
0	 By Georges Jansoone, “File:Lagos48.jpg,” Entrance with Drawbridge; Forte Da Ponta Da Bandeira; Lagos, Portugal,

September 24, 2006, Wikimedia Commons, accessed December 17, 2019, https://commons.wikimedia.org/wiki/
File:Lagos48.jpg.

12	 Figure 1.1.10	 The fountain of Neptune
0	 By KatDevsGames, “File:Villa d’Este 01.Jpg,” Wikimedia Commons, accessed December 18, 2019, https://commons.

wikimedia.org/wiki/File:Villa_d%27Este_01.jpg.
12	 Figure 1.1.11	 One hundred fountains walkway
0	 By Wknight94, “File:Villa d’Este fountains 6.jpg,” Fountains at Villa d’Este in Tivoli, April 29, 2008, Wikimedia

Commons, accessed December 18, 2019, https://commons.wikimedia.org/wiki/File:Villa_d%27Este_fountains_6.jpg.
12	 Figure 1.1.12	 Oval Fountain
0	 By Dnalor 01, “File:Tivoli, Villa d’Este, Fontana dell’Ovato.jpg,” Deutsch: Tivoli, Villa d’Este, Fontana Dell’Ovato,

May 15, 2005, Wikimedia Commons, accessed December 18, 2019, https://commons.wikimedia.org/wiki/File:Tivoli,_
Villa_d%27Este,_Fontana_dell%27Ovato.jpg.

13	 Figure 1.1.13	 Spectators viewing the Rock Gardens from the veranda
0	 By Sean Pavone, from Don George, “Finding Peace in 21st-Century Kyoto,” National Geographic, July 7, 2015, accessed

December 18, 2019, https://www.nationalgeographic.com/travel/intelligent-travel/2015/07/07/finding-peace-in-21st-
century-kyoto/.

13	 Figure 1.1.14	 Cherry blossoms hang over the rock garden, bringing the dynamics of nature further into the space
0	 By Bjørn Christian Tørrissen, “File:Ryoan-ji-Garden-2018.jpg,” Stones in the Zen Garden/Rock Garden at the Ryōan-

Ji Temple in Kyoto, Japan, May 11, 2018, Wikimedia Commons, accessed December 18, 2019, https://commons.
wikimedia.org/wiki/File:Ryoan-ji-Garden-2018.jpg.

13	 Figure 1.1.15	 Cherry blossoms hang over the rock garden, bringing the dynamics of nature further into the space
0	 By Didier Moïse, “File:Cherry blossom at the rock garden of Ryōan-ji Temple in Kyoto, Japan.jpg,” Cherry Blossom at

the Rock Garden of Ryōan-Ji Temple in Kyoto, Japan, April 12, 2005, Wikimedia Commons, accessed December 18,
2019, https://commons.wikimedia.org/wiki/File:Cherry_blossom_at_the_rock_garden_of_Ry%C5%8Dan-ji_Temple_
in_Kyoto,_Japan.jpg.

15	 Figure 1.1.16	 Silicon transistor progression through the years
0	 From “Happy birthday transistor!,” translated with Google Translate, accessed December 18, 2019, http://astron.

dmitryshevchenko.com/2017/12/19/transistor/.
15	 Figure 1.1.17	 This graph shows the progression of transistor count within integrated circuit chips through the

years, as described by Moore’s Law
0	 From Max Roser and Hannah Ritchie, “Technological Progress,” May 11, 2013, Our World in Data, accessed December

18, 2019, https://ourworldindata.org/technological-progress.
17	 Figure 1.1.18	 The Al Bahar Towers Facades utilizes motorized folding louvers to control the amount of sunlight

that can pass through.
0	 From “Al Bahar Towers Responsive Facade / Aedas,” September 5, 2012, ArchDaily, accessed December 18, 2019, http://

www.archdaily.com/270592/al-bahar-towers-responsive-facade-aedas/.

List of Figures

xii xiii

17	 Figure 1.1.19	 The Umbrellas in Medina opens and closes to open up the space as well as offer environmental
protection depending on the weather and time of day.

0	 From “Umbrellas in the Mosque of the Prophet’s Courtyard and Surrounding Open Spaces,” Abdullatif Al Fozan Award
for Mosque Architecture, accessed December 18, 2019, https://alfozanaward.org/mosques/umbrellas-in-the-mosque-of-
the-prophets-courtyard-and-surrounding-open-spaces/.

17	 Figure 1.1.20	 The Roof of the Rogers Center in Toronto opens and closes to provide outdoor or indoor
experiences depending on the exterior conditions.

0	 From Laura Armstrong, “Rogers Centre Roof to Be Opened for Blue Jays Game Tonight,” The Star, accessed December
18, 2019, https://www.thestar.com/sports/bluejays/2016/05/27/rogers-centre-roof-to-be-opened-for-blue-jays-game-
tonight.html.

19	 Figure 1.1.21	 Starscape
0	 Photographed by Author.
19	 Figure 1.1.22	 Ocean
0	 Photographed by Author.
19	 Figure 1.1.23	 Cushion
0	 Photographed by Author.
20	 Figure 1.1.24	 Acadia conference in Michigan
0	 Photographed by Author.
20	 Figure 1.1.25	 Acadia lecture in Michigan
0	 Photographed by Author.
21	 Figure 1.1.26	 Acadia 2013 poster
0	 From Sebastian Jordana, “Adaptive Architecture ACADIA 2013,” October 3, 2013, ArchDaily, accessed December 18,

2019, http://www.archdaily.com/434672/adaptive-architecture-acadia-2013/.
23	 Figure 1.2.1	 Vanishing point, depicted in Della Pittura by Alberti
0	 By Leon Battista Alberti, Della pittura e della statua di Leonbatista Alberti (Milano : Società tipografica de’Classici italiani,

1804), http://archive.org/details/dellapitturaedel00albe.
23	 Figure 1.2.2	 Perspective pillars on grid, depicted in Della Pittura by Alterbi.
0	 By Alberti, Della pittura e della statua di Leonbatista Alberti.
24	 Figure 1.2.3	 The calling of the Apostles Peter and Andrew by Duccio, 1308-11
0	 By Duccio di Buoninsegna, The Calling of the Apostles Peter and Andrew, 1308-1311, tempera on panel, 42.7 × 45.5 cm,

Samuel H. Kress Collection, National Gallery of Art, accessed December 18, 2019, https://www.nga.gov/collection/art-
object-page.282.html.

25	 Figure 1.2.4	 The Last Supper by Leonardo Da Vinci, 1495-96
0	 By Leonardo Da Vinci, from Paris Orlando, “File:Last Supper by Leonardo da Vinci.jpg,” November 10, 2019,

Wikimedia Commons, accessed December 18, 2019, https://commons.wikimedia.org/wiki/File:Last_Supper_by_
Leonardo_da_Vinci.jpg.

27	 Figure 1.2.5	 Photograph of Bibliothèque Sainte-Geneviève by Bisson Frères
0	 By Bisson Frères, from Neil Levine, “The Template of Photography in Nineteenth-Century Architectural

Representation,” Journal of the Society of Architectural Historians 71, no. 3 (January 2012), https://doi.org/10.1525/
jsah.2012.71.3.306.

27	 Figure 1.2.6	 Perspective view of Bibliothèque Sainte-Geneviève, traced from Bisson Frères’ photograph by
Henri Labrouste, engraving by Jacques-Joseph Huguenet

0	 By Henri Labrouste, traced from photograph by Bisson Frères, and engraved by Jacques-Joseph Huguenet, from Levine,
“The Template of Photography in Nineteenth-Century Architectural Representation.”

29	 Figure 1.2.7	 Archigram Information Tear-off Sheet
0	 From “Archigram: Tear-off Information Sheets,” BALTIC Centre for Contemporary Art, accessed December 18, 2019,

http://balticplus.uk/archigram-tear-off-information-sheets-c8292/.
30	 Figure 1.2.8	 Plugin City concept by Peter Cook (Archigram), 1964
0	 By Peter Cook, “Plug-In_City, Max. Pressure Area, Long Section,” 1964, photochemical print overdrawn with ink and

gouache, 1159 x 552 mm, Archigram Archives, accessed December 18, 2019, http://archigram.net/portfolio.html.
30	 Figure 1.2.9	 Walking City Concept by Ron Herron (Archigram), 1964
0	 By Ron Herron, from Rowan Moore, “The World According to Archigram,” November 18, 2018, The Observer,

accessed December 18, 2019, https://www.theguardian.com/artanddesign/2018/nov/18/archigram-60s-architects-vision-
urban-living-the-book.

31	 Figure 1.2.10	 Instant City concept by Peter Cook (Archigram), 1969
0	 By Peter Cook, from “‘Instant City’ Travelling Exhibition, Now at Collège Maximilien de Sully,” December 19, 2015,

BMIAA, accessed December 18, 2019, https://www.bmiaa.com/instant-city-travelling-exhibition-now-at-college-
maximilien-de-sully/.

31	 Figure 1.2.11	 Computer City concept by Dennis Crompton (Archigram), 1964
0	 By Dennis Crompton, “Computer City,”1964, photochemical print mounted on board, 887 x 697 mm, Archigram

Archives, accessed December 18, 2019, http://archigram.net/portfolio.html.
33	 Figure 1.2.12	 2D floorplans, created within Autodesk AutoCAD.
0	 From mtcarrillo, “Creating Basic Floor Plans From an Architectural Drawing in AutoCAD,” Instructables, accessed

December 18, 2019, https://www.instructables.com/id/Creating-Basic-Floor-Plans-from-an-Architectural-D/.

33	 Figure 1.2.13	 A building model rendered within 3D space on a viewport in Autodesk 3DS Max
0	 By Ronen Bekerman, “Making of MS House at Dusk, Part 2,” October 23, 2009, Ronen Bekerman - 3D Architectural

Visualization & Rendering Blog, accessed December 18, 2019, https://www.ronenbekerman.com/making-of-ms-house-
at-dusk-part-2/.

33	 Figure 1.2.14	 The same building model rendered out with Vray
0	 By Bekerman, “Making of MS House at Dusk, Part 2.”
35	 Figure 1.2.15	 People moving through a gallery space within the Solomon R. Guggenheim Museum in NYC
0	 Photographed by Author
35	 Figure 1.2.16	 Macy’s Thanksgiving Day parade, NYC
0	 Photographed by Author
35	 Figure 1.2.17	 People moving through a gallery space within the MOMA in NYC
0	 Photographed by Author
36	 Figure 1.2.18	 The Horse in Motion cabinet cards by Eadweard Muybridge, 1878
0	 By Eadweard Muybridge, from Neil Patrick, “FIlmed in 1878, ‘The Galloping Horse’ Is the First Motion Picture

Ever Made,” June 27, 2016, The Vintage News (blog), accessed December 18, 2019, https://www.thevintagenews.
com/2016/06/27/46591-2/.

36	 Figure 1.2.19	 Animation made from Eadweard Muybridge’s cards
0	 From silentfilmhouse, “Race Horse First Film Ever 1878 Eadweard Muybridge,” YouTube, 0:15, accessed December 18,

2019, https://www.youtube.com/watch?v=IEqccPhsqgA.
37	 Figure 1.2.20	 Lord of the rings Return of the King, 2003
0	 From Film Radar, trimmed by Author, “Special Effects in The Lord of the Rings: The Essence of Movie Magic,”

YouTube, 12:08, accessed December 18, 2019, https://www.youtube.com/watch?v=p6M8Yem5j0s&vl=en.
37	 Figure 1.2.21	 Royal Ontario Museum architectural walk-through, 2003
0	 Obtained from supervisor, created by B+H Architects.
38	 Figure 1.2.22	 The 3rd and the Seventh by Alex Roman, 2009
0	 By Alex Roman, trimmed by Author, “The Third & The Seventh,” uploaded November 24, 2009, Vimeo, 12:29,

accessed December 18, 2019, https://vimeo.com/7809605.
39	 Figure 1.2.23	 Architecture Walk-through by Framemakers Creative SB, 2015
0	 From Framemakers Creative SB, trimmed by Author, “Star Residences 3D Animation Walkthrough Video,” YouTube,

3:05, accessed December 18, 2019, https://www.youtube.com/watch?v=8qU2xhZlsJE.
39	 Figure 1.2.24	 Architecture Walk-through by Momo Graphics, 2016
0	 By Momo Graphics, from Kenny Khoo, trimmed by Author, “3d Architecture Walkthrough Flythrough Animation

Service Singapore Building Interior Exterior,” YouTube, 2:09, accessed December 18, 2019, https://www.youtube.com/
watch?v=fC1OtZ4kAJs&t=1s&pbjreload=10.

41	 Figure 1.2.25	 Revit Perspective Viewport
0	 Sample Architecture Project from Revit, screen-captured by Author.
41	 Figure 1.2.26	 Security footage showing various frame rates
0	 From daksec1, trimmed by Author, “IP Video Frame Rate Demo,” YouTube, 0:50, accessed December 18, 2019, https://

www.youtube.com/watch?v=XRaDV8YADiQ.
43	 Figure 1.2.27	 Typical breakdown of architectural fees
0	 By Jorge Fontan, “Architectural Fees,” February 7, 2018, Fontan Architecture, accessed December 18, 2019, https://

jorgefontan.com/architectural-fees/.
43	 Figure 1.2.28	 Typical time-line of architectural design phases
0	 By HMH Modern Architecture, from “Architectural Phases,” Ibello Architect, accessed December 18, 2019, https://

www.ibelloarchitects.com/architectural-phases/.
46	 Figure 1.3.1	 Pac-Man, Namco, 1980
0	 From “Original Pac-Man” APKPure, accessed December 19, 2019, https://apkpure.com/original-pac-man/com.

classicretrogames.pacman.
46	 Figure 1.3.2	 Catacomb Abyss, Softdisk, 1992
0	 From “The Catacomb Abyss Review,” October 30, 2018, GameFAQs, accessed December 19, 2019, https://gamefaqs.

gamespot.com/pc/954269-the-catacomb-abyss/reviews/167153.
47	 Figure 1.3.3	 Hand Drafted South Elevation of Denver Library by Michael Graves, 1994
0	 By Michael Graves, Denver Library, South Elevation, 1994, pencil and colored pencil on yellow tracing paper, 14 x

26 inches, from Rory Stott, “Gallery of In Honor of Michael Graves, The Architectural League Revisits 200 Years of
Drawing,” November 21, 2014, ArchDaily, accessed December 19, 2019, https://www.archdaily.com/570439/in-honor-
of-michael-graves-the-architectural-league-revisits-200-years-of-drawing/546fa61be58ece2295000037-denver-library-
sout.

47	 Figure 1.3.4	 Creating 3D building walls from a 2D Building plan in virtual space
0	 From “How to Create a 3D Architecture Floor Plan Rendering,” TonyTextures, accessed December 19, 2019, https://

www.tonytextures.com/how-to-create-a-3d-architecture-floor-plan-rendering/.
48	 Figure 1.3.5	 The Division, Massive Entertainment, 2016
0	 From “Tom Clancy’s The Division (Preowned),” EB Games, accessed December 19, 2019, https://www.ebgames.co.nz/

product/ps4/165235-tom-clancys-the-division-preowned.

xiv xv

49	 Figure 1.3.6	 Hudson Yards Rendering by KPF, 2019
0	 By Kohn Pedersen Fox (KPF), “Hudson Yards,” accessed December 19, 2019, https://www.kpf.com/projects/hudson-

yards.
51	 Figure 1.3.7	 “An abstract model of how an engine might be put together”
0	 By Björn Nilson and Martin Söderberg, “Game Engine Architecture,” (May 26, 2007): 3-6, accessed December 19,

2019, http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.459.9537&rep=rep1&type=pdf.
53	 Figure 1.3.8	 Grand Theft Auto 3, DMA Design, 2001
0	 From AndromedaDude, trimmed by Author, “Grand Theft Auto III Gameplay (Playstation 2),” YouTube, 10:39,

accessed December 19, 2019, https://www.youtube.com/watch?v=jONTvpvj7DM.
53	 Figure 1.3.9	 The Witcher 3, CD Projekt, 2015
0	 From Im Qith, trimmed by Author, “The Witcher 3, Entering Novigrad (No Commentary),” YouTube, 8:09, accessed

December 19, 2019, https://www.youtube.com/watch?v=MTrxkDLi6sg.
55	 Figure 1.3.10	 Rendering a frame from Vray
0	 By Jordivdm, trimmed by Author, “FullHD 3D VRay Render at I7-5820k 6 Cores (12 Virtual Cores),” YouTube, 0:58,

accessed December 19, 2019, https://www.youtube.com/watch?v=rjvimjwhams.
55	 Figure 1.3.11	 Rendering Frames from Unreal Engine 4
0	 Screen-captured by Author.
57	 Figure 1.3.12	 Ray tracing
0	 By Henrik, “File:Ray trace diagram.svg,” This Diagram Illustrates the Ray Tracing Algorithm for Rendering an Image,

April 12, 2008, Wikimedia Commons, accessed December 19, 2019, https://commons.wikimedia.org/wiki/File:Ray_
trace_diagram.svg.

57	 Figure 1.3.13	 Rasterization
0	 From “Rasterization: A Practical Implementation,” Scratchapixel, accessed December 19, 2019, https://www.

scratchapixel.com//lessons/3d-basic-rendering/rasterization-practical-implementation.
58	 Figure 1.3.14	 CPU vs GPU Processing
0	 From Gino Baltazar, “CPU vs GPU in Machine Learning,” September 13, 2018, Oracle Data Science Blog, accessed

December 19, 2019, https://blogs.oracle.com/datascience/cpu-vs-gpu-in-machine-learning.
59	 Figure 1.3.15	 Texture Baking utilizes normal maps to preserve detail without the additional polygons
0	 By fra3point, “Total Baker - Texture Baking System,” Unity Forum, accessed December 19, 2019, https://forum.unity.

com/threads/total-baker-texture-baking-system.546341/.
61	 Figure 1.3.16	 A traditional desktop setup with a monitor and various input devices such as mouse and keyboard,

game controller, and joysticks
0	 By WeazelBear, “I Built My Own Live Edge Desk out of Teak. I Hope You All like It. Album in Comments,” Reddit,

accessed December 19, 2019, https://www.reddit.com/r/battlestations/comments/7wlsp6/i_built_my_own_live_edge_
desk_out_of_teak_i_hope/.

61	 Figure 1.3.17	 Possible VR setup with various trackers for interactive inputs
0	 From “Fully immersive VR Entertainment Solutions,” Cyberith, accessed December 19, 2019, https://www.cyberith.

com/entertainment/.
61	 Figure 1.3.18	 Architectural Rendering by HOK
0	 From Ken Pimentel, trimmed by Author, “HOK on Architectural Visualization: Aggregate, Iterate, Communicate,”

Unreal Engine, accessed December 19, 2019, https://www.unrealengine.com/en-US/spotlights/hok-architectural-
visualization-aggregate-iterate-communicate.

63	 Figure 1.4.1	 Massive
0	 From Film Radar, trimmed by Author, “Special Effects in The Lord of the Rings: The Essence of Movie Magic,”

YouTube, 12:08, accessed December 18, 2019, https://www.youtube.com/watch?v=p6M8Yem5j0s&vl=en.
63	 Figure 1.4.2	 Golaem
0	 By Golaem, trimmed by Author, “Golaem Crowd 4: Take Control of Your Crowds,” YouTube, 3:17, accessed December

19, 2019, https://www.youtube.com/watch?v=rr6tDBeNEv0.
63	 Figure 1.4.3	 Miarmy
0	 From Basefount, trimmed by Author, “Miarmy 3 Crowd Simulation DEMO 8,” YouTube, 3:12, accessed December 19,

2019, https://www.youtube.com/watch?v=3wjCwtc_-hk.
65	 Figure 1.4.4	 Oasys mass motion
0	 By TheOasysSoftware, trimmed by Author, “Oasys Software - MassMotion, The World’s Most Advanced

Crowd Simulation Software,” YouTube, 2:30, accessed December 19, 2019, https://www.youtube.com/
watch?v=dR5G5SNI5T4.

65	 Figure 1.4.5	 A crowd Visualization Tool in Autodesk 3ds Max
0	 From sanvfx, trimmed by Author, “Creating Crowd Simulation in 3ds Max,” YouTube, 23:09, accessed December 19,

2019, https://www.youtube.com/watch?v=h-PMBi8gze4&t=454s.
0	

Part 2 | Technical Research

71	 Figure 2.1.1	 Various wave patterns seen on-top of the ocean surface
0	 From Alex Green, “An Aerial Birds Eye Shot Of The Ocean and Waves,” YouTube, 0:10, accessed December 25, 2019,

https://www.youtube.com/watch?v=1jUnZ4VnoD4.

71	 Figure 2.1.2	 Video showing phantom traffic jam
0	 From New Scientist, trimmed by Author, “Shockwave Traffic Jams Recreated for First Time,” YouTube, 0:39, accessed

December 25, 2019, https://www.youtube.com/watch?v=Suugn-p5C1M.
71	 Figure 2.1.3	 This crowded concert shows how the interaction between each individual human produces various

wave patterns throughout the entire crowd.
0	 From Australian Concert And Entertainment Security Pty Ltd, trimmed by Author, “Crowd Wave Surge Example,”

YouTube, 4:56, accessed December 25, 2019, https://www.youtube.com/watch?v=BgpdmAtbhbE&t=8s.
73	 Figure 2.1.4	 Snowflakes
0	 By Wilson Bentley, “File:SnowflakesWilsonBentley.jpg,” Wikimedia Commons, accessed December 25, 2019, https://

commons.wikimedia.org/wiki/File:SnowflakesWilsonBentley.jpg.
73	 Figure 2.1.5	 Termite mount
0	 By Brian Voon Yee Yap, from Yewenyi, “File:Termite Cathedral DSC03570.jpg,” Wikimedia Commons, accessed

December 25, 2019, https://commons.wikimedia.org/wiki/File:Termite_Cathedral_DSC03570.jpg.
73	 Figure 2.1.6	 Starling murmurations
0	 From National Geographic, trimmed by Author, “Flight of the Starlings: Watch This Eerie but Beautiful Phenomenon |

Short Film Showcase,” YouTube, 2:00, accessed December 25, 2019, https://www.youtube.com/watch?v=V4f_1_r80RY.
75	 Figure 2.1.7	 Rule 30 as introduced by Stephen Wolfram, 1983
0	 From Eric W. Weisstein, “Rule 30,” Wolfram Math World, accessed December 25, 2019, http://mathworld.wolfram.

com/Rule30.html.
76	 Figure 2.1.8	 250 iterations of Rule 30
0	 From Eric W. Weisstein, “Rule 30,” Wolfram Math World.
79	 Figure 2.2.1	 Simulation Study Diagram
0	 From Jerry Banks et al., Discrete-Event System Simulation (Upper Saddle River, NJ: Prentice Hall, 2001), 16.
0	
83	 Figure 2.2.2	 The Lagrangian description calculates the position and velocity of the individual particles within

the fluid
0	 From “Descriptions of Fluid Flows,” accessed December 25, 2019, https://www.me.psu.edu/cimbala/Learning/Fluid/

Introductory/descriptions_of_fluid_flows.htm.
83	 Figure 2.2.3	 The Eulerian description calculates the output velocities from the input velocities, in which the

space inside the control volume is assumed to be completely filled as a continuous mass
0	 From “Descriptions of Fluid Flows.”
85	 Figure 2.2.4	 Much like how humans interact with spaces, Autonomous Agents act within the simulation

through its perception of the environment
0	 By Stuart Russell and Peter Novig, “Intelligent Agents - Chapter 2,” from Artificial Intelligence: A Modern Approach,

obtained from “Agents: Artificial Intelligence,” accessed December 25, 2019, https://www.doc.ic.ac.uk/project/
examples/2005/163/g0516334/.

86	 Figure 2.2.5	 2-Dimensional Cellular Automata
0	 From Hubert Klüpfel, “A Cellular automaton model for crowd movement and egress simulation,” (July 2003): 33-35,

accessed December 26, 2019, https://www.researchgate.net/publication/29800160_A_Cellular_automaton_model_for_
crowd_movement_and_egress_simulation.

86	 Figure 2.2.6	 Social Forces
0	 From Dirk Helbing and Péter Molnár, “Social Force Model for Pedestrian Dynamics,” Physical Review E 51, no. 5

(1995): 15-17, doi:10.1103/PhysRevE.51.4282.
87	 Figure 2.2.7	 Reciprocal Velocity Obstacles
0	 From Jur Van Den Berg, Ming Lin, and Dinesh Manocha, “Reciprocal Velocity Obstacles for Real-Time Multi-Agent

Navigation,” 2008 IEEE International Conference on Robotics and Automation, (May 2008): 1928-1932, https://doi.
org/10.1109/robot.2008.4543489.

87	 Figure 2.2.8	 Adaptive Roadmaps
0	 From Avneesh Sud et al., “Real-time Navigation of Independent Agents Using Adaptive Roadmaps,” ACM SIGGRAPH

2008, (2008): doi:10.1145/1401132.1401207.
89	 Figure 2.2.9	 Centroidal Particles
0	 From Omar Hesham and Gabriel Wainer, “Centroidal Particles for Interactive Crowd Simulation,” 2016 Summer

Computer Simulation Conference (SCSC 2016), (2016): https://doi.org/10.22360/summersim.2016.scsc.012.
89	 Figure 2.2.10	 HiDAC
0	 From Nuria Pelechano, Jan M. Allbeck, & Norman I. Badler, “Controlling Individual Agents in High-Density Crowd

Simulation,” Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, (2007):
99-108, http://repository.upenn.edu/hms/210.

93	 Figure 2.3.1	 Three hierarchical layers of motion behaviors
0	 From Craig W. Reynolds, “Steering Behaviors For Autonomous Characters,” Reynolds Engineering & Design, accessed

October 17, 2019, http://www.red3d.com/cwr/steer/gdc99/.
93	 Figure 2.3.2	 Three hierarchical layers of human behaviors
0	 Illustrated by Author.
94	 Figure 2.3.3	 Analog to Digital
0	 Illustrated by Author.

xvi xvii

97	 Figure 2.3.4	 Vectors can be thought of as the difference between 2 points.
0	 From Daniel Shiffman, “Chapter 1. Vectors,” in The Nature of Code (United States: D. Shiffman, 2012), accessed

October 17, 2019, https://natureofcode.com/book/chapter-1-vectors/.
97	 Figure 2.3.5	 Vectors can be described by 2 scaler variables.
0	 From Shiffman, “Chapter 1. Vectors.”
97	 Figure 2.3.6	 Velocity vector updates position
0	 From Shiffman, “Chapter 1. Vectors.”
98	 Figure 2.3.7	 A list of Vector operations that can be used within Processing.
0	 From Shiffman, “Chapter 1. Vectors.”
98	 Figure 2.3.8	 Vector Multiplication
0	 From Shiffman, “Chapter 1. Vectors.”
99	 Figure 2.3.9	 Vector Addition
0	 From Shiffman, “Chapter 1. Vectors.”
99	 Figure 2.3.10	 Vector Subtraction
0	 From Shiffman, “Chapter 1. Vectors.”
99	 Figure 2.3.11	 Vector Division
0	 From Shiffman, “Chapter 1. Vectors.”
101	 Figure 2.3.12	 The relationship between distance, velocity, and acceleration
0	 From “Motion Graphs,” accessed December 27, 2019, http://hyperphysics.phy-astr.gsu.edu/hbase/Mechanics/motgraph.

html.
103	 Figure 2.3.13	 The calculated opposing Steering force, when added to current velocity, will bring it closer to

desired velocity
0	 From Daniel Shiffman, “Chapter 6. Autonomous Agents,” in The Nature of Code (United States: D. Shiffman, 2012),

accessed October 17, 2019, https://natureofcode.com/book/chapter-6-autonomous-agents/.
103	 Figure 2.3.14	 The steering force is pushing down on the vehicle to steer it towards desired velocity
0	 From Shiffman, “Chapter 6. Autonomous Agents.”
103	 Figure 2.3.15	 Desired velocity can be calculated by obtaining the Vector distance between the vehicle position

and agent position
0	 From Shiffman, “Chapter 6. Autonomous Agents.”
103	 Figure 2.3.16	 We must then limit this distance vector to obtain our desired velocity so our vehical, or human,

can’t move too fast
0	 From Shiffman, “Chapter 6. Autonomous Agents.”
103	 Figure 2.3.17	 How Max force can affect radius
0	 From Shiffman, “Chapter 6. Autonomous Agents.”
105	 Figure 2.3.18	 The 3 rules of flocking is defined by Reynolds as Separation, Alignment, and Cohesion
0	 From Shiffman, “Chapter 6. Autonomous Agents.”
105	 Figure 2.3.19	 Arriving behavior once they get to a certain distance from target location
0	 From Shiffman, “Chapter 6. Autonomous Agents.”
105	 Figure 2.3.20	 Avoiding walking into walls
0	 From Shiffman, “Chapter 6. Autonomous Agents.”
105	 Figure 2.3.21	 These same forces are useful in other types of simulations as well, such as planetary motion
0	 From Daniel Shiffman, “Chapter 2. Forces,” in The Nature of Code (United States: D. Shiffman, 2012), accessed October

17, 2019, https://natureofcode.com/book/chapter-2-forces/.
107	 Figure 2.3.22	 Edward T Hall’s Interpersonal Distances of man
0	 By WebHamster, “File:Personal Space.svg,” Diagram Representation of Personal Space Limits, According to Edward T.

Hall’s Interpersonal Distances of Man, March 8, 2009, Wikimedia Commons, accessed December 25, 2019, https://
commons.wikimedia.org/wiki/File:Personal_Space.svg.

107	 Figure 2.3.23	 We can use these defined personal spaces to determine the area around the agent in which they will
be affected

0	 From Shiffman, “Chapter 6. Autonomous Agents.”
107	 Figure 2.3.24	 Utilizing Fleeing behaviour to avoid other agents that may have entered the Agent’s personal space
0	 From Shiffman, “Chapter 6. Autonomous Agents.”
109	 Figure 2.3.25	 Crowd density vs crowd flow rate graph
0	 From Keith Still, “Static crowd density (general),” Crowd Safety and Risk Analysis, accessed December 27, 2019, http://

www.gkstill.com/Support/crowd-density/CrowdDensity-1.html.
110	 Figure 2.3.26	 Pathfinding flowchart
0	 Illustrated by Author.
113	 Figure 2.3.27	 Canadian census info-graphic breaking down the population into percentages
0	 From Statistics Canada, “Journey to Work, 2016 Census of Population,” November 29, 2017, Government of Canada,

accessed December 27, 2019, https://www150.statcan.gc.ca/n1/pub/11-627-m/11-627-m2017038-eng.htm.

115	 Figure 2.3.28	 If you are in a room with a door and a chair, do you go to the chair? Or do you go to the door?
0	 Illustrated by Author, chair and door graphics taken from “STEFAN Chair - Brown-Black,” IKEA, accessed December

28, 2019, https://www.ikea.com/ca/en/p/stefan-chair-brown-black-00211088/, and “ReliaBilt Colonist Primed 6-Panel
Hollow Core Molded Composite Pre-Hung Door (Common: 30-in x 80-in; Actual: 31.5625-in x 81.6875-in),” Lowe’s,
accessed December 28, 2019, https://www.lowes.com/pd/ReliaBilt-Colonist-Primed-6-Panel-Hollow-Core-Molded-
Composite-Pre-Hung-Door-Common-30-in-x-80-in-Actual-31-5625-in-x-81-6875-in/1000537851.

115	 Figure 2.3.29	 A decision Tree based on percentages
0	 By Chooseco, from Sarah Laskow, “These Maps Reveal the Hidden Structures of ‘Choose Your Own Adventure’ Books,”

June 13, 2017, Atlas Obscura, accessed December 27, 2019, http://www.atlasobscura.com/articles/cyoa-choose-your-
own-adventure-maps.

117	 Figure 2.3.30	 Human Visual Limit- Top View
0	 From “Environmental Considerations and Human Factors for Videowall Design,” Extron, accessed December 28, 2019,

https://www.extron.com/article/environconhumanfact.
117	 Figure 2.3.31	 Human Visual Limit- Side View
0	 From “Environmental Considerations and Human Factors for Videowall Design.”
117	 Figure 2.3.32	 Sensory limit within simulation
0	 From Shiffman, “Chapter 6. Autonomous Agents.”
119	 Figure 2.3.33	 Human systems flowchart
0	 Illustrated by Author.
123	 Figure 2.4.1	 The face on mars
0	 From “Unmasking the Face on Mars,” NASA Science, accessed December 28, 2019, https://science.nasa.gov/science-

news/science-at-nasa/2001/ast24may_1.
123	 Figure 2.4.2	 Google Maps
0	 Google Maps Android application, screen-captured by Author.
123	 Figure 2.4.3	 Fearful Symmetry by Ruairi Glynn
0	 By Ruairi Glynn, “Fearful Symmetry,” accessed October 18, 2019, http://www.ruairiglynn.co.uk/portfolio/fsymmetry/.
129	 Figure 2.5.1	 Prototype 2D Simulation created in Processing, based on the Nuit Blanche Installation Cushion
0	 CAD file from the Cushion group, simulated and screen-recorded by Author.
129	 Figure 2.5.2	 Cushion invites people to walk through a narrow corridor. The light filled ballons change color as

people interact with them.
0	 Filmed by Author.
0	

Part 3 | Tool Creation

135	 Figure 3.1.1	 Parametric node system within Grasshopper
0	 By David Rutten, “File:Grasshopper MainWindow.png,” A Screen Shot of the Grasshopper Main Window, 2011,

Wikimedia Commons, accessed December 28, 2019, https://commons.wikimedia.org/wiki/File:Grasshopper_
MainWindow.png.

135	 Figure 3.1.2	 Material node system within 3ds Max
0	 Screen-captured by Author.
135	 Figure 3.1.3	 Scripting node system within Unreal Engine 4
0	 Default character asset script within UE4, screen-captured by Author.
139	 Figure 3.2.1	 Game assets within project browser
0	 Screen-captured by Author.
141	 Figure 3.3.1	 How each asset will be utilized within this software environment
0	 Illustrated by Author.
143	 Figure 3.3.2	 AI perception
0	 Simulated and screen-recorded by Author.
143	 Figure 3.3.3	 EQS trace test
0	 From “Environment Query System Overview,” Unreal Engine Documentation, accessed December 28, 2019, https://

docs.unrealengine.com/en-US/Engine/ArtificialIntelligence/EQS/EQSOverview/index.html.
145	 Figure 3.3.4	 Simplified visual scripting process within UE4
0	 Illustrated by Author.
147	 Figure 3.3.5	 Decision Network
0	 Screen-captured by Author.
148	 Figure 3.3.6	 Event Node begins the execution line
0	 Screen-captured by Author.
148	 Figure 3.3.7	 Boolean percentages controls which path the line takes
0	 Screen-captured by Author.

xviii xix

149	 Figure 3.3.8	 Once the execution line reaches a decision, a node is triggered to set the AgentState and then apply
a timer to establish how long the agent might be in that state

0	 Screen-captured by Author.
149	 Figure 3.3.9	 The execution line moves down and repeats all the checks for every entity type if it does not reach

the end of the logic
0	 Screen-captured by Author.
150	 Figure 3.3.10	 Functional Decision Logic during runtime
0	 Simulated and screen-recorded by Author.
153	 Figure 3.3.11	 Navmesh at work
0	 Simulated and screen-recorded by Author.
153	 Figure 3.3.12	 Flocking Behaviors recreated with Vector and World-Offset nodes within UE4
0	 Screen-captured by Author.
155	 Figure 3.3.13	 The Behavior Tree allows a visual way to define AI tasks within UE4
0	 From “Behavior Tree Overview,” Unreal Engine Documentation, accessed October 18, 2019, https://docs.unrealengine.

com/en-US/Engine/ArtificialIntelligence/BehaviorTrees/BehaviorTreesOverview/index.html.
155	 Figure 3.3.14	 Behavior Tree Execution Order from top to down and left to right
0	 From “Behavior Tree Overview,” Unreal Engine Documentation, accessed October 18, 2019, https://docs.unrealengine.

com/en-US/Engine/ArtificialIntelligence/BehaviorTrees/BehaviorTreesOverview/index.html.
156	 Figure 3.3.15	 Explore Tasks defined within the Behaviour Tree
0	 Screen-captured by Author.
157	 Figure 3.3.16	 EQS allows us to check the surrounding environment to calculate locations based on how far away

they are from the agent
0	 Screen-recorded by Author.
157	 Figure 3.3.17	 Agent Exploring the space by utilizing this data
0	 Simulated and screen-recorded by Author.
159	 Figure 3.3.18	 Behavior Tree Object-Looking state tasks
0	 Screen-captured by Author.
160	 Figure 3.3.19	 EQS also allows us to calculate a random location that is biased to how far away they are from an

object
0	 Screen-recorded by Author.
161	 Figure 3.3.20	 Agents ‘juggling’ the distances to the objects until they look right
0	 Simulated and screen-recorded by Author.
165	 Figure 3.3.21	 Simplified steps for establishing object Interaction tasks
0	 Illustrated by Author.
165	 Figure 3.3.22	 Object-Interact State tasks within behavior tree
0	 Screen-captured by Author.
167	 Figure 3.3.23	 Agent interacting with an object
0	 Simulated and Screen-recorded by Author.
167	 Figure 3.3.24	 Agents lining up before interacting with the object
0	 Simulated and Screen-recorded by Author.
169	 Figure 3.3.25	 Agent Interact state tasks within Behavior Tree
0	 Screen-captured by Author.
169	 Figure 3.3.26	 Agents interacting with each other
0	 Simulated and Screen-recorded by Author.
171	 Figure 3.3.27	 Threshold State tasks within Behavior Tree
0	 Screen-captured by Author.
171	 Figure 3.3.28	 Agent moving through threshold
0	 Simulated and Screen-recorded by Author.
173	 Figure 3.3.29	 To spawn Agents, we must first make a list of all the Entrance Threshold objects at the start of the

simulation
0	 Screen-captured by Author.
173	 Figure 3.3.30	 Spawning Agents at Entrance Thresholds
0	 Screen-captured by Author.
175	 Figure 3.3.31	 Enter State tasks within the Behavior Tree
0	 Screen-captured by Author.
175	 Figure 3.3.32	 Agents entering and exiting the building
0	 Simulated and Screen-recorded by Author.
177	 Figure 3.3.33	 Agents sometimes becomes stuck in the corner due to the EQS continuously perceiving the corner

in front of the agent to be the furtherest point within the environment
0	 Screen-captured by Author.

177	 Figure 3.3.34	 Unstuck State within Behavior Tree tells the agent to query a new location behind them if they
don’t move for longer than a specified time interval

0	 Screen-captured by Author.
178	 Figure 3.3.35	 Bug with obtaining a position vector for establishing agent global offset
0	 Simulated and Screen-recorded by Author.
178	 Figure 3.3.36	 Bug with obtaining a position for the agents to form a line
0	 Simulated and Screen-recorded by Author.
179	 Figure 3.3.37	 Bug with animation looping for the Agent Interact State
0	 Simulated and Screen-recorded by Author.
179	 Figure 3.3.38	 Another global offset bug when establishing a position vector from the agent’s personal space
0	 Simulated and Screen-recorded by Author.
180	 Figure 3.3.39	 Functional Behavior Tree during runtime
0	 Simulated and Screen-recorded by Author.
183	 Figure 3.3.40	 UE4 animation system breakdown
0	 From “Animation System Overview,” Unreal Engine Documentation, accessed December 28, 2019, https://docs.

unrealengine.com/en-US/Engine/Animation/Overview/index.html.
183	 Figure 3.3.41	 Autodesk Character Generator
0	 Screen-captured by Author, from “Autodesk Character Generator,” accessed December 28, 2019, https://

charactergenerator.autodesk.com/.
185	 Figure 3.3.42	 Agents become lifeless floating objects without animation
0	 Simulated and Screen-recorded by Author.
185	 Figure 3.3.43	 Animation Sequence within UE4 drives the skeletal mesh asset.
0	 Screen-recorded by Author.
186	 Figure 3.3.44	 Blend Space
0	 Screen-recorded by Author.
186	 Figure 3.3.45	 State Machine
0	 Screen-captured by Author.
187	 Figure 3.3.46	 Adobe Maximo
0	 Screen-recorded by Author, from “Mixamo,” Adobe, accessed December 28, 2019, https://www.mixamo.com/#/.
189	 Figure 3.3.47	 Animations controlled by the State Machine during runtime
0	 Simulated and screen-recorded by Author.
190	 Figure 3.3.48	 Flowchart of updated Human Systems within UE4By Author.

0	 Illustrated by Author
193	 Figure 3.4.1	 The Construction Script is visually very similar to the Blueprint
0	 Screen-captured by Author.
193	 Figure 3.4.2	 The Construction Script allows us to sync model attributes within the game space with variables

within the Blueprint
0	 Screen-recorded by Author.
195	 Figure 3.4.3	 Command Center viewport and properties
0	 Screen-captured by Author.
195	 Figure 3.4.4	 The Command Center asset contains the blueprint nodes (as defined in the Enter State on pg.

168) to spawn agents at thresholds every game tick during the simulation process

0	 Screen-captured by Author.
197	 Figure 3.4.5	 Entrance/Exit viewport and properties
0	 Screen-captured by Author.
197	 Figure 3.4.6	 Threshold viewport and properties
0	 Screen-captured by Author.
199	 Figure 3.4.7	 Architectural Object viewport and properties
0	 Screen-captured by Author.
199	 Figure 3.4.8	 The 3D mesh and materials of the object can be changed in the properties panel depending on the

typology of the actual object
0	 Screen-captured by Author.
200	 Figure 3.4.9	 Blueprint Interface node within the Interact node within the Object Interact State of the Behavior

Tree.
0	 Screen-captured and edited by Author.
201	 Figure 3.4.10	 The Interact Event within the object blueprint allows it to change the color of its texture whenever

the Interact node within the behavior tree of the Agent is triggered
0	 Screen-captured by Author.
203	 Figure 3.5.1	 3ds Max export window
0	 Screen-captured and edited by Author.

xx xxi

203	 Figure 3.5.2	 Static Mesh collision properties
0	 Screen-captured and edited by Author.
204	 Figure 3.5.3	 Collision lines right after Importing from Revit
0	 By Twiz, “Unreal Engine 4 Tutorial - Export From Revit to UE4,” YouTube, 9:44, accessed December 28, 2019, https://

www.youtube.com/watch?v=Ux_zJ4WJbZg.
204	 Figure 3.5.4	 Fixed collision lines within UE4 with a physical material
0	 By Twiz, “Unreal Engine 4 Tutorial - Export From Revit to UE4.”
205	 Figure 3.5.5	 Landscape Creation in UE4
0	 By Virtus Learning Hub / Creative Tutorials, trimmed by Author, “Populating Scenes With The Foliage Tool - #17

Unreal Engine 4 Level Design Tutorial Series,” YouTube, 14:18, accessed December 28, 2019, https://www.youtube.
com/watch?v=XYYfIYDqsDA.

207	 Figure 3.6.1	 Step 1: Import FBX model
0	 Screen-recorded by Author.
207	 Figure 3.6.2	 Step 1 sequential frames
0	 Frame-captured by Author.
208	 Figure 3.6.3	 Step 2: Define entrances/exits and thresholds
0	 Screen-recorded by Author.
208	 Figure 3.6.4	 Step 2 sequential frames
0	 Frame-captured by Author.
209	 Figure 3.6.5	 Step 3: Define Interactive Elements
0	 Screen-recorded by Author.
209	 Figure 3.6.6	 Step 3 sequential frames
0	 Frame-captured by Author.
210	 Figure 3.6.7	 Step 4: Initiate the simulation
0	 Simulated and screen-recorded by Author.
211	 Figure 3.6.8	 Step 4 sequential frames
0	 Frame-captured by Author.
212	 Figure 3.6.9	 Various forms of data can be visualized and mapped out during the simulation and toggled on or

off via the GUI (Graphical User Interface) or hotkeys
0	 Simulated and screen-recorded by Author.
213	 Figure 3.6.10	 Data visualization sequential frames
0	 Frame-captured by Author.
214	 Figure 3.6.11	 GUI controlled Solar Studies
0	 Simulated and screen-recorded by Author.
215	 Figure 3.6.12	 GUI controlled Solar Studies sequential frames
0	 Frame-captured by Author.
216	 Figure 3.6.13	 The GUI can also be used to control various scripted events, such as an evacuation scenario
0	 Simulated and screen-recorded by Author.
217	 Figure 3.6.14	 Scenario programming sequential frames
0	 Frame-captured by Author.
218	 Figure 3.6.15	 The simulation can also be visualized and interacted from different perspectives to better visualize

the space
0	 Simulated and screen-recorded by Author.
219	 Figure 3.6.16	 Interactive perspective variation sequential frames
0	 Frame-captured by Author.
220	 Figure 3.6.17	 The virtual camera can be utilized to simulate a real camera to produce cinematic footage
0	 Screen-recorded by Author.
221	 Figure 3.6.18	 Virtual camera sequential frames
0	 Frame-captured by Author.
0	

Part 4 | Tool Evaluation

226	 Figure 4.1.1	 Open Space Condition
0	 Simulated and screen-recorded by Author.
227	 Figure 4.1.2	 Open Space analytical frames
0	 Frame-captured by Author.
228	 Figure 4.1.3	 Corridor Condition
0	 Simulated and screen-recorded by Author.

229	 Figure 4.1.4	 Corridor analytical frames
0	 Frame-captured by Author.
230	 Figure 4.1.5	 Intersection Condition
0	 Simulated and screen-recorded by Author.
231	 Figure 4.1.6	 Intersection analytical frames
0	 Frame-captured by Author.
232	 Figure 4.1.7	 Expansion Condition
0	 Simulated and screen-recorded by Author.
233	 Figure 4.1.8	 Expansion analytical frames
0	 Frame-captured by Author.
234	 Figure 4.1.9	 Open space condition sped-up 20x
0	 Simulated and screen-recorded by Author.
234	 Figure 4.1.10	 Open space condition sped-up analytical frames
0	 Frame-captured by Author.
235	 Figure 4.1.11	 Grand Central Station time-lapse
0	 From Rocketboom, “Time Lapse Grand Central Station,” YouTube, 2:54, accessed December 28, 2019, https://www.

youtube.com/watch?v=eimuAboXSdo&feature=youtu.be.
235	 Figure 4.1.12	 Grand Central Station time-lapse analytical frames
0	 Frame-captured by Author, from Rocketboom, “Time Lapse Grand Central Station.”
236	 Figure 4.1.13	 The simulated agents will react and adapt to a changing environment in real time.
0	 Simulated and screen-recorded by Author.
237	 Figure 4.1.14	 Adaptive agents sequential frames
0	 Frame-captured by Author.
238	 Figure 4.2.1	 Cushion Revit model
0	 Screen-captured by Author.
239	 Figure 4.2.2	 Cushion Floor Plan
0	 Illustrated by Author, CAD file obtained from the Cushion team.
240	 Figure 4.2.3	 Cushion crowd simulation
0	 Simulated and screen-recorded by Author.
241	 Figure 4.2.4	 Cushion crowd simulation analytical frames
0	 Frame-captured by Author.
242	 Figure 4.2.5	 Cushion agent-comfort map
0	 Simulated and screen-recorded by Author.
243	 Figure 4.2.6	 Cushion agent-comfort map analytical frames
0	 Frame-captured by Author.
244	 Figure 4.2.7	 Cushion real world footage
0	 Filmed by Author.
244	 Figure 4.2.8	 Cushion real world footage analytical frames
0	 Frame-captured by Author.
245	 Figure 4.2.9	 Cushion rendered visualization
0	 Simulated by Author.
245	 Figure 4.2.10	 Cushion rendered visualization analytical frames
0	 Frame-captured by Author.
247	 Figure 4.2.11	 Cushion rendered visualization without simulated crowds
0	 Simulated by Author.
247	 Figure 4.2.12	 Cushion rendered visualization analytical frames without simulated crowds
0	 Frame-captured by Author.
248	 Figure 4.3.1	 Riverside Gallery Revit model
0	 Screen-captured by Author.
249	 Figure 4.3.2	 Riverside Gallery Floor Plan
0	 Illustrated by Author, PDF file obtained from “Floor Plans,” Plant Operations, accessed 28, 2019, https://uwaterloo.ca/

plant-operations/floor-plans.
250	 Figure 4.3.3	 Riverside Gallery crowd simulation
0	 Simulated and screen-recorded by Author.
251	 Figure 4.3.4	 Riverside Gallery crowd simulation analytical frames
0	 Frame-captured by Author.
252	 Figure 4.3.5	 Riverside Gallery agent-comfort map
0	 Simulated and screen-recorded by Author.

xxii xxiii

253	 Figure 4.3.6	 Riverside Gallery agent-comfort map analytical frames
0	 Frame-captured by Author.
254	 Figure 4.3.7	 Riverside Gallery real world footage
0	 Filmed by Author.
254	 Figure 4.3.8	 Riverside Gallery real world footage analytical frames
0	 Frame-captured by Author.
255	 Figure 4.3.9	 Riverside Gallery rendered visualization
0	 Simulated by Author.
255	 Figure 4.3.10	 Riverside Gallery rendered visualization analytical frames
0	 Frame-captured by Author.
257	 Figure 4.3.11	 Riverside Gallery rendered visualization without simulated crowds
0	 Simulated by Author.
257	 Figure 4.3.12	 Riverside Gallery rendered visualization analytical frames without simulated crowds
0	 Frame-captured by Author.
0	

Part 5 | Next Steps

263	 Figure 5.1.1	 Blueprint scripting vs C++ scripting
0	 From Jayanam, frame-captured and edited by Author, “Unreal Engine 4 : C++ and Blueprints Tutorial,” YouTube, 7:36,

accessed January 1, 2020, https://www.youtube.com/watch?v=SW09W182Ws0.
265	 Figure 5.1.2	 An airport is one example of a dynamic space that requires multiple layers of queuing, and many

groupings of occupants
0	 By John Amis, from Don Schanche Jr., “Airlines Struggle to Get Back on Schedule after Atlanta Fire,” December 18,

2017, FWBP, accessed January 1, 2020, http://www.fortworthbusiness.com/news/airlines-struggle-to-get-back-on-
schedule-after-atlanta-fire/article_c1ce0496-e41b-11e7-8980-5b5f5acbd106.html.

267	 Figure 5.2.1	 Photogrammetry recreates an object by capturing multiple images of the object in various angles
0	 From Joseph Azzam, “Everything You Need to Know about Photogrammetry I Hope,” January 10, 2017, Gamasutra,

accessed January 1, 2020, https://www.gamasutra.com/blogs/JosephAzzam/20170110/288899/Everything_You_Need_
to_Know_about_Photogrammetry_I_hope.php.

268	 Figure 5.2.2	 Star Wars Battlefront Photogrammetry Mod
0	 From Martin Bergman, trimmed by Author, “STAR WARS™ Battlefront: Toddyhancer Showcase (Less Filmic Version),”

YouTube, 0:52, accessed January 1, 2020, https://www.youtube.com/watch?v=a72hU_l6mKc.
268	 Figure 5.2.3	 Rebirth photorealism within UE4 demo
0	 From Quixel, trimmed by Author, “Rebirth: Introducing Photorealism in UE4,” YouTube, 2:24, accessed January 1,

2020, https://www.youtube.com/watch?v=9fC20NWhx4s.
269	 Figure 5.2.4	 Star Wars realtime Ray-tracing demo
0	 Trimmed by Author, videos from moviemaniacsDE, “Star Wars: Reflections | Official Unreal Engine Real-Time Ray-

Tracing Demo (2018),” YouTube, 4:09, accessed January 1, 2020, https://www.youtube.com/watch?v=AV279wThmVU,
and Unreal Engine, “Reflections Real-Time Ray Tracing Demo | Project Spotlight | Unreal Engine,” YouTube, 1:04,
accessed January 1, 2020, https://www.youtube.com/watch?v=J3ue35ago3Y.

271	 Figure 5.3.1	 Tiltbrush is one example of an VR painting application
0	 From “Tilt Brush by Google,” accessed January 1, 2020, https://www.tiltbrush.com/.
272	 Figure 5.3.2	 Kinect Body Tracking within UE4
0	 Trimmed by Author, Videos from Opaque Media Group, trimmed by Author, “Kinect 4 Unreal 1.1 - Introduction,”

YouTube, 9:17, accessed January 1, 2020, https://www.youtube.com/watch?v=WHmPvZvRyxc, and Jiayi Wang, “Kinect
for UE4 local multi rig tracking test,” YouTube, 1:51, accessed January 1, 2020, https://youtu.be/KZuauZW8Tgg.

272	 Figure 5.3.3	 Leap Motion Hand Tracking
0	 From Leap Motion, trimmed by Author, “Leap Motion Blocks for Oculus Rift Playthrough,” YouTube, 6:15, accessed

January 1, 2020, https://www.youtube.com/watch?v=oZ_53T2jBGg.
273	 Figure 5.3.4	 Utilizing a VR camera rig in the making of the short film Rebirth in UE4
0	 From Quixel, trimmed by Author, “Create Photoreal Cinematics in UE4: Rebirth Tutorial,” YouTube, 44:56, accessed

January 1, 2020, https://www.youtube.com/watch?v=0iQJkSpOoOQ&feature=youtu.be&t=2215.
273	 Figure 5.3.5	 Project Siren demonstrates real-time face and body tracking alongside photorealistic human

rendering within UE4
0	 Trimmed by Author, videos from Unreal Engine, “Siren Real-Time Performance | Project Spotlight | Unreal Engine,”

YouTube, 0:41, accessed January 1, 2020, https://www.youtube.com/watch?v=9owTAISsvwk, and “Siren Behind The
Scenes | Project Spotlight | Unreal Engine,” YouTube, 0:51, accessed January 1, 2020, https://www.youtube.com/
watch?v=NW6mYurjYZ0.

274	 Figure 5.4.1	 Python Editor Script Plugin within UE4
0	 From “Scripting the Editor Using Python,” Unreal Engine Documentation, accessed October 18, 2019, https://docs.

unrealengine.com/en-US/Engine/Editor/ScriptingAndAutomation/Python/index.html.

275	 Figure 5.4.2	 Datasmith is a collection of tools and plugins that automates various tasks from traditional
workflows

0	 From Ken Pimentel, “Technology Sneak Peek: Python in Unreal Engine,” Unreal Engine, November 15, 2017, accessed
November 20, 2019, https://www.unrealengine.com/en-US/tech-blog/technology-sneak-peek-python-in-unreal-engine.

275	 Figure 5.4.3	 An example of a Python script used to automatically generate a LOD from a higher complexity
mesh

0	 From Pimentel, “Technology Sneak Peek: Python in Unreal Engine.”

xxv

List of Abbreviations

ACADIA: Association for Computer Aided Design in Architecture

ALU: Arithmetic Logic Units

API: Application Programming Interface

CAD: Computer Aided Design

CAM: Computer Aided Manufacturing

CPU: Central Processing Unit

DIY: Do It Yourself

DOF: Depth Of Field

EQS: Environment Query System

GE: Game Engine

GPU: Graphics Processing Unit

GUI: Graphical User Interface

HiDAC: High-Density Autonomous Crowds

IDE: Integrated Development Environment

IoT: The Internet of Things

OOP: Object Oriented Programming

PBR: Physically Based Rendering

UE4: Unreal Engine 4

xxvii

Technical Note

This thesis contains animated video figures.

To view this paper in its intended format, download and extract the
corresponding zip folder to the same folder location of this PDF file.

These videos can then be opened by clicking on any corresponding
figure with an “ ” symbol.

Depending on if the video figure is linked to the local zip folder, or an
online source, the video may be launched in a separate media player,

or on the web browser.

Alternatively, these local video files can be opened manually by
referring to their filenames, which will match the figure numbers in

the work.

See Appendix A: Multimedia Figures for more details.

This thesis can also be viewed online at:
https://leoaoliu.github.io/Thesis/

https://leoaoliu.github.io/Thesis/

Part 1 | Introduction and Theory
Why do we Need a New Workflow?

3

Traditionally, buildings have been very static elements within society, however,
technological advancements in recent years have allowed faster, smaller, and
cheaper electronics to be embedded within architectural systems. As a result, coded
infrastructures are emerging, allowing the creation of dynamic architectural spaces
throughout the world. Now as humanity enters the information age, new tools,
knowledge, and technologies have made it possible to create and visualize new forms
of architectural spaces unlike ever before.

These new spaces bring about complexities both in operation and design, which
in turn demands a higher standard of visualization to fully portray the occupant
interactions within the space. The inherent dynamics of human occupancy are
already challenging to portray with current visualization methods—especially within
the ‘fast-paced’ design phases of most architectural projects—but becomes even more
so with the introduction of these increasingly complex interactions within these
increasingly dynamic spaces.

A solution to these problems may lie within the game design industry. Since video
games rely largely on real-time interactions, the tools for their creation require an
emphasis on both rendering speed and scripting. These characteristics are in line
with the requirements of simulating and visualizing occupancy interactions within
dynamic architectural spaces, and as such offer a valid direction of investigation.

This section of the thesis will investigate these claims to provide a foundation for this
thesis. Chapter 1.1 will first define the interpretation of dynamic architecture within
the context of this thesis. It will then investigate the formalities of what makes a space
dynamic by supporting it with various logical tests and real-world examples. Chapter
1.2 will then investigate the progression of visualization both within the world and
within architectural visualization. From this, it intends to deduce the reasons behind
the current inadequacies of current visualizations in portraying these new dynamic
spaces, as well as the lack of crowd dynamics within them. Chapter 1.3 will then
investigate the advent of the game engine and examine why it may be a suitable tool
to make up for these shortcomings. Chapter 1.4 will then consider all these points
and propose a methodology and framework for this thesis.

Why do we Need a New Workflow?

4 5

Chapter 1.1 | Emergence of Interactive and
Dynamic Architecture
Dynamic, as defined by the Oxford English Dictionary, is: “Of or pertaining
to force producing motion: often opposed to static.”[1] From this definition,
it is then possible to interpret dynamic architecture as a class of architecture
pertaining to a space that is able to employ motion. This contrasts with the
conventional static sense of architecture, where people typically associate
buildings with defined walls and thresholds. The origin of this association
perhaps comes from the origin of architecture itself, where its purpose was
that of a shelter against the unstable nature, to allow humanity to live in a
space of control and order. Abraham Akkerman briefly touched upon this in
his article “Urban Void and the Deconstruction of Neo-Platonic City-Form,”
in which he relates the two facets of city form—urban constructs and urban
voids—with what Friedrich Nietzsche showed as the two impulses of human
psyche—the Apollonian and the Dionysian.

“He called the two impulses the Apollonian and the Dionysian,
respectively. The spatial attributes of the human temperament,
epitomized by Apollo, the god of colonies and of city-walls,
correspond to harmony, order, reason, certainty and stability.
Capriciousness and turbulence, expressive of Dionysus, the
bisexual god of wine, on the other hand animate euphoric
and rapturous attributes of the human character, involving
unpredictable outbursts tempered by intervals of quiet (Zeitlin,
1982). It is only a small conceptual step to relate the mind’s spatial
disposition to a planned shelter and its temporal outlook to raw
nature and open space. […] It is from within the tension between
the turbulence and uncertainty of nature’s ferocity, and the
firmness and security of a human-made shell, that the intellectual
quandary of uniformity amid diversity, and of permanence amid
change, arose. […] The origin of the mind city composite, thus,
seems to be traceable to mutual relationship between nature’s
peril and a thought about, or a metal image of, a shelter against
it.”[2]

Akkerman contrasts the “firmness and security of a human-made shell,” to the
“turbulence and uncertainty of nature’s ferocity;” describing the shelter with
words such as harmony, order, reason, certainty and stability, while describing
nature as raw and open, relating it to that of Dionysus, who can be expressed
by words such as capriciousness and turbulence. While it is unlikely Akkerman
had dynamic architecture in mind, it can be inferred from his passage the
archetypal static quality of architecture and the dynamic quality of nature.
Dynamic architecture then can adopt both archetypes, becoming a more fluid
form of stability and security. This merger of the two archetypes presents
an interesting repositioning of agency, which proposes a mirror of what
1	 “Dynamic, Adj. and n.,” in OED Online (Oxford University Press), accessed October 18, 2019,

http://www.oed.com/view/Entry/58818.
2	 Abraham Akkerman, “Urban Void and the Deconstruction of Neo-Platonic City-Form,” Ethics,

Place & Environment 12, no. 2 (2009): 207-208, https://doi.org/10.1080/13668790902863416.

“Increasingly active, responsive, and kinetic, the material of the built environment is
being animated in the truest sense of the word. Architecture imbued with autonomy, and
uncanny sense of life, challenges us to look beyond design disciplines to understand the
perceptual, emotional, and social effects of these pervasive technologies.”[1]

1	 Michael Fox, Interactive Architecture: Adaptive World (New York: Princeton Architectural Press, 2016), 7.

http://www.oed.com/view/Entry/58818

6 7

Introduction and Theory |Emergence of Interactive and Dynamic Architecture Introduction and Theory |Emergence of Interactive and Dynamic Architecture

Akkerman phrases as “the intellectual quandary of uniformity amid diversity,
and of permanence amid change.”[3] Instead of “uniformity amid diversity,”
dynamic architecture would instead potentially introduce uncertainty within
stability. However, while the stability gained by removing the agency of
nature provided the basis of a valid shelter, the potential for controlled
dynamics gained by translocating agency from the occupants back into the
architecture can be just as, if not more, compelling. It can be seen within
life that occupancy within a space is inherently dynamic, and as such, the
demand and functions of a space can change throughout its use. People are
dynamic, crowds are dynamic, and sometimes the static nature of traditional
architecture cannot fully accommodate the dynamic nature of its occupants.
Dynamics can disrupt the stability and order of architectural spaces, but when
done right, they can actually enhance it.

Architectural space, when broken down to its components, can be categorized
into various elements. When considering a typical house, one might notice
elements such as furniture, thresholds, lights, windows, etc. These elements
are generally what define a space; a kitchen might have elements such as a
fridge, sink, microwave, etc. whereas a living room would have elements such
as a couch, coffee table, and television. At present, these elements are relatively
simple, but even so, they can range in complexity from static tables and chairs
to more interactive devices such as televisions and computers. While these
higher complexity elements are still limited by their lack of physical motion,
the photonic and acoustic stimuli they can release within a space go beyond
what a static piece of furniture can accomplish. A television that is turned on
will introduce motion to the room by virtue of light and sound. Therefore,
a television that is turned on can be considered dynamic while a television
that is turned off can be considered static. Accordingly, a living room with a
television that is turned on will feel more dynamic compared to a living room
with a television that is turned off. (Fig. 1.1.1 - 2) From this, it can then be
argued that the introduction of dynamic elements within the space can cause
an initially static space to become dynamic. While natural elements such a
wind and light can also influence this space dynamic due to the time of day
and the seasons, these elements are both less deliberate (unless controlled by a
dynamic element) and more subtle (due to their effect over a greater timeframe
when compared to the immediate stimuli delta of the television example).

In these instances, the semantics of dynamic spaces may differ based on the
threshold at which the space is classified to be dynamic, but if one deems
the threshold of dynamic to be anything above static within a perceivable
timeframe, then it can be reasoned that it only takes one dynamic element
to convert a space from static to dynamic—whether it is an element like a
television that introduces dynamics, or some kind of screen element that
can dynamically affect natural elements such as light and wind. This can be
further demonstrated by comparing a room with a lightbulb versus a room
with a fireplace. (Fig. 1.1.3 - 6) While both elements provide a light source
to the room, the light fixture provides a constant static lighting whereas the
fire dances, changing shape from convectional air currents within the space.

3	 Akkerman, “Urban Void and the Deconstruction of Neo-Platonic City-Form,” 208.

Figure 1.1.1	 A static living room with the Television turned off
Photographed by Author.

Figure 1.1.2	 A static living room with the Television turned on feels more dynamic by comparison
Filmed by Author.

8 9

Introduction and Theory |Emergence of Interactive and Dynamic Architecture Introduction and Theory |Emergence of Interactive and Dynamic Architecture

Figure 1.1.3 - 1.1.4
This is a virtual study of a room with either a static light bulb or a dynamic
fire. It can be seen here that while the fire is technologically primitive com-
pared to the light-bulb, it causes the space to feel much more dynamic.

Figure 1.1.5 - 1.1.6
The same study, but within the Physical world. Here it can be seen that the
same ideology applies to these spaces even at this smaller scale.

Figure 1.1.3	 Virtual Rendering showing a static light source within a room
Rendered by Author.

Figure 1.1.4	 Virtual Rendering showing a dynamic light source within a room.
Simulated by Author.

Figure 1.1.5	 Physical Study showing a static light within a space.
Photographed by Author.

Figure 1.1.6	 Physical Study showing a dynamic light within a space.
Filmed by Author.

10 11

Introduction and Theory |Emergence of Interactive and Dynamic Architecture Introduction and Theory |Emergence of Interactive and Dynamic Architecture

Whether the fire or television is sufficient to convert the room into a dynamic
space is debatable, but what is clear is that the fire is more dynamic than the
lightbulb, and the room with the fire will feel more dynamic than the room
with the lightbulb; Conversely, the television is more dynamic when turned
on then off, and the room with the television turned on is more dynamic than
with the television turned off.

Both the room with fire and the room with television analogies are generic
examples by logic, but more substantial examples of these elementary dynamic
spaces can be dated back throughout history, such as the beacon towers of the
Great Wall of China,[4] the drawbridges of medieval castles, and lighthouses
throughout the world. (Fig. 1.1.7 - 9) These forms of architecture represent
the most basic uses of dynamic elements, where their utility focused on a
singular function. While this is a valid use case, the potential of dynamics
becomes much greater with the addition of multiple dynamic elements. Prime
examples of this can be observed in the form of the Zen garden in the Ryoan-
ji Shrine in Kyoto, Japan, and the multitude of fountains at the Villa d’Este
in Tivoli, Italy. These spaces utilize multiple dynamic elements—deriving its
dynamics from nature such as the gravel within the gardens, the leaves within
the trees, and the water within the fountains—to enhance the space for the
occupants. (Fig. 1.1.10 - 15)

4	 Cheng Dalin, “The Great Wall of China,” in Borders and Border Politics in a Globalizing World, ed.
Paul Ganster and David E. Lorey (Lanham, MD: SR Books, 2005), 12-13.

Figure 1.1.8	 Smoke Signals of the Great wall of china
From “Smoke Signals - 900 B.C.,” The History of Media (The Beginning-1950 A.D.), accessed December
17, 2019, http://thehistoryofmedia.weebly.com/smoke-signals.html.

Figure 1.1.9	 Drawbridge at the fort of Ponta da Bandeira
By Georges Jansoone, “File:Lagos48.jpg,” Entrance with Drawbridge; Forte Da Ponta Da Bandeira; Lagos,
Portugal, September 24, 2006, Wikimedia Commons, accessed December 17, 2019, https://commons.
wikimedia.org/wiki/File:Lagos48.jpg.

Figure 1.1.7	 Rotating light of lighthouse
From Antoni Cladera, “Milky Way Photography: The Definitive Guide (2019),” PhotoPills, accessed December 17, 2019, https://www.photopills.com/
articles/milky-way-photography-guide.

Figure 1.1.7 - 1.1.9
These three structures are ex-
amples of simple dynamics be-
ing utilized for a specific func-
tion. The great wall of china
made use of smoke signals
on top of its watch towers to
signal of incoming invasions.
Draw bridges of medieval
castles utilized a hinge system
to control passage into the
castle. Light houses utilized a
light source such as fire or a
rotating mirror to signal

12 13

Introduction and Theory |Emergence of Interactive and Dynamic Architecture Introduction and Theory |Emergence of Interactive and Dynamic Architecture

Figure 1.1.10	The fountain of Neptune
By KatDevsGames, “File:Villa d’Este 01.Jpg,” Wikimedia Commons, accessed December 18, 2019, https://
commons.wikimedia.org/wiki/File:Villa_d%27Este_01.jpg.

Figure 1.1.11	One hundred fountains walkway
By Wknight94, “File:Villa d’Este fountains 6.jpg,” Fountains at Villa d’Este in Tivoli, April 29,
2008, Wikimedia Commons, accessed December 18, 2019, https://commons.wikimedia.org/wiki/
File:Villa_d%27Este_fountains_6.jpg.

Figure 1.1.12	Oval Fountain
By Dnalor 01, “File:Tivoli, Villa d’Este, Fontana dell’Ovato.jpg,” Deutsch: Tivoli, Villa d’Este, Fontana
Dell’Ovato, May 15, 2005, Wikimedia Commons, accessed December 18, 2019, https://commons.
wikimedia.org/wiki/File:Tivoli,_Villa_d%27Este,_Fontana_dell%27Ovato.jpg.

Figure 1.1.13	Spectators viewing the Rock Gardens from the veranda
By Sean Pavone, from Don George, “Finding Peace in 21st-Century Kyoto,” National Geographic,
July 7, 2015, accessed December 18, 2019, https://www.nationalgeographic.com/travel/intelligent-
travel/2015/07/07/finding-peace-in-21st-century-kyoto/.

Figure 1.1.14	Cherry blossoms hang over the rock garden, bringing
the dynamics of nature further into the space
By Bjørn Christian Tørrissen, “File:Ryoan-ji-Garden-2018.jpg,” Stones in the Zen Garden/Rock Garden at
the Ryōan-Ji Temple in Kyoto, Japan, May 11, 2018, Wikimedia Commons, accessed December 18, 2019,
https://commons.wikimedia.org/wiki/File:Ryoan-ji-Garden-2018.jpg.

Figure 1.1.15	Cherry blossoms hang over the rock garden, bringing
the dynamics of nature further into the space
By Didier Moïse, “File:Cherry blossom at the rock garden of Ryōan-ji Temple in Kyoto, Japan.jpg,” Cherry
Blossom at the Rock Garden of Ryōan-Ji Temple in Kyoto, Japan, April 12, 2005, Wikimedia Commons,
accessed December 18, 2019, https://commons.wikimedia.org/wiki/File:Cherry_blossom_at_the_rock_
garden_of_Ry%C5%8Dan-ji_Temple_in_Kyoto,_Japan.jpg.

Figure 1.1.10 - 1.1.12
Villa D’Este in Tivoli Italy, erected in
the 16th century, makes use of many
water features throughout its property.
The use of water creates spaces that are
inherent static but becomes dynamic as
the fluid not only reacts to the archi-
tecture, but also the occupants. This
in turn floods the senses with dynamic
sounds, temperature changes, as well as
providing the occupants with an inter-
active medium to manipulate.

Figure 1.1.13 - 1.1.15
The Ryoan-Ji shrine in Kyoto Japan,
erected in the 13th century, is famous
for its rock garden which provides an
ever-changing space within the premise.
While the garden is simply meant to
be viewed by the public, its changing
arrangements along with its natural
provides a more dynamic environment
compared to traditional architecture.

14 15

Introduction and Theory |Emergence of Interactive and Dynamic Architecture Introduction and Theory |Emergence of Interactive and Dynamic Architecture

With the addition of technology, however, the potential use cases of dynamics
become even greater. Digital computation of integrated circuits has continued
to progress, experiencing an exponential growth in power and a reduction
in cost, creating a chain reaction where advancements in one field can
drive advancements in another. Gordon E. Moore states in his 1965 paper
“Cramming More Components onto Integrated Circuits:”

“Integrated electronics will make electronic techniques more generally
available throughout all of society, performing many functions that
presently are done inadequately by other techniques or not done
at all. […] Reduced cost is one of the big attractions of integrated
electronics, and the cost advantage continues to increase as the
technology evolves toward the production of larger and larger circuit
functions on a single semiconductor substrate. […] The complexity
for minimum component costs has increased at a rate of roughly a
factor of two per year (see graph). Certainly over the short term this
rate can be expected to continue, if not to increase. Over the longer
term, the rate of increase is a bit more uncertain, although there is
no reason to believe it will not remain nearly constant for at least ten
years.”[5]

Moore’s Law, although not a law by the traditional definition, is a perceived
rate of technological growth based on these observations. According to
Moore, technological progression will continue to grow where the number of
transistors within an integrated circuit (therefore, computational power) will
double approximately every year. He later updates this observation to every two
years in 1975.[6] While Moore’s Law is by no means certain, this observation
has proven to be fairly accurate from the technological progressions of the past
decades. (Fig. 1.1.16 - 17)

This has allowed the production of relatively cheap electronics, which are now
integrated throughout people’s everyday lives. It can be seen as smartphones in
people’s hands, appliances in various homes, computers in various offices, and
as streetlights around the world. Michael Fox states in Interactive Architecture:
Adaptive World, “The field of industrial design came to engage with tangible
interaction out of necessity as appliances became progressively ‘intelligent’
containing more and more electronic and digital components,”[7] which not
only substantiates this observation of technological integration amongst the
populace but also mentions the influence of this technological procession on
other fields, which shows the significance of this technological revolution
on the world. With so much computational data around us, and the ever-
increasing accessibility of intelligent objects, the potential for integrating such
technologies within architectural systems becomes increasingly powerful.
Many architectural elements are already making use of these technological
5	 Gordon E. Moore, “Cramming More Components onto Integrated Circuits,” Proceedings of the

IEEE 86, no. 1 (1998): 83, https://doi.org/10.1109/jproc.1998.658762.
6	 Gordon E. Moore, “Progress in Digital Integrated Electronics [Technical Literaiture, Copyright

1975 IEEE. Reprinted, with Permission. Technical Digest. International Electron Devices Meeting,
IEEE, 1975, Pp. 11-13.],” IEEE Solid-State Circuits Society Newsletter 11, no. 3 (2006): 37, https://
doi.org/10.1109/n-ssc.2006.4804410.

7	 Michael Fox, Interactive Architecture: Adaptive World (New York: Princeton Architectural Press,
2016), 12.

Figure 1.1.16	Silicon transistor progression through the years
From “Happy birthday transistor!,” translated with Google Translate, accessed December 18, 2019, http://astron.dmitryshevchenko.com/2017/12/19/transistor/.

Figure 1.1.17	This graph shows the progression of transistor count within integrated circuit chips through the years, as described
by Moore’s Law
From Max Roser and Hannah Ritchie, “Technological Progress,” May 11, 2013, Our World in Data, accessed December 18, 2019, https://ourworldindata.org/technological-progress.

16 17

Introduction and Theory |Emergence of Interactive and Dynamic Architecture Introduction and Theory |Emergence of Interactive and Dynamic Architecture

improvements, from standard functional elements such as elevators and
automatic doors, to more complicated constructed elements such as the solar
responsive façades of the Al Bahr Towers in Abu Dhabi,[8] the shading umbrellas
in Medina,[9] and the operable roof of the Rogers Centre in Toronto.[10] (Fig.
1.1.18 - 20) These examples are all valid ways of embedding technology
within architecture and could very well be only the beginning of what will
be possible in the near future. If technology continues to follow the trend
observed by Moore’s Law, this current level of coded infrastructure will seem
minuscule to what’s to come.

Even now, prefabricated Do-It-Yourself (DIY) solutions such as Sonoff smart
controllers,[11] Raspberry Pi computers,[12] and Arduino micro-controllers[13]
are becoming increasingly accessible to the general public. This is facilitated
not only by the reduction in cost of micro-controllers but also the increasing
accessibility to information as a result of more people having access to high
speed Internet. The world is becoming increasingly connected, and as a result
of this connection, these various electronic and digital components will
gain the ability to communicate with one another. The Internet of Things
refers to an emerging global internet-based information architecture that
is slowly developing, allowing the networked interconnection of everyday
objects, vehicles, and buildings with embedded intelligence. As defined by
the International Telecommunication Union, the Internet of Things is “a
global infrastructure for the information society.”[14] This has the potential to
transition current infrastructures into smart grids, where the integration of
physical and digital systems will allow the automation of everyday tasks and
open new forms of digital and physical communication. Privacy concerns
aside, this new level of worldwide connectivity will allow higher potential
flexibility within architectural design, allowing the possibility of altering both
the occupant’s perception of the space, as well as the functionalities of the
space. In Fox’s words:

“The influence of technological and economic feasibility within a
connected world has resulted in the explosion of current exploration
with the foundations of interaction design in architecture. The Internet
of Things (IoT) has quite rapidly come to define the technological
context of interactive design as all-inclusive, existing within this
connectedness in a way that affects essentially everything, from
graphics to objects to buildings to cities. […] Interactive are no longer
limited to those of people interacting with an object, environment, or

8	 Russell Fortmeyer and Charles D. Linn, “Abu Dhabi Investment Council Headquarters” in Kinetic
Architecture: Designs for Active Envelopes (Mulgrave: Images Publishing, 2014), 176-183.

9	 Michael Barnes and Michael Dickson, Widespan Roof Structures (London: Telford, 2000), 14-16.
10	 Andrew H Frazer, “Design Considerations for Retractable-roof Stadia” (Master’s thesis, 2005), 8-11,

accessed July 23, 2019, https://dspace.mit.edu/handle/1721.1/31119.
11	 “DIY A Temperature Controlled Smart Lock,” Sonoff, accessed July 23, 2019, https://sonoff.itead.

cc/en/news/266-diy-a-temperature-controlled-smart-lock.
12	 “Raspberry Pi Blog - News, Announcements, and Ideas,” accessed July 23, 2019, Raspberry Pi,

https://www.raspberrypi.org/blog/.
13	 “What Is Arduino?,” Arduino, accessed July 23, 2019, https://www.arduino.cc/en/Guide/

Introduction.
14	 “Internet of Things Global Standards Initiative.” ITU, accessed July 23, 2019, https://www.itu.int/

en/ITU-T/gsi/iot/Pages/default.aspx.

Figure 1.1.18	The Al Bahar Towers Facades utilizes motorized
folding louvers to control the amount of sunlight that can pass through.
From “Al Bahar Towers Responsive Facade / Aedas,” September 5, 2012, ArchDaily, accessed December 18,
2019, http://www.archdaily.com/270592/al-bahar-towers-responsive-facade-aedas/.

Figure 1.1.20	The Roof of the Rogers Center in Toronto opens and
closes to provide outdoor or indoor experiences depending on the
exterior conditions.
From Laura Armstrong, “Rogers Centre Roof to Be Opened for Blue Jays Game Tonight,” The Star, accessed
December 18, 2019, https://www.thestar.com/sports/bluejays/2016/05/27/rogers-centre-roof-to-be-opened-

Figure 1.1.19	The Umbrellas in Medina opens and closes to open up
the space as well as offer environmental protection depending on the
weather and time of day.
From “Umbrellas in the Mosque of the Prophet’s Courtyard and Surrounding Open Spaces,” Abdullatif Al
Fozan Award for Mosque Architecture, accessed December 18, 2019, https://alfozanaward.org/mosques/

18 19

Introduction and Theory |Emergence of Interactive and Dynamic Architecture Introduction and Theory |Emergence of Interactive and Dynamic Architecture

building, but can now be carried out as part of a larger ecosystem of
connected objects, environments, and buildings that autonomously
interact with each other.”[15]

These spaces, the spaces previously only associated with science fiction, are
becoming increasingly possible as newer and cheaper technology becomes
available. Imagine spaces where furniture moves to accommodate the number
of occupants, where the lighting changes depending on identity, and the walls
flex to accommodate circulation. Imagine elevators that can sense the flow of
people arriving and adjust accordingly, spaces that know the identity of its
occupants and tailor its functionality for them, and infrastructure that can
perform certain tasks depending on the time of day and where its occupants
are located.

While some of these technologies are still in their infancy, more and more
people are beginning to experiment with these new forms of spaces. Every
year, art festivals such as Nuit Blanche Toronto[16] allow artists and designers
to prototype new forms of dynamic spaces (Fig. 1.1.21 - 23) and conferences
such as ACADIA (Association for Computer Aided Design in Architecture)[17]
are showcase new forms of spaces and technology integration in utility and
planning. (Fig. 1.1.24 - 26) In the book Alive: Advancements in adaptive
architecture, Manuel Kretzer and Ludger Hovestadt assemble a collection of
essays that challenge questions concerning “temporality and decay, or concepts
dealing with performance, feedback, and progression” categorized into the
following chapters from the Alive 2013 symposium:

“Bioinspiration highlights a sensitive observation of biological
processes and their transfer into novel design methodologies for the
creation of innovative architectural explorations. […] Materiability
addresses the potential to control and design matter at a nano—or
micro—scale and construct materials that are dynamic, active, and
responsive to environmental conditions. […] Interaction elaborates
on concepts concerning interaction and adaptation that exceed pure
control and automation mechanisms but attempt to change, learn,
and evolve dynamically.”[18]

This collection shows the variety of spaces that these technologies can influence
and the vast amount of strategies that can be utilized to create them. Annual
collaborations such as these act as platforms and environments that allow
architects to push technology to new bounds, creating prototype spaces and
tools that forecast what the future of architecture may hold.

15	 Fox, Interactive Architecture: Adaptive World, 11.
16	 “Nuit Blanche,” City of Toronto, accessed October 10, 2019, https://www.toronto.ca/explore-enjoy/

festivals-events/nuitblanche/.
17	 “About ACADIA,” ACADIA, accessed October 16, 2019, http://acadia.org/.
18	 Manuel Kretzer and Ludger Hovestadt, ALIVE: Advancements in Adaptive Architecture (Basel:

Birkhäuser, 2014), 21-22.

Figure 1.1.21	Starscape
Photographed by Author.

Figure 1.1.22	Ocean
Photographed by Author.

Figure 1.1.23	Cushion
Photographed by Author.

Figure 1.1.21 - 1.1.23
These are three examples of
installations displayed at Nuit
Blanche in Toronto every year.
Each of them contains unique
elements that utilizes tech-
nology to engage the crowd
as they navigate through the
space.

20 21

Introduction and Theory |Emergence of Interactive and Dynamic Architecture Introduction and Theory |Emergence of Interactive and Dynamic Architecture

Figure 1.1.24	Acadia conference in Michigan
Photographed by Author.

Figure 1.1.25	Acadia lecture in Michigan
Photographed by Author.

Figure 1.1.26	Acadia 2013 poster
From Sebastian Jordana, “Adaptive Architecture ACADIA 2013,” October 3, 2013, ArchDaily, accessed December 18, 2019, http://www.archdaily.
com/434672/adaptive-architecture-acadia-2013/.

Figure 1.1.24 - 1.1.26
ACADIA stands for the Association for Computer Aided Design In Architecture. Every
year, digital design researchers and professionals hold a conference to facilitate critical inves-
tigation into the role of computation in architecture.

22 23

Introduction and Theory |Inadequacy of Current Visualization Methods Introduction and Theory |Inadequacy of Current Visualization Methods

Figure 1.2.1	 Vanishing point, depicted in Della Pittura by Alberti
By Leon Battista Alberti, Della pittura e della statua di Leonbatista Alberti (Milano : Società tipografica de’Classici italiani, 1804),
http://archive.org/details/dellapitturaedel00albe.

Figure 1.2.2	 Perspective pillars on grid, depicted in Della Pittura
by Alterbi.
By Alberti, Della pittura e della statua di Leonbatista Alberti.

Chapter 1.2 | Inadequacy of Current
Visualization Methods
With these new forms of dynamic architecture comes increased complexity
in both operation and design. As such, current visualization workflows must
be updated to accommodate this development. Fortunately, technological
progression benefits not only the construction of these new dynamic spaces
but also the tools for designing and visualizing them. Richard Sennet states
in The Craftsman: “We need to visualize what is difficult in order to address
it. This is probably the greatest challenge facing any good craftsman: to see
in the mind’s eye where the difficulties lie.”[1] From this, one can infer that
visualization can facilitate access to complexity, which in turn will allow the
development of new technologies that can develop even better visualization
tools. This concept, where one development feeding into another as a cyclical
progression is nothing new, as visualization methods have progressed as such
throughout history.

The first of these progressive leaps in regards to architectural visualization was
perhaps the development of linear perspective in the 1400s by Italian architect
Filippo Brunelleschi.[2] This method was later documented within the treatise
Della Pittura (On Painting) by Leon Battista Alberti[3] that established the
preservation and accessibility of this knowledge to later generations. John R.
Spencer noted within his translation of Alberti’s De pictura that “By substituting
the pyramid for a cone Alberti made the one-point perspective system possible,
for in pyramidal vision the size of the object seen varies as the height of the
observer’s eye and the distance to the object. Although he was physiologically
incorrect, Alberti made it possible to represent objects on a plane surface with
greater apparent exactitude.”[4] (Fig. 1.2.1 - 2) Before this development, most
art and visualization depictions consisted of mostly two-dimensional images
with little attempt to portray depth or three-dimensionality, and where such
attempts within medieval paintings, were exceedingly incorrect. (Fig. 1.2.3 -
4) With “this greater apparent exactitude” however, visualization evolved to
better portray the dimensionality of the world and, in essence, the architecture
within the world.

1	 Richard Sennett, The Craftsman (London: Penguin, 2009), 230.
2	 “Early Applications of Linear Perspective.” Khan Academy, accessed July 26, 2019, https://www.

khanacademy.org/humanities/renaissance-reformation/early-renaissance1/beginners-renaissance-
florence/a/early-applications-of-linear-perspective.

3	 Khan Academy, “Early Applications of Linear Perspective.”
4	 Leon Battista Alberti, On Painting, trans. with an Introduction and Notes by John R Spencer (New

Haven, 1966), 103.

24 25

Introduction and Theory |Inadequacy of Current Visualization Methods Introduction and Theory |Inadequacy of Current Visualization Methods

Figure 1.2.3	 The calling of the Apostles Peter and Andrew by Duccio, 1308-11
By Duccio di Buoninsegna, The Calling of the Apostles Peter and Andrew, 1308-1311, tempera on panel, 42.7 × 45.5 cm, Samuel H. Kress Collection,
National Gallery of Art, accessed December 18, 2019, https://www.nga.gov/collection/art-object-page.282.html.

Figure 1.2.4	 The Last Supper by Leonardo Da Vinci, 1495-96
By Leonardo Da Vinci, from Paris Orlando, “File:Last Supper by Leonardo da Vinci.jpg,” November 10, 2019, Wikimedia Commons, accessed December 18, 2019, https://commons.wikimedia.
org/wiki/File:Last_Supper_by_Leonardo_da_Vinci.jpg.

Figure 1.2.3 - 1.2.4
These figures compare an medieval painting from before the
development of linear perspective to an Renaissance painting
from the time after. While they are produced by different
artists, it is interesting to note the increased realism within the
portrayed proportions.

26 27

Introduction and Theory |Inadequacy of Current Visualization Methods Introduction and Theory |Inadequacy of Current Visualization Methods

Figure 1.2.5	 Photograph of Bibliothèque Sainte-Geneviève by Bisson Frères
By Bisson Frères, from Neil Levine, “The Template of Photography in Nineteenth-Century Architectural Representation,” Journal
of the Society of Architectural Historians 71, no. 3 (January 2012), https://doi.org/10.1525/jsah.2012.71.3.306.

Figure 1.2.5 - 1.2.6
These figures shows how
Labrouste removed all traces
of human activity in prepara-
tion of engraving the photo.
In doing so, he reinforced the
clarity of the design.

Figure 1.2.6	 Perspective view of Bibliothèque Sainte-Geneviève, traced from
Bisson Frères’ photograph by Henri Labrouste, engraving by Jacques-Joseph Huguenet
By Henri Labrouste, traced from photograph by Bisson Frères, and engraved by Jacques-Joseph Huguenet, from Levine, “The
Template of Photography in Nineteenth-Century Architectural Representation.”

This capability of portrayal was enhanced even further with the invention
of photography in the 1800s.[5] In a drawing, every line is deliberate, but
a photograph captures the location with context, whether accidental or
deliberate. This aspect of photography gained it its credibility as a tool for
documentation, as it was a way to confirm and validate, but at the cost of visual
flexibility.[6] It wasn’t until French architect Henri Labrouste and his deliberate
tracing of photographs that allowed the removal of unwanted features and the
highlighting of important details to regain that visual flexibility. (Fig. 1.2.5 -
6) Neil Levine describes Labrouste’s tracings in The Template of Photography in
Nineteenth-century Architectural Representation:

“Labrouste’s tracing of the photograph involved more than removing
unwanted features. His redrawing highlighted important aspects of the
building that were somewhat indistinct in the photograph. The lack of
clarity of detail in parts of the photograph is ironic given the emphasis
on the medium’s ‘precision’ and ‘exactitude’ in the photographic
discourse. […] Labrouste built on photography’s putative strengths
to give the image an even greater degree of precision, exactitude,
and mechanical definition than the photograph itself provided. […]
Finally, the removal of all trace of human occupation transformed the
photographic scene into an abstracted, airless, uncanny representation
of reality combining in almost equal measure the rational character
of the building’s design with its pronounced structural expression.”[7]

Within this passage, Levine notes the irony of Labrouste’s tracings: how by
removing features—thus reducing the clarity of the photograph—he was able
to enhance the clarity of the building design by highlighting the “important
aspects of the building.” This of course benefited greatly in architectural
visualizations as it allowed designers to visualize what is important in the
design while keeping the building within context—essentially becoming an
early form of architectural rendering.

Although each of these advancements facilitated progression, none of them have
influenced the modern world as rapidly and profoundly as digital computation.
Since its conception in the mid-1900s, many industries conformed by moving
towards digital mediums, changing not only architectural visualization, but the
rest of the world as well. Christoph Schindler gives a brief summary of these
developments in his dissertation Information-Tool-Technology: Contemporary
digital fabrication as part of a continuous development of process technology as
illustrated with the example of timber construction:

5	 “Invention of Photography,” The British Library, accessed July 28, 2019, https://www.bl.uk/
learning/timeline/item106980.html.

6	 Neil Levine, “The Template of Photography in Nineteenth-Century Architectural
Representation,” Journal of the Society of Architectural Historians 71, no. 3 (January 2012): 308,
https://doi.org/10.1525/jsah.2012.71.3.306.

7	 Levine, “The Template of Photography in Nineteenth-Century Architectural Representation,” 308.

28 29

Introduction and Theory |Inadequacy of Current Visualization Methods Introduction and Theory |Inadequacy of Current Visualization Methods

“William Shockley developed the first efficient transistor in 1947 at
the US Bell Laboratories; in 1958 Jack Kilby started to cast integral
circuits into a germanium ‘microchip’; and in 1970 IBM produced
the first silicon ‘microprocessor chip’. From this point onwards the
agenda was set to produce computers small and low priced enough
to be built into machines to automate complex formalized processes
economically.”[8]

By observing the delta in time between these developments, it can be seen
how rapidly technology has progressed in the past hundred years relative
to human history. Even before the observation of Moore’s Law, within 30
years, computation production went from the first efficient transistor to an
agenda of producing smaller and cheaper computers. Comparing this to
the few hundred years between the development of linear perspective and
photography, it can be presumed just how fast visualization progression will
not only continue but accelerate from this point onwards.

Schindler views this technological progress in the context of timber construction
as waves of development “divided into three essential production technologies
in the history of mankind: hand-tool-technology, machine-tool-technology,
[and] information-tool-technology.”[9] He states, “to this extent the three
‘waves’ of technology are not to be understood as competing, incompatible
principles, but rather as the gradual substitution of formalized physical and
later also formalized intellectual operations by machines. Man is not replaced,
but revalued. His function shifts from processor to process designer.”[10] This
view highlights how the progression of these new technologies can gradually
allow the outsourcing of tedious work away from low-efficiency humans to
high-efficiency computers, thus not only improving efficiency in mundane
tasks but also allowing humans to focus on more purposeful work—both of
which can drive progression even faster than it is now.

The potential ramifications of these new technologies generated excitement,
invoking avant-garde movements such as neo-futurism, where designers began
thinking new ways of programming spaces, facilitating new architectural ideas
that transcended norms. The London-based architecture group Archigram
was one such example, where they published a series of magazines throughout
the 1960s, featuring futuristic concept designs on what they imagined
computation could bring to architecture. (Fig. 1.2.7 - 11) Within Beyond
Archigram, Hadas Steiner notes an excerpt from Design Quarterly in an IDEA
conference pamphlet in 1966 that “the strength of Archigram’s appeal stems
from many things … But chiefly it offers an image-starved world a new
vision of the city of the future, a city of components on racks, components
in stacks, components plugged into networks and grids, a city of components
8	 Christoph Schindler, “Information-Tool-Technology: Contemporary digital fabrication as part

of a continuous development of process technology as illustrated with the example of timber
construction,” (PhD diss., 2007), 12, accessed June 26, 2019, http://www.caad.arch.ethz.ch/wiki/
uploads/Organisation/2007_Schindler_Information-tool-technology.pdf.

9	 Schindler, “Information-Tool-Technology: Contemporary digital fabrication as part of a continuous
development of process technology as illustrated with the example of timber construction,” 2.

10	 Schindler, “Information-Tool-Technology: Contemporary digital fabrication as part of a continuous
development of process technology as illustrated with the example of timber construction,” 17.

Figure 1.2.7	 Archigram Information Tear-off Sheet
From “Archigram: Tear-off Information Sheets,” BALTIC Centre for Contemporary Art, accessed December 18, 2019, http://balticplus.uk/archigram-
tear-off-information-sheets-c8292/.

30 31

Introduction and Theory |Inadequacy of Current Visualization Methods Introduction and Theory |Inadequacy of Current Visualization Methods

Figure 1.2.8	 Plugin City concept by Peter Cook (Archigram), 1964
By Peter Cook, “Plug-In_City, Max. Pressure Area, Long Section,” 1964, photochemical print overdrawn with ink and gouache, 1159 x 552 mm, Archigram Archives, accessed December 18, 2019,
http://archigram.net/portfolio.html.

Figure 1.2.11	Computer City concept by Dennis Crompton (Archigram), 1964
By Dennis Crompton, “Computer City,”1964, photochemical print mounted on board, 887 x 697 mm, Archigram Archives, accessed December 18,
2019, http://archigram.net/portfolio.html.

Figure 1.2.10	Instant City concept by Peter Cook (Archigram), 1969
By Peter Cook, from “‘Instant City’ Travelling Exhibition, Now at Collège Maximilien de Sully,” December 19, 2015, BMIAA, accessed December 18,
2019, https://www.bmiaa.com/instant-city-travelling-exhibition-now-at-college-maximilien-de-sully/.

Figure 1.2.9	 Walking City Concept by Ron Herron (Archigram), 1964
By Ron Herron, from Rowan Moore, “The World According to Archigram,” November 18, 2018, The Observer, accessed December 18, 2019, https://www.theguardian.com/artanddesign/2018/
nov/18/archigram-60s-architects-vision-urban-living-the-book.

32 33

Introduction and Theory |Inadequacy of Current Visualization Methods Introduction and Theory |Inadequacy of Current Visualization Methods

Figure 1.2.12 - 1.2.14
These figures show how new
software has facilitated pro-
gression in visualization from
2d virtual spaces to 3d virtual
spaces to photo-realistic ren-
dered visualizations.

being swung into place by cranes.” [11] This excerpt highlights the reason for
Archigram’s success, which stems from—amongst many cultural drivers such
as new technologies and the world wars—satisfying the world’s aspirations for
the future; how this new mindset of embracing change allows the mere idea
of new technologies to drive new forms of creation, further reinforcing the
observed influence of new technologies on the world.

Nevertheless, as technology continues to progress at an exponential rate, more
of these seemly quixotic designs become increasingly possible. The advent of
Computer Aided Design (CAD) software facilitated more efficient workflows
that increased the productivity, quality, and communication of ideas, allowing
the production of better tools and materials. Michelle Addington and Daniel
Schodek notes in Smart Materials and New Technologies: For the Architecture
and Design Professions that “through advancements in CAD/CAM (Computer
Aided Design/Computer Aided Manufacturing) technologies, engineering
materials such as aluminum and titanium can now be efficiently and easily
employed as building skins, allowing an unprecedented range of building
facades and forms.”[12] Sennet’s view is in line with this, stating that:

“Thanks to the revolution in micro computing, […] modern
machinery is not static; Though feedback loops machines can learn
from their experiences. […] Computer-assisted design has become
nearly universal in architectural offices because it is swift and precise.
[…] The modern material world could not exist without the marvels
of CAD. It enables instant modeling of products from screws to
automobiles, specifies precisely their engineering, and commands
their actual production.”[13]

This once again has enormous potential in not only building design but also
building construction, which in itself also benefits building design. As such,
architects now have faster ways to design and visualize, as well as a plethora
of new materials to choose from. This multidisciplinary progression further
illustrates the aforementioned claim of cyclical progression at the beginning
of this chapter. CAD software evolved from 2D to 3D. (Fig. 1.2.12 - 13) The
addition of this spatial dimension allowed architects to simulate buildings in
virtual space, where one can program an environment with complete creative
freedom with essentially no physical limitations or cost associations. These
virtual spaces have the potential to not only simulate the building form but
also its materials and lighting. With this, comes the emergence of modern
photorealistic renderings. (Fig. 1.2.14)

Even with these new technologies, however, the majority of commercially
produced present-day architectural visualizations are still static images. While
modern visualizations have become increasingly photorealistic and more
efficient to produce, their static nature still limits the amount of information
they can communicate. The problem with this is that the real world is rarely

11	 Hadas A. Steiner, Beyond Archigram: The Structure of Circulation (New York: Routledge, 2009), 202.
12	 D. Michelle Addington and Daniel L. Schodek, Smart Materials and New Technologies: For the

Architecture and Design Professions (London: Routledge, 2016), 3.
13	 Sennett, The Craftsman, 38-39.

Figure 1.2.12	2D floorplans, created within Autodesk AutoCAD.
From mtcarrillo, “Creating Basic Floor Plans From an Architectural Drawing in AutoCAD,” Instructables, accessed December 18,
2019, https://www.instructables.com/id/Creating-Basic-Floor-Plans-from-an-Architectural-D/.

Figure 1.2.13	A building model rendered within 3D space on a viewport in
Autodesk 3DS Max
By Ronen Bekerman, “Making of MS House at Dusk, Part 2,” October 23, 2009, Ronen Bekerman - 3D Architectural
Visualization & Rendering Blog, accessed December 18, 2019, https://www.ronenbekerman.com/making-of-ms-house-at-dusk-
part-2/.

Figure 1.2.14	The same building model rendered out with Vray
By Bekerman, “Making of MS House at Dusk, Part 2.”

34 35

Introduction and Theory |Inadequacy of Current Visualization Methods Introduction and Theory |Inadequacy of Current Visualization Methods

static. Rudolf Arnheim states in The Dynamics of Architectural Form, “A
building […] is an experience of the senses of sight and sound of touch and
heat and cold and muscular behavior, as well as of the resultant thoughts
and strivings.”[14] This means that buildings invoke senses beyond just human
sight, and as such, require more than a static frame to portray its full effect.
People are inherently dynamic, thus, even in static spaces, once they become
occupied, they also become dynamic. Singular images only show a snapshot of
the design frozen in time, which makes it challenging to capture the dynamic
impact of occupants. While this is acceptable for portraying unoccupied static
spaces, it falls short at portraying anything more. This issue then becomes
compounded with the introduction of dynamic architecture, as now there
are two dynamic systems interacting with each other, bringing additional
complexities that render current methods further inadequate at spatial
representation.

Although motion can be suggested within a single frame through means such
as motion blur, (Fig. 1.2.15 - 17) the more accurate way to represent such
motion is to simply add more images as the scene changes. (Fig. 1.2.18 -
19) This concept, again, is nothing new, as there are entire industries focused
on videography and cinematography. The issue, however, is the way this is
utilized within architectural visualization. Since the late 1900s, there has been
a plethora of films with visualizations that are borderline photorealistic, yet
there have only been a select few architectural visualizations that could be
said to rival this quality. By comparing a rendered architecture video against a
film in the early 2000s, it is evident that the architectural rendering is severely
lacking in terms of spatial and environmental representation. (Fig. 1.2.20 -
21)

14	 Rudolf Arnheim, The Dynamics of Architectural Form (Berkeley: University of California Press,
2009), 4.

Figure 1.2.15	People moving through a gallery space within the
Solomon R. Guggenheim Museum in NYC
Photographed by Author

Figure 1.2.16	Macy’s Thanksgiving Day parade, NYC
Photographed by Author

Figure 1.2.15 - 1.2.17
These photographs convey
the movement of people by
utilizing motion blur within a
single image.

Figure 1.2.17	People moving through a gallery space within the
MOMA in NYC
Photographed by Author

36 37

Introduction and Theory |Inadequacy of Current Visualization Methods Introduction and Theory |Inadequacy of Current Visualization Methods

Figure 1.2.18	The Horse in Motion cabinet cards by Eadweard Muybridge, 1878
By Eadweard Muybridge, from Neil Patrick, “FIlmed in 1878, ‘The Galloping Horse’ Is the First Motion Picture Ever Made,” June 27, 2016, The Vintage
News (blog), accessed December 18, 2019, https://www.thevintagenews.com/2016/06/27/46591-2/.

Figure 1.2.19	Animation made from Eadweard Muybridge’s cards
From silentfilmhouse, “Race Horse First Film Ever 1878 Eadweard Muybridge,” YouTube, 0:15, accessed December 18, 2019, https://www.youtube.
com/watch?v=IEqccPhsqgA.

Figure 1.2.20	Lord of the rings Return of the King, 2003
From Film Radar, trimmed by Author, “Special Effects in The Lord of the Rings: The Essence of Movie Magic,” YouTube, 12:08, accessed December 18, 2019, https://www.
youtube.com/watch?v=p6M8Yem5j0s&vl=en.

Figure 1.2.21	Royal Ontario Museum architectural walk-through, 2003
Obtained from supervisor, created by B+H Architects.

Figure 1.2.20 - 1.2.21
These 2 figures shows the difference in quality between a film from 2003 and an architectural walk
through video from the same year. It can be seen that the quality is vastly different between the 2 in not
only the rendering aspect, but also the crowd dynamics.

https://youtu.be/p6M8Yem5j0s?t=406
https://youtu.be/IEqccPhsqgA

38 39

Introduction and Theory |Inadequacy of Current Visualization Methods Introduction and Theory |Inadequacy of Current Visualization Methods

Since then, architectural visualization has somewhat caught up in terms of
rendering capabilities, the most notable of which being Alex Roman’s short
film the third and the seventh.[15] (Fig. 1.2.22) Although Roman’s film exhibits
excellent visuals that are comparable to the film industry, it can also be argued
that this film is more of a passion project, thus it does not have the same
constraints and limitations compared to an average commercial project.
Comparing this then, to various architectural commercial animations, the
relative degradation of quality appears once again. (Fig. 1.2.23 - 24) Further
comparing these visualizations to a rasterized viewport screen capture—which
is what is generally used as visualization tools during the design phase—the
degradation of quality becomes even more apparent. (Fig. 1.2.25)

While this might not seem like a fair comparison due to the differing priorities
and budgets within the respective industries, clients—who for the most part
does not understand these technology and industry specific limitations—are
so accustomed to seeing the higher quality images that they somewhat expect
architectural images to be of the same quality. As such, these comparisons
can provide some insight to identify a few of the problems present in current
visualization methods. It can then be speculated that this is the difference
between what is used as a final product, as a pitch, and as a design tool.
Analyzing these examples further, one can see that a commonality between
them is the lack of occupancy dynamics in some form or another. This causes
the potential utility of these extra frames to be wasted as they are only utilized
to show the spatial qualities of the space instead of the ambiance and dynamic
interactions within the space.

15	 Alex Roman, “The Third & The Seventh,” uploaded November 24, 2009, Vimeo, 12:29, accessed
July 26, 2019, https://vimeo.com/7809605.

Figure 1.2.22	The 3rd and the Seventh by Alex Roman, 2009
This Short Film is comparable to the film industry, however, the occupancy dynamics portrayed is fairly
simple and this does not have the same time constraints as most commercial projects.
By Alex Roman, trimmed by Author, “The Third & The Seventh,” uploaded November 24, 2009, Vimeo, 12:29, accessed December 18, 2019, https://vimeo.com/7809605.

Figure 1.2.23	Architecture Walk-through by Framemakers Creative SB, 2015
While the visualization here looks decently photorealistic, the lack of people makes the space feel empty
and desolate.
From Framemakers Creative SB, trimmed by Author, “Star Residences 3D Animation Walkthrough Video,” YouTube, 3:05, accessed December 18, 2019, https://www.
youtube.com/watch?v=8qU2xhZlsJE.

Figure 1.2.24	Architecture Walk-through by Momo Graphics, 2016
This walk-through does include people to convey a more believable space, however, it is easy to notice how
these people are manually placed in, instead of actually utilizing the environment. This not only produces
weaker visuals, but also takes quite a bit of time to do.
By Momo Graphics, from Kenny Khoo, trimmed by Author, “3d Architecture Walkthrough Flythrough Animation Service Singapore Building Interior Exterior,” YouTube,
2:09, accessed December 18, 2019, https://www.youtube.com/watch?v=fC1OtZ4kAJs&t=1s&pbjreload=10.

Figure 1.2.22 - 1.2.24
These 3 figures shows some of
the shortcomings in current
architectural visualization ren-
derings. While their quality
have gotten better significant-
ly over the years, they are still
playing catchup to the film
industry from 15 years ago.

https://vimeo.com/7809605
https://youtu.be/fC1OtZ4kAJs?t=92
https://youtu.be/8qU2xhZlsJE?t=53

40 41

Introduction and Theory |Inadequacy of Current Visualization Methods Introduction and Theory |Inadequacy of Current Visualization Methods

Figure 1.2.25	Revit Perspective Viewport
During the design phase, most architects would simply utilize the shaded view within their drafting
software to get a sense of the current building. While this is quick and effective in getting feedback for the
design, it is still lacking in dynamics, materiality, and atmosphere.
Sample Architecture Project from Revit, screen-captured by Author.

The main culprit of this large discrepancy in rendering quality between
the film and architecture industries is likely a combination of budget and
time constraints. While videography consisted of simply pointing a video
camera at the scene, animation requires creating and rendering the scene
from scratch. This requires vastly more time expenditure compared to single
images, as one would need to render a minimum of twenty-four images to
provide a single second of video. (Fig. 1.2.26) To put this into perspective,
with current architectural rendering methods, if a single frame takes 10
minutes to render, then a 1-minute video would take 10 days, not counting
the post processing that goes with it. Because of this time expense, it is often
unrealistic to utilize this medium within architectural design, where deadlines
are consistently present. In the few projects that do utilize architectural videos
for client pitches, architects often do not have the time or budget to allocate
the resources required to make these visualizations at the same visual quality
as films, let alone animating crowd dynamics on top of this. Film studios are
tasked with delivering the resulting video; therefore, it makes sense that they
will allocate the majority of their budget to perfecting the final video file, and
thus have the capacity and flexibility to absorb this large time expenditure in
animation, or avoid animation entirely by utilizing extras and practical effects.

In contrast, architecture firms are tasked with developing a design, where
their visualization mediums are merely methods used to communicate said
design; therefore, it should make sense that architectural visualizations are
of lower priority than the actual design. What usually happens during the
design phase is that the perspective visualizations are often ignored until the
design needs to be communicated externally to another person or client.
This is done once again not because perspectives are unnecessary during the
design phase, but because of the additional time required to produce them
compared to orthographic drawings. While the design phase is arguably the
most important phase—since it will influence all the other phases after it,
thus having the largest impact on the resulting building—most architects
are forced to spend less time on it due to budget constraints. By the time
adequate visuals are required to portray the space, they are often rushed due
to time limitations. On top of this, architecture projects can operate at many
scales ranging from exterior site planning to interior designs, and anything
in-between. This further forces architects to prioritize their renderings on the
larger scales first to convey the overall design intent, while allocating less time
to the interior visualizations even though the interiors might have a higher
impact on occupancy.

Figure 1.2.26	Security footage showing various frame rates
From daksec1, trimmed by Author, “IP Video Frame Rate Demo,” YouTube, 0:50, accessed December 18, 2019, https://www.youtube.com/watch?v=XRaDV8YADiQ.

https://youtu.be/XRaDV8YADiQ

42 43

Introduction and Theory |Inadequacy of Current Visualization Methods Introduction and Theory |Inadequacy of Current Visualization Methods

This is made worse by the fact that the bulk of the architect’s fees actually
come from the production of construction documents, where most of the
detailed design is to be conveyed through orthographic drawings. (Fig. 1.2.27
- 28) Comparing this to perspective drawings—which not only take longer
to produce but are also not required within a construction documentation
package—it makes sense that the visualization budget within architecture
firms is much smaller than that of film studios.

Because of these factors, architects are usually so stripped of time that they
must prioritize on visualizing the architecture rather than how the architecture
will be used, having no choice but to throw people into the final rendering as
an afterthought, or even leaving them out completely, resulting in a barren,
lifeless space. What this means is not only are architects rushing to introduce
them at the end of the project, thus compromising the quality of their pitch,
but they are also not visualizing them as they design, thus compromising the
design’s potential.

While this lack of occupancy visualization is not the end of the project, it does
not change the fact that people will occupy these exterior and interior spaces
in the physical world. As such, ignoring the ability to portray crowd dynamics
at these varying scales would be ignoring a large aspect of both interior crowd
interactions as well as exterior crowd flows from the surrounding context.
These concerns become even more substantial with dynamic spaces due to the
increasing interactions between people and architecture. It is disheartening
that architects design buildings to be occupied by people yet don’t have the
time to consider them within their visualization tools. If architects can barely
afford the time to even produce static perspectives, then it is by no means
a surprise that many firms are choosing to not utilize dynamic perspective
videos within their design workflows and client pitches.

Architects are hired to provide good designs to clients, meaning clients hire
architects because they trust them to provide high quality design. However, now
as the film and gaming industries expand, client expectations for visualizations
may also become higher due to their increased exposure to everyday media.
Good renderings have become ordinary and commonplace, as such, to keep
up with these expectations, architecture must also adopt better visualization
methods.

Figure 1.2.27	Typical breakdown of architectural fees
By Jorge Fontan, “Architectural Fees,” February 7, 2018, Fontan Architecture, accessed December 18, 2019, https://jorgefontan.
com/architectural-fees/.

Figure 1.2.28	Typical time-line of architectural design phases
By HMH Modern Architecture, from “Architectural Phases,” Ibello Architect, accessed December 18, 2019, https://www.ibelloarchitects.com/architectural-phases/.

45

Introduction and Theory |Advent and Progression of the Gaming Engine

44

“sensory and responsive technologies expose new and surprising ways to make connections
across disparate fields”[1]

“Video games do not constitute finished text presented to an audience, but a system or a
world with which players interact. The creation of video games can be described as the
building of a universe of possibilities relying more on systems and cybernetic principles
than on aesthetic rules attached to the production of an object. Video game creation can
be described as a process of metacreation where a certain number of possibilities are crafted
and played upon by game developers and players.”[2]

1	 Michael Fox, Interactive Architecture: Adaptive World (New York: Princeton Architectural Press, 2016), 7.
2	 Damien Charrieras and Nevena Ivanova, “Emergence in Video Game Production: Video Game Engines

as Technical Individuals,” Social Science Information 55, no. 3 (September 2016): 338, https://doi.
org/10.1177/0539018416642056.

Chapter 1.3 | Advent and Progression of the
Gaming Engine
The progression of technology has also facilitated a plethora of new creative
industries, with game design being one of them. Although architecture has
been around since the beginning of civilization, digital game design is a
relatively new field that came about with the onset of the digital revolution.
Historically, these were very separate fields, with architecture focusing on
building design and physical drafting and game designers initially focusing
on developing interactive two-dimensional scenario representations. But as
technological advancements progressed, both fields have found themselves
increasingly dependent on digital spatial environments. Architects moved
from pencil and paper to three-dimensional CAD environments while virtual
games shifted from two-dimensional representations such as “Pong, Space
Invaders, PacMan, [and] Donkey Kong” to three-dimensional representations
such as “Wolfenstein 3D and Catacomb Abyss.”[1] (Fig. 1.3.1 - 4) Now as
software and hardware continues to improve, both industries are approaching
the territory of photorealistic visualizations. (Fig. 1.3.5 - 6) However, while
this is the case, “this rapid development in computer game technology is
almost unnoticed by the users of professional CAD-, GIS-, and illustration
software.”[2] Architects, who produce designs for real-world applications, and
game developers, who produce immersive digital experiences for people, both
benefit from quality simulations in this modern age, and yet, architecture
is lagging behind, as investigated in the past chapter (1.2). However, the
potential to catch up is there. With game developers essentially tasked with
simulating spaces and architects tasked with designing spaces; along with gaming
graphics becoming increasingly realistic, and architecture depending more on
computation; the fields are beginning to overlap, and as such, the integration
and unification of skill sets, workflows, and tools within these respective
industries is becoming increasingly beneficiary.

The most notable of these tools with regards to architectural visualization
is undoubtedly the game engine, which can be described as a “collection of
modules of simulation code that do not directly specify the game’s behavior
(game logic) or [the] game’s environment (level data).”[3] As such, one can
think of these engines as a form of Integrated Development Environment
(IDE) that is specialized in game creation, or more generally, “an assemblage
of reusable software functionalities.”[4]

1	 Andrian Herwig and Philip Paar, “Game Engines: Tools for Landscape Visualization and
Planning?,” (November 2014): 5, accessed October 16, 2019, https://www.researchgate.net/
publication/268212905_Game_Engines_Tools_for_Landscape_Visualization_and_Planning.

2	 Herwig and Paar, “Game Engines: Tools for Landscape Visualization and Planning?,” 1.
3	 Michael Lewis and Jeffrey Jacobson, “Game Engines in Scientific Research,” Communications of The

ACM 45, no. 1 (January 2002): 28, accessed October 16, 2019, https://www.cse.unr.edu/~sushil/
class/gas/papers/GameAIp27-lewis.pdf.

4	 Damien Charrieras and Nevena Ivanova, “Emergence in Video Game Production: Video Game
Engines as Technical Individuals,” Social Science Information 55, no. 3 (September 2016): 341,
https://doi.org/10.1177/0539018416642056.

46 47

Introduction and Theory |Advent and Progression of the Gaming Engine Introduction and Theory |Advent and Progression of the Gaming Engine

Figure 1.3.1	 Pac-Man, Namco, 1980
From “Original Pac-Man” APKPure, accessed December 19, 2019, https://apkpure.com/original-pac-man/com.classicretrogames.pacman.

Figure 1.3.2	 Catacomb Abyss, Softdisk, 1992
From “The Catacomb Abyss Review,” October 30, 2018, GameFAQs, accessed December 19, 2019, https://gamefaqs.gamespot.com/pc/954269-the-
catacomb-abyss/reviews/167153.

Figure 1.3.3	 Hand Drafted South Elevation of Denver Library by Michael Graves, 1994
By Michael Graves, Denver Library, South Elevation, 1994, pencil and colored pencil on yellow tracing paper, 14 x 26 inches, from Rory Stott, “Gallery
of In Honor of Michael Graves, The Architectural League Revisits 200 Years of Drawing,” November 21, 2014, ArchDaily, accessed December 19, 2019,
https://www.archdaily.com/570439/in-honor-of-michael-graves-the-architectural-league-revisits-200-years-of-drawing/546fa61be58ece2295000037-
denver-library-sout.

Figure 1.3.4	 Creating 3D building walls from a 2D Building plan in virtual space
From “How to Create a 3D Architecture Floor Plan Rendering,” TonyTextures, accessed December 19, 2019, https://www.tonytextures.com/how-to-
create-a-3d-architecture-floor-plan-rendering/.

Figure 1.3.1 - 1.3.2
These 2 figures show how early games transitioned from 2D representations to 3D, better
portraying the spatial dimensions of real life.

Figure 1.3.3 - 1.3.4
These 2 figures show how Architectural visualizations transitioned from hand drafting to
3D virtual modeling.

48 49

Introduction and Theory |Advent and Progression of the Gaming Engine Introduction and Theory |Advent and Progression of the Gaming Engine

Figure 1.3.5	 The Division, Massive Entertainment, 2016
From “Tom Clancy’s The Division (Preowned),” EB Games, accessed December 19, 2019, https://www.ebgames.co.nz/product/ps4/165235-tom-clancys-the-division-
preowned.

Figure 1.3.6	 Hudson Yards Rendering by KPF, 2019
By Kohn Pedersen Fox (KPF), “Hudson Yards,” accessed December 19, 2019, https://www.kpf.com/projects/hudson-yards.

Figure 1.3.5 - 1.3.6
These 2 figures show how both the game design and
architecture industries are moving towards realistic ren-
derings.

50 51

Introduction and Theory |Advent and Progression of the Gaming Engine Introduction and Theory |Advent and Progression of the Gaming Engine

The origin of these game engines can be described as a product of necessity—
to handle the increased complexity of modern games—as well as cost—to
provide increased efficiency and cost savings compared to building a game from
scratch.[5] It achieves this by prioritizing “concepts such as reusability (a given
GE is not tied to one game but can be used for different games), modularity
(how an object can be accessed and modified in the GE) and extensibility
(the possibility of adding extra functionalities to a given GE).”[6] As such,
the computational infrastructure of the game engine itself is comprised of
many sub-systems that are brought together within one application software,
each responsible for various functionalities such as Audio, Input, Physics,
Rendering, Artificial Intelligence, Core, Scripting, and Networking.[7] (Fig.
1.3.7) This allows game engines to utilize various file types in the form of
assets within the same software, ranging from “texture bitmaps, 3D mesh
data, animations, audio clips, collision and physics data, game world
layouts, and [more].”[8] Because of this diverse file type utilization, as well
as their modularity and reusability, they can be used in multiple disciplines,
“[operating] at the junction of creative and engineering practices.”[9] Michael
Lewis and Jeffrey Jacobson outline this nicely in their article “Game Engines
in Scientific Research”:

“The cost of developing ever more realistic simulations has grown so
huge that even game developers can no longer rely on recouping their
entire investment from a single game. This has led to the emergence
of game engines—modular simulation code—written for a specific
game but general enough to be used for a family of similar games. This
separability of function from content is what now allows game code to
be repurposed for scientific research.”[10]

While this “separability of function” allows game engines to be utilized for
scientific research—and much more—this aspect is especially potent within
architectural design. This is evident when considering a video game production
pipeline:

“Video game production is a complex process involving different
technical and artistic expertise as well as a diverse range of technologies.
Several tools can be used at the stage of prototyping (Manker, 2012).
2D software like Photoshop is used by 2D artists to create textures
(from photographs sometimes), 3D software is used to produce 3D
models to be put into the game environment at a later stage. 3D
animation software (3DS Max, Maya, Blender) involves keyframing

5	 Charrieras and Ivanova, “Emergence in Video Game Production: Video Game Engines as Technical
Individuals,” 340-341.

6	 Charrieras and Ivanova, “Emergence in Video Game Production: Video Game Engines as Technical
Individuals,” 344.

7	 Björn Nilson and Martin Söderberg, “Game Engine Architecture,” (May 26,
2007): 3-6, accessed October 16, 2019, http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.459.9537&rep=rep1&type=pdf.

8	 Jason Gregory, Game Engine Architecture (Boca Raton; London; New York: CRC Press, 2019), 481.
9	 Charrieras and Ivanova, “Emergence in Video Game Production: Video Game Engines as Technical

Individuals,” 339.
10	 Lewis and Jacobson, “Game Engines in Scientific Research,” 28.

Figure 1.3.7	 “An abstract model of how an engine might be put together”
By Björn Nilson and Martin Söderberg, “Game Engine Architecture,” (May 26, 2007): 3-6, accessed December 19, 2019, http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.459.9537&rep=rep1&type=pdf.

52 53

Introduction and Theory |Advent and Progression of the Gaming Engine Introduction and Theory |Advent and Progression of the Gaming Engine

(an animation technique based on smooth transition of movements) or
motion capture data. Surfacing tools like Mudbox (Autodesk) enable
character artists to sculpt very fine details into the 3D models.”[11]

From this, the amount of software that is utilized within the game design
industry becomes apparent. What is more noteworthy, however, is how
much of this software is already utilized within the architectural visualization
industry. It is clear that transferable skills are present; therefore, the utilization
of game engines in architecture becomes even more plausible. Software such
as Photoshop, 3DS Max, and Maya are already used extensively in current
architectural visualization pipelines as modeling and rendering tools, thus
implementing the game engine would then allow it to “govern the relations
between these [modeled] objects to build the game space,”[12] allowing the
creation of increasingly dynamic simulations and visualizations.

Of course, this becomes even more compelling in the consideration of
occupancy dynamics, which has been a recurring theme from the visualization
studies of the previous chapter (1.2). This factor is particularly relevant within
the game design industry since most games rely on the player interacting with
NPCs (non-player characters) in one form or another, which, in most cases,
are simulated people or forms of people. Although early games such as Grand
Theft Auto 3 (GTA 3) lacked adequate crowd dynamics, much like current
architectural visualizations, (Fig. 1.3.8) newer games such as The Witcher 3
are beginning to alleviate this by utilizing better artificial intelligence (AI) tools
and computational hardware to add more depth and complexity to simulated
beings. (Fig. 1.3.9) While the quality of these crowds depends on the type of
game, the budget of the project, and the studio that makes them, it still offers
a valid confirmation as to what it is possible to create with game engines.

Within the book Game Engine Architecture, Jason Gregory describes games
as “what computer scientists would call soft real-time interactive agent-
based computer simulations.”[13] He then notes on the game engine’s ability
to approximate and simplify reality, specifying the various aspects of this
description:

“In most video games, some subset of the real world—or an imaginary
world—is modeled mathematically so that it can be manipulated by a
computer. The model is an approximation to and a simplification of
reality (even if it’s an imaginary reality), because it is clearly impractical
to include every detail down to the level of atoms or quarks. Hence,
the mathematical model is a simulation of the real or imagined game
world. […] An agent-based simulation is one in which a number of
distinct entities know as ‘agents’ interact. This fits the description of
most three-dimensional computer games very well, […] Given the
agent-based nature of most games, it should come as no surprise that
most games nowadays are implemented in an object-oriented, or least

11	 Charrieras and Ivanova, “Emergence in Video Game Production: Video Game Engines as Technical
Individuals,” 340.

12	 Charrieras and Ivanova, “Emergence in Video Game Production: Video Game Engines as Technical
Individuals,” 340.

13	 Gregory, Game Engine Architecture, 9.

Figure 1.3.8	 Grand Theft Auto 3, DMA Design, 2001
From AndromedaDude, trimmed by Author, “Grand Theft Auto III Gameplay (Playstation 2),” YouTube, 10:39, accessed December 19, 2019, https://www.youtube.com/
watch?v=jONTvpvj7DM.

Figure 1.3.9	 The Witcher 3, CD Projekt, 2015
From Im Qith, trimmed by Author, “The Witcher 3, Entering Novigrad (No Commentary),” YouTube, 8:09, accessed December 19, 2019, https://www.youtube.com/
watch?v=MTrxkDLi6sg.

https://youtu.be/jONTvpvj7DM?t=83
https://youtu.be/MTrxkDLi6sg?t=78

54 55

Introduction and Theory |Advent and Progression of the Gaming Engine Introduction and Theory |Advent and Progression of the Gaming Engine

loosely object-based, programming language. […] All interactive
video games are temporal simulations, meaning that the virtual game
world model is dynamic […] most video games present their stories
and respond to player input in real time, making them interactive
real time simulations. […] A “soft” real-time system is one in which
missed deadlines are not catastrophic. Hence, all video games are soft
real-time systems.”[14]

It is evident from these notes how well this description of video games falls in
line with the required components for simulating occupancy dynamics within
a virtual space, as well as simulating the space itself as a dynamic architectural
visualization. This approximation and simplification of reality allows the game
engine to simulate architectural spaces from the physical world. The object-
oriented agent-based simulation model then allows the creation and visualization
of crowd dynamics within this simulated architectural space. The dynamic
interactive real-time aspect of this makes it practical and efficient for simulating
and visualizing the interactions between the crowd dynamics and the static
or dynamic architectural elements of these emerging dynamic spaces. The
“soft” description of this, then means that the creation of this simulation
model does not need to be too strict in order to function, which increases
the realistic potential for an architecture student (without a background in
software development) to utilize and create such a simulation and succeed.
From these reasons, it is then possible to list the following benefits of utilizing
game engines within architectural visualization workflows:

Higher abstraction tools for virtual simulations
Perhaps the most valuable aspect of game engines for visualizing
dynamic spaces is their ability to utilize scripting languages and tools
alongside various file types within the same software environment.[15]
This allows the designer to establish interactions between entities
which allows the creation of various simulation systems within this
software—essentially becomes a virtual playground for simulating the
physical world. With this, it is possible to not only script autonomy to
simulate human crowds and dynamic architectural elements but also
allow the relatively easy integration of such autonomy with existing
architectural visualization models and frameworks. This allows the
simulation of architectural spaces as they are used in the real world
with little regard to how complex they may become.

Real-time rendering
Beyond these tools, game engines also offer vastly more efficient
rendering methods compared to traditional CPU based ray-traced
methods from software such as V-Ray and Mental-Ray.[16] While these
older methods can produce extraordinary results, they can take hours
or even days to render a single frame, which can be a time-consuming
endeavor within the design process. (Fig. 1.3.10)

14	 Gregory, Game Engine Architecture, 9-10.
15	 Gregory, Game Engine Architecture, 481.
16	 Brian Caulfield, “What’s the Difference Between Ray Tracing, Rasterization?,” The Official NVIDIA

Blog, April 11, 2019, accessed October 16, 2019, https://blogs.nvidia.com/blog/2018/03/19/whats-
difference-between-ray-tracing-rasterization/.

Figure 1.3.10	Rendering a frame from Vray
By Jordivdm, trimmed by Author, “FullHD 3D VRay Render at I7-5820k 6 Cores (12 Virtual Cores),” YouTube, 0:58, accessed December 19, 2019,
https://www.youtube.com/watch?v=rjvimjwhams.

Figure 1.3.11	Rendering Frames from Unreal Engine 4
Screen-captured by Author.

Games on the other hand must run in real-time due to their reliance
on interactivity, which (as already mentioned in Chapter 1.2) to the
human eye is at least 24 frames per second to convey the “illusion of
motion,”[17] and even more so to not feel delayed when the visualization
is also required to respond to human input. This is many times faster
than what can be achieved with traditional rendering methods, and
as such, the rendering engines that are built into these game engines
must prioritize speed to meet this demand. (Fig. 1.3.11)

17	 Gregory, Game Engine Architecture, 10.

https://youtu.be/rjvimjwhams

56 57

Introduction and Theory |Advent and Progression of the Gaming Engine Introduction and Theory |Advent and Progression of the Gaming Engine

This rendering speed is largely achieved by utilizing rasterization—
which is a rendering method that approximates lighting by converting
the vertices of the virtual mesh into pixels[18]—instead of ray tracing—
which is a rendering method that calculates lighting where the paths
of simulated “light rays” bouncing throughout the environment is
traced back to the source of the camera.[19] (Fig. 1.3.12 - 13) These
virtual games also take advantage of the parallelism of GPUs along
with various techniques—such as precomputing lighting and texture
baking details onto low poly models—to maximize computational
efficiency.[20] (Fig. 1.3.14 - 15) These steps greatly reduce unnecessary
calculations, which allows game engines to render in real-time. The
downside to this workaround however is the reduced detail within
the scene such that it only approximates of the scene. As such, the
resulting renderings still lack a level of realism compared to traditional
ray tracing methods that calculate the scene “correctly.”

However, with advancements in both hardware and software, along
with pipelines that are utilizing Physically Based Rendering (PBR)[21]
and linear space lighting,[22] Photogrammetry,[23] and even GPU-based
real time ray tracing,[24] it is possible to obtain results approaching that
of traditional ray tracing. As technology continues to progress, the
differences between these two rendering methods are lessening, leaving
only the benefits of these game engines without the shortcomings. As
such, this aspect of gaming engines will become increasingly useful as
their rendering quality begins to catch up with traditional rendering
engines—even more so for architectural visualization as they do not
need to be as strict on performance requirements as games do, and
thus will have more flexibility in pushing the boundaries of utilizing
the game engine as a simulation tool.

18	 Caulfield, “What’s the Difference Between Ray Tracing, Rasterization?”
19	 Arthur Appel, “Some Techniques for Shading Machine Renderings of Solids,” Proceedings of the

April 30--May 2, 1968, Spring Joint Computer Conference on - AFIPS 68 (Spring), 1968, https://doi.
org/10.1145/1468075.1468082.

20	 “Optimizing Graphics Performance,” Unity, accessed October 17, 2019, https://docs.unity3d.com/
Manual/OptimizingGraphicsPerformance.html.

21	 “Physically Based Materials,” Unreal Engine Documentation, accessed October 17, 2019, https://
docs.unrealengine.com/en-US/Engine/Rendering/Materials/PhysicallyBased/index.html.

22	 “The PBR Guide - Part 1,” Substance Academy, accessed October 17, 2019, https://academy.
substance3d.com/courses/the-pbr-guide-part-1.

23	 Sébastien Lachambre, Sébastien Lagarde, and Cyril Jover, Photogrammetry Workflow, 2017, accessed
October 17, 2019, https://unity3d.com/files/solutions/photogrammetry/Unity-Photogrammetry-
Workflow_2017-07_v2.pdf.

24	 David Cardinal, “How Nvidia’s RTX Real-Time Ray Tracing Works,” ExtremeTech, August 21,
2018, accessed October 17, 2019, https://www.extremetech.com/extreme/266600-nvidias-rtx-
promises-real-time-ray-tracing.

Figure 1.3.12	Ray tracing
By Henrik, “File:Ray trace diagram.svg,” This Diagram Illustrates the Ray Tracing Algorithm for Rendering an Image, April 12, 2008, Wikimedia Commons,
accessed December 19, 2019, https://commons.wikimedia.org/wiki/File:Ray_trace_diagram.svg.

Figure 1.3.13	Rasterization
From “Rasterization: A Practical Implementation,” Scratchapixel, accessed December 19, 2019, https://
www.scratchapixel.com//lessons/3d-basic-rendering/rasterization-practical-implementation.

58 59

Introduction and Theory |Advent and Progression of the Gaming Engine Introduction and Theory |Advent and Progression of the Gaming Engine

Figure 1.3.14	CPU vs GPU Processing
GPUs have many times more Arithmetic Logic Units (ALU)
compared to CPUs, which allows it to better process “simple
operations in parallel.”
From Gino Baltazar, “CPU vs GPU in Machine Learning,” September 13, 2018, Oracle Data Science Blog,
accessed December 19, 2019, https://blogs.oracle.com/datascience/cpu-vs-gpu-in-machine-learning.

Figure 1.3.15	Texture Baking utilizes normal maps to preserve detail without the additional polygons
By fra3point, “Total Baker - Texture Baking System,” Unity Forum, accessed December 19, 2019, https://forum.unity.com/threads/total-baker-texture-baking-system.546341/.

CPU

GPU

60 61

Introduction and Theory |Advent and Progression of the Gaming Engine Introduction and Theory |Advent and Progression of the Gaming Engine

Figure 1.3.16	A traditional desktop setup with a monitor and various input devices
such as mouse and keyboard, game controller, and joysticks
By WeazelBear, “I Built My Own Live Edge Desk out of Teak. I Hope You All like It. Album in Comments,” Reddit, accessed
December 19, 2019, https://www.reddit.com/r/battlestations/comments/7wlsp6/i_built_my_own_live_edge_desk_out_of_teak_i_
hope/.

Figure 1.3.17	Possible VR setup with various trackers for interactive inputs
From “Fully immersive VR Entertainment Solutions,” Cyberith, accessed December 19, 2019, https://www.cyberith.com/
entertainment/.

Interactivity

While the time savings from the increased rendering efficiency would
be valuable, perhaps what will be more beneficial is the possibility for
interactivity within architectural visualization. This opens up a wide
range of mediums to communicate design intentions within current
architectural pipelines, ranging from simple mouse and keyboard
inputs with a monitor screen output to fully tracked virtual reality
(VR) and augmented reality (AR) headsets and various forms of body
tracking.[25] (Fig. 1.3.16 - 17)

Beyond the static image, and even beyond the animated film, one will
have the ability to experience these digital environments by directly
interacting with them. This turns traditional static architectural
renderings into immersive interactive real-world walkthroughs that
allow clients and designers to better understand the experiential and
spatial qualities of the design, adding further utility and credibility to
the visualizations produced for design and presentation.

With all these benefits, the game engine can be thought of as another
progression leap in architectural visualization. With so much potential in not
only current game engines but also the direction of which these technologies
are heading, it becomes evident how the game design industry may benefit
the architecture industry. This is already noticed by some architecture firms
such as HOK, who are already implementing this technology within their
workflows, albeit still skimming the surface of what game engines are capable
of.[26] (Fig. 1.3.18) By investigating this overlap of tool utilization, it becomes
possible to not only close the gap between architectural visualizations and
films, but also to facilitate new modes of visualization and interaction—thus
satisfying the increasing expectations of people as a result of the increasing
general exposure to both film and game media. With the direction that
technology and coincidently both the architecture and game development
fields are headed, moving towards the Game Engine for visualization seems to
be the appropriate direction.

25	 Pierre Pita, “List of Full Body VR Tracking Solutions,” Virtual Reality Times, February 21, 2017,
accessed October 17, 2019, https://virtualrealitytimes.com/2017/02/21/list-of-full-body-vr-tracking-
solutions/.

26	 Ken Pimentel, “HOK on Architectural Visualization: Aggregate, Iterate, Communicate,” Unreal
Engine, March 13, 2019, accessed October 17, 2019, https://www.unrealengine.com/en-US/
spotlights/hok-architectural-visualization-aggregate-iterate-communicate. Figure 1.3.18	Architectural Rendering by HOK

https://www.unrealengine.com/en-US/spotlights/hok-architectural-visualization-aggregate-iterate-communicate

62 63

Introduction and Theory |Proposed Framework Introduction and Theory |Proposed Framework

Chapter 1.4 | Proposed Framework
To move forward, architecture needs to look beyond the static frame, but to
do that, the issue of time-constrained visualizations needs to be addressed.
Rather than wait for computation to progress to a point that renderings
within current native architectural pipelines can be calculated instantly, it is
possible to reduce the amount of time required by moving towards a more
efficient visualization pipeline.

As mentioned in Chapter 1.2, current architectural visualization workflows
have a large disconnect between design and production visualizations, the
cause of which can be due to the lethargy of current visualization tools,
which forces compromises throughout the stages of architectural design.
These problems can be alleviated somewhat by utilizing a more efficient
visualization workflow. The tools of pitch and design were originally separated
due to limitations within current software, but now with faster computational
power, as well as the advent of game engines, there is the potential to integrate
these tools within the same workflow. In doing so, it becomes possible to
incorporate dynamic visualizations at the earlier stages of design, which can
benefit not only the resulting design but also the resulting pitch to the clients.

To be realistic with the scope of this thesis, however, it is necessary to focus on
a singular beneficial aspect to improve upon within architectural visualization.
Comparing static and dynamic architectural spaces, the one thing that remains
consistent is the existence of occupants, and the thing that remains problematic
when visualizing these spaces is the inadequate portrayal of these occupants.
No matter the function of architecture, it is usually intended to be designed to
be inhabited. As stated in Chapter 1.1, occupants are at the root of dynamics
within the space, even before introducing any dynamic architectural elements.
People are inherently dynamic, and as such, any space that is occupied, be
it originally static or dynamic, will naturally become dynamic, for people
themselves are dynamic elements.

People are a constant in static and dynamic architecture, as well as exterior and
interior spaces, therefore, being able to visualize them in these various contexts
and scales can be practical in both design and communication between the
architect, client, and user groups. As seen in Chapter 1.2, however, adding
people to renderings usually seems to be a rushed endeavor which results in a
lackluster portrayal of how these occupants interact with the space. Architects
design buildings for occupants to inhabit, and yet they rarely visualize them
during the design phase due to time constraints and the lack of integration
within current workflows. While there are commercial crowd simulation
tools available for architectural visualization—in standalone forms such as
Massive[1] and Massmotion[2], plug-ins such as Miarmy[3] and Golaem[4], or
1	 “What Is Massive?,” Massive Software, accessed October 17, 2019, http://www.massivesoftware.

com/applications.html.
2	 “Crowd Simulation Software: MassMotion,” Oasys, accessed October 17, 2019, https://www.oasys-

software.com/products/pedestrian-simulation/massmotion/.
3	 “Miarmy,” Basefount Company, accessed October 17, 2019, http://www.basefount.com/miarmy.

html.
4	 “Digital Extras at Your Fingertips,” Golaem, accessed October 17, 2019, http://golaem.com/.

Figure 1.4.1	 Massive

Figure 1.4.2	 Golaem

Figure 1.4.3	 Miarmy

Figure 1.4.1 - 1.4.3
These are 3 examples of cur-
rent crowd simulation tools
on the market that are tailored
towards film production.
While these are impressive
tools for generating complex-
ity within crowd simulations,
they prioritize more on con-
trolling the crowds through
the space instead of visualizing
what the crowds might do
within such a space. On top
of this, most of them require
a substantial setup as well
as rendering time to obtain
results close to what is shown
in the films, which makes it
harder to integrate within cur-
rent architectural visualization
pipelines. These extra steps
and time requirements can
incentivize architects to skip
visualizing crowds entirely in
tight deadlines.

https://youtu.be/p6M8Yem5j0s?t=336
https://youtu.be/rr6tDBeNEv0?t=13
https://youtu.be/3wjCwtc_-hk?t=35

65

Introduction and Theory |Proposed Framework

64

Figure 1.4.4	 Oasys mass motion
This is a stand alone crowd simulation tool where architects must export their model into.
while there is nothing wrong with this, it is an extra step, which can incentivize architects to
skip visualizing crowds entirely in tight deadlines.
By TheOasysSoftware, trimmed by Author, “Oasys Software - MassMotion, The World’s Most Advanced Crowd Simulation Software,” YouTube, 2:30,
accessed December 19, 2019, https://www.youtube.com/watch?v=dR5G5SNI5T4.

built into 3D applications such as 3ds Max[5]—most of them do not consider
the existence of new forms of dynamic spaces alongside the integration of a
robust visualization pipeline. (Fig. 1.4.1 - 5) Because of these limitations,
they are harder to integrate within contemporary architectural workflows
and are unsuited for portraying the high complexity of emerging intelligent
spaces, especially during the design phase when changes to the building design
are constantly made.

For these reasons, this thesis will propose the creation of a means—to both
analyze and visualize dynamic spaces—by first establishing a methodology for
simulating human crowds, and then integrating it within a game engine. In
doing so, it will be shown to be possible to build a foundational framework
that can be built upon to be tailored to specific needs, from which one can both
extrapolate information on occupancy as well as visualizations from the same
workflow. Of course, this is venturing into unknown territories, especially for
an architecture student with no coding background. Therefore, personally,
this thesis is an exploration of technology, a learning process, and a challenge
to oneself. Ideally, this thesis is the creation of a tool and a framework with
the intent to provide architects with a tool that they can both use during the
design process and also evolve.

As architecture is evolving, so too must architectural visualization. Technology
is changing, and this thesis is looks at creating a framework to facilitate that
change for architectural design workflows. The benefits in doing so set up the
means to improve efficiency, flexibility, and design, while also providing the
skill and knowledge to understand, manipulate, and create new tools to tailor
to any type of project, most particularly during the design process, at a point
where change can be most easily incorporated. By approaching knowledge in
an interdisciplinary manner, one can broaden the scope of what is possible
within the field of architecture.

5	 “Example: Using Populate,” Autodesk Support & Learning, accessed October 17, 2019, https://
knowledge.autodesk.com/support/3ds-max/learn-explore/caas/CloudHelp/cloudhelp/2017/
ENU/3DSMax/files/GUID-BEA89C57-3A7B-4AB5-AAF7-02494AA01CFA-htm.html.

Figure 1.4.5	 A crowd Visualization Tool in Autodesk 3ds Max
Here, the user defines a path where people are generated to follow. This is a simple approach
for visualizing people for a pitch, but it does not show how the space will be used, rather how
the architect thinks the space will be used.
From sanvfx, trimmed by Author, “Creating Crowd Simulation in 3ds Max,” YouTube, 23:09, accessed December 19, 2019, https://www.youtube.com/
watch?v=h-PMBi8gze4&t=454s.

https://youtu.be/dR5G5SNI5T4?t=27
https://youtu.be/h-PMBi8gze4?t=454

Part 2 | Technical Research
Analog to Digital

69

To begin this exploration, initial research is required. Therefore, as a starting point to
creating a crowd simulation tool, it is important to first look at the basis of a computer
simulation, not just what it is, but how it works at the fundamental level. This section
then will mainly focus on developing the methodologies required to create a model
for human crowd simulation. Chapter 2.1 will investigate the concepts to consider
when creating a simulation model by looking into the different components of a
simulation and the concept of emergence and how it relates to complex systems and
human crowds. Chapter 2.2 will then investigate how these concepts can be used
to create a simulation model for simulating crowds by looking into the concept of
autonomous agents. Chapter 2.3 will utilize this model to translate human behaviors
to machine logic by establishing a set of human systems that can drive the agents
within the simulation model. Chapter 2.4 will investigate a framework for simulating
a variety of architectural objects by understanding how dynamic elements may work
and what the resulting spaces may entail. Chapter 2.5 will then take these established
systems and create a prototype to validate the validity of this model based on the
framework established within Chapter 2.2.

Analog to Digital

70 71

Technical Research |Simulations Ideology Technical Research |Simulations Ideology

Chapter 2.1 | Simulations Ideology
A simulation—as defined by Jerry Banks et al. in their book Discrete-Event
System Simulation—is an “imitation of the operation of a real-world process
or system over time.”[1] Since the advent of digital computation and computer
simulations, their utility have become much greater, and are now utilized
within a wide range of applications, including various types of manufacturing,
construction engineering, military, logistics, transportation, distribution,
business processes, and human systems.[2] Because of this array of uses, it is
important to first determine the type of system that the simulation is required
to imitate. The system—as defined by Banks et al.—is “a group of objects that
are joined together in some regular interaction or interdependence toward
the accomplishment of some purpose.”[3] He states, “In order to understand
and analyze a system, a number of terms need to be defined. An entity is an
object of interest in the system. An attribute is a property of an entity. An
activity represents a time period of specified length. If a bank is being studied,
customers might be one of the entities, the balance in their checking accounts
might be an attribute, and making deposits might be an activity.”[4]

Learning from this, it is then possible to investigate various other systems.
Within a pool of water, the entities would be the water particles, with their
location, velocity, and mass being some of the possible attributes, and colliding
with each other being one of the possible activities. (Fig. 2.1.1) The same can
be observed in a traffic system, where the cars would be the entities, with their
location, size, color, and car typology being possible attributes, and starting or
stopping being possible activities. (Fig. 2.1.2) Taking this investigation then,
to a crowd of people, it can be abstracted that the individual people would
be the entities, with their location, gender, height, weight, etc. being possible
attributes, and their various interactions with one another being activities.
(Fig. 2.1.3)

Of course, these are just generic assumptions, since “a complete list cannot
be developed unless the purpose of the study is known.”[5] However, by
investigating these assumed systems, a pattern can be noticed. From the water
example, each particle interacts with surrounding particles through collision,
which are affected by the particle attributes such as velocity and mass. If one
were to toss a rock into the water, the rock would offset local particles at the
point of impact, which will interact with particles around it, producing ripple
waves within the system. From the traffic example, it can be observed that
when one car slows down the subsequent car slows down as well, producing
an offset until there is a wave of phantom traffic within the road. From the
crowd example, it can then be observed that the people, much like the water
particles, collide into one another, each instigating interaction locally as they
ripple throughout the space, once again producing a wave-like pattern.

1	 Jerry Banks et al., Discrete-Event System Simulation (Upper Saddle River, NJ: Prentice Hall, 2001), 3.
2	 Banks et al., Discrete-Event System Simulation, 3.
3	 Banks et al., Discrete-Event System Simulation, 10.
4	 Banks et al., Discrete-Event System Simulation, 10.
5	 Banks et al., Discrete-Event System Simulation, 10.

Figure 2.1.3	 This crowded concert shows how the interaction between each
individual human produces various wave patterns throughout the entire crowd.

Figure 2.1.1	 Various wave patterns seen on-top of the ocean surface
From Alex Green, “An Aerial Birds Eye Shot Of The Ocean and Waves,” YouTube, 0:10, accessed December 25, 2019, https://
www.youtube.com/watch?v=1jUnZ4VnoD4.

Figure 2.1.2	 Video showing phantom traffic jam
From New Scientist, trimmed by Author, “Shockwave Traffic Jams Recreated for First Time,” YouTube, 0:39, accessed December
25, 2019, https://www.youtube.com/watch?v=Suugn-p5C1M.

Figure 2.1.1 - 2.1.3
These figures shows the similar
emergent patterns exhibited
by the particle interactions of
fluid systems, traffic jams, and
crowd dynamics.

https://youtu.be/1jUnZ4VnoD4
https://youtu.be/Suugn-p5C1M?t=5
https://www.youtube.com/watch?v=BgpdmAtbhbE&t=8s

72 73

Technical Research |Simulations Ideology Technical Research |Simulations Ideology

To better understand this phenomenon, it is important to understand
emergence. This term is generally used to characterize the behavior of systems
in which its components interact in various ways by following local rules,
producing nonlinear behaviors often resulting in greater complexity than the
sum of its parts. Johnson explains this in his book Emergence: The Connected
Lives of Ants, Brains, Cities:

“What features do all these systems share? In the simplest terms, they
solve problems by drawing on masses of relatively stupid elements,
rather than a single intelligent “executive branch.” They are bottom-
up systems, not top down. They get their smarts from below. In a more
technical language, they are complex adaptive systems that display
emergent behavior. In these systems, agents residing on one scale start
producing behavior that lies one scale above them: ants create colonies;
urbanites create neighborhoods’ simple pattern-recognition software
learns how to recommend new books. The movement from low-level
rules to higher level sophistication is what we call emergence.”[6]

He then conceptualizes a billiard table with motorized billiard balls
programmed to alter their movement based on interactions, stating that “such
a system would define the most elemental form of complex behavior: a system
with multiple agents dynamically interacting in multiple ways, following local
rules and oblivious to any higher-level instructions. But it wouldn’t truly be
considered emergent until those local interactions resulted in some kind of
discernible macrobehaviour.”[7]

What can be extracted from this text is that this “movement from low level
rules to high level sophistication” is what is known as emergence and can be
observed in various complex system models, as it is a fundamental property of
the universe. (Fig. 2.1.4 - 6) It can then be observed from these water/traffic/
crowd examples that due to emergence, a wave-like pattern emerges from the
local interactions of the particles. These interactions, while simple, propagate
throughout the system using the particles as a medium, producing this wave-
like pattern that can only be observed from a scale larger than the particles but
can only be understood by looking at the particles themselves.

While these systems are complex in nature, and can be hard to comprehend,
they generally exhibit common traits that can be investigated to help break
down their complexity. By observing these simulations as complex systems,
it can become easier to understand the basic components that make up the
system. These basic components can then be modified to create a simulation
model, meaning that by following this methodology, it is possible to produce
relatively complex simulations with relatively simple components.

6	 Steven Johnson, Emergence: The Connected Lives of Ants, Brains, Cities, and Software (New York:
Scribner, 2004), 18.

7	 Steven Johnson, Emergence: The Connected Lives of Ants, Brains, Cities, and Software, 19.

Figure 2.1.4	 Snowflakes
By Wilson Bentley, “File:SnowflakesWilsonBentley.jpg,” Wikimedia Commons,
accessed December 25, 2019, https://commons.wikimedia.org/wiki/
File:SnowflakesWilsonBentley.jpg.

Figure 2.1.5	 Termite mount
By Brian Voon Yee Yap, from Yewenyi, “File:Termite Cathedral DSC03570.jpg,”
Wikimedia Commons, accessed December 25, 2019, https://commons.wikimedia.
org/wiki/File:Termite_Cathedral_DSC03570.jpg.

Figure 2.1.6	 Starling murmurations
From National Geographic, trimmed by Author, “Flight of the Starlings: Watch This Eerie but Beautiful Phenomenon | Short Film Showcase,” YouTube, 2:00, accessed
December 25, 2019, https://www.youtube.com/watch?v=V4f_1_r80RY.

Figure 2.1.4 - 2.1.6
Emergence is a fundamental
property of the universe.
Subatomic particles such as
protons, neutrons, and elec-
trons combine to form atoms
that are responsible for all the
various emergent properties
of matter that we come in
contact with on a daily bases.
These figures show some ex-
amples of emergent behaviors
within nature from further
interactions of these emergent
properties.

https://youtu.be/V4f_1_r80RY?t=5

74 75

Technical Research |Simulations Ideology Technical Research |Simulations Ideology

This concept is especially important when simulating humans due to their
inherent complexity. The human brain is a complex object and to this day
is still not fully understood, therefore, simulating human behaviors perfectly
is beyond the current capabilities of collective human knowledge. As stated
by Delaney and Vaccari in Dynamic Models and Discrete Event Simulation:
“one approach with coping with such difficulties is to relax the requirements
on the model so that approximation can be employed even though they
yield fewer and/or less accurate results”[8] This means that simulations can
vary in levels of complexity, ranging from simple real time calculations for
approximating visualizations to high accuracy scientific models. Banks et al.
also acknowledges this, stating:

“The art of modeling is enhanced by an ability to abstract the essential
features of a problem, to select and modify basic assumptions that
characterize the system, and then to enrich and elaborate the model
until a useful approximation results. Thus, it is best to start with a
simple model and build towards greater complexity. However, the
model complexity need not exceed that required to accomplish the
purposes for which the model is intended. Violation of this principle
will only add to model-building expenses. It is not necessary to have
a one-to-one mapping between the model and the real system. Only
the essence of the real system is needed.”[9]

It should be noted how this aligns with Jason Gregory’s description of
video games back in Chapter 1.3, which is a good indication of the validity
of this approach when the time comes to integrate this model within a
Game Engine. With this in mind, it can then be determined that a crowd
simulation for architectural visualization purposes—that can also be evolved
by architects—would benefit more from simplicity and speed, rather than
perfect accuracy from the beginning. This is already an improvement over
not simulating at all, and since the behavior of people is not absolute and
exact, an approximation is likely sufficient to gauge whether or not a space
is working properly in a crowd situation. It is not required to figure out all
the nuances of the system, but instead focus on determining simple agents
that can utilize emergent behaviors from a bottom-up approach. These agents
would then act upon simple embedded rules to move around the space, and if
need be, higher accuracy can be generated by adding additional simple rules
to these agents. One does not need to simulate behaviors perfectly, but rather
account for enough variance that the system as a whole is realistic enough to
provide information and believability to inform the design process. In doing
so, it makes the creation process much simpler; instead of creating artificial
intelligence, this simulation can be based on simple rules to give the illusion
of distributed intelligence. (Fig. 2.1.7 - 8)

8	 William Delaney and Erminia Vaccari, Dynamic Models and Discrete Event Simulation (New York:
M. Dekker, 1989), 323.

9	 Banks et al., Discrete-Event System Simulation, 15.

Figure 2.1.7	 Rule 30 as introduced by Stephen Wolfram, 1983
What is compelling about the phenomenon of emergence in the context of crowd simulations is how one
can utilize relatively simple logic to generate complex behaviors.
From Eric W. Weisstein, “Rule 30,” Wolfram Math World, accessed December 25, 2019, http://mathworld.wolfram.com/Rule30.html.

76 77

Technical Research |Simulations Ideology Technical Research |Simulations Ideology

Figure 2.1.8	 250 iterations of Rule 30
From Eric W. Weisstein, “Rule 30,” Wolfram Math World.

78 79

Technical Research |Establishing Model Methodology Technical Research |Establishing Model Methodology

Chapter 2.2 | Establishing Model
Methodology
Now that the foundational principles of complex system simulation have been
investigated, and the plan of utilizing a bottom-up simulation methodology
has been established, it is possible then to dive deeper into the creation of
this simulation. Within Discrete-Event System Simulation, Jerry Banks et al.
determined a set of steps to facilitate a thorough simulation study to aid in
creating a simulation model.[1] (Fig. 2.2.1) He breaks this down into four
phases:

“The first phase, consisting of steps 1 (Problem Formulation) and 2
(Setting of Objective and Overall Design), is a period of discovery
or orientation. […] The second phase is related to model building
and data collection and includes steps 3 (Model Conceptualization),
4 (Data Collection), 5 (Model Translation), 6 (Verification), and 7
(Validation). […] The third phase concerns running the model.
It Involves steps 8 (Experimental Design), 9 (Production Runs
and Analysis), and 10 (Additional Runs). […] The fourth phase,
implementation, involves steps 11 (Documentation Reporting) and
12 (Implementation).”[2]

These phases describe a very logical approach, as such they line up nicely with
the chapter structure of this thesis. The first phase of discovery and orientation
is covered in Part 1: Introduction and Theory, where the proposed framework
was established; the second phase of model building and data collection is
covered within this current part (Part 2: Technical Research), as well as Part 3:
Tool Creation for when the simulation model is updated for the game engine
environment; The third phase concerning running the model is covered within
Part 4: Simulation Applications, where the simulation will be utilized within
a variety of applications to review their effectiveness in architectural crowd
simulation; The fourth phase of implementation is finalizing the resultant
simulation as a tool within visualization applications. Since the initial scope
of this thesis was meant to provide a foundational framework for this tool, the
full completion of this phase may be beyond the scope of this thesis and would
be suited to further development at a later date.

As it can be seen, this relatively simple framework provides a good starting
point and guideline in creating a custom model for crowd simulation.
Therefore, by applying this further, it is possible to provide a more thorough
breakdown of what each step may entail in relation to this thesis.

1	 Banks et al., Discrete-Event System Simulation, 15.
2	 Banks et al., Discrete-Event System Simulation, 19-20.

Figure 2.2.1	 Simulation Study Diagram
From Jerry Banks et al., Discrete-Event System Simulation (Upper Saddle River, NJ: Prentice Hall, 2001), 16.

80 81

Technical Research |Establishing Model Methodology Technical Research |Establishing Model Methodology

Problem formulation: It is important to begin this process by first
stating the problem. This was already established in Part 1:Introduction
and Theory by investigating the emergence of dynamic architecture
in Chapter 1.1, the inadequacy of current visualization methods in
Chapter 1.2, and the advent of game engines in Chapter 1.3.

Setting of objectives and overall project plan: This step aims to
indicate the questions that can be answered with the simulation. In
the context of this thesis, the objective would then be finding a way
to simulate and visualize human crowd movements within a dynamic
architectural space.

Model conceptualization: This step is the most technical, as it deals
with establishing the various components within the simulation
model, as well as defining their interactions within the system. This
is what this current chapter (2.2) will investigate and what the next
chapter (2.3) will establish. This model will then be updated as the
thesis moves on from the processing prototype to the game engine
environment.

Data Collection: This step focuses on the collection of input data for
the model, and as such, constant interplay will be present between
this step and the last. In the context of this thesis, Chapter 2.3 will be
investigating various properties of human behaviors and how that can
be utilized and represented within the system model. The initial data
from this step, as well as the established methodology from the initial
model conceptualization, will be invaluable when re-establishing the
model within the game engine environment.

Model Translation: This step deals with the technical translation of
this simulation model into machine logic. The Java-based program
processing will be utilized first to prototype this methodology as a
way to validate the concept of emergent complex systems within
the context of crowd simulations. Once this processing prototype
is validated, the model will then be translated into a game engine
environment to utilize its higher abstraction tools.

Verification: This step mainly focuses on debugging to ensure the
software operates according to the model. Fixing certain software bugs
can take minutes to days, therefore, this step arguably provides the
greatest unknown in terms of time expenditure due to the inherent
complexity and uncertainty within the debugging process.

Validation: The aim of this step is to determine whether the
simulation model is an accurate representation of the real system. As
such, this step may be repeated until the resulting model accuracy
is judged acceptable. In the context of this thesis, the processing
prototype will first need to be validated to confirm that the concept
of emergent behaviors from autonomous agents is enough to convey
the movements of human crowds. Then, once the model is re-updated
for the game engine environment, this step will need to be revisited to
confirm this new model within the context of human crowds.

Experimental design: This step determines the various alternative
systems that can be simulated within this model. This thesis will be
investigating this in Part 4, where it will be utilizing the developed
simulation tool within a variety of architectural scenarios to determine
the usability of this tool within alternative spatial applications.

Production runs and analysis: This step utilizes the simulation to
estimate measures of performances within these alternative systems.
This step can be utilized to analyze the architectural scenarios from
the experimental design step, which can then be used to measure their
effectiveness in visualizing spatial typologies.

More runs: Additional runs may or may not be required depending
on the analysis and updates of the previous runs.

Documentation and reporting: The documentation of the
methodologies and concepts obtains from creating this model will
allow potential upgrades to the system model in order to provide
increased accuracy and performance metrics in the future.

Implementation: At this point, it is possible to establish a rough
workflow within architectural visualization that can benefit with the
utilization of this crowd simulation tool.

As shown by the various steps of this framework, the next stage in creating this
crowd simulation—as well as the focus of this and the next few chapters— is
developing a model for this simulation system. A model as defined by Banks
et al. is “an abstract representation of a system, usually containing structural,
logical, or mathematical relationships which describe a system in terms of state,
entities and their attributes, sets, processes, events, activities, and delays.”[3]
He remarks, “Just as the components of a system were entities, attributes,
and activities, Models are represented similarly. However, the model contains
only those components that are relevant to the study.”[4] Going by this, it
is then important to first simplify architectural spaces into its fundamental
relevant components. The purpose of this model, then becomes to define
the interactions between classes of entities within the system, which can be
defined as the active human agents and the passive (or active in the case of
dynamic spaces) architectural objects.

3	 Banks et al., Discrete-Event System Simulation, 64.
4	 Banks et al., Discrete-Event System Simulation, 13.

82 83

Technical Research |Establishing Model Methodology Technical Research |Establishing Model Methodology

One way to simplify the interactions between these entities may be to
compare it with a simpler system. By looking back to Chapter 2.1, one can
re-investigate the similarities between the crowd and water simulations. From
this, it can then be observed that the crowd simulation, when dense enough,
can arguably be described as a fluid. Fluid flows can be described in either
the Lagrangian description—where each fluid particle is calculated as discrete
particles—or the Eulerian description—where the fluid properties are only
calculated at the boundary of set volumes.[5] (Fig. 2.2.2 - 3) While there are
pros and cons to both methods, the Lagrangian methods will provide a more
accurate model for non-continuum mass as well a more fluid simulation that
would be more beneficial for crowd simulation. The downside to this is that
extra computation is required to calculate each particle as more people are
added into the system. However, by designing this model as a framework
that can be scaled up, this limitation becomes less of an issue, especially with
computation becoming faster with technological progression. However,
humans are undeniably not as elementary as water particles. They do not
simply flow, but have desires, motives, and goals. While it can be seen from
the concert example that individuality starts to break down in larger crowds—
and thus began to behave like the flow of water as the forces exerted on the
individual people move in a direction that is determined by the crowd—it is
still important to distinguish people in smaller groupings. Therefore, these
rules at the bottom level will not only need to accommodate movement but
also human behaviors. To create such a system, one must determine the logic
behind one’s actions and look at ways to translate them into machine logic,
essentially breaking them down to their fundamental elements.

5	 John M. Cimbala, “Descriptions of Fluid Flows,” Penn State Engineering, accessed August 3, 2019,
https://www.mne.psu.edu/cimbala/Learning/Fluid/Introductory/descriptions_of_fluid_flows.htm.

Figure 2.2.2	 The Lagrangian description calculates the position and velocity of
the individual particles within the fluid
From “Descriptions of Fluid Flows,” accessed December 25, 2019, https://www.me.psu.edu/cimbala/Learning/Fluid/Introductory/
descriptions_of_fluid_flows.htm.

Figure 2.2.3	 The Eulerian description calculates the output velocities from the
input velocities, in which the space inside the control volume is assumed to be
completely filled as a continuous mass
From “Descriptions of Fluid Flows.”

84 85

Technical Research |Establishing Model Methodology Technical Research |Establishing Model Methodology

There are, of course, many ways to do this. A quick investigation reveals a
plethora of existing simulation methodologies, ranging from Eulerian-
based models such as Cellular Automata,[6][7] to Lagrangian-based particle
models such as Craig Reynold’s Boids,[8] Helbing’s Social Forces,[9] Van den
Berg’s Reciprocal Velocity Obstacles,[10] Adaptive Roadmaps,[11] Centroidal
Particles,[12] and HiDAC.[13] (Fig. 2.2.5 - 10) While all these different methods
can be overwhelming for someone without an extensive coding background,
one commonality among these models is the utilization of autonomous
agents. (Fig. 2.2.4) Taking a cue from the Lagrangian methodology, it is then
imperative to treat crowd simulations as an example of a multi-agent dynamic
system, where the overall system can be broken down into agents and operations.
Much like how the water simulation can be broken down into water particles,
and the mathematical models used to describe how individual particles affect
each other, a crowd simulation can be broken down into the people (agents),
and the human interactions between them (operations). To create this system,
one must understand the principles of intelligent autonomous agents, which
are entities that can act in their environment without external influences from
a leader or global plan. These entities have three key concepts that should be
kept in mind when establishing them:

“An autonomous agent has a limited ability to perceive the
environment.”[14]

“An autonomous agent processes the information from its
environment and calculates an action.”[15]

“An autonomous agent has no leader.”[16]

6	 Jana Dadova, “Cellular Automata Approach for Crowd Simulation” (Master’s thesis, Comenius
University, Bratislava, 2012), 1-58, accessed August 3, 2019, http://www.sccg.sk/~dadova/phd/
rigorozka_dadova_final.pdf.

7	 Hubert Klüpfel, “A Cellular automaton model for crowd movement and egress simulation,”
(July 2003): 1-136, accessed December 26, 2019, https://www.researchgate.net/
publication/29800160_A_Cellular_automaton_model_for_crowd_movement_and_egress_
simulation.

8	 Craig W. Reynolds, “Steering Behaviors For Autonomous Characters,” Reynolds Engineering &
Design, accessed October 17, 2019, http://www.red3d.com/cwr/steer/gdc99/.

9	 Dirk Helbing and Péter Molnár, “Social Force Model for Pedestrian Dynamics,” Physical Review E
51, no. 5 (1995): 4282-286, doi:10.1103/PhysRevE.51.4282.

10	 Jur Van Den Berg, Ming Lin, and Dinesh Manocha, “Reciprocal Velocity Obstacles for Real-Time
Multi-Agent Navigation,” 2008 IEEE International Conference on Robotics and Automation, (May
2008): 1928-1935, https://doi.org/10.1109/robot.2008.4543489.

11	 Avneesh Sud et al., “Real-time Navigation of Independent Agents Using Adaptive Roadmaps,” ACM
SIGGRAPH 2008, (2008): doi:10.1145/1401132.1401207.

12	 Omar Hesham and Gabriel Wainer, “Centroidal Particles for Interactive Crowd Simulation,” 2016
Summer Computer Simulation Conference (SCSC 2016), (2016): https://doi.org/10.22360/
summersim.2016.scsc.012.

13	 Nuria Pelechano, Jan M. Allbeck, & Norman I. Badler, “Controlling Individual Agents in High-
Density Crowd Simulation,” Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, (2007): 99-108, http://repository.upenn.edu/hms/210.

14	 Daniel Shiffman, “Chapter 6. Autonomous Agents,” in The Nature of Code (United States:
D. Shiffman, 2012), accessed October 17, 2019, https://natureofcode.com/book/chapter-6-
autonomous-agents/.

15	 Shiffman, “Chapter 6. Autonomous Agents.”
16	 Shiffman, “Chapter 6. Autonomous Agents.”

Figure 2.2.4	 Much like how humans interact with spaces, Autonomous Agents act within the
simulation through its perception of the environment
By Stuart Russell and Peter Novig, “Intelligent Agents - Chapter 2,” from Artificial Intelligence: A
Modern Approach, obtained from “Agents: Artificial Intelligence,” accessed December 25, 2019,
https://www.doc.ic.ac.uk/project/examples/2005/163/g0516334/.

86 87

Technical Research |Establishing Model Methodology Technical Research |Establishing Model Methodology

Figure 2.2.7	 Reciprocal Velocity Obstacles
The RVO approach accounts for the reactive behavior of other agents by assuming that
all agents make similar collision-avoidance reasonings within navigation. The diagrams
above shows how the paths of two agents have opposite preferred velocities and how each
agent calculates a combined velocity from the union of velocities from other agents.
From Jur Van Den Berg, Ming Lin, and Dinesh Manocha, “Reciprocal Velocity Obstacles for Real-Time Multi-Agent Navigation,” 2008 IEEE
International Conference on Robotics and Automation, (May 2008): 1928-1932, https://doi.org/10.1109/robot.2008.4543489.

Figure 2.2.5	 2-Dimensional Cellular Automata
The Cellular Automata approach divides a space into a grid of cells. Rule 30 (introduced
at the end of chapter 2.1) is an example of a 1-Dimensional Cellular Automata that
utilizes simple rules to specify the next color of a cell based on its color and its neighbors.
This concept can then be used to calculate position amongst the grid as a way to establish
pathfinding.
From Hubert Klüpfel, “A Cellular automaton model for crowd movement and egress simulation,” (July 2003): 33-35, accessed December 26,
2019, https://www.researchgate.net/publication/29800160_A_Cellular_automaton_model_for_crowd_movement_and_egress_simulation.

Figure 2.2.6	 Social Forces
The Social Forces approach utilizes “social forces” that are “a measure for the internal
motivations of the individuals to perform certain actions.” The diagrams above shows
how this can produce the formation of lanes as well as follow behaviors for agents with
the same desired walking directions through narrow doors.
From Dirk Helbing and Péter Molnár, “Social Force Model for Pedestrian Dynamics,” Physical Review E 51, no. 5 (1995): 15-17, doi:10.1103/
PhysRevE.51.4282.

Figure 2.2.8	 Adaptive Roadmaps
The Adaptive Roadmaps approach utilizes Adaptive Elastic ROadmaps (AERO) to
perform global path planning for each agent. The diagrams above shows how dynamic
obsticles such as cars can affect paths leading to the resulting goal.
From Avneesh Sud et al., “Real-time Navigation of Independent Agents Using Adaptive Roadmaps,” ACM SIGGRAPH 2008, (2008):
doi:10.1145/1401132.1401207.

88 89

Technical Research |Establishing Model Methodology Technical Research |Establishing Model Methodology

Distinguishing these concepts allows the creation of custom categories that are
specific to crowds, which will ensure a simpler foundation in the translation
from physical behaviors to virtual code. From here, one can begin to establish
the systems that allow these autonomous agents to operate as humans within
the simulation. As such, this simulation model will be focusing on determining
the interactions between autonomous agents and their environment.

Ehsan Baharlou states in his thesis Generative Agent-Based Architectural Design
Computation: Behavioral Strategies for Integrating Material, Fabrication and
Construction Characteristics in Design Processes:

“Complex systems, which exhibit holistic behaviors, are difficult
to comprehend. Complex behaviors, which arise from interactions
among parts, need a model to gain insight into processes that exhibit
emergent phenomena. […] Therefore, a model should be simple
enough to represent its main purpose. The purpose of self-organizing a
system is adaptation with dynamic complexity arising from emergent
phenomena. Avoiding unnecessary details allows models to maintain
a reasonable level of complexity (Miller and Page 2007, pp. 36-37).[17]
This method of modeling allows further analyses and investigations;
otherwise, another level of simplification would be required to explain
the growing complexity.”[18]

This communicates that there is merit in avoiding unnecessary details in
order to simplify the model. Complex systems are inherently “difficult to
comprehend,” as such it becomes more effective to simulate this complexity
by utilizing the emergent phenomena that is present within self-organized
adaptive dynamic models. “Once [this] model is deemed valid, it is extendable
to different variables and parameters,”[19] which allows the process of refinement
and improvement upon future iterations of this simulation. From this, it
becomes clear that, at this stage, it is beneficial to not get carried away with
higher complexity models, and instead investigate a more basic approach, not
only to simplify the process but also to build a deeper understanding of how
these systems work at a fundamental level. As such, this thesis will investigate
and build upon the algorithmic steering behaviors developed by computer
scientist Craig Reynolds in the late 1980s, specifically for its relatively simple
and comprehensive nature.[20] While this may not produce results at the level
of higher complexity models, such as HiDAC that utilizes both “psychological
and geometrical rules [alongside] social and physical forces,”[21] it will build
a solid foundation that can be expanded later to encompass additional
considerations.

17	 John H. Miller and Scott E. Page, Complex Adaptive Systems: An Introduction to Computational
Models of Social Life (Princeton, NJ: Princeton University Press, 2007), 36-37.

18	 Ehsan Baharlou, Generative Agent-Based Architectural Design Computation: Behavioral Strategies
for Integrating Material, Fabrication and Construction Characteristics in Design Processes (Stuttgart:
Institute for Computational Design and Construction, 2017), 46.

19	 Baharlou, Generative Agent-Based Architectural Design Computation: Behavioral Strategies for
Integrating Material, Fabrication and Construction Characteristics in Design Processes, 74.

20	 Reynolds, “Steering Behaviors For Autonomous Characters.”
21	 Pelechano, Allbeck, & Badler, “Controlling Individual Agents in High-Density Crowd Simulation.”

Figure 2.2.9	 Centroidal Particles
The Centroidal Particles approach utilizes personal spaces to calculate compressional forces
between the agents to calculate agent interactions.
From Omar Hesham and Gabriel Wainer, “Centroidal Particles for Interactive Crowd Simulation,” 2016 Summer Computer Simulation Conference
(SCSC 2016), (2016): https://doi.org/10.22360/summersim.2016.scsc.012.

Figure 2.2.10	HiDAC
The HiDAC approach utilizes “a combination of psychological and geometrical rules with
a social and physical forces model” to create a variety of emergent behaviours such as line
formation and pushing.
From Nuria Pelechano, Jan M. Allbeck, & Norman I. Badler, “Controlling Individual Agents in High-Density Crowd Simulation,” Proceedings of the
2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, (2007): 99-108, http://repository.upenn.edu/hms/210.

Technical Research |Establishing Model Methodology Technical Research |Establishing Model Methodology

Figure 2.2.11	Craig Reynold’s flocking Boid flocking model
describes these complex patterns with 3 simple steps along with 3
simple steering behaviors
Example code by Daniel Shiffman, executed in processing, screen-recorded by Author.

90 91

92 93

Technical Research |Abstracting the Human Systems Technical Research |Abstracting the Human Systems

Chapter 2.3 | Abstracting the Human
Systems
As stated in Chapter 2.2, occupied architectural space can be broken down
into its components of active human agents and passive (or active in the case of
dynamic spaces) architectural objects. This chapter will focus on establishing
the simulation model for the active human agents by building upon Craig
Reyonalds’ boids model. Within Reynolds’ paper “Steering Behaviors For
Autonomous Characters,” he refers to autonomous agents as “idealized
vehicles” or “boids,” and described their motion as three layers: action selection,
steering, and locomotion.[1] (Fig. 2.3.1)

Action selection is the process of selecting the action depending on
the calculated goal of the vehicle.

Steering is the calculated forces that is applied to the vehicle after
deciding the action.

Locomotion is the method of how the vehicles move to their goals.

Naturally, human agent behaviors are a bit more complex than vehicles.
The three layers established by Reynolds only described motion; therefore,
it is vital to build upon this to describe the other attributes of human
agents. While these three layers present an idea of how the agents can move
around the environment, the question still remains as to how the agents
obtain information and decide on their tasks. Considering these functional
requirements, it is then possible to simplify human behaviors into three main
systems: the sensory system, the decision logic, and the pathfinding.

The sensory system allows the agents to see their surroundings.

The decision logic allows the agents to choose a goal based on what
they see.

The pathfinding allows the agents to find a way to the goal that they
chose.

These systems function in a hierarchal sense in which one system feeds into
the next. The agents would utilize the sensory system to obtain information
from the environment. It would then use this information within the decision
logic to decide which entity from the environment interests them. It would
then utilize the pathfinding system to navigate to the entity of interest. By
acknowledging this, one can begin building the systems by looking from the
bottom level up. (Fig. 2.3.2 - 3)

1	 Reynolds, “Steering Behaviors For Autonomous Characters.”

Figure 2.3.1	 Three hierarchical layers of motion behaviors
Craig Reynold’s Flocking model describes these complex patterns with 3 simple steps along with 3 simple
steering behaviours.
From Craig W. Reynolds, “Steering Behaviors For Autonomous Characters,” Reynolds Engineering & Design, accessed October 17, 2019, http://www.red3d.com/cwr/steer/
gdc99/.

Figure 2.3.2	 Three hierarchical layers of human behaviors
Human behaviors can be simplified into 3 main systems: the Sensory System, the Decision Logic, and the
Pathfinding. Each system requires the consideration of their human counterparts to set up.
Illustrated by Author.

Sensory System Decision Logic

HUMAN BEHAVIOURS

Pathfinding

94 95

Technical Research |Abstracting the Human Systems Technical Research |Abstracting the Human Systems

Crowds Humans

Sensory System

Decision Logic

Pathfinding

Agents Crowd
Simulation

ANALOG DIGITAL

Figure 2.3.3	 Analog to Digital
By breaking down the complex analog system of human crowds into its fundamental
elements and rules, they become simple enough to be translated and approximated
by machine logic. Then by reintroducing these agents back into the virtual space, it
becomes possible to rebuild the crowd system from the bottom up.
Illustrated by Author.

96 97

Technical Research |Abstracting the Human Systems Technical Research |Abstracting the Human Systems

Pathfinding
The Pathfinding system determines how these agents move within the
simulation. If they decide to go to a door, how do they walk over? If there are
other people in the way, how do they avoid them? If there are walls, how do
they not bump into them? While this system is the most technical and dynamic
of the three—as it deals with real-time calculations due to environmental
inputs—it is also the most well-established, as it can be described relatively
intuitively by Craig Reynolds’ description of the three layers of motion: action
selection, steering, and locomotion. These steps, much like the human systems
defined earlier in this chapter, are hierarchal and feed into the next.

Locomotion
The bottom level contains Locomotion, which is the method by which
the vehicles move to their goals. There are many ways to calculate this
in machine logic, but relating back to the physical world, its kinematics
can be broken down into position, velocity, and acceleration.[2] In
programming, these can be expressed by vectors, which can be
defined as entities that have both magnitude and direction.[3] These
vectors can be thought of as the difference between two points, and
can be used to describe the location and movement of autonomous
agents within the virtual space.[4] (Fig. 2.3.4 - 6) This virtual space,
much like the physical world, can be understood in the three spatial
dimensions of x, y, and z. As such, these vectors can be broken down
in the same way to describe the agent’s relation within virtual space.
By familiarizing oneself with these vectors, and their relations within
these spatial dimensions, one can begin to calculate and manipulate
these vectors to establish a variety of possible functions.[5] (Fig. 2.3.7
- 11)

From this model, it is then possible to describe position with a vector
that determines a point relative to the origin, whereas velocity can be
described with a vector that determines a point relative to position
(the rate of change of position), and acceleration can be described with
a vector that determines a point relative to velocity (the rate of change
of velocity). To utilize these vectors in this way, one can add them into
one another to calculate the resulting position of the agent. In simpler
terms, the software will take the following steps every frame to achieve
motion:

1.	 Calculate Acceleration

2.	 Add Acceleration to Velocity

3.	 Add Velocity to Position

4.	 Draw object at Position.

2	 “Displacement, Velocity, Acceleration,” NASA, accessed August 4, 2019, https://www.grc.nasa.gov/
www/k-12/airplane/disvelac.html.

3	 “Scalars and Vectors,” NASA, accessed August 4, 2019, https://www.grc.nasa.gov/www/k-12/
airplane/vectors.html.

4	 Daniel Shiffman, “Chapter 1. Vectors,” in The Nature of Code (United States: D. Shiffman, 2012),
accessed October 17, 2019, https://natureofcode.com/book/chapter-1-vectors/.

5	 Shiffman, “Chapter 1. Vectors.”

Figure 2.3.4	 Vectors can be thought of as the difference
between 2 points.
From Daniel Shiffman, “Chapter 1. Vectors,” in The Nature of Code (United States: D. Shiffman, 2012),
accessed October 17, 2019, https://natureofcode.com/book/chapter-1-vectors/.

Figure 2.3.5	 Vectors can be described by 2 scaler variables.
From Shiffman, “Chapter 1. Vectors.”

Figure 2.3.6	 Velocity vector updates position
This figure shows how adding a velocity vector to position vector
calculates a new position vector for the agent to move to.
From Shiffman, “Chapter 1. Vectors.”

98 99

Technical Research |Abstracting the Human Systems Technical Research |Abstracting the Human Systems

add() — add vectors

sub() — subtract vectors

mult() — scale the vector with multiplication

div() — scale the vector with division

mag() — calculate the magnitude of a vector

setMag() - set the magnitude of a vector

normalize() — normalize the vector to a unit length of 1

limit() — limit the magnitude of a vector

heading() — the 2D heading of a vector expressed as an angle

rotate() — rotate a 2D vector by an angle

lerp() — linear interpolate to another vector

dist() — the Euclidean distance between two vectors
(considered as points)

angleBetween() — find the angle between two vectors

dot() — the dot product of two vectors

cross() — the cross product of two vectors (only relevant in
three dimensions)

random2D() - make a random 2D vector

random3D() - make a random 3D vector

Figure 2.3.7	 A list of Vector operations that can be used
within Processing.
These operations can be defined by simple words within
processing, but It is important to understand how these
operations work to understand how to utilize them within
the simulation.
From Shiffman, “Chapter 1. Vectors.”

Figure 2.3.8	 Vector Multiplication
It can be seen from this figure that multiplying a vector
keeps its direction, but increases its length. As such,
vector multiplication can be used as a way to scale the
magnitude of vectors.
From Shiffman, “Chapter 1. Vectors.”

Figure 2.3.9	 Vector Addition
adding two vectors together results in a new vector location that is the result of going along
each vector individually. As such this can be utilized to update position by adding additional
vector forces to it.
From Shiffman, “Chapter 1. Vectors.”

Figure 2.3.10	Vector Subtraction
Vector subtraction can be used to calculate the distance between two points, which in turn
have many uses within a crowd simulation, such as determining how far away an object is to
the agent or calculating a vector that points from the agent to its goal.
From Shiffman, “Chapter 1. Vectors.”

Figure 2.3.11	Vector Division
Dividing a vector by a scalar value is similar to multiplying it, except its length is decreased
instead of increased. Dividing a vector by itself will normalize a vector and result in a
magnitude of 1. This normalized vector can then be scaled by multiplying the vector by a
scaler variable in order to control how big a vector can become.
From Shiffman, “Chapter 1. Vectors.”

100 101

Technical Research |Abstracting the Human Systems Technical Research |Abstracting the Human Systems

When the software runs, it is essentially re-rendering an object at the
point of its location every time the frame is refreshed. This means a
velocity of 0 would entail no change in location from the previous
frame, and an acceleration of 0 would mean constant velocity.
(Fig. 2.3.12) This trickledown effect produces non-linearity within
vehicle movements, producing greater complexity within the system.
While this non-linearity can provide life-like movements within the
simulation, there is still a crucial aspect that needs to be considered for
a crowd simulation. In the physical world, there are limits to forces- a
ball does not instantly fall to the ground, vehicles do not instantly
go from 0 to 100km/h, and humans do not instantly get from one
location to the next. Therefore, an additional scalar variable is needed
to represent that maximum speed.

Although humans can move at a large range of speeds, they generally
have a preferred speed that varies depending on personal factors such
as value of time,[6] energetics,[7] biomechanics,[8] visual flow,[9] and
exercise,[10] which in turn can be influenced by environmental or social
factors such as temperature, “population size, economic conditions,
and cultural values.”[11] This preferred speed can then be broken
down into two main modes of locomotion: walking and running.[12]
Walking is the slower of the two forms, with speeds ranging from 0.3
to 2.0 m/s, whereas running is the faster state with speeds ranging
from 2.0 to 5.0 m/s.[13] Of these two modes, walking is the generally
more preferred mode due to its lower energy usage,[14] with running
generally reserved for urgency and exercise. Considering this, it is
then possible to utilize these general statistics as a starting point for
setting the maximum speed to simulate a believable human crowd.
While these various factors can all be utilized to calculate this scalar
value, it would increase the complexity of the model substantially. As
such, simply predefining an approximate number at this stage should
suffice for conveying human motion. Translating this into machine
logic is then a simple case of normalizing the velocity vector variable
and multiplying it by the maximum speed scalar variable.

6	 Mark Wardman, “Public Transport Values of Time,” Institute of Transport Studies, University of Leeds,
Working Paper 564 (2001): 1-56, accessed October 17, 2019, http://eprints.whiterose.ac.uk/2062/1/
ITS37_WP564_uploadable.pdf.

7	 R. Mcneill Alexander, “Energetics and Optimization of Human Walking and Running: The 2000
Raymond Pearl Memorial Lecture,” American Journal of Human Biology 14, no. 5 (2002): 641-48,
doi:10.1002/ajhb.10067.

8	 J. Maxwell Donelan, Rodger Kram, and Arthur D. Kuo, “Mechanical Work for Step-to-Step
Transitions Is a Major Determinant of the Metabolic Cost of Human Walking,” The Journal of
Experimental Biology 205 (August 2002): 3717-3727.

9	 Betty J. Mohler et al., “Visual Flow Influences Gait Transition Speed and Preferred Walking
Speed,” Experimental Brain Research 181, no. 2 (2007): 221-228, https://doi.org/10.1007/s00221-
007-0917-0.

10	 Catrine Tudor-Locke and David R Bassett, “How Many Steps/Day Are Enough?,” Sports
Medicine 34, no. 1 (2004): 1-8, https://doi.org/10.2165/00007256-200434010-00001.

11	 Robert V. Levine and Ara Norenzayan, “The Pace of Life in 31 Countries,” Journal of Cross-Cultural
Psychology 30, no. 2 (1999): 201, doi:10.1177/0022022199030002003.

12	 Mohler et al., “Visual Flow Influences Gait Transition Speed and Preferred Walking Speed,” 221-
222.

13	 A. E. Minetti, “The three modes of terrestrial locomotion,” In Biomechanics and Biology of
Movement, ed. Benno Maurus Nigg, Brian R. MacIntosh, and Joachim Mester (Human Kinetics,
2000), 69-72.

14	 Alexander, “Energetics and Optimization of Human Walking and Running: The 2000 Raymond
Pearl Memorial Lecture,” 641.

Figure 2.3.12	The relationship between distance, velocity, and acceleration
From “Motion Graphs,” accessed December 27, 2019, http://hyperphysics.phy-astr.gsu.edu/hbase/Mechanics/motgraph.html.

102 103

Technical Research |Abstracting the Human Systems Technical Research |Abstracting the Human Systems

Steering
The next level up is steering, which is the calculated force that is applied
to the vehicle to tell it how it should move. The key word here is force,
which in traditional Newtonian motion can be defined as a vector
that causes an object with mass to accelerate.[15] Looking back at the
steps in locomotion, it can be seen that step one requires a vector that
represents acceleration to determine to location of the agent, therefore
in this stage, it is imperative to find a way to calculate that acceleration.

Shiffman relates this concept back to the physical world by
investigating Newton’s second law of motion—which states that Force
= mass x acceleration ()—and then solving for acceleration, producing
the formula: acceleration = Force / Mass. From this, Shiffman remarks,
“Now, in the world of Processing, what is mass anyway? Aren’t we
dealing with pixels? To start in a simpler place, let’s say that in our
pretend pixel world, all of our objects have a mass equal to 1. F/ 1
= F. And so: A = F.”[16] This makes sense in the context of a crowd
simulation, as the calculated force is a translation of behavior, and not
a relation to the object’s mass—such as gravity. What this means is
that to calculate the acceleration vector in locomotion, one must first
calculate a steering force that can be added to the acceleration vector.

This steering force can be an accumulation of many forces within the
system and can represent many things, ranging from wind to friction
to gravity, etc. depending on the simulation. While these forces
can seem complex, Craig Reynolds developed a simple formula to
calculate the steering force within these models:[17] (Fig. 2.3.13 - 14)

Steering Force = Desired Velocity – Current Velocity

This formula then requires two variables: the desired velocity and the
current velocity. The current velocity can already be derived from the
last frame of locomotion; therefore, the critical part of this calculation
is determining the desired velocity. This is a vector that points from
the agent’s current position to the target position, therefore it can be
calculated by the formula:[18] (Fig. 2.3.15)

Desired velocity = Target Position – Agent Position

Vectors as stated earlier are entities that have both magnitude and
direction. With these two equations in place, the direction of the
steering force can be calculated. One thing to keep in mind, however,
is the magnitude of such forces. Much like how humans do not
instantly get from one location to the next, they also do not instantly
turn from one direction to another. As such, this stage will require

15	 “Newton’s Second Law,” NASA, accessed August 4, 2019, https://www.grc.nasa.gov/www/k-12/
airplane/newton2.html.

16	 Daniel Shiffman, “Chapter 2. Forces,” in The Nature of Code (United States: D. Shiffman, 2012),
accessed October 17, 2019, https://natureofcode.com/book/chapter-2-forces/.

17	 Shiffman, “Chapter 6. Autonomous Agents.”
18	 Shiffman, “Chapter 6. Autonomous Agents.”

Figure 2.3.13	The calculated opposing Steering force, when added to current
velocity, will bring it closer to desired velocity
From Daniel Shiffman, “Chapter 6. Autonomous Agents,” in The Nature of Code (United States: D. Shiffman, 2012), accessed
October 17, 2019, https://natureofcode.com/book/chapter-6-autonomous-agents/.

Figure 2.3.14	The steering force is pushing down on the vehicle to steer it towards
desired velocity
From Shiffman, “Chapter 6. Autonomous Agents.”

Figure 2.3.15	Desired velocity can be calculated by obtaining the Vector distance
between the vehicle position and agent position
From Shiffman, “Chapter 6. Autonomous Agents.”

Figure 2.3.16	We must then limit this distance vector to obtain our desired velocity
so our vehical, or human, can’t move too fast
From Shiffman, “Chapter 6. Autonomous Agents.”

Figure 2.3.17	How Max force can affect radius
From Shiffman, “Chapter 6. Autonomous Agents.”

104 105

Technical Research |Abstracting the Human Systems Technical Research |Abstracting the Human Systems

a scalar variable that defines maximum force to limit the forces that
steer these agents. (Fig. 2.3.16 - 17) This, along with the maximum
speed defined from the last stage, creates the limits within the system
that helps define the agents as humans within a crowd.

Setting this maximum force is not as straightforward as the maximum
speed; in reality, humans in normal locomotion are steered by intent
rather than forces. What this means is that this way of fabricating
locomotion by calculating the steering force is simply a way of
simulating the intent of the agents among the simulation; a way of
translating human intent into numbers. These forces may exceed
human limits if it represented things such as hurricane winds, or falling
due to gravity, but if this model is utilizing forces as a representation
for human steering, then it is logical to limit them as such. In doing
so, acquiring this maximum force-defining number becomes a matter
of trial and error to find a variable that portrays realistic movements
of human steering.

Once these limits are set, one can begin manipulating the magnitudes
of these vectors to create both attraction and repulsion forces of
varying strength. In doing so, it becomes possible to create algorithms
for simple actions such as seek and flee, to more complex actions
such as collision avoidance, object avoidance, path following, arrival
behaviors, as well as the three rules of flocking, all of which can be
calculated into a steering force and accumulated into the current
acceleration.[19] (Fig. 2.3.18 - 20)

Action Selection
The last level of defining pathfinding is the action selection, where the
agents decide what actions to take depending on their desires. These
actions are ultimately what calculates the final steering force vector
every frame; therefore, this layer requires the most consideration for
defining the simulation model of the system. Until this point, other
than the human limits, the basic calculations from locomotion and
steering are to a degree universal and can be applied to many types of
simulation models. (Fig. 2.3.21) Therefore, at this stage, it becomes
important to determine the elements that define this system as a crowd
simulation.

While many of the actions mentioned in the last section (steering)
may pertain to crowds, it is the manner in which to apply them that
matters. The particles in a water simulation might only ‘desire’ that
they do not occupy the same space as another particle, therefore, they
would utilize functions for collision avoidance; the planets within a
solar system simulation might desire attraction to the other planets
while keeping their current momentum, therefore, they would utilize
functions such as seek to calculate their trajectory; the vehicles in a
traffic simulation might desire to follow a path as well as not collide
with other vehicles, in which case they might utilize a combination
of functions for path following and object avoidance. Compared to
these examples, however, the people within a crowd simulation carry
another layer of complexity. People generally have goals that they want

19	 Shiffman, “Chapter 6. Autonomous Agents.”

Figure 2.3.18	The 3 rules of flocking is defined by Reynolds as Separation, Alignment, and Cohesion
From Shiffman, “Chapter 6. Autonomous Agents.”

Figure 2.3.19	Arriving behavior once they get to a
certain distance from target location
From Shiffman, “Chapter 6. Autonomous Agents.”

Figure 2.3.20	Avoiding walking into walls
From Shiffman, “Chapter 6. Autonomous Agents.”

Figure 2.3.21	These same forces are useful in other types of simulations as well, such as planetary
motion
From Daniel Shiffman, “Chapter 2. Forces,” in The Nature of Code (United States: D. Shiffman, 2012), accessed October 17, 2019, https://natureofcode.com/book/chapter-2-
forces/.

106 107

Technical Research |Abstracting the Human Systems Technical Research |Abstracting the Human Systems

to achieve on top of their instinctive desires, thus one would need to
utilize a plethora of functions to calculate a final velocity vector that
determines their movement.

To define action selection within a crowd simulation, one must first
identify the individual goals and desires of the people that make up
the crowd. These goals and desires will change based on the location
and type of space that the person is occupying, but at this stage of
prototyping, it is possible to simply define some generic desires as a
starting point to approximate human behavior. From here, it is then
possible to add in other desires as the conditions change and require
it. These can be separated into conscious goals and subconscious desires,
which can in turn be calculated separately and added to the individual
acceleration vectors of the agents. At the conscious level, they might
have goals such as reaching a destination, doing a task, meeting
someone, or any combination of these, but at the subconscious level,
these people may desire to do their task without walking into objects
such as walls, furniture, or other people.

While action selection is mainly responsible for this unconscious level
of obstacle interaction, both levels of desire can be influenced by factors
such as stress, energy, and comfort. An example of such an influence
would be how people might consciously choose to sit down if their
energy level is low, but they might also subconsciously take a longer
route there to avoid higher traffic areas. The correlation between these
attributes and conscious goals are quite clear but becomes less obvious
when dealing with subconscious desires. In order to better understand
the influence of these attributes, one can investigate proxemics, which
is the study of human spatial requirements, and its effects on behavior
and social interactions. Edward T. Hall coined this term in 1963 in
his book The Hidden Dimensions, in which he explores social and
personal spaces and man’s perception of it. Here, he divides spaces
into four distinct regions, defining the interpersonal distances of
man.[20] (Fig. 2.3.22) Examining these four zones, it can be inferred
that the inner zones have a higher role in the subconscious desires of
object and people avoidance, whereas the outer zones have a higher
role in the conscious desires of tasks and goals. The space within these
two inner zones is called personal space, which can be described as a
space around a person they associate as theirs. Entering such spaces
often indicates familiarity, therefore, it is logical to assume that most
individuals prefer to be able to control these spaces, and that in an
unfamiliar crowded public realm, preserving personal space becomes
an important desire.

This notion of personal space is a useful consideration not only in how
it influences human behavior but also how easily it can be described by
scalar variables as distances around the person. With this deduction,
one can utilize these defined personal distances as a radius in which
the agents can interact within the simulation. Translating this into
machine logic, it can be coded that when another agent or object goes
within the agent’s personal space, a steering force will be calculated
in the opposite direction to steer them away, or towards the other

20	 Edward T. Hall, The Hidden Dimension (Garden City, NY: Doubleday, 1966), 107-122.

Figure 2.3.22	Edward T Hall’s Interpersonal Distances of man
By WebHamster, “File:Personal Space.svg,” Diagram Representation of Personal Space Limits, According
to Edward T. Hall’s Interpersonal Distances of Man, March 8, 2009, Wikimedia Commons, accessed
December 25, 2019, https://commons.wikimedia.org/wiki/File:Personal_Space.svg.

Figure 2.3.23	We can use these defined personal spaces to determine
the area around the agent in which they will be affected
From Shiffman, “Chapter 6. Autonomous Agents.”

Figure 2.3.24	Utilizing Fleeing behaviour to avoid other agents that
may have entered the Agent’s personal space
From Shiffman, “Chapter 6. Autonomous Agents.”

108 109

Technical Research |Abstracting the Human Systems Technical Research |Abstracting the Human Systems

agent to interact with them, or anything in between depending on
the objective. Simply put: if distance is less than r, apply force. (Fig.
2.3.23 - 24)

This basic distance-based calculation, while simple, is enough to set
a rule where agents have a higher urge to avoid something the closer
they are to it, emulating a behavior in the physical world where people
gradually move to avoid something they see in the distance, but move
much more quickly if they’re about to walk into it. This can also cover
physical behaviors, such as congestion when the space around the
agent becomes limited. (Fig. 2.3.25) In the future however, one can
consider additional levels of calculation; instead of a direct distance-
to-force correlation, this distance data—which itself can be influenced
by geography and culture—can instead be used to drive attributes
such as comfort and stress, which in turn, can be used to manipulate
the acceleration force that drives the agents. This additional level
of inference can introduce even more complex behaviors, such as
leaving if it becomes too uncomfortable, or subconsciously choosing
the lowest stress path towards their goal as they are moving. For this
prototype, however, simple distance-based calculations should be
enough to portray simple crowd movements at a macro scale.

With these three steps of Action selection, Steering, and Locomotion,
one can create a basic pathfinding system. This gives the agents a
means of navigation, allowing them to avoid various elements within
the simulation. (Fig 2.3.26)

Figure 2.3.25	Crowd density vs crowd flow rate graph
This crowd density vs crowd flow rate graph shows one example of how one might establish a correlation
for the personal spaces that drives the pathfinding of these agents.
From Keith Still, “Static crowd density (general),” Crowd Safety and Risk Analysis, accessed December 27, 2019, http://www.gkstill.com/Support/crowd-density/
CrowdDensity-1.html.

110 111

Technical Research |Abstracting the Human Systems Technical Research |Abstracting the Human Systems

Figure 2.3.26	Pathfinding flowchart
Illustrated by Author.

Locomotion 1

Add Steering Force to Acceleration

Locomotion 2

Add Acceleration to Velocity

Locomotion 4

Add Velocity to Position

Locomotion 5

Draw Agent at Position

Locomotion 6

Set Acceleration to 0

Steering (Cohesion 1)

Find Target Position by averaging
the position of surrounding

Agents

Steering (Cohesion 2)

Desired Velocity = Target Position -
Agent Position

Steering (Cohesion 3)

Steering Force = Desired Velocity -
Current Velocity

Steering (Alignment 1)

Find Average Velocity by averaging
the velocity of surrounding

Agents

Steering (Alignment 2)

Desired Velocity = Average Velocity

Steering (Alignment 3)

Steering Force = Desired Velocity -
Current Velocity

Steering

Limit Steering Force by normalizing
the vector and multiplying it by

Max Force

Locomotion 3

Limit Velocity by normalizing
the vector and multiplying it by

Max Speed

Steering (Seperation 1)

Find Target Position by averaging
the position of surrounding

Agents

Steering (Seperation 2)

Desired Velocity = Target Position -
Agent Position

Steering (Seperation 3)

Steering Force = Desired Velocity -
Current Velocity

Steering (Seperation 4)

Negate the Steering Force by
multiplying it by -1

Steering (Seek 1)

Desired Velocity = Target Position -
Agent Position

Steering (Seek 2)

Steering Force = Desired Velocity -
Current Velocity

Steering (Flee 1)

Desired Velocity = Target Position -
Agent Position

Steering (Flee 2)

Steering Force = Desired Velocity -
Current Velocity

Steering (Flee 3)

Negate the Steering Force by
multiplying it by -1

Action Selection

If Within Personal Space
(if distance less than

Personal Space radius)

Action Selection

If about to run into something
(if distance less than
Agent Body Radius)

Sensory System

Cycle thru all entities
in simulation and determine their
distance to Agent by subtracting

their position with Agent
Position

Sensory System (Sight)

If Within Agent Sight
(if distance less than

Sight Radius)

BEGIN
FRAME

PATHFINDING

LOCOMOTIONSTEERING

ACTION SELECTION

END
FRAME

SUBCONSCIOUS DESIRES (calculate all paths every frame)

NEXT FRAME

112 113

Technical Research |Abstracting the Human Systems Technical Research |Abstracting the Human Systems

Figure 2.3.27	Canadian census info-graphic breaking down the population into percentages
From Statistics Canada, “Journey to Work, 2016 Census of Population,” November 29, 2017, Government of Canada, accessed December 27, 2019,
https://www150.statcan.gc.ca/n1/pub/11-627-m/11-627-m2017038-eng.htm.

Decision Logic
After establishing the foundation that is the pathfinding system, the next
step is to build upon it by establishing the decision logic system. This system
determines how the agents choose their actions within the simulation and is
responsible for providing the main steering force of directing where the agents
need to go. While the previous section investigated how action selection
within locomotion dealt with the subconscious in-the-moment calculations
of deciding which way to turn to avoid an upcoming obstacle, this current
section will investigate how the decision logic deals with the conscious overall
goal of the agent within the space. In doing so, the agents can acquire a sense
of objective instead of mindlessly walking around the space.

The first step is to establish the method by which the agents can decide, which
at the simplest form, can be defined by a series of logic gates within a decision
matrix, composing of yes and no outcomes. These gates are created by utilizing
if/else statements within the programming language and can be controlled
using probability by generating a number between 0 and 100. This makes it
possible to define actions based on percentages, which allows for the injection
of non-uniformity with simple inputs. While this method may seem crude
in simulating individual human decisions, it is important to remember the
complexity that comes with human decisions and acknowledge “there are
certain phenomena and events in any environment where we have to consider
them as random because we simply have no better way of characterizing
them.”[21] The validity of this approach is further supported within Design
and Use of Computer Simulation Models, where they state that “most situations
in the real world have stochastic (randomly varying) properties because of
real (or assumed) ignorance of details. Sometimes these properties must be
modeled explicitly, but it is often sufficient to model situations as if they were
deterministic by using expected values of the variables.”[22]

Furthermore, the observation that individually can break down in larger
crowds means that populations can often be broken down into percentages
as well. The Canadian Census is a good example of this concept, in which
the population is broken down by categories and numbers. (Fig. 2.3.27) It is
shown here that in 2016, Canada had an employment rate of around 61%,[23]
with 74% of Canadians driving to work and 12% using public transit.[24] With
this, a simple city-sized traffic simulation might be created where each agent
would have a 61% chance of going to work, with a 74% chance of using a car
and 12% of taking transit. Even with each individual only utilizing one form
of transportation, the overall simulation will behave like a collective city. This
is in line with Sokolowski and C. Banks’ points, where they stated, “Random

21	 John A. Sokolowski and Catherine M. Banks, Principles of Modeling and Simulation: A
Multidisciplinary Approach (Hoboken, NJ: John Wiley, 2009), 36.

22	 James R. Emshoff and Roger L. Sisson, Design and Use of Computer Simulation Models (New York:
MacMillan Etc., 1976), 13.

23	 “Labour Force Characteristics, Monthly, Seasonally Adjusted and Trend-Cycle, Last 5 Months,”
Statistics Canada, accessed October 17, 2019, https://www150.statcan.gc.ca/t1/tbl1/en/
cv.action?pid=1410028701#timeframe.

24	 “Journey to Work, 2016 Census of Population,” Statistics Canada, November 29, 2017, accessed
October 17, 2019, https://www150.statcan.gc.ca/n1/pub/11-627-m/11-627-m2017038-eng.htm.

114 115

Technical Research |Abstracting the Human Systems Technical Research |Abstracting the Human Systems

event refers to occurring without a recognizable pattern. Random events can be
represented by statistical distributions that allow one to simulate these seemingly
random occurrences.”[25]

This is, of course, only one example of utilizing population percentages within a
crowd simulation. Different locations and cultures will need different studies, and as
such, it is impossible to accommodate all scenarios. This method of using probability
within decision making, however, can be utilized at varying degrees of scale and
accuracy, meaning the actual numbers of probability does not need to be 100%
accurate to create a believable decision within a crowd. Without doing extensive
population studies, logical assumptions can still be made to supplement these
variables. This means that at this stage of prototyping, it is possible to use simple
logical assumptions based on previously-studied crowd behaviors as a starting point.
It then becomes possible to generate probability variables and tweak it as required
based on the element within the system. For instance, within a gallery, it can be
assumed that larger displays will attract more attention than smaller displays; within
a shopping center, it can be assumed that larger or more general stores will attract
more attention than smaller or more niche stores; within a train stations, it can be
assumed that trains heading to downtown will attract more people than trains going
to the suburbs as a function of the time of day. While the resulting crowd might
not be as accurate as ones made with specific population studies, it will still have
enough nonlinearity to establish emergence within the system, allowing it to pass as
a believable visualization for architectural design.

These probabilities can be further manipulated by variables such as object distances,
attraction, and crowding, as well as agent energy, comfort, goals, and hunger. For
example, “[c]ognitive processing theories predict that people who move quickly are less
likely to find time for social responsibilities, particularly when those responsibilities
involve strangers.”[26] As such, one of these variables could be correlated to their
walking speed, where a faster speed would reduce the chance of the agent interacting
with others. While these additional variables are not mandatory at larger scales to
create realistic crowds, the consideration of each additional variable would provide
added complexity and realism at the smaller scale to each individual agent within the
system. It is, however, not feasible to implement all these considerations at this stage
of initial prototyping, thus it is important to be selective and focus on implementing
the more notable ones—such as object distance and crowding. (Fig. 2.3.25) The
notability of these two particular variables comes from the fact that they relate to
agent densities. By prioritizing this on the microscale, it is possible to improve agent
movements within higher traffic spaces on the macro scale. This in turn smooths
movement flows within the simulation.

Taking all this into account, the decision logic becomes like a probability-based
choose your own adventure game for the agents. If you are in a room with a door and
a chair, do you go to the chair? Or do you go to the door? If you choose the door,
what do you do in the next room? (Fig. 2.3.28 - 29) Each person might choose
something different, and while it may be impossible to know what each person will
choose, through the choices of many agents, the overall system will reflect a scenario
where a certain percentage of the population may choose the chair while another
25	 Sokolowski and Banks, Principles of Modeling and Simulation: A Multidisciplinary Approach, 49.
26	 Levine and Norenzayan, “The Pace of Life in 31 Countries,” 200.

percentage may choose the door. In an average population there will be a certain
percentage of people who would choose A, another percentage would choose B,
and yet another that would choose C. Depending on what these choices represent,
some of them might have a higher probability of being chosen compared to others.
None of these choices are right or wrong, but instead are utilized as a way of creating
distributions within the crowd in order to inform the decision-making process. This
is the potential of distributed agents; by simplifying these choices into percentages
on the individual scale, the illusion of choice is created for the individual and the
illusion of complexity is created within the collective.

70%

30%

Figure 2.3.28	If you are in a room with a door and a chair, do you go to the chair? Or
do you go to the door?
Illustrated by Author, chair and door graphics taken from “STEFAN Chair - Brown-Black,” IKEA, accessed December 28, 2019, https://
www.ikea.com/ca/en/p/stefan-chair-brown-black-00211088/, and “ReliaBilt Colonist Primed 6-Panel Hollow Core Molded Composite
Pre-Hung Door (Common: 30-in x 80-in; Actual: 31.5625-in x 81.6875-in),” Lowe’s, accessed December 28, 2019, https://www.lowes.

Figure 2.3.29	A decision Tree based on percentages
By Chooseco, from Sarah Laskow, “These Maps Reveal the Hidden Structures of ‘Choose Your Own Adventure’ Books,” June 13, 2017,
Atlas Obscura, accessed December 27, 2019, http://www.atlasobscura.com/articles/cyoa-choose-your-own-adventure-maps.

116 117

Technical Research |Abstracting the Human Systems Technical Research |Abstracting the Human Systems

Sensory System
The last system to establish is the sensory system, which allows the agents to
collect input data from the environment, similar to how humans can perceive
their surroundings. This system functions at the highest level of the human
systems and is responsible for generating a list of available elements to choose
from within the space before deciding which task to perform within the
decision logic system.

The five traditional senses of the human body consist of sight, hearing, taste,
smell, and touch.[27] Of these five senses, however, the most utilized sense
in typical crowd navigation is undoubtedly sight. This is evident when one
considers that while most people would have little trouble walking around
with headphones on, they would find it much more challenging with their eyes
closed. For this reason, this prototype will mainly utilize sight for obtaining
information for the agents within their virtual environment. While there are
benefits in adding other primary motivators (such as sound-based navigation
for visually-impaired occupants), it is beneficial to keep the systems simple at
this proof-of-concept prototyping stage. Much like other aspects, additional
senses can be introduced later depending on the project and the medium
being utilized for visualizing said project.

Recalling the introduction of autonomous agents in Chapter 2.2, one of the
main concepts is that they have a limited ability to perceive the environment.
Therefore, it is time once again to define some human limits for the system. A
quick investigation reveals that “the visual field of a normal human eye measures
(from point of fixation) 100 degrees temporally, 60 nasally, 75 superiorly and
60 inferiorly. Binocular (using both eyes) visual fields are approximately 200
degrees wide and 135 degrees tall, with a region of binocular overlap that is
120 degrees wide.”[28] (Fig. 2.3.30 - 31) These angles can be translated to
machine logic by utilizing the dot product, which allows the acquisition of
the angle between any two vectors. In doing so, an if/else condition can be set,
where only objects within a certain angle of the agent’s line of sight will be
added to the list of available elements. (Fig. 2.3.32)

Once a list of objects that the agent can see is acquired, the agent will then
need to differentiate what those objects are. When an agent sees a door, they
might be attracted to it, whereas when they see a wall, they might try to
avoid it. This is of course highly situational to the intended purpose of the
space; objects within a gallery will attract people as it can be assumed that
people came to see them, whereas advertisements at a train station might have
less attraction since they are not the main purpose of the space. Similarly, an
emergency door might not attract people until there is an emergency, whereas
a highly ornate wall might attract people even though they cannot go through
it. Nevertheless, due to these varying requirements, defining categories such
as walls, thresholds, people, and architectural elements becomes necessary. In

27	 A. Chapanis, “Review of the Human Senses,” Psychological Bulletin 51, no. 1 (01, 1954): 100-101,
doi:http://dx.doi.org.proxy.lib.uwaterloo.ca/10.1037/h0050962.

28	 Gislin Dagnelie, Visual Prosthetics: Physiology, Bioengineering and Rehabilitation (New York: Springer,
2011), 398.

Figure 2.3.30	Human Visual Limit- Top View
From “Environmental Considerations and Human Factors for Videowall Design,” Extron,
accessed December 28, 2019, https://www.extron.com/article/environconhumanfact.

doing so, the agents will be able to differentiate between the type of object they
are seeing and calculate an action accordingly. The agent will undoubtedly see
many elements at once, therefore, the ability to distinguish between these
objects will allow it to better choose which element they want to interact with.

The next step is to then identify and categorize the various elements within the
simulation system. Once this is done, individual IDs can be assigned to each
class of entities, where other descriptive variables can be assigned to further
customize these elements depending on their functionality within the space.
These objects will require customization for each design instance as a function
of the purpose of the space, which will be discussed further in the next chapter
(2.4) of this thesis.

Figure 2.3.31	Human Visual Limit- Side View
From “Environmental Considerations and Human Factors for Videowall Design.”

Figure 2.3.32	Sensory limit within simulation

118 119

Technical Research |Abstracting the Human Systems Technical Research |Abstracting the Human Systems

Logic gates
controlled by

randomly generated
numbers (based on

percentages)

SENSORY SYSTEM

Locomotion 1

Add Steering Force to Acceleration

Locomotion 2

Add Acceleration to Velocity

Locomotion 4

Add Velocity to Position

Locomotion 5

Draw Agent at Position

Locomotion 6

Set Acceleration to 0

Steering (Cohesion 1)

Find Target Position by averaging
the position of surrounding

Agents

Steering (Cohesion 2)

Desired Velocity = Target Position -
Agent Position

Steering (Cohesion 3)

Steering Force = Desired Velocity -
Current Velocity

Steering (Alignment 1)

Find Average Velocity by averaging
the velocity of surrounding

Agents

Steering (Alignment 2)

Desired Velocity = Average Velocity

Steering (Alignment 3)

Steering Force = Desired Velocity -
Current Velocity

Steering

Limit Steering Force by normalizing
the vector and multiplying it by

Max Force

Locomotion 3

Limit Velocity by normalizing
the vector and multiplying it by

Max Speed

Steering (Seperation 1)

Find Target Position by averaging
the position of surrounding

Agents

Steering (Seperation 2)

Desired Velocity = Target Position -
Agent Position

Steering (Seperation 3)

Steering Force = Desired Velocity -
Current Velocity

Steering (Seperation 4)

Negate the Steering Force by
multiplying it by -1

Steering (Seek 1)

Desired Velocity = Target Position -
Agent Position

Steering (Seek 2)

Steering Force = Desired Velocity -
Current Velocity

Steering (Flee 1)

Desired Velocity = Target Position -
Agent Position

Steering (Flee 2)

Steering Force = Desired Velocity -
Current Velocity

Steering (Flee 3)

Negate the Steering Force by
multiplying it by -1

Action Selection

If Within Personal Space
(if distance less than

Personal Space radius)

Action Selection

If about to run into something
(if distance less than
Agent Body Radius)

Decision Logic

Interact With

Decision Logic

Ignore

Decision Logic

Observe

Sensory System

Cycle thru all entities
in simulation and determine their
distance to Agent by subtracting

their position with Agent
Position

Sensory System (Entity Type)

If entity is Wall

Sensory System (Entity Type)

If entity is Threshold

Sensory System (Entity Type)

If entity is Object

Sensory System (Entity Type)

If entity is Object

Sensory System (Entity Type)

If entity is Agent

Sensory System (Sight 1)

If Within Agent Sight
(if distance less than

Sight Radius and Angle is less than
+/- 60 degrees from

Agent point of fixation)

Sensory System (Sight 2)

Determine the Entity Type

BEGIN
FRAME

PATHFINDING

DECISION LOGIC

LOCOMOTIONSTEERING

ACTION SELECTION

END
FRAME

C
O

N
SC

IO
U

S D
ESIR

ES (calculate 1 path every task)

SU
BC

O
N

SC
IO

U
S

D
ES

IR
ES

 (c
al

cu
la

te
 a

ll
pa

th
s

ev
er

y
fra

m
e)

CONSCIOUS DESIRES (calculate 1 path every task)

SUBCONSCIOUS DESIRES (calculate all paths every frame)

NEXT FRAME

LIST OF ENTITIES

Figure 2.3.33	Human systems flowchart
To summarize, the sensory system allows the
agent to see the environment, the decision
logic allows them to choose an action, and the
pathfinding allows them to perform said action.
By having many of these Humans interacting
with each other within the simulation, we
produce the illusion of a crowd.
Illustrated by Author.

120 121

Technical Research |Spatial Functions Technical Research |Spatial Functions

Chapter 2.4 | Spatial Functions
With the emergence of interactive and dynamic architecture, the occupants
are no longer the only possible dynamic elements within the space. The
human systems model that was established in the previous chapter (2.3) may
have been adequate for visualizing conventional static spaces, but would not
suffice in fully visualizing dynamic spaces, where elements of the space can
also change position or level of attraction. Since these interactive spaces are
dynamic, one must account for this and find a way to translate these dynamics
into a logic that the machine can understand. As such, much like for human
behaviors in the last chapter (2.3), the goal of this chapter (2.4) is to unpack
the methodologies for simulating these dynamic spaces and how they can
function within the virtual space.

As mentioned in Chapter 1.1, dynamic spaces can utilize both simple
passive elements such as water and sand features, as well as more complex
computational elements such as elevators, motorized louvers, and sensors.
While these spaces do not necessarily require computation and mechatronics
to be dynamic, the integration of such technologies greatly increases the
possibilities of spatial utilities within the space. These systems can incorporate
many elements with sensors and motors to create features that can respond
to natural forces, occupants, as well as operate on repetitive patterns. These
features can come in the form of projections on walls to motorized doors to
raising floors and ceilings, or anything else that designers can dream of, all of
which has the potential to communicate with one another, and at a multitude
of scales ranging from a single system imbedded within a room to networks of
subsystems that can span entire cities.

The typology of these elements can be very diverse, and is becoming even
more so with the addition of data-driven computational systems within
infrastructure. The problem with this intrinsic diversity is that it causes
complications in simulating these objects, as the variety of functions makes it
challenging to develop a singular system that works for every scenario. Since
each object can potentially have a different function, the software that controls
them in the physical world would need to be customized and tailored to each
specific instance, meaning that this logic would then need to be recreated
within the simulation model depending on the functionality and utility of the
object. As such, one cannot use the same code for every element, but instead
must create a generic model and tailor to the functionality of the object, the
typology of the space, and the specific scenario of the simulation. While it is
true that this might make it more challenging to find a universal system that
works for every scenario, one can overcome this by simplifying its processes
into parts. Much like the process of establishing the human systems in the last
chapter (2.3), one can create a framework where functionalities can be added
depending on the typology and functionality of the space and its elements.

A basic understanding of these systems is required to create this framework—
specifically on how they work and what these resulting spaces may entail.
In Mike Crang and Stephen Graham’s article, “Sentient Cities Ambient
intelligence and the politics of urban space,” they talk about three different
typologies in which an urban environment can become automated through
ubiquitous computing systems.[1]

Augmenting space relies on the fact that the existing environment
has already been saturated with information. Computing systems
can utilize this physical information using sensors and tracking to
overlay new digital media on top of the existing structures. This
allows users to both see the physical world as well as the dynamic
graphical information of the virtual world. This produces a
reactive environment where emphasis is placed on the user’s
activity.

Enacting space relies on the fact that computation inhabits
everything around us, ranging from the things we carry on our
bodies, to the cars on the streets, to the infrastructures of our
cities. Unlike augmenting space, which emphasizes the user’s
activity, this approach further utilizes intermediary processes,
which reallocates agency back to the environment. This allows
the computer system to suggest through the interaction of space
or the display of data.

Transducing space relies on the digitalization and identification
of people, where the layering and cross-referencing of identities
allow the system to form a technological consciousness through
the automation of data without cognitive inputs. This type of
space can recognize its occupants and allow for autonomous tasks
but comes at the cost of user awareness and user agency.

It is evident that these approaches all utilize data in some form. Environments
have always been saturated with information in the forms of signage and
the existence of occupants and objects, but it has only been recently that
technology has begun to utilize this information by converting it into digital
data with various sensors, cameras, and machine vision. This translation of
analog-to-digital allows us to blur the boundary between the physical and the
virtual, which not only provides greater flexibility in data utilization but also
allows us to redefine spatial functionalities by creating homogeneous spaces
of technological integration. By manipulating this data in different ways, it is
possible to influence the distribution of agency within the space, which can in
turn affect spatial operation in unforeseen ways.

1	 Mike Crang and Stephen Graham, “Sentient Cities Ambient Intelligence and the Politics of
Urban Space,” Information Communication and Society 10, no. 6 (2007): 792–794, https://doi.
org/10.1080/13691180701750991.

122 123

Technical Research |Spatial Functions Technical Research |Spatial Functions

This redistribution of agency presents the concept of architectural
consciousness, which can result from emergence introducing unpredictability
within the architectural space. It has been shown that it does not take much
to infer a sense of consciousness in humans, as the human brain has been
wired to see patterns and relate to them. (Fig. 2.4.1) As such, when a space
becomes unpredictable, humans instinctively try to create their own patterns
from what they infer from the environment. This phenomenon can be seen
in the installation “Fearful Symmetry” by Ruairi Glynn, which consists of
a moving light that interacts with the public using sensors.[2] (Fig. 2.4.3)
Through intermediary processes between the human interactions and the
movement of light, the illusion of personality is given to the object, blurring
the line between the conscious humans and the unconscious objects. In Fox’s
words, “as we embrace a world in which the lines between the physical and the
digital are increasingly blurred, we see a maturing vision for architecture that
actively participates in our lives.”[3]

If something as simple as a light can infer consciousness to the occupants,
imagine the potential ramifications when these dynamic objects are connected
to a network and gain the capacity to communicate with each other. Within
such a space, the boundary between the occupants and the architecture break
down as agency is exchanged through interaction. Not only do humans
have an identity, but the objects have an identity as well. Since everything is
connected, the system has the capacity to know not only where the user is but
also where the object is. Because of this, the system can catalog datasets of user
identity as well as object identity. It is then possible to consider the implications
of a collective identity, where a database of memory can track the history of
every object and user within the system. (Fig. 2.4.2)

As current infrastructures become increasingly intelligent, new considerations
for identity as well as agency becomes increasingly relevant. This city of
distributed intelligence then becomes the container of the identities of both
human and objects alike. While not all systems will be this extreme, it is
important to accommodate for this within the simulation model to maximize
the variation that can be supported by the framework. A sensory based system
will function differently than an identity-based system, as such it becomes
important to consider these aspects when creating the overall system, as they
have much impact on the space’s overall function.

This idea of a collective identity also presents an interesting proposition in
replicating these results within this simulation. Having a database of history for
not only the objects, but the users as well, means that the physical world begins
to operate much like the virtual world, which allows a more direct approach to
simulating these spaces. By utilizing these identities to track, categorize, and
organize the various entities within the space, a system of interactions can be
created within the simulation, which further blurs the boundary of human
occupants and dynamic objects. As these dynamic architectural elements
become increasingly similar to the human crowds that occupy these spaces,
2	 Ruairi Glynn, “Fearful Symmetry,” accessed October 18, 2019, http://www.ruairiglynn.co.uk/

portfolio/fsymmetry/.
3	 Fox, Interactive Architecture: Adaptive World, 9.

Figure 2.4.1	 The face on mars
Although simply a rock formation, bears
resemblance to a human face due to our
tendencies of seeing patterns within nature.
This is known as Pareidolia, which is also
what causes us to see shapes in the clouds.
From “Unmasking the Face on Mars,” NASA Science, accessed
December 28, 2019, https://science.nasa.gov/science-news/science-at-
nasa/2001/ast24may_1.

Figure 2.4.2	 Google Maps
Google maps is one example of how
collective identities within a system
can influence physical spaces. It utilizes
datasets of maps and users to generate real
time traffic navigation overlayed ontop of
updated maps. While entirely digital, it has
the capacity to influence the physical flow
of traffic through its distribution of digital
information to the general population. This
changes people’s behaviors, which in turn
allows the virtual platform of information
to indirectly influence various physical
platforms of the city.
Google Maps Android application, screen-captured by Author.

Figure 2.4.3	 Fearful Symmetry by Ruairi Glynn
By Ruairi Glynn, “Fearful Symmetry,” accessed October 18, 2019, http://www.ruairiglynn.co.uk/portfolio/fsymmetry/.

124 125

Technical Research |Spatial Functions Technical Research |Spatial Functions

one can revisit the methodologies from establishing the human systems in
Chapter 2.3 and adopt a similar mindset for simulating these objects. This
approach allows the adoption of a framework for establishing the entities
within the system regardless of what typology they may be, whether they are
the human agents or the architectural objects.

Revisiting the human systems in Chapter 2.3, it can be seen that they are based
on the concept of autonomous agents, which are defined by their limited
ability to perceive the environment, their ability to process the information
from its environment to calculate an action, and their lack of a leader. While
these three rules all applied to autonomous human crowds, the third rule of
lacking a leader does not necessarily need to apply to these dynamic objects,
as they can be programmed to follow a leader if need be. This leaves us with
the first two rules, which are the limited ability to perceive the environment
and the ability to process the information to calculate an action. This can be
broken down further into the basic stages of an input, processing, and an
action, which allows the deduction of how these systems can be manipulated
by relating it back to the three human systems that were established within
Chapter 2.3.

The input, which is functionally similar to the sensory system of the
human, determines how the object can perceive the environment
and what kind of trigger necessitates an interaction from the
object. This data can be obtained from various sources such as the
occupants, the environment, or self-generated from algorithms,
and can be stored as variables for use in the processing stage.

The processing, which is functionally similar to the decision logic
of the human, determines how the object might utilize the data
if it has to decide on an action. Within this stage, data is utilized
to manipulate variables depending on the function of the object.
This manipulation can be very flexible, ranging from nonexistent
to space altering; where the input variable is unchanged and
directly used within the output, to an algorithm where the color
of a light can correlate to the number of occupants within the
space.

The action, which is functionally similar to the pathfinding of
the human, determines how the object might respond due to
environmental and human contact. These are functions that
utilize the processed variables to update the attributes of the
object.

Simplifying this method into its basic stages helps to overcome the potential
complexities that come with the varied typology of these objects. However,
while this might be enough for simulating smaller spaces with a limited
number of objects, for larger, more complex spaces, one will also need to
account for the whole picture and investigate the organization and movement
of data throughout the system. In Rob Kitchin and Martin Dodge’s book,

Code/Space, they talk about software that is embedded in everyday life at four
levels of activity, terming coded objects, coded infrastructure, coded processes, and
coded assemblage.[4]

Coded objects rely on software to function, which can include
credit cards to flash drives to phones. This is the most personal
level of activity since most objects on this level belong to the
user. As such, they offer a primary source of identification as the
user travels throughout the environment. Examples of this can
be observed in credit cards and how they contain identification
to bank accounts, or how phones can contain various forms
of personal information ranging from e-mail accounts to GPS
locations to microphone recordings. This is also the current
main form of human computer interaction through electronic
devices such as personal laptops or phones. This level of activity
is important as it allows the most precise form of data collection
in a distributed system, where the identification of the object is
essentially the identification of the human.

Coded infrastructures are networks that can link coded objects
together. They are an infrastructure that can be monitored,
regulated, or interactive. Unlike coded objects, these elements
are mostly built within the environment, and as such need to be
integrated directly into the design of the space. As these systems
are largely physical elements that need to be incorporated into
spaces, elements within this layer contain the main challenge
of transitioning an existing space into an intelligent interactive
space.

Coded processes are the transition of data across coded
infrastructure. It acts as a technological unconsciousness that
drives the hardware within everyday space. This invisible layer
of data is only revealed through the inference of mechanical
elements or the graphical visualizations of a user interface. It is
because of this technological unconsciousness that allows these
complex systems to function as well as to connect to each other.

Coded assemblages are where the convergence of multiple
sources of coded infrastructure are present to create a nested
system that is in parallel. These systems include automation of
local spaces such as hospitals, warehouses, transportation, etc.
where they essentially allow the organization of local spaces
within the distributed intelligence as a whole. From this, they
can form almost-closed systems with minimal input and output
to minimize impact from external noise.

4	 Rob Kitchin and Matin Dodge, Code/Space: Software and Everyday Life, Software Studies (MIT
Press, 2011), 5.

126 127

Technical Research |Spatial Functions Technical Research |Spatial Functions

By understanding the various levels of activity that are present within these
dynamic spaces, one can begin to realize the different ways these objects can
function not only individually but also together within a space of distributed
intelligence. With this, all the required concepts of this framework are now
established. As such, it is now possible to logically deduce the best way of
simulating these spaces.

A motorized window louver for example, can operate by time of day, where a
rotation value is set by a specific time variable; by environmental temperature,
where the louver communicates with other coded infrastructures such as
temperature sensors to acquire a temperature variable; or by occupancy
number, where the amount of people within the space can be determined
either by coded infrastructure such as proximity sensors, or coded objects
such as cellphones that the occupants are carrying. Within all three of these
scenarios, the louver operates at the coded infrastructure level but has the
option of utilizing different forms of coded processes as well as different
forms of input to achieve a similar result. The dynamics of these louvers can
arise as a pre-defined action or as a function of human and environmental
interaction, where the output action can be as simple as defining a rotational
degree variable, to additional deployment percentages, opacity, and any other
attributes depending on the typology of the louver.

This example is just one possibility, but in reality the typology of these objects
can be limitless, ranging from lights, to projections, to mechatronics, to
furniture, all of which may react to sound, temperature, ambient lighting,
occupancy numbers and identities, or be simply pre-programed from a pattern
or noise. As already discussed, this diversity poses a challenge for developing
a singular method for simulating these objects, but fortunately, unlike human
crowds where one must translate from analog behaviors to digital functions,
these dynamic objects already operate on a code-based hierarchy.

This digital to digital translation makes this a much simpler process compared
to establishing the human systems from the past chapter (2.3). There is no
longer a need to interpret analog behaviors to create a new system, instead,
one can replicate directly the digital logic of the software that controls the
dynamic objects in the physical world. Fox remarks on this by stating, “The
sensors and robotic components are now both affordable and simple enough
for the design community to access; and all of the parts can be easily connected
to each other. Designing interactive architecture in particular is not inventing
so much as understanding what technology exists and extrapolating from it
to suit an architectural vision.”[5] What this means is that as long as one has
a rough understanding of how these objects operate in the physical world, as
well as considered the different urban typologies that may arise, as well as how
these objects might be connected within a larger system through software, then
one can simulate these objects by establishing its input, its processing, and its
action. In essence, simulating these objects is less about developing a specific
algorithmic model, but rather developing a methodology to understand and
simplify these objects into their fundamental qualities.

5	 Fox, Interactive Architecture: Adaptive World, 12.

Therefore, when creating such an object, the steps can be as follows:

1.	 Determine its functionality, whether it is a louver, a light,
or a piece of furniture.

2.	 Assign attributes to the object that defines what it can do.
A light might have an RGB variable as well as a brightness
variable. A louver might have a rotational degree variable,
to additional deployment percentages, opacity, and any
other attributes depending on the typology of the louver.
A reactive mechatronic sculpture might have a position
variable along with lighting RGB and brightness, as well
as a sensor that tracks the number of nearby people.

3.	 Consider its input, whether it is a human intervention
such as a touch input from touchscreen, or proximity
sensor, or sound; An environmental intervention such as
temperature, daylighting, or air pressure; Or predefined
algorithms such as a written message, or a generated
pattern.

4.	 Consider its processing in relation to its attributes, whether
it is a direct translation such as simply displaying the
temperature on a medium, or if it utilizes intermediary
processes such as generating a color and a location
based on the number of occupants within a set space, or
creating various profiles based on user identities within
the building.

5.	 Consider its action/output, whether it is simply an object
that can be moved, or if it lights up from a source, or if
it projects onto a wall, or if it moves within a space, or if
it deforms from interaction, or if it does all of these and
more.

This same methodology can also be utilized to simulate some of the simpler
elements mentioned in Chapter 1.1 such as a water fountain. Undisturbed,
the fountain will have a pre-defined function to determine the state of its
water texture within the environment. Upon a touch input by the occupants,
however, it will utilize a function to generate ripples, in which it will output
to the location of the touch input.

128 129

Technical Research |Prototyping the System Model Technical Research |Prototyping the System Model

Chapter 2.5 | Prototyping the System Model
Up until this point, the systems that were developed in Chapters 2.3 and 2.4 are
still theoretical concepts of how behavioral patterns might be translated into
machine logic and how that might interact with coded infrastructure. Now
that all the major components of this methodology have been considered and
developed, we can begin the technical exercise of coding these concepts within
a simulation system to prototype and assess the validity of this approach.

At this stage of prototyping, we can utilize Integrated Development
Environments (IDEs), which are software applications that facilitate the
development of software.[1] These programs generally include various tools
built on top of a text-based source code editor to help maximize programmer
productivity.[2] While there are many forms of IDEs with various degrees of
technicality and flexibility, the Java-based IDE processing has been chosen for
this prototype, due to its familiarity (since I have already used this software in
previous elective courses) and its visual user interface (which better facilitates
my learning process of computer programming). Because of these aspects,
I can both assess the validity of these human systems to see if they work in
practice as well as in principle while I familiarize myself with the fundamentals
of computer programming, which will be an invaluable skill moving forward
with the creation of this framework tool and in life.

Within the earlier chapters (2.3 & 2.4) we broke down the simulation into
the autonomous human agents and static/dynamic architectural elements,
where they can be further classified as different objects within the system.
In computer science, this concept is known as object-oriented programming
(OOP), where the code is organized based on defining individual objects
to interact with each other within the system. As already suggested by the
autonomous agents defined in Chapter 2.3: Abstracting the Human Systems,
and the methodology specified in Chapter 2.4: Spatial Functions, these objects
themselves can contain attributes in the form of variables that can be modified
by functions in the form of procedures.[3] Following this approach then allows
the objects to effectively represent real life entities, which in turn allows us
to simulate a variety of entities ranging from fluid particles to autonomous
human agents to both static and dynamic architectural elements, making this
a highly appropriate method for prototyping such a simulation.

While this prototype can be somewhat crude, it shows that the concept of
these human systems is able to produce results somewhat resembling humans
moving through the space, which demonstrates that there is merit in this
methodology of simulating complex human crowds by these simple systems.
(Fig. 2.5.1 - 2)

1	 “What Is an Integrated Development Environment (IDE)?,” Veracode, May 9, 2019, accessed
October 18, 2019, https://www.veracode.com/security/integrated-development-environment.

2	 “What Is an IDE?,” Codecademy, accessed October 18, 2019, https://www.codecademy.com/
articles/what-is-an-ide.

3	 John Lewis and William Loftus, Java Software Solutions: Foundations of Program Design (Boston:
Addison-Wesley, 2012), 44-51.

Figure 2.5.2	 Cushion invites people to walk through a narrow corridor. The light filled ballons change color as
people interact with them.
Filmed by Author.

Figure 2.5.1	 Prototype 2D Simulation created in Processing, based on the Nuit Blanche Installation Cushion
CAD file from the Cushion group, simulated and screen-recorded by Author.

Part 3 | Tool Creation
Constructing the Simulation Tool

133

Constructing the Simulation Tool

This section will focus on translating the methodologies developed throughout Part
2: Technical Research and integrating them within a game engine. Chapter 3.1 will
investigate various types of game engines and the reasoning behind choosing a specific
one. Chapter 3.2 will look into the fundamentals of the chosen game engine to
establish what is required to create a crowd simulation tool within this new software
environment. Chapter 3.3 will be focusing on creating the human agents within
this simulation by re-establishing the human systems model that was defined in
Chapter 2.3, as well as defining additional considerations and requirements inherent
in moving to this new Game Engine software environment. Chapter 3.4 will be
establishing different ways of creating various architectural objects that the human
agents can interact with, as well as defining some generic base objects within the tool
that can be utilized for many project scenarios. Chapter 3.5 will investigate ways to
create and import context from both within and outside of the game engine. Chapter
3.6 will define a possible workflow for setting up and utilizing this simulation tool
for practical architectural visualization use.

134 135

Tool Creation |Utilizing the Gaming Engine Tool Creation |Utilizing the Gaming Engine

Chapter 3.1 | Utilizing the Gaming Engine
Now that we have established the methodology of these human systems and
verified the validity of them within a processing-based simulation prototype, we
can begin to integrate this within a game development environment to create
a usable framework for architectural visualization. At this stage, it is possible
to add extra features to the system to enhance it from a two-dimensional
dot-based representation of spatial movement to a system that resembles a
crowded space. There are of course many ways to do this in processing, but
the problem with this approach lies in the relatively low levels of abstraction
available compared to other applications such as the game engines mentioned
in Chapter 1.3. While processing is great for learning the fundamentals of
programming, the game engine is a much more effective tool to continue
developing this framework.

As expected, there is a large variety of game engines, examples of which
includes the Quake family of engines, Unreal Engine, Half-Life Source Engine,
DICE’s Frostbite, Rockstar Advanced Game Engine (RAGE), CRYENGINE,
Sony’s PhyreEngine, Microsoft’s XNA Game Studio, and Unity.[1] While all
these engines have their own strengths and weaknesses, as well as their own
production pipelines, I have chosen to utilize Epic Game’s Unreal Engine 4
(UE4) for its extensive documentation, photorealistic rendering engine, and
visual scripting system, as these seem most in sync with the expectations of an
architectural study.

Extensive Documentation: This is an important consideration when
learning a new software. UE4 offers extensive documentation on their
website[2] as well as a tutorial series and live training on platforms such
as YouTube and Vimeo.[3] On top of this, there are also many forms of
third-party tutorials online from various sources.[4]

Photorealistic Rendering Engine: This feature is important for
architectural visualization to better situate these visualizations
within their physical context. UE4 offers many features to aid in the
production of photorealistic visualizations, including: Physically-
based Materials, pre-calculated bounce light via Lightmass, Stationary
lights using IES profiles (photometric lights), and post processing,
reflections.[5]

Visual Scripting System: This is perhaps the most significant reason
for choosing UE4 in this tool creation. This feature, which is aptly
named blueprints within UE4, is a Node based graph editor with an
interface that is very similar to other software such as Grasshopper
and Dynamo, both of which are utilized within the architectural

1	 Gregory, Game Engine Architecture, 31-36.
2	 “Unreal Engine 4 Documentation,” Unreal Engine Documentation, accessed October 18, 2019,

https://docs.unrealengine.com/en-US/index.html.
3	 “Unreal Engine,” YouTube, accessed October 18, 2019, https://www.youtube.com/channel/

UCBobmJyzsJ6Ll7UbfhI4iwQ.
4	 “Unreal Engine Tutorial in Videos on Vimeo,” Vimeo, accessed October 18, 2019, https://vimeo.

com/search/page:2?q=unreal+engine+tutorial.
5	 “Realistic Rendering,” Unreal Engine Documentation, accessed October 18, 2019, https://docs.

unrealengine.com/en-US/Resources/Showcases/RealisticRendering/index.html.

Figure 3.1.1	 Parametric node system within Grasshopper
By David Rutten, “File:Grasshopper MainWindow.png,” A Screen Shot of the Grasshopper Main Window,
2011, Wikimedia Commons, accessed December 28, 2019, https://commons.wikimedia.org/wiki/
File:Grasshopper_MainWindow.png.

Figure 3.1.2	 Material node system within 3ds Max
Screen-captured by Author.

Figure 3.1.3	 Scripting node system within Unreal Engine 4
Default character asset script within UE4, screen-captured by Author.

https://www.youtube.com/channel/UCBobmJyzsJ6Ll7UbfhI4iwQ
https://www.youtube.com/channel/UCBobmJyzsJ6Ll7UbfhI4iwQ
https://vimeo.com/search/page:2?q=unreal+engine+tutorial
https://vimeo.com/search/page:2?q=unreal+engine+tutorial
https://docs.unrealengine.com/en-US/Resources/Showcases/RealisticRendering/index.html
https://docs.unrealengine.com/en-US/Resources/Showcases/RealisticRendering/index.html

136

Tool Creation |Utilizing the Gaming Engine

industry for parametric modeling.[6] (Fig. 3.1.1 - 3) This familiarity
provides a type of visual scripting that is intuitive for people coming
from predominantly visual fields such as architecture, which in turn
provides a smooth translation of skillsets and toolsets already within
architectural design and visualization.

While this tool may seem vastly different when compared to processing,
one should remember that the syntax or the code is not what is important,
but rather the methodology. Fortunately, we have already established this
methodology through Part 2: Technical Research of this thesis; as such, this part
will investigate the utilization of this established methodology to recreate the
human agents and the spatial entities of this system—within this new software
environment that is Unreal Engine 4.

6	 “Blueprint Editor Reference,” Unreal Engine Documentation, accessed October 18, 2019, https://
docs.unrealengine.com/en-US/Engine/Blueprints/Editor/index.html.

https://docs.unrealengine.com/en-US/Engine/Blueprints/Editor/index.html
https://docs.unrealengine.com/en-US/Engine/Blueprints/Editor/index.html

138 139

Tool Creation |Asset Creation Tool Creation |Asset Creation

Chapter 3.2 | Asset Creation
The organization of UE4 follows an object-based approach, which is similar
to the OOP methodologies that were utilized within the processing prototype
in Chapter 2.5. Because of this, we already have a rough idea of what we need
to create within this new environment—we just need to familiarize ourselves
with the local syntax.

Compared to processing, Unreal Engine has a more intuitive file-based system
for handling entities within its software environment. As such, its base building
blocks are appropriately referred to as objects.[1] These objects contain much
of the lower-level code required to provide “under the hood” functionalities,
and when sterilized to a file, they are referred to as an asset, which is a piece of
content within Unreal Engine 4.[2] (Fig. 3.2.1) Of these assets, the ones that
allow additional functions to be scripted are referred to as blueprint classes.
These blueprint classes can then be broken down into the following generic
types:[3]

Actor: “[A]n object that can be placed or spawned in the world.”[4]

Pawn: “[A]n Actor that can be “possessed” and receive input from a
Controller.”[5]

Character: “[A] Pawn that includes the ability to walk, run, jump,
and more.”[6]

Player Controller: “[A]n Actor responsible for controlling a Pawn
used by the player.”[7]

Game Mode: “[D]efines the game being played, its rules, scoring, and
other faces of the game type.”[8]

The fact that assets are objects that are serialized to a file means that they can be
utilized within many different UE4 projects. Therefore, if we want to create
a crowd simulation tool that can be used within many types of architectural
projects, we must create an asset package. As such, this chapter will investigate
the creation of these assets based on our defined methodologies from Part 2:
Tool Creation. Looking back at our system model, we then need to establish
two main asset types within UE4: the human agents and the architectural
objects.

1	 “Unreal Engine 4 Terminology,” Unreal Engine Documentation, accessed October 18, 2019,
https://docs.unrealengine.com/en-US/GettingStarted/Terminology/index.html.

2	 “Assets and Packages,” Unreal Engine Documentation, accessed October 18, 2019, https://docs.
unrealengine.com/en-US/Engine/Basics/AssetsAndPackages/index.html.

3	 “Blueprint Class,” Unreal Engine Documentation, accessed October 21, 2019, https://docs.
unrealengine.com/en-US/Engine/Blueprints/UserGuide/Types/ClassBlueprint/index.html.

4	 Unreal Engine Documentation, “Blueprint Class.”
5	 Unreal Engine Documentation, “Blueprint Class.”
6	 Unreal Engine Documentation, “Blueprint Class.”
7	 Unreal Engine Documentation, “Blueprint Class.”
8	 Unreal Engine Documentation, “Blueprint Class.”

Figure 3.2.1	 Game assets within project browser
Screen-captured by Author.

https://docs.unrealengine.com/en-US/GettingStarted/Terminology/index.html
https://docs.unrealengine.com/en-US/Engine/Basics/AssetsAndPackages/index.html
https://docs.unrealengine.com/en-US/Engine/Basics/AssetsAndPackages/index.html

140 141

Tool Creation |Human Agents Tool Creation |Human Agents

Chapter 3.3 | Human Agents
The first step to creating the human agents within this software environment
is to set up the data structure of the agent. As such, we need to create the
following assets within the content browser: AI Controller, Blackboard,
Behavior Tree, and Character Class.[1]

AI controller: This is the blueprint controller that controls the agent’s
mental actions, which acts as the container for all decision branches
the agent will utilize. From this, the AI controller will select a resulting
state according to the agent’s choice and set it within the blackboard.

Blackboard: This is a container to store all the different states the
agent can be in.

Behavior tree: This is a tool that controls all the physical actions of the
agents. It will command a series of pre-established actions depending
on the state of the agent set within the blackboard.

Character class: This blueprint class acts as a container for the physical
attributes of the agents and is the physical entity that moves within
the game environment. As such, this class would generally include
assets such as the 3D model of the agent as well the textures that may
be associated with it.

With this, we can establish a rough idea of how the agents will function within
the software. As the agents explore the space, they will receive environmental
input. They will then use this input to decide what action to take within the
AI controller. This choice will then be used to set the agent state within the
blackboard which will then be utilized by the behavior tree to determine a set
of tasks the agent will perform. Once the agent finishes performing this task, it
can then do additional tasks or return to a default state, in which the cycle will
start over. Within the simulation, each agent will have their own independent
copy of these assets, as such, they will function and interact independently
from each other—much like how real humans do.

From here, the next step would be to re-establish the human systems from
Chapter 2.3, which are the sensory system, the decision logic, and the
pathfinding. We already established the components of this system, however,
we can revisit our human systems from the top down instead of bottom up.
This allows us to approach this problem in a sequential logical order to create
our agents. There are, of course, various tools within UE4 to help us recreate
these systems; therefore, this chapter will investigate the processes of doing so.

1	 “Behavior Tree Quick Start Guide,” Unreal Engine Documentation, accessed October 18,
2019, https://docs.unrealengine.com/en-US/Engine/ArtificialIntelligence/BehaviorTrees/
BehaviorTreeQuickStart/index.html.

Figure 3.3.1	 How each asset will be utilized within this software environment
Illustrated by Author.

AI Controller

Acts as the conscious brain of the
Agent by establishing the

Decision Logic

Blackboard

Stores Agent Variables that are used
to communicate between the AI
Controller and the Behavior Tree

Behaviour Tree

Tells the Character Class what to do
After the AI Controller makes

a decision

Character Class

Contains the physical attributes of
the Agent

https://docs.unrealengine.com/en-US/Engine/ArtificialIntelligence/BehaviorTrees/BehaviorTreeQuickStart/index.html
https://docs.unrealengine.com/en-US/Engine/ArtificialIntelligence/BehaviorTrees/BehaviorTreeQuickStart/index.html

142 143

Tool Creation |Human Agents Tool Creation |Human Agents

Sensory System
The first and top level of these systems is the sensory system, which allows
our agents to be able to see the environment. Within processing, we had to
manually calculate this by utilizing the dot product and then limiting the
angles with if/else statements, but within UE4, this becomes much easier
and more intuitive to establish. The reason for this is largely due to the tools
provided within UE4, such as AI perception and the Environment Query System
(EQS).

AI perception is a component that can be added to the AI controller,
which can then be used to define various senses that the agents can
utilize. (Fig. 3.3.2) These senses can include traditional ones such as
sight, hearing, and touch, to nontraditional game-related ones such as
damage and team.[2] As established in Part 3, sight is by far our most
dominant sense so at this stage we will only be implementing sight for
the agents. The agents can then use this to determine the location and
type of anything they see, as well as the time in which they last saw it.

Environment Query System (EQS) is a feature that allows the agents
to collect data from the game environment. It does this by performing
a series of tests to determine the best location option depending on
the set parameters.[3] The agents can use this system to determine the
best location around other entities based on a multitude of other
factors such as distance and sight. (Fig. 3.3.3)

Both of these tools would then be able to return a variable within their
respective systems, which can then be used within the next stages of these
human systems.

2	 “AI Perception,” Unreal Engine Documentation, accessed October 18, 2019, https://docs.
unrealengine.com/en-US/Engine/ArtificialIntelligence/AIPerception/index.html.

3	 “Environment Query System Quick Start,” Unreal Engine Documentation, accessed October 18,
2019, https://docs.unrealengine.com/en-US/Engine/ArtificialIntelligence/EQS/EQSQuickStart/
index.html.

Figure 3.3.2 - 3.3.3
AI perception and EQS offer
different ways for the agents
to acquire data from their
surrounding environment.

Figure 3.3.2	 AI perception
Simulated and screen-recorded by Author.

Figure 3.3.3	 EQS trace test
From “Environment Query System Overview,” Unreal Engine Documentation, accessed December 28, 2019, https://docs.unrealengine.com/en-US/
Engine/ArtificialIntelligence/EQS/EQSOverview/index.html.

https://docs.unrealengine.com/en-US/Engine/ArtificialIntelligence/AIPerception/index.html
https://docs.unrealengine.com/en-US/Engine/ArtificialIntelligence/AIPerception/index.html
https://docs.unrealengine.com/en-US/Engine/ArtificialIntelligence/EQS/EQSQuickStart/index.html
https://docs.unrealengine.com/en-US/Engine/ArtificialIntelligence/EQS/EQSQuickStart/index.html

144 145

Tool Creation |Human Agents Tool Creation |Human Agents

Decision Logic
The next level of these systems is the decision logic, which allows our agents to
choose an action when they see an object within the environment. This can be
accomplished within the AI controller class, which contains an EventGraph
that allows a form of visual scripting with various elements such as:[4]

“Events are nodes that are called from gameplay code to begin
execution of an individual network within the EventGraph.”[5]

Functions are node graphs within blueprints that can be executed to
perform a specific function.[6] These can be utilized throughout the
EventGraph to change variables and divert the flow of execution.

“Variables are properties that hold a value or reference an Object
or Actor in the world.” [7] These can be utilized to store or reference
various types of data within the blueprint.

Components are sub-objects that can be attached to actors. These can
be used to give additional functionalities to the actor.[8]

There are certainly many more types of elements within these event graphs,
but for the most part, these are the main elements that make up most of
this decision logic system. These elements can then be connected to form a
decision network, which allows the agents to take a step-by-step approach to
establishing their choices. (Fig. 3.3.5) While this may look very complicated,
it is a rather straightforward process:

The first step begins with the Event Node. These elements begin the execution
of nodes down an individual network of functions, and can be triggered in
many ways, including but not limited to every frame, set time interval, when
a key is pressed, and in the context of AI perception, whenever the agent sees
something.[9]

Once the agent sees something, the AI perception Event Node begins a line of
execution down the network where we can utilize a number of Boolean-driven
branch nodes to divert the execution line. (Fig. 3.3.6) The Booleans that drive
these branch nodes can be defined in various ways, but for this simulation,
we can utilize the concept of percentages we defined from Chapter 2.3. With
this, we can generate a random number between 0 and 1, where 1 is 100%
yes, 0 is 0% yes or 100% no, and 0.56 is 56% yes or 44% no, etc. (Fig. 3.3.7)
With this we can perform a series of checks throughout the logic network to

4	 “EventGraph,” Unreal Engine Documentation, accessed October 18, 2019, https://docs.
unrealengine.com/en-US/Engine/Blueprints/UserGuide/EventGraph/index.html.

5	 “Events,” Unreal Engine Documentation, accessed October 18, 2019, https://docs.unrealengine.
com/en-US/Engine/Blueprints/UserGuide/Events/index.html.

6	 “Functions,” Unreal Engine Documentation, accessed October 18, 2019, https://docs.unrealengine.
com/en-US/Engine/Blueprints/UserGuide/Functions/index.html.

7	 “Blueprint Variables,” Unreal Engine Documentation, accessed October 18, 2019, https://docs.
unrealengine.com/en-US/Engine/Blueprints/UserGuide/Variables/index.html.

8	 “Components,” Unreal Engine Documentation, accessed October 18, 2019, https://docs.
unrealengine.com/en-US/Programming/UnrealArchitecture/Actors/Components/index.html.

9	 Unreal Engine Documentation, “Events.”

Figure 3.3.4	 Simplified visual scripting process within UE4
Illustrated by Author.

determine the final action of the agent. Is the agent seeing an object? If yes,
is the agent currently doing something? If no, is the agent interested in this
object? If yes, does it want to observe and admire it or interact with it? If
interact, then set AgentState to Interact. (Fig. 3.3.8) However, if the agent is
currently busy or is not interested in the object, then the execution line will
move down and ask if the agent if it is seeing another agent. If yes, is the agent
current doing something? And so on. It would then continue these checks for
every type of entity the agent comes across. (Fig. 3.3.9)

This is naturally an oversimplification, as there are other steps required due
to the various nuances of UE4, but these are the essential steps required to
create these behaviors to give the illusion of choice to the agents. With this,
different functions within the blueprint will be triggered depending on the
path of this execution, therefore allowing us to define the agent actions based
on these paths.

Components

These can be attached to Actors to
provide additional functions such as

AI perception

Events

Acts as a source to begin an
execution line down the logic path to

trigger functions along the way

Function 1

Logic gates that control the path
of the execution line depending
on variables within the blueprint

Function 2

Set variables to different states
depending on the outcome of the
decision logic in order to control

the path of the execution line

Function 3

Set Blackboard variable to determine
Agent State depending on the

execution path of the Decision
Logic

Variables

Can store various types of data
which can drive the execution path.

For example, a boolean variable
defined as "is agent talking?" when

set to true would mean that the agent
might ignore other things that come
into its vision, and thus would stop
the execution line from triggering
anything beyond the function that

checks for this variable

https://docs.unrealengine.com/en-US/Engine/Blueprints/UserGuide/EventGraph/index.html
https://docs.unrealengine.com/en-US/Engine/Blueprints/UserGuide/EventGraph/index.html
https://docs.unrealengine.com/en-US/Engine/Blueprints/UserGuide/Events/index.html
https://docs.unrealengine.com/en-US/Engine/Blueprints/UserGuide/Events/index.html
https://docs.unrealengine.com/en-US/Engine/Blueprints/UserGuide/Functions/index.html
https://docs.unrealengine.com/en-US/Engine/Blueprints/UserGuide/Functions/index.html
https://docs.unrealengine.com/en-US/Engine/Blueprints/UserGuide/Variables/index.html
https://docs.unrealengine.com/en-US/Engine/Blueprints/UserGuide/Variables/index.html
https://docs.unrealengine.com/en-US/Programming/UnrealArchitecture/Actors/Components/index.html
https://docs.unrealengine.com/en-US/Programming/UnrealArchitecture/Actors/Components/index.html

146 147

Tool Creation |Human Agents Tool Creation |Human Agents

Figure 3.3.5	 Decision Network
This is the node graph that makes up the decision logic of the agents. While
there are ways to organize the logic better, its current ‘messy’ state is the result
of experimentation during the prototyping phase.

148 149

Tool Creation |Human Agents Tool Creation |Human Agents

Figure 3.3.6	 Event Node begins the execution line
Screen-captured by Author.

Figure 3.3.7	 Boolean percentages controls which path the line takes
Screen-captured by Author.

Figure 3.3.8	 Once the execution line reaches a decision, a node is triggered to set the AgentState
and then apply a timer to establish how long the agent might be in that state
Screen-captured by Author.

Figure 3.3.9	 The execution line moves down and repeats all the checks for every entity type if it
does not reach the end of the logic
Screen-captured by Author.

Tool Creation |Human Agents Tool Creation |Human Agents

Figure 3.3.10	Functional Decision Logic during runtime

150 151

152 153

Tool Creation |Human Agents Tool Creation |Human Agents

Pathfinding
The last human system to reestablish is the pathfinding system. Recalling from
Chapter 2.3: Abstracting the Human Systems, the purpose of this system is to
provide a way for the agents to move to their goals through the consideration
of their subconscious desires, which we achieved by modifying Craig
Reynolds’ description of the three layers of motion: action selection, steering,
and locomotion. From this, we investigated Edward T. Hall’s proxemics to
establish personal space for the agents, where action selection defined their
subconscious desires of preserving this space, steering provided the forces that
drove this preservation, and locomotion translated this force into their current
position within the virtual environment.

Translating this methodology into UE4 is once again, fairly straightforward,
considering that the software has a built-in navigation system by means of a
NavMesh volume within the simulation environment.[10] (Fig. 3.3.11) As it
can be seen, compared to simple text-based IDEs such as processing, where
we had to essentially create everything from the ground up, UE4 offers a
vastly more efficient workflow. Rather than having to work down the levels
of code to calculate the vector position of these agents while simultaneously
implementing various vector calculations to account for collision and
avoidance, we can now just utilize UE4’s built-in navigation for the agents to
move to their desired conscious goals.

In order to implement subconscious goals such as personal space, however,
we must implement our modified layers of motion on top of this built in
NavMesh. This can be done by utilizing a Tick Event (which is triggered every
frame) to trigger an offset position node within the AI controller. In doing so,
we can utilize a variety of vector calculation nodes to mimic the steering forces
from Reynolds’ description of motion. (Fig. 3.3.12) This will not only make
the crowd flow smoother but also more human-like.

10	 “Navmesh Content Examples,” Unreal Engine Documentation, accessed October 18, 2019, https://
docs.unrealengine.com/en-US/Resources/ContentExamples/NavMesh/index.html.

Figure 3.3.11	Navmesh at work
Simulated and screen-recorded by Author.

Figure 3.3.12	Flocking Behaviors recreated with Vector and World-Offset nodes within UE4
Screen-captured by Author.

https://docs.unrealengine.com/en-US/Resources/ContentExamples/NavMesh/index.html
https://docs.unrealengine.com/en-US/Resources/ContentExamples/NavMesh/index.html

154 155

Tool Creation |Human Agents Tool Creation |Human Agents

Agent-State Actions
Now that we have established the three human systems within our simulation
model, our agents should be able to move around freely within the space.
However, since these agents are no longer simple dot representations—but
actual human agents walking in a virtual 3D environment—we require
additional considerations to portray them within the simulation.

The first of these considerations are the actions the agents need to perform
once they choose a state from the decision logic. Within our processing
prototype, they are simply represented by dots that try to avoid one another to
get to a target. While this was fine when the level of detail was represented by
dots, it seems rather unrealistic now that these agents are more representative
of the human form. As such, to retain this credibility, we need to define a set
of actions for the agents to perform depending on the task that they choose to
act upon. In doing so, this crowd simulation becomes much more comparable
to reality.

Fortunately, UE4 provides a useful tool called the Behavior Tree specifically
for scripting artificial intelligence. This tool—much like blueprints—provides
a visual method of integrating functionality by utilizing a series of nodes.
The difference from blueprints, however, is that this Behavior Tree Graph
executes logic by priority from left to right and top to bottom.[11] (Fig. 3.3.13
- 14) This allows the Behavior Tree to work alongside the blackboard and AI
controller to provide an intuitive method of establishing these actions based on
the choices the agents have made. The decision logic tells the blackboard what
state the agent is in, and the behavior tree will read that state to determine
which branch of tasks it should perform. From this, we can define a series of
states that the agent may be in.

11	 “Behavior Tree Overview,” Unreal Engine Documentation, accessed October 18, 2019, https://docs.
unrealengine.com/en-US/Engine/ArtificialIntelligence/BehaviorTrees/BehaviorTreesOverview/index.
html.

Figure 3.3.13	The Behavior Tree allows a visual way to define AI tasks within UE4
From “Behavior Tree Overview,” Unreal Engine Documentation, accessed October 18, 2019, https://docs.unrealengine.com/en-US/Engine/
ArtificialIntelligence/BehaviorTrees/BehaviorTreesOverview/index.html.

Figure 3.3.14	Behavior Tree Execution Order from top to down and left to right
From “Behavior Tree Overview,” Unreal Engine Documentation, accessed October 18, 2019, https://docs.unrealengine.com/en-US/Engine/
ArtificialIntelligence/BehaviorTrees/BehaviorTreesOverview/index.html.

https://docs.unrealengine.com/en-US/Engine/ArtificialIntelligence/BehaviorTrees/BehaviorTreesOverview/index.html
https://docs.unrealengine.com/en-US/Engine/ArtificialIntelligence/BehaviorTrees/BehaviorTreesOverview/index.html
https://docs.unrealengine.com/en-US/Engine/ArtificialIntelligence/BehaviorTrees/BehaviorTreesOverview/index.html
https://docs.unrealengine.com/en-US/Engine/ArtificialIntelligence/BehaviorTrees/BehaviorTreesOverview/index.html
https://docs.unrealengine.com/en-US/Engine/ArtificialIntelligence/BehaviorTrees/BehaviorTreesOverview/index.html
https://docs.unrealengine.com/en-US/Engine/ArtificialIntelligence/BehaviorTrees/BehaviorTreesOverview/index.html
https://docs.unrealengine.com/en-US/Engine/ArtificialIntelligence/BehaviorTrees/BehaviorTreesOverview/index.html

156 157

Tool Creation |Human Agents Tool Creation |Human Agents

Figure 3.3.16	EQS allows us to check the surrounding environment to calculate locations based
on how far away they are from the agent
Screen-recorded by Author.

Figure 3.3.17	Agent Exploring the space by utilizing this data
Simulated and screen-recorded by Author.

Figure 3.3.15	Explore Tasks defined within the Behaviour Tree
Screen-captured by Author.

Default State
Due to the responsive nature of these agents, one of the important
questions we must first ask is: What do the agents do when the
surrounding space is empty? In other words, we must first define a
base state in which the agents can operate with limited knowledge and
no environmental information to work from.

In order to define this state, we must make some assumptions. Imagine
if people were left in an empty room; What would they do? Would
they do nothing, or would they explore? Chances are, most people
would explore to see if there is anything around them rather than just
doing nothing. Ideally, we would be able to perform a survey from a
population to deduce an average base state, but since this simulation
only needs to be an approximation, this generic assumption of
exploration should be adequate to visualize crowd flow.

To simulate this task of exploration, we should ask ourselves what it
means to explore the space within an empty room. The lack of features
means that there is nothing to attract our attention, therefore the only
variance within such a space would be the distance of the agent to the
boundary of this space. In that context, it makes logical sense that the
furthest point offers the most mystery; therefore, it should also offer
the highest incentive to investigate.

Translating this to game engine logic then, we can configure the EQS
tool to query the environment around the agent every second and
provide a location that is the farthest point to the agent. (Fig. 3.3.15
- 16) In doing so, it provides the illusion of exploration. (Fig. 3.3.17)

158 159

Tool Creation |Human Agents Tool Creation |Human Agents

Object Looking State
The object looking state defines what happens when an agent chooses
to admire an object without touching it. Again, a population survey
based on the location and demographic of the architectural project
would give the most accurate simulation result within a specific
context, however, in the ethos of this simulation tool—where there
is no specific context and the tool is designed to be applicable within
different typologies—a generic set of actions would provide the most
flexibility. To establish these generic actions, we can consider a passage
from The Dynamics of Architectural Form, where Rudolf Arnheim
states:

“These ‘proxemics’ normals influence also the choice of
preferred distances between objects, e.g., the placement
of furniture, and they are likely to affect the way people
determine and evaluate the distances between buildings. […]
We feel impelled to juggle the distances between objects until
they look just right because we experience these distances as
influencing forces of attraction and repulsion. […] In order
for an object to be perceived appropriately, its field of forces
must be respected by the viewer, who must stand at the
proper distance from it. I would even venture to suggest that
it is not only the bulk or height of the object that determines
the range of the surrounding field of forces, but also the
plainness or richness of its appearance. A very plain façade
can be viewed from nearby without offense, whereas one rich
in volumes and articulation has more expansive power and
thereby asks the viewer to step farther back so that he may
assume his proper position, prescribed by the reach of the
building’s visual dynamics.”[12]

From this, Arnheim examines the proxemics described by Edward
T. Hall (which we have also investigated to establish the personal
spaces of our agents), and reasons it within the context of object
distances as well as human distances. While Arnheim is specifically
referring to the distances between the placement of furniture in this
case, by changing the reference point of view, it can be argued that
these distances can also be utilized to describe the preferred viewing
distances of agents when admiring an object. These viewing distances
can then be influenced by factors such as the size of the object as well
“the plainness or richness of its appearance.”

We can then recreate this description by establishing a series of
movements within the behavior tree. (Fig. 3.3.18) By utilizing the
EQS, we can first determine a random location around the object.
(Fig. 3.3.19) From this, we can then tell the agent to move there, turn
towards the object, and admire it within a randomized timeframe.
After this timeframe, the agent would then pick a different location
around the object and repeat the process. From this, we can establish
the following steps:

12	 Arnheim, The Dynamics of Architectural Form, 20, 28.

Figure 3.3.18	Behavior Tree Object-Looking state tasks
Screen-captured by Author.

1.	 Find location around the object with EQS.

2.	 Move to location.

3.	 Turn towards the object.

4.	 Loop observing animation for randomized time interval.

5.	 Repeat action from step 1, or set AgentState to something
else (such as ObjectInteract or AgentDefault).

This series of actions would give the illusion of the agents trying to
“juggle the distances between objects until they look just right.” (Fig.
3.3.20) Throughout this process, the agent may also decide to interact
with the object or become bored with the object. While this is by
no means a perfect representation, it does provide a relatively simple
and generic approach for portraying this action at this stage of tool
creation.

160 161

Tool Creation |Human Agents Tool Creation |Human Agents

Figure 3.3.20	Agents ‘juggling’ the distances to the objects until they look right
Simulated and screen-recorded by Author.

Figure 3.3.19	EQS also allows us to calculate a random location that is biased to how far away they are from an object
Screen-recorded by Author.

162 163

Tool Creation |Human Agents Tool Creation |Human Agents

Ordering food at a counter on the other hand, would require the agent
to first check if there is a lineup. If there is, the agent would need to find
the location of the end of the line and move there. It would then have to
calculate a new position each time the line updates until it reaches the
front of the line. Once it is the agent’s turn, it would then need to define
the location of the counter, move to it, and start playing an animation for
portraying the action of ordering food.

1.	 Check if there is a lineup for the counter.

2.	 Get location depending on if there is a lineup.

2a.	 If there is a lineup, get the location for end of line

2b.	 If there is no lineup, get the location of the counter.

3.	 Walk to location.

4.	 Play Animation depending on if there is a lineup or not.

4a.	 Play wait animation and check once per second if the
line is moving forward. If moving forward, update
location for the agent to walk to. If the agent is at the
start of line, and the counter is free, go to step 2b.

4b.	 If there is no lineup, and the agent is at the counter,
play food ordering animation and loop it for a
randomized time interval.

5.	 After the agent finishes ordering, set AgentState to another
task (such as going to food pickup or finding a table).

As it can be seen, all these scenarios follow a similar logic, in which the
agent requires a location, a direction, and an animation. The use of these
three attributes within the behavior tree provides us with an intuitive
method of portraying these agents performing various tasks. With this,
we can set up a series of nodes that can accommodate any type of object
interactivity within the simulation environment. (Fig. 3.3.21) It is of
course unrealistic to account for every scenario within the scope of this
thesis, therefore the best course of action at this stage of tool creation is to
establish a generic base object with definable parameters that works with
a wide range of use cases and can be easily modified depending on future
use cases and object typologies.

Object Interact State
This state defines what the agent does when they choose to interact
with an object. This process undoubtedly depends on the typology of
the object; if the object is a book, the agent might go and read it; if the
object is a touch screen, the agent might go and touch it; if the object
is a chair, the agent might go and sit on it.

In all these cases, we would need to break down these tasks into their
individual logical actions. With the chair example, the agent would
first need to calculate the location of the chair. It would then need to
walk to that location and align its body with the chair. Only when all
these steps are taken would the agent be able to sit on the chair. Once
the agent sits down, it may then have a randomized range of time
before the agent decides to get up again. Translating this then into
machine logic, we would have the following steps:

1.	 Get location of the front of the object.

2.	 Walk to location.

3.	 Align agent body to the chair.

4.	 Play sitting down animation.

5.	 Play sit animation and loop it for a randomized time
interval range.

6.	 Play standing up animation.

7.	 Set AgentState to Default State.

Naturally, we would require a version of this state for every typology
of an object within the simulation. Interacting with a bookshelf for
example would require the agent to calculate a location in front of the
bookcase, turn to it, and choose a book. The agent then might quickly
skim the book before choosing another book and continue to do so
until the agent finds the right book or becomes uninterested.

8.	 Get random location in front of the object (depending on
the size of the bookcase; this can vary a lot)

9.	 Walk to location.

10.	 Turn towards the bookshelf.

11.	 Play retrieve book animation.

12.	 Play reading animation and loop it for a randomized time
interval.

13.	 Play animation for keeping the book OR putting the
book back on bookshelf (depending on what the agent
chooses.

14.	 Set AgentState to Default (or another task) OR repeat step
one to find another book from the bookshelf.

164 165

Tool Creation |Human Agents Tool Creation |Human Agents

In order to do this, we need to first consider some basic parameters that
can describe both the most common forms of object interactivity, as well
as the most influential forms on crowd movement. With this in mind, we
can logically break down these parameters into the ability to touch, the
ability to sit, and the need for queuing (lining up). The ability to touch
would be the default form of interaction, as this can be modified to be
any other form of interaction (such as typing, taking, painting, pushing,
etc.) by changing its animation and looping timeframe. The ability to sit
is perhaps the most common form of interaction amongst varying spatial
typologies. Since rest is such an important human need, the presence of
chairs can usually be found no matter what type of space is being designed.
The need for queuing comes into play when there is overdemand on a
specific object. This can be seen in scenarios such as checking tickets at
entrances, ordering food at counters, talking with bank tellers, etc. While
this won’t be relevant in every space typology, it is common enough in
public spaces to warrant its consideration. Translating these into the
behavior tree, we can utilize the following steps: (Fig. 3.3.22 - 24)

1.	 Check to see if the object can be sat upon, or if there is a
lineup required.

2.	 Define location based on object type.

2a.	 If the object cannot be sat upon, and does not have
a lineup, Utilize EQS to define a location around the
object.

2b.	 If the object functions as a seat, define the location in
front of the seat.

2c.	 If there is a lineup, define the location at the end of
the lineup.

3.	 Walk to location.

4.	 Set rotation direction of the agent based on object type.

4a.	 If the object cannot be sat upon, and does not have a
lineup, turn towards the object.

4b.	 If the object functions as a seat, align the agent body
to the seat.

4c.	 If there is a lineup, turn towards the start of line.

5.	 Perform animation based on object type.

5a.	 If the object cannot be sat upon, and does not have a
lineup, play touch animation

5b.	 If the object functions as a seat, play sitting animation

5c.	 If there is a lineup, play waiting animation. The agent
might also need to continuously update its position as
the line moves forward.

6.	 Wait for randomized time interval based on object type.

Figure 3.3.22	Object-Interact State tasks within behavior tree
Screen-captured by Author.

Figure 3.3.21	Simplified steps for establishing object Interaction tasks
Illustrated by Author.

Get Location

Utilize EQS or other functions to
calculate a Position Vector

Move to Location

Move to the Position Vector

Set Direction

Set Agent Rotation to face towards
The Object of Interest

Play Animation

Play Agent Animation depending
on the task the Agent is performing

166 167

Tool Creation |Human Agents Tool Creation |Human Agents

6a.	 Touch based objects can vary in length based on the
object typology (e.g. a simple button will take less time
to operate compared to navigating a touchscreen to fill
out a waiver)

6b.	 A seat can vary in length depending on how tired the
agent is or if the agent is waiting for someone or watching
something.

6c.	 A lineup can vary in length depending on the space. A
line at the DMV will probably move slower than a line at
a grocery store.

7.	 Repeat task or change to new AgentState.

7a.	 The agent might touch it in 1 spot, then move to another
spot to touch it again, or it could be done with the task and
do something else, in which case we can set AgentState to
something else.

7b.	 When the agent is finished resting, it may get up from the
chair by playing an animation, and then go do another
task.

7c.	 When the agent reaches the front of the line, it can then
go back to step 2a, where it will finally be able to interact
with the object.

While these three branches won’t cover every scenario within the behavior
tree, we can always modify or add to them in the future if the need arises.
Since these steps depend largely on the typology of the object however, we
will also need to create such an object—which we will establish in Chapter
3.4—and update this state depending on the requirements of the object.

Figure 3.3.23	Agent interacting with an object
Simulated and Screen-recorded by Author.

Figure 3.3.24	Agents lining up before interacting with the object
Simulated and Screen-recorded by Author.

168 169

Tool Creation |Human Agents Tool Creation |Human Agents

Figure 3.3.25	Agent Interact state tasks within Behavior Tree
Screen-captured by Author.

Figure 3.3.26	Agents interacting with each other
Simulated and Screen-recorded by Author.

Agent Interact State
The agent interact state defines what happens when an agent decides to
interact with another agent. The methodology for this is similar to what we
just established within object interact state, except we now must consider
these steps in the context of human interactions.

When an agent decides to interact with another agent, this interaction could
either be with someone the agent knows (an acquaintance) or have never met
(a stranger). As such, we can logically deduce these interactions into these
two basic types. When the agent wants to interact with a stranger, they might
first need to walk up to them before engaging in conversation. However,
when the agent wants to interact with an acquaintance, they might both
recognize each other and meet halfway. To simply this into its fundamental
actions, we can proceed with the following steps: (Fig. 3.3.25 - 26)

1.	 Check if the other agent is facing towards or away the agent (by
using the dot product).

2.	 Define location depending on the direction of the other agent.

2a.	 If facing away, move to the location of the other agent.

2b.	 If facing towards, define random location between the
two agents.

3.	 Get attention of the other agent by setting the AgentState of the
other agent to AgentInteract (with an optional tap animation).

3a.	 If facing away, get their attention after walking to them.

3b.	 If facing towards, get their attention before walking to the
random location between the two agents.

4.	 Loop talking animation for a random time interval.

5.	 After finished talking, play goodbye animation.

6.	 Set both agents’ AgentState to DefaultState.

While this method might imply that the people facing away are presumed to
be strangers, and people facing towards are acquaintances, the fact that the
location generated in between the two agents are random in step 2b means
that there is a gradient of possible meeting locations between the agent. This
gradient then can portray both acquaintances meeting in the middle, or the
agent going up to a stranger to talk, or the agent signaling a stranger or
acquaintance to come to them, or anything in between.

Of course, if other senses, such as sound, were added, we would then need
to introduce another option, where the first agent might shout at the other
agent to get their attention, in which the other agent would then turn around
and they can meet at a random location between them. This being said, to
keep the simulation simple at this stage, we will mainly be utilizing sight.

170 171

Tool Creation |Human Agents Tool Creation |Human Agents

Threshold State
While explore provides a good generic way for agents to explore the
space, we should remember that there are other forms of attractors
other than distance. To accommodate for this, we can define another
class of objects that represents thresholds. These objects would act
as doors or openings that offer attraction to passing agents as they
see it, which allows slightly more control in diversifying the crowd
movements within the simulation space.

The series of actions required for this state can be thought of as a
simplified version of the object interact state, as the agents are essentially
interacting with the door or threshold. As such, we only require a
slight modification in animation and position when compared to the
object interact state. To create a series of actions for this then, we can
define the following steps: (Fig. 3.3.27 - 28)

1.	 Check to see if the threshold is open or closed (if there is
a door built into the opening)

2.	 Calculate location depending on if there is a door or not.

2a.	 If there is a door that is closed, define a random
location on the same side of the threshold.

2b.	 If there is no door or if the door is open, define a
random location on the other side of the threshold.

3.	 Go to location.

4.	 Play animation depending on if there is a door or not.

4a.	 If there is a door, turn towards the door and play
open door animation. Then go back to step 2b.

4b.	 If there is no door or if the door is open, proceed
to step 5.

5.	 Change AgentState to DefaultExplore.

With these steps, the agent will walk through the threshold on to the
other side and continue to explore the space beyond. If there is a door
in the way, the agent will then proceed to open the door first before
walking through to the other side.

Figure 3.3.27	Threshold State tasks within Behavior Tree
Screen-captured by Author.

Figure 3.3.28	Agent moving through threshold
Simulated and Screen-recorded by Author.

172 173

Tool Creation |Human Agents Tool Creation |Human Agents

Enter/Exit State
Since most spaces are not closed systems, we will need a way for the
agents to enter and leave. As such, entrances and exits need to be
defined within the simulation to establish the crowd flow within
the space. Because these entrances and exits are essentially a type
of threshold however, we can use the same methodology defined in
ThresholdState, with the addition of spawning the agents in the case of
entering, and de-spawning the agents in the case of exiting. (Fig. 3.3.29
- 30) From this logic, we can establish the following steps:

Enter State

1.	 Spawn agent along the entrance threshold.

2.	 Check if threshold has a door or not

3.	 Calculate location depending on if there is a door or not.

3a.	 If there is a door, play door opening animation,
then to go step 2b.

3b.	 If there is no door, set agent rotation to face
perpendicularly away from the entrance threshold.

4.	 Set AgentState to DefaultExplore.

Figure 3.3.29	To spawn Agents, we must first make a list of all the Entrance Threshold objects at the start of the
simulation
Screen-captured by Author.

Figure 3.3.30	Spawning Agents at Entrance Thresholds
Screen-captured by Author.

174 175

Tool Creation |Human Agents Tool Creation |Human Agents

Figure 3.3.31	Enter State tasks within the Behavior Tree
Screen-captured by Author.

Figure 3.3.32	Agents entering and exiting the building
Simulated and Screen-recorded by Author.

Exit State

5.	 Check to see if the threshold is open or closed (if there is
a door built into the opening)

6.	 Calculate location depending on if there is a door or not.

6a.	 If there is a door that is closed, define a random
location on the same side of the threshold.

6b.	 If there is no door or if the door is open, define a
random location on the other side of the threshold.

7.	 Go to location.

8.	 Play animation depending on if there is a door or not.

8a.	 If there is a door, turn towards the door and play
open door animation. Then go back to step 2b.

8b.	 If there is no door, proceed to step 5.

9.	 De-spawn agent.

With these two states, the agents can now enter and exit the simulation.
(Fig. 3.3.31 - 32) In the case of evacuation however, the agent must
also remember the location of the last threshold they’ve encountered,
which can be recorded within their AI controller as an object array. In
such a case, the agent would simply need to pull up the array to obtain
the location, and then execute the steps from ExitState.

176 177

Tool Creation |Human Agents Tool Creation |Human Agents

Unstuck State
Since all these states depend on a series of logic to function, there are
instances where the agents might become stuck within the environment.
For example, an agent within the ExploreState might become stuck in a
corner due to the EQS continuously calculating the furthest point in
front of the agent. (Fig. 3.3.33) Another example might be an EQS
query establishing a location that is unavailable to the agent, in which
case the agent might freeze on the spot as it does not know how to get
there through the pathfinding system. There are certainly many more
instances when the agents might become stuck, so rather than trying to
debug every instance, we can simply utilize a state for this. To establish
this unstuck state, we can perform a check every few seconds based on
the agent’s location and their desired location. If these locations are
unchanged for too long when the agent is not interested in an object or
agent, we can tell the agent to recalculate a location near them that is
valid and reset their state to DeafultExplore with this new location. (Fig.
3.3.34)

Because of the higher abstraction of this tool, we do not need to worry about
the technical aspects of teaching the agents how to walk for each task—since
this is already taken care of with our new pathfinding system—but rather just
focus on the sequence of individual actions that they need to do within their
respective tasks. This allows for a quickly implementable and relatively intuitive
way to add agent actions to establish them for future use as well. Now that we
have established the main states, we can put them together within a functioning
behavior tree. (Fig. 3.3.39)

Figure 3.3.33	Agents sometimes becomes stuck in the corner due to the EQS continuously
perceiving the corner in front of the agent to be the furtherest point within the environment
Screen-captured by Author.

Figure 3.3.34	Unstuck State within Behavior Tree tells the agent to query a new location behind
them if they don’t move for longer than a specified time interval
Screen-captured by Author.

178 179

Tool Creation |Human Agents Tool Creation |Human Agents

Figure 3.3.35	Bug with obtaining a position vector for establishing agent global offset
Simulated and Screen-recorded by Author.

Figure 3.3.36	Bug with obtaining a position for the agents to form a line
Simulated and Screen-recorded by Author.

Figure 3.3.37	Bug with animation looping for the Agent Interact State
Simulated and Screen-recorded by Author.

Figure 3.3.38	Another global offset bug when establishing a position vector from the agent’s
personal space
Simulated and Screen-recorded by Author.

Figure 3.3.35 - 3.3.38
These figures showcase some of the various bugs that are encountered during the prototyping phase. This further
demonstrates how prototyping can be an unpredictable time-sink since most of these bugs appear at random and thus
becomes hard to calculate the time-frame it would take to fix them.

Tool Creation |Human Agents Tool Creation |Human Agents

Figure 3.3.39	Functional Behavior Tree during runtime

180 181

182 183

Tool Creation |Human Agents Tool Creation |Human Agents

Character Model and Animation
Beyond the additional consideration of AgentStates, we must also consider the
physical form of these agents, or rather a virtual description of their physical form.
To do so, additional assets will be required to define how these agents look as they are
moving throughout the environment. This can be broken down into skeletal assets
and animation assets within UE4.

Skeleton Assets
Skeleton assets within UE4 are comprised of the skeletal mesh and the
skeleton. This can be described as a set of “meshes bound to a hierarchical
skeleton of bones which can be animated for the purpose of deforming the
mesh.”[13] Put simply, the surface of the skeletal mesh asset is responsible for
the visual representation of the agent, whereas the skeleton asset is responsible
for translating animation data to this surface mesh. (Fig. 3.3.40)

These assets can be obtained in many ways. UE4 comes with a ready-to-
use solution in the form of a generic humanoid robot model (Fig. 3.3.43);
however, they can also be created within external applications such as 3ds
Max and Maya or be purchased and downloaded through various asset stores
such as Unreal Marketplace[14] and CGTrader[15].

Of these external applications, one tool that may be worth investigating
further is Autodesk’s web-based character generator.[16] (Fig. 3.3.41) This
tool allows us to generate a variety of generic character models based on
their height, gender, facial and body features, and clothing. With this, we
can quickly export a variety of model assets and create a library of people to
spawn within the simulation space. While these models are not particularly
detailed, they are perfectly suited to blend into a simulated human crowd
where the agents are meant to represent normal everyday people. From here,
we can then import these models as an FBX file and implement them within
the character asset.[17]

One thing to keep in mind with these models, however, is the hardware
limitations present within a multiagent simulation system, where higher
model detail will increase rendering time and slow down the performance of
the overall visualization. For this reason, I have decided to stay with UE4’s
default robot model to prioritize performance, with the intention of utilizing
more detailed model assets in the future. Once we have access to faster
hardware and a more optimized simulation code, it may become possible to
utilize these more detailed model assets in not only final rendering outputs,
but in the design phase as well.

13	 “Skeletal Meshes,” Unreal Engine Documentation, accessed October 18, 2019, https://docs.unrealengine.
com/en-US/Engine/Content/Types/SkeletalMeshes/index.html.

14	 “Characters,” Unreal Engine Marketplace, accessed October 18, 2019, https://www.unrealengine.com/
marketplace/en-US/content-cat/assets/characters.

15	 “UASSET 3D models - download UnrealEngine (UASSET) file format 3D assets,” CGTrader, accessed
October 18, 2019, https://www.cgtrader.com/3d-models/ext/uasset.

16	 “Autodesk Character Generator,” Autodesk, accessed October 18, 2019, https://charactergenerator.autodesk.
com/.

17	 “Setting Up a Character,” Unreal Engine Documentation, accessed October 18, 2019, https://docs.
unrealengine.com/en-US/Engine/Animation/CharacterSetupOverview/index.html.

Figure 3.3.40	UE4 animation system breakdown
From “Animation System Overview,” Unreal Engine Documentation, accessed December 28, 2019, https://docs.unrealengine.com/en-US/Engine/Animation/Overview/index.html.

Figure 3.3.41	Autodesk Character Generator
Screen-captured by Author, from “Autodesk Character Generator,” accessed December 28, 2019, https://charactergenerator.autodesk.com/.

https://docs.unrealengine.com/en-US/Engine/Content/Types/SkeletalMeshes/index.html
https://docs.unrealengine.com/en-US/Engine/Content/Types/SkeletalMeshes/index.html
https://www.unrealengine.com/marketplace/en-US/content-cat/assets/characters
https://www.unrealengine.com/marketplace/en-US/content-cat/assets/characters
https://www.cgtrader.com/3d-models/ext/uasset
https://charactergenerator.autodesk.com/
https://charactergenerator.autodesk.com/
https://docs.unrealengine.com/en-US/Engine/Animation/CharacterSetupOverview/index.html
https://docs.unrealengine.com/en-US/Engine/Animation/CharacterSetupOverview/index.html

184 185

Tool Creation |Human Agents Tool Creation |Human Agents

Animation Assets
Beyond the skeletal mesh, animations are also required to fully portray
these agents. Within the simulation visualization, these animations
are what allows these human agents to visually differ from dynamic
architectural elements shaped like humanoids. As such, without this
step, the agent models will be lifeless objects that float about within
the simulation. (Fig. 3.3.42)

Within UE4, a single animation asset is referred to as an animation
sequence. These sequences contain “keyframes that specify the position,
rotation, and scale of a bone at a specific point in time.”[18] This allows
these assets to drive the movement of the skeleton asset, which in
turn drives the movement of the skeletal mesh asset. (Fig. 3.3.43) To
implement these animations for the agents, we must procure a library
of various animation sequences for every possible scenario. We can
then utilize various tools within UE4 to set them up in a way where
the agents can determine which animation to execute based on the
task that the agent is currently doing.[19]

The first of these tools is the Blend space. This allows us to blend
various animations together based on the value of multiple inputs.[20]
With this, we can combine this collection of animation sequences to
create transitional animations between different states, allowing the
agent to move in a smooth and realistic fashion without having to use
too many hard-coded animation sequences. (Fig. 3.3.44)

In order to set these states, however, we must also utilize animation
blueprints. With this, we can establish various checks to determine if
the agent is currently turning, running or falling, etc. Once this is set
up, we can produce output variables to set various states within a State
Machine. (Fig. 3.3.45) This then allows the agents to execute various
animations or Blend Spaces depending on what the agent is physically
doing within the simulation. For example, if the agent is currently
turning right, the animation blueprint will check for this and set a
variable for AgentTurningRight to be true. Once this is true, the state
machine will go into the TurningRight State, which will tell the agent
to use the TurningRight animation sequence. If the agent is speeding
up from a walking speed to a running speed, the animation blueprint
can normalize the speed between the two states to tell the Blend Space
to generate an animation that smoothly transitions from the walking
state to the running state.

Much like the character models, there are many ways to create these
animation sequences, which can include manual keyframing or
motion tracking.[21] To simplify this process, however, it is possible to
download various animation files from sites such as Adobe Maximo.
(Fig. 3.3.46) With this, we can quickly procure the library of
animation sequences required to fully animate our agents within their
tasks.

18	 “Animation Sequences | Unreal Engine Documentation,” Unreal Engine Documentation, accessed
October 18, 2019, https://docs.unrealengine.com/en-US/Engine/Animation/Sequences/index.html.

19	 “Animation System Overview,” Unreal Engine Documentation, accessed October 18, 2019, https://
docs.unrealengine.com/en-US/Engine/Animation/Overview/index.html.

20	 “Blend Spaces,” Unreal Engine Documentation, accessed October 18, 2019, https://docs.
unrealengine.com/en-US/Engine/Animation/Blendspaces/index.html.

21	 Unreal Engine, “Real Time Motion Capture in Unreal Engine,” YouTube, 1:05:18, accessed October
18, 2019, https://youtu.be/jRyq5uPC5UY?t=1066.

Figure 3.3.42	Agents become lifeless floating objects without animation
Simulated and Screen-recorded by Author.

Figure 3.3.43	Animation Sequence within UE4 drives the skeletal mesh asset.
Screen-recorded by Author.

https://docs.unrealengine.com/en-US/Engine/Animation/Sequences/index.html
https://docs.unrealengine.com/en-US/Engine/Animation/Overview/index.html
https://docs.unrealengine.com/en-US/Engine/Animation/Overview/index.html
https://docs.unrealengine.com/en-US/Engine/Animation/Blendspaces/index.html
https://docs.unrealengine.com/en-US/Engine/Animation/Blendspaces/index.html

186 187

Tool Creation |Human Agents Tool Creation |Human Agents

Figure 3.3.44	Blend Space
Screen-recorded by Author.

Figure 3.3.45	State Machine
Screen-captured by Author.

Figure 3.3.46	Adobe Maximo
Screen-recorded by Author, from “Mixamo,” Adobe, accessed December 28, 2019, https://www.mixamo.com/#/.

Tool Creation |Human Agents Tool Creation |Human Agents

Figure 3.3.47	Animations controlled by
the State Machine during runtime

188 189

190

Tool Creation |Human Agents

191

Tool Creation |Human Agents

Figure 3.3.48	Flowchart of updated Human Systems within UE4By Author.
Illustrated by Author

AN
IM

ATIO
N

 BLU
EPR

IN
T

AI Controller

Acts as the conscious brain of the
Agent by establishing the

Decision Logic

Blackboard

Stores Agent Variables that are used
to communicate between the AI
Controller and the Behavior Tree

Behaviour Tree

Tells the Character Class what to do
After the AI Controller makes

a decision

Character Class

Contains the physical attributes of
the Agent

Events

Acts as a source to begin an
execution line down the logic path to

trigger functions along the way

Function 1

Logic gates that control the path
of the execution line depending
on variables within the blueprint

Function 2

Set variables to different states
depending on the outcome of the
decision logic in order to control

the path of the execution line

Function 3

Set Blackboard variable to determine
Agent State depending on the

execution path of the Decision
Logic

Variables

Can store various types of data
which can drive the execution path.

For example, a boolean variable
defined as "is agent talking?" when

set to true would mean that the agent
might ignore other things that come
into its vision, and thus would stop
the execution line from triggering
anything beyond the function that

checks for this variable

Get Location

Utilize EQS or other functions to
calculate a Position Vector

Move to Location

Move to the Position Vector

Set Direction

Set Agent Rotation to face towards
The Object of Interest

Play Animation

Play Agent Animation depending
on the task the Agent is performing

AI Perception

A component that allows the Agent
 to "see" the environment by

providing location data on other
entities within the game space

EQS

Allows the Agent to collect data from
the environment and calculate

a Position Vector from it by
performing various tests

depending on the situation

Animation Sequence 1

Contains Keyframe data
that can be used to

control Skeleton Meshes

Skeleton Asset

Acts as the conscious brain of the
Agent by establishing the

Decision Logic

SENSORY SYSTEM

DECISION LOGIC

PATHFINDING

Animation Sequences 2

Contains Keyframe data
that can be used to

control Skeleton Meshes

Blend Space

Used to blend various
Animation Sequences smoothly

State Machine

Chooses which animation
to play depending on the

state of the Agent

CHARACTER MODEL AND ANIMATION

Navmesh

Built-in Pathfinding that allows
Agents to navigate the

game environment

Flocking Function Nodes

Functions that adds offset to
the default pathfinding, allowing us

to integrate the flocking rules
alongside this new pathfinding system

Tick Event

An Event that triggers the
logic path every frame

AGENT STATE ACTIONS

Animation Blueprint

Asset that utilizes visual scripting
to control animations

Environmental
input

Triggers Event every time AI perception sees something

BEH
AVIO

U
R

 TR
EE

AI C
O

N
TR

O
LLER

192 193

Tool Creation |Architectural Objects Tool Creation |Architectural Objects

Chapter 3.4 | Architectural Objects
Now that we have re-established the human agents within UE4, it is time
to do the same to the architectural objects. Creating these objects within
this software is very similar to creating the human agents. We will continue
utilizing a pawn asset, along with its blueprint system, however, we will no
longer require some of the other more complex assets such as the blackboard,
behavior tree, or AI controller (unless the type of dynamic architectural
object is complex enough to require it). On top of this, we will also utilize the
construction script, which allows us to create changeable parameters for these
objects within the viewport, allowing a much more user-friendly way to set
up these generic object assets within the actual visualization workflow. (Fig.
3.4.1 - 2) With this methodology, we can begin recreating these objects that
the agents can interact with. While there can be a plethora of architectural
objects within a space, to create a basic working simulation, we will need to
first establish some basic object typologies in line with the human states we
defined in Chapter 3.3.

Figure 3.4.1	 The Construction Script is visually very similar to the Blueprint
Screen-captured by Author.

Figure 3.4.2	 The Construction Script allows us to sync model attributes within the game space with variables
within the Blueprint
Screen-recorded by Author.

194 195

Tool Creation |Architectural Objects Tool Creation |Architectural Objects

Figure 3.4.3	 Command Center viewport and properties
Screen-captured by Author.

Figure 3.4.4	 The Command Center asset contains the blueprint nodes (as defined in the Enter State on pg. 168) to spawn
agents at thresholds every game tick during the simulation process
Screen-captured by Author.

Command Center
While this is not an architectural object, the first object we must create
is the command center. The purpose of this asset is to handle agent
spawning throughout the simulation as well as global parameters such
as the number of agents, their spawn rate, and various toggles for
analytical and debugging purposes. For this reason, the actual mesh
of this object does not matter, as it is simply a container for these
variables. (Fig. 3.4.3) As such, we can simply focus on the event
graph of this asset, which is required to spawn the agents. To do so, we
need to create a list of all the entrances/exits within the environment
and begin to spawn human agents from them depending on the preset
attraction of the entrances. (Fig. 3.4.4)

196 197

Tool Creation |Architectural Objects Tool Creation |Architectural Objects

Entrances/Exits
The first of these required architectural objects are the entrances and exits
which allow the agents to enter and leave the space. Creating such an asset
is straightforward, as we simply require a rectangular volume to symbolize
the area in which the door might exist. From here, we need to establish basic
parameters such as Width, Height, and Interest. (Fig 3.4.5) We can then
use the command center to define a random location within this volume
to spawn the agent. Depending on the typology of the object, we can also
model-in doors if required.

Thresholds
The next of these required objects are the thresholds. Much like the entrances/
exits, we will require a basic volume with an optional door mesh, as well as
parameters such as width, height, and interest. (Fig. 3.4.6) The purpose of
this object is to allow slightly more control to the crowd flow within the
simulation.

Figure 3.4.5	 Entrance/Exit viewport and properties
Screen-captured by Author.

Figure 3.4.6	 Threshold viewport and properties
Screen-captured by Author.

198 199

Tool Creation |Architectural Objects Tool Creation |Architectural Objects

Architectural Objects
The last of these required objects are the actual interactive objects.
As already covered in Chapter 2.4, these objects can be quite diverse,
therefore, what matters at this stage is to familiarize ourselves with the
utility of the object, as well as the tools of this software. In doing so,
we can create any type of objects that we desire. With this in mind,
we will establish the most basic parameters of these objects in order to
work with the AgentStates from Chapter 3.3, which are the following:
(Fig. 3.4.7 - 8)

Objective Type determines if the object is a normal object or
if it can be sat upon or if it requires a lineup.

Probability determines how attractive the object is to passing
agents, as well as what ratio of agents might want to look at
the object, versus interacting with it. This can be established
with a float variable between 0 and 1, where 0 is 0% and 1 is
100%.

Occupancy determines if there is an occupancy limit to the
object. For example, a checkout counter may only be able
to accommodate 1 person at the same time, in which case a
lineup would be required if there are more people than this
limit.

Time determines how long an agent might be interested in
this object. A complex object such as a book might hold
people’s attention longer than a simple sculpture.

Location determines the interest radius of the object, which
in itself determines how far away the agents can be before
they no longer notice the object. A larger object might have a
larger radius compared to a smaller object.

Graphics determines both the graphical representation of
limits such as interest radius, as well as physical properties
such the 3D mesh and the assigned materials of the object.

On top of this, we will also require a basic way for the object to
respond if an agent decides to interact with it. To do so, we can use an
asset within UE4 called blueprint interface, which allows blueprints
to share data with one another.[1] In doing so, we can establish an
event node within the object blueprint that will trigger whenever an
agent interacts with it. (Fig. 3.4.9 - 10) We can then add any type of
function to this event to simulate their use.

1	 “Blueprint Interface,” Unreal Engine Documentation, accessed October 18, 2019, https://docs.
unrealengine.com/en-US/Engine/Blueprints/UserGuide/Types/Interface/index.html.

Figure 3.4.7	 Architectural Object viewport and properties
Screen-captured by Author.

Figure 3.4.8	 The 3D mesh and materials of the object can be changed in the properties panel depending on the typology of
the actual object
Screen-captured by Author.

https://docs.unrealengine.com/en-US/Engine/Blueprints/UserGuide/Types/Interface/index.html
https://docs.unrealengine.com/en-US/Engine/Blueprints/UserGuide/Types/Interface/index.html

200 201

Tool Creation |Architectural Objects Tool Creation |Architectural Objects

Figure 3.4.9 - 3.4.10
The nodes from the Behavior Tree each contains its own blueprint graph. Within
the interact node, we can utilizes a blueprint interface to communicate with other
blueprints. This allows us to use an event node within the object blueprint that is
triggered whenever the Interact blueprint interface node within the Behavior Tree is
triggered.

Figure 3.4.9	 Blueprint Interface node within the Interact node within the Object Interact State
of the Behavior Tree.
Screen-captured and edited by Author.

Figure 3.4.10	The Interact Event within the object blueprint allows it to change the color of its texture whenever the Interact
node within the behavior tree of the Agent is triggered
Screen-captured by Author.

202 203

Tool Creation |Environment Context Tool Creation |Environment Context

Chapter 3.5 | Environment Context
Looking back at the start of Chapter 1.1, the world can be broken down into the
“firmness and security of a human-made shell” and the “turbulence and uncertainty
of nature’s ferocity.” As such, the environment context of the simulation can logically
be broken down into nature and architecture.

Architecture
Creating the architectural context of this simulation is as straightforward as importing
the building model into Unreal Engine 4. To do so however, we must first consider
which software we are importing it from, the file type of the exported model, and the
techniques for preserving collision upon import to allow the game engine to generate
the pathfinding system.

For this step, I have chosen to utilize Revit as the software to import from, as Building
Information Modeling (BIM) seems to be the standard that the architecture industry
is heading towards.[1] In doing so, we can establish a visualization pipeline where
the Revit model can be imported for basic scaling and geometry, and the details are
added later in UE4 to maximize visualization quality and rendering efficiency. This
pipeline can then be described by the following steps: (Fig. 3.5.1 - 2)

1.	 Export model from Revit as an FBX file. (based on families or
textures)

2.	 Import FBX file into UE4 as a static mesh asset and set the
correct scale.

3.	 Go into the Static Mesh asset and create a physical material and
set the collision complexity to “use complex collision as simple.”

From this, the Revit model should be available within UE4 with working collision.
(Fig. 3.5.3 - 4) It is then possible to apply various material textures to this model
much like in Revit.

Since beginning this thesis, however, Epic Games has also recognized the merit of
game engines within architectural visualization. As such, they have created additional
tools to work alongside Unreal Engine in a package they call Unreal Studio.[2] This
new software is essentially the Unreal Engine with additional toolsets, templates,
and libraries to facilitate architectural visualization. One of the key benefits within
this software is Datasmith,[3] which provides a more efficient and seamless way of
importing building models into the game development environment.[4] While this
new software is still in beta testing, it further validates the utilization of this game
engine for architectural visualization, and is definitely something to investigate
beyond this thesis.
1	 “About the National BIM Standard-United States®,” National Institute of Building Sciences, accessed October

18, 2019, https://www.nationalbimstandard.org/about.
2	 “Unreal Studio,” Unreal Engine, accessed October 18, 2019, http://www.unrealengine.com/studio.
3	 “Installing the Datasmith Exporter Plugin for Revit,” Unreal Engine Documentation, accessed October

18, 2019, https://docs.unrealengine.com/en-US/Studio/Datasmith/SoftwareInteropGuides/Revit/
InstallingExporterPlugin/index.html.

4	 Unreal Engine, “The Journey from Revit to Unreal Studio | Feature Highlight | Unreal Studio,” YouTube,
1:08:36, accessed October 18, 2019, https://youtu.be/iuqTvvd16UQ?t=435.

Figure 3.5.1	 3ds Max export window
Linking the Revit model to 3ds Max before exporting allows better control in
the resulting FBX file. The base units for Revit is in feet, and the base units in
UE4 is in Centimeters. This must be taken into account when exporting the
FBX file from 3ds Max linked from Revit.
Screen-captured and edited by Author.

Figure 3.5.2	 Static Mesh collision properties
Collision can be auto generated by utilizing a physical material and setting the
Collision Complexity of it to “use complex collision as simple”
Screen-captured and edited by Author.

https://www.nationalbimstandard.org/about
http://www.unrealengine.com/studio
https://docs.unrealengine.com/en-US/Studio/Datasmith/SoftwareInteropGuides/Revit/InstallingExporterPlugin/index.html
https://docs.unrealengine.com/en-US/Studio/Datasmith/SoftwareInteropGuides/Revit/InstallingExporterPlugin/index.html

204 205

Tool Creation |Environment Context Tool Creation |Environment Context

Figure 3.5.3	 Collision lines right after Importing from Revit
By Twiz, “Unreal Engine 4 Tutorial - Export From Revit to UE4,” YouTube, 9:44, accessed December 28, 2019, https://www.youtube.com/
watch?v=Ux_zJ4WJbZg.

Figure 3.5.4	 Fixed collision lines within UE4 with a physical material
By Twiz, “Unreal Engine 4 Tutorial - Export From Revit to UE4.”

Figure 3.5.5	 Landscape Creation in UE4
By Virtus Learning Hub / Creative Tutorials, trimmed by Author, “Populating Scenes With The Foliage Tool - #17 Unreal Engine 4 Level Design Tutorial Series,” YouTube,
14:18, accessed December 28, 2019, https://www.youtube.com/watch?v=XYYfIYDqsDA.

Nature
Nature has always been a challenge to model in traditional architectural
visualization workflows due to its complexity and randomization. However, UE4
provides basic landscaping tools for an easy setup of such an environment, which
is one of the more powerful tools of this pipeline. With this, we can create a
basic plane with a contour map and use various brushes and environmental assets
to shape and randomly scatter vegetation along this plane, allowing for the fast
creation of complex natural landscapes. (Fig. 3.5.5)

https://youtu.be/XYYfIYDqsDA?t=699

206 207

Tool Creation |Application Methodology Tool Creation |Application Methodology

Chapter 3.6 | Application Methodology
Now that we have established the basic assets of this simulation system, as well
as a way of importing and creating a context within the virtual environment,
we can begin developing a workflow pipeline utilizing this software as a
visualization tool. As such, a basic workflow can be described as the following:

1.	 Import model from Revit (Fig. 3.6.1 - 2)

2.	 Define the entrance and exits (Fig. 3.6.3 - 4)

3.	 Define the architectural elements (Fig. 3.6.5 - 6)

4.	 Simulate. (Fig. 3.6.7 - 8)

Beyond this, we can also output various points from each agent to provide
various analytics such as crowd flow, densities, and comfort maps. (Fig. 3.6.9
- 10) These are useful not only in debugging the simulation but also as a
rough analytical tool for architectural visualization. While they are currently
a rough approximation, these visualizations will continue to become more
accurate as the crowd movement algorithms becomes increasing refined. To
further help with the usability of this tool, we can create a GUI (Graphical
User Interface) for simpler control of the simulation global parameters, the
analytics and debugging visualizations, as well as the sun lighting angles. (Fig.
3.6.11 - 12) Ultimately, we can utilize this tool to simulate various types of
spatial scenarios, as well as visualize and interact with them in many different
ways. (Fig. 3.6.13 - 18)

At its basic level, these simulations will be able to convey the capacity of spaces
and their ability to accommodate crowds and human movement, as well as
pinch points and opportunistic or problematic interaction points. Beyond
this, the possibilities are endless.

Figure 3.6.1	 Step 1: Import FBX model
Screen-recorded by Author.

Figure 3.6.2	 Step 1 sequential frames
Frame-captured by Author.

1

3

2

4

Figure 3.6.1 - 3.6.2
FBX models can be exported
from various 3D applications
such as Revit, Rhino, 3ds
Max, etc. The FBX model can
be imported by dragging the
file from the windows folder.
Textures can then be applied
to the imported model by
dragging texture assets from
the content browser.

208 209

Tool Creation |Application Methodology Tool Creation |Application Methodology

Figure 3.6.3	 Step 2: Define entrances/exits and thresholds
Screen-recorded by Author.

Figure 3.6.5	 Step 3: Define Interactive Elements
Screen-recorded by Author.

1 1

3 3

2 2

4 4

Figure 3.6.3 - 3.6.4
Entrances and exits can be defined within the simulation by dragging assets from the content browser. They can then be
customized depending on their typology and location by adjusting their attributes within the properties menu.

Figure 3.6.5 - 3.6.6
Similar to the entrances and exits, interactive elements can be defined by dragging assets from the content browser. They
can then be customized depending on their typology by adjusting their attributes within the properties menu.

Figure 3.6.4	 Step 2 sequential frames
Frame-captured by Author.

Figure 3.6.6	 Step 3 sequential frames
Frame-captured by Author.

210 211

Tool Creation |Application Methodology Tool Creation |Application Methodology

Figure 3.6.7	 Step 4: Initiate the simulation
Simulated and screen-recorded by Author.

Figure 3.6.8	 Step 4 sequential frames
Frame-captured by Author.

Figure 3.6.7 - 3.6.8
After establishing the space with our predefined elements, we can begin the simulation.
With a simple press of the play button within the GUI (Graphical User Interface), the
software begins to generate agents from the entrance/exit thresholds based on global
variables such as number of people and spawn rate. This gives the illusion of people
flowing from the thresholds and populating the space in real time.

1

3

5

7

2

4

6

8

212 213

Tool Creation |Application Methodology Tool Creation |Application Methodology

Figure 3.6.9	 Various forms of data can be visualized and mapped out during the simulation and toggled on or off via the
GUI (Graphical User Interface) or hotkeys
Simulated and screen-recorded by Author.

Figure 3.6.10	Data visualization sequential frames
Frame-captured by Author.

Figure 3.6.9 - 3.6.10
Due to the calculated nature of agent-based computer-generated simulations, it
becomes straightforward to render out various forms of data during the simulation
process. One example of such is the agent’s comfort level throughout the space. This
is calculated based on the number of other agents within the agent’s personal space
(visualized by the red bubbles). The more people within this personal space, the less
comfort the agent has, and the redder the resulting trail will become. As seen in
the figure, areas of discomfort appears in red, which can be used to map out crowd
densities where congestion may occur. This map seems to make logical sense in this
case since the location of it is by an object of interest as well as being in the most
central location of the space.

This is of course, just one example of how data can be mapped throughout the
simulation. Depending on the spatial and scenario typologies, multiple layers can be
visualized and traced based on varying types of occupancy throughout the space. A
hospital might have different paths for the doctors and the patients; a school might
have different paths for the teachers, students, and the general public; a store might
have different paths for employees and shoppers. As such, by visualizing this data in
real time, it becomes possible to not only better design circulation to accommodate
everyone during the design phase, but also visualize neglected spaces that can be
optimized.

1

3

5

7

2

4

6

8

214 215

Tool Creation |Application Methodology Tool Creation |Application Methodology

Figure 3.6.11 - 3.6.12
The GUI can also be scripted to control other aspects of the simulation, such as the
sun angle and time of day. This interactivity, along with its photorealism capabilities,
allows UE4 to become a powerful tool for quickly visualizing photorealistic dynamic
lighting conditions to conduct solar studies. As seen from the figure, the sky changes
alongside the sun angle, simulating an orange sky during sunset and stars at night. This
aspect can be further investigated to interact with the crowd dynamics by making the
occupants seek shading and be less likely to walk in the direct sunlight. This can then
be further expanded to other environmental factors such as the rain or snow, which
can serve to visualize and consider the dynamic nature of environmental factors.

1

3

5

7

2

4

6

8

Figure 3.6.11	GUI controlled Solar Studies
Simulated and screen-recorded by Author.

Figure 3.6.12	GUI controlled Solar Studies sequential frames
Frame-captured by Author.

216 217

Tool Creation |Application Methodology Tool Creation |Application Methodology

Figure 3.6.13 - 3.6.14
Various scenarios can be programmed depending on the situation. This figure shows
an example of an evacuation scenario, where each agent tries to make their way to the
nearest exit. With more substantial scripting depending on the project scenario, it then
becomes possible to simulate specific spatial scenarios beyond simple evacuations, such
as lectures, outdoor events, gallery talks, performances, New Year’s Eve celebrations,
etc, as well as more specific spaces that may require additional considerations such as
checking into airports, hospitals, and so on.

1

3

5

7

2

4

6

8

Figure 3.6.13	The GUI can also be used to control various scripted events, such as an evacuation scenario
Simulated and screen-recorded by Author.

Figure 3.6.14	Scenario programming sequential frames
Frame-captured by Author.

218 219

Tool Creation |Application Methodology Tool Creation |Application Methodology

Figure 3.6.15	The simulation can also be visualized and interacted from different perspectives to better visualize the space
Simulated and screen-recorded by Author.

Figure 3.6.16	Interactive perspective variation sequential frames
Frame-captured by Author.

Figure 3.6.15 - 3.6.16
This software environment also allows us to utilize various forms of interaction and
visualization mediums beyond just visualizing the space from the top down. This
opens the possibilities of interacting with the space via mouse and keyboard inputs,
VR and AR headsets, as well as body tracking technologies. This figure shows an
example of a 3rd person perspective where someone can control an agent to walk
around the space, visualizing the simulation from a new perspective.

1

3

5

7

2

4

6

8

220 221

Tool Creation |Application Methodology Tool Creation |Application Methodology

Figure 3.6.17	The virtual camera can be utilized to simulate a real camera to produce cinematic footage
Screen-recorded by Author.

Figure 3.6.18	Virtual camera sequential frames
Frame-captured by Author.

Figure 3.6.17 - 3.6.18
These figures show how we can move the camera to produce cinematic visualizations
by using techniques such as truck and dolly movements. Much like a physical camera,
we can also adjust the DOF (depth of field) of the camera by controlling the aperture
value within the properties. This camera control along with its real-time rendering
capabilities allows us to produce cinematic visualizations that are comparable to the
film industry but also rendered at a much faster pace. This faster pace of rendering
will allow designers to utilize more realistic visualizations that can represent the space
in real life even during the iterative process of the design phase, which is substantially
more useful as a tool than simply being used for client pitches that are made after
the design, such as the examples shown in Chapter 1.2: Inadequacy of Current
Visualization Methods.

1

3

5

7

2

4

6

8

Part 4 | Tool Evaluation
Simulations of Real-World Spaces

Simulations of Real-World Spaces

This section will evaluate the capabilities of the toolset that was established in Part 3:
Tool Creation by investigating various architectural applications that this simulation
framework could be used for. It will do so by first examining generic spatial conditions
with the toolset to establish a limit of operation potential. It will then utilize the
toolset to simulate a variety of architectural spaces starting from the smallest scale
and working its way up to larger scenarios.

226 227

Tool Evaluation |Spatial Conditions Tool Evaluation |Spatial Conditions

Figure 4.1.2	 Open Space analytical frames
Frame-captured by Author.

Figure 4.1.1 - 4.1.2
The purpose of this scenario is to investigate agent behaviors as well as the overall
crowd dynamics within an open space without the presence of interactive elements.
With this, we can observe the agent behaviors in a predominantly agent to agent
interactive space and fine tune its agent interaction percentage parameters to better
resemble real world crowds. It can be seen here that a percentage of the agents will
began talking while others will explore the space before finding an exit and leaving.
In doing this, we can also observe a rough limit of 100 agents before the simulation
starts to slow down with current hardware, and a limit of 50 agents if a screen capture
software is running alongside it.

1

3

5

7

2

4

6

8

Chapter 4.1 | Spatial Conditions
The first step is to test this tool within some generic conditions to get a sense
of the crowd flow in various spatial typologies. In doing so, we can confirm
the agent’s ability to adapt to different spatial scenarios, as well as establish a
range of operation potential to better understand the limits of this framework
in its current form.

Figure 4.1.1	 Open Space Condition
Simulated and screen-recorded by Author.

228 229

Tool Evaluation |Spatial Conditions Tool Evaluation |Spatial Conditions

Figure 4.1.3	 Corridor Condition
Simulated and screen-recorded by Author.

Figure 4.1.4	 Corridor analytical frames
Frame-captured by Author.

Figure 4.1.3 - 4.1.4
These figure looks at how the agents behave within a corridor condition. It can be
observed that the agents will walk along the corridor geometry, with a much smaller
percentage of them talking due to the lower amount of agent to agent interactions
from the smaller more constricted space. It is also interesting to note how the crowd
dynamics begin to form lanes similar to the social forces model briefly mentioned
from chapter 2, which can be speculated to be caused by the alignment forces that
causes people to keep pace with their surroundings.

1

3

5

7

2

4

6

8

230 231

Tool Evaluation |Spatial Conditions Tool Evaluation |Spatial Conditions

Figure 4.1.5	 Intersection Condition
Simulated and screen-recorded by Author.

Figure 4.1.6	 Intersection analytical frames
Frame-captured by Author.

Figure 4.1.5 - 4.1.6
This scenario tests how the agents maneuver through intersections. The agents moving
through the intersection will subtly change their path to avoid colliding into other
agents. When the hallway divides into 2, a percentage of the agents will choose 1 path
while another percent will choose the other path.

1

3

5

7

2

4

6

8

232 233

Tool Evaluation |Spatial Conditions Tool Evaluation |Spatial Conditions

Figure 4.1.7 - 4.1.8
This scenario investigates how the agents move from a constricted space to an open
space. From these figures, we can observe how the agents fan out to explore as they
spill into the open space. This shows how the crowd dynamics of these autonomous
agents can change to accommodate the spatial conditions, as the agents conform to
the spatial limits of the environment.

1

3

5

7

2

4

6

8

Figure 4.1.7	 Expansion Condition
Simulated and screen-recorded by Author.

Figure 4.1.8	 Expansion analytical frames
Frame-captured by Author.

234 235

Tool Evaluation |Spatial Conditions Tool Evaluation |Spatial Conditions

Figure 4.1.11	Grand Central Station time-lapse
From Rocketboom, “Time Lapse Grand Central Station,” YouTube, 2:54, accessed December 28, 2019, https://www.youtube.com/watch?v=eimuAboXSdo&feature=youtu.be.

Figure 4.1.9	 Open space condition sped-up 20x
Simulated and screen-recorded by Author.

Figure 4.1.9 - 4.1.12
After confirming the Agent’s ability to adapt to different spatial scenarios, we can create a rough mock-up of a real-
world space to gage how well this crowd simulation can resemble it. Grand Central Station in NYC was chosen for its
relatively simple spatial typology of being an open box with thresholds along its edges and a centralized object of interest.
As such, these 2 figures compare the generated crowd movements of a virtual animation with a documented time-lapse
video of the Grand Central Station. Although the scale of the space and the number of people of the simulation is not
exact, the emergence of similar movement patterns can be seen from both examples. The waves of high and low-density
crowd movements alongside agent interactions with the centralized object allows the simulated crowd to resemble the
real-world crowd dynamics of the space.

11

33

22

44

Figure 4.1.10	Open space condition sped-up analytical frames
Frame-captured by Author.

Figure 4.1.12	Grand Central Station time-lapse analytical frames
Frame-captured by Author, from Rocketboom, “Time Lapse Grand Central Station.”

https://youtu.be/eimuAboXSdo?t=85

236 237

Tool Evaluation |Spatial Conditions Tool Evaluation |Spatial Conditions

Figure 4.1.13 - 4.1.14
Since these agents operate as autonomous agents with sight and decision making, they
have the ability to react to a changing environment. This not only allows us to test
different design scenarios and sizes in real time, but also allows the agents themselves
to interact with scripted dynamic objects within the space, which in turn allows us to
visualize how these interactive and dynamic spaces may impact the occupants during
the iterative process of the design phase. With this, the simulation has the potential
to create an interplay of dynamic systems—people interacting with architecture, and
architecture interacting with people, which allows us to consider different geometries
and scenarios based on these interactions during the design phase.

Figure 4.1.13	The simulated agents will react and adapt to a changing environment in real time.
Note how the green Navmesh area is updated in real time as the space is manipulated.
Simulated and screen-recorded by Author.

Figure 4.1.14	Adaptive agents sequential frames
Frame-captured by Author.

1

3

5

7

2

4

6

8

238 239

Tool Evaluation |Nuit Blanche Cushion Tool Evaluation |Nuit Blanche Cushion

Figure 4.2.2	 Cushion Floor Plan
Illustrated by Author, CAD file obtained from the Cushion team.

Chapter 4.2 | Nuit Blanche Cushion
After testing the agents within various spatial conditions and establishing their
limits, we can evaluate this simulation tool for architectural visualization use
by first simulating architectural spaces at the smallest of scales. To do so, we
can re-simulate Cushion—the Nuit Blanche Toronto installation space we
prototyped in chapter 2.5—which allows us to compare our simulation tool
with our prototype to see its progression. This space also fits our criteria for
providing a scenario that is both small in scale and inherently involves crowds
of people interacting with dynamic elements.

Figure 4.2.1	 Cushion Revit model
Screen-captured by Author.

K

R

G

J

M

P

E

F

H

I

L
A

N

O

BC

S
D

Q

V

T

U

c1c1

CLAP - SOUND

c3

COLOUR CHANGE (channel 4)

HEART BEAT

1m

m
3

PRESSURE - DEFLATE\INFLATE

CONSTANT COLOUR

INTERACTIVE OBJECT

ENTRANCE/ EXIT

m
2

PRESSURE - LIGHT (CHANNEL 1: FLASH OF WHITE LIGHT

c2

m
1

ACCELEROMETER - LIGHT(CHANNEL 2 /3: SWITCH ON TOUCH)

BREATHE

INTERACTIVE

SIMULATION AREA

CONSTANT

SIMULATION ASSETS

240 241

Tool Evaluation |Nuit Blanche Cushion Tool Evaluation |Nuit Blanche Cushion

Figure 4.2.3	 Cushion crowd simulation
Simulated and screen-recorded by Author.

Figure 4.2.4	 Cushion crowd simulation analytical frames
Frame-captured by Author.

Figure 4.2.3 - 4.2.4
Within this first simulation, we can observe that the agents are behaving as anticipated.
They are first generated at one end where they can come into the space and explore
the installation. As they move through the alleyway, they will interact with the various
cushion objects within the space, which in turn causes the objects to change in color.
Once they have reached the end, they will exit the space. It is also interesting to note
how the more open space at the back allows for more agent to agent interactions,
which in turn facilitates an area of conversation within the space.

1

3

5

7

2

4

6

8

242 243

Tool Evaluation |Nuit Blanche Cushion Tool Evaluation |Nuit Blanche Cushion

Figure 4.2.5	 Cushion agent-comfort map
Simulated and screen-recorded by Author.

Figure 4.2.6	 Cushion agent-comfort map analytical frames
Frame-captured by Author.

Figure 4.2.5 - 4.2.6
These figures shows how the comfort trails can highlight a potential area of congestion.
This result makes sense as the congestion area occurs at one of the first bottlenecks of
the installation plan when entering the space. As such, it can be assumed that placing
an object of high interest here will worsen the effect.

1

3

5

7

2

4

6

8

244 245

Tool Evaluation |Nuit Blanche Cushion Tool Evaluation |Nuit Blanche Cushion

Figure 4.2.7	 Cushion real world footage
Filmed by Author.

Figure 4.2.8	 Cushion real world footage analytical frames
Frame-captured by Author.

Figure 4.2.10	Cushion rendered visualization analytical frames
Frame-captured by Author.

Figure 4.2.9	 Cushion rendered visualization
Simulated by Author.

Figure 4.2.7 - 4.2.10
Utilizing virtual cinematic cameras allows us to render out animations in real time. In doing so, we can match our
visualization to real world footage, which allows us to compare the experiential qualities of the installation versus the
simulation. From this, we can see that while the simulation is not an exact replica, it is still much better than no agents
at all at conveying the usability and experiential qualities of the space.

11

33

22

44

246 247

Tool Evaluation |Nuit Blanche Cushion Tool Evaluation |Nuit Blanche Cushion

Figure 4.2.9 - 4.2.12
While it can be argued that the simulated agents are not fully accurate when comparing to the real world,
comparing them further to the same visualization without the agents reveals how much impact the addition
of these simulated agents can bring to the resulting spatial visualization. Without the agents, not only does the
visualization convey less about the experience of the space, but the dynamic interactive elements within the
simulation also become subdued without the agents providing a source of input to interact with them.

Figure 4.2.9 Cushion rendered visualization Figure 4.2.11	Cushion rendered visualization without simulated crowds
Simulated by Author.

Figure 4.2.12	Cushion rendered visualization analytical frames without simulated crowds
Frame-captured by Author.

1 1

3 3

2 2

4 4

Figure 4.2.10 Cushion rendered visualization analytical frames

248 249

Tool Evaluation |Riverside Gallery Tool Evaluation |Riverside Gallery

Chapter 4.3 | Riverside Gallery
After investigating the installation space, we can utilize this tool further within a
larger and more practical context. As such, the Riverside Gallery in Cambridge,
Ontario was chosen. It is a space that not only fits these criteria of being larger
and more ‘real world’ than an installation, but its location within the architecture
school also allows an ease of documentation and translation of this space into the
virtual environment.

Figure 4.3.1	 Riverside Gallery Revit model
Screen-captured by Author.

4.88mSIMULATION AREA

INTERACTIVE OBJECT

ENTRANCE/ EXIT

THRESHOLD

PARTITION

SIMULATION ASSETS

Figure 4.3.2	 Riverside Gallery Floor Plan
It should be noted that the simulation area does not need to encompass the entire building. The entrance/exit assets can
be used to define the boundaries of a space as long as it is a closed system.
Illustrated by Author, PDF file obtained from “Floor Plans,” Plant Operations, accessed 28, 2019, https://uwaterloo.ca/plant-operations/floor-plans.

250 251

Tool Evaluation |Riverside Gallery Tool Evaluation |Riverside Gallery

Figure 4.3.3	 Riverside Gallery crowd simulation
Simulated and screen-recorded by Author.

Figure 4.3.4	 Riverside Gallery crowd simulation analytical frames
Frame-captured by Author.

Figure 4.3.3 - 4.3.4
This simulation shows how the agents move around within more traditional spaces
such as an art gallery. While the furniture elements within this gallery—such as
tables and displays—are not dynamically interactive like the ones seen in cushion,
they can still be considered interactive objects within the space, since the agents can
manipulate and move them. This figure shows how the agents are drawn towards the
gallery as they enter the building, with some of them heading down the hallway to
the bathrooms or the school. As they walk around the gallery, they will observe and
interact with the displays within the space, or begin talking with other agents.

1

3

5

7

2

4

6

8

252 253

Tool Evaluation |Riverside Gallery Tool Evaluation |Riverside Gallery

Figure 4.3.5	 Riverside Gallery agent-comfort map
Simulated and screen-recorded by Author.

Figure 4.3.6	 Riverside Gallery agent-comfort map analytical frames
Frame-captured by Author.

Figure 4.3.5 - 4.3.6
The generated comfort trails here highlight a possible area of congestion by the display,
which makes sense as it is a physical bottleneck around an object of interest near the
entrance of the gallery space.

1

3

5

7

2

4

6

8

254 255

Tool Evaluation |Riverside Gallery Tool Evaluation |Riverside Gallery

Figure 4.3.7	 Riverside Gallery real world footage
Filmed by Author.

Figure 4.3.8	 Riverside Gallery real world footage analytical frames
Frame-captured by Author.

Figure 4.3.9	 Riverside Gallery rendered visualization
Simulated by Author.

Figure 4.3.10	Riverside Gallery rendered visualization analytical frames
Frame-captured by Author.

1 1

3 3

2 2

4 4

Figure 4.3.7 - 4.3.10
Utilizing the virtual cinematic cameras allows us to once again render out animations in real time. This comparison
between the real-world footage and the simulation is somewhat more exact, mainly due to the increased model detail of
the interactive elements within the space.

256 257

Tool Evaluation |Riverside Gallery Tool Evaluation |Riverside Gallery

Figure 4.3.11	Riverside Gallery rendered visualization without simulated crowds
Simulated by Author.

Figure 4.3.12	Riverside Gallery rendered visualization analytical frames without simulated crowds
Frame-captured by Author.

1

3

2

4

Figure 4.3.9 Riverside Gallery rendered visualization

1

3

2

4

Figure 4.3.9 - 4.3.12
Once again, comparing this animated visualization to one without agents at all, highlights how even generic humanoid
agents can better convey the usability and experience of the space. Without these agents, the space feels a lot less authentic
when compared to the real world.

Figure 4.3.10 Riverside Gallery rendered visualization analytical frames

Part 5 | Next Steps
What the Future Holds

261

What the Future Holds

This section concludes this exploration by acknowledging potential directions to
investigate and various aspects that can be improved upon in the future. Since the
initial aim was to create a foundational framework for visualizing dynamic spaces, it
makes sense that there are many elements that can be improved upon and developed
beyond the scope of this thesis. As such, improvements to this framework in the near
future can be broken down into the following categories: Simulation Improvements,
Photorealism, Virtual Reality, and Workflow Refinements.

262 263

Next Steps |Simulation Improvements Next Steps |Simulation Improvements

Chapter 5.1 | Simulation Improvements
The first of these improvements is the simulation itself. The last section (Part 4:
Simulation Applications) investigated various applications that this simulation
framework could be used for; starting with generic basic conditions to small
scale installations and working its way up to larger ‘real world’ spaces such
as galleries. From these investigations, it can be seen that the agents are
still somewhat unsophisticated with jerky movements when compared to
people in the physical world. While this is largely unnoticeable when more
agents are generated within the simulation, it still shows that there is room
for improvement. At the same time, there also seems to be a limit to the
number of occupants that can be generated before the entire system slows
down significantly, which can limit the variety of spaces that this tool can be
used for. As such, it is evident that this model can be improved both in terms
of optimization and accuracy. To do so, we must first finalize and organize the
simulation model. From here, we can optimize performance by utilizing C++
and increase accuracy with additional considerations to the simulated agents.
We can then use this new model to establish new features that can be used for
architectural visualization.

Organization: Finalizing the Simulation Model
Before even considering these improvements, however, it is important to first
organize and simplify the simulation model. At its current state from Chapter
3.3: Human Agents, these assets are messy with leftover ‘experimental logic’
due to the prototyping process, which leaves a lot of unnecessary variables and
functions to wade through when modifying the logic.

While this was deliberate in learning this software, it becomes inefficient in
the process of adding additional functionalities. Therefore, the first step that
should be taken beyond this thesis is to go through the entire logic of the
simulation model and determine the necessary portions of code. From there, it
would then become possible to organize the logic into macros and functions in
order to create a library of reusable nodes for future modifications. Doing this
will solidify the foundational aspect of this framework, which will facilitate
an easier process to add additional considerations and features to the crowd
simulation tool.

Optimization: Blueprints vs C++
Within UE4, when a blueprint is executed, it is calling back to the C++ code
that was written for it. As such “there is an overhead cost associated with
executing blueprints that isn’t present with purely native code.”[1] This lack of
an overhead can allow the native C++ code to outperform blueprints by up to
10 times, which becomes significant as we begin adding more people to the
simulation. (Fig. 5.1.1)

1	 Irascible, comment on “[Twitch] Fortnite Developers Discussion - Apr. 17, 2014,” Unreal Engine
Forums, accessed October 18, 2019, https://forums.unrealengine.com/unreal-engine/events/3192-
twitch-fortnite-developers-discussion-apr-17-2014/page2.

Figure 5.1.1	 Blueprint scripting vs C++ scripting
From Jayanam, frame-captured and edited by Author, “Unreal Engine 4 : C++ and Blueprints Tutorial,” YouTube, 7:36, accessed January 1, 2020, https://www.youtube.com/
watch?v=SW09W182Ws0.

https://forums.unrealengine.com/unreal-engine/events/3192-twitch-fortnite-developers-discussion-apr-17-2014/page2
https://forums.unrealengine.com/unreal-engine/events/3192-twitch-fortnite-developers-discussion-apr-17-2014/page2

264 265

Next Steps |Simulation Improvements Next Steps |Simulation Improvements

A common approach to this within UE4 is to build prototypes in blueprint
first and then move some or all of the functionalities to C++ once a “refractor
point” is reached in which the base functionalities are proven and it becomes
favorable to solidify the code for other people to use.[2] While this translation
may take significantly longer than prototyping with blueprints, the increased
performance will allow the simulation of increasingly bigger crowds, which can
expand the range of applications of this tool depending on the architectural
project.

With our current hardware and setup from Part 3, we have a limitation of
around 150 people before the system begins to slow down substantially.
Therefore, by optimizing the logic, it may be possible to increase this limitation
and increase the range of this application from simulating smaller spaces such
as galleries and installations to larger spaces such as train stations and malls. In
doing so, it also becomes possible to utilize more detailed agent Skeletal Mesh
assets to portray a more realistic variance within the crowd.

Accuracy: Additional Simulation Model Considerations
As already mentioned in Chapter 2.2: Establishing Model Methodology,
additional variables can be introduced beyond the concept of personal space
to introduce increased complexity to these agents. For example, variables
can be created for each agent that states his or her energy, hunger, interest,
comfort, memory, emotion, and task list. This produces a pseudo-personality
for each agent, where their task may be altered based on their current physical
and mental state. An agent that does not have enough energy may be too tired
and will try to seek seating, whereas an agent who has achieved his or her
goal within the space may no longer have any interest and choose to seek an
exit. These can then be mapped during the simulation to visualize areas where
people may become stressed, hungry, tired, happy, etc. Beyond this, additional
parameters can also be considered from higher complexity models (also
mentioned in Chapter 2.2) such as HiDAC, where factors such as pushing,
falling and panic behaviors can be introduced. This new simulation model
can then be fine tuned further by doing a series of real world crowd studies
in different locations, which can introduce other factors to influence crowd
movements such as geography, culture, average height, population age, etc.
The foundational framework we developed throughout this thesis then allows
us to slowly build upon it by adding these features, allowing the simulation
model to become increasingly capable and accurate over time.

2	 “Balancing Blueprint and C++,” Unreal Engine Documentation, accessed October 18, 2019, https://
docs.unrealengine.com/en-US/Resources/SampleGames/ARPG/BalancingBlueprintAndCPP/index.
html.

Utility: Additional features for the simulation tool
These improvements in the simulation model can also allow the implementation
of additional features within the simulation tool—many of which were already
briefly mentioned in Chapter 3.6: Application Methodology—which can include
additional ways to visualize solar and thermal comfort, occupancy responses
and reactions, as well as the ability to layer different types of agent trails
depending on the persona, typology and groupset of the existing occupants. We
can also recreate more accurate and additional scenarios to offer unique insight
for architects during design. Beyond just evacuation we can simulate events
such as holiday openings, conference lectures, and performances, as well as
simulate more specific spaces that may require additional considerations such
as checking into airports, hospitals, event gatherings, and so on. (Fig. 5.1.2)
These features further contribute to the utility of this tool as an analytical and
visualization tool for not only interactive dynamic spaces, but also occupied
static spaces.

Figure 5.1.2	 An airport is one example of a dynamic space that requires multiple layers of queuing, and many
groupings of occupants
By John Amis, from Don Schanche Jr., “Airlines Struggle to Get Back on Schedule after Atlanta Fire,” December 18, 2017, FWBP, accessed January 1, 2020, http://www.
fortworthbusiness.com/news/airlines-struggle-to-get-back-on-schedule-after-atlanta-fire/article_c1ce0496-e41b-11e7-8980-5b5f5acbd106.html.

https://docs.unrealengine.com/en-US/Resources/SampleGames/ARPG/BalancingBlueprintAndCPP/index.html
https://docs.unrealengine.com/en-US/Resources/SampleGames/ARPG/BalancingBlueprintAndCPP/index.html
https://docs.unrealengine.com/en-US/Resources/SampleGames/ARPG/BalancingBlueprintAndCPP/index.html

266 267

Next Steps |Photorealism Next Steps |Photorealism

Figure 5.2.1	 Photogrammetry recreates an object by capturing multiple images of the object in various angles
From Joseph Azzam, “Everything You Need to Know about Photogrammetry I Hope,” January 10, 2017, Gamasutra, accessed January 1, 2020, https://www.gamasutra.com/
blogs/JosephAzzam/20170110/288899/Everything_You_Need_to_Know_about_Photogrammetry_I_hope.php.

Chapter 5.2 | Photorealism
The next set of improvements to explore for this pipeline would be photorealistic
rendering outputs. With hardware becoming increasing powerful and software
becoming increasingly sophisticated, more photorealistic rendering methods
are becoming increasingly accessible. While the default visuals of UE4 provided
adequate results, it is only the beginning of what this game engine is capable
of. This step of improvements at the base would require investigating various
ways of material creation, but to fully utilize this software, we would also need
to investigate more advanced photorealism methods such as photogrammetry
and real-time ray tracing. In doing so, we can further solidify this framework
as an efficient way to both analyze and visualize the space within the same
workflow.

Photogrammetry
Photogrammetry can be defined as “the art, science and technology of
obtaining reliable information about physical objects and the environment
through the process of recording, measuring and interpreting photographic
images and patterns of electromagnetic radiant imagery and other
phenomena.”[1] Simply put, this allows us to create exceptionally detailed 3D
models by taking multiple images of the subject from different angles. (Fig.
5.2.1) While this concept is not new, commercial photogrammetry software
has only recently become easily accessible. By utilizing software such as Agisoft
Photoscan, Reality Capture, and Pix4d, we can relatively easily create realistic
assets that can in turn be used to create visualizations that are almost visually
on par with traditional ray-traced methods at a fraction of the rendering time.

[2] (Fig. 5.2.2 - 3) These visualizations are approaching a level of photorealism
that is hard to distinguish from real life, and as such, the implications of
this within architectural visualization are undoubtedly significant and will be
worth investigating.

Real-time ray tracing
As already mentioned in Chapter 1.3: Advent and Progression of the Game
Engine, ray tracing is a rendering method where the paths of simulated “light
rays” bouncing throughout the environment are traced back to the source of
the camera.[3] This technique is what allows traditional architectural rendering
methods to outperform game engines in terms of photorealistic representation
as they have the luxury of simulating the lighting based on real-world physics
instead of faking it with textures. Real-time ray tracing then becomes somewhat
self-explanatory in its benefits within architectural visualization.

1	 James S. Bethel et al., Manual of Photogrammetry (Bethesda, MD: American Society for
Photogrammetry and Remote Sensing, 2004), 2.

2	 Joseph Azzam, “Everything You Need to Know about Photogrammetry I Hope,” Gamasutra,
January 10, 2017, accessed October 18, 2019, https://www.gamasutra.com/blogs/
JosephAzzam/20170110/288899/Everything_You_Need_to_Know_about_Photogrammetry_I_
hope.php.

3	 Appel, “Some Techniques for Shading Machine Renderings of Solids.”

This new technology allows us to output renderings at a much faster pace
compared to traditional methods, and as such has the potential to further
blur the line between virtual interactive visualizations and reality. While this
technology is still relatively new, more and more software—such as UE4,
albeit this feature is still in beta—are beginning to support it, with demos
already showing the capabilities of this new technology.[4] (Fig. 5.2.4) This,
along with Nvidia’s recent introduction of ray tracing specific RTX graphics
cards shows that the future of real-time ray tracing is right around the corner
and will only become more powerful as technology improves.

4	 Unreal Engine, “Reflections Real-Time Ray Tracing Demo | Project Spotlight | Unreal Engine,”
YouTube, 1:04, accessed October 18, 2019, https://www.youtube.com/watch?v=J3ue35ago3Y.

https://www.gamasutra.com/blogs/JosephAzzam/20170110/288899/Everything_You_Need_to_Know_about_Photogrammetry_I_hope.php
https://www.gamasutra.com/blogs/JosephAzzam/20170110/288899/Everything_You_Need_to_Know_about_Photogrammetry_I_hope.php
https://www.gamasutra.com/blogs/JosephAzzam/20170110/288899/Everything_You_Need_to_Know_about_Photogrammetry_I_hope.php
https://www.youtube.com/watch?v=J3ue35ago3Y

268 269

Next Steps |Photorealism Next Steps |Photorealism

Figure 5.2.2	 Star Wars Battlefront Photogrammetry Mod
From Martin Bergman, trimmed by Author, “STAR WARS™ Battlefront: Toddyhancer Showcase (Less Filmic Version),” YouTube, 0:52, accessed January 1, 2020, https://www.
youtube.com/watch?v=a72hU_l6mKc.

Figure 5.2.3	 Rebirth photorealism within UE4 demo
From Quixel, trimmed by Author, “Rebirth: Introducing Photorealism in UE4,” YouTube, 2:24, accessed January 1, 2020, https://www.youtube.com/watch?v=9fC20NWhx4s.

Figure 5.2.4	 Star Wars realtime Ray-tracing demo
Trimmed by Author, videos from moviemaniacsDE, “Star Wars: Reflections | Official Unreal Engine Real-Time Ray-Tracing Demo (2018),” YouTube, 4:09, accessed January 1, 2020, https://www.
youtube.com/watch?v=AV279wThmVU, and Unreal Engine, “Reflections Real-Time Ray Tracing Demo | Project Spotlight | Unreal Engine,” YouTube, 1:04, accessed January 1, 2020, https://www.
youtube.com/watch?v=J3ue35ago3Y.

https://youtu.be/9fC20NWhx4s
https://youtu.be/a72hU_l6mKc?t=10
https://youtu.be/AV279wThmVU?t=72

270 271

Next Steps |Virtual Reality Next Steps |Virtual Reality

Figure 5.3.1	 Tiltbrush is one example of an VR painting application
From “Tilt Brush by Google,” accessed January 1, 2020, https://www.tiltbrush.com/.

Chapter 5.3 | Virtual Reality
The real-time rendering and interaction capabilities of this UE4 pipeline
naturally opens the potential of VR integration, which allows us to synchronize
the virtual world to the physical.[1] Through VR headsets, we can achieve
levels of immersion that are unparalleled compared to static or even dynamic
interactive visualizations on a traditional screen. There are multiple levels of
immersion to this, ranging from simple rotationally-tracked headgear to full
body positional tracking, many of which already have some sort of support
within UE4.[2]

This introduces possibilities of expanding both immersion and production
aspects within architectural visualization. Simple positionally tracked
controllers have already been used for applications that allow people to draw
within a virtual 3D VR environment.[3] (Fig. 5.3.1) Optical trackers such as
Kinect[4] and leap motion[5] allows us to easily and cheaply track the human
body and hands, which can be used for both immersive movement control as
well as animation asset creation.[6] (Fig. 5.3.2 - 3) More advanced rigs can also
be used to simulate camera movements within the virtual environment that
are comparable to holding a real camera in the physical world. (Fig. 5.3.4)

By exploring these multiple ways of facilitating physical virtual interactions,
we will be able to realize a plethora of different options that can be used with
this software. The benefits of this medium are further justified by Ronald
Tang’s recently defended M.Arch thesis Step into the Void: A study of spatial
perception in Virtual Reality, in which he rationalizes the utility of VR as a
medium within architectural visualization.[7]

Eventually with enough hardware and software improvements, both the
environment as well as the human agents[8] (Fig. 5.3.5) will become
indistinguishable from reality, allowing us to fully represent spaces, possibly
making this the future of architectural visualization.

1	 “Unreal Engine for AR, VR & MR,” Unreal Engine, accessed October 18, 2019, https://www.
unrealengine.com/en-US/vr.

2	 “Virtual Reality Development,” Unreal Engine Documentation, accessed October 18, 2019, https://
docs.unrealengine.com/en-US/Platforms/VR/index.html.

3	 “Painting from a New Perspective,” Tilt Brush by Google, accessed October 18, 2019, https://www.
tiltbrush.com/.

4	 Kevin Carbotte, “You Can Use A Kinect For Full Body Tracking In SteamVR; Here’s How,” Tom’s
Hardware, September 16, 2017, https://www.tomshardware.com/news/driver4vr-kinect-full-body-
vr-tracking,35476.html.

5	 “Reach into the Future of Virtual and Augmented Reality,” Leap Motion, accessed October 18,
2019, https://www.leapmotion.com/.

6	 “Virtual Reality Motion Tracking Technology Has All the Moves,” Virtual Reality Society (blog), May
5, 2017, https://www.vrs.org.uk/virtual-reality-gear/motion-tracking/.

7	 Ronald Tang, “Step into the Void: A Study of Spatial Perception in Virtual Reality” (Master’s thesis,
University of Waterloo, Waterloo, 2019), http://hdl.handle.net/10012/14468.

8	 “Siren Real-Time Performance | Project Spotlight | Unreal Engine,” YouTube, 0:41, accessed
October 18, 2019, https://www.youtube.com/watch?v=9owTAISsvwk.

https://www.unrealengine.com/en-US/vr
https://www.unrealengine.com/en-US/vr
https://docs.unrealengine.com/en-US/Platforms/VR/index.html
https://docs.unrealengine.com/en-US/Platforms/VR/index.html
https://www.tiltbrush.com/
https://www.tiltbrush.com/
https://www.tomshardware.com/news/driver4vr-kinect-full-body-vr-tracking,35476.html
https://www.tomshardware.com/news/driver4vr-kinect-full-body-vr-tracking,35476.html
https://www.leapmotion.com/
https://www.vrs.org.uk/virtual-reality-gear/motion-tracking/
http://hdl.handle.net/10012/14468
https://www.youtube.com/watch?v=9owTAISsvwk
https://www.tiltbrush.com/

272 273

Next Steps |Virtual Reality Next Steps |Virtual Reality

Figure 5.3.4	 Utilizing a VR camera rig in the making of the short film Rebirth in UE4
From Quixel, trimmed by Author, “Create Photoreal Cinematics in UE4: Rebirth Tutorial,” YouTube, 44:56, accessed January 1, 2020, https://www.youtube.com/
watch?v=0iQJkSpOoOQ&feature=youtu.be&t=2215.

Figure 5.3.5	 Project Siren demonstrates real-time face and body tracking alongside photorealistic human
rendering within UE4
Trimmed by Author, videos from Unreal Engine, “Siren Real-Time Performance | Project Spotlight | Unreal Engine,” YouTube, 0:41, accessed January 1, 2020, https://www.
youtube.com/watch?v=9owTAISsvwk, and “Siren Behind The Scenes | Project Spotlight | Unreal Engine,” YouTube, 0:51, accessed January 1, 2020, https://www.youtube.com/
watch?v=NW6mYurjYZ0.

Figure 5.3.2	 Kinect Body Tracking within UE4
Trimmed by Author, Videos from Opaque Media Group, trimmed by Author, “Kinect 4 Unreal 1.1 - Introduction,” YouTube, 9:17, accessed January 1, 2020, https://
www.youtube.com/watch?v=WHmPvZvRyxc, and Jiayi Wang, “Kinect for UE4 local multi rig tracking test,” YouTube, 1:51, accessed January 1, 2020, https://youtu.be/
KZuauZW8Tgg.

Figure 5.3.3	 Leap Motion Hand Tracking
From Leap Motion, trimmed by Author, “Leap Motion Blocks for Oculus Rift Playthrough,” YouTube, 6:15, accessed January 1, 2020, https://www.youtube.com/
watch?v=oZ_53T2jBGg.

Figure 5.3.2 - 5.3.5
Here we can see various levels of body tracking, which can be as precise as our
fingers and faces and as inclusive as our whole body. Tracking can also be used on
objects, which introduces the potential for syncing other tools, objects, and even
architectural spaces. These new methods of tracking can allow us to both create new
custom animation assets to further advance the movements of the crowds, as well
as give us the ability to better interact with the simulation itself. This in turn allows
us to fully simulate and test new interactive designs in virtual space before actually
building them.

https://youtu.be/oZ_53T2jBGg
https://youtu.be/KZuauZW8Tgg?t=54
https://www.youtube.com/watch?v=0iQJkSpOoOQ&feature=youtu.be&t=2215
https://youtu.be/NW6mYurjYZ0

274 275

Next Steps |Workflow Refinements Next Steps |Workflow Refinements

Chapter 5.4 | Workflow Refinements
The last of these aspects worth investigating in the future are workflow refinements,
which investigates ways to improve the efficiency and potential uses of the workflow
that we have established in chapter 3.6. One way to do so is to consider Python
interoperability between applications. Python is a programming language that is
supported amongst many 3D applications within the media and entertainment
industries.[1] UE4 is of course no exception, as such, it offers a Python API (Application
Programming Interface) to help with scripting and automating within Unreal Editor.[2]
(Fig. 5.4.1) This allows the scripting of various management systems to automate
workflows to optimize production pipelines in the future. The Datasmith workflow
toolkit that was mentioned in chapter 3.5 is one example of such use, where its goal
is to make “moving data into unreal engine as frictionless as possible.”[3] (Fig. 5.4.2)
Building upon this, it then becomes theoretically possible to automate the establishment
of interactive objects and thresholds within UE4 depending on how the families are
defined within Revit. (Fig. 5.4.3) This will be an important aspect to consider as the
tool becomes more refined and better utilized for real world practical applications.
In doing so, it becomes possible to further increase the efficiency of the potential
visualization pipeline of this framework that this thesis has now established.

1	 “Scripting the Editor Using Python,” Unreal Engine Documentation, accessed October 18, 2019,
https://docs.unrealengine.com/en-US/Engine/Editor/ScriptingAndAutomation/Python/index.html.

2	 “Unreal Python API Introduction,” Unreal Engine Documentation, accessed October 18, 2019, https://
docs.unrealengine.com/en-US/PythonAPI/introduction.html.

3	 Ken Pimentel, “Technology Sneak Peek: Python in Unreal Engine,” Unreal Engine, November 15, 2017,
accessed November 20, 2019, https://www.unrealengine.com/en-US/tech-blog/technology-sneak-peek-
python-in-unreal-engine.

Figure 5.4.1	 Python Editor Script Plugin within UE4
From “Scripting the Editor Using Python,” Unreal Engine Documentation, accessed October 18, 2019, https://docs.unrealengine.com/en-US/Engine/Editor/
ScriptingAndAutomation/Python/index.html.

Figure 5.4.2	 Datasmith is a collection of tools and plugins that automates various tasks from traditional workflows
From Ken Pimentel, “Technology Sneak Peek: Python in Unreal Engine,” Unreal Engine, November 15, 2017, accessed November 20, 2019, https://www.unrealengine.com/en-US/tech-blog/
technology-sneak-peek-python-in-unreal-engine.

Figure 5.4.3	 An example of a Python script used to automatically generate a LOD from a higher complexity mesh
From Pimentel, “Technology Sneak Peek: Python in Unreal Engine.”

https://docs.unrealengine.com/en-US/Engine/Editor/ScriptingAndAutomation/Python/index.html
https://docs.unrealengine.com/en-US/PythonAPI/introduction.html
https://docs.unrealengine.com/en-US/PythonAPI/introduction.html
https://docs.unrealengine.com/en-US/Engine/Editor/ScriptingAndAutomation/Python/index.html
https://docs.unrealengine.com/en-US/Engine/Editor/ScriptingAndAutomation/Python/index.html

277

As demonstrated in this thesis, this virtual software environment is fully
capable of both simulating and rendering anything we can imagine in real
time. As long as we can establish a purpose, and a methodology, this crowd
simulation is just a foundation to what is possible to create in the future.

279

Bibliography

ACADIA. “About ACADIA.” Accessed October 16, 2019. http://acadia.org/.

Addington, D. Michelle, and Daniel L. Schodek. Smart Materials and New Technologies: For the Architecture and Design
Professions. London: Routledge, 2016.

Akkerman, Abraham. “Urban Void and the Deconstruction of Neo-Platonic City-Form.” Ethics, Place & Environment
12, no. 2 (2009): 205–18. https://doi.org/10.1080/13668790902863416.

Alberti, Leon Battista. On Painting. Translated with an Introduction and Notes by John R Spencer. New Haven, 1966.

Alexander, R. Mcneill. “Energetics and Optimization of Human Walking and Running: The 2000 Raymond Pearl
Memorial Lecture.” American Journal of Human Biology 14, no. 5 (2002): 641-48. doi:10.1002/ajhb.10067.

Appel, Arthur. “Some Techniques for Shading Machine Renderings of Solids.” Proceedings of the April
30--May 2, 1968, Spring Joint Computer Conference on - AFIPS 68 (Spring), 1968. https://doi.
org/10.1145/1468075.1468082.

Arduino. “What Is Arduino?” Accessed July 23, 2019. https://www.arduino.cc/en/Guide/Introduction.

Arnheim, Rudolf. The Dynamics of Architectural Form. Berkeley: University of California Press, 2009.

Autodesk Support & Learning. “Example: Using Populate.” Accessed October 17, 2019. https://knowledge.autodesk.
com/support/3ds-max/learn-explore/caas/CloudHelp/cloudhelp/2017/ENU/3DSMax/files/GUID-BE-
A89C57-3A7B-4AB5-AAF7-02494AA01CFA-htm.html.

Autodesk. “Autodesk Character Generator.” Accessed October 18, 2019. https://charactergenerator.autodesk.com/.

Azzam, Joseph. “Everything You Need to Know about Photogrammetry I Hope.” Gamasutra, January 10, 2017.
Accessed October 18, 2019. https://www.gamasutra.com/blogs/JosephAzzam/20170110/288899/Every-
thing_You_Need_to_Know_about_Photogrammetry_I_hope.php.

Baharlou, Ehsan. Generative Agent-Based Architectural Design Computation: Behavioral Strategies for Integrating Material,
Fabrication and Construction Characteristics in Design Processes. Stuttgart: Institute for Computational Design
and Construction, 2017.

Banks, Jerry, John S. Carson, Barry L. Nelson, and David M. Nicol. Discrete-Event System Simulation. Upper Saddle
River, NJ: Prentice Hall, 2001.

Barnes, Michael, and Michael Dickson. Widespan Roof Structures. London: Telford, 2000.

Basefount Company. “Miarmy.” Accessed October 17, 2019. http://www.basefount.com/miarmy.html.

Berg, Jur Van Den, Ming Lin, and Dinesh Manocha. “Reciprocal Velocity Obstacles for Real-Time Multi-Agent Nav-
igation.” 2008 IEEE International Conference on Robotics and Automation, (May 2008): 1928–35. https://doi.
org/10.1109/robot.2008.4543489.

Bethel, James S., Edward M. Mikhail, J. Chris. McGlone, and Roy Mullen. Manual of Photogrammetry. Bethesda,
MD: American Society for Photogrammetry and Remote Sensing, 2004.

Carbotte, Kevin. “You Can Use A Kinect For Full Body Tracking In SteamVR; Here’s How.” Tom’s Hardware, Septem-
ber 16, 2017. https://www.tomshardware.com/news/driver4vr-kinect-full-body-vr-tracking,35476.html.

Cardinal, David. “How Nvidia’s RTX Real-Time Ray Tracing Works.” ExtremeTech, August 21, 2018. Accessed Octo-
ber 17, 2019. https://www.extremetech.com/extreme/266600-nvidias-rtx-promises-real-time-ray-tracing.

https://charactergenerator.autodesk.com/
https://www.gamasutra.com/blogs/JosephAzzam/20170110/288899/Everything_You_Need_to_Know_about_Photogrammetry_I_hope.php
https://www.gamasutra.com/blogs/JosephAzzam/20170110/288899/Everything_You_Need_to_Know_about_Photogrammetry_I_hope.php
https://www.tomshardware.com/news/driver4vr-kinect-full-body-vr-tracking,35476.html

280 281

Caulfield, Brian. “What’s the Difference Between Ray Tracing, Rasterization?” The Official NVIDIA Blog, April
11, 2019. Accessed October 16, 2019. https://blogs.nvidia.com/blog/2018/03/19/whats-difference-be-
tween-ray-tracing-rasterization/.

CGTrader. “UASSET 3D models - download UnrealEngine (UASSET) file format 3D assets.” Accessed October 18,
2019. https://www.cgtrader.com/3d-models/ext/uasset.

Chapanis, A. “Review of the Human Senses.” Psychological Bulletin 51, no. 1 (01, 1954): 100-101. doi:http://dx.doi.
org.proxy.lib.uwaterloo.ca/10.1037/h0050962.

Charrieras, Damien, and Nevena Ivanova. “Emergence in Video Game Production: Video Game Engines as
Technical Individuals.” Social Science Information 55, no. 3 (September 2016): 337–56. https://doi.
org/10.1177/0539018416642056.

Cimbala, John M. “Descriptions of Fluid Flows.” Penn State Engineering. Accessed August 3, 2019. https://www.mne.
psu.edu/cimbala/Learning/Fluid/Introductory/descriptions_of_fluid_flows.htm.

City of Toronto. “Nuit Blanche.” Accessed October 10, 2019. https://www.toronto.ca/explore-enjoy/festivals-events/
nuitblanche/.

Codecademy. “What Is an IDE?” Accessed October 18, 2019. https://www.codecademy.com/articles/what-is-an-ide.

Crang, Mike, and Stephen Graham. “Sentient Cities Ambient Intelligence and the Politics of Urban Space.” Informa-
tion Communication and Society 10, no. 6 (2007): 789–817. https://doi.org/10.1080/13691180701750991.

Dadova, Jana. “Cellular Automata Approach for Crowd Simulation.” Master’s thesis, Comenius University, Bratislava,
2012. Accessed August 3, 2019. http://www.sccg.sk/~dadova/phd/rigorozka_dadova_final.pdf.

Dagnelie, Gislin. Visual Prosthetics: Physiology, Bioengineering and Rehabilitation. New York: Springer, 2011.

Dalin, Cheng. “The Great Wall of China,” in Borders and Border Politics in a Globalizing World, edited by Paul Ganster
and David E. Lorey, 11-20. Lanham, MD: SR Books, 2005.

Delaney, William, and Erminia Vaccari. Dynamic Models and Discrete Event Simulation. New York: M. Dekker, 1989.

Donelan, J. Maxwell, Rodger Kram, and Arthur D. Kuo. “Mechanical Work for Step-to-Step Transitions Is a Major
Determinant of the Metabolic Cost of Human Walking.” The Journal of Experimental Biology 205 (August
2002): 3717–27.

Emshoff, James R., and Roger L. Sisson. Design and Use of Computer Simulation Models. New York: MacMillan Etc.,
1976.

Fortmeyer, Russell, and Charles D. Linn. “Abu Dhabi Investment Council Headquarters” in Kinetic Architecture: De-
signs for Active Envelopes, 176-183. Mulgrave: Images Publishing, 2014.

Fox, Michael. Interactive Architecture: Adaptive World. New York: Princeton Architectural Press, 2016.

Frazer, Andrew H. “Design Considerations for Retractable-roof Stadia.” Master’s thesis, 2005. Accessed July 23, 2019.
https://dspace.mit.edu/handle/1721.1/31119.

Glynn, Ruairi. “Fearful Symmetry.” Accessed October 18, 2019. http://www.ruairiglynn.co.uk/portfolio/fsymmetry/.

Golaem. “Digital Extras at Your Fingertips.” Accessed October 17, 2019. http://golaem.com/.

Gregory, Jason. Game Engine Architecture. Boca Raton; London; New York: CRC Press, 2019.

Hall, Edward T. The Hidden Dimension. Garden City, NY: Doubleday, 1966.

Helbing, Dirk, and Péter Molnár. “Social Force Model for Pedestrian Dynamics.” Physical Review E 51, no. 5 (1995):
4282-286. doi:10.1103/PhysRevE.51.4282.

Herwig, Andrian, and Philip Paar. “Game Engines: Tools for Landscape Visualization and Planning?” (November
2014): 1-10. Accessed October 16, 2019. https://www.researchgate.net/publication/268212905_Game_En-
gines_Tools_for_Landscape_Visualization_and_Planning.

Hesham, Omar, and Gabriel Wainer. “Centroidal Particles for Interactive Crowd Simulation.” 2016 Summer Computer
Simulation Conference (SCSC 2016), (2016): https://doi.org/10.22360/summersim.2016.scsc.012.

Irascible. Comment on “[Twitch] Fortnite Developers Discussion - Apr. 17, 2014.” Unreal Engine Forums. Accessed
October 18, 2019. https://forums.unrealengine.com/unreal-engine/events/3192-twitch-fortnite-develop-
ers-discussion-apr-17-2014/page2.

ITU. “Internet of Things Global Standards Initiative.” Accessed July 23, 2019. https://www.itu.int/en/ITU-T/gsi/iot/
Pages/default.aspx.

Johnson, Steven. Emergence: The Connected Lives of Ants, Brains, Cities, and Software. New York: Scribner, 2004.

Khan Academy. “Early Applications of Linear Perspective.” Accessed July 26, 2019. https://www.khanacademy.org/
humanities/renaissance-reformation/early-renaissance1/beginners-renaissance-florence/a/early-applica-
tions-of-linear-perspective.

Kitchin, Rob, and Matin Dodge. Code/Space: Software and Everyday Life. Software Studies. MIT Press, 2011. https://
books.google.ca/books?id=ZHez2BXgIeQC.

Klüpfel, Hubert. “A Cellular automaton model for crowd movement and egress simulation.” (July 2003): 1-136.
Accessed December 26, 2019. https://www.researchgate.net/publication/29800160_A_Cellular_automaton_
model_for_crowd_movement_and_egress_simulation.

Kretzer, Manuel, and Ludger Hovestadt. ALIVE: Advancements in Adaptive Architecture. Basel: Birkhäuser, 2014.

Lachambre, Sébastien, Sébastien Lagarde, and Cyril Jover. Photogrammetry Workflow, 2017. Accessed October 17,
2019. https://unity3d.com/files/solutions/photogrammetry/Unity-Photogrammetry-Workflow_2017-07_
v2.pdf.

Leap Motion. “Reach into the Future of Virtual and Augmented Reality.” Accessed October 18, 2019. https://www.
leapmotion.com/.

Levine, Neil. “The Template of Photography in Nineteenth-Century Architectural Representation.” Journal of the Soci-
ety of Architectural Historians 71, no. 3 (January 2012): 306–31. https://doi.org/10.1525/jsah.2012.71.3.306.

Levine, Robert V., and Ara Norenzayan. “The Pace of Life in 31 Countries.” Journal of Cross-Cultural Psychology 30, no.
2 (1999): 178-205. doi:10.1177/0022022199030002003.

Lewis, John, and William Loftus. Java Software Solutions: Foundations of Program Design. Boston: Addison-Wesley,
2012.

Lewis, Michael, and Jeffrey Jacobson. “Game Engines in Scientific Research.” Communications of The ACM 45, no.
1 (January 2002): 27–31. Accessed October 16, 2019. https://www.cse.unr.edu/~sushil/class/gas/papers/
GameAIp27-lewis.pdf.

Massive Software. “What Is Massive?” Accessed October 17, 2019. http://www.massivesoftware.com/applications.
html.

Miller, John H., and Scott E. Page. Complex Adaptive Systems: An Introduction to Computational Models of Social Life.
Princeton, NJ: Princeton University Press, 2007.

https://www.cgtrader.com/3d-models/ext/uasset
https://forums.unrealengine.com/unreal-engine/events/3192-twitch-fortnite-developers-discussion-apr-17-2014/page2
https://forums.unrealengine.com/unreal-engine/events/3192-twitch-fortnite-developers-discussion-apr-17-2014/page2
https://www.leapmotion.com/
https://www.leapmotion.com/

282 283

Minetti, A. E. “The three modes of terrestrial locomotion.” In Biomechanics and Biology of Movement, edited by Benno
Maurus Nigg, Brian R. MacIntosh, and Joachim Mester, 67–78. Human Kinetics, 2000.

Mohler, Betty J., William B. Thompson, Sarah H. Creem-Regehr, Herbert L. Pick, and William H. Warren. “Visual
Flow Influences Gait Transition Speed and Preferred Walking Speed.” Experimental Brain Research 181, no. 2
(2007): 221–28. https://doi.org/10.1007/s00221-007-0917-0.

Moore, Gordon E. “Cramming More Components onto Integrated Circuits.” Proceedings of the IEEE86, no. 1 (1998):
82–85. https://doi.org/10.1109/jproc.1998.658762.

Moore, Gordon E. “Progress in Digital Integrated Electronics [Technical Literaiture, Copyright 1975 IEEE. Reprinted,
with Permission. Technical Digest. International Electron Devices Meeting, IEEE, 1975, Pp. 11-13.].” IEEE
Solid-State Circuits Society Newsletter11, no. 3 (2006): 36–37. https://doi.org/10.1109/n-ssc.2006.4804410.

NASA. “Displacement, Velocity, Acceleration.” Accessed August 04, 2019. https://www.grc.nasa.gov/www/k-12/air-
plane/disvelac.html.

NASA. “Newton’s Second Law.” Accessed August 04, 2019. https://www.grc.nasa.gov/www/k-12/airplane/newton2.
html.

NASA. “Scalars and Vectors.” Accessed August 04, 2019. https://www.grc.nasa.gov/www/k-12/airplane/vectors.html.

National Institute of Building Sciences. “About the National BIM Standard-United States®.” Accessed October 18,
2019. https://www.nationalbimstandard.org/about.

Nilson, Björn, and Martin Söderberg. “Game Engine Architecture,” (May 26, 2007): 1-18. Accessed October 16,
2019. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.459.9537&rep=rep1&type=pdf.

Oasys. “Crowd Simulation Software: MassMotion.” Accessed October 17, 2019. https://www.oasys-software.com/
products/pedestrian-simulation/massmotion/.

OED Online. “Dynamic, Adj. and n.” In Oxford University Press. Accessed October 18, 2019. http://www.oed.com/
view/Entry/58818.

Pelechano, Nuria, Jan M. Allbeck, & Norman I. Badler. “Controlling Individual Agents in High-Density Crowd Sim-
ulation.” Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, (2007):
99-108. http://repository.upenn.edu/hms/210.

Pimentel, Ken. “HOK on Architectural Visualization: Aggregate, Iterate, Communicate.” Unreal Engine, March 13,
2019. Accessed October 17, 2019. https://www.unrealengine.com/en-US/spotlights/hok-architectural-visual-
ization-aggregate-iterate-communicate.

Pimentel, Ken. “Technology Sneak Peek: Python in Unreal Engine.” Unreal Engine, November 15, 2017. Accessed
November 20, 2019. https://www.unrealengine.com/en-US/tech-blog/technology-sneak-peek-python-in-un-
real-engine.

Pita, Pierre. “List of Full Body VR Tracking Solutions.” Virtual Reality Times, February 21, 2017. Accessed October
17, 2019. https://virtualrealitytimes.com/2017/02/21/list-of-full-body-vr-tracking-solutions/.

Raspberry Pi. “Raspberry Pi Blog - News, Announcements, and Ideas.” Accessed July 23, 2019. https://www.raspberry-
pi.org/blog/.

Reynolds , Craig W. “Steering Behaviors For Autonomous Characters.” Reynolds Engineering & Design. Accessed
October 17, 2019. http://www.red3d.com/cwr/steer/gdc99/.

Roman, Alex. “The Third & The Seventh.” Uploaded November 24, 2009. Vimeo, 12:29. Accessed July 26, 2019.
https://vimeo.com/7809605.

Schindler, Christoph. “Information-Tool-Technology: Contemporary digital fabrication as part of a continuous
development of process technology as illustrated with the example of timber construction.” PhD diss., 2007.
Accessed June 26, 2019. http://www.caad.arch.ethz.ch/wiki/uploads/Organisation/2007_Schindler_Informa-
tion-tool-technology.pdf.

Sennett, Richard. The Craftsman. London: Penguin, 2009.

Shiffman, Daniel. “Chapter 1. Vectors.” In The Nature of Code. United States: D. Shiffman, 2012. Accessed October
17, 2019. https://natureofcode.com/book/chapter-1-vectors/.

Shiffman, Daniel. “Chapter 2. Forces.” In The Nature of Code. United States: D. Shiffman, 2012. Accessed October 17,
2019. https://natureofcode.com/book/chapter-2-forces/.

Shiffman, Daniel. “Chapter 6. Autonomous Agents.” In The Nature of Code. United States: D. Shiffman, 2012. Ac-
cessed October 17, 2019. https://natureofcode.com/book/chapter-6-autonomous-agents/.

Sokolowski, John A., and Catherine M. Banks. Principles of Modeling and Simulation: A Multidisciplinary Approach.
Hoboken, NJ: John Wiley, 2009.

Sonoff. “DIY A Temperature Controlled Smart Lock.” Accessed July 23, 2019. https://sonoff.itead.cc/en/news/266-
diy-a-temperature-controlled-smart-lock.

Statistics Canada. “Journey to Work, 2016 Census of Population.” Uploaded November 29, 2017. Accessed October
17, 2019. https://www150.statcan.gc.ca/n1/pub/11-627-m/11-627-m2017038-eng.htm.

Statistics Canada. “Labour Force Characteristics, Monthly, Seasonally Adjusted and Trend-Cycle, Last 5 Months.”
Accessed October 17, 2019. https://www150.statcan.gc.ca/t1/tbl1/en/cv.action?pid=1410028701#timeframe.

Steiner, Hadas A. Beyond Archigram: The Structure of Circulation. New York: Routledge, 2009.

Substance Academy. “The PBR Guide - Part 1.” Accessed October 17, 2019. https://academy.substance3d.com/cours-
es/the-pbr-guide-part-1.

Sud, Avneesh, Russell Gayle, Erik Andersen, Stephen Guy, Ming Lin, and Dinesh Manocha. “Real-time
Navigation of Independent Agents Using Adaptive Roadmaps.” ACM SIGGRAPH 2008, (2008):
doi:10.1145/1401132.1401207.

Tang, Ronald. “Step into the Void: A Study of Spatial Perception in Virtual Reality.” Master’s thesis, University of
Waterloo, Waterloo, 2019. http://hdl.handle.net/10012/14468.

The British Library. “Invention of Photography.” Accessed July 28, 2019. https://www.bl.uk/learning/timeline/
item106980.html.

Tilt Brush by Google. “Painting from a New Perspective.” Accessed October 18, 2019. https://www.tiltbrush.com/.

Tudor-Locke, Catrine, and David R Bassett. “How Many Steps/Day Are Enough?” Sports Medicine 34, no. 1 (2004):
1–8. https://doi.org/10.2165/00007256-200434010-00001.

Unity. “Optimizing Graphics Performance.” Accessed October 17, 2019. https://docs.unity3d.com/Manual/Optimiz-
ingGraphicsPerformance.html.

Unreal Engine Documentation. “AI Perception.” Accessed October 18, 2019. https://docs.unrealengine.com/en-US/
Engine/ArtificialIntelligence/AIPerception/index.html.

Unreal Engine Documentation. “Animation Sequences | Unreal Engine Documentation.” Accessed October 18, 2019.
https://docs.unrealengine.com/en-US/Engine/Animation/Sequences/index.html.

https://www.nationalbimstandard.org/about
http://www.oed.com/view/Entry/58818
http://www.oed.com/view/Entry/58818
http://hdl.handle.net/10012/14468
https://www.tiltbrush.com/
https://docs.unrealengine.com/en-US/Engine/ArtificialIntelligence/AIPerception/index.html
https://docs.unrealengine.com/en-US/Engine/ArtificialIntelligence/AIPerception/index.html
https://docs.unrealengine.com/en-US/Engine/Animation/Sequences/index.html

284 285

Unreal Engine Documentation. “Animation System Overview.” Accessed October 18, 2019. https://docs.unrealengine.
com/en-US/Engine/Animation/Overview/index.html.

Unreal Engine Documentation. “Assets and Packages.” Accessed October 18, 2019. https://docs.unrealengine.com/
en-US/Engine/Basics/AssetsAndPackages/index.html.

Unreal Engine Documentation. “Balancing Blueprint and C++.” Accessed October 18, 2019. https://docs.un-
realengine.com/en-US/Resources/SampleGames/ARPG/BalancingBlueprintAndCPP/index.html.

Unreal Engine Documentation. “Behavior Tree Overview.” Accessed October 18, 2019. https://docs.unrealengine.
com/en-US/Engine/ArtificialIntelligence/BehaviorTrees/BehaviorTreesOverview/index.html.

Unreal Engine Documentation. “Behavior Tree Quick Start Guide.” Accessed October 18, 2019. https://docs.un-
realengine.com/en-US/Engine/ArtificialIntelligence/BehaviorTrees/BehaviorTreeQuickStart/index.html.

Unreal Engine Documentation. “Blend Spaces.” Accessed October 18, 2019. https://docs.unrealengine.com/en-US/
Engine/Animation/Blendspaces/index.html.

Unreal Engine Documentation. “Blueprint Class.” Accessed October 18, 2019. https://docs.unrealengine.com/en-US/
Engine/Blueprints/UserGuide/Types/ClassBlueprint/index.html.

Unreal Engine Documentation. “Blueprint Editor Reference.” Accessed October 18, 2019. https://docs.unrealengine.
com/en-US/Engine/Blueprints/Editor/index.html.

Unreal Engine Documentation. “Blueprint Interface.” Accessed October 18, 2019. https://docs.unrealengine.com/en-
US/Engine/Blueprints/UserGuide/Types/Interface/index.html.

Unreal Engine Documentation. “Blueprint Variables.” Accessed October 18, 2019. https://docs.unrealengine.com/en-
US/Engine/Blueprints/UserGuide/Variables/index.html.

Unreal Engine Documentation. “Components.” Accessed October 18, 2019. https://docs.unrealengine.com/en-US/
Programming/UnrealArchitecture/Actors/Components/index.html.

Unreal Engine Documentation. “Environment Query System Quick Start.” Accessed October 18, 2019. https://docs.
unrealengine.com/en-US/Engine/ArtificialIntelligence/EQS/EQSQuickStart/index.html.

Unreal Engine Documentation. “EventGraph.” Accessed October 18, 2019. https://docs.unrealengine.com/en-US/
Engine/Blueprints/UserGuide/EventGraph/index.html.

Unreal Engine Documentation. “Events.” Accessed October 18, 2019. https://docs.unrealengine.com/en-US/Engine/
Blueprints/UserGuide/Events/index.html.

Unreal Engine Documentation. “Functions.” Accessed October 18, 2019. https://docs.unrealengine.com/en-US/En-
gine/Blueprints/UserGuide/Functions/index.html.

Unreal Engine Documentation. “Installing the Datasmith Exporter Plugin for Revit.” Accessed October 18, 2019.
https://docs.unrealengine.com/en-US/Studio/Datasmith/SoftwareInteropGuides/Revit/InstallingExporter-
Plugin/index.html.

Unreal Engine Documentation. “Navmesh Content Examples.” Accessed October 18, 2019. https://docs.unrealengine.
com/en-US/Resources/ContentExamples/NavMesh/index.html.

Unreal Engine Documentation. “Physically Based Materials.” Accessed October 17, 2019. https://docs.unrealengine.
com/en-US/Engine/Rendering/Materials/PhysicallyBased/index.html.

Unreal Engine Documentation. “Realistic Rendering.” Accessed October 18, 2019. https://docs.unrealengine.com/
en-US/Resources/Showcases/RealisticRendering/index.html.

Unreal Engine Documentation. “Scripting the Editor Using Python.” Accessed October 18, 2019. https://docs.un-
realengine.com/en-US/Engine/Editor/ScriptingAndAutomation/Python/index.html.

Unreal Engine Documentation. “Setting Up a Character.” Accessed October 18, 2019. https://docs.unrealengine.com/
en-US/Engine/Animation/CharacterSetupOverview/index.html.

Unreal Engine Documentation. “Skeletal Meshes.” Accessed October 18, 2019. https://docs.unrealengine.com/en-US/
Engine/Content/Types/SkeletalMeshes/index.html.

Unreal Engine Documentation. “Unreal Engine 4 Documentation.” Accessed October 18, 2019. https://docs.un-
realengine.com/en-US/index.html.

Unreal Engine Documentation. “Unreal Engine 4 Terminology.” Accessed October 18, 2019. https://docs.un-
realengine.com/en-US/GettingStarted/Terminology/index.html.

Unreal Engine Documentation. “Unreal Python API Introduction.” Accessed October 18, 2019. https://docs.un-
realengine.com/en-US/PythonAPI/introduction.html.

Unreal Engine Documentation. “Virtual Reality Development.” Accessed October 18, 2019. https://docs.un-
realengine.com/en-US/Platforms/VR/index.html.

Unreal Engine Marketplace. “Characters.” Accessed October 18, 2019. https://www.unrealengine.com/marketplace/
en-US/content-cat/assets/characters.

Unreal Engine. “Real Time Motion Capture in Unreal Engine.” YouTube, 1:05:18. Accessed October 18, 2019.
https://youtu.be/jRyq5uPC5UY?t=1066.

Unreal Engine. “Reflections Real-Time Ray Tracing Demo | Project Spotlight | Unreal Engine,” YouTube, 1:04. Ac-
cessed October 18, 2019. https://www.youtube.com/watch?v=J3ue35ago3Y.

Unreal Engine. “Siren Real-Time Performance | Project Spotlight | Unreal Engine.” YouTube, 0:41. Accessed October
18, 2019. https://www.youtube.com/watch?v=9owTAISsvwk.

Unreal Engine. “The Journey from Revit to Unreal Studio | Feature Highlight | Unreal Studio.” YouTube, 1:08:36.
Accessed October 18, 2019. https://youtu.be/iuqTvvd16UQ?t=435.

Unreal Engine. “Unreal Engine for AR, VR & MR.” Accessed October 18, 2019. https://www.unrealengine.com/en-
US/vr.

Unreal Engine. “Unreal Studio.” Accessed October 18, 2019. http://www.unrealengine.com/studio.

Veracode. “What Is an Integrated Development Environment (IDE)?” May 9, 2019. Accessed October 18, 2019.
https://www.veracode.com/security/integrated-development-environment.

Vimeo. “Unreal Engine Tutorial in Videos on Vimeo.” Accessed October 18, 2019. https://vimeo.com/search/
page:2?q=unreal+engine+tutorial.

Virtual Reality Society. “Virtual Reality Motion Tracking Technology Has All the Moves,” May 5, 2017. https://www.
vrs.org.uk/virtual-reality-gear/motion-tracking/.

Wardman, Mark. “Public Transport Values of Time.” Institute of Transport Studies, University of Leeds, Working Paper
564 (2001): 1–56. Accessed October 17, 2019. http://eprints.whiterose.ac.uk/2062/1/ITS37_WP564_up-
loadable.pdf.

YouTube. “Unreal Engine.” Accessed October 18, 2019. https://www.youtube.com/channel/UCBobmJyzsJ6Ll7Ubf-
hI4iwQ.

https://docs.unrealengine.com/en-US/Engine/Animation/Overview/index.html
https://docs.unrealengine.com/en-US/Engine/Animation/Overview/index.html
https://docs.unrealengine.com/en-US/Engine/Basics/AssetsAndPackages/index.html
https://docs.unrealengine.com/en-US/Engine/Basics/AssetsAndPackages/index.html
https://docs.unrealengine.com/en-US/Resources/SampleGames/ARPG/BalancingBlueprintAndCPP/index.html
https://docs.unrealengine.com/en-US/Resources/SampleGames/ARPG/BalancingBlueprintAndCPP/index.html
https://docs.unrealengine.com/en-US/Engine/ArtificialIntelligence/BehaviorTrees/BehaviorTreesOverview/index.html
https://docs.unrealengine.com/en-US/Engine/ArtificialIntelligence/BehaviorTrees/BehaviorTreesOverview/index.html
https://docs.unrealengine.com/en-US/Engine/ArtificialIntelligence/BehaviorTrees/BehaviorTreeQuickStart/index.html
https://docs.unrealengine.com/en-US/Engine/ArtificialIntelligence/BehaviorTrees/BehaviorTreeQuickStart/index.html
https://docs.unrealengine.com/en-US/Engine/Animation/Blendspaces/index.html
https://docs.unrealengine.com/en-US/Engine/Animation/Blendspaces/index.html
https://docs.unrealengine.com/en-US/Engine/Blueprints/UserGuide/Types/ClassBlueprint/index.html
https://docs.unrealengine.com/en-US/Engine/Blueprints/UserGuide/Types/ClassBlueprint/index.html
https://docs.unrealengine.com/en-US/Engine/Blueprints/Editor/index.html
https://docs.unrealengine.com/en-US/Engine/Blueprints/Editor/index.html
https://docs.unrealengine.com/en-US/Engine/Blueprints/UserGuide/Types/Interface/index.html
https://docs.unrealengine.com/en-US/Engine/Blueprints/UserGuide/Types/Interface/index.html
https://docs.unrealengine.com/en-US/Engine/Blueprints/UserGuide/Variables/index.html
https://docs.unrealengine.com/en-US/Engine/Blueprints/UserGuide/Variables/index.html
https://docs.unrealengine.com/en-US/Programming/UnrealArchitecture/Actors/Components/index.html
https://docs.unrealengine.com/en-US/Programming/UnrealArchitecture/Actors/Components/index.html
https://docs.unrealengine.com/en-US/Engine/ArtificialIntelligence/EQS/EQSQuickStart/index.html
https://docs.unrealengine.com/en-US/Engine/ArtificialIntelligence/EQS/EQSQuickStart/index.html
https://docs.unrealengine.com/en-US/Engine/Blueprints/UserGuide/EventGraph/index.html
https://docs.unrealengine.com/en-US/Engine/Blueprints/UserGuide/EventGraph/index.html
https://docs.unrealengine.com/en-US/Engine/Blueprints/UserGuide/Events/index.html
https://docs.unrealengine.com/en-US/Engine/Blueprints/UserGuide/Events/index.html
https://docs.unrealengine.com/en-US/Engine/Blueprints/UserGuide/Functions/index.html
https://docs.unrealengine.com/en-US/Engine/Blueprints/UserGuide/Functions/index.html
https://docs.unrealengine.com/en-US/Studio/Datasmith/SoftwareInteropGuides/Revit/InstallingExporterPlugin/index.html
https://docs.unrealengine.com/en-US/Studio/Datasmith/SoftwareInteropGuides/Revit/InstallingExporterPlugin/index.html
https://docs.unrealengine.com/en-US/Resources/ContentExamples/NavMesh/index.html
https://docs.unrealengine.com/en-US/Resources/ContentExamples/NavMesh/index.html
https://docs.unrealengine.com/en-US/Resources/Showcases/RealisticRendering/index.html
https://docs.unrealengine.com/en-US/Resources/Showcases/RealisticRendering/index.html
https://docs.unrealengine.com/en-US/Engine/Editor/ScriptingAndAutomation/Python/index.html
https://docs.unrealengine.com/en-US/Engine/Editor/ScriptingAndAutomation/Python/index.html
https://docs.unrealengine.com/en-US/Engine/Animation/CharacterSetupOverview/index.html
https://docs.unrealengine.com/en-US/Engine/Animation/CharacterSetupOverview/index.html
https://docs.unrealengine.com/en-US/Engine/Content/Types/SkeletalMeshes/index.html
https://docs.unrealengine.com/en-US/Engine/Content/Types/SkeletalMeshes/index.html
https://docs.unrealengine.com/en-US/GettingStarted/Terminology/index.html
https://docs.unrealengine.com/en-US/GettingStarted/Terminology/index.html
https://docs.unrealengine.com/en-US/PythonAPI/introduction.html
https://docs.unrealengine.com/en-US/PythonAPI/introduction.html
https://docs.unrealengine.com/en-US/Platforms/VR/index.html
https://docs.unrealengine.com/en-US/Platforms/VR/index.html
https://www.unrealengine.com/marketplace/en-US/content-cat/assets/characters
https://www.unrealengine.com/marketplace/en-US/content-cat/assets/characters
https://www.youtube.com/watch?v=J3ue35ago3Y
https://www.youtube.com/watch?v=9owTAISsvwk
https://www.unrealengine.com/en-US/vr
https://www.unrealengine.com/en-US/vr
http://www.unrealengine.com/studio
https://vimeo.com/search/page:2?q=unreal+engine+tutorial
https://vimeo.com/search/page:2?q=unreal+engine+tutorial
https://www.vrs.org.uk/virtual-reality-gear/motion-tracking/
https://www.vrs.org.uk/virtual-reality-gear/motion-tracking/
https://www.youtube.com/channel/UCBobmJyzsJ6Ll7UbfhI4iwQ
https://www.youtube.com/channel/UCBobmJyzsJ6Ll7UbfhI4iwQ

287

This appendix is a zip folder containing various animated video files to
accompany the corresponding figures throughout this thesis.

The file name of this folder is “AoThesisVideos.zip”, which contains
various video files titled in the format of “Fig-0-0-0_FigureName.mp4”.

In order to open these video files within the PDF, download this zip
folder from UWSpace and extract it so that “AoThesisVideos” is in the
same folder as the PDF file. (Refer to Fig. A.1)

Once extracted to the proper location, you can open these videos by
clicking on the corresponding figure with an “ ” symbol in front of the
figure number. This will launch the video in your media player of choice.

Alternatively, these videos can be opened manually by referring to their
filenames, which will match the figure numbers in the work.

If you accessed this thesis from a source other than the University of
Waterloo, you may not have access to this file. You may access it by
searching for this thesis on https://uwspace.uwaterloo.ca.

Appendix A | Multimedia Figures

Figure A.1 The relative folder structure should look like this after extraction

	Author’s Declaration
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Abbreviations
	Technical Note
	Part 1 | Introduction and Theory
	Chapter 1.1 | Emergence of Interactive and Dynamic Architecture
	Chapter 1.2 | Inadequacy of Current Visualization Methods
	Chapter 1.3 | Advent and Progression of the Gaming Engine
	Chapter 1.4 | Proposed Framework

	Part 2 | Technical Research
	Chapter 2.1 | Simulations Ideology
	Chapter 2.2 | Establishing Model Methodology
	Chapter 2.3 | Abstracting the Human Systems
	Chapter 2.4 | Spatial Functions
	Chapter 2.5 | Prototyping the System Model

	Part 3 | Tool Creation
	Chapter 3.1 | Utilizing the Gaming Engine
	Chapter 3.2 | Asset Creation
	Chapter 3.3 | Human Agents
	Chapter 3.4 | Architectural Objects
	Chapter 3.5 | Environment Context
	Chapter 3.6 | Application Methodology

	Part 4 | Tool Evaluation
	Chapter 4.1 | Spatial Conditions
	Chapter 4.2 | Nuit Blanche Cushion
	Chapter 4.3 | Riverside Gallery

	Part 5 | Next Steps
	Chapter 5.1 | Simulation Improvements
	Chapter 5.2 | Photorealism
	Chapter 5.3 | Virtual Reality
	Chapter 5.4 | Workflow Refinements

	Bibliography
	Appendix A | Multimedia Figures

	Button 2:
	Button 4:
	Button 5:
	Button 6:
	Button 61:
	Button 62:
	Button 63:
	Button 64:
	Button 65:
	Button 66:
	Button 67:
	Button 68:
	Button 7:
	Button 69:
	Button 70:
	Button 71:
	Button 72:
	Button 73:
	Button 75:
	Button 74:
	Button 76:
	Button 77:
	Button 78:
	Button 79:
	Button 8:
	Button 9:
	Button 10:
	Button 11:
	Button 12:
	Button 13:
	Button 14:
	Button 15:
	Button 16:
	Button 17:
	Button 18:
	Button 19:
	Button 20:
	Button 21:
	Button 22:
	Button 23:
	Button 24:
	Button 25:
	Button 26:
	Button 27:
	Button 28:
	Button 29:
	Button 30:
	Button 31:
	Button 32:
	Button 33:
	Button 80:
	Button 34:
	Button 35:
	Button 36:
	Button 37:
	Button 38:
	Button 39:
	Button 40:
	Button 41:
	Button 42:
	Button 43:
	Button 44:
	Button 45:
	Button 46:
	Button 47:
	Button 84:
	Button 48:
	Button 49:
	Button 50:
	Button 51:
	Button 52:
	Button 53:
	Button 54:
	Button 55:
	Button 56:
	Button 57:
	Button 58:
	Button 59:
	Button 60:
	Button 81:
	Button 82:
	Button 83:
	Button 86:
	Button 87:
	Button 89:
	Button 88:
	Button 90:

