
Accelerating the Training of
Convolutional Neural Networks for

Image Segmentation with Deep
Active Learning

by

Weitao Chen

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2020

c© Weitao Chen 2020



Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

Image semantic segmentation is an important problem in computer vision. However,
Training a deep neural network for semantic segmentation in supervised learning requires
expensive manual labeling. Active learning (AL) addresses this problem by automatically
selecting a subset of the dataset to label and iteratively improve the model. This mini-
mizes labeling costs while maximizing performance. Yet, deep active learning for image
segmentation has not been systematically studied in the literature. This thesis offers three
contributions. First, we compare six different state-of-the-art querying methods, including
uncertainty, Bayesian, and out-of-distribution methods, in the context of active learning for
image segmentation. The comparison uses the standard dataset Cityscapes, as well as ran-
domly generated data, and the state-of-the-art image segmentation architecture DeepLab.
Our results demonstrate subtle but robust differences between the querying methods, which
we analyze and explain. Second, we propose a novel way to query images by counting the
number of pixels with acquisition values above a certain threshold. Our counting method
outperforms the standard averaging method. Lastly, we demonstrate that the previous two
findings remain consistent for both whole images and image crops.

Furthermore, we provide an in-depth discussion of deep active learning and results from
supplementary experiments. First, we studied active learning in the context of image clas-
sification with the MNIST dataset. We observed an interesting phenomenon where active
learning querying methods perform worse than random sampling in the early cycles but
overtake random sampling at a break-even point. This break-even point can be controlled
by varying model capacity, sample diversity, and temperature scaling. The difference in
performances of the six querying methods is larger than in the case of image segmentation.
Second, we attempt to explore the theoretical optimal query by querying samples with the
lowest accuracy and querying with a trained expert model. Although they turned out to
be suboptimal, their results would hopefully shed light on the subject. Lastly, we present
the experiment results from using SegNet and FCN. With these architectures, our querying
methods did not perform any better than random sampling. Nevertheless, those negative
results demonstrate some of the difficulties of active learning for image segmentation.
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Chapter 1

Introduction

1.1 Motivation and Overview

Computer vision has many applications in areas such as autonomous driving and robotics.
In the field of computer vision, semantic image segmentation is an important problem
for scene understanding. Recently, deep learning has shown promising results in semantic
segmentation. However, supervised deep learning requires a large amount of labeled data.
Labeling images for semantic segmentation by human annotators is both expensive and
time-consuming relative to data collection [7].

Active Learning (AL) [6] addresses this problem by querying the optimal subset of
collected data to label. Given a set of unlabeled data, AL aims to find a small subset that
gives the most accurate model [42]. The process can be iterative, where each query is based
on the model learned from the previous querying cycle, hence the name active learning.
Thus, the cost of labeling is minimized while the performance is maximized.

Currently, active learning for semantic segmentation with deep neural networks is not
extensively studied in the literature. Most studies in this area focus on image classification
[15, 25, 36, 43, 44], while the few that do focus on semantic segmentation with deep learning
have limited querying methods and outdated network architectures [32, 17, 46].

This thesis contributes a comparison between multiple querying methods for their ef-
fectiveness in active learning. We also propose a novel way to query images by counting
the number of pixels with acquisition values above a certain threshold. Our results are
then compared between querying whole images and image crops. The predictor used is
DeepLabv3+ [5], a state-of-the-art deep neural network for semantic segmentation. The
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dataset is Cityscapes [7], a collection of street-view images captured from a vehicle in cities
and their labels with fine annotations.

This thesis gives a brief background and related work on semantic segmentation and
active learning. Following that, we describe the methods used in this research including
each acquisition function, network architecture, and training process. Thereafter, the
experimental results are presented and discussed. Additionally, we provide an in-depth
discussion of deep active learning and results from supplementary experiments. First, we
studied active learning in the context of image classification with the MNIST dataset.
Then, we attempt to explore the theoretically optimal querying. Lastly, we present results
from experiments with other network architectures.

1.2 Background and Related Work

1.2.1 Semantic Image Segmentation

Semantic image segmentation [12] is the process of classifying each pixel in a given image.
It is a special case of classification problem as each input image has multiple output classes
for each pixel. It is also a more difficult problem than image classification because not only
do we need to know what is in a given image, we also need to know where the objects are
and their precise contours. The set of classes is predefined and each pixel must be labeled
as one of the classes. An exception is the “ignore” class. Pixels labeled as “ignore” class
in the ground truth will not affect evaluation.

Traditional methods involve clustering groups of neighboring pixels together into su-
perpixels [41]. For more recent state-of-the-art methods, deep learning is at the heart of
image segmentation. Training deep neural networks by learning from examples through
the process of supervised learning yields unprecedented accuracy. During training, a pool
of labeled images called the training set is used to tune the parameters of the neural net-
work through the process of backpropagation [20]. The number of parameters in a neural
network is correlated to its model capacity or degrees of freedom. Model capacity is a
measure of how well it can model complicated relationships. However, it is not directly
proportional to the number of parameters since other factors such as the exact connections
need to be considered.

After the weights have converged, we use a separate pool of labeled images for evalua-
tion. The labels annotated by humans and used for training are called ground truth. The
labels assigned by the neural network are called predictions. The reason we use a separate
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(a) Input image (b) Ground truth

(c) Prediction

Figure 1.1: Example image segmentation results

data pool is that we want to generalize our ability to accurately predict new images instead
of overfitting on the training set. Usually, a test set is used for evaluation and a validation
set is used for tuning hyperparameters. However, in our case, we use the validation set as
the test set, because the ground truth of Cityscapes’ test set is not available. Figure 1.1
gives an example of an input image, ground truth, and output prediction from our deep
neural network.

A common metric for evaluating semantic segmentation, which is adopted in this thesis,
is the mean Intersection-Over-Union (mIOU) [1]. mIOU is the mean of IOU of each class,
and IOU is defined as follows: IOU = #true positive/(#true positive+#false positive+
#false negative). The reason we prefer mIOU over simple percentage pixel accuracy
is that smaller objects could be equally important as larger ones. For example, if the
prediction of the neural network completely ignores small objects and only labels large
objects correctly, it will have an unreasonably high percentage pixel accuracy, but the
mIOU score will be heavily penalized. In the case of autonomous driving, small objects
like lampposts or small children should be equally important as a large truck.

3



Figure 1.2: Pool-based active learning cycle
Source: Adapted from [37]

1.2.2 Active Learning

Active learning is described in detail in the survey by Settles [37]. In pool-based active
learning (figure 1.2) [28], which is our focus, a pool of data is collected but not labeled.
Active learning queries the unlabeled pool to select samples to be labeled by an oracle,
who is usually a human annotator. The newly labeled data are then added to the labeled
training set. Using the training set, a machine learning model is trained through supervised
learning. The model learned is then evaluated on the validation set. If the performance on
the validation set achieved is satisfactory or if the budget for labeling is spent, the process
is stopped. If not, the model is used to query new samples from the unlabeled pool and
the whole cycle starts again.

There are many different ways to query. The most trivial method is random querying.
To perform better than the random baseline, a querying method could examine each da-
tum and assign a value that estimates its information gain with an acquisition function.
Since one wants to maximize the information gain, usually the top data with the largest
acquisition values are chosen. In some cases, however, it might be beneficial to query part
of data with lower acquisition values. The mixture of querying high and low acquisition
values is called sample diversity. Fu et al. have a good example of the effects of sample
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XOR

XOR XOR

XOR

Figure 1.3: Experiment design tree

diversity in their paper [13].

1.2.3 Active Learning for Semantic Segmentation

Active learning for image segmentation has similar ideas as active learning for classification.
The only difference is that each image has multiple pixel predictions, the labeling cost for
each image could be different, and crops of images could be queried in region-based active
learning [32, 23]. In this thesis, however, we assume the labeling cost for each image is the
same and images must be cropped before the first active learning cycle begins.

Active learning for semantic segmentation with deep learning is explored in [17, 46, 32].
The first two approaches [17, 46] have only foreground and background segmentation,
while the third approach is applied to Cityscapes. Marc Gorriz et al. [17] used U-net
[33] for the network and Monte-Carlo dropout for querying. Lin Yang et al. [46] used
Fully Convolutional Network (FCN) [31] for network and bootstrapping [11] as uncertainty
measure with cosine similarity for sample diversity. Mackowiak et al. [32] also used FCN
for the network and explored entropy querying and vote entropy querying.
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1.3 Research Questions and Methodology

Our research objective is to examine and compare different active learning designs in the
context of image segmentation. More specifically, it is to answer the question of what
is the best way to label a pool of data to train a deep learning model to achieve the
highest performance with the lowest labeling cost. To answer this question, we perform
experiments that explore the AL design space, which consists of three main dimensions:
queried unit type, pixel acquisition function, and aggregation method. Each dimension
has multiple choices, and thus the best active learning design is a combination of choices
from each design dimension.

Figure 1.3 illustrates our experiment design tree. For each active learning experiment, a
querying unit can be either a batch of whole images or image crops. In this thesis, the word
“image” refers to both whole image and image crop, unless stated otherwise. The querying
order can be either random, our baseline, or ranked by an image acquisition function. Each
image acquisition value is aggregated from its pixel acquisition values either by averaging
or by counting values over a threshold. We explore 6 different pixel acquisition functions
in addition to random selection. Overall, the diagram represents 26 different querying
approaches.

1.3.1 Querying Methods

The querying methods compared are random, entropy [38], max-softmax [21], margin [35],
ODIN [29], BALD [22], and vote entropy [8]. These methods are chosen because they
are the state-of-the-art active learning querying method, uncertainty measure, or Out-
Of-Distribution (OOD) measure. Additionally, the methods have to be computationally
feasible for semantic segmentation, and they must not alter the network architecture in
any way that affects its performance.

Each subsection will describe the querying method briefly. All of the acquisition func-
tions assign an acquisition value to a single pixel. These pixel acquisition values are then
aggregated together. The aggregation methods are described in the next section.

Random

Random querying is used as the baseline for all comparisons. Each image in the unlabeled
pool has an equal probability to be queried. The acquisition function is a random number
generator of uniform distribution from 0 to 1.
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Entropy

Entropy [38] is the most common uncertainty measure used for active learning. The closer
the distribution is to uniform, the more uncertain the model is, and the higher entropy it
has. The per-pixel acquisition function for entropy querying is:

S = −
∑
c

Pc logPc (1.1)

The probability P is the softmax output of neural network, and c is the class of label.

Max-softmax

Max-softmax is an OOD measure in image classification [21]. Only the probability of the
most likely class is considered. It is also an uncertainty measure on the model’s confidence
in labeling the data correctly. By querying the highest max-softmax score, we pick the
samples that are the least confident. The per-pixel acquisition function for max-softmax
querying is:

S = 1−max
c

(Pc) (1.2)

Margin

Margin sampling [35] takes the difference between the top two class probabilities. It mea-
sures the ambiguity between the top two classes. The per-pixel acquisition function for
margin querying is:

S = 1− (P1 − P2) (1.3)

where P1 and P2 are the first and second highest class probability.

Entropy, max-softmax, and margin are related to each other. Figure 1.4 shows a vi-
sualization of the uncertainty measure on simplex for a three-label classification problem
[37].

ODIN

ODIN (Out-of-Distribution detector for Neural networks) [29] is an improvement upon
max-softmax. The procedure is similar to max-softmax, but the softmax function is scaled
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Figure 1.4: Uncertainty measure simplex
Source: Adapted from [37]

by temperature T . T is hyperparameter that could be calibrated for a neural network
model to give a more accurate confidence prediction. [18] The new softmax function is:

Pi(x;T ) =
exp (fi(x)/T )∑N
j=1 exp (fj(x)/T )

(1.4)

fc(x) is the output of the neural network before softmax for class c. The input image
x is also preprocessed by adding a small perturbation scaled by ε.

x̃ = x− εsign(−∇x logPŷ(x;T )) (1.5)

Pŷ(x̃;T ) = max
i

Pi(x̃;T ) (1.6)

The per-pixel acquisition function for the ODIN querying is the same as max-softmax
querying.

BALD

BALD (Bayesian Active Learning by Disagreement) [22] is a Bayesian active learning
technique for image classification [15]. Bayesian network utilizes dropout [40], which is
normally a stochastic regularization technique used during training. In BALD, dropout is
performed during training as well as inference with Monte-Carlo (MC) dropout [14]. The

8



result is a committee of different models from the same network. The per-pixel acquisition
function for BALD querying is:

I[y,ω|x,Dtrain] = H[y|x,Dtrain]− EP (ω|Dtrain)

[
H[y|x,ω]

]
(1.7)

H[y|x,Dtrain] is the entropy of y given model weights ω, input x, and pool data Dtrain.

Vote Entropy

Vote Entropy [8] applies Bayesian network and MC dropout similar to BALD. The per-pixel
acquisition function for vote entropy querying is:

V (u,v) := −
∑
c

∑
e

D(P
(u,v)
e ,c)

NE
· log

∑
e

D(P
(u,v)
e ,c)

NE
where D(a, c) =

{
1, if argmax(a) = c
0, otherwise

(1.8)

Variable e is an instance of committee, NE is the number of models in the committee.
P

(u,v)
e is the softmax output of instance e of the neural network on pixel (u, v).

1.3.2 Aggregation Methods

After the acquisition value for each pixel is evaluated, all pixel acquisition values in an image
need to be aggregated into a single image acquisition value. Choosing a good aggregation
method can be difficult because it is impossible to know the exact importance of each pixel
before labeling. Thus, a simple and reasonable assumption is that each pixel has equal
importance, and the image acquisition value is simply the average of all pixel acquisition
values.

The image acquisition value of aggregation by averaging is given by

Simage =
∑

Spixel/Npixel (1.9)

where Spixel is the pixel acquisition value, and Npixel the number of pixels in the given
image.

We propose a novel aggregation method by counting. Instead of taking the average,
we set a threshold of a and count the number of pixels that have a pixel acquisition value
higher than a. This gives an estimate of the area of informative regions. The image
acquisition value of aggregation by counting is given by

Simage =
∑

D(Spixel, a)/Npixel where D(s, a) =

{
1, if s > a

0, otherwise
(1.10)

9



1.3.3 Querying Unit

Mackowiak et al. showed that querying image crops outperforms querying whole images
with the same total amount of pixels [32]. Although we did not replicate their entire
experiment with region-based active learning, we experimented with different querying
methods and aggregation methods on a pool of random crops. For every whole image in
the dataset, we randomly cropped a single 512× 512 crop, 8 times smaller than the whole
image, and discarded the rest of the image. The collection of random crops are now treated
as the new data pool. During each active learning cycle, each crop is treated as a whole
image but with a different resolution, and everything else is kept the same for comparison.
The evaluations are still performed on the original validation set with whole images.

The difference between our approach and region-based active learning is that in region-
based AL, a sliding window is used to scan all the whole images. Crops within the sliding
window are selected deliberately by a metric, and every selected crop is labeled. Thus,
cropping becomes part of the image querying process, whereas in our approach, the image
querying process comes after cropping.

10



Chapter 2

Experimental Comparison of Active
Learning Query Methods

In this chapter, we attempt to answer our research question: what is the best active learning
query method in the context of image segmentation? We will explain our experiment setup
including the network architecture and the training process. Then, we will present our
results from exploring our experiment design space.

2.1 Experiment Setup

2.1.1 Network Architecture

The network architecture used in this thesis is DeepLabv3+. DeepLabv3+ extends DeepLabv3
with encoder-decoder structure [5]. It employs techniques from previous versions including
atrous convolution and atrous spatial pyramid pooling (ASPP) [2, 3, 4]. Figure 2.1 shows
the network architecture. Currently, DeepLabv3+ has state-of-the-art results on semantic
image segmentation datasets including Cityscapes [5].

The backbone architecture used is resnet v1 50 beta, which modifies ResNet-101 [19]
by replacing the first 7× 7 convolution with three 3× 3 convolutions [5]. The weights are
pretrained on ImageNet [34].

During training, the batch size used is 8, the base learning rate is 0.007, weight decay
is 0.0001, atrous rates are 6, 12, and 18, output stride is 16, and decoder output stride is 4.
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Figure 2.1: DeepLabv3+ architecture
Source: Adapted from [5]

12



neural network model

unlabeled
pool ranked by

acquisition values
labeled training set

revealed ground truth
for selected images

calculate image
acquisition values

select top n
images

add to
training set

train to
convergence

initial model from n
random images

Figure 2.2: Active learning cycle

For data preprocessing, every image is randomly cropped to 513×513, and randomly flipped
and scaled from 0.5 to 2. For this setup, a model fully-trained on the entire Cityscapes
training set can achieve around 75% mIOU.

For BALD, the dropout rate is 0.9 for training, and 0.5 for inference. The difference
in dropout rates between training and inference are compensated by weight scaling. The
number of models in the committee is 10 for both BALD and vote entropy.

2.1.2 Training Procedure

Since the Cityscapes dataset is already fully labeled, the ground truth is simply hidden
until declared labeled. This way, there is no need for human annotator and the oracle is
part of the program. The dataset is divided into 2975 in the training set and 500 in the
validation set.

Since training for image segmentation is computationally expensive, querying images
one by one is not feasible. Therefore, a batch of size n = 50 is queried in every active
learning cycle. This is not to be confused with the training batch size. For image crops,
since each crop is 8 times smaller than a whole image, so the querying batch size is 8 times
larger (n = 400). This ensures that each query acquires the same amount of pixels. Every
experiment starts with the same model trained to convergence with n randomly selected
images. This ensures all querying methods have a fair comparison. The initial model is
selected from 5 sets of 50 randomly selected images, and each set is trained two times.
Out of the 10 runs, the performance ranged from 50% mIOU to 52% mIOU, and the one
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(a) Input image (b) Ground truth (c) Prediction

(d) Entropy map (e) Max-softmax map (f) Margin map

(g) BALD map (h) Vote entropy map

Figure 2.3: Example output images with DeepLab

with the average performance of around 51% mIOU is picked to be the initial model for
all experiments.

Figure 2.2 shows the typical active learning cycle. In the first cycle, the common initial
model is used to query the next n images with the highest acquisition value. These selected
images have their ground truth revealed and added to the labeled training set. Now with
the combined training set, the neural network is trained again from scratch to convergence.
The cycle then repeats until some stopping criteria are met.
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(a) T = 10, epsilon = 0 (b) T = 100, epsilon = 0

(c) T = 1000, epsilon = 0 (d) T = 1, epsilon = 0.0014

(e) T = 1000, epsilon = 0.0014

Figure 2.4: ODIN acquisition value map
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2.2 Results

The experiments are divided into three parts, each corresponding to a dimension of our
experiment design. The first part examines all of the pixel acquisition functions with
aggregation by averaging on whole images. We compare the three uncertainty measures:
entropy, max-softmax, and margin querying, then the two Bayesian methods: BALD and
vote entropy. ODIN is studied separately to demonstrate the effect of temperature and
epsilon. For the second part, the most promising methods from the first part are selected
to apply aggregation by counting. In the final part, aggregation by counting is compared
with averaging on image crops. All experiments are compared with the random baseline as
reference. Figure 2.3 and 2.4 shows an example input image and ground truth, along with
the model’s prediction and pixel acquisition value maps of different acquisition functions.

To evaluate a given querying method, we can look at the learning curve, which plots
the model’s mIOU on the validation set as a function of the number of labeled data in
the training set for each active learning cycle. Since we want to save labeling costs, the
best querying method would have a learning curve that rises the quickest. Eventually,
all querying methods will converge to the performance of a model trained on the entire
data pool (75%). All of our learning curves are averaged over 4 different runs. The
variance between each run is insignificant. Another evaluation metrics is the area under
the learning curve (ALC). Since the fastest growing learning curve has the highest ALC, a
higher ALC indicates a better querying method when the learning curves do not intersect.
The advantage of using ALC is that it summarizes the learning curve into a single number.

From our results, we want to answer three questions. First, does using uncertainty and
OOD measures for querying methods improve the performance of active learning over the
random baseline? And how do they compare among themselves? Second, how does our
proposed image acquisition value aggregation method by counting compare to the existing
aggregation by averaging? Lastly, do the answers for the previous questions hold regardless
of whether the queried units are whole images or image crops?

2.2.1 Aggregation by Averaging on Whole Images

In the first experiment, all of the pixel acquisition functions with aggregation by averaging
on whole images are compared. Figure 2.5 summarizes the learning curves of all querying
methods experimented in this thesis. Figure 2.6 normalizes these learning curves by scaling
each point as a percentage of range from the first cycle mIOU to the maximum mIOU.
Section 2.2.3 explains why the maximum mIoU for whole images vs. crops differ. Since
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Figure 2.5: Learning curves

50 100 150 200 250 300 350 400
labelled data

0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d 
m

IO
U

crop: random
whole: random
crop: range
whole: range

Figure 2.6: Normalized learning curves
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Querying Method ALC
Random 238.0
Entropy 255.0
Entropy: a > log(2) 256.5
Margin 253.0
Margin: a > 0.8 254.6
Margin: a > 0.9 254.1
Max Softmax 253.8
Max Softmax: a > 0.5 254.9
ODIN: T = 0.1 253.4
ODIN: T = 10 249.5
ODIN: T = 100 251.7
ODIN: T = 0.01 252.7
ODIN: T = 1000 252.0
ODIN: T = 1000, epsilon = 0.0014 247.9
BALD 255.5
Crop Random 212.6
Crop Entropy 215.6
Crop Entropy: a > log(2) 215.6
Crop Margin 215.2
Crop Margin: a > 0.8 215.6
Crop Max Softmax 215.2
Crop Max Softmax: a > 0.5 215.8
Crop ODIN: T = 0.1 215.8

Table 2.1: ALC
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Querying Method ALC
Random 145.7
Entropy 215.4
Entropy: a > log(2) 221.7
Margin 207.3
Margin: a > 0.8 213.7
Margin: a > 0.9 211.6
Max Softmax 210.6
Max Softmax: a > 0.5 214.9
ODIN: T = 0.1 208.9
ODIN: T = 10 192.8
ODIN: T = 100 201.9
ODIN: T = 0.01 205.9
ODIN: T = 1000 203.1
ODIN: T = 1000epsilon = 0.0014 186.4
BALD 217.7
Crop Random 233.5
Crop Entropy 256.8
Crop Entropy: a > log(2) 257.2
Crop Margin 253.9
Crop Margin: a > 0.8 257.1
Crop Max Softmax 254.2
Crop Max Softmax: a > 0.5 258.6
Crop ODIN: T = 0.1 258.8

Table 2.2: Normalized ALC
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Figure 2.7: Learning curves of whole image querying unit

many learning curves are clumped close together, we plot the range of the querying methods
in a transparent band for easier viewing. The random baselines are shown in solid lines.
The orange curves query whole images, and the blue curves query image crops.

Immediately, we can see that all pixel acquisition functions perform better than the
random baseline at every active learning cycle. There is a significant gap between the
band of querying methods and the solid baseline. This shows that using any querying
methods in this thesis, we can get a higher mIOU than using random querying at any
amount of labeled data. For example, at 250 whole images, entropy querying outperforms
random querying by 6% mIOU. From a different perspective, using any querying methods
can also save the labeling cost at any mIOU level. For example, at 63% mIOU, entropy
querying used 50% less labeled data compared to random querying.

However, the differences among the querying methods themselves are quite small. We
can see that from the narrowness of the band of learning curve range. Most of the learning
curves are concentrated at the top layer of the band. Figure 2.7 plots the individual
learning curves of the querying methods with the random baseline. The fact that it is hard
to distinguish one curve from another shows us that the differences are small.

Furthermore, Table 2.1 lists the ALC of all querying methods experimented within
this thesis. Table 2.2 is the normalized version of table 2.1. The querying methods with
crop in front of their names query image crops, while the rest query whole images. The
querying methods that specify threshold a use aggregation by counting, while the rest use
aggregation by averaging. Again, we see that the ALCs of the querying methods with
aggregation by average are quite close to each other, ranging from 247.9 to 255.5. On
the other hand, random querying is much lower at 238.0. The ALC confirms with our
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Figure 2.8: Learning curves of uncertainty querying methods

previous observation that all querying methods are better than random querying, but the
differences among themselves are small.

The natural question to ask is why are the performances of different querying methods
so similar. After all, they have different acquisition functions, each with different proper-
ties and purposes ranging from uncertainty measure to OOD to Bayesian inference. One
plausible explanation is that we are reaching the limit of active learning given the querying
units are whole images. Given any data pool, there must exist at least one querying order
that gives us the optimal ALC. Chances are that optimal ALC is not much higher than
the highest ALC in our querying methods. Having said that, there are cases where small
improvements in mIOU matter. Also, combined with other dimensions of active learning
such as region-based AL, having a better querying method could make a bigger difference.

Next, we look at different groups of querying methods in more detail. The three un-
certainty measures are entropy, max-softmax, and margin. Figure 2.8 plots the learning
curves of these three querying methods with the random baseline. The three curves are
indistinguishable from one another. This could be caused by these three uncertainty mea-
sures being closely related. On the extreme ends, a uniform distribution has the maximum
pixel acquisition values in all three measures, while a single peak distribution has the min-
imum (Figure 1.4). This similarity in the behaviors on the extremes may be the cause of
the similarity in the ultimate performances in active learning.

The two Bayesian methods vote entropy and BALD show statistically significant, albeit
small, differences. Figure 2.9 plots the learning curves of these two querying methods
with the random baseline. We also put entropy querying as a reference. Vote entropy
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Figure 2.9: Learning curves of Bayesian querying methods

querying performed no better than entropy querying, which is in agreement with the result
from Mackowiak et al. [32]. However, BALD performed better than vote entropy and
entropy in every active learning cycle. This is likely because BALD has relatively low
acquisition values for the pixels around the contour of objects or the boundary where one
class transitions into the next. These contour pixels have high aleatoric uncertainty [10],
but repeatedly training these pixels may not be beneficial. This makes BALD one of the
best querying methods by a small margin.

ODIN querying is a more interesting case. Liang et al. [29] showed that as T increases,
OOD detection performance increased monotonically although the effect diminishes when
T is too large [29]. We observed that this is incorrect in the context of active learning
based on our experiments. We selected 3 different T and repeated the experiment 4 times.
Figure 2.10 plots the averaged learning curves of T = 0.1, 10, 100 along with the random
baseline and max-softmax querying. Since max-softmax is equivalent to T = 1, the order
of performance of T from best to worst is 1, 0.1, 100, 10. This shows that the relationship
is not monotonic.

To demonstrate a larger range of T and the effect of epsilon perturbation, we ran more
experiments but did not repeat them. Figure 2.11 plots the learning curves of ODIN
querying with different temperature T value and epsilon perturbation. We also put the
random baseline and max-softmax querying for reference. Max-softmax querying is equiv-
alent to ODIN querying with T = 1 and epsilon = 0. Liang et al. showed that a large T
and a moderate epsilon is the best for OOD detection [29]. We first tried T = 1000 and
epsilon = 0.0014 which worked well for their dataset. For active learning, however, these
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Figure 2.10: Average learning curves of ODIN queries

parameters did significantly worse than max-softmax. Again, this shows the results from
Liang et al. do not transfer to active learning.

To generalize the effect of temperature scaling to other datasets, we randomly generated
a pool of softmax distributions skewed towards high entropy. Each softmax distribution
is treated as a querying unit, and the pixel acquisition functions can be directly applied
to it. Figure 2.12 plots the normalized cumulative average of various acquisition values
against entropy. For a single image, the x-axis represents the entropy of individual pixel.
By ordering the pixels in increasing entropy, we can take the average of acquisition values
of pixels encountered so far. The normalized cumulative average curve of max-softmax is
quite close to the entropy curve, and this is reflected in their similar performance. T = 10
is the furthest away from the entropy curve on one side, even further than T = 100. This
again matches our previous finding that T = 10 had the worst performance. The fact
that a randomly generated dataset can predict the performance of active learning on real
datasets tells us that our results are not dataset nor network dependent.

2.2.2 Aggregation by Counting on Whole Images

For the second part of our experiment, we selected the three uncertainty acquisition func-
tions for aggregation by counting. For entropy querying, we experimented with a thresh-
old a > log(2). The entropy at this particular threshold corresponds to a distribution
with two classes with an equal probability of 0.5, and all other classes being 0. We get
−2∗0.5∗ log(0.5) = log(2). This is an important threshold because a lower entropy is more
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Figure 2.11: Learning curves of ODIN queries

Figure 2.12: Normalized cumulative average of acquisition values
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Figure 2.13: Scatter plot of (1 - maxsoftmax) vs. entropy

likely to have a single distinctive peak in the class probability distribution. Entropy query-
ing with aggregation by counting performed better than entropy querying with aggregation
by average in most cycles.

In figure 2.13, we plot max-softmax against entropy for the pixels of an example image
with low average entropy during early cycles of active learning. The red and blue lines
indicate the boundary of maximum and minimum possible values for distributions with 19
classes. From the plot, we can see that most pixels have low entropy and high softmax.
Along the lower boundary, many pixels are concentrated along the first bend. These pixels
correspond to having a single high probability class and a weaker one while the rest are
close to 0. By choosing a > log(2), we exclude these pixels.

Figure 2.14 plots the learning curves of entropy querying by counting with a > log(2)
compared to the original entropy querying by averaging and the random baseline. En-
tropy querying with aggregation by counting performed better than entropy querying with
aggregation by average in most cycles.

Next, we compare the performance of max-softmax querying. Figure 2.15 plots the
learning curves of max-softmax querying by counting with a > 0.5 along with the original
max-softmax by averaging and the random baseline. Note that the threshold is set upon the
pixel acquisition value, so a > 0.6 means we exclude distributions with the max probability
greater than 0.4. Interestingly, the distribution with two 0.5 class probability having log(2)
entropy also has 0.5 max-softmax. However, the two query thresholds are different. In
figure 2.13, the cutoff line for entropy is vertical, whereas max-softmax is horizontal. The
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Figure 2.14: Learning curve of entropy querying with aggregation by counting

results show that max-softmax querying by counting with a > 0.5 has better performance
than aggregation by average.

Lastly, we compare the performance of margin querying. Figure 2.16 plots the learning
curves of margin querying by counting with a > 0.8 along with the original margin by
averaging and the random baseline. Similar to max-softmax, margin with a > 0.8 means
we exclude distributions with the difference between the top two probabilities greater than
0.2. The results show that margin querying by counting with a > 0.8 performed better
than aggregation by averaging.

These results show that aggregation by counting perform better than the standard
aggregation by averaging for entropy, max-softmax, and margin querying. Although ag-
gregation by averaging is the most straightforward approach, problems can arise when the
concentration of high pixel acquisition values is uneven. For example, consider two images
A and B. Image A has a small area of high pixel acquisition values, whereas image B has
a large area of medium pixel acquisition values. Since a larger image area is more likely
to contain varying objects and thus more total information, it might be more beneficial
to query image B instead of image A even if image A has higher average pixel acquisi-
tion value than image B. Following this logic, we can count the number of pixels with
acquisition values higher than a certain threshold, and query the images with the highest
pixel count. Using this method, it is important to pick the right threshold. Since different
pixel acquisition functions have different range and distributions, the threshold needs to
be tuned for individual pixel acquisition functions.
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Figure 2.15: Learning curve of max-softmax querying with aggregation by counting

Figure 2.16: Learning curve of margin querying with aggregation by counting
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Figure 2.17: Learning curves of image crop querying unit

2.2.3 Image Crop

For the final part of our experiment, we compare both aggregation methods on image
crops. Figure 2.17 shows the learning curves of the selected acquisition functions. When
the entire data pool is queried, the learning curve of any querying method will converge to
a single point. Since we are cropping randomly, that point will be slightly above the point
on the learning curve of random querying whole images of around 2975/8 ≈ 372 images.
In our result, this point is approximately 65%. In the normalized learning curves in figure
2.6, the learning curves of querying image crops performs better because there are less
pixels in the image crop data pool. If we allowed multiple crops per image, the maximum
mIOU would be closer to the maximum mIOU of whole images query.

Since the number of pixels in the entire data pool is 8 times smaller, the improvement of
each acquisition function over the random baseline is diminished. Nevertheless, similar to
the results from whole image querying, all aggregation by counting queries outperformed
their averaging counterpart. We also selected ODIN with T = 0.1, which was one of
the best performing T values. It also outperformed max-softmax (T = 1) again. This
experiment shows that aggregation by counting is a superior aggregation method than
averaging regardless of whether the querying unit is a batch of whole images or image
crops.
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Chapter 3

Discussion and Supplementary
Experiments

3.1 Image Classification Experiments

To facilitate rapid experimentation, we simplified our problem to image classification and
used a smaller dataset and network architecture. For image classification, we only predict
a single label for each image. The dataset we chose was fashion MNIST [45]. It contains
a training set of 60000 images and a validation set of 10000 images. Each example is a
28 × 28 grey-scale image of apparel. Figure 3.1 shows a few example images from the
dataset. The number of images is much higher than Cityscapes dataset, be each image
is much smaller. There are 10 classes in total, ranging from T-shirts to sneakers. The
reason we chose fashion MNIST is that it is one of the standard datasets for benchmarking
machine learning algorithms. It is very fast to train, but not overly simple like the digits
MNIST [27].

The neural network we used is a simple densely connected two-layer model. The input
image is flattened and fed into the first layer, which we can vary the width of. The activation
function after the first layer is a linear rectifier [16]. Then, it is passed to the final layer
with ten neurons and softmax output. We used Adam optimizer [24], sparse categorical
cross entropy as loss function, and percentage accuracy as the performance measure.

The querying methods are always compared between entropy querying and random
sampling. We chose entropy querying because it is simple to calculate and has one of the
best performances. The image acquisition function for classification is the same as the
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Figure 3.1: Example images from fashion MNIST [45]

pixel acquisition function for segmentation. It is much simpler because there is only one
output label for each image, so there is no need for aggregation. In each active learning
cycle, a query batch size of n = 500 images is chosen and added to the training set. For
entropy querying, the images with the highest entropy are chosen. We set a fixed number
of epochs at 20 as we observed this number to be the amount of training needed for the
model to fully converge. The rest of the active learning process is kept mostly the same as
image segmentation, with minor modifications to accommodate the new dataset.

3.1.1 Model Capacity

In this experiment, we try to show the effect of model capacity on active learning by varying
the width of the first layer of our neural network. The model capacity is a measure of the
flexibility of the machine learning model. In neural networks, wider and deeper layers
usually have a higher model capacity. We hypothesized that high capacity models would
have better performances in active learning.

For the first run, we used 512 neurons in the first layer, which is more than enough
to get good performances in our problem. Figure 3.2 plots the learning curves of entropy
querying as orange and the random baseline as blue. The x-axis is the number of labeled
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Figure 3.2: Learning curves of entropy querying and the random baseline with 512 neurons
in the first layer
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images in the training pool, and the y-axis is the percentage validation accuracy. What
we see here is the typical behavior of active learning. Entropy querying outperforms the
random baseline in almost every cycle.

Next, we repeat the experiment with a varying width of the first layer. Figure 3.3
plots the learning curves of entropy querying and the random baseline with the first layer
width 32, 16, 8, and 4. Surprisingly, the results show that starting from a width of 32
neurons, entropy querying starts off performing worse than random sampling in the initial
cycles. Then, it catches up to random sampling and eventually surpasses it. We call the
point where the learning curve of a querying method surpasses the random baseline the
“break-even point”.

The same pattern shows up again in Figure 3.3b with width of 16 neurons. But this
time, the break-even point happens later at around 1000 images rather than 500 images
with 32 neurons. The effect of active learning also diminishes. The pattern continues at a
width of 8 neurons. Until at 4 neurons, the learning curve of entropy querying never quite
surpasses random sampling. The learning curves also get noisier due to underfitting.

These results show that the effect of active learning diminishes as the model capacity
decreases, and below some threshold, active learning will not work. This confirms our
hypothesis. As the model capacity decreases, the model is less able to learn a complex
dataset. Entropy querying picks the images that the current model is uncertain about.
When the model’s capacity is low, it is better to give it random samples, rather than to
challenge it with more difficult samples.

The observation of the break-even effect came as a surprise as we originally thought that
active learning should perform better than random sampling in every cycle. Furthermore,
the position of the break-even point is also related to the model capacity. As we decrease
the model capacity, the break-even point shifts to the right. This seems counterintuitive
at first. We think that when the training pool is small, entropy querying fills the training
pool with difficult samples. This causes the model unable to perform well. However, these
difficult samples pay off in the long run. As the training pool gets larger, the model will
eventually gain more confidence on the previously uncertain samples. This only happens
when the model’s capacity is high. Otherwise, the model never gets the chance to learn
the previously uncertain samples well.

3.1.2 Sample Diversity

One way to mitigate the problem of low performance of active learning in early cycles is
to query images with a mix of high uncertainty and low uncertainty instead of only the
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(a) Width = 32 neurons (b) Width = 16 neurons

(c) Width = 8 neurons (d) Width = 4 neurons

Figure 3.3: Learning curves of entropy querying and the random baseline with varying
width in the first layer
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highest uncertainty. This is called sample diversity. Y. Fu et al. [13] showed that sample
diversity could improve the performance of active learning. We hypothesized that adding
sample diversity would improve active learning performances in the early cycles.

For this experiment, we studied the effect of varying sample diversity. The first layer has
a width of 16 neurons so we can see an obvious break-even point. We kept the experiment
setup mostly the same as the previous experiment. The only difference is that instead of
querying the top n = 200 images with the highest entropy, we query every dth highest
entropy in strides, meaning skipping every d − 1 images in the order from the highest
entropy. As an example, for a stride of 4, we would skip every 3 images and query every
4th image. The first image we query is the 4th highest entropy, and the second is the
8th highest entropy. If we get to the image with the lowest entropy, we loop back to the
beginning of images that are left.

Figure 3.4 plots the learning curve of entropy querying as orange and random sampling
as blue with varying sample diversity. A stride of 1 is the same as the previous experiment
with no sample diversity. A stride of d means querying every dth highest entropy. The
results show that the break-even point shifts to the left as we increase stride size. This
trend continues until we reach a stride of 32, where the break-even point disappears and
entropy querying outperforms random sampling in every cycle. As we increase the stride
beyond 32 however, the effect of active learning starts to diminish until stride reaches
256, entropy querying has similar performance as random sampling. This makes sense
because, at the stride of 256 and a query batch of 200, we are uniformly sampling from
the top 256 × 200 = 51200 images. This is very close to uniformly sampling from the
entire unlabeled pool which is at maximum 60000 − 200 = 58000 in the second cycle.
We are querying just as many as high entropy images as low entropy images. Thus,
the performance of entropy querying with a stride of 256 is almost the same as random
sampling.

These results show that adding sample diversity does improve active learning perfor-
mances in the early cycles and shifts the break-even point to the left, which confirms our
hypothesis, but only up to a certain threshold. After the threshold, adding diversity would
make active learning more and more similar to random sampling. Figure 3.5 plots the
break-even point at different sizes of stride. In general, choosing the right amount of sam-
ple diversity could be difficult, and we do not have a clear answer to this problem. However,
we do know that the optimal diversity depends on the size of the data pool, query batch
size, and the labeling budget. If the labeling budget is low, then choose a higher diversity,
and vice versa if the budget is high. A good idea is to combine high diversity in early
cycles and low diversity in later cycles. Other methods of adding sample diversity are left
to explore in future work. If there is a large enough validation set, we can treat sample
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(a) Stride = 1 (b) Stride = 4

(c) Stride = 16 (d) Stride = 32

(e) Stride = 128 (f) Stride = 256

Figure 3.4: Learning curves of entropy querying and the random baseline with varying
sample diversity
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Figure 3.5: Stride size vs. break-even point
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(a) Temperature values greater than 1 (b) Temperature values less than 1

(c) Best temperature at T = 0.1 (d) Combined temperature values

Figure 3.6: Learning curves of ODIN queries with different temperature

diversity as another hyperparameter to tune.

3.1.3 ODIN Querying

ODIN querying was studied for image segmentation. Because of the faster training on
MNIST, we study ODIN querying in more detail for image classification. We are more
interested in the effect of temperature T scaling, so we focus on experimenting with different
T values and set perturbation epsilon to zero in this experiment. The network architecture
is the same as the previous experiment with 16 neurons in the first layer. The query batch
size is 300 and we run for 100 active learning cycles. Everything else is kept the same as
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the previous experiment with no sample diversity.

We experimented with temperature from 0.0001 to 1000 on a logarithmic scale. Figure
3.6 plots the learning curves of ODIN querying with different temperature scaling along
with the random baseline and entropy querying as reference. max-softmax querying is
equivalent to ODIN querying with T = 1. Figure 3.6d plots all the learning curves together.
Since it is hard to distinguish the different curves, figure 3.6b and 3.6a plots temperature
greater than 1 and less than 1 separately.

A pattern emerges as we take a closer look at the plots. At the higher extreme, T = 1000
performs worse than random sampling in the early cycles with less than 1000 images in the
labeled pool, and catches up but never really surpasses the random baseline. Decreasing
temperature to 100 and 10 improves the performances in the early cycles and makes ODIN
querying performs similarly to random sampling. At T = 1, or max-softmax querying, the
performances of later cycles increased significantly. Compare to entropy querying, max-
softmax querying is performing better in the early cycles and similarly in the later cycles.
Decreasing the temperature further takes down to T less than 1. At T = 0.1 and T = 0.01,
the performance of ODIN querying in the early cycles improves again. It is better than
random sampling for every cycle. The optimal values are 0.1 and 0.01 for temperature
scaling. If we decrease the temperature even further, the performance starts to degrade.
Interestingly, at T = 0.001, the performance of the early cycles stays better than random
sampling, but the later cycles perform similar to random.

In summary, a moderate temperature has the best performance in active learning.
This is in agreement with the experiments with image segmentation and the artificially
generated dataset. The results from Liang et al. [29] where large T having better OOD
detection does not apply to active learning. Decreasing the temperature below the optimal
shifts the break-even point to the right, where the performance in early cycles degrades
faster than the later cycles. Increasing the temperature, however, degrades the later cycles
faster than the early cycles. We can imagine this behavior as shifting the break-even point
to the left. This behavior is remarkably similar to the sample diversity experiment. The
optimal performance for active learning tends to happen when the break-even point has just
vanished to the left. This suggests that if the querying method is performing worse than
the random baseline in early cycles, tune the hyperparameters such that the break-even
point shifts to the left by increase diversity or decrease temperature.
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Figure 3.7: Learning curves of different querying methods
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3.1.4 Different Querying Methods

To study how well the querying methods used for image segmentation perform on image
classification, we further compare the performance of active learning using the querying
methods used for image segmentation except for the Bayesian methods. The neural network
is the same network with 16 neurons in the first layer. We start with a common initial
model trained on 2000 random images. After that, a query batch size of 300 is added to
the labeled pool every cycle. The querying methods compared are entropy, max-softmax,
margin, ODIN with T = 0.1 and T = 10.

Figure 3.7 plots the learning curves of these querying methods. From best performance
to worst: margin querying and ODIN querying with T = 0.1 are the best, then it is max-
softmax, ODIN T = 10, and the random baseline. The distinction between the learning
curves is larger than those for image segmentation. This is likely due to the larger size of
the MNIST dataset, and the smaller ratio of query batch size to pool size. Furthermore,
entropy querying performs significantly worse than max-softmax in the early cycles, where
for image segmentation, entropy and max-softmax are indistinguishable. Nonetheless, the
general behavior is quite similar, with all querying methods performing better than random
sampling by a significant margin. This confirms that active learning works on both image
classification and image segmentation with deep neural networks.

3.2 Optimal Querying

In this section, we try to explore the optimal querying method in the hope of deepening
our understanding of active learning. A deterministic querying method can be defined by
its querying sequence for a specific dataset. In theory, given any dataset and machine
learning model, there must exist at least one subset of the data pool that will give the
maximum performance at every labeling budget. However, this does not mean there is a
single optimal querying sequence that gives the maximum performance at every labeling
budget, since the optimal labeled pool at a later cycle may not be a superset of the labeled
pool at an earlier cycle. For example, querying method A can give higher performance
than method B in earlier cycles but lower in later cycles. Both A and B can be called
optimal if there does not exist a querying method that performs better than A or B in
every cycle. Thus, there could be a family of optimal querying methods for a given dataset
and model.

Finding an optimal querying sequence by trying every possible sequence is intractable
for our datasets. The problem is amplified by the non-deterministic nature of stochastic
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Figure 3.8: Learning curve of querying incorrect samples along with others for reference

gradient descent for optimizing neural networks. In theory, an ideal machine learning model
would have a monotonically increasing learning curve, since adding correctly labeled data
should not degrade performance. In practice, however, this is often not true.

3.2.1 Querying the Most Incorrect Samples

We thought of ways to get as close to the optimal querying as possible. First, we simplified
the problem by allowing the querying method to look at the labels of the unlabeled pool.
This is considered “cheating” in the context of active learning since there is no point in
active learning if all the data are labeled already, so we are only doing this as an exercise.
Note that the machine learning model does not have access to the labels of the unlabeled
pool during training. Otherwise, it can get maximum performance in the first cycle.

With the problem redefined, an obvious querying method was to always query the most
incorrect samples. We hypothesized was that if the model is always fed with samples that
it got wrong, it will keep learning from its mistake. For image classification, there is no
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Figure 3.9: Learning curve of querying the lowest mIOU samples along with others for
reference

exact measure of the degree of incorrectness. The prediction is either correct or incorrect,
so we just randomly query the incorrect samples. If we ever run out of incorrect samples,
we would continue sampling random correct samples. Since our simple neural network has
a maximum performance of around 90% accuracy, and 10% of the size of dataset 60000 is
6000, any query batch size less than 6000 is most likely to query entirely incorrect samples,
especially in the early cycles. The neural network has 16 neurons in the first layer, and
the query batch size is 300. Everything else is kept the same as the MNIST experiment.
In figure 3.8, learning curve accuracy represents querying incorrect samples. We see that
it performed no better than max-softmax querying. Since we know that max-softmax is
worse than margin querying, accuracy querying is not the optimal querying method.

In the case of image segmentation, however, we do have an exact measure of the degree
of correctness by mIOU. Thus, we performed the same experiment on the Cityscapes
dataset with DeepLab by querying images with the lowest mIOU. In figure 3.9, miou
represents the learning curve of querying the least mIOU. The results show that querying
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the least mIOU performs significantly worse than entropy querying in every active learning
cycle.

These results demonstrate that labeling the most incorrect samples is not an optimal
querying method, proving our hypothesis incorrect. One plausible reason is that the dataset
labels are noisy. If the dataset is not perfectly separable, training on the wrong side
of the true decision boundary could lead to lower performance. In the case of fashion
MNIST, a bag could be shaped like a skirt, and it would be impossible to tell without
more information. Another problem is a truly out-of-distribution sample. These OOD
samples are not only out of the distribution of the labeled pool but are also out of the
distribution of the entire dataset. In Cityscapes, for example, horse-drawn carriages would
appear only a few times. If the horses are labeled as vehicles in the ground truth, training
the model to be good at classifying horses adds little value to the overall performance.
Another point we need to consider is that machine learning models are not ideal. By
that we mean they cannot have perfect accuracy on the test set even when trained on the
entire training set, nor could they outperform humans in Cityscapes [7]. (State-of-the-art
models do outperform humans in MNIST, making humans not “ideal” in our definition.)
This could mean that the model is unable to learn all the information available from the
dataset. Even if we provide the model with the most informative sample regarding the
true distribution, it may not be the most beneficial to the specific model we are using.
All these facts contribute to querying the most incorrect samples not being the optimal
querying methods.

3.2.2 Expert Model Query

Another attempt at exploring the optimal querying sequence was to simplify the problem
even further. Here, not only do we have access to data labels, but we are also given a
trained expert model during querying. This expert is simply the same model trained on
the entire dataset. It is the best model we can get with our training pipeline. Note that
we are still not allowed to look at the expert model during training. Otherwise, we can get
maximum performance by simply copying the expert model’s weights. We hypothesized
that using the expert model to query would be the optimal query.

The active learning process is mostly the same as the previous MNIST experiments.
The only difference is that instead of using the current best model to query the next batch,
we use the expert model and query the images with the highest entropy for the expert
model. Since we already start with a trained model, the initial training set does not have
to be randomly selected. We treat the first active learning cycle as a typical cycle and
query as normal.
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Figure 3.10: Learning curve of querying with a trained expert model along with others for
reference

Figure 3.10 plots the learning curve of querying with an expert model by entropy in
pink. The right plot is the same as the left plot but with more cycles. Its performance
is terrible, and this proves our hypothesis wrong again. The explanation may be similar
to the one for querying by mistake. If the expert model is uncertain about the sample, it
may not be beneficial to our training.

One interesting side effect from this experiment is that the first initial labeled set gives
an extremely low performance of around 20%. This allows us to see how different querying
methods “recover” from a bad initial set. Here, random sampling excels. It jumps up
to 80% in just a few cycles. This is expected because the next query batch of random
sampling is not affected by the previous one. Surprisingly, entropy querying and querying
by mistake recover the slowest. Max-softmax is about the same as random sampling, and
margin querying and ODIN querying with T = 0.1 recovers the fastest.

The right image in figure 3.10 shows the expert model querying does catch up to random
eventually. But does it ever surpass the random baseline? To answer this question, we
simplified the dataset even further to the digits MNIST. Instead of apparel, digits MNIST
is a collection of handwritten digits from 0 to 9. Figure 3.11 shows a few example images
from the dataset. All the dataset properties remain the same. We repeated the same
experiment on digits MNIST, and plot the results in figure 3.12. We start with an initial
labeled set of 300 random images. The learning curve of querying with a trained expert
model dips down a little before improving and surpassing the random baseline after 5000
images. This shows that expert model querying is not strictly worse than random sampling.

Another observation is that all the other querying methods outperform random sam-
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Figure 3.11: Example images from digits MNIST dataset [27]

Figure 3.12: Learning curve of querying with a trained expert model along with others for
reference on digits MNIST dataset
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Figure 3.13: Learning curve of inverse entropy querying on Cityscapes

pling even in the early cycles. The break-even point is not apparent. This suggests that
lowering the difficulty of the dataset has the effect of shifting the break-even point to the
left. This is coherent with the previous observation that increasing the model capacity does
the same thing, since lowering the difficulty of the dataset is correlated with increasing the
model capacity.

In the case of expert model querying, some querying methods perform much worse than
random sampling. This is an important point to emphasize: random sampling is not the
worst querying method. In fact, it is quite good among all the possible querying methods.

On the opposite extreme of finding the optimal querying method, finding the worst
querying method is just as difficult, if not more difficult. A simple way to get a bad per-
formance is to do the opposite of a querying method with good performance. We take
entropy querying as an example and experimented with inverse entropy querying. Instead
of querying images with the highest entropy, inverse entropy querying chooses images with
the lowest entropy. Figure 3.13 plots the learning curve of inverse entropy querying in
blue and the random baseline in yellow for the Cityscapes dataset using DeepLab. Inverse
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Figure 3.14: Learning curve of inverse entropy querying with trained expert model on
fashion MNIST
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Figure 3.15: Network architecture of SegNet
Source: Adapted from [1]

entropy querying barely improves for 4 cycles and is much worse than random. We fur-
ther experimented with inverse entropy querying using a trained expert model on fashion
MNIST, and plots its learning curve in figure 3.14 along with others for reference. Interest-
ingly, inverse entropy querying using an expert model performs better than entropy expert
model querying in the early cycles but gets overtaken in later cycles. These results show
that there are querying methods that are much worse than random sampling. However,
finding the optimal or the worst querying method with deep learning remains an open
problem for future work.

3.3 Experiments with Other Network Architectures

This section illustrates some failure cases for active learning. Most experiments in this
section uses SegNet [1] and Fully Convolutional Network (FCN) [31] for image segmentation
prediction on Cityscapes dataset. Those experiments were done at the beginning of our
research project. We chose these architectures because FCN was used in the thesis by
Mackowiak et al. [32], and also because they are relatively fast to train. In the end, we
were unable to replicate their results. However, from these experiments, we were able to
learn something new, and subsequently devise new experiments that ultimately led to the
DeepLab and MNIST experiments. Furthermore, these results also serve as a cautionary
tale for future researchers, because they demonstrate the difficulties of active learning on
image segmentation. Therefore, although the results were negative, we present them here
nonetheless. We also do it in chronological order so the readers can follow the same train
of thoughts as we had.
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(a) Input image (b) Ground truth

(c) Entropy map (d) BALD map

(e) Prediction

Figure 3.16: Example output images with SegNet
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(a) Validation set (b) Test set

Figure 3.17: Training curves of random sampling in each active learning cycle on validation
set and test set

3.3.1 SegNet Architecture Experiment

Training a deep neural network for semantic segmentation is computationally expensive. So
the real cost in our research is the training cost rather than labeling cost. We started this
project by using SegNet, which is an outdated but fast architecture. SegNet is composed
of an encoder part and a decoder part. Each encoder has one or more convolutional layers,
batch normalization, ReLU, followed by max-pooling and subsampling [1]. Images are
down-sampled in the encoders first then up-sampled in the decoders. Figure 3.15 shows the
network architecture of SegNet. To retain the high-frequency detail in prediction, SegNet
uses pooling indices in the decoder to perform upsampling. The SegNet we used had a
VGG backbone [39] with weights pre-trained on ImageNet [9, 26, 34]. Figure 3.16 shows
an example of an input image, ground truth, entropy map, BALD map, and prediction.
The input image is scaled down and reshaped into a square before feeding into the network
for easier training. The output images, therefore, are also square and downscaled.

The active learning procedure is the same as the DeepLab experiments. Figure 3.17
plots the training curves of random sampling in each active learning cycle on the validation
set and the test set. Figure 3.18 plots the learning curves of random sampling, entropy
querying, inverse entropy querying, and order querying. Order querying means we query
the images in alphabetical order of image names. Since the image names are ordered
by the name of the city, order querying always queries in the order of city names. We
included this querying method here because it is trivial to implement. The results show that
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Figure 3.18: Learning curves of random sampling, entropy querying, inverse entropy query-
ing and order querying
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Figure 3.19: Histogram of image entropy acquisition values by averaging of the unlabeled
pool in each active learning cycle with the legend showing the number of images in the
unlabeled pool

entropy querying does not outperform the random baseline. We also tried inverse entropy
querying, which means querying the images with the smallest image entropy instead of the
largest. The experimental results show that Inverse entropy querying is about the same as
random querying. Interestingly, when the images are queried by city names, it significantly
underperformed random sampling. This suggests that images in the same city are more
likely to have larger information overlap.

Our first reaction is that there is something wrong with the querying method. One
hypothesis was that most images have similar image entropies, but analysis shows that
image entropies have a relatively large variance. Figure 3.19 plots the histogram of image
entropy in each active learning cycle. The distributions shift to the left and get smaller
because the highest entropies are taken and the unlabeled pool left gets smaller in each
cycle. Next, we tried BALD. Figure 3.20 shows negative result.

52



Figure 3.20: Learning curves of BALD querying with the random baseline

Figure 3.21: Network architecture of FCN
Source: Adapted from [31]
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Figure 3.22: Learning curves of entropy querying with the random baseline
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Figure 3.23: Learning curves of entropy querying with the random baseline on repeated
dataset

3.3.2 FCN Architecture Experiment

At this point, we started looking for faults other than the querying method. One hypothesis
is that the capacity of the neural network is too small. Fully Convolutional Network (FCN)
was used to replace segnet (figure 3.22). The experiments were repeated and entropy
querying still did not outperform the random baseline (figure 3.22). However, this does
not reject the hypothesis as FCN is not a state-of-the-art network.

Another hypothesis was that there are faults with our code. To verify our hypothesis,
we simplified the problem to the point where it is trivial. One image from the Cityscapes
dataset of 2975 was selected and copied 2975 times. In effect, out of the entire unlabeled
pool, about half of them are the same image. Querying that repeated image has zero infor-
mation gain. Experimental results were positive (figure 3.23), meaning entropy querying
did outperform the random baseline. This shows that entropy querying is smart enough
to not pick the same image over and over again, and this is strong evidence that suggests
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Figure 3.24: Learning curves of entropy querying and random sampling with common
initial model

our code is working as intended. Unfortunately, these results are on a biased dataset and
not useful in application.

We pointed out two details that could potentially cause errors. The first detail is that
the initial network trained from the first query batch using different querying methods are
not the same. It was hypothesized that a small perturbation in the initial network can
cause a significant difference in later iterations. Therefore, we fixed the initial network and
model weights to be the same and branch off from there. The results were negative (3.24).
The second detail is that the results are noisy, so a single negative result could be due to
pure chance. We ran the experiments 5 times and all of them were negative. With these
and all the previous results, we can be confident that this is not a fluke.

It was known to us all along that there is another work, called CEREALS by Mackowiak
et al. [32], that claims to have positive results on the same problem. We contacted the
authors, but they refused to provide their source code. However, they were able to provide
some additional data. Most importantly, they pointed out that they are using a larger
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Figure 3.25: Learning curves of entropy querying and random sampling with querying
order provided by Mackowiak et al. [32]
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version of FCN and a smaller learning rate. Also, they provided us the order in which the
images were queried. With these data in hand, we tried to replicate their experiment as
closely as possible. We queried the images in the same order and had the same learning
rate. However, without the source code, it is very difficult to reproduce the same network.
Previously, the images were downsampled 50 times before passing through the network. We
tried enlarging the network, but due to limitations in GPU memory, the images were still
downsampled 4 times. This experiment is as close a replication as possible with limiting
data and computing power. Still, the results were negative (figure 3.25).

After all the negative results, we decided to do a sanity check on classification problems.
This led to the experiments with the MNIST dataset. With the results from the MNIST
experiments, the next immediate hypothesis is that the FCN we used is below the critical
network capacity because no break-even points were observed. However, due to limitations
in computing power, we could not increase the capacity of FCN any further. Instead,
we decreased the difficulty of the dataset by reducing the number of label classes to 2
classes: foreground and background. It is important to pick a foreground that exists
in most images. Otherwise, the training will be difficult to converge. The Cityscapes
dataset originally has 19 different classes. We picked roads and other vehicle surfaces as
foreground and everything else as background. Figure 3.26 shows an example input image
and its output images. Using FCN, we were able to achieve higher than 90% mIOU using
less than 200 training images. However, the results are still negative 3.27.

These failure cases eventually led to success using DeepLab. Although we cannot prove
why active learning failed with SegNet and FCN, we strongly believe that it was due to
them not having enough model capacity. However, this leaves the question of why the 2
classes case did not work even though the network was able to achieve 90% mIOU, which
is even higher than what DeepLab can achieve with all classes. Unfortunately, we are still
unable to reproduce the results of Mackowiak et al. exactly. This is worth studying in
more detail when they release the source code in the future.
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(a) Input image (b) Ground truth

(c) 2 classes ground truth

(d) 2 classes entropy map

(e) 2 classes prediction

Figure 3.26: Example output images with 2 classes
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Figure 3.27: Learning curves of entropy querying and random sampling with only 2 classes
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Chapter 4

Conclusion and Future Work

4.1 Conclusion

We compared six different querying methods in the context of active learning for image
segmentation and found small but discernible differences among them. We demonstrated
these results on the industry-standard dataset Cityscapes, as well as randomly generated
data, and state-of-the-art image segmentation architecture DeepLab. We also proposed a
novel image acquisition value aggregation method by counting with threshold, which we
showed to perform better than the standard aggregation by averaging. These findings were
repeated with image crop as the querying units, and the results still hold.

Furthermore, we observed an interesting phenomenon where active learning querying
methods perform worse than random sampling in the early cycles but overtake random
sampling at a break-even point. This break-even point can be shifted to the left by in-
creasing model capacity, adding sample diversity, or tuning temperature scaling for ODIN
querying. The performances of the six querying methods also have larger differences than
in the case of image segmentation. In the attempt to find the optimal querying method, we
found that querying the most incorrect samples and querying with a trained expert model
are both suboptimal. Using other network architectures including SegNet and FCN, active
learning methods were not able to perform better than random sampling.
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4.2 Future Work

One of the major challenges in this research project is of high computational power. Image
segmentation with deep learning is already demanding by itself. Active learning on image
segmentation increases the computational demand by orders of magnitude. To be able to
do something similar in scale to the MNIST experiments for image segmentation would take
several months even on high-end GPUs. This makes a study by trial and error infeasible.

Due to the high computational cost, there are several things we were not able to explore.
In particular, we leave the evaluation of other image segmentation dataset for future work.
The COCO dataset [30], for example, has 200,000 images with 80 classes, which is much
larger in scale than Cityscapes. We hypothesize that active learning will perform better
with a larger dataset. Regarding datasets, since our research lab focuses on autonomous
driving, it would be interesting to collect real video data from a car and perform active
learning on the unlabeled data. Although we would need to label the data ourselves, it
would be closer to how active learning would be applied in real-life. Since images from
video taken from a real car ride would be more correlated to each other, especially for
adjacent frames, this is where active learning excels.

Other image aggregation methods with pixels weighted unequally would also be worth
exploring. Different approaches to aggregate a single large area of high uncertainty versus
multiple small areas could lead to different results. Furthermore, it would be interesting to
see the combination of aggregation by counting with other dimensions such as region-based
active learning. We believe that such a combination could potentially outperform previous
results.

Currently, we do not see any easy way to overcome the computational costs. One
potential solution is to retain some information learned from each active learning cycle.
However, one must be careful not to “pollute” the knowledge gained in the model from
a potentially biased training pool in early active learning cycles. A method that retains
information learned but also learns from each training sample equally would be ideal. Thus,
until faster training methods, deep active learning will remain a challenging field of study.
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