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Abstract 

 

 Electronics have become integrated into every aspect of modern life, from work to 

leisure we rely on electronics for key tasks in our daily routine. Recent research efforts 

have seen a push towards flexible electronic devices, creating a plethora of new potential 

applications. Carbon nanomaterials have emerged as excellent candidates for 

implementation into flexible electronic devices from transistors to solar cells, but despite 

their high potential, their commercial relevance has been hampered by several key 

challenges that have yet been unresolved. Here, I exhibit that through the merging of 

techniques from organic chemistry and nanoscience, I have been able to overcome 

several of the practical challenges facing both carbon nanotubes and fullerenes. This has 

been accomplished through the interaction of these carbon nanomaterials with shape 

complementary iptycene molecules. The concave shape of iptycenes allows them to 

interact very strongly with the convex carbon nanotubes and fullerenes. This has led us 

to develop a new technique for the simultaneous alignment and sorting of carbon 

nanotubes based on diameter and length, as well as the large-scale purification of 

fullerenes via flash chromatography. Furthermore, in the search for new iptycene 

derivatives, a new ligand for the formation of metal-organic frameworks has been 

discovered and studied. 
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Chapter 1. π-Conjugated Materials and 

Their Use in Semiconductors 
 

1.1  Modern Electronics 

 When you look around today it is easy to be overwhelmed by the sheer number of 

electronic devices, all capable of tasks that in the recent past seemed to be in the realm 

of science fiction. The advent of the desktop computer, laptop, and now smartphone have 

led to the integration of electronics into all facets of life from leisure to productivity. All of 

the incredible processes that modern electronics are capable of can be traced back to the 

transistor. 

 A transistor, at its simplest, is a binary switch which can take either an “on” or “off” 

state. In practice, they exist as a component of a circuit and are used to modulate the 

current by either preventing (off) or allowing (on) it to flow. Through the combination of 

multiple transistors more complex signals can be interpreted, and through the use of 

billions of transistors, like on modern central processing units (CPUs) (Figure 1),1 

remarkable feats can be accomplished. Transistors are made of semiconducting 

materials, which possess the inherent ability to switch between a conducting (on) and 

insulating (off) state.2 
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Figure 1. Number of transistors on a CPU over time 
 

1.1.1 Semiconductors, Conductors, and Insulators 

 There are three categories of electrically conductive materials: conductors, 

semiconductors, and insulators. All three types are used in our daily lives in completely 

different applications. Life without even a single group would be unrecognizable to the 

modern human.  

 Conductors are typically metals and conduct electrical currents under standard 

conditions. The most common examples of this are the copper wires that are used to 

transmit power throughout homes, or the gold/aluminum used to make electrical contacts 

in electronics.3,4 Metals act as good conductors because, in a bulk metal, the electrons 

surrounding the individual metal atoms are delocalized and form an electron cloud that is 

capable of movement through the stationary metal cations. The electrical resistance of a 
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metal increases with temperature due to increased electron scattering from vibrations, 

and as a result, cooling metals improves their conductivity.5 

 Insulators are either incapable of conducting current or require extraneous conditions 

to do so. Many materials fall into this category including wood, air, wool, most plastics, as 

well as countless others. Insulators are typically employed for their mechanical properties, 

and not their electrical properties, but they do find use in some electronics, such as 

dielectrics in capacitors.6 The molecular composition of insulating materials generally 

consists of strong covalent bonds which are incapable of easily breaking or moving 

electrons around.7 Despite being called insulators, some of these materials can be made 

conductive at high temperatures or other harsh external conditions, like high electric 

fields. Even though they can be made to act as conductors, there is a distinction between 

insulators and semiconductors despite there not being an exact cut-off point.  

 Arguably the most interesting of the three as far as electronics are concerned, 

semiconductors can switch between a conducting state and an insulating state depending 

on relatively small external forces. This is important because it allows semiconductors to 

be used in transistors and other electronics that require the ability to switch between 

multiple states, something conductors and insulators are incapable of. The most easily 

recognizable of semiconductors is silicon, which is used in all modern electronic devices, 

but other semiconductors do exist. Germanium,8 another group 14 element, is also a good 

semiconductor, as are compounds of group 13 and group 15 elements, such as gallium 

arsenide (GaAs).9 In more recent years, a lot of research has gone into the discovery and 

application of organic-based semiconducting materials which consist of highly conjugated 
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molecules, polymers, or composites, to complement or replace traditional silicon 

semiconductors.10,11,12,13 

1.1.1.1 2D Band Structures of Conductors, Semiconductors, and Insulators 

 The electronic band structure of a material is a good way to visualize the difference 

between conductors, semiconductors, and insulators. The band structure of a material is 

a visual representation of the energy levels within the bulk material. Typical band structure 

diagrams have three key parts: the conduction band, the valence band, and the fermi 

level (Figure 2). 

 

 Figure 2. Simplified band structures of metals, semiconductors, and insulators 
 

 The valence band of a material represents the highest occupied electron states in 

that material. The position of the valence band indicates the absolute energy of the 

electrons in the band. Electrons in the valence band cannot travel freely in most materials, 

as the valence band is generally filled and thus the electrons have no free states to move 

to.  
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 The conduction band represents the lowest unoccupied electronic states of the 

material. The conduction band is so named because if an electron enters the conduction 

band, it can move freely throughout the material as all the states in the conduction band 

are empty. In a metal, the conduction band and valence band overlap in energy, such 

that an electron can move from the valence to conduction band with no external energy 

requirement. This allows electrons to easily flow throughout the material, which is what 

makes metals good conductors. 

 The energy required to promote an electron from the valence band to the conduction 

band is termed the “band gap” (Eg). The band gap in a conductor is 0 electron volts (eV) 

because there is no energy requirement for the promotion of electrons. However, the size 

of the band gap is what distinguishes a semiconductor from an insulator, and further 

determines the characteristics of semiconducting materials. The cut-off band gap 

between insulators and semiconductors is not a very well-defined value because it 

depends on the application of the material, but it is generally accepted as somewhere 

within the 3 – 4 eV range. If the bandgap of the material is greater than ~3 eV, it is 

considered an insulator because the energy required to promote an electron to the 

conduction band is too large for most uses. If it is below ~3 eV it is generally considered 

a semiconductor. 

 The Fermi level (EF) denotes a hypothetical energy level of an electron that has a 

50% probability of being occupied at any given time, at thermodynamic equilibrium. This 

value is important as the position of the Fermi level is what ultimately determines which 

bands are the valence and conduction bands and determines whether the material is a 
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conductor or semiconductor/insulator. It also plays a key role in device fabrication, as it 

determines the barrier to electron or hole injection/extraction.14 

 If the Fermi level lies within any energy band, it means that the band is not fully 

occupied and thus the material is a conductor. However, if the Fermi level is found 

between the valence and conduction bands, it indicates that the material is either an 

insulator or semiconductor. The location of the Fermi level is also important in determining 

whether a material is a better conductor of electrons or holes. Electron holes, or holes, 

are quasiparticles that denote a lack of an electron where one would usually exist. If the 

Fermi level is closer to the conduction band, it means that on average, more electrons 

will be thermally excited, making the material a conductor of electrons (n-type 

semiconductor). Conversely, if the Fermi level is closer to the valence band, the material 

is a conductor of holes (p-type semiconductor). 

 When assessing the efficacy of a material to be a potent semiconducting material, 

the band structure is of utmost importance. While the band structure describes the energy 

required to “turn on” a semiconductor, it does not prescribe how this transition is made. 

Some materials are capable of thermal excitations, while others undergo photon 

excitations, and in the case of field-effect transistors an electric field modulates the band 

structure to make the transition easier. 

1.1.1.2 Charge Carrier Mobility 

 The basic requirement for a semiconducting material to function is for it to be able to 

easily adopt both an “on” and an “off” state. Besides this fundamental requirement, 

several other factors play a key role in determining whether a material will be suitable for 
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use in various electronic devices. One of the most important of these properties is the 

charge carrier mobility (µ). 

 The charge carrier mobility of a semiconducting material is a measure of the 

resistance that a charge carrier (electron or hole) experiences as it travels through the 

material. The higher the charge carrier mobility, the less resistance is felt by a charge 

carrier travelling through the material, making for more efficient transport. This is 

especially important in applications where high current densities are important because it 

allows for more charge to travel through the material. 

 Another positive aspect of having a low resistivity in the material is that less heat is 

produced when charge moves through it. Many electronics are sensitive towards heat, as 

it adversely impacts the components and can cause severe damage, so it is important 

that they do not heat up considerably through routine usage. Furthermore, this is doubly 

important for consumer devices, particularly handheld ones, as heating can cause safety 

concerns for the user. 

 Charge carrier mobilities are measured in units of cm2 V-1 s-1. The values of mobilities 

varies drastically depending on the material that is being tested. For example, typical 

values for crystalline silicon are in the range on 800 cm-2 V-1 s-1, but many organic 

semiconductors have mobilities in the 10-3 to 1 cm-2 V-1 s-1 range. The mobilities of such 

organic materials makes them inapplicable to high-performance transistors but makes 

them great candidates for use in other prominent devices. 

1.1.2 Silicon as a Semiconductor 

 By far the most widely used semiconductor in the modern era is crystalline silicon. 

Silicon has been used as the leading semiconductor for decades and as such more 



8 

research has been done on silicon-based electronics than any others, and this carries 

with it several advantages. All modern techniques for fabrication of high-performance 

electronics have been created with silicon in mind, taking into account the limitations of 

its physical properties. Because of this, it is easier to continue to work with silicon than it 

is to find and implement alternative semiconductors. Silicon purification techniques are 

truly incredible compared to other materials, boasting purities of over 99.9999999%. The 

high purity of silicon gives near defect-free access to the intrinsic properties of silicon. 

Silicon is also easily doped with other elements to modulate its properties, allowing it to 

be used in almost all components necessary to build a functional transistor. Finally, it also 

forms good contact with other materials that are commonly used in electronics fabrication.  

 The development around silicon comes about because of its excellent electronic 

properties and its natural abundance. Silicon boasts good charge carrier mobilities of 

~800 cm-2 V-1 s-1 which is greater than many of its competitors. The band gap of silicon is 

1.14 eV, which is well within the range for a great semiconducting material. Not only does 

it have a suitable band gap, but the Fermi level sits at an appropriate level to allow for 

thermal excitation at room temperature, giving it its intrinsic semiconducting capabilities. 

Finally, it is a very robust material and can handle high heat and many other harsh 

conditions which allow it to withstand fabrication processes that other materials cannot 

handle. These aspects make silicon an excellent semiconducting material to use. 

 Silicon can easily have its intrinsic properties modulated through simple doping or 

oxidation. Oxidation of silicon to silicon dioxide (SiO2) changes it from a great 

semiconductor, to a good insulator. A way to measure the insulating ability of a material 

is through its dielectric strength, which is its ability to withstand an electric field. SiO2 has 
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a large dielectric strength of 107 MV/m, which is a massive increase over the 30 MV/m of 

silicon. Doping of silicon with boron atoms introduces points in the lattice with electron 

deficiencies, allowing the material to better conduct positively charged holes, making it a 

p-type semiconductor. Alternatively, doping with an electron rich element, like 

phosphorus, introduces sites of increased electron density, improving the conduction of 

negatively charged electrons. Such modifications are what allow the fabrication of 

transistors entirely from silicon-based materials, with the sole exception of metal contacts. 

 Despite the advantages of silicon, there are several inherent drawbacks to the 

material. Crystalline silicon is highly inflexible and brittle which prevents it from being 

incorporated into flexible electronics. Additionally, it lacks a direct bandgap, see below, 

which diminishes its ability to be used in light-based electronics.  

 In section 1.1.1.1 band structures were introduced, showing a simplified valence 

band to conduction band transition. However, this only considers the energy required to 

make the minimum transition from valence to conduction band. In practice, some 

transitions require a change in momentum of the electron as well as a change in energy; 

these are called indirect bandgap materials. Silicon is an example of an indirect bandgap 

material. The bandgap of silicon is generally reported as 1.14 eV, however transition at 

this energy requires a coupled phonon, or lattice vibration, to supply the momentum for 

the transition. The practical meaning of this is that an electron cannot be excited at 1.14 

eV through a photon absorption, because photons posses no momentum, but requires 

thermal excitation as well. The direct bandgap of silicon is ~3.5 eV, which puts it into the 

territory of an insulating material.15 What this means is that for light-related applications, 

such as photovoltaics, silicon is a poor substrate because it cannot absorb photons very 
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efficiently. For this reason, silicon-based solar cells are considerably thick and heavy, 

however, due to cost, ease of production, and robustness, they are still widely in use. 

 

Figure 3. Energy bands of silicon in the [111] and [100] directions of k space15 
 

 Most of the advancement in transistor technology and computation strength has been 

a result of making transistors smaller, allowing for more to be incorporated into one CPU. 

Through a commonly cited guideline known as “Moore’s Law,” the number of transistors 

on a CPU chip has roughly doubled every two years. This exponential growth is the root 

cause of the drastic increase in performance that electronics have experienced over the 

last decades. However, the constant miniaturization of CPUs is approaching its physical 

limitations due to electron tunneling. Electron tunneling is the ability for electrons to move 

through a barrier if it is on a sufficiently small scale. An alternative semiconducting 

material will be required to see improved performance continue in the future. 
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1.2  Organic Semiconducting Materials 

 Conductive polymers were first discovered in 1982 with the report of polyaniline 

(PANI),16 however, the nature of the conductivity was unknown at the time and largely 

went unnoticed. It is not understood that polyaniline derives its conductivity from a radical 

based electron pathway and further doping with ions. Interest in the field of organic 

conductive polymers did not gain very much traction until the work of Heeger, 

MacDiarmid, and Shirakawa on polyacetylene, which ultimately garnered them the 2000 

Nobel Prize in Chemistry.17 The push to find new conductive organics and understand 

the mechanism by which they were capable of conduction led to the discovery of new 

organic semiconductors. The focus on finding and synthesizing new conductive organics 

is still present to this day.  

 Organic materials fall into two broad categories: polymers and small molecules. A 

polymer is a single molecule that is made up of a large number of small repeating units, 

achieving weights of 10 – 10,000 kDa, or more. Polymers are widely used for their 

mechanical properties and include nylon, polyethylene, and polyvinylchloride (PVC). A 

small molecule is also a single molecule but it has a much smaller molecular weight. They 

include pharmaceuticals, spices, perfumes, and solvents. The term small molecule is 

commonly used by polymer chemists to distinguish between polymers and other organic 

chemicals.  
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Figure 4: Examples of polymeric semiconducting material (P3HT) and small 
molecule semiconducting material (DRCN5T)18 

 

1.2.1 Conjugation and Aromaticity 

  Atoms undergoing π-bonding adopt an sp2 orbital hybridization to increase the level 

of p-orbital overlap with neighbouring atoms. When four contiguous atoms are all sp2 

hybridized, such that there are two adjacent π-bonds, they are considered conjugated. 

Conjugation describes the combination of these individual π-bonds into a larger π-

system, lowering the overall energy of the system.19 

 

Figure 5. Butadiene resonance structure 
 

 Conjugation also allows for the movement of the π-electrons in the conjugated π-

system to form resonance structures. This is an equilibrium process and only consists of 

the breaking and forming of π-bonds, not sigma bonds. Resonance structures formed in 

this way give insight into the electronic nature of various sites on a molecule, making it 

possible to discern chemical reactivity and acidity through simple analysis. Conjugation 

also opens up new reactions including the Diels-Alder reaction,20 Michael additions,21 and 

Aldol reactions,22 among many others. 
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 The conjugation of a molecule’s π-orbitals can also have a direct impact on its 

stability and reactivity. Conjugation has long been known to stabilize π-bonds by 8 – 17 

kJ mol-1, but simple conjugation still leaves alkenes reactive enough to undergo the same 

addition reactions that isolated alkenes are subject to. However, when the same reactions 

were first tried on benzene, a molecule then believed to contain several unsaturations, 

the reactions failed to give any products. Benzene’s lack of reactivity puzzled chemists 

and led to the assumption that it must be more stabilized than many typical unsaturated 

molecules.23 

 Many structures of benzene were proposed throughout this uncertain time, with 

Kekulé proposing the correct structure of a cyclohexatriene. However, cyclohexatriene is 

not a perfect representation of benzene’s structure because it has an equivalent 

cyclohexatriene resonance structure. The combination of these two resonance structures 

results in all the C-C bond lengths in benzene being equivalent at 1.39 Å, instead of 

alternating single and double bond lengths as would be the case with cyclohexatriene.19 

 Several methods have been used to obtain experimental and theoretical 

approximations of the stabilization energy unique to benzene. One such method was 

through the measurement of the energy required to hydrogenate alkenes. The heat of 

hydrogenation of cyclohexene was found to be 28.6 kcal mol-1 (Figure 6). Through the 

assumption that benzene is simply cyclohexatriene, the expected heat of hydrogenation 

of benzene was 85.8 kcal mol-1. However, the heat of hydrogenation of benzene was 

found to be 49.8 kcal mol-1, a whole 36 kcal mol-1 lower than what was predicted. This 

extra stabilization of benzene has been termed aromatic stabilization energy and is seen 

in many other compounds. Computational methods that have been used to calculate the 
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aromatic stabilization energy of benzene have ranged from 25 to 35 kcal mol-1 depending 

on the method used.24,25,26,27 

 

Figure 6. Aromatic stabilization of benzene as predicted by heat of 
hydrogenation19 

 

 Erich Hückel devised a set of rules for aromaticity, based on quantum mechanical 

calculations.28,29,30 Hückel’s rules state that for a molecule to be aromatic it must: have 

4n+2 electrons in a conjugated π-system, be planar, be cyclic, and have a continuous 

ring of p ortibals. Other compounds that fit this criterion but instead have 4n electrons in 

the conjugated π-system are destabilized and are called anti-aromatic.19 

1.2.2 HOMO-LUMO to Band Gap 

 When discussing electronic transitions in organic small molecules, a photon excites 

an electron from the highest occupied molecular orbital (HOMO) to the lowest unoccupied 

molecular orbital (LUMO). By tuning the gap between the HOMO and LUMO levels, the 

electronic properties of an organic material can be modulated. The HOMO-LUMO gap in 

small molecules is somewhat analogous to the bandgap in bulk materials as it describes 

the energy required to turn a material into a conductor and thus it defines whether a small 
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molecule will behave as an insulator, conductor, or semiconductor. Often the two terms 

are used interchangeably in materials science. 

 While the HOMO-LUMO gap and bandgap are very similar, they remain two distinct 

properties. HOMO-LUMO gaps exist only in discrete small molecules that have well-

defined molecular orbitals. As a molecule grows in size, and is fully conjugated, the 

molecular orbitals also grow in density and start to blend into a large band of energy states 

(Figure 7). The combination of the discrete HOMO and LUMO levels into large bands of 

energy is what allows organic materials to form good conductive materials. The HOMO 

levels of a molecule will become the valence band of a resulting bulk material and the 

LUMO levels will become the conduction band. This can only happen if the material is 

conjugated throughout the backbone, as that is what allows for easy movement of 

electrons.31 For this reason, most organic conductive materials are also known as organic 

conjugated materials/polymers. However, while transport along a single chain of a large, 

fully conjugated backbone is fast, practically it is not likely for a charge to travel from one 

electrode to another along a single molecule. When a charge travels along a single 

molecule and reaches the end, it must then “hop” to a new chain to continue travelling in 

the forward direction. Charge hopping between organic polymer chains requires far more 

energy than that required to move the charge along the backbone of a single molecule, 

resulting in far lower charge carrier mobilities than in silicon.32  
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Figure 7. Origin of the band gap in conjugated polymers 
 

 The bandgap of an organic polymer is directly related to the HOMO-LUMO gap of the 

corresponding monomers. This is true for both the energy required to excite the electrons 

as well as the absolute energy level of the molecular orbitals.33 Therefore, depending on 

the structure of the monomers used, the properties of the polymer can be easily altered 

to fulfill a particular requirement, such as being a good electron donor. The ability to 

intelligently design materials with targeted properties is one of the major advantages of 

organic materials. 
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1.2.3 Modulation of Organic Band Gap 

 While increasing the conjugation length of a conjugated material can decrease the 

bandgap, this stops being effective after ~ 8 repeat units.34 Controlling the band gap of 

an organic material can be accomplished through several methods: rigidification of the 

polymer backbone, stabilization of the quinoidal state, incorporating heterocycles, and 

introducing donor-acceptor motifs.35,36,37,38 The ability to predict the HOMO-LUMO gap of 

small molecules based on previously reported syntheses allows for more exact targeting 

of future properties. Furthermore, because the HOMO-LUMO gap of a small molecule 

correlates to the bandgap of the resulting polymer, this allows for quick screening of 

optimal small molecule candidates before committing to polymer synthesis. 

1.2.3.1 Rigidification 

 The ability of an organic molecule to conduct a charge relies on its conjugation, and 

therefore, on the overlap of contiguous p-orbitals. For many small molecules, like 

benzene, this is a moot point as they are completely flat, and the overlap is near optimal. 

However, for many others there are usually sigma bonds that capable of rotation which 

causes the p-orbital overlap to suffer, especially if steric factors dictate a non-planar 

geometry.39 The prevention of this rotation, or rigidification of the conjugated backbone, 

is one way to decrease the electronic gap of the material. 

 One way to prevent a loss of planarity is to make sure that the entire backbone 

consists of multiple connection points. For example, when connecting two benzene units, 

one can either connect them with a single bond to make biphenyl, or instead fuse the two 

rings to make naphthalene (Figure 8). The two phenyl rings of biphenyl do not sit coplanar 

due to the steric effects of the 2 and 2’ hydrogen atoms on the rings, and instead adopts 
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an equilibrium torsion angle of 44.4°.40 The significant torsion angle of biphenyl causes a 

disruption in the conjugation between the two phenyl rings, which would be detrimental 

to the electronics of a hypothetical polymer. The disruption of conjugation results in a 

large HOMO-LUMO gap approximated by the UV absorption maximum of 249 nm in 

methanol.41 

 On the other hand, naphthalene does sit planar, giving it optimal p-obital overlap. 

Because of the two connection points, and sp2 hybridized atoms, there is no capability for 

rotation of the backbone. The improved overlap is apparent in the UV absorption 

maximum of 285 nm in ethanol,42 which represents a roughly 0.6 eV decrease in the 

HOMO-LUMO gap relative to biphenyl. While this strategy seems to perfectly fix the 

problems with lack of rigidity, it creates an even larger problem in the case of benzene in 

particular. As you continue to extend the molecule by fusing more linear benzene rings to 

create anthracene, tetracene, pentacene, etc. the molecules become less stable to the 

point of transient existence.27 This family of molecules are known as acenes and will be 

discussed in more detail later. 

 

Figure 8: Various molecules depicting the different methods to increase π-orbital 
overlap 

 

 While the strategy of fusing rings does not work well for benzene specifically, it does 

work well for other monomers. Polymers which have a fused ring backbone are known as 
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ladder polymers and possess better electronic properties due to their higher p-orbital 

overlap.43 The main challenge with conjugated ladder polymers is their synthesis. It can 

be very difficult to find an appropriate synthetic route to creating conjugated ladder 

polymers because not only does it require the formation of two bonds, the polymerization 

must also be very high yielding, in order to produce polymers. For this reason, generally 

the synthesis involves making small fused ring ladder monomers and coupling them to 

other monomers through traditional palladium cross couplings. This results in a polymer 

that is only partially “ladder-like” due to the inclusion of sigma bonds connecting ladder 

units, but it still has enough of an impact to help create better devices.44 

 Alternatively, instead of directly fusing the backbone to prevent rotation, one can 

lower the steric demand of the monomers such that they remain planar. The easiest way 

to do this is to use five-membered rings as the monomers instead of 6-membered rings. 

For example, 2,2’-bithiophene is easily synthesized through homocoupling and features 

coplanar thiophene rings (Figure 8).45 The coplanarity is a result of the lack of steric 

hindrance as the rings can adopt a conformation where the hydrogen at the 3 and 3’ 

positions are on opposite sides of the molecule. The UV absorbance maximum for 2,2’-

bithiophene is 304 nm,46 which corresponds to a HOMO-LUMO gap that is even lower 

than naphthalene. Other five-membered heterocycles also benefit from this lack of steric 

interaction and therefore make for good monomer candidates. 

 Another way to ensure planarity of a molecule is to introduce an interaction that 

promotes a planar conformation. This can be done through the introduction of a 

substituent on the monomer that interacts with adjacent monomers, creating an effect 

similar to that of a ladder polymer, but to a much lower degree.47 Many groups have been 
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used to imbue polymers with rigidity and they generally take advantage of dipolar 

interactions between adjacent atoms, especially chalcogen bonding. An example of this 

type of rigidification has been developed in the Schipper group and relies on the 

interaction of an oxygen atom on a thiazole subunit interacting with a sulfur atom on an 

adjacent thiazole (Figure 8).48 Through the introduction of multiple groups, the effect on 

the planarity of the resulting molecule can be very pronounced, with a rotation barrier as 

high as 14.5 kcal mol-1 in the case of the N,N’-dioxide. 

 While planarity helps improve the electronic properties of a molecule, it presents a 

challenge of reduced solubility. Due to the rigid, planar nature of conjugated organic 

materials, they are generally very poorly soluble in all solvents, especially as they 

increase in size.49 The decrease in solubility is very evident when comparing naphthalene 

(175 g L-1 in hexanes), anthracene (3.7 g L-1), and pentacene which is virtually completely 

insoluble in all solvents. Poor solubility makes it much more difficult to handle and process 

a material, making it far less attractive for industrial applications. 

 To combat solubility problems, long aliphatic chains are added to the molecules, in 

order to disrupt their crystallinity.50 Common aliphatic chains used include various straight 

chain alkanes as well as ethyl hexyl branched alkanes, as the branching of the alkyl chain 

further disrupts the ability for the molecules to stack closely to one another. These chains, 

however, also result in a disruption of planarity and therefore a balance between finding 

a system that is soluble enough for easy use while still being planar enough to possess 

useful electronic properties is a continual struggle in conjugated polymer synthesis, such 

that even the branching position of the alkyl chain contributing to the overall device 
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performance.51 Fortunately, there are other parameters that can also be modified to aid 

in the search for materials with useful electronic properties. 

1.2.3.2 Stabilization of the Quinoidal State 

 The conductive state of polymers is described as the quinoidal state. In this form 

there is complete conjugation along the entire backbone giving it a structure that is 

analogous to polyacetylene (Figure 9). The quinoidal state is not as stable as the ground 

state structure due to the loss of aromatic stabilization and so conductive polymers need 

to overcome an energy barrier to achieve their optimal conductivity.52 Efforts made to 

stabilize the quinoidal state will then, in turn improve the conductivity of the resulting 

polymer. 

 The reason that the quinoidal state is higher in energy than the ground state is 

because the aromatic stabilization of each repeat unit is lost. Accessing the quinoidal 

state requires the breaking of aromaticity in each monomer and thus carries with it an 

energy penalty. The formation of conjugation along the entire polymer backbone offsets 

some of this energy cost, but not all of it.  

 One strategy to decrease the energy cost of entering the quinoidal state is to increase 

the stabilization achieved in the quinoidal state. To this end, researchers have added 

fused rings onto the monomers to introduce dienes, in this example thiophene is replaced 

with benzothiophene (Figure 9). These dienes not only contribute to the overall 

conjugation of each monomer unit, but also have the added effect of stabilizing the 

quinoidal state.53 When entering the quinoidal state, the conjugation along the backbone 

of the polymer now also has the added effect of introducing aromaticity to the added diene 

units, offsetting the loss of the aromaticity in the thiophene units, ultimately offsetting the 
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cost and making the quinoidal state far more stable. This is especially true in the case of 

poly(isothianaphthene) (Figure 9) because the loss of aromaticity in the thiophene ring is 

more than offset by the formation of aromaticity in the benzene ring, making the quinoidal 

state more stabilized than the ground state.33,54 Many researchers have taken advantage 

of this effect by using benzene fused heterocycles as their monomers, in order to produce 

low band gap polymers. 

 

Figure 9: Ground state and quinoidal state of conjugated polymers 
 

1.2.3.3 Heterocyclic Compounds 

 Heterocyclic compounds dominate the field of conductive polymers and small 

molecules due to their superior performance relative to their all carbon counterparts. The 

introduction of heteroatoms into a conjugated system has a direct effect on the resulting 

HOMO and LUMO levels, and can also play an important role in the planarization of the 

backbone. The incorporation of heteroatoms into a conjugated system is the most 

common way to create conjugated organic polymers for use in electronics.13,55,36,35 
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 As discussed above in section 1.2.3.1, the size of aromatic rings can drastically affect 

their planarization. Five-membered ring systems experience less steric repulsion relative 

to six-membered rings but an all carbon 5-membered ring does not work as a monomer 

for a conjugated polymer. The closest molecule to an uncharged, aromatic 5-membered 

all carbon ring is cyclopentadiene. However, cyclopentadiene is extremely unstable and 

undergoes a Diel-Alder reaction with itself rapidly at room temperature due to its lack of 

aromaticity and conformationally locked s-cis diene. However, five-membered aromatic 

heterocycles do not suffer from this problem because they benefit from the aromaticity 

imparted by the sp2-hybridized heteroatom, giving the molecules much higher stability.56 

Therefore, heterocyclic aromatic molecules can be used as monomers to synthesize 

stable and planar conjugated electronic materials. 

 Heterocycles are also used because they posses drastically different electronic 

properties depending on the nature of the heteroatom. This will be touched upon in the 

next section. 

1.2.3.4 Donor-Acceptor Motifs 

 Another great way to modulate the bandgap of a conjugated polymer is to introduce 

donor-acceptor motifs. That is, using two monomers, one that is electron rich and another 

that is electron poor, to create the polymer. When doing this, the molecular orbital mixing 

of the two monomers results in a tightening of the band gap caused by a lowering of the 

LUMO from the acceptor and a raising of the HOMO from the donor (Figure 10).36 
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Figure 10: Schematic representation of orbital mixing between a donor (blue) and 
an acceptor (pink). 

 

 Many types of monomers have been used to create donor-acceptor polymers. An 

early example includes simply combining electron rich thiophene with electron poor 

pyridine.57 Since then, the utility of this method has become obvious and donor-acceptor 

motifs are now ubiquitous in the design of effective conjugated polymers. Many electron 

poor heterocycles have been utilized including diketopyrrolopyrrole,58,59 2,1,3-

benzothiadiazole,60,61,62 isoindigo,51,63 and other aromatics with electron withdrawing 

substituents.64,65 The typical donor of choice is thiophene, or its derivatives.66,67 

1.3  Carbon Nanotubes 

 While many conventional conductive organic materials are polymer or small molecule 

based, several allotropes of carbon have been discovered that additionally make for 

excellent semiconducting and metallic materials. Carbon nanotubes (CNTs) were 

discovered in 199168 and have been since shown to possess excellent electronic and 

mechanical properties.69,70,71 Carbon nanotubes are long, 1-dimensional tubes, made 

entirely of sp2-hybridized carbon atoms arranged in six-membered rings with diameters 
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on the size of nanometers and lengths on the scale of hundreds of nanometers (Figure 

11). 

 

Figure 11: Schematic representation of a single-walled carbon nanotube (SWNT) 
and a multi-walled carbon nanotube (MWNT)72 

 

 Carbon nanotubes are generally separated into two main classes: multi-walled 

carbon nanotubes (MWNTs) and single-walled carbon nanotubes (SWNTs). SWNTs 

consist of a single nanotube and are used in electronic73 and mechanical74 applications. 

MWNTs consist of many concentric SWNTs of increasing diameter and possess great 

mechanical properties75 and make good conductors.76,77 SWNTs can be either 

semiconducting (s-SWNTs) or metallic (m-SWNTs), whereas MWNTs are always 

metallic. In fact, CNTs hold the distinction of being the only organic molecules that are 

metallically conducting without the need for doping. 

 Mechanically, both types of carbon nanotubes are used in many structural 

components that need to be strong and lightweight like tennis racquets, boat hulls, and 

bicycle frames. The 1D structure of CNTs allows them to act as threads that can be 
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interwoven to create fibres with incredible strength, while maintaining the lightweight 

nature of the CNTs. 

 SWNTs are used in electronic applications including field-effect transistors 

(FETs),78,79,80 thin film transistors (TFTs),81,82,83 sensors,84,85 biosensors,86,87 and 

photovoltaics.88,89,90 SWNTs have excellent electronic properties including ballistic charge 

transport,78 and bandgaps in the range of 0.5 eV – 1.13 eV.91,92 However, since SWNTs 

can be either metallic or semiconducting, accidental incorporation of a metallic nanotube 

into an FET will result in a faulty device. 

 CNTs are synthesized using one of several high-energy techniques which ultimately 

result in a mixture of different carbonaceous materials as well as CNTs of different 

lengths, diameters, and shapes. This is detrimental to their use in electronic devices as 

the diameter of a SWNT is what determines its semiconducting properties and bandgap. 

As such, much work continues to be done in finding a method to selectively synthesize 

one type of SWNT, or to purify a mixture of SWNTs. 

1.3.1 Carbon Nanotube Band Structure 

 The electronic properties of SWNTs can be understood by looking at the band 

structure of the material. Graphene serves as a great first approximation of the electronic 

structure of carbon nanotubes due to their similar structure. Graphene is a single, 

continuous sheet of sp2-hybridized carbon atoms arranged in six-membered rings. 

Graphene possesses a completely two-dimensional structure and is fully conjugated in 

its pristine form. The Fermi level of graphene sits between its π and π* molecular orbitals, 

meaning that the HOMO and LUMO levels are represented by the π-system.93 As 
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expected, electron transport in graphene is therefore based on the movement of π-

electrons. 

 

Figure 12: a) Real space representation of a graphene lattice. Unit cell is shown in 
dashed rhombus with unit vectors a1 and a2. b) Reciprocal space representation 

of a graphene lattice. High symmetry points (Γ, K, M) are shown. c) Energy 
dispersion of graphene along high-symmetry points.94 

  
 The band structure of graphene predicts its highly interesting electronic 

characteristics (Figure 12). The valence and conduction bands of graphene meet at two 

points denoted “K” points. Both of the K points are on two carbon atoms in the unit cell 

but even though the conduction and valence band meet at these points, the density of 

states decreases as the two bands approach the same energy level and ultimately there 

are zero electronic states at the Fermi level where both bands meet.95 This means that 

although there is no bandgap in graphene, it is still a semiconductor because there are 

no states that would allow for metallic conduction. 

 Single-walled carbon nanotubes (SWNTs) are also molecules made entirely of sp2-

hybridized carbon atoms arranged in six-membered rings. The difference between 

graphene and SWNTs is that graphene is a flat, 2D sheet, whereas SWNTs can be seen 

as a 1D, “rolled up” tubes of graphene. SWNTs can come in many different diameters 

and chiralities. The type of carbon nanotube is described by its chiral vector, which is 
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derived from the hypothetical folding of a graphene sheet to give the desired SWNT. The 

chiral vector is described by the equation: 𝑪 = 𝑛𝑎1 + 𝑚𝑎2, where n and m are integers 

and a1 and a2 are the unit vectors of the graphene lattice (Figure 13). The chiral vector is 

also commonly represented as a cartesian coordinate system of (n, m). Some chiral 

vectors, such as (n, n) and (n, 0), are given the special names armchair and zigzag 

nanotubes, respectively. 

 

Figure 13: a) Graphene sheet with unit vectors a1, a2, chiral vector C, and chiral 
index (7,1). b) Rolling up graphene sheet. c) Fully formed single-walled carbon 

nanotube showing chiral vector C.96  
 

 SWNTs are 1D nanostructures, unlike graphene, and thus have a different band 

structure. In graphene, there are two wavevectors that describe the wavefunction of an 

electron in reciprocal space, kx and ky, in the x and y direction, respectively. Likewise, for 

SWNTs there are two wavevectors, k⊥ and k∥. Since SWNTs are 1D, they are treated as 

being infinitely long along the tube axis, and the wavevector k∥, which is along the tube 

axis, can therefore take on any values without restriction. However, since a carbon 

nanotube has a finite diameter, k⊥, which represents the wavevector perpendicular to the 
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tube axis, is constrained by a periodic boundary condition: 𝒌⊥ ∙ 𝑪 = 𝜋𝑑𝑘⊥ = 2𝜋𝑙, where d 

is the diameter of the nanotube and l is an integer.94 

 

Figure 14: a) A first Brillouin zone of graphene with conic energy dispersions at 
six K points. The allowed k⊥ states in a SWNT are represented by dashed lines. 

The band structure of a SWNT is obtained by cross-sections as indicated. Zoom-
ins of the energy dispersion near a K point and 1D energy dispersion bands for b) 

a metallic SWNT and c) a semiconducting SWNT.94 
 

 The boundary condition placed upon k⊥ leads to the quantization of allowable k⊥ 

values that differ for SWNTs of different chiralities. This has the ultimate effect of making 

some chiralities of SWNTs metallic and others semiconducting. Furthermore, because 

the boundary condition is affected by the diameter, the bandgap of semiconducting 

SWNTs are also affected by the diameter of the tube. For some SWNTs, k⊥ can take on 

values such that the K point from the graphene band structure coincides with the k⊥ value, 

resulting in a zero-bandgap nanotube. Unlike graphene, SWNTs have a non-zero density 

of states at the Fermi level and are therefore metallic in this configuration. For other 

diameters, however, k⊥ cannot take a value at the K points, and this results in a non-zero 

bandgap and a semiconducting nanotube (Figure 14). 
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  SWNTs with wrapping indices of (n, m) can be categorized into two different groups 

depending on a value denoted as p. p is the remainder when the difference between n 

and m is divided by 3: 𝑛 − 𝑚 = 3𝑞 + 𝑝, where q is an integer. If 𝑝 = 0, this ensures that 

at least one value of k⊥ will intersect with a K point. If 𝑝 = 1 𝑜𝑟 2 , no K points are 

intersected, and the nanotube is semiconducting in nature. The bandgap of 

semiconducting nanotubes is inversely proportional to their diameter. For nanotubes of 

diameter 0.5 nm – 2 nm, the bandgaps are in the range of 0.4 eV – 1.7 eV.91 These results 

mean that all armchair nanotubes (n, n) are metallic in nature whereas zigzag SWNTs (n, 

0) and nanotubes of other chiralities can be either metallic or semiconducting.94 

1.3.2 Carbon Nanotubes as Semiconductors 

 As mentioned previously, SWNTs possess excellent inherent characteristics that 

allow them to be used in semiconducting devices. The charge carrier mobility of SWNTs 

is in the range of 10-2 – 100,000 cm2 V-1 s-1 depending on the particular device 

architecture,79,81,97,98 which can be orders of magnitude larger than that of silicon. As seen 

in the previous section, the band gaps of SWNTs can range from 0.4 eV – 1.7 eV, which 

is smaller than that of silicon, requiring less energy to undergo switching, and carbon 

nanotubes possess direct bandgaps, allowing for easy transitions from photon excitation. 

Finally, CNTs can be modified through direct chemical reaction with other organic 

molecules, surfactants, polymers, and can even bind to analytes to give changes in 

electronic properties.99 

1.3.2.1 Charge Carrier Mobility of Carbon Nanotubes 

 The high variation in reported charge carrier mobility of CNTs comes about mainly 

due to the different types of contacts that are made by the CNTs in a given device. The 
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charge carrier mobility of CNTs is only excellent along the tube axis, where the electrons 

can easily flow throughout the entire CNT π-system. In fact, when measuring the charge 

carrier mobility along a single tube with Ti/Au padded palladium source/drain contacts, 

researchers have been able to achieve ballistic electron transport.78 Ballistic electron 

transport is the maximum achievable charge carrier mobility and results when the mean 

free path of an electron through a material is significantly longer than the material it is 

traveling through, resulting in no scattering and therefore no resistance. However, only 

under ideal conditions are charge carrier mobilities so high. 

 When an electron is traveling along the CNT, it can be scattered by encountering a 

flaw in the CNT lattice. Electron scattering results in increased resistance and therefore 

decreased charge carrier mobility. However, unlike other materials, the potential 

scattering events in SWNTs are reduced to only forward and backward scattering due to 

their 1D shape, which helps improve charge mobilities.100. One of the main sources of 

decreased charge carrier mobility are static defects along the SWNT. Static defects 

include vacancies, pentagon-heptagon pairs, foreign atoms, and chemicals deposited on 

the surface of the CNT. Vacancies can occur in the CNT lattice whereby carbon atoms 

are missing, resulting in backscattering of electrons. Pentagon-heptagon pairs are 

another common type of defect along CNTs, which result when two adjacent six-

membered rings are fused incorrectly, resulting in a five-membered and seven-membered 

fused ring system. These defects can be characterized through microscopy101,102,103 and 

their effect on the conductance104 and FET performance105 of SWNTs has been studied 

computationally. Foreign atoms can also be incorporated in the CNT during synthesis if 

not handled properly, or if done intentionally, but this is much harder to directly 
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observe.106,107 Finally, chemicals that are deposited onto the surface of CNTs also affect 

the backscattering of electrons and lower the charge carrier mobility. This last scattering 

method is especially important as it is what allows CNTs to be used in sensing analyte 

molecules in their environment.87 

 It is believed to be the case that for CNTs, the scattering due to static defects is 

minimized, and so phonons are the major cause of scattering events. Phonons are lattice 

vibrations and cause defects that vary with time, thus are not considered static defects. 

Phonon scattering increases with temperature and source-drain voltage (VDS) in FETs. 

When the VDS in a CNTFET device increases, so does the amount of scattering due to 

phonons, reaching a maximum which causes the FET to reach current saturation. 

However, in short CNTs, this effect is absent because even under high VDS the mean free 

path of an electron is still larger than the length of the CNT. Furthermore, researchers 

have seen differences in scattering between SWNTs that are suspended vs CNTs that 

are in contact with a substrate. This is likely due to the heat dissipation from the CNT to 

the substrate, decreasing the number of inelastic collisions. 
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Figure 15: SEM micrographs of a) aligned SWNTs108 and b) a random network of 
SWNTs109 between electrodes. 

 

 Finally, the last form of electron scattering is inter-tube electron hopping. In an ideal 

scenario, electrons flow directly from one electrode, along a CNT, and into the next 

electrode (Figure 15a). However, in practice, creating a device that has such a perfect 

layout is very difficult, especially when attempting to incorporate many CNTs into a single 

device. One runs into the problem that CNTs are not all uniform in length and it is very 

difficult to selectively deposit them in the desired location and orientation. The strong 

intertube interaction between SWNTs110 results in them forming stable bundles, and 

makes it difficult to deposit nanotubes selectively on a surface (Figure 15b). Most 

fabrication methods involve either depositing electrodes onto a single SWNT, or 

depositing a dense layer of SWNTs onto already formed electrodes. In the former, the 

charge carrier mobility will be excellent because the electrons are taking the most optimal 

path, which is along a single CNT, but because there is only one CNT, the charge density 

will be low, severely limiting applications. In the latter, there will be more CNTs allowing 

for a higher charge density, however the chances that an electron can get from one 

electrode to the other along a single tube is low. In this case, electrons will travel along a 

nanotube until they reach the end, and then they will have to hop to an adjacent CNT in 

order to continue to the electrode. These hopping events have a barrier that is large 

relative to simply continuing along one CNT, and thus decrease the overall charge carrier 

mobility.111 
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1.3.2.2 The Band Gap of Carbon Nanotubes 

 SWNTs can be great semiconductors with small bandgaps depending on their 

diameter and chirality. The direct bandgap of SWNTs makes them particularly interesting 

for use in optical-based applications and allows characterization through optical 

spectroscopic techniques. The various bandgaps of SWNTs make them interesting 

because theoretically a single diameter can be selected to give an optimal bandgap for a 

specific application. However, in practice it is very difficult to select for one bandgap which 

becomes detrimental for many applications. Furthermore, the bandgap and Fermi level 

of the SWNTs can be directly modulated by an external magnetic field, allowing SWNTs 

to be used in field-effect transistors, where the generated electric field can turn the 

transistor on or off.112 

 

Figure 16: The electronic density of states for a) a (10, 0) semiconducting and b) a 
(9, 0) metallic SWNT. The dotted lines represent the density of states for 

graphene.95 c) A schematic density of states for a semiconducting SWNT. Optical 
excitations are marked by solid arrows and nonradiative relaxations are marked 

by dashed arrows.92 
 

  The 1D structure of SWNTs leads to a very different energy structure than 2D 

graphene. As can be seen in Figure 16 while the energy structure of graphene (dotted 

line) and SWNTs are similar, there are many sharp increases in the DOS for SWNTs. 

These are called van Hove singularities and are a result of the quantization of the 
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wavevector k⊥. The optical properties of SWNTs are a direct result of these van Hove 

singularities,113 and even a single SWNT gives rise to sharp absorption spectra due to 

the sharpness of the DOS of the electronic subbands. The bandgap transition is an 

excitation from the valence band, v1, to the conduction band, c1, and is denoted E11. This 

is typical of many materials, but in SWNTs there is also another transition that is also 

available for photon-induced electron excitation. The transition from the valence band, v2, 

to the conduction band, c2, is denoted as the E22 transition (Figure 16c). E22 absorption is 

typical of SWNTs and is generally found in the visible light spectrum and allows for the 

identification of SWNTs based on their optical absorption. Due to the E22 and E11 

absorptions, SWNTs have a wide range of optical absorptions from ~ 0.5 eV – 2.5 eV, for 

example a (6, 5) SWNT has a calculated E11 of 1.13 eV and E22 of 2.25 eV.114 

 After undergoing an E22 absorption, SWNTs can also undergo an emission from c1 

to v1. This is a fluorescent emission (E11) and is preceded by relaxation of an electron 

from c2 to c1. The fluorescence is also sharp and easily identifies a SWNT. While an 

absorption or emission spectrum is not sufficient to determine the exact chirality of a 

SWNT, the combination of both allows for very accurate assignment. Researchers have 

made 2D maps of the photoluminescent absorption and emission of various SWNTs and 

have used these maps as characteristic identifiers for mixtures of CNTs (Figure 17).115  
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Figure 17: a) Contour plot of fluorescence intensity versus excitation and 
emission wavelengths for a sample of SWNTs suspended in sodium dodecyl 
sulfate and deuterium oxide. b) Circles show spectral peak positions from a); 

lines show perceived patterns in the data.92 
 

 This method cannot be used for identification of metallic SWNTs as m-SWNTs do not 

have a bandgap. While m-SWNTs do possess a similar E11 absorption (Figure 16b), the 

electrons that are excited to the conduction band can undergo non-radiative decay to 

relax back to the valence band, resulting in no fluorescence. Nonetheless the absorption 

of m-SWNTs can be used to identify them in a sample (Figure 18). 

 To distinguish between the absorptions of semiconducting SWNTs and metallic 

SWNTs, the terms S11, S22, and M11 are used. S11 is used for the E11 optical transition in 

s-SWNTs, while S22 is used for the E22 transition in s-SWNTs. Additionally, M11 denotes 

the E11 transition in m-SWNTs. There is a general trend for these various transitions 

corresponding to the diameter of the SWNT being probed. For a given diameter, M11 > 

S22 > S11, which can be seen in a Kataura plot which plots the diameter of metallic and 

semiconducting SWNTs against their absorptions (Figure 18a).91 
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Figure 18: a) Calculated electronic transition energy Eii vs. nanotube diameter dt 
for SWNTs, commonly known as a Kataura Plot.91 b) Absorption spectrum of 

polymer wrapped SWNTs showing peaks in each of the distinct energy bands.82 
 

 Another optical spectroscopic technique that is frequently used to characterize CNTs 

is Raman spectroscopy.96,116,117,118,119 Raman spectroscopy probes both the electronic 

structure and the phonon modes of CNTs. This is of double importance because phonons 

are especially useful when determining the physical properties of a material and can be 

used as direct probes into the structure of SWNTs. In Raman spectroscopy, a laser is 

shone onto the target, in this case the SWNTs, resulting in absorption and electron 

excitation from the valence band to the conduction band. Following excitation, the 

electron is scattered inelastically through interaction with phonons, and finally relaxes, 

emitting a photon with energy equal to that of the incident photon less the energy of the 

phonon. Therefore, Raman spectroscopy gives a direct measure of the energy of 

phonons in the system. 
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 The Raman spectrum of SWNTs has several key aspects that give a deep insight 

into their structure.118 The first region of interest is the radial breathing mode (RBM) 

region, a low frequency transition seen in the area of ~100 cm-1 – 500 cm-1 (Figure 19a). 

This is a mode that is unique among CNTs and is therefore useful for confirming the 

content of CNTs in a carbonaceous sample. The RBM is named such because it 

corresponds to the mode of all the carbon atoms moving coherently out of the plane of 

the tube axis, as if the tube were breathing. The energy required for this transition is 

therefore quite low and is approximated by the equation: 𝜔𝑅𝐵𝑀 ~ 
𝐶

𝑑𝑡
  cm−1, where dt is the 

diameter of the nanotube and C is a constant depending on the substrate (248 cm-1 for 

isolated SWNTs on SiO2).119 Smaller diameter CNTs undertake more ring strain as a 

result of radial breathing, which causes them to appear at higher wavenumbers. 

 The other important features on a CNT Raman spectrum are the G and D bands. The 

G band, which stands for graphene band, is a band that can be found in graphene as well 

as CNTs. In graphene the band is found at 1580 cm-1, whereas in CNTs the band is 

generally split into two bands: G+ at 1590 cm-1 and G- at 1570 cm-1 (Figure 19b).  The G+ 

feature is sensitive towards doping of the SWNT and shifts downfield when electron 

donors are present, and upfield if acceptors are present.120 The G- feature is indicative of 

the m-SWNT content in a sample. If a sample possesses m-SWNTs, the G- band will 

become unsymmetrical, broad and high in intensity, whereas in a semiconducting sample 

the G- band is symmetrical and low in intensity. 

 The D band is a disorder induced feature that is found at 1360 cm-1. The D band 

arises from sp2 hybridized carbon atoms along the carbon nanotube. The D band is a 

great measure of the number of defects in the CNT, and its intensity reflects this. For a 
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pristine CNT sample, the D band will be very small, several orders of magnitude smaller 

than the G band. However, if the sample is modified through chemical means and 

contains many static defects, the D band can be on par with, or even surpass, the intensity 

of the G band. This makes the D band an excellent probe of CNT functionalization in 

reactions where covalent modification of CNTs is desired. 

 

Figure 19: a) Radial breathing mode region of a Raman spectrum showing distinct 
SWNT signals.117 b) Close up on the G-Band of an isolated metallic (bottom) and 
semiconducting (top) SWNT.121 c) Raman spectrum of an isolated metallic (top) 

and semiconducting (bottom) SWNT.118 
 

 The Fermi level of SWNTs can be shifted through the application of an external 

magnetic field because the wavevector, k⊥, is shifted at both K points, K1 and K2 (Figure 

20). The shift in k⊥, is in the same direction at each K point, and so the bandgap at one K 

point increases, while at the other it decreases. This effect causes the 1D subbands to 

no longer be degenerate and has the overall effect of decreasing the bandgap.  

 The effect of magnetic fields can be seen experimentally by constructing a CNTFET 

device. When the gate voltage (VGS) is increased, a magnetic field is established, and the 

field increases in strength with increasing VGS. When measuring the current across a s-

SWNT, at 0 VGS, only a small current is found, which corresponds to the natural s-SWNT 
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Fermi level. As the VGS is increased, and the band gap decreases, more electrons 

populate the conduction band, and a significant increase in the current is observed. 

Through a negative bias applied across the gate electrode, the current can be decreased 

to 0 in s-SWNTs.83 These characteristics make s-SWNTs excellent candidates for use in 

FETs. 

 

Figure 20: Relative positions of the allowed k⊥ states and K points and the 
resulting 1D subbands of a semiconducting SWNT a) without and b) with an 

external magnetic field.94 
 

 However, despite having these great properties, the incorporation of s-SWNTs into 

FETs is not an easy task. Due to the variety of bandgaps that a mixture of SWNTs can 

have, the IDS-VGS characteristics of a device can vary wildly.111 Additionally, if any m-

SWNTs are included in the device, the current will be constantly flowing, even when the 

device should be in the off state, and, if enough of them are present it is impossible for 

the device to operate as a transistor. Even if all the m-SWTNs are completely removed, 

having varying bandgaps between the deposited s-SWNTs will cause a similar effect, 

whereby different transistors on the same device could have different VGS at which they 

operate optimally. Such a system is untenable to use in commercial high-performance 
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logic devices as it would require each transistor to be individually tuned, resulting in 

astronomical cost and time to manufacture even a simple, fully functioning device. 

 While there remains a number of challenges with using CNTs, even silicon had its 

shortcomings in its earlier years, which were slowly improved upon until it became the 

ubiquitous material we know today. Many researchers have been and continue to find 

ways to improve purity, separation, alignment, and deposition of SWNTs to improve their 

performance. The state-of-the-art methods that are used for SWNT processing will be 

discussed later in this thesis. 

1.3.2.3 Chemical Modification of Carbon Nanotubes 

 Another way to impact not only the electronic, but also physical properties of SWNTs, 

is through chemical modification. As previously mentioned, there are several types of 

defects that can be found along a CNT. Defects serve as high energy points along the 

carbon nanotube surface and represent areas for easy modification as aromaticity has 

already been broken at the defect sites. The functionalization of SWNTs can be done 

both covalently and non-covalently or by using different chemical linkers in order to 

modulate their properties.99,122,123 
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Figure 21: a) Typical SWNT defects: A) 5 and 7-membered rings, B) sp3-hybridized 
defects, C) carboxylic acids from oxidative damage, and D) open end of the SWNT 

terminated with carboxylic acids. b) Functionalization routes for SWNTs: A) 
defect-group functionalization, B) covalent sidewall functionalization, C) 

noncovalent exohedral functionalization with surfactants, and D) noncovalent 
exohedral functionalization with polymers.99 

 

 Carbon nanotubes do not have perfectly intact endcaps at the ends of tubes, the 

ends usually contain catalyst particles leftover from their synthesis. Metal catalyst 

contamination is usually removed through acidic workup with strong oxidizing acids like 

nitric and sulfuric acid. Oxidative workup removes the metal catalysts but it also oxidizes 

the ends to pendant carboxylic acid groups.124 Harsher conditions including heat or 

sonication in more concentrated acids can cause further oxidation of the CNT backbone 

through cleavage of C-C bonds, introducing carboxylic acid groups along the CNT.125 

 Carboxylic acid defects along the CNT act as starting points for further chemical 

modification through simple organic transformations. Carboxylic acids can be converted 

to acid chlorides with thionyl chloride which allows easy further modification with 

numerous nucleophiles. Acid chlorides can be converted to amines through a Wolff 

rearrangement,126 amides through coupling with amines,127 or esters through coupling 
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with alcohols.128 Additional reactions used to covalently functionalize carbon nanotubes 

include cycloadditions,129,130,131 radical addition,132 as well as many others.  

 Covalent functionalization has been used to permanently alter the properties of 

SWNTs. The simplest use of covalent functionalization is to install solubilizing groups 

onto the SWNT sidewall, allowing for easy solvation of SWNTs in organic and aqueous 

solvents.133 The solubilizing groups include carboxylic acids for enhanced water solubility, 

and esters with long alkyl chains for organic solvent solubility. Conjugation of SWNTs with 

other molecules of interest, such as fullerenes134 and metal nanoparticles135 has given 

rise to interesting materials. Aryl diazoniums can be used to selectively react with m-

SWNTs and alter their electronics to make them s-SWNTs, improving the performance of 

CNTFETs post-fabrication.136 The selectivity of this reaction arises from the existence of 

higher energy electronic states in MWNTs due to the absence of a band gap.137 

 Conversely, non-covalent modification of CNTs can also be desirable if reversibility 

is required. This type of modification generally takes advantage of the structure of CNTs, 

including their aromaticity and curvature. The most common methods are wrappings with 

polymers,138,82 surfactants,139,140 and adsorption of small molecules.141,142 

 One of the largest issues with CNTs is their poor solubility in all solvents. Due to 

strong π-π stacking interactions between CNTs and their long shape which allows for 

many such interactions to exist, CNTs tend to form bundles when dispersed in solvents. 

This prevents easy processing of CNTs and limits the types of techniques that can be 

used to purify them. Non-covalent modification has shown to be an excellent way to 

overcome this inherent drawback of CNTs as they can be covered in solubilizing 
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molecules that lead to individualization of the CNTs, without permanently affecting their 

properties. 

 Many types of wrappings have been reported to improve the solubility and 

individualization of carbon nanotubes. One of the most common ways this is 

accomplished is through the use of surfactants like sodium dodecylsulfate (SDS)143 

among others.140 These allow for solubilization of CNTs in water, but generally do not 

have great individualization of the SWNTs.139 

 Polymers have also been used extensively in non-covalent CNT modification. Unlike 

surfactants, polymers can be easily modified for selective binding to different types of 

CNTs.82,144,145 In general, conjugated polymers are used for the binding since they can 

undergo both van der Waals interactions and π-π stacking interactions with the nanotube. 

In addition to solubilization, they have also been used not only so solubilization of 

nanotubes, but also to sort different types of nanotubes to enrich samples.145,146 However, 

many polymers are difficult to remove because they form too many interactions with the 

CNTs which lead to strong binding. The removability of polymer wrappings has been 

addressed for some polymer systems through chemical removal under specific, mild 

conditions, but this removal procedure is not broadly applicable.147 

 Small molecules can also be used to coat the surface of CNTs and are often easily 

removed unlike their polymeric counterparts. The problem with using small molecules 

arises from the fact that they can be removed too easily from the CNT surface due to their 

small size and therefore limited interactions with the nanotubes, contrary to polymers 

which are so large that sufficient interaction is nearly guaranteed. The most common 

types of molecules employed for this are polycyclic aromatic hydrocarbons (PAHs) since 
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they can produce significant π-π stacking interactions to allow them to remain on the CNT 

surface. Pyrene is a frequently used motif for this and is especially useful because pyrene 

is easily modified to include useful functional groups including alkanes, carboxylic acids, 

and amines among others.148,149,150 More recently iptycenes have been used for this type 

of surface modification because their concave shape is complementary to the CNTs 

convex shape, improving the π-π stacking overlap.151,152,153 Iptycenes that are based 

upon the reaction of acenes and imides are useful because they provide easy 

functionalization of the imide group.153 Iptycenes have been used to selectively bind 

different sizes of CNTs and even for solubilization with functionalized iptycenes.152,153 

 The last major class of molecules that are used in CNT binding are 

biomolecules.154,155,156 These molecules are especially important in that they allow CNTs 

to be used in many bionanotechnological applications including the sensing of biological 

markers. Due to their polyampholytic character, many proteins can bind directly to CNT 

surfaces without the need for pre-functionalization of the SWNT surface, or the protein 

residues. A carbon nanotube that has been coated with proteins can then be used to 

sense any molecules that bind to the protein, as the slight changes in conformation of the 

CNT can be sensed through changes in electrical conductivity along it.157 

Polysaccharides can also be used to selectively solubilize smaller diameter SWNTs.158 

Deoxyribonucleic acid (DNA) has been used extensively to wrap CNTs for 

solubilization159 and even for purification using ion exchange chromatography in order to 

selectively enrich s-SWNT samples.160 

 Both covalent and non-covalent modification of CNTs can provide incredible 

opportunities for the modulation of CNT properties. The issue with CNT solubility can 
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easily be overcome through both types of modification, and the desirable properties of 

the pristine CNT can be kept intact if non-covalent functionalization is utilized.   

1.3.2.4 Carbon Nanotube Based Field-Effect Transistors 

 The electronic properties of CNTs make them excellent candidates for use in field-

effect transistors. For FETs, SWNTs are the only desirable type of CNT, because MWNTs 

are metallically conducting. CNTFETs can be created in three different ways: aligned 

arrays, single nanotubes, and random networks. Aligned arrays consist of many 

nanotubes that are aligned between the source and drain electrodes. They offer the 

highest potential charge carrier mobilities and current densities. Single nanotube FETs 

are largely used to probe the properties of individual chiralities of tubes and other aspects 

of the FET, like contact or substrate effects. Random networks of CNTs are easy to 

produce and consist of many CNTs placed down on a substrate with no control over their 

orientation. They have much lower charge carrier mobilities but are still very effective in 

flexible electronics and display applications, as well as in sensing applications. 

 For a semiconductor to be useful in high-performance transistor technologies, such 

as those used in computers, several benchmarks must be met. The first requirement is a 

high charge carrier mobility, in the range of silicon (~800 cm2 V-1 s-1). The second 

requirement is a high on/off current ratio (ION/IOFF), in the range of >104. Conversely, for a 

semiconductor to be useful in flexible electronics and displays, they only require a charge 

carrier mobility in the range of ~1 cm2 V-1 s-1, or ~20 cm2 V-1 s-1 when they are used in 

transparent electronics, but still require similar ION/IOFF. The lower charge carrier mobility 

requirements are a function of the lower information bandwidth demand of displays and 
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current flexible electronic devices. As flexible electronics improve, the charge carrier 

mobilities will have to likewise increase to meet the demand. 

 As discussed in section 1.3.2.1, the ION/IOFF of a given FET depends on the ratio of s-

SWNTs to m-SWNTs in the device.161 As the device has more m-SWNTs, there is a larger 

off-current and this leads to a lower ratio overall. The effect of m-SWNTs can be 

approximated by Equation (1) for aligned arrays of SWNTs.111 This means that even for 

SWNT samples with 99% purity, the average ION/IOFF will only be 100, which is still far too 

low for serious use. Furthermore, this only represents an average, meaning that many of 

the transistors created with such a starting mixture would be completely non-functioning. 

The drastic effect of m-SWNT contamination on the ION/IOFF underscores the importance 

of using very highly enriched s-SWNT starting samples. Methods for generating enriched 

s-SWNTs will be covered in more detail further on. 

                                            
1

𝐼𝑂𝑁
𝐼𝑂𝐹𝐹

𝑎𝑣𝑔
= 1 −

𝑃𝑢𝑟𝑖𝑡𝑦 𝑖𝑛 %

100
           (1) 

 Also discussed in section 1.3.2.1 was the effect of alignment on the charge carrier 

mobility of a resulting CNTFET. Random networks of SWNTs feature lower charge carrier 

mobilities in the range of 1 – 100 cm2 V-1 s-1, while aligned arrays are in the range of 1,000 

– 10,000 cm2 V-1 s-1, and single nanotube transistors have been made with charge carrier 

mobilities that are even higher.111,78 The charge carrier mobilities of the different 

configurations relegate random network CNTFETs to flexible electronics, displays, and 

transparent electronics applications, and allow only aligned arrays to be used in high-

performance electronics. 
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 Many interesting FET devices have been created with randomly distributed SWNT 

networks. Several OLED displays have been demonstrated that feature high ION/IOFF with 

much higher charge carrier mobilities than standard solution-processed organic 

semiconductors.162,163 Other interesting applications include the ability to create pressure 

sensors using SWNTs.164 Due to their flexible nature, SWNTs have been used to create 

flexible CNTFETs,98,70 flexible displays,83 and can even be made through roll-to-roll 

printing processes.12 While SWNTs are also stretchable, CNTFETs are not necessarily 

stretchable since the other components, especially the metal electrodes, are not 

themselves stretchable. 

 While CNTFETs generally focus on s-SWNTs, m-SWNTs can also be used in place 

of the typical metal electrodes. This has been done using SWNT-polymer composites165 

and can be used in flexible organic FETs.166,167 The major advantage of using SWNTs 

over metals in these applications is that they can be made transparent and stretchable.77 

1.3.2.5 Carbon Nanotube Based Sensors 

 The ability to detect minute amounts of harmful chemicals in an environment or 

chemicals in a living organism that are predictive for certain conditions are both highly 

sought after. For example, sensing trinitrotoluene (TNT) or other explosives is very 

important at airports and other high security areas and has been made possible through 

organic based chemisensors.168 SWNTs are useful in these applications because they 

have a very high surface area which allows for binding to a large number of analyte 

molecules, and as previously discussed, they can undergo non-covalent surface binding, 

which allows for reversible binding of analytes. Sensors can operate in two main modes: 

FET and electrochemical. 
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 Electrochemical sensors depend on catalyzing the reduction/oxidation (redox) of 

various chemicals of interest. This is done through adsorption of the analyte onto the CNT 

surface which then catalyzes the electrochemical transition under an externally applied 

bias. This technique has been used extensively in the sensing of many biomolecules 

including dopamine, uric acid, serotonin, biomarkers, proteins, DNA, and epinephrine.86 

The detection limits are in the range of 0.1 – 0.001 µM and can be measured using a 

variety of methods such as differential pulse voltammetry (DPV), cyclic voltammetry (CV), 

or amperometry. Other non-biological molecules can also be sensed in these types of 

devices, including hydrogen peroxide.169 CNT electrochemical sensors  can also be made 

with polymer/SWNT composites or other types of composites, increasing the detection 

limit and aiding the catalytic electrochemical reaction.170 

 FET sensors are based upon the inherent conductivity of CNTs and the minute 

changes that occur in the conductivity upon binding with other molecules. The most 

common way to create a sensor using this approach is to build a CNTFET and then 

subject the FET to known concentrations of an analyte and measure how the current 

changes, thus creating a calibration curve so that unknown concentrations can be 

determined. Using this type of sensor dopamine can be detected in concentrations as low 

as 0.001 fM.171 FET-based sensors offer a wider range of application because the SWNT 

surface can be functionalized to selectively bind to specific molecules. A great example 

of this is in the case of binding proteins or antibodies directly to a SWNT allowing for 

detection of biological molecules that bind to them at very low concentrations.172  

Furthermore, the binding molecules do not have to be electrochemically active for them 

to be detected using this method, allowing CNTFET-sensors to detect molecules like 
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acetylene gas for ripening of fruits.173 CNTFET-sensors are sensitive towards m-SWNT 

impurities because having m-SWNTs in the device increases the off-current. A higher off-

current leads to a smaller relative change in current upon binding, resulting in lower 

detection limits and variability between different devices. For this reason, high purity s-

SWNTs should be used. 

1.3.2.6 Carbon Nanotube Based Photovoltaics 

 In the most basic sense, photovoltaic devices rely on absorbing photons to generate 

current. The photons that can be absorbed depend on the bandgap of the light-absorbing 

layers in the solar cell. The light is generally absorbed by either silicon in conventional 

solar cells, or a conjugated organic polymer in thin film, flexible solar cells. These light 

absorbing materials can absorb various wavelengths of light depending on their 

bandgaps, but SWNTs on the other hand can be incorporated to absorb infrared (IR) light, 

increasing the range of wavelengths that are converted to current. Furthermore, the high 

charge carrier mobility in SWNTs helps to improve charge separation and transport to the 

electrodes, further improving solar cell efficiency. 

 Many different types of SWNT-based photovoltaic devices have been produced to 

date.174,175 Most of these devices use the SWNTs as a conductive channel to move the 

current throughout the material, however work in more recent years has focused on using 

CNTs as the active, light-absorbing, component in photovoltaics. One of the first 

examples coupled SWNTs as electron acceptors with poly(3-octylthiophene) as the 

donor, but resulted in poor PCEs of below 1%.176 Often, the SWNTs are light-absorbing 

donor materials that are coupled with fullerene acceptor materials, either C60 or phenyl-

C61-butyric acid methyl ester (PCBM).177,178 Once again, however, SWNTs are plagued 
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with m-SWNT impurities, which lead to quenching of excitons and therefore a decrease 

in overall efficiency of the solar cells and poor PCEs.175 As a result, the most prominent 

use of CNTs in photovoltaics is as the conductive electrodes.179 

1.3.3 Synthesis and Purification of Single-Walled Carbon Nanotubes 

 As we have seen, that the purity of SWNTs is crucial for their use in nearly all their 

electronic applications. The synthesis of SWNTs is the source of their impure nature and 

many efforts have gone into modifying the synthetic methods to make them more 

selective, to great effect. Likewise, complimentary research has also gone into the 

purification and sorting of SWNTs post-synthesis in order to further enrich samples to the 

required high purities.  

 When SWNTs are synthesized, the resulting product is a mixture of carbon allotropes 

including SWNTs, MWNTs, fullerenes, graphene, graphite, and amorphous carbon, as 

well as catalyst impurities. The purity of the product is generally defined by the amount of 

the sample that contains the allotrope of interest, in this case SWNTs. However, even 

among the SWNTs there are many different structural parameters including length, 

diameter, and chirality that must be separated. Purifying the SWNTs from other forms of 

carbon is a simple process, but further sorting of SWNTs into, for example, m-SWNTs 

and s-SWNTs, requires more complex processes. For use in high-performance electronic 

devices, s-SWNT purities well above 99% are required, so scalable and highly selective 

sorting methods must be developed, both at the synthesis and post-synthesis stage.  

 Herein, we will discuss the different synthetic methods for making SWNTs and 

several improvements on those methods, as well as the various post-synthetic sorting 

methods that are available. The discussion will be limited to the three most prevalent 
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methods for SWNT synthesis: chemical vapour deposition, arc-discharge, and laser 

ablation. Also, only several of the most common methods for post-synthesis purification 

and sorting will be touched upon. The largest emphasis will be placed on the most 

prevalent techniques. 

1.3.3.1 Chemical Vapour Deposition 

 The most common method for synthesizing carbon nanotubes is chemical vapour 

deposition (CVD). CVD is simpler, more cost-effective, and produces cleaner CNTs than 

both arc discharge and laser ablation.180 A typical CVD setup consists of a tube furnace, 

an inlet, an outlet, and a holder for the substrate and metal catalysts. A carrier gas (argon 

or helium), is used to carry both a reducing agent (hydrogen), and a carbon feedstock 

(carbon monoxide, alcohols, or hydrocarbons) into the tube furnace which is heated at 

350 – 1200 °C, resulting in deposition of carbon atoms on the metal catalysts and further 

reaction to form CNTs. However, the specifics of how the synthesis is performed can have 

drastic effects on the resulting purity of SWNTs. The most common parameters that are 

adjusted include the temperature of the chamber, the type of carbon feedstock, the type 

of metal catalyst, and nature of the growing substrate. 

 Despite much research, the exact mechanism for carbon nanotube growth in CVD 

synthesis is still debated. The two prevalent mechanisms are vapour-liquid-solid (VLS) 

and vapour-solid-solid (VSS). In VLS, the carbon feedstock adsorbs onto the metal 

catalyst particle which aids in its breakdown into carbon atoms. The carbon then dissolves 

into the metal particle to form a carbide which diffuses within the metal particle. Finally, 

solid carbon diffuses to the edge of the metal particle and precipitates onto the surface to 

begin CNT growth. In VSS, the carbon feedstock first breaks down at the high chambers 
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temperatures before being adsorbed and diffusing into the metal particle. Finally, the 

carbon atoms precipitate onto the surface to take part in carbon nanotube growth.181  

 Temperature is one of the easiest to control and most important variables in the 

synthesis of SWNTs by CVD. The starkest effect of temperature is on MWNT vs SWNT 

selectivity. At low temperatures MWNTs are favoured, whereas at temperatures as high 

as 1200 °C SWNTs are heavily favoured and sometimes are nearly exclusively formed 

depending on other conditions. It is believed that this selectivity comes from a higher 

energy of formation required to synthesize SWNTs due to their smaller diameters leading 

to higher strain energies.180 High temperature CVD has been used to produce SWNTs 

with over 90% s-SWNT content reliably.182,183 

 The nature of the carbon source is also important in determining the resulting purity 

and growth rate of the SWNTs, as well as the catalyst lifetime. The most commonly used 

carbon sources are methane, acetylene, ethane, benzene, ethylene, xylene, carbon 

monoxide, isobutane, and ethanol.180 The carbon source chiefly affects the curvature of 

the nanotube, with linear hydrocarbons tending to form straight, hollow CNTs, whereas 

cyclic hydrocarbons lead to curved nanotubes. Due to the higher energy of SWNTs 

relative to MWNTs, SWNTs are more easily synthesized using a carbon feedstock that is 

more stable at high temperatures. This means that feedstocks like methane and carbon 

monoxide are historically more often used to make SWNTs, because feedstocks like 

benzene tend to decompose into other carbonaceous compounds before they can reach 

a sufficient temperature to form SWNTs, giving a highly impure product. The exception to 

this rule is ethanol, which since its first use to synthesize SWNTs has become the 

preferred method for global SWNT production.184 During the decomposition process, 
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ethanol releases hydroxide radicals which etch other carbonaceous byproducts and give 

a largely pure SWNT sample.185 

 SWNTs cannot be grown in any meaningful quantities in CVD without the use of a 

catalyst. If catalysts are absent, CVD conditions can still produce MWNTs but also result 

in substantial amounts of other carbon decomposition products. The metal catalyst 

particles act as nucleation sites for the decomposition of the carbon feedstock and the 

growth of SWNTs. To produce SWNTs nanometer sized metal particles are generally 

required, with larger nanoparticles that measure in the tens of nanometers favouring 

MWNT formation. Transition metals are often used as the catalysts in the CVD synthesis 

of CNTs, with iron, cobalt, and nickel being the most commonly used.180 This is because 

carbon has a high solubility and diffusion rate in these materials at high temperature and 

it is believed that diffusion is a key step in the mechanism for the formation of SWNTs. 

Other transition metals have also been extensively employed including molybdenum, 

copper, and indium, among others.  

 At first glance, the substrate for CNT growth may not appear to be very important for 

the resulting purity and selectivity of the CNT products, but the material of the substrate 

and its surface morphology can have serious affects on the final product. Commonly 

utilized substrates for SWNT growth include silicon, graphite, quartz, zeolite, and many 

others. The substrate is not simply a stage which the catalyst nanoparticles are mounted, 

but rather it can directly impact the resulting CNT product quality. The substrate-catalyst 

interaction plays a large role in preventing catalyst particle migration and growth during 

the CVD process, resulting in a narrower distribution of resulting SWNT diameters. Some 

researchers believe that the oxide substrate may actively be participating in the catalytic 
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cycle of CNT formation, giving the substrate an even more important role in the overall 

process. A good representation of the effect that substrates can have can be seen in the 

work of Chai et. al.186  in which they tested the efficacy of a cobalt oxide (CoO) catalyst 

on various substrates at 700 °C and found that the amount of product was severely 

impacted with alumina producing the most and magnesia producing the least. Further 

studies show that using the same conditions, molybdenum and iron catalysts produce no 

product on silica. ST-cut quartz is even capable of growing aligned arrays of CNTs directly 

on the surface.187 

 So far, the effects that have been discussed only affect the purity of the SWNTs or 

their tendency to prefer s-SWNT formation over m-SWNT formation, but some systems 

have been found that preferentially synthesize specific chiralities of SWNTs. (6,5) SWNTs 

can be selectively produced in high amounts (45%), while the other SWNTs formed in 

this process are 88% s-SWNTs as well.188 

 Several recent examples have been shown that single CNTs can be used as seeds 

to grow CNTs of the same chirality. The approach relies on starting with a pure sample, 

or a single CNT, and growing them in CVD. The newly elongated CNTs are then cut with 

sonication to increase the number of tubes and decrease their length. The newly cut 

nanotubes are then subjected to CVD growth again, and the process is repeated.189 The 

main problem with this approach is that it requires starting with a pure sample, which can 

only be purified in small amounts, and grows the pure material at a very slow pace and 

at a high cost. 

 CVD is the most widely used method to produce SWNTs on a large scale.190,191 This 

is largely due to easy scalability relative to the other methods, and the cheaper 
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construction and operation of the machinery. Furthermore, CVD is very customizable 

through the factors listed above, and has resulted in fairly high selectivity and purity of 

SWNT products. Perhaps the largest drawback of CVD is the incorporation of metallic 

catalyst contaminations into the resulting SWNTs, which can have serious ramifications 

in terms of their electronic semiconducting properties and require harsh conditions to 

remove (Section 1.3.2.3). Thermogravimetric analysis (TGA) of CVD produced SWNTs 

show residual catalyst as high as 5 percent by weight (wt%) in “super pure” commercial 

SWNT samples.192 Despite this, CVD remains the best method for SWNT synthesis. 

1.3.3.2 Arc Discharge 

 Another method that is commonly used to produce SWNTs is arc discharge.193 Arc 

discharge (AD) is a low yield, high cost method for SWNT production, but it does have 

the boon of producing very structurally sound SWNTs with a low number of defects. 

Despite the prevalence of CVD in large-scale SWNT production, arc discharge systems 

are also used heavily in both industry and in research labs. 

 An arc discharge apparatus consists of an anode, a cathode, and a direct current 

(DC) power supply in a steel chamber. The anode and cathode are generally graphitic 

carbon and are held at a known distance from one another. The DC power supply supplies 

a strong current between the two electrodes and they are brought closer together until an 

inert gas plasma arcs between them, under a low pressure. In this process, the anode is 

consumed and under the high plasma temperatures (>1700 °C), carbonaceous materials 

form on the cathode, including CNTs, graphene, fullerenes, and amorphous carbon. The 

process can be modified to selectively synthesize the different products by adding 
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catalysts to the electrodes, altering the current/voltage, and changing the carbon source 

or atmosphere.194 

 The current that is generated between the two electrodes is the main component that 

allows for the formation of carbon nanomaterials by AD. The most common method of 

generating the current is through a DC power supply, accounting for almost 90% of all 

published AD-mediated carbon nanotube synthesis papers. Alternating current (AC) is 

used very infrequently and results in the deposition of the resulting carbon nanomaterials 

on the chamber walls instead of on the graphitic cathode, a phenomenon which appears 

to still be unexplained. The typical range for voltage applied between the electrodes is 15 

– 30 V, and must be kept constant to create a stable plasma. The current is generally 

also fixed to be in the range of 50 – 100 A, but can dip into the teens or go as high as 

several hundred.195 

  Just like with CVD, arc discharge requires the use of metal catalysts to synthesize 

SWNTs but not MWNTs. The metals that are used for AD include both single metals and 

composites, and span across much of the transition metals. The most commonly used 

metals are iron, nickel, and cobalt, just as in CVD. 194,195 Arc discharge tends to form more 

MWNTs than CVD which makes catalyst choice very important if the desired product is 

SWNTs. Due to advancements in AD synthesis, SWNT production can be favoured in 

AD, but further selectivity, such as diameter or semiconducting vs. metallic tube formation 

are still being researched. For example, bimetallic nickel catalyst systems were probed 

for SWNT formation and the concentration of the other metal could be tuned to select for 

specific SWNT diameters. Fe-W prepared SWNTs are 0.5 nm smaller in diameter than 

those prepared with just Fe. By introducing CO2 into the AD system, a plasma is formed 



58 

that is capable of selectively etching m-SWNTs, removing them from the resulting product 

preferentially. Through this method, SWNT samples with ~90% s-SWNT have been 

produced, as measured by Raman and UV-Vis.196 

 Once again, the carbon source also affects the type of CNTs that are formed as well 

as their purity. By far the most common source of carbon used in AD is graphite, as it is 

available in high purities and has excellent conductivity. The problem is that it carries with 

it a high cost, due to the purity and requirement of catalyst doping. The remainder of 

carbon sources make up as little as 12% of published AD CNT synthesis papers.195 

Carbon black and coal have been used as carbon sources due to their abundance and 

low price, but they tend to have far more amorphous carbon impurities and are not ideal 

at synthesizing SWNTs.  

 Despite its drawbacks, arc discharge is still popular. With all the advancements that 

have gone into AD, selectivity in producing s-SWNTs and even preferential diameter 

synthesis is possible, but the overall purity and uniform synthesis of SWNTs remains a 

challenge. The biggest advantage that AD has is the production of low-defect nanotubes 

due to the high defect CNTs being destroyed by reaction with the plasma. However, the 

cost of running the apparatus at high vacuum and current still inhibits its widespread use.  

1.3.3.3 Laser Ablation 

 The least commonly used of the three main methods for nanotube synthesis is laser 

ablation (LA). Laser ablation is similar to AD in that a carbon source is targeted with an 

extremely powerful source of energy, which ultimately yields the desired CNTs. The 

invention of LA was a direct response to the poor performance of AD methods for 

synthesizing CNTs.197 Early LA was capable of synthesizing SWNTs with 90% purity, 
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making it a very attractive technique.198 The main problem with it, however, is the high 

cost and the poor scalability of the method, which have largely left it abandoned in favour 

of CVD. 

 A laser ablation setup consists of a furnace, a powerful laser, a graphitic carbon 

source, a carrier gas, and a water-cooled collector. The furnace chamber is heated, and 

the laser is then used to focus on the carbon source. The resulting energy causes 

degradation and evaporation of various carbon species which are carried along the 

furnace by the carrier gas. The carbon species are then deposited onto a cooled collection 

site where they react to form carbon nanotubes.198 

 Once again, a catalyst is required for SWNT production, whereas MWNTs are 

synthesized even in the absence of any metallic catalyst. The SWNTs that are 

synthesized with LA are typically of higher purity than those obtained from AD. The 

effective catalysts are the same, with nickel and cobalt being the most used monometallic 

catalysts and Co/Ni, or Ni/Y bimetallic catalysts also being frequently employed.195 

 Selectivity in resultant SWNT product diameter, chirality, and electronics are very 

poor when using the LA method. In fact, the most commonly formed nanotubes in laser 

ablation tend to be (10, 10) m-SWNTs, with about 70% of the overall SWNT mixture being 

m-SWNTs.199 Some changes to the synthesis have given rise to increased yields of s-

SWNTs, but only to values of around 55%.200 The diameter of LA-produced SWNTs is 

largely focused around ~1.36 nm due to the high prevalence of (10, 10) SWNTs. Some 

researchers have found ways to modulate the diameter of the produced SWNTs, with a 

simple decrease in the temperature of the reaction chamber causing a similar decrease 

in the SWNT diameter, albeit at drastically reduced yields.201  
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 While laser ablation appeared as a great alternative to AD initially, it has been 

completely eclipsed by the massive success of CVD. The problems with LA are similar to 

AD, high cost and poor scalability as LA systems must be run under vacuum and 

simultaneously at extremely high temperatures, making operation costly, especially when 

attempting to scale up. Furthermore, the operation of LA results in the consumption of the 

carbon source, preventing continuous operation. 

1.3.3.4 Sorting Metallic and Semiconducting Single-Walled Carbon Nanotubes 

 The need for purely semiconducting SWNT products is apparent when looking to 

incorporate CNTs into various electronic devices. As we have seen, CVD allows for some 

good selectivity when producing SWNT, with synthetic selectivity as high as ~90% s-

SWNTs. However, this is still far from being useable in many applications and must be 

further improved post-synthesis if SWNTs are to be seriously considered as candidates 

for semiconducting technologies. To this end, many methods have been used in an 

attempt to separate metallic and semiconducting nanotubes, since their discovery. 

 Generally, when looking to separate two different chemicals, one must find a property 

that is different between the two and find a method that can exploit that property. For 

example, distillation allows for the purification of materials with different boiling points, 

and silica-gel chromatography allows for separation based on polarity. When looking to 

extend these ideas to SWNTs, the obvious issue is the similarity in all types of CNTs. All 

CNTs are comprised of only sp2-hybridized carbon atoms, boiling does not occur at a 

reasonable temperature, they lack any serious dipole moments, they have very similar 

shapes and diameters spanning only a few nanometers, and their lengths are not 

dependent on any of their other properties.  
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 The most obvious difference between the types of SWNTs is their electronic 

character, especially when contrasting s-SWNTs and m-SWNTS. The separation of 

metallic and semiconducting SWNTs should therefore be significantly easier to exploit 

than sorting based on size or chirality. The difference between m-SWNTs and s-SWNTs 

manifests itself in a few ways: reactivity, affinity for charges, and their behaviour in an 

external electromagnetic field. 

 When comparing the band structure of m-SWNTs and s-SWNTs, the most obvious 

difference is the absence of a bandgap in the m-SWNTs. The lack of a bandgap means 

that there exists some non-zero density of states at the Fermi level and directly above 

and below it. On the other hand, in a s-SWNT the conduction and valence bands are 

some distance away from the Fermi level. This is extremely important when considering 

the reactivity of the two with various chemical reagents. If, for example, an incoming 

reactive molecule is looking to react with a SWNT, the m-SWNTs will provide lower 

energy states that can accept an electron, and therefore will reduce faster than their 

semiconducting counterparts. This is exactly the type of reactivity that has been taken 

advantage of for the enrichment of s-SWNTs. 

 Among the first chemicals found to react preferentially with m-SWNTs were 

diazonium salts, in particular 4-bromobenzenediazonium tetrafluoroborate. It was shown 

that this molecule could, under dilute conditions, react selectively with m-SWNTs, 

installing an aryl group onto the SWNT sidewall and generating a radical cation 

SWNT.132,137 The reaction was observed via UV-VIS spectroscopy and a decrease in the 

M11 bands was seen.202 Likewise, a scan of the Raman RBM region showed a complete 

disappearance of the m-SWNT signals, but with retention of the s-SWNTs. The 
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disappearance of the optical m-SWNT peaks does not mean that they have been 

removed from the mixture, only that they have had their optical properties altered. The 

reaction can be reversed when subjected to high heat (300 °C) to give the original CNT 

RBM Raman spectrum, proving that the reaction can return unaltered SWNTs.137 

 The selective aryl diazonium reaction was exploited by An et. al to create a CNTFET 

by first building a device with randomly oriented SWNTs containing both m-SWNTs and 

s-SWNTs.136 The device was then subjected to repeated reaction with the aryl diazonium, 

and the off-current dropped drastically, as low as 74% of its original value, while the on-

current only dropped by 14%. This preference for m-SWNTs allowed them to create 

devices with high ION/IOFF (104 – 105
), however the reaction of the s-SWNTs with the 

diazonium species seemed to have resulted in a lower charge carrier mobility than 

expected. Other etchants including methane plasma have also been used to selectively 

destroy the metallic nature of m-SWNTs.203 Plasma hydrocarbonation can also be done 

post-CNTFET fabrication and selectively etches m-SWNTs as well as larger diameter s-

SWNTS, leaving a preferential diameter distribution of 1.3 – 1.6 nm.204 

 Selective chemical destruction of m-SWNTs is interesting as it allows for retroactive 

purification of CNTFETs, it can easily be scaled up with little to no problem, and it is 

reversible under high temperature conditions. The main issue with the technique is that it 

is not completely selective, resulting in the decomposition of s-SWNTs as well as m-

SWNTs. Destruction of s-SWNTs makes this method significantly weaker in terms of 

creating an ideal s-SWNT mixture. In fact, it is possible that the extent of s-SWNT reaction 

is under sampled by optical techniques since they only observe the relative levels of s-

SWNTs to m-SWNTs, so even if the m-SWNT peak decreases significantly, the s-SWNTs 
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may still be lost in the reaction but to a lesser extent. This could be the reason for the 

diminished nature of the charge carrier mobility seen in the previous example. Finally, 

selective chemical destruction is not directly a purification method, it simply destroys the 

m-SWNTS, but the destroyed nanotubes still contaminate the sample. For real 

purification, chemical modification should be coupled with a purification procedure that 

can discriminate between modified and unmodified nanotubes. 

 The dielectric constant difference between semiconducting and metallic SWNTs has 

been another aspect that has been exploited for their separation. It has been theoretically 

predicted that s-SWNTs should have a dielectric constant on the order of 5 ε0 (vacuum 

permittivity), with m-SWNTs on the order of 1000 ε0. The dielectric constant of water, and 

sodium dodecyl sulfate solutions in water, are on the order of ~80 ε0.205 Since SWNTs 

can be solvated through sonication in SDS, and the different types of SWNTs fall on either 

side of the dielectric constant of SDS solutions, it allows for them to be moved differently 

under an electric field while in such a solution.  

 This has been exploited by creating a dielectrophoretic system of SDS suspended 

SWNTs.206 When an electric field is generated, the m-SWNTs migrate to the electrodes, 

leaving the s-SWNTs behind with some m-SWNTs. The Raman spectra of the m-SWNTs 

produced in this way show a significant reduction in s-SWNTs, sometimes to the point of 

complete exclusion by Raman. However, this is not a very feasible purification method 

for SWNTs, due to the fact that it is limited to extremely small (picogram) scale and while 

it purifies m-SWNTs very well, the remaining s-SWNTs are only partly rid of m-SWNTs. 

 The electrical conductivity of m-SWNTs can be further exploited by subjecting them 

to extreme currents, resulting in their heating and ultimately selective destruction.207 To 
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prevent the s-SWNTs from meeting a similar fate, a gate voltage is applied that turns off 

conduction in the s-SWNTs. This has been used to great effect in improving the ION/IOFF 

of CNTFETs post-fabrication by two orders of magnitude.208 This is useful in devices that 

have a very low density of SWNTs, but as the density increases, m-SWNTs begin to 

overlap with s-SWNTs and as they are heated, they also heat neighbouring s-SWNTS, 

causing them to breakdown as well. The resulting effect is a sub-par charge carrier 

mobility of ~75 cm2 V-1 s-1.209 

 A way to prevent the destruction of neighbouring CNTs is to prevent their contact and 

decrease the heat. These two can both be accomplished using what has been dubbed 

thermocapillary-enabled purification (TcEP).210 This method begins with a low density 

SWNT film on a silicon oxide substrate between two electrodes which is then coated with 

a molecular resist, in this case α,α,α’-tris(4-hydroxyphenyl)-1-ethyl-4-isopropylbenzene. 

Next, the m-SWNTs are selectively heated through electrical current, which changes the 

viscosity of the resist and causes it to move away from the m-SWNTs, creating channels 

around the m-SWNTs. Then, an oxygen plasma is used to etch away the exposed m-

SWNTs and finally, the photoresist is removed. Devices made this way have shown 

excellent selectivity with over 99.9925% s-SWNT purity, ION/IOFF in the range of 103 – 106, 

and µ > 1000 cm2 V-1 s-1.211 The major drawback in this method is the requirement of a 

sparse CNT array that is already perfectly aligned between the electrodes, because the 

channels that are created around m-SWNTs in this method are on the order of 300 nm, 

meaning any s-SWNTs within 300 nm of an m-SWNT are also removed with this method. 

However, this can be overcome if this method is coupled with another technique that can 

provide a sufficiently high starting s-SWNT content. 
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 Chromatographic techniques are, somewhat surprisingly, very good at separating 

metallic and semiconducting SWNTs. The earliest example of chromatographic SWNT 

sorting is through the use of ion exchange chromatography (IEX).212 In the seminal 

publication, SWNTs were first suspended in an aqueous solution through wrapping with 

single-stranded DNA. The DNA-SWNTs were subsequently subjected to anionic IEX and 

separate based on their metallic or semiconducting properties. It is believed that the m-

SWNTs elute first on the column because they are far more polarizable than their s-SWNT 

counterparts, allowing them to effectively screen the negative charges of the DNA 

phosphate groups, reducing interactions with the stationary phase. However, IEX itself is 

not exceptional at SWNT sorting and results in maximum ~90% s-SWNT selectivity.160 

 Seeing that IEX was a viable method for SWNT sorting, other chromatographic 

techniques were developed. The most prominent is the use of SDS eluent on an ally 

dextran-based size-exclusion gel.213 Similar to the IEX, m-SWNTs elute much faster than 

s-SWNTs, likely due to a far greater extent of coating by the SDS surfactant on the m-

SWNTs. The s-SWNTs obtained from this method can be cycled and can ultimately give 

s-SWNTs in purities above 99.9%. Gel chromatography can even be further expanded to 

sort SWNTs by diameter and even chirality, as will be discussed in the next section. While 

gel chromatography gives excellent separation of s-SWNTs from a mixture of SWNTs, it 

requires several cycles to produce high purities. 

 The last technique to discuss is ultracentrifugation, a technique that is used heavily 

in the separation of biological and biochemical matter. It relies on a very fast spinning 

centrifuge to produce a separation based on the density of the materials that are placed 

inside of a centrifuge tube. When typical biological ultracentrifugation conditions are used, 
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a constant density medium is used to separate the materials. Unfortunately, for SWNTs 

this has the problem of convoluting multiple parameters, like diameter and length. This 

technique can, however, effectively be used to separate bundled SWNTs from 

individualized SWNTs due to the significant density difference. To be able to get good 

separation between s-SWNTs and m-SWNTs, polymers that selectively bind to one type 

over the other must be used. Many polymers have been used for this application, and 

typically are conjugated polymers.144,145,214 The selection of polymer can improve the 

selectivity with some methods showing no remaining m-SWNTs by Raman spectroscopy. 

Further advancements to ultracentrifugation sorting methods has been made but will be 

discussed further in the next section. The largest drawback of the method is its small-

scale purification, but it does have the benefit of being able to be iterated upon for more 

rigid purification. 

 Clearly there is no shortage of methodologies for separating s-SWNTs from m-

SWNTs. While some are superior when in terms of purity, others benefit from ease of use 

and scale. The most optimal way to get highly pure s-SWNTs seems to be to take a 

sample of already enriched s-SWNTs from a CVD-based synthesis and subjecting it to 

further purification using one of these methods. If enough purification can be done in this 

way, then perhaps TcEP or another post-CNTFET fabrication technique can be applied 

to yield highly effective CNTFETs.  

1.3.3.5 Sorting by Diameter or Chirality 

  No matter how high of a s-SWNT purity that the previously mentioned techniques 

can obtain, the problem of diameter and chirality sorting remains a roadblock to truly 

outstanding CNTFET performance. Che et al. made 38 transistors of a single SWNT 
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bridging two electrodes and measured the transfer characteristics.161 What was noticed 

was that among the various s-SWNT transistors they saw largely similar on-off current 

ratios, but the threshold voltages varied across as much as 20 V. Such a staggering 

number speaks to the drastic electronic differences even among semiconducting SWNTs. 

For a proper integrated circuit to be built from SWNTs, millions, if not billions, of such 

transistors will have to be operating in unison. This cannot be achieved easily if each 

transistor operates at a different bias, because then each transistor on each integrated 

circuit will have to be individually probed, making the overall process prohibitively time 

consuming. To get to the final goal of high-performance CNT-based electronics, 

purification must go above sorting between s-SWNTs and m-SWNTs, it must also be able 

to distinguish between diameters and chiralities so that uniform bandgap materials can 

be made. 

 Based on Kataura plots, the diameter distribution of s-SWNTs is the number one 

predictor of their bandgap. Therefore, using a technique that is capable of sorting CNTs 

based on their diameter should allow for significant refinement of the threshold voltage 

for CNT-based electronics. As we have seen already, many techniques can be used to 

sort s-SWNTs from m-SWNTS by taking advantage of the key differences in their 

interactions with electric charges. However, finding a way to discriminate between 

different diameters and chiralities of s-SWNTs, which have very similar electronic 

properties, and only minute differences in diameter, is very difficult. Despite this difficulty, 

researchers have continued to search for good ways to achieve this, both by expanding 

upon previous techniques and trying to find new techniques altogether. 
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 It has been shown to be possible to extend gel chromatography to the selection of s-

SWNTs based on their diameter by simply increasing the number of columns. This has 

been useful for selecting nanotubes with diameters lower than 1.4 nm.213 Alternatively, by 

combining both IEX and size exclusion gel chromatography in sequence, narrow diameter 

and even chirality distributions can be obtained. In fact, this method is capable of 

separating (9, 1) and (6, 5) SWNTs, both of which possess the same diameter.215 This 

combinatorial method is great for smaller nanotube (<1.2 nm) but seems to fail at larger 

diameters despite some effort. Inherently this method still suffers the same drawbacks as 

discussed previously, but to an even greater extent as it requires even longer columns, 

taking more time and producing even smaller amounts of product. 

 Ultracentrifugation can also be improved upon to sort SWNTs based on diameter by 

using density gradient ultracentrifugation (DGU).216 In standard ultracentrifugation, the 

sample of interest is placed in a medium of static density, and then centrifuged to separate 

materials based on where they fall relative to the medium. In DGU, the wrapped SWNT 

sample is placed into a medium with a density gradient, such that when the tube is placed 

into the ultracentrifuge, the SWNT sample is separated throughout the density gradient, 

allowing for small differences in SWNT density to be discriminated against. Through the 

use of DGU, s-SWNT purities of 99.9% are obtainable, but more importantly, individual 

chiralities and diameters are separated as well. The different nanotubes are then removed 

by syringe from the centrifuge tube and purified from the medium. The separation is easily 

visualized as the different chiralities of nanotubes appear as different coloured bands, 

due to their distinct bandgaps. DGU is a great method for sorting SWNTs of different 

diameters, but it still suffers from the small scale and heavy processing required. 
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 The final method for diameter and chirality enrichment of SWNTs is complexation to 

π-concave molecules.217 Sometimes called molecular tweezers, this class of molecules 

forms particularly strong interactions with SWNTs due to their complimentary size, shape, 

and ability to form π-π interactions. Early examples include the complexation of iptycene 

derivatives, allowing for the selective solubilization of certain diameters of SWNTs. It is 

predicted that by changing the size of the iptycene tweezer that the selectivity should 

change. More recent examples include the use of chiral, porphyrin based molecular 

tweezers, which have been capable of selectively binding to SWNTs based on chirality, 

diameter, and even roll-up angle. These methods are excellent, dependant on if the 

molecular tweezer can be easily synthesized and/or reused, as it enables SWNTs to be 

sorted on a larger scale due to the ease of scaling solution processes. 

 1.3.4 Summary of Carbon Nanotube Based Electronics 

 Carbon nanotubes have been a topic of intense research for decades now and the 

progress that has been made towards their application is staggering. However, when 

compared to other similar materials that emerged around the same time, CNTs seem to 

suffer from many more roadblocks. While CNTs have excellent inherent electronic 

properties, they require a high level of purification in order for those properties to be 

realized. However, CNTs can still be incorporated into many electronic devices with little 

issue thanks to the advances that have been made in cleaner synthesis and purification. 

 Other technologies that tend to compete with SWNTs are semiconducting organics 

and inorganic semiconductors, like silicon. These two alternatives are used for vastly 

different applications than one another, whereas SWNTs can be used in place of both. 

For example, semiconducting organic polymers are incapable of ever achieving the 
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charge carrier mobilities that are required for use in computers, but they are great when 

used in flexible electronics, or photovoltaics. Silicon is the gold standard of transistor 

technology but fails when it comes to flexible electronics and is ill-suited for use in solar 

cells, despite its widespread current use. SWNTs can be seen as a replacement for both 

sides of the spectrum: high performance transistor technologies that require high charge 

carrier mobility, and lower performance flexible electronics, as well as everything in 

between. Their inherent properties make them the perfect candidate to replace nearly all 

other semiconducting technologies but are currently held back by their demanding 

purification. 

1.4 Fullerenes 

 In 1985, the first carbon nanomaterials, fullerenes, were discovered,218 which was 

punctuated with a Nobel Prize in 1996 awarded to the founders. Fullerenes kickstarted 

the now massive field of nanotechnology and garner interest to this day due to their 

electronic and optical properties. They share many similar traits to their carbon nanotube 

cousins, with some referring to CNTs as a subset of the fullerene family. Fullerenes are 

roughly spherical or ellipsoidal in shape and comprise entirely of sp2-hybridized carbon 

atoms, much like CNTs. However, fullerenes lack the 1D shape of CNTs, and so they 

possess a localized electronic structure described by HOMOs and LUMOs instead of 

conduction and valence bands. As such, fullerenes have poor solubility in many solvents, 

and possess similar electronic properties to CNTs due to their extensive π-conjugation. 

However, fullerenes experience low intermolecular interactions with other fullerenes 

making them somewhat soluble in aromatic solvents like toluene and chlorinated 

aromatics.219 Fullerenes exist with different shapes, sizes, and physical properties. 
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 The most stable member of the fullerene family is the spherical C60, also called 

Buckminsterfullerene,220 from which the family gets its name. The molecule was named 

after the famous American architect Richard Buckminster Fuller, who was known for his 

geodesic dome structures. The second most commonly found fullerene synthesized by 

traditional methods is C70. Unlike C60, C70 is ellipsoidal in shape and has two very distinct 

regions, the curved ends and the flatter middle. Higher fullerenes, that is those with a 

higher number of carbon atoms, also exist but are made in far smaller quantities by most 

contemporary methods, and can exist in spherical and ellipsoidal shapes (Figure 22). 

Furthermore, some of the higher fullerenes can be chiral, and even exist in many different 

isomers. 

 

Figure 22: Fullerenes sized C60 to C92 showing only one isomer of each. 
 

 In this section we will be discussing the many properties, types, and applications of 

fullerenes. We will begin by giving a more in-depth discussion about the two main types 

of fullerenes and a general overview of the higher fullerenes and endohedral fullerenes. 
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We will then discuss the most common synthesis methods and purification techniques. 

Finally, an overview of fullerene-based applications will round out the section. 

1.4.1 Types of Fullerenes 

1.4.1.1 Buckminsterfullerene – C60 

 Harold Kroto, Richard Smalley, and Robery Curl were awarded the 1996 Nobel Prize 

in Chemistry for their synthesis and identification of C60 as Buckminsterfullerene. The 

molecule is spherical in shape with a diameter of about 7 Å and is comprised of 

contiguous sp2-hybridized carbon atoms. It shares a shape with common soccer balls, in 

that the carbon atoms are arranged in pentagons surrounded on each side by hexagons. 

Every carbon atom in C60 is identical,221 but the bond lengths are not. Bonds between two 

six-membered rings ([6, 6]) are 139.1 pm, whereas those between a five and six-

membered ring ([5, 6]) are 145.5 pm. This bond length difference alludes to the lower 

double bond character of [5, 6] bonds than [6, 6] bonds, and the lower aromatic character 

of fullerenes relative to graphene. This is further exemplified by the increased 

pryamidization angle and s-character of the sp2-hybridized orbitals in fullerene.222,223 

 C60 was first synthesized using a high-power laser targeted at a graphite disk in a 

helium environment.218 However, this simple procedure results in the formation of a black 

soot, similar to that of activated carbon. The researchers coupled the outlet of the reactor 

to a time-of-flight (TOF) mass spectrometer (MS) and were able to monitor the formation 

of C60 in real time, as the pressure of helium in the chamber was increased. The methods 

used to synthesize fullerenes will be discussed more in detail in a following section. 

 The electronic structure of C60 is interesting in that it possesses 60 π-electrons, a 

triply degenerate LUMO, and a quintuply degenerate HOMO (Figure 23).223 The LUMO 
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of C60 is very low-lying, making it a great candidate for reduction, and its electrochemistry 

has been studied extensively. Due to the triply degenerate LUMO, C60 is capable of 

accepting six electrons to form the charged C60
6- fulleride, as well as all the other fullerides 

in between. Electrochemical reduction occurs in toluene-acetonitrile at -10 °C, starting 

with a first reduction potential (E1/2) at -0.98 V, followed by -1.37 V, -1.87 V, -2.35 V, -2.85 

V, and -3.26 V vs ferrocene (Fc/Fc+). All anions are stable, and the reductions are 

reversible on the time-scale of the experiment.224 While C60 is excellent as an electron 

acceptor, it is a very poor electron donor and requires a high bias to be oxidized to C60
+. 

The first oxidation occurs at +1.26 V vs Fc/Fc+, giving a HOMO-LUMO gap of 2.32 eV for 

C60.225 It is important to note that these redox values are highly dependant on solvent and 

can shift by as much as 0.2 V.224 

 The HOMO-LUMO gap of C60 coincides with a green light absorbance (Figure 23) 

which makes a fullerene solution appear pink in colour due to the absorbance maximum 

around 540 nm with decreased absorbance in the blue and red regions of the visible light 

spectrum.226 However, this absorption feature is quite small relative to the two larger 

absorption features with maxima around 350 nm and 300 nm. The HOMO-LUMO 

transition in C60 occurs between two h-orbitals, specifically from the hu molecular orbital 

to the t1u molecular orbital, which are split due to the icosahedral symmetry of the 

molecule. Such a transition that preserves parity is forbidden by the Laporte Selection 

Rule and results in a very weak absorption. There is evidence to suggest that upon 

excitation of an electron, the C60 molecule may undergo a Jahn-Teller effect to further 

split the energy levels of its molecular orbitals.227 On the other hand, the large 

absorbances in the near-UV region of the spectrum correspond to the excitation of an 
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electron from the hu molecular orbital to the t1g molecular orbital. The change in parity 

makes the transition allowed and results in the large absorbance. 

 

Figure 23: a) Calculated Huckel molecular orbitals of C60.223 b) UV-Vis absorption 
spectrum of C60.226 

 

 In the ground state, fullerenes are not conductors of electrical current, but they can 

be made into conductors, and even superconductors, through reduction.227 Because the 

fullerene HOMO is filled and the LUMO is completely empty, there are no charge carriers 

available. When C60 undergoes reduction, the HOMO now acts as a conduction band and 

results in a metallically conductive material. Many researchers have taken advantage of 

this effect by doping fullerenes with alkali metals, reducing them and introducing metal 

atoms into the fulleride lattice.222,228,229,230 The doping has the effect of not only adding 

electrons to the LUMO of C60, thus making it an inherent metallic conductor, but the metal 

atoms increase the electronic coupling between fullerides, enabling them to become 

superconductors at low temperatures (<40 K).228 The superconducting effect is observed 

in M3C60 fullerides and varies based on the metal dopant.  
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 The electronic properties of C60, coupled with its remarkable symmetry, and use in 

molecular machines231,232 have kept fullerenes in the spotlight since their discovery. C60 

has been the main driver behind plastic solar cell technology and will be discussed in 

more detail further in the thesis. The superiority of C60 among other fullerenes stems from 

its higher stability, resulting in an improved yield using the synthetic methods of choice. 

1.4.1.2 Fullerene C70 

 When C60 was synthesized and identified in 1985, another significant peak was 

observed on the TOF-MS corresponding to a formula of C70. The structure was later 

identified as another member of the fullerene family, containing all sp2-hybridized carbon 

atoms, but these carbon atoms are not all identical like in C60. In fact, C70 shares a 

structure with C60, except an extra row of 10 carbon atoms are inserted into the centre of 

the structure. The elongated shape of C70 creates two distinct regions: the curved ends 

and the flatter middle. This also results in five different types of carbon atoms throughout 

the C70 molecule.221 The differences in the structure have significant ramifications on the 

chemical reactivity of C70 and provide an avenue for the separation of C60 from C70. 

 The electrochemistry of C70 is remarkably similar to that of C60. C70 undergoes six 

reversible reductions from C70 to C70
6-, with the first reduction occurring at -0.98 V and 

subsequent reductions at -1.38 V, -1.84 V, -2.25 V, -2.74 V, and -3.14 V vs Fc/Fc+.233 The 

reduction potentials are almost identical to that of C60, and even the oxidation of C70 

occurs at 1.20 V, giving C70 an electrochemical HOMO-LUMO gap of 2.22 V, slightly 

smaller than C60. These results indicate that C70 is also an excellent electron acceptor 

and could be used in applications which require a donor-acceptor system. 
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 What makes C70 stand out when compared to C60 is its UV-Vis absorption spectrum. 

Fullerene C70 appears orange in solution and has a much higher absorbance than C60 in 

the visible region. C70 features a broad absorption band with a maximum at 470 nm, along 

with several maxima between 300 nm and 400 nm, and finally two large absorbances 

with maxima at 210 nm and 245 nm (Figure 24).226 The lack of icosahedral symmetry in 

C70 results in drastically different molecular orbitals than in C60. The LUMO is no longer a 

triply degenerate state but is instead only doubly degenerate, with the LUMO + 1 being 

close enough in energy to still undergo easy transition for the sake of light absorption and 

reduction. C70 is much better at absorbing visible light than C60 and, depending on the 

solvent, or film, the difference can be extremely profound. For example, solutions in n-

hexane show that C70 has a molar extinction coefficient about two orders of magnitude 

larger than that of C60.234 

 

Figure 24: UV-Vis absorption spectrum of C70. 
 

 Due to their extremely similar redox properties, C60 and C70 have seen use in the 

same types of applications. In this competition, C70 has the advantage over C60 for use in 
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solar cells due to its increased absorption of visible light, and near identical HOMO and 

LUMO levels.235 However, C60 generally performs better in terms of charge carrier 

mobility, outperforming C70 by two orders of magnitude. C70 was also expected to produce 

the same type of superconductive fullerides that C60 can, but while the M3C70 fullerides 

can be synthesized, they fail to produce a superconductive state. The use of C70 has 

largely been hampered by its relative paucity as a result of synthesis methods and 

purification techniques. As such, C70 is generally sold at higher prices and lower purities 

than C60, which undercuts its improved solar cell performance. 

1.4.1.3 The Higher Fullerenes 

 The family of fullerenes does not end at C70 but continues into far larger molecules, 

including fullerenes with over 300 carbon atoms that have been detected by TOF-MS.236 

These fullerenes that are larger than C70 are commonly referred to as the “higher 

fullerenes.” While one might be led to believe that they would share almost identical 

properties as C60 and C70, this is not the case. The electrochemistry of the higher 

fullerenes can be very different, and their ability to exist as different isomers further 

differentiates their properties even among higher fullerenes with the same number of 

carbon atoms.237,238 When fullerenes are synthesized, the higher fullerenes generally 

make up the smallest amount of the resulting fullerene soot, and so they can be difficult 

to study properly. This is especially true as the fullerenes grow larger, and as a result 

most of the research surrounding the higher fullerenes is limited to fullerenes under 90 

carbons in size. Herein, a brief overview of the chemical properties of the fullerenes C76, 

C78, and C84 will be presented. 
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 The electrochemistry of C60 and C70 is characterized both by their facile multiple 

reductions, and a single difficult oxidation. The higher fullerenes are capable of 

undergoing similar reductions, but are also capable of undergoing easier oxidation, 

making them good at accepting and donating electrons. For example, C76 can undergo 

six reductions with the first reduction taking place at -0.83 V and can also undergo 

reversible oxidation at 0.81 V vs Fc/Fc+.237 That means the electrochemical HOMO-

LUMO gap of C76 is only 1.64 eV, much smaller than that of C60 and C70. Fullerene C76 

also features a second reversible oxidation at 1.30 V vs Fc/Fc+. These features are 

common amongst C78 and C84 as well, with both showing facile, reversible reduction and 

oxidation with HOMO-LUMO gaps similar to that of C76.238 These results make higher 

fullerenes interesting in applications that require cationic generation, where C60 and C70 

cannot easily be used. 

 Another interesting feature of the higher fullerenes is their ability to form multiple 

isomers with different symmetries. C78 possesses two such isomers that have been 

isolated and characterized by nuclear magnetic resonance (NMR).239 The two isomers 

are denoted C2v-C78 and D3-C78 to identify that they differ in their symmetry. The change 

in symmetry group has a profound effect on the electrochemistry of the two C78 isomers 

because it directly impacts the formation of molecular orbitals. The oxidation potential of 

C2v-C78 is 0.95 V vs Fc/Fc+, but it is only 0.70 V for D3-C78, whereas their reduction 

potentials are the same. The consequence is that D3-C78 possesses the smallest 

electrochemical gap of fullerenes discussed to this point of only 1.47 eV, however, 

fullerene C2v-C78 is the largest of these higher fullerenes at 1.72 eV.237 
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 Similarly, the UV-Vis absorption of the higher fullerenes is interesting in its own right. 

Due to their smaller HOMO-LUMO gaps, the onset of absorption in the higher fullerenes 

is at much higher wavelengths when compared to C60 (Figure 25).236 C76 has absorption 

as high as 850 nm, and absorbs continually into the UV region. The magnitude of the 

absorption is higher than that of C60 in much of the visible region and very similar results 

can be seen for both C78 isomers. Interestingly, the two isomers of C78 have very distinct 

absorption spectra, with C2v-C78 having maxima at 700 nm, 630 nm, 530 nm, and 410 nm 

in the visible region, and molar extinction coefficients comparable to C70. Meanwhile D3-

C78 has a much weaker absorption but features an absorption maximum as high as 810 

nm.  

 

Figure 25: UV-Vis absorption spectra of higher fullerenes in hexanes. 
 

 While the higher fullerenes present some very intriguing properties, they have not 

been as thoroughly studied as C60 and C70 even though the absorption spectra of the 

higher fullerenes makes them a potential upgrade from C60 for photovoltaic devices. The 

largest roadblock in studying and implementing the higher fullerenes in new technologies 

is their cost. The higher fullerenes are more difficult to purify than C60 and C70, resulting 

in a very high price tag and low purities, precluding their detailed study. Furthermore, the 
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tendency for them to form isomers with drastically different properties, which are very 

difficult to separate, makes them even harder to use effectively. 

1.4.1.4 Endohedral Fullerenes 

 The last class of fullerenes that we will be discussing are fullerenes with an atom or 

molecule inside of their shell. Endohedral fullerenes (EFs) are described by the formula 

X@Cn, where X is the species inside the fullerene of size Cn.240,241,242 The first endohedral 

fullerene synthesized and characterized was Sc3N@C80, which is the most abundant 

fullerene after C60 and C70.243 EFs can either contain metals, in which case they are called 

endohedral metallofullerenes (EMFs),242 or they can contain non-metals.244 Due to the 

sheer number of different endohedral fullerene derivatives, only a cursory summary of 

their properties will be presented here. 

 The endohedral metallofullerenes are by far the most common as their synthesis only 

requires an introduction of metals into the graphite source during synthesis, along with 

nitrogen in the atmosphere to form metal nitrides (Figure 26). This synthetic method 

allows for high yields of the resulting endohedral fullerenes. However, if one is looking to 

install a single nitrogen atom into a fullerene,245 ion bombardment is necessary, resulting 

in incredibly low yields (10-4 %). Other molecules have also been installed through the 

use of organic chemistry to “cut open” and “stitch up” the fullerene, but this also requires 

many steps and has a very low yield.244 As such, the most commonly studied endohedral 

fullerenes are the EMFs. 
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Figure 26: Types of endohedral metallofullerenes including a) metallofullerene 
La2@C80-Ih, b) nitride cluster fullerene Y3N@C88-D2, c) carbide cluster fullerene Ti-

2C2@C78-D3h.242 
 

 Due to the high electron affinity of fullerenes,246 it was believed that endohedral 

metallofullerenes would exhibit anionic fullerene character, which is what was observed. 

Sc3N@C78 exhibits MO levels which show electron transfer from the metal atoms to the 

fullerenes, as well as weak coordination of the metal to the fullerene via the π-system.247 

The charging of the fullerene directly impacts the stability of the fullerene isomer. In the 

case of C80, the Ih symmetrical form was calculated to be the least stable neutral species, 

however as Sc3N@C80 (6- oxidation state for the fullerene) the Ih isomer is the most 

stable.248 This effect allows for the synthesis of many isomers that are normally 

inaccessible. 

 One of the most drastic differences between fullerenes and endohedral 

metallofullerenes is their electrochemistry. Due to the anionic nature of the EMFs, they 

generally undergo oxidation at much lower potentials, but are still capable of undergoing 

several reductions as well. For example, Y@C82 exhibits its first oxidation at 0.10 V and 

its first reduction at -0.34 V vs Fc/Fc+, for an electrochemical gap of only 0.44 eV.249 These 

results are fairly consistent for all EMFs with only a single metal atom inside the fullerene 

cage, but they are not the case for the nitride-based EMFs. Sc3N@C80 exhibits redox 
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properties very similar to that of normal fullerenes with an oxidation at 0.97 V and 

reduction at -1.26 V vs Fc/Fc+.250  The large variation in ease of oxidation, reduction, and 

the differences in the HOMO-LUMO gap amongst the EMFs, coupled with the sheer 

number of known EMFs, makes them interesting for testing in device applications.242 

 Endohedral fullerenes are a really intriguing concept in theory: a molecular container 

that stores other chemical species. They have some properties that make their continued 

study a meaningful endeavour as they can be used for applications involving medical 

imaging. However, even more so than the higher fullerenes, most of the EFs are either 

incredibly expensive or completely unavailable for purchase, and even among the EFs 

that are for sale many are prohibitively expensive for anything but small-scale research. 

For the endohedral fullerenes to see a real growth in interest and use, new methods for 

selective synthesis or purification of many different types must be devised. 

1.4.2 Synthesis of Fullerenes 

 The synthesis of fullerenes is very similar to that of carbon nanotubes. The first 

synthesis of fullerenes was through laser evaporation of graphite,218 but while this 

provided the world with a taste of what fullerenes had to offer, it suffered from terribly low 

yields which were largely only useful for detection and theoretical study. It was not long 

before new methods for fullerene synthesis emerged which allows for larger quantities to 

become available for more demanding chemical research. 

 The first method to offer a serious improvement over laser evaporation provided 

access to around 100 mg of C60 over a full day’s operation.251 This method involves 

resistive heating of a pure graphite rod to the point of evaporation, followed by extraction 

of the resulting fullerene soot with benzene to extract the fullerene products. While this 
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method for fullerene production is extremely important in a historical sense, on the 

practical production side, it has become obsolete. The largest problem with resistive 

heating is that it requires extreme conditions (>1200 °C, 1 kbar) for a low yield, with only 

1% of the soot produced containing fullerenes. Along with the low yield of fullerenes in 

general, this method is particularly poor at producing higher fullerenes. Currently, the two 

most common methods for fullerene production include pyrolysis and arc discharge. 

1.4.2.1 Pyrolysis Synthesis of Fullerenes 

 Since the early days of fullerene research, many theoretical claims were made that 

fullerenes may be formed in the presence of a flame that produces carbon soot. The use 

of a hydrocarbon feedstock into a high temperature flame results in the formation of a 

soot, that depending on the atmospheric environment, can be rich in fullerene content.226  

This method can be used to produce large amounts of fullerenes, and more importantly 

it can be run in a continuous fashion very easily, collecting the fullerene soot automatically 

without need to stop the machine and wait for it to cool. The method relies on a low-

pressure chamber, a flame, a hydrocarbon feedstock, an oxygen gas source, and an inert 

carrier gas (Figure 27).  
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Figure 27: Typical combustion chamber for fullerene synthesis: a) low-pressure 
steel chamber, b) copper burner plate, c) water cooling coil, d – f) windows, g – i) 
gas feedthroughs, j) annular-flame feed tube, k) core-flame feed tube, l) and m) 
exhaust tubes, n) sampling probes, o) filter, p) valve, q) vacuum pump, r) gas 

meter.252 
 

 The standard setup for a pyrolysis chamber consists of a steel chamber with a burner, 

oxygen, argon, and carbon feeds, a vacuum pump, and generally also contains water 

cooling coils.253 The system can be designed in such a way that the fullerene soot is 

collected in a secondary chamber, adjacent to the sooting flame, which allows for 

continuous operation if the second chamber has a valve for fullerene collection.190 

 The nature of the carbon feedstock can be rather important. The first feed to be used 

was benzene which resulted in yields as high as 3 g of fullerene for each kilogram of 

benzene.226,254 Furthermore, the C70/C60 ratio could be modified from 0.26 – 5.7, giving it 

an advantage over other techniques which predominantly produce C60. However, due to 

the health concerns surrounding benzene, other aromatic alternatives have been studied 

as suitable replacements. It has been shown that many aromatic precursors can be used 

including cyclopentadiene, triphenylene, pyrene, and even metallocycles such as 

ferrocene.255 The two candidates that have emerged as the best feedstocks are toluene 

and tetralin.256,257 

 While the feedstock is important, it is also very important that the feedstock be 

premixed with oxygen and an argon carrier gas. The ratio of C/O in the feedstock has 

been shown to have a drastic impact not only on the fullerene yield, but also on the types 

of fullerenes that are produced.256 Also, an increase in the oxygen content of the flame 

de facto increases the temperature of the burner, so the C/O ratio impacts multiple 
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variables and is one of the most important factors that leads to quality fullerene 

production. At lower chamber pressures (20 – 100 Torr), the optimal C/O ratio tends to 

be around unity. In benzene flames under optimal conditions this gives around 3.6 % 

conversion of the carbon feedstock to soot, and about 7.2 % of the soot contains 

fullerenes, with a C60/C70 ratio of 0.59. Meanwhile, under a toluene flame at 40 Torr, a 

C/O ratio of near unity gives only 2 % soot yield, but as high as 37 % fullerene content in 

the soot. Higher C/O ratios tend to improve the total soot yield, but drastically decrease 

the fullerene content of the soot, with a maximum of fullerene production around 1.15 %. 

The higher C/O ratio also favours the formation of higher fullerenes, decreasing the 

content of C60 in the resulting fullerene soot. 

 Temperature also plays a major role in the formation of soot and the content of 

fullerenes in the soot. The optimal temperature of the flame appears to be around 1800 

K, with some error due to the velocity of the gas feed and the C/O ratio. Theoretical 

calculations on the effect of temperature show that higher flame temperatures (2,300 K) 

show fullerene content as high as 28 %, but they produce nearly no soot.256 The lower 

temperatures are not conducive to high fullerene content, but produce far more soot, and 

so 1800 K produces the optimal fullerene content. 

 Pyrolysis has proven to be an excellent method for fullerene production and is used 

by some companies for industrial production.190 Using combustion protocols previously 

discussed, Frontier Carbon Corporation was able to produce as much as 400 kg of 

fullerenes per year in 2002, and 40 ton/year in 2003 using a toluene feedstock. Based on 

their optimal yield conditions, the ratio of their fullerenes are C60 (60%), C70 (25%), and 
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higher fullerenes (15%). This is significantly different than the fullerenes that are obtained 

from the other most commonly performed synthesis: arc discharge. 

1.4.2.2 Arc Discharge Synthesis of Fullerenes 

 Arc discharge is the other prevailing synthetic route for fullerenes. As was discussed 

in the SWNT discussion, arc discharge involves the induction of a plasma arc between 

two graphitic electrodes, vaporizing the anode and depositing soot onto the cathode and 

chamber walls. However, the conditions of fullerene synthesis are generally quite different 

than those required for SWNTs, but both can be fabricated in the same setup if desired.258 

The major distinction between fullerene and SWNT arc discharge synthesis is that 

fullerenes are made catalyst free, from pure graphite electrodes. 

 The main advantage of arc discharge is that it is easier to set up than a pyrolysis 

system and the graphitic electrode can be doped to give other carbon nanomaterials. Not 

only can catalysts be added to create SWNTs,259 but metals can be incorporated to form 

endohedral fullerenes as well.242 The yields of fullerenes in arc reactors are generally 

higher than that of a pyrolysis reactor, with as high as 23 wt% of the graphite being 

converted to soot and 2–4 wt% of the graphite ultimately yielding fullerenes.260 The yield 

of arc discharge is therefore up to four times greater than pyrolysis. It has also been 

shown that the resulting fullerene dispersion is far more uniform than in pyrolysis, with a 

C60/C70 ratio of 5.06, regardless of conditions, with only about 2 % higher fullerene 

content.261 The content of higher fullerenes can be drastically increased by addition of 1 

% boron to the graphitic electrode.262 

 There are, however, several drawbacks of using arc reactors to produce fullerenes, 

several of which have been overcome.263 The first issue is the buildup of deposited soot 
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onto the cathode, which results in unproductive carbon consumption. This has been 

remedied through the reversal of electrode voltages, resulting in the burning of the carbon 

deposited on the cathode. The second drawback is that the fullerene soot is deposited 

onto the walls of the chamber and must be scraped off manually, after waiting for the 

chamber to cool. Controlled gas flows have been used to constantly remove the deposited 

soot so that the arc can be run semi-continuously and the soot is much easier to obtain 

once the process is complete. The third drawback is the need to constantly remove and 

replace the spent graphitic electrodes. The use of automated robotic arms has solved this 

issue but while this is acceptable in an industrial setting, it is considerably more 

challenging to do on a research scale.191 The final major drawback of arc reactors is their 

immense energy input requirement.257 This is an inherent feature of the arc discharge 

process and cannot be significantly changed. 

 Arc reactors have been used to produce fullerenes on an industrial scale since the 

90s. With a fully automated arc reactor setup capable of producing up to 11 wt% fullerene 

soot with 76 mm diameter graphite electrodes, MER Corp. has created a very competitive 

fullerene production method.191 While the arc discharge synthesis of fullerenes produces 

near zero gaseous carbon emissions during the process, a thorough review of the overall 

energy costs show that arc reactors require about five times as much energy as the 

pyrolysis method, making it more environmentally impactful.257 

1.4.3 Fullerene Purification 

 Due to the polydisperse nature of fullerene synthesis, the resulting soot requires 

heavy purification before high quality fullerenes can be isolated (Figure 28). The first step 

of the purification is a straightforward extraction of the fullerenes from the as produced 
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soot. For this, a Soxhlet of boiling toluene is used, dissolving the fullerene material with a 

cut-off of around C100.236 If even larger fullerenes are desired, the soot can be further 

extracted with chlorinated aromatics, like chlorobenzene. With the fullerene soot 

extracted, and all the amorphous carbon, ash, and miscellaneous aromatics removed, 

the different fullerenes must to be isolated from one another. 

 

Figure 28: Typical process flow of fullerenes.257 
 

 The purification of a single type of fullerene is a challenge due to their almost identical 

structures. The first separation methods involved flash chromatography through alumina 

with a hexanes eluent.264 Such chromatographic separation resulted in appallingly low 

yields and were replaced with reverse phase C18 high-performance liquid 

chromatography (HPLC).239 While the introduction of HPLC was a welcome improvement, 

the quantities that were isolable using it remained small, but were enough for significantly 

more accessible materials for research purposes. 

 The most significant improvement to the purification of fullerenes was the introduction 

of the COSMOSIL Buckyprep HPLC column.265,266 The stationary phase consists of a 

pyrene molecule with a propyl spacer. The Buckyprep columns offer the ability to separate 

up to 35 times more fullerene material than C18 HPLC stationary phases and have 
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become the leading method for fullerene separation. This method for fullerene purification 

will be discussed in more detail in Chapter 3. 

1.4.4 Fullerene Solar Cells 

 Fullerenes have been used in an incredibly wide array of applications ranging from 

biological to electronic. They have been incorporated in sensors,267 medical 

techniques,268 molecular machines,269 and FETs.270 However, their incorporation into 

solar cells has overshadowed all their other uses.271,272,273,274,275 The small size of 

fullerenes allows them to be incorporated into flexible, thin film solar cells, which are 

attractive for their light weight, and easy roll-to-roll printing manufacturing process. 

 The operation of a photovoltaic solar cell involves the absorption of a photon, the 

generation of charge carriers, the dissociation of charge carriers, and finally a generation 

of current, and it requires both a donor material and an acceptor material (Figure 29).276 

The energy levels of the donor and acceptor are tuned such that the HOMO and LUMO 

of the donor are slightly higher than that of the acceptor, while ensuring that their HOMO-

LUMO gaps fall within the visible light spectrum. A photon of light from the sun will excite 

an electron in the donor material (or the acceptor) and the resulting exciton (electron-hole 

pair) will migrate towards a donor-acceptor material interface. When the exciton reaches 

a neighbouring acceptor, the electron will be donated from the LUMO of the donor to the 

lower-lying LUMO of the acceptor, generating an ionic pair. Finally, the electron and hole 

will separate and propagate through their respective material (donor for the hole and 

acceptor for the electron) until they reach the electrodes, generating a current. 
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Figure 29: The process of converting incident light to electric current: a) light 
absorption and photogeneration of an exciton, b) exciton diffusion to the 

donor/acceptor interface, c) exciton dissociation, d) transport to the photoactive 
layer/electrode interface, e) collection of charges by the electrodes, transferring 

the current to an external circuit. e- and h+ represent an electron and hole, 
respectively.276 

 

 Due to the stringent requirements of energy match between the donor and acceptor 

materials, as well as the necessity to have a material that is both stable and has a 

sufficiently fast charge separation, many materials have been studied as candidates for 

both donors and acceptors. Electron rich conjugated organic polymers serve as great 

donor materials. They can be tuned through organic synthesis and are easy to process 

due to their solubility and flexibility. The most commonly used donor material in organic 

photovoltaics is poly-3-hexylthiophene (P3HT).  

 As was discussed previously, fullerenes are excellent electron acceptors, with C60 

and C70 capable of undergoing six single-electron reductions.277 Their tendency to accept 

electrons, coupled with their visible spectrum absorbance, and their low-lying HOMO and 
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LUMO levels, made them excellent candidates for use as acceptors in photovoltaics. 

Furthermore, their tendency to accept electrons is several orders of magnitude faster than 

their back transfer, making them excellent at separating charges in photovoltaics.278 The 

main problem with using fullerenes in photovoltaics arises from their low solubility in 

organic solvents and, as a direct consequence, their poor mixing with organic polymers. 

The solubility of fullerenes can easily be improved through their derivatization via [2+1] 

cycloaddition to give the phenyl-Cx-butyric acid methyl ester (PCxBM) derivatives. Not 

only are PCBMs soluble in chlorobenzene, they also exhibit far better crystal packing, 

which gives them higher charge carrier mobilities than pristine fullerenes.279 Field effect 

transistors based on PCBMs have shown charge carrier mobilities as high as 0.21 cm2 V-

1 s-1.270 

 PC61BM was the standard acceptor material in photovoltaics for a long time. It has 

been used in many devices, achieving power conversion efficiencies (PCE) over 7%. 

However, PC71BM works much better as the acceptor material, with PCEs over 8% in 

multiple devices.276 The improvements have been attributed to the increased absorption 

of PC71BM in the visible region of the electromagnetic spectrum, giving devices with 

PC71BM a higher current generation.235 PC84BM has also been trialed in photovoltaics 

and computations on the higher fullerenes have been carried out to probe their potential. 

While the higher fullerenes exhibit potentially useful HOMO-LUMO levels, the high degree 

of difficulty of separation hinders their use. The higher fullerenes already possess multiple 

isomers, but upon functionalization, this issue is exacerbated as each isomer can be 

functionalized multiple times and in multiple locations. The computational study 
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determined that each of the resulting fullerene derivatives would exhibit different 

electronic properties, resulting in an inhomogeneous material and low performance.280 

 The synthesis of the fullerene derivatives requires several steps and purification, 

exacerbating the problem of high fullerene cost. Despite this, the performance of 

fullerenes as acceptors has let them remain as the premier acceptor in photovoltaics. For 

fullerene photovoltaic devices to see widespread commercial success, the cost of 

fullerenes must be lowered substantially. Improvements made towards the industrial 

scale synthesis of fullerenes was the first step to decreasing their cost, however, in order 

for their costs to reduce even further, the purification of fullerenes must be significantly 

improved upon. 
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Chapter 2. Nanotube Interactions with 

π-Concave Materials 
 

2.1  Common π-Concave Binding Motifs for Single-Walled Carbon 
Nanotubes 

 The shape of carbon nanotubes is one of their interesting properties, with the outside 

of a carbon nanotube consisting of a fully conjugated π-convex system. Due to the 

conjugated nature of carbon nanotubes they undergo significant π- π binding to other π-

systems including pyrene148,281,282 and perylene.139,283 In fact, the binding of SWNTs to 

pyrene is commonly used to create CNT-based sensors through the coating of the SWNT 

surface with pyrene.142  

 While the π- π interactions of pyrene and other flat aromatic compounds with SWNTs 

has been widely used for immobilization, newer developments have included the use of 

π-concave aromatic systems to bind to the π-convex SWNTs.217 π-concave systems 

undergo stronger binding to SWNTs due to their complementary shape giving them a 

larger π-surface area with better contact. Several different π-concave motifs have been 

used for this type of binding to varying degrees of success. Due to their shape, π-concave 

systems are often referred to as tweezers, molecular tweezers, and nanotweezers. 

 The problem is that up until recently a good method to determine the binding strength 

has not existed.284 As a result, discussing the binding efficacy of π-concave molecules to 

SWNTs is not easy when consulting the literature, making it difficult to determine the exact 

parameters that improve nanotube binding. Compounding this is the fact that not much 
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work has been done in the field of π-concave hosts for SWNTs. Nonetheless several 

motifs have been proven to bind well to the SWNTs and they will be discussed here, along 

with the applications they have been used for. 

2.1.1 Iptycene Binding to SWNTs 

 One of the most commonly used motifs for SWNT binding are iptycenes. The family 

gets its name from the simplest iptycene, triptycene (Scheme 1). The iptycenes feature a 

bicyclo[2.2.2]octane core with a phenyl ring fused to each of the ethylene units and can 

be extended or combined to create a vast array of different structures.285,286 The two most 

important features of the iptycenes are their bent shape and aromatic structure. This 

results in an overall π-concave shape, even though the bend in the molecule breaks the 

overall π-conjugation. The most common method to make iptycenes involves a Diels-

Alder reaction between a benzyne and an acene, installing the requisite bend of 

iptycenes.285 

 

Scheme 1. The iptycene family 
 

 The most common use for π-concave binding to SWNTs is for solubilization, which 

has been accomplished to great effect using numerous iptycene-based systems. The first 

of these was a report by Sheng-Zhen Zu et al. using triptycene molecules bearing 

ethylene glycol linkers and adamantyl end groups.287 By placing SWNTs into an aqueous 
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solution of the triptycene derivative and cyclodextrin, the SWNTs became solubilized. 

This occurs through binding of the triptycene to the SWNT sidewalls through π-π 

interactions and the cyclodextrin forms a complex around the adamantyl end groups, 

solubilizing the SWNTs. Due to the small size of the individual iptycene molecules relative 

to the SWNTs, the solubilization of the SWNTs requires the binding of multiple triptycenes 

with each SWNT. The design of triptycene based hosts for SWNT solubilization has been 

iterated upon multiple times, improving the degree of solubility and removing the need for 

cyclodextrin.141,152 In addition to simply solubilizing SWNTs, the researchers saw a 

preferential diameter selectivity of the solvated nanotubes with nanotubes 1 nm or smaller 

in diameter being preferentially solvated.141 

 Other researchers have looked at using larger iptycenes to bind to SWNTs, in 

particular, Tromp et al. synthesized pentacene-based iptycenes for use as SWNT 

nanotweezers.153 Similar to the triptycene work, the pentacene-based iptycene was used 

for solubilizing SWNTs, and similar to the triptycene case diameter selectivity was 

observed, but unlike with the tyiptycene SWNTs up to 1.3 nm in diameter showed a 10-

fold increase in solution relative to larger diameters. These results suggest that the size 

of the iptycene can be directly correlated to the diameter selectivity of the resulting 

binding. Computational work was done to further understand these results and predict 

selectivity but the conclusions of the work are suspect as they contradict the empirical 

data, likely due to them ignoring solvent effects on binding.151 

 Chiral iptycenes were synthesized by Marquis et al. for the purpose of selective 

solubilization of chiral nanotubes.288 They were shown to very effectively solubilize 

SWNTs in the range of 0.8 – 1.0 nm in diameter, and on top of that, a significant selectivity 
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for SWNTs with a larger helical angle was observed. Unfortunately, due to the lengthy 

synthesis there was insufficient material to determine the effective chiral separation of 

one type of nanotube. 

2.1.2 π-Extended Tetrathiafulvalene 

 Tetrathiafulvalene is a sulfur-based heterocyclic compound that has been studied for 

its use in electronics due to its electron rich nature (Scheme 2). 2-[9-(1,3-dithiol-2-

ylidene)anthracen-10(9H)-ylidene]-1,3-dithiole (exTTF), sometimes referred to as π-

extended tetrathiafulvalene, has likewise been studied for its electron rich nature and 

interesting shape. Much like triptycene, the benzene rings on exTTF are puckered around 

the central ring (Scheme 2), creating a π-concave surface, which is useful for binding to 

π-convex systems, like SWNTs. 

 

Scheme 2: Tetrathiafulvalene and π-extended tetrathiafulvalene. 
 

 While tetrathiafulvalene possesses the proper shape for binding to SWNTs, they 

have not been shown to bind well enough on their own despite the potential electron 

donor-acceptor synergy. Previous studies have shown that they can bind to SWNTs if the 

exTTF unit is attached to a pyrene to aid in the binding by increasing the total π-surface 

area.289 To improve the binding of exTTF, two exTTF units were tethered together with a 
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m-phthalic ester spacer, creating a larger molecule with two SWNT binding sites. The 

resulting nanotweezers show great binding to SWNTs along with some selectivity in 

solubilization, but more importantly this work revealed that exTTF units that form guest-

host complexes with SWNTs are also capable of undergoing full charge separation upon 

photoexcitation.290 Through the process the exTTF molecule undergoes an oxidation with 

the SWNTs being reduced, and the lifetime of the charge separated state is 160 ps. 

Charge transport has interesting implications for solar cell technologies using SWNTs for 

electron transport and exTTF as the light harvester. 

2.1.3 Porphyrin Nanotweezers 

 Porphyrins are the last major motif used for SWNT binding that will be discussed 

here, and are interesting π-hosts for SWNTs because they are excellent light harvesters 

and can be derivatized quite easily. Porphyrins are planar π-systems but can be made 

into π-concave nanotweezers through the use of a spacer that connects two porphyrin 

rings (Scheme 3). 

 

Scheme 3. Porphyrin-based chiral nanotweezers for SWNT binding. 
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 It is very difficult to get chiral separation of SWNTs through many of the conventional 

separation methodologies used to sort diameters of tubes, but Komatsu’s group has 

pioneered the use of chiral porphyrin nanotweezers which have shown very promising 

results in chiral separation of SWNTs.291 The nanotweezers in Scheme 3  were used to 

produce highly enriched chiral samples of both (7, 5) and (6, 5) nanotubes as evidenced 

by circular dichroism. Depending on the spacer used, the type of nanotube that was 

solubilized changed, giving the researchers better control over the exact nature of the 

resulting nanotube solution. The carbazole spacer produces a larger space between the 

porphyrins and also creates a tighter biting angle, which creates a nanotweezer that binds 

to nanotubes based on their diameter and chirality. On the other hand, the pyridine spacer 

creates a smaller separation between porphyrins and increase the bite angle, such that 

the nanotweezers are no longer sensitive to the diameter of the nanotubes, and instead 

interact based on the roll-up angle of the nanotube. This separation method remains one 

of the best ways to obtain enantiomerically enriched nanotubes despite its low selectivity 

relative to separation methods for other organic molecules, underlining the difficulty of 

chiral nanotube separation. 

2.2  Current Methods for Aligning Carbon Nanotubes 

 As has been briefly discussed, the alignment of carbon nanotubes greatly impacts 

their performance in electronic devices and for that reason many methods have been 

devised to align carbon nanotubes effectively. The alignment of CNTs is however no 

menial task due to their nanoscale size and the strong intertube interactions which cause 

them to bundle, preventing alignment. Several methods have been created that address 



99 

the challenge of nanotube alignment to various degrees and they will be discussed in 

detail here.  

 The first method used to align carbon nanotubes was through cutting of a carbon 

nanotube-polymer resin composite.292 Using this method, Ajayan et al. were able to take 

random dispersions of raw CNTs in a polymer resin and align them to an incredible degree 

simply by cutting the polymer resin into thin slices ranging from 50 nm to 1 µm in 

thickness, using a diamond knife. No cross-sections of nanotubes were observed, which 

seems to indicate that the perpendicular tubes were either removed entirely or were 

aligned by the knife into the plane of the polymer. This approach is very straight-forward 

and requires minimal specialty hardware but is also severely limited by the fact that the 

resulting nanotubes are trapped within an insolating polymer resin. Perhaps this method 

could be extended to the use of semiconducting polymer matrixes to improve its 

applicability. 

 Another common method for nanotube alignment is through their controlled growth 

on glass, leading to a highly dense “forest” of vertically aligned carbon nanotubes.293 This 

is accomplished through sputtering of a thin film of nickel onto the glass surface, followed 

by CVD growth with ethylene gas at 666 °C. The nickel layer acts as the catalyst and 

leads to the vertical growth of the nanotubes, but the ends of the nanotubes are then 

capped with nickel nanoparticles as a result. Vertically aligned carbon nanotubes are not 

directly applicable to FET applications as they currently exist, but the researchers discuss 

their utility in field-emission displays, which have been made obsolete by the prevalence 

of liquid crystal displays (LCDs). 
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 Researchers at IBM created a method for nanotube alignment by taking advantage 

of their shape anisotropy and through chemical modification of the nanotube walls.294,295 

The original process was done by functionalizing the walls of the nanotubes with 

hydroxamic acid functional groups, which selectively bind to HfO2 surfaces, and then 

depositing the nanotubes onto a patterned HfO2 surface. The surface was patterned in 

such a way that channels that were small in width were created such that the width of the 

channel was smaller than the length of the nanotubes, forcing them into alignment by 

virtue of their size (Figure 30). However, this method requires covalent chemical 

modification of the SWNT surface, permanently altering their electronics, and it results in 

a very low density of deposited CNTs. To combat both of these problems the experiments 

were modified such that the trenches were covalently functionalized with a cationic 

hydroxamic acid, and the SWNTs were wrapped with SDS, an anionic surfactant. Since 

the hydroxamic acid selectively functionalizes HfO2 over SiO2, the deposition of the SDS-

wrapped SWNTs was selective inside of the HfO2 trenches. Furthermore, the 

functionalization of the HfO2 directly, drastically improved the density of the SWNTs on 

the surface. However, the main drawback of this method is that the channel width has to 

be exceptionally small (70 nm) in order to get optimal alignment of the nanotubes, which 

requires electron beam lithography, an expensive and time-consuming process. 
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Figure 30: a) Schematic of the side view of the patterned substrates. b) SEM 
image of functionalized SWNTs assembled in a 2 µm HfO2 bottomed trench. c) 

and d) SEM and AFM image, respectively, of 250 nm trenches with aligned 
functionalized SWNTs.294 

 

 Another approach is to deposit a nanotube suspension onto a rapidly spinning 

substrate, thus aligning the nanotubes radially as they are moved along the surface.81,296 

This was accomplished by Bao’s group through the use of a syringe pump to slowly 

deposit drops of nanotube suspensions, but it requires that the surface be functionalized 

so that the nanotubes remain on the surface in appreciable quantities. They attempted 

functionalization with both amine-terminated and phenyl-terminated silanes, determining 

that the polar amine groups adhered the spincoated nanotubes more effectively, 

displaying a density 5 – 10 times greater (Figure 31). The researchers also observed a 
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significant selectivity for s-SWNT deposition on the amine-terminated surface and m-

SWNTs on the phenyl-terminated surface, further proving the utility of this method. The 

problem with spincoating for nanotube alignment is that the resulting bulk alignment is 

radial, not uniform in one direction. This is an issue because current transistor 

manufacturing techniques are not optimized for this type of alignment, making it non-

ideal. 

 

Figure 31: Schematic of the  SWNT TFT fabrication and structure using 
spincoating on amine-terminated (A) and phenyl-terminated (B) silicon.81 

 

 A great way to study the electronics of individual nanotubes was demonstrated by 

Yuzvinsky et al. through the combination of lithography and spincoating.297 The 

researchers devised a method whereby CNTs could be deposited onto electron-beam 

activated poly(methylmethacrylate), controlling the exact location of the nanotube 
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deposition based on the areas that had been developed (Figure 32). The deposition and 

alignment of the nanotubes is delivered through spincoating, but the positional control is 

provided by the EBL, giving this method a high degree of control over the placement of 

the nanotubes. This is very effective for eventually creating devices out of individual 

nanotubes for detailed testing, but the low density coupled with the drawbacks of 

spincoating and EBL render this method incapable of creating large arrays of aligned 

nanotubes.  

 

Figure 32: Fabrication process of patterned PMMA surface for controlled and 
aligned SWNT deposition.297 

 

 Gopalan’s group has devised a method for large-scale deposition of highly aligned 

nanotubes based on the Langmuir-Blodgett film fabrication technique.298 The method 

relies on dispersing SWNTs into chloroform, and then taking the resulting ink and 

dropping it into a Langmuir-Blodgett trough, allowing the chloroform to slowly evaporate 

while simultaneously pulling a substrate of choice up through the edge of the chloroform 

drop (Figure 33). This has the effect of aligning the nanotubes onto the substrate 

perpendicular to the direction that it is being pulled in, due to the shape anisotropy of the 
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nanotubes and the constant pressure from the Langmuir-Blodgett trough barriers. The 

resulting density and alignment are both excellent and some positional control is possible 

by varying the speed that the substrate is being pulled at, and by varying when the SWNT 

drops are added to the trough. Cao et al. use a similar approach, relying on a Langmuir-

Schaeffer method for their nanotube deposition instead, and achieve even higher 

densities, approaching complete surface coverage.299 The significant drawbacks of these 

methods are that they lack precise control over nanotube deposition, and more 

importantly, are done in water. 

 

Figure 33: Schematic illustration of the iterative process used to fabricate aligned 
SWNTs driven by the spreading and evaporation of controlled doses of organic 

solvent at the air/water interface.298 
 

 Finally, the last major method for aligning carbon nanotubes is through the controlled 

growth on specially prepared substrates. Kang et al. showed that by placing iron catalysts 

on a stable temperature cut quartz wafer along the [2110] direction, the resulting surface 

could be subjected to CVD conditions to grow SWNTs parallel to the surface. The SWNTs 

grown this way exhibit near perfect alignment as well as high densities (Figure 34), 

making them prime candidates for FET fabrication. However, the major issue with this 

technique is that the SWNTs that are synthesized are about equal parts semiconducting 

and metallic, resulting in very poor on/off ratios of about 2. Che et al. have improved the 

CVD method such that the resulting nanotubes are 97.6% s-SWNTs, but this still only 
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results in an on/off ratio of 42.161 Due to the low on/off ratio, this technique has to be 

coupled with other post-processing techniques to remove the m-SWNTs present in the 

sample. 

 

Figure 34: Aligned arrays of SWNTs grown on a cut quartz substrate. The bright 
horizontal stripes correspond to the regions of iron catalyst.108 

 

 Clearly, there are many potential options for aligning SWNTs to various degrees, all 

with their own benefits and drawbacks. The commonality between most of these methods, 

however, is their incapability to select for the electronic nature of the aligned nanotubes, 

be that the diameter, or simply semiconducting vs. metallic SWNTs. This means that they 

have to be coupled with SWNT sorting methods that we have discussed previously, 

increasing the complexity, time, and cost of the overall process. Therefore, a technique 

that could affect the alignment and sorting of nanotubes in one step is highly desirable, 

especially if it allows for selective placement of the resulting nanotubes. 
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2.3  Simultaneous Sorting and Alignment of Single Walled Carbon 
Nanotubes Using an Alignment Relay Technique 

 Due to the need for good methods for both aligning and sorting carbon nanotubes for 

their use in transistor technologies, we were determined to create a new method that 

could achieve both in one step. Inspiration was drawn from the π-concave design of 

typical nanotweezers used to solubilize and sort SWNTs, and we envisioned a method 

that would use the already established binding of iptycenes to SWNTs in order to impart 

diameter and potentially chiral selectivity. The problem with using iptycenes for alignment 

is two-fold: iptycenes do not naturally possess any alignment properties, and for SWNTs 

to be usefully aligned they must be deposited onto a surface. The second point is an issue 

only because iptycenes have solely been used to bind to SWNTs in solution, surface 

binding would require several important modifications. To overcome the issue of iptycene 

alignment a method for transferring the alignment properties of other materials, 

specifically liquid crystals, onto the iptycenes was planned. To then be able to align 

nanotubes on a substrate surface, it would be imperative to synthesize an iptycene 

derivative that is capable of covalently functionalizing a surface, while maintaining its 

alignment. Once the triptycenes are aligned they should be able to bind to SWNTs, such 

that the SWNTs are forced into alignment with the triptycenes themselves. We dubbed 

this passing on of alignment information from liquid crystals, to triptycene, and finally to 

SWNTs, the Alignment Relay Technique (ART). 

2.3.1 Liquid Crystals 

 Liquid crystals are molecules that can take on a phase of matter between that of a 

crystalline solid and an isotropic liquid which possesses the properties of both phases. 

Liquid crystal phases characteristically have orientational order, as well as the potential 
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for positional order, depending on the particular liquid crystal phase in which the molecule 

exists. We were originally interested in liquid crystals because of their inherent order and 

their ability to be very easily aligned over long distances through external factors including 

magnetic fields,300 electric fields,301 polarized light,302 and rubbed poly-imide coated 

surfaces.303 

 There are two main families of liquid crystals: thermotropic and lyotropic. Lyotropic 

liquid crystals are molecules that exhibit liquid crystal phases based on their concentration 

in a given solvent. The most common example of lyotropic liquid crystals are 

phospholipids which organize into bilayers to form cell walls in animals. Conversely, 

thermotropic liquid crystals exhibit liquid crystal phases at different temperatures, like 

conventional phase transitions, and are commonly used in displays and other electronics. 

Thermotropic liquid crystals interested us because their liquid crystal phases are easily 

maintained through simple temperature control. Moreover, thermotropic liquid crystals 

can be forced into alignment in the plane of a substrate surface, as is the case in liquid 

crystal displays.304 Thermotropic liquid crystals are generally designed in such a way as 

to create some type of shape anisotropy and dipole moment along the molecule, which 

promotes their self-assembly and the formation of liquid crystal phases. 

 Among thermotropic liquid crystals there are two major categories: calamitic and 

discotic (Figure 35). Discotic liquid crystals, as the name implies, are disc-shaped and 

generally consist of a symmetrical aromatic core with alkyl chains on the periphery. The 

aromatic cores promote binding between neighbouring molecules and the long alkyl 

chains aid in the assembly of aromatic cores, which typically results in columnar packing. 

Calamitic liquid crystals are instead rod-shaped and generally consist of a rigid aromatic 
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core with flexible alkyl side chains and a polar head group. The rigid core ensures that 

the dipole moment is fixed and ensures that the anisotropy of the molecule is large 

enough to promote preferential packing, while the polar and non-polar sides of the 

molecule further promote favourable packing orientations. Both types of thermotropic 

liquid crystals are capable forming many phases that have varying degrees of order from 

simple orientationally ordered phases to positionally ordered, tilted, twisted, bent, and 

chiral phases.305 

 

Figure 35: Examples of calamitic and discotic liquid crystals 
 

 We were drawn to calamitic liquid crystals due to reports of their use in the alignment 

of other materials,306 particularly the effect that they have on triptycene.307 Due to the 

shape of triptycene it lacks the ability to pack tightly, which creates pockets of internal 

free volume within the crystal structure. The internal free volume acts as a vacuum and 

guest molecules can be pulled into these areas in order to minimize the internal free 

volume of the system. This is usually accomplished by the incorporation of solvent 

molecules, but it was discovered that the rod-shaped calamitic liquid crystal 4-cyano-4’-

pentylbiphenyl (5CB) is also capable of occupying the internal free volume pockets. More 

importantly, when 5CB is under the effect of external alignment it transfers the alignment 
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to the triptycene molecules due to the packing structure (Figure 36). This was confirmed 

with polarized UV-Vis spectroscopy and it stood out to us as the ideal method for 

introducing alignment into our triptycenes, so that we could ultimately align our SWNTs. 

 

Figure 36: Triptycene alignment in calamitic liquid crystal. 
 

2.3.2 Functionalization of Metal-Oxide Surfaces 

 Once we had determined a method for the alignment of triptycene, we had to find a 

suitable method to tether the molecule onto a substrate surface. There are many 

functional groups that are capable of forming covalent bonds to a plethora of substrates 

from glass to silica and metal oxides.308 Our goal was to find a functional group that would 

be capable of binding the oxide layer of silicon so that our methodology could be directly 

applied to transistor fabrication. We also anticipated that having the ability to functionalize 

a transparent substrate would allow for us to use polarized optical microscopy (POM) to 

observe the liquid crystal phase of the system, to ensure that the alignment of the liquid 

crystals is not perturbed by the triptycenes. The functional group also had to be able to 

form multiple covalent bonds, in order to prevent rotation of the triptycene upon binding 

to the surface. The ideal functional group would have to be easy to install at a late stage 

in the synthesis, be itself easy to synthesize, or be commercially available. 
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 The obvious choice was to use silanes as they are effective at binding to silicon oxide 

surfaces. Silanes can form up to three covalent bonds with surfaces when starting with 

the trichlorosilane or the triethoxylsilane, and bind exceptionally to other silicon-based 

surfaces, as well as alumina and titanium oxide. However, the installation of silanes onto 

triptycene would not be very easy and would first require preactivation of the triptycene 

through bromination or the synthesis of a silane-based dienophile, which tend to be quite 

poor coupling partners in Diels-Alder reactions. 

 We then turned our attention to phosphonates as potential anchors because 

phosphonates and phosphonic acids have been used to covalently functionalize surfaces 

including silicon oxide,309,310 indium tin oxide (ITO),311 other metal oxides, and even metal 

nanoparticles.308,312 Phosphonates are capable of forming up to two covalent bonds and 

either one hydrogen bond or one dative bond depending on the Lewis acidity of the 

surface (Scheme 4).312 In some instances, three covalent bonds are believed to form as 

well. These qualities made us further consider phosphonates as a viable route. 

 

Scheme 4: Binding modes of phosphonic acids to metal oxide surfaces.312 
 

 Fortuitously, there have been studies that utilize phosphonic acids to functionalize 

the dielectric in organic semiconductors to improve the performance of the device,313 and 

to coat ITO electrodes to improve wettability.314 Phosphonic acids tend to form 



111 

monolayers on the surface of these substrates and in the case of organic FETs they 

create a layer that aids in the deposition and contact between the organic semiconductor 

and the dielectric/electrodes. In pentacene organic TFTs, the phosphonic acid layer had 

an impressive impact on the device performance: 60x increase in the charge carrier 

mobility, decreasing the threshold voltage by 0.8 V and improving the ION/IOFF by four 

orders of magnitude. Interestingly, the same treatment was tested with pristine C60 and 

the resulting devices could achieve charge carrier mobilities as high as 3.7 cm-2 V-1 s-1. 

These results interested us in testing phosphonic acids as the anchoring group for our 

triptycenes because not only have they proven to be useful in the functionalization of 

many important surfaces, but they could also have a positive effect on the resulting SWNT 

TFTs. 

 Lastly, a synthetic method for the direct installation of phosphonates was required to 

solidify their use in our alignment method. We devised a synthesis to introduce the 

phosphonates through a Diels-Alder reaction between the two commercially available 

molecules bis(diethoxyphosphoryl)acetylene and anthracene (Scheme 5). This would 

install two phosphonate groups that could form up to six bonds to a surface, while 

simultaneously creating the iptycene backbone which is required for both SWNT binding 

and alignment relay from the liquid crystals. The side-effect of this method, however, is 

that the resulting iptycene 1, lacks the third aromatic ring seen in triptycene, potentially 

altering the packing detrimentally as far as liquid crystal alignment is concerned. 
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Scheme 5. Diels-Alder route to phosphonate iptycene 1. 
 

2.3.3 First Attempts at the Alignment Relay Technique 

 With our target molecule identified, studies into our hypothesized SWNT alignment 

methodology started, first with the synthesis of our target molecule (1). The Diels-Alder 

reaction proceeded at 160 °C in toluene over five days to give the product phosphonate 

iptycene at a 50 % yield. While the yield was low, the material was used to conduct 

alignment experiments to confirm its use before further optimization of the synthesis was 

performed. The surfaces that we chose to test the functionalization of with 1 were SiO2 

and TiO2, the former due to its ubiquitous use in electronics and the latter because it is a 

transparent electrode which allows for observation of the surface with optical microscopy. 

 First, an optimization of the binding conditions was performed, but instead of using 1 

for the optimization, phenylphosphonic acid was used as an inexpensive substitute. The 

initial functionalization studies were focused on silicon as there is more literature on 

silicon cleaning and functionalization than there is for ITO. Several methods were used 

to clean the silicon oxide surface, summarized in Table 1. Among the cleaning methods 

were organic cleaning at room temperature and high temperature, as well as both basic 

and acidic oxidizing conditions. Each of the cleaned substrates was then subjected to 

further testing through the functionalization conditions seen in Table 2. 
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Table 1: Conditions tested for the cleaning of silicon oxide before attempted 
functionalization with phenylphosphonic acid. 

 

 

Table 2: Conditions tested for the functionalization of cleaned silicon oxide 
surface with phenylphosphonic acid. The reaction was run in THF for 18h by 

completely submerging the silicon oxide substrate. 
 

 While many different cleaning and functionalization conditions were screened, it was 

difficult to determine the extent of coating of the silicon oxide layer. A common method 
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for assessing the elemental composition of surfaces is x-ray photoelectron spectroscopy 

(XPS), which uses x-rays to eject electrons from the atoms of a surface and measures 

the energy of the photo-emitted electrons. The energies of the emitted electrons are very 

characteristic of the surface atoms and can even be attributed to individual orbitals. XPS 

was used to test the functionalization of our silicon surface by monitoring the phosphorus 

and carbon peaks. At first the data seemed to suggest that 60 °C at 1mM was the most 

effective based on the percentage of phosphorus found in the XPS signal but this was 

quickly discarded because the silicon that was used in the functionalization was doped 

with phosphorus, throwing all the results into question. Indeed, the cleaned silicon surface 

with no functionalization gave a phosphorus peak almost identical to those obtained from 

the functionalization experiments. 

 In an attempt to remedy the problem, boron-doped silicon was used instead, but the 

phosphorus signal in the XPS still remained equally strong in the blank sample. This result 

was unexpected, but it was noticed that while the phosphorus peak was unreliable, the 

carbon peak appeared to fluctuate drastically between samples, and that the blank always 

had less carbon than the functionalized surfaces. Based on this observation, the data was 

revisited but this time with a focus on the carbon abundance on the surfaces and it was 

found that the higher temperature samples produced surfaces with the highest carbon 

content. The reaction worked best at 140 °C, and so 1 was used in the functionalization 

of a piranha cleaned silicon surface in a capped glass tube in THF with a concentration 

of 1 M at 140 °C for 18h, which afforded a surface with the highest carbon content seen 

in any of the functionalization reactions. The functionalization was confirmed to work on 

ITO as well. 
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 Throughout these trials it was apparent that the surface modification had taken place 

through a qualitative change in the surface wetting behavior of the solvents used during 

the washing procedure post-functionalization. Surprisingly, when the functionalization of 

silicon oxide with 1 was done at room temperature, the surface also exhibited the same 

change in wetting behavior as it did at 140 °C. The XPS data suggests that 

functionalization indeed does occur with the phosphonates at room temperature, and 

perhaps the large increase in carbon at high temperatures is due to the formation of 

multilayers, or decomposition of carbonaceous organics. The fact that 1 could 

functionalize SiO2 at room temperature was encouraging, because it meant that it would 

be easier to work with.  

 5CB was chosen as the liquid crystal for the alignment of 1 due to its ability to form a 

nematic liquid crystal phase at room temperature, which we found to be an effective 

temperature for functionalization, and its effective use in the alignment of triptycene.307 

The alignment relay technique relies on taking the alignment of a rubbed polyimide liquid 

crystal alignment layer and using that to pass on the alignment to the liquid crystal 5CB, 

then to 1, and finally to the SWNTs that will be deposited onto the surface. In this case, 2 

wt% of 1 was dissolved in 5CB so that when the 5CB was aligned on the polyimide layer, 

the alignment was also transferred onto 1. At this point SiO2 was placed on the polyimide 

layer, creating contact between phosphonate 1 and SiO2, allowing covalent 

functionalization to take place while 1 is still under the effect of alignment from the liquid 

crystals. After 18h, the SiO2 was removed and washed with dichloromethane to give a 1-

functionalized surface that, ostensibly, had been aligned. The orientation of 1 was fixed 

because it would have formed numerous covalent bonds to the SiO2 surface, precluding 
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rotation. After the alignment-controlled functionalization, XPS data and wetting 

characteristics evidenced proper covalent modification of the SiO2 surface. 

 While it was apparent that the functionalization was successful, a method to 

determine the alignment of the resulting surface was needed. Two potential methods for 

determining the alignment of 1-functionalized SiO2 were identified: polarization 

modulation infrared reflection-adsorption spectroscopy (PM-IRRAS), and directional 

contact angle measurements. First, vertical water contact angle measurements were 

taken on 1-functionalized SiO2 in two different directions with the expectation that the if 1 

were aligned, the contact angle would be different in the perpendicular directions due to 

the anisotropy of the molecule. However, the results showed a contact angle of 35 ° in 

both directions which did not indicate alignment. So next, the surface was subjected to 

PM-IRRAS following a procedure laid out by Gliboff et al.315 In their work, they were able 

to use the technique to determine the tilt angle of phosphonates on indium zinc oxide. 

When similar measurements were taken on 1-functionalized SiO2, the silicon substrate 

proved to be ineffective at reflecting the infrared light. The poor reflection coupled with 

the small amount of sample on the substrate gave no detectable signal. Even in ideal 

circumstances, the signal obtained by others is weak due to the small number of surface-

bound molecules. Similarly, ITO does not reflect infrared light well either, so we had to 

determine another method to observe the alignment of 1. 

 Instead of trying to observe the alignment of such a small molecule through indirect 

means, we thought that deposition of SWNTs onto the surface would provide a clear 

probe into the alignment of 1. SWNTs are large enough to be directly imaged through 

atomic force microscopy (AFM) so if nanotubes that are deposited on a 1-functionalized 
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surface were aligned, it would be evidence that 1 is also aligned. In order to use the 

nanotubes as an indication of the alignment of 1, conditions for nanotube deposition were 

screened. However, when AFM measurements of the resulting surface was obtained, no 

nanotube deposition was observed under any of the conditions that were tested. 

Ultimately, it appeared as though either the 1-functionalized surface was not aligned, or 

that 1 was incapable of proper binding to SWNTs in the solid phase. 

2.3.4 Designing a New Iptycene for the Alignment Relay Technique 

 Due to the failure of 1 as an adequate alignment agent in the original alignment relay 

technique experiments, it was concluded that a new iptycene would have to be 

synthesized for the ART to work. The original report of triptycene alignment in a liquid 

crystal solution claimed that the alignment was due to the internal free volume of the 

triptycene unit.307 The installation of the phosphonate groups directly onto anthracene 

may have broken up the 3D structure that creates the internal free volume in triptycene, 

and as a result it is possible that 1 lacks any ability to be aligned in a liquid crystal (Scheme 

6). Furthermore, there is also less π-surface area on 1, making it potentially weaker at 

binding with SWNTs. 

 

Scheme 6: Loss of paddlewheel structure in original iptycene design. 
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 In order to remedy these problems, a new target molecule (2) was devised which 

contains multiple intact triptycene units in conjunction with phosphonate anchoring groups 

(Scheme 7). The two triptycene cores create a large π-concave surface area which 

should allow for excellent SWNT binding, while also creating plenty of internal free volume 

for the calamitic liquid crystals to occupy, improving the alignment of 2 in 5CB. Finally, 

the phosphonate groups were preserved as they had proven effective at functionalizing 

both ITO and SiO2 in previous experiments with both phenyl phosphonic acid and 1. 

 

Scheme 7: Larger iptycene design for SWNT alignment. 
 

2.3.4.1 Synthesis of Extended Iptycene (2) for use in the Alignment Relay 
Technique 

 While 2 had never been synthesized before, the precursor molecule had been 

reported by Hart et al. making it an attractive synthetic target.285 However, attempts to 

reproduce Hart’s synthesis proved to be unfruitful, with many of the steps failing under 

the reported conditions, and so the conditions had to be reworked to provide an optimal 

route to our target molecule. The overall synthetic scheme can be seen in Scheme 8. 
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Scheme 8: Reaction scheme for the synthesis of iptycene 2. 
 

 The first step in the reaction sequence involves a Diels-Alder reaction between 

anthracene and trans-1,4-dichlorobutene to give Diels-Alder adduct 3. The reaction 
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results in a black solution with some precipitate formation upon cooling to room 

temperature. The original report called for purification of the mixture by passing it through 

an alumina plug to remove the black byproducts, however this did not adequately remove 

the byproducts and a mixture of starting materials, product, and black byproducts were 

recovered. Attempts to remove the black byproducts on silica gel proved effective, but 

unfortunately the excess dichlorobutene and unreacted anthracene eluted with product 3 

and further separations were ineffective. The amount of dichlorobutene used in the 

reaction was reduced to one equivalent and the reaction was run in toluene in order to 

reduce the amount of dichlorobutene left over after the reaction. However, this caused 

yield to suffer drastically and much of the dichlorobutene and anthracene was left 

unreacted, and once again inseparable from the product. Finally, the reaction was run 

neat with six equivalents of dichlorobutene and the reaction was followed by NMR to 

determine that after two days, there was complete consumption of anthracene.  Instead 

of relying on chromatography to remove the excess dichlorobutene, it was removed 

through vacuum distillation, with the pure, clear distillate being reused in subsequent 

reactions. The remaining black oil was purified using silica gel chromatography to give 3 

as a pure white solid. 

 A double elimination reaction of 3 gave 4 in nearly quantitative yields with no trouble. 

The elimination reaction worked so well that it was attempted on the crude reaction 

product of the first Diels-Alder in order to bypass the need for purification of 3. The 

elimination of the crude mixture resulted in the characteristic colour change for the 

elimination reaction, but upon workup and isolation, only 3 with some remaining 
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dichlorobutene was recovered. It is likely that the dichlorobutene reacted with the base 

faster than 3 could, preventing the desired elimination reaction. 

 The synthesis of the non-aromatized iptycene core (5) was achieved through a Diels-

Alder reaction between 1,2,4,5-tetrabromobenzene and diene 4. 1,2,4,5-

tetrabromobenzene was converted to a benzyne in situ through the dropwise addition of 

n-BuLi resulting in 5 precipitating from the solution. Product 5 was then aromatized in 

refluxing xylenes over 5 % palladium on carbon (Pd/C) and recrystallized from acetone 

to give the product in 55 % yield. The aromatization was revisited in order to improve the 

yield, but further reactions with Pd/C in different quantities, temperature, and solvents did 

not improve the yield. Fortunately, switching oxidizing agent to 2,3-dichloro-5,6-dicyano-

1,4-benzoquinone (DDQ) was responsible for increasing the yield to 88 % and is now the 

preferred method for oxidation of extended iptycenes in our lab. 

 The final step was a last Diels-Alder reaction between extended iptycene 5 and 

bis(diethoxyphosphoryl)acetylene. The first conditions tested were the same as those 

used to create the original phosphonate iptycene 1, but it failed to produce significant 

quantities of desired product 2. Luckily, the starting materials were not consumed in the 

reaction and simply increasing the temperature was enough to push the reaction forward 

and obtain pure 2 through silica gel flash chromatography. Both starting materials were 

also purified and recovered for recycling in future reactions. 

2.3.4.2 Testing the Liquid Crystal Alignment of 5CB Doped with Iptycene 2 

 Before testing the alignment relay technique with extended iptycene 2, a study was 

conducted to determine the effect of 2 on the alignment of 5CB while under the effects of 

a rubbed polyimide liquid crystal alignment layer. The concern was that the dissolution of 
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2 into the 5CB nematic liquid crystal phase might disrupt the orientational order of the 

phase or change the phase transition temperatures. The easiest way to determine if this 

is the case is to look at the solution under crossed polarizers in a polarized optical 

microscope, which required the alignment to be conducted on a transparent substrate. 

The rubbed polyimide alignment layer itself is transparent so ITO was chosen as the 

functionalization substrate over SiO2 because the former is transparent. 

 A polarized optical microscope is quite simple in construction and only differs from a 

regular optical microscope by the inclusion a heating stage for the sample, and two 

polarized lenses, one placed before the sample and the other placed after it. In simpler 

POMs the lenses are fixed in a perpendicular direction, in others the lenses can be rotated 

to different angles. The basic operating position of a POM is with the lenses perpendicular 

such that any light that goes through the first polarized lens is completely blocked when 

it goes to the second lens (Figure 37). Therefore, when placing a standard isotropic liquid 

in a POM, the image is completely black because it refracts the light in every direction 

equally, thus not changing the polarization of the light.  

 

Figure 37: Example of light passing through crossed polarizers. 
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 When a liquid crystal is placed between the crossed polarizers light can pass through 

the second polarizer due to the birefringence of liquid crystal materials. For example, 

calamitic liquid crystals, like 5CB, are rod shaped and so have one long axis and one 

short axis, which leads to a molecule with very high shape anisotropy. When the liquid 

crystals form their short-range domains of orientational order, they act as birefringent 

materials, meaning that they refract the light differently in two directions. This causes 

plane-polarized light to be refracted in such a way that it is no longer plane polarized, and 

therefore some of the light can pass through a second, perpendicular polarizer. The 

birefringence of liquid crystals causes unique patterns to be observed based on the local 

alignment of the liquid crystals in a sample, with some areas appearing dark, others light, 

and the rest will be varying shades and colours. The type of image is indicative of the 

liquid crystal phase which allows for accurate identification of the liquid crystal phase that 

is formed (Figure 38). The transition temperature for each of the liquid phase can be 

determined by observing the changes in POM structure while changing the temperature 

of the heating stage. The colours and shapes of the resulting image are the result of 

defects in the alignment of the liquid crystal, so when there are no defects, the image 

appears as a single, solid colour (Figure 38a). 
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Figure 38: Example POM images of various liquid crystals: a) aligned nematic 
phase (light green), b) Schlieren texture of a nematic phase, c) fan-shaped texture 

of a smectic A phase, d) mosaic texture of a smectic B phase, e) pseudo focal 
conic fan-shaped texture of a discotic columnar phase, and f) dendritic growth of 

a banana B1 phase.316 
 

 When looking at 5CB under crossed polarizers at room temperature, one expects to 

see the typical Schlieren texture of a nematic liquid crystal, similar to Figure 38b, and 

once aligned the image should become a smooth, single colour, like in Figure 38a. The 

5CB/2 solution had to be tested to ensure that the incorporation of 2 wt% of 2 would not 

disrupt the liquid crystal phase stability of the 5CB liquid crystal. First, the solution was 

observed between two glass slides, and the heating stage was heated to 40 °C such that 

the 5CB entered the isotropic liquid phase and the image went black. The stage was 

allowed to cool slowly until the Schlieren structure that is characteristic of a nematic liquid 

crystal started to become visible at 35 °C, as expected of 5CB, indicating that there was 

no destabilization of the nematic liquid crystal phase. 
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 Once the stability of the liquid crystal phase in the 5CB/2 solution was confirmed, it 

was important to ensure that the alignment of 5CB would not be disturbed by the presence 

of 2. Before this, however, pure 5CB was used as a standard to ensure that the alignment 

layers were functioning properly. The first alignment attempts were a failure, with aligned 

streaks being seen throughout the sample, which were attributed to scratches on the 

alignment layer surface (Figure 39a). Upon selection of unblemished alignment layers, 

the 5CB standard showed alignment immediately upon cooling from the isotropic liquid 

phase into a solid yellow colour (Figure 39b).  

 

Figure 39: POM images of 5CB standard under the effects of alignment. a) 
Exhibiting defects due to scratched alignment layer, b) proper alignment. 

 

 With the alignment of 5CB on the rubbed polyimide alignment layer confirmed, the 

5CB/2 solution was examined. For this, the 5CB/2 solution was placed between ITO and 

the rubbed polyimide alignment layer, with the ITO surface on the bottom, and the stage 

was heated to 40 °C. However, upon cooling, instead of forming a solid colour quickly, a 

defect-rich pattern emerged immediately (Figure 40a). The small, aligned regions slowly 

merged over time into larger regions of order, that showed only a small number of 

Schlieren defects (Figure 40b, c, and d). After about fifteen minutes, the alignment was 
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completed (Figure 40e) and confirmation that 2 would not interfere with the overall liquid 

crystal alignment was received, and therefore 2 could be potentially useable in the 

alignment relay technique. 

 

Figure 40: POM images of 5CB/2 solution between an alignment layer and ITO 
upon slow cooling from 40 °C exhibiting a) defect-rich pattern, b) increase in size 

of ordered regions, c) large aligned regions with Schlieren defects, d) almost 
completely aligned liquid crystal with several areas with defects, and e) well-

aligned 5CB/2 solution. 
 

2.3.4.3 Alignment Relay Technique Trials 

 With the alignment of the 5CB/2 solution confirmed, it was time to test it with the 

alignment relay technique. The piranha cleaning method that was found to work best for 

phenyl phosphonic acid and 1 was also used to clean the ITO and SiO2 for these trials. A 

solution of 2 wt% 2 in 5CB was heated past 40 °C and a drop of the solution was pipetted 

onto a liquid crystal alignment layer and allowed to cool to room temperature, after which 

a 10 x 10 mm slide of cleaned ITO was placed on top of it. The slides were pressed 

together such that the drop was spread out across the surface of the ITO, and they were 

left to react for a day. The ITO was then separated from the alignment layer and was 
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rinsed with dichloromethane (DCM) to remove all unreacted 2 and all the 5CB. At this 

point, the ITO surface is covalently functionalized with an aligned array of 2 and is ready 

for SWNT deposition. 

 At first, SWNT deposition times had to be screened, with the 2-functionalized ITO 

slide being left in an aqueous suspension of surfactant wrapped SWNTs. Originally, the 

deposition times that were being tested ranged in the minutes to hours, and the surfaces 

were then dried with a stream of N2. However, the AFM images of the resulting surfaces 

showed no nanotube deposition when compared to the cleaned ITO standard (Figure 

41a). When the deposition time was increased to 24 h, the AFM images started to show 

some nanotube deposition, and the small number of nanotubes found on the surface were 

aligned in the same direction (Figure 41b). With such promising results, longer deposition 

times were attempted, and it was found that after two days the 2-functionalized surface 

had a good density of well-aligned SWNTs deposited onto it (Figure 41c). 

 

Figure 41: AFM images of a) piranha cleaned ITO, b) after one day nanotube 
deposition time, c) after two days of deposition time. 

 

 The results required validation to confirm that it was indeed the liquid crystal 

alignment was being relayed to the SWNTs. To do this, we decided to run an experiment 

where there was a break in the alignment relay by removing the liquid crystals such that 
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2 was not under the effect of alignment when it functionalized the ITO surface. First, 

benzonitrile was used as a replacement for 5CB because it is a small molecule with the 

same shape but lacks liquid crystal phases, and therefore provides no alignment. The 

resulting 2-functionalized surface therefore possesses no alignment and should not align 

the nanotubes that are deposited on the surface. Another control experiment was also 

run with 5CB at 50 °C such that 5CB was in the isotropic liquid phase, losing all alignment 

properties. After the deposition of nanotubes on the surfaces, AFM images showed that 

nanotubes were completely absent from both control experiment surfaces (Figure 42).  

 

Figure 42: AFM images of control experiments a) with benzonitrile, b) with 5CB 
above clearing point. 

 

 The reason for this result was not immediately obvious, but upon further investigation 

it became clear that the nanotubes do not deposit onto the unaligned surface because 

there is a lack of π-π interactions between the surface and the nanotubes. In an aligned 

surface, the nanotubes can find domains where they undergo π-π interactions along the 

entire length of the nanotube, allowing them to stay on the surface during deposition and 

cleaning. Previous studies have shown that carbon nanotubes are resistant to deposition 
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on non-polar surfaces,317 so we believe that without the alignment of 2 providing sufficient 

π-π stacking interactions, the nanotubes do not have the required binding energy to stay 

on the surface and are either not deposited at all or are easily removed during post-

deposition washing process (Figure 43). 

 

Figure 43: Schematic representing the alignment of 2 on ITO under the effects of 
liquid crystal alignment and in the absence of alignment. The aligned surface 

allows for easy deposition of nanotubes. 
 

2.3.4.4 AFM and Raman Studies of the Alignment and Sorting of the ART 

 The alignment relay technique was envisioned to be able to not only align carbon 

nanotubes but also sort them due to the shape of the iptycene nanotweezers. With the 

observation of alignment exhibited by the nanotubes deposited on 2-functionalized ITO, 

we needed to quantify the alignment and determine if there was any sorting of the 

nanotubes.  
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 First, AFM was used to quantify the alignment of the nanotubes found on the ITO 

surface. The statistical analysis of the alignment was done through AFM study of several 

images amounting to about 200 nanotubes. Most of the nanotubes were aligned along 

the same director with some outliers, and the standard deviation of the alignment was 23 

° with 90% of the nanotubes within 37 ° of the average alignment (Figure 44). This is quite 

astounding considering the methodology used required no specialized equipment, like 

lithography, and can be done over a large area. Using AFM, the density of the nanotubes 

was found to be 0.39 µm-2.  

 

Figure 44: Histogram of the alignment of nanotubes deposited on an aligned 2-
functionalized ITO surface. Alignment of each nanotube is shown as the deviation 

from the average alignment of the total sample. 
 

 Through the AFM alignment measurements, it became apparent that the nanotubes 

were of exceptionally long lengths compared to what was expected. The average length 

of the as-purchased nanotube suspension was 1.00 µm, but upon further AFM analysis 

of ART-deposited nanotubes on ITO, the average length was determined to be 1.83 µm 

(Figure 45). This was surprising, as length was not one of the parameters that was 
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expected to be effectively sorted by the ART. We believe that the cause of the preferential 

binding to longer nanotubes is because the longer nanotubes are capable of forming more 

π-π interactions than the shorter nanotubes, giving them a higher binding energy to the 

surface. This result implies that the binding mechanism is likely reversible and 

thermodynamically favours longer nanotubes, in fact the reversibility of the ART has been 

exploited in other work done in the Schipper group through the introduction of simple 

sonication during the deposition step.318 

 

Figure 45: Length data of nanotubes from the original as-purchased sample 
(black) and ART-deposited nanotubes (red). 

 

 The AFM micrographs were also used to determine the diameter sorting of the 

resulting nanotubes, however when height measurements were taken, they varied 

drastically (several nanometers) along the length of a single nanotube. This variation is 

likely due to the proprietary surfactant wrapping on the nanotubes being 

inhomogeneously distributed along the nanotube surface. To overcome this issue, we 

turned to Raman spectroscopy to determine the diameter of the nanotubes instead. 

Raman spectroscopy has the advantage of not being sensitive to the surfactant and it is 
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capable of observing large areas, resulting in a much larger sample size. However, the 

drawback is that Raman spectroscopy requires a surface that is capable of reflecting the 

incident laser towards the detector, and due to ITO being transparent it could not be used 

in the Raman studies. 

 We switched surfaces from ITO to SiO2 for the purposes of Raman spectroscopy 

because SiO2 is good at reflecting the incident laser light, but this meant that the ART had 

to be optimized on silicon first. Luckily, the process worked about the same as on ITO, 

with a reaction time of one day and a deposition time of two days, and the resulting 

surface showed a standard deviation of alignment of 33 °, average length of 1.53 µm, and 

density of 0.57 µm-2. With an ART-deposited nanotube sample ready on SiO2, Raman 

studies were made available. 

 The Raman studies were conducted with a 632 nm excitation laser on a vibration-

resistant stage. The radial breathing mode region of the Raman spectrum was of interest 

because it gives direct insight into the diameters of the nanotubes. First, a standard 

sample was prepared by piranha cleaning a SiO2 surface, and then dropcasting the as-

purchased, surfactant wrapped carbon nanotubes onto the surface and allowing the 

solvent to evaporate, depositing a thick film of CNTs. The Raman spectrum of the 

standard sample showed a strong signal for three chiralities of nanotubes corresponding 

to diameters of 1.25 nm, 1.44 nm, and 1.59 nm (Figure 46). When the Raman studies 

were conducted on ART-deposited nanotubes on SiO2, several scans of different areas 

had to be combined, due to the low number of nanotubes on the surface. The results 

show that there is a drastic preference for larger diameter nanotubes, with the 1.25 nm 

nanotubes almost completely selected out of the sample, and the 1.59 nm nanotubes 
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becoming the most abundant (Figure 46). An unknown peak appeared at 232 cm-1 which 

was believed to correspond to 2, as its structure is similar enough to a CNT that it may 

possess a phonon that is like that of a CNT radial breathing mode. The Raman spectrum 

of freshly prepared 2-functionalized SiO2 contained only the peak at 232 cm-1, verifying 

that it belongs to 2. 

 

Figure 46: Radial breathing mode region of the Raman spectrum of a) the as-
purchased nanotube sample dropcast on SiO2, b) ART-deposited nanotubes on 
SiO2. The peak marked with a * indicates the signal from extended iptycene 2. 

 

 With these results, we were able to confirm that not only does the alignment relay 

technique effectively align carbon nanotubes and sort them by length, but it also has a 

significant effect on the diameter sorting as well. Furthermore, because phosphonate 

monolayers have been incorporated into other FETs, it bodes well for the direct 

incorporation of ART into future CNTFET fabrication processes. The ART is amenable to 

large area depositions through the use of larger alignment layers and does not require 

any expensive instrumentation or tedious work. The main reason for creating the ART 

however, was to have a technique that is capable of further modifications that allow for 
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judicious targeting of preferred CNT properties through rational alterations of key 

parameters. 

2.3.5 Testing Other Liquid Crystals in the ART 

 One of the easiest parameters to change in the alignment relay technique is the liquid 

crystal. The first liquid crystal that was tested was 5CB for ease of use reasons: it is a 

room temperature nematic liquid crystal that is very easy to align and is still liquid enough 

to dissolve other materials. With 5CB working so well, we wanted to try a higher clearing 

point nematic liquid crystal and a smectic A (SmA) phase liquid crystal to see what effects 

they might have on the overall control of the ART. 

 Our intention was that the higher clearing point would allow for a faster reaction 

between 2 and the substrate, decreasing the overall time of the ART. Additionally, a faster 

reaction time may also increase the density of 2 on the surface, and perhaps also improve 

the nanotube deposition. To test this hypothesis we tried to use a proprietary MERCK 

liquid crystal, denoted here as LcMRK, with a clearing point of 70 °C. The liquid crystal 

alignment portion of the ART was done on a heating stage which was first heated past 70 

°C and then held at 65 °C for one day using a LcMRK/2 solution. After deposition, AFM 

microscopy of the surface showed deposition of what appears to be triangular shaped 

crystals, but no nanotubes (Figure 47). The crystals are likely LcMRK that crystallized 

onto the surface and were not washed off during the rinsing procedure. However, further 

cleaning was unable to completely remove the crystals from the surface, and even after 

extended sonication in organic solvents nanotube deposition was still not observed. 

Perhaps another liquid crystal with a lower clearing temperature, or different structure 

would be easier to completely remove from the surface post-functionalization. 
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Figure 47: AFM micrograph of 2-functionalized ITO surface after ART-deposition 
with LcMRK as the liquid crystal. 

 

 Fortunately, the results obtained when switching to 4’-octyl-4-biphenylcarbonitrile 

(8CB) were far more promising. 8CB is an analogue of 5CB with an octyl chain instead of 

a pentyl chain (Scheme 9), but the small change in structure has a profound effect on the 

order of the liquid crystal phase. 5CB is a nematic liquid crystal, meaning it is the lowest 

ordered liquid crystal phase which exhibits only orientational order, and on the other hand, 

8CB is a room temperature smectic A liquid crystal, a more ordered phase. SmA phases 

exhibit improved orientational order over nematic phases and they also possess lamellar 

positional order as well (Scheme 9). We were expecting that the increase in orientation 

and the added positional order would improve the order of 2 on the surface, thus providing 

an increase in the alignment of the deposited nanotubes. 8CB was the liquid crystal of 

choice because, like 5CB, it is commercially available, well studied, and is in the SmA 

phase at room temperature. 
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Scheme 9: 5CB and 8CB showing the order of their liquid crystal phases. 
 

 When performing the ART with 8CB it becomes crucial to heat the 8CB/2 mixture 

past the clearing point to make 8CB less viscous, allowing for full dissolution of 2. 8CB 

was incorporated into the ART using ITO as the substrate with a reaction time of one day 

and deposition time of two days, as in the original ART procedure. The ART-deposited 

nanotubes showed alignment, but more interestingly, it became immediately apparent 

that the length of the nanotubes was considerably shorter than when the ART is done 

with 5CB. A detailed statistical analysis of ~ 1,800 nanotubes over an area of 2,200 µm-2 

revealed that the standard deviation of alignment was 30 °, the density of the nanotubes 

was 0.81 nanotubes µm-2, and the average length of the nanotubes was 0.81 µm. These 
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results are in stark contrast to the 5CB parameters of 1.83 µm, 0.39 nantotubes µm-2, and 

a standard deviation of alignment of 23°. 

 The plainest difference between the two ART experiments is that the length sorting 

is completely reversed. When 5CB was used, the ART-deposited nanotubes were on 

average 0.83 µm longer than the as-purchased sample, conversely 8CB ART-deposited 

nanotubes were 0.29 µm shorter on average than the standard sample. This means that 

with the simple change of the liquid crystal from a room temperature nematic to a room 

temperature SmA, the ART-deposited nanotubes show a > 1 µm shift in the length sorting. 

On top of profound swing in length sorting, the nanotubes were also about twice as 

densely deposited on the 8CB ART-surface. 

 We hypothesize that the length sorting difference and increase in density is directly 

due to the improved order in the SmA phase. Up to this point the 2-functionalized surface 

has been depicted in its ideal condition with perfect alignment and perfect positional order 

(Figure 48), however the reality is likely far from this idealized depiction. Far more likely 

is that 2 is not perfectly aligned or positioned, and in the case of 5CB, 2 would be aligned 

fairly well, but would possess no positional order whatsoever. When using 8CB, the 

alignment should be improved, and 2 would also possess positional order. We think that 

the positional order of 8CB, and therefore of 2, is the reason for both the increase in 

density and preference for shorter nanotubes. The rationale for the original length sorting 

observed in 5CB was that the nanotubes of longer length were able to undergo enough 

interactions along their length to bind to the surface, whereas the shorter nanotubes were 

not and were washed off. When extending this idea to 8CB, we see instead that the 

shorter nanotubes must be now capable of forming enough π-π interactions to bind to the 
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surface. For this to be true, there must be a fundamental change in the alignment of 2 on 

the substrate. It is likely that the change to 8CB has imparted positional order onto 2, 

creating more domains where 2 is aligned both orientationally and positionally. This would 

increase the density of the nanotubes on the surface and because the as-purchased 

nanotubes were highly abundant in shorter nanotubes, the resulting 8CB ART-deposited 

nanotubes are shorter and more densely packed.  

 

Figure 48: Idealized schematic of an aligned array of iptycenes covalently 
functionalized on a surface. 

 

 The other interesting aspect was that the average alignment was actually lower in the 

8CB samples when compared to the 5CB samples, despite the higher order of SmA 

phases. The result was confusing but when the 8CB ART alignment was done on SiO2, 

it also had a standard deviation of alignment of 30°, and in fact, every time the 8CB ART 

was performed, the standard deviation of alignment was very close to 30°. This is different 

from the 5CB ART which varies in the alignment from 23 ° to 42 ° from sample to sample, 

with no intentional change in conditions or preparation. We attribute this to the higher 

orientational order parameter of 8CB, in that it is far more consistent whereas 5CB has a 

lower degree of order, but more randomness so it can occasionally create a highly aligned 

surface or a poorly aligned surface. 
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 Once we finished the 8CB ART AFM studies, we switched substrates to SiO2 to 

undertake Raman spectroscopy studies. The reaction conditions used for the 5CB ART 

on SiO2 resulted in very poor density of deposited nanotubes, which was attributed to 

lower reactivity of phosphonates with silicon oxide than with ITO. The functionalization 

reaction creates ethanol as a byproduct, so in an attempt to improve reactivity the reaction 

was tested under vacuum conditions to drive off the ethanol and push the reaction 

forward. The functionalization was run in a vacuum oven at room temperature under 

alignment conditions with varying reaction times from three hours to two weeks. 

Unfortunately, reaction times lower than one day still did not show any nanotube 

deposition, and the longer reactions appear to have transferred some film onto the 

surface (Figure 49).  
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Figure 49: AFM micrographs of SiO2 functionalization under vacuum. 
 

 The identity of the film was unknown, but we thought that it might be a thick, dense 

film of CNTs. So, the ART was performed under vacuum deposition again, but instead of 

using the CNT suspension in the deposition step, a surfactant solution of the same 

concentration without any nanotubes in it was used. Even with the nanotubes absent from 

the ART, the same film formed indicating that the film originated from something else. 

Seeing as the film was not the result of 2, the only remaining potential source of the film 

was the polyimide coating of the alignment layer, or the surfactant itself. Since the 

surfactant is likely very easy to wash off in the typical washing procedure, we believe that 

under vacuum conditions there is a partial transfer of the polymer from the alignment layer 

onto the SiO2 surface. This transfer is not observed under atmospheric pressure, so it 

appears that the vacuum accelerates the transfer. The film transfer precluded further 

investigation of vacuum reactions, but vacuum reactions can be revisited if another 

alignment mechanism for the liquid crystals is used, such as magnetic fields. 

 Instead of relying on vacuum reactions, the reaction time was increased, although 

this is not ideal because an increase in the ART time makes it less viable for adaptation 

to use in electronics. Fortunately, after two days of reaction the 8CB ART worked very 

well on SiO2, with the resulting nanotubes exhibiting a density of 1.72 nanotubes µm-2, an 

average length of 0.68 µm, and a standard deviation of alignment of 30°. The results are 

even more striking than on ITO with the density tripling versus the 5CB ART on SiO2.  

 With a properly ART-functionalized SiO2 surface Raman spectroscopy studies were 

once again accessible. It was expected that the change in liquid crystal would not have 
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any impact in the diameter sorting of the nanotubes because the diameter selectivity is 

believed to be a result of the size and shape of the π-concave iptycene host. In fact, that 

is exactly what happened: the diameter of the 8CB ART-deposited nanotubes was the 

same as the 5CB ART-deposited nanotubes. The larger diameter nanotubes were 

enriched and the smaller diameter nanotubes were selected out of the sample in the same 

way as previously demonstrated. The 8CB results were very satisfying because they 

show that a small change in the ART can have a large impact on the resulting surface, 

and furthermore, the parameters can be targeted independently of one another, giving a 

high level of control over the final nanotube surface. 

 Finally, various nanotube deposition times were screened to determine whether there 

would be a significant difference in the parameters of the deposited nanotubes. It was 

expected that an increase in density of the nanotubes and perhaps even an improvement 

in the alignment would be observed, as nanotubes were dynamically exchanged with one 

another over the course of the longer deposition time. However, the results were quite 

random and no correlation in diameter, length, density, or alignment was observed as a 

function of deposition time. As such, one day remains the optimal deposition time for the 

alignment relay technique. 

2.3.6 Alignment Relay Technique on Hafnium Oxide 

 Over the last few years, hafnium oxide has become an increasingly important 

component of FETs. As the size of transistors has decreased, there has been a drive to 

find more powerful dielectrics than SiO2 to act as the gate dielectric. Hafnium oxide has 

become the leading dielectric to replace silicon dioxide, so it is important for us to find a 

way to adapt the ART to include functionalization of hafnium oxide. 
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 The first attempt at using hafnium oxide as the substrate in the ART was done using 

8CB, with the same conditions that are used for SiO2. Unfortunately, under these 

conditions, no deposition was observed, and after increasing the reaction time to three 

days of reaction and two days of deposition, minimal CNT deposition was observed with 

a density of 0.02 nanotubes µm-2, albeit with an incredible degree of alignment with a 

standard deviation of only 12° (Figure 50). These results suggest that the degree of 

functionalization of hafnium oxide with 2 was very low, and it led to us trying to find an 

alternative anchoring group that would react better with hafnium oxide. 

 

Figure 50: AFM image of ART-deposited nanotubes on hafnium oxide. 
 

2.3.6.1 Synthesis of Iptycene with Hydroxamic Acid Anchoring Group 

 In the search for a more optimal binding group we came across a report by a research 

group from IBM who had used hydroxamic acids to selectively functionalize a hafnium 

oxide surface over a silicon oxide surface.294,295 Hydroxamic acids are commonly used 

as ligands for transition metal catalysis and exist in both keto and enol tautomeric forms 

(Figure 51).319 They are easily deprotonated to give the hydroxamate which is capable of 
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forming two covalent bonds with metal oxide surfaces, and their selectivity for hafnium 

oxide made the inclusion of hydroxamic acids on our iptycene particularly intriguing. 

 

Figure 51: Keto and enol tautomers of a hydroxamic acid. 
 

 We envisioned a synthetic route involving the installation of diesters onto our iptycene 

through a Diels-Alder reaction, followed by conversion of the esters to the desired 

hydroxamic acids. The installation of the esters is straightforward and only requires a 

Diels-Alder reaction with dimethyl acetyelenedicarboxylate (DMAD). Alternatively, DMAD 

could first be converted to the hydroxamic acid and then be used in a Diels-Alder reaction, 

directly installing the hydroxamic acids. Both routes were tested using anthracene as the 

substrate, so as to not consume our extended iptycene 6 (Scheme 10).  

 Route 1 offers the most convergent synthesis, requiring no step after the formation 

of the iptycene and was therefore initially more attractive, however attempts to convert 

DMAD to the hydroxamic acid were not successful. The reactions involved first reacting 

hydroxyl amine hydrochloride with potassium hydroxide in cold methanol, followed by 

precipitation and removal the formed potassium chloride, in order to obtain free 

hydroxylamine. The hydroxylamine solution was stirred for five minutes and then added 

to a stirring solution of DMAD in methanol. The first pass at the reaction resulted in a very 

violent reaction so subsequent attempts were done with dropwise addition of the 

hydroxylamine solution to DMAD. Once the addition was complete, further potassium 
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hydroxide was added until a pH of 10 was achieved, followed by stirring for 18 h after 

which the mixture turned orange. Upon acidification a light orange precipitate formed but 

the 1H NMR contained no signals, lacking the characteristic hydroxamic acid peaks. The 

violent reaction that was observed lead to speculation that a potential Michael-addition 

could be competing with the aminolysis reaction, adding extra hydroxylamines to the 

DMAD. Further attempts with various bases and reaction conditions still failed to yield a 

product that could be characterized as 7, so route 1 was abandoned in favour of route 2. 
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Scheme 10: Installation of hydroxamic acid anchoring groups onto anthracene. 
 

 While route 2 is not as efficient, it was possible that the conversion of the esters to 

the hydroxamic acids may have proceeded cleaner after the Diels-Alder. We used 

anthracene as the starting material for the model reaction with DMAD and the Diels-Alder 

gave product diester 8 in a 77 % yield after isolation by column chromatography on silica 

gel, however the conversion of the esters to the hydroxamic acid still proved to be 

challenging. Originally, the same conditions as route 1 were used but once again the 

resulting precipitate did not show any product signals in the proton NMR. The process 

was repeated several times with alterations in solvent, temperature and base to no avail. 

Finally, conditions were found that seemingly gave the desired product, albeit in very low 

yield. A solution of hydroxylamine hydrochloride in dichloroethane (DCE) was added to a 

stirring solution of 8 in DCE at room temperature. Cold triethyl amine was added slowly 

and the reaction mixture was refluxed for one hour, cooled on ice, and acidified with 

trifluoroacetic acid (TFA) to give a white precipitate in a 10 % yield. The precipitate was 

collected, and NMR analysis shows the expected product peaks, with the absence of the 

methyl peaks, however the hydroxamic acid amine peak was also missing. It is possible 

that the hydroxamic acid peak was undergoing rapid exchange in the deuterated water 

(D2O) NMR solvent, and thus was not observable on the NMR timescale, but due to the 

incomplete proton spectrum, the identity of 9 has never been fully confirmed. 

 The covalent functionalization of a surface requires a very small amount of material, 

so despite the low yield that was seen in the anthracene trials, if the reaction could easily 

be extended to the synthesis of 11 we could still attempt to use it in the ART. Using the 
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best conditions obtained with the anthracene trials, the synthesis hydroxamic acid 

functionalized extended iptycene 11 was attempted (Scheme 11). The Diels-Alder 

reaction between 6 and DMAD was far slower than with anthracene and required two 

days of reaction time to give even modest yields, but otherwise worked as expected. The 

conversion of the esters to the hydroxamic acids, however, resulted in some new 

problems. After running the reaction a white precipitate was once again formed and 

collected, however unlike in the anthracene trials, this precipitate was entirely insoluble 

in deuterated water, and attempts to solvate 11 in non-polar organic solvents, polar 

organic solvents, and both acidic and basic aqueous mixtures all failed. A final attempt 

was made to solvate the white precipitate in heated 8CB and 5CB, but this also failed, 

and because the ART requires that the iptycene be soluble in the liquid crystal, the 

installation of hydroxamic acids onto the iptycenes was abandoned. 
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Scheme 11: Installation of hydroxamic acid groups onto extended iptycene. 
 

 Moving forward the hydroxamic acids could be derivatized to improve solubility. For 

example, an alkyl substituted hydroxyl amine can be used as a starting material in place 

of hydroxylamine hydrochloride, introducing a flexible solubilizing group and reducing the 

polarity of the molecule. There are several potential problems with this route, one being 

that the inclusion of large flexible alkyl chains may impede the approach of the iptycene 

onto the surface and hinder the resulting covalent bonds, making the product incapable 

of forming effective covalent bonds to the hafnium oxide surface. Furthermore, the alkyl 

chains may cause a disruption in the liquid crystal alignment, altering the liquid crystal 

phase or simply impeding the alignment and dense packing of the iptycene on the 
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functionalized surface. Despite these potential issues, the inclusion of even short alkyl 

chains may be of interest moving forward. 

2.3.7 Using Lithographic Techniques to Enhance the Alignment Relay 
Technique 

 Lithographic techniques are heavily relied upon for the installation of nanoscopic 

features in the fabrication of functional nanomaterials, due to the excellent nanometer-

scale resolution that they can achieve.320,321,322,323 We were interested in coupling the 

alignment and deposition capabilities of the ART with the nanoscale control of lithography 

to see if we could further improve the effects of the ART. We had envisioned creating a 

surface with sub-micron sized trenches with the hopes that these would act as boundaries 

that would prevent nanotubes from adopting angles that deviate too far away from the 

intended angle. Furthermore, we originally wanted to couple this with a demonstration of 

the selective deposition of nanotubes with the hydroxylamine iptycene, so a surface with 

regions of HfO2 and SiO2 was the original target. 

 There are several ways that one can go about creating a surface that has regularly 

patterned trenches, and because we were targeting trenches with widths in the range of 

70 – 300 nm, we had to rely on electron beam lithography (EBL). If the feature size is 

above one micron, UV lithographic techniques can be used instead, making the process 

much faster and less costly. The EBL machine that used had a spot size as small as 2.9 

nm under optimal conditions and could therefore be easily relied upon to create the 

trenches that were required. 

 The route to creating the trenched surface required several key decisions to be made 

in terms of the exact methods used for each step: there were two potential routes that 
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were considered which can be seen in Scheme 12 and Scheme 13, route 1 features six 

steps while route 2 requires seven. The shorter process makes route 1 more enticing but 

further consideration of each step lead to route 2 being the chosen path forward.  

 

Scheme 12. Route 1 for creating trenched surface, featuring liftoff procedure. 
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Scheme 13. Route 2 for creating trenched surface, featuring plasma etch. 
 

 The key difference between the two is the specifics around how the trenches are 

made. In route 1 the trenches in the top silicon layer are made indirectly by EBL: the 

electron beam sensitizes the resist (Scheme 12d) and following removal of the sensitized 
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areas and deposition of silicon oxide (Scheme 12e), the resist is completely removed in 

a liftoff procedure which also removes the excess silicon oxide (Scheme 12f). In this 

approach, during the sensitization step the electron beam would be targeting the area 

that ultimately becomes the SiO2 plateaus in the final surface (Scheme 12f). Because the 

size of the trenches is on the scale of nanometers, and the size of the plateaus is on the 

scale of microns, the total surface area that the electron beam would have to target is at 

least one order of magnitude larger in this case. This route would therefore take several 

days to manufacture a desirable surface with an area of approximately 10 mm x 10 mm.  

 Furthermore, liftoff procedures are generally not as clean because the removed 

substrate is still present in the solution as it is being removed and these particles can 

adsorb to the surface, resulting in a dirty, ununiform surface. The anisotropic nature of 

the trenches also makes liftoff quite challenging because in order for the liftoff process to 

work well, the etching solvent has to be able to access and dissolve the resist. In our 

case, the only open surface for the solvent to react with the resist would be from the 

outside edges and would require the solvent to travel all along the narrow trench to 

remove the resist, making it likely that the trenches would be well formed around the 

outside of the surface, but raises the question of whether or not they would effectively be 

formed towards the middle. For these reasons we decided against using route 1, and 

instead turned our attention to route 2. 

 Route 2 creates the trenches in an opposite manner to how route 1 creates them. A 

complete layer of silicon oxide is first deposited onto the hafnium oxide and this is then 

further coated with an e-beam resist (Scheme 13b-d). The resist is then etched using EBL 

to create the areas that will ultimately become the trenches (Scheme 13e), covering a far 
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smaller area and therefore reducing the overall exposure time significantly. The exposed 

silicon is then removed through plasma etching (Scheme 13f), and because the resist is 

resistant to the plasma etch, it protects the silicon beneath it from being removed. Finally, 

the resist can be removed easily with organic solvents, because it is the top layer, to give 

the desired surface (Scheme 13g). Thus, all of the main problems that were present in 

route 1 are alleviated with route 2, even though the overall process requires an additional 

step. 

 A silicon wafer was purchased from the University of Waterloo Quantum NanoFab 

Facility for use as the base substrate, and all manipulation of the substrate was done in 

the Quantum NanoFab Facility cleanroom to prevent contamination with small particles. 

The silicon wafer was first cleaned using a piranha solution to create a robust silicon oxide 

layer and remove any contaminating organics. The cleaned surface was then loaded into 

an atomic layer deposition (ALD) chamber and a ~ 50 nm layer of hafnium oxide was 

deposited to cover the entire silicon oxide substrate. The substrate was again cleaned 

and then placed into a physical vapor deposition (PVD) chamber where a silicon oxide 

target was resistively heated to evaporation in order to cover the substrate with a ~ 10 

nm thick layer of silicon oxide. The substrate was again subjected to piranha submersion 

to both clean the substrate and oxidize the silicon oxide layer fully to silicon dioxide. The 

substrate finally then diced into 10 mm x 10 mm square pieces that would be useable in 

the EBL process. 

 For the electron beam to have any effect on the substrate, it first had to be coated 

with an electron beam resist. A copolymer of poly(methyl methacrylate) (PMMA) and 

poly(methacrylic acid) (MA) was used as the resist. The copolymer PMMA/MA contains 



153 

33% of MA and was preferable to simple PMMA due to the significantly higher electron 

beam sensitivity, better contrast, and higher resolution which was necessary for the small 

lines that were desired in this process. Upon excitation with an electron beam, the polymer 

resist undergoes depolymerization in the incident area, making it easy to remove with 

organic solvents, in the case of this copolymer, the developing solvent of choice is a 1:3 

mixture of methyl-isobutyl-ketone (MIBK) and isopropanol (IPA). This mixture is strong 

enough to dissolve the exposed resist, but weak enough that it does not significantly 

dissolve or disturb the unexposed resist on the timescale of development (~1 minute). 

The unexposed copolymer can easily be completely removed through sonication in 

acetone. 

 The resist-coated surface was then exposed to an electron beam at multiple doses 

to determine the optimal dosage required to obtain the lines that we wanted, this is 

commonly called a dose test. The test revealed an optimal dosage capable of generating 

the appropriate line width with the lowest time and energy, and without causing the lines 

to become thicker than desired. With the appropriate dose determined, a second 10 nm 

x 10 nm surface was using the same procedure, and through the use of EBL the surface 

was split into three distinct regions, one with 70 nm wide trenches, one with 100 nm wide 

trenches, and the final with 300 nm wide trenches. The trenches in each region are 

separated by 3 µm, and the three regions are separated by 0.5 mm. 

 After development of the resist layer, the exposed SiO2 layer was etched in a fluoride 

plasma. The dry etch was done on an Oxford Instruments ICP380 using CHF3 as the 

plasma precursor for a length of ~6 seconds to etch the ~50 nm SiO2 layer down to the 

HfO2 layer underneath. CHF3 was chosen as the etchant because of the affinity of silicon 
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towards fluoride, which results in a more selective etching process. The goal was to be 

able to only remove the SiO2 layer, while leaving the HfO2 intact (Scheme 13f). 

 

Figure 52: Photograph of the substrate after nanofabrication showing three 
regions of trenches. 

 

 Once the etching process was completed the excess resist was removed in an 

acetone bath to give the desired surface (Scheme 13g). The trenches in the surface could 

be easily seen by eye (Figure 52). One of the regions of trenches is smaller than the 

others because the exposure time was so long that the facility was closing, and the 

experiment had to be stopped early. Nonetheless, the trenches were still intact and 

plentiful enough to carry forward to the experimental steps. 

 

Figure 53: Verification of the trenched surface using AFM (a, b) and SEM (c). 
 



155 

 The integrity of the trenches was verified through AFM and scanning electron 

microscopy (SEM) (Figure 53). AFM analysis shows that the trenches are present along 

the surface with what appears to be some residual resist along the edges of the trenches. 

The depth of the trenches was confirmed to be ~30 nm with AFM. Also notable is that the 

trenches are not completely uniform in their width, likely due to either imperfections in the 

EBL process or in the development of the resist after exposure. SEM displays the same 

characteristics as the AFM, and also shows several defects along the length of the 

trenches such as disconnects and slight shifts in their position. These disconnects are a 

feature of the EBL process, as when the beam reaches the edge of the exposure window 

it becomes less precise, and when the stage is moved to continue the exposure it can 

result in slight discontinuities. Overall, despite the small imperfections, the structure of the 

surface turned out as originally planned. 

 With the synthesis of 11 resulting in failure, we no longer had a molecule that was 

capable of functionalizing HfO2 effectively and selectively, but we had been creating both 

11 and the surface simultaneously. So, with the trenched surface created, a new use for 

it had to be imagined. The first step was to characterize the surface to ensure that the 

trenches were indeed HfO2, and to do this we turned to SEM and used the same machine 

to do an energy dispersive X-ray analysis (EDXA). The operating principle of EDXA is as 

follows: an electron of sufficient energy bombards a surface completely removing an 

electron from one of the inner electron shells of an atom, an electron from a higher energy 

shell then relaxes to occupy the now vacant site, releasing an amount of energy that is 

characteristic for each atom, and works especially well for heavier atoms with a large 

number of electrons. The energy that is emitted in the electron relaxation process is then 
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graphed to give a spectrum of all atoms in the surveyed sample, which can be integrated 

to give an accurate chemical composition. EDXA should therefore be capable of 

surveying the surface for Hf and Si, both of which should provide strong signals, 

depending on the region surveyed. However, when the EDXA experiments were run, it 

was observed that in both the trenches and on the plateaus only Si was present, with no 

Hf appearing anywhere on the sample (Figure 54). The results indicate that the HfO2 layer 

was likely also etched in the fluoride plasma step of the process due to the small thickness 

of the HfO2 and SiO2 layers. If HfO2 trenches are desired, the HfO2 layer should be 

increased in thickness significantly to avoid this issue from occurring again. However, 

because 11 was not successfully synthesized, this result was a boon. It allowed us to use 

the surface under the typical ART conditions and observe what effect the trenches would 

have on nanotube deposition and alignment, both with and without the use of a liquid 

crystal alignment layer. The results of these experiments are still pending. 

 

Figure 54: EDXA showing the composition of the trenches (a, b) and the plateaus 
(c, d). 
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2.3.8 Synthesis of a Larger Iptycene for Use in the Alignment Relay 
Technique 

 Up to this point the ART has been modified changing the liquid crystal, altering the 

anchoring group, and through processing of the substrate, but perhaps the most obvious 

choice is altering the size of the iptycene molecular tweezer. The size of the iptycene can 

both be increased or can be made asymmetrical and even chiral (Scheme 14). The idea 

is that the size and shape complementarity between the π-concave iptycene host and the 

π-convex nanotube guest would provide optimal binding to specific nanotubes over 

others.151 

 

Scheme 14: Iptycene design parameters. 
 

 The synthesis of a larger iptycene nanotweezers seemed immediately obvious to us 

as a simple extension of the synthesis of extended iptycene 2, in this case using 

pentacene instead of anthracene (Scheme 15). The only other difference between the 

two routes was the incorporation of DDQ into the oxidation step to give 15, as it had 

already been shown to work better in the previous synthesis. The price of pentacene is 

very high, and because pentacene was being used as a starting material in this synthesis, 

we decided to synthesize it ourselves, so all the pentacene used in this synthetic route 

was made in our lab. Furthermore, the Diels-Alder reaction between 
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anthracene/pentacene and cis-1,4-dichlorobutene had been unreliable, with the same 

procedure resulting in very poor conversions. It appears as though this is due to a 

breakdown of the dichlorobutene starting material over time, with some samples that were 

purchased from Sigma-Aldrich appearing as clear liquids but others showing a yellow 

immiscible liquid contaminant. This was somewhat of an issue when synthesizing our 

original iptycene 2, but it became a serious problem in the synthesis of 16. 
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Scheme 15: Synthesis of Large Iptycene 16. 
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 The reaction between pentacene and dichlorobutene to give 12 was attempted over 

a dozen times using various reaction conditions because several problems were 

encountered with the original conditions. The first trial saw the use of toluene as the 

reaction solvent, but the reaction proceeded in very poor yields, inconducive to further 

synthesis. The reaction was then done neat in excess dichlorobutene but upon heating 

overnight, the liquid dichlorobutene starting material was gone and the reaction mixture 

was transformed into a single solid, dark brown mass. The solid was placed in boiling 

toluene but failed to dissolve, and the material extracted from the solid showed a 1H NMR 

that was completely different than both starting materials and the expected product, void 

of the characteristic bridge-head carbon peak seen in iptycenes. We speculated that the 

reagents may be undergoing some type of radical reaction and so the reaction was run 

in the dark, and in an inert atmosphere, but the same insoluble solid mass was obtained. 

At this point we suspected that the dichlorobutene starting material may be contaminated 

and began to synthesize our own. 

 The synthesis of cis-1,4-dichlorobutene has been reported in the literature from the 

starting materials cis-1,4-butenediol and thionyl chloride (Scheme 16). The synthesis is 

reportedly done in an ice bath, ensuring that the temperature remains below 10 °C, 

however when the reaction was attempted following these conditions, only a small 

amount of product was obtained, and the reaction mixture changed colours to a dark blue, 

instead of the expected colourless. It was assumed that the reaction had heated up upon 

addition of thionyl chloride and so the reaction was rerun in a dry ice/acetone bath to 

ensure proper cooling was maintained. After distillation of the reaction mixture, a large 

amount of clear liquid was obtained, which was assumed to be the desired product. 1H 
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NMR characterization revealed that it was not the desired product, but another small 

molecule with a very similar structure, and no product was present in the reaction mixture 

either. The next trial saw the reaction mixture heated to 60 °C with pyridine as the 

nucleophilic catalyst, as it appeared that heat may in fact be necessary. After distillation, 

the product was obtained in 79 % yield, revealing that indeed heat is required for the 

reaction to proceed. It appears likely that the distillation step is not only isolating the 

product, but may actually be encouraging the reaction as well. 

 

Scheme 16: Synthesis of cis-1,4-dichlorobutene. 
 

 Using the freshly distilled dichlorobutene, the Diels-Alder reaction with pentacene 

was attempted, but unfortunately the same issues were once again observed, with the 

reaction mixture completely solidifying into a brown mass. We decided to check if the 

temperature of the reaction may be too high, but when the reaction is run even at 140 °C, 

no reaction occurs even over the course of several days. Running the reaction with a 

fresh batch of pentacene yielded some of the desired product, and so it seemed as though 
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perhaps the pentacene was also contaminated, preventing the reaction, but even with 

both pentacene and dichlorobutene freshly made and purified, the solidification was still 

a problem. It was discovered that the most reliable way to prevent solidification of the 

reaction mixture was to add the reactants neat, and then sonicate the sample to break up 

any of the solid pentacene before finally heating the reaction mixture. Using this 

approach, 12 was obtained in 57 % yield and the reaction was successfully reproducible. 

These results lead us to believe that the pentacene aggregates are likely undergoing a 

polymerization reaction with the dichlorobutene upon heavy heating, but when they are 

broken down to increase the surface area, the Diels-Alder reaction is faster. Even under 

these conditions, some dark brown solid is still formed but is easily removed in the 

ensuing purification. 

 With 16 synthesized, we incorporated it into the ART using 8CB as the liquid crystal 

and both ITO and SiO2 as substrates. The results showed good alignment and length 

selectivity, as is expected of the alignment relay technique, however, the length sorting 

was even more skewed towards smaller nanotubes (Figure 54), somewhat unexpectedly. 

On both ITO and SiO2 an average length of 0.54 µm and 0.58 µm, respectively, was 

observed. This result is interesting because it’s about half of the average length of the 

original sample and is even 0.20 – 0.30 µm shorter than the shortest trials using 8CB and 

2. Coupled with the length sorting was a high density of 1.41 and 0.81 nanotubes µm-2 on 

ITO and SiO2, respectively. These results are also interesting because they are opposite 

of what is usually seen, with ITO having a much higher density than SiO2 in other 

experiments. The inversion of density is unexpected because it has been determined that 

SiO2 is functionalized more slowly than ITO using phosphonate 2, so it would stand to 
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reason that the density of 2 on ITO would be higher than on SiO2 and therefore, the 

density of nanotubes should be greater as well. However, the opposite results are 

observed with 2, but the expected result is seen with 16, meaning that there is likely more 

at play than simply the rate of reaction. 

 

Figure 54: Length distribution of ART-deposited nanotubes using 16 and 8CB on 
a) ITO and b) SiO2. 

 

 The alignment on both surfaces was about the same as with 2, exhibiting standard 

deviations of 33° and 29° for ITO and SiO2, respectively (Figure 55). There was very little 

of note about the alignment that differed from the previous ART experiments except that 

for SiO2, the alignment data suggested a slightly bimodal, wide pattern instead of the 

sharper distribution that is usually seen. The ITO distribution was very similar to those 

seen previously. 



164 

 

Figure 55: Alignment distribution of ART-deposited nanotubes using 16 and 8CB 
on a) ITO and b) SiO2. 

 

 The most important experiment was determining the diameter of the ART deposited 

nanotubes via Raman spectroscopy as the diameter selectivity was the main goal of 

switching between 2 and 16. The diameter selectivity of 16 turned out to be mostly similar 

to 2, with the only major difference being the inclusion of a large peak at 141 cm-1 (1.76 

nm diameter) and the increased prominence of the shoulder peak at 150 cm-1 (1.65 nm 

diameter) (Figure 56). Like with 2, the 175 cm-1 (1.44 nm diameter) peak, which is the 

most abundant in the original sample, is now overshadowed by the 155 cm-1 (1.59 nm 

diameter) peak representing a preference for larger diameter nanotubes. However, the 

inclusion of the 141 cm-1 peak indicates selectivity for even larger diameter nanotubes in 

16, as this peak represents the largest nanotubes present in the as purchased sample. 

Furthermore, the 141 cm-1
 peak in the as purchased sample has very low intensity, 

accounting for a very small percentage of the nanotubes in the overall sample. In 

particular, when comparing the 156 cm-1 peak to the 141 cm-1 peak, the latter has a 

relative intensity of 27 %, however after being subjected to the ART the relative intensity 

changes. When using 2 as the molecular tweezer, the relative abundance of the largest 
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diameter nanotubes actually drops to only 18 %, but when using the larger 16 it increases 

to 58 % relative intensity, more than double that of the original sample.  This data confirms 

our hypothesis that the larger size of 16 provides further bias towards the deposition of 

very large diameter nanotubes. To further examine the extent of this preference, a sample 

of larger diameter nanotubes should be tested in the future. 

 

Figure 56: Comparison of diameter selectivity of ART on SiO2 with 8CB with 
molecular tweezers 16 (red) and 2 (black). 

 

 The final feature of note on the Raman spectrum are the two peaks at 229 cm-1 and 

243 cm-1. These peaks are attributed to the vibrations of 16 in the same vein that the peak 

at 231 cm-1 is attributed to 2. Interestingly, the larger 16 has a slightly lower wavenumber 

shift, which may be a predictor of its larger diameter in much the same way that the RBM 

shifts predict the diameters of nanotubes. 
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2.4 Using π-Concave Iptycene Hosts to Improve Carbon Nanotube 
Based Biosensors 

 As was discussed in Section 1.3.2.5, carbon nanotubes can be used to create 

sensors for various chemicals and biological markers. The goal has been to incorporate 

small CNT-based devices as the first step at the point of care in order to make quick 

diagnoses instead of relying on the traditional methods that require samples to be sent 

away to other facilities and can take weeks to process. CNT-based biosensors offer the 

potential for immediate diagnosis and can be used to survey a wide array of chemicals to 

a very high degree of accuracy, vide supra. However, there remain a few challenges that 

prevent the direct use of CNT-based biosensors in this way. 

 Current sensors are based around either direct binding of biologicals to the CNT 

surface, or through the coating of the CNT surface with functionalized pyrene molecules 

that are themselves able to bind to the analytes of choice, and both methods have their 

own drawbacks. When the biologicals, such as antibodies, are directly bound to the CNT 

surface, they do not coat the CNT enough to prevent other materials from binding to the 

CNT and thus the signal from non-specific binding is too large to create a useful device 

out of these systems, expect under ideal, laboratory research conditions. Alternatively, if 

pyrene is used to anchor the antibody to the CNTs, the coverage is higher, but there is 

still significant non-specific binding and the pyrene binding to the CNTs is weak enough 

that they can be displaced during sample analyzation, leading to more non-specific 

binding. The goal of such applications is to be able to subject the device to blood that is 

taken directly from a patient without need for significant manipulation, but currently these 

tests result in far too much non-specific binding and displacement to be useful. 
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 Partnering with the expertise of the Tang group at the University of Waterloo, we were 

interested in seeing if our π-concave iptycene design would allow for a stronger binding 

of the antibodies onto the surface of the CNTs, or if we could even use the iptycenes as 

a way to passivate the surface such that non-specific binding could be eradicated 

completely. 

2.4.1 First Attempts at Nanotube Binding 

 We devised a simple molecule to test the binding affinity of iptycenes with SWNTs 

under the conditions that were used by the Tang group. 2 was not used to test the binding 

because it requires a lengthy synthesis and instead an iptycene that was both simple to 

make and would be capable of binding to the SWNT was created instead. Since 1 had 

been previously synthesized it was used in the initial testing, the larger derivative, 17, was 

also synthesized and tested (Scheme 17). 

 The synthesis of 17 was straight forward and followed the same one-step synthesis 

as 1, however upon purification of the material, the 1H and 13C NMR spectra showed more 

peaks than were expected, and these excess peaks were very similar to those expected 

of the desired product. The ratio of the aromatic peaks in 17 to the bridge head and 

aliphatic peaks in the 1H NMR was weighted too heavily in the direction of the aromatic 

peaks. Furthermore, there were other peaks that appeared in the same region as the 

bridgehead peak, which lead us to conclude that two Diels-Alder products, 17 and 18, 

were created in a 5.5:1 ratio (Scheme 17). The materials were inseparable upon further 

column chromatography, but it was believed that they would both be capable of 

interacting with the SWNTs due to their similar shapes, and so the mixture was handed 

to our collaborators. 
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Scheme 17: Synthesis of pentacene-based phosphonate iptycene. 
 

 The aromaticity of pentacene as well as the selectivity of the Diels-Alder reaction with 

pentacene has been previously studied computationally. The central ring exhibits the 

highest degree of aromaticity with the aromaticity of the rings decreasing further from the 

central ring, as predicted by nucleus-independent chemical shift (NICS) and harmonic 

oscillator model of aromaticity (HOMA) calculations.27 Aromaticity is a stabilizing effect 

and so one would tend to expect the central ring, the one that is the most aromatic, to 

also be the least reactive position when breaking aromaticity. However, here we clearly 

see a 5:1 preference for the central ring to undergo the Diels-Alder reaction. While this 

perhaps seems strange intuitively, it is indeed the trend that is borne out by theoretical 

and practical experiments. The activation energy barrier for the central ring in a Diels-

Alder reaction with acetylene is ~23 kcal mol-1, while the outermost rings have an 
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activation energy of ~33 kcal mol-1, and the final two rings are around 26 kcal mol-1. The 

preference for the central ring in these experiments is clear, but also the secondary ring 

has an activation energy barrier difference that is still close enough to be competitive, 

especially at high temperatures, as is evidenced by the formation of 18. This preference 

may be due to the increased HOMO coefficient on the central ring relative to the outer 

rings. 

 The initial tests showed improved results with mixture 17/18 over that of the typical 

pyrene system that was used in Tang’s groups, however further testing required that the 

antibodies be conjugated to the molecules. Typically, this conjugation is done by the 

formation of amide bonds through a reaction between the amino groups of the antibody 

and a reactive succinimidyl ester, which is found on the pyrene that is generally used. 

Before attempting to install the succinimidyl ester onto molecules 17 and 18, an 

experiment was carried out to determine if the phosphonate would be reactive towards 

the amines under the buffer conditions, forming phosphoramide bonds. However, all 

reactions were unsuccessful, and it became clear that a new functional group would have 

to be installed in order to move forward with the project.  

2.5 Conclusions and Future Work 

 The goal of the Alignment Relay Technique was to design a bottom-up method for 

the simultaneous sorting and alignment of SWNTs that could easily be tuned to provide 

ultimate control over nanotube deposition. To this end we have proven that firstly the ART 

succeeds in its goal of simultaneous alignment and sorting of nanotubes based on length 

and diameter. Furthermore, we have shown that small changes in the nature of the liquid 

crystal used can target profound differences in the resulting length and density of the 
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nanotubes. Larger molecular tweezers can be used to further discriminate based on 

nanotube diameter, without affecting the other parameters. It has also been shown that 

sonication during the deposition step can be used to improve both alignment and sorting 

based on the reversibility of the binding events. 

 The future of the ART is promising, with many avenues still available for further 

research. One of the large questions remaining is how ordered the actual iptycene is on 

the functionalized surface, and if any techniques can be used to elucidate this 

fundamental property, it may drastically improve our understanding of the ART. Other 

factors in the ART have yet to be tested including the introduction of a chiral iptycene in 

order to determine whether the method could be amenable to chiral selectivity, and the 

synthesis of electron rich/poor iptycene derivatives which may further improve selectivity 

when starting from a mixture of metallic/semiconducting nanotubes. Further research into 

the effects of other liquid crystal phases and temperatures could provide a means to 

decrease the amount of time required for the ART while also targeting other deposition 

parameters. The effect of confinement on the nanotubes based on the nanolithography 

experiments has yet to be fully explored and remains an interesting path because it could 

result in a method that no longer requires an external liquid crystal alignment layer. Other 

work could focus on the use of magnetic fields or other methods for liquid crystal 

alignment. Clearly, the ART still has much room for further improvement and thus it 

remains an important cornerstone for the research being done in the Schipper group. 

 In the case of using the iptycene molecules for nanotube biosensors, it has become 

clear that other anchoring groups must be used instead. The phosphonates are not ideal 

as they lack the ability to easily facilitate further transformation. Attempts at incorporating 
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maleimide esters which are typically used for this type of chemistry have failed, but other 

methods including thiol-ene click or thiol-maleimide click have presented themselves as 

potential alternatives that require further exploration.  
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Chapter 3. Fullerene Interactions with 

π-Concave Materials 
 

3.1 Common Motifs Used for Fullerene Binding 

 The field of hosts for fullerenes is much older and richer than that of SWNT binding. 

In the past, selective binding had been used as a way to selectively isolate different 

fullerenes from one another, since their purification is so challenging. As has been 

discussed previously, separating the higher fullerenes from C60 and C70 is fairly straight 

forward, but purifying C60 from C70 can still be challenging and expensive. Since C60 and 

C70 are the most commonly used fullerenes, complexation methods for purification are 

very attractive as they allow for larger scale separation and, depending on the host, can 

be cheap and recyclable. Much like with SWNTs there are a number of common motifs 

that are commonly utilized for fullerene complexation, and they have several advantages 

or disadvantages relative to one another.  

 The fullerene-host complexes are generally easily characterized through UV-Vis 

absorption spectroscopy, and so a Job plot can be used to assess the binding constants 

of these complexes. This has allowed for a very detailed study of various binding motifs, 

architectures, and functional groups to be probed systematically, giving a better 

understanding of what works best for fullerene complexation. Herein, we will give an 

overview of the most common types of binding motifs, and the effect that structure and 

substitution play in the role of π-concave fullerene host design. For a more 

comprehensive breakdown please see our review on the subject.217 
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3.1.1 Porphyrin Hosts for Fullerenes 

 Porphyrin binding to fullerenes has been long taken advantage of for use in HPLC 

chromatographic separation of various fullerenes, and has since been used heavily in 

fullerene binding.324 The binding between fullerene and porphyrin is good because of the 

π-π interactions and the metal-fullerene interaction, but it is still rather weak for a single 

porphyrin ring interacting with a fullerene due to the lack of shape matching. To 

circumvent this issue, Aida, Saigo et al. created a class of porphyrin cage compounds 

that are capable of completely encompassing a fullerene molecule, thus drastically 

improving the binding affinity (Figure 57).325 

 

Figure 57. Various porphyrin hosts designed to test the effects of rigidity and 
metal coordination on the complexation of fullerene guests. 

 

 Initial studies focused on using zinc porphyrins to bind to C60 in solution, with the 

linkers that connected the two porphyrin rings varying between flexible hexamethylene 

chains and rigid diacetylenes. The crystal structure of the porphyrin cage-fullerene 

complex show that the hexamethylene chains contract to allow for better binding to the 
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fullerene guests, with a binding constant of 6.7 x 105 M-1 in benzene. However, the 

diacetylene spacer exhibited no spectral changes upon addition of fullerene to the 

solution, indicating that no binding had taken place. In this case, it appears as though the 

spacer may be locked into a position that is not optimal for fullerene binding and so the 

rigidity is detrimental to the binding affinity. 

 The next investigations were on the effect that the metal had on fullerene 

binding.326,327 It had been observed that the distance between the zinc in the porphyrin 

ring and the carbon atoms in the fullerene were closer than the van der Waals radii, 

indicating that there is definitely some interaction between the metal and the fullerene 

guest. Of the metals tested (Figure 57) the RhIII and IrIII centers exhibited the starkest 

increase in binding affinity. The rhodium-porphyrins possess association constants of 2.5 

x 107 M-1 for C60 and 108 M-1 for C70, and the iridium-porphyrins show remarkable 

association constants above the limit of detection in benzene and had to instead be 

measured in 1,2-dichlorobenzene, ultimately yielding an association constant of 1.3 x 108 

M-1 in 1,2-dichlorobenzene, about three orders of magnitude higher than the rhodium 

counterparts in like solvent. The incredibly high association constant has been attributed 

to η2 binding to the C-C double bonds in fullerene. As was discussed previously, 

fullerenes show a low aromaticity and behave partially as isolated double bonds, which 

likely promotes η2 binding to iridium and rhodium.  

 These porphyrin cage compounds can be used to effectively purify C60/C70 mixtures 

effectively and easily, with the zinc-porphyrin cage compound purifying a 35/65 mixture 

of C60/C70 to >99% C70. This is accomplished through complexation in benzene, isolation 

of the complex, and decomplexation through addition of 2,2’-bipyridine (bipy). Purification 
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can also be extended to chiral higher fullerenes, as evidenced by the purification of C76.328 

Through the use of a chiral porphyrin cage molecule (Figure 58), the researchers were 

able to complex the fullerene, isolate the complexes with size exclusion chromatography, 

and induce decomplexation via silica gel chromatography to obtain (-)-C76 in 7% ee. While 

this may not sound very impressive, it is still much higher than can be obtained over 

cycled chiral HPLC runs. 

 

Figure 58: Chiral porphyrin cage molecule for chiral separation of C76. 
 

3.1.2 Corrannulene-Based Fullerene Hosts 

 As we have seen with SWNT-host design, shape complementarity is very important 

in creating a good host molecule. In 1965, a bowl-shaped molecule called corannulene 

was synthesized (Figure 59), this was decades before the discovery of fullerene but has 

since been dubbed as a “buckybowl” due to the perfect shape complementarity. 

Corannulene is a fragment of a fullerene containing only one 5-membered ring and five 

6-membered rings, and it retains its aromaticity despite its seriously puckered bowl shape, 

with a bowl depth of 0.87 Å.  
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Figure 59: Corannulene with its puckered bowl shape. 
 

 After the discovery of fullerenes, corannulene became a popular candidate for studies 

on fullerene binding, but all attempts to isolate a complex failed. The co-crystallization of 

the two molecules was non-trivial but was eventually accomplished,329 however there has 

never been a report of the direct observation of a complex formation in solution. This is 

likely due to a very weak interaction between the corannulene and fullerene, which is 

rather unexpected due to the excellent π-concave-π-convex matching. Attempts were 

made to alter corannulene by adding additional benzene rings to increase the π-surface 

area in order to promote complex formation. Dibenzo[a,q]corannulene was synthesized 

for this purpose and while co-crystals were able to be grown, there still lacked any 

evidence for solution-based complexes.330 

 A different route was taken to create the first ever binding complex between a 

fullerene and a curved polycyclic aromatic hydrocarbon. Mizyed et al. took advantage of 

the electron poor nature of fullerenes by incorporating heteroatoms onto the periphery of 

corannulene, in hopes that the heteroatoms could undergo n→π interactions with the 

fullerenes and that the added electron density in the corannulene would also strengthen 

the π-π interaction.331 They were able to successfully demonstrate a solution complex 
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with their thiolated corannulenes and chlorinated corannulenes, with association 

constants of ~400 M-1 and ~200 M-1, respectively (Figure 60). 

 

Figure 60: First heteroaromatic corannulenes. 
 

 Two groups independently identified pentabenzo-azacorannulene as an interesting 

candidate for fullerene binding due to its increased π-surface area and the direct 

incorporation of an electron rich pyrrole at the center of the molecule (Figure 61).332,333 

They both approached the synthesis differently and ultimately ended up with slightly 

different molecules, but the properties were both very similar. The bowl depth of the inner 

core is slightly deeper than corannulene at 0.90 – 0.92 Å, and the oxidation potential is 

over 1.30 V lower than that of corannulene indicating that the azacorannulenes are far 

more electron rich. The resulting binding affinity was 6.2 x 104 M-1 in toluene, proving that 

the incorporation of electron rich heteroaromatic moieties can drastically impact fullerene 

binding when coupled with shape complementarity. 
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Figure 61: Pentabenzo-azacorannulene and its two synthesized derivatives. 
 

 The last major advancement in corannulene hosts for fullerenes has been the 

invention of so-called “buckycatchers,” molecular tweezers based around corannulene 

subunits. Buckycatchers were pioneered by Sygula’s group and generally feature two 

corannulenes attached by a bent spacer (Figure 62).334,335,336,337 This has the effect of 

improving the π-surface area that interacts with the fullerene, while also retaining the 

shape complementary nature of corannulene. Based on the different spacers used, and 

the bending angles that they instill onto the molecule, the association constants range 

from 2.7 x 103 M-1 to 8.5 x 104 M-1 in toluene. This is in direct contrast to corannulene 

which on its own does not even form a stable complex with fullerenes in solution.  

 

Figure 62: Two buckycatchers synthesized by Sygula’s group. 
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3.1.3 π-Extended Tetrathiafulvalene 

 As we saw earlier when discussing SWNTs, exTTF is an electron rich, bent, aromatic 

molecule that has great shape complementarity with the π-convex shape of CNTs and 

fullerenes. This work was pioneered by Pérez et al. using exTTF molecular tweezers 

consisting of two exTTF subunits with a meta-phthalic ester spacer (Figure 63).338 The 

binding constants of this π-concave host with C60 was measured to be 2.98 x 103 M-1 in 

chlorobenzene. 

 

Figure 63: Series of tweezers used to probe the effects of different binding sites 
and substitutions on fullerene binding. 
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 Perhaps the most insightful experiment done with exTTF hosts for fullerenes was one 

which probed the effects of π-surface area, shape complementarity, and electron 

rich/poor hosts.339 The researchers started by synthesizing a series of exTTF-based hosts 

with different backbones, binding sites, and substitutions (Figure 63). The results 

demonstrate that the original exTTF tweezer, which is electron rich, bent, and has an 

extended π-surface area has the largest binding constant to C60. The electron poor 

tetracyano derivative exhibits about half the effective binding, while the planar 

anthraquinone derivative has even lower binding than the tetracyano tweezers. This result 

indicates that while the electronic effects are powerful, the shape complimentary π-

concave π-convex interactions are more important in similar systems. Finally, the TTF 

(non-π extended tetrathiafulvalene) derivative shows no binding in solution which 

provides evidence that π-surface area is the most important aspect of all when it comes 

to binding to fullerenes. 

3.1.4 Summary of Important Parameters for Effective Fullerene Binding 

 The results of the preceding experiments, along with others not covered here, 

indicate that there are several key factors that can be used to create an effective host for 

fullerenes. The important factors that determine effective binding to fullerenes are: 

1. van der Waals and π-π interactions are the most important contributor to fullerene 

host-guest interactions. 

2. π-concave to π-convex shape complementarity improve the effective π-surface 

area of the host. 

3. Electron rich hosts bind more favorably with fullerenes. 

4. Heteratomic hosts increase binding with fullerenes, likely due to n→π interactions. 
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5. Metal atoms can bind very strongly to fullerenes through η2 bonds to the C-C 

double bonds, drastically improving the binding affinity. 

6. Rigid hosts have much stronger binding than flexible hosts if they are of optimal 

size. 

7. Flexible hosts can more easily bind to fullerenes, making them simpler to design.217 

 

3.2 Purification of Fullerenes Through the Use of an Iptycene-
Functionalized Silica Gel Flash Chromatography 

 The purification of fullerenes to a high degree and in large quantities remains the 

largest challenge to their widespread application, and to this point we have discussed to 

some length the most common ways of purifying them. The easiest way is to extract 

fullerenes from the as-produced soot is through simple extraction with toluene, but this 

generally gives a mixture of C60, C70, and a small quantity of higher fullerenes. Taking this 

mixture and purifying it further is the hardest step but can be accomplished to a high 

degree of purity using either HPLC or selective complexation. 

 Selective complexation was discussed briefly in the previous section in the context 

of porphyrin cages, but it was first discovered and demonstrated with a family of 

molecules called calixarenes.340 Calixarenes are macrocyclic structures of phenol 

connected at their meta-sites which are capable of forming a cone-like structure due to 

the hydrogen bonding of the phenolic units. By placing p-tBu-calix[8]arene into a solution 

of C60 in toluene, the C60 is quickly complexed, and this complex can then be crystalized, 

and recovered, followed by decomplexation of the C60 in chloroform. This process must 

be repeated several times to obtain C60 in purities above 99.5%, and while this method 
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was useful historically, it is no longer used due to the labour intensive process and 

repetitions required to obtain the desired pure fullerene. Furthermore, this method is not 

very effective at purifying C70 and has not been shown to work at all for higher fullerenes, 

making it far less attractive than other options. 

 An easier method for selective complexation was first discovered by Hirsch et al.341 

and further explored by Nagata et al.342 This technique involves the simple addition of 

1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) to a solution of fullerenes in 1,2,4-

trimethylbenzene. A rapid single electron transfer occurs from DBU to a fullerene 

acceptor, and results in formation of a ([DBU]+-[Cx]-) complex, and because the higher 

fullerenes have a higher electron affinity, they are selectively complexed first, leaving C60 

free in solution. After five hours, the complexes were filtered off to give C60 in high purities 

(>99%) and high yields (~88%). This method was shown to be easily scalable to over 

kilograms of material but is only capable of easy purification of C60 and has not been 

shown to be adaptable to the purification of C70 or the higher fullerenes. 

 By far the most commonly used and commercially relevant method for fullerene 

purification is HPLC. Early purifications relied on simple reverse phase HPLC but have 

since been improved by incorporating specially functionalized silica gels that include 

aromatics to improve interactions between the fullerenes and the stationary phase. The 

most commonly used of these HPLC stationary phases is the COSMOSIL Buckyprep 

(Figure 64) which contains a pyrene unit capable of forming π-π interactions with the 

fullerenes in the mobile phase. HPLC on this column allows for the purification of several 

milligrams of fullerenes over the course of several runs. What is unique about HPLC is 

that it not only purifies C60 from C70 but can also be used to purify higher fullerenes and 



183 

endohedral fullerenes, albeit in small quantities. Other stationary phases are also in use, 

including one featuring a phenothiazinyl group, which is especially effective at separating 

metalloendohedral fullerenes (Figure 64). The advent of pyrene-phase HPLC has been a 

boon in the purification and sales of fullerenes and continues to be the leading method of 

purification. 

 

Figure 64: COSMOSIL Buckyprep (left) and Buckyprep-M (right) stationary 
phases. 

 

 Despite the broad applicability of the Cosmosil Buckyprep HPLC columns, they still 

suffer from two major problems: price and scale. The problem with price is an inherent 

issue when dealing with HPLC, as HPLC columns are expensive and they also require 

an expensive instrument to run the separation. In the case of the Buckyprep columns, a 

25 cm column with a 28 mm inner diameter costs over 40,000 USD and the matching 

guard column adds another 12,000 USD. These columns are capable of injection volumes 

around 2 mL resulting in ~99% pure C60 and C70 and can be cycled again to improve the 

purity. The reason for the small injection volumes, and the need to use HPLC altogether, 

is that the pyrene stationary phase does not form strong enough interactions with the 

fullerenes for larger scale purification. 
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 The obvious alternative to HPLC purification is simple flash chromatographic 

separation, which most organic chemistry labs rely on for the isolation and purification of 

their novel organic molecules. Flash chromatography is simple and only requires 

glassware and silica gel that can be found in all standard synthetic organic laboratories. 

It works well for most organic molecules because the retention on silica gel is long enough 

to provide a meaningful separation of materials based on polarity matching with the 

stationary phase. So far, it has been impossible to extend flash chromatography to the 

fullerenes due to their poor interaction with stationary phases, even the specially designed 

pyrene phase is only strong enough to allow for small scale separation through HPLC. 

We envisioned a new type of stationary phase that would take advantage of shape 

complementary π-concave-π-convex interactions with fullerenes in order to lead to longer 

retention times. If such a system could be created, we thought that it may be possible to 

scale up fullerene purification using simple flash chromatography. 

 We turned our attention to the typical systems that had been used as host molecules 

for fullerenes, but they generally required lengthy syntheses and were not directly 

amenable to silica gel functionalization. Instead, we envisioned an iptycene system, akin 

to the one that we used for the alignment relay technique. Iptycenes have a bent, π-

concave shape and should therefore be great candidates for strong interactions with 

fullerenes, and we already had confirmation of their binding power with SWNTs. It has 

already been clearly demonstrated that even pyrene silica gel phases form sufficient 

interactions for HPLC separation, so we hypothesized that the addition of the shape 

complementarity with an iptycene-functionalized silica gel may increase the interactions 

enough to enable flash chromatographic separation (Figure 65). 
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Figure 65: Schematic diagram showing a) shape mismatch between fullerene and 
state of the art Buckyprep stationary phase, b) shape complementarity between 

fullerene and hypothetical iptycene-based stationary phase. 
 

3.2.1 Design, Synthesis, and Testing of Anthracene-Based Iptycene for 
Fullerene Purification 

 The initial idea was to use the same type of iptycene that we used in the ART and 

test its efficacy in fullerene separation, and we believed that 1 would be effective at 

functionalizing silica gel based on previous reports of silica gel functionalization with 

phosphonic acids.343 With 1 already synthesized, it was important to determine a method 

for the functionalization of silica gel using our molecule. 

  The functionalization was done in refluxing tetrahydrofuran (THF) as a starting 

point. When the silica gel was filtered off and the filtrate reduced down under vacuum, it 

was noticed that all of iptycene 1 was still remaining in the filtrate and the mass of the 

silica gel was virtually unchanged. This was taken as an indication that the 

functionalization was not proceeding as expected and the literature was explored for 

further guidance. A common method to functionalize silicon oxide with phosphonates is 

called the “tethering by aggregation and growth” (T-BAG) method. In this method, the 
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phosphonate is first physisorbed onto the silicon oxide surface by submerging it in a THF 

solution of the phosphonate and slowly evaporating the THF. The physisorbed 

phosphonate is then heated in a vacuum oven at 140 °C to push the functionalization by 

driving off the ethanolic byproduct. 

 The T-BAG method was adopted to our silica gel functionalization strategy by first 

placing 1 and silica gel into a round bottom flask with acetonitrile and refluxing the 

suspension for four hours. The acetonitrile was then removed under reduced pressure on 

a rotary evaporator, in the same way that one would dry-load silica gel for flash 

chromatography. The 1-physisorbed silica gel was transferred to a beaker and then 

placed into a vacuum oven and heated at 140 °C for four hours, after which the silica gel 

was removed from the oven and washed with dichloromethane to remove any unreacted 

1. The 1 that was recovered was re-characterized and found to be pure and was used in 

subsequent functionalizations. The obtained 1-functionalized silica gel was yellow-orange 

in colour. 

 Next, the amount of 1 used in the functionalization was optimized in order to achieve 

maximum loading on the silica gel. In order to measure the loading of the silica gel 29Si 

solid state nuclear magnetic resonance (SSNMR) was used. When taking the 29Si 

SSNMR spectrum under magic angle spinning conditions, the spectrum consists of two 

peaks around -110 ppm (Figure 66). The leftmost peak around -100 ppm corresponds to 

silicon atoms which contain one hydroxyl group, while the peak at about -110 ppm comes 

from the resonance of silicon atoms with no free hydroxyl groups.343 There is also 

sometimes a peak around -90 ppm that corresponds to silicon atoms with two hydroxyl 

groups, but this is much smaller in magnitude and depending on the silica gel used may 
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not be present at all. As the silica gel undergoes functionalization, the hydroxyl groups 

become silyl ether linkages, and therefore the peak around -100 ppm decreases in 

magnitude relative to the peak at -110 ppm.  

 

Figure 66: Typical 29Si magic angle spinning SSNMR spectra showing the effect of 
phosphorylation on the signal at -103 ppm. A) Aldrich silica gel, B) after reaction 

with phenylphosphonic acid.343 
 

 Compound 1 contains four potential covalent bond forming sites on the molecule, so 

it was important to first get an approximate loading before turning to SSNMR for the final 

verification, as 29Si SSNMR experiments take a long time to perform. This was easily 

accomplished by doing the silica gel functionalization step at various loadings of 1, 

ranging from 0.25 equiv. to 4 equiv. In this case, equivalents were based on the number 

of free silanol groups per mole of the silica gel, which was estimated based on the 

specification sheet provided to us by SiliCycle, but due to the imprecise nature of the 

calculations, we converted the equivalents to a w/w% instead. As can be seen in Figure 
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67, the peak corresponding to the silanol groups was still very present with 7 w/w% 

loading of 1, but when doubled to 14 w/w% the peak nearly vanished, and with 28 w/w% 

loading there is no discernable silanol peak remaining.  

 

Figure 67: 29Si SSNMR of 1-functionalized silica gel at varying loadings. 
 

 With the appropriate loading determined a batch large enough to carry out a real 

separation was synthesized. A 12 g column was used for the first separation tests and 

the separation was run on a CombiFlash Rf+ system so that the elution of fullerenes could 

be monitored by UV-Vis spectroscopy. The sample used was a 90:10 C60/C70 mixture, 

denoted “fullerite,” which is a common ratio seen in fullerene soot after the higher 

fullerenes have been removed. Two milligrams of fullerite were dissolved in toluene and 

dry loaded onto silica gel to undergo separation. First, a control experiment was 

conducted using unfunctionalized silica gel with hexanes as the eluent in order to obtain 

a baseline elution time for comparison, and the fullerite eluted at 6 minutes as one single 

peak, indicating no separation on standard silica gel, as expected. The 1-functionalized 
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silica gel was then tested on the same system to see if any resolution of the C60 and C70 

peaks could be observed, but again only one peak eluted at 6 minutes (Figure 68). The 

lack of increase in retention time indicated that there was a need to further improve the 

interactions between the stationary phase and the fullerenes. 

 

Figure 68: UV-Vis chromatogram of C60/C70 mixture being eluted on a flash 
column with 1-functionalied silica gel as the stationary phase and hexanes as the 

mobile phase. 
 

3.2.2 Design, Synthesis, and Testing of Pentacene-Based Iptycene for 
Fullerene Purification 

 While 1-functionalized silica gel failed at separating the fullerite mixture, it likely 

worked as well as the Buckyprep system would have in the same experiment. The better 

shape matching of 1 would give it a better π-orbital overlap with the fullerenes and it would 

also increase the level of van der Waals interactions, the two most important design 

parameters for fullerene hosts. We hypothesized that using the pentacene-based 

iptycenes 17 and 18 (Scheme 17) would provide even more π-surface area while still 

maintaining the same degree of shape complementarity, thus potentially increasing 

retention times. A mixture of 17 and 18 was used due to separation issues, see above. 
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 The 17/18 mixture was used to functionalize silica gel in an analogous way to 1, 

turning the silica gel orange upon functionalization. The separation of fullerite was 

performed again in pure hexanes and an unprecedented increase in retention time was 

observed. The fullerenes did not start to elute in pure hexanes until ~35 minutes into the 

run and a second peak eluted at ~90 minutes (Figure 69). The results were encouraging 

and so the solvent system was changed to incorporate more toluene, increasing the 

speed of the elution. In a 3:1 hexanes/toluene eluent system, the two peaks eluted at ~30 

minutes and ~55 minutes. In the extreme case of a pure toluene eluent system, the 

fullerenes eluted at 6 minutes, but two peaks could be observed, overlapping with one 

another.  

 

Figure 69: UV-Vis chromatograms of a C60/C70 mixture being eluted on a flash 
column with 17/18-functionalized silica gel using various eluent systems. 

 

 The two eluted peaks were collected separately, and the solvent was removed under 

reduced pressure, with the first peak appearing pink in solution and the second peak 

appearing orange, indicating that they were C60 and C70, respectively. The separation 



191 

returned 24 mg of C60 and C70 combined. To confirm their identities further, the UV-Vis 

spectrum of each sample was obtained (Figure 70). Both matched well with literature 

spectra, indicating that they were indeed separated and reasonably pure fullerenes. 

 

Figure 70: UV-Vis spectra of a) C60, the first elution peak, and b) C70, the second 
elution peak. Inset pictures of the flasks show colour of toluene solution with 

each sample. 
 

 With these results we showed that our 17/18-functionalized silica gel is capable of 

separating fullerenes via flash chromatography, a feat that is difficult to achieve.344 This 

has major implications for the future of fullerene purification because it will allow for the 

cheap, effective, and high scale purification of fullerenes with simple technology. 

However, the major issue that arose during this work was that the 17/18-functionalized 

silica gel began to degrade over the course of several runs and the efficacy of the 

separation became weaker and weaker, until eventually it was incapable of separating 

C60 from C70 after ten runs. The likely mechanism for this degradation is reaction of the 

phosphonates with water present in the mobile phase, hydrolysing the phosphonate and 

thus removing the iptycenes from the silica gel. If this is indeed the case, the “purified” 

samples of fullerenes will be contaminated by the iptycenes and will then require a 
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secondary pass through a standard silica gel column to remove the iptycene. The 

phosphonates were chosen for their convenience in synthesis and commercial 

availability, but it is clear that a different group will have to be used if one wishes to use 

this method in industry, ideally incorporating a silane connector as is commonly 

employed. Despite this drawback, the proof that fullerenes can be purified on such a large 

scale, with a simple technique, is a great boon in the field of fullerene research. 

3.3 Conclusion and Future Work 

 The use of an iptycene-based stationary phase for fullerene separation has yielded 

results that far surpass those of any other fullerene chromatographic purification method. 

However, as noted, the stationary phase is not entirely inert towards the chromatographic 

conditions and readily deteriorates throughout the course of several uses. The next steps 

should focus foremost on developing an iptycene with an anchoring group capable of 

withstanding repeated use as a stationary phase. The most ideal of these anchoring 

groups would be a chlorosilane as this is the typical industry standard and has proven to 

be very robust. Other potential ways to solve this issue include the use of coupling the 

iptycene to prefunctionalized silica gel, allowing for a wide variety of iptycene anchoring 

groups to be utilized. 

 The other improvement that could be made to the separation medium is to make it 

even more effective at retaining the fullerenes. This can be accomplished one of several 

ways, but the most straightforward would likely be bromination of the iptycene or 

incorporation of nitrogen or sulfur heteroatoms into the iptycene. As has been seen in 

other fullerene binding materials, the inclusion of these heteroatoms significantly 

increases binding affinity and could further improve the efficacy of the resulting separation 
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material. This could allow for even larger scale purification of the fullerenes, potentially 

allowing for hundreds of miligrams to be separated using standard laboratory flash 

columns. However, the importance of a durable stationary phase is paramount due to the 

possibility of the iptycenes contaminating the otherwise pure fullerene samples. 
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Chapter 4. Heteroaromatic-Based 

Metal-Organic Framework 

4.1 Metal-Organic Frameworks 

 Metal-organic frameworks (MOFs) are extended 2D or 3D arrays of organic 

molecules and metals (Figure 71).345 They are similar to a crystal in that they have a 

repeating, periodic structure, but are generally formed through the coordination chemistry 

between some organic moiety and a metal atom, or metal cluster. MOFs are interesting 

materials because they are supramolecular structures that generally consist of a highly 

porous structure,346 which when coupled with the incorporation of transition metals allows 

MOFs to be used in super capacitors,347 heterogeneous catalysis,348,349,350 as a 

separation media,351,352,353 as templates for carbon nanomaterial growth,354 and for 

selective adsorption of hosts.355,356,357
 

 

Figure 71: MOF structures of a) 3D358 and b) 2D MOFs.347 
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 In the past, MOFs had been described as co-ordination polymers and their synthesis 

reflects this. Generally, MOFs are made by the introduction of either a metal precursor to 

a suitable ligand building block, or vice versa. The reactions can be done at a wide variety 

of temperatures (room temperature to 200 °C), various pH levels, concentrations, and 

with different solvent polarities, much like a standard organic reaction.345 However, unlike 

a standard polymer, MOFs require monomers that can connect in an array instead of a 

line, and this is where the ligand design becomes an important aspect of MOF synthesis. 

The most common types of MOF monomers contain carboxylate or nitrogen chelating 

groups. 347,352,359,360,361 In some cases the monomers possess more than two chelating 

sites in order to promote a network structure and MOF formation,347 but in other cases 

the metal centres can bind to many monomers in different orientations, giving rise to the 

MOF structure.348 MOFs are insoluble in most, if not all, solvents which can make their 

characterization difficult because solution techniques can not be used. Generally, the goal 

of MOF synthesis is to create a material that is either of sufficient quality to obtain a single 

crystal X-ray diffraction for easy characterization, or if that is not possible, a powdered X-

ray diffraction along with other supporting characterization experiments is required. 

 Charge transport in MOFs is central to many of their applications, especially their use 

as electrocatalysts, and the movement of charge can broadly take place one of two ways 

depending on the structure of the MOF. In one instance, where the MOF has low porosity 

or has an insulating organic backbone, the charges are localized at redox centres and 

hop between them on the surface, with little or no overall change in the bulk.362 

Alternatively, if the MOF has a planar aromatic organic component it can delocalize the 

charge throughout the MOF structure, allowing for the entire MOF to act as a more 
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effective catalyst, but requiring the intake of counterions which can impede the adsorption 

of the analyte.363 More specifically, one can target other charge transfer mechanisms like 

through-bond donor-acceptor charge transfer, similar to what is seen in a lot of conjugated 

organic polymers.364,365 The design of MOFs is therefore challenging because there are 

many factors at play including porosity, the nature of the metal centre, the electronics of 

the ligand, the counterions present, and the inclusion of other dopants, along with the 

overall structure and assembly of the MOF. For these reasons, MOFs can be used in 

many applications and there is constant improvement seen in the field, with much room 

left to perfect MOF technologies. 

4.1.1 MOFs as Electrocatalysts in Fuel Cells 

 One of the most promising applications of MOFs is their ability to be used as 

heterogeneous electrocatalysts, which have interested researchers for their potential use 

in fuel cells for energy storage.366 A fuel cell is the common name for an electrochemical 

cell that converts the chemical energy of a fuel and oxidant into an electrical current. In 

most common cases the fuel in a fuel cell is hydrogen gas and the oxidant is oxygen gas, 

creating a simple by-product of water during fuel cell operation (Figure 72).367 This is 

advantageous over current fossil fuels because hydrogen is a carbon-free fuel and 

creates only water as a by-product, and hydrogen is a readily abundant fuel, unlike fossil 

fuels.  
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Figure 72: Schematic representation of a polymer electrolyte membrane fuel cell. 
Hydrogen gas is used as the fuel source and oxygen from the air is used as the 

oxidant, with water as the by-product.367 
 

 The continuous operation of fuel cells requires the constant supply of the hydrogen 

fuel which is difficult to accomplish in a mobile technology, like cars, where fuel cells 

would ideally be used. Hydrogen is a gas at ambient pressure, and it has an energy 

density that is far too low for practical application, meaning that it must be heavily 

compressed or cooled for use in automobiles. However, both compression and cryogenic 

cooling have their own inherent costs, which raise the price of the fuel cells to 

unacceptable levels.368 For this reason, the storage of hydrogen gas in a dense form at 

ambient pressure has been an area of active research for some time. Solid support 

materials can be used to adsorb hydrogen gas and store it safely during transportation, 

significantly reducing safety concerns, and MOFs have demonstrated excellent 

capabilities for hydrogen storage. 356 

 The production of hydrogen gas for use as a fuel can be done through the hydrogen 

evolution reaction (HER), which takes water and breaks it down into hydrogen gas and 
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an oxygen-containing by-product.369 While advancements in the HER are important for 

clean generation of hydrogen gas, it is not a process that is directly involved in the fuel 

cell itself. The more important reaction is the dissociation of the resulting hydrogen gas 

to two protons through electrocatalytic oxidation, sometimes called the hydrogen 

oxidation reaction (HOR) (Figure 72 left side). The HOR is accomplished by a platinum 

electrode in most state-of-the-art fuel cell systems, but other precious metals have shown 

promise to potentially replace platinum under alkaline conditions.370 The HOR produces 

protons that are capable of passing through the electrolyte membrane to undergo reaction 

with oxygen at the other electrode, completing the cell. The platinum electrodes used for 

HOR work well and so much of the research around fuel cells focusses on the other side 

of the cell. 

 The other half of the cell is based on the reduction of oxygen to complete the redox 

cycle. The electrons liberated in the HOR flow through the external circuit to the cathode 

where they are used to reduce oxygen from an incoming stream of air in what is called 

the oxygen reduction reaction (ORR) (Figure 72, right side). The ORR is a subject of 

constant and thorough investigation because it is the part of the fuel cell that still has 

much room for improvement.371 The current problem with the ORR are three-fold: energy 

is lost as heat from resistance, an overpotential is seen in all experimental setups, and 

mass transfer of protons and oxygen to the cathode is slow (Figure 73).371 

  



199 

 

Figure 73: Fuel-cell polarization curve  showing overpotential due to kinetic loss, 
mass transport overpotential (MTO), and losses to heat as a function of current 

density.371 
 

 The theoretical potential that a hydrogen fuel cell delivers is 1.23 V based on the half 

cell potentials, but platinum cathodes offer poor results with a potential of 0.51 V and a 

current density of only 1.25 mA cm-2.367 This has led to the development of many new 

types of cathodes based on other materials, including non-precious metal catalysts366 and 

MOFs.354 MOFs have been shown to be excellent catalysts for this work due to their high 

porosity, allowing for faster diffusion, and their ability to stay efficient over a much longer 

life cycle than platinum electrodes. Because of this, MOF-based electrodes have 

produced fuel cell potentials of ~0.8 V at current densities as high as 6 mA cm-2 and 96% 

retention of current density over a course of 25 h of continuous application.354  Other 

MOFs have shown onset potentials as high as 1.06 V, with no degradation after 50,000 

cycles.372 While the use of MOFs as fuel cell cathodes is a relatively new development, 

the results have been promising and there are still many avenues available for future 

improvements, including doping, structural tuning, and structural nano-engineering.373 
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4.1.2 MOFs as Electrocatalysts for CO2 Reduction 

 The other large area of MOF electrocatalyst research focuses on their use in CO2 

reduction. The goal of CO2 reduction is to take the largely abundant waste product of 

fossil fuel burning and convert it to value added chemicals that can be used in consumer 

products. For example, by capturing CO2 and reducing it, one can create carbon 

monoxide, formic acid, methane, methanol, ethylene, and ethanol, among other products, 

a combined market of hundreds of billions of dollars.374 The most direct route to converting 

CO2 to a value added chemical is to convert it to methanol and this can be done using 

current industrial processes but requires high temperatures and pressures while only 

resulting in low methanol yields.375  

 The electrochemical reduction of CO2 has emerged as a convenient and effective 

way of converting CO2 into value-added chemicals using heterogeneous catalysis and 

renewable electrical energy sources.376,377 One of the bonuses of using electrocatalysts 

to reduce CO2 is that the H2 reductant can be supplied directly as water. The 

electrochemical reduction of CO2 is at a minimum a two-electron process but depending 

on the desired target product can involve twelve or more electrons (Table 3). Due to the 

many electrons required for the higher order reductions, as well as the different reactions 

that are available during CO2 reduction, it can be difficult to target specific products. This 

is coupled with the problem that all of the reduction potentials are not only close to each 

other but are also very close in energy to the reversible hydrogen electrode equilibrium 

potential. This means that the CO2 reduction process is in direct competition with the HER 

which makes it necessary to find a catalyst that not only is effective at CO2 reduction but 

is slow at the HER. 



201 

 

Table 3: Standard potentials for electrochemical reduction of CO2.376 
 

 The activity of various metals has been roughly mapped out in the case of CO2 

reduction.378 The research suggests that metals can be grouped into: 1) CO production 

with Au, Ag, Zn, Pd, and Ga metal; 2) formate production with Pb, Hg, In, Sn, Cd, and Tl 

metal; 3) hydrogen evolution with Ni, Fe, Pt, and Ti metal; 4) higher order carbon products 

with copper metal. In this case, copper is unique in that it is capable of effectively 

catalyzing several processes including methane, ethylene, ethanol, propanol, and other 

C>2 products. However, copper also has historically suffered from poor selectivity and 

larger over potentials than other metals. 

 Instead of relying on atomic metals as electrocatalysts, researchers have branched 

out research into several directions, most notably to us MOFs. Since MOFs can be 

synthesized from a wide array of different metal and ligand combinations, there have been 

many heterogeneous electrocatalyst MOFs that are used for CO2 reduction. One 

interesting feature of MOF-based electrolytes is that there are many examples of non-

precious metals being used effectively in CO2 reductions, with both iron and cobalt-based 

porphyrin MOFs capable of effectively reducing CO2 to CO.379,380 What is interesting with 
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these results is that iron is usually only effective at hydrogen evolution, but when inserted 

into the porphyrin-MOF, its reactivity completely changes to favour CO2 reduction. 

Likewise, cobalt is not typically seen as a CO2 reduction catalyst, but once again performs 

exceptionally well in the porphyrin-MOF system.  

 Perhaps even more interesting is the effect that MOF incorporation has on the 

electrocatalytic behaviour of copper. As noted above, copper tends to suffer from very 

poor selectivity in CO2 reduction, producing many products, albeit with generally great 

efficiencies. However, by creating a copper-based MOF system with rubeanic acid 

organic linkers, Hinogami et al. were able to create an electrocatalytic system capable of 

producing formic acid in purities above 99%, while also increasing the reaction rate 13-

fold.381 The increase in reaction rate is believed to be due to increase in surface area, 

and therefore active catalytic sites, over the standard copper metal electrode. Similar 

results were also seen in thin-film copper-MOFs which were capable of producing oxalic 

acid in over 90% purity through CO2 reduction.382 Notably, the difference between these 

two copper-MOFs was the change in organic linker: in the case of formic acid formation, 

rubeanic acid, a sulfur and nitrogen containing molecule was used, while in the case of 

oxalic acid formation, benzene-1,3,5-tricarboxylic acid was used as the linker. These 

seemingly small changes had the effect of completely altering the reaction product from 

a C1 to a C2 product, highlighting how important the nature of the linker is. 

 With so many possibilities in terms of structure and MOF design, the future of MOFs 

holds great potential, but further improvement in CO2 reduction electrocatalysis requires 

several key thresholds to be met. The faradaic efficiency of ideal electrocatalysts should 

be over 90%, which means that side reactions and other sources of loss must be 
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mitigated. A small overpotential (more positive than -0.6 V) and a high energy density > 

200 mA cm-2 need to also be achievable. Finally, all of this must also be obtainable during 

constant operation over a month or longer. This last condition is still the most challenging 

as many MOFs tend to breakdown during continuous operation. 

4.2 1,4,6,9-tetra(pyridine-2-yl)pyridazino[4,5-g]phthalazine Copper 
Metal-Organic Framework System 

4.2.1 Synthesis of 1,4,6,9-tetra(pyridine-2-yl)pyridazino[4,5-g]phthalazine 

 During our previous work with fullerene separation we had attempted to synthesize 

several other stationary phases that could improve the efficacy of the separation. One 

idea that we pursued was the installation of nitrogen heteroaromatics into the backbone 

of the separation material, however this proved challenging as not many acene-type 

molecules exist that contain nitrogen heteroatoms. Serendipitously, another member of 

our research group was working on an unrelated project which required the use of 3,6-di-

2-pyridyl-1,2,4,5-tetrazine (dipytet). Dipytet is an interesting molecule consisting of a 

tetrazine core and two pyridyl substituents that is very useful as a Diels-Alder reactant. In 

particular, it is capable of undergoing a Diels-Alder reaction followed by a retro Diels-

Alder to convert certain endoxides to benzofurans (Scheme 18). The ultimate Diels-Alder 

in this case gives both benzofuran and an analogue of dipytet where the central 1,2,4,5-

tetrazine ring has been converted to a pyridazine. 
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Scheme 18: The use of dipytet as a Diels-Alder reactant. 
 

 Dipytet is a good diene in the Diels-Alder reaction and we thought that we may be 

able to use this to our advantage in designing a potential azaacene. The retro Diels-Alder 

shown in Scheme 18 only occurs because the conjugation of the endoxide allows for the 

formation of benzofuran as the product of the Diels-Alder. If instead a simple dienophile 

is used, there is no driving force for the retro Diels-Alder to occur, so one can potentially 

use dipytet as an effective reactant for the installation of a pyridazine ring. We envisioned 

using a non-conjugated diene to undergo two separate Diels-Alder reactions with two 

equivalents of dipytet, building an extended carbon backbone, that could potentially be 

aromatized in subsequent steps. To do this 1,4-cyclohexadiene was used as the diene 

so that the resulting molecule would be straight and resemble very closely an acene 

(Scheme 19). Originally, it was thought that the synthesis would require a second step in 
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order to complete the aromatization of the azaacene, but delightfully the conditions 

provided the fully aromatized product as an orange solid. 

 

 

Scheme 19: Synthesis of 1,4,6,9-tetra(pyridine-2-yl)pyridazino[4,5-g]phthalazine. 
 

 As was stated, the original purpose of synthesizing 19 was to test it for fullerene 

purification, and it was planned that the introduction of the nitrogen atoms into the 

backbone of the acene would cause it to become electron deficient enough to undergo 

an inverse-demand Diels-Alder reaction with strained or electron rich dienophiles. The 

goal was to be able to install an anchoring group through Diels-Alder, similar to the 

synthesis of 17/18. This was tested by reacting 19 with norbornene, norbornadiene, and 

vinylene carbonate. Unfortunately, none of the reactions showed any consumption of the 

starting materials as monitored by TLC, even at temperatures as high as 180 °C over the 

course of four days. Even with the addition of catalytic, substoichiometric, and excess p-

toluene sulfonic acid to make 19 more electron poor, no reaction was observed. 

 The failure of the Diels-Alder reaction left us with 19 without any concrete plan with 

what to do with it. However, it is quite apparent when looking at the molecule that it 
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contains several domains that could potentially act as chelation sites towards metals. This 

got us thinking that perhaps it might make a good organic linker to form a new MOF, so 

we began to investigate this possibility. 

4.3 1,4,6,9-tetra(pyridine-2-yl)pyridazino[4,5-g]phthalazine in the 
Synthesis of Novel Metal-Organic Frameworks 

 First, conditions for the synthesis of MOFs using 19 as an organic linker were tested, 

with the overarching goal of creating a MOF that would have interesting properties for 

either gas storage, electrocatalysis, or as a super capacitor. It was thought that due to the 

fully aromatic, planar azaacene backbone on 19 it might lend itself to better charge 

transport, aiding in electrocatalysis. Furthermore, because of the potential for free rotation 

of the pyridyl substituents, several potential MOF structures could be formed (Scheme 

20). These structures are simplifications but show that for square planar metal centres 

there are already at least two different binding modes that are plausible. Binding mode a 

(Scheme 20) shows what can be considered a linear coordination polymer, but could also 

lead to π-stacking between the linear chains to form sheets,347 and binding mode b 

(Scheme 20) depicts a way for the structure to propagate into two-dimensions. 

Tetrahedral or octahedral metal centres would lead to even more potential binding modes, 

perhaps even leading to chiral structures, leading us to believe that this was an avenue 

worth exploration. 

 



207 

 

Scheme 20: Two possible binding modes for MOF formation with 19. 
  

 The thought of a nitrogen heteroaromatic-based MOF was intriguing because 

nitrogen heterocycles have been shown to enhance the effective electrocatalytic activity 

of various metal electrodes in both their native383 and protonated forms.384,385,386 The 

exact mechanism for this is still debated but it appears as though the redox capabilities 

of most nitrogen heterocycles aids in overall process. Some nitrogen heterocycles have 

reversible redox windows near the HER and CO2 reduction potentials, which has lead 

scientists to believe that it aids in the shuttling of protons, hydrides, and electrons 

throughout the system.387 

4.3.1 Synthesis of 1,4,6,9-tetra(pyridine-2-yl)pyridazino[4,5-g]phthalazine-
Based Metal Organic Frameworks 

 Our first goal was to determine whether or not 19 would be an effective organic linker 

in MOF formation. To test this, we screened metals, solvents, and temperatures until we 
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got evidence of MOF formation, and then began testing other metals under the same 

conditions to see which metals were capable of forming a MOF with 19. The first hit that 

we got was NiSO4 · 6H2O in dimethylformamide (DMF), at 120 °C for 18 h. This reaction 

yielded a green precipitate that was completely insoluble in polar organic solvents, non-

polar organic solvents, and water. The highly crystalline nature of MOFs tends to render 

them insoluble, so it was assumed that this was an indication that the MOF formation was 

working and the effect of stoichiometry on the reaction was tested. 

 

Table 4: Effects of stoichiometry on MOF formation. 
 

 Since the product was insoluble, the precipitate was simply washed with water and 

acetone to remove any unreacted metal and 19, and then the insoluble fraction was 

weighed to get a crude measurement of the “yield” of the MOF. Based on the binding 
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modes in Scheme 20, conditions were tested in which the limiting reagent was 19 in a 1:4 

ratio, up to conditions where 19 was in a 4:1 excess using 25 mg of the ligand in each 

trial (Table 4). When 19 is in excess little to no insoluble material precipitates during the 

reaction. On the contrary, as NiSO4 increases in abundance, more and more insoluble 

product is formed.  

 The next step was to see which other metals could form insoluble fractions under 

these conditions. The results of the metal screening are summarized in Table 5. Because 

the exact structures of the MOFs were unknown at this point, the determination of a 

percent yield was not possible. Instead, a crude conversion calculation whereby the mass 

of the precipitate was divided by the combined masses of the reactants was used. Only 

five metals gave over 50% conversion: nickel, copper, palladium, silver, and ruthenium, 

all of which are in the (II) oxidation state except for silver, which was silver (I). The results 

are interesting because nickel and palladium are in the same group, as are copper and 

silver, and they are all very well studied in catalysis. Ruthenium is the odd result because 

it is a d8 metal and iron gave no product at all, making ruthenium the only second row 

transition metal to form a MOF with 19 that its first-row analogue does not. Ruthenium is 

also well studied as a catalyst in organic chemistry and is famously used in ring-opening 

and ring-closing metathesis reactions. 

 The results indicate that the nature of the metal atom is not the only important factor, 

the counterion drastically impacts the conversion. In the case of nickel, the sulfate 

counterion gives over a two-fold increase in conversion when compared to nickel acetate. 

Copper is a better indication of this effect with copper sulfate reaching a conversion of 72 

%, but acetate, chloride, and carbonate all fail to reach even 30 % conversion. This 
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indicates that the sulfate ion somehow either facilitates the MOF formation or produces a 

more stable MOF structure than the other counterions. However, the heavier metals all 

show good conversion without the need for the sulfate counterion. Palladium chloride 

forms a MOF at appreciable conversion, whereas copper chloride has poor conversion, 

which may indicate a size complementary relationship between the metal and the ligand 

that is responsible for effective MOF formation. The potential formation of copper MOFs 

was of interest because of copper’s high activity in electrocatalysis. All the MOFs that 

were synthesized failed to solvate in any organic solvents or water, even at high 

temperatures making further characterization difficult initially. 

 

Table 5: Conversion of starting materials in MOF formation with various metals. 
 



211 

4.3.2 Attempts at Creating Soluble MOFs 

 With so many potential MOFs created, the next step was their characterization, and 

the most direct and effective way to characterize a MOF fully is to subject it to a single-

crystal X-ray diffraction (XRD) experiment. Unfortunately, the sample particles were not 

large enough for single-crystal analysis so instead efforts were turned towards devising 

a method to make the products soluble such that they could be recrystallized to give 

single-crystals that were large enough for characterization. 

 Copper sulfate was used as the model system due to its high conversion, and the 

reaction which formed the copper precipitate was run several times with varied reaction 

conditions in an effort to garner a large, single crystal. The objective was to lower the 

reaction rate such that either the larger crystals formed naturally, or so that the reaction 

could be stopped early while the MOFs were still small enough to be soluble. Firstly, the 

reaction was run at lower temperatures including 100 °C, 80 °C, and 60 °C, but there was 

no consumption of starting materials at these temperatures, even after two days of 

reaction time. Secondly, different solvent systems were tested to see if they would provide 

for either a slower reaction rate, or perhaps the MOF would have poorer solubility and 

precipitate earlier such that it could then be dissolved and recrystallized in a better 

solvent. The problem was that most solvents are not effective at solubilizing both 19 and 

CuSO4 so we had to rely on solvent mixtures, varying the amount of DMF and both THF 

and acetonitrile. This method still gave us an insoluble product that was just as insoluble 

in pure DMF, with the side-effect of lowered conversion. Thirdly, the concentration was 

varied from the original 0.064 M with respect to the combined starting materials half as 

concentrated, five times more dilute, and ten more dilute. When diluted in half, the 
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reaction still gave the insoluble precipitate at reduced conversion, but at higher dilutions, 

the precipitate did not form even after two days of reaction time. 

 The failure of the previous methods led to a different approach at retarding the 

reaction rate. It was hypothesized that adding a secondary ligand that is incapable of 

forming a MOF, but still capable of chelating with the metal, would directly compete with 

19, and thus reduce the rate of MOF formation. 2,2’-Bipyridine was chosen as the ligand 

in hopes that it would have a binding strength similar to that of 19 so that the binding 

would be reversible enough to still allow for MOF formation and by increasing the 

concentration of bipy, the rate of MOF formation could be slowed even further. It was 

hypothesized that the mechanism for this rate modulation would be analogous to that of 

atom-transfer radical polymerization (ATRP). The reaction would begin with the formation 

of a small “MOF” through reaction of 19 and CuSO4 (Scheme 21), and that this actively 

growing MOF could then at any point be capped by chelation with bipy instead of 19, 

effectively deactivating the MOF towards further growth as bipy lacks the necessary 

number of binding sites. Eventually, the bipy ligands would be reversibly replaced with 

19, activating the MOF towards further growth once again. The MOF growth would self-

terminate at the point of precipitation, but the goal would be to stop the reaction before 

this point and obtain a bipy-terminated MOF. 
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Scheme 21: Proposed mechanism for reducing MOF growth rate. 
 

 The competition reaction was attempted under several conditions in order to find 

conditions such that the rate of deactivation was faster than activation, while keeping the 

rates close in magnitude. The first experiment involved simply a 1:1 ratio of bipy and 19 

but it still resulted in quick precipitation of the product without any obvious signs of 

inhibition, nor were there any soluble products when tested throughout the reaction time. 

The amount of bipy was subsequently increased by double and then five-fold. When 

doubled there was no observed difference, but upon five-fold increase there was a new 

product formed, however it appears as though this is simply some kind of copper bipy 

system and not a MOF at all. Further work on this method may yield favourable results 

but will take serious fine-tuning to determine the appropriate ratios and concentration for 

an effective partial inhibition of MOF growth. 
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4.4 Characterization of 1,4,6,9-tetra(pyridine-2-yl)pyridazino[4,5-
g]phthalazine-Based MOFs 

 After the synthesis of a soluble MOF failed, attention was instead turned towards 

characterizing the solid material using other characterization techniques. Several 

techniques are available to characterize insoluble solids and the main techniques that we 

decided to take advantage of are: powder X-ray diffraction (pXRD), cyclic voltammetry, 

transmission electron microscopy (TEM), and energy dispersive X-ray analysis. Through 

the combination of these techniques, a general formula and structure for the MOF can be 

established, and its redox properties can be understood. 

4.4.1 Cyclic Voltammetry Characterization of 1,4,6,9-tetra(pyridine-2-
yl)pyridazino[4,5-g]phthalazine-Based MOFs and Their Precursors 

 The first step that was taken in the determination of the product was cyclic 

voltammetry with a goal of ensuring that the product was redox active before taking 

characterization further as the other techniques are quite costly. The redox activity of the 

product gives insight into whether it behaves as an electron donor or acceptor and the 

change between starting material and product can further give evidence to suggest that 

a new material has been successfully made. 

 A typical CV setup involves a working electrode, reference electrode, counter 

electrode, solvent, analyte, electrolyte, and the solvent is generally sparged with N2 to 

remove any oxygen. The removal of oxygen is important when trying to discern the 

inherent redox characteristics of a material because if oxygen is present it can be reduced 

either by the electrode, or in this case, by the electrocatalyst, giving a strong signal that 

may overlap with the analyte. Along the same lines, water is also excluded from the cell 

for these measurements. However, because the MOF products are insoluble, they are 
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not amenable to this type of measurement which requires that the analyte be soluble in 

the solvent. 

 The CV experiment of insoluble materials and heterogeneous catalysts is generally 

done by adsorbing them onto the surface of a glassy carbon electrode. Glassy carbon is 

used due to its porous nature which enables it to better adhere the catalyst particles, and 

the absorption of MOFs onto glassy carbon electrodes can be done in two ways. In the 

first method the MOF is placed into a volatile, dry solvent and sonicated to break it down 

into small particles, then the suspension is dropcast onto the electrode surface, allowing 

the solvent to evaporate. The process is repeated until enough MOF has been deposited 

to obtain the desired measurements. Alternatively, the process can be done in the same 

way but with the addition of porous carbon black to the suspension before dropcasting it 

onto the electrode. The addition of carbon black to the suspension aids in adhesion to the 

carbon electrode. 

 The five MOFs that were synthesized in highest conversions were tested to see their 

redox properties. They were all prepared using a simple dropcasting method, without 

using carbon black as an additive, but unfortunately all but the copper MOF were unable 

to adsorb properly to the glassy carbon electrode and could be seen visibly falling off 

during testing. The other four systems were then once again dropcasted but with the aid 

of carbon black. Silver, nickel, and palladium still fell off of the electrode, but the ruthenium 

MOF managed to adhere, however the signal obtained from it was very weak and was 

quickly masked by the slow leaching of oxygen back into the cell. Further testing is 

required for the ruthenium system. 
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 The copper MOF adhered properly to the glassy carbon electrode and generated a 

proper CV curve (Figure 74). The cell was nitrogen-purged, with dry acetonitrile as the 

solvent, and tetrabutylammonium hexafluorophosphate as the electrolyte. The reference 

electrode was Ag/AgCl and the open-circuit potential was measured to be +0.365 V. 

Three reversible reduction peaks can be seen at +0.127 V, -0.097 V, and -0.369 V, which 

seem to indicate that the MOF is an electron accepting material, but it also gives some 

insight into the potential sites that are accepting the electrons. The copper is in the (II) 

oxidation state in the precursor and is unlikely to change through the synthesis due to the 

neutral nature of 19. Therefore, one would expect to see a CuII → CuI reduction peak, 

and perhaps a CuI → Cu0 reduction peak in the material, however three distinct peaks 

are observed. Furthermore, they are all sequentially harder to reduce, leading us to 

believe that it may be the aromatic cores of 19 that are being reduced. 19 contains an 

azaacene core which is electron deficient due to the incorporation of the pyridazine 

groups, and the pendant pyridine groups are also electron deficient. In the case of many 

pyridine-type nitrogen heteroaromatics, reductive pathways are well known, and this is 

very apparent in the case of Ru(bipy)3, where the three 2,2’-bipyridyl ligands each 

undergo a reversible reduction in a relatively small potential window, while the oxidation 

of RuIII/RuII is at a very highly positive voltage and there is no observable RuII/RuI 

reduction peak.388  
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Figure 74: Cyclic voltammetry curve of CuSO4-based MOF 
 

 The CV shown in Figure 74 have an open-circuit voltage equivalent to that of the 

Ag/AgCl reference electrode, which makes comparison to other literature values 

somewhat inconvenient and so the peaks have been converted to their potentials with 

respect to the standard hydrogen electrode (SHE) in Table 6. Along with the redox peaks 

observed in our experiments, the redox potentials for copper have been added to the 

table for easy comparison. The table shows that the copper reduction peaks all occur at 

very different potentials than what was observed for our MOF product, indicating that it is 

the aromatics that are undergoing the reductions. This is further evidence that the material 

formed is indeed a MOF created through reaction of 19 and CuSO4 as it experiences no 

solubility but has taken on the redox properties of 19 as a ligand. The results indicate that 

either 19 can undergo three separate reductions itself, or that there are three 19 ligands 

per metal. 
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Table 6: Reduction potentials versus standard hydrogen electrode. 
 

 The assumptions that the redox properties were due to the aromatics were validated 

by the CV of 19 (Figure 75), as two reversible redox peaks were observed. This indicates 

that the ligand itself is redox active, and based on the reduction potentials of the MOF 

product, the peaks seen are very likely due to the 19 ligand, not the copper centres.  

 

Figure 75: Cyclic voltammogram of 19 in acetonitrile. 
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4.4.2 Powder X-Ray Diffraction of 1,4,6,9-tetra(pyridine-2-yl)pyridazino[4,5-
g]phthalazine-Based MOF 

 While the cyclic voltammetry experiments gave us some evidence of MOF formation, 

it lacked to provide us with any deeper understanding of the structure. We turned to 

powder X-ray diffraction to glean some structural insight. The pXRD pattern can be seen 

in Figure 75. 

 

Figure 75: pXRD spectrum of CuSO4-based MOF 
 

 The pXRD spectrum of the synthesized CuSO4-based MOF indicates that the 

material is crystalline in nature, which is what is expected of a well-ordered structure, like 

a metal-organic framework, and serves as further evidence of the formation of a MOF. 

However, further details were not easily extracted from the data due to its difference from 

other compounds available in the database. Comparisons to a simulated spectrum would 

help confirm the expected structure, but since the structure was unknown, simulations 

could not be run. 
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4.4.3 Transmission Electron Microscopy and Energy Dispersive X-Ray 
Analysis of 1,4,6,9-tetra(pyridine-2-yl)pyridazino[4,5-g]phthalazine-Copper 
MOF 

 Transmission electron microscopy was turned to in an attempt to determine if the 

morphology of the material could be directly observed. Many MOF structures are heavily 

porous, but that is not necessarily the case and understanding the porosity of our newly 

synthesized material would help in determining which applications it could be further 

tested for. The TEM images of the copper-based MOF reveal that the material forms 

crystals on the scale of ~100 nm, and appears to form a macroporous solid, with no 

micropores directly observed (Figure 76). 

 

Figure 76: Transmission electron micrograph of 1,4,6,9-tetra(pyridine-2-
yl)pyridazino[4,5-g]phthalazine-Copper MOF 

 

 To determine a formula for the MOF, EDXA was performed on the sample on a nickel 

grid, so that the typical copper grid would not interfere with the measurements. The EDXA 

was repeated on several regions and the average was taken to establish a formula of 
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Cu9C30H18O7N8S5. The formula indicates that the structures that were predicted in 

Scheme 20 are not accurate due to the overabundance of copper (9 Copper to 1 19). The 

results seem to indicate the formation of a copper cluster, perhaps bridged by sulfur or 

oxygen atoms, as has been seen in the past with copper(II) and multidentate nitrogen 

ligands,389 and in biological systems.390 

4.4.4 Testing CO2 Reduction Capabilities of 1,4,6,9-tetra(pyridine-2-
yl)pyridazino[4,5-g]phthalazine-Copper MOF 

 The MOF system was tested for its efficacy towards CO2 reduction based on previous 

reports of copper electrocatalytic systems. The reduction was done in an electrocatalytic 

cell with 0.1 M KHCO3 as the aqueous electrolyte, and with a constant stream of CO2 

being fed into the solution, and a potential of -1.4 V vs Ag/AgCl. The MOF was affixed to 

a glassy carbon electrode by first creating an ink in Nafion® 117 solution, followed by 

dropcasting onto the freshly polished electrode surface. The gaseous products of the 

reaction were monitored by gas chromatography and the liquid products were observed 

with 1H NMR. 

 The products formed by the MOF when subjected to CO2 reduction conditions were 

88.5 % H2, 0.79 % CO, and minute quantities of formic acid. The heavy formation of H2 

indicates that the speed of the HER on the electrocatalytic surface was far faster than the 

higher order carbon products, making the catalyst largely ineffective at CO2 reduction. 

While these results are far from ideal, the other MOF systems that were synthesized could 

likewise be tested to determine their efficacy, particularly the other copper-based systems 

which feature various other counterions, perhaps fundamentally changing the reactivity 

of the MOF catalytic centres. 
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4.5 Conclusion and Future Work 

 Compound 19 has interested us in its potential to be used in MOF-based applications 

due to its many chelation sites. We have been able to show that there is indeed some 

MOF formation using copper sulfate and other metal compounds, but we have been 

unable to fully characterize the material due to its insoluble nature. The CuSO4-based 

MOF was promising as an electrocatalyst due to its inclusion of copper centres, however 

the results show that the hydrogen evolution reaction was significantly faster than any 

other reduction pathways, making it ineffective for our intended use. There are several 

options moving forward for this group of MOFs. Firstly, the other MOFs can be tested 

using similar methods to determine if they possess any interesting reduction products, 

especially the other copper containing MOFs. Secondly, the medium that the reduction 

tests were conducted in can be modified, the pH can be altered, or the buffer can be 

changed as well in order to determine if that will give rise to any difference in observed 

product formation. Thirdly, the synthesis can be tuned by the incorporation of larger metal 

clusters instead of the single atom inorganic precursors used, this can drastically affect 

the resulting structure and may create a more porous structure, potentially altering the 

rates of product formation. Finally, the MOFs can instead be tested for their use as gas 

storage media instead of as electrocatalysts, as their porous nature may be useful for 

such applications. 
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Conclusion 
 We have been able to develop several interesting research projects based on the 

shape complementary nature of carbon nanomaterials and iptycenes. Shape 

complementarity enables many interesting applications that cannot be accessed through 

simple π-π interactions with flat aromatic molecules and π-convex carbon nanomaterials. 

We have demonstrated the utility of this through the work reported in this dissertation, 

and much work still remains on further improving these methods. 

 Through the interaction of SWNTs and iptycenes we have been able to develop the 

Alignment Relay Technique, enabling the simultaneous sorting and alignment of SWNTs 

when deposited onto a functionalized surface. The alignment is quite impressive when 

combined with the diameter and length sorting capabilities of the method. We have further 

been able to prove that by simple alterations in the ART parameters, the sorting and 

alignment of the resulting deposited nanotubes can be altered. By changing the 5CB 

liquid crystal to the more ordered 8CB, we have shown a threefold increase in density 

coupled with a decrease in the average length of the deposited nanotubes, all while 

retaining the diameter sorting. Further experiments have demonstrated the ability for the 

iptycene nanotweezers to impact the diameter sorting of the deposited nanotubes, while 

maintaining the alignment and length sorting. These results indicate that, upon further 

optimization, the ART will be able to selectively deposit nanotubes of a desired type based 

on the careful choice of the deposition parameters. Future work involves testing the 

trenched surface’s ability to align the liquid crystals and aid in the alignment of the 

nanotubes. The design of new iptycenes which include electron withdrawing/donating 

groups and various heteroatoms could aid in the alignment and selectivity of the 



224 

methodology, perhaps allowing for the sorting of nanotubes by electronic type as well. 

New anchoring groups may be installed in order to functionalized new surfaces of interest, 

specifically allowing for the functionalization of hafnium oxide, as well as increasing the 

rate of the functionalization. Other post-deposition techniques may be employed, as has 

been seen in the success of post-deposition sonication of the nanotubes. The deposition 

of the nanotubes may also be optimized, testing various concentrations of nanotubes, as 

well as testing new methods like drop casting, in order to decrease the time required for 

the ART. Finally, other liquid crystal alignment methods can also be tested to not only 

determine their efficacy at improving the alignment of the nanotubes, but also to 

potentially improve the scalability of the ART. The Alignment Relay Technique has proven 

to be an interesting new methodology for depositing nanotubes, with a high future 

potential for application. 

 The use of π-convex-π-concave interactions has further been proven through the 

implementation of iptycene-functionalized silica gel for the separation of fullerenes. Our 

method shows unprecedented separation using simple flash chromatographic 

techniques, which is in direct contrast with the current state of the art which relies on 

HPLC for small scale purification. We have demonstrated that using our iptycene-

functionalized silica gel it is possible to purify the same amount of material, but with a 

method that is used in synthetic laboratories around the world. Despite the high efficacy 

of this method, there remains the problem of silica gel degradation. Future work should 

focus first on implementing a more robust silica gel functionalization, ideally through the 

use of chlorosilane anchoring groups. After this, the effectiveness of the methodology can 

be further tested on higher fullerenes and endohedral fullerenes as well, as their 
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separation, even with current HPLC methodology, remains challenging. To further 

improve separation, while decreasing retention times, heteroatoms such as halogens, 

nitrogen, and sulfur can be added to the iptycene to improve their binding affinity to the 

fullerenes. Finally, binding affinity studies should be conducted to quantify the binding. 

This new methodology not only exemplifies how powerful shape complementarity can be, 

but also enables the simple separation of fullerenes. 

 Our newly synthesized pyridazinophthalazine molecule has shown potential for use 

in MOF formation. Currently, we have been able to show that the ligand system may be 

forming MOFs with several metals, and have even been able to demonstrate that the 

copper-MOF can be used effectively in hydrogen evolution, indicating its conductive, 

electrocatalytic nature. However, due to the poor conversion of CO2 to other useful carbon 

analogues, further optimization is required. Future work should focus on testing the 

electrocatalytic potential of the other MOFs that were synthesized to determine if they 

have any useful application in CO2 electrocatalytic reduction. Furthermore, as the 

structure of the MOF has been determined to be microporous, it should be tested as a 

gas storage medium. Finally, other synthetic techniques should be tested, including metal 

clusters and potential incorporation of co-ligands. While current studies have failed to 

yield desired results, they have shown that the pyridazinophthalazine system has the 

potential to be used as a catalyst for MOF formation, and perhaps may also be useful in 

the creation of organometallic homogeneous catalysts. 

 As synthetic chemists, our ability to create new iptycene molecules has allowed us 

to create elegant solutions to difficult problems in other scientific fields and it is our ability 

to create new materials that has allowed for continued development of these techniques. 



226 

In my work I have produced a new method for the simultaneous sorting and alignment of 

carbon nanotubes, have iterated upon this method, have incorporated iptycenes into 

biosensors, have created a method for purifying fullerenes using flash chromatography, 

and have created a new ligand for MOF formation. Due to the Schipper group’s 

background in synthetic organic chemistry, the future of these research projects is very 

promising, as they each have the potential for significant improvements, and even offer 

branching off points for new projects. Thank you for taking the time to read this summation 

of my thesis work. 
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1. General Experimental Considerations 

1.1 Solvents and Reagents 

 Unless otherwise stated, all reactions were run open to air and without drying or 

preparing the solvents in any other way. All solvents used in synthesis were HPLC grade, 

and solvents used for column chromatography were reagent grade. All starting materials 

and other chemicals/substrates were purchased from Sigma-Aldrich except for: 

bis(diethoxyphosphoryl)acetylene (purchased from STREM Chemicals Inc.), 

IsoNanotubes-S 90% purity (NanoIntegris Inc.), rubbed polyimide coated glass 

substrates (Instec Inc.), SiliaSphere® 20 µm silica gel (SiliCycle Inc.), SiliaFlash® P60 40 

– 63 µm silica gel (SiliCycle Inc.), pentacene was synthesized in our lab, and trans-1,4-

dichloro-2-butene was synthesized in our lab. All chemicals were used without further 

purification unless stated. 

1.2 Equipment 

 1H NMR measurements were taken with a Brüker AVANCE 300 (300 MHz) δ or 

Brüker AC300 (300 MHz) δ NMR spectrometers, with chloroform as the internal standard. 

13C NMR measurements were taken with Brüker AVANCE300 (75.5 MHz) δ or Brüker 

AVANCE500 (125.8 MHz) δ NMR spectrometers, with deuterated chloroform as the 

internal standard. 31P NMR measurements were taken with a Brüker AC300 (121.4 MHz) 

δ NMR spectrometers, with phosphonic acid in water as the external reference. 29Si 

SSNMR measurements were taken with a Brüker AVANCE500 (99.3 MHz) δ NMR 

spectrometer, with magic angle spinning and using tetramethylsilane as the internal 

standard. The following abbreviations are used for NMR peak multiplicities: s, singlet; d, 

doublet; t, triplet; dd, doublet of doublets; m, multiplet; br, broad. Chemical shifts are 

reported in parts per million (ppm) relative to chloroform (δ 7.26) for 1H NMR, chloroform 
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(δ 77.0) for 13C NMR, phosphoric acid in water (δ 0.00) for 31P NMR, and tetramethyl 

silane (δ 0.00) for 29Si NMR.  

 High resolution mass spectrometry (HRMS) was conducted via electrospray 

ionization (ESI) measured on a Thermo Scientific Q ExactiveTM Plus Hybrid Quadrupole-

OrbitrapTM at the University of Waterloo Mass Spectrometry Facility. 

 Ultraviolet-visible absorption spectra were measured with a Perkin Elmer Lambda 35 

UV/Vis spectrophotometer in solution phase with chloroform as the solvent and were 

corrected for background signal with a solvent filled cuvette.  

 Atomic force microscopy measurements were taken using a Veeco Dimension 3100 

in tapping mode at WATLab. 

 X-ray photoelectron spectroscopy experiments were performed on a VGS ESCALab 

250 Imaging ESCA at WATLab. 

 Secondary-ion mass spectrometry experiments were performed on an IONTOF 

SIMS-5 at WATLab. 

 Scanning electron microscopy was performed on a FEI Quanta Feg 250 ESEM with 

EDX at WATLab. 

 Transmission electron microscopy was performed on a JEOL 1200EX TEMSCAN 

with X-ray microanalysis system on both copper and nickel grids. The experiments were 

performed at the Canadian Centre for Electron Microscopy at McMaster University. 

 Atomic layer deposition of hafnium oxide films was done on an Oxford PlasmaLab 

100 FlexAL ALD system at the Quantum NanoFab. 
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 Physical vapour deposition of silicon oxide was performed on a Intlvac Nanochrome 

II instrument at the Quantum NanoFab. 

 Electron beam lithography was performed on a JEOL JBX-6300FS Electron Beam 

Lithography System with a 100 kV accelerating voltage at the Quantum NanoFab. 

 Plasma etch of silicon and hafnium oxides was done with an Oxford Instruments 

ICP380 system, using CF4, at the Quantum NanoFab. 

 Spin coating of e-beam resist was done on a Brewer Science CEE 200X spinner on 

a 1300X vacuum hotplate at the Quantum NanoFab. 

 All silicon wafers were diced into 10 mm x 10 mm squares using the DISCO DAD3240 

dicing saw with a sapphire edged blade at the Quantum NanoFab. 

 Flash chromatography was performed on a CombiFlash® Rf+ and CombiFlash® Rf 

systems with in-line UV-Vis spectrometer and, in some cases, with an in-line atomic-

pressure chemical ionization mass spectrometer. 

PMIRRAS, Contact Angle, Raman 

2. Synthesis 

2.1 Synthesis of tetraethyl (9,10-dihydro-9,10-ethenoanthracene-11,12-
diyl)bis(phosphonate) (1) 

 

To a 25 mL thick-walled, glass pressure tube was added anthracene (0.897 g, 5.03 

mmol), bis(diethoxyphosphoryl)acetylene (0.500 g, 1.68 mmol), and 20 mL of dry toluene. 
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A magnetic stir bar was added to the mixture and the glass tube was sealed with a 

TeflonTM screw cap that had the treads wrapped in TeflonTM tape. The resulting mixture 

was heated with stirring at 160 °C in a sand bath for five days. The solution was allowed 

to cool, was then filtered and the filtrate was concentrated by rotary evaporator. The 

resulting residue was purified by flash chromatography on silica gel using ethyl acetate 

as the mobile phase to give yellow oil 1 in 50 % yield. Rf = 0.15 (ethyl acetate). 1H NMR 

in CDCl3 (δ 7.26 ppm) at room temperature: 7.36 ppm (m, 4H), 7.00 ppm (m, 4H), 5.79 

ppm (t, 2H, J = 6.4 Hz coupling to 31P), 4.01 ppm (m, 8H), 1.24 ppm (t, 12H, J = 7.4 Hz). 

31P NMR in CDCl3 at room temperature with phosphoric acid in water as the external 

reference (δ 0.00 ppm): 14.34 ppm. Spectral data matched literature values reported by 

Acheson.391 

 

2.2 Synthesis of tetraethyl (5,7,9,14,16,18-hexahydro-5,18:9,14-
bis([1,2]benzeno)-7,16-ethenoheptacene-25,26-diyl)bis(phosphonate) (2) 

 

Bis(diethoxylphosphoryl)acetylene (0.317 g, 1.06), 6 (0.563 g, 1.06 mmol), and 10 mL of 

toluene were added to a 25 mL microwave tube equipped with a magnetic stir bar. The 

microwave tube was capped, and the solution was heated with stirring at 200 °C in a sand 

bath for five days. The resulting solution was purified by flash chromatography on silica 

gel using ethyl acetate as the eluent system to give the product as a white solid in a 30 
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% yield. Rf = 0.1 (ethyl acetate). m/z (calc.) = 829.28479, m/z (found) = 829.28363. 1H 

NMR in CDCl3 (δ 7.26 ppm) at room temperature: 7.30 ppm (m, 8H) 7.21 ppm (m, 4H), 

6.95 ppm (m, 4H), 6.83 ppm (m, 4H), 5.57 ppm (t, 2H, J =  6.9 Hz coupling to 31P), 5.24 

ppm (s, 4H), 3.94 ppm (br. m, 8H), 1.13 ppm (t, J = 12H, 7.4 Hz). 13C NMR in CDCl3 (δ 

77.0 ppm) at room temperature: 154.3 – 151.7 ppm (dd, J = 9.7 Hz, 192.6 Hz), 145.5 

ppm, 145.3 ppm, 142.9 ppm, 141.1 ppm, 125.1 ppm, 123.6 ppm, 123.5 ppm, 119.7 ppm, 

62.6 ppm (t, J = 3.3 Hz), 55.4 ppm (t, J = 11.9 Hz), 54.0 ppm, 16.2 ppm (t, J = 3.3 Hz). 

31P NMR in CDCl3 at room temperature relative to phosphoric acid in water (δ 0.00): 15.13 

ppm. 

 

2.3 Synthesis of 11,12-bis(chloromethyl)-9,10-dihydro-9,10-
ethanoanthracene (3) 

 

To a 25 mL thick-walled, glass pressure tube was added anthracene (4 g, 22.44 mmol), 

trans-1,4-dichlorobut-2-ene (12.5 mL, 118.3 mmol), and a magnetic stir bar. The tube was 

then sealed with a TeflonTM screw cap with TeflonTM tape around the threads, and the 

mixture was heated with stirring at 200 °C for two days in a sand bath. The black mixture 

was allowed to cool and was then filtered to remove any unreacted anthracene. The 

filtrate was purified by vacuum distillation at 110 °C to collect trans-1,4-dichlorobut-2-ene 

distillate as a clear liquid. The remaining brown solid was purified by flash 

chromatography on silica gel using 10% ethyl acetate in hexanes as the mobile phase to 
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give the product as a white solid in a 91% yield. 1H NMR in CDCl3 (δ 7.26 ppm) at room 

temperature: 7.34 ppm (m, 4H), 7.18 ppm (m, 4H), 4.46 ppm (s, 2H), 3.32 ppm (dd, 2H, 

J = 5.3 Hz, 10.6 Hz), 2.99 ppm (dd, 2H, J = 9.5 Hz, 11.1 Hz), 1.77 ppm (m, 2H). Spectral 

data matched literature values reported by Hart.285 

 

2.4 Synthesis of 11,12-dimethylene-9,10-dihydro-9,10-ethanoanthracene (4) 

 

To a 100 mL round bottom flask was added 3 (2.423 g, 7.99 mmol), potassium tert-

butoxide (2.693 g, 24 mmol), 8 mL of tetrahydrofuran, 32 mL of dimethyl sulfoxide and a 

magnetic stir bar. The mixture was stirred at room temperature for 18 h and changed 

colour to dark green nearly instantly. The solution was poured into 200 mL of ice-water 

and turned yellow. The water was extracted with ether and the resulting organic phase 

was washed with brine, dried over sodium sulphate, and concentrated on a rotary 

evaporator. The solid was recrystallized from hexanes to give the product as a white solid 

in 98 % yield. 1H NMR in CDCl3 (δ 7.26 ppm) at room temperature: 7.32 ppm (m, 4H), 

7.11 ppm (m, 4H), 5.29 ppm (s, 2H), 5.13 ppm (s, 2H), 4.87 ppm (s, 2H). Spectral data 

matched literature values reported by Hart.285 
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2.5 Synthesis of 5,6,8,9,14,15,17,18-octahydro-5,18:9,14-
bis([1,2]benzeno)heptacene (5) 

 

A flame dried 250 mL round bottom flask was kept under and argon atmosphere and 

charged with a magnetic stir bar, 4 (1.841 g, 7.99 mmol) and 1,2,4,5-tetrabromobenzene 

(1.511 g, 3.83 mmol), 100 mL of dry toluene. To the stirring, room temperature solution 

was added n-butyl lithium (2.5 M in hexanes, 4.22 mL) dropwise over one hour. The 

reaction mixture was stirred at room temperature for 18 h and was then quenched with 

slow addition of isopropyl alcohol. The mixture was then poured onto water and left to sit 

for 30 minutes as a white precipitate formed. The solid was collected by filtration and 

recrystallized from 1,2-dichloroethane to give the desired product as a white solid in 79% 

yield. 1H NMR in CDCl3 (δ 7.26 ppm) at room temperature: 7.29 ppm (m, 8H), 6.95 ppm 

(m, 8H), 6.80 ppm (s, 2H), 4.85 ppm (s, 4H), 3.56 ppm (s, 8H). Spectral data matched 

literature values reported by Hart.285 

 

2.6 Synthesis of 5,9,14,18-tetrahydro-5,18:9,14-bis([1,2]benzeno)heptacene 
(6) 
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5 (0.150 g, 0.28 mmol), 10% palladium on carbon (0.017 g), and 15 mL of xylenes were 

added to a 50 mL flask equipped with a magnetic stir bar. The solution was heated under 

a reflux condenser with stirring at 160 °C for two days. The resulting mixture was filtered 

while hot and the black precipitate was washed with dichloromethane. The yellow filtrate 

was concentrated under reduced pressure to give a yellow-white solid. The solid was 

purified by flash chromatography on silica gel using 10% dichloromethane in hexanes as 

the eluent system to give the product as a white solid in a 55% yield. Rf = 0.2 (1:4 

DCM:Hexanes). 1H NMR in CDCl3 (δ 7.26 ppm) at room temperature: 8.07 ppm (s, 2H), 

7.81 ppm (s, 4H), 7.42 ppm (m, 8H), 7.03 ppm (m, 8H), 5.50 ppm (s, 4H). Spectral data 

matched literature values reported by Hart.285 

2.7 Synthesis of N1,N4-dihydroxybut-2-ynediamide (7) 

 

Separate solutions of hydroxylamine hydrochloride (2.000 g, 31.01 mmol) in 25 mL of 

methanol and potassium hydroxide (3.230 g, 57.57 mmol) in 25 mL of methanol were 

prepared, and both were cooled in an ice bath. The potassium hydroxide solution was 

added to the hydroxylamine hydrochloride solution with stirring, and the resulting solution 

was allowed to stand for five minutes in an ice bath, precipitating potassium chloride. The 

precipitate was removed by filtration and the filtrate was very slowly added to dimethyl 

acetylenedicarboxylate (0.88 mL, 7.18 mmol) in a 50 mL round bottom flask equipped 

with a magnetic stir bar, at room temperature. Additional potassium hydroxide was added 

to the solution until the pH ~10 as measured by universal pH indicator strips. The solution 
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was stirred at room temperature for 18 h. Initially the solution turned dark red, but over 

the course of the reaction it turned orange and a precipitate formed. The mixture was 

concentrated on a rotary evaporator, and the residue was then dissolved in H2O and 

acidified with 2M HCl to give a light orange solution. The product was extracted with ethyl 

acetate (3 x 50 mL), dried over magnesium sulfate, and concentrated on a rotary 

evaporator. However, 1H NMR analysis indicated that the product peaks associated with 

the hydroxamic acid were not present. 

 

2.8 Synthesis of dimethyl 9,10-dihydro-9,10-ethenoanthracene-11,12-
dicarboxylate (8) 

 

Anthracene (0.250 g, 1.40 mmol) and dimethyl acetylenedicarboxylate (0.216 mL, 1.76 

mmol) were placed in a 2 mL microwave tube which was purged with N2, and heated with 

magnetic stirring at 180 °C for one hour. The anthracene fully dissolved upon reaching 

temperature, and the colour of the solution changed from light yellow to dark 

orange/brown. The solution was cooled to 100 °C and poured into methanol, and the 

precipitate was recrystallized in methanol to give the product in a 76 % yield. 1H NMR in 

CDCl3 (δ 7.26 ppm) at room temperature: 7.37 ppm (dd, 4H, J = 3.2 Hz, 5.3 Hz), 7.01 

ppm (dd, 4H, J = 3.2 Hz, 5.3 Hz), 5.47 ppm (s, 2H), 3.79 ppm (s, 6H). Spectral data 

matched literature values reported by Wheeler et al.392 
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2.9 Synthesis of N11,N12-dihydroxy-9,10-dihydro-9,10-ethenoanthracene-
11,12-dicarboxamide (9) 

 

Hydroxylamine hydrochloride (0.503 g, 7.24 mmol) was added to a solution of 8 (1.000 g, 

3.12 mmol) in 25 mL of dichloroethane in a 50 mL round bottom flask at room 

temperature. The mixture was cooled to 10 °C, stirred with a magnetic stir bar, and triethyl 

amine (0.734 g, 7.24 mmol) was added. The reaction mixture was refluxed for one hour 

and then cooled to 0 °C. Trifluoroacetic acid (1.780 g, 15.61 mmol) was added and the 

mixture was stirred at 0 °C for 30 minutes. The resulting precipitate was collected by 

filtration, washed with dichloroethane and dried open to air. 

 

2.10 Synthesis of dimethyl 5,7,9,14,16,18-hexahydro-5,18:9,14-
bis([1,2]benzeno)-7,16-ethenoheptacene-25,26-dicarboxylate (10) 

 

Dimethyl acetylenedicarboxylate (2.0 mL, 16.27 mmol), 6 (0.585 g, 1.10 mmol), a 

magnetic stir bar, and 2 mL of toluene were added to a 25 mL microwave tube. The vial 

was capped and heated at 180 °C with stirring for three days. Reaction progress can be 

monitored by 1H NMR by comparing bridgehead carbon peaks: product at 5.25 ppm, 6 at 
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5.51 ppm, and if 6 is not properly purified a peak at 5.45 ppm will appear and belongs to 

5. The resulting mixture was concentrated on a rotary evaporator and recrystallized from 

acetone to remove some of the excess starting material and the precipitate was then 

purified by flash chromatography on silica gel using a gradient of 20 % - 50 % ethyl 

acetate in hexanes as the mobile phase. The product was further purified by 

recrystallization form methanol to give the product as a white solid. m/z (calc.) = 

673.23734, m/z (found) = 673.23699. 1H NMR in acetone-d6 (δ 2.05 ppm) at room 

temperature: 7.25 ppm (s, 4H), 7.22 ppm (dd, 4H, J = 3.2 Hz, 4.8 Hz), 7.13 ppm (dd, 4H, 

J = 3.2 Hz, 4.8 Hz), 6.86 ppm (dd, 4H, J = 3.7 Hz, 5.3 Hz), 6.75 ppm (dd, 4H, J = 3.2 Hz, 

5.3 Hz), 5.17 (s, 6H), 3.59 (s, 6H). 13C NMR in acetone-d6 (δ 29.92 ppm) at room 

temperature: 166.5 ppm, 148.4 ppm, 146.8 ppm, 146.6 ppm, 144.0 ppm, 142.6 ppm, 

125.8 ppm, 124.4 ppm, 120.5 ppm, 54.4 ppm, 52.9 ppm, 52.4 ppm. 

 

2.11 Synthesis of N25,N26-dihydroxy-5,7,9,14,16,18-hexahydro-5,18:9,14-
bis([1,2]benzeno)-7,16-ethenoheptacene-25,26-dicarboxamide (11) 

 

A solution of hydroxylamine hydrochloride (0.021 g, 0.30 mmol) and triethyl amine (0.030 

g, 0.30 mmol) in 1.2 mL of methanol was stirred for 30 minutes at room temperature in a 

5 mL microwave tube. 10 (0.050 g, 0.07 mmol) was then added and the mixture was 

refluxed for eight hours, after which a white precipitate formed and was collected. The 
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precipitate was washed with excess methanol and allowed to dry in air. Attempts were 

made to get the precipitate into deuterated solvents but no signal was ever seen in the 

NMR spectra. 

 

2.12 Synthesis of 15,16-bis(chloromethyl)-6,13-dihydro-6,13-
ethanopentacene (12) 

 

Freshly prepared pentacene (2.00 g, 7.19 mmol), freshly prepared trans-1,4-dichloro-2-

butene (22 mL, 198.90 mmol), and a magnetic stir bar were added to a 48 mL thick-

walled, glass pressure tube. The mixture was sonicated for one minute and the tube was 

purged with argon gas before being capped with a TeflonTM screw cap with TeflonTM tape 

around the threads. The tube was placed in a sand bath where it was heated with stirring 

at 180 °C for 36 hours. The resulting brown mixture was distilled under vacuum at 60 °C 

to remove the trans-1,4-dichloro-2-butene as a colourless liquid and the remaining brown, 

viscous mass was purified via flash chromatography on silica gel with a gradient of 0 % - 

5 % ethyl acetate in hexanes as the mobile phase. Rf = 0.45 in 10 % ethyl acetate in 

hexanes. m/z (calc.) = 403.10148, m/z (found) = 403.10139. 1H NMR in CDCl3 (δ 7.26 

ppm) at room temperature: 7.81 ppm (m, 8H), 7.44 ppm (m, 4H), 4.81 ppm (s, 2H), 3.55 

ppm (dd, 2H, J = 4.4 Hz, 10.5 Hz), 3.00 ppm (t, 2H, J = 10.5 Hz), 2.66 ppm (m, 2H). 13C 

NMR in CDCl3 (δ 77.0 ppm) at room temperature: 140.1 ppm, 137.1 ppm, 132.6 ppm, 
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132.5 ppm, 127.6 ppm, 125.8 ppm, 125.7 ppm, 124.2 ppm, 122.2 ppm, 46.4 ppm, 44.2 

ppm, 44.1 ppm.  

 

2.13 Synthesis of 15,16-dimethylene-6,13-dihydro-6,13-ethanopentacene 
(13) 

 

To a 25 mL microwave vial was added 12 (1.00 g, 2.48 mmol), potassium t-butoxide 

(1.530 g, 13.64 mmol), 4 mL of tetrahydrofuran, 16 mL of dimethylformamide, and a 

magnetic stir bar. The mixture was stirred at room temperature for three hours and the 

resulting brown solution was poured into ice water. A saturated aqueous solution of 

ammonium chloride was added to the ice water until pH 7 was achieved. The aqueous 

suspension was extracted with ethyl acetate (4 x 50 mL), the organic extractions were 

combined and washed with deionized water (2 x 50 mL) and brine (2 x 50 mL). The 

organic layer was dried over magnesium sulfate and concentrated on rotary evaporator 

to give the product in 99 % yield. m/z (calc.) = 331.14813, m/z (found) = 331.14795. 1H 

NMR in CDCl3 (δ 7.26 ppm) at room temperature: 7.78 ppm (s, 4H), 7.76 ppm (dd, 4H, J 

= 3.4 Hz, 6.4 Hz), 7.38 ppm (dd, 4H, J = 3.4 Hz, 6.1 Hz), 5.37 ppm (s, 2H), 5.24 ppm (s, 

2H), 5.12 ppm (s, 2H). 13C NMR in CDCl3 (δ 77.0 ppm) at room temperature: 143.9 ppm, 

139.3 ppm, 132.6 ppm, 127.6 ppm, 125.6 ppm, 121.6 ppm, 106.0 ppm, 55.0 ppm. 
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2.14 Synthesis of 6,7,9,10,17,18,20,21-octahydro-6,21:10,17-
bis([2,3]naphthaleno)nonacene (14) 

 

To a flame dried, argon purged 100 mL round bottom flask was added 13 (1.00 g, 3.03 

mmol), 1,2,4,5-tetrabromobenzene (0.596 g, 1.51 mmol), 35 mL of dry toluene, and a 

magnetic stir bar. To this stirring mixture was added 3 mL of 1.3 M n-butyl lithium in 

hexanes dropwise, over the course of an hour. The resulting mixture was quenched with 

5 mL of isopropanol, poured into ice water and extracted with ethyl acetate (2 x 50 mL). 

The combined organic layers were washed with brine (2 x 50 mL), dried over magnesium 

sulfate, and concentrated on a rotary evaporator. The resulting oil was purified by flash 

chromatography on silica gel using a gradient of 0 % - 10 % ethyl acetate in hexanes to 

give the product in 23 % yield. Due to the difficulty in purification, the product was used 

for the subsequent reaction despite poor purity. Rf = 0.62 (20% ethyl acetate in hexanes). 

1H NMR in CDCl3 (δ 7.26 ppm) at room temperature: 7.75 ppm (s, 10H), 7.75 ppm (dd, 

8H, J = 3.4 Hz, 6.4 Hz), 7.41 ppm (dd, 8H, J = 3.2 Hz, 6.1 Hz), 5.03 ppm, (s, 4H), 3.50 

ppm (s, 8H). 
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2.15 Synthesis of 6,10,17,21-tetrahydro-6,21:10,17-
bis([2,3]naphthaleno)nonacene (15) 

 

A 20 mL microwave vial was charged with 14 (0.100 g, 0.14 mmol), 2,3-dichloro-5,6-

dicyano-1,4-benzoquinone (0.065 g, 0.29 mmol), 5 mL of xylenes, and a magnetic stir 

bar. The vial was heated with stirring at 50 °C for two hours, then the reaction mixture 

was concentrated on rotary evaporator and purified by flash chromatography on silica gel 

with a gradient of 0 % - 10 % ethyl acetate in hexanes as the mobile phase. The product 

was obtained in a 66 % yield. Rf = 0.51 (20 % ethyl acetate in hexanes). 1H NMR in CDCl3 

(δ 7.26 ppm) at room temperature: 7.93 ppm (s, 4H), 7.89 ppm (s, 8H), 7.76 ppm (dd, 8H, 

J = 3.4 Hz, 6.1 Hz), 7.63 ppm (s, 4H), 7.41 ppm (dd, 8H, J = 3.2 Hz, 6.1 Hz), 5.73 ppm 

(s, 4H). 13C NMR in CDCl3 (δ 77.0 ppm) at room temperature: 142.5 ppm, 140.3 ppm, 

132.1 ppm, 131.7 ppm, 127.5 ppm, 125.9 ppm, 122.2 ppm, 121.5 ppm, 120.9 ppm, 53.1 

ppm. 
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2.16 Synthesis of tetraethyl (6,8,10,17,19,21-hexahydro-6,21:10,17-
bis([2,3]naphthaleno)-8,19-ethenononacene-31,32-diyl)bis(phosphonate) 
(16) 

 

A 5 mL microwave vial was charged with 15 (0.05 g, 0.07 mmol), 

bis(diethoxylphosphoryl)acetylene (0.026 g, 0.09 mmol), 3 mL of toluene, and a magnetic 

stir bar. The microwave tube was capped and heated with stirring at 190 °C for three 

days. The resulting solution was concentrated on a rotary evaporator and purified by flash 

chromatography on silica gel using ethyl acetate as the mobile phase to give the product 

in a 30 % yield. 1H NMR in CDCl3 (δ 7.26 ppm) at room temperature: 7.91 ppm (s, 4H), 

7.88 ppm (s, 8H), 7.76 ppm (dd, 8H, J = 3.2 Hz, 6.1 Hz), 7.61 ppm (s, 4H), 7.40 ppm (dd, 

8H, J = 3.4 Hz, 6.4 Hz), 5.72 ppm (s, 4H), 4.15 ppm (q, 8H, J = 7.3 Hz), 1.27 ppm (t, 12H, 

J = 7.1 Hz). 13C NMR in CDCl3 (δ 77.0 ppm) at room temperature: 140.4 ppm, 132.1 ppm, 

131.8 ppm, 131.7 ppm, 127.5 ppm, 125.9 ppm, 122.3 ppm, 121.6 ppm, 120.9 ppm, 64.1 

ppm (t, J = 3.0 Hz), 53.2 ppm, 29.7 ppm, 16.1 ppm (t, J = 3.2 Hz). 31P NMR in CDCl3 at 

room temperature relative to phosphoric acid in water (δ 0.00): -9.38 ppm. 
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2.17 Synthesis of tetraethyl (6,13-dihydro-6,13-ethenopentacene-15,16-
diyl)bis(phosphonate) (17) and tetraethyl (5,14-dihydro-5,14-
ethenopentacene-15,16-diyl)bis(phosphonate) (18) 

 

A 25 mL thick-walled, glass pressure tube was charged with pentacene (1.132 g, 4.07 

mmol), bis(diethoxylphosphoryl)acetylene (1.213 g, 4.07 mmol), 20 mL of toluene, and a 

magnetic stir bar. The glass tube was capped with a TeflonTM screw cap with TeflonTM 

tape wrapped around its threads, and was then heated with stirring in a sand bath to 180 

°C for five days. The mixture was cooled and filtered, and the filtrate was collected, 

concentrated on a rotary evaporator, and purified by flash chromatography on silica gel 

with ethyl acetate as the mobile phase to give an oily, yellow, inseparable mixture of 

isomers (17 and 18 in a 5.5:1 ratio respectively) in an overall 64% yield. Rf = 0.15 (ethyl 

acetate). Spectral data for isomer 17: 1H NMR in CDCl3 (δ 7.26 ppm) at room temperature: 

7.83 ppm (s, 4H), 7.74 ppm (m, 4H), 7.42 ppm (m, 4H), 6.00 ppm (t, 2H, J = 6.6 Hz), 4.04 

ppm (br m, 8H), 1.25 ppm (t, 12H, J = 7.1 Hz). 13C NMR in CDCl3 (δ 77.0 ppm) at room 

temperature: 151.5 ppm (dd, 8.6 Hz, J = 189.7 Hz), 139.2 ppm, 131.9 ppm, 127.6 ppm, 

126.0 ppm, 122.3 ppm, 62.6 ppm (t, J = 2.9 Hz), 54.3 ppm (t, J = 11.5 Hz), 16.2 ppm (t, 

J = 2.9 Hz). 31P NMR in CDCl3 at room temperature relative to phosphoric acid in water 

(δ 0.00): 14.34 ppm. m/z (calc.) = 829.28424, m/z (found) = 829.28363. Spectral data for 

isomer 18: 1H NMR in CDCl3 (δ 7.26 ppm) at room temperature: 8.28 ppm (s, 2H), 7.94 

ppm (m, 2H), 7.90 ppm (s, 2H), 7.42 ppm (m, 4H)*, 7.10 ppm (m, 2H), 5.90 ppm (t, 2H, J 
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= 6.9 Hz), 4.03 (br m, 8H)*, 1.25 (t, 12H)*. 13C NMR in CDCl3 (δ 77.0 ppm) at room 

temperature: 151.5 ppm (dd, 8.6 Hz, J = 189.7 Hz)*, 142.2 ppm, 138.6 ppm, 131.9 ppm*, 

130.2 ppm, 128.0 ppm, 125.9 ppm*, 125.2 ppm, 123.9 ppm, 121.8 ppm, 62.5 ppm (t, J = 

2.9 Hz)*, 54.3 ppm (t, J = 11.5 Hz)*, 16.2 ppm (t, J = 2.9 Hz)*. 31P NMR in CDCl3 at room 

temperature relative to phosphoric acid in water (δ 0.00): 14.30 ppm*. Peaks labelled with 

an asterisk (*) are either partially or completely overlapped with those of 17. 

2.18 Synthesis of 1,4,6,9-tetra(pyridine-2-yl)pyridazino[4,5-g]phthalazine (19) 

 

A 25 mL round bottom flask was charged with 3,6-di-2-pyridyl-1,2,4,5-tetrazine (1.00 g, 

4.23 mmol), 1,4-cyclohexadiene (0.20 mL, 2.11 mmol), 15 mL of chloroform, and a 

magnetic stir bar. The solution was stirred at 70 °C for 18 h, and turned orange. The 

solution was cooled, concentrated on a rotary evaporator, and purified by flash 

chromatography on silica gel with 40 % ethyl acetate in hexanes as the mobile phase to 

give the product as orange, needle crystals in a 64 % yield. Rf = 0.5 (40% ethyl acetate 

in hexanes). 1H NMR in CDCl3 (δ 7.26 ppm) at room temperature: 8.56 ppm (m, 6H), 8.04 

ppm (d, 4H, J = 8.0 Hz), 7.75 ppm (dd, 4H, J = 7.4 Hz), 7.34 ppm (dd, 4H, J = 4.8 Hz). 

13C NMR in CDCl3 (δ 77.0 ppm) at room temperature: 148.3 ppm, 147.5 ppm, 146.6 ppm, 

136.7 ppm, 124.8 ppm, 121.2 ppm. 
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2.19 Synthesis of Copper-1,4,6,9-tetra(pyridine-2-yl)pyridazino[4,5-
g]phthalazine Metal Organic Framework 

 

A 5 mL microwave tube was charged with 19 (0.025 g, 0.05 mmol), copper sulfate 

pentahydrate (0.051 g, 0.20 mmol), 2 mL of dimethylformamide, and a magnetic stir bar. 

The microwave tube was capped and heated with stirring at 120 °C for 18 h. The reaction 

mixture was cooled to room temperature, filtered, and the precipitate was washed with 

deionized water and acetone and then allowed to dry in the air. 

 

2.20 Synthesis of cis-1,4-dichloro-2-butene 

 

A 250 mL flame dried, round bottom flask was charged with cis-2-butene-1,4-diol (75 mL, 

0.91 mol), pyridine (1.5 mL, 18.6 mmol), and a magnetic stir bar. The flask was equipped 

with a reflux condenser, heated with stirring to 60 °C, and thionyl chloride (93 mL, 3.1 

mol) was added dropwise over the course of 40 minutes, turning the solution black. The 

solution was allowed to react for an additional 15 minutes. The flask was then equipped 

with a vacuum distillation apparatus and heated to 85 °C until a clear liquid began to 

collect, giving the product in 88 % yield. 1H NMR in CDCl3 (δ 7.26 ppm) at room 

temperature: 5.81 ppm (t, 2H, J = 6.4 Hz), 4.11 ppm (d, 4H, J = 6.4 Hz). Spectral data 

matched literature values. 
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3. Substrate Functionalization 

3.1 Alignment Relay Technique with 4-cyano-4’-pentylbiphenyl and 
tetraethyl (5,7,9,14,16,18-hexahydro-5,18:9,14-bis([1,2]benzeno)-7,16-
ethenoheptacene-25,26-diyl)bis(phosphonate) (2) on indium tin oxide 

A 25 mm x 25 mm indium tin oxide coated glass slide was cleaned through sonication in 

isopropanol for 10 minutes and dried with a stream of nitrogen gas before being 

submerged in a piranha solution* (3:1 H2SO4(conc.):H2O2(30 %)) heated at 100 °C for 30 

minutes. The slide was removed from the piranha solution, rinsed with miliQ water, and 

dried under a stream of nitrogen gas. The slides were used immediately after being 

cleaned. 

To a 20 mL glass scintillation vial was added 2 (2.5 mg, 0.003 mmol), 4-cyano-4’-

pentylbiphenyl (50 mg, 0.20 mmol), and 10 mL of chloroform. The resulting solution was 

heated to 40 °C and evaporated under reduced pressure to give a solution of 2 in 5CB. A 

drop of the solution was pulled up into the tip of a glass Pasteur pipette and deposited 

onto the centre of a rubbed polyimide-coated glass slide. The cleaned ITO slide was then 

placed onto the rubbed polyimide slide and pressed down with tweezers, such that the 

drop on the surface spread out into a thin film, covering the entire surface of the slides. 

The pressed slides were left to react at room temperature for 24 h, after which the slides 

were separated and washed with chloroform. The washings were collected and reused in 

further functionalization reactions. 

The resulting 2-functionalized ITO surface was submerged in a 25 mL suspension of 

single-walled carbon nanotubes (surfactant-wrapped, 90% semiconducting, 0.01 mg/mL) 

for 48 h. The ITO slide was then removed from the suspension, washed with miliQ water, 
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and dried under a stream of nitrogen gas. This procedure gives a SWNT-deposited 

surface in which the SWNTs are aligned and sorted by length. 

*Piranha solution is dangerous and requires proper training and safety precautions during 

use. 

 

3.2 Alignment Relay Technique with 4-cyano-4’-pentylbiphenyl and 
tetraethyl (5,7,9,14,16,18-hexahydro-5,18:9,14-bis([1,2]benzeno)-7,16-
ethenoheptacene-25,26-diyl)bis(phosphonate) (2) on Silicon Dioxide 

The same procedure used in 3.1 was performed on the native oxide layer of a 10 mm x 

10 mm silicon slide. This procedure gives a SWNT-deposited surface in which the SWNTs 

are aligned and sorted by length and diameter. 

 

3.3 Alignment Relay Technique with 4-cyano-4’-octylbiphenyl and tetraethyl 
(5,7,9,14,16,18-hexahydro-5,18:9,14-bis([1,2]benzeno)-7,16-
ethenoheptacene-25,26-diyl)bis(phosphonate) (2) on Indium Tin Oxide 

The same procedure used in 3.1 was performed, instead using 4-cyano-4’-octylbiphenyl 

as the liquid crystal. This procedure gives a SWNT-deposited surface in which the 

SWNTs are aligned and sorted by length. 

 

3.4 Alignment Relay Technique with 4-cyano-4’-octylbiphenyl and tetraethyl 
(5,7,9,14,16,18-hexahydro-5,18:9,14-bis([1,2]benzeno)-7,16-
ethenoheptacene-25,26-diyl)bis(phosphonate) (2) on Silicon Dioxide 

The same procedure used in 3.1 was performed on the native oxide layer of a 10 mm x 

10 mm silicon slide, using 4-cyano-4’-octylbiphenyl as the liquid crystal, and allowing the 
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functionalization to occur for two days. This procedure gives a SWNT-deposited surface 

in which the SWNTs are aligned and sorted by length and diameter. 

 

3.5 Functionalization of Silica Gel with Phosphonates tetraethyl (6,13-
dihydro-6,13-ethenopentacene-15,16-diyl)bis(phosphonate) (17) and 
tetraethyl (5,14-dihydro-5,14-ethenopentacene-15,16-diyl)bis(phosphonate) 
(18) 

To a 250 mL round bottom flask was added SiliaSphere® 20 µm silica gel (12 g), a mixture 

of 17/18 (6.99 g, 12.13 mmol), a magnetic stir bar, and 75 mL of acetonitrile. The resulting 

slurry was heated at reflux with stirring for four hours, cooled, and concentrated on a 

rotary evaporator. The dried silica gel was transferred to a 150 mL beaker and placed in 

a vacuum oven at 140 °C for four hours. The resulting silica gel was orange in colour and 

was washed with dichloromethane to remove and unreacted 17/18. The functionalization 

of the resulting silica gel was verified by 29Si SSNMR, with TMS as the internal standard. 

 

4. Cyclic Voltammetry and Differential Pulse Voltammetry 

4.1 Cyclic Voltammetry and Differential Pulse Voltammetry Measurements of 
1,4,6,9-tetra(pyridine-2-yl)pyridazino[4,5-g]phthalazine (19) 

To a flame-dried 5 mL glass beaker was added 2 mL of dry acetonitrile, 5 mg of 19, and 

tetrabutylammonium hexafluorophosphate (0.077 mg, 0.20 mmol). The beaker was fitted 

with a holed cap and a platinum reference electrode, counter electrode, working electrode 

were placed into the solution. A stream of nitrogen gas was bubbled through the solution 

through a syringe for 5 minutes before measurements were taken. The scans were 

conducted between +2 and -2 A at a scan rate of 100 mV/s. 
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Figure S1: Cyclic voltammogram of 19. 
 

 

Figure S2: Differential pulse voltammogram of 19 in the positive direction. 
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Figure S3: Differential pulse voltammogram of 19 in the negative direction. 
 

4.2 Cyclic Voltammetry and Differential Pulse Voltammetry Measurements of 
Copper-1,4,6,9-tetra(pyridine-2-yl)pyridazino[4,5-g]phthalazine Metal 
Organic Framework 

To a 25 mL flame-dried scintillation vial was added 10 mg of the metal-organic framework 

and 10 mL of dry acetonitrile. The vial was capped and sonicated for ten minutes to 

disperse the MOF throughout the solvent.  A glassy carbon electrode was polished using 

aluminum oxide polishing compound and the dispersion was deposited onto the electrode 

using a micropipette, 20 µL at a time, the acetonitrile was allowed to evaporate, and the 

process was repeated ten times to deposit a small layer of the MOF onto the electrode. 

To a flame-dried 5 mL glass beaker was added 2 mL of dry acetonitrile and 

tetrabutylammonium hexafluorophosphate (0.077 mg, 0.20 mmol). The beaker was fitted 

with a holed cap and an aqueous silver/silver chloride reference electrode, platinum 

counter electrode, and MOF-covered glassy carbon electrode were placed into the 
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solution through the cap. A stream of nitrogen gas was bubbled through the solution 

through a syringe for 5 minutes before measurements were taken. The scans were 

conducted between +2 and -2 A at a scan rate of 50 mV/s. 

 

Figure S4: Cyclic voltammogram of Copper-1,4,6,9-tetra(pyridine-2-
yl)pyridazino[4,5-g]phthalazine Metal Organic Framework. 
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5. Transmission Electron Microscopy 

5.1 Transmission Electron Micrographs of Copper-1,4,6,9-tetra(pyridine-2-
yl)pyridazino[4,5-g]phthalazine Metal Organic Framework 

 

Figure S5: TEM of MOF on copper grid at 5 µm x 5 µm scale. 
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S6: TEM of MOF on copper grid at 2 µm x 2 µm scale. 
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S7: TEM of MOF on copper grid at 1 µm x 1 µm scale. 
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S8: TEM of MOF on copper grid at 500 nm x 500 nm scale. 
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S9: TEM of MOF on copper grid at 50 nm x 50 nm scale. 
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S10: TEM of MOF on nickel grid at 2 µm x 2 µm scale. 
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S11: TEM of MOF on nickel grid at 1 µm x 1 µm scale. 
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S12: TEM of MOF on nickel grid at 500 nm x 500 nm scale. 
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6. Scanning Electron Microscopy 

6.1 Scanning Electron Micrographs of Patterned Silicon Oxide Surface 

 

S13: SEM of patterned silicon oxide surface at a 20 µm x 20 µm scale. 
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S14: SEM of patterned silicon oxide surface at a 10 µm x 10 µm scale. 
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S15: SEM of patterned silicon oxide surface at a 1 µm x 1 µm scale 
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7. Energy Dispersive X-Ray Analysis 

7.1 Energy Dispersive X-Ray Analysis of Patterned Silicon Oxide Surface 

 

Element Weight % Atomic % Net Int. Error % Kratio Z R A F 

AlK 1.09 1.13 37.35 9.86 0.01 0.98 0.99 0.96 1.08 

SiK 98.91 98.87 3,115.82 1.75 0.98 1 1 0.99 1 

S16: EDXA of the trench region of a patterned silicon oxide surface 
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Element Weight % Atomic % Net Int. Error % Kratio Z R A F 

AlK 1.08 1.12 37.03 9.72 0.01 0.98 0.99 0.96 1.08 

SiK 98.92 98.88 3,101.43 1.75 0.98 1 1 0.99 1 

S17: EDXA of the plateau region of a patterned silicon oxide surface 
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Element Weight % Atomic % Net Int. Error % Kratio Z R A F 

O K 0.82 1.44 19.65 23.16 0.00 1.1 0.95 0.2 1 

AlK 0.73 0.76 146.13 5.92 0.01 0.98 0.99 0.94 1.07 

SiK 97.88 97.71 18,916.08 1.34 0.96 1 1 0.98 1 

HfL 0.57 0.09 9.68 56.72 0.00 0.61 1.2 1.05 1.25 

S18: EDXA of the trench region of a patterned silicon oxide surface 
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Element Weight % Atomic % Net Int. Error % Kratio Z R A F 

SiK 100.00 100.00 19,227.41 1.11 1.00 1 1 1 1 

S19: EDXA of the plateau region of a patterned silicon oxide surface 
 

7.2 Energy Dispersive X-Ray of Copper-1,4,6,9-tetra(pyridine-2-
yl)pyridazino[4,5-g]phthalazine Metal Organic Framework 
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S20: Elemental map of MOF at 1 µm x 1 µm scale with oxygen in red, sulfur in 
yellow, copper in pink, and carbon in green 

 

 

S21: EDXA of MOF, area 1 
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S22: Elemental map of MOF at 1.6 µm x 1.6 µm scale with oxygen in red, sulfur in 
yellow, copper in pink, and carbon in green 
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S23: EDXA of MOF, area 2 
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S24: EDXA of MOF, area 3 
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S25: EDXA of MOF, area 4 
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S26: EDXA of MOF, area 5 
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S27: EDXA of MOF, area 6 
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S28: EDXA of MOF, area 7 
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8. Atomic Force Microscopy 

8.1 Atomic Force Micrographs of ART-Deposited SWNTs on an Indium Tin 
Oxide Surface with 4-cyano-4’-pentylbiphenyl and tetraethyl (5,7,9,14,16,18-
hexahydro-5,18:9,14-bis([1,2]benzeno)-7,16-ethenoheptacene-25,26-
diyl)bis(phosphonate) (2) 

 

S29: AFM of SWNTs on ITO with 5CB and 2, area 1 
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S30: AFM of SWNTs on ITO with 5CB and 2, area 2 
 

 

S31: AFM of SWNTs on ITO with 5CB and 2, area 3 
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S32: AFM of SWNTs on ITO with 5CB and 2, area 4 
 

 

S33: AFM of SWNTs on ITO with 5CB and 2, area 5 
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8.2 Atomic Force Micrographs of ART-Deposited SWNTs on a Silicon Dioxide 
Surface with 4-cyano-4’-pentylbiphenyl and tetraethyl (5,7,9,14,16,18-
hexahydro-5,18:9,14-bis([1,2]benzeno)-7,16-ethenoheptacene-25,26-
diyl)bis(phosphonate) (2) 

 

S34: AFM of SWNTs on SiO2 with 5CB and 2, area 1 
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S35: AFM of SWNTs on SiO2 with 5CB and 2, area 2 
 

 

S36: AFM of SWNTs on SiO2 with 5CB and 2, area 3 
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S37: AFM of SWNTs on SiO2 with 5CB and 2, area 4 
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8.3 Atomic Force Micrographs of ART-Deposited SWNTs on an Indium Tin 
Oxide Surface with 4-cyano-4’-octylbiphenyl and tetraethyl (5,7,9,14,16,18-
hexahydro-5,18:9,14-bis([1,2]benzeno)-7,16-ethenoheptacene-25,26-
diyl)bis(phosphonate) (2) 

 

S38: AFM of SWNTs on ITO with 8CB and 2, area 1 
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S39: AFM of SWNTs on ITO with 8CB and 2, area 2 
 

 

S40: AFM of SWNTs on ITO with 8CB and 2, area 3 
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S41: AFM of SWNTs on ITO with 8CB and 2, area 4 
 

 

S42: AFM of SWNTs on ITO with 8CB and 2, area 5 
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S43: AFM of SWNTs on ITO with 8CB and 2, area 6 
 

 

S44: AFM of SWNTs on ITO with 8CB and 2, area 7 
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S45: AFM of SWNTs on ITO with 8CB and 2, area 8 
 

 

S46: AFM of SWNTs on ITO with 8CB and 2, area 9 
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S47: AFM of SWNTs on ITO with 8CB and 2, area 10 
 

 

S48: AFM of SWNTs on ITO with 8CB and 2, area 11 
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S49: AFM of SWNTs on ITO with 8CB and 2, area 12 
 

 

S50: AFM of SWNTs on ITO with 8CB and 2, area 13 
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S51: AFM of SWNTs on ITO with 8CB and 2, area 14 
 

 

S52: AFM of SWNTs on ITO with 8CB and 2, area 15 
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S53: AFM of SWNTs on ITO with 8CB and 2, area 16 
 

 

S54: AFM of SWNTs on ITO with 8CB and 2, area 17 
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S55: AFM of SWNTs on ITO with 8CB and 2, area 18 
 

 

S56: AFM of SWNTs on ITO with 8CB and 2, area 19 
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S57: AFM of SWNTs on ITO with 8CB and 2, area 20 
 

 

S58: AFM of SWNTs on ITO with 8CB and 2, area 21 
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S59: AFM of SWNTs on ITO with 8CB and 2, area 22 
 

 

S60: AFM of SWNTs on ITO with 8CB and 2, area 23 
 



298 

8.4 Atomic Force Micrographs of ART-Deposited SWNTs on a Silicon Dioxide 
Surface with 4-cyano-4’-octylbiphenyl and tetraethyl (5,7,9,14,16,18-
hexahydro-5,18:9,14-bis([1,2]benzeno)-7,16-ethenoheptacene-25,26-
diyl)bis(phosphonate) (2) 

 

S61: AFM of SWNTs on SiO2 with 8CB and 2, area 1 
 



299 

 

S62: AFM of SWNTs on SiO2 with 8CB and 2, area 2 
 

 

S63: AFM of SWNTs on SiO2 with 8CB and 2, area 3 
 



300 

 

S64: AFM of SWNTs on SiO2 with 8CB and 2, area 4 
 

 

S65: AFM of SWNTs on SiO2 with 8CB and 2, area 5 
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S66: AFM of SWNTs on SiO2 with 8CB and 2, area 6 
 

8.5 Atomic Force Micrographs of ART-Deposited SWNTs on an Indium Tin 
Oxide Surface with 4-cyano-4’-octylbiphenyl and tetraethyl (6,8,10,17,19,21-
hexahydro-6,21:10,17-bis([2,3]naphthaleno)-8,19-ethenononacene-31,32-
diyl)bis(phosphonate) (16) 
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S67: AFM of SWNTs on ITO with 8CB and 16, area 1 
 

 

S68: AFM of SWNTs on ITO with 8CB and 16, area 2 
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S69: AFM of SWNTs on ITO with 8CB and 16, area 3 
 

 

S70: AFM of SWNTs on ITO with 8CB and 16, area 4 
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S71: AFM of SWNTs on ITO with 8CB and 16, area 5 
 

 

S72: AFM of SWNTs on ITO with 8CB and 16, area 6 
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S73: AFM of SWNTs on ITO with 8CB and 16, area 7 
 

 

S74: AFM of SWNTs on ITO with 8CB and 16, area 8 
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S75: AFM of SWNTs on ITO with 8CB and 16, area 9 
 

 

S76: AFM of SWNTs on ITO with 8CB and 16, area 10 
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S77: AFM of SWNTs on ITO with 8CB and 16, area 11 
 

 

S78: AFM of SWNTs on ITO with 8CB and 16, area 12 
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S79: AFM of SWNTs on ITO with 8CB and 16, area 13 
 

 

S80: AFM of SWNTs on ITO with 8CB and 16, area 14 
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S81: AFM of SWNTs on ITO with 8CB and 16, area 15 
 

 

S82: AFM of SWNTs on ITO with 8CB and 16, area 16 
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S83: AFM of SWNTs on ITO with 8CB and 16, area 17 
 

 

S84: AFM of SWNTs on ITO with 8CB and 16, area 18 
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S85: AFM of SWNTs on ITO with 8CB and 16, area 19 
 

 

S86: AFM of SWNTs on ITO with 8CB and 16, area 20 
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S87: AFM of SWNTs on ITO with 8CB and 16, area 21 
 

 

S88: AFM of SWNTs on ITO with 8CB and 16, area 22 
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S89: AFM of SWNTs on ITO with 8CB and 16, area 23 
 

8.6 Atomic Force Micrographs of ART-Deposited SWNTs on a Silicon Dioxide 
Surface with 4-cyano-4’-octylbiphenyl and tetraethyl (6,8,10,17,19,21-
hexahydro-6,21:10,17-bis([2,3]naphthaleno)-8,19-ethenononacene-31,32-
diyl)bis(phosphonate) (16) 
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S90: AFM of SWNTs on SiO2 with 8CB and 16, area 1 
 

 

S91: AFM of SWNTs on SiO2 with 8CB and 16, area 2 
 

 

S92: AFM of SWNTs on SiO2 with 8CB and 16, area 3 
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S93: AFM of SWNTs on SiO2 with 8CB and 16, area 4 
 

 

S94: AFM of SWNTs on SiO2 with 8CB and 16, area 5 
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S95: AFM of SWNTs on SiO2 with 8CB and 16, area 6 
 

 

S96: AFM of SWNTs on SiO2 with 8CB and 16, area 7 
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S97: AFM of SWNTs on SiO2 with 8CB and 16, area 8 
 

 

S98: AFM of SWNTs on SiO2 with 8CB and 16, area 9 
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S99: AFM of SWNTs on SiO2 with 8CB and 16, area 10 
 

 

S100: AFM of SWNTs on SiO2 with 8CB and 16, area 11 
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S101: AFM of SWNTs on SiO2 with 8CB and 16, area 12 
 

 

S102: AFM of SWNTs on SiO2 with 8CB and 16, area 13 
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S103: AFM of SWNTs on SiO2 with 8CB and 16, area 14 
 

 

S104: AFM of SWNTs on SiO2 with 8CB and 16, area 15 
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S105: AFM of SWNTs on SiO2 with 8CB and 16, area 16 
 

 

S106: AFM of SWNTs on SiO2 with 8CB and 16, area 17 
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S107: AFM of SWNTs on SiO2 with 8CB and 16, area 18 
 

 

S108: AFM of SWNTs on SiO2 with 8CB and 16, area 19 
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S109: AFM of SWNTs on SiO2 with 8CB and 16, area 20 
 

 

S110: AFM of SWNTs on SiO2 with 8CB and 16, area 21 
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S111: AFM of SWNTs on SiO2 with 8CB and 16, area 22 
 

 

S112: AFM of SWNTs on SiO2 with 8CB and 16, area 23 
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S113: AFM of SWNTs on SiO2 with 8CB and 16, area 24 
 

 

S114: AFM of SWNTs on SiO2 with 8CB and 16, area 25 
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S115: AFM of SWNTs on SiO2 with 8CB and 16, area 26 
 

8.7 Atomic Force Micrographs of Patterned Silicon Oxide Surface 

 

S116: AFM of patterned SiO2 surface 
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S117: Height profile of patterned SiO2 surface 
 

 

S118: Close-up of trench on patterned SiO2 surface 
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S119: Height profile of close-up patterned SiO2 surface 
 

9. X-Ray Photoelectron Spectroscopy 

9.1 X-Ray Photoelectron Spectra of Silicon Dioxide Surfaces Functionalized 
with tetraethyl (9,10-dihydro-9,10-ethenoanthracene-11,12-
diyl)bis(phosphonate) (1) 
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S120: XPS spectrum of 1 on piranha cleaned SiO2 in THF at 140 °C 
 

 

9.2 X-Ray Photoelectron Spectra of Silicon Dioxide Surfaces Functionalized 
with Phenylphosphonic Acid  

 

S121: XPS spectrum of phenylphosphonic acid on P-doped SiO2 
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S122: XPS spectrum of phenylphosphonic acid on organic solvent washed SiO2 
in THF at 60 °C 

 

 

S123: XPS spectrum of phenylphosphonic acid on piranha cleaned SiO2 at 140 °C 
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9.3 X-Ray Photoelectron Spectra of Silicon Dioxide Surfaces Functionalized 
with Diethyl Phenylphosphonate 

 

S124: XPS spectrum of diethyl phenylphosphonate on organic solvent washed 
SiO2 in THF at 60 °C 

 

 

S125: XPS spectrum of diethyl phenylphosphonate on piranha cleaned SiO2in 
THF at 140 °C 
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10. UV-Visible Absorption Spectroscopy 

10.1 UV-Visible Spectra of Fullerenes Purified Using Phosphonate 
Functionalized Silica Gel 

 

S126: UV-Vis spectrum of C60 purified with phosphonate functionalized silica gel 
 

 

S127: UV-Vis spectrum of C70 purified with phosphonate functionalized silica gel 
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11. Raman Spectroscopy 

11.1 Raman Spectra of as Purchased SWNTs Deposited onto Silicon Dioxide 

 

S128: Raman spectrum of the RBM region of as purchased SWNTs deposited 
onto SiO2 with excitation at 633 nm 

 

 

S129: Raman spectrum of as purchased SWNTs deposited onto SiO2 with 
excitation at 633 nm 
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11.2 Raman Spectra of Alignment Relay Technique SWNTs Deposited onto 
Silicon Dioxide Using 4-cyano-4’-pentylbiphenyl and tetraethyl 
(5,7,9,14,16,18-hexahydro-5,18:9,14-bis([1,2]benzeno)-7,16-
ethenoheptacene-25,26-diyl)bis(phosphonate) (2) 

 

S130: RBM region of as purchased SWNTs on SiO2, excitation at 633 nm 
 

11.3 Raman Spectra of Alignment Relay Technique SWNTs Deposited onto 
Silicon Dioxide Using 4-cyano-4’-octylbiphenyl and tetraethyl (5,7,9,14,16,18-
hexahydro-5,18:9,14-bis([1,2]benzeno)-7,16-ethenoheptacene-25,26-
diyl)bis(phosphonate) (2) 

 

S131: RBM region of ART deposited SWNTs on SiO2 with 5CB and 2, excitation at 
633 nm. One day nanotube deposition time. 

 



335 

 

S132: RBM region of ART deposited SWNTs on SiO2 with 5CB and 2, excitation at 
633 nm. Two day nanotube deposition time. 

 

 

S133: RBM region of ART deposited SWNTs on SiO2 with 5CB and 2, excitation at 
633 nm. Four day nanotube deposition time. 
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S134: RBM region of ART deposited SWNTs on SiO2 with 5CB and 2, excitation at 
633 nm. Two week nanotube deposition time. 

 

11.4 Raman Spectra of Alignment Relay Technique SWNTs Deposited onto 
Silicon Dioxide Using 4-cyano-4’-octylbiphenyl and tetraethyl 
(6,8,10,17,19,21-hexahydro-6,21:10,17-bis([2,3]naphthaleno)-8,19-
ethenononacene-31,32-diyl)bis(phosphonate) (16) 

 

S135: RBM region of ART deposited SWNTs on SiO2 with 8CB and 16, excitation 
at 633 nm. 
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12. Secondary Ion Mass Spectroscopy 

12.1 Secondary Ion Mass Spectra of tetraethyl ((9s,10s)-9,10-dihydro-9,10-
ethenoanthracene-11,12-diyl)bis(phosphonate) (1) Functionalized Silicon 
Dioxide 

 SIMS data is too large to attach to this document but an excel sheet of the data can 

be obtained from the Schipper group.
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13. NMR Spectra 

13.1 1H NMR of tetraethyl (9,10-dihydro-9,10-ethenoanthracene-11,12-diyl)bis(phosphonate) (1) 
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13.2 31P NMR of tetraethyl (9,10-dihydro-9,10-ethenoanthracene-11,12-diyl)bis(phosphonate) (1) 
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13.3 1H NMR of tetraethyl (5,7,9,14,16,18-hexahydro-5,18:9,14-bis([1,2]benzeno)-7,16-ethenoheptacene-
25,26-diyl)bis(phosphonate) (2) 
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13.3 31P NMR of tetraethyl (5,7,9,14,16,18-hexahydro-5,18:9,14-bis([1,2]benzeno)-7,16-ethenoheptacene-
25,26-diyl)bis(phosphonate) (2) 
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13.4 13C NMR of tetraethyl (5,7,9,14,16,18-hexahydro-5,18:9,14-bis([1,2]benzeno)-7,16-ethenoheptacene-
25,26-diyl)bis(phosphonate) (2) 
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13.5 1H NMR of dimethyl 5,7,9,14,16,18-hexahydro-5,18:9,14-bis([1,2]benzeno)-7,16-ethenoheptacene-
25,26-dicarboxylate (10) 
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13.6 1H NMR of 15,16-bis(chloromethyl)-6,13-dihydro-6,13-ethanopentacene (12) 
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13.7 13C NMR of 15,16-bis(chloromethyl)-6,13-dihydro-6,13-ethanopentacene (12) 
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13.8 1H NMR of 15,16-dimethylene-6,13-dihydro-6,13-ethanopentacene (13) 

 ppm (f1)

0.05.0

7
.7

8
4

7
.7

6
6

7
.3

9
6

5
.3

7
3

5
.2

3
6

5
.1

2
3

2
.0

3
2

.0
1

2
.0

1

8
.0

0

4
.2

6



347 

13.9 13C NMR of 15,16-dimethylene-6,13-dihydro-6,13-ethanopentacene (13) 
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13.10 1H NMR of 6,7,9,10,17,18,20,21-octahydro-6,21:10,17-bis([2,3]naphthaleno)nonacene (14) 
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13.11 1H NMR of 6,10,17,21-tetrahydro-6,21:10,17-bis([2,3]naphthaleno)nonacene (15) 

 ppm (f1)

0.05.0

7
.9

3
1

7
.8

8
6

7
.7

5
9

7
.6

3
4

7
.4

0
9

5
.7

3
3

4
.0

0
8

.0
5

4
.0

1

8
.0

9

8
.0

8



350 

13.12 13C NMR of 6,10,17,21-tetrahydro-6,21:10,17-bis([2,3]naphthaleno)nonacene (15) 
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13.13 1H NMR of tetraethyl (6,8,10,17,19,21-hexahydro-6,21:10,17-bis([2,3]naphthaleno)-8,19-
ethenononacene-31,32-diyl)bis(phosphonate) (16) 

 ppm (t1)
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13.14 13C NMR of tetraethyl (6,8,10,17,19,21-hexahydro-6,21:10,17-bis([2,3]naphthaleno)-8,19-
ethenononacene-31,32-diyl)bis(phosphonate) (16) 
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