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Abstract

This thesis has two parts; the first part is a contribution to the research field of quantum
measurement in quantum optics while the second part focuses on quantum thermodynamics
for fermionic systems.

The aim of the research on quantum optics is to detect and subsequently characterize
quantum states of light. Specifically, we focus on characterizing 1) entanglement between
a two-level atom and superposition of coherent states (known as Bell cat state) 2) quan-
tum superposition of coherent states (Schrodinger cat states). The photon is the particle
of light which carries quantum information; it is usually lost (destroyed) while being de-
tected. Many physical implementations of quantum logic gate aim to encode quantum
information processing into large registers of entangled qubits. However for these larger
much distinguishable states, creating and preserving entanglement becomes difficult due
to rapid onset of decoherence. Encoding quantum information on Schrodinger’s cat states
take advantage of a cavity resonators much larger Hilbert space, as compared with that of
a two-level system. This architecture allows redundant qubit encodings that can simplify
the operations needed to initialize, manipulate and measure the encoded information. For
such a system to be viable as a quantum computing platform, efficient measurement of
such encoded qubit observables must be possible.

The concept of quantum non demolition measurement was introduced to evade the
problem of decoherence. Researchers now know through quantum theory that it is in-
deed possible to count photons in a given state of light without destroying them. This
nondestructive measurement scheme is coined in the term “quantum non-demolition mea-
surement”. We can extend the ideas of quantum nondemolition measurement scheme to
detect a system made up of two or more quantum states (not necessarily states of light)
that are combined based on the superposition principle. An example is the Schrédinger’s
cat state which is a superposition of two coherent states of light of equal amplitudes but
opposite phase. At this point, one is not only interested in counting photons, but in under-
standing the nature of the superposition, the possible problems and the different physical
properties that follow. Ways to detect the Schrodinger cat states and subsequently a Bell
cat state (Schrodinger cat entangled with a qubit) without significantly perturbing them
are discussed. The method analyzed is the mode-invisibility measurement scheme ear-
lier proposed to detect single Fock states and coherent states of light. The method gives
a new insight to the known properties of Schrodinger cat states and contributes to our
understanding of the quantum-classical boundary problem.

The second part of the thesis falls in the research field of quantum thermodynamics and
open quantum systems. Most problems in quantum thermodynamics have been explored in



bosonic systems with little or less done in fermionic systems. Therefore the aim of this part
of the thesis is to explore related quantum thermodynamical problems in fermionic sys-
tems. I begin by considering the problem of work extraction from noninteracting fermionic
systems. For work to be extracted from the state of a quantum system, a unitary opera-
tion on the state must act to reduce the average energy of the system. Passive states are
those states whose energy cannot be reduced through unitary transformation, that is work
cannot be extracted via unitary transformations given only a single copy of the system. It
follows that some passive states may have extractable work if several copies of the system
is processed. Passive states for which no work can be extracted, no matter the number
of available copies, are called completely passive states. An example is the thermal Gibbs
state. Here, the limit for which multiple copies of passive states in fermionic systems can
be activated for work extraction is studied. It was observed for n > 3 fermionic modes at
the same frequency, the product state of n thermal states with different temperatures is
not passive. This in principle implies that the construction of a heat engine in fermionic
systems need access to three thermal baths at different temperature. This is unlike the
bosonic system, where access to only two thermal baths are required.

On the other hand, while the product state of three thermal states of three fermionic
modes at the same frequency but different temperatures is not passive, the unitary trans-
formation required to extract work from the state is difficult to realize. A set of operations
that are easier to realize are Gaussian unitaries which are generated by Hamiltonian that
are at most quadratic in the system’s operators. One may consider extracting work via the
restricted class of Gaussian unitaries. Hence fermionic Gaussian passive states for which
energy cannot be extracted using only Gaussian operations are characterized.

The last problem I investigate is that of understanding the dynamics of an open Marko-
vian non-interacting fermionic system. I introduce a classification scheme for the generators
of open fermionic Gaussian dynamics and simultaneously partition the dynamics along the
following four lines: 1) unitary vs. non-unitary, 2) active vs. passive, 3) state-dependent
vs. state-independent, and 4) single-mode vs. multi-mode. Unlike in the bosonic case
where only eleven of these sixteen types of dynamics turn out to be possible, one observe
only nine types of dynamics in the fermionic setting. Using this partition I discuss the
consequences of imposing complete positivity on fermionic Gaussian dynamics. In par-
ticular, I show that completely positive dynamics must be either unitary (and so can be
implemented without a quantized environment) or active (and so must involve particle
exchange with an environment).
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Chapter 1

Overview

Part one

Quantum computing is essentially harnessing and exploiting the laws of quantum mechanics
to process information. What is this information? How is the information processed?
What quantum mechanical laws are applicable? Why quantum mechanics instead of the
traditional classical mechanics? The mere act of answering these questions opens up new
problems; new questions arise as researchers attempt to find answers and solutions to
problems. Two central research directions come to play:

e FEzperimental: here the goal is to build quantum devices with specified behaviour
e Theoretical:

— Designing algorithms that use quantum mechanical phenomena for computation

— Designing protocols for transmitting and processing quantum information

In this thesis, we do not attempt to answer the above questions, but we will give insight
concerning various issues relevant to these questions. Our direction is theoretical, proposing
schemes for efficient quantum information processing. In processing information, natural
questions arise, such as the following. How much memory do I need to store my infor-
mation? What is the amount of time needed to process the information? What class of
operations are possible? Can I reliably send a message through a noisy line?

Quantum information processing [93] is the act of processing information based on the
principles of quantum physics that are not tractable by classical theories. By definition,



quantum theories describe nature at the microscopic scale while classical theories do so
at the macroscopic scale. The resulting advantage of processing information based on
quantum theories is that the quantum resources needed are proportionally much smaller
than the associated classical resources.

The fundamental units of information such as the bits for classical information or qubits
for quantum information can be described by what we know as states. A state is a property
that encodes certain information about a system, such as a particle’s motion or behaviour.
While a classical bit (the basic unit of classical information) is limited to only two states,
quantum physics allows a qubit (the basic unit of quantum information ) to exist in a super-
position of states simultaneously [93]. One might wonder what this superposition implies as
to quantum information processing. The existence of the qubit in a superposition provides
advantage in that with smaller resources, it becomes possible to store more information in
a quantum system. The superposition effectively offers a computational parallelism, where
it becomes possible to perform computations at high speed and with greater efficiency.
Intuitively, the future of quantum computing and communication technology relies on the
principle of superposition to create quantum computers.

In spite of this potential, generating superpositions of states is experimentally and the-
oretically challenging. Quantum state superpositions can be very fragile: any interaction
with the environment can perturb the state and cause it to rapidly decohere to a mere
statistical mixture. In fact the difficulty in generating a macroscopic quantum state su-
perposition is the basic reason why quantum computers are hard to build. A quantum
computer will need to repeatedly alter the states of its qubits in the course of any compu-
tation it carries out. Without proper care, these alterations could act as a measurement
processes that project out a particular part of the superposition, taking a quantum com-
puter back to a classical one. Scientists need to realize ways to access the superposition
states and manipulate them with suitable tools.

Interestingly, in addition to quantum superpositions, quantum physics also allows for
the existence of entanglement (quantum correlations) [93] between macroscopic and micro-
scopic objects. Hence a (macroscopic) quantum state superposition can be entangled with
a (microscopic) atom through an interaction process. Such entanglement makes it possible
to manipulate this superposition of states by manipulating the atom. The prototypical
example is the Schrédinger’s cat gedanken thought experiment [118], where a living cat is
trapped together with a radioactive atom in a box. Two processes are possible in the box:
either the atom decays and triggers a death mechanism that kills the cat, or the atom does
not decay and the cat remains alive. In quantum physics, we say the atom’s decay occurs
at some time given by its half-life — at this time the atom has a 50% probability of decay-
ing. Before observation, the atom is in a superposed state of decay or not; consequently,



the time of death of the cat is unknown until an observation is made (that is the box is
opened). In principle, a measurement apparatus that is capable of measuring the state of
the atom to be in superposition immediately projects the cat into a superposition of life
and death. The observation thus transfers the superposition state of the microscopic atom
into the macroscopic classical world.

This brings us to the phenomenon of entanglement. Now suppose that instead of a single
cat in the box, we have two cats in two different boxes. Again applying the Schrédinger’s
cat experiment to this pair of cats, we expect one of four possible outcomes. Either both
cats are alive, or both cats are dead, or one is alive and the other dead or vice versa,
all with equal probability if this larger system is observed during at the half-life of the
atom. Prior to observation we say the system of both cats is again in a superposition
of states. Quantum mechanics tells us that it is possible, for example, to eliminate the
outcome of the two cats being both alive or both dead from the superposition. We then
have a two cat system such that the outcome would always be one cat alive and the other
cat dead. The state of one cat becomes correlated with the state of the other, such as if
one cat is measured to be alive, then the other cat is definitely dead. This phenomena is
known as quantum entanglement [93] and has some amazing implications. An application
of this includes secure transfer of information because any change in one particle (due to
an eavesdropper, for example) would be seen in the other immediately.

The Schrodinger’s cat thought experiment can actually be realized in an atom-cavity
system by a superposition of coherent states (of light) that are macroscopically (classically)
distinguishable. This entangled superposition state is known as a Schrodinger’s cat state.
Such states play an important role in understanding the classical to quantum boundary,
and in quantum information tasks including quantum computation [108, 52], quantum
teleportation [10], quantum error correction [11, 9], and precision measurements [92]. Just
like other quantum state superpositions, generating a macroscopically distinguishable su-
perposition of coherent states can be experimentally challenging. Macroscopic quantum
state superpositions of coherent states will decohere to a statistical mixture of coherent
states due to any interaction with the environment.

In generating quantum superpositions of coherent states, two things are required. 1)
For fundamental tests of quantum field theory, we need cat states with large amplitudes
(greater than or equal to 2). 2) For applications in quantum information processing, we
require quantum superpositions of coherent states with high fidelity (greater than 0.99).
Thanks to developments of the quantum theory of light, we have a better understanding
of the nonclassical properties of superpositions of states [120, |. High quality cavities
are now available to trap and manipulate microwave photons. In recent years, quantum
superpositions of coherent states have been generated from an interaction of these trapped



photons with Rydberg atoms [08] crossing the cavity [120, ]. Such interactions, which
belong to the domain of cavity quantum electrodynamics (CQED) [12], represent funda-
mental aspects of measurement theory. While superpositions of coherent states have been
generated in this way, only those with small amplitudes have been realized. Recently, a
simple observation was made that small amplitudes such as a < 1.2 are well approximated
as squeezed single photons. On the other hand, squeezed single photons can be generated
through addition and subtraction of photons from a squeezed vacuum state [35]. This
motivated the generation of single-photon subtracted squeezed states that are close to su-
perpositions of coherent states with small amplitudes (v < 1). Today there are several
proposals to generate squeezed superpositions of coherent states with large amplitudes
Such states are more robust against decoherence than the regular quantum superposition
of coherent states.

The first part of this thesis is aimed at measuring a superposition of squeezed coherent
states. My aim is to propose a scheme that detects the two quantum superposition of states
without significantly altering the state superposition or the entanglement structure. To
go about this, I apply the recently proposed Mode Invisibility (MI) measurement scheme
[97], which is based on the ideas of quantum nondemolition (QND) measurement [0,

, D0]. The scheme makes use of methods in CQED; in an interferometric setting, a
Fock state trapped in a cavity mode is detected by a resonant two-level atom crossing
the cavity. By taking advantage of the cavity’s geometry it was observed that a two-level
atom in a resonant interaction with the cavity mode gains information about the cavity
field. This idea was extended in [98] to detect coherent states of light. I will extend
the MI measurement scheme to the measurement of quantum superpositions of coherent
states. Intuitively, it is generally believed that I cannot observe quantum superpositions
at macroscopic scale. I show through the MI measurement scheme that I can achieve
distinguishability of the two coherent states even if their amplitudes are large. I exploit
nonlinear effects to squeeze these superpositions of coherent states and find sensitivity to
their quantum features (including phase and amplitude) as well as non-classical effects
associated with their superposition. I show that the problem of decoherence inherent in
measurement involving superposition of coherent states can be circumvented. Our research
gives a new insight to the known properties of Schrodinger cat states and contributes to
our understanding of the quantum-classical boundary problem.

I then proceed to apply the MI measurement scheme to detect an entangled superpo-
sition of coherent states, also known as a Bell cat state [131]. Investigating the dynamics
of the system using a quantum 2-level probe, I demonstrate a way to non-destructively
measure a number of properties of the Bell cat state including the amplitude of the coher-
ent state, the location and relative excitation of the qubit, and the von Neumann entropy.



These results indicate a connection between this last quantity and the interferometric phase
shift of the probe, thereby suggesting a possible way to experimentally measure entangle-
ment non-destructively.

Outline

The outline of the first part of the thesis is as follows. In chapter 2, I introduce the
concepts of superposition and entanglement. Chapter 3 focuses on the background of our
study. There we give a detailed discussion on two-level systems. I also presented the
electromagnetic (EM) field and how they are quantized in a cavity. Next we described
two important quantum states of EM field: the Bell cat state [134] and the Schrodinger’s
cat state [1 18] respectively. Finally I present the Unruh-deWitt model [37] for describing
interactions between two-level atom and our relevant quantum states of the EM-field. I
conclude this chapter with a brief review of the QND measurement idea [16, 19, |, that
characterizes a non-destructive measurement of quantum states of the EM field. Chapter
4 is devoted to my contributions to realizing a QND measurement for Bell-cat states
and Schrodinger cat states respectively. I begin by reviewing the mode-invisibility (MI)
measurement scheme [97, 98]. Then we present two papers from our theoretical study. The
first paper [33] proposed using the MI scheme to characterize the Bell-cat states while the
second paper 2 [95] is a proposal to characterize the Schrodinger’s cat states. We present
the results of the measurement proposals and discuss our findings.

Part two

This part of the thesis investigates quantum thermodynamics for fermionic systems. In
general, due to the complexity of the structure of fermionic systems, the bosonic system
have being a common system where most quantum thermodynamical problems have been
explored in recent years. Some of the problems which are of interest include work extraction
from quantum systems [22] and dynamics of open quantum systems [58]. Hence it is my
aim here to explore the case for fermionic systems.

In the quantum thermodynamical concept, work is said to be done if the average energy
of the system is reduced by a unitary operation acting on the system. From the so-called
passive states, no work can be extracted if only a single copy of the system is available.
That is, given a single copy, the average energy of a passive state cannot be reduced by a
unitary operation acting on it. However, some passive state may have extractable energy if



several copies of the system are processed together by a global unitary operation. Passive
states for which no work can be extracted, no matter the number of available copies, are
called completely passive states — an example is the thermal Gibbs state. This implies that
any device for unitary work extraction must be out-of equilibrium. In the bosonic setting,
the simplest out-of-equilibrium cycle engine for unitary work extraction is a heat engine
which requires minimum access to two thermal baths at different temperatures. We will
show that this is not the case for two fermionic modes. Instead the minimum number of
baths required to construct a heat engine in the fermionic setting is three [96].

On the other hand, although work can be extracted from non-passive states the unitary
transformation required for this process is difficult to realize. Given that Gaussian unitaries
are easily generated, one may consider extracting work via the restricted class of Gaussian
unitaries, this introduces us to the notion of Gaussian passivity [22].

The idea of Gaussian passivity is to extract work from quantum systems via Gaussian
unitary transformations, which is believed to be easy to realize. In this context, bosonic
Gaussian passive states (and non-Gaussian passive states), from which no (or maximal)
work can be extracted using a Gaussian unitary transformation, were defined [22]. In this
thesis I investigate the corresponding situation for fermionic systems. The main aim is to
see how useful a fermionic system is for work extraction. I characterize general quantum
states in fermionic systems according to their ability to yield work (or not) under such
transformations.

Finally I direct my attention towards understanding the dynamics of open quantum
systems. An open quantum system is one that is in constant interaction with its environ-
ment via exchange of energy or particles. As I have discussed earlier, physical quantum
systems are subject to decoherence and dissipation as a result of their noisy interaction
with the environment. This practically implies that the operation of any realistic quan-
tum information devices (quantum computer for example) would be accompanied by noise
and by loss of quantum information into the environment. Hence understanding the full
dynamics of the system + environment and is challenging.

Gaussian quantum mechanics (GQM), offers a powerful tool for understanding the
dynamics of an open system because of the simple mathematical structure. The basic tools
of GQM are Gaussian states and the corresponding Gaussian operations. Using these tools,
the dynamics of an open bosonic system has been investigated. We extend this tools to
characterize the dynamics of open Markovian non-interacting fermionic system. I introduce
a classification scheme for the generators of the open fermionic Gaussian dynamics. 1
simultaneously partition the dynamics along the following four dichotomies: 1) unitary vs.
non-unitary depending 2) active vs. passive, 3) state-dependent vs. state-independent,



and 4) single-mode vs. multi-mode. Only nine of these sixteen types of dynamics turn out
to be possible unlike in the bosonic case where eleven types of dynamics are possible.

Outline

This part two of the thesis is structured as follows. In chapter 5, we present basic notations
and the definition of fermionic systems, including the algebra associated with fermionic
systems and their corresponding fermionic operators. Next Gaussian states and Gaussian
operations which are the tools for GQM are presented. Finally an application of GQM for
performing tasks such as energy extraction is discussed in chapter 6, and chapter 7 focuses
on classification of Markovian fermionic Gaussian master equations. We close the thesis
with conclusions discussing some future directions from the two parts.



Part 1

Superposition, entanglement, and
mode invisibility measurement.



Chapter 2

Quantum superposition and
entanglement

2.1 Introduction

The concept of linear superposition holds true for quantum particles but fails for classical
particles. While we know that photon (a quantum particle of light) can simultaneously be
in two possible states, a table (a classical object) is never found in two places at the same
time. Why?

Quantum particles are described by probabilities, which are complex numbers with
phase and amplitude. A typical measurement on a quantum system will yield a probability
amplitude that corresponds to partial amplitudes from different quantum states of the
system. The partial amplitudes add to each other or cancel each other depending on their
relative phases. This leads to interference effects; the characteristic property of microscopic
systems that in a way describe the wave-like properties of quantum particles. Around the
19th century, the concept of wave-like properties in light was established. Louis de Broglie
in his hypothesis related wavelength and momentum [37]:

h
A= (2.1)

where p is the momentum of light and A is Planck’s constant. His hypothesis was not
generally accepted until 1801 when Thomas Young performed his double-slit interference
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experiment with light [121]. In his experiment, a beam of light (with momentum p and
wavelength (2.1)) from a single source is fired at a screen with two narrow slits separated by
a distance a, and each having a width of the order of the de Broglie wavelength (2.1). These
slits define two distinct paths for the light. On a detection screen that records the impact
of the incoming beam, an interference pattern was observed establishing the wave nature
of light. This interference experiment has being reproduced with other quantum particles
such as atoms, electrons and molecules, and light. A major concern in the interference
experiment is that each particle crossing the double slit seemed to talk to each other. If
one of the slit is closed, one does not observe the interference effect. A classical mind
would ask the question, through which slit did a given atom cross the scree? A quantum
description of this spooky action is that each particle crosses the screen in a quantum
superposition of two states corresponding to each to a wave packet going through one of
the slits.

Before the end of the 19th century, while scientists understood light to be made of waves,
Max Planck and co workers in their study of the photoelectric effect [121] found that certain
types of materials will eject electrons (photoelectrons) if light of certain frequency shines
on them. Planck and coworkers could not find explanations for these observations, namely
that there was a minimum wavelength of light that could eject electrons from the metal
surfaces. Any wavelength of light above this minimum has no effect even if the intensity
of light is increased. It was at this point that Albert Einstein proposed that light behaves
as particles (or quanta) that he called photons. He observed that the photoelectric effect
could be explained by associating the photon (a particle of light) with discrete energy

Ephoton = hl/ (22)

in an electric field, which the electrons in the metal absorb. Here the frequency of light v
is related to the energy E of each individual photon via Planck’s constant h.

However light also had wave-like properties, and soon the notion of wave-particle duality
emerged. A natural consequence of the wave-particle duality was recognized by Heisenberg
in what we now call the uncertainty principle: it is impossible to predict, measure, or
know simultaneously the exact position and exact momentum of an object. Intuitively, the
wave-like property of an object is associated with a very large region of space (no fixed
position) with precise momentum, while the particle-like property of the same object is
associated with a (fixed position) small region of physical space. Adding several waves of
different frequencies yields a resultant wave which may be more localized (fixed position),
however with unknown momentum. This is a paradox: the behaviour of a photon becomes
unpredictable, and measurement of its properties is only possible with some particular
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likelihood or probability. Hence a unified theory of wave-particle duality whereby the
apparent paradox is resolved was sought for.

In an attempt to reconcile the wave-particle duality of light and explain the behaviour of
atomic particles, Erwin Schrodinger proposed his probability wave theory, where he wrote
down an equation (now called the Schrodinger wave equation) and its exact solutions. His
work was in agreement with all known predictions on wave-particle duality. Using his wave
equation, it became possible to determine with probability the location of an object in a
region of space at any time.

Schrédinger’s probabilistic theory of waves allows the existence of more than one wave
and therefore of more than one particle. Since photons behave as waves, and since it is
also possible to have a superposition of two or more waves, it is therefore possible to have a
superposition of two or more photons. For example consider shining a beam of light through
transparent glass. Photons are just as likely to pass through the glass (corresponding to
one wave) as to bounce back (corresponding to another wave). Both waves can be in
superposition, which leads to the possibility of a single photon being both reflected and
transmitted, and therefore being on both sides of the glass simultaneously. The principle
of quantum superposition has been verified for many quantum particles such as electrons
[36], fermions [3] and even collections of particles such as Bose Einstein condensates [0, 31].

However, the superposition principle does not hold for macroscopically large objects.
A possible explanation for the absence of superposition in macroscopic objects is deco-
herence. Quantum systems are not isolated from their environment and they lose their
quantum properties at the slightest interaction with the outside world. An attempt to
obtain knowledge of a quantum superpositions causes it to decohere, effectively destroying
the superposition. Decoherence then results in the collapse of a wave function, its transi-
tion from quantum to classical world. We will come back to the topic of decoherence in
Chapter 3.

Although Schrédinger’s wave equation can be used to predict the results of measure-
ment, with extraordinary accuracy and precision, it has the puzzling feature that it ex-
presses motion in terms of probabilities, which is impossible to comprehend intuitively by
our classical minds. Physicists consequently did not agree about the nature of the physical
reality that Schrodinger’s equation described. The founding fathers of physics at that time
tried to come to terms with the philosophical implications of this. Their worries formed
the basis of what we know today as the Copenhagen interpretation of quantum physics. In
1935, Erwin Schrédinger illustrated the concept of decoherence and in general the limita-
tions of quantum mechanics by establishing his famous thought (or Gedanken) experiment
(the Schrodinger’s cat) where the life or death (the biological state) of a (macroscopic) cat
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in a sealed box is entangled with the quantum state of a particular (microscopic) sub-atomic
particle, resulting in a macroscopic quantum superposition state [118]. If the sub-atomic
particle is in one state (for example a nucleus that has not decayed), the cat remains alive;
but if it is in its orthogonal state (for example a nucleus that has decayed), the cat dies.
The particle can be in a superposition of both states, and so the cat remains in a superpo-
sition of both dead and alive until the box is opened (that is until measurement has been
made), and the cat is either dead or alive (that is the superposition would have collapsed
into a single state). While the Schrodinger’s cat idea is believed to provide answers to
questions about the boundary between the quantum mechanical and classical world, many
believe it highlights the mystery of the quantum world. We note that Schrodinger did not
intend to elevate the quantum mystery into the classical world. In spite of this, the curios-
ity on identifying this boundary has led researchers to consider laboratory realizations of
superpositions of macroscopically distinguishable quantum states.

Generating and observing superpositions between distinguishable quantum states is
extremely difficult because any form of interaction with its environment decoheres the
system thus resulting in the loss of superposition. In order to observe the superposition
principle, one need to manipulate particles of matter or light in a much more gentle way.
In quantum optics, the direct generation and detection of single quantum particles without

destroying them has been successful and celebrated in two different studies [136, 59]. In
[130], single atoms were trapped, then controlled and measured with light or photons while
in [59, 60], photons were trapped and manipulated by sending atoms through a trap. These

investigations opened the door to a new era of experimentation with quantum physics. For
example, through a Ramsey interferometric setup it is possible to generate a version of
Schrodinger’s cat through the interaction between an atom and a coherent field trapped
in an optical cavity [39]. The coherent field has a huge number of photons and negligible
noise pattern and so behaves classically. Thus an ensemble of trapped microwave photons
becomes an object of investigation to be observed and manipulated for fundamental tests
and quantum information processing.

Measuring light in practice means the recording of photon statistics. Different states
of light exhibit different photon statistics that characterize them. We can deduce from the
corresponding photon statistics the nature of our quantum state of light — classical or non-
classical — and what distinguishes a given quantum state of light from another. We can also
learn about the features of light from a specific measurement result. For a coherent light
field, a measurement result would include the amplitude and phase of the coherent field.
Unfortunately we encounter difficulties and challenges when we want to experimentally
measure light: It is almost impossible to measure light without significantly perturbing it.
But as discussed in the previous paragraph, it is possible to trap light shielded from its
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environment without destroying it [60].

Measuring non-classical states of trapped light requires cavities that prevent the es-
cape of even single photons during the read out process [129, 60, |. Nowadays with
advancement in solid state physics, optical cavities with long storage life are available
where states of light can be trapped and shielded from their environment for more that
a tenth of a second [59]. Various quantum states of light, including a superposition of
coherent states, can be generated [39]. Nondemolition quantum detectors (usually in form
of atoms) [68] are readily available and can be used as probes for light fields trapped in
an optical cavity. With these experimental capabilities, quantum nondemolition (QND)
schemes [24, , 47,55, 16, 94, 35] have been designed to avoid the perturbation produced
by a measurement. For an electromagnetic field mode, a version of QND consists in moni-
toring the photon number without changing it [94]. This may be achieved by coupling the
field mode to a detector via a non-resonant interaction, excluding processes where photons
are created and annihilated. The detector acquires a phase that is dependent on the state
of the field [29]; therefore detecting the probe phase yields a QND measurement of the field
mode.

The mode invisibility (MI) measurement idea was proposed to increase the sensitivity of
the above QND method by coupling the detector to the field mode via a resonant interaction
[97, 98, 33]. Although a resonant probe-field interaction includes photon absorption and
annihilation processes, the cavity field modes have a geometrical property that allows one
to probe the electromagnetic field without changing the field mode [97].

In the MI QND scheme, the detector travels in a superposition of states along the two
paths of an atomic interferometric setup. Such an interferometric setup was first used to
propose a scheme to detect the Unruh effect at low acceleration [37] and to build a quantum
thermometer [36]. For applications in quantum optics, the interferometric setup includes
two optical cavities that store electromagnetic fields. This setup has been used to propose
a scheme to detect various quantum states of light including Fock states [97], squeezed
coherent states [98], entangled superposition of coherent states with two-level atom [33]
and a superposition of coherent states [95].

In detecting a superposition of quantum states, such as superposition of two coherent
states of light, one must take note of the coherence properties of the states that distin-
guish them from an ordinary statistical mixture. The detection of quantum coherence,
distinguishing between various superpositions of coherent states are the key issues when
considering a measuring scheme for detecting a superposition of states.
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2.2 Scope and Aim

In the context of generating and measuring quantum systems without destroying their
quantum nature, our study in this part one of the thesis focuses on measuring Schrodinger
cat states and Bell cat states, without destroying their quantum nature, that is their super-
position and entanglement respectively. A Schrodinger’s cat state and Bell cat state already
generated and successfully trapped in an optical cavity will be our object of investigation
to be observed and manipulated for quantum information processing.

The overall aim of this study is to propose a scheme that probes the two cat states
without significantly destroying their quantum nature. Its specific objectives are:

e Demonstrate how one can detect a superposition of two coherent states, including
the coherence between the individual coherent states that form the superposition, the
amplitude, and phase of the individual coherent states. In defining a Schrodinger’s cat
state, three different types shall be employed: the even cat state, the odd cat state,
and the Yuker-Stoller cat state (defined later). Our aim includes non-destructively
distinguishing between these three various cat states.

e Investigate the entanglement structure in a Bell cat state (that is a quantum state
of cat states entangled with two-level atoms).
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Chapter 3

Background

In this chapter, we present the basic tools and concepts that we use in part 1. First, in
Sec. 3.1, we talk about a detector in the form of two-level atom, which has been applied in
quantum optics to create and directly probe quantum states of light. Then in Sec. 3.2, we
give a description of an electromagnetic field in a cavity mode and show that it is equivalent
to a quantum Harmonic oscillator. We then proceed in Sec. 3.3 with an overview of two
important states of light: a superposition of two coherent states of equal amplitude and
m out of phase, commonly known as Schrodinger’s cat states. We discuss the different
non-classical properties that distinguish a superposition of coherent states from a mere
statistical mixture of coherent states or the constituent coherent states.

The second quantum state of light we will discuss is an entangled state of light. Specif-
ically we consider two kinds of entangled states: a) one made of two-level atoms and
Schrodinger’s cat states, known as Bell cat states [131] b) another made of two Schrodinger
cat states.

15



3.1 Definition of two-level systems
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Figure 3.1: Pictorial representation of a two-level atomic system where the zero of energy
(E = 0) is taken half way between the two energy levels |e) and |g).

3.1.1 The Hilbert space

Consider a two-dimensional linear vector space H defined by orthonormal basis vectors é,
and é,. In the column vector representation,

%:(D md@:<3. (3.1)

We could also use the Dirac notation

¢ =1g9), & =le) (3:2)

A two level-atom as shown in Fig. 3.1, is described by a two-dimensional Hilbert space
represented by two orthonormal basis vectors |g) and |e) denoting the ground (lowest)
energy state and excited (highest) energy state of the atom respectively;

(glg) = (ele) =1, (gle) = (e|lg) = 0. (3.3)

|@:G)aM|@:G> (3.4)

In vector notation,



A general two-level atomic state |1)) can be represented by the linear superposition
) = cele) + ¢qlg). (3.5)
The normalization condition for the wave function (| 1) = 1, where
(Y1) = cecylgle) + cocilelg) + el (ele) + Ieg|*(glg) (3.6)
with p = 1) (|, entails that the complex coefficients ¢, and ¢, must satisfy
lce|® + |cg|* = 1. (3.7)

Here we use the orthonormality of |e) and |g): (e|e) =1 = (g|g) and (g|e) = 0 = (e]g).

3.1.2 The Hamiltonian

In the absence of perturbation, the two-level atomic system with two energy eigenvalues
E. and E,; can be described by a constant time independent Hamiltonian H,. We can
write the eigenvalue equation of H, as

Hole) = 0le), Hulg) = —21g) 39

where i = e, g. Since H, is Hermitian, we can construct the matrix elements of H, in the
e, g basis using the completeness relation

H, :Z [6) (il Halj) (G = > il Halj) x |8} (j] (3.9)

1,

1,] = e,g. So that in the e, g basis, we have the matrix element

H, H, > (3.10)

<Z| Ha‘j> = (ng H(g]

Assuming that H, is diagonal in the |e) and |g) basis, then we can associate it with the

matrix
L0
H, = ( 5 _Eg> (3.11)

We note that this matrix elements can be constructed directly from the eigenvalue equation
(3.8).
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3.1.3 Representation of atomic operators

In principle, a measurement on the two level atomic state (3.5) collapses it to either a
ground state with energy eigenvalue £, or an excited state with energy eigenvalue F,.
We will come back to this later, but before we proceed, let us now discuss the atomic
operators that are responsible for transitions between one atomic state to the other. We
can construct such operators from a combination of |g) and |e). For example

OA—+: |€> <g|a o= |g> <€|7
with properties
6lg) = le), o-le)=1lg), File) =0=6_|g) (3.12)

where we note that |e) and |g) are orthonormal: (e|e) =1 = (g|g) and (g|e) = 0 = (e|g).
From (3.12), we see that the action of 6_ on the excited state |e) lowers it to the ground
state |g) and is thus called the lowering operator, while 6, on the ground state |g) raises
it to the excited state |e); we call this the raising operator.

3.1.4 The Pauli matrices

We recall the definition of the Pauli matrices

0 1 0 —i 10
e (a) = (00) e 5

. ) ) 1 ) .
We know that together with the identity operator 1 = ( 0 , the Pauli matrices form a

01
basis ( 1,0x,0y,0z) of 2 X 2 matrices. That is, any 2 X 2 matrix can be expressed as a
linear combination of 1,0, 0y, and oz respectively.

Atomic operators in terms of Pauli matrices

The two-level atom operators can be associated to the matrix representation of the Pauli
matrices. The atomic raising and lowering operators can also be expanded over the Pauli
basis vectors as

1 :
o4 = 5(0’){ + 10'y> (313)
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Equivalently,
ox=0,+0_, oy= i(o, - 0+) (3.14)

In contrast to the raising and lowering operators oy, the Pauli operators are Hermitian
and form physical observables. To see how this works, we note that in terms of the ground
and excited states of the two-level atom, Pauli matrices can be written as

1= le) (e| + |g) (g]
ox = le) (g] + |g) (el
oy =1i(lg) {e| — le) (g])
oz = le) (e] —|g) (gl

and their action on the general atomic state (3.5) is given by

ozlY) = cele) — cglg)
ox|) = cgle) + celg)
ay|p) = —icle) +ice|g)

In particular, ox swaps the two components |e) = |g) (spin flip) and o inverts the sign
of the |g) component (phase shift), while oy does both.

The Hamaltonian in terms of Pauli matrices

We will now write the two-level atomic Hamiltonian (3.15) in this Pauli basis

H, =EJe) (e] + Bylg) (o] + (%m (el = =2le) <e|) + (%rm (ol ~ =*lo) <g|)

E.+ E, E.— F
= I J
s T
Choosing the zero of energy as shown in Fig. 3.1 so that £, + E; = 0, the unperturbed

Hamiltonian in the Pauli basis is given by

h
H, = “;eg oy (3.15)

where

Weg = = (3.16)

is the transition frequency accounting for the energy difference between the two energy
cigenstates |e) and |g).
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3.1.5 The Bloch sphere

In other to relate unitary operations on a qubit state |p) to rotations on the Bloch sphere
it turns out to be convenient to use the corresponding density operator p = |¥) (¢|, so
from the general two-level state (3.5),

. . col? cyct
p = lesPla) ol + o1 el + el e+ cosled ol = (1 12%) @an
e g e

From this we can construct the matrix elements of the Pauli matrices in the |e) and |g)
basis as follows

rx = (Plox[y) =cye; + cec (3.18)
ry = (Yloy ) = — i(cgcz - cec;) (3.19)
rz = (Ylozlp) =[el* — |cg|? (3.20)

The diagonal elements of the matrix |c.|* and |¢,|* are the populations of the excited and

ground states, respectively. The atomic inversion is given by (3.20), the expectation value
of oz. Grouping terms, the two-level atom density in the Pauli basis {1,0x,0y,07}, we
have

1
p= 5(1 +r-0), r=(rx,my,rz), 0= (0x,0y,0z) (3.21)

r is known as the Bloch vector defined later in the section.

Rotation operator

We can construct rotation operators by exponentiating the Pauli matrices. These operators
rotate the Bloch vector r about the x,y and z axis accordingly.

R.(0) = e157% = cos <g> 1, —isin <g>ax (3.22a)
R,(0) = e159Y = cos (g) 1, —isin (g)O'y (3.22b)
R.(0) = 71597 = cos (g) 1, — isin <g>az (3.22¢)
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3.2 Electromagnetic field mode in a cavity

In this section, we discuss the physics of an electromagnetic wave inside a cavity (box).
Electromagnetic field energy can be confined in a cavity in form of standing waves. This is
because when an electromagnetic field encounters a boundary (perfectly reflecting surface),
nearly all the energy in the wave is reflected from the surface and very little is transmitted
into the boundary. Confining the field in a cavity allows us to gain control together with
the advantage of having a close access to it for experimental purposes.

To treat such a cavity field-system, we start from Maxwell’s equations, define a for-
malism that treats an electromagnetic field mode in free space and show that its classical
energy is related to a harmonic oscillator [50]. These field modes can then be quantized
and treated as quantum harmonic oscillators.

3.2.1 Maxwell’s equations and wave equation

We start with a description of electromagnetic field in free space. Starting from Maxwell’s
equations for the electric field E and magnetic field B, without any source of radiation
(that is no free charges and current):

V.E=0, (3.23)
V-B=0 (3.24)
0B
VxE=-= (3.25)
OE
VxB= Heo 5 (3.26)

€o and pg are the permittivity and permeability of free space related to the speed of light
c = 1/\/1o€r. Maxwell showed that these equations could be rearranged to form a wave
equation with propagation speed c¢. To see how this works, it is convenient to express
the electric and magnetic fields in terms of the vector potential A(r,¢) which satisfies the
Coulomb gauge condition

V-A(rt)=0 (3.27)

Thus
B(r,t) =V x A(r, ) (3.28)
E(r,t) = —w (3.29)
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We will now show that introducing the vector potential A(r,t) together with the Coulomb
gauge condition (3.27) does not change the nature of the Maxwell’s equations (3.23)-(3.26).
First recall the vector identities for an arbitrary vector F

V- (VxF)=0 (3.30)
V x VF =0 (3.31)
VxVxF=V(V-F)-VF (3.32)
With Eqn. (3.30) in mind, substituting (3.28) in (3.24), we obtain
V-B=V-(VxA)=0 (3.33)

Similarly, with the electric field written in the form in Eqn (3.29), we are sure that (3.25)

is satisfied. To derive the wave equation for the vector potential, we now substitute Eqns
(3.28) and (3.29) in (3.26):

1 9%A
Vx (VxA)=-550 3.34
8 8 c? ot? (3:34)
From the vector identity (3.32) we can re-write the left hand side so that the wave equation
for the vector potential A(r,t) becomes

1 0*A(r,t)
2 ot?
We note that the Coulomb gauge condition (3.27) implies the longitudinal component of the

vector potential is vanishing so that the wave equation (3.35) contains only the transverse
component of the vector potential.

VZA(r,t) =0 (3.35)

3.2.2 Mode expansion in a cavity

In this section, we look for solutions to the wave equation (3.35). To this end, we consider
the EM waves confined in a cubic cavity of length L as shown in FIG. 3.2. The idea of the
cavity is to allow us impose a boundary condition on the faces of the cube. For example
with the length of the cavity fixed at L, we can satisfy the boundary condition

A(0,)=A(L,t) =0, forall t. (3.36)

with a general solution of the form

A(rt) = sin(k ) (Ake’i”t + Ak*e’i“’t) (3.37)
k
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Figure 3.2: An EM-field confined in a cubic cavity (left image) and subjected to the
Dirichlet boundary condition would have a standing wave produced in it (right image).

Here w is the wave frequency and k is the wave vector with its magnitude |k| =

\/ ks + ky + k. called the wave number. w and k are related by the dispersion relation
w = c|k] (3.38)

Our boundary condition (3.36) implies that only certain numbers of k give valid solutions.
To see how this works, we see that at r = 0, we have sink - r = 0 hence A(0,¢) = 0. The
second boundary condition A(L,t) = 0 implies

A(L,1) =Y sin(kL) (Ake_i“t v Ak*ei“t> —0 (3.39)
k

which is valid only for sin(kL) = 0. Thus we have the constraint on the components of k

™n ™
ky=—, k,=—2 k,=—= 4
T I ) y ) z I (3 0)

for any integer n,,n,, n. called mode numbers. Our solution thus looks like this

A(r,t) =3 sin(kr) <Ake‘i(“t) + Ak*ei(wt>) (3.41)
k

with the wave vector k = (k;, ky, k) given as in (3.40) above.
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From here we can find expressions for the electric field E(r,¢) and magnetic field B(r,t)
in the mode. The electric and magnetic field can be obtained from (3.37)

A . ,
E(r,t) = — # = Z iw (Ake_‘“’t — Ak*e‘(m)> sin(kr) (3.42)
k

Taking 7 — ik, the magnetic field becomes

B(r,f) = v xA= > ik x (Ake_i“t + Ak*ei(”t)> sin(kr) (3.43)
k

Similarly, the total energy, that is the Hamiltonian stored in the mode can be derived from
the expression
1 2 1 2y 1 2 71E_k2 _ 2
Hk = - dV(GoEk + Ko Bk ) = dV(E()Ek + Ho 5 ) = dVGOEk (344)
where the integral is taken over the entire volume of the cavity and dV is the volume
element. which gives [71]

1 1
—/ dVeEy® = —/ dVeg Zwkwkz sin(kr) sin(k'r) Ay - A* (3.45)
2 14 2 \% kK’
we have
1
5 / av Z wiwie sin(kr) sin(k'r) = Vi(k — k') (3.46)
\% kK’
therefore,
Hy =26V > wiAy- A" (3.47)
k

Later in this chapter, we will show that the total energy in a field mode (3.47) can be
expressed as the energy of a Harmonic oscillator of unit mass and natural frequency wy.

The mode variables can be replaced with a mode position coordinate and momentum
coordinate

1
Ak = —(kak + IPk)ék (348)
2 v
1 s 2
Ak* = Z —(Wka - lpk)Gk (349)

k V 460‘/&)]3
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Here the vector nature is taken up by the unit polarization vector €. Substituting these
in the expression for the total energy in the modes (3.47), we obtain

1
H=: > (P 4w Xy) (3.50)
k

which is of the form of a harmonic oscillator of unit mass and natural frequency, wy.

3.2.3 Quantization of the electromagnetic fields modes

In this section, the main ideas and equations for quantized electromagnetic field are devel-
oped. The nature of the field Hamiltonian (3.50) suggests that we can treat electromagnetic
field modes in a cavity as harmonic oscillators. We will now quantize the field modes fol-
lowing the same procedure as the quantization of harmonic oscillators. The Hamiltonian
for the harmonic oscillator of unit mass is given as

1
H=_—(p*+w’2® 3.01
() (351)
where x and p are the quantum mechanical operators for position and momentum and obey
the commutation relation [z, p] = ih. Introducing the creation and annihilation operators
a and a' respectively. defined as

a :\/21%(119 + wx) (3.52)
al :\/%(—ip + wz) (3.53)

Owing to the commutation of # and p, we can obtain a commutation relation a and a' as
follows

[a,al] =1 (3.54)

The position and momentum coordinate are

q:\/QZw(a—l—aT) (3.55)
p=iy/ 5 —a) (3.56)
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The Hamiltonian becomes
1
H = hw(§ +a'a) (3.57)

The number operator n = a'a with property
[n,a] = [a'a,a] = [a' — ala’ = —a, [n,d'] = [a'a,d'] = a'[a,a’] = af (3.58)

is the number operator that counts the number of quanta of excitation where a destroys
or removes a quanta and a' adds or creates a quanta.

Now that we have shown that the energy of a classical electromagnetic field mode is
in the form of a harmonic oscillator, we will proceed to quantization of the modes. To
do this, we associate the classical variables with quantum mechanical operators. The
quantized fields are thus

1

A :E —(wp Xy +1Py)é€
k ) 460‘/%%( k\k k) k
1 I h
—>E—wx+i €:§ ax€ 3.59
) 4eka,%< kTk pk) k o 2eVn k€k ( )
1 . «
Ak*: E —(kak—lPk)Ek

” \/460‘/(,0]%
1 . . h ta
— 5 — (W Tk — 1Pk )€k = a, € 3.60
iV Pi)éi Zk V eqvay e (360)

The operators obey the commutation relations

[a:k,pk/] = ih&k,k/, [l’k, SL’k/] = O, [pk,pk/] = 0 (361)
[ak, CLTk,] = 5k,k’7 [ak, ak/] = O, [(IL, aL] =0 (362)

where k and k’ label the modes. Then the quantized vector potential is given as

h . :
Ay = zk: \/ Veoon Exc(ae ™ 4 af e“xt) sin(kr) (3.63)

The electric and magnetic fields are given as

hew . .
Ex = Z i/ 260‘];& (ae"“”“t — aTe‘“”“t) sin(kr) (3.64)
K
h . ,
By = Zk: i/ 260&}ka X €k <ae"”kt — aTe“"’“t> sin(kr) (3.65)
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Recalling the expression for the total field energy (3.50), we can write the quantized total
field energy. For a single mode x, the Hamiltonian is given as

1 hw . N2

H=- 5260‘1;60 /V av (ake_‘wkt — alT(e““’“t> (3.66)
heoy, hewy 1

=— WV< — ayal — aLak) = T(aiak + 5) (3.67)

The quantum mechanical operator for the total Hamiltonian in the field mode is given by
the sum of the Hamiltonians for single modes

1

Hy = hwg(afa + 5) (3.68)
k

3.3 Quantum states of the electromagnetic field

We now present qubit systems using quantum states of the electromagnetic (EM) field.
Quantum states of the electromagnetic field (light) often considered in terms of photons
can be described in terms of waves by their amplitude and phase, or in the cartesian
coordinates by their quadratures X and P. In this section, we present different states of
light which are of interest for our study.

3.3.1 Coherent states

Coherent states denoted as |«), are important states of the electromagnetic field which are
useful in many areas of theoretical and experimental physics [53]. A normalized coherent
state can also be expressed as a linear superposition of number (or Fock) states |n)

) = e 123 %m, n=123, (3.69)
n=0 ’

where n counts the number of photons in the field state. a = |a|e? is the complex amplitude
of the coherent state with amplitude |«| and phase 6. In principle, coherent states can be
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created by a laser corresponding to a displacement operation on the vacuum state

D(Oé)|0> :eaaT—a*a|0> _ eaaTe—a*ae—%([aaT,—a*a])|0>

—&b aat — n
=e 2 ™ |0)=¢ 2 n!aT |0)
—e'% a—\/ﬁ\n)
n!
=|a) (3.70)
where a and a' are related by the commutation relation (3.54). Here, o = |ale? is a

complex amplitude, # and |«| are respectively the phase and amplitude of the coherent
states. D(a) = e®@'=e"a i 5 displacement operator; a unitary operator D(—a) = D'(a)
that acts as a displacement operator upon the field creation and annihilation amplitudes
a' and a respectively.

D'(a)aD(a) =a+a, Di(a)a'D(a)=d" +a*
We can generalize this operation to squeezed states, that is we can write
S(r)D(«)]0) = |r, a), S(r) =explrK; —r*K_] (3.71)
1

where K_ = %aa, K, = §aTa*, Ky = % + afa. S(r) is known as the squeeze operator,

we will come back to this operator later in the section.
Coherent states are equally described as eigenstates of the annihilation operator a
ala) = ala), and (a|a’ = (a]a”, (o] ) = 1. (3.72)
This follows from (3.70). Since a|0) = 0, we have

0 = D(a)al0) = D(a)aD'(a)D(a)|0) = (a — a)D()|0) (3.73)

Properties of coherent states

Coherent states of light have the following important properties

1. Orthogonality and completeness relation: The overlap between two quantum states
|m) and |n) is given by the relation (m|n) = §(m —n). It follows that two coherent
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states corresponding to different eigenstates |«) and |3) are not orthogonal. Their
overlap |(8|a)| can be calculated

oy exp { - BE - L} 57 L

and the absolute magnitude of the scalar product (probability ) is
2
[(Ble)|” = exp{~|a — BI*} (3.74)

R TR RN la-l
0.5 1.0 1.5 2.0 2.5 3.0

Figure 3.3: Overlap of two coherent states as a function of their distance in phase space.

Thus two coherent states are not orthogonal. Although the overlap between two
coherent states is not strictly orthogonal, Fig 3.3 shows that their overlap decreases
exponentially with their distance in phase space |a— | and approaches zero (becomes
orthogonal) when |a — 3| > 1. For example suppose 3 = —a, so that the overlap is
now given as |(—alc) ’2 = e~ 4o Thus even for small values of || = 2, the overlap
is ~ 1077 ~ 0. In summary, two coherent states are macroscopically distinguishable
(orthogonal) when they are well separated in phase space.

2. Closure relation: Coherent states satisfy the closure relation

/ La |a) (o] = = (3.75)
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and this can be easily shown:

*MN 1M

[ ety ol = [ dta 30y (o

n,m

where we integrate over entire complex plane. We can express the equation in polar
coordinates where

a=ré = d®a=rdrdd
and we get
00 21
/d20z6_|°‘2((a*)”am) :/ drre_rzr””"/ dgeltm—m)? (3.76)
0 0

1 [ 2

:27r5m,n§/ dr*(r*)™e™" = 1m0 (3.77)
0

which finally gives
[ Falaytal = [ da eSS ) (ol = 7 3 ) (o] = .
o m!n! -

Since the overlap [(Bla)| # 0 for o # [, we say coherent states {|a)} form an
overcomplete set and any quantum state can be decomposed in the coherent state
basis.

. Mean photon number and variance: the mean number of photons (n) is given by
(n) = (a|n|a) = (a] a'ala) = |af?
and the variance in the photon number is
(An)? = (n*) — (n)* = (a'ad'a) — |a|" = (a'a'aa) — (a'a) —|a[* = |af

We have taken note of the property (3.54) to write the operators in normal ordering
where all the a terms are on the right and all the a terms on the left. The mean
equals the variance in photon number, typical of a Poisson distribution.

We mention that the relative fluctuation of photon number in a coherent state is
inversely proportional to the square root of its average. For large fields, we fall in
the classical limit where this fluctuation becomes negligible as shown below

An 1 1
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4.

Photon number distribution: coherent states do not have a definite photon number.
The probability of finding m photons in a coherent state |«) is given by

Py (a) = |(mla)|* = io‘— (m|k)|* _ olarla” (3.79)
m £ k! '

Noting that |a|> = (n) = 7, the mean photon number, then we see F,(7) = e "27, a
Poisson distribution in 7.

{a} {b}
Pc(n) Pe(n)
—— -0
0.35- - -
0.08 - - L,
0.30°
- -
0.25¢ 0.06 -
-
0.20 [~ R
015 0.04r - N
010 I -
0.02- - -
0.05" - - -
-
—_—— -@
! - g - L g - n Lw"\HH\HH\HH\HH\-‘.".""O-Q-An
2 4 6 8 5 10 15 20 25 30 35

Figure 3.4: The probability of detecting n photons, the photon number distribution for
coherent states (a) |a|> =1 (b) |a]? = 20

5.

Minimum Uncertainty: Heisenberg uncertainty principle states that the more accu-
rately we know the position of a particle (that is the smaller Ax is), the less accurately
we know the momentum (that is, the larger Ap is) and vice versa. Mathematically,

AXAP > % (3.80)

where AX and AP are uncertainties in position and momentum respectively. Let us
now see what the minimum uncertainty principle says about coherent states.

The quadrature operators X and P are given as

1 i
X = E(a +a'), P= %(cﬁ —a). (3.81)
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and obey the commutation relation [ X, P] =i. Recall the definition of coherent state
la): ala) = ala), (a|a’ = (a|a*. Thus

(%) = = (ala+ala) = 5la+a’). (P)=—(alal —ala) = 5(a"—a)
Similarly,

(X2) = % (o] (a + a")(a + a)|a) :% (0 + (0" +20%a +1) = % (@ +a% +1]
(P?) =~ (al (a' — a)(al — a)|0) = — 2 (0% + (2")? ~ 200" ~1) = — [(a — ) ~1]
The fluctuations in these operators

(AX)? = {a] X?la) - ({a] X]a))* = 3,
(AP = {a] P*|0) ~ ({a] Plo})? = 5
Putting all these together, we have
AXAP = % (3.82)

From Eq. (3.80), we see that all coherent states irrespective of the value of their
amplitudes, are minimum uncertainty states.

3.3.2 Quantum superposition of coherent states

In the previous section, we discussed how two coherent states, although not strictly orthog-
onal, approach orthogonality when their amplitudes are large. By using coherent states
with equal amplitudes and 7 out of phase, one could produce a superposition of macro-
scopically distinguishable states known as the Schrodinger’s cat state. In this section, we
will discuss the Schrodinger’s cat states and their quantum properties.

A superposition of two coherent states |a) and |3) is given by

1
W) = \/_JT/(M +18)) (3.83)

where N is the normalization constant. The coherent states are characterized by the
complex amplitudes o = |a|e? and 8 = |Ble!® . Now suppose the coherent states have
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Xo

Figure 3.5: Pictorial representation of superposition of coherent states with equal ampli-
tude and 7 out of phase space. We see the two circles do not overlap.

equal amplitudes |«| = |3] but are 7 - out of phase, that is ¢ = 6 + 7. In this case § = —«
and we say that the two states are macroscopically distinguishable. In quantum optics,
a Schrodinger’s cat state is defined as a superposition of two coherent states with equal
(large) amplitudes and 7- out of phase. Mathematically it can be written as

_L « ew’ —
W)eww = (1) + €]-0)) (3.84)

The normalization factor N can be calculated by requiring that Tr(p) = 1 . This gives
N =2(1 4 e 2o cos ). (3.85)

For |a| > 1, we find N ~ 2.
The density operator for the state is p = [U)ca (V|

cat

1 —i i
p = 37|10 {al + [=a) (—al +e7*|a) (—a] + €| -a) (ol (3.86)
The presence of the coherence terms |a) (—a| and |—a) (o] in (3.86) is due to quantum
interference and gives the cat state its properties that distinguish it from a mere statistical
mixture

pan = 3(10) (al + |0} (~a) (387)



and the different coherent states that make up the superposition. For example, the super-
position (3.84) exhibits squeezing [27], higher order squeezing [(3], sub-Poissonian photon
statistics and oscillations in the photon number distribution [117, 27]. We need to be able
to detect effects of coherence in other to observe these nonclassical properties.

As discussed in 3.3.1, if |« > 1, the two coherent states |a) and |—«a) become orthog-
onal (that is macroscopically distinguishable) because their overlap approaches zero (see
Fig. 3.3). This suggests that a Schrodinger’s cat state can be produced by superposing
coherent states. Thus a prototype of a Schrodinger’s cat state is a superposition of coherent
states with equal and large amplitudes and opposite phases. Recall the representation of
coherent states in the number basis:

o) = a2 O‘T;|n> (3.88)

and

[—a) = e lF2y " %\m (3.89)

n=0

Adding equations (3.88) and (3.89) we get

o) + |—a) :2e"a|2/2( ) +

TG0 sl )
—elal?/2 Z %a"!n) (3.90)

Here the odd terms cancel and we have only superposition of even number states. Similarly
subtracting equation (3.89) from (3.88), we get

@) = [—a) =2e_|°“‘2/2< (3.91)

al a’ a®
1)+ =13) + =[5+ )
\/1!‘ ) \/3!‘ ) \/5!‘ )
_ 1— (=1
—plal?/2 n
=e ———a"|n 3.92
>l (3.92)
Here, the even terms cancel out and we are left with superposition of only odd numbered

states. The disappearance of the odd and even number states in (3.90) and (3.91) is the
result of quantum interference.

Let us now introduce the three Schrédinger’s cat states important for our study, defined
according to our choice of ¢ in (3.84).
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For ¢ = 0 we obtain the even cat state,

_ (o) +[=)
|9 even = V2 & 2020l (3.93)

for v = m, the odd cat state

(la) = =)

odd = ————x 3.94
O e i) (399
According to equations (3.90) and (3.91), the even and odd cat states [27, 12, 117] contain

even and odd photon numbers respectively, which is why they are so called. The even and
odd cat states can thus be discriminated by a photon parity measurement, which can be
represented by [93]

On =Y (12n) (20| — [2n + 1) (2n + 1) (3.95)

n

Importantly, note that the even and odd cat states are orthogonal

(oaalton) =53~ ({0l 0) + (ol = a) = (=ala) = (—al ~)) =0 (396)
where the overlap
(a] — a) = e 2P (3.97)

according to equation (3.74). The orthogonality between the even and odd cat states
implies that they are macroscopically distinguishable

Another important cat state in quantum optics is the Yuker-Stoler cat state, given when
Y = /2. For ¢ = 7, the Yuker-Stoler cat states [135]

1 :
[W)ys = \/—N(IOO +i[-a)) (3.98)

The expectation value of a and a' in the cat states vanishes so that
(W], X[¥)y =0, (Y[, P[¥)y=0. (3.99)

However the expectation values of a combination of the photon operators exist. The three
cat states are normalized eigenstates of the operator a?

a?|¥), = a?|W),, (3.100)
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The mean number of photons in the cat states is given by 7 = (¥|, a'a|¥),. For the even
cat state, we have

I PP D

Ne = m|0[| (3101)
For odd cat state, we have

g

Ne = mkﬂ (3102)

For the Yuker-Stoler cat state, 71,; = |a|? similar to that of a coherent state and a statistical
mixture.

Several successful attempts have been put forward to realize a superposition of macro-
scopically distinguishable states [31, , 79, 26, |. However realizing a superposition of
the form (3.84) poses a challenge and such superpositions are never seen in our everyday
world. Why not? The reason is partly because quantum systems are in constant interaction
with their environment in a dissipative way. If we can somehow create a superposition of
coherent states, it will quickly decohere into a statistical mixture (3.87) of coherent states
[09]. We will address the issue of decoherence later. In the next section, we will discuss
the nonclassical properties of a superposition of coherent states.

Nonclassical properties of superpositions of coherent states

The nonclassical properties that classify a superposition of coherent state would be dis-
cussed here.

Photon number distribution
The photon number distribution for the even and odd cat states can be calculated using

the expansion in Fock basis (3.90) and (3.91)

2

Pal|20) = (]9,

For even cat state, we obtain
e_lc"|2

2(1 + e~ lo?)

Pn(|¢>even) =




For odd cat state

a2 2 A2
Pullihoa) = s~ | CLRt e ol gy
dd) = — = _(—
e 2(1 — e~1ol?) | /nl vn! 1 —e2la* pl
In summary for an even cat state, we obtain
{a} {b}
Peven (n) Podd(n)
—— 0.35 -
035/
0.30 -
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0.25- —.— —— 020k
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Figure 3.6: The probability of detecting n photons, the photon number distribution for
even cat state (a) and odd cat state (b) with |a| = 2.1.

14exp (—2|af?) n! (3103)

2exp (—|af?) |af*" n even
P, =
0 n odd

For odd cat state, we obtain

0 n even
P, = { j2n (3.104)

2exp (—fal?) o
l—exf)(—2|a|2) o noodd

For Yuker-Stoler cat state, P, is just a Poisson distribution, identical to that of a coherent
state (3.79) and a statistical mixture (n|psy,|n). The oscillatory behaviour we see in Fig.
3.6 distinguishes the even and odd cat states from their statistical mixture (3.87).
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Mandel QQ parameter

Another nonclassical effect that describes a superposition of coherent states is the Mandel
Q parameter [31] given by
0= (a?a?) — (ala)® 4 exp(—2|al?)
N (ata) 1 — exp(—4|al?) cos?(y)

|ar|? cos ¢

Specifically, () describes the deviations from the Poisson character of the field. The states

Q
1.0 ——meo
L N\\
~
Y
Y
L N
0.5 N
L Y
Y
I s
I S~o
,Q_A_‘_‘_x_‘_‘_‘_‘_t_‘_‘_‘_‘_t_";t_rﬁ‘ﬁu__._d__g__h*_k_p la|
— 0.5 1.0 15 2.0 25 3.0
-0.5-
10 cememeeT

Figure 3.7: Mandel QQ parameter as a function of coherent amplitude || for even cat state
(red dashed curve) and odd cat state (blue dotted curve).

are called Poissonian, sub-Poissonian and super-Poissonian when () = 0, < 0 and when
@ > 0 respectively. For even cat state we obtain

>0 (3.105)

Q_ 46Xp(—2|a|2) | ‘2
1 —exp(—4|al?)

For odd cat state, we obtain

4 exp(—2|al?) 9
— 3.106
@ 1 — exp(—4|a|?) " <0 (3-106)

And @ = 0 for the Yuker-Stoller cat state for all values of |a|. We note that for large
values of |a| > 2 (see Fig 3.7), @ — 0 for both even and odd cat state.
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Quadrature Squeezing

Another way to distinguish a superposition of coherent states from a statistical mixture
of coherent states (3.87) is by looking at the quadrature squeezing via the quadrature
operators X and P defined in (3.81). A quantized field is said to be squeezed [75] if the
non commuting quadrature operators have any of their variances below their vacuum level.
That is either Ap < i or Azx < 411- The variance of the X and P quadratures for a statistical
mixture of coherent states (3.87) is given by

(AX))gn = T pun X2| = T [psz]Q = }l(oﬂ +(a*)? + 2[af? + 1),
(APP) = T puP?] = TeunP]” = S0 = (0 + 2Jaf? + 1),

where by definition, X? = (a® + a'? + 2a’a 4+ 1) and P? = }(—a® — a™ + 2a’a + 1). If we
take the phase of the coherent state § = /2, we obtain

(AX))sm = i (3.107)
(AP)*)sm = %1 |af? (3.108)

Thus there’s no squeezing in the quadratures. For an even cat state we get
(AX)%)e = (W] X2 [h)even — (0] X[10) even)? (3.109a)
((AP)*)e = (] P*[)even — ((¥] Plt)) even)? (3.109b)

The second terms vanish and so we obtain

(BXP) = (] X2 )ewen = § 3 [0 + (@) +27.] (3.110n)
((AP)?) = (| P*[$))even = i - ﬂoﬂ + ()2 — 2m] (3.110b)

a2
where 7, is the average photon number in even cat state given by 7, = ;Z_z:alz la)? (3.101).
When we take the phase of the coherent state § = 7/2, we obtain

1 |alfe 2P
2 —_—e— ——
1 al?
(AP)?), = 1t +’e|_2a|2 (3.111b)



Recall the complex amplitude o = |alel’ so that taking § = 7/2 we obtain « = iJa| and
(3.111) follows from evaluating (3.110)
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Figure 3.8: The uncertainty in X quadrature amplitude (a) and P quadrature amplitude
(b) in even cat state

So reduced fluctuations appear in X quadrature for small values of « evident in Fig.
3.8(a) where we see the curve has a minimum along the curve. We point out that most texts
have assumed the complex parameter o to be real; in this context, reduced fluctuations
would appear in the P quadrature.

For odd cat state

(AX)*)oaa = (V] X2[1h)oaa = 7 + [oﬂ + (a")? + 2ﬁ0] (3.112a)

(AP)*)oaa = (] P*[))oaa =

ol Ml W
= s

[aQ +(a*)? — Qﬁo] (3.112h)

Colaf?
where 7, is the average photon number in odd cat state given by 7, = iZ_E:Q:Q la]? (3.101).
When we take the phase of the coherent state § = 7/2, we obtain

1 |oz|2e_2|"‘|2
2 _ = Ll B
(AXP)o= 7+ T——5p (3.113)
1 |o?
2 —_ —
<(AP) >O - 4 + 1 _ 6_2‘0"2 (3114)
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and thus no squeezing is evident. For the Yuker-Stoler cat state, we obtain
1

(AX))ys =7 = lafPeter (3.115)
1
((AP)?),; =5+ |af? (3.116)
{a} {b}
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Figure 3.9: The uncertainty in X quadrature amplitude (a) and P quadrature amplitude
(b) in odd cat state
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Figure 3.10: The uncertainty in X quadrature amplitude (a) and P quadrature amplitude
(b) in Yuker-Stoler cat state

Having discussed the properties of the various Schrodinger’s cat states, we are now ready
to describe a method used to detect these properties in quantum optics. The method
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involves an interaction between the field and a detector (usually in form of a two-level
atom). Therefore we first describe the principle of atom-field interaction. Let us recall
Schrodinger’s thought experiment with a live cat and a radioactive atom, both inside a
box. The decaying atom triggers a death mechanism that kills the cat. However without
details of what happens inside the box, the atom and cat are in an entangled superposition
of decayed-and-dead and undecayed-and-alive simultaneously.

The entangled Schrodinger’s cat-atom system with the radioactive atom in a box is
analogous to an entangled superposition of coherent states with a two-level atom

) ot car = %qgm + le, —a), (3.117)

trapped in a cavity mode. What do we know about the entanglement of this state? How
does the presence of the two-level atom affect the cat state? To answer these questions,
we first discuss the interaction process between an atom and EM field in free space.

3.4 The atom-field interaction models

Combining the two-level system and a given state of the electromagnetic field in an in-
teraction and in a controlled environment (example a cavity) gives birth to interesting

phenomena [2] such as multimode squeezing [71, 78, 83, |, superradiance [10], Rabi
oscillations [5] and the corresponding so-called vacuum Rabi oscillations [70], collapse and
revival [13, 109] and atom-field entanglement [13] and Schrodinger’s cat [59, 25]. When

the field and two-level atom states interact, the electron absorbs photon energy and make
a transition into the higher energy level. On the other hand, the electron may also make
a transition from the higher energy level to its ground energy level. The bipartite system
of the two-level system and quantum field is described by a total Hamiltonian

H = Ho + Hiy. (3.118)
Hy is a time-independent Hamiltonian given by
HO = Hatom + Hﬁeld> (3119>

where Hpeq = hwa'a is the free field Hamiltonian, a'(a) is the field’s creation(annihilation)
operator and w is the cavity frequency. Hg.iom = hSo, is the free atom Hamiltonian, o,
is the Pauli operator and €2 is the transition frequency between the excited and ground
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state of the atom. We note that the spectrum of Hy is known and H;, acts as a pertur-
bation. To describe the interaction process, two important models can be identified-The
Jaynes-Cummings model and the Unruh deWitt-model. In this section, we will give a brief
discussion on these models with focus on the Unruh DeWitt model.

3.4.1 The Jaynes-Cummings model

The Jaynes-Cummings (JC) model [70] is the simplest model describing light-matter in-
teraction where a single two-level atom interacts with a single mode quantized EM field
inside a highly reflective cavity. As we have discussed earlier, for the case of a free EM
field (plane waves), an atom would interact with infinite number of modes, thus the dy-
namics is not well described. By trapping the field inside the cavity (example the optical
cavities, microwave cavities), we confine the field to a space where their dynamics can be
easily described. This is the idea of cavity quantum electrodynamics (CQED). Here in this
section, the Jaynes Cummings model is briefly reviewed and how it models the dynamics
of atom-cavity field system.

To begin, consider a two-level atom with ground and excited states |g) and |e) respec-
tively; interacting with a single cavity field with an electric field component given as

hw

€0_V> 2 (a+ a') sin(kx). (3.120)

E=e <
Before interaction, the atom-field free Hamiltonian can be written as

Hy = hwa'a + hQo, (3.121)

Interaction Hamiltonian

The interaction Hamiltonian is given as

Hy = —d-E = d\(a+af) (3.122)
where A\ = —sin(kx) (goﬂv)l/2 is the interaction strength (coupling constant), and d=d-e
is the electric dipole operator. Since the operators

9) (9l 1g) (el , e} (gl €} (e| (3.123)
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form a complete basis, we can expand the dipole operator d in this basis.
d = (gl d|g)|g) (g] + (9] dle}|g) (| + (el dlg)|e} (g] + (e] d|e)|e) (el
therefore
d=dyot+d o=,  dy={ed|g),d = {(g|dle) (3.124)

We note that an atom exhibits electric dipole moment because we have assumed it is in
a superposition of |e) and |g) states respectively. In the case where we consider an atom
either in the ground or excited state, then a monopole is described [97]. Thus combining
terms, the interaction Hamiltonian (3.122) becomes

Hip =hX(cta+o a' +07a+o"a) (3.125)
We see that H;,; contains four terms

e 0"a <— absorption of photons while the atom transit from state |g) — |e).
e 0~ a' <+ emission of photons while the atom transit from state |e) — |g)
e o"al «+— emission of photons and transition of atoms from state |g) — |e)

e 0~ a <— absorption of photons and transition of atoms from state |e) — |g)

To simplify the Jaynes-Cummings interaction Hamiltonian (3.125), the rotating wave ap-
proximation can be employed. First moving from Schrédinger picture to the interaction
picture with respect to Hy, through the unitary operator U = enfo! the atom and field
operators transform according to the relation

UdU" = a'e*!, UaU' — ae !,
UotU' = ote™, Uo U — o7 ¥
Thus Jaynes Cummings Hamiltonian in the interaction picture becomes

Hie(t) = B <U+a671(w79)t 1 omatel@=Dt 4 g gemilrt | O+aT€i(w+Q)t) (3.126)

The first two terms 0 7a and o ~a' are multiplied by exponentials that are slowly oscillating
while the last two terms o~a and ota' are multiplied by exponentials that are rapidly
oscillating. Now usually one is interested in the near resonant case w = €2, at which

lw—Q K w+ Q. (3.127)
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which implies the rapidly oscillating terms will average to zero during the time evolu-
tion. Again, one requires situation where the atom-cavity interaction time is long enough
compared to cavity decay and spontaneous emission rates respectively. This is the strong
coupling regime (% ~ 1075 —1077). Now when we integrate in time over the Hamiltonian
(3.126), the energy conserving terms are related to the ratio ﬁ that are very dominant

compared to the energy non-conserving terms which are related to WJ%Q Hence by consider-
ing a resonant interaction of an atom-field system in CQED, we can disregard contributions
from the counter rotating wave terms otal and 0~a and the effective Jaynes Cummings

interaction Hamiltonian in the interaction picture is given as
Hiye = EX(oTae (@D 4 gqf =Dt (3.128)
Transforming back to the Schrodinger’s picture, we obtain

Hyy = hA(oTa+ o al) (3.129)

The Jaynes-Cummings Hamiltonian is then

. = %hQaz + hwa'a + hA(oTa + o~ al) (3.130)
Although eliminating the counter rotating wave terms enabled us to find a simplification
for the Jaynes Cummings Hamiltonian, it is important to know that such terms can be a
limiting factor to some problems in physics. We will show later in the chapter how keeping
the rotating (slowly oscillating) terms can jeopardize our ability of reading information
about the cavity field system.

Understanding the atom-field dynamics

Here we want to understand how the Jaynes-Cummings model describes effectively the
coupling of a single atom to a cavity mode, and we also discuss some basic phenomena
associated with such interactions. To begin, consider an initially excited two level atom
interacting with a field trapped in a cavity mode and containing n photons. We will first
solve the Schrodinger’s equation of motion for the system’s interaction Hamiltonian (3.129).
In the interaction picture, the Schrodinger’s equation is given as

T IIO) (3.131)
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Now let the initial atom-field state vector be written as a superposition state
[4(0)) = Cili) + Cylf). (3.132)
As an initial condition, assume all the population to be in the ground state:
C;(0) =1, Cr(0)=0 (3.133)

Our task is to find the solution to the Schrodinger’s equation. To proceed, the initial
atom-field state is |i) = |e,n) and at a later time, the only possible transition is to the final
state | f) = |g,n + 1). The states |e,n) and |g,n + 1) are known as the bare states of the
Jaynes-Cummings model. Substituting the interaction Hamiltonian (3.129) and the state
(3.132) in (3.131), we obtain

(C’Z|n, e) + Cyln + 1,g>) = —iA(C’i\/n +1n+1,9) + Crvn+ 1n, e))
We arrive at the following system of uncoupled equations

Ci+iNCvn+1=0, C;+iNCiv/n+1=0.

Differentiating the uncoupled equations, we obtain the corresponding second order differ-
ential equations

Ci+ X2Cin+1)=0, C;+A\Csn+1)=0.

Imposing the initial conditions (3.133), the solutions to the second order equations can be
written as

C;(t) = cos ()\t\/n + 1), Cy(t) = —isin </\t\/n + 1) (3.134)
And we have final atom-field state vector at later time ¢ is given as

[th(t)) = cos (At\/n—ﬂ) le,n) — isin ()\t\/n——l—1> lg,n + 1) (3.135)

Vacuum Rabi oscillations

The probability that the system makes a transition to the final state is

Py = |C;(t)]? = sin? ()\t\/n i 1), (3.136)
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while the probability that the system remains in the initial state is
P = |Ci(t)]? = cos? ()\t\/n+ 1) (3.137)

It is interesting to consider the atomic inversion (W (t)), defined as the difference between
in the excited state and ground state populations:

W(t) =P, — P, (3.138)
=cos(2Atvn + 1) (3.139)

where we have used the trigonometric identity cos?z — sin? 2z = cos2z. We see that the
atomic population oscillates with frequency wr = 2Av/n + 1 back and forth between the
ground and excited states. We notice that even in the absent of the radiation field, that
is in the case of no photons n = 0, we have W (t) = cos(2At), that is the oscillation is
not absent. This is in contrast to the Rabi oscillation of the atoms induced by classical
external field [5], the vacuum Rabi oscillation is purely a quantum mechanical phenomena.

The dressed states

One of the most striking manifestations of the quantum nature of atom-field interac-
tion is the collapse and revival of the vacuum Rabi oscillations and the splitting in the
spontaneous-emission spectra of atoms in cavity. In this section we will discuss this col-
lapse and revival of the Rabi oscillations.

To begin, we will solve the Schrodinger’s equation for the full Jaynes-Cummings Hamil-
tonian (3.130). Assuming the field initially in a number state |n) with n number of pho-
tons. First note that in the Jaynes-Cummings model, the total number of excitation
N = 0,0_ + a'a is a constant of motion, that is [N, H] = 0. We can solve the dynamics
of the system for the subspace spanned by the bare states {|n,e),|n + 1, g)}.

Eigenstates and Eigenenergies

By fixing n, let us now write the full Jaynes-Cummings Hamiltonian (3.130) in the basis
state {|n,e),|n+1,9)}.

H, = Z (i Hiclj)li) (il =l (hwaTa + %maz +hA(ocTa+ o’a*)) FRY]

ij
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Here {i,5} € {(n,e),(n+1,9)}. This gives
H, = (n,e] (hwaTa - %hQaz +hX(ota + a’aT)> In, e)|n, e) (n,e|
+ (n, €| (hwaTa + %hﬂaz + hX(ota+ a_aT)> In+1,g)|n,e) (n+1, 4|
+ o+ Lg| (hwala + %maz F R0 at o)) In.eln+ 1) (n.e
+(n+1,9| (hwa*a + %hQOZ +hX(oTa + a_aT)> In+1,g)|ln+1,9) (n+ 1, 9|
Evaluating each term yields
H, = <hwn + %hQ) In,e) (n, el + <h)\\/n—+1>|n, e) (n+1,g|
+ <h)\\/n—+1>|n—|— 1,9) (n,e| + (hw(n+ 1) — %hQ)M—I— L,g) (n+1,g|

In matrix form, the Hamiltonian can be written as

A p o 2w+ 22vn+1 5 2n+1lw—19 Q,
2 vn+1 2wn+1)—Q Q, 2n+1)w+4

Q, =2 vn+ 1, while § = w —  is the frequency detuning between the field and atomic
transition. The energy eigenvalues are

By = (n + %)hw + gAn, A, = /32 + 02 (3.141)

The corresponding eigenstates |+, n) associated with the energy eigenvalues are given as

[90]

|+,n) =sinfb,le,n) + cosb,|g,n + 1), (3.142a)
|—.n) = cosb,|e,n) —sinb,|lg,n + 1) (3.142b)
where
Q, A, —0

n:

VA, =62 +Q2
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The states |n, +) are called the dressed states. We define the Stark shift as the splitting of
the bare states into dressed states. Here A, is the Rabi frequency. We see that at exact
resonance when ¢ = 0, we obtain A,, = §2,,. and the energy eigenvalues are given by

1
Ey = <n n 5)71@ + gLQn (3.143)
The corresponding eigenstates become
1
+,n) = —=(le,n) + |g,n+ 1)), 3.144a
[+, m) \/5(\ )+ lg ) ( )
1
—n)=—(e,n) —|g,n+1 3.144b
=) = (en) = lg.n + 1) (3.144D)

and the bare states are degenerate and separated by the frequency
2,(0) =2\ (3.145)

Experiments to show the vacuum Rabi frequency have been performed recently [25, ]

The dispersive interaction

In our previous discussion, we have mostly assumed a zero frequency detuning between the
field and two-level atom. That is atomic transition frequency is resonant with the cavity
field frequency. An interesting version of the Jaynes-Cummings model is seen in which
this detuning is large enough such that direct atomic transition is suppressed, however a
dispersive interaction between the atom and cavity field do occur. This dispersive inter-
action regime is important in a number of applications for fundamental tests of quantum
mechanical theories.

In this section, we will discuss the dispersive interaction. Within this dispersive limit,
the effective Hamiltonian for the Jaynes-Cummings model can be written as [120, , ,

]
hQ2 hA® hA\?
= — _— - _— T
H.g 5 0 + 5 octo” + <hw—|— 5 Uz>a a (3.146)

In addition to the free field and free atom Hamiltonian, this effective Hamiltonian consti-
tutes the dispersive coupling

I Y

o = 5 (0*0‘ + aza*a> (3.147)
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We can draw some physical implications from the effective Hamiltonian. When we com-
pare (3.146) and (3.129), we see that during the atom-field interaction in the dispersive
Hamiltonian, the oscillator frequency is shifted by an amount w = w 4= A?/§, that depends
on the state of the qubit. To see how this works, let us consider the initial atom-field state
|1(0)) = |g, @), then at a later time under the effective interaction Hamiltonian, we get

(1)) = e it/ (0)) = |g) |ae N0 (3.148)
and for initial atom-field state [¢(0)) = |e, a), we get
(1)) = e it/ (0)) = =X g e ™) (3.149)

So the field amplitude is unchanged when the qubit is in the ground state but it is rotated
in phase space by the angle A?t/§ when the qubit is in the excited state. If now we consider
the atom initial in the state |[taom) = |g) + €'?|e) where ¢ is some local phase. Thus with
the atom-field in the initial state [¢)(0)) = |tatom)|r), We get at a later time

[(t)) = e~ et/ (0)) = % (Igplae™¥4/%) 4 7102500 g) ae=8) ) - (3.150)

Depending on the choice of \?t/§, Eqn. (3.150) is an entangled state analogous to the state
in the Schrodinger’s gedanken experiment [1 18],

1
|¥atom-cat) = —= | [lundecayed atom)|cat alive) + |decayed atom)|cat dead)} (3.151)

V2

where the state of the two-level atom play the role of the radioactive atom, and the phase-
separated cavity field states play the role of the cat.

3.4.2 The Unruh deWitt model

Another model that describes well the atom-field interaction is the Unruh deWitt (UdW)
model [19]. describes the interaction between a monopole detector coupled to a massless
scalar field. It has been used to study the response of detectors experiencing acceleration,
to provide a proof for the Unruh effect and to probe the dynamics of quantum entanglement
in the context of the recent fields of relativistic quantum information.

The detector described here is usually a two-level system. The UdW interaction Hamil-
tonian in the Schrodinger picture is given by

Huaw = A is ¢ [xq(t)] (3.152)
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where x; is the atom’s position, assuming the detector’s monopole moment g is coupled
through the coupling constant A to the field amplitude ¢ along the detector’s trajectory.
The monopole moment ps and the field operator ¢ in the Schrodinger picture are given
respectively as

ps=0"+0", (3.153)

Bla(t) = D _la; + T]%

Again, moving to the interaction picture, the UdW interaction Hamiltonian is given by (%)

(3.154)

i | - o sin[kz(t
Hon = A 300 e ) a5t oy S0

j \/(.UjL

We comment that using a scalar field instead of an electromagnetic field does not introduce
a fundamental difference in the model [38, |. The UdW has been applied in many
experimental proposals including [87, 86]. The main caveat is that it models the light-
matter interaction only in the absence of orbital angular momentum.

(3.155)

The similarity between the Unruh-DeWitt type monopole detector and the Jaynes Cum-
mings (JC) model (3.125) is obvious. The main difference is that the monopole moment
is here an extra degree of freedom, whereas the dipole moment in the JC model is directly
related to the position of the electron. Hence the trajectory of the monopole detector can
be arbitrary in our model.

3.4.3 Evolution operator - Perturbative analysis

We have noted that the atom-field interaction system is governed by a free Hamiltonian
Hy with known spectrum and an interaction Hamiltonian H;,; - a perturbation that causes
transition between the eigenstates of Hy. To study the transitions, let us define the evo-
lution operator U(T,0) that is capable of causing transitions governed by the interaction
Hamiltonian Hiy.

We work perturbatively in the coupling constant A

U(T,0) = T{ exp|—i /0 ' dTHint(T)]} (3.156)
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where 7 is a time ordering. Expanding the terms in the exponential,
UT,0)=1+UY +0@ ... 4 g™ (3.157)

where

W =—j / ' AT Hipe (7) (3.158)
:ﬂd/m/mﬂm Hie (1) (3.159)

7(n=1)
U(n) :<—l) / dr - / dr (n )Hmt( ) e Hint(T(n)) (3160)
0 0

Now substituting Eqn. (3.155), the corresponding terms give

A
UU)ZTZ( TI+]+0— CLJI* )
J
U@ = - )2 Z (J_U’La}azrl_,j ol +o0 o' a; alI_ ol |+ o o aal}; ol
Iy
+o otaall o ly)

where for notational convenience we have defined

T
dt " @EY sin[k;x(1)], (3.161)

1
Io=——
= \/kjL/o

and the double integral

Iyjoly; = / / dr DI CEDT g [ ()] sin [k (7)) (3.162)
V/ (k;L) k:l

with the latter relation defining the o operation. In writing the respective unitary terms

UM and U® we note that our probe is prepared in its ground state |g), and so terms with

o~ in front can be neglected since o~ |g) = 0.

We are usually interested in evaluating the state of the detector (two-level atom) after
the evolution which can be calculated by tracing out the field from the combined atom-field
system. Now let py = pé )@l £o ) be the initial density state of the combined atom-field sys-
tem, then at time T the system would evolve according to equation pr = U(T, 0)poU (T, 0)T

which according to (3.156), we write as

pr=[14+UY + U@ £ O00po[1 +UD + U + ON)]f (3.163)
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From this we can identify the order correction to the density matrix evolution

pr = po+ U po + poUNT + UD poUMT 4+ UP) gy + poUDT +O(X) (3.164)

p(H Pe)

Therefore the reduced state of the detector will be given by

A
pr = Trrpr] (3.165)
In other scenario, we might be interested in evaluating the evolution of the combined atom-
field system given in vector form. That is suppose |¥)g = [10)a|1)F is the initial combined
atom-field state in vector form, then at a later time T', the state evolves according to
substituting (3.156), we obtain

(V) = [)o + [W) + [0®) + O(N?)

where |U") = U™ |W™) are the different contributions.

3.5 Decoherence in cavity quantum electrodynamics

We have seen in Sec 3.3.2 that quantum superposition of two coherent states exhibit differ-
ent nonclassical (quantum) properties. However at the classical limit where the amplitude
of the coherent states is apparently large, such state superposition loses its quantum nature
(interference) and decohere to a statistical mixture of coherent states. Quantum decoher-
ence [110] is the evolution of a quantum superposition state into a classical mixture due to
interactions with the environment.

Since quantum physics is assumed to describe our world, one would expect that the
existence of quantum interference (a quantum property) at the microscopic level should be
equally applicable to macroscopic states. The non existence of quantum superpositions at
the macroscopic level has been a long standing problem in quantum mechanics. Proposals
to solve this problem stress the role of decoherence [59, 34, 51, , , 27]. Due to
interactions with the environment (a dissipative process), quantum coherence between
quantum state superpositions tend to decay faster than the physical observables of the
system. This implies that during a measurement scheme, since the decoherence time is very
short, we lose the quantum coherence that displays the quantum nature of superposition,
even before detecting the state superposition. It is important therefore to imagine an
experiment that accounts for interference effects between macroscopically distinct states

[34].
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In cavity quantum electrodynamics (CQED), superpositions of coherent states and
entangled superposition of coherent states have been generated [1341, 59]. Here the fields
are generated and trapped in superconducting cavities while Rydberg atoms [68] are used
as detectors for these fields. Microwave cavities or optical cavities with high Q factor are
used and are well suited for trapping fields for a long time. Likewise Rydberg atoms are
required because they are strongly coupled to microwaves and they have very long radiative
decay times, making them suited for preparing and detecting strong correlations between
atom and field states [59, 31].

Dissipative effects due to cavity losses and atomic decay are inevitable in these exper-
iments, and they result in decoherence phenomena in the system. We will now discuss
decoherence phenomena in CQED.

Dissipative interactions and decoherence

Dissipation is modelled as a linear coupling between the field mode and an environment
(usually a thermal bath of oscillators at zero temperature). Consider an initial state of a
superposition of coherent state and a quantum state of the environment |E) . The problem
is treated with the density operator formalism and demands that we solve a master equation
for the reduced field density state.

dpr K

= 5[2&@&* —alapp — pratal. (3.166)

where pr is the density matrix of the cat state given by
1 : :
Pr = W<|Oz><a\ + e ) (—al + e —a)(a| + |—a><—a|). (3.167)
i

Kk =wy/Q = 1/t. is the cavity-damping rate which describes the strength of the coupling,
tc is the damping time, wy is the cavity field frequency and @ the cavity quality factor.
The solution to the master equation (3.166) for pp is given as [31]

pr(t) = 1 (I ()] + [~a()(~a(t)] + & FOl () ()] + e F Ol (~a) ).

1

where f(t)

F(t) = exp [— 2la2(1 — e~ )], (3.168)
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multiplying the coherence terms |+a(t)) (Fa(t)|, is a decay function that quantifies the
state coherence, and a(t) = ae /2. In the transient regime st < 1 where almost no
damping or motion has occurred, then f(t) ~ e~214P5 where tgecon = 1/2|a|?k = t./2|a|? is
the decoherence time, that is the characteristic time over which the coherence terms vanish.
Thus whenever the distance |a|? between the superposed coherent states {|a),|—a)} is
large, that is |a|? > 1 or in the steady state regime when kt — oo, their mutual coherence
vanishes since f(t) — 0. Thus quantum superposition reduces to a statistical mixture:

1

prt)™ = 5| la®))a®)] +|-a(t))(~a(t)] (3.169)

To summarize, the decoherence time tgeeon is shorter than the energy dissipation time in
the cavity t. by 2|a|?, a factor precisely equal to the size of the field measured by its photon
number |a|?. Therefore for large fields, the decoherence time becomes short. To monitor
this decoherence, an atom is used and sent into an interaction with pp(77) [34].

We have seen that decoherence limits our ability to observe the superposition of coherent
states as the field state is often destroyed before observation. One of the goals in this part
of the thesis is to characterize a superposition of coherent states stored in a cavity in
a nondestructive way. Due to the problem of decoherence, the quantum non-demolition
(QND) measurement scheme was introduced as a way to eliminate perturbation inherent
in quantum measurement. We will review the QND scheme in the next section.

3.6 Quantum non-demolition measurement: A review

In the standard approach to quantum measurement [62], consider a pair of non-commuting
physical quantities, represented as operators A and B. Non-commuting observables implies
the commutation relation [/1, E] — AB — BA # 0. Now Heisenberg’s uncertainty relation
predicts that there exist a lower bound in the measurement of A and B. That is

AAAB > %([A, B]). (3.170)

AA and AB are standard deviations which quantify the precison in the measurement of
A and B respectively.

AA = /(A2 — (A)2, AB=/(B? — (B)? (3.171)
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Intuitively from the relation (3.172), a precision in a single measurement of A will result
in smaller value of AA and hence a larger value of AB. Large fluctuations induced in B
when measuring A may eventually couple back to A, which will then also be perturbed,
making it difficult to perform repeated or continuous measurements.

If we consider the position and momentum quadrature operators (3.81), the Heisenberg
uncertainty relation as derived in unit 5 yields the relation

h

1
Azdp 2 o[z, pl) = 3, (3.172)
where h is the reduced Planck’s constant. To evade the problem of such measurement back
action, the concept of quantum non-demolition (QND) measurement [16] was introduced,

in which a strategy is chosen that kept the back-action noise entirely within unwanted
observables.

We remark here that the key features of a QND measurement include its ability to pre-
serve useful information for subsequent processing and its repeatability, in which quantum-
state evolution into a different state is prohibited and successive measurement yields the
same result as the first measurement. In a general measurement scheme, the system to be
measured is coupled to a probe system (which reads out the number of photons without per-
turbing the signal), and the interaction of the two systems correlates the states of the probe
and measured system. A destructive measurement allows for a subsequent measurement
of the relevant state. The relevant observable remains unperturbed by the measurement
process, allowing repeated measurements to be performed with high accuracy.

For the measurement to be a QND measurement, the measurement scheme should
satisfy a set of conditions [16, 29, 120] that we recapitulate below

1. There should be some information about the measured observable that is encoded in
the probe system after the interaction.

2. The measurement should not affect the measured observable after the measurement.

3. The measurement should be repeatable: Identical repeated measurements of the
system should consistently provide the same outcome.
Quantum non demolition measurement of photon number

Detecting photons is usually a destructive process, in that detectors annihilate photons
and convert them into electrical signals, making it impossible to see a single photon twice.
The idea of quantum non-demolition measurement is to eliminate this destructive process.
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Suppose we want to monitor the number of photons in a radiation field. The relevant
Heisenberg relation is the number - phase inequality

ANAD > % (3.173)

where AN and A® are the dispersions in the number of photons N and phase of the light
wave ® respectively. Quantum non-demolition measurements of light intensity have been
demonstrated [50, 19]. Ideally, according to the basic requirement for QND measurements,
there should be no exchange of energy between the signal and meter. This can be obtained
through a non-resonant atom field interaction, where the frequency of light is detuned from
that of the atomic transition. In this non-resonant situation the exchange of information
is purely dispersive, that is, the atomic wavefunction only picks up a phase shift, which is
proportional to the number of photons in the cavity. Implementing this scheme is difficult
because the fact that the atom-field interaction is non-resonant makes it very weak. An
alternative scheme is to consider a fully resonant atom-field interaction where the field
frequency is set equal to the atomic transition frequency. Together with the extremely
large number of photons in an optical resonator, the atom-field coupling rate is also very
large compared to dissipative couplings to the environment. Although an energy exchange
does occur, the parameters are chosen so that a single photon in the cavity is coherently
absorbed and re-emitted by the atom before it leaves the cavity, hence reversing the energy
exchange. However a phase shift occurs in the atomic wavefunction. caused by a cycle
of photon absorption and emission, which is measured using atomic interferometry. The
phase information is extracted from the meter atom using an interference effect, which
transforms the phase shift into a detectable change in the atomic energy level. A demerit
in this scheme is that to generalize to higher photon numbers would require using a non-
resonant interaction.

A measurement scheme that considers a resonant atom-field interaction and conse-
quently a weak coupling between the atom and field has been described [97]. In this
scheme, which is called the mode-invisibility (MI) scheme, it was observed that one could
take advantage of the geometry of the cavity and let the field be trapped in only ‘even’
cavity modes. In this way, the absorption/emission processes during the first half of an
atom’s motion in the cavity are canceled during the second half, before it leaves the cav-
ity. A phase shift occurs in the atom’s wavefunction, which is further extracted using an
interference effect through an atomic interferometer. This method was proposed for imple-
menting a QND measurement of Fock states of light [97] and later general states of light
such as coherent states and squeezed coherent states [98]. Tt could distinguish Fock states
from each other.

The MI scheme is indeed a QND measurement for the following reasons:
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1. The interferometric phase encodes information about the number of photons and it
is resolvable to a precision that tells apart few-photon states satisfying the QND
criterion 1.

2. The probability that the measurement takes the system to a different state is ap-
proximately zero (P ~ 10722 for physical parameters), showing that the system does
not get perturbed after the measurement.

3. Given this probability for physical parameters, for our measurement outcome to be
significantly altered, the measurement would have to be repeated on the order of
more than 10 times.

We will generalize the mode-invisibility technique to measure the Bell cat states and a
squeezed superposition of coherent states.
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Chapter 4

Characterizing entanglement and
quantum state superposition

In the preceding chapter 3, we reviewed the generation of superposition of two coherent
states of equal amplitude and 7- out of phase.

W) = 37 (100 + €¥]-a), (4.1

where the normalization factor is given by

—1/2
N = [2(1 +exp(—2|a\2cosw)}

With ¢ = 0,7 and 7/2, we have the even coherent state, odd coherent state and Yuker-
Stoler states respectively. Quantum superpositions of the form (4.1) are referred to as
Schrodinger cat states at the limit when the component states |a) and |—«) are macro-
scopically distinguishable, that is for large amplitude |«|. At this limit, decoherence sets
in and the Schrodinger’s cat state changes to a classical mixture of coherent states [59] of
the form

1
p=5(16)(81+1-8)(-81) (4:2)
where f = ae™ /2, with v related to the rate of dissipation. The decoherence increases with

increasing |«|. During observation, one must be able to distinguish between the statistical
mixture and between the the different the cat states, which are superpositions of coherent
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states |a) and |—a). That is, as the corresponding density operator for a cat state is

p = 5la) {al + =) {~al + ¢ |0} (~a| + ™| ~a) (al (4.3)

we need to detect the coherence terms |a) (—a| and |—a) (af.

Superposition states [117] play a major role in the area of quantum information [108,

] due to their ability to encode information in a way that is impossible to achieve
by a classical system having the same amount of resources. For practical applications in
quantum computation, superposition states such as (4.1) have the powerful property of
executing large parallel processing. It has been proposed to encode qubits in superposition
states because they are naturally generated in any cavity QED systems [23, 24, 34, 80, ,

, | compared to multi-qubit states that require a large amount of control. In terms
of quantum resources, architecture with superposition of coherent states provide a simpler
and cheaper error correcting scheme [11].

Another important class of states we discussed at the end of Chapter 3 is an entangled
state of a qubit and a superposition of coherent states (also known as Bell cat state [134])

1
V2

The two atomic states |e) and |g) are here correlated to the two field states |«) and |53).
Just like the correlated two-qubit states in the Einstein-Podolsky-Rosen (EPR) paradox
[7] that highlights the concept of quantum entanglement [6] in qubits, the Bell cat state
also highlights the concept of quantum entanglement in macroscopically distinguishable
systems. Quantum information necessitates entanglement between multi-qubit states, but
for these states, decoherence sets in and preserving entanglement becomes a difficult task.
An alternative encoding with coherent states would take advantage of the much larger
Hilbert space of the cavity resonator. In this way a redundant qubit encoding is attainable
that simplifies the operations needed to initialize, manipulate and measure the encoded
information. For such a system to be viable as a quantum computing platform, efficient
measurement of such encoded qubit observables must be possible.

|\IIBell—cat> = (’g7 Oé> + ‘€,ﬁ>) (44)

Different methods have been proposed for detecting entanglement [0, , , , 911
The most popular approach to the problem of detecting the presence of entanglement in
“Bell-cat states” is based on violation of Bell-type inequalities [1341]. One can also perform
complete quantum-state tomography [62]. However these methods are not only destructive
processes, they also pose both fundamental and technical challenges. Another method
entails measuring entanglement witnesses. This is efficient, but not universal and requires
information about the state prior to its measurement [32, ].
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In this chapter, we demonstrate efficient measurement of such encoded qubit observ-
ables as well as measurement of Schrodinger’s cat states using the mode invisibility (MI)
measurement scheme.

4.1 Model and method: A review

To begin this section, we first review the mode invisibility measurement scheme [97]. Then
we apply the scheme to characterize the Bell cat state and superposition of coherent states.

4.1.1 Atom interferometry with single atom

Dy
A
< Unknown field state A Ay=v—7
M '
= D,
BS,

o3 le
’
Detector 2

lg) C2 Known field state

Figure 4.1: A schematic representation of an atom interferometer with a single atom input; a form of
Mach Zehnder interferometer. The atom beam is split into two parts by BS;, one of which is coupled
to the signal in the cavity C, the other being used as reference is coupled to the signal in C5. The two
parts are recombined at BSy before reading the atom output intensity. M; and My are mirrors, and the
two cavities labeled C7 and Cs store an unknown and known field state respectively. Each partial atom
acquires a phase «; ( where ¢ = 1,2 labels the different atomic trajectory) due to an interaction with the
cavity field on its path. The atomic states and probabilities are detected by two ionized detectors D; and
Ds.

The setup of the MI measurement scheme is depicted in FIG. 4.1. It is an atom interferom-
eter ( a type of Mach Zehnder interferometer) which is analogous to two-slit experiment.
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In the atom interferometer (FIG. 4.1), an incoming atom beam initially in its ground
state is split into two partial components at the first beam splitter BS;

om0 )6 50

where \% <1 _11) is the 50-50% Beam splitter operator. The component states

=75 (8) =5t b == (0) = 5l (46

travel along the different interferometric paths, bounce off the two mirrors and recombine
at the second beam splitter BS;. Then two output beams from BS, are incident on the
two detectors D; and D,. The intensity yield the interferometric phase difference.

Equal interferometric path length

If we define the different path length AL and a phase ¢, then the state inside the atom
interferometer setup just before recombination at BSy can be written as

o D3040

At the second beam splitter, the state undergoes another transformation given as

v — (5 4 %) =5 (15)

So the atom can be registered on one of the two detectors Dy, Dy with probabilities
1 : : 1
Pr=Dif* = (14 ) (1+e7) = 5(1 + cos ¢) (4.9)
1 , , 1
Py =Dyl = $(1—e®)(1 =) = 5(1 — cos ¢). (4.10)

In the setup 4.1, the upper and lower path lengths are set to be exactly equal so that ¢ = 0.
Under these conditions, there is complete destructive interference at the detection zone D,
and constructive interference at the detection zone D;. Intuitively, there is zero probability
for an incident atom to reach detector D, while the probability to reach detector D; is
1. Thus any experiment where Dy clicks will yield information about an obstacle on the
upper arm of the interferometer. We will now look at how this works in the succeeding
section.
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4.1.2 Atom interferometer with atom-field interaction

Now let us look at the atom interferometer Fig. 4.1. First note that the detector enters the
atom interferometer at constant velocity v = L/t , where t is the interaction time and L the
cavity length. We assume the field state to be measured is produced and trapped within
a single mode of the upper cavity C; (with other modes being empty), while the lower
cavity Cy is empty (we model this as the vacuum state |0) of an EM field). Before BSo,
the atomic states |g;) and |go) from (4.6) travel along paths 1 and 2 thus interacting with
fields in cavities C'; and C5 respectively. Due to this interaction, the wavefunction of the
partial atoms will change by a global phase factor v; and 7, respectively. In the proposed
experimental setup, the states of quantum cavities C; and Cj are initially prepared to
be separable with the field state in the upper and lower cavities given as [¢1) and [¢s)
respectively.

The atom-field state in the upper arm that enters the port of the second beam splitter
BS, is obtained as:

|®1) = € |g1)|¢n) (4.11)

and in the lower arm, the atom-field state that enters the next port of beam splitter is
obtained as

|2} = €7]g2)[1)2) (4.12)

So the atom-field state entering BS, is

D) = (em|gl>\w1) + @i'72|gz>W2>>. (4.13)

The two states (4.11) and (4.12) are recombined by BS, with transformation given as
g(l 1 etlyn) e |¢hr) + €72[1hy)
oY = ; =1 ; ; 4.14
=30 L) () - (Gl Tel) e
The detectors Dy and Dy measure the state of outgoing atomic states with probabilities
1 .
Pr= Dyl = 5 (14 Re [ (] v)e 2] ) (4.15a)
1 .
Py = |Dof? = §(1 — Re [ (] ¢2>eﬂ<%*w>]>. (4.15b)

We see that the interferometric output depends on the phase difference Ay = v, — 75, ac-
quired by the partial atoms in the cavities C'; and C respectively. Thus measurement of Ay
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allows us to determine +; which subsequently yields information about the unknown field
state in C]. The phase value has to be significant for a precise and accurate measurement

of 11

We propose a QND measurement scheme to measure this phase factor for an atom
interacting with an unknown Bell cat state and squeezed superposition of coherent states
respectively. As we shall demonstrate, the phase difference can be significant and thus
measured. If the state of the field is not significantly altered, then repeated measurement
can be used to estimate the phase, thereby revealing information about the unknown field
state [19, 123] such as entanglement in the Bell cat state [134].

Evolution dynamics of the atom-field system

In this section, we will discuss the evolution of the atom-field states (4.11) and (4.12)
respectively.

First consider the state (4.11) in Cy with initial joint atom-quantum field state |¢)(0)) =
lg) @ |®,). We have dropped the subscripts here and assumed the field state to be trapped
in the cavity mode a = 1,2, - - - 0o of frequency w, = an/L. We assume that single atoms
enter the cavity in their ground state |¢g). During interactions, the joint system therefore
undergoes oscillations at angular frequencies (w, £ €2) between various possible states.

The heart of our work lies in our ability to “manipulate” the interaction between these
single atoms and field modes trapped in the optical cavity without perturbing the com-
bined quantum system very much. These systems are assumed to be coupled via the
Unruh de-Witt interaction Hamiltonian (3.152) for a short time 7', by a unitary evolu-
tion operator U(0,7") (3.156), so that the joint atom-field state after the interaction is

[¥(T)) = U(0, T)[$(0)).

Measurement conditions

Recalling that our aim to is implement a QND measurement of the relevant state of light
perturbing the field states as low as possible. To this end we require that the coupling to
the cavity modes is taken to be weak enough so that the effect of the atom-field interaction
when the atom flies through the cavity for short times does not alter the probability
distribution of the joint quantum state. Specifically, the field-atom system starts from an
initial state [¢(0)) and traverses the cavity during a time 7. Requiring the probability
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that the whole system remains in the same state to be approximately unity, i.e,

| ((0)|[U (0, T)|(0))|” ~ 1, (4.16)

ensures the minimal possible alteration to the field state. In other words, with the atom
state initially in the ground state, we require that the probability of an atomic transition
into an excited state while crossing the cavity

Py = {e| Trp[UW p(0)U V1] |e) =~ 0 (4.17)

where Trp is a trace over the cavity field components and p(0) = |[¥(0)) (¥(0)| is the
initial density state of the joint atom-cavity field. In writing (4.17), we have considered a
perturbative expansion of the evolution operator U(0,T) and the leading order in A (see
Sec 3.4.3).

Under this assumption the final state of the system would be very approximately equal
to the initial state except for a global dynamical phase, and some state orthogonal to the
initial state. Mathematically this is expressed as

[W(T)) = U(0, T)[¥(0)) = €™ [1(0)) + [ (T) (4.18)

where (¢(0)[¢, (T')) = 0. Hence the global phase factor v; can be obtained from above as

m = —iln | @ (0)[U(0, T)[¢(0)) (4.19)

which is the phase we wish to calculate. Expanding the unitary operator U(0,T") gives the
different contributions to the phase as

A0 =1 (4.20a)
n = (W (0)[UD](0)) (4.20b)
nw = (W(0)[UP](0)) (4.20¢)

In general v; has both real and imaginary parts, v; = R(71) + ¢3(71). Normalization
implies that
L= ((T)[(T)) = e 00D 4 (. (T)]¢1(T)) (4.21)

As time increases eventually the final state becomes |, (T')). Thus (41 (7')) translates into
a loss of visibility in the interference pattern. However in realistic terms, S(v(7)) << 1
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for the time the probe is in the cavity so that |V, (T")) is negligible. Therefore the phase
factor v to be determined is given by

71 = Re(n) (4.22)

To summarize, the state of the measuring device (the single atom) remains the same
before and after it exits the cavity except for a dynamical phase. Even in regimes where
the interaction between a single atom and the quantum field is so weak such that the field
state to be measured is unperturbed, we expect that the measured phase value will hold
information about this field state.

For this scheme to work we have to make sure that (a) the hypothesis (4.16) holds and
(b) the phase is significantly measurable in the regimes where this is so. Even with these
conditions satisfied, we note that the information that can be extracted from the joint
system is limited: the only way to measure a global phase is by means of an interferometry
experiment. To this end we have to compare the state of the field with another known
state. The second cavity Cs in FIG 4.1 will serve this purpose. For simplicity, we assume
it is empty (vacuum) with no EM-field although vacuum fluctuations are not negligible.
Thus the interferometric phase difference is given by the relation

Ay = Re[n1] — Re[ys] (4.23)

where 7, is the phase in cavity Cj.

4.1.3 Review of the mode invisibility measurement scheme

We recall that our aim is to implement a QND measurement of the Bell cat states and
superposition of coherent states using the proposed experiment in the preceding section.
For the experiment to be feasible the phase (4.22) acquired by the atom flying through the
cavity must be maximized. This can be achieved if cavity field frequency is on resonance
with atomic transition frequency [94, ]. When a detector interacts on resonance with
the cavity mode, it does so strongly, in general altering the field state. Such an interaction
enables one to gain significant information about the field (in a case where the atom is used
as a detector to probe a field trapped in a cavity). On the other hand, a strong interaction
leads to alteration of the cavity mode thereby jeopardizing the QND measurement criteria
3.6. One needs therefore a scenario where the alteration in the cavity mode is minimized
whilst permitting acquisition of information.

The mode invisibility (MI) measurement scheme was introduced to minimize the effect
of the resonant mode on the transition probability and still have a strong contribution
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to the phase. The key point is to eliminate the largest contribution to the transition
probability which comes from the resonant modes, while keeping the leading contribution
to the interferometric phase difference.

The idea of the MI scheme is to take advantage of the spatial symmetry of cavity field
modes (as shown in FIG. 3.2) so that the atoms interact with light in a non-destructive
way [114, 21, 116]. Specifically, when the atom interacts (on resonance) with an even mode
of the cavity, we are able to eliminate the resonant mode terms. To see how this works,
in evaluating the atom’s transition probability using the evolution operator (3.156), one
comes across integrals such as (3.161), which are given explicitly as

@D (L) 1| Luy/mw
(kmv)? — L2(w, £ Q)2

Lo, = (4.24)

For a resonant interaction (w, = ), and k = 2n,(n = 1,2,---), the rotating wave term
I_ . vanishes while the counter-rotating wave term I, , does not. The mode invisibility
technique is robust against a slight detuning from resonance and can be improved by
carefully selecting the detector’s speed, eliminating any dependence it has on the probed
mode. This makes the mode completely ‘invisible’ to the detector [97].

Intuitively, when the atom interacts (on resonance) with an even mode of the cavity
most of the changes that it will introduce in the field state while flying half the way
through the cavity « € [0, L/2] will be undone when the atom flies through the second
half x € [L/2,L] before it exits the cavity. As a first approximate description of the
phenomenon, whatever the atom absorbs while flying through the first half of the cavity
will be identically re-emitted while flying through the second half so that the state of field
and atom are the same modulo a phase. This is possible because the effective sign of the
coupling to the cavity (A times the spatial distribution of the mode) reverses half way
through the flight path of the atom.

In the setting this will only be true for the first order terms of the perturbative expan-
sion, since the even orders in the coupling strength A will not see this effective sign change.
This will have the advantage that we can cancel out the leading order contribution to
the transition amplitude for the field and the detector while keeping constant the leading
order in the phase effects. Hence provided the highly excited state we wish to probe is
prepared in one of those even modes, the mode is invisible to the atom (at leading order
in perturbation theory) and therefore will not perturb it.
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4.2 Mode invisibility as a nondestructive probe of
Bell cat states

Here we characterize the Bell cat state
) = Alg, a) + Ble, B) (4.25)

using the MI measurement technique. A and B are constants satisfying the condition
A% + B% = 1. The coherent states |a) and |3) have amplitudes |a|, || and phase 6, ¢
respectively.

4.2.1 Quantum evolution of the Bell-cat state

Let us assume that an unknown Bell cat state is prepared in an even mode & of frequency
w, = k7 /L in the upper cavity C;. All the rest of the modes ¢ are prepared in the vacuum
(or in very low-populated states). Given that our detector is prepared in the ground state
|gp), the initial atom-field state is

60)) = l95) (Alga)w) + Ble)|) ) &) 106)- (4.26)
KF#S

The subscript ¢ denotes the qubit that is entangled with the field state; we refer to this as
the cavity-qubit so as to distinguish it from the state of our probe, which will be given the
subscript p. The lower cavity Cy, which serves as a reference, sustains a vacuum state.

In the interaction time ¢t = 7', the state (4.26) evolves to a final state given by
[W(T)) = U(T, 0)[¥(0)) (4.27)
where the unitary operator U(T,0) is governed by the total interaction Hamiltonian
Hr = Npfip (8) Lz (8)] + Agiig(1)S]y)- (4.28)

The terms on the right hand side of (4.45) correspond to the probe-field and qubit-field
interactions, with respective coupling strengths A, and ;. p,(t) and y, () are the monopole
moments of the probe and qubit respectively. We model our field system as a massless
scalar field ¢[x(t)], where z(t) = vt describes the atomic trajectory through the cavity. For
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simplicity, we assume that the qubit entangled to a field state is at a fixed position z( in
the cavity. So in the interaction picture

6=1 ks L
for the probe moving on a trajectory x,(t), whereas
- sin[ksxo]

— T iwst —iwst
(z)[xtI(t)] - ;(ade + ase ) \/k(g_L

for the cavity qubit at a fixed position z( in a cavity mode. The mode invisibility technique
assumes a resonant interaction between probe and cavity field, so that €2, = w,. We further
assume that the qubit’s transition frequency is set off-resonance relative to the cavity mode
frequency; in other words €2, # w, with detuning § = w, — €.

We work perturbatively in the coupling strengths (), ;) and extend our calculation
of the evolution operator U(0,7) to second order. The phase factor n in equation (4.22)
has information about the entangled state (4.25). Our task therefore is to find a way to
evaluate this phase value provided that the criteria (4.16) and (4.18) are satisfied.

Transition Probability

We consider now the effect of the interaction between the probe and the entangled state.
The probe is initially in the state |g,) with constant speed v. We calculate the probability
that it gets excited after the interaction time 7" = L/v. If the entangled state is not
perturbed, we expect that this excitation transition probability is approximately zero.

To compute this probability, we note that the evolution of the system is, to second
order in the coupling constant, given by (3.164)

p(T)=p+UWp+ pUWT + U@ p 4 pUuPt 4 D pydi (4.29)

where p(0) is the initial density operator for the combined state (4.26) and UV, U® are
the first and second order contributions in (A, A;) to the unitary operator. By tracing
over the entangled state (ES), the only term contributing to the excitation probability is
UM p(0) UM so that after the interaction time ¢ > 0, the transition probability of exciting
this detector is

Pe,) = {ey] Tres [TV p(0)U 1 fey). (4.30)
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There are three contributions to this probability; we have the contribution from the excita-
tion probability due to the detector absorbing a photon from the field mode k. This is the
rotating-wave term corresponding to the integral term X_ ,; (see below). The second term
corresponds to the atom getting excited and emitting a photon to the mode k. This is the
typical counter-rotating contribution corresponding to X .. The third term corresponds
to the vacuum fluctuations due to the rest of the modes (see for instance [119, 71]). As-
suming the detector is tuned to be resonant with the mode of the field we want to probe,
the largest contribution would come from the rotating wave term. This is the principal
contribution that can jeopardize the hypothesis (see equation (4.16)). We can cancel this
contribution from the rotating wave term if the unknown field state (Fig. 4.1) is prepared
in an even mode of the cavity (see discussion 4.1.3 ) so that

Py = X (APaf + [BPIBP) X gnl® + D 1X 4 (4.31)

o

We note here that as defined in (3.161) the integral

T
dt @i sinf;x(t)],

1
X L= ——
= \/kjL/o

is associated with the probe-qubit while the integral

I, ;= \/_/ dt M@= sin[k; 3],

which we refer later in the text, is associated with the cavity-qubit. Before proceeding, we
note that the information gained from this approach is information about the initial state
of the system. Indeed, the qubit-cavity system evolves with time. Provided P, ) < 1 in
(4.17), the evolution of the system is not disturbed by the probe. Given the Hamiltonian
for the system, the information gained from mode invisibility about the initial state is
sufficient to reconstruct the evolution of the system at any subsequent time.

Furthermore, although we shall ensure that P,y <1 for all of our parameter choices,
we shall find that the phase v, in (4.22) is not small. We proceed to compute ~; in the
next subsection.

Estimating the phase imprint of the probe

We now compute the phase (4.22) acquired by the atom after its interaction time 7" with
the Bell cat state trapped in the cavity mode in C. To leading order in coupling constants
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Ap and A,, we obtain from (4.20b)

2iA
W = - ke {(Im + I_Ra*)<a\5)A*B} (4.32)
only dependent on A, with
o in[k,zo]
Iip= | dictosesinlkad 4.33
+, /0 € \/% ( )

In general 7y # 0. It is purely imaginary and so must remain small to ensure that the
contribution of |¢, (T')) in (4.21) remains negligible. There are several ways of doing this.
One is to ensure that the qubit sits at a node so that sin[k,zo] = 0. This will cause all
I , integrals to vanish, and the results will be the same as those obtained for B = 0 [9g].
Another is to fine-tune the speed of the probe (i.e. v/c) relative to the qubit phase so that
I . vanishes but I, o I}, will not. A third approach is to choose the relative phase of
the coherent states so that (8|a) = e~z(B*Hal?=28"a) — c=3(8+1eD* " Our choice of phase
ensures this relation. The maximal value of this quantity is less than unity, and over the
range of parameters we choose we find that () < 1075 for all |3| and |a|; for most of
this range it is many orders of magnitude smaller than this.

Since 7; does not depend on any parameters of the probe, we must compute the %2)

term in (4.20c) in order for the probe to be a useful diagnostic of the generalized CAT
state. To this end, we obtain

MO —Ai{]in oI BB +1_ ol  A2laf® + I1x o I% B> + I, o Iy A%|af?
+I_ ol (VA + 1" oI} B*B*+ 1, .0l B*B*)+1I;, 0l A%’

+S A oL+ S B o 1_,5} - Ag{x_*m o X1 [A%]al? + B?|8|2]
§ S
+ X0 Xy [(@0)?A% 4+ (B7)2B%] + X7 0 X* [0 A% + B°B%] + 3 X7 50 Xﬂ;}
)

Again here the double integral

T t . .
Lipolis= / Aty ¢Eatwn)t / ’ At EQa+ws)t sin|[k,xo] sin[kszo] (4.34)
0 0 VETV O

is associated with the qubit while

T . t .
: kvt 2 : ksut
NipoXas= / dt<>% / dt<>% (4.35)
0 0
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is associated with the probe. Thus the phase acquired by the detector in cavity C] is given
as

v =—iln[l — v — 7] (4.36)

The phase acquired in the cavity C5 that sustains the vacuum state is given by

Yo =—ilnfl = A2) "X 50 X7 (4.37)
é

which depends only on the vacuum terms. Thus we can evaluate the interferometric phase
difference using Eq.(4.23) .

We note that the relevant contribution to the interferometric phase difference (4.23)
is not cancelled out by the ‘mode invisibility’ technique unlike the case for the atomic
transition probability.

Analysis

In the next section, we will characterize the Bell cat state assuming we are able to measure
the interferometric phase difference (4.23). Specifically we will investigate the behaviour
of the Bell cat state by carefully studying the interferometric phase difference within the
coupling range 1072 < \,/)\, < 5. The coupling strength A for the microwave to the
optical regime lies in the range (107¢ — 107%)Q as is typical in quantum optical settings
[9]. To consider a particular case, we present results for an optical microcavity of length
L ~ 1 pm. We will consider the detector’s (atomic) gap €2 to be resonant with a lower
even harmonic of the cavity x = 2. In the relevant cavity mode, there is an unknown Bell
cat state whose entanglement as well as the physical properties of the component states
(cat state and qubit) we want to determine.

We consider additionally another cavity prepared with a reference field state (for sim-
plicity we assume the vacuum state) and set up an atomic interferometer as shown in
FIG. 4.1. We need first to make sure that, as claimed, the approximation (4.17) holds
when we send the atom with a given constant speed v = 1013 m/s through the cavity
due to the mode invisibility effect. We find that the transition probability — even for a
relatively strong coupling A\, = 107*Q, — remains below 1072 for the detection parameters
0=7%5=—0¢, 18 =|af =01, and 29 = %. This is consistent with our perturbative ap-
proach and the assumption (4.17). Hence for realistic values of the parameters the ‘mode
invisibility’ technique is rather effective: the atom will not significantly modify the state
of the field while flying through it.
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To realistically obtain the atomic interference pattern (4.15) (from which the experi-
mental value of probe-qubit phase is determined), a sequence of repeated measurements
must be made by sending N probe qubits into the cavity one by one [94]. In a QND
experiment, dissipation due to cavity losses and atom decay must be negligible during
such repeated measurements. Suppose the time it takes to perform a single experiment
is T'= L/v. Then the time NT it takes to carry out the repeated measurement must be
shorter than both the cavity photon loss-time T}, and entangled-state decay time Tyy.
That is NT < Tjoss where Tloss = Q/w, is the ratio of cavity quality factor @) to the resonant
cavity frequency w,.. So we require NTw, < ). With the parameters we are considering,
T ~ 107° s and w, ~ 10171, we obtain NTw, ~ N10°. We notice that for N ~ 10? (which
should be sufficient to obtain an interference pattern) we need cavities with Q ~ 10, which
can be achieved with current optical systems [59)].

Similarly computation of Ti, (which our analysis has neglected), is sensitive to the
relative magnitudes of the cavity photon loss time and the cavity qubit-field coupling. The
latter dominates in the strong coupling regime in which we are working, in which case the
entanglement decay time T, is the same as the photon loss time T}, and so the preceding
bound on N remains valid. A more detailed investigation of the various loss terms is an
interesting subject for future study.

4.2.2 Characterizing the Bell cat state

Our goal in this section is to be able to compare the different dynamical phases acquired by
different states through an atomic interferometry experiment. For that we need to know
that the global phase acquired depends on the parameters of the relevant states studied.

From (4.22) we see that the global phase acquired by the atom crossing a cavity where a
Bell cat state is prepared, is sensitive to (1) the size of the cat state |a — /3|, (2) the position
of the qubit entangled to the cat state, and (3) the velocity of the probe flying through
the cavity. If we were able to measure it we could use it to characterize entanglement in
the Bell cat state, of even the component states (the cat state and qubit).

To characterize the entangled state, we consider two scenarios

1. First, we assume we have knowledge of A and B, the degree of qubit-field entangle-
ment. We then go ahead to evaluate the physical features of the composite of the
entangled state.
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2. Second, we assume we have knowledge of the features of the entangled state. We
then want to measure the entanglement between the field and the qubit after the
interaction.

Case 1: Characterizing the physical features of the Bell cat state

Cavity cat size:

Here we characterize the size |o — | of the cat state entangled to the qubit assuming the
component states are maximally entangled with A = 1/4/2 = B. In figure 4.2, we plot
A~ from Eq. (4.23) as a function of |«| while varying |3|. We see that Ay monotonically
increases from —m/2 to +7/2 as |a| increases (see Fig 4.2), with the asymptotic value of
7/2 effectively reached once || becomes sufficiently large.
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Figure 4.2: The phase factor A~y (defined in (4.23)) as a function of |a|. Here, the qubit-field system
is maximally entangled with A = B = 1/y/2. Different lines show different values of |3]: |3] = 1(green
dotdashed Line), |3| = 10 (red dotted line), |3] = 15 (Cyan dashed line), |3] = 300(blue solid line). Inset
shows this relation for a small range of |«| parameter. We compared different ratios of Ay = r\,: (a) r =5,
(b) r =1, and (c) r = 1072,

For the special case A\, < \,, one would expect that the probe-field interaction domi-
nates and the entangled state behaves as if it were a coherent state in the cavity. We indeed
find this to be the case when we compare FIG. 4.2(c) with the behaviour of a coherent state
in a cavity probed by a qubit as considered in [98]. Note that Ay is most efficacious as a
diagnostic for the value of || when A\, > A, as FIG. 4.2(a) and 4.2(b) demonstrate: for
a broad range of values of || a measurement of Ay yields information about the value of
|a|. However this becomes increasingly less so once |3| becomes sufficiently large; as shown
in Fig 4.11(a), we see that A~ is insensitive to the value of a except near |5| = |a| = 300.
In a narrow region near |5| = |a| = 300, we observe the sudden rise of Ay to 7/2, after
which we lose information about the state amplitude |a|. This sudden response deviates
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slightly to the left as A, = A, (see FIG. 4.2(b)) until we have a zero response to |a| (Fig
4.2(c)).

Qubit’s position in the cavity:

Here we demonstrate that the mode invisibility technique can be used to obtain information
about the qubit’s position in a cavity. Recall that we assumed that the transition frequency
of the qubit is detuned from the cavity field frequency. The probe’s interaction with
the entangled qubit-field system imparts a phase shift Ay to the entangled state. The
magnitude of this phase shift depends also on the qubit’s position x( relative to the nodes
and antinodes of the cavity modes.

@ (b) (©
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o &Ia nNln

FNIE
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x(O)/L x(O)/L x(O)/L

Figure 4.3: The phase factor Ay (defined in (4.23)) as a function of zo— the qubit’s position in the cavity.
Each graph plots different values of |a| = |B] : (a) || = |5] = 10, (b) |a| = |B| =1 and (c) |a] = |8] = 0.3.
The different lines within each graph illustrate different values of A, B : A = 1/2, B = v/3/2 (red Line),
A =1/v2,B =1/v?2 (green line), A =1, B = 0 (cyan line), A = 0, B = 1(blue line). Here we considered
Ag = 3N,

We illustrate the relationship between the interferometric phase difference as a function
of qubit’s position zy in Fig 4.3. The phase A~ oscillates between maximal and minimal
values that depend on the relative magnitude of |«|/||. The amplitude of oscillation varies
as the quantum state (4.25) goes from being one of maximal entanglement to a product
state. In the latter situation, for large |a| = |5] (Fig 4.3(a)) the qubit’s position for
A =0,B =1 is completely out of phase relative to the case A = 1, B = 0; with equal but
opposite amplitudes they cancel each other. The maximally entangled case A = B = \/Li

has near-zero amplitude.

The qubit’s position (up to a wavelength) can therefore be determined from the phase,
providing some advantage for preparing the qubit in an entangled state. As |a| = |5
decreases in value the distinctions between the two possible product states become increas-
ingly pronounced. This asymmetry is due to the distinction between the less rapidly oscil-
lating counter-rotating (A-coefficient) and more rapidly oscillating rotating (B-coefficient)
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vacuum contributions to 7, which dominate for small |«|, |5|. The increase in phase oscil-
liation frequency makes it somewhat more difficult to determine the location of the qubit.
The phase symmetry for large ||, || becomes increasingly less valid, with large changes
in the phase occuring for A = 0, B = 1 corresponding to small changes for A =1,B =0
and vice-versa, as shown in Fig 4.3(c).

Detector’s speed:

We now consider the sensitivity of the relative phase (4.23) to the velocity of the probe. For
our choice of probe velocity v = 1013 m/s, we have seen (figure 4.4) how the relative phase
varies with respect to the parameters (|a|, |3]). In figure 4.4 we illustrate the dependence
of the relative phase on v for various values of these parameters and on the coefficients A
and B.

0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
\" Vv

Figure 4.4: The phase factor Ay (defined in (4.23)) as a function of probe velocity v (m/s). Left:
A = B = 1/y/2; the different lines within each graph illustrate different values of |3| for fixed |a| = 10 :
|B8] = 1 (green dot dashed Line), |8] = 10 (red dotted line), |5] = 15 (cyan dashed line), || = 300(blue
solid line). Right: |a| = |B] = 10; different lines within each graph illustrate different values of A, B :
A =1/2,B = /3/2 (blue solid line), A = 1/v/2, B = 1/3/2 (cyan dahsed line), A = 1, B = 0 (green dot
dashed line), A = 0, B = 1(red dotted line), and we considered the ratio A, = 3\,

We see that for large v that A~ is small and so the sensitivity is low. However for
values of v ranging from 100 m/s to 1200 m/s (an appropriate range for experimental
realization [120, 34], there is sufficient sensitivity to yield information about about the
cavity field. Furthermore, the dependence on probe velocity is smooth, a desirable feature
for experimental realization.
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Understanding the qubit’s dynamics :

We close this section by exploring what properties of the state of the cavity qubit can be
obtained using the mode invisibility technique. The reduced density operator for the qubit
is given by tracing over the detector and cat field variables:

pat) =Trew [ ()| = paol9) (9] + poclg) (el + pegle) (gl + peclede (4.38)
where pgg, Pge, Peg and pee are respectively defined as
pao = A2[1= N2 ({I3 o Lo o> + {7 s L Hol? + {1, T o }0)? 4+ {170 I Ha +Z{Iiwf+w})
— A2 ({ o Xl + {7 X Hal? + (X X @) + X X5 Ha +Z{X+7,X+,7})}
o+ NZB2 | w218 + 2Rell oL (8] Y o 4 1L a1 4+ X2B% | D [X 6 + [ X Pl
é

Y
— NAB(IL,8 + T x0" YowlBe) + N AB(To 8" + I 0) (Bilere)

pee = B2[1 = N2 (AL s LM + 117 LB + {1 Lo HB™)? + AT 12} () + Z{I:wm})
~ N2 X B2 (X2 o X HBI + {X -y X} (B + { X X2 HB)? + Z{XWXM})]
+ X242 |1 oPlaf? + 2Rell ey (@] + D0 1o + 11 e Plaf?] + A2B2[ 3 X4 52 + X o]
v B
—iNAB (Jmﬁ* + Ii,ﬂa) (Belauw) +irgAB (I_’;,KB + I_,Hoz*) (B,
pue = AB(Bl) [1 = A* ({17 o Ln}aB™ +{I" o I }aB” +{L -} (B 4 {1} o 17 }0?)
— A2 ({X] o X8+ DX X} K XE o+ (X X2 )80+ (X X} (872

[T B0 4 (I 52 DT+ LD 0B+ (I ) (0")?| ABlal )
v

+ A2AB (B, ) <|X+’,€|26*a +3 |X+75|2) —iB2), [Ijﬁﬁ n I,,Nﬁ*} +iA [L*Ma +1_ 0]
5
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Figure 4.5: Population inversion (Green dotdashed line), dipole current (blue solid line)
and dipole moment (red dotted line) as a function of interferometric phase difference A~y
for different field amplitudes: (a) |o| = |3] = 10, (b) |a| = |8] =1 (¢) || = |8] = 0.1
respectively. Here we considered the ratio A\, = A\,. With the normalization condition in
mind A? + B% = 1, we start with A = 0, B = 1 and gradually increase A up to 1.

Peg =AB(a|B) [1 - >\q2 ({I-T-,ml-i-,n}a*ﬂ + {I:WI—,R}O‘*B + {I-i-,m I—,H}(O‘*)z + {I-T-,m Ii,n}ﬁ2>

— (X0 XwbBa® + DX 5 X} + {XG 0 X2 182+ (X, X2 B0 + {X_ e, Xy i H@)?) ]
é

[T 8 (T PE 2+ 30T Ty + I T 0B+ (I7,0(0)?| AB{Slone) +
v
XAB | B) (X1 w2B0" + D7 X 5l2) =427 [Tpna” + I 0] +1B2Ag Lo + 17 8]
4

with the diagonal elements satisfying p.. + pgg = 1 and the off-diagonal elements are in
general complex and satisfy pe, = p;.. Eq. (4.38) enables us to study some properties
of the qubit. By definition, {I, ., I} = Iy o I*  +I* oI, , and similarly for other
circle products (defined in (4.34)). From these expressions, we can evaluate the properties
(including population inversion, dipole current, dipole moment) of the qubit entangled to
the cat state.

We plot in Fig. 4.5 these functions against the interferometric phase difference A~.
Starting with B = 1 and A = 0, as we increase A gradually we see that the interferometric
phase difference increases as the population inversion decreases, this relationship is seen
for different range of |«|, ||. In figure 4.5(a), we see that for large values of |a], ||, there
is no dependence on the dipole moment and dipole current. The dipole moment (f) is
proportional Re[(a|5)] which is vanishing for large values of |a|3], while the dipole current
is proportional to Im[{a|3)], which is vanishing for all values of |a|, | 5] since the argument
of the imaginary operator is real. However while we decrease the values of |«|, | 3], although
a response of the dipole current is never seen, we see a dipole moment response attaining
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a maximum at some intermediate positive value of Av. Within this limitation the phase
difference provides a diagnostic of the cavity qubit’s state.

Case 2: Characterizing entanglement in the Bell cat state

In this section, we consider another possibility for probing states of the form in Eq. (4.25):
we assume we have knowledge of the features of the entangled state and we want to measure
the entanglement between the field and the qubit after the interaction.

Although several entanglement measures exist [0, 10, 11, 64, |, we choose the von
Neumann entropy [93] of the reduced state S(p,) which is given as

{— > m Logm; if m;, >0 (4.39)

0 ifm, =0

where p, = py(t) = Trep[p(t)] = >, mi|i)(i| is the qubit’s reduced density operator given
in (4.38), with eigenvalues 7; given as

Ttj = %(pgg + pee £ \/4Pgepeg + (Pee — ng)2>‘ (4.40)
Fixing the qubit at g = L/4, we consider the values § = 7/2 = —¢. We plot the resultant
von Neumann entropy S(p,) as a function of Ay for three distinct ratios of the couplings:
A, = 7\, with 7 = 10725, and 1 in FIG 4.6, 4.7 and 4.8 respectively. We find that
A~y provides an excellent measure of the entropy over a broad range of |a| and |53 for all
coupling ratios f\‘—z explored. However for small A\,/)\,, the range of Ay becomes increasingly

narrow as |a|/|8] — 1, becoming very sharply peaked in this limit.

We find that the maxima of S(p,) are less than unity for small values of |a|, |5| < 1.
Setting |a| = |B], we find that these maxima approach unity as |a| — 1 (see the green curves
in FIG 4.6(c), 4.7(c) and 4.8(c)), with little change for larger values of |«|. Alternatively
if we fix |a|, the maxima increase with increasing || until attaining S(p,) = 1 (within our
limits of numerical precision) after which they gradually decrease.

In summary, the von Neumann entropy for the reduced qubit state (which is equal to
the von Neumann entropy for the cavity cat state) increases with an increase in the cavity
cat amplitudes |a| and |3|. This provides us with a tool for measuring the entropy of a
quantum system after interaction, a question of common interest [93]. Since the mode
invisibility process does not significantly affect the entanglement between the cavity qubit
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and the field, we infer that A~y is providing a measure of the constant entropy between
them.
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Figure 4.6: von Neumann entropy as a function of Ay for different |al; (a) |a| = 30 (b) |a| = 10 (c)
|a| = 1. Here A\, = 1072),. Different curves show different values of |3|: |3| = 1 (green dotdashed line),
|8] = 10 (red dotted line), |5] = 15 (cyan dashed line), || = 30 (blue solid line).
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Figure 4.7: von Neumann entropy as a function of Ay for different |al; (a) |a| = 30 (b) |a| = 10 (c)
|a| = 1. Here Ay = 5X,. Different curves reveal different values of |8|: |5| = 1 (green dotdashed line),
|| =10 (red dotted line), || = 15 (cyan dashed line), || = 30 (blue solid line).
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Figure 4.8: von Neumann entropy as a function of Ay for different |af; (a) |a| = 30 (b) |a| = 10 (c)
|| = 1. Here A, = A,. Different curves reveal different values of |8]: |8] = 1 (green dotdashed line),
|B] = 10 (red dotted line), |3] = 15 (cyan dashed line), || = 30 (blue solid line).

80



4.2.3 Phase resolution and visibility
Phase Resolution

For any given setting, the atom interferometer can resolve the values of the parameters
only to a certain level of precision. The magnitude of the resolution of the interferometric
experiment conditions our ability to distinguish the phase acquired by the state having
amplitude |o + dar| from another of amplitude |«o|. Knowing that typical resolutions in
atomic interferometry are of the order of fractions of milliradians [59]. The phase resolution
of the interferometric setting is

R&a(a) = |’7oz+6oz - '7a| (441)

and by fixing a value for ||, Eq. (4.41) defines our ability to distinguish the phase acquired
by the state having amplitude |a + da from another of amplitude |«|.

@ (b)
2.5f o5F ] 030} ]
20} 20¢ 16  o25f is
15t = 5
15} 10t g 13
10t 0.5 1 14 0.15¢ 1
’ 00 R g 0.10} 18
05¢ ] 005} &
0.0 ; ; ‘ : ‘ 000
0 200 400 600 800 1000 0 200 400 600 800 1000
lal el el

Figure 4.9: The phase resolution Rs,(«) as a function of |a| for different ratios A\, = r),, (a) r = 5,
(b) r = 1 and (c) » = 1072. In this case, the qubit is fixed at 79 = L/4 and we use the values 6 = /2,
¢ = —m/2, |8] = 20 and different values of da: oo = 1 (green dotdashed line), do = 2 (red dotted line),
da = 3 (cyan dashed line), dav = 4 (blue solid line).

We illustrate in figure 4.9 the phase resolution for a fixed value of || = 20. We see
that we have enough resolution for an interferometric experiment, provided |a| is not too
large, with the best discrimination over the broadest range of || occurring for A, = A,,.

Interferometric visibility

The last point we need to analyze is how good the visibility of the interferometric pattern
will be, taking into account that we would have second order effects taking us out of the
ground state. They are guaranteed to be small due to their second order nature, but they
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would impact the visibility of the fringes. As discussed in section 4.1.2, ~; is a complex
number due to contributions from terms orthogonal to our initial chosen quantum state.
This yields an observable loss in the visibility, where

(U (T)[w(0))[* = exp[-23[y]] (4.42)

defines the visibility, with |¥(7)) the final quantum state at time 7. This provides a
measure of how non-destructive the probe is. We present in figure 4.10 the visibility factor
as a function of |a| for different regimes of A\, and A,,.
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Figure 4.10: Visibility Exp[S[n]] as a function of || . The qubit is fixed at 9o = L/4 and we use the
values 0 = /2, ¢ = —m/2 and different values of |3]: |8] = 1 (green dotdashed line),|3| = 10 (red dotted
line), |8| = 15 (cyan dashed line),|5] = 300 (blue solid line). We see a peak for the case Ay, = 5A,. This
occurs at point |a| = |B|. This peak gradually shifts from this position as A, becomes smaller compared
to Ap until it dies out.

For small values of |f| visibility remains largest over the broadest range of |a| for
Ay = Api || < 100 yields non-destructive measurement capacity for the probe at better
than 99%. There is not much decline in visibility over the same range of |«| as A, decreases.
However as ), increases, visibility gets notably weaker over increasingly small ranges of |a|.
However we also see an interesting trend as || increases: for a given value of || visibility
peaks, with the location of the peak occurring approximately at |«| = |3|. At this point,
we say the two coherent states |«), |3) coincide.

4.2.4 Conclusion
We have demonstrated the utility of the mode-invisibility measurement technique [97] for
probiing an entangled generalized qubit/cat state in a cavity mode in a non-destruct way.

For realistic physical parameters, and provided that the amplitude of the cavity field is
not too large, the technique provides a good measure for the state, especially in the regime
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where A\, ~ \,. However it breaks down once |a] is sufficiently large, which is where A~y
reaches its asymptotic value of 7/2. This is confirmed by means of the visibility, where
we get up to 99% mnon-demolition probe of the state for values of |a| close to |5|. In
regimes where the mode-invisibility technique works, the interferometric phase resolution
is sufficient to perform the experiment.

4.3 Taming an Optical Schrodinger’s cat— quantum
non-demolition approach

In this section, we consider the effect of a squeeze operator on the superposition of coherent
states. Specifically, we study the squeezed superposition of coherent states (SSCS) written
as
1 i
[Ty) = S(Qcat) = =S(O)[|a) + ¥|-a)]. (4.43)
Ny

Here S,.(¢) = e!/2(¢"a*~a™) s 4 squeeze operator with squeeze parameter ¢ = re'®, squeezing
amplitude r and phase 6. We are interested in the squeezed even, odd and Yuker-Stoler
cat states respectively which is given according to the phase factor 1; with ¢y = 0,7 and
7/2 respectively.

As with the setup 4.1, in cavity C the relevant field is the SSCS. An atom initially in
the ground state is used as a probe for this field. Thus the the combined atom-field state
before interaction can be written as

(@) = l9) © [¥y) X)10,) (4.44)
RFEY

where we have assumed that the SSCS is confined in the cavity mode x and the rest of the
modes 7y are empty (approximately the vacuum field mode). During interaction, the joint
system undergoes an evolution governed by the Unruh-De-Witt interaction Hamiltonian
Eq. (3.155)

Hr = Mty (1)9[2,(1)] (4.45)

so that the state of the combined atom-field system after interaction time 7' is given as
@4 (T)) = U(T, 0)[®(0)).

Following the same analysis as in 4.2, we hope to measure the SSCS in a nondestructive
way. To see how this works, we calculated the detector’s excitation transition probability
and the interferometric phase difference in the setup 4.1 with a reference vacuum state.
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4.3.1 Results

Transition probability

According to (4.17), we obtained the probe’s excitation transition probability to first order
in the atom-field coupling constant A as [39]

2__
Pey = )\2{ \IM\ my(r) + Z |I+,5|2} (4.46)
B
where

7ig(r) = sinh? r + 71,,(0) (cosh? r + sinh? r) — 2|a|? cos(§ — 26) cosh 7 sinh r (4.47)

is the average number of photons in the squeezed cat state and

— e 2o ¢os
7(0) = Jo? (1 ‘”) (4.48)

1+ e2la cosap

is the mean photon number in a cat state (with no squeezing). Again, we have applied
the mode invisibility scheme to eliminate the resonant terms (|/_ ;|), which is the highest
contribution to this transition probability.

Interferometric phase difference

The interferometric phase difference was evaluated according to equation (4.23). In cavity
Cy with the superposition of coherent states, we have the phase [39]

(Y, r) =—iln {1 — AQ(ZHF»E ol g+ny(r)I; o I+7,.i> }, (4.49)
B

where I_ o [_, is given as in (3.162). Similarly in cavity Cy with the EM vacuum field,
the phase acquired is

(1) = —i In {1 -3 I Iﬂ} (4.50)
ol

Therefore, we can evaluate the interferometric phase difference (4.23) in the atom interfer-
ometer after the detector-cavity field interaction.

84



4.3.2 Characterizing the squeezed superposition of coherent states

From (4.49) we see that the global phase acquired by the atom crossing a cavity where a
SSCS is prepared, is sensitive to (1) the parameter |a|, (2) the squeezing parameter r, and
(3) the angles 6 and 6. This means that If we were able to measure (4.23), we could use
it to characterize a superposition of coherent state or a squeezed superposition of coherent
state. We now see how this works.

Analysis

In addition to the parameters discussed in 4.2.1, we consider the field parameters (|a| =
0.5,r = 0.5,0 = m,0 = 7) for our analysis and we set the detector’s speed v = 1000m/s
through the cavity. Using these parameters, we find the detector’s transition probability to
be ~ 1072, a value which is approximately zero. Our ability to manipulate and control the
detector’s motion through the cavity such that its transition probability is approximately
zero again indicates that we have a measurement scheme where the atom-field interaction
does not significantly perturb the cavity field. Our next goal is to see how the parameters
can be obtained assuming a measurement of the interferometric phase difference.

Amplitude of the cat state

The amplitude of the cat states is defined by the parameter |a/.

(b)

@ ar;

1073A

Figure 4.11: Plot of the relative phase difference Ay vs |a| in the absence of squeezing (a)
and modest squeezing ¢ = |1| (b) for the various cat states: even (blue dashed line), odd
(red dot line), and Yuker-Stoler (green solid line) cat states respectively with 6 = 7/2.
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In Fig. 4.11 we plot the interferometric phase difference Ay as a function of |a|.
Squeezing enhances our ability to distinguish between the three cat states, as the curves
are well separated from one another (see Fig 4.11(a)). In the range of |a| = [1,1.8], Ay is a
strictly decreasing function for the odd cat state (red dotted line), and a strictly increasing
function for even cat state (blue dashed line). This at least distinguishes between the odd
and even cat states. For the Yuker-Stoller cat state, Ay is a linear function in |a|. Hence
an experimentalist can verify through the mode-invisibility technique that the state has
macroscopically distinguishable components without significantly destroying the states.

Phase of complex amplitude

We see from (4.49) that the interferometric phase difference Ay is a sensitive function of
f—the phase of the coherent states, only in the presence of squeezing.

(@)

103 Ay

Figure 4.12: Plot of the relative phase difference A~y vs the parameter 6 against || = 0.5
(a) and |a| = 1.5 (b) for the different cat states: even (blue dashed line), odd (red dotted
line), and Yuker-Stoler (green solid line) cat states respectively with ¢ = [1].

We illustrate in. Fig. 4.12 the relationship between A~y and #. For 0.5 < |a] < 2, we
see distinct oscillatory behaviour for each of the three cat states. However this behaviour
is damped by the second term in (4.47) resulting from the mean photon number in the
cat states. Choosing ¢ = = where n is an integer, yields the best result. This offers a

possibility of distinguishing between a squeezed cat state and a cat state.
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Squeeze parameter detection

We also show in fig. 4.13 the interferometric phase differences Ay as a function of r and
0, the amplitude and phase of the squeeze operator respectively. The three different cat
states are distinguishable only from r & 1 corresponding to 10Log;,(e*") 2 9dB; a value
which is reachable with present technology [I31]. This distinction is also dependent on
the coherent state amplitude || and phase §. We require that [a| < 2 and 0 = T with n
being an integer to achieve a good distinguishability of the cat states. We comment here

(a)

2.0
1.5
S N
< .
‘I_ 1.0 [ "
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Figure 4.13: Plot of the relative phase difference Ay vs |a|? in the absence of squeezing (a)
and modest squeezing ¢ = |1| (b) for the various cat states: even (blue dashed line), odd
(red dot line), and Yuker-Stoler (green solid line) cat states respectively with 6 = 7/2.

that the maximum effect of squeezing is felt when § = m, where the three cat states have a
minimum.To conclude, we have shown that distinguishing the even, odd and Yuker-Stoller
cat states is best achieved with small amplitudes of the constituent coherent states in the

presence of squeezing resulting from the term 2C,S,|a|? cos(d — 26).

We will now discuss a detection of some non-classical properties of the cat states that
can be used to distinguish the three states.

4.3.3 Measuring the photon statistics

The resultant relative phase shift Ay obtainable from each cat state dependent on the
intensities of light in the state marks an important signature that experimentalists can

87



measure and use to describe the characteristic features of these cat states. Here we discuss
the dependence of the interferometric phase and show that the measurement does not alter

the quantum properties of the cat states.

Photon number distribution

Superpositions of coherent states can be distinguished from a statistical mixture of coherent
states by looking at the photon number distribution as discussed in 3.3.2. Fig. 4.14 shows
the relationship between the photon number distribution and the interferometric phase
difference when we vary the amplitude of the three cat states. In Fig 4.14(a), the photon
number is constant at n = 4, we see here that the photon number distribution for the odd

cat state is vanishing (for an even photon number) as expected.

(b)
3.5 ‘ ‘
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Figure 4.14: With the coherent amplitude varied, this is the photon number distribution
function plotted as a function of the relative phase difference A~ for our cat states a) when
n =4 and (b) n = 5. The red dotted line, blue dashed line and green solid lies represent

the odd, even and Yuker-Stoller cat states respectively.

In Fig. 4.14(b), the photon number is fixed at n = 5 and we see the distribution
vanishing for the even cat state. Summarizing, we find that our measurement scheme
yields useful information about the photon number probability distribution for the cat
states, thereby offering a possibility for distinguishing between them.
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Mandel QQ parameter

Another nonclassical effect that describes a superposition of coherent states is the Man-
del Q parameter 3.3.2. We illustrate the relationship between the Q-parameter and the
interferometric phase difference for the different cat states in Fig. 4.15. Indeed the fig-
ure reveals the Mandel Q properties for the different cat states. We observe that A~ is
strictly decreasing, increasing, and constant for the even, odd and Yuker-Stoler cat states
respectively.

Seo
~<

-0.2 -0.1 0.0 0.1 0.2
Q

Figure 4.15: Plot of the relative phase difference Ay vs the Mandel Q parameter with
varying coherent amplitude for the different cat states: odd (red dotted line), even (blue
dashed line) and Yuker Stoler (green solid line) cat states respectively.

Quadrature Amplitude

The last nonclassical property we will consider is quadrature squeezing 3.3.2

Figure 4.16 shows the relationship between the interferometric phase difference and the
quadrature amplitudes. We observe the deep in the X amplitude relation for the even and
Yuker-Stoler cat states corresponding to the X-squeezing in such states. We note that for
|a| > 2, the three cat states have effectively indistinguishable quadrature amplitudes.
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Figure 4.16: Plot of the relative phase difference Ay vs ((AX?)) (a) and ((AP?)) (b) with
varying coherent amplitude for the different cat states: odd (red dotted line), even (blue
dashed line) and Yuker Stoler (green solid line) cat states respectively.

4.3.4 Conclusion

ool o ]
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Figure 4.17: Plot of the relative phase difference Ay vs the mean photon number for the different cat
states: odd (red dotted line), even (blue dashed line) and Yuker Stoller (green solid line) respectively.
Each figure shows the different cases for no squeezing (left figure (a)) and with ¢ = 1% squeeing present
(right figure (b)). Inset shows the variation or smaller range of |«|.

We have shown that the mode-invisibility technique provides (at least in principle) a good
measurement, scheme for observing the quantum nature of a superposition of coherent
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states. We demonstrated this explicitly for the even, odd, and Yuker-Stoller cat states
respectively. For small values of the magnitude || of the coherent state parameter, we
find it straightforward to distinguish these states. The distinguishability of the three cat
states is enhanced by squeezing. Interestingly is the fact that oscillations are present in
the interferometric phase difference only when squeezing is introduced and absent without
squeezing. Therefore our method also offers a scheme to distinguish between cat states
and squeezed cat states.

To summarize, in contrast to the several ways in which the nonclassical properties of
coherent states have been investigated, our method provides a measure for studying the
behaviour of a superposed cat state, most importantly distinguishing between them in a
non-destructive way. We comment that there are limitations to our ability to distinguish
the three states. One of which is visible when |«| > 2. Exploring ways to better distinguish
the three states using the mode invisibility technique are for future studies. Of course the
natural question is how to realize this mode-invisibility technique in the laboratory and
use it to study the decoherence properties of these cat states. We leave this project for
future study.
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Part 11

Quantum thermodynamics for
fermions
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Chapter 5

Introduction

The subject of this part of the thesis is quantum thermodynamics for fermionic systems.
Generally, it is known that fermions are restricted by their property that no two particles of
the same type can be in the same state. This property owing to the Pauli exclusion principle
restricts the NV fermionic system to 2" dimensional Hilbert space unlike bosons with iniinite
dimensional Hilbert space. As a result, this properties has many consequences in the use of
fermions and bosons for quantum information processing and quantum thermodynamics.
We investigate the problem of work extraction from non-interacting fermionic systems and
the dynamics of open fermionic systems. Where we note that the case for bosonic systems
have been explored [22, 58].

One of the task in quantum thermodynamics that have attracted the interest of re-
searchers in the field of quantum information processing is the task of work extraction
from quantum systems. Here we ask if a process that performs work on a quantum system
can be thought of as a useful resource [17, |. Ideally, work is said to be done if the
average energy of a system is lowered by reversible cyclic processes acting on the system.
From the so called passive states [106] no work can be extracted if only a single copy of
the system is available. That is, given a system S that is described by a density operator
p and Hamiltonian H. The state p is called passive if [126, 70, , ]

Tr[pH] < Tr[oH] (5.1)

Intuitively, given only a single copy, the average energy Tr[pH] of the passive state cannot
be reduced via general unitary transformation U acting on the system; o = UpUT is
the transformed density state. However most passive states may have extractable work
that can only be accessed given multiple copies of the system and a global (entangling
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) unitary operation. Quantum States from which no work can be extracted unitarily,
irrespective of the number of available copies are called completely passive, an example
is the thermal Gibb’s state [L06]. Since thermal states are the only completely passive
states, any resource state for a unitary work extraction (cyclic engine) must be out of
thermal equilibrium. In the bosonic setting, constructing a heat engine (which is arguably
the simplest out-of-equilibrium resource) requires access to two thermal baths at different
temperatures. However, in the fermionic setting, we will show later that constructing a
heat engine requires access to at least three thermal baths at different temperatures.

On the other hand, while work can be extracted from non-passive states using gen-
eral unitary transformations, realizing these unitary transformations may be difficult in
practice. For example, the global unitaries required to extract work from passive but not
completely passive states are not feasible. This motivates the notion of Gaussian passivity
[22] where we concern our selves to work extraction via Gaussian transformations that are
practically realizable. Just like the definition of passive states, Gaussian passive states are
states from which no work can be extracted via Gaussian operations acting on the system.
The characteristics of Gaussian passive state are discussed using the tools of Gaussian
quantum mechanics (GQM) [135, 11].

The theoretical concepts of GQM includes gaussian states and Gaussian transforma-
tions (those that take Gaussian states to Gaussian states). Gaussian states and transfor-
mations have simple mathematical structure and can be easily produced in the laboratory
compared to any general unitary transformation. As a result, GQM has been applied
in areas including quantum information processing [135, 16, 57, 77], quantum comput-
ing [11, 20, 18, 19, 69, 61], quantum entanglement [141, 15, 15, |, thermodynamics
[54, 99, , 38] and quantum thermodynamics [22, 96, 28].

Again, GQM provides us with a powerful tool in simplifying the description of open
quantum systems. In this regard, we will also employ the tools of fermionic GQM to
investigate the dynamics of an open fermionic system. By open quantum system, we mean
a system that is in constant interaction with its environment. Such interaction influences
the dynamics of the relevant system. Because it is almost impossible to isolate a system
of interest from its surrounding, hence it is important to consider the influence of the
environment when we study the dynamical evolution of a physical system [103, , 30,

, |. However tracking the dynamical evolution of the full system+environment either
theoretically or experimentally, becomes almost impossible. Several approaches have been
presented to study the dynamics of an open quantum system each depending on the specific
quantum system in question and the demand thereof.

By applying the tools from fermionic GQM, a classification scheme for the generators
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of open fermionic Gaussian dynamics was introduced [95] and the corresponding dynamics
were simultaneously partitioned along the following four lines: 1) unitary vs. non-unitary,
2) active vs. passive, 3) state-dependent vs. state-independent, and 4) single-mode vs.
multi-mode. It was observed that only nine of these sixteen types of dynamics are pos-
sible. This is in contrast to the bosonic case [58] where eleven dynamics are possible.
This difference is attributed to the structure of fermionic systems which is generally more
restricted due to Pauli exclusion principle as compared to bosonic systems with infinite
dimensions.

Using the partitions, the consequences of imposing complete positivity on fermionic
Gaussian dynamics was discussed. In particular, I show that completely positive dynamics
must be either unitary (and so can be implemented without a quantized environment)
or active (and so must involve particle exchange with an environment). The discussion
employs Gaussian quantum mechanics (GQM) and the covariance-matrix (CM) formalism,
which allows to characterize the generators of the dynamics in terms of their action on the
CM by two matrices. These are then decomposed into parts corresponding to the different
dichotomies.

5.1 The fermionic system

In this section we describe the structure of the fermionic system and the corresponding
properties. To begin, the fermionic modes by N canonical modes k.

5.1.1 Hilbert space
The Hilbert space H = ®fj:1 H,. (with dimension 2%) of a fermionic system is spanned by
the basis |n, = 0) and |n,, = 1) known as the Fock or number state basis.

Since fermions have half-integer spin and obey the Pauli exclusion principle, it follows
that fermionic excitations behave nontrivially when rotated by 27 (denoted Rs,) around
any axis. For example a single fermionic system in Fock basis,

1) By, jo) 220,

and for two fermionic systems in Fock basis,

01) 2 —jo1), 11y E2m (—1)2)11),
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Specifically the fermionic excited state picks up a sign change under R, relative to its
unexcited state. Note that the effect that Ry, has on elements of the Fock basis is to flip
their sign if the total number of excitations is odd. We may therefore refer to R, here as

A

just the parity operator, P.

5.1.2 Physical states of a fermionic system

Since a rotation by 27 should not change the state of a quantum system, we can identify
physical states as those whose state vector only changes by a global phase when acted on
by Ry, = P, that is

Ply) = €*[y). (5:2)

The fermionic algebra (to be discussed later) together with the Pauli exclusion principle set
limits on permissible quantum states in the fermionic settings. In this regard, all admissible
quantum states are referred to as physical states. It is our aim in this section to describe
what conditions a quantum state must satisfy for it to be regarded as a the fermionic
physical states

To begin, we recall in quantum mechanics that a state |¢)) of a quantum system is
described mathematically by a complex valued probability amplitude known as wave func-
tion. The probability amplitude « is a complex number characterized by phase and an
amplitude. Now If |1)) is a state vector of the system, we consider two quantum states |))
and |¢) = e?|1)), by definition |¢) is also a state vector of the system, where €l is a global
phase factor which shows up in interference experiments. Equivalently, the two states

[U) = aly) + Bl¢), and (5.3)
@) = e’(aly) + Bl¢)) (5.4)

would also describe the same state where e is a global phase factor. However with
) = [¥) +€l9), (5.5)
we may say |¥) and |x) do not correspond to the same quantum state. As such, certain
superpositions of fermionic excitations are unphysical [3]. For instance the state, |0) 4 |1),

is unphysical because

P(|0) + [1)) = [0) — [1) # €(0) +[1)), (5.6)

whereas [00) 4 |11) and |01) + |10) are physical states. Generally, pure states are physical
if they are either superpositions of states with an odd number of excitations, or of states
with an even number of excitations.
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5.1.3 The fermionic algebra
Creation and annihilation operators

The fermionic system is characterized by the creation a' and annihilation @ operators which
satisfy the Fermi-Dirac canonical anti-commutation relations (CAR):

{a:,al} = 6,1 (5.7)
{ai,a;} = {a},a}} = 0. (5.8)

where ¢ and j are mode indices indicating different fermionic modes. Here, 1 is the identity
operator, d;; is Kronecker delta and {X,Y} = XY + Y X is the anti-commutation symbol
respectively.

Eq. (5.8) implies that aa = a'al = 0, that is each mode may have at most one excitation
(a manifestation of Pauli exclusion principle).

Fermaonic Fock space

—+

We can create and annihilate particles in the fermionic Fock space using the operators a
and a; respectively. We define the fermionic Fock space as

[, na, - -) = (al)™ (ah)™ - -~ (aly)"™]0). (5.9)

J

For single fermion modes, the action of the a and a' operators on the fermionic Fock basis
is given by
al0) =0, a'l0) = [1) (5.10)
all) = |0), af|1) = 0. (5.11)
Now consider the case for N fermionic system. The total occupation number is given as

N =3, n; and counts the number of excitations in all modes. In this case, the fermionic
Hilbert space

F=QRQHn=Ho®Hi GH2 D Hs D~ (5.12)

N=0

The H, block here spans a the vacuum state |0) while the #; block spans the single particle
state |1). Following the convention in Eq. (5.9), we may represent |1) = a'|0). Similarly,
the H, block of F spans states

|1;15) = alal|0) (5.13)
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with j # k, where states such as |2,0) with doubly occupied modes are not allowed. Note
that in Eq. (5.13) exchanging j and k results in the same physical state but with an
opposite sign (because a} and aL anti-commute). To be precise

1;15) = ala}|0) = —alal|0) = —[1,1;) (5.14)
similarly for three different modes, the H3 block spans states
’1]'7 1y, 1l> = a;azaﬂO) (515)

etc. In all cases, the order of the modes j, k, [, - - - does not matter physically but affects the
overall sign of the state. Therefore together with the superselection rule that superposition
of fermionic state with odd fermion number is unphysical, it is important to also consider
the issue of the antisymmetric wave function of fermionic system and always adopt the
convention (5.9) when writing product state of fermionic modes.

Free Hamiltonian

The free Hamiltonian for these modes is
N
Hy =) Eji, (5.16)
j=1

where F; is the j mode’s excitation energy and n; = d}dj is the number operator for the

3" mode.

Majorana operators

The fermionic creation and annihilation operators defined above are non-hermitian, that is
a} # a;, however from these operators, we can construct a set of 2V dimensional Hermitian
operators for their real and imaginary parts.

1
Coj—1 = E(

These are the Majorana operators, they are analogous to the canonical momentum and
position operators for bosonic modes. They have the following properties

a; + a}) and ¢y = L(aj —al) (5.17)

e they are Hermitian c;r- = ¢j,
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e from the CAR algebra (5.8), it follows that they satisfy the anticommutation relation
{Ck, Cl} == 514:[1 (518)
This relation is known as the Clifford algebra (C-algebra)

e the square of the Majorana operator is 1/2, a consequence of the C-algebra

1
{Cj,Cj} = c¢5 +cjc; = 2CjCj =1= CiCj = 5 (519)

FEven and odd fermionic operators

Let us denote the Clifford algebra generated by the set {c¢,,} as Coy. An arbitrary operator
A € Cyn can be written as a polynomial in the Majorana operators. A € Cop is said to be
even (odd) if it contains only even (odd) powers of the generator ¢ [15].

To conclude this section, we write the Majorana operators in compact form by defining a
vector

x! = (01 C3 +++ CaN-1,C2,Cq, " 7C2N) = (02]’—1702]')

T
x:=(c1 €3 -+ CoN-13C2,Cay 0, Can) = (Cojo1,Co5)” (5.20)

So that the CAR reduces to

5.1.4 The fermionic quadratic Hamiltonians

The general form of a quadratic Hamiltonian in the creation and annihilation operators is
given by

1 *
H = Z [ o Ty + = B ka ak QBj,kajak] (5.22)
7,k=1

where j and k label the field modes. The Hermicity and canonical anticommutation rela-
tions of H requires that A is Hermitian and B is antisymmetric. Our goal is to discuss the
physical processes that may arise from such a quadratic Hamiltonian. To go about this, we
have grouped the Hamiltonian into two parts: the number conserving case and the number
non conserving case, respectively. This grouping will be particularly important when we
want to discuss the quantum evolutions generated by quadratic Hamiltonian.
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Number-conserving quadratic Hamiltonians

The total number operator is defined as N = > alTal. Now we say a Hamiltonian operator
is number conserving if it commutes with the total number operator, that is [N, H| =
NH — HN = 0. Hence a number-conserving Hamiltonian can be written in the form

an = ZAjka;ak (523)
ik
We can deduce two cases from the Hamiltonian. First with j = &k, we have H,. =

> i A]-ja;r-aj. Physically, the Hamiltonian generates the free evolution of the field modes,
thus we can can describe Aj; as the energy of individual modes. In terms of the Majorana
operators, we have

1 . 1 .
a} = —\/5(023-71 +icy5), aj = —\/5(%71 — icy), (5.24)
this Hamiltonian reads
12N
1 . .
Hr(lc) =3 ;1 Ajj (CQj—102j—1 —1Cg5-1 Coj +1CjCo5-1 + 02j02j>

Which considering the Majorana basis x = (cg;_1,¢;)7, can be written in matrix form as

1 1 0 —i\ [coi 1
ngli) = §TI‘[A]1 + 5 ZA]']' (Czjfl CQj) <1 0 ) ( Cjzj ) (525)
J
1 1 Coj1
= §TY[A]]1 -+ 5 ; A]’j (CQj—l ng) ()] O (526)

where we note that cjz = 1/2, and o5 is the Pauli matrix. Note that the term proportional
to 1 can be removed by adding an energy offset (that is-) i A;;) to the general Hamiltonian
(5.22).

Also, a second class of the number conserving quadratic Hamiltonian can be generated
by considering j # k so that the Hamiltonian is of the form

H? = Ajka}ak + Agjala; (5.27)

nc

Such a Hamiltonian, which also preserves the total fermionic number, is associated with
processes that describe the linear interaction between two field modes. An example is a
beam splitter. In terms of the Majorana operators, we obtain

2 .
Hr(lc) = Aa(C2j—1C2k—1 + C2jC2k) - 1As(02j—102k - C2j02k—1)
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Here A,/, = 3(A+ A") denotes the symmetric/antisymmetric part of the matrix A, and
for A = Aj;, we have AT = Apj. In terms of the Majorana basis x,

ngz) - (Cijl C2j) (114461 _leS) (62k1> = (C2j71 C2j) (Aa 1+ A;® O'Q) (0%1)

Cok; Cok

Here the term proportional to 1 can also be removed by assuming A to be symmetric so

that
0 —iA _ .
= e o) (1 ") () = e o) (a0 ()

Thus we have a general form of the number conserving quadratic Hamiltonian
an = XTanX (528)

where H,. = A ® o9 is a Hermitian matrix with real entries.

Number nonconserving quadratic Hamiltonians

As the name implies, a number nonconserving Hamiltonian does not preserve the total
number of particles in the field mode. It corresponds to

Hune =5 > (Bjralal — Byajar) = 5 (Bik = Byj)alal, 5(Bji — Bi;)ajan
ik

In the last equality, we applied the anticommutation relation (5.18). This Hamiltonian
is applicable to “pairing” theory in fermionic systems where we observe conservation of
parity but violation of the number operator conservation. We note in writing out the
Hamiltonian explicitly, we neglect terms with j = k, since a/? = a? = 0 for fermionic modes.
The Hamiltonian describes physical processes in Fermi systems such as superconductivity,
superfluids, and anti-ferromagnetism, (two-mode) squeezing. In terms of the Majorana
operators

Hpype = Z(Bjk — Byj) [CQj—102k—1 + 1Cgj_1Co + 1CojCop—1 — C2j62k}

—1( o — Bo) | eajo10ak—1 — icoj_1Cop — iCojCop_1 — CojcC
1 Bik = Bj) | Caj-1C2k-1 — 1Cj-1Co — 102Cok—1 — C2;Cok
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and using the fact that B is antisymmetric (By; = —B,j), we collect like terms in the
Majorana operators and obtain

bt o (Bl BTN () o

Without loss of generality we can also assume B is real so that

0 1B\ [cox—
Hune = (251 C25) (—iB 0) ( 202;) (5.30)

the off-diagonal terms vanish and we have a general form of the antisymmetric part of the
quadratic Hamiltonian given as

Hine = X7 Hone X (5.31)

0 iB
where Hyne = (—iB 0 )

To summarize this section, we have a general form of the quadratic Hamiltonian in the
Majorana basis given as H = Hy. + Hyye:

. 2N .
1 1
H= 5 E ijCjCk = §XTHX (532)

J,k=1

where

(5.33)

is a real antisymmetric matrix.

5.1.5 Standard form of the quadratic Hamiltonian

We turn to the theory that any real antisymmetric matrix such as H in the quadratic
Hamiltonian (5.32) can be brought to a standard form by an orthogonal transformation,

s /0 B,
H:OHOT:@<_Bj 03)

Jj=1
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with 5; > 0 and £); are the Williamson eigenvalues [15] of the Hermitian matrix iH.

We can use this representation to express the quadratic Hamiltonian in the standard
form. To see how this works, consider the inverse transformation H = OTHO and define
a new set of transformed Majorana operators x = Ox. Recall Eqn. (5.20), thus the
transformed set of Majorana vectors would be given as X = (Gpj_1 62j)T. Hence we
obtain

i i

H=—x"Hx = -x" (OTS'-N[O)X = %iTﬁi

- AL 0 B (e
:%(CQj_l Czj)@(_ﬁj 50]) (CQEJQJ»1>

Jj=1

DO
N |

. N
1 S - -
= 5 E Bj (C2j02j—1 - CQj—ICQj)

J=1

The relation ¢yj_1Cy; = —Cg;Cj—1 between the Majorana operators holds so that
N
Hy =~ Biéaj 16y (5.34)
J

where ¢, = >, O, are new Majorana operators.

In the next section, we will discuss an important subclass of states known as fermionic
Gaussian states. These states, which can be written as an exponential in quadratic form
in the fermion Majorana operators, appear as ground and thermal states of the quadratic
Hamiltonian.

5.2 Fermionic Gaussian states

Now that we have reviewed the basic structure and algebra of the fermionic system, we
will discuss the Fermionic Gaussian state (FGS). This is a very important quantum state
that is at the heart of quantum information processing.

Gaussian states have trivial mathematical structure, and it is common with current
technology to produce Gaussian states in the laboratory. We present the general proper-
ties of the FGS and their corresponding mathematical algebra. Despite their simplicity,
Gaussian states are useful for quantum information processing tasks such as entanglement
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distillation, or metrology, probabilistic teleportation. Later in this thesis, we will focus on
the application of Gaussian states to quantum information linked to quantum thermody-
namics.

5.2.1 Basic notation and definition

Consider the system of n fermions in the canonical ensemble. The density matrix of the
system is given as

1
_ * -pH
= —e 5.35
where Z = Tr(e ) is the normalization factor also known as the partition function which
can be obtained by ensuring the condition tr(p) = 1 [93]. H is the system’s Hamiltonian

and [ the inverse temperature. For systems described by Hamiltonians that are quadratic
in the Majorana terms (that is the quadratic Hamiltonian (5.32)), the density matrix is
written as

1 i
=—exp|—=-X HX], 5.36
p=Zxp [ 5 (5.36)
where we have enclosed the inverse temperature S in the definition of the real antisymmetric
matrix H. A fermionic system of j = 1,--- , N fermionic modes and whose quantum state

is described by the density matrix p in (5.36) is called a Fermionic Gaussian system.

Standard form of the fermionic Gaussian state

We recall as discussed in 5.1.5 that the real antisymmetric matrix A that characterizes
the quadratic Hamiltonian (5.36) can be brought to a diagonal form H = OHOT by
an orthogonal transformation O. This allowed us to write the quadratic Hamiltonian in
standard form (5.34). We can equally write the fermionic Gaussian state in the standard
form by substituting (5.34) in (5.35).

1 N & L= ‘
eyl e - flovtone] -5

In the last term, we used the relation e* =) % Note that

» 5 1
(ICQj_lcQj)Q = Z
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For example consider the case j = 1. We have (¢y;_1625) = ¢1€
i(2a'a — 1)/2. Consequently

TN 1, . e
(iGyj_1G9j)" = —(€162)(E162) = Z(QaTa — 1)(2aTa -1)
1
~ X (agt aat 1 — 2aTa
—4(4a a~~ —2a'a 2aa—|—1>
1 1
_Z< 4a aa+4&T&—4aa+1):Z—l

where we have recalled that for fermionic operators aa = 0 = a'af. Thus expanding the
term in the exponential, we obtain

Psf = %ﬂ <COSh (gj)]l]v + isinh (ﬁ >02j 102j) (5.37)

J=1

To find the constant Z, normalization entails that trp = 1 so that

Z = Tr[ﬁ (cosh </82 )]lN +1sinh (ﬁ >02] 102j>] (5.38)

computing the trace in the Fock basis, the first term yields vazl 2N cosh (ﬂ—;) The second

term vanishes for all values of N. To see this, let us consider the case for single mode
N =1,
1

Tr [isinh <%)6152} =isinh ( ) Z (n| (2a'a — 1)|n)

—isinh (%) (2(0latalo) + 2 1]atalt) - (0]0) - (1]1)) =

We have taken note from (5.18) that ¢y;_1¢9; = 2&;5@ —1. Therefore normalization constant
becomes

N )
z=T[2"cosn () 5.39
Il . (5.39)
Substituting (5.39) in (5.37) gives the fermionic Gaussian state in standard form
1 & . AV
Psf = 2_N H <1 + itanh <§>02j7102j) (540)
j=1

where we have taken note that tanh(A) = sinh(A)/ cosh(A).
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5.2.2 Statistical properties

The statistical properties including the first and second moments of a quantum state give
information about the state. In this section, we give the definition of the statistical prop-
erties of FGS and see how they interpret the properties of the state.

First moment

The first moment of a FGS p known as the displacement vector is defined by:

(¢j) = Tr(c;p), (5.41)

which vanishes for physical fermionic states (that is the even FGS (5.40) ) but not for
odd FGS. By odd FGS, we mean FGS that are characterized by terms linear in Majorana
operators. Our focus is on even FGS, so we consider that the first moment is vanishing.

Second moment

The second moment is referred to as the covariance matrix (CM). The CM for FGS which
we denote as I', is a real and anti-symmetric 2N x 2N matrix whose elements in terms of
the Majorana operators are defined by

iTr[p(cre)], for k #1

5.42
0, for k=1 ( )

i
Dy = §TT[P(0kCz —acy)] = {

that they are completely characterized by only the second moment T'y; [20, 15].

Complete positivity condition

The Pauli exclusion principle together with the anticommutation relation among the fermionic
operators impose a constraint on the CM of fermionic systems. A covariance matrix I" cor-
responds to that of a physical state if and only if it obeys the positivity condition

il'’ < l1on or equivalently I'T'T < 1oy, (5.43)

where 1,y is the 2N dimensional identity matrix. This condition translates to I'> = —1
for pure states. We now comment that the state of an even FGS is completely described
by its CM [19, 20].
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5.2.3 Characterizing the fermionic Gaussian states

In the previous section, we stated that an FGS is completely characterized by its CM so
that all our analysis about a quantum state is based on CM formalism. In this section,
by considering a one-mode system and two-mode systems respectively, we want to look at
some of these characteristics we can describe.

Single mode Gaussian states

The single mode Gaussian state in standard form can be obtained from (5.40)

1
por = 5(1+1Xa1&), A= tanh (g) (5.44)
The covariance matrix of a single mode FGS is a 2 x 2 matrix given as,
'y T
"= 5.45
(Fm Pm) (5.45)
Since '™ is real-valued and antisymmetric by definition its elements are given as I'y; =
0 =TIy and I';3 = —I'9; = v for some real parameter . Thus
smo A (0 —1
s =vQ; Q= (1 0 ) (5.46)

and the positivity condition (5.43) on I'™ implies the inequality relation
T, —ivQ) > 0. (5.47)
that is, 15 — iv€) has nonnegative eigenvalues which restricts v to the range of values
—-1<v<1. (5.48)

Let us now describe some properties of the single-mode FGS in terms of the CM

1. Expectation value of the number operator: The number operator 7 = a'a for the
single mode counts the number of quanta in the mode. Its expectation value in
terms of the CM can be calculated

. 1 1
<1[Cl,CQ]> = 5 — 51_‘12 (549)

DN | —
DN | —

(alar) = Tr [palar] = Tr[g(cl Fics)(cr — )] =
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Again from (5.46), ') = v and

(5.50)

Since (5.48) holds for v, thus the allowed values for number of quanta in the single
mode of a fermionic state is in the range 0 < (n;) < 1, a consequence of the Pauli
exclusion principle.

. Average energy of single mode: The average energy of a system in state p with
Hamiltonian H is given by the expectation value of the systems’ Hamiltonian, £ =
(H) = Tr[pH]. Now for a single fermionic mode with the quadratic Hamiltonian
(5.32) the average energy is

: 2
E(p) :% Tr [ZHijcicjp} Z Hi; Tr[icicip] = Z Hi;ili; = = Te(HD) (5.51)

ij

Using the 2 x 2 symplectic matrix Q in (5.46)
(0 -1 (T2 O
Q_(l 0)7 QP_(O F12)

Tr (QF) =i([c1, e2]) = Tr(ifen, e2]p) (5.52)

we find

The average energy
E(p) =w Tr[paT al
:§ Tr [ (¢f —i[er, o] + 02)] (5.53)

Substituting (5.52) in (5.53) and taking note that ¢} = 1/2 = ¢4, we obtain
E() = §<1 - Tr(QF)) (5.54)

as expected. This is the average energy for a single mode of the state with frequency
w. for some real symplectic matrix 2. As we consider non-interacting fermionic
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modes, the average energy of an n-mode state is defined as the sum of the average
energy of each of the individual modes. In terms of covariance matrix this is given
as

E(T,) = % (1 - Tr(91F1)> o (1 —Tr(Q,T )) (5.55)
where the symplectic matrix for the entire system is 2 = @?:1 Q

. Temperature and frequency of the single mode: Another characteristic of the single
mode we would like to discuss is its temperature and frequency. We note that for
single N = 1 modes, all physical states with respect to their free Hamiltonian H =
wa'a are thermal states. To see this clearly, the thermal state 7(3) of a fermionic
mode is given by

() = 5,

with inverse temperature 8 = 1/7 and partition function Z = Tr(e ?#) . Here
H = wa'a is the free Hamiltonian of the mode with frequency w and a and a! are the
mode annihilation and creation operators respectively. We can expand the thermal
state in the Fock basis [n;n =0, 1)

= Punln) (m| (5.56)
where
1 1
P"m = <7’L| T(ﬁ)|m> — z <TL| 6_’3H|m> = Z <7’L| e—ﬁwa7a|m>

From the CAR algebra {a,a'} = 1, we find that (a'a)” = a'a for n > 0. Therefore

1
an = Ee_mﬁw(smn (557)
and the partition function
1
Z = Tr[e ™M) = Tu[e ™) = > " (nf e™'|n) = 1 + ¢~ (5.58)
n=0

Substituting in (5.56), we obtain

1

1 —nfw
7(B) Zmze % n)(n|

n=
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The covariance matrix of a thermal state can be computed using Eqn. (5.42) with

v =T15 =2iTr[pcicy] = — Tr[p(2a'a — 1)]
Qe Bw B 1 —e B
l+e B 14e b

(5.59)

= tanh (%)

Therefore the covariance matrix for a single fermionic mode in a thermal state is

given by
(0 v 2
Fth = (—V 0) , I“ < -1

as given in Eq. (5.46). So we see that we can characterize the state of the system
from our knowledge of the covariance matrix. For example, rearranging the equation,
we can determine the state’s inverse temperature, 5 as

e =1 (5.60)

where w is the mode’s frequency.

0.05}
0.04f

0.03}
Q :
0.02}

0.01}

0.00 b s R T e e ]

-1.0 -0.5 0.0 0.5 1.0

14

Figure 5.1: Plot of the inverse temperature § of the thermal state vs the real parameter v
for the different frequency values w: 100 (blue solid line), 500 (green dotdashed line) and
1000 (red dotted line) respectively.
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We show in FIG. 5.1 a plot of the inverse temperature  versus the real-parameter
v. Note that v = 1 corresponds to the ground state with (n;) = 0 and 7" = 0.
Decreasing v increases the temperature until at ¥ = 0 the mode is at 7' = oco. For
v < 0 the population is inverted.

Two-mode fermionic Gaussian states

The two-mode FGS is the simplest scenario to investigate the fundamental issue of en-
tanglement in quantum information. Consider a bipartite fermionic system, AB, where
system A is composed of N fermionic modes and system B is composed of M fermionic
modes, assume w4 = wg = w. Suppose the joint system is in a Gaussian state. Thus a
generic covariance matrix for N = 2 modes can be written as,

0 vi g1 9o
—U 0 gs g4
I, = 5.61
! -1 —g93 0 1 ( )
—g2 —gs —v2 0

for some local temperature monotones v; and vy and four correlation numbers: ¢q, g2, g3,
and g4. The bipartite covariance matrix can be divided into blocks as

~( T'a T'4n
r— (—FLB o ) , (5.62)

and where each element of I',, is a 2 X 2 matrix

0 41 0 UV g1 g2
'y = I'p = F'ap = .
A (_Vl O ) ) B (—V2 0 ) ) AB <g3 4

'y and I'g are 2N by 2N and 2M by 2M matrices respectively representing the reduced
state of the individual systems and where I' 45 is a 2(N+ M) by 2(N + M) matrix recording
the correlations between the two systems.
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Standard form of CM of two-mode FGS

The CM (5.61) can be brought to the standard form

0 a 0 —e
_|—a 0 —ey 0
Iy = 0 e 0 b (5.63)
€1 0 —-b 0

by a local orthogonal operation (LOO) Oloe = Otoe.a @ Oloep, that is T'sp = Oroc [ OL . [15].

loc
The average energy of the bipartite system according to equation (5.55) is given in terms

of the CM as
Wq

W
5 (

E(Tsf) = —(1—2a) + 5 1 —2b) (5.64)
where w, and wy, are the frequencies of the modes. For two-mode fermionic pure Gaussian

state, the CM in standard form is given by

0 a 0 -—e
» _|—a 0 —e 0
o (5.65)
e 0 —a 0
with e = (1 — a?)'/2 [15, 45] so that the fermionic system depends only on one parameter

a.

5.3 Evolution of fermionic Gaussian states

In order to apply the Gaussian formalism to some dynamic scenario, one must ensure
that the relevant states not only are initially Gaussian but remain Gaussian throughout
their evolution. Thus the dynamics of the system must also be Gaussian, that is it must
take Gaussian states to Gaussian states. Here we define Gaussian operations as those
operations that preserve the Gaussian properties of a quantum state. Such an operation
can be generated through Gaussian means.

We consider two cases of transformations which map Gaussian states to Gaussian states.
The first is an evolution induced by the unitary operator U = exp(—iHt), with H a
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quadratic Hamiltonian (5.32) of the system. The unitary evolution is described by the von
Neumann equation of motion

—p=—i[H, p], (5.66)

and yields a suitable transformation on the field operators (example the Majorana operators
for fermionic systems) that preserve the anti-commutation relation. These transformations
as we will later show are called orthogonal transformations, which correspond to unitary
transformations on the system’s Hilbert space. Another class of transformations that map
Gaussian states to Gaussian states are dissipative dynamics described by the Lindblad
master equation

—=Lp=—ilH, |+ (2ﬁapﬁl — {L{La, p}>7 (5.67)

where L, are Lindblad operators linear in the system’s operators (Majorana operators
for our case) [0, , 19]. Therefore for our study, we focus on time evolutions of the
fermionic systems generated by quadratic Hamiltonians and Lindblad operators linear in
the fermionic operators.

5.3.1 Gaussian unitary transformations

In this subsection, we discuss how fermionic operators transform under a quadratic Hamil-
tonian H = H(H). Precisely we focus on closed fermionic systems described by the density
operator p and evolving unitarily according to the von Neumann equation

where [A, B] = AB — BA is the commutation operation. A set of unitary transformations
under the quadratic Hamiltonian gives rise to a class of unitary Gaussian operations, that
is unitaries that map Gaussian states to Gaussian states. Before we discuss such classes,
we will see how the fermionic operators including the Majorana operators and covariance
matrix transform under such dynamics. This knowledge will be particularly instructive for
later discussions in this chapter.

We will generalize this to the dissipative case later in the chapter. We note that an
operator generated by quadratic Hamiltonians are invariant under any canonical trans-
formation. It turns out that a unitary transformation on a system’s Hilbert space under
a quadratic Hamiltonian corresponds to a (special-)orthogonal rotation O(2N) in phase
space [19].
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Unitary evolution of the Majorana operators

First starting from the Heisenberg equation of motion for the set of Majorana vectors x

%ﬁ; — —i[H, %], (5.69)

The standard solution to this equation is given as [19)]
X(t) = e 7 1%(0)e H 1
which is a unitary transformation of x on the system’s Hilbert space. We will show below

that this transformation corresponds to an orthogonal transformation of x in phase space,
that is

x(t) = et g et = 0%, (5.70)

where O = €™, First we can convert Eq. (5.69) into a linear differential equation on x. In
the case where H is a quadratic Hamiltonian in the Majorana operators (5.32), we find

— iy = —i[H, ) = —= Z HomTnTm, Tr) = —= Z Hom [EnTom, T
n,m=1 n,m=1
We can use the identity [AB,C] = A{B,C} — {A,C} B and the relation (5.21) to find
12
i = =3 Zlﬂnm (&nltm, @1} = L, @a}in
o A
= -3 n%; Houn (00t = e )
1,2 2N
= =5 (D2 Hakin = Y Homim
n=1 m=1
Relabelling indices in the second term, and since H is antisymmetric we have

d . 1 . . .
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From here we see that we have the linear differential equation on x

%ﬁ —Hk (5.71)

and we can write a solution of this equation as
x(t) = 0x(0). (5.72)

where O = €™ € SO(2N) with H as the generator of the special orthogonal group O [19].

Unitary evolution of covariance matrix

Fermionic Gaussian states are completely characterized by their CM such that in order
to track the evolution of a FGS Gaussian state, we need only track the evolution of its
covariance matrix. Thus starting from a Gaussian initial state p, at some time ¢, we can
derive an equation for the CM T" of the time evolved state. We note that we follow similar

derivation as in [19]. Starting from the equation of motion (5.68)
d
S = iH
P = il

multiply both sides by ic;c; and take the trace of both sides, we obtain

d
&Tr(ipcicj) = Tr([H, plcicj) = Tr(Hpcicj — pHcicj> = —Tr(p[H, cicj]>

where we have used the cyclicity of the trace Tr[ABC] = Tr[BCA]. For the quadratic
Hamiltonian H(H) as given in (5.32),

d.. . i
aTr(lch-cj) = —§Tr (p ; Honn [CmCn, cicj])
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Using the identity [AB,CD] = [AB,C]D + C[AB, D] we have [¢p,cp, ¢icj] = [¢men, ¢i]cj +
¢ilemen, ¢j] so that

E'I‘l"(ipCiCj) = — lTl" (P Z Hmn [Cmcm Cicj]>

= — %TI' (P ; Hmn [Cmcna Ci] C]) —Tr (Pcz ; Hmn[cmCT“ CJ] )
=—2 Z:Hikck =—2 Z‘;ijck

= Z Hir Trlicke;p] + Trlicicrp) Z Hik
k k

=— Z Hii Tr[icke;p] + Trlicickp Z Hj = —HD +TH"
k k

To summarize, we have shown that the covariance matrix of a system with density operator
p obeys the relation

—TI'(t) = [I'(¢), H] (5.73)
which has the solution [19]
I(t)=0@)r©0)0%t), O=e"ecSO2N,R) (5.74)

We have shown how Majorana operators and the covariance matrix of a fermionic mode
transform under quadratic Hamiltonians. We will now go ahead to look at some classes of
unitary transformations that can be generated under quadratic Hamiltonian.

5.3.2 Classes of Gaussian unitary transformations

Gaussian unitary transformations can be implemented by means of optical elements such as
phase shifters, beam splitters and squeezers together with Homodyne measurement—these
transformations are experimentally accessible with present technology [124]. Such optical
elements are either capable of changing the number of particles (in our case fermions) in
a quantum system, or they may preserve them. Our goal in this section is to classify
a unitary transformation according to its ability to change/preserve the total number of
fermions.
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Passive Gaussian transformations

Passive Gaussian transformations are transformations that preserve the total number of
fermions N = >, azak in in the Gaussian system. Mathematically, this means that the
quadratic Hamiltonian (5.22) can only have terms of the form a,tal. We can identify two
physical processes; the phase rotation and beam splitting operations.

1. Phase rotation operation: here we have the quadratic Hamiltonian proportional to
Aa'a. This term describes the free evolution of the modes and adds just an over-
all phase shift on the fermionic operators. The transformation is described by the
operator

R(0) = exp(ifa'a) (5.75)

and acts as a phase rotation on the fermionic creation and annihilation operators
according to the relation

ibata  —iata i6

. 1- s T s
a— e’ ae =e"a, al — " gleio'e — 70T (5.76)

where 6 is a phase angle. In obtaining the above relation (5.76), we applied the

Baker-Campbell-Hausdorff (BCH) formula [115] for two operators X and Y
1 1
e XYeX =Y +[X, Y]+ X XY+ 5[X, (X, [X, Y]] + - (5.77)

and the anticommutation relation (5.18) for the fermionic operators. Subsequently,
the action of the phase operator on the Majorana basis & = (¢g;-1, ;)7 is given as

. 1 t i0 —i0 .t
<€1) U (Cl) UT —_ U (a +GT> UT —_ (eiea + €_iGCLT)
Ga Co V2 \a—ia camea

By expanding e = cosf + isin 6, we obtain the relation

&1\ _ [ cos@ sinf\ (c
<52) B <— sin ¢ COSH) <02) (5.78)

which shows that a phase rotation operation on Hilbert space of the Majorana op-
erators corresponds to an orthogonal transformation on phase space. This can be
extended to N modes, so that the orthogonal matrix is

00 =D (M) it) (579

j=1
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2. Beam splitting operation: the second process that arises from the Hamiltonian with
terms gazal describes linear mixing of two modes which in quantum optics corre-
sponds to a Hamiltonian of the form H oc ab! 4+ a'b. This Hamiltonian describes the

action of a beamsplitter operation. The evolution operator is defined by
B(¢) = exp [qs(abT + aTb)] (5.80)

where a(a') and b(b') define the annihilation (creation) operators of the two modes
and ¢ is the transmissivity of the beam splitter. In the case of two fermionic modes
specified by the operators a and b and satisfying the CAR {a,a'} = {b,b'} = 1, with
all the other anti commutation relations being zero, in the Heisenberg picture, the
annihilation operators are transformed via the Bogoliubov transformation

N\ feos(e) —sin(@)) /-
<”>_ sin(@)  cos(9) (b) o

Correspondingly, the Majorana operators in the basis x = (¢, 2, ¢3,¢4)7 are trans-
formed via the map

cos(¢)1 —sin(¢p)1
X — B(¢)x, B(¢)= (5.82)
sin(¢)l  cos(¢)1

where 1 is the identity matrix.

Active Gaussian transformations

Active transformations are transformations that do not preserve the total fermion number
in a fermionic system. Such transformations arise from Hamiltonians with terms of the
form H o a® + a'? for single modes and H o ab + a'b! for double modes. This describes
the squeezing process. A consequence of the Pauli exclusion principle is that single-mode
squeezing is not possible for fermionic systems but two-mode is possible. The two-mode
evolution operator is given by [72]

S(r) = exp [r(ab — bTaT)}
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where r quantifies the two-mode squeezing. In the Heisenberg picture, the field operators
under this transformation according to the relation

= S(r)aST(r) = cos(r)a — sin(r)b'
= S(r)bST(r)

o 2

cos(r)b + sin(r)al

Similarly, the Majorana operators in the basis & = (¢y, ¢2, ¢3, ¢4)T are transformed according
to the relation

% = S(r)%, S(r) = <COS<T)1 _Sin(”@) (5.83)

sin(r)o,  cos(r)l

where o, = diag(1, —1) is the usual Pauli matrix and 1 is the identity matrix.

It is instructive to check that the passive and active transformations discussed preserve the
anticommutation relation

5.3.3 Gaussian dissipative transformations

In general, real (open) systems would interact with their environment and exhibit some
quantum properties such as decoherence. So instead of the unitary transformation (5.68),
we need to account for the noise/decoherence process by including a dissipative term. Pre-
cisely, we need an equation that governs the dynamics of the composite system+environment.

5.3.4 Covariance matrix formalism

An open fermionic system as we have described would consist of a system of interest we call
A and an environment (a bath) say B both described by the joint density operator pap.
Assume systems A and B are composed of N fermionic modes and M fermionic modes
respectively and suppose the joint system is in a Gaussian state. The corresponding CM
I"'sp of this joint state can be written as

I'g VAB)
Tap = , 5.84

where 'y and I'g are 2N x 2N and 2M x 2M covariance matrices respectively representing
the reduced state of the individual systems and y4p is an 2N x 2M matrix recording the
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correlations between the two systems. In other words, tracing out systems A or B from
the joint state pap yields a reduced density matrix Trp(pap) or Tra(pag) with covariance
matrices 'y and ' respectively.

To describe the evolution of subsystem A, we note that a quantum channel (trace-
preserving completely positive map) that preserves the Gaussian nature of system A can
be fully characterized by how they transform the covariance matrix (CM) of the input
states. Given that Gaussian states and their corresponding Gaussian transformations are
easily attainable in the laboratory, the Gaussian formalism therefore offers a powerful tool
for treating the dynamics of open quantum systems.

Deriving the general form of fermionic Gaussian master equation in terms
of the CM

Fermionic Gaussian channel

We assume that subsystems A and B are initially uncorrelated, that is y4p = 0, so that
the joint CM (5.84) at an initial time of the evolution process reduces to a direct sum of
the individual CM

T 45(0) = (FA FB) = (CA®0)+ (0@ p) (5.85)

where 0 denotes all zero matrices. To find the CM of the reduced system A from an
initial time t = 0 to a later time ¢, it is sufficient to compute the evolution of the joint
CM and tracing over the subsystem B. The remaining task is to find an update rule for
the covariance matrix. Recall that the CM of a fermionic Gaussian system undergoes an
orthogonal transformation which can be written for the joint system as Lap = OT 4507,

With
0= (OO;A %ABB) ,  O'= <£‘AB %i"‘) : (5.86)
We obtain
[ip = <fA fLAB)
I'pa T'p
where

Ty=0As® 0)Of + Orp(0®T'5)0O%p Tap = 0A(TA @ 0)OL, + Oap(0 @ T'p)0Of
I'p=0pa(TA ®0)OL, + Os(0® )0  Tpa=Opa(l's ®0)0L + Os(0®'p)0];
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Note that O4, Op, Oap are not necessarily orthogonal themselves. We can see that the
reduced state of system A is updated as [28]

['A(0) > Ta = OxA(TA @0)O] + Oap(0®T'5)O%g (5.87)

Eqn. (5.87) defines a fermionic Gaussian quantum map ® that takes the initial state with
CM T"4(0) to a state with CM I'4(¢) at a later time ¢. We see in general that a fermionic
Gaussian channel @ is defined by a 2N by 2M matrix O and an antisymmetric 2N by
2N matrix R as

O : T — OTOT + R. (5.88)

Positivity condition

As we have earlier discussed, I' is a valid covariance matrix of a physical fermionic system
if it satisfies the positivity condition

ir<i or IT’<1 (5.89)

Now in order for such a Gaussian map to be physical it must map physical states to physical
states. That is if ' satisfies (5.89) then ®¢[I'] should too. To see how this works, substitute
the transformed CM in (5.88) in (5.89)

1 <i(OI'O™ + R) =iR+ Oil'O7
['(0) in turn is a valid CM satisfying (5.89), thus
iR< 1oy —0OT. (5.90)

The master equation

Now we can find the general form of a fermionic Gaussian master equation by taking the
above Gaussian channel to be differential as

O =1y +Adt, R=Cdt, (5.91)

for some 2N by 2N real-valued matrices A and C, with C' antisymmetric. We can write the
complete positivity condition (5.90) in terms of the generators A and C'. Upon substitution,
we obtain

i0dt < Toy — (Toy + Adt)(1oy + Adt,)T (5.92)
< -ATdt - Adt (5.93)
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so that
A+ AT+iC <0, (5.94)
Now to derive a general form of master equation, substituting Eqn. (5.91) in (5.88) yields

D(t) = (Ton + Adt, )T (Ioy + Adt)” + Cdt
=T +T Adt + AT dt + Cdt + O(dt?)

So that

d
Er(t) = AT (t) + T(t) A" + C. (5.95)
In the next chapter, we give a classification of the different dynamics this master equation

(5.95) can produce.

Comparison with Lindblad Master equation

Here we will show that any dynamics for the covariance matrix of the form (5.95) satisfying
(5.94) can be equivalently written as a differential equation for the state’s density matrix,
p in Lindblad form. First recall that the master equation governing the evolution of the
density matrix p(t) of a dissipative system is given in Lindblad form as

d N A A ay oA
L= Lp= i, + Y <2LapLL —{L{ L, p}>, (5.96)
dt S—— .

EO(p) @ E;?p)

This equation gives an accurate description of the time evolution of a system coupled
to an environment. The first term, which we labeled L, describes the unitary part of
the dynamics generated by the effective Hamiltonian H of the system. The second term,
labeled Lp, describes the dissipative process resulting from interaction of the system with
the environment. £, Ly and Lp are superoperators, that is linear operators acting on the
density operator p of the system. L, are Liouville operators which describe the coupling of
the system to the environment. We note that this coupling can be taken to be quadratic
or linear in the system’s operators [0, , 19]. However for a transformation that map
Gaussian states to Gaussian states, we require Lindblad operators that are linear in the
Majorana operators [19].
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Lindblad master equation in terms of Majorana operator

We wish to construct a Liouville map £ = Ly + Lp that maps a Gaussian operator p(0)
at time ¢ = 0 to another Gaussian operator p(t) at time t. This corresponds to finding the
superoperators Ly and Lp respectively. To begin, let us consider the Liouville operators
given as linear terms in the Majorana operators and recall the quadratic Hamiltonian (5.32)

1 x
H = 5 jZkijCjCk, La = ;ga,jc]ﬁ LL = ;ga,kck (597)

So from the unitary part of the dynamics Lop = —i[H, p|, one has the superoperator L,
given as [105]

2N
/:0 =—i Z ijCjCk (598)

jk=1

where #;;, describes the unitary (orthogonal) dynamics that is the coupling between two
modes. We note that for an arbitrary matrix H;z, the operator L, preserves the total
fermionic number N = Y. cfe; in a system, that is [Lo, N] = 0. Next for the dissipative
part

Lop=2LapLl = {LiLa,p} =2 Yalajliy <ijck — cpap — Pckcl> => MLy
ik jk

where for physical observables, the map L, = (¢;pcx — cxeip — pexer) can be evaluated on
even parity subspace [105] and we have defined

Mis = 3 tabaslio (599

is a matrix parameterizing the Lindblad operators, that is the dissipative part of the
dynamics.

Lindblad master equation for the system’s covariance matrix

To write a master equation for a system’s covariance matrix, we will follow the derivation

method in [19]. To begin, recall the definition of the covariance matrix I';,(t) = iTr[pc;cy].
Taking its time derivative
af‘(t) = 1Tr[cjckE] = iTr[e;ce L(p(t))] = 1Tr[LT(cjer)p] (5.100)
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where 9 = L(p(t)). We have also taken note of the Hilbert Schmidt inner product
Tr[pA(c)] = Tr[AT(p)o]. The action of the adjoint Liouvillian £ on an observable O
is give according to the relation [19] £L1(0) = i[H, O] + >, LL[O, L] + [L},, O] Ly, so that
taking O = c;c;, we have the expression

d ) .
L@ =iTr [(1[H7 cjcr] + za: Liejer, La] + [LL, Cjck]La)P]

Evaluating this expression gives [105]

%F(t) =XI(t)+T()X"+Y (5.101)

where
X=-H-2M+M"), and Y =4i(M — M) (5.102)

H is a real antisymmetric matrix that characterizes the quadratic Hamiltonian (5.32)
while M as defined in (5.99) is a complex Hermitian matrix parameterizing the Lindblad
operators L,. X and Y are real valued 2N x 2N matrices with Y being antisymmetric
(that is Y = —YT). We see that unitary evolution of the CM given by unitary equation
(5.73) can be obtained from (5.101) when M = 0, that is Y =0 and X = —H.

5.3.5 General application

What we have presented so far is a description of the structure of fermionic systems,
Gaussian fermionic states and their possible characterization in the covariance matrix
formalism. We then briefly talked about the evolution of the Fermionic Gaussian states. We
can apply this knowledge to some physical problems in quantum information and quantum
thermodynamics. One of the main reasons for these applications is because Gaussian states
and their corresponding Gaussian unitaries can be effectively generated in the laboratory.
Secondly the unitary and dissipative dynamics can be efficiently simulated in a classical
computer [19] and master equation is solvable [105]. .

To proceed, our first application, which is discussed in Chapter 6, focus on the prob-
lem of extracting work from quantum (fermionic) systems. Passive state are states from
which work cannot be extracted unitarily if only a single copy of the system is available. It
follows that given several (n) copies of passive states, there may exist extractable energy
in the system via global unitary transformations [73]. Complete passive states are states
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for which no work can be extracted no matter the number of copies of the system that are
available — the only example is the thermal state [1006, ]. Can we identify passive but
not completely passive fermionic states from which work can be extracted? On the other
hand, a problem arises when realizing the global unitary transformation is far-fetched from
current technology. This naturally leads us to consider work extraction via Gaussian uni-
tary transformations [22], that are practically realizable. Just like passive states, Gaussian
passive states are states from which no work can be extracted via Gaussian unitary trans-
formations. Two important questions which we answer in the chapter include 1) What are
the characteristics of Gaussian passive states? 2) What energy is sacrificed using Gaussian
unitaries to extract work rather than arbitrary unitary transformation?

The second application, which is presented in Chapter 7, characterizes the dynamics
of a fermionic open system by taking advantage of the properties of Gaussian states and
Gaussian operations. In the covariance matrix formalism, the Markov master equation
that governs an open system was derived and characterized according to the following di-
chotomies: active and passive dynamics depending on the system’s ability to change and
preserve its energy respectively, and orthogonal and non orthogonal dynamics, depending
on the ability that the dynamics preserves information in the system or exchanges infor-
mation with an external environment. We also consider the multimode vs single mode
case, and lastly state dependent vs state independent dynamics respectively. The classi-
fication reveals that only nine out of the expected sixteen dynamics are possible.We go
ahead to give the physical interpretation of the different classifications and how they relate
in physical quantum processes.
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Chapter 6

Work Extraction from
non-interacting fermionic systems

6.1 Introduction

Energy is a quantitative property that is transferred to a system in order to perform
work on a system. Obviously energy is of fundamental and practical importance, and
it follows that the process of storing energy and subsequently extracting it is one of the
most important applications of quantum thermodynamics. In this line, a major task in
quantum thermodynamics is to understand which quantum states allow for work extraction
from quantum systems. Such states are called non-passive, while states from which no work
can be extracted are called passive states. Interestingly, passive states can be activated
in a way that they become non-passive. This property, known as activation, is seen when
several copies of passive states are processed as a whole by a global (entangling) unitary
transformation. Thermal (or completely passive) states are those that lack the property
of activation irrespective of the number of available copies. This implies that any device
for unitary work extraction must be out-of equilibrium. In the bosonic setting [22], the
simplest out-of-equilibrium cycle engine for unitary work extraction is a heat engine which
requires minimum access to two thermal baths at different temperatures. We will show
that this is not the case for two fermionic modes. Instead the minimum number of baths
required to construct a heat engine in the fermionic setting is three [96].

On the other hand, while work can be extracted from non-passive and passive (but not
completely passive) states, the relevant cyclic unitary transformation may be difficult to
realize. For feasible technological applications, we require unitary transformations that are
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cost efficient and readily available. Gaussian unitary transformations offer such advantages,
which motivates the notion of Gaussian passivity [22]: a state property requiring that work
may be extracted via Gaussian operations.

The main goal of this current chapter is to characterize those states in fermionic systems
that allow or do not allow for work extraction via 1) cyclic unitary process and 2) Gaussian
unitary process respectively. As a first task, we will find the minimum number of copies of
passive states that achieve activation in non-interacting fermionic systems. This number
will give the minimum number of thermal baths required for constructing a heat engine in
the fermionic setting.

6.2 Cyclic unitary process and work extraction

6.2.1 Cyclic unitary process

Consider an isolated system S in initial state p(0), that is driven by the Hamiltonian
H(t) = V(t) + H where H given as

H=> eli) (il e <ejm (6.1)
j

is the system’s free Hamiltonian and V' (¢) is any time-dependent interaction applied to the
system for a time 7', and accounts for work transfer. A cyclic process is defined as one in
which S is coupled at the time ¢ = 0 to external sources of work, and decouples from them
at the time ¢t = 7. Thus, the potential V' (¢) vanishes before the process at t = 0 and after
the process at ¢t = 7. That is V(0) = V(7) = 0.

The corresponding driving gives rise to a unitary evolution operator

T
U(r) =T (exp-i / at(H + V(1) (6.2)
0
with the resulting final state given as
p(T) = U(T)pUN(T) (6.3)

Within the framework of cyclic unitary processes, work extracted from a system is given
by the change in average energy of the system

W =Tr[Hp] — Te[Hp(T)] = E; — Ey (6.4)
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Intuitively, if such U exists, then work is generated from the system when W > 0; that is
E; =Tr[Hp(T)] < Tr[Hp| = E;. (6.5)

It follows that some quantum states do not allow the reduction of its average energy by a
cyclic unitary process. These are called passive states, while those for which the average
energy can be reduced via cyclic unitary process are called non-passive. We will come back
to the notion of passive and non-passive states.

6.2.2 Work extraction from quantum systems

The process of work extraction from a system starts with an initial non-passive state p(0)
of the system. Under the action of a unitary operation, we reach a possible final state
p(T). The work extracted from p(0) is maximized if

Whinax = Tr[Hp| — Tr[Hoy) (6.6)

This suggests that the maximum work extractable from a system is achieved once the final
state is passive. This is called ergotropy [!] - the average work extractable from the state p
of a system by means of unitary operations. The task is to identify what form the potential
would take in order to extract maximum work from the quantum system. The unitary
operator minimizing E; (hence maximizing W) is the one that results in a permutation of
the elements of p so that the largest element of p is matched with the smallest one of H.
Thus all passive states are diagonal in the eigenbasis of H with probability of occupation
decreasing as the energy associated with the eigenstates of H increases. That is, passive
states o, with Hamiltonian (6.1), are given as

op =Y pili)(l, with p; > pia ¥
where 0 < p; <1 and ijj =1.

We will come back to the notion of passive state later in the chapter. We will now
discuss work extraction by considering the case for single and composite quantum systems
respectively.

The case of a single quantum system

Consider a d-dimensional single quantum system with Hamiltonian

d—1
h=> gl G,  with e <ejp (6.7)
j
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and density state

p=> pili) Ul (63

We have assumed that H is diagonal in its eigenbasis {|j)}. Here the maximal work
extracted from a single quantum system is given as in (6.6)

The case of composite quantum systems

Now consider that S is made of n identical d-dimensional noninteracting subsystems. As-
sume each subsystem has the same local Hamiltonian (6.7) and density state (6.8). The to-
tal Hamiltonian H of the system is the sum of the individual local Hamiltonians H =), hy,
and can be written as [((]

H=H1°" V119 H®1®" 2 4... 418" Vg H (6.9)
The system is driven by the time-dependent cyclic Hamiltonian
H(t)=H+ V(t) (6.10)

where V() is a potential that will act on the whole system at time ¢ € (0,7"). The task is
to identify what form the potential would take in order to extract maximum work from the
global system. A classical work strategy would act locally on each ensemble. So assume
if for a single system starting from an active state p4, the maximum work is Wy, then
such a classical strategy can extract at most n)VW.x from the system.

As we have discussed, a permutation operation is required to achieve maximal work
extraction. Now note that after maximal work extraction the final state of the ensemble
is a passive state which is separable because it is diagonal in the eigenbasis of the non-
interacting hamiltonian H, as the initial state. However, permutation operators are not
local and can have maximal entangling power [101, 48]. A consequence of this is that
some passive states may be activated for work extraction, when many copies of them are
processed by global (thus entangling) unitary operations. This leads us to the notion of
passivity, complete passivity and activation, discussed in the next section.

6.2.3 Passivity, complete passivity and activation

Given the state p of a finite dimensional quantum system associated with the Hilbert space
H = C? and Hamiltonian H = Z?;é l7) (j|, with energy eigenstates |i) and eigenvalues
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g;. We ask whether the average energy of the system can be lowered by a cyclic unitary
transformation U acting on the system. This question naturally leads us to the notions of
passivity, complete passivity and activation, which we will now describe explicitly.

Passive states

Passive states are states from which no work can be extracted unitarily if only a single copy
of the system is available. Passivity of a quantum state is often expressed as a property
of the state and its Hamiltonian. Consider a state p and a reference Hamiltonian H, both
written in their respective eigenbasis,

H:=> E[n)(n|, with E,. > E,Vn, (6.11)

p= an|:0n> (pul,  with pup1 <p, Vn (6.12)

where 0 < p, <1and ) p,=1. pis passive if and only if

1. it is diagonal in the same basis as the Hamiltonian H of the system, that is [p, H] = 0.
This can be interpreted as {|p,)} coinciding with {|n)},

2. it has no population inversion, that is populations p; are strictly decreasing as energy
€; Increases.

Otherwise we say p is non-passive.

Complete passivity and activation

Passive states have the property of activation where it becomes possible to extract work
from many copies of passive states; this leads to a more restricted notion of passivity.
Suppose we have n copies of our system with a total Hamiltonian (6.9) and described by
the state p®". It follows that through some global unitary operations, some passive states
can be activated to yield work, provided we have more than one copy of the system. A
state p®" is completely passive if and only if the state is passive for all n. A result in
quantum thermodynamics shows that the thermal states

T(B;) = %GXP(—ﬂjHJ)a (6.13)
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with inverse temperature f3; are the only completely passive states [106, 81], where Z =
Tr(e=P1i) is the partition function and 3 = % is the inverse temperature. If the state p®"
becomes activable for some n > k then it is said to be k-activable [120].

It was shown in [125] that the notion of passivity and complete passivity of a quantum
system can be equivalently described in terms of virtual temperatures. There by associating
virtual temperatures to the transition between populations of different energy transitions
that passive states are those at which every transition is at positive temperature while
complete passivity are those at which every transition is at the same positive temperature.

We will now go ahead to describe examples of passive states but not completely passive
states and show how work can be extracted from such state.

6.2.4 Thermal states

Many copies of passive states may have extractable energy when processed by global uni-
tary transformations, while from the so-called completely passive states no work can be
extracted no matter the number of available copies of the system. Thermal states are the
only completely passive states.

Thermal states have been defined in (6.13) as

1
T(B8) = Eexp(—ﬂH), (6.14)
where Z = Tr[eH] is the partition function. We can represent thermal states in the single
fermionic Fock basis {|n)} as

1

T(8) = (L+e ™)'y e n)(n|  ne {01}

n=0

— (1) |0y (0] + eP|1) (1] (6.15)

Suppose we have a number of fermionic modes initially in a thermal state (6.13). The
Hamiltonian H of the system can be written

H = ija;aj (6.16)
J
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with w; the mode frequencies and the field operators a;, a;r- satisfy the CAR relation (5.18)

la;, a,U = 0. For such a free Hamiltonian describing non-interaction of the modes (see
5.1.4 for discussion), the initial state of the system is a product state

7(8) = Q) 7(5) (6.17)

)

6.3 Unitary work extraction

So far we have discussed that work can be extracted from non-passive states through
unitary operations. Work can also be extracted by processing several copies of passive but
not completely passive states through global (entangling) unitary operations. Then we
defined thermal (completely passive) states as those from which no work can be extracted
cyclically no matter the number of available copies [126, , |, this implies any resource
state for unitary work extraction (cyclic engine) must be out of thermal equilibrium.

Let us now consider a technical observation of the heat engines. It was shown in
[22] that for two bosonic modes at the same frequency, the product state of two thermal
states with different temperatures is not passive. This implies that in the bosonic setting,
constructing a quantum heat engine (the simplest out-of-equilibrium resource) requires
access to two thermal baths at different temperatures. We will show that this is not the
case for two fermionic modes. However for three fermionic modes at the same frequency,
the product state of three thermal states with different temperatures can be non passive.
Thus suggesting that the minimum number of thermal baths which is required to construct
a quantum heat engine in fermionic setting is three [96]. We will now present a proof for
the case of fermionic systems.

6.3.1 The case for two-mode fermionic system

Consider a non-interacting two-mode fermionic system of equal frequency w each with local
Hamiltonian h; = wa}ai. The total Hamiltonian H of the system is simply the sum of the
individual local Hamiltonians: Hg = w(a{al + agag). The fermionic two-mode thermal
state in the Fock basis may then be expressed as [32]

1
212,

1
Z e—w(nﬁl-ﬁ-m,@z)‘n) <”|1 ® |m> <m|2’ n,m e {O, 1} (618)

m,n=0

T(ﬁbﬁz) =
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where 2,25 = (14 e 7*)(1 + ¢7#2*) and up to a common factor, the matrix elements are

€ = e—w(ﬂﬂ‘b—i—ﬂgm) — Q*ﬁ(mTl‘i’nTZ).

We see that Hy commutes with the product state 7(51, 52). The sum of the occupational
numbers in the state is N; = m +n. From (6.12), the state 7(5;, 32) is non passive if there
exist pairs of non-negative integers (m,n), (m’,n’) such that

€ >¢, while m'+n >m+n (6.19)

_ ’ ’ —_w '"Ty4+n'Ts) . . .
where ¢ = e« (B +82m') — o= ym (MTHANTR) G o population, from which up to a common

factor yields the condition

mTy +nTy >m'Ty +n'Ty, while m' +n' >m+n (6.20)

by making use of the fact that e=4% > e™4Y = X < Y. Given that m,n,m',n’ €
{0, 1}, equation (6.20) cannot be satisfied for any combination of the m,n,m’,n’. We then
conclude that for two-mode fermionic states, regardless of frequencies of the modes and
its temperature, the product of two thermal states is always passive, in contrast to the
bosonic case [22].

6.3.2 The case for three-mode fermionic system

We will now extend the analysis above to a three-mode fermionic system in thermal states
at equal frequencies and different temperatures. The state can be written as

1

7_(517 527 53) :leQZ'g,

1
o e B i @ [n)(nl @ 1) (] (621)

m,n,l=0

and the total Hamiltonian of the system is H = w(aJ{al + agag + agag). The non-passivity

condition becomes
npy+mpBa+ 103 >n'By+m'By +1'8; while m'+n"+1'>m+n+1 (6.22)

The matrix element is now proportional to e~«(A1+mB2+8s) and m n,l € {0,1}. One can
now find a three-dimensional subspace in which a unitary can reduce the average energy,
proving that the state 7(/31, B2, B3) is not always passive. For example, let m’ =n’ = 1,1’ =
0 and m =n =0, =1, it is obvious that m’ +n’ +1' > m +n + 1. Also,

B3 > P+ P2 (6.23)
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which can hold for sufficiently large B3. In general the condition (6.22) can be satisfied
provided f; < f3;, By, for distinct 4, j, k. Hence a product of thermal states p = H;l 7(8;) =
7(01) ® - - ®7(By) for fermionic modes can be activated to become non-passive for n > 3.
In other words, the state is 3-activable [126].

6.3.3 Practical implementation

According to our discussion above we see that a system of fermionic modes in a thermal
state, with equal frequencies and at different temperatures, is 3-activable. We will now
present a protocol that extracts work from three mode non-interacting fermionic system
in a thermal state.

Protocol:

Consider the three-mode fermionic system described by the state (6.21). From the non-
passivity condition (6.22), we note that for the above transformation to be possible, the
action of the unitary operation must be such that

e The initial state with a composition of the three modes should consist at least of an
unpopulated mode and a populated mode. That is, initial states of the system of the
form [111) and |000) are not allowed.

e The action of the unitary should take the initially populated (unpopulated) mode to
an unpopulated (populated) mode of the final state.

e One can always guess the temperature relationship of the different modes: The sum
of the inverse temperature of the initially unpopulated modes must be less than the
inverse temperature of the populated mode.

e If a transformation leaves a mode unaffected, then the temperature of such a mode
does not matter during the transformation process.

We now turn to a practical example of such a transformation. The three mode state
can be explicitly written as

e~“PL|100)(001| 4+ e~“P2|001)(100| 4+ e~“P2|010) (010 + e~=F1+5)1101) (101|

Prml =

AVAYA
+ e B8] 110)(011] + e~<%2+5)|011)(110| + [000) (000
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where we have ignored the term in [111) (111]. Upon expanding the sum in (6.21). Consider
a unitary of the form

U = |101)(010| + [010)(101| — |101)(101] — |010)(010| + 1 (6.24)
where U induces a transition between the two degenerate states
|010) «» |101) (6.25)

We note that U = UT. This type of unitary has been applied to generate a mixed state
of the Werner- type thermal state [1] necessary for quantum information processing. The
amount of work extracted from the system (the change in its average energy) is given by

[125]

W = Tr[H(pnml - UpnmlUT)]
— we—wbe (1 _ e—w((ﬂ1+53)—52))

which must be positive for the state to be non-passive. Clearly this will hold whenever
(61 + P3) — B2 < 0 or in other words

Ba > 1+ B3 (6.26)

which agrees with the non-passivity condition in (6.22). Alternatively one could employ a
unitary that interchanges the |001) and |110) states and one would obtain (6.23).

The problem of generating a unitary analogous to (6.24) for more copies of fermion
states is rather challenging. In the next section, I will discuss a more restricted class of
unitary transformations.

6.4 Work extraction and (Gaussian unitary operations

We have seen in Sec 6.3.1, that a product of two non-interacting thermal states at different
temperatures is passive unlike its bosonic counterpart [22]. Now given that constructing
a quantum heat engine requires access to two thermal baths at different temperatures,
does this suggest that we cannot construct a heat engine out of a product of two thermal
states in fermionic modes? It follows that to extract work, instead of the arbitrary cyclic
unitary transformation, we could consider a set of restricted quantum operations known
as GGaussian unitary transformations. This leads us to the notion of Gaussian passivity, a
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characteristic of a quantum system for which work can be extracted via GGaussian unitary
transformation.

Just like in the definition of passive states, a state (not necessarily Gaussian) is said
to be Gaussian passive if no work can be extracted from it through Gaussian unitary op-
erations. In terms of work extraction, our aim in this section is to see what is achievable
using Gaussian unitary transformations. We work in the covariance formalism that is,
given a Gaussian unitary transformation, we are interested in the effect of the Gaussian
transformation induced by this unitary on an arbitrary state via its effect on the corre-
sponding covariance matrix. We ask for which (not necessarily Gaussian) states of two
non-interacting fermionic modes with frequencies w, and w, (w, < w,) can energy be ex-
tracted using only Gaussian operations. States from which energy cannot be extracted
using Gaussian operations are called Gaussian passive [22].

6.4.1 Gaussian passive states

We are now ready to characterize a quantum state with covariance matrix I' for which the
average energy (5.55) can be minimized by a Gaussian unitary transformation.

To begin, consider a fermionic system made up of two non-interacting fermionic modes
a and b respectively. Let p and I' be the density state and covariance matrix of the system
respectively, according to (5.63) I' is given in the standard form as

0 a 0 —e1
i —a 0 —€2 0
e I (6.27)
€1 0 —b 0

In terms of 2 x 2 blocks, we have

_ FA FAB . _ O a o O b o 0 61
st — (_FZ‘B FB) 5 Wlth FA — (_a 0) 5 FB — (_b 0) 5 FAB — <e2 0) .

In the case of pure fermionic systems, the two-mode covariance matrix in the standard
form is written as

0 a 0 —e
» | —a 0 —e O
=Y e (6.28)
e 0 —a O
with e = (1 — a?)"/2 [15, 45] so that the fermionic system depends only on one parameter

a.
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Average energy in terms of state covariance matrix

Recall the average energy of a system with Hamiltonian H and described by the density
operator p is given according to Eqn. (5.55) as

E(T,) = % (1 - Tr(QlF1)> +ot % (1 - Tr(QnFn)> (6.29)

0

for a real symplectic matrix Q = PJ_, 2, with Q; = (1

_01). For a two mode system,

the average energy is given as
E(,) = ‘%(1 . Tr(QAFA)) n %(1 _ Tr(QBFB))

Evaluating €2,I'; for each mode j, we obtain the average energy of a state with CM given
in (6.27)

wCL
2
where w, and w, > w, are the frequencies of the modes. We will now go ahead to see if a
state with CM (6.27) is Gaussian passive or Gaussian (active) non-passive. From there we
give the general characteristics that describes Gaussian passivity of a system.

B(D,) = 221 - 2q) + %(1 — 2b) (6.30)

We consider the three Gaussian unitaries — local orthogonal transformation, beam split-
ting, two-mode squeezing — and the following steps of operation. Let the initial state of the
system have the covariance matrix ['; and an average energy E. The Gaussian unitary that
acts on I' will take it to a new CM given as I'; with average energy E’. By comparison:

1. If £’ < F, then work has been extracted from the system and we say the state is
Gaussian non-passive. Next we check if there is more extractable work from the
system. If yes, we then apply another Gaussian unitary on [y to further reduce E’
until the system’s average energy is minimal. At this point we say there is no more
extractable work from the system and the system is Gaussian passive.

2. If however E/ > E, then the system is Gaussian passive and work cannot be ex-
tracted from the system via the Gaussian unitary operation that yields IV. We can
try other Gaussian unitaries to extract work from the system until we arrive at a
Gaussian passive state from which no more work can be extracted via Gaussian
unitary operation.

The question now is, what is the nature of the CM of the system whose state is Gaussian
passive. Answering this question results in stating the characteristics of Gaussian passivity
of a system as we will now discuss.
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6.4.2 Characteristics of Gaussian passive states.

At this point, we characterize Gaussian passive states:

Theorem 1. Any (not necessarily Gaussian) state of two noninteracting fermionic modes
with frequencies wy > w, s Gaussian-passive if and only if its covariance matriz I" is

(1) in Williamson standard form [15]

0 a 0 O
—a 0 0 0
=100 0 b (6.31)
0 0 —=b 0
with a > b for wy, # w,, or
(i) in the normal form
0 a —e
—a 0 e O
r=1a o (6.32)
e 0 —=b O

for equal frequencies wy, = w,.

Proof. Let us now prove the theorem 1

Local Orthogonal Transformations

Let our initial two-mode non-interacting fermionic system be described by the density state
p and a corresponding CM I'. The first Gaussian unitary operation we consider is the local
orthogonal transformation which is applied on each system’s mode.

It is a theorem that the covariance matrix I' of a two-mode fermionic system can be
brought to its standard form through a local orthogonal transformation Ojoc = Oiec, @ Oloc, »
that is

st = OlocrOljczca OlOCj = (_C(S)lsflq(bjbi) Scl(r)ls((ngj)) (633)

138



By inverting equation (6.33), we can write the local covariance matrix of a two-mode
system as

I = OL T4tOe (6.34)

and we note that the inverse operations are also local orthogonal transformations. Com-
puting I', we obtain

_ Olztlca FAOloca OIJ(;CG EOlocb o F’A F/AB
b= <_O£)chToloca oL I',04 o F;%A F% (635)

locy

Evaluating the average energy, we find E(I') = E(I's). So it becomes clear that applying a
local orthogonal transformation to bring the CM of a system to standard form (6.27) does
not lower the energy of the system. Thus a state with I' = I'y; is Gaussian passive with
no extractable work via local orthogonal transformations. However, the energy of such a
system may be lowered via global transformations that act on many copies of the system.

Two mode Squeezing

Now suppose a state has a covariance matrix in the standard form (6.33). We have seen
in the previous subsection that such a state is Gaussian passive under a local orthogonal
transformation. In this section, we will apply the global orthogonal transformation (5.83)
to the system and see if its average energy can be reduced. Computing the corresponding
two-mode squeezed covariance matrix [y = S (r)LgsS(r)T, we find

0 d 0 —¢€

- —a 0 —e, 0
ee. 0 =b 0
where
/ 2 2 1 / 2 2 1
a' =ac; —bs. — 5(61 +e3)s9,, U = —as; +bc; — 5(61 + €3) 59, (6.37a)
1 1
e) = E(a +b)Sgr + €162 — €987, eh = E(a + b)Sg, + €xc2 — €187 (6.37b)

with ¢, = cos(r) and s, = sin(r) respectively. To see if this transformation can reduce the
average energy, we compute FE(I'ry/) using (5.54), obtaining

E(fra) = %(1 —2d) + %(1 —9l) (6.38)
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and substituting equations (6.37) into (6.38), we get

E(C 1) = w, [b sin?(r) — acosz(r)} + wp [a sin®(r) — bcosz(r)]

N (wWq + wp)

5 [1 + (e1 + €2) sin(2r)} (6.39)

Minimizing this with respect to the squeezing parameter r» we find the condition

0

EE(f‘TM) = 0= (a+0b)sin(2r) + (e; + e2) cos(2r) =0 (6.40)

whose solution is
_ _ = - _ - 41
r 5 t s ) 5 tan™" () (6.41)

where A = (e; + e2)/(a + b). The minimized energy is

Emin(Crar) = w@ — (a+ b)m)

(wp —wy)(a —b). (6.42)

N | —

+

Defining e = (e; — €3)/2, the elements of the covariance matrix (6.37) are now

g (et s (@) (6.43)

2 2
pol ; it m—;b) (6.43b)
el =e, @&,=—e (6.43c)

We pause to comment on the interpretation of these matrix elements. In addition to
minimizing the system’s average energy, the squeezing parameter (6.41) reduces the off-
diagonal elements in (6.36) to a single parameter e so that the resulting covariance matrix
is of the form

—a 0 e 0
Ter=| 0 —o 0 ¥ (6.44)
e 0 = 0



If the state is a two-mode pure fermionic Gaussian state whose covariance matrix is of
the form (6.28), the two-mode squeezing operation takes the state’s covariance matrix to
the form

0 1 0 O

-1 0 0 O
I'tp = 00 0 1 (6.45)

0 0 -1 0
with property (I'%.p)? = —1. This corresponds to the covariance matrix of a pure fermionic
Gaussian state in the Williamson normal form [15]. To achieve a Williamson normal form

covariance matrix for the general two-mode fermionic system, we consider further Gaussian
unitary transformations on the system.

Beam Splitting

The last Gaussian operation we have to consider is the beam splitting operation. This

transformation on fermionic phase space is represented by the transformation matrix (5.82).
We find

0O A 0O D
Los = BOLerBi0) = | 4 0 P (6.46)
-D 0 —-B 0
where
A =d cos?0 + I/ sin?() + esin(26) (6.47a)
B =1/ cos? 0 + a'sin?(f) — esin(26) (6.47Db)
D = %(&’ — b') sin 20 — e cos(26) (6.47¢)
The average energy corresponding to ['gg is
E(ps) = — w, [5’ sin?(0) + @’ 0082(9)] — wp [d’ sin(0) + b cos?(0) (6.48)
+ (wa——;—wb) + (wp — wy)esin(26) (6.49)
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Again energy is minimized for the value of # satisfying the equation
(wWp — wa) [(l;’ — a') sin(26) + 2e 005(2«9)] =0 (6.50)

implying

L 2 I
0 = ——tan (B/_d/>——§tan 1

where y = 2¢/(I' — @'). The minimized energy under the beam splitting operation is then
A Wp — Wy o, = 1 o, =
Enin(Tps) = % ((a’ -0 )v1+ ;ﬂ) + 5(% + wy) (1 — (@' + b’)), (6.51)
and the corresponding minimized matrix elements are

@+8) @ -¥)

A= 5 T 14 p? (6.52a)
~/ B/ ~7 6/

B:(“; )_(“2 ) TT 2 (6.52b)

D=0 (6.52¢)

For equal frequencies w, = wyp, the average energy is unchanged, that is Emin(fTM) =
Eoin (f ps) and we conclude that the state with covariance matrix (6.44) is Gaussian passive.
However for different frequencies, assuming w.l.o.g. that w, > w,, the covariance matrix
for the minimized state under the beam splitting operation is in the Williamson normal
form [15]

0 A 0 0
~A 0 0 0
1 _
er=1 0 o0 o Bl (6.53)
0 0 -B 0

with eigenvalues given as A\, = £iA and A\, = +iB. If a > b, we find that A\, > A\, and so
the lower frequency mode has the higher population. O

We see that the effect of the orthogonal transformation on the fermionic two-mode

covariance matrix is to decompose the modes and bring them into a product of single-mode
locally thermal states diagonal in the Fock basis. An example of a Gaussian passive state
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of two modes with different frequencies is that of a product of single mode thermal states,
in which each mode has different temperature. In this case, the Williamson eigenvalues are

A; = tanh (2"}) For T}, # 0 the condition A\, > A, for Gaussian passivity can be expressed
as
we 1,
— > — 6.54
o T (6.54)

As shown in section 6.3.1, within the framework of general operations, the product of
two thermal states at different temperature is passive, regardless of the frequencies of the
modes involved. And from above, we see that such a state is also Gaussian passive showing
that all passive states are obviously Gaussian passive. However the converse may not be
true [22] as we will show in the next section.

6.5 Passivity vs Gaussian passivity

So far we have focused on characterizing a general fermionic state according to whether
work can be extracted or not using Gaussian unitary transformations. We started with
the covariance matrix of a general two-mode non-interacting fermionic system, applied
Gaussian unitary operations to extract energy from the system and then we arrived at the
Gaussian passive state (6.53), where no further energy could be extracted by an additional
Gaussian unitary transformation. A reasonable question then arises: in the process of
characterizing a (not necessarily Gaussian) state, how much extractable work is sacrificed
by using Gaussian unitary transformations instead of general unitary transformations? To
address this question we will follow a procedure similar to that in the bosonic case [22].

The answer to the above question depends on the particular state. We see that in the
characterization process we fixed the second moment of the fermionic state, which only
uniquely identifies states if they are Gaussian. Two steps therefore lead us to answering
the above question. 1) First we must find a (non-Gaussian) pure state that is compatible
with a given Gaussian passive state, or in other words we must find a non-Gaussian state
with the same second moment as that of the Gaussian passive state. 2) We must show that
a general unitary transformation on the resulting (non-Gaussian) pure state can lower its
energy to the minimal value. These observations can be recast in the following lemma

Lemma 1. The second moments of any Gaussian passive state are compatible with a (non
Gaussian) pure state for which the entire energy is extractable by unitary transformation.
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Proof. To proceed, we first note that the covariance matrix of a Gaussian-passive state
(6.53) of an arbitrary number of modes with different frequencies is identical to the co-
variance matrix of a product of locally thermal states with different effective temperature
for each mode. One could then consider a single fermionic mode in a thermal state with
arbitrary temperature and then find a pure state whose second moment is that of this
single mode thermal state. Then one could certainly find pairs of states of this kind whose
tensor product is compatible with a Gaussian-passive locally thermal two-mode state. For
example, in the Fock basis, the fermionic state

) =+/1-pl0)+/p[1), 0<p<1 (6.55)

has a covariance matrix of the form

(1 N % e 1) (6.56)

and so by carefully choosing the continuous parameter p, we can bring the covariance
matrix to look like that of a single-mode fermionic thermal state with inverse temperature

8

0 tanh (%‘“)

Ly = 5
— tanh <7”> 0,

(6.57)

where w is the mode frequency. Unfortunately, the state (6.55) is prohibited by a super-
selection rule [3] and so does not exist.

However, another example would be the fermionic vacuum state |0) and a single fermion
state |1) each having covariance matrices

0 1 0 -1
FPOZ(—1 o)’ Fm:(l o)’

respectively. Given that the (|1),|0)) states are pure, their covariance matrices satisfy the

condition F|2i> = —1. We define the free energy of these states as

F(p) = E(p) = T5(p), (6.58)

where S(p) = —Tr[pln(p)] is the von Neumann entropy which is vanishing for pure states,
and E(p) is the average (internal) energy.
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Now to achieve our first task, consider pairs of the single fermionic systems encoded
into a bipartite Hilbert space Hq = H, ® Hp of subsystems a and b respectively. The
state is defined by a density operator pl, = [00)4,(00] and p%, = |11)4(11] respectively, the
resulting states correspond to direct sum of locally pure fermionic Gaussian states. Their
covariance matrices are respectively

Fﬂib = FZl @ FZl’ Fﬂib = FZz @ Ff’Q’

which is the same as the CM of pure fermionic Gaussian passive state (6.45). For our
second task, given that the constructed states are pure, their free energy is thus identical
to the average energy. Interestingly there is no way to lower the average energy of the
constructed state pl,. However the energy of the state p?, can be lowered by applying a
(non Gaussian) unitary transformation that takes the pure state to the vacuum state. This
shows that p?, is Gaussian passive but not passive while pl, is both passive and Gaussian
passive, as expected.

]

6.6 Discussion

We have investigated the problem of work extraction from fermionic systems, finding a
number of similarities and differences with their bosonic counterparts.

Thermal states at positive temperatures are the only completely passive states from
which work cannot be extracted no matter the number of available copies [120, , ].
Any quantum state out-of-equilibrium is a potential resource for work extraction. However
for fermions the situation is somewhat subtle. We have shown that under arbitrary unitary
transformations there is no way to process a product of two fermionic modes in different
thermal states to extract work, independent of mode temperatures and frequency. This
is quite unlike the situation for the bosonic counterpart [22], and suggests that fermionic
systems are not as useful for quantum thermodynamic applications such as construction of
quantum heat engines [73]. However we found that a product of more than two fermionic
modes in different thermal states was non-passive (under a certain temperature constraint),
implying work extraction is possible in this system. The challenge of generating the nec-
essary unitary operation for this work extraction could be a limitation.

We extended the notion of Gaussian passivity to fermionic systems and presented cri-
teria for identifying fermionic states according to their Gaussian (non-Gaussian) passivity;
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that is, according to our ability (inability) to extract work from them using Gaussian uni-
tary transformations. This characterization is based on the second statistical moment of
the two-mode fermionic system, which is known to have complete information about the
system. This implies that our characterization provides information about the Gaussian
ergotropy of the system (that is the maximum extractable energy in a Gaussian unitary
process). Our result showed that under non-Gaussian (general) unitaries, we showed that
work can be extracted from a general two-mode fermionic system.

There is still much that can be done with Fermionic Gaussian systems. A classification
of their dynamics for open systems (analogous to the bosonic case [58]) remains to be
carried out, along with their time evolution under rapid bombardment. This is the subject
of the next chapter.
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Chapter 7

Classification of Markovian fermionic
Gaussian master equation

7.1 Introduction

The general Gaussian master equation (GGME) that governs the dynamics of open fermionic
systems was derived in section 5.3.4 and is written as

d
aP(lt) = AL(t) + T(t)A" + C. (7.1)
Equation (7.1) is an affine transformation with linear terms AT (¢) + I'(¢)AT and an affine

term C. A satisfies the complete positivity condition
A+ AT +iC <0 (7.2)

Any dynamics for the covariance matrix of the form (7.1) satisfying (7.2) can be equiva-
lently written as a differential equation for the covariance matrix of a state in Lindblad
form [105, 19].

d

&F(t) =XI')+IO)X"+Y (7.3)
We present in this section a classification of dynamics that this master equation can pro-
duce. Our classification of the master equation will be channeled based on the following

dichotomies
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1. Orthogonal vs non-orthogonal: we can identify an orthogonal (non orthogonal) dy-
namics with the dynamics of systems that require (do not require) an external system
in order that particle exchange would occur.

2. Passive vs active: The dynamic could be passive (active) if it preserves (changes)
the total number of particles in the system.

3. State dependent vs state independent: as the name implies, we define state depen-
dent (independent) dynamics as those that depend (do not depend) on the physical
properties of the system.

4. Single mode vs multimode: here, the dynamics may involve single modes of the system
or multimode necessary to study correlations and entanglement.

7.2 Dichotomies of classification

7.2.1 Orthogonal vs non-orthogonal dynamics

We showed in 5.3.1 that a unitary transformation on a system’s Hilbert space corresponds
to an orthogonal transformation on the system’s phase space. It follows that we can define
an orthogonal (non orthogonal) transformation in the same way a unitary (non unitary)
transformation is defined. By definition, a unitary time evolution would give rise to conser-
vation of probability which consequently results in conservation of quantum information in
a system, while a non unitary time evolution results in the loss of quantum information to
an external system. Therefore we define non-orthogonal dynamics as those that require an
external system for an exchange of information whereas orthogonal dynamics are defined
as those that preserve quantum information in the system.

To relate this definition to the GGME, recall the unitary and dissipative evolution
equation for a system’s covariance matrix I"

d
&F(t) = —HI(t)+T(t)H"  unitary dynamics (7.4)
%F(t) = XI'(t) +T(#)XT +Y  dissipative dynamics (7.5)

where X = —H —2(M + M*) and Y = 4i(M — M"). From these equations, we see that
the dissipative case reduces to a unitary case when M = 0, that is Y = 0 so that X = —H.
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Likewise we see that our derived GGME (7.1) for dissipative systems will reduce to the
case for unitary evolution (7.4), when the affine term C' = 0 and the generator of the linear
term A is antisymmetric (that is A, = A — AT), where we have denoted the orthogonal
part of the matrix A as A,. Obviously we can associate

i
Heﬁ‘ = Ao, Heﬁf = §XT AO X (76)
In the same way, the non-orthogonal part of the dynamics corresponds to all C' # 0
and the symmetric part of A (that is A = AT). Again comparing with the Lindblad
master equation (7.4), we can associate the non-orthogonal dynamics Ay + Cy = M. To
sumimarize

Ao =A—-AT, C,=0
Av=A+ AT, C,=C

7.2.2 Passive vs active dynamics

A quantum evolution that is number preserving (non preserving) is called passive (active).
As we already discussed in section 5.3.1, number conserving (non conserving) transforma-
tions would commute (non commute) with the excitation number. Thus we can equivalently
define passive (active) dynamics as those that preserve (changes) the expected excitation
number respectively, so that active dynamics would require an environment for particle
exchange. We will now demonstrate how the GGME (7.1) generates a passive and an
active dynamics.

Define the total number operator Ejv a}aj. This counts the average number of particles
in a system of N fermions. In terms of the Majorana operators and system’s covariance
matrix we have

S ala;) = Telpalas] = 5 Telpless 1 + iesy)(en 1 — iex)] = 5N —ileny 1, ex)). (79)

j=1

Now define a symplectic matrix €2

al 0 1
O=PJI=1yalJ; J= o) (7.10)

j=1
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and recall that the single mode covariance matrix is given as [’ = (_Oa 8) where a =
+{[eaj-1, c95]). Tt is easy to show that Tr[QI'] = —2a. To summarize
1
(a}aﬁ = 5]\7 + Tr[QI] (7.11)

We will now see how the GGME (7.1) produces a passive (active) dynamics. We compute
the rate of change of the expected excitation number,
d dr

E(QT@ = Tr(Qa)

Te(Q(AT +TAT 4+ C)) (7.12)
—=Tv(QAT + ATOT + QC)
=Tr( (24— (QA))T +00),

where we have used the cyclic property of trace and that € is antisymmetric. By our above
definition, the dynamics is passive if %(ﬁ) = 0 for all I'. This is only the case if QA is
symmetric and QC' is traceless.

Thus we can identify the part of A which is passive, A, (active A,), as that part which
becomes symmetric (antisymmetric) when multiplied by €. Specifically

1

QA A:§

Loa+ (@A), 04

=7 (QA — (QA)T). (7.13)

so that A, + A, = A. Using the symplectic identities Q7! = Q' = —Q we have

1 1
A= Z(A+QATQ), A = S(4-04T), (7.14)

In order to identify the active and passive parts of C' we must split it into parts that
do and do not contribute to the trace of QQC. This is not trivial and will be discussed in
greater detail once we introduce the other dichotomies in Sec. 7.3.1.

7.2.3 Single mode vs multimode dynamics
Consider a dynamical system composed of many fermionic modes. State evolution may
be established within the same mode, for example, motion of electrons with the nu-

cleus. On the other hand, interactions between two or more modes are possible lead-
ing to physical phenomena such as correlations and entanglement. To understand how
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dissipative fermionic system describes such dynamics, first suppose we have a compos-
ite fermionic Gaussian system described by N Majorana modes in the basis (¢;_1, ¢a;),
with 7 = 1,2,--- | N labelling the modes. In section 5, we were able to construct the
Hamiltonian matrix (5.32), covariance matrix (5.42) and the A and C' matrices in (7.1)
by considering the Majorana basis so that adjacent pairs of rows and columns making up
the matrices would correspond to individual modes. Thus in this mode basis, a general
2N x 2N covariance matrix I', of a fermionic system is written as

Fl (512 (51]\[
5T, Ty ... &

ree— | T (7.15)
P

where the 2 x 2 block diagonal terms I';, describe the correlations within each mode, and
the off diagonal terms d;; describe the correlations between the j and & modes. Relating
this to the GGME (7.1), we can describe the block diagonal (block off diagonal) terms in A
and C' as those generating the single (multimode) dynamics respectively. So by definition,
a multimode dynamic is one that directly or indirectly couple different modes of the system
through an environment.

7.2.4 State dependent vs state independent dynamics

A state dependent dynamic may be defined as one where update rules are not fixed with
time, but rather changes as a function of the current state of the system.

Now consider again Eq. (7.1). We see that the linear terms generated by the matrix
A, would correspond to state dependent part of the dynamics as its effect on the states’s
covariance matrix depends on the current state of the system. Conversely the affine term
would be the state independent part of the dynamics.

7.3 Partitioning the different dynamics

To understand the distinction between different types of dynamics we discussed above, it
is helpful we introduce a basis for a real 2 x 2 matrix,

O T GO N ) (R R
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From equation (5.95), we expand A over this basis in the second tensor factor as,
A=A4101,+A4,0JJ+A, 09X +A, 07 (7.17)

We can write {2 = 1 ® J. In the previous section, we partitioned A into its orthogonal
and non-orthogonal parts, A, and Ay by isolating its symmetric and antisymmetric parts.
Likewise we partitioned A into its active and passive parts. In this section, we will use the
expansion in (7.17), we will isolate each part of A that we have just described.

The following identities will be useful for our study

anti(4,) ®Y if Y is symmetric
anti(4, ®Y). = (7.18)
sym(A4,)®Y if Y is antisymmetric

where we have defined the linear functions
anti(X) = X — X7, sym(X) = X + X7 (7.19)
Similarly

sym(A,) ®Y if Y is symmetric
sym(A4, ®Y). = (7.20)
anti(4,) ®Y if Y is antisymmetric

7.3.1 The case for state dependent dynamics

We have discussed in 7.2.4 that A generates the state dependent part of the dissipative
dynamics. In this section, we are going to partition A following two steps. The first step
involves partitioning A into its orthogonal active A,,, nonorthogonal active Ay,, orthogonal
passive Ayp and nonorthogonal passive Ay, parts respectively. In the next step, we further
partition the results above into single mode and mulitimode parts of A dynamics.

First step of partition

The first thing we do is to find A,,, the orthogonal active part of A. We note that the
computation is tedious but straightforward, and the procedure can be applied to find
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the other parts Ags, Aos, Aos- To begin, we first compute Ap which is given in (7.7) as
anti(A) = A — AT, Using the expansion of A in (7.17),

Ao =anti(A) =anti(A; @ 1h+ A, J+ A, @ X + A, ® Z)
=anti(A; ® 1) + anti(A; ® J) + anti(4, ® X) + anti(4, ® 2)

From the identity relation (7.18), we have
Ao, = anti(Ar) ® 1y +sym(4;) ® J + anti(A,;) ® X + anti(4,) ® Z (7.21)
Next we find the active part of A, which is given in (7.13) as
Ao = Q tanti(QA,) (7.22)

Recall that €2 can be written as Q2 = 1y ® J, so we first compute QA,. Making use of the
identity (A ® B)(C ® D) = (A® C)(B ® D) and taking note that

J@J =1y J&X =2, J@Z=—X, (7.23)
we obtain
A, = (1, ®w) (anti(AI) ® 1y +sym(A;) ® J + anti(A4,) @ X + anti(A4,) ® Z)
=anti(A;) ® J —sym(4;) ® 1, + anti(4,;) ® Z — anti(A,) ® X
and
anti(Q2A,)
:anti(anti(AI) ® J — sym(A;) ® L + anti(A,) ® Z — anti(A,) ® X)

=sym(anti(A;)) ® J — anti(sym(A4,)) ® 1, + anti(anti(A,)) ® Z — anti(anti(A4,)) ® X
=anti(anti(A4,)) ® Z — anti(anti(A,)) ® X (7.24)

where we have used that sym and anti are orthogonal projectors, that is for any matrix Y,
sym(anti(Y)) =sym(Y =Y = (Y - YD) + (Y - YT =0
anti(sym(Y)) = anti(Y +Y7) = (Y +YT) — (Y + YT =

Finally multiplying the resulting anti(A,,) (7.24) by Q! on the left,

Aox =0 tanti(QA,)
=— (1, ® J)(anti(anti(A,)) ® Z — anti(anti(A4,)) ® X)
=anti(4,) ® X + anti(A,) ® Z. (7.25)
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In obtaining the last line, we again used the relation (7.23). Thus the orthogonal active
part of A given by Ay, is the sum of two N by N antisymmetric matrices tensored with
X and Z. We can perform similar analysis on the other parts of A yielding

Aon = Ax,anti ® X + Az,anti ® Z, (7-263)
Aop = At anti ® Lo + Ay sym ® J, (7.26b)
Ava = At gym @ 1g + Ay anti @ J, (7.26¢)
A = A sym @ X + AL sym @ Z, (7.26d)

where A, ¢y and A, . are some symmetric and antisymmetric N by N matrices for
pwed{l,jx z}

Second step of partition

Finally each of these can be further subdivided into its single and multi-mode parts by
isolating their block diagonal elements. Note that in the expansion given by (7.17) the
block diagonal elements of, for instance, the A, ® X term correspond to the diagonal
elements of A,. Defining Aﬁ) to be the diagonal elements of A, we find the single mode
parts of each term to be,

ASOA :Aal;),anti ® X + Aganti ®Z=0 (727&)
AE)P :Afanti ® Ly + Afsym ®J= Aj?sym 0%y J; (727b)
A, =AD @1+ AP @ J=AP  ®1, (7.27¢)
A=A @ X +AD, L ®Z (7.27d)

Note that the single-mode orthogonal active state-dependent part of the dynamics (A$,)
vanishes since the diagonals of an antisymmetric matrices are zero. The multi-mode parts
of each term are given by the difference between the terms and their single mode parts,
AM = A — A%, From the classification above, we see that one cannot have dynamics which
is single-mode, orthogonal and active, that is Ap4 is always multi-mode, while every other
combination is possible.

7.3.2 The case for state independent dynamics

We turn our attention to partitioning the state-independent part of our dissipative dynam-
ics. As discussed already this is given by the antisymmetric matrix C' which was shown

154



in 7.2.1 to be entirely non-orthogonal Cy = C' and C; = 0. So what we need to do is to
compute the single-mode and multi-mode parts of C' followed by the active and passive
parts.

To begin, we can expand C' over the 2 X 2 basis (7.16) as we did for A.
C=0C=00L+0;J+C,0X+C,® Z, (7.28)

where C), are N by N matrices for p € {1,j,z,2}. Since C' must be an antisymmetric
matrix, it follows that its coefficient matrices in the expansion (7.28) must be either sym-
metric or antisymmetric depending on their accompanying tensor factor. Specifically, since
1o, X, and Z are symmetric C}, C,, and C, must be antisymmetric. Similarly since J is
antisymmetric C; must be symmetric.

First step of partition

We want to compute the single and multimode parts of Cy. As before this means splitting
Cy into its block-diagonal and block-off-diagonal elements. This again corresponds to
isolating the diagonal elements of C's coefficient matrices

Ci=CPelL+CPeJ+CPeoX+CPwZ
=CP®J, (7.29)

and
CY =Cy—C§ (7.30)

where we have again exploited the fact that the diagonals of antisymmetric matrices vanish.

Second step of partition

Next we will divide the resulting CY' and Cf, into their active and passive parts respectively,
according to how it affects a system’s average excitation number. Recalling equation (7.12)
we can see that C' contributes to the average excitation number through the trace of QC.
To see how this works, we will compute C’s contribution to the change of particle number;
that implies computing Tr[QC] = Tr(QCY) + Tr(QCY). Starting with the multimode
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Active Passive
Orthogonal AE) a M) AE)SP M)
Non-orthogonal AI(VSA M) OISi Al(\fp M) C’ISP M)
S.D. S.I. S.D. S.I.

Table 7.1: The results of the partition performed in Sec. 7.3.1. Note each cell is di-
vided horizontally into a state-dependent (S.D.) and state-independent (S.I.) part. The
superscripts on each term indicate whether or not such terms can be single-mode (S) or
multi-mode (M) or both. An empty cell indicates the dynamics is not possible. Note that
the partition has revealed that only 9 of the potential 16 types of dynamics are realized.

component of C,
TH(QCY) = (L@ NP @ L+ P @ T+ CP @ X + 2 @ 7))

= Tr((llz ® CoP)(J @ 1s) + (1o ® CIP)(J ® J)

+ (L@ CPY I @ X) + (1, @ CP)(J @ Z)) =0

where “C2P” denotes off diagonal element of the matrix C'. The trace is vanishing because
its element is off-diagonal. So we conclude following 7.2.2 that the multimode component
of C is passive. Next we look at the single mode component of CY

Tr(QCS) = Tr<(11N RNCP®L+CPRJ+CY X +CP® Z))
= Tr<(1lg ® C2)(J ® 1) + (1 ® CPY(J @ w)
+ (1, @CPYJX)+ (1, CHYJ® Z))

- Tr((]lz ® CPY(J @ J)) - —Tr(ch ® 12)
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So the diagonal elements of C,, determine if C' is active or not. Thus we are led to identify
the active and passive parts of C' as,

Caa = CP @ w, (7.31)

CNP - C - CNA7 (732)
respectively. Coincidentally these are the same terms we found when dividing C' into its
single and multi-mode parts, C§, = Cx, = C, and CY' = Cyp = C..

The results of this partition are summarized in Table 7.1. Note that the partition has
revealed that only 9 of the potential 16 types of dynamics are realized.

7.3.3 Complete positivity

Table 7.1 shows that an open system in the fermionic setting is capable of producing nine
distinct types of dynamics. It follows that not all of these dynamics are completely positive
in isolation. As we stated earlier, dynamics in the fermionic setting is said to be a valid
dynamics if it satisfies the positivity condition (7.2)

A+ AT +iC <0, (7.33)

We will show that any non-orthogonal dynamics (either C' # 0 or Ay # 0) must be
accompanied by a non-zero amount of noise. We prove this by showing that for completely
positive dynamics C' # 0 implies Ay # 0 which itself implies Tr(Ay) < 0. Following this we
will show that A7, is the only part of the dynamics which contributes to this trace. Later,
in the chapter we will show why it is appropriate to interpret A3, as generating noise.

Proof. To begin our proof, we note that according to (7.8), we can rewrite (7.33) as

245 +iC <0, (7.34)
Taking the complex conjugate of (7.34) gives

245 —iC <0 (7.35)

We see from (7.34) and (7.35) that if Ay = 0, then iC' < 0 and —iC < 0 (or equivalently
iC' > 0) respectively. The only way that both of these inequalities in C' can be true is if
we have C' = 0. Taking the contrapositive of this result gives C' # 0 implies Ay # 0.
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Properties of a non-positive matrix

By adding (7.34) to its complex conjugate we see that completely positive dynamics has
Ay < 0. Now the following properties follow for the non-positive matrix Ay

1. The eigenvalues of Ay are all real and non-positive, which implies the sum of all
eigenvalues are non-positive.

2. Since it is a theorem that the sum of all eigenvalues of a matrix is equal to its trace,
it follows that

Tr(Ay) < 0 (7.36)

Given that the eigenvalues of Ay are non-positive, their sum can only vanish if they are
themselves zero that is if Tr(Ay) = 0, which implies Ay = 0. Thus since we cannot have
Ay vanishing, then neither can Tr(Ay). So the inequality (7.36) reduces to

Tr(Ay) < 0, (7.37)

which shows that for completely positive dynamics, the presence of any non-orthogonal
dynamics implies that Tr(Ay) < 0.

Let us now go ahead to identify which part of the partitions in Table 7.1 contributes
to this trace (7.37). Note that Ay has both single mode and multimode passive (active)
parts A;{jm(Aiﬁm) respectively. We start with the contribution from the passive part of the
dynamics Ay, given in (7.27a). So

Tr(Aw) = Tr(Apsym @ X + A, gym @ Z) (7.38)
= Tr(As sym) Tr(X) + Tr(A, sym) Tr(Z2) =0

where we have it that Tr(X) = Tr(Z) = 0. With vanishing contribution from the passive
part of the dynamics, this implies that the dynamics that contribute to Tr(Ay) must be
active. Next we can argue that since the multi-mode parts of A are block-off-diagonal they
cannot contribute to this trace either. Thus the dynamics contributing to Tr(Ay) must be
single-mode. Thus the only part of the dynamics contributing to Tr(Ay) is A3, . O

Hence, completely positive non-orthogonal dynamics must have A}, # 0. As we will

see in the next section, this type of dynamics can be interpreted as generating noise. The
fact that non-orthogonal (and more generally non-unitary) dynamics must be noisy is well
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known and holds outside of the Gaussian context we are discussing here. The novel con-
nection here is that for Gaussian fermionic systems this noise must be active. That is
particle-number non-conserving and requiring an environment for its particle exchange.
Though some active dynamics do not necessarily require an environment to exchange par-
ticles with, we also comment that such dynamics are not Gaussian, that is they do not
map Gaussian states to Gaussian states and thus cannot be regarded as fermionic Gaussian
maps.

Any non-trivial interaction with an environment must involve particle/excitation ex-
change with that environment, for at least some initial states. In other words, any com-
pletely positive interaction with an environment having no particle/excitation exchange is
orthogonal and thus can be implemented/explained /modelled without that environment.

Moreover, since any state-independent dynamics is necessarily non-orthogonal it must
also be noisy (A3, # 0) in order to be completely positive. Since this noise term is state
dependent, all completely positive fermionic Gaussian dynamics must include a state-
dependent part.

Lastly, it is worth noting that complete positivity can be violated if the dynamics is
non-Markovian [I12]. In such cases non-orthogonal dynamics could in principle appear
without an additional noise term.

7.4 Physical interpretation of the different partitions

Having completed the classification and partition of the dynamics, we now study the dif-
ferent types of dynamics that are possible for fermionic systems and how they relate to
the partition we performed above. Note that it is sufficient to consider systems composed
of one or two modes (N = 1,2) in order to build illustrative examples of every type of
dynamics

7.4.1 Single mode dynamics

The single mode simplifies the state space available to a fermionic system. Specifically,
all physical single-mode states are thermal states with respect to their free Hamiltonian
(5.16). The dynamics of a single mode are equally trivial. Since N = 1 the coefficient
matrices of A and C' in (7.17) and (7.28) are just scalars.
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Let us see how our partitions apply to the single mode dynamics. From (7.27), the
single mode dynamics summarizes to

An=1 = aop W+ ax, 1o+ Qnp,x X + Qnp,z Z,
for some real parameters aop, aya, axpx, and ayp ;. Likewise,
C1N:1 = CnaW,

for some real parameter cy,. The complete positivity condition (5.90) here reduces to

1
—ayy 1g < Qnp,x X + Qnp,z Z — 5 CnaW

or equivalently,
i

—ayy 1o < _(_a’NP,X X — Aanp,z Z + §CNAW) (739>

Taking the square of (7.39), we obtain

1 1
2
(yp = (CLNP,X X + Qnp,z Z — = CNAUJ) (aNP,x X+ Qnp,z Z— = CNAw)

2 2
1
> aip,x + aip,z + ZciA
SO
Ang > \/aﬁRx +a2,, +c2,/4 > 0. (7.40)

Note that, as discussed above, the presence of any non-orthogonal dynamics necessitates
the presence of ay, # 0.

Recall that the covariance matrix for a single mode fermionic system is given by (5.46),

0 1
I'=vuw; w= (_1 O> , (7.41)

where v = tanh(SFE/2) is a temperature monotone and F is the mode’s excitation energy.
Recall the parameter v is related to the expected excitation number of the mode as (n) =
% — 5. In order for a state with covariance matrix (7.41) to be a physically valid state we
must have —1 < v < 1 such that 0 < (n) < 1. We will now go ahead to interpret the

different single mode dynamics.
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Orthogonal single mode dynamics

Table 7.1 shows that our orthogonal single mode dynamics is passive and state dependent.
Such dynamics is generated by AJ, as shown in (7.6) and given in the form

A, =—Ew,  C=0 (7.42)

for a single N = 1 mode, where E is some real parameter. To interpret this type of
dynamics, we compute its effective Hamiltonian. From (7.6) we find
. —i 1

Heg = EE(fi“lﬁl —p121) = E(ny — 5) (7.43)

Thus we can interpret this dynamics as the free evolution of the mode, where F is its
excitation energy. Similarly, the effect of this dynamics on the system’s covariance matrix
can be computed from (5.3.4)

I'(t) = A5, T(t) + D(t) (A3,)T (7.44

=—Eu(t) (ww+ww’) =0
that is, the dynamics that does not change the state of the system. One may have an-
ticipated this by recalling that for one mode (N = 1) all physical states are thermal and

therefore stationary under free evolution. This could also have been anticipated by noting

that this dynamics is passive, and so cannot change (n) (and therefore cannot change v or
r).

Non-orthogonal single-mode dynamaics

The partition described above identifies three types of non-orthogonal single-mode dynam-
ics (A3, C3,, and A3,) and which we will now discuss in turn.

1. As discussed above, complete positivity requires that any non-orthogonal dynamics
is accompanied by some A, # 0. For one mode (N = 1) the generator of this
dynamics is of the form

AiA = —T 12 (746)

for some real parameter r. Complete positivity requires » > 0. Using equation
(5.97) we can associate this dynamics with Lindblad operators that are linear in the
Majorana operators.

zl =V2r i’l, [A/2 =V2r ]51. (747)
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Next we compute the effect of this dynamics on the system’s covariance matrix,
finding

%V(t) = —2ru(t). (7.48)
which can be rearranged to
dv(t) = —2rdt.
v

Integrating both sides then gives

1n(1> — ot
Yo

and taking the exponential of both sides gives
v(t) = vge ! (7.49)

which is a law that governs the exponential decay of v at time ¢. Thus this dynamics
causes v to decay exponentially to zero at a rate 2r. Once v = 0 the state is
maximally mixed. Thus we can identify A7, as adding noise to the system.

. Next let us now look at state-independent active non-orthogonal single-mode dynam-
ics, that is C},. This type of dynamics is generated by

Ci,=cw (7.50)

for some real parameter c. In order to be completely positive this dynamics must be
accompanied by a minimum level of noise. Specifically, A3, = —r 15 with r > |¢/2].
Using equation (5.97) we can associate this dynamics with Lindblad operators that
are linear in the Majorana operators.

Ly =+\/r—c/24, Ly=+/r+c/2al (7.51)

Computing the effect of this dynamics on the system’s covariance matrix, we find
V()= —2rv(t) +c (7.52)

This results in v being exponentially attracted towards v(co) = ¢/2r at a rate 2.
Note that the complete positivity of the dynamics implies that this final state of the
system is physical, i.e. —1 < v(oco) < 1. In the limiting case where ¢ = 42r the
system’s final state has v(oo) = £1. These are the system’s two pure states, |0) and
|1). Hence we identify C%, dynamics as purifying the state.
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3. Finally, let us look at state-dependent passive non-orthogonal single-mode dynamics,
that is A7,. This type of dynamics is generated by

A =b, X +b.2 (7.53)

for some real parameters b, and b,. In order to be completely positive this dynamics
must be accompanied by a minimum level of noise. Specifically, A}, = —r 1, with
r> /B2 b2

Note that as we discussed in Section 7.2 our classification scheme is invariant under a
change of local basis. Thus without loss of generality, it is sufficient to only investigate
the b, term. Using equation (5.97) we can associate this term with Lindblad operators
that are linear in the Majorana operators.

j—il = \/T—bx (i‘l +Z§1), ZA-JQI \/T+bx (ihl_ﬁl) (754>

As we saw with free evolution, this dynamics cannot affect v since it is passive.
However, this does not mean that this dynamics is completely trivial. As we will
see in the next section, this dynamics affects the evolution of the mode’s correlations
with other uncoupled systems.

7.4.2 Multimode dynamics

We recall from (5.61), a generic covariance matrix for N = 2 modes can be written as

0 v g g

I — -1 0 g3 g4
—g1 —G3 0 1

—g2 —gs —v2 0

for some local temperature monotones v; and v and four correlation numbers: g1, go, gs,
and ¢g4. Multi-mode dynamics couples these parameters together via the master equation
(5.95). Specifically, the six parameters of the covariance matrix, g = {v1, /2, g1, 92, 93, g1 } 7,
will evolve under a system of first order differential equations as,

git)y=Ag(t)+C (7.55)

for some 6 by 6 real-valued matrix, A, and 6 dimensional real-valued vector, C.

In order to examine the effect of multi-mode dynamics we will convert the dynamics
into the above form and then perform an eigen-decomposition of A.
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Rewvisiting Single-Mode Dynamics

Before we look at multi-mode dynamics let us look at how single-mode dynamics affect
existing correlations.

First we will look at the effect of free rotation on the system’s correlations. Taking
each mode to have excitation energies, F; and FEs, their free evolution is generated by

Computing from (5.95) the rate of change of the covariance matrix using (7.56) and (5.61)
we find

0 0 —Eags—FE193 FEygr— Er1gs
ar 0 Eigi—Esgs Ei1g2+ Ezgs
dt 0 0

0

(7.57)

where the lower left triangle is the negation of the upper right one. Note that as expected
the free rotation does not affect the reduced state of either system; v and 1, are constant.
From this we can read off A as

0 0 0
0 0 0
0 —-Ey, —-E; 0
Ey, 0 0 —-E
E, 0 0 —Es
0 Ey E 0

(7.58)

O O O o oo
O O O o oo

To analyze how the correlations effect each other we can diagonalize A. However in this
case it is more convenient to diagonalize A2, which is related to the second order differential
equations g”(t) = A%g(t) (note C = 0). The result is

1241 0 1241
12) O Vo
d? g1+ g4 —(Ey — E2)2 g1+ g4
—_— = dia. 7.59
dt? | g1 — 94 & —(Ey + E»)? 91— G4 (7.59)
92 + g3 —(Ey + E»)? 92 + g3
92 — g3 — (B — E)? 92 — g3

where diag is the usual notation for a diagonal matrix with its non-zero elements given by
the argument. Thus the correlations do rotate among themselves. In particular the g; + g4
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and g — g3 correlations oscillate at a rate £y — E5 and the g — g4 and g5 4 g3 correlations
oscillate at a rate E; + Fs.

Next, let us examine the effect of A}, on multi-mode correlations. Since this dynamics
is non-orthogonal we must introduce a certain amount of noise to make it completely
positive. Restricting our attention to the b, term in (7.53) we can take

A= (—rly+b, X)®O0y,

where 05 is the 2 by 2 zero matrix and r > |b,| is required for complete positivity.

Computing A and diagonalizing it we find

Iz —2r 121
125) O 120}
d | g1+ g3 : —(r — be) g1+ 93
— = dia 7.60
dt | 91 — 93 18 —(r +b,) g1 — 03 ( )
92+ ga —(r —by) g2+ ga
g2 — g4 —(r +by) g2 — G4

such that unless b, = £r, all of the parameters of the covariance matrix (except 1) are
driven to zero. That is, eventually the first mode becomes maximally mixed and all of its
correlations with the second mode are broken. The effect of A}, is to modify the rates at
which the parameters decay. In the limiting case where b, = =£r then the g; g3 and g, + g4
correlations are completely shielded from this decay. For the purpose of our classification
we will call this dynamics ‘correlation shielding’.

Repeating this analysis on the b, term we find,

2] —2r Iz
1%} 0 1%}
d ) —(r—2>n,
T z; = diag _ET _ bzg g; (7.61)
g3 —(r+0.) ] |9
94 —(r+b,) ga

where r > |b,| is required for complete positivity. Note that as before all of the parameters
of the covariance matrix (except v5) are again driven to zero unless b, = +r. If b, = r then

the g; and g, correlations are shielded from decay, and if b, = —r the g3 and g4 correlations
are shielded.
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Orthogonal, passive and state-dependent dynamics

For N = 2 the multi-mode orthogonal passive state-dependent dynamics are given by

o 02 ap 12 + Ajw
AOP o (—a1]12 + A](.U 02 ’ (762)

Since this dynamics is orthogonal we can compute its effective Hamiltonian from Eq. (7.6)
obtaining

. i . i
Heg = 551@1962 + P1p2) + Ebw(x1p2 — Pida) + hec. (7.63)
Written in terms of the modes’ creation and annihilation operators this is

Hog = (by + iby)agal — (by — iby)alas. (7.64)

Note that every term in this effective Hamiltonian has an equal number of creation and
annihilation operators, such that it is manifestly number conserving/passive. We should
also note that these are the type of terms that would arise from a “rotating wave”-like
approximation.

To analyze the effect of this dynamics let us restrict our attention to the b, term.
Computing and diagonalizing A% we find,

vy — Uy —4 b?u vy — V9

) 121 + 1%)) O 141 + 1))

d g1+ g4 . —4 p? g1+ g4
— = dia w 7.65
dt? | g1 — 94 & 0 91— 94 (7.65)

g2 + g3 0 g2 + g3

92 — g3 0 92 — g3

Thus we can see that this dynamics causes the difference in the modes’ excitation level,
11 — o, and the g4 + g1 correlations to oscillate at a rate 2 b,,.

Note that the remaining variables do not grow linearly with time but are constant.
This can be shown by considering A (instead of A?), for which the equations reduce to

d (v — 1 0 20y \ (V1 — 1/2)
il = 7.66
dt (91 + 94) (—2 by 0O ) <91 + 4 (7.66)

with all other first derivatives vanishing.

Repeating our analysis on the b; term we find the same result as above but the gs — g3
correlation oscillates instead.
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Orthogonal active and state-dependent dynamics

For N = 2 the multi-mode orthogonal active state-dependent dynamics are given by

B 0y b X +b.7
R ) won

Since this dynamics is orthogonal we can again from equation compute its effective Hamil-
tonian, obtaining

A

i, . i .
Heg = be(ﬁlpz + P122) + §bz($1$2 — pip2) + hee. (7.68)
Written in terms of creation and annihilation operators this is
Hog = (by +ib.)alal — (b, — ib.)ayas. (7.69)

Note that every term in this effective Hamiltonian has an unequal number of creation
and annihilation operators, such that it is manifestly number non-conserving/active. We
should also note that these are the terms which would be dropped when taking the “rotating
wave” -like approximation.

To analyze the effect of this dynamics, let us restrict our attention to the b, term.
Computing and diagonalizing A? we find

V1 + vs —4b? v+ vs
Vy — Vs 0 vy — oy
& g+ 0 91 + 94
— = dia ) 7.70
dt2 [ g1 — ga o U I - (7.70)
g+ g3 0 g2+ g3
g2 — g3 0 g2 — g3

Thus we can see this dynamics causes the total excitation level, v; 4+ v, and the g, — g4
correlations to oscillate at a rate 2b,. One can imagine the modes both becoming more
excited and unexcited in unison while correlations between them rise and fall. As before,
the remaining variables do not grow linearly with time but are constant.

Repeating our analysis on the b, term we find the same result as above but the g + g3
correlations oscillate instead.
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Non-orthogonal active and state-dependent dynamics

For N = 2 the multi-mode non-orthogonal active state-dependent dynamics are given by

. 02 blﬂg + bww
Ay = (5112 - 0, ) . (7.71)

Since this dynamics is non-orthogonal we must introduce a certain amount of noise to make
it completely positive. Restricting our attention to the b, term we first examine

A= (_’”12 bw“’), (7.72)

—byw —rly
where r > |b,| is required for complete positivity.

Using equation (5.97) we can associate this term with Lindblad operators that are linear
in the Majorana operators.

ﬁlz V1= by (T1 4 pa), szZ V1 = by (D1 — T2), (7.73)
fzg =7+ by (iil _ﬁ2)7 f14 =1 +by (ﬁl + j2) (774>

Computing and diagonalizing A we find,

v+ v+ g1+ ga —2(r + by) n+vs+ g1+ ga
V1+vy— 91— Ga —2(r — by) +vy—g1— G4
d _ _ _
- Zl ZQ — diag g; ;l Z“’ (7.75)
1— Ja — 1— g4
g2+ g3 —2r g2+ g3
g2 — g3 —2r g2 — g3

Note that unless b,, = %7, all of the parameters of the covariance matrix are suppressed to
zero; The modes become maximally mixed and uncorrelated. The effect of this dynamics
is to modify the rates at which the parameters decay. In the limiting case where b, = +r

the final state may still have some correlations. For example if b, = —r then the sum,
vy + vy + g1 + g4, is preserved resulting in the final state
0O k kK O
-k 0 0 &k

['(o0) = ko0 o k|l (7.76)
0 -k —k O

where k = }l(m + 12+ g1 + g4) |i=0-
The b; term provides similar phenomenology, shielding either the sum 4 + 15 + g3 — g2
or vy + 2 — g3 + go.

168



Non-orthogonal, passive and state-dependent

For N = 2 the multi-mode, non-orthogonal, passive, state-dependent dynamics are given

by,
B 0y b, X +b. 7
Agp = <b$X bz 0, ) . (7.77)

Since this dynamics is non-orthogonal we must introduce a certain amount of noise to make
it completely positive. Restricting our attention to the b, term we have,

[T :ﬂ_g be
A= (be e 12) : (7.78)

where r > |b,| is required for complete positivity.

Using equation (5.97) we can associate this term with Lindblad operators which are
linear in the Majorana operators.

ﬁl =\/T — bw (i‘l +]52), IA/Z =Vr—- bw (ﬁl + :%2)7 (779)
L3 = /7 + by (T1 — D2), L4 = /1 + by (D1 — T2). (7.80)

Computing and diagonalizing 4 we find,

V1 + vy —2r v+ vy
V1 —Vo+ g1 — Ga —2(r — by) V1 —Vo+ g1 — Ga
dlv—m—g+u . —2(r + by) vy — Vs — g1+ ga
= — dia : . 7.81
dt g1+ ¢ & —2r g1+ ¢ (7.81)
g2+ g3 —2r g2+ g3
g2 — g3 —2r g2 — g3

Once again, unless b, = =£r, all the parameters are suppressed to zero. The effect of this
dynamics is to modify the rates at which the parameters decay. In the limiting case where

b, = £r the final state may still have excitations and correlations. For example if b, = —r
then the sum vy — vy 4+ g1 — g4 is preserved resulting in the state
0 k£ k O
-k 0 0 —k
['(c0) = k00 -kl (7.82)
0 k k O

where k = (11 — v 4+ g1 — g4) =0
The b, term provides similar phenomenology, shielding either the sum vy — v, + g2 + g3
or vy — V2 — g2 — gs.
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Non-orthogonal, passive and state-independent dynamics

The final type of dynamics identified by the partition described above is given by

0 0 C1 Co
0 0 ¢ c
S __ 3 4
Co=|_e, —e; 0 0| (7.83)

—Cy —C4 0 0

This dynamics adds directly to the g1, g2, g3, and g4 correlations.

Since this dynamics is non-orthogonal we must introduce some noise to make it com-
pletely positive. Taking

0 0 C1 Co
Y :H_Q 0 - 0 0 C3 C4
A= ( 0 T ﬂ.g) ’ C N —C1 —C3 0 0 (784)
(&) —Cy 0 0
we compute A and C to find
vy —2r 2 0
Vo —2r Vo 0
d | o . —2r g1 &
— =d . 7.85
dt | 92 W8 oy 92 * 2 (7.85)
g3 —2r g3 c3
94 —2r) \ga C4

The solution to these equations have both v, and v decaying to zero at a rate 2r, while
the correlation g; decays to g;(00) = ¢;/2r at a rate 2r.

Note that as we discussed in Section 7.2 our classification scheme is invariant under
a change of local basis. Using this freedom we can take a representative scenario with
¢ = 0 and c3 = 0. In this case we can assign equation (5.97) to this type of dynamics with
Lindblad operators that are linear in the Majorana operators.

f/lz\/T—Cl/2 (jl—ii’g), [:2: \/T"_Cl/z (52‘14‘1@2)7 (786)
f/3 =\/T — 04/2 (}51 — iﬁg), f/4 =\ T + 04/2 (]31 + 1132) (787>
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Single-mode? Orthogonal? | Passive? State- Name
Dependent?
(else (else Non- (else Active) (else of dynamics
Multi-mode) orthogonal) Independent)
Yes Yes Yes Yes Aj,: Free
Evolution
Yes Yes Yes No Not Possible
Yes Yes No Yes Not Possible
Yes Yes No No Not Possible
Yes No Yes Yes A
Correlation
Shielding
Yes No Yes No Not Possible
Yes No No Yes A% ,: Noise
Yes No No No C%,: Purifying
No Yes Yes Yes A
Multi-mode
Rotation
No Yes Yes No Not Possible
No Yes No Yes Ad,:
Multi-mode
Counter
Rotation
No Yes No No Not Possible
No No Yes Yes AYL:
Multi-mode
Active Corr.
Shielding
No No Yes No Crpe
Correlating
No No No Yes AL
Multi-mode
Passive Corr.
Shielding
No No No No Not Possible

Table 7.2: The partition performed in Sec. 7.3.1 results in nine distinct types of open
fermionic Gaussian dynamics. Examples of each (and justifications for their names) are
presented in the chapter.
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7.5 Comparison with Bosonic Gaussian Dynamics

The mathematical structures underlying bosonic and fermionic GQM are very similar, but
lead to vastly different phenomenology. Additional comparisons of bosonic and fermionic
Gaussian systems can be found in [11] and [28].

Fundamentally their differences begin with how their (anti-)commutation relations are
described on the system’s phase space. In the fermionic/bosonic case we have

(P, P} = Ol VS, [Fn, ] = Qum 1.

For fermionic systems symmetric combinations of Majorana operators are associated with
the identity matrix on phase space whereas for bosonic systems antisymmetric combina-
tions of quadrature operators are associated with the symplectic matrix €.

In either case, Gaussian states are fully described by the system’s first and second
moments. In the fermionic case, non-trivial linear combinations of the Majorana operators
are unphysical so all first moments vanish. Moreover the symmetric part of the second
moments are fixed by the commutation relations. Thus all that is left is the antisymmetric
covariance matrix I'y,, = (i[f,,7n]). In the bosonic case, the system may have non-
trivial first moments (allowing for displaced/coherent states) and the symmetric part of
the system’s second moments are non-trivial, that is the system’s covariance matrix o,,, =
(T, "m). The overall difference is that fermionic Gaussian states are more restricted then
bosonic ones.

In either case, the complete positivity condition is stated as the following matrix in-
equality for both bosonic and fermionic sytems:

—]12]\/ S i’ S ]lgN vs. 102 S g. (788)

One critical thing to note here is that in the fermionic case the two-sided bound in (7.88)
above implies that the space of allowed states is compact, whereas in the bosonic case the
state space is unbounded.

In either case, the unitary Gaussian transformations can be seen as linear transforma-
tions on the system’s quadrature/Majorana operators. And in either case these turn out
to be the transformations that preserve the system’s (anti-)commutation relations. In the
fermionic case these are orthogonal transformations (i.e. transformations that preserve the
identity) and in the bosonic case they are symplectic transformations (i.e. transforma-
tions that preserve the symplectic form). An important difference between these groups is
that the special orthogonal transformations form a compact group whereas the symplectic
transformations do not.
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Ultimately, fermionic Gaussian dynamics are notably more restricted than bosonic dy-
namics. The fermionic state space is smaller in several ways: its first moments all vanish
(meaning no displaced states are possible), its covariance matrix is antisymmetric (which
necessarily has less degrees of freedom than a symmetric matrix of the same dimension) and
the state space itself is bounded/compact. As for the dynamics, comparing the fermionic
partition performed here to the bosonic one performed in [58] we find two less types of
dynamics are possible. Furthermore, due to the compactness of the state space, fermionic
Gaussian dynamics must either be cyclic or evolve to a fixed point, there is no infinite
direction for the state to head off towards. This is in contrast to the bosonic case where
the state may be squeezed, displaced or heated to an arbitrary degree without converging
to a fixed point.

7.6 Conclusion

We have introduced a classification of the generators of open fermionic Gaussian dynamics.
Specifically we divided the generators of the dynamics along four lines:

1. unitary and non-unitary
2. active and passive
3. single-mode and multi-mode

4. state-dependent and state-independent

Of the potential sixteen types of dynamics expected of such a division, we find that seven
of them vanish, leaving only nine types of fermionic Gaussian dynamics.

We have provided illustrative examples of each of these types of dynamics. Our analysis
of the complete positivity of these dynamics indicates that the presence of any non-unitary
effects necessitates the presence of noise in the dynamics. Since this noise is active (it
involved particle flux with the environment), completely positive fermionic Gaussian dy-
namics is either unitary or involve particle exchange with its environment.

We have also provided comparison with a similar partitioning of bosonic Gaussian
dynamics [58]. Overall, fermionic Gaussian states and transformation are more restricted
than bosonic ones. For a finite number of modes, there are less degrees of freedom for
both Gaussian states and transformations if the modes are fermionic as compared to if
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they are bosonic. As we discussed these restrictions ultimately stem from the system’s
(anti-)commutation relations.

Work that applies this partition to the dynamics of quantum systems that are bom-
barded by a rapid succession of fermionic ancillae is in progress.
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Chapter 8

Conclusion

8.1 Summary

In this thesis, we have investigated some leading problems in quantum physics as related
to quantum computing and quantum information processing.

First is the problem of quantum decoherence; an effect that is attributed to quantum
states that are in macroscopic superposition. Such states are characterized by quantum
coherence and quantum entanglement—fundamental properties in quantum physics that
characterize quantum devices thereby distinguishing them from their classical counterparts.
An example in quantum optics is the quantum superposition of coherent states (SCS) that
have equal amplitude but are 180 degrees out-of-phase. If we are able to harness these
quantum superposition states to detect their various quantum effects and features, we are
certain of developments and innovations in our communication and quantum technologies.
Unfortunately, superposition states are very fragile; due to constant interactions with the
environment, they easily lose their quantum coherence and quantum entanglement and
rapidly decohere to a statistical mixture of coherent states (a counterpart of the quantum
superposition of coherent states).

The loss of coherence in a quantum superposition of states is referred to as decoherence.
Decoherence is the major reason we cannot observe superposition in our macroscopic world
or even generate quantum superpositions of states such as the SCS. It follows that for
applications in quantum information processing and testing quantum theories, we require
quantum SCS that have high fidelity and large amplitude respectively. So far researchers
have been able to generate SCS that only have small amplitudes. A recent proposal shows
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that employing the effect of squeezing would help generate SCS that have large amplitudes
and high fidelity. A detection mechanism that will probe and display the quantum effects
in quantum superposition states is necessary.

In this regard and assuming we have access to a squeezed superposition of coherent
states (SSCS), I presented a scheme that probes the quantum SSCS stored in a cavity.
I do so without significantly modifying the quantum states. This scheme is the mode-
invisibility measurement scheme which was presented first in [97] to probe a Fock state of
light nondestructively. I showed that the mode-invisibility technique provides (at least in
principle) a good measurement scheme for observing the quantum nature of a superposition
of coherent states. I demonstrated this explicitly for the even, odd, and Yuker-Stoler cat
states respectively. For small values of the magnitude a of the coherent state parameter,
I find it straightforward to distinguish these states. The distinguishability of the three
cat states is enhanced by squeezing. Interestingly, oscillations are present in the interfer-
ometric phase difference only when squeezing is introduced and absent without squeezing.
Therefore our method also offers a scheme to distinguish between cat states and squeezed
cat states.

In contrast to the several ways in which the nonclassical properties of coherent states
have been investigated, our method provides a measure for studying the behaviour of a
superposed cat state, most importantly distinguishing between them in a non-destructive
way. Of course the natural question is how to realize this mode-invisibility technique in
the laboratory and use it to study the decoherence properties of these cat states. We leave
this project for future study.

More so I have demonstrated the utility of the mode-invisibility measurement technique
for non-destructively probing the Bell cat state (that is entangled generalized qubit/cat
state) in a cavity mode. In this state, the effect of the qubit-field coupling and probe-
field coupling comes to play. For realistic physical parameters, and provided that the
amplitude of the cavity field is not too large, the technique works very well, especially in
the regime where the probe-cavity field coupling is approximately equal to the qubit-cavity
field coupling. However the method breaks down once the amplitude of the cavity field is
sufficiently large. I also investigated the dynamics of the qubit state and the von Neumann
entropy of the combined system Bell cat state.

The second problem I investigated belongs to the field of quantum information pro-
cessing with a link to quantum thermodynamics - this is the problem of work extraction
from quantum systems, precisely from non-interacting fermionic systems. Passive states
are those states for which work cannot be extracted via unitary transformations, that is
those states whose average energy cannot be lowered through a unitary operation acting
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on them. However some passive states may have extractable work if several copies of the
system are processed through a unitary process acting on the global system— a state may
be passive given only a single copy but can become active for n copies. Completely passive
states remain passive no matter how many copies of the system are available (an example
is the thermal Gibb’s state [106, 81], while those states that become active for some k > n
copies of the system are termed k-activable [125]. T showed that a fermionic mode in ther-
mal state is k-activable, that is a fermionic mode in thermal state although passive, can be
activated to yield work given three or more copies of the system. This number is sufficient
and yields an upper bound on the number of copies needed.

On the other hand, although work can be extracted from non-passive states the uni-
tary transformation required for this process is difficult to realize. Given that Gaussian
unitaries are easily generated, one may consider extracting work via the restricted class of
Gaussian unitaries, this introduces us to the notion of Gaussian passivity [22] which al-
lows work to be extracted from quantum systems via Gaussian unitary operations. In the
bosonic setting, the idea of extracting work from passive but not completely passive states
via Gaussian unitary transformations have been established [22]. T extended the idea of
Gaussian passivity to a system non-interacting fermionic modes in thermal states. I char-
acterize general quantum states in fermionic systems according to their ability to yield
work (or not) under such transformations. Overall, fermionic Gaussian transformations
are more restricted than general unitary transformations for work extraction.

Lastly I studied the dynamics of open fermionic quantum systems. An open quantum
system is one that is in constant interaction with its environment via exchange of energy or
particles. This practically implies that the operation of any realistic quantum information
devices (quantum computer for example) would be accompanied by noise and by loss of
quantum information into the environment. Hence it is important to investigate how our
quantum system in a realistic setting, would behave. In this regard I investigated the
dynamics of an open Markovian non-interacting fermionic system. I have introduced a
classification of the generators of open fermionic Gaussian dynamics. Specifically I divided
the generators of the dynamics along four lines:

1. unitary and non-unitary
2. active and passive
3. single-mode and multi-mode

4. state-dependent and state-independent
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Of the potential sixteen types of dynamics expected of such a division, we find that seven
of them vanish, leaving only nine types of fermionic Gaussian dynamics.

I have provided illustrative examples of each of these types of dynamics. I have also
provided comparison with a similar partitioning of bosonic Gaussian dynamics [58]. Over-
all, fermionic Gaussian states and transformation are more restricted than bosonic ones.
For a finite number of modes, there are less degrees of freedom for both Gaussian states
and transformations if the modes are fermionic as compared to if they are bosonic. As
we discussed these restrictions ultimately stem from the system’s (anti-)commutation re-
lations.

8.2 Outlook

Some recommendations and possible future work are listed in this section.

Exploring the mode-invisibility measurement scheme

We note here that the initial idea of the mode invisibility measurement scheme is to probe
a given state of light without significantly perturbing it. This opens up new ideas to
investigate some problems in quantum optics. I will list these possibilities for future work
below.

Quantum information processing

Quantum superpositions of coherent states or what we have called the Schrodinger’s cat
states have a range of applications that extend from precision measurement, to quantum
lithography and quantum information processing. Over the years, physicists have not
only made critical observations of the superposition principle, but have in fact started
working towards harnessing superposed states to build quantum computers required to
fully implement quantum algorithms at increased power and speed.

With the aim of realizing a quantum computer, proposals to encode and implement a
CNOT quantum gate using a superposition of coherent states in a realistic superconducting
cavity-QED system have been made. Encoding based on superposition of states offer
advantages over the traditional method of encoding based on number state. One is that
the generation of superposition of coherent states in optical cavities are easily achievable
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unlike generation of number states. Another is that superposition of coherent states are
less prone to irreversible errors imposed by the environment than are number states.

Although encoding based on superposition of coherent states offers some advantages,
we note that the slightest bit of perturbation may cause the system to decohere, such that
the superposition is lost. Hence it is necessary to shield the quantum system from external
noise in the surrounding environment.

We have seen that the mode invisibility measurement scheme will be useful for the
purpose described above since it probes a system leaving it significantly unperturbed. Not
only does it leave the system significantly unperturbed, it also acquires strong information
about the system of interest. The main playground in this measurement scheme has
been the elimination of the rotating wave terms in a system’s interaction Hamiltonian
with a detector. However such a term characterizes the Jaynes-Cummings interaction
Hamiltonian. Since most light-matter interactions are described by the Jaynes-Cummings
model, as such the rotating wave approximation in the Jaynes-Cummings model should be
revisited.

Detection of weak force

A research proposal for sensitive force detection using superpositions of coherent states
have been proposed [92]. Here the weak force is modelled as a displacement operation on
a coherent state. When the displacement operator D() is applied on the even cat state

1
(W) ear = E(M +=) (8.1)

it displaces it by
|W) = cosf|+) +sinf|—), 6 = —Im[af”] (8.2)

where |£) = \%(\04) + |—a)). The task is to find an optimal measurement scheme to
estimate 6 and hence the force parameter e. The maximum sensitivity is achieved when 6
is maximized for a given displacement, that is when [ is purely imaginary. Setting 5 = ie,
one obtains 6 = ea.

Using the MI scheme, we propose to measure 6 by considering a detection of the dis-
placed state (8.2). Given that the MI scheme measures the average photon number in the
cat states non-destructively, any disturbance in the measurement will display the presence
of an external influence on the even cat state.
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Generation of Schrodinger cat states

Another application of the MI scheme would be in generation of Schrodinger’s cat state.
Many schemes have successfully generated quantum superposition of coherent states with
small amplitudes (called Schrodinger’s kitten). Realizing Schrodinger’s cat state that is
superposition of coherent states with large amplitudes have been challenging.

We propose to generate one based on the ideas of MI scheme. This would involve
obtaining an effective Hamiltonian in the limit where the necessary approximations are
allowed.

Building quantum heat machines

We have seen that for three fermionic modes, a product of three fermionic thermal states
at different temperatures is non-passive. This shows that the minimum number of baths
required to construct a heat engine in the fermionic setting is three.

Within thermodynamics, heat engines are devices that operate in a thermal context so
as to extract ordered energy in the form of work. The traditional setup involves an engine
that operates cyclically between two temperatures Tio, Teolq and performs a quantity of
mechanical work. The engine operates according to the second law of thermodynamics,
where it absorbs heat from the hot reservoir with temperature T}, converts some of this
energy to mechanical work and pumps it into the cold reservoir with temperature Teold-
The largest possible efficiency is given by the Carnot formula: n = 1 — C}f’ld, occurs for
the reversible Carnot engine and provides a fundamental thermodynamic bound on the
amount of ordered energy that can be obtained.

A future work would be to construct quantum heat engines that involves an engine
operating cyclically between three temperatures in the fermionic setting.
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