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Abstract

The anterior cruciate ligament (ACL) plays a crucial role in stabilising the knee joint
in anterior tibial translation and internal tibial rotation. Non-contact ACL injuries are
a major concern in sport-related activities due to sudden dynamic manoeuvres involved.
Concomitant injuries to other tissues of the knee joint such as meniscal tears are com-
mon with ACL injuries. Treatment of ACL injuries through surgical reconstructions and
rehabilitation imposes a large socioeconomic burden on healthcare systems. Researchers
have extensively used a combination of in-vitro experiments on cadaveric specimens and
computational modelling to explore the biomechanical factors surrounding ACL injury in
dynamic knee movements.

The primary objective of this study was to develop a subject-specific knee finite element
(FE) model to simulate an injury-causing motion - single-leg jump landing and validate
ACL strain based on previous in-vitro experiments. Medical images of a cadaver specimen
were segmented to generate three-dimensional (3D) models of the anatomic structures of
the knee joint. High-quality meshes of the segmented 3D models were produced. Digi-
tization technique was used to replicate the knee ligament insertion sites of the cadaver
specimen in the model accurately. The kinematic response of the model under basic knee
motions was validated with published experimental data. Muscle forces and kinematic
inputs from a previous study involving the motion capture of ten participants were used
as the boundary conditions to simulate a jump landing motion. Explicit FE analyses were
performed on the model under half, and full muscle force conditions and the ACL and
meniscal strain outputs were compared with experimental results.

Results showed that the ACL strain trends in the half muscle force jump simulations
of two participant profiles (P5, P6) agreed well with the in-vitro experimental results from
the cadaver knee. However, the computational peak ACL strain values of the two profiles
(5.5 % at 228 ms and 4.9 % at 177 ms) did not agree well with the experimental results
(2.8 % at 151 ms and 3.5 % at 164 ms). The ACL strain trends during the full muscle force
jump simulations of ten participant profiles (P1 – P10) showed better agreement with the
experimental results from different cadaver knees of a previous study. In addition, in the
half muscle force jump simulations of two participant profiles (P5, P6), the peak values of
posterior medial meniscal strain from the FE model (0.7 % and 1.4 %) agreed well with
the experimental results (0.75 % and 1.3 %) from different cadaver knees.

This study demonstrated a methodology to develop a subject-specific FE model of
the knee joint that could be used to recreate in-vitro dynamic experimental conditions
to make predictions of ACL and medial meniscal strains, providing an effective approach
to overcome the limitations of experimental testing. Future work will use the established
model to predict the risk of injury and design injury prevention strategies in dynamic knee
loading scenarios.
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Chapter 1

Introduction

1.1 Motivation

Anterior cruciate ligament (ACL) is one of the primary stabilizers of the knee joint during
activities of daily life such as walking, running, stair-climbing and jumping. Activities
wherein the ACL experiences traumatic forces exceeding its mechanical threshold lead
to its injury (Chandrashekar, 2005). Nearly 250,000 ACL injuries occur every year in
North America alone (Griffin et al., 2006). Surprisingly, close to 75 % of these injuries
are non-contact in nature, occurring due to sudden dynamic movements such as jump-
landing, in sport-related activities placing young athletes at high risk (Boden et al., 2010;
Renstrom et al., 2008). Surgical reconstruction of the ACL is often recommended to young
athletes, and annually an estimated 100,000 reconstruction procedures are performed which
costs around $ 7.6 billion, in the United States (Mather et al., 2013). Meniscal tears
often accompany ACL injuries, a combination which increases the risk of osteoarthritis, a
degenerative disease of the articular cartilage (Salem et al., 2018).

ACL injury rates continue to rise even with significant efforts directed towards under-
standing ACL injury mechanics (Mall et al., 2014). Currently, there is a lack of consensus
and validation of various factors that lead to an ACL injury (Bakker et al., 2016). In-vivo
measurement of ACL deformation during a potential injury-prone activity with sensors
mounted on the ACL is dangerous and unethical (Kiapour, 2013). In-vitro experiments on
cadaveric specimens, simulating dynamic loading conditions of high-risk injury scenarios
like jump-landing, have been able to shed light on the underlying knee tissue mechan-
ics. Hybrid approaches involving in-vivo and in-vitro experiments have been successfully
attempted to replicate the physiological loading conditions during jump landing (Bakker
et al., 2016).

The current study considers the in-vivo and in-vitro experimental contributions of
Bakker et al. (2016) and the in-vitro and in-silico (computational) contributions of Polak
(2019) in evaluating ACL strain during single-leg jump landings. Bakker et al. (2016)
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undertook motion capture (in-vivo) study on single-leg jump landing of ten participants
and experimentally tested (in-vitro) this motion on five cadaveric specimens to evaluate
ACL strain. Moreover, Polak (2019) performed in-vitro experimental jump landings on
three cadaveric specimens and computationally simulated the activity using a finite element
(FE) model. Both experimental studies were successful in quantifying ACL strain in the
physiological conditions of jump landing. However, these experiments are strenuous, time-
consuming and have limited sample sizes. It is also expensive to acquire and prepare
cadaveric test specimens. In contrast, computational modelling using the finite element
method presents as a viable alternative.

While Polak (2019) addressed the experimental limitations by simulating jump landing
on a computational model, this model did not include the anatomy of the experimentally
tested cadaveric specimens. Subject-specific FE models include accurate anatomical fea-
tures of a particular subject and can predict the associated joint tissue mechanics and
injury risk. However, the accuracy of predictions depends on robust development and
validation of the model. This study proposes a subject-specific computational modelling
approach to evaluate ACL strain during jump landing and validating the model using
existing experimental results.

1.2 Objective

The primary objective of this research was to develop a subject-specific knee FE model to
simulate a jump landing motion and validate ACL strain output based on the results of
previous in-vitro single-leg jump landing experiments. The specific objectives were:

1. Develop a subject-specific knee FE model using imaging data of a cadaver specimen,
tissue-specific meshing approaches, and published data for tissue material properties

2. Verify the joint kinematics and ACL strains generated with the subject-specific FE
model against joint laxity tests from published experimental data

3. Apply the subject-specific FE model to simulate single-leg jump landings of ten par-
ticipant profiles from the in-vitro experimental study by Bakker et al. (2016) to
determine the ACL and medial meniscal strains and verify them against the experi-
mental results

1.3 Thesis Overview

This thesis is organized into the following six chapters. Synopsis of each chapter is as
follows. Chapter 1 (Introduction) sets the premise for the research conducted. Chapter
2 (Background) introduces the anatomy of the lower limb, ACL injury mechanics, and
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relevant background research related to medical image segmentation, mesh generation, dy-
namic FE models. A brief history of the single-leg jump landing experiments conducted
on the Dynamic Knee Simulator at the University of Waterloo is also discussed. Chapter 3
(Methodology) is divided into two main sections. The first section details the steps taken to
generate a subject-specific model, including cadaver imaging and anatomy segmentation,
mesh generation and setup of the FE model. The second section details the kinematic
verification studies on ACL mechanics, including participant data and boundary condi-
tions of single-leg jump landing simulation. Chapter 4 (Results) presents all the results
of the study, including mesh quality, the ACL strain during the half and full muscle force
jumps, and lastly energy balance of the jump landing simulation. Chapter 5 (Discussion)
examines the results of the current work in comparison to the available studies in the liter-
ature. Chapter 6 (Conclusions) presents the main conclusions of this research, along with
a discussion of the study limitations and future research directions.
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Chapter 2

Background

2.1 Anatomical Background

Application of the principles of engineering to understand the mechanics of injury requires
background knowledge of the human body anatomy. This necessitates defining the stan-
dard terms and definitions adopted to describe the positions of different parts of the body
relative to each other. The following section provides an overview of anatomical nomen-
clature and knee-specific anatomy.

2.1.1 Nomenclature

Three anatomical planes namely, sagittal (dividing the body into left and right), coro-
nal/frontal (dividing the body into front and back) and axial (dividing the body into head
and torso) are defined to identify cross-sections and motions (Figure 2.1). In addition,
the directional pairs define position of a structure relative to another: anterior-posterior
(A-P) (towards the front or back of the body), superior-inferior (S-I) (towards the head
or feet), medial-lateral (M-L) (towards or away from the mid-line of the body), proximal-
distal (closer to or away from the torso) and superficial-deep (towards or away from the
skin) (Figure 2.1).

All the motions of the human body can be categorized as occurring in one or more of
the anatomical planes. The basic motions are flexion-extension (sagittal plane motion),
adduction-abduction (coronal/frontal plane motion) and internal and external rotations
(axial plane motion).

A joint is a place where the ends of two bones meet in the body. Joints are classified
based on the nature of the union of the bones involved in the joint. A joint can be synovial,
fibrous or cartilaginous (Moore and Dalley, 2013). In a synovial joint, the entire joint is
covered in a capsule, the ends of the bones have a layer of articular cartilage, and the
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joint capsule is lubricated with synovial fluid. Synovial joints have an extensive range of
motion compared to the other types of joints, and the ligaments present in the joint restrain
them. Examples of the synovial joints include the shoulder, knee, hip, elbow, wrist and
the atlantoaxial (neck) joints.

Anatomical planes and 
directions

ANTERIOR

POSTERIOR
LATERAL

MEDIAL

SUPERIOR

INFERIOR

Coronal/Frontal
plane

Sagittal
plane

Transverse/Axial
plane

Figure 2.1: Anatomical planes and directions
(adapted from Inman et al. (1981))

The fibrous and cartilaginous joints are characterized by the presence of fibrous or
cartilaginous tissue to connect bones and have no or limited range of motion. Examples of
fibrous joints include the joints in the skull bones, and the joints between the intervertebral
discs constitute the cartilaginous joints.

2.1.2 Knee Anatomy

The knee joint is a synovial joint, allowing motion mainly in the sagittal plane, but also
allows for small rotations in the axial and coronal planes. It is the union of the femur, tibia
and patella bones, their ends enclosed in a joint capsule. Another bone, which laterally
attaches to the tibia and not involved in the actual joint is the fibula. Articular cartilage
layers the ends of each of the bones in the joint, which creates a lubricated, low friction
environment for load transmission between bones (Fox et al., 2009) (Figure 2.2).

The knee joint is composed of patellofemoral and the tibiofemoral joints based on the
two distinct articulations between patella-femur and tibia-femur bones. The tibiofemoral
joint is responsible for the transmission of axial loads such as the body weight, and the
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patellofemoral joint is responsible for increasing the effect of muscle (quadriceps) forces,
with the patella acting as a lever thereby providing a mechanical advantage. The distal
end of the patella is connected to the tibial tuberosity by the patellar tendon (or patellar
ligament).

Knee joint
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Medial
meniscus

Posterior cruciate 
ligament (PCL)

Femoral cartilage

Anterior cruciate 
ligament (ACL)

Lateral collateral 
ligament (LCL)

Lateral meniscus

Fibula

Coronal view

S

I

L M

Knee joint

Lateral tibial 
cartilage

MCL

Transverse 
ligament

Lateral 
meniscus

Medial 
meniscus

Fibula

LCL

ACL

Medial tibial 
cartilage

PCL
Meniscofemoral

ligament

Tibial plateau

Meniscal 
ligaments

Axial view

A

P

M L

Figure 2.2: Human knee joint anatomy
(adapted from Moore and Dalley (2013)). Anterior view of a flexed right-knee (top) and

superior view of the tibial plateau (bottom)
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Knee Ligaments

Ligaments in the knee joint are responsible for its complex kinematic responses during day-
to-day activities (Trad et al., 2018). The major ligaments in the knee joint are the anterior
and posterior cruciate ligaments (ACL and PCL) and the medial and lateral collateral
ligaments (MCL and LCL). The cruciate ligaments are contained within the knee joint,
whereas the collaterals enclose the joint on the medial and lateral sides.

The cruciate ligaments run between the intercondylar space of the femur and the tibial
plateau, crossing each other like the letter ‘X’. The ACL and PCL are named for their
attachment sites on the tibial plateau. The ACL attaches anteriorly on the tibial plateau,
runs laterally and attaches onto the lateral femoral condyle in the intercondylar space. The
PCL, on the other hand, has a posterior attachment on the tibial plateau, runs medially
and attaches onto the medial femoral condyle in the intercondylar space (Zantop et al.,
2006). The primary function of the ACL is resisting anterior tibial translation (ATT) and
internal tibial rotation, whereas the PCL is the primary restraint against posterior tibial
translation (PTT) and external tibial rotation.

The MCL inserts on the medial epicondyle of the femur and has a broader attachment
on the tibia distally. The MCL has two distinct fibres, superficial MCL and deep MCL.
The deep MCL attaches to the medial meniscus distally. LCL is narrower than the MCL
and connects the lateral epicondyle of the femur to the fibula. The LCL runs posteriorly
and inferiorly from the femoral attachment to the proximal head of the fibula. MCL and
LCL are the primary stabilizers against valgus (abduction) and varus (adduction) moments
on the knee joint.

Besides the ligaments and the articular cartilage, the knee joint also houses two crescent-
shaped structures called menisci between the medial (medial meniscus) and the lateral
(lateral meniscus) aspects of the tibial plateau and the femoral condyles. They wedge the
gap formed by the convex ends of the femur condyle and the flat tibial plateau. These
are cartilaginous tissues which aid in shock absorption, distribution of the load from the
femoral condyles to the tibial plateau and lubrication of the joint (Fox et al., 2012) (Figure
2.2). The menisci are firmly attached to the tibial plateau via the meniscal ligaments, and
the transverse ligament connects the anterior portions of the two menisci.

In addition to the ligaments described above, other ligaments also exist in the knee joint
such as: medial and lateral patellofemoral ligaments, medial and lateral patellotibial liga-
ments, meniscofemoral ligaments and capsular ligaments that act as the static stabilizers
of the knee joint (Rhee et al., 2012).

Knee Musculature

The forces and moments required for the motion of the knee joint are caused by three
major muscle groups: quadriceps femoris, hamstrings and the gastrocnemius (Figure 2.3).
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Quadriceps femoris (or Quadriceps), a group of four muscles, is the primary extensor
of the knee joint. Besides, it also flexes the hip and is an important muscle involved in
the normal gaits such as walking, running and squatting. The hamstrings are a group of
three muscular bands responsible for knee flexion and hip extension. The gastrocnemius is
composed of two muscles which stretch from the knee to the heel and causes knee flexion
and plantar-flexion (flexing of the foot so it faces inferior) of the ankle. A brief description
of each component of the muscle group is given in Table 2.1

Knee 
Musculature

Vastus
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Figure 2.3: Knee musculature, adapted from Moore and Dalley (2013)
Quadriceps (top), Hamstrings (bottom left) and Gastrocnemius (bottom right)

Additionally, popliteus muscle attaches to the lateral aspect of the femur via the popli-
teus tendon and the runs medial and inferior to attach onto the medial aspect of the tibia.
It is responsible for unlocking the knee joint by rotating the femur or the tibia during
flexion. Apart from the major muscle groups listed, there are several minor muscle groups,
which are also responsible for the motion of the lower limb, in the axial and coronal planes.
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Table 2.1: Knee musculature (Moore and Dalley, 2013)

Attachment location

Muscle group Contribution Components Proximal Distal

Rectus Illiac spine Quadriceps
femoris in the pelvis tendon

Knee Vastus The base of Lateral
Quadriceps extension; lateralis greater trochanter quadriceps tendon

femoris hip flexion Vastus Anterior, lateral Quadriceps
intermedius femoral surface tendon

Vastus Anterior, medial Medial
medialis femoral surface quadriceps tendon

Biceps femoris Lateral supracondylar Lateral fibular
(short head) line of femur head

Biceps femoris Ischial tuberosity Lateral fibular
Hamstrings Knee flexion; (long head) on the pelvis head

hip extension Semi- Ischial tuberosity Medial tibial
membranosus on the pelvis surface

Semi- Ischial tuberosity Medial tibial
tendinosus on the pelvis surface

Medial Medial aspect of Calcaneus (heel)
Gastroc- Knee flexion; gastrocnemius femoral condyle via Achilles tendon

nemius ankle plantar- Lateral Lateral aspect of Calcaneus (heel)
flexion gastrocnemius femoral condyle via Achilles tendon

2.1.3 ACL Anatomy and Function

Similar to other ligaments, the ACL is a fibrous connective tissue made up of collagen
fibres arranged in a matrix containing ground substance containing proteins and water.
Based on its microscopic constituents, it is distinguished into three regions: proximal
(containing round and ovoid cells), middle (containing dense collagen fibres) and distal
(containing ovoid cells and few collagen fibres) (Duthon et al., 2006). The collagen fibres
are responsible for the tensile properties of the ACL. The ACL has a mean length of 32
mm, and its width ranges from 7 mm to 12 mm (Amis and Dawkins, 1991) and attaches
to the lateral intercondylar fossa of the femoral condyle superiorly and runs to the lateral
aspect of the anterior tibia inferiorly (Figure 2.4). The primary function of the ACL is to
resist anterior tibial translation and internal tibial rotation.

ACL receives its nerve supply from the tibial nerve and triggers muscle firing in the
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knee joint. These nerves are sensitive to excessive stretching and postural changes. ACL
has blood supply from the middle genicular artery and is more vascularized in the proximal
part than the distal part, which results in poor healing of the ligament after an injury.

Anatomically the ACL consists of three separate bundles: anteromedial (AM), inter-
mediate (IM) and posterolateral (PL) bundles, yet most of the computational models
represent the ACL by the AM and PL bundles since it is difficult to distinguish the IM
bundle among them (Duthon et al., 2006) (Figure 2.4). The PL bundle attaches to the
tibia slightly posteriorly and laterally and also attaches inferiorly on the intercondylar fossa
of the femoral condyle compared to the AM bundle.

Figure 2.4: ACL anatomy, adapted from Petersen and Zantop (2007)
AM: Anteromedial bundle, PL: Posterolateral bundle

When the knee is extended, both bundles are in tension, and the PL bundle resists
ATT strongly than the AM bundle. As the leg flexes, the PL bundle becomes slacker, due
to the nature of its position and alignment. AM bundle resists most of the anterior load
when the knee is flexed (Sakane et al., 1997).

2.2 ACL Injury

ACL injuries severely impair the normal function of the knee joint. Excessive ATT, large
internal and external rotations of the lower limb are the primary causes for the injury.
Close to 75 % of ACL injuries do not involve direct physical contact with the knee (Boden
et al., 2010). These occur due to sudden change in the direction of motion, frequent in
sport manoeuvres involving cutting, planting, pivoting and jump landing (De Vita, 2005).
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ACL injuries often lead to meniscal injuries due to increased loads on the menisci in
the ACL deficient condition. In an ACL deficient knee, medial meniscus becomes the
knee’s primary anterior-posterior stabilizer (Smith and Barrett, 2001). Medial and lateral
meniscal tears accompany more than 25 % and 31 % of ACL injuries, respectively (Potter
et al., 2012). However, medial meniscus tears occur more frequently. In the analysis of 575
meniscal tear patterns, Smith and Barrett (2001) found 99.4 % of medial meniscus tears
occurred on the posterior periphery of the structure. Moreover, ACL injuries also influence
osteoarthritis (OA), a degenerative disease in the cartilage, which leads to rubbing of bones
with each other, causing extreme pain and discomfort (Potter et al., 2012). Canes and knee
braces, in the early stages of OA and joint replacement surgeries, in the later stages, remain
the only options to manage OA.

In younger athletes, aged 14-19 years, the occurrence of ACL injury is particularly
high (Renstrom et al., 2008). There is evidence that females are at higher risk of ACL
injuries than males. Four times greater incidence of ACL injury was found in young female
basketball players compared to their male counterparts (Renstrom et al., 2008).

Factors affecting ACL injury are classified as either intrinsic, such as the anatomical
features of the knee or extrinsic, such as the kinematic and muscular loads due to volun-
tary motion. Due to the multi-factorial dependence of ACL injury risk, some researchers
focus on a population study to record the injury pattern while others resort to experi-
mental approaches such as in-vivo, in-vitro and computational studies to evaluate injury
mechanics.

Intrinsic Factors

Factors such as the ACL size, tibial slopes, femoral notch width, knee joint laxity are all
found to be the predictors of ACL injury (Shultz et al., 2012). Individuals with a smaller
cross-sectional area and volume of ACL experience higher stress and absorb lesser energies
under a given load and are predicted to be at a higher risk of injury, which is especially true
in females since they have significantly smaller ACLs than males (Chandrashekar et al.,
2005). Another widely researched metric is the tibial slope, which is the inclination of
medial and lateral tibial plateaus from the line perpendicular to the longitudinal tibial axis
(Giffin et al., 2004). Higher tibial slopes are correlated with an increase in the anterior
forces onto the tibia under axial compressive loads, thereby increasing ATT (Hashemi
et al., 2008; McLean et al., 2011). The female population is found to have higher medial
and lateral mean tibial slopes (5.9° and 7.0°) than men (3.7° and 5.4°) and is determined
to be at a greater risk of injury under compressive loads (Hashemi et al., 2008).

In addition, the femoral notch width is also considered as a predictor of ACL injury
risk. Although no standardized method to measure the notch width exists currently, a
study by Ireland et al. (2001) found that, in the cohort of 294 young subjects (108 with
ACL injury and 186 with no injury) who played sports, smaller femoral notch width led
to a higher risk of ACL injury.
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Further, knee laxity such as anterior knee laxity and internal rotation laxity is found
to be associated with risky landing scenarios, especially in females which in turn increases
the risk of ACL injury (Shultz et al., 2012).

The in-vitro jump landing study of Bakker et al. (2016), a basis for the current study,
found that most of the variance in ACL strain during jump landing between the cadaveric
specimens were dictated by the difference in the intrinsic factors of the cadavers, thus
stressing the influence of anatomical factors on ACL strain.

Extrinsic Factors

Extrinsic factors involve kinematics of the lower limb, such as the trunk, hip and knee
flexion angles, and kinetics such as muscle forces and moments acting on the joint during
injury prone lower limb motions (Figure 2.5). In these activities, ligament-loading patterns
are observed using in-vivo, in-vitro or in-silico (computational) approaches.

Figure 2.5: Lower limb manoeuvers responsible for non-contact ACL injury
(adapted from Kiapour and Murray (2014))

Single-leg jump landing is one of the widely discussed non-contact sport manoeuvres,
which results in an ACL injury. Ground Reaction Force (GRF), which is the reaction force
from the ground to the force applied by the foot during landing, is a critical factor which
causes ACL injury. High GRFs generated at the time of foot contact with the ground are
likely to generate injury-causing forces in the ACL (Serpell et al., 2012). This is the reason
for the extensive investigation of single-leg jump landing motion in literature. Here, the
mechanics of the sagittal plane play a key role in determining the injury risk. Landing
techniques with increase in the trunk flexion (leaning forward) and knee flexion angles are
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found to lower the peak GRF and lower the anterior shear force on the tibia, leading to
reduction in ACL loads (Podraza and White, 2010; Shimokochi et al., 2013).

The quadriceps force is one of the primary contributors of sagittal plane mechanics
and is considered detrimental to ACL injury since this force increases the ATT (Myers
et al., 2012). Withrow et al. (2006) examined the relationship between quadriceps force
and knee flexion during in-vitro jump landing simulations and concluded that ACL strain
was proportional to the quadriceps force and knee flexion angle. However, some studies
predict otherwise. Hashemi et al. (2007) claimed that the only situation where quadriceps
force could injure the ACL is when the GRF is absent, which is unrealistic. According to
the authors, in realistic conditions, where the GRF is present, an increase in quadriceps
forces leads to an increase in joint compressive forces and prevents the anterior translation
of the tibia, thus protecting the ACL. Favourably, in the in-vitro jump landing simulations
of Bakker et al. (2016), no correlation was found between increasing quadriceps forces and
ACL strain. The study also suggested that the quadriceps force has limited effect on ACL
strain in combination with higher flexion angles.

In addition, the role of hamstring muscle on ACL loading during jump landing has also
been examined. Shimokochi et al. (2009) found that the increase in the use of hamstrings
along with the quadriceps (muscle co-contraction) reduces knee extension moments and
thereby protects the ACL. Besides, the authors argued that landing strategies with effective
use of plantar-flexion moments at the ankle joint could absorb the high GRFs and reduce
the loads on ACL.

Further, knee kinematics in the coronal plane were also found to influence ACL loading.
In the study by Hewett et al. (2005), evidence of altered mechanics of the lower limb was
found in the ACL injured population. Out of the 205 female athletes recruited for the study,
nine ACL injuries were recorded in 13 months. Motion capture was conducted at the start
of the study to observe the variance in landing strategies among the athletes. Increase
in coronal plane variables such as knee valgus and abduction moments was correlated to
increased risk of ACL injury.

Due to the viscoelastic nature of the ACL, strain rate influences are apparent in injury
scenarios. In the in-vivo jump landing simulations of Hashemi et al. (2007), up to 250 %/s
strain rate was observed when the ACL was injured whereas the strain rates were only 60
%/s to 80 %/s during safe landing. In another in-vitro study by Oh et al. (2012), internal
tibial torques were shown to be injurious to ACL during pivot landing. The strain rates
in ACL during internal tibial torque were 42 % higher than the strain rate during external
tibial torques.

2.3 Experimental Research

Experimental approaches such as in-vivo, motion capture and videotape analysis methods
and in-vitro mechanical testing are employed by researchers to evaluate the intrinsic and
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extrinsic injury risk factors listed previously.

Although in-vivo studies involving direct ACL strain measurements have inherent com-
plications due to the inaccessibility of the ACL and risk of injury to the subjects involved,
the research group at the University of Vermont studied the behaviour of ACL under nor-
mal muscle functions and rehabilitation conditions such as squatting, flexion-extension,
and anterior tibial loads. Hall Effect Strain Transducer (HEST) and Differential Variable
Reluctance Transducer (DVRT) were used to measure anteromedial ACL strain (Beynnon
et al., 1997; Beynnon et al., 1992a; Beynnon et al., 1992b).

ACL strain was also measured non-invasively in an in-vivo experiment by (Taylor et al.,
2011) during a jump landing scenario. Motion capture data of eight male subjects per-
forming a single-leg jump was obtained. Fluoroscopy and MRI imaging techniques were
used to find the relative positions of the femur and tibia throughout the trial, and the
strain was measured using the images. Peak strain (relative to the length in the MRI) was
reported as (12 ± 7) % occurring at (55 ± 14) millisecond (ms), before ground contact at
the lowest flexion angle.

While ACL strain was not measured, Myers et al. (2012) conducted in-vivo landing
studies on ten female subjects and measured important kinematics using biplane fluo-
roscopy. They found that ATT was the highest at (5.6 ± 1.9) mm at ground contact.
They also stated that a healthy knee is well equipped to perform such demanding tasks.

Videotape analysis is another type of study where the kinematics of ACL injury is
studied using a taped recording of the events leading to the injury. In the study of Po-
draza and White (2010), video tapings of ten male recreational athletes were analyzed for
segment kinematics during jump landing and concluded that flexed knee during landing is
favourable. Koga et al. (2010), with the analysis of ten ACL injury video tapings, stated
that the injury occurred 40 ms after the initial ground contact, caused by internal rotation
of the tibia coupled with valgus rotation.

In-vitro studies are commonly cadaveric studies wherein the input data for the ex-
periment is derived from a motion capture study or capturing muscle activity using elec-
tromyography (EMG). Motion capture involves recording kinematic data of any activity
using body markers, angle goniometers and force plates. EMG sensors are used to record
muscle-firing patterns during an activity. Kinematic variables and muscle forces are then
derived using multibody dynamics software. Further, these studies usually have a me-
chanical device to simulate activities on cadaver specimen. The research groups at the
University of Michigan, Ohio State University, Texas Tech University and the University
of Waterloo developed knee simulators to study the effects on ACL strain during impact
like activities such as jump landing. Table 2.2 shows a summary of the jump landing exper-
imental studies performed on these simulators. The important outcomes of these studies
were discussed in Section 2.2.
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Table 2.2: In-vitro dynamic studies on jump landing from literature

Study Year
Simulator at Peak ACL Strain

Key findings
University (mean ± SD)

Withrow et al. 2006 Michigan 2.91
Increase in quadriceps force

increased ACL strain

Hashemi et al. 2007 Texas Tech 10.41
Quadriceps forces did not

affect ACL strain

McLean et al. 2011 Michigan 3.35 ± 1.71
Anterior tibial acceleration
and posterior tibial slope

correlated with ACL strain

Kiapour et al. 2013 Ohio State 6.7 ± 1.8
Peak ACL strain coincided

with peak GRF

Variations in the peak ACL strains of the experimental studies listed in Table 2.2 stems
from the fact that the mechanism of loading (or the boundary conditions of) the cadaver
specimen to mimic the jump landing motion were different. In the Michigan simulator, a
150 N weight was dropped on a dissected cadaver specimen with pre-tensioned quadriceps,
hamstrings and calf muscles, while the knee was maintained at 25° flexion angle, to simulate
a jump landing. In the Ohio simulator, the cadaver knee specimen had the foot and the
ankle joint intact with the femur cut midway and mounted in an inverted position with the
foot facing up. A 700 N load was dropped on the foot from heights of 30cm and 60cm to
simulate a jump and ACL strain was recorded. In the Texas Tech simulator, impact loads
between 1100 N and 1400 N were applied to recreate the impact during jump landing while
the knee was maintained at different flexion angles between 10° and 40°. Only quadriceps
and hamstring muscle forces were accounted for using electric actuators, while the effect
of other muscles was neglected. In all these simulators, a DVRT was used to record ACL
strain during the activity.

The common characteristic of the knee simulators described is that impact loads are
applied instantaneously to create the effect of GRF in a jump landing scenario. However,
these are not considered to adequately represent physiological conditions during a jump
landing event (Bakker et al., 2016). The simulator at the University of Waterloo developed
by Cassidy et al. (2013) (Figure 2.6) addresses a few critical limitations in the other knee
simulators such as application of dynamic changes in the hip and ankle kinematics and
application of dynamic muscle forces in the sagittal plane (Bakker et al., 2016). Dynamic
muscle forces (force versus time) of quadriceps, hamstrings and gastrocnemius (Calf) are
applied through metal cables via electromechanical actuators. In addition, hip extension
moments are applied through a hip actuator placed under the hip attachment. Cassidy
et al. (2013) developed a workflow to measure ACL strain, which involved in-vivo motion

1calculated mean strain from the reported values
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capture, generation of muscle forces from a musculoskeletal model using the motion capture
data and measurement of ACL strain in-vitro. Only one cadaver knee specimen was tested,
and a relative peak strain of 4.3 % was recorded, which occurred after 90 ms of ground
contact.

Figure 2.6: Schematic of the dynamic knee simulator (DKS) at the University of Waterloo
(adapted from Bakker (2015)). A, B: Hip and ankle actuators. Q, H, G: Quadriceps, Hamstring

and Gastrocnemius muscle forces applied through steel cables. HM: Hip moment actuator

On the DKS, Hangalur et al. (2016) tested the efficacy of a prophylactic knee brace
in reducing ACL strains during jump landing. On the cadaver specimen acquired for the
study, an unbraced jump was also performed, and an average strain of 20 % was recorded,
at less than 50 ms after ground contact. Following a similar approach, an extensive study
on ACL behaviour was carried out by (Bakker et al., 2016). The authors reported an 8.9 %
average relative ACL strain from the in-vitro jump landing simulations of seven different
participant profiles on five cadaver specimens. Hip flexion angle and trunk flexion angle
at maximum GRF were identified as the significant influencers for ACL strain, apart from
the intrinsic factors. Using regression models, they also concluded that landing with lower
hip and trunk flexion angles (erect postures) increases ACL strain. Also, it was noted that
ACL strain increased with GRF and the bodyweight of the subjects involved. Following
the same approach, additional in-vitro jump landing experiments were carried out by Polak
(2019) based on two participant profiles from Bakker et al. (2016) study. Peak ACL strain
of (4.4 ± 1.8) % was reported, occurring between 54 ms and 89 ms after ground contact,
from the two cadaver specimens tested in the study.
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2.4 Computational Research

Computational modelling can be an effective alternative to experimental testing for simu-
lation of dynamic loading conditions. Experimental testing of dynamic loading conditions
is challenging and ultimately produces limited data from traditionally small sample sizes.
There have been numerous computational models developed which have evaluated several
extrinsic factors affecting ACL injury. These include mathematical models (Abdel-Rahman
and Hefzy, 1993; Wismans et al., 1980), musculoskeletal dynamics models (Bakker et al.,
2016; Kia et al., 2016; Marra et al., 2015) and FE models (Kiapour et al., 2013; Polak,
2019). In a mathematical model, the behaviour of various components is governed by
mathematical equations whereas, in a musculoskeletal model, motion (marker data) data
are given as inputs and forces in the muscles, ligaments, and other tissues are determined
by analysis of inverse dynamics. FE modelling is a well-known numerical method used to
find approximate solutions to a problem with defined boundary conditions; however, these
complex models often depend on experimental research for the input boundary conditions
and material properties. In addition, experimental data is also necessary for model cali-
bration, verification and validation. In order to ensure that the model predicts reasonable
outcomes, verification and validation studies are conducted on a new model or an existing
model used for a new loading condition. Verification studies ensure that the model out-
put represents exactly the underlying mathematical implementation and validation studies
ensure that the model outputs are in accordance with the real-world outcomes under the
same loading conditions (Henninger et al., 2010). Calibration involves modifying the in-
put conditions of the model such as material properties to achieve a desired outcome, for
example, to replicate an experimental result.

In a few studies, computational models were obtained by averaging the geometries of
acquired cadaver specimens (Garg and Walker, 1990) or using population-based FE models
(Beillas et al., 2007, 2004). Garg and Walker (1990) developed a 3D model of the knee joint
to evaluate the effects of tibial surface geometry and component placement on knee range
of motion after total knee replacement surgeries. Beillas et al. (2007, 2004) simulated the
tibiofemoral joint response during a one-legged hop on a generic 50th percentile male FE
model.

2.4.1 Subject-Specific Models

The accuracy of geometrical features of biological tissues in a computational model plays
a significant role in obtaining an appropriate model response. Therefore, most of the com-
putational models in the literature were developed by imaging the subject or the specimen
involved in the study. Such models are called subject-specific models since they possess
accurate anatomical features of a particular subject. Many subject-specific computational
knee models exist in the literature evaluating knee mechanics in healthy (Baldwin et al.,
2012; Harris et al., 2016) and pathological conditions (Ali et al., 2017; Halonen et al., 2016).
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Recently, the right lower limb component of the Global Human Body Models Consortium
(GHBMC) model (Schwartz et al., 2015) which is a full human body FE model of a 50th

percentile male, was used by Polak (2019) to compute ACL strain during a single-leg jump
landing activity with the boundary conditions derived from Bakker (2015). In this com-
putational study, jump landing profiles of two different participants from Bakker (2015)
study were simulated and peak ACL strains of 4.2 % and 13.9 % occurring at 60 ms after
ground contact were reported.

The first step in the generation of subject-specific FE model is identifying the 3D
geometry of the anatomy of interest, typically obtained using medical imaging of the sub-
ject/specimen. Computed tomography (CT) and Magnetic resonance imaging (MRI) are
the standard 3D medical imaging methods used to scan desired anatomical regions. CT
scans are primarily used to visualize bone geometries due to the excellent contrast of bone
tissue on X-ray. MRI scans offer excellent visibility of soft tissues, with different MRI pulse
sequences used to identify different tissue contrasts.

Segmentation

Three-dimensional (3D) models from a medical image are obtained through a process called
segmentation. It involves applying a label field to image voxels (pixels in 3D) with similar
characteristics (greyscale intensity or texture) to divide an image volume into several con-
nected regions of interest. The segmentation process, when repeated on all the images (or
slices) in a scan, results in a 3D model. Medical image analysis software such as Scan IP
(Synopsys, CA, USA), Mimics (Materialise NV, Leuven, Belgium), Amira (ThermoFisher
Scientific, MA, USA) and 3D Slicer (www.slicer.org) are commonly used for segmen-
tation. In the current study, 3D Slicer was chosen for image segmentation since it freely
provides all the essential tools for both manual and automatic image segmentation.

Automatic segmentation methods are broadly classified as thresholding, region growing,
clustering and registration-based methods (Aprovitola and Gallo, 2016; Hao, 2006). A brief
description of these methods is provided in Table 2.3. Thresholding is driven by a greyscale
intensity value in an image, based on which segments are classified into two groups, one
above and the other below the threshold value (Hao, 2006). In region growing, a seed is
placed in the region of interest in an image and the region growing algorithm expands the
seed by identifying neighbouring areas of the same intensity. Similar to region growing,
clustering uses a distance function to group similar pixels or image patches into one subset
(Hao, 2006).

Registration-based methods use the concept of image registration, which is a transfor-
mation applied to all the points in an image/model to align with another image of the
same anatomical part. It can be further classified into deformable registration and atlas-
based approaches. Deformable registration requires a model which has a similar shape to
the target model. On deformable models, algorithms, such as active contour, active shape
and level set, are applied to generate segmentations of the new image (Aprovitola and
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Gallo, 2016; Hao, 2006). In atlas-based methods, a previously segmented model of the
same anatomical region is registered using non-rigid transformations to create segmented
models of a new image. Further, local refinements are carried out using deformable model
algorithms.

Table 2.3: Classification of automatic segmentation methods

Segmentation Medical image Level of previous
Example usage

method complexity knowledge required

Thresholding Simple Low Bone
Region growing Simple Low Bone

Clustering Simple Low
Bone/Grey and

white matter (Brain)
Deformable models Complex High Any anatomical region

Atlas-based Complex High Any anatomical region

Use of various combinations of previously described segmentation methods to develop
knee 3D models is found in the literature. A brief review of those studies is provided in
Table 2.4.

Table 2.4: A literature review on automatic segmentation methods to extract knee geometries

Study Year Segmented regions Segmentation methods

Kapur et al. 1998
Femur and tibia bones Region growing (for bones),

femoral and tibial Feature detection and Bayesian
cartilages classification (for cartilage)

Fripp et al. 2007
All knee cartilages

Active shape models
and bones

Baldwin et al. 2010
All knee cartilages Integrated segmentation,
and patella bone mesh morphing

Swanson et al. 2010 Lateral meniscus
Semi-automated with
threshold detection

Wang et al. 2013
Femur, tibia and Patch-based segmentation

respective cartilage without registration

Dam et al. 2015
Bones, menisci Multi-atlas registration,
and cartilage statistical approaches

Ahn et al. 2016
Femoral, tibial and Level set, active contour model

and patellar cartilage minimizing energies

Liukkonen et al. 2017
Femoral and tibial Semi-automatic method

cartilage based on radial intensity
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Automatic segmentation of knee MRI is difficult because of the many different joint
tissues which have similar intensity ranges, such as delineating the bone-cartilage interface
poses an additional difficulty (Kapur et al., 1998; Sun et al., 2006). Custom algorithms
are then required to achieve the desired segmentation results and are quite complicated to
implement without appropriate programming knowledge.

Mesh Generation

Accurate representation of tissue geometries is crucial to obtain meaningful responses from
an FE simulation. In an FE model, geometries take the form of meshes. A 3D finite
element mesh can be broadly categorized as tetrahedral and hexahedral mesh (Grosland
et al., 2009). Both kinds of elements have been used to model knee mechanics in the past
(Kiapour et al., 2013; Liukkonen et al., 2017). A tetrahedral mesh consists of a cluster of
tetrahedrons sharing their endpoints (nodes) and edges to represent a geometry, whereas
hexahedrons or cubes are used instead in a hexahedral mesh (Figure 2.7). For a given mesh
density, 4-10 times more tetrahedral elements are required to achieve similar results, which
increases the computational cost (Shivanna et al., 2010). Besides, lower-order tetrahedral
elements (4-noded) tend to be stiff and higher-order elements (10-noded) tend to turn
inside out under high deformations, which has made hexahedral meshing a more reliable
and effective approach.

Tetrahedral and Hexahedral element

1

2

3

4

41

32

6 7

8
5

Figure 2.7: A tetrahedral (left) and a hexahedral (right) element

Most of the commercial mesh generating software is equipped to create accurate tetra-
hedral meshes of any irregular geometry. Likewise, the procedure to generate hexahedral
meshes for simple geometries can be relatively straightforward to implement. However,
obtaining hexahedral meshes of irregular geometries such as soft tissues can be a labo-
rious and time-consuming task (Grosland et al., 2009). Researchers have often resorted
to multi-block meshing technique to generate hexahedral meshes of irregular geometries.
In the multi-block approach, an initial bounding box (or a ‘block’) is created around the
structure and then sub-divided into several smaller blocks. These smaller blocks may be
re-positioned to represent the geometry roughly. Mesh generation is achieved by using
the closest-point algorithm to morph the vertices of the blocks on to the input geometry
(Grosland et al., 2009).
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While meshing irregular biological tissues, it is essential to maintain the quality of the
mesh at acceptable standards adopted in the literature. Yang (2018) stated the minimum
values of the following mesh quality metrics to be maintained in hexahedral meshes of
biological tissues. The first among them is the Jacobian, which represents the volume
ratio of an element in the mesh to an ideally shaped element (for example, a cube in
a hexahedral mesh). Elements having Jacobian values close to unity are desirable, but
elements with Jacobian greater than 0.6 are considered of acceptable quality in biological
tissues. Generally, acceptable values of the internal angle between two faces inside a
hexahedral element have to be maintained between 45° and 135° (an ideal element has
an angle of 90°). Another metric, which quantifies the deviation from an ideally shaped
element, is warpage. Warpage angle is the measure of the out-of-plane inclination of a node
with respect to three other nodes on a surface in a hexahedral element. Elements with
warpage angles of less than 15° are considered adequate. Finally, the aspect ratio, which is
the ratio of the longest edge to the shortest edge in an element has to be less than three
for an optimum element.

Multi-block meshing can be used to obtain high-quality hexahedral meshes, and the
mesh density can be varied by controlling the number of sub-divided blocks. Applications
such as ANSYS ICEM CFD (ANSYS, Canonsburg, PA, USA), IA-FEMesh (MIMIX, The
University of Iowa, IA, USA), TrueGrid (XYZ Scientific Applications Inc., Pleasant Hill,
CA, USA) offer multi-block meshing capabilities and are often used for mesh generation
of soft tissues. ICEM CFD and TrueGrid are proprietary and have been used to create
hexahedral meshes of the femur (Schonning et al., 2009), normal and scoliosis-affected
vertebral geometries (Hadagali et al., 2018), and also to mesh the human brain (Mao
et al., 2013).

IA-FEMesh is an open-source application, which offers similar features as the other ap-
plications. Shivanna et al. (2010) demonstrated the capabilities of IA-FEMesh by meshing
many tissue geometries (brain, phalanx, femur and femoral cartilage) and implant devices
(wrist implants, total knee replacement) and Kiapour et al. (2013) built a full lower limb
FE model in IA-FEMesh.

Another study by Rodriguez-Vila et al. (2017) developed a fully automatic methodol-
ogy to generate hexahedral meshes of the knee soft tissues implemented in MATLAB (The
MathWorks Inc., Natick, Massachusetts, USA). The software (MATLAB program) reads
the geometry of the femoral cartilage, tibial cartilages and the menisci in stereolithogra-
phy (STL) format and generates an initial low-resolution mesh using a custom sweeping
algorithm followed by smoothing using a Laplacian filter in the next step. Further, the
smoothed mesh is projected onto the original geometry to generate an initial coarse mesh.
The coarse mesh is then subdivided into more elements, and the element quality is veri-
fied. If the element quality fails to meet specific quality criteria, the smoothing process is
repeated, which then moves the nodes in the elements within the geometry bounds, until
the quality criteria are satisfied.
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2.4.2 Computational Models of Jump Landing

Computational models have been previously developed to understand ACL injury mechan-
ics during jump landing events. Shin et al. (2007) developed a subject-specific multibody
dynamics model to simulate a jump landing. They evaluated the effect of deceleration
forces on ACL strain during run-to-stop single-leg landing. The inputs to the model were
from the in-vitro experiments of Withrow et al. (2006), where an impact force is applied
on top of the femur bone attachment. Quadriceps, hamstrings and gastrocnemius muscle
force pretensions were applied at the start to maintain the knee angle at 25°. After the
impact force was applied, muscle forces naturally developed in the bundles. Except for
verifying the model inputs against the experiment, no other validation study was carried
out. The relative ACL strain in the simulation (2.1 %) compared well with the experi-
mental results (2.5 %) and the time to peak ACL strain was within 25 ms of each other.
Also, the study proceeded to test another hypothesis that during landing, posterior forces
on the tibia exist due to deceleration forces, which protects the ACL. Consequently, the
study found that ACL strain decreases with the increase in posterior forces on the tibia.

To test the hypothesis that the quadriceps force is not a contributor to ACL injury,
Domire et al. (2011) simulated a jump using a mathematical model of the quadriceps
muscle. The authors questioned if the quadriceps force values (∼ 4500 N) during jump
landing from earlier experimental studies could be as high as reported and reviewed it
using a simple simulation model. They concluded that even at the highest levels of pre-
activation of quadriceps forces, the peak values (∼ 2000 N) would not reach half of what
had been previously reported and thus stated that the peak quadriceps force alone cannot
be a primary contributor to an ACL injury.

Kiapour et al. (2013) also simulated a jump landing on a subject-specific, validated FE
model. The model was validated by comparing tibiofemoral kinematics under quasi-static
and dynamic loading to a wide range of cadaveric studies. They also simulated a bipedal
landing from the in-vitro experiments on the Ohio State University simulator. In the
experiment, the GRF during landing was simulated by dropping half bodyweight (350 N)
on the underside of the foot from 30 cm height while the quadriceps and hamstring forces
were maintained at 1200 N and 800 N and the same conditions were replicated in the FE
model. They found an increase in ATT, knee valgus, internal tibial rotation, and ACL and
MCL strains after the impact. Peak ACL strain was found to be 5.2 %. In addition, the
simulation was repeated with 134 N of anterior tibial force and found that the parameters
mentioned above increased with the peak ACL strain at 7.1 %.

A common theme among these models was that the experiments on which the models
were based on did not have dynamically varying muscle forces but were pre-set values.
Therefore, they did not adequately represent the physiological loading conditions during
jump landing (Bakker et al., 2016). The above limitation was addressed in the study by
Polak (2019), where dynamic muscle forces obtained from Bakker et al. (2016) were used
to simulate jump landings on a computational FE model of a 50th percentile male. It was
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found that the peak relative ACL strains were 4.2 % and 13.9 % occurring at 60 ms after
ground contact, in the simulation of two different jump landing profiles. Table 2.5 shows
a summary of computational knee models simulating jump landing activity.

Table 2.5: A literature review on computational knee models simulating jump landing

Study Year Type of model
Model validation Peak ACL

method strain (%)

Shin et al. 2007
Subject-specific multibody

None 2.1
dynamics model

Domire et al. 2011
Mathematical model to

None NA
estimate quadriceps forces

Kiapour et al. 2013 Subject-specific FE model
Against experimentally

5.2
measured tibiofemoral

kinematics

Polak 2019
FE model of a 50th Simulated on a validated

9.1
percentile male GHBMC lower limb model

Due to the disparity in the anatomical features of each individual, ACL injury me-
chanics can vary significantly between subjects. In this regard, subject-specific models can
be powerful tools in predicting an individual’s risk of ACL injury in specific activities.
However, simulation of jump landing activity on a validated subject-specific FE model,
with dynamic physiological loading conditions, is a critical gap in the current literature.
Addressing this gap can prove to be an inexpensive alternative to recreating dynamic knee
loading scenarios on cadaveric specimens and can also provide invaluable data to under-
stand subject-specific injury mechanics due to the intrinsic anatomical factors.

2.4.3 Modelling Ligament Behaviour

The choice of material properties for the knee ligaments influences the overall joint kinemat-
ics, especially in dynamic simulations such as jump landing. Modelling ligament character-
istics is complicated, given the distinctive behaviour of ligaments under loading (Galbusera
et al., 2014). Although experimental tests can extract ligament properties, this requires
complex experimental setups and robust instrumentation. Due to these reasons, most
studies use the material properties of ligaments from previously published data.

Mechanical Properties

Mechanical behaviour of the ACL is characterized by performing uniaxial tensile tests,
most commonly in the bone-ligament-bone configuration. The force versus displacement or
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stress-strain relationship of the ACL is non-linear, like any other ligament, and shows three
distinct regions: the non-linear toe region, the linear region and the failure region (Figure
2.8). Before the application of the load, the ligament fibres are slack and not aligned
in any particular direction, and they gradually start to align in the loading direction,
which corresponds to the initial toe region. Upon increasing the load, the fibres, now fully
aligned in the loading direction, exhibit linear behaviour (linear region). Failure occurs
when the collagen fibres rupture and the ACL tears. Tensile properties of ACL has been
characterized by previous studies (Butler et al., 1986; Chandrashekar et al., 2006; Noyes
and Grood, 1976; Hollis et al., 1991). Figure 2.8 shows the ACL behaviour reported by a
more recent study, Chandrashekar (2005) where uniaxial tensile tests on the ACL of ten
male and ten female cadaver subjects were performed at a strain rate of 100 %/s, along
the longitudinal axis.ACL stress-strain curve from Chandrashekar, 2005

Male
Female

TOE
REGION

LINEAR
REGION

FAILURE

Figure 2.8: Stress-strain relationship of male and female ACL under uniaxial tension
(adapted from Chandrashekar (2005))

Modelling Knee Ligaments

Previously, in computational models, ligaments have been represented as one, two and
three-dimensional (or continuum) models. Synonymous with the name, each model has
the respective number of degrees of freedom.

1D models deform only in one direction, along the axis of the element. They are
modelled as individual bundles at approximately the same attachment location of the actual
ligament (Galbusera et al., 2014). From the early experimental work on ligament behaviour
by Butler et al. (1986) and Trent et al. (1976), Blankevoort et al. (1991) developed a
mathematical model to describe the force versus displacement behaviour of the major
ligaments in the knee joint (ACL, PCL, MCL and LCL) and the capsular ligament. The
mathematical model is expressed as:
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f =


1

4
k
ε2

εl
, 0 ≤ ε ≤ 2εl

k(ε− εl), ε > 2εl

0, ε < 0

f is the ligament force, ε is the strain in the ligament and k is the stiffness parameter.
The above equation is analogous to the equation of a linear spring, f = kx (where k is
the spring stiffness and x is the spring displacement). A quadratic equation in strain is
used to describe the initial toe region (or non-linear region) and a linear equation in strain
to represent the linear region of the ligament behaviour (Figure 2.8). The linear strain
limit, εl, controls the transition from initial non-linear or toe region to the linear region.
The fact that a ligament does not resist compressive or shear loads is taken care in the
mathematical model by setting force to be zero for compressive strains. By varying the
stiffness parameter, k and the linear strain limit, εl, force versus displacement behaviour of
all the ligaments can be generated. This requires the zero-load length L0 of the ligament
which can be obtained from the equation (Blankevoort et al., 1991):

L0 =
Lr

(εr + 1)

Lr is the length of the ligament bundle at the reference position, which usually is at
extension and can be measured from the MRI scans or through digitization of anatomic
co-ordinates. εr is the strain in the ligament bundle at the reference length Lr, which is
also prescribed for each ligament bundle in Blankevoort et al. (1991). Several authors have
used different versions of this mathematical model, but the underlying concept remained
the same (Galbusera et al., 2014). However, there is no general agreement on the pre-strain
values of ACL (at extension) among these studies. It ranges from no pre-strain (Abdel-
Rahman and Hefzy, 1998) to 16 % pre-strain (Amiri and Wilson, 2012) (Table 2.6). These
values were chosen based on either experimental studies from other literature in some cases
or based on their own in-vitro and optimization studies. Despite this variability, Beidokhti
et al. (2017) evaluated 1D and 3D continuum models of ACL and concluded that 1D models
produce quick and satisfactory results if the kinematic output from the simulation is the
main objective. Table 2.6 shows a brief review of studies that modelled ligaments as 1D
elements.

While 1D representations of a ligament are convenient, 2D and 3D continuum models
enable detailed and realistic representations of the ligament behaviour. With continuum
models, wrapping of the ligament bundles with bones, contact with other ligaments and
with the bones can be simulated (Galbusera et al., 2014). Some studies have considered
ligaments to be simple hyperelastic models such as neo-Hookean (Mootanah et al., 2014;
Beidokhti et al., 2017) while others have implemented custom hyperelastic material models
such as Veronda–Westmann (Song et al., 2004) to describe their behaviour (Galbusera
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et al., 2014). Further, continuum models also allow modelling of true anisotropic nature of
the ligaments using complex constitutive models such as Holzapfel-Grasser-Ogden (HGO),
implemented by both and Kiapour et al. (2013) and Westermann et al. (2013).

Table 2.6: A literature review on 1D non-linear spring models for ACL

Study Year
ACL

Stiffness Pre-strain (%)
bundles

Abdel-Rahman
and Hefzy

1998
AM

83.15 N/mm2 (toe region)
0

22.48 N/mm (linear region)

PL
83.15 N/mm2 (toe region)

5.1
26.27 N/mm (linear region)

Zielinska and
Haut Donahue

2006
AM

Stiffness parameter: 5000 N
6

PL 10

Shin et al. 2007
AM

108 N/mm
2

PL 2

Amiri and
Wilson

2012
AM

Stiffness parameter: 5000 N
16

IM 10
PL 10

Harris et al. 2016
AM (50−106) N/mm −1.5 to 10
PL (51−108) N/mm −1.5 to 10

2.5 Summary of Previous Research

Cassidy et al. (2013) developed a workflow to measure ACL strain during single-leg jump
landing, which involved in-vivo motion capture, generation of muscle forces from a muscu-
loskeletal model using the motion capture data and measurement of ACL strain in-vitro.
In the study of Bakker et al. (2016), the same approach was followed to measure the ACL
strain of recreational athletes during jump landing wherein 3D kinematics (body marker
data) and GRFs (using a force plate), were obtained from 10 different participants. GRF
data was input into a musculoskeletal model in OpenSim (Stanford University) to obtain
muscle forces and hip and ankle kinematics. Further, in-vitro jump landing simulations
were carried out on five cadaver specimens (3 male, 2 female, average age of 47.2 years) on
the University of Waterloo Dynamic Knee Simulator (DKS) and anteromedial ACL strain
was recorded using a DVRT.

Based on the workflow established by Cassidy et al. (2013) and Bakker et al. (2016),
additional in-vitro jump landing experiments were carried out by Polak (2019) on three
cadaver specimens (1 male, 2 female, average age of 47.6 years). In the same study, ACL
strain was calculated by simulating jump landing activity on the 50th percentile male, a
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lower extremity FE model of GHBMC. A DVRT was mounted on the anteromedial bundle
of the ACL to measure the relative strain during the experiment (Figure 2.9).

DVRT placement on ACL

DVRT placement on 
AM bundle of the ACL

Figure 2.9: DVRT placed on the ACL to record displacement in the experiments
(adapted from Polak (2019))

The FE model developed for the current study is the subject-specific model of one of
the cadaver specimens of the in-vitro study of Polak (2019). Figure 2.10 shows a brief
background of single-leg jump landing studies.Thesis outline – Option 2

In-vivo study of single leg jump landing and
musculoskeletal model in OpenSim

(Cassidy et al., 2013; Bakker et al., 2016)

In-vitro experiments on DKS
(Bakker et al., 2016; Polak, 2019)

ACL strain, experimental
(Bakker et al., 2016; Polak, 2019)

ACL strain, computational

Subject-specific 
computational model

Current study

ACL strain, computational
(Polak, 2019)

Generic computational model 
(GHBMC 50th percentile male knee)

(Polak, 2019)

Figure 2.10: Previous and current research on single-leg jump landing
(conducted at the University of Waterloo)
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2.6 Hypothesis

The current study complements the previous work carried out by Bakker et al. (2016) and
Polak (2019) by including a subject-specific FE model, of a cadaver specimen from the
experimental work of Polak (2019)’s study. Based on this approach, it is hypothesized
that:

1. The ACL strain trends in jump landing simulations of seven participant profiles (P1
to P7) will be similar to the experimental results of Bakker et al. (2016)

2. Peak ACL strains of the jump landing simulations would occur at approximately the
same time as the experimental peak strains of Bakker et al. (2016)

3. Posterior medial meniscus strain trends during half muscle force jump simulations
will correlate with the experimental results of Polak (2019)
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Chapter 3

Methodology

The FE model developed for the current study is the subject-specific model based on one of
the cadaver specimens of the in-vitro study of Polak (2019). Figure 3.1 shows an overview
of the steps performed to generate the knee joint FE model.Methodology summary

Development of subject-
specific knee 3D model Mesh generation

Finite element
analysis

• Cadaver specimen imaging 

• Segmentation

• Post processing

• Tet meshing of bones

• Hex meshing of soft tissues

• Kinematic verification

• Single-leg jump landing

Finite element model 
setup

• Digitization of ligaments

• Material properties

• Knee co-ordinate system

• Muscle moment arms

X

Y

Figure 3.1: Overview of the procedure to develop and validate a subject-specific FE model

3.1 Development of Subject-Specific Finite Element

Model

3.1.1 Definition of Tissue Geometries Using Medical Imaging

A fresh frozen cadaver knee specimen from the in-vitro study of Polak (2019) was chosen
for the development of a subject-specific FE model (labelled as Knee 1 in Polak (2019)).
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The specimen contained the entire knee joint, all of its musculature and the soft tissues,
sectioned eight inches above and below the joint. The specimen information is provided in
Table 3.1. The anthropometrics of this individual (height and body mass) were close to a
50th percentile U.S. male (Gayzik et al., 2011).

Table 3.1: Tissue donor information

Extremity Sex Age (years) Height (cm) Body mass (kg)

Right Male 49 178 77

The specimen was frozen in an extended position and then a cast was built around
it to preserve the shape of the knee joint in extension (Figure 3.2A). The cast was then
carefully cut open and separated from the specimen and stored. A day before the scanning,
the specimen was defrosted overnight (Figure 3.2B). The defrosted specimen was secured
in the previously built cast for the imaging procedure.

Figure 3.2: Cadaver specimen, PK1
Cast in extension when frozen (A) and the same in a defrosted state (B)

Cadaver Imaging

3D CT (Toshiba Aquilion CT scanner, Zoetermeer, Netherlands) and MRI (Seimens MAG-
NETOM Prisma 3.0T, Erlangen, Germany) scan of the cadaver specimen were obtained
at Sunnybrook Medical Center, Toronto, ON, Canada. On the MRI machine, the knee
specimen was placed in a knee coil (Tx/Rx Knee 15 Flare Coil) to improve image quality.
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MRI was obtained in three commonly acquired sequences, T1, T2 and Proton Density
(PD), for knee tissue segmentation (Aprovitola and Gallo, 2016). Sagittal plane images of
the scans are shown in Figure 3.3, and the details of the scans are available in Table 3.2.

Table 3.2: Details of the MRI scans acquired for the current study

Sequence Features Resolution
Number of Slice

slices thickness (mm)

T1
Bone appears dark, good

512 × 512 224 0.5
overall tissue visibility

T2
Bone appears grey,

512 × 512 204 0.5
good muscle visibility

PD
Good cartilage-bone interface,

512 × 512 204 0.5
meniscus and ligament visibility

MRI scan types

T1 sequence T2 sequence Proton Density sequence

Figure 3.3: MRI sequences obtained for the current study

Segmentation

3D Slicer software (version 4) was used to generate the 3D model of the knee joint through a
process called segmentation. Two segmentation methods, automatic and manual segmen-
tation were used to segment the CT and MRI scans. An automatic segmentation method
called thresholding, an intensity-based segmentation method was used to generate models
of the bones from the CT scans quickly (Fripp et al., 2007). The image intensity range
of the bones was input in the thresholding effect tool in the segment editor module of 3D
Slicer to define segmentation boundaries.

Manual segmentation involved assigning a specific colour to the region of interest using
various tools (paint, erase, scissors, level tracing) available in the segment editor module
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of 3D Slicer. A segmented model of the knee joint, SPL 2015 Sep, was used as a reference
during segmentation. This dataset was crucial in understanding the locations of soft tissues
and bone-cartilage interfaces in the scans. Figure 3.4 shows the process of segmentation of
the MRI scans in 3D Slicer.

Segmentation procedure

Axial
view

Sagittal 
view

Coronal
view

A

P

M L

S

I

A P

S

I

M L

3D model display window

Segmentation

Figure 3.4: Segmentation process of bones and soft tissues in 3D Slicer
MRI scans in 3D Slicer software in axial, sagittal and coronal planes (left). Segmented scans

after manual and automatic segmentation procedures, along with the completed model (right)

The geometry obtained from 3D Slicer was coarse and had jagged edges called as stair-
case artefacts, common with segmentation. Therefore, before meshing, smoothing of the
surfaces and trimming of the boundaries of the geometries was performed in SolidWorks
2018 (Dassault Systèmes, Waltham, MA, USA) using the Surface Wizard and Curve Wiz-
ard functions. During smoothing, care was taken not to distort the original geometrical
shape or contours of tissues but to remove only the surface irregularities (Figure 3.5). Fig-
ure 3.6 shows the segmented models of all the soft tissues in the knee joint after adequate
smoothing in SolidWorks.

Staircase artefacts with 
segmentation

Artefacts reflected as jagged 
surfaces in the 3D model

After smoothing operation in 
SolidWorks

Figure 3.5: Smoothing of femoral cartilage geometry in SolidWorks
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Smoothed models in SolidWorks

Femur FibulaTibia

Patella

Smoothed models in SolidWorks

Patellar cartilage Femoral cartilage Medial meniscus Lateral meniscus

Lateral tibial cartilageMedial tibial cartilage

Figure 3.6: Segmented models of bones and soft tissues after smoothing in SolidWorks
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3.1.2 Digitization of Ligament Insertion Sites

The ligaments were positioned accurately in the FE model by recording the ligament
attachment sites on the cadaver specimen, using a spatial coordinate measuring device,
MicroScribe-G2XTM (Immersion Corporation, USA), with a reported accuracy of 0.23 mm
(Figure 3.7).

Digitization procedure

MicroScribe
digitizer

Cadaver 
specimen

Digitized locations 
registered on an MRI scan

Figure 3.7: MircoScribe digitizer and digitization procedure

The attachment sites of the ligament were digitized both on the femur and tibia bones.
To access the joint space during digitization, the femur and the tibia bones were separated
by cutting the cruciate and the collateral ligaments approximately at their mid-lengths.
The bones were then mounted on a platform using the threaded rods, which were already
screwed in at the end of the bones, required for the jump landing experiment on the DKS.

To map the attachment sites of the ligaments onto the segmented model of the knee
joint, the location of the bony landmarks of the femur and the tibia were recorded first. The
list of bony landmarks was obtained from Subburaj et al. (2009) (Figure 3.8). Next, the
attachment sites of the ACL, PCL, and MCL on the tibia and the femur were recorded.
LCL has an attachment site on the fibula, which was also digitized. In addition, the
meniscal attachment sites on the tibial plateau were also digitized.

The position data of the attachment sites from the digitizer coordinate system was
rigidly registered (or aligned) onto the 3D model (generated via segmentation) using the
Transform tool available in 3D Slicer. First, the locations of the bony landmarks to their
respective locations in the model were aligned, which in turn translated the attachment
sites to their respective locations on the model. The transformed coordinate data of the
ligaments, now in the knee joint co-ordinate system was obtained and transferred to Abaqus
CAE 2018 (Dassault Systèmes, Johnston, RI, USA), a commercial finite element package
which includes a pre-processor, solver and post-processor for an FE simulation. Here, the
digitized ligament locations were used to construct non-linear spring elements, as described
in the following section. An anatomy textbook (Moore and Dalley, 2013) was also referred
to verify the locations of the bony landmarks and the ligament attachment sites. Figure
3.9 shows the digitization setup and steps described above.
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Smoothed models in SolidWorks
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Figure 3.8: Bony landmarks on the femur (left) and tibia (right)
(adapted from Subburaj et al. (2009))
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Figure 3.9: Procedure followed to digitize the ligament insertion sites in the current study
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3.1.3 Tibial Slope

Higher posterior tibial slopes have been shown to increase the risk of ACL injury due to
increase in ATT (Giffin et al., 2004; McLean et al., 2011). Therefore medial and lateral tib-
ial slopes were measured from the CT scans following the procedure described in Hashemi
et al. (2008) and described in Figure 3.10. Medial and lateral tibial slopes were found to
be 8.5° and 9.0° respectively.Medial and Lateral Tibial Slope

L

A

P

LM

90°

P
9°

L

P

90°

8.5°

LATERAL 
TIBIAL 
SLOPE

MEDIAL 
TIBIAL 
SLOPE

SAGITTAL PLANE LOCATION 
FOR MEDIAL AND LATERAL 
TIBIAL SLOPE ESTIMATION

Figure 3.10: Medial and lateral tibial slopes measured on the CT scan
L is the longitudinal tibial axis and P is perpendicular to L. Solid lines coincide with the tibial

plateau for slope measurement

3.1.4 Meshing of the Segmented Geometries

Two element types were used to mesh the segmented models. Meshing strategy depended
on the definition of each tissue component in the FE model. Bones have higher stiffness
compared to other soft tissues and therefore were assigned tetrahedral elements, whereas
the other soft tissues were meshed with hexahedral elements.

The extracted geometries of cartilage and menisci were meshed with 8-node hexahedral
elements. Meshes of the menisci were automatically generated from a piece of software
designed to mesh knee soft tissues, whereas the meshes of the cartilage were generated
manually using a multi-block meshing procedure in IA-FEMesh. The bones of the knee
joint were meshed with tetrahedral elements in HyperMesh (Altair Engineering, Inc., Troy
MI, USA).

Hexahedral Meshing of the Menisci

The MATLAB software library developed by Rodriguez-Vila et al. (2017) was used to mesh
the menisci and tibiofemoral cartilages of the knee joint. Hence, the smoothed models of
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the soft tissues from the previous step, namely, femoral, tibial cartilages and the menisci
were input to the software in STL format to generate hexahedral elements with 8 nodes
(Figure 3.11).

Medial Meniscus Lateral Meniscus

Femoral Cartilage Lateral Tibial Cartilage Medial Tibial Cartilage 

Figure 3.11: Hexahedral mesh output of the knee soft tissues
(obtained using the software by Rodriguez-Vila et al. (2017))

Hexahedral Meshing of the Cartilage

The software by Rodriguez-Vila et al. (2017) was also capable of generating cartilage meshes
quickly, similar to the menisci (Figure 3.11). Although using the software requires minimal
manual effort, (mesh generation time for all structures is around 3 minutes) to generate
good quality hexahedral meshes, the cartilage meshes obtained from this procedure were
not used in the knee FE model and instead meshed manually using multi-block mesh-
ing approach in IA-FEMesh. The reason for choosing this alternate approach was that
the software divides the cartilage thickness into six unequal layers to facilitate assigning
depth-dependant cartilage material properties. Unequal division of cartilage generates two
thin rows of elements (thickness 0.1mm), as shown in Figure 3.12. In dynamic simulations
such as jump landing, thin elements would easily distort, creating problems in the model
solution and output. Although it may be possible to tweak certain parameters in the MAT-
LAB program to obtain a desirable mesh, it would have been time-consuming because the
software is split into 24 individual MATLAB functions. Tweaking of parameters to get the
desired number of mesh layers or mesh thickness would then involve carefully investigating
how one change affects the other functions in the software. Hence, the multi-block meshing
procedure was employed to generate cartilage meshes only. Moreover, patellar cartilage
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had to be meshed manually since the software was not programmed for this structure,
further justifying the selected approach.

Meshing – MATLAB output problem

Thin elements 
(~0.1mm)

Elements out of 
geometry bounds

2

2

2

6 layers of elements with 
non-uniform thickness

STL geometry 
(in black)

Figure 3.12: Thin elements in the lateral tibial cartilage mesh
(obtained using the software by Rodriguez-Vila et al. (2017))

Figure 3.13 details the steps followed to create hexahedral meshes of the cartilage ge-
ometry, with femoral cartilage as an example. The process of multi-block meshing involved
the creation of an initial bounding box around the STL file of the geometry (Step 1) and
then subdividing the bounding box into smaller blocks. The vertices of the smaller blocks
were adjusted to conform to the geometry of the object being meshed. More such subdivi-
sions were created to capture the intricacies of the object and until the blocks satisfactorily
represent the object (Step 2). Next, the number of divisions or the number of elements
needed in the resulting mesh were chosen. Based on the user input, the application divides
the blocks and generates a hexahedral mesh (Step 3). The mesh output can be directly
exported as a .inp file to be read in Abaqus. The same process was followed to mesh the
other cartilaginous structures.
Block meshing procedure

Creation of few blocks to 
represent the geometry roughly

Sub-dividing the rough initial blocks and 
adjusting the positions of the vertices

Creation of hex mesh by projecting 
the vertices on the target geometry

Step 1 Step 2 Step 3

Figure 3.13: Multi-block meshing procedure in IA-FEMesh
(shown for femoral cartilage)
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The hexahedral meshes from IA-FEMesh were imported into HyperMesh 2017 (Altair
Engineering, Inc., Troy, MI, USA) for further post-processing. In HyperMesh, the mesh
output from IA-FEMesh was re-evaluated, and it also allowed the deletion of a few severely
distorted elements on the periphery (one to two layers of distorted elements) of the cartilage
structures, as shown in Figure 3.14. Mesh output of all the cartilages after post-processing
in HyperMesh is shown in Figure 3.15.

Deletion of bad elements

Mesh output from IA-FEMesh Mesh used in the finite element model

Distorted elements 
on the periphery

Figure 3.14: Deletion of excessively distorted boundary elements
(shown for femoral cartilage)

Femoral Cartilage Lateral Tibial Cartilage Medial Tibial Cartilage 

Patellar Cartilage

All cartilages have 3 mesh layers 
along the thickness direction

Figure 3.15: Hexahedral meshes of all cartilages after post-processing in HyperMesh
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Tetrahedral Meshing of the Bones

The bones in the knee joint (femur, tibia, patella and fibula) were defined as rigid bodies in
the FE model since the stiffness of bones is very high (Table 3.3) compared to the other soft
tissues in the human body. Defining the bones as rigid bodies is a general practice in studies
focussed on soft tissue behaviour. It also has a significant impact on the computational
time since the elements in a rigid body do not undergo any deformation but only exhibit
rigid body motions1. Therefore, bones were meshed with first-order tetrahedral elements
in HyperMesh (Figure 3.16).

Tetrahedral 
meshing of 
the bones

Femur

Fibula

Tibia

Patella

Figure 3.16: Tetrahedral meshes of the bones in the knee joint

3.1.5 Model Definition in Abaqus CAE

The individual hexahedral meshes of the soft tissues and the tetrahedral meshes of the
bones were imported and assembled in Abaqus CAE, and suitable element type was chosen
for each structure. Appropriate material properties were also assigned to both soft and hard
tissues. Also, several constraints and contact definitions were assigned to enable proper
interactions between the tissues. Ligament attachment locations were derived from the
digitization exercise, and their properties were assigned based on a mathematical model.
Following sections explain the setup of the FE model in detail.

1Abaqus 6.14 online documentation, section 2.4.1
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Element Type

All the soft tissues of the knee joint were meshed with 8-node hexahedral elements2, and
hence C3D8R element type (C-Continuum, 3D-3 Dimensional, 8-number of nodes in the
element, R-Reduced integration) were assigned (Figure 3.17). C3D8R elements are com-
putationally more efficient than the fully integrated (C3D8) elements. The disadvantage
with such elements is that they suffer excessive distortions due to the single integration
point available in the element for stress/strain calculations3. At the integration point, at
times, strains can become zero leading to mesh distortion in the shape of an hourglass
(Figure 3.17).

Element type in Abaqus CAE

Figure 3.17: 8-noded hexahedral element and its hourglassing modes
Hexahedral element in Abaqus (left) and hourglassing in the single-integration point hexahedral

element (right, Belytschko et al. (1984))

Generally, a few measures are taken to avoid hourglassing such as increasing the mesh
density, using fully integrated elements (C3D8) or introducing an artificial energy into the
mesh elements to reduce distortion. Due to the irregular geometries of the soft tissues,
increasing the mesh density due to inherent difficulties in mesh generation and using fully
integrated elements leading to an increase in the computational time significantly were
not feasible solutions. Hence, the introduction of artificial energy into the elements called
hourglass stiffness was an ideal choice. In Abaqus, enhanced hourglass was chosen, wherein
an artificial stiffness was introduced in an element to reduce excessive distortions due to
hourglassing.

Further, as the bones of the knee joint were meshed with 4-node tetrahedral elements
and defined as rigid bodies in the FE model, C3D42 element type (C-Continuum, 3D-3

2Abaqus 6.14 online documentation, section 28.1.4
3Abaqus 6.14 online documentation, section 28.1.1
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Dimensional, 4-number of nodes in the element) was chosen for them from the Abaqus
CAE element library (Figure 3.18).

Element type in Abaqus CAE

Figure 3.18: 4-noded tetrahedral element

Constraints

In Abaqus, constraints define rigid bodies and kinematic interactions between surfaces.
Rigid body definitions require the creation of a reference point, at which all the boundary
conditions of the rigid body are applied. The reference point can be the centre of mass of
the body or any point in space.

The reference points of the femur and tibia rigid bodies were placed at the hip and the
ankle locations instead of their centre of mass which made the application of the hip and
ankle boundary conditions easier while simulating jump landing. The reference points of
the patella and fibula were defined at their centre of mass locations.

A TIE constraint defined between two surfaces in Abaqus enforces zero relative motion
between them. Rigid attachment of the cartilaginous structure with the bone was achieved
by defining a TIE constraint between the external bony surface and the inner mesh layer
of the associated cartilage (Figure 3.19). TIE constraint was defined between the femur
and femoral cartilage, tibia and tibial cartilages, and patella and patellar cartilage. Since
the fibula also has no relative motion with respect to the tibia, a TIE constraint was also
defined between the external bony surfaces of the fibula and the tibia.

Interactions

While the relationship between bones and cartilage were defined as TIEs, the interaction
of the soft tissues with each other was governed by contact definitions. General contact
algorithm was used to define contact between various surface pairs in the model (Figure
3.20). The contact was defined as frictionless which simulates the lubricated knee joint
capsule due to the presence of synovial fluid.
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TIE constraints

Inner mesh surface of 
the cartilage (in red)

Outer surface 
of the bone

Figure 3.19: Definition of TIE constraint between the patella and patellar cartilage

Patellar cartilage 
and

Femoral cartilage

Femoral cartilage 
and

Medial meniscus

Medial meniscus
and

Medial tibial cartilage

Femoral cartilage 
and

Lateral meniscus

Lateral meniscus
and

Lateral tibial cartilage

Figure 3.20: Contact definition between various surface pairs in the FE model

Material Properties

Isotropic, linear elastic material properties were assigned to bones, cartilage and menisci.
The material properties were based on published data and are provided in Table 3.3.
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Table 3.3: Summary of the material properties assigned to various anatomical structures

Anatomical Definition Young’s Poisson’s Reference
structure in Abaqus modulus (MPa) ratio Study

Femur

Rigid 8000 0.3
Haut Donahue
et al. (2002)

Tibia
Patella
Fibula

Femoral cartilage
Deformable 20 0.45

Akizuki et al.
(1986)

Lateral tibial cartilage
Medial tibial cartilage

Lateral meniscus
Deformable 59 0.49

LeRoux and
Setton (2002)Medial meniscus

Akizuki et al. (1986) evaluated the tensile properties of healthy and osteoarthritic car-
tilage by subjecting low and high weight-bearing areas (LWA and HWA) in the femur up
to 15 % strain. The authors found that the cartilage in the LWA was stiffer than the HWA
and the tensile modulus was always within 30 MPa for both the areas. LeRoux and Set-
ton (2002) conducted tensile tests to determine the transversely isotropic behaviour of the
menisci. Following this experimental research, an FE study by Pena et al. (2005) evaluated
average material properties for the menisci (E = 59 MPa and ν = 0.49) to understand the
effect of meniscal tears on the articular cartilage. The material properties for the bony
geometries were not as critical as the other soft tissues since they were defined as rigid
bodies in the FE model. Bones were also assumed as linearly isotropic material with the
properties based on another FE modelling study by Haut Donahue et al. (2002).

Modelling of Ligaments

The ligaments in the knee joint were defined as spring elements exhibiting a non-linear
force versus displacement relationship. In Abaqus, they were modelled as non-linear axial
connector elements (CONN3D2). The axial connectors can be a spring (linear or non-
linear), or a damper or a combination of both defined between two nodes a and b in an
FE model (Figure 3.21). Ligaments were modelled by inputting force versus displacement
curves to the connector element definition in Abaqus. In addition, the pre-strain in each
ligament bundle was specified by inputting their respective zero-load lengths (L0).

Blankevoort et al. (1991) developed a mathematical model to describe the force versus
displacement behaviour of all the major ligaments in the knee joint (ACL, PCL, MCL and
LCL) including the capsular ligament which was discussed in detail (Section 2.4.3). All
the ligaments were modelled based on Blankevoort et al. (1991) study, except the ACL.
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Figure 3.21: Axial connector definition in Abaqus CAE
(Abaqus 6.14 online documentation, section 31.1.5)

The response of the ACL in the validation studies was stiffer than expected with ma-
terial properties from Blankevoort et al. (1991). Figure 3.22 shows the response of AM
bundle of the ACL with increasing anterior force on the tibia (Lachman test, discussed in
Section 3.2.1) compared with the in-vivo experimental strains of Beynnon et al. (1992a).
In the simulation of the Lachman test, the strain in the AM bundle was approximately
half of what was observed in the experiments.
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Figure 3.22: AM bundle strain versus anterior force on the tibia (Lachman test)
(with material properties from Blankevoort et al. (1991))

This stiffer response was attributed to the small toe region of the ACL curve from
the mathematical model. Therefore, the material properties of ACL were obtained from
another experimental study by Chandrashekar (2005). Figure 3.23 shows the force versus
displacement curve of the male ACL from Chandrashekar (2005) and the one used for the
AM and PL bundles in the current FE model, compared to the mathematical model where
the smaller toe region can be observed.
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Figure 3.23: Force versus displacement curves of ACL

The force versus displacement curve from Chandrashekar (2005) was the behaviour
of the ACL in its entirety; it represented the combined behaviour of the two prominent
bundles in ACL: the AM and the PL bundles. In order to use this experimental curve in
the current FE model, the force data was divided in half and then applied to both the
bundles, imitating two parallel, non-linear springs. Pre-strain of both the bundles was
maintained as reported in the Blankevoort et al. (1991) study.

MCL has two distinct regions: the superficial and the deep fibres (Section 2.1.2). Only
the superficial MCL was modelled in the current study as the single-leg jump landing
simulation on the DKS replicates sagittal plane mechanics only. The role of the ACL
dominates that of the MCL in the sagittal plane mechanics (Bates et al., 2015).

Table 3.4 shows the values of stiffness parameter, k and reference strain, εr of the
ligaments from Blankevoort et al. (1991). Zero-load length (L0) of each ligament bundle
was input as the Reference length U1 in the connector element definition in Abaqus. The
negative values of reference strain in Table 3.4 indicate that the particular ligament fibre is
slack in extension. The force versus displacement curves, obtained from the mathematical
model, is shown in Figure 3.24. Guess (2012) added a small damper (damping co-efficient
of 0.5 Ns/mm) in parallel to the ligament spring elements to remove the high-frequency
vibrations in the output of simulations involving walking and double-leg squats. Similarly,
a damping co-efficient of 0.1 Ns/mm (equivalent to 0.1 % of ligament stiffness) was applied
in parallel to the non-linear springs.
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Table 3.4: Material properties assigned to the major knee ligaments

Ligament
Ligament Stifness Strain at

Reference study
bundle parameter, k extension, εr

ACL
Anteriomedial

NA
0.06 Chandrashekar (2005);

Posterolateral 0.10 Blankevoort et al. (1991)

PCL
Posteromedial 9000 −0.15

Blankevoort and Huiskes (1996)
Anterolateral 9000 −0.03

Superficial Anterior 2750 0.04
Blankevoort et al. (1991)MCL Middle 2750 0.04

Posterior 2750 0.03

LCL
Anterior 2000 −0.25

Blankevoort et al. (1991)Middle 2000 −0.05
Posterior 2000 0.08
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Figure 3.24: Force versus displacement curves of ligaments by Blankevoort et al. (1991)
PCL (top) and MCL (bottom left) and LCL (bottom right)
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In addition to the major ligaments of the knee joint described previously, certain other
ligamentous structures required for the appropriate kinematic response of the FE model
were also included. These were the patellar tendon, medial and lateral patella-femoral
ligaments (MPFL and LPFL) and meniscal horn attachments. The patellar tendon (or
patellar ligament), which exists between the patella and the tibial tuberosity was defined as
a set of three tension-only linear springs with a combined stiffness 545 N/mm (Schatzmann
et al., 1998). MPFL and LPFL attach on the medial and lateral side of the patella to the
respective sides on the femur. These ligaments were required to stabilize the patella under
the application of high quadriceps forces during a jump landing simulation. They were also
defined as linear springs with a stiffness of 16 N/mm for MPFL and 12 N/mm for LPFL
(Atkinson et al., 2000).

Furthermore, meniscal horns were defined to secure the ends of the menisci to the
tibial plateau. The horns were defined at the anterior and posterior ends of both lateral
and medial menisci as linear springs with a stiffness of 180 N/mm each (Hauch et al.,
2010). Figures 3.25 and 3.26 show all the additional stabilising ligaments defined in the
FE model.

To avoid instabilities due to stretching of just one node where the horns attach to the
ends of the menisci, a small rigid body was attached to its ends, using TIE constraints.
The meniscal horns attach to the rigid body instead of pulling on the nodes at the ends of
the menisci (Figure 3.27).Secondary ligaments

Lateral Patello-Femoral 
Ligament (LPFL)

Medial Patello-Femoral 
Ligament (MPFL)

Patellar Tendon

Femur

Tibia

Patella

Fibula S

I

ML

Figure 3.25: Secondary ligaments between patella, femur and the tibia
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Secondary ligaments

Lateral meniscus 
(LM)

Tibia

Medial tibial
cartilage

Lateral tibial
cartilage

LM Posterior Ligament

Medial meniscus 
(MM)

MM Posterior Ligament
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P

LM

LM Anterior ligament

MM Anterior ligament

Figure 3.26: Secondary ligaments in tibia

Secondary ligaments

Inner mesh surface of 
the meniscus

Rigid body to attach 
meniscal horns

TIE constraint is 
enforced here

Figure 3.27: Rigid bodies at the ends of menisci

3.2 Finite Element Analysis

Following the assembly of the meshed anatomical structures in Abaqus, a global coordinate
system was established in the model, similar to the experimental test setup in the DKS.
Next, to verify if the kinematic responses predicted by the model were valid and reasonable,
few kinematic verification simulations were carried out, and the results were compared to
published data.
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Coordinate System

According to the in-vivo study by Asano et al. (2005), the transepicondylar axis, which
connects the medial sulcus and the lateral peak of the femoral condyle was chosen as the
flexion-extension axis of the knee model. Similar to the DKS nomenclature, the transepi-
condylar axis was made the z axis in the FE model, which defines the sagittal plane.

In the DKS, the origin is the point where the hip and ankle guide rails coincide. The x
and y axes are the translational directions of the ankle and hip, respectively (Figure 3.28).

FE model co-ordinate 
system according to DKS

Medial 
sulcus

Lateral
peak

Cross-section of the femoral condyle, 
showing transepicondylar axis

ML

HIP

ANKLE

X

Y

z-axis in the FE model

DKS co-ordinate system 
(in yellow)

X

Y

Figure 3.28: Knee co-ordinate system
Flexion-extension axis (left), DKS co-ordinate system (centre, adapted from Cassidy et al.

(2013)) and FE model (right)

3.2.1 Verification of Kinematics

To verify the FE model’s capability to accurately replicate kinematics of the knee joint,
few basic motions of the knee joint were simulated: flexion, Lachman test, anterior drawer
test (in the sagittal plane), abduction (in the frontal plane) and internal rotations of the
tibia during flexion (in the axial plane). The results were then compared to in-vivo and
in-vitro experimental data from published studies.

Flexion was achieved by applying a hamstring force (∼ 600 N) to the posterior tibia
by fixing the femur in place (Figure 3.29). ACL strain during flexion was recorded and
compared to the in-vivo experimental strain in the AM bundle from Beynnon et al. (1992a).
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In addition, kinematics of the knee in the axial plane was verified by recording the internal
rotation of the tibia along the tibial axis (screw-home mechanism) during flexion and
comparing it to the in-vitro experimental measurements of Kiapour et al. (2013).

The motion of the knee joint in the frontal plane was verified by simulating pure ab-
duction at 25° knee flexion. An initial hip displacement was applied to achieve the initial
25° flexion during which the motion of the tibia was restricted. Up to 50 N·m of abduc-
tion moment was applied at the knee joint along with 400 N quadriceps force and 200 N
hamstring force (Figure 3.29). Knee valgus (in degrees) was measured and compared to
the in-vitro experimental results from Kiapour et al. (2013).

Preliminary 
studies - Flexion

FHAM

Femur fixed

*

Quad tendons 
fixed

25°
flexion

50 Nm abduction moment

FHAM=200N

FQUAD=400N

Femur fixed

Pure abductionFlexion

Figure 3.29: Boundary conditions for flexion (left) and pure abduction (right) simulations

ACL strain in the sagittal plane motion was verified with an in-vivo study by Beynnon
et al. (1992a), where the anteromedial ACL strain was measured under varying anterior-
posterior load on the tibia at 30° and 90° flexion angles, simulating Lachman and anterior
drawer tests, which are the physiological tests performed on a patient to determine ACL
tear. The knee was flexed to 30° and 90° by passively flexing the knee, by displacing the
hip node. Anterior shear loads of up to 200 N were applied to the tibia at 30° of flexion to
simulate Lachman test and at 90° of flexion to simulate anterior draw test (Figure 3.30).
Strains in the anteromedial ACL bundle were compared to the in-vivo experimental results
from Beynnon et al. (1992a).
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Preliminary studies – Combined

90°
flexion

Femur fixed

FA-P=±200N30°
flexion

FA-P=±200N

Femur fixed

Lachman test Anterior draw test

Figure 3.30: Boundary conditions for Lachman (left) and anterior draw (right) simulations

A summary of all the basic knee motions simulated is provided in Table 3.5. All
simulations were solved in Abaqus/Explicit solver with double precision.

Table 3.5: Summary of kinematics verification studies

Knee motion Boundary condition Comparison metric Reference study

Flexion
Hamstring force applied ACL strain, internal Beynnon et al. (1992b)
to tibia, femur is fixed rotation of the tibia Kiapour et al. (2013)

Pure abduction 50 N·m abduction moment ACL strain,
Kiapour et al. (2013)

at 25◦ flexion on tibia, femur is fixed Knee valgus

Lachman test 200 N A-P force applied
ACL strain Beynnon et al. (1992b)

at 30◦ flexion to tibia, femur is fixed

Anterior draw 200 N A-P force applied
ACL strain Beynnon et al. (1992b)

at 30◦ flexion to tibia, femur is fixed

3.2.2 Boundary Conditions for Single-Leg Jump Landing

The current study replicated the in-vitro jump landing simulation on the DKS at the Uni-
versity of Waterloo. A detailed description of its construction and the in-vitro experiments
performed on it can be found in Bakker et al. (2016); Cassidy et al. (2013); Hangalur et al.
(2016) and Polak (2019).
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Bakker (2015) performed a motion capture study collecting the GRFs and kinematics
of ten participants during single-leg jump landing (Table 3.6). Dynamic muscle forces, hip
flexion moments and kinematics of hip and ankle were generated from the motion capture
data using inverse dynamics in OpenSim. Further, in-vitro jump landing simulations were
carried out on five cadaver specimens, and ACL strain was recorded. The current study
replicates the ten jump landing profiles from Bakker (2015) study in the knee FE model.

Table 3.6: Participant information for jump landing trials, adapted from Bakker (2015)

Limb length (mm)

Participant Sex Body mass (kg) Femur Tibia

P1 F 59.0 399 368
P2 F 61.0 422 404
P3 M 72.0 429 396
P4 M 79.0 422 391
P5 F 57.5 411 381
P6 F 67.5 411 381
P7 F 66.0 437 404
P8 M 72.5 442 427
P9 M 74.0 422 391
P10 M 65.0 404 381

Average (SD) 67 (7)

The duration of the FE simulation in Abaqus was 400 ms, which incorporates the
first 100 ms of muscle pre-loads initialization. During the pre-loads, hip and ankle had
no kinematic input. The next 300 ms was split into 100 ms of pre-ground and 200 ms of
post-ground contact in accordance with the in-vitro simulations of Bakker et al. (2016) and
Polak (2019), as represented in Figure 3.31. Kinematic and kinetic boundary conditions
applied to the knee model to simulate the jump landing is described in the following section.

Kinematic Boundary Conditions

Kinematic boundary conditions for jump landing on the DKS are applied at the hip and the
ankle as velocities (instead of displacement), which was replicated in the knee FE model as
well. The ankle was unrestricted in rotation and free to translate in the x and the z axis but
was restricted in the y axis. The hip was free to translate in the y axis but was restricted in
the x and the z axis. The rotation of hip was allowed about the z axis but was restricted
about the other two axes. Figure 3.32 shows the hip and ankle displacement curves of
participant profile P1 for a single leg jump landing simulation. These displacement curves
were applied to the reference points of the femur and tibia, which were placed at the hip
and ankle locations, respectively (Figure 3.34).
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Simulation timeline
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Figure 3.31: Single leg jump landing simulation timeline
(with P5 muscle force profile in the background)
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Figure 3.32: Hip and ankle kinematics of P1 participant profile
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Kinetic Boundary Conditions

The single-leg jump landing simulation involved the application of three dynamic muscle
forces, quadriceps, hamstrings and gastrocnemius (or calf) and a hip flexion/extension
moment (Bakker et al., 2016). To apply the appropriate magnitude of muscle force profiles
of each participant, muscle moment arms were needed. For each muscle group, the moment
arm was measured by tendon excursion technique (Delp et al., 1994). Under the application
of any one muscle force, the displacement of the point of application of the load (equivalent
to the change in the length of the muscle cable, in the experiments) was plotted versus
the knee flexion angle. The slope of the resulting curve gives the moment arm of that
muscle force. To measure the quadriceps and hamstring moment arms, the femur was
constrained in all DOF and suitable values of quadriceps or hamstring force to cause knee
extension/flexion was applied. The quadriceps and hamstring forces were applied on three
nodes on the patella and on the posterior tibia, parallel to the long axis of the femur,
respectively. The gastrocnemius moment arm was measured by constraining the tibia in
all DOF and applying gastrocnemius force on the femur. It was applied on three nodes
on the posterior femur and the line of action parallel to the long axis of the tibia (Figures
3.33 and 3.34). The points of application of all the muscle forces were maintained at the
same locations as the muscle cable attachments to the cadaver specimen (Figure 3.33).
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Figure 3.33: Location of application of muscle forces in the FE model
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Figure 3.34: Measurement of moment arms by tendon excursion technique

The measured moment arm values were input in a MATLAB program developed by
Bakker (2015) to obtain the appropriate muscle forces for all the participant profiles from
P1 to P10 and the same for profile P1 shown in Figure 3.35.
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Figure 3.35: Muscle forces (left) and hip moment (right) of participant profile P1

3.2.3 Single-Leg Jump Landing Simulations

Polak (2019) conducted in-vitro jump landing simulations on the DKS at University of
Waterloo, based on two participant profiles, P5 and P6 taken from the study by Bakker
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et al. (2016). Kinetic and kinematic boundary conditions of these profiles were applied
on three cadaver specimens, one of which was chosen to be developed as a subject-specific
model in the current study. During the in-vitro simulations on the DKS, before running
the jump landing simulation with the actual muscle forces, the muscle forces were halved
to ensure proper working of the muscle cables other instrumentation first, since the damage
to the cadaver specimen is more probable during a full muscle force jump (Polak, 2019).
On the cadaver specimen chosen for the current study, only half muscle force jumps could
be performed because the ACL ruptured during the full muscle force jumps. Accordingly,
to compare with the available experimental ACL strain data, half muscle force single-leg
jump landing of two participant profiles, P5 and P6 were simulated first.

Once the initial simulations were completed, full muscle force jump simulations of all the
participant profiles, P1 through P10 were performed by inputting their respective dynamic
muscle force profiles, hip moment and velocities at the hip and ankle (Figure 3.35 and
Appendix A). For each participant profile jump, the limb lengths and the starting positions
of the hip and ankle were varied, according to the data in Table 3.6. The experimental
knee flexion angle at the start of the jump for all the participant profiles was close to
extension (flexion angles between 8° and 15°). Since the cadaver specimen of the current
study was scanned in extension in the cast, the flexion angle was at maintained close to
12°, and hence the initial knee flexion angle was not varied for each participant.

In participant profiles, P4, P8, P9 and P10, the muscle forces were relatively high
compared to the other profiles (Appendix A). As a result, the distortion of the elements
in these simulations was excessive in femoral and patellar cartilages; this necessitated the
application of a stiffer material. Steel material properties were assigned to these structures
as an intermediate fix (Young’s modulus=200GPa and Poisson’s ratio=0.3). To verify this
approach did not affect the ACL strain significantly, the P5 profile, which had run to
completion successfully with cartilage properties, was rerun with steel material properties
(assigned only to patellar and femoral cartilages) and the ACL strain was measured in each
case. Figure 3.36 shows the difference in ACL displacement when the normal (cartilage)
and steel material properties were used. The difference in peak ACL strain values was 0.6
%. Therefore, in the participant profiles where the muscle forces were relatively higher, steel
material properties were used for femoral and patellar cartilages only. All the simulations
were run on Abaqus/Explicit solver with double precision on a 64-bit, 16 GB RAM, Intel®

CoreTM i7-7700 CPU.

Similar to the experimental results, ACL strain, ε was calculated using the engineering
strain formula:

ε =
∆L

L0

∆L is the displacement or change in length of the ACL bundle. L0 is the gauge length
or the initial length of ACL. Bakker (2015) reported ACL strain during the last 200 ms
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of the jump landing simulation, and Polak (2019) reported the strain during the last 300
ms of the simulation. Hence L0 was chosen as the length of ACL at the time of ground
contact (200 ms) to compare with the experimental results of Bakker (2015) and at 100
ms to compare with the results of Polak (2019).
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Figure 3.36: ACL strain with different material properties assigned to cartilages
Small differences in ACL strain in the simulation of single-leg jump landing when cartilage and

steel material properties were assigned to femoral and patellar cartilages

Medial Meniscus Strain

In addition to the ACL strain, Polak (2019) also measured meniscal strain on the posterior
region of the medial meniscus to study the effect of CTi® knee brace (Össur Canada,
Richmond, BC, Canada). Experimental strain during jump landing was measured with
and without a knee brace, using a DVRT. In the FE model, displacement of two nodes
in the posterior region of the medial meniscus, at approximately the same location as the
DVRT (Figure 3.37) was extracted, and the strain was calculated using the engineering
strain formula described previously.

Comparison With In-Vitro Data

Generally, validation of subject-specific FE models is challenging, with often limited ex-
perimental data available for each subject. As described previously, in our lab, the biome-
chanics of single-leg jump landing on ACL strain has been studied extensively. In the study
Bakker et al. (2016), motion capture data was obtained from single-leg jump landings of
ten recreational athletes (P1-P10). Muscle forces and knee joint kinematics of the jump
were then generated using an OpenSim musculoskeletal model. In addition, in-vitro jump
landing experiments were carried out on five cadaver knee specimens (BK1,. . . BK5) based
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on seven participant profiles (P1-P7). Due to cadaver specimen failure, profiles P8-P10
were not experimentally tested.DVRT placement on meniscus

DVRT placement on posterior 
periphery of medial meniscus

S

I

M L

Displacement is measured 
between these two nodes (in red) 

on posterior medial meniscus

Figure 3.37: Meniscal strain measurement
DVRT placement on posterior medial meniscus (left, adapted from (Kalra et al. (2019)) and the

location of meniscal displacement measurement in the FE model (right)

In the follow-up experimental study of Polak (2019), two jump landing profiles, P5 and
P6, taken from Bakker (2015) were experimentally tested on three cadaver specimens (PK1,
PK2, PK3). In addition, single-leg jump landing was also simulated on a 50th percentile
male knee FE model from GHBMC, and the ACL strain results were compared to the
experimental data. Table 3.7 provides a summary of the experimental studies.

Table 3.7: Experimental data available for comparison of computational results

Cadaveric In-vivo participant Muscle force In-vitro Comparison
specimen4 profile tested condition cadaveric study metric

PK15

P5, P6
Half

Polak (2019)
Relative ACL strain;

PK2 Half, Full posterior medial
PK3 Half, Full meniscal strain

BK1 P1,...,P6 Full

Bakker et al. (2016) Relative ACL strain
BK2 P1,...,P6 Full
BK3 P1,...,P7 Full
BK4 P1,...,P7 Full
BK5 P1,P5 Full

4PK:Polak-Knee, BK:Bakker-Knee, P:Participant
5PK1 cadaver specimen was developed as the subject-specific model in the current study
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From the experimental work of Polak (2019), the cadaveric specimen PK1 was chosen for
the development of the initial subject-specific FE model in the current work. Following the
kinematic verification of the FE model, the ACL and meniscal strain results from the FE
model were compared to the experimental results of PK1, under half muscle force condition.
The goodness of fit between the computational and experimental strains was quantified by
root mean squared error (RMSE) and Pearson correlation coefficient (r), similar to previous
studies (Chen et al., 2016; Kiapour et al., 2013; Polak, 2019). RMSE is the square root
of the mean value of squared differences between two data point sets, and the Pearson
correlation coefficient provides the extent of the linear relationship between two data sets.
RMSE close to zero indicates a very low error between the expected (experimental) and
observed (computational) values. The value of r varies between −1 (negatively correlated)
and +1 (positively correlated), with r = 0 suggesting no correlation.

Further, all ten jump landing profiles (P1-P10) were simulated on the FE model, under
full muscle force condition. ACL strain results from the simulations of participant profiles
P1-P7 were compared to the experimental results of Bakker et al. (2016). No experimental
data was available to compare the results from the jump landing simulations of participant
profiles P8, P9 and P10.
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Chapter 4

Results

The results of each step in the generation and execution of the FE model are discussed in
this Chapter. First, the mesh quality of the hexahedral mesh output was evaluated. This
is followed by the results of the moment arm simulations. Lastly, the results of kinematic
verification studies and the single-leg jump landing simulations are discussed in detail.

4.1 Mesh Output and Quality

For the FE mesh, tetrahedral elements were chosen for the bones, and the other soft tissues
were meshed with hexahedral elements. The metrics of the hexahedral and tetrahedral
meshes are reported in Table 4.1.

Table 4.1: Details of the mesh of knee tissues in the FE model

Knee tissue Type of mesh
Number of Number of Average element

nodes elements edge length (mm)

Femur

Tetrahedral

38442 190673 2.75
Tibia 35200 176093 2.31

Patella 3630 17096 2.20
Fibula 4804 21037 2.10

Femoral cartilage

Hexahedral

13924 9858 1.70
Lateral tibial cartilage 3880 2760 1.41
Medial tibial cartilage 3900 2772 1.34

Patellar cartilage 3596 2502 1.32
Lateral meniscus 2491 1840 1.23
Medial meniscus 1855 1360 2.07
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4.1.1 Hexahedral Element Quality

Yang (2018) reported the generally accepted values of mesh quality measures of biological
tissues (Jacobian > 0.6; warpage < 15°; element aspect ratio < 3 for 95 % of all elements in
a structure; internal angles to be in the range 45° - 135°). All the hexahedral elements were
checked for these measures in HyperMesh and found that the Jacobian of more than 97 %
of all the elements was greater than 0.6; warpage of more than 99.7 % of the elements was
less than 15°. More than 70.6 % of the menisci elements had an aspect ratio of less than
three. In the meshes of all other structures, more than 83 % of the elements had aspect
ratios of less than three. More than 88.5 % of all the elements had the internal and external
angles in the range 45° - 135°, except the medial meniscus, in which only 65.2 % of the
elements had angles in the preferred range. Yang (2018) also stated that it is acceptable
to have a small percentage of sub-par elements in an FE model of biological tissues since
the complete elimination of all elements with low-quality would require considerable time
and effort. Figure 4.1 shows a summary of the element quality measures.
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Figure 4.1: Summary of hexahedral element quality of the knee soft tissue meshes

4.2 Kinematic Verification Studies

Kinematic verification of the FE model, specifically with respect to ACL mechanics, was
carried out. It included verification of coronal, axial and sagittal plane mechanics with
published data. Figure 4.2 shows the strain pattern of two ACL bundles, the AM and the
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PL bundles during flexion, which is compared against the in-vivo experimental values from
Beynnon et al. (1992a).
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Figure 4.2: ACL strain with increasing flexion angle (active range of motion)

During flexion, the tibia undergoes an internal rotation along its axis. The internal
rotation of the tibia during flexion was compared with the in-vitro experimental and com-
putational study of Kiapour et al. (2013), in Figure 4.3.
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Lachman and anterior drawer tests verified the sagittal plane motion. ACL strain in
the application of ± 200 N anterior-posterior load on the tibia was compared with the
in-vivo data of Beynnon et al. (1992a), as shown in Figure 4.4.
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Figure 4.4: AM bundle strain during Lachman (top) and anterior drawer (bottom) simulations

The coronal plane motion was verified by simulating pure abduction motion, with 50
N·m abduction moment on the tibia. Figure 4.5 shows the comparison of the computational
ACL strain with the in-vitro and computational results of Kiapour et al. (2013) and Figure
4.6 shows the knee valgus rotation with increasing abduction moment.

64



0

2

4

6

8

0 10 20 30 40 50

A
C
L 

S
tr

ai
n
 (

%
)

Abduction Moment (N.m)

KIAPOUR ET AL. (2013),
EXPERIMENTAL

KIAPOUR ET AL. (2013),
COMPUTATIONAL

KIAPOUR ET AL. (2013)
UPPER AND LOWER
WINDOWS

AM BUNDLE STRAIN
(CURRENT STUDY)

PL BUNDLE STRAIN
(CURRENT STUDY)
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Figure 4.6: Knee valgus rotation during pure abduction

4.3 Single-Leg Jump Landing Simulations

4.3.1 Moment Arms

Moment arms of all the applied muscle forces were calculated, as described in Section
3.2.2. The moment arm values measured during the experiment and in the FE model are
reported in Table 4.2.
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Table 4.2: Experimental and computational muscle moment arms of the specimen

Moment arm in Quadriceps (mm) Hamstring (mm) Gastrocnemius (mm)

Experiment (Polak (2019)) 48 28 18
Current FE model 48 31 20

4.3.2 Verification of Model Inputs

To verify the correctness of FE model kinematics during jump landing simulation, the
flexion angle versus time curve of P1 participant profile, from the FE model, was plotted
against the OpenSim output of Bakker et al. (2016) study (Figure 4.7). In OpenSim,
the knee joint is treated as one of the inbuilt custom joint types (such as a hinge joint)
in the software, whereas in the FE model, the knee joint involves complex tibiofemoral
interactions. As a result, differences could be observed in the knee flexion angle output
from OpenSim and the FE model.

0

10

20

30

40

50

60

70

0 50 100 150 200

K
n
ee

 f
le

xi
o
n
 a

n
g
le

 (
°)

Time (ms)

MEAN KNEE FLEXION ANGLE
(OPENSIM OUTPUT)

UPPER WINDOW (+1 SD)

LOWER WINDOW (-1 SD)

FLEXION ANGLE OF P1
PROFILE (COMPUTATIONAL)

Figure 4.7: Verification of model kinematics of P1 profile with OpenSim output

Similarly, to verify the kinetics during the simulation, the muscle forces from the FE
model were compared to the input muscle forces and hip moment from OpenSim (Figure
4.8). Appendix A shows similar curves for participant profiles P2 − P10.
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Figure 4.8: Jump landing stages (top) and verification of model kinetics (bottom)

4.3.3 Half Muscle Force Jump

ACL Strain

Half muscle force jumps of two participants, P5 and P6, from the study of Polak (2019) were
simulated. The relative ACL strain during the half muscle force jump landing simulation of
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both profiles is presented in Figure 4.9. The strain plot also shows the in-vitro half muscle
force jump landing simulations of Polak (2019) of the same specimen as the subject-specific
model.
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Figure 4.9: Relative ACL strains during half muscle force jump landing
Participant profiles P5 (top) and P6 (bottom)

Figure 4.10 shows the maximum relative ACL strain measured in the simulation and
the time taken to reach the peak strain value during participant profiles P5 and P6 jump
landings, in comparison with those from the experimental study.
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Figure 4.10: Comparison of peak and time to peak ACL strain in half muscle force jump landing

Comparison of the computational strain data of both the profiles, P5 and P6 with the
experimental values (from Polak (2019)) were made using RMSE and Pearson correlation
coefficient metrics. Table 4.3 shows the RMSE and Pearson correlation coefficient values
during half muscle force jump.

Table 4.3: Comparison of experimental and computational ACL strains

Participant profile RMSE Pearson correlation coefficient (r)

P5 3.9 −0.52
P6 2.0 0.60

Medial Meniscus Strain

A comparison of the meniscal strain during the half muscle force jump landing simulations
of P5 and P6 profiles is shown in Figure 4.11.

4.3.4 Full Muscle Force Jump

ACL Strain

Full muscle force jumps of the ten participants from the study of Bakker et al. (2016) were
simulated. The relative ACL strain during the full muscle force jump landing simulation
of participant profile P1 is presented in Figure 4.12. The strain data is compared with
the in-vitro full muscle force jump landing results of the same participant profile, P1, from
the study of Bakker (2015), where five cadaver knees were tested. The strain values are
reported after the ground contact, during the last 200 ms of the jump landing.
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Figure 4.11: Posterior medial meniscal strains during half muscle force jump landing
Participant profiles P5 (left) and P6 (right)

0

4

8

12

16

20

0 50 100 150 200

A
C
L 

S
tr

ai
n
 (

%
)

Time (ms)

BK1

BK2

BK3

BK4

BK5

COMPUTATIONAL
(CURRENT STUDY)

Figure 4.12: Relative ACL strains during full muscle force jump landing of P1 profile
From the current study (broken line) versus in-vitro experimental strain of five cadaver

specimens (Bakker, 2015) (solid lines)

Strain comparison plots of other participant profiles (P2 to P7) to Bakker et al. (2016)

70



in-vitro results can be found in Appendix A. In Figure 4.12, an interesting thing to note
is the strain experienced by the specimen BK1 (19.6 %), which is several times larger
than the strains in the other specimens. BK1 consistently showed larger strains in all
the participant profiles (Appendix A). The large strain values of BK1 were attributed to
the high posterior tibial slope of BK1 (22.1°) compared to other specimens (3.5° to 12.6°)
(Bakker et al., 2016). The computational relative ACL strain trends of all the participants
profile jumps, P1 to P10 are shown in Figure 4.13.
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Figure 4.13: Computational ACL strains
(during full muscle force jump landings of P1 − P10 participant profiles)
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Table 4.4 shows the maximum relative ACL strain measured in the simulation and the
time taken to reach the peak strain value, after the ground contact.

Table 4.4: Peak and time to peak ACL strain of P1 − P10 participant profiles

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Average
Std.
Dev.

Peak ACL
5.1 3.9 5.8 8.0 6.9 7.4 3.2 1.9 2.1 9.6 5.4 2.6

strain (%)

Time to peak
82 88 62 90 126 66 134 50 54 70 82 29

ACL strain (ms)

In the study of Bakker et al. (2016), jumps of only seven participant profiles (P1−P7)
could be performed due to unsuccessful jump landing trials in some cadaver specimen.
Figure 4.14 shows the comparison of computational ACL strains with the results from
those seven participant profiles.
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Figure 4.14: Comparison of peak ACL strains in P1 − P7 participant profiles
Peak ACL strains from the in-vitro study (Bakker et al., 2016) (Solid) are compared with those
from the computational study (Hatched). Gaps between bars are the unreported strain values

due to failure of that knee specimen during the experiments.

Medial Meniscus Strain

During the full muscle for jump simulations, the posterior medial meniscal strain was also
measured as per the procedure described in Section 3.2.3. All ten meniscal strain trends
are shown in Figure 4.15, and the peak meniscal strain values are listed in Table 4.5.
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Figure 4.15: Computational posterior medial meniscal strains
(during full muscle force jump landings of P1 − P10 participant profiles)

Table 4.5: Peak posterior medial meniscal strain of P1 − P10 participant profiles

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Average
Std.
Dev.

Peak meniscal
1.2 1.3 4.6 0.9 1.4 1.4 4.2 1.7 1.1 5.1 2.3 1.6

strain (%)
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4.3.5 Energy Balance

Energy balance in a finite element simulation ensures that the analysis obeys the law of
conservation of energy. For the successful completion of an FE simulation, oftentimes
artificial energies such as hourglass, viscous and mass scaling energies are added to the
system; these should be only a small percentage of the total energy of the system to ensure
that the physics of the system remain realistic (Burkhart et al., 2013).

The energy balance in the single-leg jump landing simulation of one of the participant
profiles is presented in Figure 4.16. In Abaqus, the energy balance is governed by the
equation,

ETOTAL = EI + EV D + EFD + EKE − EW = Constant

EI is the internal energy of the model which includes elastic, inelastic and all artificial
energies, EV D and EFD is the viscous and frictional dissipation energies, EKE is the kinetic
energy and EW is the external work done during the simulation. ETOTAL is the algebraic
sum of the energies which is close to zero during the simulation, showing that the energy
of the system is conserved.
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Figure 4.16: Model energies during jump landing simulation of P1 participant profile
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Chapter 5

Discussion

The primary purpose of the current study was to develop a subject-specific FE model of
the knee joint to simulate a dynamic loading scenario - a single-leg jump landing. This was
a one of a kind study wherein high-quality meshes for soft tissues, and accurate locations
of ligament insertion sites were incorporated in a subject-specific FE model to investigate
jump landing motion involving dynamically varying muscle forces and hip flexion moment.

The FE model was developed by segmenting the medical images of the knee joint to
generate 3D tissue geometries. The 3D models of the tissues were meshed with high-quality
tetrahedral and hexahedral elements, and appropriate material properties were assigned
from literature. The ligament insertion sites on the cadaver specimen were accurately
modelled using digitization technique. Kinematics of the knee model was verified in the
three anatomical planes with data from the literature. Dynamic muscle force profiles with
hip and ankle kinematic data of ten participant profiles from the study of Bakker et al.
(2016) served as the input to the model. The FE model successfully replicated the sagittal
plane mechanics based on comparison to experimental data collected on the dynamic knee
simulator.

5.1 Finite Element Model Development

Segmentation

Segmentation of CT and MRI scans is the standard approach to develop 3D geometry of
knee anatomy. Automatic and manual segmentation methods have been used to develop
3D models of the knee joint. However, soft tissues of the knee joint have similar greyscale
intensities in an MRI scan and are therefore challenging to segment using automatic seg-
mentation methods (Aprovitola and Gallo, 2016).

In the current study, a previously segmented model of the knee joint, SPL 2015 Sep,
was used as a reference for segmentation which aided the identification of soft tissue regions
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and bone-cartilage interfaces. An intensity-based automatic segmentation method called
thresholding was used to segment bone geometries, whereas cartilage and menisci regions
were segmented manually. In this study, a single subject-specific model was developed,
and hence, sophisticated algorithms were not used or developed for segmentation.

Mesh Generation

Accurate representation of tissue geometries as a meshed structure is critical for FE mod-
elling. Different meshing strategies were employed to mesh the knee tissue geometries.
Bony tissue is stiffer compared to other soft tissues in the knee joint and hence were mod-
elled as rigid bodies and were meshed using tetrahedral elements in HyperMesh software.
Similar approaches were employed in previous computational studies to represent bones in
an FE model (Ali et al., 2017; Kiapour et al., 2013; Harris et al., 2016). This approach
could also be a limitation of this study since the deformation of the bones due to the forces
involved in the jump landing simulations were not captured.

Cartilage and menisci were meshed with hexahedral elements, as they undergo large
deformations. Different meshing approaches were employed to mesh the cartilage and
menisci structures, depending on the ease, quality of the mesh output and the capability
of the software used. All the cartilages of the knee joint were meshed using multi-block
meshing approach in IA-FEMesh software. Menisci were meshed using a custom software
by Rodriguez-Vila et al. (2017), which functions similar to the multi-block meshing process.
The hexahedral elements were evaluated against different mesh quality metrics and were of
high quality (Figure 4.1). More than 83 % of the elements in cartilage meshes exceeded the
minimum required quality criteria. Due to the inherently curved structure of the menisci,
the aspect ratio and internal angle requirements were met only by 65 % of the elements.
However, 97 % of the menisci elements had jacobian greater than 0.6, and all the elements
had warpage less than 15°.

Material Properties

Realistically, all the knee soft tissues exhibit anisotropic, non-linear behaviour under load-
ing. A few studies have implemented complex anisotropic hyperelastic models including
poroviscoelastic features to describe cartilage and menisci behaviour previously (Dabiri
and Li, 2013; Halonen et al., 2016; Orozco et al., 2018). However, in many computational
models of the knee joint, where the focus of the study was on the ligament mechanics,
linear isotropic properties were assigned (Beillas et al., 2007; Kiapour et al., 2013). Simi-
larly, in the current study, isotropic, linear elastic material properties were assigned to the
cartilages and menisci from published data.

In the current study, the ligaments of the knee joint were not segmented from the MRI
scans. Ligaments were instead modelled as non-linear spring elements, which only required
the location of their insertion on the bones. This approach enabled quicker development of
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the subject-specific FE model. Several computational FE models have defined ligaments
as non-linear springs. In some studies, the stiffness and pre-strain values obtained from
the literature were optimized based on experimental laxity tests on the acquired cadaveric
specimens (Harris et al., 2016; Beidokhti et al., 2017) whereas in others the properties from
literature were directly used (Bloemker et al., 2012; Zielinska and Haut Donahue, 2006).
In the current study, only the ACL material behaviour was adopted from the experimental
study of Chandrashekar (2005) with the pre-strain values from the literature. For the other
ligaments of the knee joint, literature data were used directly.

5.2 Kinematic Verification Studies

Before simulating the jump landing activity on the model, the kinematics of the model was
verified with published literature data. During flexion, the AM bundle strain decreased
slightly and plateaued while the PL bundle strain dropped significantly (Figure 4.2). Al-
though similar trends were observed, it does not compare well with the in-vivo data of
Beynnon et al. (1992a). However, the computational strain trends are consistent with the
natural behaviour of the ACL. Under physiological conditions, the anteromedial bundle is
tight in extension and stays tight with increasing flexion, while the posterolateral bundle
becomes slack with the increase in flexion angles (Amis and Dawkins, 1991; Hollis et al.,
1991) (Figure 5.1).

Strains during Lachman and anterior drawer tests compared well with the in-vivo test
data by Beynnon et al. (1992a). An interesting thing to note in the strain data is that the
loading and unloading curves of the ACL did not overlap, but instead exhibited hysteresis
behaviour, even though viscoelastic properties were not assigned to ACL (Figure 4.4).
The hysteresis behaviour was unexpected and could be attributed to the difference in the
resistance experienced by the cartilage and menisci while the tibia travels anteriorly and
posteriorly during the loading and unloading phases. However, the magnitude of the ACL
strain compared well with the in-vivo experimental results.

In Figure 4.3, internal tibial rotation with flexion was compared with the computational
and experimental trends of Kiapour et al. (2013). While the results of the previous work
showed the maximum internal rotation angles to be less than 5°, in the current study, this
value was 6.7°. The kinematics of the coronal plane are shown in Figure 4.5 and Figure
4.6. Knee valgus rotation and the ACL strain fit within the standard deviations of the
experimental data, showing good agreement. However, from Figure 4.5, it is clear that
the shape of the curve from the current study was different compared to the experimental
study showing high ACL strains at high abduction moments. The variations in the data
could be due to variability in anatomical features between the specimens. Besides, Kiapour
et al. (2013) modelled the ligaments as solid elements and included additional stabilizing
ligaments such as capsular ligaments which were absent in the current study, possibly
resulting in different kinematics. In addition, in the current model, MCL was modelled
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with superficial MCL fibres with the deep fibres absent. Also, the MCL spring elements
were connected between the nodes on the femur and the tibia without simulating the
wrapping of the ligament over the bones which might be responsible for the different shape
of the curve in comparison with the experimental data.

Figure 5.1: ACL lengthening during flexion
AA’ and BB’represents AM and PL bundles of ACL, adapted from Girgis et al. (1975)(top left).
Orientation of AM and PL bundles of ACL in the FE model of the current study (bottom left).

Graph showing lengthening of different ACL bundles. AMB: anteromedial, IB: intermediate,
PLB: posterolateral bundles, adapted from Amis and Dawkins (1991) (right)

5.3 Single-Leg Jump Landing

5.3.1 Half Muscle Force Jump

ACL Strain

Jump landing simulations of participant profiles P5 and P6 were simulated with half mus-
cle forces to compare the ACL strain with the experimental data from Polak (2019). From
Figure 4.9, until 150 ms, the computational ACL strains agree well the experimental data.
But, beyond 150 ms, strong correlations were not found between them. While the com-
putational peak strains occurred between 80 - 200 ms as observed in the experiments,
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large variations were found in the strain trends of P5, but the strain trends of P6 matched
slightly better with the experimental data (Figure 4.9). The computational relative peak
ACL strain values of P5 profile were almost twice the values found experimentally, and the
time to peak strain was 77ms apart (Figure 4.10). The computational relative peak ACL
strain of P6 profile was 40 % higher than the experimental value; however, the peak strain
occurred around the same time during the simulation (Figure 4.10).

RMSE and Pearson correlation coefficient comparing the experimental and computa-
tional strains during half muscle force jump shows the results of P6 profile jump correlated
better (+ 0.6) with the experimental strain values (Table 4.3). Additionally, the RMSE
was also smaller (2 %) compared to P5 profile jump (3.9 %). Moreover, P5 profile jump
results indicated a negative correlation (− 0.52) with the experimental data wherein, after
150 ms into the jump, the experimental strain decreased, but the computational strain
increased.

The difference in the peak strain could have arisen due to the differences in the location
of measurement of strain in the experiment and in the modelling of the ligament behaviour
itself. Yamamoto et al. (1998) found that the strains in the ACL closer to the insertion sites
(on the femur or the tibia) are lesser than in the mid-section. In the experimental study
of Polak (2019), on the cadaver specimen, the DVRT to measure ACL displacement was
sutured slightly inferior, close to its tibial attachment (Figure 2.9), while the computational
values are the strains of the entire ligament bundle (non-linear spring) which might have
caused the difference in the strain values. Besides, the material properties of the ligament
bundle in the computational model were not subject-specific, which could be another reason
for mismatch in the strain data. Furthermore, the cadaver specimen did not sustain full
muscle force jump landing trials, which limited data comparison.

However, the strain trends for the same profiles, P5 and P6, during the full muscle force
jump landing simulations showed good agreement with the experimental data of Bakker
et al. (2016). Although statistical comparisons were not made between the data, the strain
trends and the location of the peak strain compare well with the experimental results of
Bakker et al. (2016) (Figure 5.2). Moreover, Bakker (2015) inferred that the occurrence
of peak ACL strain might coincide with the peak value of quadriceps force. In the full
muscle force cadaveric experiments of Bakker et al. (2016) with P5 profile, peak ACL
strain occurred at 250 ms (or at 150 ms after ground contact), which agrees well with the
computational peak strain occurring at 228 ms.

Medial Meniscal Strain

In addition to ACL strain, Polak (2019) recorded posterior medial meniscal strains during
jump landing experiments under half and full muscle force conditions. It is evident that
the meniscal strain trends of PK1 and the FE model were different during half muscle force
jump landing (Figure 4.11). However, in PK2 and PK3 specimens, the meniscal strains
were 0.8 % and 0.7 % and had consistent trends, different from that of PK1. The difference
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in experimental strain trend of PK1 compared to PK2 and PK3 could point to an error
in the data collection due to instrumental artefacts, or the DVRT might have encountered
an obstruction during the experiment involving PK1, resulting in higher strains. This
notion is strengthened by the fact that PK2 and PK3 also showed lesser strains with P6
profile. The computational meniscal strain trend of P5 profile compared well with the
experimental strain trends of PK2 and PK3 specimens (experimental average: 0.75 %; FE
model: 0.7 %). The computational meniscal strain trend of P6 profile did not compare well
with the experimental strain trends of PK2 and PK3 specimens, but the peak strain values
(experimental average: 1.3 %; FE model: 1.4 %) agreed well and occurred at different
times post ground contact (Figure 4.11).
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Figure 5.2: Relative ACL strains of P5 (left) and P6 (right) jump landing profiles
Computational (dashed line) versus in-vitro experimental study (Bakker, 2015) (solid lines)

The variations in strain trends from the FE model and PK2, PK3 experimental results
could be due to the definition of menisci in the FE model. Menisci in the FE model
were defined as isotropic materials whereas they exhibit transversely isotropic behaviour;
stiffer in the circumferential direction and exhibit similar properties in the axial and radial
directions (LeRoux and Setton, 2002). Moreover, Guess and Razu (2017) simulated a
passive leg motion on a computational model and showed that the deep fibres of the MCL
(dMCL) and peripheral tibiomeniscal attachments influence the deformation of the medial
meniscus. In the current study, the attachment of the dMCL fibres to the medial meniscus
was not modelled. The menisci are firmly attached to the tibia by tibiomeniscal coronary
ligaments which were also not modelled.

While the current study did not focus on meniscal injury mechanics, the results show
that the current FE model outputs reasonable values of strain. Appropriate model defini-
tion could resolve the variations between the results from experiments and FE model.
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5.3.2 Full Muscle Force Jump

In the in-vitro study of Bakker et al. (2016), different strain trends were observed when
the same cadaver specimen was subjected to jumps with different participant profiles and
when the same participant profile was applied on different cadaver specimen. The variation
was attributed to the distinct landing strategies used by the participants involved in the
motion capture. Similarly, different strain trends were observed when the subject-specific
model was simulated with different landing profiles (Figure 4.13).

ACL Strain and Peak ACL Strain

Peak ACL strain and the time to reach peak strain (or strain rate) are identified as the
critical factors affecting ACL injury (Bakker et al., 2016). Hence, these values from the
FE simulation were compared to other experimental and computational studies of jump
landing.

In addition to the half muscle force jumps, Polak (2019) also performed experimental
full muscle force jumps. However, out of the three knee specimens acquired for the study,
only one specimen, PK2, sustained the full muscle force jumps of P5 and P6 profiles. On
PK3, only P5 jump could be performed before failure. Comparison of peak ACL strain
from the current study with the experimental and computational data (from GHBMC
model) of Polak (2019) is shown in Figure 5.3. In Polak (2019)’s study computational
strains of 4.2 % and 13.9 % were reported with P5 and P6 profiles, which were higher than
the recorded experimental values of 3.2 % and 6.2 %. The computational strains from the
current subject-specific model with the same jump landing profiles also had higher strains
compared to the experimental values (6.9 % and 7.4 %), but lower than the GHBMC model
strains.
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Figure 5.3: Comparison of peak relative ACL strains (Polak (2019) and current study)
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Peak strains from the current study were also compared with the experimental strains
from Bakker et al. (2016). Out of the five specimens tested by Bakker et al. (2016), the
BK1 specimen showed much higher strains than the other specimens and was excluded
from the statistical analysis of the study. Besides, due to the failure of cadaver specimens
during the experimental study, all the ten jump landing profiles (P1 to P10) could not be
executed (Table 3.7). Most of the specimens performed six profiles, P1 - P6, successfully
and the seventh profile, P7 could be executed on two specimens only. P8, P9 and P10
profiles were not executed during the experiments. Therefore, the computational strains
of the current study of P1 to P7 profiles only are compared with the experimental results
of Bakker et al. (2016) (Figure 5.4). It was previously hypothesized that the strain trends
from the seven participants profiles (P1 - P7) would be similar to Bakker et al. (2016)
study, which was found to be true.
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Figure 5.4: Comparison of peak relative ACL strains (Bakker et al. (2016) and current study)

While Cassidy et al. (2013) and Hangalur et al. (2016) conducted jump landing exper-
iments on the DKS, only one cadaver specimen was tested in both studies, and the mean
peak relative ACL strain was recorded as 4.3 % and 20 % respectively. The average strains
from the current FE model fit well within that window. With the DKS at the University of
Waterloo being an exception, no other existing knee simulators are capable of simulating
jump landing with dynamic muscle force curves. Therefore, a one-to-one comparison of
strains cannot be made due to different input conditions. Experimental research on jump
landing by other groups was discussed in Section 2.3. The research group at the University
of Michigan, simulated jump landing on eleven cadaver specimens by dropping a 150N
weight on the femur (Withrow et al., 2006). A relative average peak ACL strain of 3 %
was recorded during the experiments. Shin et al. (2007) successfully replicated the experi-
mental study by Withrow et al. (2006) on a multibody dynamics model and found similar
peak ACL strain (2.13 %) as the experimental values. These values are lower than the
strains obtained from the experiments on the DKS. Application of dynamic muscle forces
could be a reason for higher strain values from the studies conducted on the DKS (Polak,
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2019). In addition, Woo et al. (1991), characterizing the structural properties of the ACL,
found that the properties such as the linear stiffness, ultimate load and the absorption of
energy under tensile loading decrease significantly with the age of the specimen. Most of
the specimens in Withrow et al. (2006)’s study were from people aged more than 70 years,
while the mean ages of cadaver specimens procured for the experiments on DKS were 47
years, which could be another reason for lower strain values.

Hashemi et al. (2007) examined the role of quadriceps forces on ACL strain during jump
landing experiments conducted on the Texas Tech University simulator. They reported
relative peak ACL strain values of 9 %, 10.7 % and 11.6 % under varying quadriceps
pre-tensions, concluding that the increase in quadriceps force is favourable under dynamic
loads. These strain values are higher than the mean values from the current study.

Taylor et al. (2011) took an interesting approach to measure ACL strain in-vivo during
jump landing on eight participants. With the aid of medical imaging and motion capture,
they observed peak ACL strains of (12 ± 7) % before ground contact, and post-ground
contact strain was found 5 % lesser. In the current study, including the experiments on
the DKS, ACL strains peaked only after initial ground contact. However, the post-ground
contact strain at 7 % (5 % lesser than pre-ground contact strain), is comparable to the
peak strain values obtained in the current study.

Kiapour et al. (2013) conducted cadaveric jump landing experiments on the Ohio State
University simulator by dropping a weight on the foot equivalent to the GRF. Peak relative
strains of (6.7 ± 1.8) % and 5.2 % were observed in the experimental and computational
studies which agree well with the peak values of the current study, although the experi-
ments did not include dynamic muscle forces. Figures 5.5 and 5.6 show a summary of the
comparison of peak strain values from the present study with the existing experimental
and computational investigations.

0

2

4

6

8

10

12

14

WITHROW ET AL.
(2006)

HASHEMI ET AL.
(2007)

TAYLOR ET AL.
(2011)

KIAPOUR ET AL.
(2013)

CURRENT STUDY

M
ea

n
 r

el
at

iv
e 

p
ea

k 
A
C
L 

st
ra

in
 (

%
)
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83



0

1

2

3

4

5

6

SHIN ET AL.
(2007)

KIAPOUR ET
AL. (2013)

CURRENT
STUDY

M
ea

n
 r

el
at

iv
e 

p
ea

k 
A
C
L 

st
ra

in
(%

)

Figure 5.6: Comparison of mean peak ACL strain to other computational studies

Time to Peak ACL Strain

Considering the results of seven participant profiles in Bakker et al. (2016) study, most
of the ACL strains peaked between 83 - 200 ms as reported. Two profiles, P3 and P6,
showed peak strains at 62 ms and 66 ms after the ground contact. Upon observing the
strain patterns of P3 and P6 profiles (Figure 5.7), it can be seen that the strain drops and
increases again, and they have a second lower peak at 112 ms and 118 ms respectively,
which fall within the predicted window, coinciding with the peaks of quadriceps forces
(Appendix Figures A.2, A.5). Rapid development of ACL strain, which was also observed
in the study of Bakker et al. (2016), was primarily attributed to the anatomic factors of
the knee joint being tested. The earlier hypothesis that the peak ACL strains would be
consistent with the experimental results of Bakker et al. (2016) was found to be true.
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Figure 5.7: ACL strains during full muscle force jump landings of P3 and P6 participant profiles
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In addition, P8, P9 and P10 participant profiles had peak strains occurring at 50 ms,
54 ms and 70 ms respectively. No experimental data were available to compare these peak
occurrences from Bakker et al. (2016) study. However, it is still consistent with the studies
of Hangalur et al. (2016), Hashemi et al. (2011) and Koga et al. (2010) where peak GRFs
were observed earlier than 50 ms after ground contact, responsible for ACL injury.

Effect of Tibial Slope

Anatomic features of a subject play a significant role in determining ACL injury risk
(Bakker et al., 2016). Posterior tibial slopes measured in the sagittal plane have been shown
to increase ACL strain during jump landing (McLean et al., 2011) and also during activities
involving large joint compression forces (Marouane et al., 2015). In the current study,
medial and lateral tibial slopes were found to be 8.5° and 9° respectively. Hashemi et al.
(2008) analysed the MRI scans of a cohort of 22 male subjects and reported mean tibial
slopes of (3.7 ± 3.1)° in the medial side and (5.4 ± 2.8)° on the lateral side. In comparison,
the medial and lateral slopes in the current study were found to be higher. However,
these values were well within the range identified in McLean et al. (2011) (7.6 ± 2.1)°
and Giffin et al. (2004) (8.8 ± 1.8)°. Nevertheless, no quantitative relationship between
posterior tibial slopes and ACL strain during dynamic activities has been established in
the reviewed literature.
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Chapter 6

Conclusions

6.1 Summary

The objective of the current study was to develop a subject-specific knee FE model to
study the behaviour of the ACL during single-leg jump landing. With this objective, CT
and MRI scans of a cadaver specimen were segmented to generate 3D models of bones
and soft tissues in the knee joint. The segmented models were meshed with high-quality
hexahedral elements, appropriate material properties were assigned, and finally, an FE
model was set up in the commercial FE package, Abaqus CAE. Digitization technique
was employed to accurately model the ligament insertion sites on the cadaver specimen.
The kinematic responses of the model were verified by simulating basic knee motions in
the three anatomical planes such as flexion, Lachman and anterior drawer tests, and pure
abduction and the results were verified with published experimental data.

The necessary boundary conditions to simulate a jump landing were obtained from
the work of Bakker et al. (2016). Initially, half muscle force jumps were simulated, and
ACL strains and meniscal strains were compared to the experimental data from Polak
(2019). Relative peak ACL strains were 5.2 % and 4.9 %, for participant profiles P5 and
P6 during the simulation. While the computational ACL strain trend of P5 profile did
not agree well with that of experimental data, the strain trend of P6 profile had a positive
correlation, including the time to peak ACL strain. Posterior medial meniscal strains were
also compared to the experimental data of Polak (2019). The computational meniscal
strains from the half muscle force jumps did not compare well with the experimental
results; however, the meniscal strain trends of two different cadaver knees tested in the
study agreed well with the computational results. The cadaver specimen based on which
the subject-specific model was developed, failed during the full muscle force jump landing
experiment and hence no data was available for comparison of computational results.

However, based on the in-vivo motion capture data of Bakker et al. (2016), ten different
participant profile jumps were simulated, and ACL strain was computed. The mean peak
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relative ACL strain was (5.8 ± 1.8) % occurring at (82 ± 29) ms agreed with the average
strain and the strain trends of the experimental studies of Bakker et al. (2016). In addition,
the meniscal strains during the full muscle force jump landing simulation had a mean peak
value of (2.3 ± 1.6) %.

To summarize, the avenue of developing a valid subject-specific computational model
to simulate dynamic conditions of a single-leg jump landing event was explored in the
current study. Reasonable predictions were obtained from the computational model that
agreed well with the experimental results. The current study shows that, in the future,
subject-specific FE models can be used to predict the risk of injury in dynamic loading
scenarios, accounting for anatomic variabilities.

6.2 Limitations

There are recognized limitations associated with the current study, including:

1. The ligament attachment sites were accurately modelled using digitisation technique;
however, the ligament slack-taut transitions and pre-strain values of the ligaments
in the FE model were based on published population average values. A subject-
specific model would be more accurate if the appropriate ligament properties from
the subject were assigned. Nevertheless, the kinematic responses, including the ACL
and meniscal strain results, were reasonable.

2. In the modelling of ligaments, except ACL, the kinematic responses of other ligaments
in the knee joint were not verified. The response of the PCL also contributes to the
sagittal plane mechanics, which was not verified with published experimental data
in the current study. Only the superficial MCL was modelled, and its interaction
with the medial meniscus was absent in the current FE model. Inclusion of the deep
fibres of MCL could alter the strain experienced by the medial meniscus. In addition,
wrapping of the superficial MCL fibres with the tibia was not modelled, which might
affect the coronal plane kinematics of the model.

3. Anisotropic behaviour of the other soft tissues such as cartilage and menisci were not
captured but were defined as isotropic, linearly elastic materials. As a result, the
values of tibiofemoral and patellofemoral contact forces and cartilage stresses may
not be accurate and would need further investigation.

4. The results of the current study (i.e., relative ACL strains and meniscal strains) were
compared to only two half muscle force jump landing in-vitro experiments due to the
failure of the cadaver specimen in the full muscle force experiments. The limitation
of the experimental data posed a major restriction for model validation.

87



6.3 Future Directions

Several steps could be taken to overcome the limitations listed in the previous section to
obtain improved FE model response. Possible improvements in each stage of the study are
included below.

1. Evaluation of ligament laxity has to be considered in the experimental approach
to provide useful data in modelling the ligaments computationally. Then, accurate
ligament behaviour could be modelled using laxity data. Ligaments can also be
modelled using continuum (solid) elements. Solid elements enable the application of
anisotropic hyperelastic models to describe ligament behaviour more accurately.

2. The quality of the hexahedral elements in the current study was more than satisfac-
tory. However, randomly assigning the element dimensions can increase the stable
time increment of an explicit finite element simulation and can add to the computa-
tional cost. Mesh convergence studies are a way to optimize the time increment in
an explicit finite element simulation and should be included in further studies.

3. In Polak (2019) study, two other cadaver knees were also tested with ACL and menis-
cal strains recorded during jump landing where one of the specimens survived all the
half and full muscle force jumps. A similar approach to the current study could be
employed to develop other subject-specific models.

4. Only sagittal plane mechanics were simulated in the current study, which replicated
the input conditions of the DKS. Examining ACL mechanics in a single plane was
one of the limitations of Bakker (2015) study, and it is inevitably a limitation in
the current study as well. The OpenSim results from Bakker (2015) contained other
kinetic conditions (such as ankle torques, valgus and internal tibial rotations) which
could not be included in the DKS setup, but can very well be inputted in the current
FE model. Inclusion of such injury-prone manoeuvres in the FE model can lead to
a better understanding of ACL injury mechanics.

5. The development of the subject-specific model took considerable effort in all stages
(i.e., segmentation, mesh generation, and setting up the FE model). The timeline for
the development of the subject-specific model was approximately 3-4 months. Alter-
nate model generation strategies such as atlas-based methods for segmentation and
morphing of existing meshes for mesh generation could be considered to accelerate
the development of future models.
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analysis of the effect of meniscal tears and meniscectomies on human knee biomechanics.
Clinical Biomechanics, 20(5):498–507.

Petersen, W. and Zantop, T. (2007). Anatomy of the anterior cruciate ligament with regard
to its two bundles. Clinical Orthopaedics and Related Research®, 454:35–47.

Podraza, J. T. and White, S. C. (2010). Effect of knee flexion angle on ground reaction
forces, knee moments and muscle co-contraction during an impact-like deceleration land-
ing: Implications for the non-contact mechanism of ACL injury. Knee, 17(4):291–295.

Polak, A. M. (2019). ACL Strain During Single-Leg Jump Landing: An Experimental and
Computational Investigation (MASc Thesis, University of Waterloo, Waterloo, Canada).

Potter, H. G., Jain, S. K., Ma, Y., Black, B. R., Fung, S., and Lyman, S. (2012). Cartilage
injury after acute, isolated anterior cruciate ligament tear: Immediate and longitudinal
effect with clinical/MRI follow-up. American Journal of Sports Medicine, 40(2):276–285.

Renstrom, P., Ljungqvist, A., Arendt, E., Beynnon, B., Fukubayashi, T., Garrett, W.,
Georgoulis, T., Hewett, T. E., Johnson, R., Krosshaug, T., Mandelbaum, B., Micheli,
L., Myklebust, G., Roos, E., Roos, H., Schamasch, P., Shultz, S., Werner, S., Wojtys,
E., Engebretsen, L., and Khan, K. (2008). Non-contact ACL injuries in female athletes:
An International Olympic Committee current concepts statement. British Journal of
Sports Medicine, 42(4):394–412.

Rhee, S. J., Pavlou, G., Oakley, J., Barlow, D., and Haddad, F. (2012). Modern manage-
ment of patellar instability. International Orthopaedics, 36(12):2447–2456.
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Appendix A

Boundary Conditions and Results of
P2 − P10 Participant Profiles

A.1 BCs and Results from Single-Leg Jump Landings

of P2 − P10 Profiles

The kinematic and kinetic boundary conditions (hip and ankle displacements, muscle forces
and hip moment) of participant profile P1 were presented in Section 3.2.2. The same is
presented for the rest of the profiles, P2 − P10, in this section. In addition, verification of
model kinematics (flexion angle versus time) during the jump is also presented. Further,
ACL strain output from the model is compared to the in-vitro experimental results from
Bakker (2015)’s study. Finally, the energy balance during the simulations of P2 − P10
profiles is presented.
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Figure A.1: P2 participant profile results
Kinetic input (top row), Kinematic input (centre, left) for jump landing. Verification of model
kinematic output (centre, right), ACL strain results (bottom left) and model energy (bottom

right) during the FE simulation
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Figure A.2: P3 participant profile results
Kinetic input (top row), Kinematic input (centre, left) for jump landing. Verification of model
kinematic output (centre, right), ACL strain results (bottom left) and model energy (bottom

right) during the FE simulation
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Figure A.3: P4 participant profile results
Kinetic input (top row), Kinematic input (centre, left) for jump landing. Verification of model
kinematic output (centre, right), ACL strain results (bottom left) and model energy (bottom

right) during the FE simulation
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Figure A.4: P5 participant profile results
Kinetic input (top row), Kinematic input (centre, left) for jump landing. Verification of model
kinematic output (centre, right), ACL strain results (bottom left) and model energy (bottom

right) during the FE simulation
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Figure A.5: P6 participant profile results
Kinetic input (top row), Kinematic input (centre, left) for jump landing. Verification of model
kinematic output (centre, right), ACL strain results (bottom left) and model energy (bottom

right) during the FE simulation
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Figure A.6: P7 participant profile results
Kinetic input (top row), Kinematic input (centre, left) for jump landing. Verification of model
kinematic output (centre, right), ACL strain results (bottom left) and model energy (bottom

right) during the FE simulation
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Figure A.7: P8 participant profile results
Kinetic input (top row), Kinematic input (centre, left) for jump landing. Verification of model
kinematic output (centre, right), ACL strain results (bottom left) and model energy (bottom

right) during the FE simulation

109



0

1

2

3

4

5

6

7

0 100 200 300

Fo
rc

e 
(k

N
)

Time (ms)

PARTICIPANT 9

QUAD FORCE (OPENSIM OUTPUT)
QUAD FORCE (FE OUTPUT)
HAM FORCE (OPENSIM OUTPUT)
HAM FORCE (FE OUTPUT)
CALF FORCE (OPENSIM OUTPUT)
CALF FORCE (FE OUTPUT)

-50

0

50

100

150

200

250

300

0 100 200 300

M
o
m

en
t 

(N
.m

)

Time (ms)

HIP MOMENT (OPENSIM OUTPUT)
HIP MOMENT (FE OUTPUT)

-150

-100

-50

0

50

100

0 100 200 300

Po
si

ti
o
n
 (

m
m

)

Time (ms)

HIP POSITION ANKLE POSITION

0

10

20

30

40

50

60

70

0 50 100 150 200

K
n
ee

 f
le

xi
o
n
 a

n
g
le

 (
°)

Time (ms)
MEAN KNEE FLEXION ANGLE (OPENSIM OUTPUT)
UPPER WINDOW (+1 SD)
LOWER WINDOW (-1 SD)
FLEXION ANGLE OF P9 PROFILE (COMPUTATIONAL)

-12

-9

-6

-3

0

3

0 50 100 150 200

A
C

L 
S
tr

ai
n
 (

%
)

Time (ms)

COMPUTATIONAL (CURRENT STUDY)

0

10

20

30

40

50

60

70

0 100 200 300 400

M
o
d
el

 E
n
er

g
ie

s 
(J

)

Time (ms)
INTERNAL ENERGY VISCOUS DISSIPATION
FRICTIONAL DISSIPATION KINETIC ENERGY
WORK DONE TOTAL ENERGY

Figure A.8: P9 participant profile results
Kinetic input (top row), Kinematic input (centre, left) for jump landing. Verification of model
kinematic output (centre, right), ACL strain results (bottom left) and model energy (bottom

right) during the FE simulation
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Figure A.9: P10 participant profile results
Kinetic input (top row), Kinematic input (centre, left) for jump landing. Verification of model
kinematic output (centre, right), ACL strain results (bottom left) and model energy (bottom

right) during the FE simulation
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