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Abstract

The path integral formulation of quantum statistical mechanics [1] is a widely used

approach to express the partition function and obtain estimators for diverse thermodynamic

properties of molecular systems. The main objective of this thesis is to propose new

approaches to simulate the translations and rotations of rigid molecular systems and test

these methodologies via benchmark calculations.

We first present benchmark calculations based on a newly developed Path Integral

Monte Carlo (PIMC) code for rigid body rotations implemented in the Molecular Mod-

elling Toolkit software package [2]. Our rigid body PIMC simulation results are compared

with the exact diagonalization calculation for the rigid Hydrogen Fluoride trapped in an

electric field. An energy convergence study allows us to establish the validity of the new

PIMC code within statistical error. We then benchmark our PIMC code against the direct

Classical Monte Carlo (dCMC) calculations to study the interacting quantum rotors at

finite temperature. The quantum and classical calculations are expected to agree at high

temperature when classical statistical mechanics is valid. The dCMC code is then used to

study a 1D water chain system at different temperatures and lattice spacings. Two phase

transitions and three specific phase regions have been observed from the calculations.

We then combine a well-established translational Path Integral Molecular Dynamics
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(PIMD) code [3, 4] with the rigid body PIMC code to develop a novel hybrid PIMD/PIMC

program to simulate the quantum molecular dynamics of molecular systems with both

rotational and translational degrees of freedom. This proposed methodology is successfully

benchmarked for the CO2-He system for a range of imaginary time steps.

The second PIMC methodology introduces a cluster-update algorithm to sample rigid

body Feynman paths associated with quantum rotations. This cluster-update methodology

has been previously applied to lattice spin systems [5, 6] and hard spheres in the contin-

uum [7]. To our knowledge, this is the first time one develops a cluster-update method

for quantum rotors with anisotropic interactions. An initial cluster-update PIMC algo-

rithm and its associated test calculations are presented. Preliminary results for Hydrogen

Fluoride molecules with dipole-dipole interactions reveal issues with our initial algorithm.

The source of the problem is fully discussed in this thesis and will law the foundation for

further studies.

Overall, this thesis focuses on the development of new methodologies to study quantum

motions of molecules at finite temperature. We note that additional tests and benchmark

calculations will be required to further validate the methodologies and algorithms we have

developed. This thesis nevertheless presents and discusses novel methodological advance-

ments and applications and will lead to exciting new directions.
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Chapter 1

Introduction

Computational chemistry uses the fundamental principles of chemistry and physics

along with mathematical modelling and computational algorithms in order to develop

computer programs to simulate and predict the properties of molecular systems. Although

many properties can be measured in the laboratory, some measurements are currently

out of the reach of current experimental setups. The quantum many-body problem, in

particular, is always a topic of central importance for both experimental and theoretical

chemistry. In order to describe the quantum many-body system and understand the details

of the microstates, a computational simulation is a good approach to tackle this problem.

The various modes of motion of molecular systems, such as translations, vibrations, and

rotations, are quantum mechanical in nature and their inclusion in a computer simulation

is a formidable task when many molecules are present. In 1948, Feynman developed the

so-called Path Integral (PI) formulation [10] which allows scientists to compute and predict

the thermodynamic properties of these quantum systems. From then on, scientists have

been able to combine the path integral formulation with different computational methods
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to simulate various many-body quantum systems at finite temperature. One of the most

well-established methods is Path Integral Monte Carlo (PIMC) based on Metropolis sam-

pling [66] which allows one to calculate the temperature-dependent properties of quantum

systems [11, 12, 13]. Also, another approach, Path Integral Molecular Dynamics (PIMD),

has been developed recently to describe these systems without pure random walks but

molecular dynamics samplings to simulate quantum motions [14, 15]. Those approaches

and algorithms are implemented in the scientific computer package Molecular Modelling

Toolkit (MMTK) [2], an open-source Python-based platform for the development of molec-

ular simulation software.

In this thesis, the rotational contribution to the properties of a quantum system is

computed with PIMC in MMTK and the treatment of the translational degree of freedom

is based on PIMD with Path Integral Langevin Equation (PILE) thermostat [16] for finite

temperature systems. Then, the validity of the hybrid PIMD/PIMC approach is discussed.

Furthermore, a new cluster-update Monte Carlo algorithm is introduced to solve the non-

ergodic problem PIMC simulation based on earlier studies [5, 6, 7].
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1.1 Theory

1.1.1 Statistical Mechanics and Path Integral Formulation

Statistical mechanics is considered the most powerful tool for scientists to apply statistics

theory on the microscopic properties of atoms or molecules to understand the thermody-

namic properties of macrosopic systems. According to quantum statistical mechanics, an

ensemble, which is a collection of microstates, can reach thermodynamic equilibrium over

a long time or simulation. The fundamental postulate of equilibrium statistical mechanics

defines equal a priori probabilities. The statement can be summarized as: all accessi-

ble microstates have the equal probability for an equilibrium isolated system. Thus, the

canonical partition function can be evaluated by the Boltzmann factor with the equal a

priori probabilities postulate which stores all thermodynamic information. It is a sum or

a trace in matrix expression of all microstates. In general equilibrium canonical ensemble,

the number of particles (N), the volume (V ), and also the temperature (T ) are fixed for

systems. The Hamiltonian of an N -particle system consists of translational and rotational

motions with particle interaction is given by,

Ĥ = T̂trans + T̂rot + V̂ (1.1)
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also, the rigid molecules approximation is assumed, which neglects the centrifugal dis-

tortion and rotational-vibrational coupling. For simplicity, the expressions below only

describe one-particle system. Thus, the partition function is given by

Z(β) = Tr(e−βĤ) (1.2)

= Tr(ρ̂(β)) (1.3)

in this thesis, ρ̂(β) = e−βĤ shall always mean the thermal density matrix or imaginary

time “propagator”, and it will not be normalized by the partition function. β here is always

real and defined as follows, which is also called the imaginary projection time,

β =
1

kBT
(1.4)

where kB is the Boltzmann constant, and T is the temperature of the system.

Hence, the expectation value of an observable Ô can be calculated by partition function

as follows

〈Ô〉 =
1

Z(β)
Tr{Ôρ̂(β)} (1.5)

4



Use the properties of exponential, we have

ρ̂(β) = (e−βĤ/P )P (1.6)

= [ρ̂(β/P )]P (1.7)

Now, the exponential part is separated into P discrete slices which is defined as the

Trotter slices [17] or the quantum beads. We can define τ = β/P , which is named as the

imaginary time step. Also, ρ̂(β/P ) = ρ̂(τ), and τ corresponds to a higher temperature.

In quantum mechanics, we know the kinetic operator and the potential operator do not

commute, so the expression below is not equal for both sides.

ρ̂(β) = e−β(T̂trans+T̂rot+V̂ ) 6= e−β(T̂trans+T̂rot)e−βV̂ (1.8)

Then, we can apply the Trotter factorization formula [17] to the high temperature

density matrix ρ̂(τ). We also have the expression as below which is the basis for the

Feynman PI formulation [10], the error order of this expression is a quadratic magnitude

of τ [18].
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ρ̂(τ) = e−τ(V̂+T̂trans+T̂rot) (1.9)

≈ e−τV̂ eτ(T̂trans+T̂rot) (1.10)

Then, in symmetric form we have [17, 19]

ρ̂(τ) ≈ e−τV̂ /2e−τ(T̂trans+T̂rot)e−τV̂ /2 (1.11)

ρ̂(β) = lim
P→∞

{
e−τV̂ /2e−τ(T̂trans+T̂rot)e−τV̂ /2

}P
(1.12)

As for both the translation and rotation are considered in our system, the position and

the orientation of the molecule of each bead are defined as {qt, ωt}. Here, qt stands for the

position of the molecule’s the center of mass translations, and ωt denotes the orientation

of the molecule in rotations. Due to the rigid body approximation, T̂trans and T̂trans do

commute, we can insert the identities 1t at each Trotter slices t = 1, 2, 3 · · · , P
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1t =

∫
dqt

∫
dωt|qtωt〉〈qtωt| (1.13)

in the partition function expression and a cyclic form can be generated as which is the

path integral formulation:

Z = lim
P→∞

(

∫
dq1

∫
ω1

∫
dq2

∫
ω2 · · ·

∫
dqP−1

∫
ωP−1

∫
dqP

∫
dωP

ρ1,P (τ)× ρP,P−1(τ)× · · · × ρ3,2(τ)× ρ2,1(τ))

(1.14)

where ρt,t+1(τ) ≡ ρt,t+1(τ ; qt,qt+1, ωt, ωt+1) is the shortcut for the general high-temperature

density matrix element in the {qt, ωt} representation. Since V̂ is diagonal in coordinate

space and can be expressed as V (q, ω). Then, the density matrix elements, ρt,t+1(τ), for

different components can be expressed as follows,

ρpott,t+1(τ ; qt,qt+1, ωt, ωt+1) = e(−
τ
2
{V (qt,ωt)+V (qt+1,ωt+1)}) (1.15)

ρtranst,t+1(τ ; qt,qt+1) = 〈qt|e−τT̂
trans|qt+1〉 (1.16)

ρrott,t+1(τ ;ωt, ωt+1) = 〈ωt|e−τT̂
rot|ωt+1〉 (1.17)
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In terms of computational consideration, the Trotter limit P →∞ cannot be achieved

in practice, so a sufficiently large P can be chosen in computing to achieve a result within

acceptable statistical erros.

Then, we insert another identity in terms of momentum basis p, 1 =
∫
dpt|pt〉〈pt|, to

evaluate the translational contribution of density matrix element

ρtranst,t+1(τ ; qt,qt+1) =

∫
dpt〈qt|e−τT̂

trans|pt〉〈pt|qt+1〉 (1.18)

Thus, the translational contribution of the density matrix can be analytically calculated,

ρtranst,t+1(τ ; qt,qt+1) =

(
mP

2π~2β

)d/2
exp

[
− mP

2~2β
(qt − qt+1)

2

]
(1.19)

where d is the dimension of space for translational system, for 3D system d = 3.

As for the rotational contribution of the density matrix elements, we can still insert an

identity operator composed of free-rotor wave functions. However, the rotational motion is

far more complicated than translation, and the expressions also depend on the symmetry

of different molecules.
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1.1.2 Path Integral Formulation for Linear Rotor

After evaluating the analytical density matrix element of translational and potential con-

tributions, we now try to evaluate the rotational component. However, the rotational part

ρrott,t+1 is different due to the distinct dimension of rotors. The most important rotor model is

the rigid rotor approximation of the linear rotor and asymmetric top rotor, in this section,

the path integral formulation for linear rotors is presented.

In terms of linear rotor, the orientation of a particle can be determined by two angles

Ω = (θ, ϕ), the rotational operator can be expressed as [11]

T̂ linrot = −B
(
∂2

∂θ2
+ cot θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

)
(1.20)

where B is the rotational constant for linear molecules, after a similar process of insert-

ing an identity operator in momentum representation, it gives the density matrix elements

expression as [20]

ρlinrott,t+1 (τ ;ωt, ωt+1) =
∞∑
J=0

2J + 1

4π
PJ(et· et+1)e

− β
P
J(J+1)B (1.21)

where J is the rotational quantum number, et indicates the normalized orientation

vector of the molecule at Trotter slice t, and PJ is the Legendre polynomial of J .
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By applying the thermodynamic relation of internal energy and partition functioin

U(β) = −∂ lnZ(β)/∂β, the primitive rotational energy estimator can be obtained [13]

T linrot =
1

P

P∑
t=1

T estt

T linrot
t =

B

4πρlinrott,t+1

∑
J

(2J + 1)J(J + 1)PJ(et· et+1)e
− β
P
J(J+1)B

(1.22)

1.1.3 Path Integral Formulation for Non-linear Rotors

As for the asymmetric top rotor, the orientation is normally defined by three Euler angles

ω = (ϕ, θ, χ). Also, the rotational transformation can be expressed by the related rotational

matrix ~R which will transform the space coordinates into the body frame.

In addition to the representation of the orientation, the rotational constants of a non-

linear rotor are also different from the linear ones’. There are three principal moments of

inertia (Θaa,Θbb,Θcc) determined three rotational constants (A,B,C). And the non-linear

rotors can be categorized by the values of three moments of inertia, a molecule is called

asymmetric top if Θaa < Θbb < Θcc, spherical top if Θaa = Θbb = Θcc, oblate symmetric

top if Θaa = Θbb < Θcc, prolate symmetric top if Θaa < Θbb = Θcc. In our project, we now

only consider about the most complicated case: the asymmetric top.

As we know, the basis set eigenfunction of the symmetric top is defined as |JMK〉,
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where J is the total angular momentum, M is the space-fixed projection angular momen-

tum, K is the body-fixed projection angular momentum. Also, the eigenfunctions of the

asymmetric top can be expanded in the basis set eigenfunctions of symmetric top |JMK〉,

which gives

|JMK̃〉 =
∑
K

A
(JM)

K̃K
|JMK〉 (1.23)

where A
(JM)

K̃K
is the eigenvector from the diagonalization of the symmetric top basis set

and can be considering as the linear combination coefficient.

The density matrix elements for an asymmetric top can now be evaluated by inserting

the identity operator based on the basis set of eigenfunction |JMK̃〉 similarly, then it gives

[21]

ρasymrot
t,t+1 (τ ;ωt, ωt+1) =

∞∑
J=0

2J + 1

8π2

J∑
M=−J

J∑
K̃=−J

dJMM(θ̃t,t+1) cos[M(ϕ̃t,t+1 + χ̃t,t+1)]

×
∣∣∣A(JM)

K̃M

∣∣∣2 exp
[
−τE(JM)

K̃

] (1.24)

where dJMK(θ) represents Wigner reduced d-matrix [22], Ω̃ = (θ̃, ϕ̃, χ̃) are the Euler
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angles (related definition for Euler angles can be found in Appendix A.2) which are defined

in a laboratory frame where the Euler angles of t slice are set to zero (Ωt = (0, 0, 0)), E
(JM)

K̃

is the eigenenergy.

While obtaining the density matrix, it is also available to evaluate the rotational energy

estimator [21],

T asymrot
t,t+1 =

1

ρasymrott,t+1

∑
JMK̃

(
2J + 1

8π2

)
A

(JM)

K̃M
E

(JM)

K̃

× exp
(
−τE(JM)

K̃

)∑
K

A
(JM)

K̃K
dJMK(θ̃t+1)

× cos(Mϕ̃t+1 +Kχ̃t+1)

(1.25)

1.2 Confined Quantum Molecules

We’re interested in confined molecules, not only molecules trapped in the hard cages such

as fullerenes but also the soft cages like solvent superfluid helium. The spectra of molecules

confined in these environments retained features associated with gas-phase behaviour.
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1.2.1 Endofullerene

Molecular endofullerenes have been synthesized and studied in previous experiments [23,

24]. The encapsulated small molecules are able to freely rotate and translate inside the

fullerene. Dipolar molecules such as hydrogen fluoride in C60 (HF@C60) and water in C60

(H2O@C60) are isolated by the bulky cage which has no hydrogen bonding or other complex

interactions. The quantized translational and rotational motions have been discovered by

spectrum experiments [23], also the potential surface of molecules trapped in fullerenes

is well-studied [25, 26]. Since the previous theoretical simulations [27, 28, 29] for the

endofullerene system focused on the free translation behaviour, the rotational and related

dipolar behaviour aroused great interest.

1.2.2 Water confined in Single Wall Carbon Nanotubes

Molecules can be confined not only into the above fullerene cages but also in other forms

of carbon such as single-wall carbon nanotubes. Single Wall Carbon Nanotube (SWCNT)

is one of the most well-studied systems to study nano-confined molecules, especially Water

in Single Wall Carbon Nanotube (H2O@SWCNT). Since water is the most important

component of transportation fluids in biology, the SWCNT provides a very interesting

analogue model of natural systems to study the behaviour of nanoconfined water [30, 31].
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Confined water molecules exhibit unusual behaviours such as sensitive ion selectivity

[32] and anomalously low friction and superior flow [33, 34]. Recent studies have also re-

vealed that confined water molecules in carbon nanotubes have excellent water permeability

which may suggest novel water purification systems [35, 36].

Recent experiments on quasi-1d water chains in SWCNT have revealed an anomalous

hydrogen bond network and also a temperature-dependent quasi-phase transition [37, 38,

39]. In this thesis, we will implement both classical and quantum simulations for such a

system in order to explore the behaviour of a simplified 1D water chain inspired by these

experiments.

1.2.3 Molecules doped in superfluid clusters

Unlike the hard cage introduced above, the superfluid solvent is a kind of “soft” confine-

ment for molecules. The lack of viscosity makes it possible for quantum mechanics to

be manifested in a liquid system instead of a discrete atom system. 4He is the first and

macroscopic superfluid observed in 1938 at a low temperature [40]. The experiments were

done by previous studies [41] for rotors in superfluid 4He indicates a high-resolved rota-

tional spectrum and sharp rotational transitions. In terms of theoretical simulations of the

microscopic superfluid system, an accurate potential energy surfaces (PES) is required to

describe the interactions. A well known analytical function for CO2-He system is developed
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and proved by Le Roy et al: Morse/long-range potential (MLR) [42]. The MLR formula

for the He-He interactions is also introduced by Christopher Ing et al based on Aziz He-He

potential [3]. With the accurate and efficient potential model, it is able to simulate the

system of CO2 doped Helium cluster with PIMD or PIMC methods [3]. Li et al’s group and

Zeng et al’s group studied for the cluster doped linear and non-linear rotors respectively

with PIMC simulation. In 2012, Ing et al performed the PIMD simulation with PILE with

doped helium clusters. More research on the simulations of the microscopic superfluidity

can be found in this field with both PIMD and PIMC method [43, 44]. In this thesis, we

will prove the validity of a hybrid PIMC/PIMD approach for the simulation of such soft

cages systems by benchmarking against the previous well-studied simulation program.

1.3 Outline of the thesis

This thesis focuses on the development of methods based on the path integral formulation of

quantum statistical mechanics to simulate molecular systems and determine their energetic

and structural properties. In Chapter 2, we introduce and compare the different Monte

Carlo methods and PIMD. Following this discussion, benchmark calculations are performed

in Chapter 3 to establish the validity and accuracy of the newly implemented PIMC code

in MMTK. In Chapter 4, we apply our method to simulate a 1D water chain with only

15



rotational motion for a wide range of temperatures and lattice spacings and compare the

energy and orientational behaviour with the direct Classical Monte Carlo method to explore

a possible phase transition. In Chapter 5, a hybrid PIMD/PIMC method is implemented

and introduced to simulate the translational and rotational motion of quantum systems.

We test the validity of this method for a CO2 doped Helium system and compare our

results with the PIMC method implemented in the Molecular rotors in bosonic solvents

simulation program (MoRiBS) [45]. Chapter 6 discusses and develops a new methodology

for cluster Monte Carlo with rotors. Finally, Chapter 7 summarizes the most important

findings and conclusions of this thesis. Future developments and associated applications

are also proposed in this last chapter.
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Chapter 2

Computational Methodologies

The main contribution of this thesis is to confirm the validity of our hybrid PIMD/PIMC

program to simulate translating and rotating molecules under quantum mechanical condi-

tions. Thus, it is necessary to comprehend the fundamental knowledge of those methods,

and also their related advantages and disadvantages. Moreover, the reason why we chose

those methods to simulate our system is also important in our topic. This chapter will

show the reasons and give a basic introduction to our computational methodologies.

2.1 Path Integral Molecular Dynamics

One of the main methods to simulate finite temperature translating molecules is using path

integral formulation with molecular dynamics method [46]. PIMD treats the quantum

system as a classical ring polymer system with P replicas of particles which refers to the

Trotter slices [15]. There is a set of harmonic springs with frequency ωP accounts for

the forces between copies. The related theory and techniques of PIMD are discussed in
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previous studies [18, 16, 14, 12]. Considering only the translational kinetic and potential

contributions, the discretized Hamiltonian referred to the P copies of a single quantum

particle of mass m system moving in a potential V (q) is given by [3]

HP =
P∑
t=1

{
p2t

2Pm̃t

+
1

P
V (qt) +

(
Pm

2β2~2
|qt − qt+1|2

)}
(2.1)

where pt and qt is, repectively, the fictional momentum attributed to the tth bead and

the tth bead position, and V (qt) is the fictional external potential of tth bead. m̃t denotes

an arbitrary mass of bead with m̃t = m/P .

In terms of the corresponding estimator used in this method, both the primitive esti-

mator and the centroid virial estimator are selected to measure the observables during the

simulations, more details can be found in the related literature [47, 3].

Due to the stiff harmonic springs between the particle copies, the molecular dynamics

method generates inefficient and nonergodic dynamics. Briefly, according to the discretized

Hamiltonian, the external potential allows the energy exchange with the harmonic term.

At a low temperature limit, the dynamics may fall into the so-called KAM regime and

the non-ergodic problem may arise [48]. However, as the temperature or P increases, the

force constant of the harmonic term also grows larger which leads to a stiffer harmonic
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spring whereas the potential V (qt)/P becomes lower. Finally, it still causes an inefficient

decorrelated or non-ergodic problem [48].

To circumvent the above difficulties, previous studies applied the thermostats to the

PIMD method and successfully generated the ergodic, canonical results [16]. In this thesis,

we use PIMD with PILE thermostat for sampling the translational part of the quantum

system, which is already implemented in MMTK and benchmarked by previous studies

[3, 4]. Also, we perform traditional PIMC for the simulation of rotation. As for the

translational motion, MD can provide a system move with a movement of the center of

mass of particles. Another reason to use MD more than MC in translational motion is

that MD performs a real-time simulation by allocating the velocities and time steps in the

“universe”. However, MC only accounts for arbitrary steps, which lacks the information

about motions and trajectories in real-time dimension.

However, we choose MC to implement rotational motion because of the shortcomings

of mathematical generalization for rotation in PIMD. Then, we will introduce our MC

algorithm for simulation of the rotational part in the following sections.
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2.2 Direct Monte Carlo Integration: Classical System

Besides of quantum Monte Carlo method, we can first implement the direct Classical Monte

Carlo Method (dCMC) method to test for the classical system.

According to Born-Oppenheimer (BO) approximation in a molecular system, the mo-

tion of atomic nuclei and electrons can be separated, and the electronic energy now is the

function of nuclei position R and relative orientation Ω which gives the potential energy

surface (PES). Moreover, a further approximation is applied to molecules, the rigid-rotor

approximation assuming molecules have fixed internuclear distance r for rotational mo-

tion. Moreover, in classical limit, the kinetic and potential part of partition function are

separable, zint(T ) = zvib(T )zrot(T )zel(T ). Based on these two approximations, we can have

a total internal energy as a sum of all components: Eint = Evib + Erot + Eel. If we only

consider the rotational contribution and ignore the vibrational motion, the internal energy

is expressed as Eint = Erot + Eel.

In classical mechanics, the formulation for rotational partition function of a single

molecule can be evaluated as

zrot(T ) ≈ 2IkBT

~2
=

T

σΘrot

(2.2)
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where σ is the symmetry number, and for N -particle, we have Zrot(T ) = [zrot(T )]N .

Also, in classical limit, the rotational contribution with a rotational degree of freedom, frot,

to the internal energy is generally

Erot(T ) =
frot
2
NkBT (2.3)

As for the electronic component or potential part of the partition function, in general,

zpot(T ) =
∑
states

e−βεstates (2.4)

V (Ω) ≡ Eel =

∑
states εstatese

−βεstates

zpot
(2.5)

In order to calculate the total internal energy, the main challenge is to evaluate the

ensemble average for potential energy in thermodynamic equilibrium. According to the

statistical mechanics, we know after a long time simulation, the system can reach thermo-

dynamic equilibrium and the time average is equivalent to the thermodynamic average.
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Therefore, it is possible to sample for the orientational configuration of all molecules in

each Monte Carlo step and calculate the total potential energy for each step. After looping

over all Monte Carlo step, the partition function and potential average can be calculated

from the average over MC step.

From the above expression of the partition function, we can have the related classical

thermodynamics information. Thus, the dCMC code can be implemented as follows,

Algorithm 1: Direct Classical Monte Carlo Integration (dCMC)

1 for i < MC step do

2 generate a set of random Euler angles {Ω} for all molecules as a whole

orientational configuration;

3 calculate the potential energy Vtotal(Ω) for this configuration;

4 calculate the numerator of the ensemble average potential energy 〈V 〉 by

multiplying the Boltzmann factor Vtotal(Ω) ∗ e−βVtotal(Ω);

5 calculate the partition function Zpot by Zpot =
∑

i e
−βVtotal(Ω);

6 end

7 sum over the numerator of the ensemble average potential energy 〈V 〉 by all Monte

Carlo step;

8 calculate the ensemble average potential energy 〈V 〉 by dividing by the partition

function Zpot which referred as 〈V 〉 =
∑

i Vtotal(Ω) ∗ e−βVtotal(Ω)/Zpot;

9 calculate the total internal energy by adding up the classical rotational energy

Erot = frot/2 ∗ kBT as Eint = 〈V 〉+ Erot;

dCMC algorithm is efficient and able to extract both the thermodynamic and structural

information of particles, we can use it for our system in the classical region.
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2.3 Path Integral Monte Carlo: Metropolis-Hastings

Algorithm

Traditionally, the Quantum Monte Carlo method [18] has been the tool to simulate molec-

ular systems. Metropolis sampling is one of Markov chain Monte Carlo algorithm that

can be used for N rotors with P beads under canonical ensemble system which is already

developed by previous studies [45, 66], here is just a simple application for that algorithm
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in our hybrid MD/MC code. The main algorithm is,

Algorithm 2: Modifed Metropolis-Hastings Algorithm in this thesis [45, 66]

1 acceptratio = 0;

2 for i < MC step do

3 for a < N do

4 for t1 < P do

5 the previous one t0, and the latter one t2;

6 calculate the density operator element ρold and energy estimator for this

configuration Mold by linear interpolation;

7 move this bead t1 by a random number based on orientation parameters

and construct a new configuration Mnew;

8 calculate the density operator element ρnew and energy estimator for the

new configuration by linear interpolation;

9 calculate the ratio of the probability and Boltzmann factor between the

two configurations by Paccept = ρnew
ρold

e−τ(Enew−Eold);

10 if Paccept > 1.0 then

11 accept, acceptratio+ = 1;

12 else if Paccept ∈ rand then

13 accept, acceptratio+ = 1;

14 else

15 reject;

16 end

17 end

18 end

19 end

20 acceptratio/ = (MC step∗N ∗ P );
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where ρ is a rotational density matrix element, Enew is the potential energy of the new

configuration, Eold is the potential energy of the old configuration. In line 6 and line 8, the

density matrix element values are calculated by the linear interpolation method based on

the pre-calculated density matrix for a truncated energy level as a function of tabulated

Euler angles.

The Monte Carlo movement will be accepted if the Paccept is larger than 1.0 which

means the whole system has lower energy than the previous one. However, if we only

accept the movement based on the energy change, the energy of samples will be trapped

in the local energy minimum and it cannot be a “real” sampling since sometimes the

energy may have to jump an energy gap to reach a global minimum. Therefore, if the

energy of the new configuration is larger than the previous one, we have to calculate the

Boltzmann factor, then generate a random number rand based on the continuous uniform

distribution of (0.0, 1.0). If the Paccept is smaller than 1.0, the movement is conditionally

accepted based on the random number and the total acceptance ratio, which is acceptratio

in the pseudocode, is calculated. The acceptance ratio is controlled under (0.3, 0.5) by

previous studies and preliminary results. Otherwise, the move will be rejected and the

configuration of the particle will stay as the initial step. In terms of energy calculation, the

configuration at each step, whether it is changed or not, should be considered to calculate

the whole average.
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Monte Carlo algorithms involving trial moves for each particle are called local-update

Monte Carlo Algorithms. However, this kind of local-update algorithm in the calculation

of the equilibrium statistical mechanics has several disadvantages in essence.

A valid Monte Carlo method should obey two rules: detailed balance and ergodicity.

The detailed balance of the Metropolis-Hastings algorithm [66] has been proved. But the

local-update results may be trapped in an energy minimum point at a low temperature due

to the probability distribution, which may lead to a non-ergodic simulation. Moreover, the

temperature near to the critical point which is a continuous phase transition, Tc, will cause a

so-called phenomenon “critical slowing down” [49]. The correlation time for the simulation

will increase remarkably and be very difficult to generate an independent configuration.

Thus, new algorithms for Monte Carlo methods are urged to conquer the non-ergodic

problem and suppress the long correlation time.
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2.4 Path Integral Monte Carlo: Cluster Monte Carlo

Algorithms

2.4.1 Cluster Algorithm: Lattice System

New cluster-update algorithms were developed by Swendsen and Wang (SW) in 1987 [5]

for the study of lattice spin flipping and magnetization, and also by Wolff in 1989 [6] for

the study of a single-cluster algorithm using Ising Model. As both of the algorithms related

to a cluster update of the whole system and a rejection-free process, the Wolff algorithm

only considers a single-cluster formation and update, which has much better efficiency

than Swendsen-Wang’s. Furthermore, the effect of the “critical slowing down” on the

simulation in Wolff’s algorithm is much smaller than the previous one. This algorithm has

been modified and updated by Sierens et al in 2017 [50] for the lattice spin system with

on-site interactions, which expands this algorithm to an interacting system.

Ĥspin = Ĥn.n. + V i (2.6)

Ĥn.n. = −J
∑
ij

ni·nj (2.7)
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where ni is the spin at site i, V i is the potential interaction on site i (for example,

an on-site magnetic field Bi). In the original Wolff’s algorithm, the link probability Plink,

which controls the growth of the cluster, depends on the nearest-neighbour coupling energy

of spins referred to Ĥn.n.. In the presence of the external field, the previous algorithm can

be modified by adding a cluster acceptance ratio, Paccept. The cluster generated by Plink

can only accept and flip with Paccept.

Paccept = min{1, exp(−∆Eon−site/T )} (2.8)

= min

{
1, exp

[
− 1

T

∑
i∈cluster

(V i′ − V i)

]}
(2.9)

where V i is the potential interaction on site i before flipping, and V i′ is the potential

interaction on site i after flipping.
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Thus, the modified Wolff’s algorithm for this system is shown as follows.

Algorithm 3: Modifed Wolff’s Algorithm for spin system with on-site interaction

[50].

1 A spin i is selected at random;

2 add site i to the cluster, clu, and to the buffer, buf ;

3 while the buf is empty do

4 pop the site i off buf ;

5 adding all neighboring spins j to the clu and buf with a probability

Plink = 1− exp(2βJ);

6 end

7 calculate the acceptance probability, Paccept;

8 for i ∈ clu do

9 reflect ni about the hyperplane orthogonal to random vector v such that

ni → R(v)ni = ni − 2(v·ni)v;

10 end

where ni is the unit vector representing the spin i, v is a random unit vector as a

reflection reference, and R(v) denotes the reflection transformation about vector v.

2.4.2 Cluster Algorithm: Continuum Systems

As the advantages of the cluster-update algorithm introduced previously, a wide application

on the continuum systems such as translational particles is pursued to implement. In 1995,

Dress and Krauth achieved a method to generate particle configurations for a hard-sphere
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system including only repulsive interaction, which is so-called Geometric Cluster Algorithm

(GCA). Furthermore, a generalized GCA for interacting particles including both attraction

and repulsion is also suggested by them and introduced by E. Luijten et al [49].

Algorithm 4: Generalized Geometric Cluster Algorithm for Interacting Particles

[7].

1 A ‘pivot’ v is selected at random in a given configuration {C};

2 A particle i at position ri is selected as the first particle that added to the cluster,

c;

3 This particle i is moved via a point reflection with respect to the pivot, v. In its

new position, the particle is referred to as i′, at position r′i;

4 adding all interacting particles j with i or i′ to the c with link probability

pij = max[1− exp(−β∆ij), 0], where ∆ij = V (|r′i − rj|)− V (|ri − rj|);

5 add j also to the stack s;

6 while s is not empty do

7 a particle is retrieved from the stack s as a new “i” in step 2;

8 repeat step 4 and step 5;

9 end

Since the previous studies for the cluster-updates Monte Carlo method are limited to

the classical system, potential implementation of this algorithm to a quantum rotational

system with path integral formulation is introduced and tested in this thesis.
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Chapter 3

Benchmark: Finite Temperature Path

Integral Monte Carlo Method

3.1 PIMC proof of principle: linear top system HF

monomer with Electric Field along z-axis

Since we will implement all the PIMC source code with MMTK package and test the

hybrid PIMD and PIMC later, the first step is to benchmark the local-update PIMC code

for both linear and asymmetric top systems and confirm the validity and accuracy of various

quantum systems. The related energy and structural information are also computed in this

part with a quadratic convergence of energy versus τ as mentioned in the theory chapter.

The later study of the cluster-update Monte Carlo method is also based on the results of

this part. As the first test, a linear top system is tested with Hydrogen Fluoride monomer

in an electric field. The PIMC simulation tests have been completed with a linear density
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matrix generator written in Fortran 77 [51].

3.1.1 System Setup

A simple HF monomer system is constructed to test the PIMC code for a linear system.

Since the diagonalization of the rotational operator with the electric field along the z-axis

(Ez) can be calculated directly, the PIMC results can be benchmarked against an exact

sum-over-states result. The detailed derivation of the diagonalization of the rotational

operator with Ez field is attached in Appendix A.1., and the Hamiltonian of this system is

Ĥ = T̂rot + V (θ) (3.1)

where T̂rot is the rotational operator, V (θ) is the potential function in the electric field

along z-axis, and θ here denotes the angle between linear rotor HF and z-axis.
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Figure 3.1: HF monomer placed along x-axis in an electric field along z-axis

Shown in Figure 3.1, the center of mass of this HF molecules is placed at origin and

the whole molecule is along the x-axis, with an electric field applying along z-axis. The

parameters is shown in Table 3.1.

3.1.2 Results

As introduced in theory part, an accurate result can be obtained by a convergence study

with different τ . The simulation is computed with various number of P ranging from 8

to 128. A quadratic fit and the exact diagonalization result are shown in Figure 3.2, with
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Table 3.1: The Parameters for the Simulations of HF monomer

Parameters Values
Temperature (T,K) 5.0K

Rotational Constant (B, cm−1) [52] 20.9557
Electric Field Strength (E,V/m) 1.0× 108

Simulation Step 2000000
Simulation Skip Step 200.0
Number of Beads (P ) [8, 16, 32, 64, 128]

Acceptance Ratio (0.3, 0.5)
Density Grid Points 150000

standard errors for each simulation data point.
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Figure 3.2: Convergence of the PIMC Total Energy of the HF monomer with respect to
τ for T = 5.0 K. A quadratic fit to the data is shown as a solid line. The exact value
obtained from explicit diagonalization is shown as a dashed line.
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A clear quadratic relationship can be found in the total energy convergence plot versus

τ . When the τ reach around 0.001 to 0.002 K−1, the energy obtained from PIMC is within

2.3% of the exact value. Moreover, the structural information can also be analyzed in

PIMC calculation. The angular distribution for the angle between HF rotor and z-axis is

shown in Figure 3.3.
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Figure 3.3: Angular distribution of cos(θ) for T = 5.0 K at τ = 0.0015625 K−1

.

The trend of the angular distribution plots indicate a preference for HF molecule parral-

lel to the z-axis direction which matches the behaviour of the electric dipole in the electric

field.
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3.2 PIMC proof of principle: asymmetric top system

H2O Dimer Simulation

Having benchmarked linear top PIMC code, the next step is to implement asymmetric top

PIMC code in the MMTK package. Since the MMTK package can track the Cartesian

coordinates information of molecules, we need to determine and fill the Euler angles for

the rotation matrix of asymmetric top especially C2v symmetry for water from the inertia

of tensor. The detailed derivation of Euler angles calculation is attached in Appendix A.2,

and the related Euler angles definition is also explained there. First of all, a water dimer

system is considered to be simulated for a high temperature system with both dCMC and

PIMC. Water molecules are treated as fixed and rigid rotors which have a wide range of

lattice spacing between the center of mass. Also, a developed analytical water model such

as Quantum Simple Point Charge Flexible Water (q-SPC/FW) [53] Quantum Transferable

Intermolecular Potential with 4 Points Flexible (q-TIP4P/F) [54, 55] is used to describe the

interactions for water system. It is noted that a more accurate many-body force field should

be applied to these systems like Many Body - Polarizable (MB-Pol) model [56, 57, 58], but

the expensive computing efforts for the calculation of the potential part should also be

considered. Based on the balance of accuracy and efficiency, we chose q-TIP4P/F as our
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first model to test the following water system.

3.2.1 System Setup

As shown in Figure 3.4, two water molecules are separated by a fixed lattice spacing and

placed along z-axis.

x

z

yO

O

Lattice Spacing (Å)

Center of Mass

Center of Mass

Figure 3.4: Water dimer placed along z-axis

The Hamiltonian for this water dimer system can be expressed as

Ĥ = T̂ rot
1 + T̂ rot

2 + V (Ω1,Ω2) (3.2)

where T̂ rot
i represents the rotation of rigid water molecule i, and V (Ω1,Ω2) repre-

sents the potential between two water molecules in the orientation representation Ωi =
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{ϕi, θi, χi}.

The related detailed calculation parameters used in our codes are shown in Table 3.2

and Table 3.3. The number of beads P = 2 is chosen for the simulation in PIMC at a

very high temperature which indicated a “nearly classical” system, and the results will be

compared with dCMC code. All the simulation step and simulation skip step (which is

necessary in PIMC code for a decorrelated process) is determined by preliminary tests for

this system.

Table 3.2: The Parameters for the Simulations of Water Dimer with PIMC method

Parameters Values
Temperature (T, K) (20.0, 300.0)

Rotational Constant (A,B,C, cm−1) [59] 27.8761, 14.5074, 9.2877
Simulation Step 400000

Simulation Skip Step 100.0
Number of Beads (P ) [2]

Acceptance Ratio (0.3, 0.5)

Table 3.3: The Parameters for the Simulations of Water Dimer with dCMC method

Parameters Values
Temperature (T, K) (20.0, 300.0)

Rotational Constant (A,B,C, cm−1) [59] 27.8761, 14.5074, 9.2877
Simulation Step 1000000
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3.2.2 Results

For a high temperature as 300.0 K, PIMC matches perfectly with dCMC for a range of the

lattice spacing from the repulsive part to attractive region, and also the non-interaction

region. It can also be seen that in the minimum point, there is a larger discrepancy in the

total energy between PIMC and dCMC.
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Figure 3.5: Total energy of water dimer at T = 300.0 K as a function of lattice spacing for
q-TIP4P/Fw
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Figure 3.6: Total energy of water dimer at different temperature as a function of lattice
spacing for q-TIP4P/Fw

40



We also perform the simulations with various lattice spacing around minimum total

energy for various temperatures. From Figure 3.6, it indicates that dCMC and PIMC

reach a better agreement at high temperature and also at larger lattice spacing. There is a

large discrepancy between two methods around the minimum point and also the same for

low temperature where may have more quantum effects and the number of beads P = 2 is

not enough to generate converged and accurate results.
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Figure 3.7: Angular distribution of water dimer by DMC simulations at T = 300.0 K for
different lattice spacing (a) R = 3.0 Å (b) R = 3.5 Å, (c) R = 4.0 Å, (d) R = 4.5 Å. The
blue line is for the first water molecule, and the orange line is for the second one.
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Figure 3.8: Angular distribution of water dimer by PIMC simulations at T = 300.0 K for
different lattice spacing (a) R = 3.0 Å (b) R = 3.5 Å, (c) R = 4.0 Å, (d) R = 4.5 Å. The
blue line is for the first water molecule, and the orange line is for the second one.

From the angular distribution plots from both dCMC and PIMC calculations, an angu-

lar distribution with less noises for a single dCMC simulation is about 30 seconds, however,

the PIMC takes about one hour to complete the simulation under the same conditions.
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A longer decorrelation time and also a longer simulation time are required to reach the

converged status for the PIMC method which means that the PIMC is less efficient than

the dCMC method at high temperature. Even if the energy and thermodynamic results

are close enough, the structural results may also differ. This suggests that if we need to

predict the structural information of molecules at high temperature with less computa-

tional expenses, dCMC can be used to predict the behaviour of molecules in the classical

limit. noise can be found in the PIMC results which indicates a non-converged calculation.
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Chapter 4

Application: Prediction of 1D Water

Chain Behaviour and Phase Transi-

tion at Finite Temperature

4.1 Introduction

As introduced in Chapter 1, quantum confined molecules aroused scientists’ great interests

especially the 1D water chain confined in SWCNT. This chapter will explore one of the

applications of dCMC calculations on a 1D water chain at finite temperature. For simplic-

ity, the CNTs are not included in this thesis, and we start with exploring the behaviour

of a pure water chain with only many water molecules interactions. Since a wide range

of temperatures will be tested from around 15.0 K to 300.0 K, if β is too small, even

in the τ → 0 limit, the converged correct energy and structural distributions can not be
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obtained from PIMC calculation. We will perform dCMC code at first to cover all ranges

of temperatures for classical calculations to analyze the energy and structural results.

4.2 System Setup

The 11 water rotors are placed along z-axis with the lattice spacing between the center of

mass for each molecule fixed. Figure 4.1 displays the scheme of the system we used in the

simulations.

x

z

y

Lattice Spacing (Å)

O

Center of Mass

O

Center of Mass

O

Center of Mass

{11 water molecules

Figure 4.1: 11 Water rotors placed along z-axis

Since we want to explore the behaviour of the 1d water chain, a wide range of tem-

peratures from 15.0 K to 300.0 K is used. Moreover, the lattice spacing also a significant

factor of water interactions, a variety of lattice spacing from 2.5 Å to 5.0 Å is considered.
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And we perform these systems with only dCMC code, the related parameters are shown

in Table 4.1.

Table 4.1: The Parameters for the dCMC Simulations of 11 Water Rotors as a chain

Parameters Values
Temperature (T, K) (15.0, 300.0)

Rotational Constant (A,B,C, cm−1) [59] 27.8761, 14.5074, 9.2877
Simulation Step 1000000

From the preliminary tests of the dCMC simulation for water chain system, an accept-

able MC simulation step of 1000000 is chosen in the whole set of simulations determined

by the balance of accuracy and effciency.

4.3 Results

In order to explore the orientational behaviour of 1D water chain, there are several order

parameters are chosen for the related measurements. A nearest neighbouring orienta-

tional correlation of molecular dipole moments is defined as µiµi+1/||µ||2, which is the

dot product between the nearest neighboring molecules’ dipoles. µi denotes the vector

representation for the dipole moment of the water molecule i, and ||µ|| is defined as the

magnitude of the dipole moment. Also, we sum over the nearest neighbour orientational

correlation function for each molecule and divided by the total number of molecules used
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in the calculation. In our simulation, we have 11 water molecules but only the middle 7

water molecules are calculated for the orientational measurement to avoid the end effect.

Thus, we have
∑N−1

i µiµi+1/(N ||µ||2). Similarly, we also calculate the related measure

for the corresponding z-component nearest neighbour orientational correlation dipole mo-

ments, µziµ
z
i+1/||µ||2. Besides of the correlation function, the orientational behaviour for

each single water molecule is also measured by the mean normalized magnitude of the

perpendicular dipole component for one water molecule, ||µ⊥||/||µ||, and the z-component

||µz||/||µ||. All measurements above are finally take the sum of the middle 7 molecules,

and do the average over the total number of measured molecules 7.

From the Figure 4.2, we can find two significant transitions around 3.1 Å and 3.9 Å for

all orientational measurements.
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Figure 4.2: (a) Nearest neighbouring orientational correlation of molecular dipole moments
and (b) related measure for the components parallel to the z-axis. (c) mean normalized
magnitude of the perpendicular dipole component for one water molecule (d) mean nor-
malized total dipole moment along the z-axis. All measurements are averaged over central
7 molecules, and the red arrow denotes the temperature goes from low to high.
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Figure 4.3: Phase transition plots based on different order parameters (a) nearest neigh-
bouring orientational correlation of molecular dipole moments and (b) related measure for
the components parallel to the z-axis. (c) mean normalized magnitude of the perpendicular
dipole component for one water molecule (d) mean normalized total dipole moment along
the z-axis. All measurements are averaged over central 7 molecules.

Then, we can obtain the phase transition plots from the orientational measurements.

Since the classical hydrogen bonding has a preference of 31◦ angle about the z-axis, and the
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dipole-dipole interaction has a preference of parrallel along the z-axis. The temperature-

lattice spacing phase plot can be divided into three regions, the first region is before 3.1 Å.

In this region, there is a low nearest neighbor correlation and also a low dipole moment

for both perpendicular and parrallel to z-axis component, which indicate a disorder and

decorrelated region due to high repulsive interactions and a broken hydrogen bonding. The

second region is between 3.1 Å and 3.8 Å where it has a relatively high nearest neighbouring

correlation, and also high dipole moment for both perpendicular and parrallel component

dipole. It presents a highly ordered structure which is due to the hydrogen bonding between

water molecules. The third region is located after 3.8 Å lattice spacing, a higher correlation

suggests a more correlated interaction is dominant. Also, a more z-component but less

perpendicular component dipole moment indicates a dominant parrallel structure between

water molecules which is due to the long-range dipole-dipole interactions. Therefore, the

three region can be divided as “repulsive region”, “hydrogen bonding region”, and “dipole-

dipole region”.
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Chapter 5

Hybrid PIMD/PIMC Methods Prelim-

inary Test

Having implemented PIMC code and PIMD code in the MMTK package and proved the

validity of the PIMC code in the previous chapters. This chapter now will turn to a more

complicated hybrid PIMD/PIMC method with a linear rotor in a soft superfluid solvent

including both translational and rotational motion: CO2 doped Helium. The Hamiltonian

for this system can be written in the following form:

Ĥ = ĤCO2 + ĤHe + VCO2−He(R− ri,Ω) (5.1)

where VCO2−He(R − ri,Ω) is the two-dimensional CO2-He potential, and {R, ri} are,

respectively, the center of mass of the CO2 molecule and positions of the helium atoms. Ω

is the orientation of the molecule in MFF.
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ĤCO2 = Bl̂2 +
P̂ 2

2mCO2

(5.2)

ĤCO2 represents the rotational and translational degrees of freedom of the CO2 molecule

in the rigid rotor approximation, with l̂ being the angular momentum operator and P̂ the

kinetic operator. B denotes the rotational constant of the CO2 moleculle, mCO2 is the mass

of the molecule.

And the Hamiltonian for Helium atoms is

ĤHe =
∑
i

p̂2i
2mHe

+
∑
i<j

v(|ri − rj|) (5.3)

where p̂i is the momenta of the helium atoms.

5.1 Hybrid PIMD/PIMC Algorithm

PIMD is performed on a real timescale (dt) which is related to molecular dynamics but

PIMC is simulated with an imaginary timescale (β) for thermodynamics. Also the rota-

tional correlation time, which is defined as the average time it takes for a molecule to rotate

one radian, have a magnitude around τc = 1 ps [60], and PIMD time step for translational

motion is usually around dt = 1 fs. A new parameter, rotational skip step Nrsk, is necessary
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to control how many translational steps should be run within one rotational step.

The whole simulation consists of m 
translational steps and n rotational steps

One translational 
simulation step

One rotational 
simulation step

Nrsk ,the rotational skip step: 
after Nrsk translational steps, 

run one rotational step

Figure 5.1: Illustration of the definition of the rotational skip step, Nrsk

However, the exact Nrsk should be determined by comparison with benchmark calcu-

lations. Since PIMC for CO2-He system has been studied and proved, we will use the

MoRiBS PIMC code [45] as a benchmark calculation for our new hybrid PIMD/PIMC
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method.

Algorithm 5: Hybrid PIMD/PIMC Algorithm

1 for i < MD step do

2 move the center of mass of the molecule by molecular dynamics calculation;

3 calculate the primitive estimator for translational and potential energy;

4 if MD step%Nrsk == 0 then

5 for all beads and all molecules do

6 rotate the molecule by a random angle and calculate

Paccept = ρnew
ρold

e−τ(Enew−Eold);

7 if Paccept > 1.0 then

8 accept;

9 else if Paccept > rand then

10 accept

11 else

12 reject

13 end

14 end

15 end

16 calculate the rotational and potential energy;

17 calculate the acceptance ratio;

18 end
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5.2 System Setup

The system setup sketch is shown in Figure 5.1, and the related parameters used in our

simulations are shown in Table 5.1. Since we need to retain the superfluidity of the Helium

atom, we chose 1 K as our test temperature. We test this new hybrid code with different

P values for fixed temperature and rotational skip step, Nrsk = 1 at first to compare with

MoRiBS PIMC code. Then, we will perform a parrallel comparison between all the same

parameters but various Nrsk to explore the rotational skip step’s effect on the final results.

Figure 5.2: CO2 doped with the single Helium atom

5.3 Results

As shown in Table 5.1, various number of beads are used to calculated the same CO2-He

system at T = 1.0K. It can be seen that the good match with pure PIMC code and low
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Table 5.1: The Parameters for the Simulations of CO2-He

Parameters Values
Temperature (T,K) 1.0

Rotational Constant (B, cm−1) [61] 0.39021
Simulation Step 500.0 ps/dt

Simulation Skip Step 100.0 fs/dt
Number of Beads (P ) [8, 16, 32, 64]

Acceptance Ratio (0.3, 0.5)
Density Grid Points 150000

standard errors in our new hybrid PIMD/PIMC code for all kinds of energy, especially

potential and translational energy.
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Figure 5.3: Hybrid PIMD/PIMC Simulations for CO2-He at T = 1.0 K with Nrsk = 1 as
a function of τ (a) potential energy (b) rotational energy (c) translational energy (d) total
energy. The green data points with errobars are the hybrid PIMD/PIMC simulations’
results, and the orange data points with errobars are the benchmarked MoRiBS PIMC
results

There are small discrepancies in the rotational part, then a test for different Nrsk is

needed to perform for the above system. Figure 5.3 shows that for rotational skip step
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smaller than 20, there is a fluctuation for all kinds of energy around the result of pure

PIMC, but the fluctuation may be due to the un-converged simulation, which indicates a

longer simulation time or a longer decorrelated time. Furthermore, if the Nrsk is too large,

both the translational and rotational energy will diverge from the correct value.
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Figure 5.4: Hybrid PIMD/PIMC Simulations for CO2-He at T = 1.0 K with P = 16 as
a function of rotational skip step (a) potential energy (b) rotational energy (c) transla-
tional energy (d) total energy. The data points with errobars are the hybrid PIMD/PIMC
simulations’ results, and the black dashed lines are the benchmarked MoRiBS PIMC results
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5.4 Concluding Remarks

We have successfully calculated the three energy components of CO2-He system and our

results agree with the pure PIMC calculation by MoRiBS. However, more complicated

systems should be tested for this new hybrid code. Also, an energy convergence study and

structural distribution should be done for this program to prove the advantages of our new

code. We need a time-consuming comparison between the hybrid code and pure code to

test the efficiency. As a result, we conclude that the hybrid PIMD/PIMC method works

and practical.
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Chapter 6

PIMC Cluster-update Algorithm Im-

plementation

In the last chapter, we will explore the cluster-update algorithm for a quantum many-

body rotational system with path integral formulation. Based on the previous calculations,

there is a non-ergodic problem for the local-update algorithm while the cluster-update

method can combat this issue. Based on the previous research of cluster-update, in this

thesis, we focus on the GCA method since it is utilized for a continuum translational hard-

sphere system [7, 49] which is similar to our continuum rotational system. The Hamiltonian

of this system can be written as

Ĥ = Bl̂2 +
∑
i<j

V (ni,n, j) + Ĥbeads (6.1)

where l̂ represents the rotational operator, and B is the rotational constant. The second

term can be in general the interaction between molecule ni and molecule nj, the third term
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represents the interaction between beads, P . And the dipole-dipole interaction analytical

form is given by [62]

V (ni,n, j) =
d2

4πε0r3
(Ω̂i · Ω̂j − 3(Ω̂i · r̂)(Ω̂j · r̂)) (6.2)

where ε0 is the vacuum permittivity, Ω̂i is the orientation unit vector of the molecule

ni, r represents the distance between ni and nj, and r̂ represents the unit vector between

dipoles.

Also, the visualization of this system can be described in Figure 6.1.
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Beads Interaction
Intramolecular Interaction

Figure 6.1: Illustration of the rotational dipoles in Path Integral formulation with in-
tramolecular interactions
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6.1 PIMC Cluster-update Algorithm for Rotational

Motion

The most important step of a successful Monte Carlo method is to design a correct and

compatible random move for each MC step. Within the GCA algorithm, a 3D unit random

vector v is chosen for molecules in the cluster to reflect. In the rigid rotor approximation

model, we treat the rotors as dipoles and rotate those dipoles based on Rodrigues’ rotation

formula,

vrot = v cos ∆θ + (k× v) sin ∆θ + k(k · v)(1− cos ∆θ) (6.3)

where vrot is the rotated vector, v is the vector of dipole, and k is a unit vector

describing an axis of rotation about which v rotates by an angle ∆θ. A sketch to describe

the Rodrigues’ formula is shown in Figure 6.1.

64



Figure 6.2: Rodrigues-formula

Based on the Rodrigues’ formula, we can design a new rotational step for the Monte

Carlo method to rotate all particles in the cluster by the same parameters. Moreover, we

determine the link between the interior of the cluster and the exterior particles by a link

probability, Plink.

Plink = max{1− exp[−τ∆V ], 0} (6.4)

= max{1− exp[−τ(V (ni′ ,nj)− V (ni′ ,nj′))], 0} (6.5)

where τ = β/P , and ∆V is the energy difference between the two configurations. ni

denotes the original vector representation of ith molecule’s dipole, and ni′ denotes the

rotated vector representation of ith molecule’s dipole.
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In the presence of an interaction term for beads along the imaginary time path, the

cluster-update algorithm should include a cluster acceptance probability given by

Paccept = min{1,
∏

c∈cluster

ρcnew
ρcold
× exp[−τ∆V clu−ext]} (6.6)

= min{1,
∏

c∈cluster

ρcnew
ρcold
× exp[−τ(V clu−ext

new − V clu−ext
old )]} (6.7)

where ρcold represents the density matrix element values of the original configuration for

cth molecule, ρcnew represents the density matrix element values of the new configuration

for cth molecule, and all c ∈ cluster in the above equation. V clu−ext
old represents the total

interacting potential energy between the the cluster molecules and exterior molecules before

rotation, and V clu−ext
new represents the total interacting potential energy between the the

cluster molecules and exterior molecules after rotation. Then, the cluster-update new

configurations are only accepted or rejected by this Paccept probability. A outline for the
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modified GCA algorithm is shown in Algorithm 6:

Algorithm 6: PIMC Cluster-update Algorithm for Rotational Motion

1 for i < MC step do

2 for t in range(P ) do

3 choose a random molecule a and add a to both cluster clu and buffer buf ;

4 create a random unit vector k and random angle ∆θ;

5 rotate a by k and ∆θ;

6 while buf not empty do

7 pop off the first molecule in buf ;

8 join all nearest neighbor molecules b to the clu an clu by probability

Plink;

9 rotate linked b by k and ∆θ;

10 end

11 for all molecules in clu do

12 calculate Paccept;

13 if Paccept > 1.0 then

14 accept;

15 else if Paccept > rand then

16 accept

17 else

18 reject

19 end

20 end

21 end

22 calculate the potential and rotational energy;

23 calculate the acceptance ratio;

24 end 67



6.2 System Setup

In order to test this new cluster-update algorithm for a rotational system with on-site

interactions, the multi-rotors system of HF molecules with dipole-dipole interaction is

chosen. Since we a have well-developed local-update PIMC code in MoRiBS, we will use

simulations in MoRiBS as our benchmark calculation. A set of rigid rotors is placed along

the z-axis, and simulate the system with different numbers of rotors to test the validity

and accuracy of the growth of the cluster for various systems.

FH

x

y

z

O

FH FH

Lattice Spacing (Å)
Number of Rotors, N

}

Figure 6.3: PIMC Cluster-update system setup: N HF rotors along x-axis

The parameters used in this set of simulations are presented in Table 6.1. As a very

basic test of the validity of the growth of the cluster, we simulate the system at a relatively

high temperature, 20.0 K and 16 beads for a various number of rotors.
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Table 6.1: The Parameters for the Simulations of N HF Rotors

Parameters Values
Temperature (T,K) 20.0

Rotational Constant (B, cm−1) 20.9557
Number of Rotors (N) [2, 3, 4, 5]

Dipole Moment (d,Debye) 2.0
Simulation Step 500000

Simulation Skip Step 100.0
Number of Beads (P ) [16]

Acceptance Ratio (0.3, 0.5)

6.3 Results

The potential, rotational and total energy τ convergence diagram are shown in Fig. 6.4,

Fig. 6.5, and Fig. 6.6 respectively.
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Figure 6.4: Potential energy for HF molecules with different number of molecules at T =
20.0 K with P = 16. Red points and lines are from local-update PIMC calculation, and
blue points and lines are calculated from cluster-update PIMC simulations.
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Figure 6.5: Rotational energy for HF molecules with different number of molecules at
T = 20.0 K with P = 16. Red points and lines are from local-update PIMC calculation,
and blue points and lines are calculated from cluster-update PIMC simulations.

71



2.0 2.5 3.0 3.5 4.0 4.5 5.0
Number of Molecules (N)

10

20

30

40

50

60

70

80

90
To

ta
l E

ne
rg

y 
(K

)
PIMC, Local-update
PIMC, Cluster-update

Figure 6.6: Total energy for HF molecules with different number of molecules at T = 20.0 K
with P = 16. Red points and lines are from local-update PIMC calculation, and blue points
and lines are calculated from cluster-update PIMC simulations.

For the potential energy calculation in the cluster-update algorithm, a good match can

be observed between cluster-update and local-update. However, a large discrepancy also

can be found in both rotational and total energy which indicates a problem of our code in

essence.
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6.4 Discussion

By studying the principle of the cluster-update algorithm, we noticed that a specific Monte

Carlo move is required in this new method. When the cluster grows based on the link

probability, the whole configuration of the interior of the cluster should be equivalent before

and after a random move. Since our force field is anisotropic, the different directions of our

dipoles may result in different interior energy. It will cause a failure of the detailed balance

requirement for the general Monte Carlo method. For a local-update Monte Carlo method,

we have already known, the Monte Carlo random move transforms the configuration a to

b has a transition probability P (a → b). And configurations a and b also have their own

probability π(a) and π(b). Thus, the fundamental condition of detailed balance expressed

as

π(a)P (a→ b) = π(b)P (b→ a) (6.8)

However, P (a → b) is not the end of the story, it is a composite probability with two

components: considering probability, A(a→ b), and accepting probability, P̃ (a→ b).

As for Metropolis-Hasting algorithm introduced in Chapter 2, we have the so-called

acceptance ratio as
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P̃ (a→ b) = min[1,
π(b)

A(a→ b)

A(b→ a)

π(a)
] (6.9)

Therefore, a general Monte Carlo method requires three conditions: ergodicity, possi-

bility to compute π(b)
π(a)

, possibility to compute A(a→b)A(b→a) .

As for our case, the cluster-update Monte Carlo algorithm, we need to find the rela-

tionship between the cluster link (or growth) probability and the ratio of acceptance ratio.

We can consider the following case shown in Fig 6.7,

(a) (b)

Figure 6.7: A link can be connected and added to the cluster (green rectangular) by a
probability p. (a) configuration a with 10 particles in the cluster with specific construction
(blue arrows in green area) (b) configuration b with 10 particles in the cluster with specific
construction (red arrows in green area); blue and red arrows represent the dipole vectors
of particles, and the same blue or red color means a “linking” preference between these
particles, the different color represents a “breaking” preference between particles, black
dashed lines represent the links need to be determined between the particles touching the
boundary in the cluster and outside of the cluster.
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the interior of the clusters (green areas) in the a configuration and the b configuration are

distinguished as “same” configurations, but actually, they are the “reflection” configuration

to each other. And in a symmetric force field, they can be thought that they have the

same relative orientations with respect to the space fixed-frame and they have the same

energy inside of the cluster. The real orientations of the particles in the cluster are different

between a and b, and also the total energy of the whole configurations are different too.

From the Figure 6.7, it can be seen that the cluster of configuration a is stopped by 11

“blue-red” links, and the cluster of configuration b is stopped by 5 “blue-red” links. Then,

we can formulate the considering probability as follows,

A(a→ b) = Ainterior × (1− p)11 (6.10)

A(b→ a) = Ainterior × (1− p)5 (6.11)

Ea = Einterior + Eexterior − g(11) + g(5) (6.12)

Eb = Einterior + Eexterior − g(5) + g(11) (6.13)

where g represents a general function for the energy in terms of the number of particles,

and the “interior” means the particles are in the cluster but does not touch the boundary,

and the “exterior” means the particles are not in the cluster and also does not touch the
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boundary. If we consider a general case, that the stopped link for a is n, and stopped link

for b is m, the acceptance ratio now becomes

P̃ (a→ b) = min

[
1,

exp[−βEb]
Ainterior × (1− p)n

Ainterior × (1− p)m

exp[−βEa]

]
(6.14)

= min

[
1,

exp[−β(−g(m) + g(n))]

(1− p)n
(1− p)m

exp[−β(−g(n) + g(m))]

]
(6.15)

From the equation above, n and m values are known during the cluster growth. Thus,

the link probability p and also the energy difference g(m) − g(n) only depend on the

particles of the boundary of the cluster. Also, it will require an “equivalent” configuration

of the interior of the cluster to satisfy the detailed balance condition.
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(a)

X

Z

Y
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Z

Y

(b)

Figure 6.8: Illustration of two dipoles in a dipole-dipole interaction force field, (a) an equiv-
alent configuration with same relative angles between the two dipoles, (b) an inequivalent
configuration still with same relative angles between the two dipoles.

Since the Monte Carlo step is designed based on the relative orientations between the

76



nearest neighbouring particles which are expressed as the dot product between the nearest

neighbouring particles. However, in our case, an anisotropic force field will lead to an

antisymmetric configuration. For instance, the dipole-dipole interaction analytical form

from Equation (6.2), the z component has a different magnitude compared to the x and

y components and causes an antisymmetric force field. Also, from Figure 6.8, it can be

observed that even if the two dipoles in two configurations have the same relative angles,

the energies are different due to the anisotropic force field. It could arise the “inequivalent

configuration” problem which is challenging to develop our cluster-update Path Integral

Monte Carlo algorithm.
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Chapter 7

Conclusions and Future Work

7.1 Concluding Remarks

Overall, the primary objective of this thesis was to develop a novel methodology to study

rotating quantum particles. In Chapter 3, we benchmarked our rotational PIMC code as

implemented in MMTK against exact diagonalization calculations and a dCMC code for

both linear and asymmetric top molecules. We have confirmed that energetic results agree

very well with our benchmark calculations. We however observed issues associated with

the non-ergodic behaviour of the local-update PIMC code.

In Chapter 4, we applied our dCMC code to a system consisting of a 1D water chain for

a wide range of temperatures and lattice spacings. We were able to predict the behaviour

of the water chain system with phase transition plots. Two significant phase transition

points and three phase regions were observed vias the use of order parameters. With a

lattice spacing between water molecules at around 3.1 Å and 3.9 Å, there are two obvious
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transitions indicating different dominant interactions at different lattice spacing. The usual

hydrogen-bonding associated with 1D water alignment yields to a 31◦ angle between the

molecular dipoles and the z-axis of the chain. This means that hydrogen bonding interac-

tions yield less alignment along the axis of the chain than pure dipole-dipole alignment. We

can deduce that three regimes exist. They are categorized as a “repulsive region” where

repulsive interaction is dominant, and hydrogen bonds are broken in this region. The

“hydrogen-bonding region” is where the hydrogen bonding interaction dominates. Finally,

a “dipole-dipole region” appears when water molecules have a large enough lattice spacing

where long-range interactions dominate. In this region, an arrangement where the dipole

axis of the water is parallel to the z-axis is favoured due to the dipole-dipole interaction.

In Chapter 5, we tested our hybrid PIMD/PIMC code for the CO2-He system at 1.0 K

for a varying number of beads. We calculated and compared three energy components with

MoRiBS pure PIMC simulations, and reached a good agreement. Also, we explored the

relationship between rotational skip step Nrsk and energy values and found as a preliminary

result that the energy fluctuates around the correct pure PIMC results from the MoRiBS

calculations. This may indicate a non-converged simulation and the relationship of the

time-scale between translation and rotation still remains to be clarified.

Finally, in Chapter 6, we modified one of the cluster-update algorithms, GCA, to

develop our own cluster-update MC method for the quantum rotors. We calculated the
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potential and rotational energy and observed that only the potential energy agrees well

with our reference local update approach for systems consisting of a small number of rotors.

However, the rotational and total energy exhibit large discrepancies compared to the local-

update results. We have also studied the whole procedure and theory behind the cluster-

update Monte Carlo method. The detailed balance condition was evaluated and studied

under the cluster-update situation. An equivalent configuration of the cluster interior is

required to satisfy the detailed balance condition. In the case of dipole interactions, the

anisotropy makes it challenging to design a proper Monte Carlo rotational step that satisfies

detailed balance. A new MC random move for rotation should therefore be developed.

7.2 Future Work

There are a number of suggestions for future work based on the developments presented in

this thesis. One clear direction for our hybrid PIMD/PIMC code is to perform an energy

convergence study, and benchmark against an exact basis set calculations. Also, more

parallel calculations are required for us to explore the relationship and time-scale between

translational and rotational motions. In addition to these validation tests, we can also

enhance our code so that it can simulate a larger system with a better performance via the

use of libraries such as the OpenMM accelerated MMTK program implemented by Bishop
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et al in 2015 and also the umbrella sampling method in 2018 to study the free energy

profiles of quantum systems [63, 64].

Another area of future research would be the design of a new Monte Carlo move for ro-

tational systems to further develop our cluster-update algorithm. Work has been reported

in the literature where the Wolff algorithm has been applied to the anisotropic continuous-

spin model [65]. The authors propose a solution to the problem of the antisymmetric

configurations by decomposing the spins into components parallel and perpendicular to a

random unit vector n which controls the reflection among spins. They treated the com-

ponent which contributes to the cluster growth in an isotropic case as the main part of

the Wolff’s algorithm, and the other anisotropic part became a local on-site field acting

on every spin. It would be beneficial to determine if these modifications are valid and

work for our cluster-update algorithm. Once a solution is found, a novel cluster-update

Monte Carlo algorithm can be proposed for rotational systems. This would enhance PIMC

sampling and reduce simulation time. Also, since the system is no longer evolved using

local updates, decorrelated configurations can be generated more efficiently. Overall, both

the simulation and correlation time would be reduced if a cluster algorithm is developed.
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[38] X. Ma, S. Cambré, W. Wenseleers, S. K. Doorn, and H. Htoon, Physical review letters,

118, 2, 027402 (2017).

85



[39] K. V. Agrawal, S. Shimizu, L. W. Drahushuk, D. Kilcoyne, and M. S. Strano, Nature

Nanotechnology, 12, 3, 267 (2017).

[40] P. Kapitza, Nature, 141, 3558, 74 (1938).

[41] S. Grebenev, J. Toennies, and A. Vilesov, Science (New York, N.Y.), 279, 5359, 2083

(1998).

[42] H. Li and R. J. Le Roy, Physical chemistry chemical physics : PCCP, 10, 28, 4128

(2008).

[43] T. Zeng, H. Li, and P.-N. Roy, International Journal of Quantum Chemistry, 115, 9,

535 (2015).

[44] T. Zeng and P.-N. Roy, Reports on progress in physics. Physical Society (Great

Britain), 77, 4, 046601 (2014).

[45] T. Zeng, N. Blinov, G. Guillon, H. Li, K. P. Bishop, and P.-N. Roy, Computer Physics

Communications, 204, 170 (2016).

[46] N. Hansen and W. F. van Gunsteren, Journal of chemical theory and computation,

10, 7, 2632 (2014).

[47] M. Herman, E. Bruskin, and B. Berne, The Journal of Chemical Physics, 76, 10, 5150

(1982).

86



[48] R. W. Hall and B. J. Berne, The Journal of chemical physics, 81, 8, 3641 (1984).

[49] E. Luijten, Introduction to Cluster Monte Carlo Algorithms , 13–38, Springer Berlin

Heidelberg, Berlin, Heidelberg (2006).

[50] L. Hayward Sierens, Simulating quantum matter through lattice field theories , UWS-

pace (2017).

[51] C. McBride, E. G. Noya, and C. Vega, Computer Physics Communications, 184, 3,

885 (2013).

[52] D. U. Webb and K. N. Rao, Journal of Molecular Spectroscopy, 28, 2, 121 (1968).

[53] F. Paesani, W. Zhang, D. A. Case, T. E. Cheatham, and G. A. Voth, Journal of

Chemical Physics, 125, 18, 184507 (2006).

[54] S. Habershon, T. E. Markland, and D. E. Manolopoulos, The Journal of Chemical

Physics, 131, 2, 024501 (2009).

[55] W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein,

The Journal of Chemical Physics, 79, 2, 926 (1998).

[56] V. Babin, G. R. Medders, and F. Paesani, Journal of chemical theory and computation,

10, 4, 1599 (2014).

87



[57] V. Babin, C. Leforestier, and F. Paesani, Journal of chemical theory and computation,

9, 12, 5395 (2013).

[58] G. R. Medders, V. Babin, and F. Paesani, Journal of chemical theory and computation,

10, 8, 2906 (2014).

[59] R. T. Hall and J. M. Dowling, The Journal of Chemical Physics, 47, 7, 2454 (1967).

[60] D. Lankhorst, J. Schriever, and J. C. Leyte, Berichte der Bunsengesellschaft für

physikalische Chemie, 86, 3, 215 (2010).

[61] G. Herzberg, Electronic spectra and electronic structure of polyatomic molecules , Van

Nostrand (1966).

[62] B. Abolins, R. Zillich, and K. Whaley, Journal of Low Temperature Physics, 165,

5-6, 249 (2011).

[63] K. P. Bishop, S. Constable, N. F. Faruk, and P.-N. Roy, Computer Physics Commu-

nications, 191, C, 203 (2015).

[64] K. P. Bishop and P.-N. Roy, Journal of Chemical Physics, 148, 10 (2018).

[65] M. D’Onorio De Meo and S. K. Oh, Phys. Rev. B, 46, 257 (1992).

[66] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, The

journal of chemical physics, 21, 6, 1087 (1953).

88



[67] D. M. Ceperley and B. Bernu, Journal of Chemical Physics, 89, 10, 6316 (1988).

[68] S. Constable, M. Schmidt, C. Ing, T. Zeng, and P.-N. Roy, The journal of physical

chemistry. A, 117, 32, 7461 (2013).

89



APPENDICES

90



Appendix A

Derivations

A.1 Derivation of Diagonalization of Rotation Oper-

ator and Electric Field [8]

The Hamiltonian of the rotational molecule in electric field is,

Ĥ = T̂rot + Velec(θ) (A.1)

Since the eigenstates of rotation in |lm〉 basis are already known, the rotational eigen-

state should be in the diagonal position of the Hamiltonian matrix:

Hll = Erot = Bl(l + 1) (A.2)

Then, we calculate the potential energy of electric field on the above system. The

analytical equation for the electric field should be,
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Velec(θ) = ~d· ~Ez = |d||Ez| cos θ (A.3)

Then, we can evaluate the integral in the basis of |lm〉,

〈l′,m′|Velec(θ)|l,m〉 = 〈l′,m′||d||Ez| cos θ|l,m〉 (A.4)

= |d||Ez|〈l′,m′| cos θ|l,m〉 (A.5)

= |d||Ez|
∫ 2π

0

∫ π

0

Y m′

l′ (θ, φ)∗ cos θY m
l (θ, φ) sin θdθdφ (A.6)

where Y m
l (θ, φ) is sphereical harmonics,

Y m
l (cos θ, φ) =

1√
2π
Ỹ m
l (cos θ)eimφỸ m

l (cos θ) = (−1)m

√
(2l + 1)

2
· (l −m)!

(l +m)!
Pm
l (cos θ)

(A.7)

and the associated Legendre Polynomial function can be expressed in Rodrigues formula

Pm
l (x) = (1−x2)m/2

2ll!
dl+m

dxl+m
(x2 − 1)l.

Finally, we can have the result of the integral, and the elements of the potential operator

in the basis set of rotational quantum number can be obtained,
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〈l′,m′|Velec|l,m〉 = |d||Ez|

(
δm′,mδl′,l+1

√
(l −m+ 1)(l +m+ 1)

(2l + 1)(2l + 3)
+ δm′,mδl′,l−1

√
(l −m)(l +m)

(2l − 1)(2l + 1)

)

(A.8)

A.2 Derivation of the Euler Angles from the Carte-

sian Coordinates of Asymmetric Top Molecule

(Water) [9]

The symmetry group of water molecule is known as C2v, and in body-fixed frame (BFF),

the Cartesian coordinates of water molecules are constant but the space-fixed frame (SFF)

are different which illustrated in the following sketches.
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Figure A.1: Illustration of the spaced-fixed frame and body-fixed frame for one water
molecule

From the Figure A.1, the water molecule is bound to a body-fixed frame of its own.

The convention setup of the coordinates for water molecule in the BFF is fixed, the center

of mass of the water molecule is placed at the origin of the BFF. And the oxygen atom is

placed at the positive direction of the z-axis, and the first hydrogen atom (referred as HL)

is placed at the negative direction of the x-axis, the second hydrogen atom (referred as HR)

is placed at the positive direction of the x-axis. During rotational and translational motion,

the Cartesian coordinates of the water molecule with respect to the SFF are changed, but

constant at the BFF. The conventional definition of the Euler angles is also illustrated in

Figure A.2,
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Figure A.2: Illustration of the conventional definition of three Euler angles

Firstly, the whole BFF is rotated about the Z-axis (SFF) by ϕ so that the x-axis of the

BFF is now moved to the new direction and denoted as N-axis and the angle between the

N-axis and the X-axis is ϕ. Then, the BFF is rotated about the N-axis (BFF) by θ, now

the z-axis if moved to the new direction, and the new z-axis has an angle θ between the

Z-axis (SFF). Finally, the whole BFF is rotated about the new z-axis (BFF) by χ, and the

x-axis (BFF) is moved to the new direction and the angle between the N-axis and the new

x-axis is χ. Hence, the Euler angles are {ϕ, θ, χ} and they can determine a 3D-rotation in

the space.

95



After the introduction of the Euler angles definition and the convention water molecule

BFF, we now explain how to generate the Euler angles from general Cartesian coordinates

of water molecules. Firstly, the Cartesian coordinates of atoms in the water molecule are

defined as {xO,xHL
,xHR

}.

In order to obtain the Euler angles, the rotational matrix in the principal axes is

required to derive from the Cartesian coordinates. Thus, the inertia of tensor, ISFFfor

water molecules with respect to the center of mass in the SFF should be calculated at first.

In general, the inertia of tensor for a molecule with N atoms can be calculated as follows,

ISFF = −
N∑
i=1

mi[∆ri]
2 (A.9)

where ∆ri = xi − xcom is the relative position vector for atom i which has a mass mi.

It is calculated by the substraction between the Cartesian coordinates of the atom xi and

the center of mass of the molecule xcom.

Also, it can be evaluated as a matrix form,

ISFF =


I11 I12 I13

I21 I22 I23

I31 I32 I33

 (A.10)
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the components are defined as

Ijk =
N∑
i

mi(r
2δjk − rjrk) (A.11)

where r = {r1, r2, r3} still the relative position vector, and it is a 3-dimensional vector

which consists of 3 components along different axis {r1, r2, r3} = {x, y, z}.

Then, the principal axes depend on the inertia of tensor with respect to the BFF, not

the SFF, which can be evaluated by the diagonalization of the inertia of tensor (SFF), ISFF

because of the following relationship,

ISFF = RIBFFRT (A.12)

The eigenvector of ISFF is actually the rotational matrix to transform the BFF to the

SFF, R. According to the property of the rotational matrix, all rotational matrices are

unitary, which means the transpose of R has the relationship as RT = R−1. R−1 is the

inverse of R. Also, the diagonalized ISFF can be denoted as Idiag, and has the following

form,
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Idiag =


I1 0 0

0 I2 0

0 0 I3

 (A.13)

where and the constants I1, I2, and I3 are named as the principal moments of inertia.

However, the rotational matrix R and the diagonal inertia of tensor Idiag right now,

are unsorted with respect to the conventional definition of the principal axes for water

molecules.

According to the conventional principal axes definition of water molecules, the rows of

Idiag should be sorted by the values of I1, I2, and I3, where the smallest one should be in

the first row, and then the second large one, finally the largest value should be in the third

row. Then, the corresponding rotational matrix should also be sorted by the corresponding

moments of inertia values. Thus, the sorted principal inertia of tensor is now,

Idiag =


Ia 0 0

0 Ib 0

0 0 Ic

 (A.14)

where Ia < Ib < Ic and similar sorting process for the rotational matrix, R, and generate

the sorted one, Rsorted
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Furthermore, the convention of the principal axes for water molecules defines Ia axis

as the x-axis, Ib axis as the z-axis, and Ic axis as the y-axis. So we need one more step

to rearrange the rotational matrix with respect to the BFF axes for water molecules as

follows,

Rprincipal = BFFaxisRsorted (A.15)

BFFaxis =


1 0 0

0 0 1

0 1 0

 (A.16)

Hence, the principal rotational matrix based on the convention principal axes of water

molecules is generated. Also, the principal rotational matrix should also be checked if the

principal axes after the rotational motion obey the right-hand rule. Then, the Euler angles

{ϕ, θ, χ} can be evaluated from the rotational matrix based on the following formula,
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Rprincipal =


cosχ cos θ cosϕ− sinϕ sinχ cosχ cos θ sinϕ+ cosϕ sinχ − cosχ sin θ

− sinχ cos θ cosϕ− sinϕ sinχ − sinχ cos θ sinϕ+ cosϕ sinχ sinχ sin θ

sin θ cosϕ sin θ sinϕ cos θ


(A.17)
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