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Abstract

Nitrogen-Vacancy centers negatively charged (NV−) are spin-1 objects in diamond. In the
absence of a magnetic field, two of its levels are degenerate, which is why a field is often
used to lift the degeneracy and allow easy access to each level. Following the work Alegre,
Mrózek and others [1–3], it was established that circularly polarized microwaves could
address the difference in angular momentum between each level, making the introduction
of the magnetic field unnecessary. These methods were assuming that the position of the
microwave sources and the NV− was ideal. There was then work to be done to enable
circularly polarized microwaves to work with an NV− at any position. To handle this
freedom in the NV− position, characterization methods need to be developed to measure
it and take it into account. This can be done with a custom built confocal microscope,
taking into account the orientation of a single NV−.
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Introduction

Nitrogen-Vacancy (NV) centers are Spin-1 defects in diamonds that have gained a lot of
attraction in recent research due to their long coherence times at room temperatures [4, 5],
and the fact that their state can be individually initialized and measured with visible light
and manipulated with microwaves [6, 7]. Their coherence time can reach milliseconds at
room temperatures [4, 5], while reaching seconds at low temperatures (77K) [8]. They
were demonstrated to possess high sensitivity for alternating magnetic fields on the sub
micrometer scale [5, 9–13]. Furthermore, they have been used as temperature sensors at
room temperature [14] and have been demonstrated to be sensitive to electric fields [15].
Thanks to these useful and versatile properties, numerous applications have been proposed
in the field of quantum sensing and life sciences [16].

A common feature of the NV center experiments detecting alternating magnetic fields
is looking at a subset of the spin levels while using a non-negligible constant field. As a
result, these experiments are not well suited to measure small and static fields [10]. A more
appropriate approach for small magnetic fields is to make use of two microwave sources
to generate circularly polarized excitation and take advantage of the polarization selection
rules, as previously demonstrated by Alegre, Mrózek and others [1–3]. It was demonstrated
that for a single NV center, using circularly polarized pulses, one could generate single tran-
sitions between levels that would otherwise be degenerate and indistinguishable. Previous
work used the geometry of two perpendicular wires and looked at NV centers placed above
the intersection point [1, 2] and also two parallel wires and looked at NV centers placed
on a line equidistant from each wire [3]. The last case, the most interesting one, deals
with the situation in which we have access to two independent microwave sources. In this
thesis, we explore methods to manipulate single NV centers in a much larger volume above
two parallel wires. This is accomplished by determining the optimal interaction parame-
ters between the microwave sources and the NV center of interest. Concrete techniques
for determining the optimal amplitude and phase of the microwave sources are presented.
This work enables more sensitive probes of magnetic fields and lays the ground work for
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expanding these techniques to ensemble of NV centers.

Outline of the thesis

The thesis is separated in 5 chapters.

In chapter 1, we will introduce the NV center, its spin-1 operators and the internal
transition rates that describe its optical initialization and read-out.

In chapter 2, we will describe the custom built confocal microscope that we used to
conduct the experiments. Since this optical table has been assembled by Om Patange in
the previous years [17], we will focus on detailing the maintenance of this optical table.

In chapter 3, we will describe the methods to characterize the amplitude and phase of
the microwave sources as well as present the results we obtained with the sus mentioned
ODMR setup.

In chapter 4, we will describe the current limitations of the setup such as inconsistent
electrical length and inability to turn the magnetic field off and we will offer solutions to
address each of them.

In chapter 5, we will suggest that the use of homogeneous microwave sources such as
coils can allow one to use the methods described earlier to now manipulate ensemble of
NV centers, one orientation at a time, to increase the signal read-out.

2



Chapter 1

Physics of the Nitrogen-Vacancy
Center

1.1 Geometry of the Nitrogen-Vacancy center

An ideal diamond lattice consists of a collection of Carbons, each connected to four other
Carbons, in a tetrahedral organization. Its unit cell is shown in figure 1.1a. Impurities can
find themselves at these Carbon sites, changing the properties of the diamond. One such
impurity is the Nitrogen-Vacancy center, a defect where one Carbon atom is replaced by
a Nitrogen atom, which has a vacant neighbour, with no Carbon[18], as depicted in figure
1.1b. This impurity comes in two flavours: NV− and NV0. The NV− center is the polarized
version of the electrically neutral NV0. With 5 electrons coming from the Nitrogen (2) and
the nearby Carbons (3), it acquires an extra electron from somewhere else in the matrix or
from outside the matrix [19–21]. The defect then has a total of 6 electrons (even), whose
organization generates the spin-1 object [19] [22]. We will consider a model where the
center of the defect is the vacancy, surrounded by 3 atoms of Carbon and one of Nitrogen.
This defect then displays a C3v symmetry, with 3 axes of reflection and 3 rotations of 120
deg around the Nitrogen-Vacancy axis. Since this is the main axis, the one that is defining
the symmetry, it is called the Principal Axis System (PAS). The other argument defending
the name is that the organization of the orbitals generated by the 6 electrons shields the
quantum object against magnetic fields orthogonal to the PAS. Magnetic fields are then
mostly affecting the NV center along that axis, the Principal Axis System.

3



(a) Unit cell of the diamond (b) Nitrogen (red) and Vacancy
(white) center, surrounded by three
atoms of Carbon (gray)

Figure 1.1: Diamond structure and single NV center

1.2 Spin operators

This section describes how the different transitions, between the optically ground state
and the optically excited state, allow for preparation and measurement of the spin of the
object.

The structure of the NV center is described by the interaction of two indistinguishable
electrons, in the absence of a magnetic field. This σ ·σ then displays eigenvectors split into
a singlet and triplet. In the up-down picture, the eigenvectors are then: |↑↑〉, |↑↓〉+|↓↑〉√

2
and

|↓↓〉 for the triplet and |↑↓〉−|↓↑〉√
2

for the singlet. In this basis, the σ1
x + σ2

x operator maps
eigenvectors of the triplet to the triplet and leaves the singlet untouched. Since the triplet
remains separate from the singlet, we focus our attention to it, concentrating our efforts
on the spin-1 obejct.

Before describing the dynamics within the spin-1 of the NV centers, we need to establish
some convention for its operators. We define the principal axis as the ẑ. This is the direction
along which the NV center exhibits a Zero Field Splitting (ZFS) with value ∆, along the
Nitrogen-Vacancy bond, along which the angular momentum is discretized.

Hence, the three basis vectors we use will be the eigenvectors of the angular momentum

4



operator Sz:

|ms = +1〉 =

1
0
0

; |ms = 0〉 =

0
1
0

; |ms = −1〉 =

0
0
1


As we focus our attention on the NV center as a spin 1 object, we will need 9 linearly

independent spin operators to fully describe the dynamics of the system.

After the angular momentum operator Sz, we will need 8 other spin operators.

Let’s consider the S2
z operator, describing the zero field splitting. In the absence of a

magnetic field, the degeneracy of the triplet states can be lifted by the geometry of the
object. In the case of spherical orbitals, all three states of the triplet are degenerate. In the
case of an deformation of the orbitals along the ẑ axis, there will be a Zero Field Splitting
between the states |ms = 0〉 and the others while a deformation of the orbitals along x̂ or
ŷ will induce a splitting between the |±1〉 states. In the case of the NV center, with a C3v

symmetry along the PAS, the ZFS will be along the ẑ direction, separating the state with
angular momentum 0 from the two others. It is defined as the square of the Sz operator.
In matrix form:

Sz =

1 0 0
0 0 0
0 0 −1

; S2
z =

1 0 0
0 0 0
0 0 1


The next pair are the Sx and Sy operators, which are derived from the usual commuta-

tive properties of angular momentum [23] while S ′x and S ′y are operators that emerge when
Sy and Sx are brought in the rotating frame of S2

z . Since the angular momentum difference
between each pair of level is of 1, we will refer to them as Single Quantum Transitions
(SQTs). We will cover that frame transformation in a further section (see section 3.1.1).

Sx =

 0 1/
√

2 0

1/
√

2 0 1/
√

2

0 1/
√

2 0

 ;S ′x = i[S2
z , Sy] =

 0 1/
√

2 0

1/
√

2 0 −1/
√

2

0 −1/
√

2 0



Sy =

 0 −i/
√

2 0

i/
√

2 −i/
√

2

0 i/
√

2 0

 ;S ′y = i[S2
z , Sx] =

 0 i/
√

2 0

−i/
√

2 0 −i/
√

2

0 i/
√

2 0
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The last pair of spin operators are the Double Quantum Transitions (DQTs), in and
out of phase:

S++
x =

0 0 1
0 0 0
1 0 0

; S++
y =

0 0 −i
0 0 0
i 0 0

.

The last operator is trivially the identity:

13 =

1 0 0
0 1 0
0 0 1

.

1.3 Electronic and optical structure

In this section, we will describe the electronic structure of the NV center and cover the
transitions that happen under the effect of laser and microwave excitation.

Previous studies have shown that the ground state of the NV center is a triplet [7, 19,
24]. That ground state can be excited by green light to a meta stable state that rapidly
decays to an excited triplet. Since the levels in the meta stable state are only relevant
to the excitation of the ground state, we will neglect it for this section. Similarly, a dark
transition that happen between the excited state and the ground state occurs through a
pair of singlet states but since we use the simplified case where the excited singlet only
decays to the ground singlet, we will treat them as a single level (simplified system displayed
in figure 1.2. This section and its notation are following previous work from I. Hincks [25],
to which we will append a section on microwave dynamics.

Each level of the triplets will be labelled by its angular momentum, +1, 0 or -1. The
triplets from the first set, with lower energy, are in the ground state while the others are in
the excited state. It is worth noting that the energy difference between each of these levels
is dependent on the strains: we are working at room temperature, such that we work with
high strains [19]. We will label them |m,ms〉, m for the excitation of the triplets (g for
ground and e for excited) and ms for their angular momentum (values from {−1, 0, 1}).
The two triplets are separated by 1.945 eV. The singlet is energetically located between
the two sets of triplets and will be labelled |s〉. See fig. 1.2 for a diagram.

Since these groups of levels are disjoint as far as microwave dynamics go, we will consider
the operators to be part of different Hamiltonians in a larger Hilbert space:

HNV = Hg ⊕He ⊕Hs
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{
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(a) Full energy diagram of the NV cen-
ter.

ms=0

ms=-1
ms=+1

ms=0

ms=-1
ms=+1{

{TE

TG

S

(b) Simplified 7 levels model of the en-
ergy diagram, used for the simulations.
Transition rates defined in text.

Figure 1.2: Full and simplified energy diagrams of the NV center.
TMS: Triplet Meta-Stable level. TE: Triplet Excited level. TG: Triplet Ground level. SE:

Singlet Excited level. SG: Singlet Ground level. S: Singlet level. ms = i: level with
angular momentum i. Energy difference between ms = −1 and ms = +1 is 2γeBz with γe

is the gyromagnetic ratio and Bz is the magnetic field along the PAS

Where HNV is the total Hamiltonian, with dimension 7, Hg is limited to the ground states
and has dimension 3, He is limited to the excited states and has dimension 3 and Hs is
limited to the singlet state, with dimension 1.

Neglecting the nearby Nitrogen and any Carbon isotope interactions, the internal elec-
tronic Hamiltonian H0 can then be expressed as

H0 = ∆gS
2
z ⊕∆eS

2
z ⊕ 01

Where ∆g ≈ 2.87 GHz is the zero field splitting of the ground state, ∆e ≈ 1.4 GHz is
the zero field splitting of the excited state [24] and 01 is the null matrix of dimension 1.

To describe the dynamics within the center, we will use the following basis vectors,
eigenvectors of Sz in the ground and the excited state and eigenvector of the singlet state:
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|g,−1〉 =



1
0
0
0
0
0
0


; |g, 0〉 =



0
1
0
0
0
0
0


; |g, 1〉 =



0
0
1
0
0
0
0


;

|e,−1〉 =



0
0
0
1
0
0
0


; |e, 0〉 =



0
0
0
0
1
0
0


; |e, 1〉 =



0
0
0
0
0
1
0


;

|s〉 =



0
0
0
0
0
0
1


Beyond the Zero Field Splittings, there are few transitions that are allowed in this

system, and they will be described by dissipators.

First off, the green laser excites the triplet from the ground state to a meta stable state,
higher in energy than the excited state, which then rapidly decays to the excited state. The
rate at which this happens depends on the laser power. The excited state decays to the
ground state by emitting a red photon. This will prove invaluable for measuring the state
of the NV center, which we describe later. Using Lindblad operators, the laser transitions
can be described as

L1 =
√
kγeg(|e,−1〉 〈g,−1|+ |e, 0〉 〈g, 0|+ |e, 1〉 〈g, 1|) (1.1)

L2 =
√
γeg(|g,−1〉 〈e,−1|+ |g, 0〉 〈e, 0|+ |g, 1〉 〈e, 1|) (1.2)

Where γeg = 77 MHz is the rate of the excited state [19] and k ∈ [0, 1] is a scaling factor
associated with the power of the laser: k = 0 when the laser is off and k = 1 when the
laser saturates the NV.
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The Inter-Sysyem Crossing (ISC) transitions, normally forbidden because they do not
conserve angular momentum between the triplet and the singlet state, are allowed in our
case because of extra strains. These transitions link the |g,−1〉 and |e, 1〉 levels to |s〉, and
|s〉 to |g, 0〉:

L3 =
√
γes/2 |s〉 〈e,+1| (1.3)

L4 =
√
γes/2 |s〉 〈e,−1| (1.4)

L5 =
√
γsg |g, 0〉 〈s| (1.5)

The rate of decay to the singlet state is γes = 30 MHz [19]. Comparing that rate to γe shows
that this path is taken about a third of the time. Since this transition only emits photons
in the Infra-Red range, our counter (in the visible range) will not record such transition
and on average, will record about 70% of the maximal amount of photons when the NV
center is in the |e,+1〉 or |e,−1〉 state as opposed to the |e, 0〉 state. Hence, by applying
green, off resonance laser, which excites the stable ground state to its corresponding excited
state, we can distinguish between states of the NV center by mean of photon collection.
The allowed transitions from the singlet are still under study [19, 26, 27], so for this work,
we will consider that the decay happens from the singlet state to the |g, 0〉 state only. The
decay rate being γsg = 3.3 MHz, we note that this is the slowest decay, the bottleneck of
these optical transitions, which is the timescale over which an NV center in the ms = ±1
state is darker than an NV center in the ms = 0 state, since this pathway does not emit
in the visible range. In consequence, after a time t = 5 · γes+γe

γes
· 1/γsg ≈ 5 µs, under laser

excitation, any NV center can be expected to be polarized to the |g, 0〉 state, regardless of
its initial state.

Finally, some spin non-conserving transitions have been observed from the excited to
the ground triplet states [19]:

L6 =
√
γ01/4 |g, 0〉 〈e,+1| (1.6)

L7 =
√
γ01/4 |g, 0〉 〈e,−1| (1.7)

L8 =
√
γ01/4 |g,+1〉 〈e, 0| (1.8)

L9 =
√
γ01/4 |g,−1〉 〈e, 0| (1.9)

These transitions are slow (γ01 = 1.5 MHz) and as such, do not contribute extensively
to the dynamics of the NV center
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For completeness, let’s mention that the singlet is treated here, for simplicity, like a
single level whereas it was predicted and measured to display a pair of ground and excited
states, joined by and infrared transition at 1042 nm whereas the transition from the excited
triplet state to the excited singlet state is non radiative, similar to the transition from the
singlet ground state to the triplet ground state, using phononic transitions [26].

1.4 Initialization and measurement

All these Lindblad operators can be used in a Lindblad Master Equation to follow the
evolution of the density state of an NV center. Using ρ(t) to describe the density matrix
of the NV center:

dρ(t)

dt
= −i[H, ρ(t)] +

9∑
i=1

(Liρ(t)L†i − (ρ(t)L†i Li + L†i Liρ(t))/2) (1.10)

In the absence of time dependent Hamiltonian, we will describe the evolution of the 7-levels
model with a rate equation picture.

Let’s define the vector of observables:

pg0(t) = Tr[|g, 0〉 〈g, 0| ρ(t)] (1.11)

pg+(t) = Tr[|g,+1〉 〈g,+1| ρ(t)] (1.12)

pg−(t) = Tr[|g,−1〉 〈g,−1| ρ(t)] (1.13)

pe0(t) = Tr[|e, 0〉 〈e, 0| ρ(t)] (1.14)

pe+(t) = Tr[|e,+1〉 〈e,+1| ρ(t)] (1.15)

pe−(t) = Tr[|e,−1〉 〈e,−1| ρ(t)] (1.16)

ps(t) = Tr[|s〉 〈s| ρ(t)] (1.17)

p(t) = {pg0(t), pg+(t), pg−(t), pe0(t), pe+(t), pe−(t), ps(t)} (1.18)

Using the Master Equation 1.10 to describe the time evolution of each level (eqn. 1.11 -
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1.17), we get a collection of expressions of the following form:

dpg0(t)

dt
= Tr[|g, 0〉 〈g, 0| ρ̇(t)]

= Tr

[
|g, 0〉 〈g, 0| (−i[H, ρ(t)] +

9∑
i=1

(Liρ(t)L†i − (ρ(t)L†i Li + L†i Liρ(t))/2))

]
= ...

= −kγegpg0(t) + γegpe0(t) +
γ01

4
(pe+(t) + pe−(t)) + γsgps(t)

Solving the Master Equation for each level probability, we find that the relationship be-
tween ṗ(t) and p(t) can be summarized, linearly, under the matrix form ṗ(t) = R ·p(t) with
R:

R =



−kγeg 0 0 γeg
γ01

4
γ01

4
γsg

0 −kγeg 0 γ01

4
γeg 0 0

0 0 −kγeg γ01

4
0 γeg 0

kγeg 0 0 −γ01

2
− γeg 0 0 0

0 kγeg 0 0 −γ01

4
− γeg − γes

2
0 0

0 0 kγeg 0 0 −γ01

4
− γeg − γes

2
0

0 0 0 0 γes
2

γes
2

−γsg


This is the rate equation.

Note that each column of the rate equation sums to zero to conserve probabilities
and that we have no contribution from the Hamiltonian in this rate equation, because
each projector is an eigenvector of the Hamiltonian. This argument will change when
the Hamiltonian gets some off-axis magnetic field of magnitude comparable to the ZFS or
off-axis microwave excitation. We will cover this case in the next section.

1.4.1 Time dependent evolution

An interesting case we will simulate here is to introduce a control Hamiltonian in the
previously time independent Hamiltonian. Assuming a microwave control in resonance with
the ground state transition and in the absence of other fields, the Hamiltonian becomes

HNV = (∆gS
2
z + ΩSx cos(ωt))⊕∆eS

2
z ⊕ 01 (1.19)

Where Ω is the Rabi drive.
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In conjunction with the Lindblad dissipators defined previously, we then have the op-
erators necessary to describe the dynamics during a Continuous Wave experiment, during
which we are interested in the steady state of the system under the application of both laser
and microwaves. At this point, for visibility in the results, we will consider the ms = +1
and ms = −1 together rather than separate since they undergo very similar transitions
and keeping them separate after the simulation will not bring any more insight.

pg1(t) = (pg+(t) + pg−(t))/2 (1.20)

pe1(t) = (pe+(t) + pe−(t))/2 (1.21)

To do so, we will use a Mathematica package developed by C. J. Woods and others to
simulate quantum states evolution[28]. We will compare what happens over long periods
of time (up to 5µs) whether the NV center starts in a state of |g, 0〉 〈g, 0| or (|g,−〉 〈g,−|+
|g,+〉 〈g,+|)/2 and whether the microwaves are on or far off resonance; if they are effective
(present) or ineffective (absent). The results are displayed in figure 1.3.

In the two first cases (cases (a) and (b)), when the microwaves are on resonance and
the transitions are a mix of the Lindblad dissipator and Sx operator, the excited state of
the initial state is quick to get populated (≈ 40−50 ns) but the situation becomes different
based on the initial state. In the first case (case (a)), as pg0 gets depopulated, the pg1 level
gets populated quickly by the microwaves. The singlet state then eventually gets populated.
In the second case (case (b)), we have the opportunity to see each transition happen one
after the other, as one level gets populated more and more, until its emptying process
takes over. The first transition is quickly triggered by the laser excitation, populating pe1.
This one then decays to ps before the microwaves have a real opportunity to populate pg0,
simply because of the smaller value chosen for Ω; Ω = 20 MHz in this simulation, close to
what we measured for our system. Finally, we notice that we reach an equilibrium state
after 5µs, which is identical in both cases, supporting the claim that laser excitation for
few µs brings the NV center to a steady state.

In the next two cases (cases (c) and (d)), we simulate the static case, which is to say that
we only have the internal Hamiltonian and no contribution from a control Hamiltonian,
leaving the meaningful transitions to come from the Lindblad dissipators and be time-
independent. When the initial state is pg0 (case (c)), the only meaningful transition is
the laser excitation (with rate k γeg = 23.1 MHz) and laser de excitation (with rate
γeg = 77 MHz), which reach quasi equilibrium within 50 ns, before the spin non-conserving
transitions come have a little effect with γ01 = 1.5 MHz). When the initial state is pg1 (case
(d)), we see how the ground state gets excited (pe1 increasing), how this excited population
gets transferred to the singlet state (dashed peak at 300-400 ns) and how this singlet state
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Figure 1.3: NV center dynamics with laser and microwaves on or off, starting in |g, 0〉 〈g, 0|
or (|g,−〉 〈g,−|+ |g,+〉 〈g,+|)/2.
Values used here are: ω = ∆g = 2.87 GHz, ∆e = 1.4 GHz, Ω = 20 MHz, k = 0.3, γeg = 77

MHz, γes = 30 MHz, γsg = 3.3 MHz, γ01 = 1.5 MHz. Plots (A) and (C) show the
evolution of |0〉 under the presence or the absence of the microwaves while (B) and (D)

show the same evolution, but starting in |−1〉+|+1〉√
2

. (A) and (B) reach the same final state

while (C) and (D) also reach the same final state.
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then feeds the ground state with null angular momentum, which then undergoes the same
process as in case (c) and starts feeding the pe0 state. A quick inspection confirms that
the final state of (d) is again identical to the final state of (c), as we can expect from NVs
under laser excitation.

As discussed above, the steady state of an NV center will be identical regardless of the
initial state, which means that any discrimination between ms = 0 and ms = ±1 must be
done faster than a few microseconds. Ian Hincks covered the statistical aspect of the NV
center state measurement in his thesis, which we will reproduce here, with permission of
the author.

To understand measurements, we first observe that ms = 1 is, on average, dimmer
than ms = 0, since |e,+1〉 and |e,−1〉 are likely to decay, through phononic and infrared
transitions, to |g0〉 through the singlet. We then remember that after some time, the NV
center is polarized to |g, 0〉 and will emit photons with a constant rate, independent of
its initial state (1.5 (b)). By consequence, counting photons after the NV is polarized
will yield identical results regardless of its initial state. We thus want to count photons
from the moment the laser is turned on to an optimal time topt. We then need to know
how many photons to expect from the bright state and the dark state. With these two
values measured precisely, a reliable collection of photons will let us measure the state
of the NV center. We will label the average per-shot reference values ᾱ(∆t) and β̄(∆t)
for the number of photon collected when the NV center is in the bright state and in the
dark state, respectively, when the counter is open for time ∆t from the moment the laser
is turned on. For a general experiment, we will open the counter three times, measuring
three times, as depicted in figure 1.4. First we polarize the NV center with the application
of the laser for a few µs. We wait a µs to let the NV center relax and the singlet state to
depopulate. We then reopen the laser with the counter to take a reference of the bright
state. The counter is open for some time, ∆t, and the laser is left open for longer, few µs
once more. Following this, we apply an adiabatic pulse to invert the population from the
ms = 0 to the ms = 1 state and re-apply the laser and the counter to take a dark reference.
The laser being applied for a few µs, the NV center is re-initialized, ready to start the
experiment. We then apply the pulse sequence required by the experiment and open the
counter and the laser one last time, to take a measure of the NV center state. Defining Te
to be the length of time, for a single experiment, where the counter is not open (the sum
of the initialization, wait times, pulses, etc.) and N to be the number of repetitions, we
can define the total duration of the experiment as T = N(Te + 3∆t).

Redefining p = gg0(t) to be the probability that the density state is found to be in the
bright state, and assuming that a single experiment happens much faster than the time it
takes an NV center to drift under the microscope, we can simplify the photons emitted in
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Figure 1.4: Outline of a single shot of an experiment.
During the Initialization, a laser pulse polarizes the NV center to |0〉. During the Bright
State Measurement, the counter opens to measure the photons emitted by the NV center
in the |0〉 state. The Dark State Measurement sees an adiabatic pulse to invert popula-
tions followed by the counter opening again to measure the photons emitted by the NV
center in the |−1〉 state. The Experiment is kept general for now. During the Final State
Measurement, the counter opens one last time to measure the photons emitted by the NV
center in the state of interest.
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the dark and bright states ᾱ(∆t) = α and β̄(∆t) = β and we will follow I. Hincks steps to
approximate that the variance on p can be expressed as

∆p2 =
p(p+ 1)Nα + (p− 2)(p− 1)Nβ

(Nα−Nβ)2
(1.22)

It was shown that we get the worst case when p = 1 and replacing values for N , we get
the Cramer-Rao Bound:

∆p
√
T =

√
2(Te + 3∆t)α(∆t)

α(∆t)− β(∆t)
(1.23)

Equipped with this expression to find the minimal variance of p for a given experiment,
we sweep ∆t until we find the minimal value of ∆p. As shown in figure 1.5 (c), ∆p is
more sensitive to under estimating ∆t than it is to over estimate it. This is important
for experiments with different wait times Te where the shorter experiments would want ∆t
that are too short for the longer experiments.

1.5 Rotating Wave Approximation for NV centers

In order to run simulations with frequencies on the order of a small magnetic field (about
50-100 MHz) and Rabi oscillations (about 5-20 MHz) and to avoid dealing with the ZFS
term, we use a frame transformation to boost into a frame rotating by ∆ around S2

z and
then reject time dependent terms.

Neglecting nearby Carbon isotopes for simplicity, the Hamiltonian will be reduced to
H = Hint + H ~B + Hctrl(t) where Hint is the internal Hamiltonian, intrinsic, H ~B is the
effect of an applied magnetic field, time independent, due, in our case, to a disk magnet
positioned nearby, and Hctrl(t) is the control Hamiltonian due, in our case, to a nearby
wire carrying a current and producing a time dependent magnetic field. Specifically, Hint =
∆S2

z + AN ~S ⊗ ~I, where ∆S2
z is the Zero Field Splitting, at ∆ ≈ 2.87 GHz and AN ~S ⊗ ~I

is the hyperfine interaction with the nearby Nitrogen nuclear spin. H ~B = γe ~B · ~S where

γe = 2.8 MHz/G is the gyromagnetic ratio and ~B is the magnetic field at the NV center

site. Hctrl(t) = cos(ωt+ φ)~Ω · ~S, where ω is the carrier frequency, φ is the phase shift

and ~Ω is the Rabi strength of the microwave field at the NV center site. Each of these
three parameters (ω, ~Ω and φ) are time dependent and are controlled with an Arbitrary
Waveform Generator and mixed with a local oscillator.

To simplify the description of this Hamiltonian under the Rotating Frame Approxima-
tion (RWA), we will split it in two parts. The first part is going to collect the terms that
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Figure 1.5: Simulated example of optimizing measurement time for a low visibility exper-
iment.
The same analysis holds for high visibility experiments (a) The population of the optical
excited state is plotted for two initial states, (b) which results in distinguishable numbers
of detected photons given that we average enough repetitions. They are labeled α(∆t)
and β(∆t) in the main body and asymptote to the same slope since they both end up in
the same steady state of the master equation. (c) These curves can be used to estimate
the standard deviation of p normalized to square-root run time for various experiment
lengths. For example, given

√
CRB/MHz = 400/

√
MHz, a total run time of 100s =

108µs will approximately reduce the uncertainty of ∆p to 0.04. (d) As a function of Te,
optimal measurement window length ∆toptis shown (left axis) along with the corresponding√
CRB/MHz values for both the optimal measurement time, and a fixed measurement

time of 0.65 µs (right axis). It is seen that in this regime the payoff of using the optimal
measurement time is rather slim. [figure and caption from Ian Hincks[25]]
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commute with the frame of choice: S2
z while the other is going to collect the terms that

don’t.

H =∆S2
z + AN,‖Sz ⊗ Iz + γeBzSz + Ωz cos(ωt+ φ)Sz (1.24)

+ AN,⊥(Sx ⊗ Ix + Sy ⊗ Iy) + γe(BxSx +BySy) + Ωx cos(ωt+ φ)Sx (1.25)

Here, we chose ~Ω to be expressed in the xz plane for convenience. As a matter of fact,
since the only restriction imposed by the system is to align the PAS with ẑ, we are free to
define the direction of the microwave oscillations as the x̂ direction.

To express this Hamiltonian in the rotating frame of the ZFS, we will apply the usual
frame transformation, for a given operator or Hamiltonian, following from the Schrödinger
equation:

H̃ = eiH0t(H −H0)e−iH0t

Where H0 = ωS2
z is the rotating frame of interest. Since Sx and Sy do not commute

with S2
z like they would with Sz, we will take a quick look at the rotating Hamiltonian.

The first part of the Hamiltonian (1.24) will remain untouched under the frame trans-
formation since each term commutes with S2

z .

For the second part of the Hamiltonian (1.25), we will first observe that Sx and Sy
transform like:

S̃x = eiωS
2
z t · Sx · e−iωS

2
z t = cos(ωt)Sx + sin(ωt)S ′y (1.26)

S̃y = eiωS
2
z t · Sy · e−iωS

2
z t = cos(ωt)Sy + sin(ωt)S ′x (1.27)

Using trigonometric identities to expand the modulation of the control part of the Hamil-
tonian and setting the modulation frequency to the one of the rotation, we get

cos(ωt+ φ) = cos(ωt) cos(φ)− sin(ωt) sin(φ) (1.28)
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By substituting 1.27 and 1.28 in the non commuting part of H (1.25), we get :

H̃⊥ =AN,⊥((cos(ωt)Sx + sin(ωt)S ′y)⊗ Ix + (cos(ωt)Sy + sin(ωt)S ′x)⊗ Iy) (1.29)

+ γe(Bx(cos(ωt)Sx + sin(ωt)S ′y) +By(cos(ωt)Sy + sin(ωt)S ′x))

+ Ωx(cos(ωt) cos(φ)− sin(ωt) sin(φ))(cos(ωt)Sx + sin(ωt)S ′y)

= cos(ωt)(Ωz cos(φ)Sz + AN,⊥(Sx ⊗ Ix + Sy ⊗ Iy) + γe(BxSx +BySy)) (1.30)

+ sin(ωt)(Ωz sin(φ)Sz + AN,⊥(S ′y ⊗ Ix + S ′x ⊗ Iy) + γe(BxS
′
y +ByS

′
x))

+
1 + cos(2ωt)

2
Ωx cos(φ)Sx −

1− cos(2ωt)

2
Ωx sin(φ)S ′y

+
sin(2ωt)

2
Ωx(cos(φ)S ′y − sin(φ)Sx)

Using the Rotating Wave Approximation, we will only keep the time independent terms,
which corresponds to integrating the Hamiltonian over a period [0, 2π/ω]. With the re-
introduction of the commuting terms, we get

H̃ ≈ AN,‖Sz ⊗ Iz + γeBzSz +
Ωx

2
(cos(φ)Sx − sin(φ)S ′y) (1.31)

Here, we further assume that the perpendicular magnetic fields are small compared to
the axial field. For completeness, the same procedure can be followed to express the time
independent part of a control in ŷ in the rotating frame.

Ω cos(ωt+ φ)S̃y ≈
Ω

2
(cos(φ)Sy − sin(φ)S ′x) (1.32)

1.5.1 Transverse Magnetic Field

We mentioned in the last section that the approximation was valid if the transverse mag-
netic field was small enough. In this section, we will explore the effect of a large transverse
field by using higher orders of the Magnus expansion, using Floquets coefficients to speed
up computation times. In fact, we will consider Rabi and Ramsey experiments under dif-
ferent approximations; by keeping the zeroth term of the Magnus expansion, keeping it and
one additional term, keeping it and two additional terms or simulating the system without
any approximation and small time intervals.

In the lab frame, we can neglect the hyperfine coupling with the nearby Nitrogen and
the dipolar coupling with a nearby Carbon if the coupling to the microwaves is larger than
each of them. The Hamiltonian will then be:

H = ∆S2
z + ωxSx + ωzSzΩ cos(ωt+ φ)Sx (1.33)
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where ωx = γ ~Bx is the coupling to the magnetic field in the transverse plane and Bx is the
magnetic field.

Using ω = ∆ − ωz to perform a single transition, preparing the Hamiltonian for a
Ramsey experience and using 1.30 once more, we get :

H̃ = cos(ωt)ωxSx + sin(ωt)ωxS
′
y (1.34)

+ ωz(S
2
z + Sz)

+
1 + cos(2ωt)

2
Ωx cos(φ)Sx

− 1− cos(2ωt)

2
Ωx sin(φ)S ′y

+
sin(2ωt)

2
Ωx(cos(φ)S ′y − sin(φ)Sx)

which, in its exponential form, looks like:

H̃ = e−i2ωtH−2 + e−iωtH−1 +H0 + eiωtH1 + ei2ωtH2. (1.35)

Where Hn is associated with the argument of the exponential einωt:

H−2 =
Ωx

4
(cos(φ)− sin(φ))(Sx + iS ′y) (1.36)

H−1 =
ωx
2

(Sx + iS ′y) (1.37)

H0 =
Ωx

2
(cos(φ)Sx − sin(φ)S ′y) + ωz(S

2
z + Sz) (1.38)

H1 =
ωx
2

(Sx − iS ′y) (1.39)

H2 =
Ωx

4
(cos(φ) + i sin(φ))(Sx − iS ′y) (1.40)

where we recognize H0 to also be the time independent part of the rotating Hamiltonian,
the first term of the Magnus expansion.

This form of the Hamiltonian is all we need to use the Floquet coefficients approach
used by Leskes et al. [29] to avoid the cumbersome and recursive formulas of the Magnus
expansion.

Reproducing their results here, we have:
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H0 =H0 (1.41)

H1 =− 1

2

∑
n6=0

[H−n, Hn]

nω
+
∑
n6=0

[H0, Hn]

nω
(1.42)

H2 =
1

3

∑
n,n′ 6=0,n 6=n′

[Hn′ , [Hn−n′ , H−n]]

n′nω2
+

1

2

∑
n6=0

[Hn, [H0, H−n]]

(nω)2
(1.43)

− 1

2

∑
n6=0

[H0, [H0, Hn]]

(nω)2
+

∑
n′ 6=0,n6=0

[Hn′ , [H−n′ , Hn]]

nn′ω2

+
1

2

∑
n 6=0,n′ 6=0

[Hn′ , [Hn, H0]]

n′nω2

H3 = ...

Using these simpler formulas, we can simulate Rabi and Ramsey experiments with
higher orders of the Magnus expansion. We will also pick values of the transverse field that
are reasonable with our experience. The local magnetic field at the NV center is supplied
by a bar magnet that is moved around and fitted to a model for a dipole magnet, which
is used to help us predict the field that can be achieved for each NV center orientation
given the limited volume the bar magnet can be placed in. In some cases, since the sample
stage cannot move wider than a volume of 2.54 mm of side and the magnet cannot be
placed over the sample holder itself, there are many locations (and field values) that are
not accessible, meaning that it is not guaranteed that a field can be uniquely aligned with
a given NV center orientation. This is why we look into the effect of the transverse field
for at values.

In general, not all orientations of NV centers will be nicely placed for the magnet to
produce a clean field along the PAS and we can pick the orientation that gets the best field
for our experiments but in this case, since we want each microwave source to be coupled
with an NV center that can be aligned with the field, we cannot choose any NV center, so
we need to see how much a transverse magnetic field affects the results.
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Chapter 2

Confocal Microscopy

To observe NV centers, we used a custom built confocal microscope. This custom built
system was first assembled by Om Patange, who graduated in 2013. Between that time
and the moment I joined the group, this setup had changed from a optical fiber detector
to a free space detector and wasn’t used for experiments. I thus took possession of this
system and brought it back to full operation. This chapter will cover the adjustments
I made on the setup, from learning how to use it to validate its performances. This
section also aims to be a helpful tool for anyone that wants to learn about the operation of
their confocal microscope and maintain it rather than building one from scratch. For this
purpose, this chapter will be divided in several sections corresponding to different parts of
the microscope. We will cover: the laser source, the switching arm, the mode shaping arm,
the scanning optics, and the detector.

Label Component Manufacturer Part Number
1 Laser head Coherent Inc. Sapphire 532-100 CW
2 Half Wave Plate Thorlabs Inc. WPMH05M-532
3 Blocker Thorlabs Inc. LB1
4 Polarising Beam Newport Corp. 05BC16PC.3 (PBS),

Splitter 9411 (mount)
5, f1 Lens (f=175.0mm) Thorlabs Inc. LA1229-A

7 Acousto Optic Isomet Corp., 1250C-848 (AOM),
Modulator Newport Corp. 9071-M (mount)

7, f2 Lens (f=1250.0mm) Thorlabs Inc. LA1433-A
8 Fiber coupler Thorlabs Inc. F240FC-A 543nm

22



Label Component Manufacturer Part Number
9 Single Mode Fiber Thorlabs Inc. P1-630-FC-2

10, f3 Lens (f=50.0mm) Thorlabs Inc. LA1131-A
11, f4 Lens (f=125.0mm) Thorlabs Inc. LA1986-A

12 Dichroic mirror Semrock Inc., LPD01-532RS-25 (dichroic),
Thorlabs Inc. KM100T (mount)

13 Galvanometer mirrors Cambridge 6210HM40 (scanner),
Technology 6010-29-120 (cables),

67321H-1 (driver),
6102105R20 (mirror mount),
6M2005S20F025S1 (mirrors)

14, f5 Lens (f=150.0mm) Thorlabs Inc. AC254-150-A
15, f6 Lens (f=200.0mm) Thorlabs Inc. AC254-200-A

16 Microscope objective Nikon CFI Apochromat TIRF 60XC Oil
17, f7 Lens (f=100.0mm) Thorlabs Inc. AC254-100-A

18 Pinhole Thorlabs Inc. P5S
20 Optical table Technical 784-436-02R (table),

19, f8 Lens (f=50.0mm) Thorlabs Inc. AC254-050-A
Manufacturing 12-41H-84 (legs)
Corporation

20 Single Photon Excelitas SPCM-AQRH-13
Counting Module Technologies Crop. CDX

Table 2.1: List of the components of the custom built confocal microscope. Labels of this
table correspond to those of figure 2.1

2.1 Laser Source

This piece of equipment generates a 532 nm green Gaussian collimated beam to excite NV
centers.

23



1 2
3

4

5, f1 7, f2

8

9 10, f3

11, f4

12

13 14, f5 15, f6

16

17, f7

18
19, f8

6

20

Figure 2.1: Diagram of the experimental setup. Part numbers correspond to the list in
table 2

2.1.1 Description

As detailed in the previous chapter, the ground state of the NV center is 1.945 eV below
its excited state (637 nm, red light) and can be excited via a meta stable state with green
laser excitation, in a process similar to Raman scattering [30]. In consequence, it would be
possible to excite the ground state directly to the excited state, but since it would be harder
to discriminate photons coming from the excitation source or from NV centers themselves
if they were of the same color, we instead excited NV centers with off-resonance, green,
light.

The first part of the microscope is then a laser source that can excite NV centers with
an off-resonance green laser, producing a Gaussian beam that we control and guide through
the microscope with the switching arm, mode shaping arm and scanning optics.

In our microscope, we use a 532 nm (green) laser from Coherent Inc.; a Continuous
Wave Sapphire laser with a nominal maximal power of 100 mW, providing a monochromatic
source, with a laser beam collimated and stable in direction and power.
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Figure 2.2: Diagram of the laser head in its enclosing, with mirrors to guide the beam
outside

2.1.2 Maintenance

When I was taking ownership of the optical equipment, the laser head was outputting a
maximum of 55 mW, much below the nominal power of 100 mW. Since there isn’t anything
to be done about it in the lab, I ordered another identical laser head 1.

There are few things to consider when we want to confirm that this component is
working properly. We will cover how to evaluate the quality of the shape of the beam and
measure its power stability and mention other parameters to worry about. We will begin
with the shape of its cross section, which should be Gaussian, i.e. it should follow a two
dimensional Gaussian distribution. For our application, the beam quality didn’t need to
be perfect and since we took more care in other sections of the experimental setup than
with measuring and improving the quality of the beam, this measurement was simplified.
However, should one decide to properly measure the quality of the beam, ISO has published
standards for the calibration of a Gaussian beam [31]. See appendix A.

For the sake of simplicity we used a Charge-Couple Device (CCD) camera and a beam
profiler, paired with the Thorlab software “Beam 7.0”, to give us both a correlation between
the current beam shape and Gaussian distribution along two axes and a measure of the
ellipticity (flattening) of the beam. The correlation is computed using a line that crosses the
brightest point of the beam; it uses a least square fit method to fit a Gaussian distribution
to the data. This is done in x and y, given by the orientation of the detector. The ellipticity

1This model of laser is mounted on a heat sink, a block of metal with protruding guiding pins, four little
buttons to guide the sides of the laser head, two per side. Using these guiding pins as a precise guide to
put the new laser head on the same place that the previous was, we secured it down. This proved efficient
to ensure that the new beam path overlapped the old beam path, requiring minimal adjustment to work
efficiently. This is a result of the great care taken by the people setting up the optical table.
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is the relative difference between the major and minor axis: ellipticity : e = a−b
a

with a the
length of the major axis and b the length of the minor axis. For a ≈ b, for a shape closer to
a circle, the ellipticity approaches 0 and when b is close to 0, the ellipticity reaches 1. Note
that a will never reach 0 first: by definition it is the longer axis. Repeated measurements
of the ellipcity yielded e = 0.1.

As per manufacturer’s specifications, the laser head should be allowed to warm up for
5 minutes before operation to maximize stability. If given that timeit is expected to have a
pointing stability of less than 30 µrad, a long term power stability of less than 2%, and using
the Lowest order of the Transverse Electromagnetic Mode orthogonal to the travelling wave
(TEM00) as the reference, a transverse beam mode quality of M2< 1.1 TEM00, where M2

is the beam quality factor and TEM00 is the lowest order of the Transverse Electromagnetic
Mode.

To measure the long term power stability, we used a power meter to record power
variations over several hours, with the thorlab software“Thorlabs Optical Power Meter
Utility”. With the laser lowered to about 35 mW to not saturate the power meter rated for
a maximal value of 50 mW, we put the power meter just outside the box protecting the laser
head and let it collect 10,000 data points, sampled every 5 seconds, measuring overnight
to limit the exposure to body heat. Results are displayed in figure 2.3. This yielded an
average of 34.9711± 0.0003 mW, with minimal and maximal values of 34.859± 0.001 mW
and 35.102± 0.001 mW which are 0.4% away from the average, well within the announced
2% stability.

If the laser power, coming out of the Mode Shaping arm, is found to vary a lot (dropping
by a factor of two), one can look at the spatial stability of the laser beam. This has not
been an issue while we were running the current experiments but should be kept in mind.

In conclusion, to confirm that this part of the microscope is working properly, one
should focus on the quality of the beam (measured with a correlation against a 2D Gaussian
distribution or with the M2 test) and on the stability of its poynting vector and its power,
if the laser power is unstable at the sample stage.

2.2 Switching arm

This piece of equipment is an Acousto Optic Modulator (AOM) which is a fast acting
optical switch.
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Figure 2.4: Diagram of the AOM with telescope focusing the beam onto its center point

2.2.1 Description

An AOM is a piezoelectric crystal onto which a electrical strain is imposed to change its
density. Under that strain, S, the index of refraction, n, changes inversely, related by the
photoelastic coefficient, p : 1/n = pS. By putting this crystal between two electrodes,
one can send a sinusoidal electric signal through the medium, which will propagate strains
along that signal, compressing and stretching the crystal. This strain, in turn, will induce
a sinusoidal change of index of refraction, letting this crystal behave like a diffraction
grating. If the thickness of this diffraction grating is small, the AOM will behave like a
thin grating, diffracting the light into multiple beams. If the grating is thick enough, the
AOM will behave like a thick grating: the input beam will be diffracted with zeroth and
first order only, provided it entered the crystal at the Bragg angle.

27



Given a grating thickness, L, an input light wavelength, λ, an acoustic velocity, va, an
acoustic frequency, f , and an acoustic wavelength, Λ = va/f , the AOM will display thin
grating properties if L << Λ2/λ and thick grating properties if L >> Λ2/λ. Normally,
the Bragg angle, θ, is given by 2d sin θ = λ/m where d is the distance between two lattice
planes and m is a positive integer, but in this case, we need to use Λ, the distance between
two peaks of acoustic maxima, giving a slightly different expression for the Bragg angle :
2Λ sin θ = λ/m.

Furthermore, since the AOM isn’t a simple grating but actually supports mechanical
oscillations that modify the medium in which the light travels, this introduces a Doppler
shift. If ω is the angular frequency of the incidental optical wave and f is the frequency
of the acoustic wave, the diffracted beam will have frequency ω′ = ω ± f , with increased
(decreased) frequency if the incidental optical wave is going in the same (opposite) direction
as the acoustic wave.

In this setup, since the laser goes through the AOM twice, this Doppler effect will be
compounded and the total frequency shift will be 2f . However, since ω is about 564 THz
(for green light at 532 nm) and f = 200 MHz, the shift can be neglected, especially since
this green light is used to perform off-resonance excitation and does not need to be exactly
at 532 nm.

When the input wave enters the modulator at the Bragg angle, the intensity of the
first order diffracted beam will depend on some geometric and intrinsic factors but more
importantly will be dependent on the intensity of the acoustic waves; more power goes into
the first order diffraction as more power is put in the acoustic wave. As far as the geometric
factors go, the diffracted beam gets weaker as the AOM aperture gets larger, or similarly,
as the beam gets smaller. A larger beam will display a brighter diffracted beam but at the
same time, it will increase the rise time of the device, which increases proportionally with
the waist (diameter) of the beam and inversely proportionally with the acoustic velocity.

This AOM requires a beam width of 80 µm. It is then convenient to place the AOM
at the focal point between two lenses. For this task, the microscope uses two lenses with
focal length of f1 = 175 mm and f2 = 150 mm. These lenses were chosen to accommodate
the previous laser that was coupled to an optical fiber at the output of the laser source
and right after the switching arm. The current setup doesn’t use this fiber but the lenses
weren’t moved to maintain the alignment of the setup. The beam is then collimated outside
of this telescope, focusing the beam in the AOM. When the laser exits the AOM and the
second lens, it is reflected off a flat mirror and goes back through the AOM once more,
achieving the double pass.

To divert the reflected beam onto a different path, we use a Polarized Beam Splitter
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(PBS) and a quarter wavelength plate through which the beam passes twice such that
when the beam comes back to the PBS, it is reflected toward the rest of the setup rather
than transmitting back to the laser source.

2.2.2 Maintenance

For a beam of 80µm the Tellurium Dioxide modulator from Isomet Corp. is rated to exhibit
a rising time of 12 ns and a double pass efficiency of 80%, which is the ratio of light intensity
going in and cmoing out of the device. Measuring the rising time with a fast photodiode
and an oscilloscope gave values close to 25 ns and measuring the double pass efficiency
with a power meter gave double pass efficiency of approximately 65%. These values are
not ideal but given that the time scale of the detection window is slower (hundreds of ns),
that we can add a delay before the counter opens to take this into account and that we
need not use all the laser power, these values remain very acceptable.

In conclusion, to confirm that this part of the microscope is working properly, one
should look at its double pass efficiency and its rise time, which can be checked with a
power meter and a fast diode.

2.3 Mode Shaping Arm

This piece of equipment consists in an optical fiber and a telescope. The optical fiber is
used to clean the spatial mode of the beam, which has gone under some distortions in the
AOM. See figure 2.5 for a diagram.

2.3.1 Description

We use a Polarization Maintaining Single mode Fiber (P1-488PM-FC-2), which attenuates
the higher modes of the beam, leaving it in its fundamental Gaussian mode TEM00. To
couple the free space beam into this optical fiber efficiently, we need to take into account
its diameter and its numerical aperture, 3.4 µm and 0.12, respectively. From these model
specific values and given the input width of the beam of 1.6 mm, we used a fiber coupler
with a 7.86 mm focal distance. Similarly, the ouput coupler is identical, producing a beam
of 1.6 mm in the TEM00 at the output of the fiber.

Even if we can reliably clean a beam to a width 1.6 mm, a beam with an even larger
width is more resistant to far field distortions so we use two lenses as a microscope to expand
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Figure 2.5: Mode Shaping Arm, with two mirrors mounted on spring loaded screws, to
adjust tilt and yaw of the beam at each mirror.

the beam as much as we can while remembering that it needs to fit on the galvanometer
mirrors. This is done with a telescope of two lenses of focal lengths f3 = 50 mm and
f4 = 125 mm with a separating distance of f3 + f4 = 175 mm, widening the beam by a
factor of f4/f3 = 2.5. The beam width at the output of the telescope is then 1.6 mm ×
2.5 = 4 mm.

The microscope was setup to maintain the beam size with these fiber couplers but if
some care is taken with it, other beam dimensions could be obtained (see Appendix B).

After the Mode Shaping Arm and right before the Scanning Optics described in the
next section, we place a dichroic mirror which reflects green light perpendicular and lets
red light go through. This is so that the incoming green light gets directed to the rest of
the microscope objective while the red light coming from the sample gets transmitted to
the detector.

2.3.2 Maintenance

There are a few steps that can be followed to establish the performance of this component
of the microscope. The optical fiber could be transmitting a faint or distorted mode for
few reasons. The most likely reason is that the laser is poorly coupled to the fiber. If
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this happens, the laser on the output side of the fiber will be weaker than expected or
completely absent. As a rule of thumb, given the specifications at each coupler and of the
fiber itself, one can expect a coupling of about 0.5; the laser intensity drops by a factor of 2
by going through the fiber. In experiments where the coupling efficiency is more important,
it can be brought much higher but is not crucial in our case. If the coupling falls too low
(below half of the usual value), one should look at walking the beam until the beam is
pointing at the fiber coupler with the right orientation. This involves 4 degrees of freedom
(position in x and y, tilt and yaw), which are controlled by the tilt and yaw of a pair of
mirrors. Tilting both mirrors so that they remain parallel will translate the beam while
tilting them in opposite directions will rotate the beam. To perform this maintenance
operation, we place a power meter at the output of the optical fiber and keep in mind that
someone already spent a great deal of effort to align the beam, so moving one mirror a
little bit will usually help a lot, it remains to find which mirror is misaligned.

Once the beam is aligned, dirt at the output of the fiber or its coupler can produce
several modes, negating the advantage of the optical fiber in the first place. If the beam
is closer to a Gaussian beam before the optical fiber rather than after, a fiber inspection
scope will help tell if either end of the fiber is dirty by magnifying the head of the fiber, a
clean fiber will not have any dirty spots or scratches. The core will still be visible. If the
fiber is dirty, it can be cleaned with a cassette type cleaner and if the fiber is scratched, it
might be better to replace the fiber entirely if the output mode is not satisfying. Finally,
the connection to the coupler itself can still be faulty, mainly if the fiber is not screwed in
properly or if the thread is stripped.

For the completion of this degree, I have adjusted the telescope lenses to collimate the
output beam, I adjusted the coupling of the fiber several times, cleaned the dirty end of
the fiber and confirmed the choice of fiber couplers for the given beam radius and fiber
characteristics.

In conclusion, to confirm that this part of the microscope is working properly, one
should worry about the size, power and quality of the beam after the fiber coupler as well
as at the ouput of the telescope.

2.4 Scanning Optics

.

This piece of equipment is made of a set of mirrors mounted on galvanometers and a
telescope.
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Figure 2.6: Scanning optics. Note that the last mirror (leftmost) deflects the beam down-
ward (into the page), whereas we show it here remaining in the page for clarity.

2.4.1 Description

The galvanometers act as support for two mirrors. Voltage applied to them changes the
relative angles of the mirrors by as little as 8 µrad, allowing for control of the direction of
the beam for as much as 40◦ in each direction.

This part of the microscope prepares the beam for it to enter the objective. To make
sure that the objective focuses the laser to its smallest width, the beam going into the
objective must have a width as large as possible, overfilling its back. To achieve this,
we use a pair of bi-convex lenses of focal length 150 mm and 200 mm that produces a
magnification of f6/f5 = 4/3, when placed f5 + f6 = 350 mm apart. Since the laser beam
was 4 mm before entering this telescope, it will have a width of 16/3 ≈ 5.3 mm. Overfilling
the back of the objective adds the benefit of allowing some leeway in the beam position.

The galvanometers are at 150 mm from the first lens, and the second lens is also 200 mm
from the back of the objective, so that these two points are conjugated and that moving
the galvanometers only changes the angle at which the beam hits the microscope and not
the position.

2.4.2 Maintenance

Starting from the dichroic mirror, each lens used later is going to be in the return path of
the photons emitted by the sample. After reflection or fluorescence, the light comes back
through the objective and the lenses, converging eventually onto a pinhole, which acts as
a spatial filter, blocking photons coming from somewhere else than the sample. Photons
emitted by the sample are converging through this pinhole. If any lens is misaligned,
the beam will converge somewhere else in front or behind the plane of the pinhole. One
can compute the width of the beam at the pinhole, which also relates to how much light
goes through it, given by the formula of the power of a Gaussian beam going through an
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aperture: P (r, z) = P0

[
1− e−2r2/ω2(z)

]
where P is the power passing through a circle of

radius r in the transverse plane at position z, where ω(z) is the width of the beam at
position z and where P0 = 1/2πI0ω

2
0 is the total power transmitted by the beam, with I0

the total intensity and ω0 the minimum beam waist.

With that in mind; the distance between each lens and their focal length known, we
can track the width of the beam at the pinhole as each lens gets misaligned. Moving each
lens one at a time to simplify the analysis gives us figure 2.7. From the graph and the
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Figure 2.7: Evolution of the beam width at the pinhole as a function of the displacement
of one lens at a time. Rectangle on 2.7b shows the domain and image chosen for the graph
on the left.

simulations, we can estimate the effect that misalignment of each lens can generate.

The last lens (f7), closest to the detector, has a small impact on the width. This width
changes linearly as the lens moves around. This is easy to picture; a beam collimated going
through a single lens will focus down to a single point at the focal distance, moving with
the lens.

The two lenses of the telescope (f5 and f6) display almost symmetric inverse functions
that diverge as they move away from each other. If f5 moves too close to the galvanometer
or f6 too close to microscope objective, by about 20 mm (see fig. 2.7b), the beam will be
too large to meaningfully pass through the pinhole. Given that these lenses are mounted
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on a translation stage that has a range of motion of one inch, these values are not to be
underestimated and it is safer to keep the lenses closer together.

Finally, the position of the microscope objective itself is crucial. Its influence on the
width of the beam through the pinhole is one of an inverse function of its position, which
crosses the origin and diverges ≈ 0.05 mm from its optimal position, 350 mm from the
galvanometer mirrors. Since the position of this objective is fixed, screwed on the table and
at a fixed distance from the galvanometer mirrors, it looks like its very sensitive positioning
can’t be achieved but we cannot forget that these calculations apply for a point that is fixed
on the sample; another plane of the sample will come in focus if the microscope objective
is misplaced and the photons emitted by the sample will then be colimated as they come
out of the objective, satisfying almost all conditions for the confocal microscope except for
the fact that the galvanometers and the microscope objective are not conjugated anymore.

Although it seems like the optimal position is impossible to achieve, with each lens
requiring precise positioning, the lenses do work together, such that that re-aligning one
lens allows us to undo the misalignment that the previous lens introduced.

We became aware that the lenses used in the section of the microscope were sub-optimal
in the sense that their coating was designed to be transparent to light in the wavelength
of 650 - 1050 nm, excellent for the collected (red) light, but not for incoming (green) light.
With great care to make sure that nothing else would change, we replaced these lenses for
lenses identical in all points except for their Anti-Reflective coating, which we chose to be
in the whole visible spectrum, 400 - 700 nm.

2.5 Microscope Objective

This piece of equipment focuses the collimated light that is aimed at it into a focal point.
Since the diamond has a large index of refraction (≈ 2.4), we use a oil immersion lens,
with higher index of refraction than air, such that more light exits the diamond rather than
being reflected internally. In consequence, it is placed vertically, with the sample holder
underneath, so that the optical oil sits nicely between the objective and the sample and
does not smear.

2.5.1 Description

With its idex of refraction of n = 1.3, oil is used to keep the index of refraction similar
between the microscope objective and the diamond instead of letting the laser transmit
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Figure 2.8: Microscope objective sitting on the sample.

from glass (n ≈ 1.4 in the microscope objective) to air (n = 1 above the sample) to
diamond (n = 2.4 in the sample itself). The direction with which the beam enters the
back of the objective is also the direction that the beam will follow once focused. This
is why the galvanometer mirrors and the back of the objective are placed at conjugated
points, such that tilting the galvanometer mirrors lets us move the focal point inside the
diamond. To compute the minimal spot size of the beam, one shouldn’t simply reduce the
input beam radius via magnification. What we are looking at here is the minimal radius
of the beam, which can’t be arbitrarily small, remaining consistent with the uncertainty
principle. Similarly, the beam will not converge to a point like lens optics would tell.
A beam that has well defined columnation, a well defined direction and momentum in
the radial direction must sustain some uncertainty in its position on the same direction.
Hence, if the beam is perfectly aimed to focus on a single point, it will reach a limit in the
definition of its position, reaching a lower bound on its waist.

In fact, for a microscope objective whose back aperture is filled, one can compute the
minimal radius of a Gaussian beam with its wavelength and its angular spread. Namely, we
will use the formula for the half angle of a Gaussian beam in far field: θ = λ

πω0
Where θ is the

half angle of divergence of the beam, λ = 532 nm is the wavelength of the monochromatic
laser and ω0 is the minimal waist (radius) of the beam, that we will identify. Instead of
measuring the half angle of the microscope objective and since its numerical aperture is
known, we will use the definition of the Numerical Aperture to compute the minimal waist.
Using NA = n sin θ, with NA = 1.49, the numerical aperture of the microscope objective
and n = 2.41, the index of refraction of the diamond containing the NV center, we can
compute the beam diameter

d = 2ω0 = 2
λ

π arcsin NA
n

= 508 nm
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We can then quickly calculate the light intensity at that spot, given that the incoming
beam carries 2 mW of power for a beam of diameter d =5 mm after going through the
rest of the microscope. This gives an initial power density of P0 = 1.02 × 10−2 W/cm2

concentrated to a power density of P1 = 9.86× 105 W/cm2.

2.5.2 Maintenance

The microscope objective is the hardest part of the microscope to troubleshoot and repair,
if required. As part of this degree, the only inspection that I performed on this component
was to estimate its quality by observing that the Gaussian collimated beam would go
through the objective and would reflect on a mirror surface to give a distorted reflection
of concentric rings.

To describe what happens there, let’s remember that the working distance is the dis-
tance between the front end of the lens and the focal plane, where we want to place our
NV centers, at the minimal beam waist. To find this focal plane, we need something much
brighter than an NV center, it can be the surface of the diamond or a mirror, which can
be used for calibration. When the mirror is at the working distance, the reflection off of it
is inverted and follows the same path back, producing a collimated beam from the back of
the microscope objective. However, if the mirror is slightly above or below the focal plane,
then the reflected beam out of the back of the objective will not be collimated; it will be
converging if the mirror is too high (closer to the microscope objective) or diverging if too
low. Hence, using another thumbscrew mounted parallel to the motor stepper, we manu-
ally bring the sample too high (closer to the microscope objective) to produce a reflected
beam that looks like a very large set of concentric rings. Moving the sample lower will
shrink the reflection to a point which then expands to another set of concentric rings as
the beam goes from diverging to collimated to converging, as the inverted image still is a
set of concentric rings. With that in mind, we want the beam to look like a point to get a
collimated beam. This should be taken with a grain of salt; since the incoming, collimated
beam is 5 mm wide, aiming for the reflected beam to be converging down to a point will
not provide us with an identical beam; it will be slightly converging. As long as this is
systematically observed, this simply means that the plane of focus is slightly lower than
the plane of reflection. This beam convergence is taken care of more easily later with lenses
in the detector than it would be to take excessive care when moving the sample stage to
ensure the beam is truly collimated. An example for the reflected beam when the sample
(or mirror) is placed too far, at the right position or too close is displayed in figure 2.9

Since we expect the reflected light to also display a Gaussian mode (with far field
distortion), observing an image that is different from Newton’s rings when the incoming
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beam is indeed Gaussian is the main sign that the microscope objective is defective. These
Newton’s rings are an interference pattern in the shape of concentric rings that are produced
when light reflects between two surfaces, a spherical one adjacent to a flat one, as it
is the case with the microscope near the diamond, which are approximately a spherical
and planar surface, respectively. When the original setup produced distorted rings, we
promptly changed the objective for another one already available, which then produced
the expected Newton’s rings, while changing the magnification and numerical aperture
(these new magnification of 60x and numerical aperture of 1.49 are used in this work).

Figure 2.9: From left to right, reflected pattern when the sample (mirror) is too high, at
the right height or too low.

2.6 Detector

This piece of equipment collects photons in order to measure the state of NV centers. After
the green light has been guided to the NV center of interest, it fluoresces and emits red
light, which is guided back towards the detector.
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f7

f8

Figure 2.10: Avalanche Photodiode collecting light coming through the pinhole.

2.6.1 Description

The detector is the last part of the microscope, set after the dichroic mirror, once the green
light has been filtered. The collimated red light goes through a lens that focuses it on the
pinhole, goes trough another lens to focus it again and hits the single photon detector,
which has a 180 µm diameter active area.

We are using an Avalanche Photo Diode (APD) as our photon counter. APDs have
a series of semi-conductor layers. In the π-layer, the absorption region, the absorption of
photons generates pairs of electrons-holes, which each drift in opposite directions under
a small electric field, toward the n+-layer or the p+-layer, respectively. Before reaching
the n+-layer, electrons reach the p-layer, the avalanche region. In the avalanche region,
the field is much stronger, accelerating the electrons until they reach sufficient energy to
excite an electron across the bandgap, generating secondary carriers. These new pairs of
electrons-holes are also accelerated, each producing additional excitation, leading to the
avalanche of impact ionization processes. This amplification of the initial electron is what
develops the photo-current.

Before reaching the detector itself, there are 5 elements that need to be aligned to direct
as much light as possible to the detector while blocking stray light coming from the rest
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of the apparatus and other light sources in the dark laboratory. The first lens has a focal
length of f7 = 100 mm to concentrated the collimated beam onto the pinhole, which is 5
µm wide, 200 mm further. Because of spacing concerns, the beam has to be redirected 90
degrees to the right, which complicates the alignment. The second lens has a focal length
of F8 =50 mm and is placed that far behind the pinhole, also 50 mm from the detector.

2.6.2 Maintenance

The detector can easily be misaligned, along the beam or perpendicular to it, as the first
lens must aim its focal spot on a 5 µm pinhole.

When the detector is vastly misaligned, one should work with samples of large size first
before moving onto smaller calibration samples until an NV center can be observed and
used to perform the last adjustments. Here is the list of samples we used: a flat mirror,
the gold calibration sample, micro beads and NV centers. The gold calibration sample
has two components. The first one is a thin layer of fluorescent beads, few micrometers
away from each other, randomly distributed. The other one is a grid just above the beads.
At each crossing of the grid are a pair of numbers acting as coordinates. These crossings
and numbers provide us with sharp edges to estimate the precision of the detector. The
micro beads are the TetraSpeck Fluorescent Microspheres Size Kit, a microscope slice with
4 samples of beads which diameter range from 4 µm to 0.1 µm. Each bead is dyed with
blue, green, orange and dark red colors.

In the beginning, for the coarse calibration step, a simple mirror was placed under the
microscope objective to redirect as much light as possible to the detector. To make sure
the mirror is placed at the right depth of field, we observed the reflected image and moved
the mirror to the position where the image was a point, as opposed to rings, as explained
previously. At that point, we placed a source of light behind the pinhole and move the
pinhole in x̂ and ŷ until the forward propagating and backward propagating beams were
on top of each other. Using the convention that ẑ is the direction in which the beam
propagates, x̂ will be the direction perpendicular to the beam, parallel to the table, while
ŷ is perpendicular to the beam and upward. Once this is done or if there already is light
going through the pinhole, we need to confirm that the beam goes through the pinhole
on its waist. For this step, since the first lens has a z micro-metric screw, we can move
the lens around until we get the maximum amount of the beam through. As such, we can
systematically move the screw and record the amount of light going through the pinhole
until the maximum is found. Since it is likely that the beam is not perfectly aligned with
the screw, moving the lens back and forth introduces a bit of lateral motion, which needs
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to be corrected before the transmitted light is recorded. Furthermore, since the pinhole
is most likely already aligned with the rest of the detector, it is wiser to move the lens
laterally rather than the pinhole. Finally, before moving on to a more detailed calibration
sample, we made sure that the detector received some light by moving it laterally since
it wasn’t receiving any light yet. Once there is light to the detector, the first half of the
battle is won, we simply need to improve the precision of the detector.

The next calibration sample is the gold grid.

While the illuminated point on the sample is as close to the edge as possible, we carefully
move each component of the detector until we find the placement that lets the most light
reach the detector, which we observe with real time measurements with the detector itself.
The order in which these parts are adjusted is the one in which they were placed when the
microscope was assembled, which corresponds to parts with increasing sensitivity. This
is the optimization routine. We begin with the detector, moving it in the x̂ direction,
followed by the detector lens (right before the detector), which we move along the same
direction. We then move them together, in ŷ this time. We next adjust the pinhole lens in
one direction and come back to the detector lens as we make adjustments, after which we
align the other direction, with the same steps. Finally, we move the pinhole itself in both
directions, very carefully since it is the most sensitive part of the detector.

At the end of a round of alignment, we do an optical scan to confirm that we are still
sitting on the edge, and that the sample hasn’t moved much. We iterate the alignment
process, until improvements get marginal.

For the next step, it is useful to imagine that the detector is a light source and that
its light goes through the optics and the telescope like the laser source does and converges
at the same point that the laser source does, keeping in mind that the focal point is not
a point but rather a Point Spread Function, a volume in the shape of a droplet. The
procedure of alignment is then aiming at placing the two volumes at the same place, the
excitation volume being the one where the laser converges and the detection volume being
the one where the detector “converges”.

For the first sample, we used a reflective sample, meaning that the input light and the
reflected light were green. To make sure that the two paths are still aligned and superim-
posed when we will be using NV centers which emit in the red, we repeat the alignment
process with the Microspheres, which are fluorescent, absorbing green and emitting red.

As we faced the case that the two volumes were not overlapping, we arranged an
additional red laser to act as incident beam. We chose a red diode laser and simply sent
it through a telescope to expand its beam waist to that of the green laser before the
galvanometers. We used a pair of mirrors to move it and tilt it until it was concentric and
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superimposed with the green laser. For this purpose, we used a partially reflecting silver
coated film that reflects and transmits about half of the light going through. Since this
device is in the path of the input and reflected beam, we lose a factor of 4 in the number
of photons collected, which is not crucial at this step of calibration. Furthermore, since
the filters of the detectors are set to block green light and let red light go through, it is
important to introduce additional filters blocking out the red laser to make sure that not
too many photons reach the detector, to save it from burning. A safe upper bound of
photons per second is 30× 106 ph/s. At that point, it will become apparent if the volume
observed is the same as the excited volume. Observing a micro sphere under each laser
source, one at a time, we could see that they were in very close proximity one from the
other, less than 0.1 µm, which is more than enough to see NV centers, given that they show
up with a width of about 1 µm under optical inspection. The resolution we reach there is
limited by the pinhole, which is 5 µm wide, setting the scale of the resolution before we
reach the wavelength limit.
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Chapter 3

Characterization of two microwave
sources, theory and experiments

In this chapter, we will cover the multiple experiments we conducted to characterize our
microwave sources as well as highlighting the weaknesses of our approach, the steps we
took to overcome them and the tools we will need in the future.

Simply put, characterizing our microwave sources boils down to measuring the relative
amplitude as seen by an NV center due to its location and orientation relative to the wires.

The relative amplitude can be measured absolutely by performing Rabi experiments
with each of the wires. We will begin by showcasing the different frequencies this experi-
ment generates under different conditions, with a single or two microwave sources, targeting
one of both transitions as well as using a large or no field.

The relative phase needs to be measured with some pulsed experiment, we will present
two of those, which we performed, each with different advantages. We will describe them
and since we did them in presence of a magnetic field, we will extrapolate the results we
would expect at low field.

3.1 Transitions available under different conditions and

their Rabi frequencies

In this section, we will present the Rabi frequencies we can expect to obtain in order to
generate transitions from |0〉 to another (|−1〉 or |1〉) or both levels ( |−1〉+|+1〉√

2
) at once,

42



in the presence or absence of a magnetic field. Unless necessary, we will assume a single
microwave source. This will be used to explain the frequency increase we obtain with two
microwave sources instead of one.

3.1.1 High field

Under the influence of a magnetic field along the principal axis system ~B = (0, 0, Bz), the
electronic internal Hamiltonian, with no microwave control, will be H0 = ∆S2

z + γBzSz
where ∆ is the strength of the zero field splitting, 2.87 GHz, γ is the gyro-magnetic ratio
for the NV center and Bz is the magnetic field parallel to the PAS, giving the Zeeman
splitting: ωz = γBz.

Single transition

First, let’s consider the transition from |0〉 to a single level, say to |1〉.

In this case we have H0 = ∆S2
z + ωzSz, the control Hamiltonian will be Hctrl =√

2Ω cos(ωt)Sx where we choose the amplitude
√

2Ω to simplify the analysis later while
setting ω = ∆− ωz.

Applying a frame transformation about Hrot = (∆− ω)S2
z , we get

H0 +Hctrl = ∆S2
z + ωzSz +

√
2Ω cos((∆− ω)t)Sx

H̃ = ei(∆−ω)S2
z t(H0 +Hctrl − (∆− ω)S2

z )e
−i(∆−ω)S2

z t

= ωzS
2
z + ωzSz +

√
2Ω cos((∆− ω)t)[cos((∆− ω)t)Sx − sin((∆− ω)t)Sy]

≈ ωzS
2
z + ωzSz +

Ω√
2
Sx

Where the last lines neglects the fast oscillating terms.

Writing down this new Hamiltonian in matrix form, we will use the qubit approximation
to study the transition from |0〉 to |−1〉 and |0〉 to |+1〉 individually. This approximation
comes from the observation that the three-by-three matrix can be seen as two two-by-two
matrices sharing the central entry, while neglecting the anti-diagonal elements, since they
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are null. With 01, the zero matrix of dimension 1, we get:2ωz
Ω
2

0
Ω
2

0 Ω
2

0 Ω
2

0

 =

(
2ωz

Ω
2

Ω
2

0

)
⊕ 01 + 01 ⊕

Ω

2
σx

= (ωz(σz + 11) +
Ω

2
σx)⊕ 01 + 01 ⊕

Ω

2
σx

In the regime where ωz >>
Ω
2
, the first term becomes off resonance, can be approxi-

mated as ωzσz ⊕ 12 and only generates a rotation along the ẑ axis ω1σz. The second term
generates a spin flip Ω

2
σx.

Measuring the state after this experiment, we get:

P (t) =
∣∣∣〈0| e−i((ω(σz+11)+ Ω

2
σx)⊕01+01⊕Ω

2
σx)t |0〉

∣∣∣2 (3.1)

≈
∣∣∣〈0| e−i((ω(σz+11))⊕01+01⊕Ω

2
σx)t |0〉

∣∣∣2 (3.2)

=
1 + cos(Ωt)

2

To justify the approximation made here, we will consider the situation we can safely expect
to be found in our experiments and simulate the difference that applying the approximation
makes. Using values for the Zeeman splitting of 100 MHz, a Rabi strength of 6 MHz and a
maximal pulse duration of 1.2µs, we can take the difference in P (t) with and without the
approximation (subtracting the right side of 3.1 from 3.2). Over 1.2µs, the largest difference
will be less than 0.001, a relative difference of 0.1%, as seen in figure 3.1. Comparing these
values to the noise we get experimentally, we can justify the approximation.

Double transition

First, let’s consider the transition to both levels. For that purpose, the control Hamil-
tonian will be generated with a microwave pulse and is expressed along ~x : Hctrl =√

2Ω(t) cos(ω1t) cos(ω2t)Sx, where ω1 and ω2 are the carrier frequencies and Ω(t) is the
envelope amplitude. The two carrier frequencies will be useful for the two frame transfor-
mations; for the Zero Field Splitting term and the Zeeman splitting term.

Under the RWA, with ω1 = ∆, the effective Hamiltonian then becomes

H0 +Hctrl = ∆S2
z + ωzSz +

√
2Ω(t) cos(∆t) cos(ω2t)Sx (3.3)
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Figure 3.1: Difference in population (P (t)) if the qubit approximation is made or not, in
100 MHz magnetic field, with Rabi Frequency of 6 MHz

and

H̃1 = ei∆S
2
z t(H0 +Hctrl −∆S2

z )e
−i∆S2

z t

= ωzSz +
√

2Ω[cos2(∆t) cos(ω2t)Sx + cos(∆t) sin(∆t) cos(ω2t)S
′
y]

≈ ωzSz + Ω
cos(ω2t)√

2
Sx (3.4)

At this point, to suppress the Zeeman interaction term, we can apply another frame
transformation and jump to the ωzSz frame, setting ω2 = ωz:

H̃2 = eiωzSzt(H̃1 − ωzSz)e−iωzSzt

= Ω
cos(ωzt)√

2
[cos(ωzt)Sx − sin(ωzt)Sy]

≈ Ω

2
√

2
Sx (3.5)
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Measuring the state after this experiment, we can find the frequency at which |0〉 is

depopulated towards |+1〉+|−1〉√
2

:

P (t) =
∣∣∣〈0| e−i Ω

2
√

2
Sxt |0〉

∣∣∣2
=

1 + cos
(

Ω√
2
t
)

2

3.1.2 No field

For this section, we will look at the control we need to perform single and double transitions
when there is no magnetic field.

Single transition

This case is different from the single transition with a field for two reasons. First, we
loose the ωzSz term in the Hamiltonian, which was necessary to suppress the undesirable
transition. Second, and to alleviate this, we introduce a second degree of control. We will
assume again that the first microwave source is along x̂, by definition, while the other is
along ŷ, with independant amplitude and phase. The control Hamiltonian then looks like

Hctrl = H1
ctrl +H2

ctrl (3.6)

=
√

2Ω1 cos(ω1t+ φ1)Sx +
√

2Ω2 cos(ω2t+ φ2)Sy (3.7)

As previously, setting the modulation frequency to the one of the Zero Field Splitting
and moving to its rotating frame will suppress the largest term of the system (∆S2

z ), while
we can neglect the counter rotating wave. Thus, we set ω1 = ω2 = ∆

Again, as described in section 1.2, S ′y = i[S2
z , Sx] and similarly, S ′x = i[S2

z , Sy]. In the
rotating frame, the control Hamiltonian is expressed as :

H̃ctrl =
Ω1 cos(φ1)√

2
Sx −

Ω1 sin(φ1)√
2

S ′y +
Ω2 cos(φ2)√

2
Sy −

Ω2 sin(φ2)√
2

S ′x (3.8)

This will give us access to four operators that trigger a Quantum Transition between |0〉
and either |−1〉 or |+1〉 in the rotating frame: Sx, Sy, S

′
x and S ′y. For a better grasp of
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the level transitions these operators produce, we will use a change of basis and use angular
momentum specific operators:

S+
x =

Sx − S ′x√
2

=

0 0 0
0 0 1
0 1 0

 S+
y =

Sy + S ′y√
2

=

0 0 0
0 0 −i
0 i 0


S−x =

Sx + S ′x√
2

=

0 1 0
1 0 0
0 0 0

 S−y =
Sy − S ′y√

2
=

0 −i 0
i 0 0
0 0 0

 .

(3.9)

We can then re-write 3.8 as

H̃ctrl =

(
Ω1 cos(φ1)

2
+

Ω2 sin(φ2)

2

)
S+
x +

(
Ω1 cos(φ1)

2
− Ω2 sin(φ2)

2

)
S−x (3.10)

+

(
Ω2 cos(φ2)

2
− Ω1 sin(φ1)

2

)
S+
y +

(
Ω2 cos(φ2)

2
+

Ω1 sin(φ1)

2

)
S−y (3.11)

Since Ω1,Ω2, φ1, and φ2 are all independent and adjustable, we reach four independent
degrees of freedom and it becomes clear how to set one of the pre-factor one of the operators
of the Hamiltonian and the remaining three to zero, triggering one transition over the
others by solving the four equations of the pre-factors with four degrees of freedom. Thus,
with 1) two independent microwave sources, 2) a zero magnetic field, 3) knowledge of the
amplitude and phase of each microwave source as seen by the NV center (which depends
on the distance of the NV center from each microwave source as well as its orientation),
it is possible to activate a Single Quantum Transition (SQT) from |0〉 to any of the two
other levels without populating the last level.

For example, using Ω1 = Ω, Ω2 = Ω, φ1 = 0 and φ2 = π/2, we will get contribution
from the first term only, S+

x . Measuring the final state once more, the population evolution
of |0〉 is :

P (t) =
∣∣∣〈0| e−iΩS+

x t |0〉
∣∣∣2

=
1 + cos(2Ωt)

2

Which is faster than the Rabi oscillations from the single transition with a field by a factor
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of 2, see section 3.1.1. At the same time, the population of |−1〉 and |1〉 evolve like:

P1(t) =
∣∣∣〈1| e−iΩS+

x t |0〉
∣∣∣2 =

1− cos(2Ωt)

2

P−1(t) =
∣∣∣〈−1| e−iΩS

+
x t |0〉

∣∣∣2 = 0

Double transition

Without an external magnetic field, we only need a single microwave source to generate
the transition between |0〉 and the coherent superposition of |−1〉 and |+1〉.

Following section 3.1.1, we will set the first frequency to ω1 = ∆ and because there
is no magnetic field, ωz = 0 and ω2 = 0 as well. In the lab frame, the Hamiltonian is
H0 +Hctrl = ∆S2

z + 0Sz +
√

2Ω(t) cos(ω2t) cos(0t)Sx

Following equation 3.4, it becomes

H̃1 ≈ 0Sz + Ω
cos(0t)√

2
Sx

=
Ω√
2
Sx

Finally, measuring one more time gives:

P (t) =
∣∣∣〈0| e−i Ω√

2
Sxt |0〉

∣∣∣2
=

1 + cos
(√

2Ωt
)

2

Which is faster than the Rabi oscillations from the single transition with a field by a
factor of

√
2

3.1.3 Insight from the previous section

Table 3.1 collects the relative frequencies collected in the previous sections. From it, few
relationships can be seen.
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Field regime Target Transition µw sources Rabi Frequency
High Single transition 1 Ω

field Double transition 1 Ω/
√

2
No Single transition 2, ⊥ 2Ω

field Double transition 1
√

2Ω

Table 3.1: Relative Rabi frequencies under different regimes and with different objectives.
⊥ expresses that the microwave sources are perpendicular.

First, generating transitions to both levels instead of one increase the frequency by a
factor of

√
2. This can be seen through the definition of the operators; Sx includes a factor

of 1/
√

2 which σx does not possess. Thus when we can express the Hamiltonian in terms
of Sx instead of σx, a factor of

√
2 is absorbed in the spin-1 operator, speeding up the Rabi

oscillations by the same factor. This is highlighted by the difference between the single
transition with a field and the double transition without a field.

Second, whenever we need to apply a Rotating Wave Approximation, half the power
goes to the counter rotating part of the Hamiltonian, cutting the frequency in half. This
is highlighted by the difference between the double transition with and without a field.

Third, using a second microwave source and doubling the available power doubles the
Rabi frequency. This is highlighted by the difference between the single transition at high
field and the single transition at no field.

3.2 Two wires board

We have talked in length of the microwaves sources being parallel or perpendicular in
the frame of the NV center. For the following experiments, we will deal with the wires
themselves. In order for the two wires to be close enough, parallel and not touching,
Thomas Alexander designed a printed board (figure 3.2) on top of which a thin diamond
(thickness of 100 µm) is secured with wax. This sample holder was designed to minimize
the mutual inductance of the wires. With that in mind, we measured the transmission and
reflection of the signal with an Agilent 4-ports Vector Network Analyzer (VNA) (N5230A
PNA-L 4-Port Network Analyzer). We calibrated the four cables used with the Network
Analyzer to account for the phase and the power loss in them for the reflection and the
transmission. The plane of reference is then the interface between the cables and the
sample board. When we used a same small connector to connect the cables pairwise, we
neglected the insertion loss and the phase accumulated through the connector.
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(a) Schema of the PCB, top view. The diamond
is placed on top of the middle section, where the
wires are brought close together. From left to
right, the ports of the device under test are con-
nected to the ports 1 through 4 of the VNA. The
sample board itself (black section) is 5 cm by 5
cm.

(b) Detail of the PCB sample board
where the diamond sits. Each wire is
127 µm thick (5 mils) and the spacing
between the wires is also 127 µm.

Figure 3.2: Top view of the parallel wires setup on a PCB.
This first generation of PCB consists of printed wires, without transmission lines or

optimisation. The diamond taht sits on the wires is 5 mm long, 2 mm wide and 0.1 mm
thick.

To discuss the transmission and the reflection of the device under test, we connected
the port 1 of the VNA to the SMA OUT-1 port, port 2 to the SMA IN-2 port, port 3 to the
SMA OUT-2 port and port 4 to the SMA IN-1 port. In consequence, measuring S12 tells
us about the transmission between the ports SMA OUT-1 and SMA IN-2 and measuring
S34 tells us about the transmission between the ports SMA OUT-2 and SMA IN-1, for
example. Similarly, measuring S33 will give the reflection at the SMA OUT-2 port.

Looking at the results in figure 3.4 the desired transmission (S41 and S23, see figure
3.2a) is relatively stable and takes values of −1.03 dB with a standard deviation of σ = 0.08
dB and -2.90 dB with σ = 0.16 dB, respectively. All these values are relative to the power
output by the Network Analyzer into the circuit. On the other hand, the leakage of signal
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4 orientations
of NVDiamond

Wire 1 Wire 2

Figure 3.3: Cross section of the diamond (seen from the side of fig: 3.2a). The NV of
interest is not necessarily in the center and its orientation is not predetermined.

from the input of one wire to the input of the other, as well as similarly for the output
(S42 and S13), is -17.9 dB (σ = 0.9 dB) and -19.1 dB (σ = 1 dB). There is then a factor
of 15 dB of isolation (σ = 1 dB), when the signal goes into the first input, between the
two legs of the circuit across the junction while the isolation is 18 dB (σ = 1 dB) between
SMA IN-1 and SMA OUT-2 when the signal comes from port SMA IN-2. The last pair of
transmissions (S43 and S12) is the leaking signal that stays on the same half of the PCB.
We treat this signal as crossing the gap between the wires as early as possible, providing
little to no signal to site where the NV center rests, closer to the center of the parallel
wires. Their average is -9.13 dB (σ = 0.14 dB) and -8.09 dB (σ = 0.17 dB). To generate
those two independent microwave sources, we used two parallel wires, controlled by an
Arbitrary Waveform Generator (AWG). This design was chosen to simplify the geometry
of the problem: in planes perpendicular to the parallel wires, each plane is identical and
the two wires acting are treated like point sources, reducing the problem to 2 dimensions.
The wires are placed on a Printed Circuit Board (PCB) to ensure that they are parallel.
Each wire has a width of 127 µm (5 mils) and they are separated by the same distance (5
mils). On top of those wires, the diamond has a thickness of 100 µm, length of 4 mm and
width of 2 mm.

As the original setup was used for single wires experiment, the electronics that were
installed on this optical setup had a single double channel AWG for the quadrature signal,
a circuit to modulate it around 2.87 GHz and an amplifier before the sample itself. With
some of the work already done by Zimeng Wang previously, we installed a new AWG with
two double channels and assembled the rest of the electronics to synchronize the two input
signals on the same clock and characterized the power loss throughout the circuit, making
sure that the power delivered to each wire was similar.

Similarly, the software to control all this experiment had previously been written by few
graduate students and edited several times since 2009 (C. Ryan, J. Hodges, C. Granade, I.
Hincks, O. Moussa, M. Kononenko). Because of the previous design, the code was designed
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Figure 3.4: Response of the circuit for transmission. Transmissions forward and backward
are similar. Their difference is less that 0.3 dB on average.

to control and display the current through one wire only. I modified the code so that the
GUI displays the power diagrams for both wires and turns on the proper channels.

We ordered a thin diamond, 100 µm thick, of electronic grade, from Applied Diamond
Inc. The diamond is first annealed on one side, at atmosphere pressure with a 80:20
Ar:O2 gas mix. The annealing will help with conversion from neutral NV centers (NV0) to
negatively charged NV centers (NV−). This process can be expected to increase the ratio
of NV−/NV0 to a depth in the order of tens of µm [32]. It is then preferable to make sure
that the side with higher concentration of NV centers is closer to the wires to achieve better
coupling. The diamond is then cleaned in an ultrasonic bath of acetone, followed by one of
isopropanol, for 20 minutes each, at room temperature. Finally, the diamond is mounted
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on the sample board holder with a glue pump, by placing the diamond on a drop of melted
wax. Heating the sample board, a piece of wax of millimeter dimension is carefully dropped
on the wires, melting in a minute. The diamond is then placed with a vacuum pump; a
needle, mounted on a three axis stage with micro-metric screws, that holds the diamond
by suction. By pressing down the diamond, the wax spreads around the wires, leaving
the diamond to touch them. The distance of the wax from the volume observed in the
diamond is of the order of tens of micro-meters, and since the wax doesn’t possess the
same ZFS that the NV centers do, it will not introduce noise in our measurements. The
advantage of using a glue pump is the ease of manipulation of the diamond compared to
the manipulation with hands and tweezers. This is important for thin diamonds because
with a thickness of 100µm, they bend easily, pop, flip and jump, vanishing from sight.
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3.3 Two microwave sources

As we have seen in the last section, using two independent microwave sources can enable
additional transitions. In this section, we will discuss the effect the orientation of the
sources can have. It can be intuitive that if the microwave sources are parallel in the
NV center frame, they can be reduced to a single source, and such, the more interesting
case is complementary. Before looking at the general case, let’s begin with two sources
perpendicular.

3.3.1 Perpendicular microwave sources

With the tools from section 3.1.2 (no magnetic field, two microwave sources), S+
x and S−x

can be generated from the general Hamiltonian, by carefully choosing Ω1, Ω2, φ1 and φ2.
Applying them in succession generates a DQT, which is a population exchange between
|−1〉 and |+1〉 while leaving |0〉 intact. With U+ = e−iS

+
x
π
2 and U− = e−iS

−
x
π
2 , we can write:

U+
− = U+ · U− · U+ = −

0 0 1
0 1 0
1 0 0
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This enables a flip flop operator within the {|−1〉 , |+1〉} subspace, enabling experiments
where each level is sensitive to the magnetic field, doubling the sensitivity to magnetic field.
Indeed, this contrasts with NV center experiments that would use the |0〉 level, which is not
sensitive to the magnetic field. Furthermore, working in this manifold allows to minimize
the effect of errors from the Zero Field Splitting, since it does not separate |−1〉 and |1〉.

3.3.2 Microwave sources with arbitrary microwave orientation

In this section, we will look at the more general case, when the first microwave source
is along x̂, by definition, while the other degree of control is along an arbitrary direction
cos(θ)x̂ + sin(θ)ŷ, each with independent amplitude and phase. The control Hamiltonian
is then

Hctrl = H1
ctrl +H2

ctrl (3.12)

=
√

2Ω1 cos(ω1t+ φ1)Sx +
√

2Ω2 cos(ω2t+ φ2)(cos(θ)Sx + sin(θ)Sy) (3.13)

In the absence of a magnetic field, the usual Rotating frame approximation will be made
with ω1 = ω2 = ∆. Again, as described in section 1.2, S ′y = i[S2

z , Sx] and similarly,
S ′x = i[S2

z , Sy]. In the rotating frame, the control Hamiltonian is expressed as :

H̃ctrl =
Ω1 cos(φ1)√

2
Sx −

Ω1 sin(φ1)√
2

S ′y+

Ω2 cos(φ2)√
2

(cos(θ)Sx + sin(θ)Sy)−
Ω2 sin(φ2)√

2
(cos(θ)S ′y + sin(θ)S ′x) (3.14)

Measuring at this stage already reveals something interesting:

P (t) =
∣∣∣〈0| e−iH̃ctrlt |0〉∣∣∣2

=
1

2

(
1 + cos

(√
2(Ω2

1 + Ω2
2 + 2Ω1Ω2 cos(θ) cos(φ1 − φ2)) t

))
(3.15)

Meaning that the Rabi frequency depends on the angle between the two microwaves sources
(in the NV center frame) as well as the phase difference between them. This is interesting
because θ is a parameter that is fixed, giving an upper bound on the Rabi frequencies; for
Ω1 = Ω2 = Ω and φ1 − φ2 = θ, we get

P (t) =
1

2

(
1 + cos

(√
1 + cos2(θ) 2Ωt

))
(3.16)
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This will reach a maximum when θ = 0, for a Rabi frequency of 2
√

2Ω, when the sources
are parallel. This is simply doubling the available power in the case of the NV center under
no field and for a double transition, which also doubles the Rabi frequency:

H̃ctrl(Ω1 = Ω2 = Ω, φ1 = φ2 = θ = 0) =
√

2ΩSx (3.17)

Alternatively, if θ = π/2, we can get the fastest SQT, to |+1〉 (with φ2 = π/2) or to |−1〉
(with φ2 = −π/2):

H̃ctrl(Ω1 = Ω2 = Ω, φ1 = 0, φ2 = ±π/2, θ = π/2) = ΩS±x (3.18)

3.3.3 Microwave sources with arbitrary microwave orientation
and no magnetic field

This case of the microwaves being perpendicular is unlikely to arise with our current setup
because it would require the NV center that we are studying to have a PAS parallel to the
wires, which we did not look to achieve in this setup. In the more general Hamiltonian,
shown in equation 3.13, the second microwave source will have some contribution from Sx
as well as Sy.

Let’s spend some time to look at this Hamiltonian in the rotating frame (as in equation
3.14). Since our operators are Hermitian and only have four non-zero entries, at the same
positions, the total Hamiltonian can be simplified:

H =

 0 A 0
A∗ 0 B
0 B∗ 0

 (3.19)

Where we have

A =
Ω1

2
e−iφ1 +

Ω2

2
e−i(θ+φ2) (3.20)

B =
Ω1

2
eiφ1 +

Ω2

2
ei(θ−φ2) (3.21)

In a zero field setting, we then want to activate one transition at a time, setting A = 0
or B = 0. Using Ω2 = Ω1 and φ2 = π + φ1 + θ, we get B = 0 and

H−ctrl = Ω1 sin(θ)[sin(θ + φ1)S−x − cos(θ + φ1)S−y ] (3.22)
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While using Ω2 = Ω1 and φ2 = π + φ1 − θ, we get A = 0 and

H+
ctrl = Ω1 sin(θ)[sin(θ − φ1)S+

x − cos(θ − φ1)S+
y ] (3.23)

In both cases, we notice a same common factor of Ω1 sin(θ), which reinforces the idea
that the angular momentum specific operators can only be present if θ 6= 0, if the microwave
sources are not parallel.

Measuring one more time and taking H+
ctrl without loss of generality, we get

P (t) =
∣∣∣〈0| e−iH+

ctrlt |0〉
∣∣∣2

=
1 + cos(2Ω1 sin(θ)t)

2

This gives us a relationship for the maximal Rabi frequency we can expect for an arbitrary
orientation of microwave sources in the absence of a magnetic field.

3.3.4 Microwave sources with arbitrary microwave orientation
and magnetic field

In section 3.1.1, we established that with a single microwave source and a magnetic field,
we could generate transitions from |0〉 to another level. We will now quickly look at what
a second microwave source brings to this situation.

In both cases, the frame transformation to (∆ + ω)S2
z will leave the same internal

Hamiltonian: H̃0 = ω(Sz−S2
z ). We restrict our attention to the case where both amplitudes

are equal: Ω1 = Ω2 = Ω and without loss of generality, we set the phase (of the only or the
first source) to zero: φ1 = 0. The difference then lies in the angle and the phase between
each microwave source.

Setting φ2 = −θ, the control Hamiltonian is then

H̃ctrl =

0 Ω 0
Ω 0 Ω cos(θ)e−iθ

0 Ω cos(θ)eiθ −2ω

 (3.24)

The θ dependent entries of the matrix vanish for θ = π/2 + nπ with n ∈ Z, when the two
microwave sources are perpendicular. They take the real value of Ω for θ = nπ, when the
sources are parallel, and complex values in between.
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Let’s remember from the linear case (section 3.1.1), that since ω >> Ω, the lower
part of the matrix can be approximated as a σz operation and doesn’t trigger transitions
between levels. The transition happens because of the top left section of the matrix, which
is independent of the angle.

In consequence, with a magnetic field, there is no increase in Rabi frequency from using
perpendicular microwave sources, we only get a better approximation. The difference
between the parallel and perpendicular situations becomes apparent in the absence of
magnetic field, where we can take advantage of the angular momentum difference between
the levels of the NV center instead of relying on their energy difference.

3.4 Theoretical target

From previous work in the group by Z. Wang [33], and as we demonstrated, it was shown
that once the amplitude and the phase can be individually addressed, we can generate
SQT and DQT as necessary. Wang demonstrated, with ideal unitaries, how one can use
a GRadient Ascent Pulse Engineering (GRAPE) algorithm to ensure that the pulse will
reach a fidelity of 99.9% over a sample volume of ∼10 nm2. In the next few sections, we will
present methods to characterise the amplitude and the phase, such that these previously
simulated pulses can be generated.

3.4.1 Data collection

This section will revisit the data collection of a general experiment (see figure 1.4) while
applying it to the Rabi experiment scheme.

General Experiment

Wire 1

Laser

Counter
Δt Δt Δt

Initiali-
zation

 

Bright
State
Measu-
rement

Dark
State
Measurement
 

Experi-
ment

 

Final
State
Measu-
rement
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Figure 1.4: Outline of a single shot of an experiment.

During the Initialization, a laser pulse polarizes the NV center to |0〉. Dur-
ing the Bright State Measurement, the counter opens to measure the photons
emitted by the NV center in the |0〉 state. The Dark State Measurement sees
an adiabatic pulse to invert populations followed by the counter opening again
to measure the photons emitted by the NV center in the |−1〉 state. The Ex-
periment is kept general for now. During the Final State Measurement, the
counter opens one last time to measure the photons emitted by the NV center
in the state of interest.

The first one is the bright reference, which serves as a reference for the NV center
in the |0〉 〈0| state. To prepare this state, we shine the green laser for 3 µs, to ensure
the polarization in the ms = 0 state (see section 1.4 and Figure 1.3). We wait 1.5 µs to
make sure that everything is settled, since the longest shelf time is 300 ns (see section
1.3). Finally we open the counter and shine the laser for 600 ns to measure the number of
photons |0〉 〈0| will emit. The laser is left on for an additional 2.4 µs to re-polarize the NV
center at the same time.

The second one is the dark reference, which serves as a reference for the NV center not
in the |0〉 〈0| state. To prepare this state, we start from the polarized state prepared by the
last step and apply an adiabatic pulse that slowly inverses the polarity of the NV center
(|0〉 → |1〉) over a 1/∆ ≈ 300 ns time frame, with ∆ being the Zero Field Splitting. We
wait 1.5 µs to make sure that everything settled and again, open the counter for 600 ns as
well as the laser to measure the number of photons emitted in the dark state. The laser is
left on for 3 µs to repolarize the NV center.

For the Rabi experiment, the experiment, its measurement and its re-polarization are
performed twice for each increment of time, to prepare and measure the state of the NV
center with a square wave excitation from either wire, with time t, for the Rabi pulse
duration. After each of those experiment, the counter is open 600 ns once more to measure
the signal and re-polarize. The outline of this experiment is given in figure 3.7

The photon count is then mapped to population of |0〉 〈0| with the following equation:

Tr[ρ |0〉 〈0|] =
signal - dark reference

bright reference - dark reference
(3.25)

For a given value of t, the experiment is repeated few thousand times before moving to the
next value. Once all the points have been sampled that way, we perform a tracking routine
to confirm that the NV center hasn’t moved too much, before collecting another round of
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Figure 3.7: Pulse diagram of the Rabi Experiment.
After a sequence of initialization done as in section 1.4.1, a square pulse of duration t is
applied from either wire 1 or wire 2 and the final state is recorded to measure the Rabi

frequency of each microwave source.

each data point. If it becomes necessary, this tracking routing moves the galvanometers
such that the focal point remains on the brightest spot. Since many factors can move
the sample (humidity and temperature being the most obvious), we perform this tracking
routine multiple times during the experiment instead of collecting all the data at once.

3.5 Relative amplitude

In an ideal situation, both microwave sources would be produced identically and would be
going through an identical circuit before reaching the NV center. That NV center would
be at equal distance from each wire and would see similar field coming from each wire.
Since this situation is unlikely, we need to characterize the coupling of each source to the
NV center in its frame and adjust it as necessary. To measure and correct that imbalance,
we choose to perform a Rabi experiment with each of the microwave sources, one at a time.
This way, we can measure the imbalance in the circuit directly where it matters, at the site
of the NV center, rather than keeping track of the accumulation of errors in each part of
the circuit. These Rabi experiments will be conducted in a field and target the transition
|0〉 ↔ |−1〉 since we will also require a magnetic field to calibrate the phase. See section
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3.1.1 for a description of a Rabi experiment in high field.

Fits from experiments summarized in figure 3.9 and 3.10 give us a hint of a beating
between two frequencies. They are due to the hyperfine splitting of the Nitrogen, which
introduces a AN,‖Sz term to the Hamiltonian. Given that the relaxation time of the
Nitrogen is of the order of the millisecond and that our experiments are all well under that
time scale, it is a fair approximation to estimate our results as the average of 3 experiments
conducted under different magnetic fields, at −AN,‖Sz, at 0 and at +AN,‖Sz. In the cases
where the field due to the Nitrogen is not 0, the microwaves are then not on resonance.

This increases the Rabi frequency to Ω′ =
√

Ω2 + A2
N,‖ while reducing the contrast.

Given experimental values of AN,‖ = −2.14 MHz [34] and the values of our Rabi fre-
quency around 5 MHz, we would expect to distinguish the peaks on the Fourier Transform
plots. As this is not the case, we chose not to fit the beating and simplify the fit model
for the data. This simplified model doesn’t include effects from the nearby Nitrogen. The
fit are then chosen to support a single frequency and a T2 relaxation. It accepts smaller
values for the amplitude of the oscillation as well as its average. The T2 values are compa-
rable to the values previously obtained with the previous experimental setup. Results are
summarized in table 3.2.

Parameter Value for the fit Value for the fit
of the first wire of the second wire

(95% confidence interval) (95% confidence interval)
A 0.23 (0.18, 0.27) 0.24 (0.20, 0.28)

ω (MHz) 5.506 (5.498, 5.514) 5.277 (5.269, 5.284)
T2 (µs) 6 (3, 9) 5 (3, 8)
C 0.55 (0.54, 0.56) 0.54 (0.53, 0.56)

Table 3.2: Fit of the Rabi oscillations displayed in figure 3.9 using MATLAB fit function.
Function fitted: Tr[ρ |0〉 〈0|] = A cos(2πωt)e−t/T2 + C

3.6 Relative phase

Similarly to the previous section, we will perform specific experiments to measure the angle
between the two microwave sources in the frame of the NV centers. This second crucial
parameter will enable Single Quantum Transitions by giving the relative phase between
each microwave source to reach the desired operations. The first experiment we performed
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is an experiment that generates discrete increments of rotation by z, which we then call a
Discrete Ramsey experiment. The procedure is as follow.

After making sure that the amplitudes from the wires are well calibrated relative to one
another with the previous experiment, we applied a small magnetic field with a permanent
magnet to generate a 100 MHz splitting (about 35 Gauss). The position of the magnet
is determined by placing the magnet at different locations allowed by the stage arm and
recording the splitting produced at the NV center. Using simulation tools and interpola-
tion, we can use this data to predict where the magnet should be placed to produce a field
exclusively along the PAS of the NV of interest, without worrying about its orientation
in the lab frame. This will ensure that we will be allowed to work with pseudo 1/2 spin
operators and that the usual Pauli commutation relations will be observed; a Bloch Sphere
will be appropriate for illustration.

Hence, after calibrating the power of the micro wave sources so that they have the same
values, we prepare the NV center in the |0〉 state. Given the splitting field, we apply a
π/2 rotation with the first microwave source to bring the NV center to a superposition of
|0〉+|1〉√

2
. Once this state is prepared, we apply a π rotation by the second wire, followed by

a π rotation by the first wire. These two π rotations constitute one increment, which will
be repeated multiple times. Finally, a last rotation by −π/2 by the first source will allow
for measurement along the quantization axis. See figure 3.11 for a graphical description.

Expressing the first microwave source along x̂, the second microwave source will be
expressed θ away, resulting in some orientation of n2 = (cos(θ), sin(θ), 0). Given the Pauli
matrices relationships, a π pulse in this direction is given by

Uθ̂(π) = e−i(cos(θ)σx
2

+sin(θ)
σy
2

)π

= −i(cos(θ)σx + sin(θ)σy)

= −i(cos(θ)σx + sin(θ)(iσxσz))

= (−iσx)(cos(θ) + i sin(θ)σz)

= e−iπ
σx
2 ei2θ

σz
2

When this pulse is preceded by a π pulse by x̂, the two π pulses accumulate to the identity,
leaving us with the 2θ rotation by ẑ. By inspection, we can see that θ and θ+π will generate
the same evolution since the extra π factor is multiplied to the identity. Furthermore, taking
the conjugate square of this unitary highlights the fact that a θ or −θ gives the same result.

Therefore, generating series of π pulses will generate an evolution around the ẑ direction,
for which a Ramsey experiment measure the frequency. Since the evolution is discrete and
counted in terms of increments of steps rather than a continuous time evolution, we will
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call this a Discrete Ramsey experiment. The angular frequency will correspond to twice
the angle between the microwaves in the transverse plane, remains to find the appropriate
quadrant.

Parameter Value from the fit
(95% confidence interval)

A 0.37 (0.28, 0.45)
θ (rad) 0.390 π (0.386π, 0.395π)
φ (rad) 1.6π (1.5π, 1.7π)

T2 (increment) 11 (7, 17)
T2 (µs) 2 (1, 3)
C 0.45 (0.43, 0.47)

Table 3.3: Fit of the Discrete Ramsey experiment oscillations displayed in figure 3.12 using
MATLAB fit function.
Function fitted: Tr[ρ |0〉 〈0|] = A cos(π(2θ)n+ φ)e−t/T2 + C

This separation angle is intrinsic and can’t be changed for a given NV center but we
can adjust their relative phase to modify the effective angle between them. It is important
to distinguish the angle between the projection of the wire (which is fixed) and the phase of
each current that goes through them (which can be varied to adjust the final Hamiltonian
at the NV center). They both have an influence on the control we have on the NV center,
but arise from different reasons.

Figure 3.12 displays the result of this experiment. The low contrast is mostly due to a
combination of detuning and over- or under-rotation of the π/2 pulses, which then leave
the NV center not in the transverse plane.

The fit on the data gives: f(n) = A cos(2π(2θ)n+ φ) e−n/T2 +C, where f(n), A, θ, n, φ,
T2 and C are: the dependent variable (Tr[ρ |0〉 〈0|]), the amplitude of the oscillations, the
angle between the two microwave sources, the number of pairs of π pulses, the phase shift,
the transverse relaxation time, and the offset, respectively. Values for these parameters
are given in table 3.3.

3.7 Absolute phase

When conducting the previous experiment, we became aware of the fact that the 2θ rotation
could be too fast to record properly. Indeed, sampling after every 2θ rotation, for θ > π/2,
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provokes under-sampling, since we can’t sample faster than the Nyquist frequency. In
fact, any of the four frequencies θ = ±π ± θ′, where θ′ is the value of interest, would give
us similar data. We then conducted a second experiment that would be sensitive to the
quadrant in which θ would be.

Here is its procedure.

After calibrating the bright and dark state as usual, we prepare the NV center in its
|0〉 state by applying the usual green laser. With the given magnetic field, we apply a π/2
rotation with the first microwave source, fixing its phase to φ1 = 0, to bring the NV center
to a superposition of |0〉+|1〉√

2
. Immediately after, we apply another π/2 rotation with the

second microwave source, with a phase φ2, which will be our independent variable. At this
point, the state readout is going to be the dependent variable.

Again, assuming that the first pulse can be expressed along x̂ exclusively, the second
microwave source will be along cos(θ)x̂ + sin(θ)ŷ. Assuming that 1) the magnetic field is
positive, 2) it produces a splitting of ω and 3) ω >> Ω, then in the rotating frame, the
Hamiltonians are

H1 =
Ω√
2

cos(φ1)Sx −
Ω√
2

sin(φ1)S ′y + ω(Sz + S2
z ) (3.26)

H2 =
Ω√
2

cos(θ)(cos(φ2)Sx − sin(φ2)S ′y)

+
Ω√
2

sin(θ)(cos(φ2)Sy − sin(φ2)S ′x)

+ ω(Sz + S2
z ) (3.27)

At this point, as in section 3.1.1, we will use the qubit approximation to simplify the
situation. This approximation is not necessary to reach the conclusion but it makes it
easier to follow, by focusing our attention to one subset of the dynamics at a time. Looking
at the lower part of the Hamiltonian (discarding anything involving |1〉), we have

H ′1 =
Ω

2
(cos(φ1)σx − sin(φ1)σy) (3.28)

H ′2 =
Ω

2
(cos(θ − φ2)σx + sin(θ − φ2)σy)) (3.29)

The extra factor of 1√
2

comes from the definition of the spin-1 operators. σx and σy are
the Pauli Operators.
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Applying these two Hamiltonians one at a time to generate a π/2 pulse each time, the
final state is

Pr(|0〉 〈0|) = Tr
[
|0〉 〈0| e−iH′2π/(2Ω)e−iH

′
1π/(2Ω) |0〉 〈0| eiH′1π/(2Ω)eiH

′
2π/(2Ω)

]
(3.30)

=
1

2
(1− cos(θ + φ1 − φ2)) (3.31)

We then get a cosine oscillation as a function of φ2 whose phase is given by ψ1 = θ + φ1.
This doesn’t seem too useful until we repeat the same experiment for the other resonant
condition, when (Sz +S2

z )→ (Sz−S2
z ). We then turn our attention to the |1〉 and |0〉 part

of the Hamiltonian by using the qubit approximation once more. We get:

H ′′1 =
1√
2

(cos(φ1)σx + sin(φ1)σy) (3.32)

H ′′2 =
1√
2

(cos(θ + φ2)σx + sin(θ + φ2)σy)) (3.33)

This second pulse sequence gives

Pr(|0〉 〈0|) =
1

2
(1− cos(θ − φ1 + φ2)) (3.34)

This time, the phase is ψ2 = −θ+ φ1. Taking the sum or the difference of the phases from
each experiment then gives us the angle between the microwave sources and the phase of
the first microwave in the NV center frame:

θ =
ψ1 − ψ2

2
(3.35)

φ1 =
ψ1 + ψ2

2
(3.36)

For these experiments, we placed the magnet to produce a 40 MHz splitting. Their
results are on figure 3.13, with the values for the fit in table 3.4. This then gives us a value
for θ of θ = (−0.59 ± 0.09)π. This would then seem in rather good agreement with the
value obtained from the Discrete Ramsey Oscillations, which, in the last section, gave us
θ = (0.390± 0.005)π, granted that the quadrant is chosen appropriately (an addition of π
would be adequate).

However, through the setup of the experiment, the symmetry of the circuit was not
taken into consideration. Instead, each half of the circuit going from the AWG to the sample
board was connected with cables of different length. Though this physical length translates
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Parameter Value for the experiment Value for the experiment
at 2.850 GHz at 2.890 GHz

(95% confidence interval) (95% confidence interval)
A 0.19 (0.17, 0.21) 0.45 (0.38, 0.52)

ψ1 or ψ2 (rad) 1.13π (1.09π, 1.16π) 1.72π (1.67π, 1.77π)
C 0.32 (0.31, 0.34) 0.44 (0.39, 0.49)

Table 3.4: Fit of the pulsed experiment displayed in figure 3.13 using MATLAB fit function.
Function fitted: Tr[ρ |0〉 〈0|] = A cos(2πφ2 + ψi) + C

to different electrical lengths at a given frequency, this only translates to a different relative
phase at the site of the NV center. More specifically, this relative phase then depends on the
frequency, which means that the phase-phase experiments we conducted at two different
frequencies have different relative phases. The results obtained in this section are then
to be taken with a grain of salt and a more expansive description of this problem (and
potential solutions) is given in chapter 4. In general, this phase dependence is mostly linear
with the length of the wires when the circuit doesn’t display resonances.

3.8 Relative phase at low field

The question remains of the necessity of the magnetic field to conduct all of these experi-
ments. The fact is that using a magnetic field was a very nice tool to work with the Pauli
operators but some relationships still apply at zero field, when we can’t make the qubit
approximation.

3.8.1 Discrete Ramsey experiment at zero field

Using an approach similar to section 3.6, we will assume the amplitudes have already been
calibrated. Once they are calibrated, without the magnetic field, in the rotating frame,
the control Hamiltonians of each microwave sources are:

H̃1 = Ω/
√

2(cos(φ1)Sx− sin(φ1)S ′y) (3.37)

H̃2 = Ω/
√

2
(

cos(θ)(cos(φ2)Sx − sin(φ2)S ′y) + (sin(θ)(cos(φ2)Sy − sin(φ2)S ′x)
)

(3.38)

While it is harder to work with the exponents of the spin-1 than those of the spin-1/2,
the spin-1 operators exhibit the same property that we needed earlier. The second pulse
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can be re-written as:

Uθ̂(π) = e−i(cos θSx+sin θSy)π (3.39)

= e−iπSxe−i(−2θ)Sz (3.40)

Crucially, this is independent of the phase of the second pulse, φ2. Similarly, the first
unitary is independent of the first phase, of the Hamiltonian from the first microwave
source, φ1. Thus, if this re-written Unitary is preceded by a π pulse by x̂, the first part
accumulates to the identity and we are left with a ẑ rotation by an angle 2θ.

Unlike the case of the experiment with a field, the angular frequency that we could
measure would be given by:

P (t) =
∣∣∣〈0| e−iSxπ/2 · Uθ̂(π) · e−iH̃1

√
2π/Ω · e−iSxπ/2 |0〉

∣∣∣2
=

1 + cos(4θ)

2

This second measure of the angle is now twice as sensitive to under-sampling, but can
be used in conjunction with the first Discrete Ramsey experiment to narrow down the
value of θ.

With the setup that we have currently, there is no efficient way to take out the magnet
and reliably put it back at the same location. This limited the number of experiment we
wanted to do. If we could achieve zero-field reliably, we could perform these experiments
so the next chapter covers suggestions on how to improve the current setup to allow simple
experiments at zero field, with other suggestions as well.

3.8.2 Phase-phase experiment at zero field

Encouraged by the new information one could get at zero field with a Discrete Ramsey
experiment, one could be interested in repeating the Phase-phase experiment at zero field
for a similar effect.

This time, the Hamiltonian imparted by each microwave source is given by:

H1 =
Ω√
2

cos(φ1)Sx −
Ω√
2

sin(φ1)S ′y (3.41)

H2 =
Ω√
2

cos(θ)(cos(φ2)Sx − sin(φ2)S ′y) +
Ω√
2

sin(θ)(cos(φ2)Sy − sin(φ2)S ′x) (3.42)
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At this point, there is no point in looking at the top or the bottom part of the matrix since
there is no suppression of transitions this time. The simple application of each pulse then
gives:

P (t) =
∣∣〈0| e−iS1π/2 · e−iH2π/2 |0〉

∣∣2
=

1 + cos(2θ)

2

And this value is independent of φ2, the variable we were sweeping. Thus, this would give
us a single value, independent of the relative phase of each microwave source, to compare
with our other methods. It is then advantageous to enable zero field experiments given
these two experiments.

3.9 Confirmation of the characterization

Conducting few experiments, we can in theory confirm that we have the right values for
the relative amplitudes as well as the angle between the microwave sources.

3.9.1 Confirmation of relative amplitudes

Using the characterization methods we laid out in this chapter, conducting Rabi experi-
ments under various conditions can confirm that the ratio of the amplitudes is calibrated
properly. As we only worked with a magnetic field, we prepared three experiments. The
first one, the reference, is a single transition between |0〉 and |1〉 in a field, with a single

wire, which gives us the value Ω. The second, a dual transition (|0〉 ↔ |−1〉+|1〉√
2

), in a field,

also with a single wire, will give us a Rabi frequency of Ω/
√

2. Finally, a third transition,
between |0〉 and |1〉 in a field, but with both wires this time, will give us a Rabi frequency
of 2Ω.

3.9.2 Confirmation of relative phase

Because the Rabi experiment at high field with two microwave sources is independent of
the angle, these previous experiments don’t confirm the relative phase. We need to use
other experiments for that. Z. Wang described in her thesis [33], a pulsed experiment that

follows this procedure: after preparing the NV center in |−1〉+|+1〉√
2

with a π/2 pulse by Sx,
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Conditions Frequency measured
1 wire 5.71 ± 0.02
Single Transition 5.37 ± 0.02
1 wire 3.90 ± 0.01
Dual Transition 3.99 ± 0.02
2 wires 11.37 ± 0.02
Single Transition 11.19 ± 0.02

Table 3.5: Rabi Frequency measured under different conditions.
For each condition, the frequency was measured twice.

we apply the pulse designed by the calibrating experiments. Applying a π/2 rotation by Sx
to bring the NV center state back in the measurement subspace, we can observe the effect
of the unitary. A double quantum transition will not have the same effect as a Sx operation
or as the identity. Others [2, 3] use Electron Spin Resonance (ESR) experiments to show
that one of the two transitions can be suppressed in a field. Once the electrical length
issue is tackled and the relative phase is controlled, this straightforward experiment can be
performed with fields large enough to produce non-overlapping ESR peaks or even at lower
fields. The advantage of the larger fields is that in this regime, the qubit approximation can
be used to reduce the problem to spin-1/2 dynamics and enable the Bloch equations to be
used directly while the smaller fields let us confirm that the suppression of the transition
can only come from the polarization of the microwaves, as opposed to de-tuning of the
microwaves. A non-rigorous example of this low field ESR experiment is given in appendix
E.
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Figure 3.8: Rabi experiment repeated 65 million times for each wire. Line connecting each
point is given as a guide to the eye.
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(a) Rabi oscillations when the system is driven
by the first wire only.
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(b) Rabi oscillations when the system is driven
by the second wire only.

Figure 3.9: Normalized data from 3.8. Line connecting the points is a guide to the eye.
Fit results given in table 3.2
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(a) Power Spectrum for Rabi oscillations when
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(b) Power Spectrum for Rabi oscillations when
the system is driven by the second wire only.

Figure 3.10: Power spectrum of the Rabi flops
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Figure 3.11: Pulse diagram of the Discrete Ramsey Experiment.
After a sequence of initialization done as in section 1.4.1, a series of π pulses is applied by
each wire, which is surrounded by π/2 pulses by one of the wires to prepare and measure.
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Figure 3.12: Discrete Ramsey experiment repeated 75 million times.
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Figure 3.13: Evolution of the population of |0〉 as the two π/2 pulses get in and out of
alignment.

Notice the different scale for the vertical axis.
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Figure 3.14: An expected frequency of 1Ω corresponds to a single transition under a
magnetic field. Expected ratios are treated in section 3.1 and summarized in table 3.5
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Chapter 4

Improvements on the current design

4.1 Current issues

While each experiment was conducted successfully, one central aspect of the circuit was
neglected, leading to unreliable data. Since we are using microwaves with frequencies
around 3 GHZ, the corresponding wavelength is about 10 cm. In order for each signal to
remain in phase, it is then imperative that both sections of the circuit have the same length,
to much less than 10cm of difference. This is even more important when working with
different frequencies, since the phase different changes with the electrical length difference.

In a simple example, in a wire where the electric signal would travel at constant speed,
the current can be described with a planar wave equation:

I(x, t) = Ae−i(ωt+kx) (4.1)

where I is the current, x and t are the position along the wire and the time respectively,
A is the amplitude and ω and k are the constant angular frequency and wave number
respectively. The phase of the planar wave is then the argument of the exponential. If k
is unknown, it is then convenient, for a given angular frequency, to express the (electrical)
length of the wire in terms of phase. Similarly, for a given wire with a fixed length, using
different frequencies generates different phases in the signal. The situation at hand is then
one where there are two wires of different lengths that are used to carry microwaves at
different frequencies.

This had been neglected when the current setup was assembled, leading to each half of
the circuit exhibiting vastly different electrical lengths. For the current experiments, this
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means that the phase difference between the signals, which is set at the AWG, picks up an
additional quantity depending at which frequency the experiment is conducted.

Consequently, when we conducted the phase-phase experiment, the phase difference we
measured was also frequency dependent. In the ideal case, for equal electrical length, the
phase difference depends on the phase of the first signal (φ1), the phase of the second signal
(φ2) and the angle between the microwave sources (θ), each independent of frequency. In
our real case, for different electrical length, the phase difference is now a function of φ1(ω),
φ2(ω) and θ.
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Figure 4.1: Phase accumulated in the wires from the channels 1 and 2 of the AWG (I and
Q) to the mixer

To support this idea, we measured the accumulated phase at different frequencies with
the help of a network analyzer. Specifically, we measured the phase accumulated from
the I and Q channels of the AWG to the mixer and from the mixer to the sample board.
Figures 4.1 and 4.2 show that the phase difference between I and Q is very similar across
all frequencies for both sources; they can be kept as is1. Figure 4.3 shows that the phase

1Fitting a linear slope on the accumulated phase as a function of the frequency, the electrical length
can be computed as 83 cm, longer than the 60 cm of physical length and giving a velocity factor of 0.72 c.
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Figure 4.2: Electrical length of the wires from the channels 3 and 4 of the AWG (I and Q)
to the mixer

difference between each half of the circuit beyond the mixer until the sample board is very
different across the frequency range we have been using (2.82 GHz to 2.92 GHz)2. They
will need to be replaced and immobilized by means of a solid box or secure attachments
so that they display a much more constant phase difference and robustly do so.

Once the circuit itself is symmetric, one can turn their attention to the circuit board,
which is not symmetric with respect to the electrical length.

4.2 Proposition for a new sample board

In order to ensure that the circuit is as symmetric as possible, we should update the design
of the sample board. The current setup looks symmetric but a quick inspection reveals
that the electrical length of each line is different, the path from SMA IN 1 to SMA OUT 1

2This time, the electrical length of the first cable can be computed to be 7.2 m while the second cable
is 3.4 m
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Figure 4.3: Electrical length of the wires from the mixers 1 and 2 to the input of the sample
board

is longer that the path from SMA IN 2 to SMA OUT 2. A simple update could be to rotate
the section where the wires are close together and prevent the wires from crossing the axe
of symmetry, connecting the each input to the end of the wire further from the edge where
the SMA connectors lie and the output to the close end of the wire. As a quick example,
without care of dimensions or consideration for sharp edges or resonance properties of the
sample board, one could make a sample holder as the one on figure 4.4b.

From working with the current setup, I would like to suggest another modification:
the spacing between the SMA connectors. As it is currently, all four ports are quite close
together on a single edge and tightening SMA cables to their port can be a frustrating
endeavour. A solution to this could be to make the new sample board longer such that it
hangs further out on the stage on which it rests. This would allow the SMA connectors to
be installed on three edges instead of one, increasing the spacing between the connectors,
making it easier to install and uninstall the sample holder, to clean it for instance.
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(a) Diagram of the current sample holder

SMA
IN 1

SMA
IN 2SMA

OUT 1
SMA
OUT 2

(b) Diagram of the new sample holder

Figure 4.4: Current and suggested PCB sample holders.

4.3 Improvement for the magnet

With the current setup, we use a bar magnet to produce a permanent magnetic field at
the site of the NV center. The bar magnet is placed arbitrarily on a stage, which has a
range of motion of an inch in each three directions. The calibration of the position of the
magnet with respect to the NV center is done by measuring, with an NV center, the field
produced by moving the stage at several locations. Using software previously developed,
we then find the NV center orientation, its potential rotation from the lab frame and its
distance between the NV center and the magnet numerically, with a least square fitting
method. In turn, these values are used to compute the position of the magnet to produce
a field along the Principal Axis of the NV center, with splitting of 0 to 100 MHz. Given
the limited range of motion of the stage and the geometry of the NV center, it is likely
that for some orientations of NV center, the magnet cannot be placed to produce a field
in its ẑ direction only, with large enough splittings.

If future experiments still require the ability to change from a high field to a low field
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(a) Diagram of the current setup to hold and
move the magnet.
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(b) Diagram for a suggested magnet holder,
with additional board to easily mount and dis-
mount the magnet whenever necessary.

Figure 4.5: Current and suggested magnet holders.

with a bar magnet, we suggest to modify the setup slightly to allow the magnet to be taken
away and placed back at the exact same location. This could be as simple as a little board
with hooks on the sides to rest on the stage, going back to the same location every time,
as seen on the diagram of figure 4.5b. Instead of taping the magnet to the stage as it is
currently, the magnet could be attached to the board and the board could be easily put
on and off the stage. Naturally, there are more options, such as replacing the stage for
another one with much larger motion range, detaching the diamond from its board and re
mounting it until the orientation of the NV centers within is desirable, changing the bar
magnet by an electromagnet that could be turned off and so on. However, this solution of
installing a magnet holder on top of the stage has the advantage of being easy to implement
and modify as little as possible to the current setup. The current and suggested setups
can be seen in figure 4.5.

Alternatively, one could position a solenoid on the stage arm, which would allow turning
on the magnetic field on command as well as controlling its magnitude more gradually.

4.4 Synchronize the devices

In the current setup, the AWG and the frequency synthesizer are each operating with
their own internal clock. This offers two potential problems: they might have slightly

80



different frequencies and accumulate phase difference over time and there is no guarantee
that they are in phase, leading to a phase difference at the beginning of each experiment.
The frequency generated by the Synthesizer is used to generated the ≈2.87 GHz carrier
frequency and is split before the I/Q mixers, which are triggered by the AWG to generate
the envelope of the signal, square in all our experiments. If this causes a phase difference,
this will trickle down the rotating wave approximation as an offset of the reference in the
rotating frame. If there is only one microwave source, this is irrelevant as the reference can
be defined arbitrarily, but in the case of two microwave sources, especially when dealing
with multiple NV center orientations at once, this is important.

To improve this situation, one of the devices should be set as a reference clock, which
can be used by the other. Since the AWG has a vast library of functions and is easier
to program than the Synthesizer, it is easier to control its reference input, that is the
Synthesizer will serve as the reference (outputting a signal) while the AWG will be timed
on this signal.

At factory default, the Synthesizer will output a 10 MHz signal from its REF OUT
port, not to be confused with the RF OUT port which provides the requested ≈ 2.87 GHz.
This can then be connected to the AWG, via its Reference Clock Input. Finally, a few
commands need to be executed on the AWG to specify the new eternal source as the clock
source. The details of the command lines to execute are in Appendix F.
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Chapter 5

Extension to ensemble control

We demonstrated that two microwave sources can be characterized to control a single NV
center by controlling the microwave field at its site. In the next section, we will propose
that homogeneous fields across the whole sample can allow the control of ensembles of NV
centers with the same orientation at once and even take into account the NV centers of
other orientations.

Since we are now dealing with different NV center orientations, we will need to be more
careful with the orientation of each NV center and keep track of frame transformations
between the lab frame and each NV center frame. Since the only axis that is intrinsic to
the NV center frame is its ẑ axis, changing frames, from the lab frame to a NV center
frame, can be done with any rotation effecting the ẑ axis, and there are infinitely many
of such rotations. Without looking too far, one simple way to rotate the ẑ axis from one
frame to the other is to execute a rotation of the angle between the two ẑ axes (using the
dot product) about their cross product. Since the NV centers are all in a crystal structure,
we will break down this frame transformation in two steps. The first transformation maps
the lab frame to the crystal frame, which depends on the cut of the diamond, and the
second transformation maps the crystal frame to each of the NV centers, which is the same
regardless of the crystal cut.

For example, regarding the first transformation, the 〈1 1 1〉 diamond cut will have its
ẑ axis along ~u111 = 1√

3
(1, 1, 1) and the frame transformation between the lab frame and

the crystal frame will be Rlc = R~vlc(θlc) such that the rotation is applied about the vector
~vlc = ẑ× ~u111 = 1√

3
(−1, 1, 0) and by an angle θlc = arccos (ẑ · ~u111) = arccos (1/

√
3) where

l is associated with the lab frame and c is associated with the crystal frame.

Regarding the second transformation, within a crystal frame, the NV centers will be
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Direction Rotation angle θi Rotation vector ~vi
NV1: ~u1 θ1 = arccos

(
1/
√

3
)

~v1 = 1/
√

2 (−1, 1, 0)

NV2: ~u2 θ2 = arccos
(
1/
√

3
)

~v2 = 1/
√

2 (1, 1, 0)

NV3: ~u3 θ3 = arccos
(
−1/
√

3
)

~v3 = 1/
√

2 (−1,−1, 0)

NV4: ~u4 θ4 = arccos
(
−1/
√

3
)

~v4 = 1/
√

2 (1,−1, 0)

Table 5.1: Frame transformation between the crystal frame and each NV center frame

distributed along ~u1 = 1√
3
(1, 1, 1), ~u2 = 1√

3
(1,−1,−1), ~u3 = 1√

3
(−1, 1,−1) and ~u4 =

1√
3
(−1,−1, 1). The rotation between the crystal frame and each of the NV center frames

labeled with i is then always the same: R~vi(θi) where ~vi = ẑ × ~ui is angle of rotation and
θi = arccos (ẑ · ~ui) is the angle of rotation. For an explicit list, see table 5.1

Using these two frame transformations in succession, we then have a tool to express the
fields that are produced in the laboratory frame in each NV center frame and then find the
effect of a given Hamiltonian on each of these orientations. Assuming that the microwave
sources are perpendicular in the laboratory frame, the control Hamiltonian is

Hctrl = Ω1 cos (ωt+ φ1)Sx + Ω2 cos (ωt+ φ2)Sy

We can express this Hamiltonian in the frame of each of the 4 NV centers:

H i
ctrl = Ω1 cos (ωt+ φ1)R~vi(θi) ·Rlc · Sx + Ω2 cos (ωt+ φ2)R~vi(θi) ·Rlc · Sy

where R~vi(θi) is a rotation about the vector ~vi by an angle θi, defined in table 5.1. For
instance, using the 〈1 1 1〉 defined diamond cut, x̂ and ŷ would now be expressed in multiple
directions, as expressed in table 5.2.

Finally, we will reuse equations 1.26 to 1.32 to express the Hamiltonian, from the lab
frame, in the rotating frame of each NV center. Terms will be collected by their factor
Ωif(φi) where i is 1 or 2; the index of the microwave source and f is cos or sin; the
trigonometric function of φi. An example is given in table 5.3.

Once the control fields are expressed in the frames of each of the four NV center
orientations, we have the tools required to use a GRadient Ascneding Pulse Engineering
(GRAPE) algorithm to design the pulse of interest. In the lab frame, we have control
over Ω1, Ω2, φ1 and φ2, which can vary between maximal values of Ω ∈ [−Ωmax,Ωmax]
and φ ∈ [0, 2π], where Ω (or φ) are used to denote either Ω1 (or φ1) or Ω2 (or φ2) and
where Ωmax is the maximal amplitude one can provide. In our case, we set Ωmax at 5
MHz, which is close to the experimental values we reached in chapter 3. Additionally, we
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NV center frame and direction R~vi(θi) ·Rlc · x̂ R~vi(θi) ·Rlc · ŷ

NV1 : ~u1

(
3 +
√

3

6
,
−3 +

√
3

6
,−
√

3

3

) (
−3 +

√
3

6
,
3 +
√

3

6
,−
√

3

3

)
NV2 : ~u2

(
3−
√

3

6
,
3 +
√

3

6
,−
√

3

3

) (
3 +
√

3

6
,
3−
√

3

6
,

√
3

3

)
NV3 : ~u3

(
3−
√

3

6
,
3 +
√

3

6
,

√
3

3

) (
3 +
√

3

6
,
3−
√

3

6
,−
√

3

3

)
NV4 : ~u4

(
3 +
√

3

6
,
−3 +

√
3

6
,

√
3

3

) (
−3 +

√
3

6
,
3 +
√

3

6
,

√
3

3

)
Table 5.2: Unit vectors of the laboratory frame expressed in NV center frames

Independent variable Operator
(Amplitude)

Ω1 cos(φ1) 1/12
(

(3 +
√

3)Sx + (−3 +
√

3)Sy

)
Ω1 sin(φ1) −1/12

(
(−3 +

√
3)S ′x + (3 +

√
3)S ′y

)
Ω2 cos(φ2) 1/12

(
(−3 +

√
3)Sx + (3 +

√
3)Sy

)
Ω2 sin(φ2) −1/12

(
(3 +

√
3)S ′x + (−3 +

√
3)S ′y

)
Table 5.3: Amplitudes of each operator in the frame of the (1, 1, 1) NV center in the 〈1 1 1〉
diamond cut
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will restrict the range of φ1 and φ2 such that their image will be virtually independent:
cos(φ1), sin(φ1) ∈ [−1/

√
2, 1/
√

2]. This additional step is not necessary but simplifies
the simulation by making the coefficients of each control Hamiltonian dependent on linear
functions of cos(φ) (and sin(φ)) instead of dependent on trigonometric functions of φ. Given
this set of parameter ranges, the internal Hamiltonian, the control Hamiltonians described
earlier, the target unitary and an initial pulse sequence chosen randomly, the algorithm
incrementally improves the pulse sequence until the final pulse sequence approaches the
target unitary. For demonstration, the unitary we want to apply is to apply the same pulse
on all NV centers, a π/2 rotation by S+

x . The last step is to transform back the solutions
given by the simulation into values for Ω1, Ω2, φ1 and φ2. This will easily be done by
solving the system of four equations and four unknown at each time step.

As an example, using the previously mentioned control Hamiltonians, a randomly gen-
erated pulse sequence as the seed of the pulse engineering, and 100 steps of 10 ns, we
find a solution that offers the unitary of interest, within a global phase, with a fidelity of
0.999, using the Frobenius distance for this metric. Plots can be found in figure 5.1. The
Frobenius distance is defined as:

||U − V ||2F = Tr
{

(U − V )(U − V )†
}

(5.1)

= ||U ||2F + ||V ||2F + Tr
{
UV †

}
− Tr

{
V U †

}
(5.2)

= 2d2 − 2 Re
{

Tr
{
UV †

}}
(5.3)

Where U and V are the unitaries to compare and d is the dimension of the unitaries, 3 in
this case.

Few more considerations need to be taken into account for these simulations. First,
using a 〈1 1 1〉 diamond, we made sure that the microwave fields in each NV center frame
were not co-planar with the PAS. If that was the case, using the first microwave source
to define the x̂ direction as done previously, each control Hamiltonian would only have
contribution of Sx and Sz, lacking the necessary Sy. In the lab frame, this can be seen if
the PAS of any NV center is in the vector space spanned by the vector fields of the two
microwave sources.

Furthermore, two NV center orientations can’t have the same coefficients for their
control Hamiltonians. This would come up if the vectors describing the fields from both
microwave source lied in the plane of symmetry between PAS from two NV centers. In that
case, two NV centers would have similar coefficients for their control Hamiltonian. The
coefficients in x̂ and ŷ would be the same and only the sign of the ẑ coefficient would be
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different and unless the microwave couplings are of the order of the ZFS (which is not the
case in this experiment; the microwave coupling is about 5 MHz while the ZFS is about 3
GHz), that difference will be negligible, they can be suppressed during the RWA.

Beyond these geometric edge cases to keep an eye out for, other orientations of diamond
will be adequate to perform arbitrary unitaries on each of the NV centers individually.
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Figure 5.1: Example of pulse sequence producing a π/2 rotation about S+
x for each NV

center orientation.
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(a) Bloch Sphere trajectory for NV1 (b) Bloch Sphere trajectory for NV2

(c) Bloch Sphere trajectory for NV3 (d) Bloch Sphere trajectory for NV4

Figure 5.2: Trajectories in a Bloch Sphere representation as per our simulation.
Given that NV center are spin-1 objects and can’t be represented in a Bloch Sphere, we

are here focusing on the subspace spanned by |0〉 and |1〉. We have |+Z〉 = |0〉,
|−Z〉 = |+1〉, |+X〉 = |0〉+|1〉√

2
, |−X〉 = |0〉−|1〉√

2
, |+Y 〉 = |0〉+i|1〉√

2
, |−Y 〉 = |0〉−i|1〉√

2
.
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Conclusion

This thesis saw the development of new techniques to characterize two microwave sources
as seen by an NV center. With these techniques, one can reliably measure the power of their
microwave sources in the frame of the NV center as well as measuring the angle between
the projection of each source in this frame. With this information, we demonstrated how
one can adjust the relative power and the phase between the sources to generate circularly
polarized pulses that carry angular momentum, able to target specific transitions between
the ms = 0 level of the NV center to only one other level, suppressing transitions to the
third level. This is especially useful when we consider NV centers in the absence of a
magnetic field, where linearly polarized microwaves would fail to distinguish between the
ms = −1 and ms = 1 states, which are degenerate. Finally, with this techniques to control
any orientation of NV centers located in a volume larger than demonstrated previously [3],
the next step on which one can focus their attention is to control ensembles of NV centers
by means of pulse sequences to target each orientation separately, generating independent
unitaries for each.

In addition to these novel techniques, we covered the maintenance of the confocal
microscope used to perform ODMR on a single NV center, its improvement to work with
this new setup requiring two microwave sources as well as the steps we took to optimize it.
Similarly, the electric circuit underwent a significant improvement to support the addition
of another microwave source, which came with a delicate update of the software, custom
built, that controls the whole apparatus.

We have reviewed each section of the optical table and covered the metrics used to
confirm its rightful operation, from the laser source to the avalanche photo diode, going
through the acousto-optic modulator, the mode shaping arm, the telescope and the objec-
tive. We have thus emphasized on the maintenance of the optic table as the first step to
enable the spin experiments to come to fruition.
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T. Wolf, F. Reinhard, L. C. L. Hollenberg, F. Jelezko, and J. Wrachtrup. Electric-
field sensing using single diamond spins. Nature Physics, 7:459 EP –, Apr 2011. URL
https://doi.org/10.1038/nphys1969.

[16] G. Kucsko, P. C. Maurer, N. Y. Yao, M. Kubo, H. J. Noh, P. K. Lo, H. Park, and
M. D. Lukin. Nanometre-scale thermometry in a living cell. Nature, 500:54 EP –, Jul
2013. URL https://doi.org/10.1038/nature12373.

[17] Om Patange. On an instrument for the coherent investigation of nitrogen-vacancy
centres in diamond, 2013. URL http://hdl.handle.net/10012/7955.

[18] M W Doherty, J Michl, F Dolde, I Jakobi, P Neumann, N B Manson, and J Wrachtrup.
Measuring the defect structure orientation of a single NV- centre in diamond. New
Journal of Physics, 16(6):063067, jun 2014. doi: 10.1088/1367-2630/16/6/063067.
URL https://doi.org/10.1088%2F1367-2630%2F16%2F6%2F063067.

[19] N. B. Manson, J. P. Harrison, and M. J. Sellars. Nitrogen-vacancy center in diamond:
Model of the electronic structure and associated dynamics. Phys. Rev. B, 74:104303,
Sep 2006. doi: 10.1103/PhysRevB.74.104303. URL https://link.aps.org/doi/10.

1103/PhysRevB.74.104303.

[20] J. A. Larsson and P. Delaney. Electronic structure of the nitrogen-vacancy center in
diamond from first-principles theory. Phys. Rev. B, 77:165201, Apr 2008. doi: 10.
1103/PhysRevB.77.165201. URL https://link.aps.org/doi/10.1103/PhysRevB.

77.165201.

[21] Yoshimi Mita. Change of absorption spectra in type-ib diamond with heavy neutron
irradiation. Phys. Rev. B, 53:11360–11364, May 1996. doi: 10.1103/PhysRevB.53.
11360. URL https://link.aps.org/doi/10.1103/PhysRevB.53.11360.

[22] M. W. Doherty, F. Dolde, H. Fedder, F. Jelezko, J. Wrachtrup, N. B. Manson, and
L. C. L. Hollenberg. Theory of the ground-state spin of the nv− center in diamond.
Phys. Rev. B, 85:205203, May 2012. doi: 10.1103/PhysRevB.85.205203. URL https:

//link.aps.org/doi/10.1103/PhysRevB.85.205203.

[23] D.J. Griffiths. Introduction to Quantum Mechanics. Cambridge University Press, 2016.
ISBN 9781107179868. URL https://books.google.ca/books?id=0h-nDAAAQBAJ.

92

https://link.aps.org/doi/10.1103/PhysRevLett.104.070801
https://doi.org/10.1038/nphys1969
https://doi.org/10.1038/nature12373
http://hdl.handle.net/10012/7955
https://doi.org/10.1088%2F1367-2630%2F16%2F6%2F063067
https://link.aps.org/doi/10.1103/PhysRevB.74.104303
https://link.aps.org/doi/10.1103/PhysRevB.74.104303
https://link.aps.org/doi/10.1103/PhysRevB.77.165201
https://link.aps.org/doi/10.1103/PhysRevB.77.165201
https://link.aps.org/doi/10.1103/PhysRevB.53.11360
https://link.aps.org/doi/10.1103/PhysRevB.85.205203
https://link.aps.org/doi/10.1103/PhysRevB.85.205203
https://books.google.ca/books?id=0h-nDAAAQBAJ


[24] Marcus W. Doherty, Neil B. Manson, Paul Delaney, Fedor Jelezko, Jrg Wrachtrup,
and Lloyd C.L. Hollenberg. The nitrogen-vacancy colour centre in diamond. Physics
Reports, 528(1):1 – 45, 2013. ISSN 0370-1573. doi: https://doi.org/10.1016/
j.physrep.2013.02.001. URL http://www.sciencedirect.com/science/article/

pii/S0370157313000562. The nitrogen-vacancy colour centre in diamond.

[25] Hincks, Ian. Exploring practical methodologies for the characterization and control of
small quantum systems, 2018. URL http://hdl.handle.net/10012/13711.

[26] M. L. Goldman, A. Sipahigil, M. W. Doherty, N. Y. Yao, S. D. Bennett, M. Markham,
D. J. Twitchen, N. B. Manson, A. Kubanek, and M. D. Lukin. Phonon-induced
population dynamics and intersystem crossing in nitrogen-vacancy centers. Phys.
Rev. Lett., 114:145502, Apr 2015. doi: 10.1103/PhysRevLett.114.145502. URL https:

//link.aps.org/doi/10.1103/PhysRevLett.114.145502.

[27] Lucio Robledo, Hannes Bernien, Toeno van der Sar, and Ronald Hanson. Spin dy-
namics in the optical cycle of single nitrogen-vacancy centres in diamond. New Jour-
nal of Physics, 13(2):025013, feb 2011. doi: 10.1088/1367-2630/13/2/025013. URL
https://doi.org/10.1088%2F1367-2630%2F13%2F2%2F025013.

[28] Ian Hincks. nvham, August 2018. URL https://github.com/ihincks/nvham.

[29] Michal Leskes, P.K. Madhu, and Shimon Vega. Floquet theory in solid-state nuclear
magnetic resonance. Progress in Nuclear Magnetic Resonance Spectroscopy, 57(4):345
– 380, 2010. ISSN 0079-6565. doi: https://doi.org/10.1016/j.pnmrs.2010.06.002. URL
http://www.sciencedirect.com/science/article/pii/S0079656510000798.

[30] Richard P. Mildren, James E. Butler, and James R. Rabeau. Cvd-diamond external
cavity raman laser at 573 nm. Opt. Express, 16(23):18950–18955, Nov 2008. doi:
10.1364/OE.16.018950. URL http://www.opticsexpress.org/abstract.cfm?URI=

oe-16-23-18950.

[31] ISO 11146-1:2005. Lasers and laser-related equipment – Test methods for laser beam
widths, divergence angles and beam propagation ratios – Part 1: Stigmatic and simple
astigmatic beams. Standard, International Organization for Standardization, Geneva,
CH, January 2001.

[32] K.-M. C. Fu, C. Santori, P. E. Barclay, and R. G. Beausoleil. Conversion of neutral
nitrogen-vacancy centers to negatively charged nitrogen-vacancy centers through selec-
tive oxidation. Applied Physics Letters, 96(12):121907, 2010. doi: 10.1063/1.3364135.
URL https://doi.org/10.1063/1.3364135.

93

http://www.sciencedirect.com/science/article/pii/S0370157313000562
http://www.sciencedirect.com/science/article/pii/S0370157313000562
http://hdl.handle.net/10012/13711
https://link.aps.org/doi/10.1103/PhysRevLett.114.145502
https://link.aps.org/doi/10.1103/PhysRevLett.114.145502
https://doi.org/10.1088%2F1367-2630%2F13%2F2%2F025013
https://github.com/ihincks/nvham
http://www.sciencedirect.com/science/article/pii/S0079656510000798
http://www.opticsexpress.org/abstract.cfm?URI=oe-16-23-18950
http://www.opticsexpress.org/abstract.cfm?URI=oe-16-23-18950
https://doi.org/10.1063/1.3364135


[33] Wang, Zimeng. Probing surface spin interaction dynamics using nitrogen-vacancy
center quantum sensors with high-fidelity state-selective transition control, 2017. URL
http://hdl.handle.net/10012/12659.

[34] S. Felton, A. M. Edmonds, M. E. Newton, P. M. Martineau, D. Fisher, D. J. Twitchen,
and J. M. Baker. Hyperfine interaction in the ground state of the negatively charged
nitrogen vacancy center in diamond. Phys. Rev. B, 79:075203, Feb 2009. doi: 10.
1103/PhysRevB.79.075203. URL https://link.aps.org/doi/10.1103/PhysRevB.

79.075203.

[35] ISO 11146-2:2005(E). Lasers and laser-related equipment Test methods for laser
beam widths, divergence angles and beam propagation ratios Part 2: General astig-
matic beams. Standard, International Organization for Standardization, Geneva, CH,
February 2005.

[36] AWG5000 and AWG7000 Series Arbitrary Waveform Generators Programmer Man-
ual. Tektronix, Inc., 14150 SW Karl Braun Drive P.O. Box 500 Beaverton, OR 97077
USA, August 2011. Revision A.

94

http://hdl.handle.net/10012/12659
https://link.aps.org/doi/10.1103/PhysRevB.79.075203
https://link.aps.org/doi/10.1103/PhysRevB.79.075203


Appendices

95



Appendix A

Introduction to M squares
measurement by ISO

If simplicity is not sought, ISO published standard 11146, which recommends sampling
20 points around the beam waist, within at least three generalized Rayleigh lengths to
compute the second order moments of the Wigner distribution and to create an artificial
beam waist with an aberration-free focusing lens if the beam waist is not easily accessible,
for example when it is collimated or focuses far away. The ten second order moments of
the Wigner function are: 〈x2〉, 〈y2〉, 〈xy〉, 〈Θ2

x〉, 〈Θ2
y〉, 〈ΘxΘy〉, 〈xΘx〉, 〈xΘy〉, 〈yΘx〉 and

〈yΘy〉. These second order moments are then used to compute M2, the invariant quantity
related to the focusability of the beam:

M2
eff =

4π

λ

det


〈x2〉 〈xy〉 〈xΘx〉 〈xΘy〉
〈xy〉 〈y2〉 〈yΘx〉 〈yΘy〉
〈xΘx〉 〈yΘx〉 〈Θ2

x〉 〈ΘxΘy〉
〈xΘy〉 〈yΘy〉 〈ΘxΘy〉 〈Θ2

y〉




1/4

(A.1)

For more details on how to compute those second order moments, consult ISO 11146-
2:2005(E): “Test methods for laser beam widths, divergence angles and beam propagation
ratios Part 2: General astigmatic beams”[35].
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Appendix B

Choosing a fiber coupler

When choosing a single mode fiber, there are few criteria that need to be considered to
achieve sufficiently strong coupling. The first one is the mode of the fiber itself, in this
case, the wavelength that is supported. The second is the radius of the beam, both inside
and outside of the fiber. The free space beam must be focused to the core of the fiber with
an incident angle small enough that the total internal reflection criteria will be respected.
Assuming that the two fixed parameters we cannot change are the radius of the beam in
free space and the choice of single mode fibers, the free parameter is the focal length of the
fiber coupler. On one hand, it can’t be too small or the incident angle will be too large
and on the other hand, it must be large enough that the free space beam is completely
guided into the fiber. For our application, given the spot size of the optical fiber is 3.4 µm
and numerical aperture of 0.12, we need a fiber coupler that will have a focal length large
enough to produce an incident angle low enough such that

f ≥ D

2 tan θA
,

where f is the focal length of the fiber coupler, D = 1.6 mm is the collimated beam
diameter, θA = arcsinNA is the acceptance angle of the fiber (half angle). This simple
calculation gives a lower bound of 6.61 mm. The upper bound of the focal length is given
by

f ≤ MFDπD

4λ
,

where the Mode Field Diameter (MFD) of the fiber MFD = 3.4 µm is the spot size, which
is the point where the intensity of the beam falls to 1/e2 ≈ 0.135 of the maximal intensity.
This gives an upper value of 8.8 mm for the focal length. With the current model of the
fiber coupler announcing a focal length of 7.86 mm, we are well between the bounds.
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Appendix C

Common experimental problems and
solutions

C.1 Hard reset of the Micro Stepper and piezo con-

troller

It is not unusual that fails the motorized controllers that move the sample holder and the
diamond. In these cases, if restarting Matlab is not sufficient, the steppers themselves need
to be reset.

In this case, it is best to exit the Matlab software, disconnect the power of the apt -
piezo controller as well as powering off the APT Stepper Motor Controller. Both these
devices will be re-powered and reconnected. As resetting the controllers will move the
sample holder, the micro-metric screw should be used to move it as far as possible from
the microscope objective, to protect all pieces.

The software used for this is the Thorlab APT User. After re-connecting the apt - piezo
controller, opening the APT User software should give two cascading windows, in which
the position should be reset by clicking Zero. Furthermore, under the Feedback Loop/Loop
Mode, the Close Loop option should be switched to Open Loop and confirming the choice.

Next, the APT Stepper Motor Controller can be turned on again and if the APT User
displays three more cascading windows for each of the axis, they should all be reset by
clicking Home/Zero.

If the controllers crash while an important NV center is sitting under the microscope
objective and moving the sample stage means loosing it, it is possible to let go of the
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last Home/Zero step. This will shift the origin of the controllers, making it look that the
current position is at (0,0,0) instead of the position it held before the crash.

As a last detail, it is good practice to exit and launch the APT User between each step,
making sure that the process terminated properly each time.

C.2 Sweeping the phase

In the .pp files, following the Bruker syntax convention, the values given for the phase can
only be expressed in reduced fractions, in units of circle. As such, to write out a phase of
π/4, we need to write ph1 = (4) 1 to divide the circle in 4 sections and use the first them.

To try multiple values of ph1 close to that value, we can’t use decimal expressions
such ph1 = (4) 0.9 or ph1 = (4) 1.1, because they are going to be rounded to 0 and π/4,
respectively. We must instead write ph1 = (40) 9 and ph1 = (40) 11, similar fractions, to
get the values we need.

If the phase is the independent variable that is going to be swept, the value saved in
the .pp file will be dismissed in favor of the “Sweeps” variable, which will have units of
circle. For instance, to sweep ph1 from π/3 to 5π/6 in 25 points, the parameters to enter
are on table C.1.

Parameter Value
Variable ph1
Array (leave empty)
Start 0.333
Stop 0.833

Number of Points 25

Table C.1: Values to provide to the “Sweeps” environment to perform an experiment
sweeping ph1 from π/3 to 5π/6 in 25 steps

C.3 AWG Socket Server protocol

When rebooting, the AWG might go back to its default TekVISA LAN Socket Server
protocol. If this happen, it is necessary to switch it back to the AWG software Socket
Server protocol. To do so, one must disable the LAN socket and enable the Software
socket. Detailed instructions are given in Appendix D
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Appendix D

Instructions to reset the AWG
Socket Server

This section is a document was provided by Tektronix as an option to restore communica-
tion protocols between the laboratory computer and the AWG used.
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AWG5k/7k raw sockets

• TekVISA socket server prematurely terminates waveform writes
• Not a typical use-case for Tektronix oscilloscopes

• Very much a typical use-case for Tektronix arbitrary waveform generators

• AWG software integrated socket server does not prematurely 
terminate while writing binary block data

• Resolution:
• Disable TekVISA socket server

• Enable AWG software socket server



Disable TekVISA socket server

In the system tray notification area of Microsoft Windows, 
right-click on the TekVISA LAN Server Control icon.

Click on “Stop Socket Server”
If the text is gray (and not black), then the TekVISA Socket Server is not running



Enable AWG software socket server

From the AWG software, System pull-down menu, GPIB/LAN Configuration…
Click the radio-button On for the Raw Socket (LAN) section and click OK.



Appendix E

Ad hoc confirmation of microwave
control

In this appendix, we establish the basis for Continuous Wave (CW) experiment to calibrate
the phase. As were describing in section 3.9.2, one can show that the microwaves are
circularly polarized by suppressing one transition, for any field. Or, by restating the
situation, after calibrating the relative amplitudes of the microwaves, one can use a series
of CW experiments to determine the values of φ2 that enable a suppression.

At fields high enough to justify the qubit approximation, the situation can be reduced
to two transitions whose spectrum can be described by the Bloch equations:

PL = B.C.− (B.C.−D.C.)T2Ω

1 + T 2
2 ∆ω2 + T1T2Ω2

(E.1)

Where PL stands for the Photo Luminescence, B.C. is the Bright Counts, D.C. is the
Dark Counts, Ω is the amplitude of the microwaves, T1 and T2 are the longitudinal and
transverse relaxation times and ∆ω is the de-tuning.

At fields too low to justify this approximation, the spectrum becomes more complex
and asks for a generalization of the Bloch Equations for spin-1 NV center. Looking at
this situation, we conducted the sus-mentioned experiment; fixing the amplitudes Ω1 =
Ω2 = Ω with a Rabi experiment, we fixed the phase of the first microwave source φ1 = 0
and conducted CW experiments while changing the phase φ2 of the second microwave
source. Assuming that the 10 MHz splitting we generated was still high enough to justify
using Lorentzian functions to describe the spectrum, we plotted the scaling factor of both
transitions as a function of the second phase. Assuming that the evolution of the scaling
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factor was a sinusoidal function of φ2, we found the values for which the scaling factor is
minimal. Using the corresponding values of φ2 as well as the value for which the scaling
factors were closest, we produced CW spectra that highlight the suppression of a transition,
hence the presence of circularly polarized microwaves. These results are presented in figure
E.1. Since the sampling of φ2 was made with a resolution of π/10, the error value for the
values of φ2 is going to be half of that value.

From these values of φ2, similar to section 3.7, one can find the values of θ and φ1.
Again, this is assuming that the electrical length is constant for all frequencies. If this was
the case and assuming that the previous assumptions are valid, we can find θ = 1.86π−0.79π

2
=

(0.54 ± 0.05)π while φ1 = 1.86π+0.79π
2

= (1.33 ± 0.05)π. Unsurprisingly, this value of φ1 is
very close to the value of φ2 to generate linear polarization.

There are several assumptions that are made with this model which will need to be
revisited. First, we assumed that the line shapes would be Lorentzian, which might not be
the case at low field. Second, we assumed that the scaling factor was a simple sinusoidal
function of the phase but that doesn’t have to be the case; an expression closer to 3.3.2
might already have the parameters necessary to describe the fact that the scaling factor
doesn’t reach zero even when the phase is chosen carefully. Thirdly, we assumed that the
resonance would remain centered at the same frequency, whereas simulations of CW ex-
periments using straightforward time dependent evolution suggest that the peak positions
are dependent on the phase. Finally, this work still doesn’t take into consideration that
the electrical length is not constant for all frequencies.

In conclusion, repeating this experiment with more care could explore the physics of
Bloch equations for NV centers and enable new methods of confirming the circular nature
of the polarization of the microwave sources.
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Figure E.1: CW ESR experiment with similar contribution from each wire, φ1 = 0 and φ2

defined for each curve.
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Appendix F

Commands relevant to synchronizing
the devices to the same clock

In order for all devices to share a same frequency, we need to use the following instructions.
In this list, we offer the general command, from the AWG5000 programmer Manual[36],
followed by the specific arguments required in our case.

• [SOURce[1]]:ROSCillator:SOURce This command selects the reference oscillator
source. INTernal means that the reference frequency is derived from the internal
precision oscillator. EXTernal means the reference frequency is derived from an
external signal supplied through the Reference Clock Input connector.

– SOUR:ROSC:SOUR EXT The reference frequency is derived from an external signal
supplied through the reference clock input.

• AWGControl:CLOCk:SOURce This command and query sets or returns the clock source.
When the clock source is internal, the arbitrary waveform generator’s internal clock
is used to generate the clock signal. If the clock source is external, the clock signal
from an external oscillator is used.

– AWGC:CLOC:SOUR EXT specifies that the clock signal from external oscillator is
used.

[SOURce[1]]:ROSCillator:TYPE
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• This command selects the type of the reference oscillator. This parameter is valid
only when Clock Source is Internal and Reference Source is External.

– SOURCE1:ROSCILLATOR:TYPE FIXED selects a fixed frequency external reference
oscillator. The frequency is fixed to 10 MHz, 20 MHz, or 100MHz.
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