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Abstract 

 

Horticulture peat extraction drastically changes peatland ecosystems and their carbon and 

greenhouse gas balance. Comprehensive study on the combined response of methane (CH4) 

cycling (i.e., CH4 production, oxidation, subsurface storage and release) to peat extraction, 

abandonment and restoration is lacking. It is still unknown how much CH4 is released through 

abrupt episodic ebullition events and whether they occur at unrestored sites, and how the 

subsurface free-phase gas, potentially comprised up to 50 % of CH4, recovers post-extraction. 

To date, there are no studies on ebullition and free-phase gas development with the age of 

restoration. There are few studies focused on methanogenic and methanotrophic members of 

the microbial community, its structure, abundance, and activity in these sites. Here, I address 

these research gaps to better understand the role of peatland restoration in greenhouse gas 

balance recovery and to support informed decision making on peatland management. My 

objectives were to determine ebullition contribution to CH4 emission from currently extracted 

and unrestored sites and from sites restored at different times in the past; to quantify the 

subsurface free-phase gas content and dissolved CH4 concentration to determine if there is a 

progression in subsurface CH4 pool recovery at both restored and unrestored sites; and to 

identify the CH4-cycling microorganisms, their community structure, abundance, diversity, and 

the potential rates of CH4 production and oxidation. The outcome of the research is discussed 

in the context of peat physicochemical properties. 

The study site was located west of Edmonton, Alberta (53° 33' N, 114° 44' W) at a 

horticulture extraction peatland complex managed by Sun Gro Horticulture and comprised of 

several sites of different management stages from current extraction (the Active site), through 

Unrestored, to restored at different times in the past: in 1991, 2009, and 2012 (RES-1991, 

RES-2009, and RES-2012, respectively). A natural bog (Natural) within the complex served as 

a reference site.   

The community composition and abundance of methanogens and methanotrophs was 

determined with Illumina Tag 16S rRNA gene sequencing and linked to physicochemical 

conditions across the sites and the dominant type of peat surface cover. Potential CH4 

production and oxidation rates (MP and MO, respectively) were determined in microcosms 
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with peat collected above and below the water table at the Natural, Unrestored and RES-2009 

sites. I observed more diverse and abundant CH4-cycling communities in the oldest and the 

youngest restored sites (RES-1991 and RES-2009), while RES-2012 showed similar microbial 

characteristics to that in the Unrestored and Natural sites and generally low MP and MO likely 

affected by peat chemistry. In conclusion, restoration promotes development of CH4-cycling 

microorganisms more abundant and diverse than in the Natural site, while lack of restoration 

leads to poorly developed community of methanogens and methanotrophs and low potential 

MP and MO rates. 

I also measured pore water CH4 concentrations in summer 2017 and steady and 

ebullitive CH4 fluxes from all study sites across two growing seasons using a closed chamber 

method with a portable greenhouse gas analyzer. Fluxes and dissolved CH4 were evaluated in 

relation to the dominant type of surface cover, and other potential controls. Ebullition occurred 

only at RES-1991 and RES-2012, where the highest steady fluxes were measured, but no 

ebullition and low fluxes were found at RES-2009, despite similar wetness and dominance of 

graminoids. Both steady and ebullitive emissions were related to the water table, soil 

temperature, and gross ecosystem production, but only steady fluxes depended on the cover of 

vascular plants. The magnitude of ebullition was positively correlated with pore water CH4 

concentration and the magnitude of the steady flux. The concentration of dissolved CH4 

recovered to the natural level in restored sites but remained low and did not increase over the 

season in the Unrestored site. Flooded, sedge-dominated restored sites can emit more CH4 than 

natural bogs, including ebullition, but steady fluxes contribute > 90 % of total CH4 emission.  

Free-phase gas content was measured with soil moisture content probes and ground 

penetrating radar (GPR). It did not follow the CH4 emission pattern, but large amounts, close to 

that at the Natural site, were found in the Unrestored and RES-2009 (sites with low CH4 

emission and production rates), likely due to peat structure that promotes gas accumulation. 

This was also observed in the Active site.  

Methane emission across the sites generally followed the pattern of the abundance and 

diversity of CH4-cycling microbes, with flooded, sedge-dominated restored sites showing the 

highest values and Unrestored and Active sites the lowest. Local environmental conditions 

appear to have more impact on these aspects of CH4 cycling in restored peatlands than the age 
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of restoration. Methane fluxes cannot predict free-phase gas content, which was observed to be 

independent of restoration, and can be high if peat is compacted.  
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CHAPTER 1: Introduction and Literature Review 

 

 

1.0. INTRODUCTION 

 

Conditions prevailing in natural peatlands, mainly waterlogged, anoxic soil, and the presence 

of plants that are typical for peatlands, allow for only slow mineralization of organic matter 

that accumulates over time creating the peat deposit (Frolking et al., 2001). Peat extraction 

severely disturbs these conditions so that the ecosystem is no longer functional. The natural 

balance between carbon dioxide (CO2) sequestration from the atmosphere and methane (CH4) 

emission is disrupted (Sundh et al., 2000, Turetsky et al., 2002, Waddington et al., 2002, 

Abdalla et al., 2016, Strack et al., 2016). Peatland restoration aims to recover the natural 

functions of the ecosystem, re-establish peatland vegetation and primary productivity, return 

hydrological conditions and greenhouse gas balance (Quinty and Rochefort, 2003). Methane 

cycling in extracted and post-extraction unrestored and restored peatlands is not yet fully 

understood. Methane is produced by methanogens and oxidized by methanotrophs. Since their 

highest abundance and activity has been observed in the water table fluctuation zone (Sundh et 

al., 1994, 1995, Martí et al., 2015) in shallow peat that is removed during extraction, the 

community of these organisms and their required environmental conditions are likely severely 

disturbed. Nevertheless, research on the CH4-cycling community in managed peatlands is 

limited to a few studies (Juottonen et al., 2012, Putkinen et al., 2018, Reumer et al., 2018). 

Methane emissions in post-extracted sites are small from unrestored sites but can be higher 

than natural in restored sites (e.g., Strack et al., 2014); however, abrupt ebullition events, 

venting large amounts of CH4 directly to the atmosphere, are not well understood in post-

extraction sites. Furthermore, natural peatlands have the ability to store free-phase gas (e.g., 

Parsekian et al., 2010, 2011), but there is limited  knowledge on the post-extraction and post-

restoration subsurface pool of gaseous CH4, the main component of free-phase gas. Complex 

research linking all aspects of CH4 cycling in managed peatlands is required to understand the 

processes occurring post-extraction in unrestored and restored sites. This thesis investigates 

CH4-cycling microbial community, potential rates of CH4 production and oxidation, quantifies 

CH4 emission, including abrupt ebullition, and subsurface pool of free-phase gas and dissolved 
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CH4 in restored horticultural peatland sites compared to unrestored, currently extracted, and 

natural sites.  

 

1.1. RELEVANT LITERATURE 

 

1.1.1. Peatland occurrence, carbon storage and methane emission  

 

According to the Canadian Wetland Classification System, peatlands are wetland ecosystems 

with at least 40 cm of peat (National Wetlands Working Group, 1997), but some geological 

definitions accept the thickness of minimum 30 cm of peat (e.g., Joosten and Clarke, 2002, 

Frolking et al., 2011). A biological definition classifies peatlands as wetlands with potentially 

peat-forming vegetation (Laine and Vasander, 1996). Peat is classified as organic soil 

(histosol) that contains ≥ 35 % of organic matter (RSPO Peatland Working Group 2, 2014). 

Three zones can be identified in the vertical stratification of the peat deposit: acrotelm, the 

surface peat, usually poorly decomposed and partially unsaturated (Ingram, 1978), mesotelm, 

the zone of the water table fluctuation (Clymo and Bryant, 2008), and catotelm, the deepest 

zone of permanently saturated peat (Ingram, 1978).  

Globally, peatlands cover 4.23 million km2, which is 2.84 % of the land (Xu et al., 

2018). About 67.5 % of them (2,853,955 km2) have developed in high and mid latitudes of the 

northern hemisphere and are referred to as the northern peatlands (Xu et al., 2018). 

Approximately 113 million ha of peatlands (26.8 % of all peatlands worldwide) are located in 

Canada, and cover ~ 13 % of the country’s surface area (Xu et al., 2018). 

According to previous estimates, northern peatlands store almost one third of the global 

soil carbon stock (455 – 547 Gt, Gorham, 1991, Yu et al., 2010, Yu, 2012), while the newest 

estimates suggest storage of 1000 Gt (Amesbury et al., 2019). About 70 % of the total carbon 

pool in northern peatlands was accumulated in early Holocene, when the climate was warm 

(MacDonald et al., 2006, Yu et al., 2010, Yu, 2012). Then, the accumulation rates decreased 

(from 38 g C m-2 y-1 8000 – 9000 BP to 5.6 g C m-2 y-1 2000 – 3000 BP) as a result of 

Neoglacial climate cooling and permafrost development (Yu, 2012).  
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Wetlands, including peatlands, play an important role in global carbon cycling. For 

example, wetland CH4 emission (mainly in tropical regions) explained 70 % of interannual 

variations in atmospheric CH4 concentration in years 1984 – 2003 (Bosquet et al., 2006). Their 

contribution to total CH4 emission from all sources is estimated to be at least 20 % (Shindel et 

al., 2004, Bridgham et al., 2013), and that of tropical wetlands will increase as a result of 

climate warming (Zhang et al., 2017). Methane emitted from northern terrestrial ecosystems (> 

50˚N) originates mainly from wetlands and accounts for 36 Tg of CH4-C y-1 (Zhuang et al., 

2006).  

Although CH4 cycling (production, oxidation, subsurface storage, and emission) in 

natural peatlands has been studied in the past, the understanding of these processes in post-

extraction restored and unrestored sites remains limited.  

 

1.1.2. Peat extraction 

 

Peatland disturbance of any kind (draining for forestry and agriculture, mining, linear 

disturbances, and peat harvesting for horticulture and fuel) involves altering local hydrological 

conditions, often including lowering the water table (Waddington and Price, 2000). This, in 

turn, changes redox conditions and accelerates mineralization of organic matter, which results 

in CO2 emission, while CH4 production either ceases or decreases and most CH4 is oxidized to 

CO2 in the drained peat profile before reaching the atmosphere (Sundh et al., 2000, Turetsky et 

al., 2002, Glatzel et al., 2004, Bonn et at., 2014). The drainage ditches remain a source of CH4 

(Sundh et al., 2000, Waddington and Day, 2007, Cooper et al., 2014, Nugent et al., 2018).  

Peat in Canada is extracted mainly for horticultural use and not as a fuel (ECCC, 2018), 

while peat in Europe is utilized for both combustion and horticultural purposes (e.g., Vasander 

et al., 2003). In Canada, only bogs larger than 50 ha and at least 2 m deep are profitable for 

horticultural peat extraction (Keys, 1992, ECCC, 2018). Kivinen and Pakarinen (1981) 

estimated that 4.4 x 106 ha of northern peatlands were subjected to extraction for horticulture 

and fuel. This number has likely increased over the last decades. Only 34,000 ha have been 

disturbed for peat extraction in Canada (ECCC, 2018), which is considered a local 

environmental disturbance (Price et al., 2003). The horticulture industry requires peat of a 
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certain quality (i.e., poorly decomposed, Sphagnum peat), thus a layer of low quality peat is 

usually left behind, while the whole peat deposit can be harvested from peatlands exploited for 

energy (Tuittila et al., 2000a; Wind-Mulder and Vitt, 2000).  

In Canada, vacuum harvesting of peat replaced the peat cutting method in the 1980s 

(Rochefort, 2000, Wind-Mulder and Vitt, 2000, Environment Canada, 2006, 2015). Vacuum 

harvesting of peat starts with lowering the water table by installation of drainage ditches across 

and around the peatland. This is followed by vegetation removal, further draining of the site by 

milling until the moisture content decreases to ~ 45 %, harvesting using heavy machinery and 

stocking in piles for up to six months (Cleary et al., 2005, Basiliko et al., 2007, Waddington et 

al., 2009b, ECCC, 2015). The greenhouse gas emission from peat extraction in Canada 

increased from 0.9 Mt CO2 equivalent (CO2-e) in 1990 to 2.7 Mt CO2-e in 2000, then 

decreased to 2.3 Mt CO2-e in 2013 and 1.5 Mt CO2-e in 2016 (Environment Canada, 2015, 

ECCC, 2018). These emissions originated mainly from peat decay and peatland drainage 

(ECCC, 2018). 

Vacuum harvesting leaves the peat surface stripped of all vegetation and acrotelm, with 

a relatively flat surface of exposed old catotelm that developed thousands of years ago. The 

remaining old peat is highly decomposed, has low porosity and undergoes subsidence that 

additionally lowers specific yield and saturated hydraulic conductivity (Van Seters and Price, 

2002). Thus, fluctuations of the water table at post-extracted sites are of a magnitude not 

observed at natural peatlands (Price and Whitehead, 2001, Van Seters and Price,  

2002, McNeil and Waddington, 2003).  

 

1.1.3. Peatland restoration 

 

Peat extraction in Canada is centered mainly in Alberta, Quebec, New Brunswick, and 

Manitoba (ECCC, 2018). In all these provinces, post-extraction restoration is required, e.g, the 

Mining Act (Government of Quebec, 2019) and Alberta Public Land Administrative 

Regulation, Conservation and Reclamation Regulation, and Environmental Protection and 

Enhancement Act that obligates the industry to reclaim the harvested sites, while the Alberta 

Government Directive on Allocation and Sustainable Management of Peat Resources on Public 
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Land specifies that post-extracted peatlands are required to be reclaimed back to an early 

successional peatland (Government of Alberta, 2016). Although the term reclamation is used in 

some contexts, actions required are best defined as restoration rather than reclamation 

according to the definition of restoration as assisted recovery of a damaged ecosystem (Quinty 

and Rochefort, 2003). Post vacuum-harvested sites represent extremely harsh conditions that 

exclude spontaneous revegetation as an efficient method of peatland restoration as the seed 

bank has been removed (Quinty and Rochefort, 2003) and the remaining peat has been 

compacted by heavy machinery.  

The restoration goal is to return the ecosystem to a naturally functioning and self-

sustaining state with established peatland vegetation dominated by Sphagnum or true moss 

depending on the peatland type (bog or fen) and the level of primary productivity that enables 

peat accumulation (Rochefort, 2000). This includes a well developed acrotelm and biochemical 

cycles of carbon and other nutrients at levels characteristic for natural peatlands (Rochefort, 

2000). Andersen et al. (2010) defined restoration as successful when decaying plant litter 

reaches the anoxic zone (catotelm) without being entirely decomposed in the acrotelm. 

According to Price et al. (2003), full restoration is rather unlikely in a short period of time and 

rehabilitation is a more realistic goal in a short timescale. However, modelling shows that the 

restoration of carbon accumulation and a functional acrotelm should be achieved within < 20 

years (Lucchese et al., 2010). Cleary et al. (2005) claim that peatlands restored after 

horticultural extraction, that became a sink for CO2, would need 2000 years to rebuild the 

carbon pool removed during extraction.  

Generally, the methods of restoration differ between regions and countries, e.g., first 

restoration of harvested peatlands in Europe relied on natural revegetation after peatland 

rewetting by filling or blocking the drainage ditches (Lavoie and Rochefort, 1996). However, 

the response of a post-extraction peatland to restoration depends on the type of peatland and 

methods of peat extraction. In Canada, the reestablishment of vegetation and increase of water 

table are essential steps of peatland restoration (Basiliko et al., 2007). Plant reintroduction 

(moss layer transfer technique) is a common method to assist in recolonization of extracted 

peatlands with bog-specific species (Quinty and Rochefort 2003, Rochefort et al., 2003). First 

attempts of peatland restoration using moss layer transfer in Canada date back to the early 

1990s (Rochefort, 2000), thus the evaluation of restoration is limited to less than 30 years.  
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Prior to moss transfer, the peatland surface is scraped to expose the under layer and 

levelled for better development of the vegetation (Rochefort, 2000). Shredded Sphagnum 

diaspores and other bog vegetation are collected from a donor site and spread onto the peat 

surface in ratio 1:10, then covered with straw mulch (1,500 kg ha-1, Rochefort, 2000). When 

heavy machinery involved in the restoration process are no longer needed, the drainage ditches 

are blocked to raise the water table (Quinty and Rochefort, 2003). The mulch allows adequate 

light supply for Sphagnum by decreasing the incoming PAR by 40 – 50 % (Rochefort, 2000), 

keeps the surface moist by decreasing evaporation and increasing relative humidity, lowers 

daily temperature amplitude of the peat surface, and prevents frost heaving common at 

extracted sites, that can destroy developing Sphagnum (Price, 1997). Additionally, the presence 

of nurse or companion plants more resistant to frost heaving than Sphagnum, e.g., Polytrichum 

strictum and Eriophorum spp. support successful Sphagnum regeneration by stabilizing the 

peat surface to accelerate the regeneration of the ecosystem to carbon sink (Rochefort, 2000, 

McNail and Waddington, 2003,Tuittila et al., 2004). Thus, additional phosphorus fertilizer is 

often used to enhance germination of nurse plants (Quinty and Rochefort, 2003).  

The post-restoration peat accumulation rates are higher than at natural peatlands, e.g., 

the natural rates vary from 12 – 26 cm per 100 years (Government of Alberta, 2016) to 10 cm 

per 100 years (0.1 cm yr-1; Glaser et al., 2004), while Lucchese et al. (2010) observed 2.3 cm 

accumulated 4 years and 13.6 cm 8 years post-restoration in a Canadian Bois-des-Bel peatland 

in Quebec. Interestingly, the unrestored post-extraction part of the site also showed organic 

matter accumulation, but at a slower rate of 0.2 and 0.8 cm at 24 and 28 years post-extraction, 

respectively (Lucchese et al., 2010). The layer of fresh peat developing on top of that old peat 

as the restoration progresses is hydrologically disconnected from the old peat layer due to 

capillary barrier which poses an additional challenge in restoration progress (McCarter and 

Price, 2015).  

The newest study of Nugent et al. (2019) shows that restoration of post-extraction 

peatlands contributes to overall greenhouse gas removal from the atmosphere. Thus, peatland 

restoration mitigates climate change and is achievable if proper restoration techniques are 

applied promptly after peat extraction ceases (Nugent et al., 2019).  
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1.1.4. Methane cycling in peatland ecosystems 

 

The aspects of CH4 cycling in peatlands (CH4 production, oxidation, subsurface storage and 

release) have been studied mainly in natural ecosystems, but less is known about how 

extraction and different extents of post-extraction management shapes these elements of 

peatland function.  

 

1.1.4.1. Methane production and oxidation in peatlands 

 

Methane is produced by methanogenic Archaea, which are obligate anaerobes, in the process 

of methanogenesis (Garcia et al., 2000, Rosenberry et al., 2006), the last stage of anaerobic 

degradation of organic matter (e.g., Lai, 2009, Couwenberg and Fritz, 2012, Andersen et al., 

2013a). There are several pathways of CH4 production, e.g. acetoclastic, when acetate is 

converted to CH4 and CO2, and hydrogenotrophic, when H2 oxidation is coupled with CO2 

reduction to create CH4 and water; H2 can be replaced by formate in this reaction (Conrad, 

1999, Galand et al., 2002, Horn et al., 2003, Lai, 2009, Bridgham et al., 2013). Some 

methanogens can use alcohols, carbon monoxide or simple methylated compounds (Conrad, 

1999, Lai, 2009, Deppenmeier, 2002, Ye et al., 2012, Bridgham et al., 2013, Schmidt et al., 

2016, Lyu et al., 2018). Acetate is the primary product of anaerobic degradation of organic 

matter in northern bogs (Duddleston et al., 2002) and a product of fermentation or 

homoacetogenesis (reaction of CO2 with H2) or incomplete oxidation of organic carbon by 

heterotrophic microbes that use non-oxygen terminal electron acceptors (TEAs) for respiration 

(Ye et al., 2012, 2016, Bridgham et al., 2013). Although methanogens are mostly 

hydrogenotrophic, the acetoclastic pathway coupled to acetogenesis is the most energetically 

efficient and should theoretically account for the majority of CH4 produced in anoxic 

sediments (Conrad, 1999). Yet, in acidic ombrotrophic peatlands, the hydrogenotrophic 

pathway dominates, while the acetoclastic pathway prevails in fens (Duddleston et al., 2002, 

Galand et al., 2002, 2005, Horn et al., 2003, Bridgham et al., 2013, Schmidt et al. 2018, Evans 

et al., 2019). Only two methanogenic genera known to date are capable of acetoclastic 

methanogenesis: Methanosaeta and Methanosarcina (Schmidt et al., 2016).  
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Regardless of the pathway of CH4 production, methanogenesis is less 

thermodynamically favourable than other anaerobic pathways of organic matter degradation 

suggesting that methanogens can be outcompeted by non-oxygen terminal electron acceptor 

(TEA) reducers (Conrad, 1999, Hausmann et al., 2016). Nitrite (NO2
-), nitrate (NO3

-), sulphate 

(SO4
2-), ferric iron (Fe3+), and manganic manganese (Mn4+) are the main potential inorganic 

TEAs (Megonigal et al., 2003) that can regenerate in peat when the water table decreases 

exposing peat to atmospheric O2 (Küsel et al., 2008). However, the abundance of substrate can 

overcome the competition of non-oxygen terminal electron acceptor reducers (Wieder et al., 

1990). Dissolved organic matter (DOM) rich in humus, as well as particulate organic matter 

(POM, i.e., peat itself), also serve as TEAs and have the potential to reduce CH4 production 

rates (Lovely et al., 1996, Minderlein and Blodau, 2010, Miller et al., 2015, Gao et al., 2019). 

This humic reduction is thermodynamically less favourable than reduction of Fe3+ and NO3
-, 

but more favourable than that of SO4
2- (Cervantes et al., 2000).  

Methane produced in anoxic peat diffuses through the oxic layer where it becomes 

partially oxidized by methanotrophic Bacteria (Roslev and King, 1996, Popp et al., 2000, 

Esson et al., 2016). Methanotrophs belong to Alphaproteobacteria, Gammaproteobacteria, 

Verrucomicrobia, and Methylomirabilota, formerly candidate phylum NC10 (Dedysh et al., 

2005, Dunfield et al., 2007, Dedysh, 2009, Ho et al., 2013). In acidic boreal wetlands, type II 

methanotrophs (Alphaproteobacteria) prevail, while at higher pH (5.0 – 6.0), type I 

methanotrophs (Gammaproteobacteria) become active and both types metabolize CH4 

(Dedysh, 2009, Ho et al., 2013). Methanotrophs appear to be more resistant than methanogens 

to changing environmental conditions and more adapted to bounce back once the adverse 

conditions cease (e.g., Blodau and Moore, 2003). Some methanotrophs switch to use 

alternative TEAs in the absence of oxygen, while some can use short chain fatty acids 

(products of fermentation; Min and Zinder, 1990) when deprived of CH4 (Dedysh et al., 2005).  

 The proportion of oxidized CH4 depends on the thickness of oxic zone in the peat 

profile (i.e., the water table level), the condition of the methanotrophic and methanogenic 

community, and the presence of deep roots supplying oxygen to waterlogged peat. Popp et al. 

(1999) reported up to 34 % attenuation of CH4 emission due to rhizospheric oxidation at a fen 

dominated by Carex spp. This proportion can be lower when temperatures increase followed 
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by an exponential increase in methanogenesis when more CH4 is produced than methanotrophs 

can oxidized. For example, Van Winden et al. (2012) observed that at 5 – 15 ˚C almost the 

entire pool of diffusing CH4 was oxidized by methanotrophs living in symbiosis with 

Sphagnum in hyaline cells (Raghoebarsing et al., 2005), but only 50 % was oxidized at 25 ˚C.  

 Given the extent of disturbance in extracted and post-extracted peatlands, especially 

drainage, disruption of oxic and anoxic conditions and removal of the shallow peat where the 

majority of methanogens and methanotrophs are known to occur, it is justified to presume that 

the abundance and diversity of these microorganisms and their activity would be severely 

altered. To date, few studies have focused on methanogenic and methanotrophic population 

and their activity in extracted, restored and unrestored peatlands, while some research, (e.g., 

Artz et al., 2008, Basiliko et al., 2003, 2013, Andersen et al., 2006, 2010, 2013 a, b) has been 

dedicated to the entire microbial community. Differences in CH4-cycling microorganism 

abundance, community structure and activity in restored, unrestored and natural sites and the 

link between CH4-microorganisms’ recovery and development of Sphagnum at restored sites 

were found by Putkinen et al. (2018) and Reumer et al. (2018). Moderate differences in 

methanogenic and methanotrophic community composition in natural and restored sites were 

observed by Juottonen et al. (2012). Potential rates of CH4 production and oxidation at 

managed peatlands have received more attention, including the above publications that showed 

low CH4 production rates in actively extracted and unrestored peatlands (Reumer et al, 2018, 

Putkinen et al., 2018) and the highest rates in old restored and natural sites (Putkinen et al., 

2018). However, the methodology, incubation conditions, and time of the experiment have 

varied between studies. Basiliko et al. (2007) observed that CH4 production declined at 

actively extracted and post-extraction unrestored sites compared to natural and restored sites, 

while the latter showed higher rates of CH4 production and oxidation than the natural site. 

Similarly, Glatzel et al. (2004) obtained lower CH4 production rates for extracted sites and 

large values for restored sites with shallow water table. Waddington and Day (2007) reported 

the highest CH4 production rates at a restored site, compared to unrestored and natural.  

The highest potential rates of CH4 production and the greatest abundance of 

methanogens have been found in the mesotelm below the water table, where the conditions are 

anoxic but there is still abundance of plant exudates that serve as a labile carbon source for 
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methanogens (Sundh et al., 1994, Martí el al., 2015). The highest potential for CH4 oxidation 

was found immediately above and below the water table, where O2 and CH4 are readily 

available (Sundh et al., 1995, Segers, 1998, Clymo and Bryant, 2008). Interestingly, Frances et 

al., (2000) observed an increase in CH4 production rates from 0 to 4 µg C g-1 d-1 with depth 

down to 160 cm eight years post-restoration. Glatzel et al. (2004) observed the highest CH4 

production rates in the surface peat layer above the water table in restored and unrestored sites. 

Apparently, methanogens can stay active above the water table in anoxic microsites (Glatzel et 

al., 2004, Juottonen et al., 2012), while rising water table can trap bubbles of air in otherwise 

saturated peat (Baird et al., 2004) potentially creating short-term oxic microsites for 

methanotrophs; however, I am unaware of any studies published on methanotrophic activity in 

these microsites. 

Considering the limited number of studies on methanogenic and methanotrophic 

communities and their activity across peatlands of different management, as well as rapid 

development and increasing availability of molecular methods, further research would benefit  

from associating the presence of CH4-cycling microorganisms with their function, and from 

complex studies that could link the CH4-cycling community and activity to other aspects of 

CH4 turnover in restored and unrestored peatlands. The study presented in this thesis shows the 

outcome of high-throughput Illumina Tag 16S rRNA gene sequencing on a large number of 

samples from active, post-extraction unrestored and restored sites linked to peat 

physicochemical properties and other aspects of CH4 cycling.  

 

1.1.4.2. Methane emission from natural, and post-extracted restored and unrestored peatlands 

 

There are three pathways of CH4 release from peatlands to the atmosphere: diffusion from the 

peat surface, plant-mediated transport, and ebullition (Chanton, 2005, Coulthard et al., 2009, 

Couwenberg and Fritz, 2009, Green and Baird, 2013, Stamp et al., 2013). Diffusion of CH4 

occurs along a concentration gradient between peat and the atmosphere (Tuittila et al., 2000a,  

Tokida et al., 2007a). Plant-mediated transport varies from 30 to 100 % of total CH4 flux 

(Whiting and Chanton, 1992, Bridgham et al., 2013 and the references therein) and is 

considered the major mode of CH4 emission from peatlands. Waddington et al. (1996) 
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measured 55 – 85 % lower seasonal fluxes after clipping Eriophorum vaginatum and 30 % 

lower after clipping Carex rostrata in Scandinavian peatlands. In practice, plant mediated 

transport is difficult to separate from diffusion through the peat matrix, thus both pathways are 

usually captured in CH4 flux measurements.  

The contribution of ebullition to the total CH4 flux has been measured at natural 

peatlands and only one study has been completed on ebullition from a restored site (Nugent, 

2019). Ebullition at natural sites varies from just a few percent of total CH4 emission (e.g., 

Green and Baird, 2013) to 90 % (Landsdown et al., 1992). This wide range may occur not only 

as an individual peatland characteristic, but also due to different methodology and research 

approaches, although overall, ebullition is considered an important mode of CH4 release (e.g., 

Romanowicz et al., 1995, Baird et al., 2004; Glaser et al., 2004, Tokida et al., 2005, 2007a,b, 

Rosenberry et al. 2006, Coulthard et al., 2009, Waddington et al., 2009a, Parsekian et al., 

2010, Stamp et al., 2013). Large amounts of CH4 can be emitted via ebullition directly to the 

atmosphere bypassing the peat oxidation zone (e.g., Rosenberry et al., 2006, Comas et al., 

2008, Bridgham et al., 2013, Stamp et al., 2013). For example, Comas et al. (2008) measured 

39 – 74 g of CH4 m
-2 emitted via ebullition in less than 3.5 h. Glaser et al. (2004) observed up 

to 136 g CH4 m
-2 released in only three ebullition events from an undisturbed bog. Strack et al. 

(2005) measured ~ 600 mg m-2 d-1 of CH4 emitted via ebullition in a peat monolith collected 

form a fen. Tokida at al. (2007a) obtained up to almost 30 mg CH4 m
-2 h-1 released in single 

ebullition events from a Japanese ombrotrophic peatland. Pelletier et al. (2007) reported up to 

117 mg CH4 m
-2 d-1 emitted in individual ebullition events from three Canadian peatlands. 

Goodrich et al. (2011) calculated mean ebullition magnitude of 0.18 mg CH4 at a fen and 

seasonal mean ebullition frequency 272.1 – 403.5 events m-2 d-1 with the largest number of 

events in spring and the lowest in autumn. Nugent (2019) observed similar amounts of CH4 

released through ebullition at a restored Canadian bog, accounting for 9 % of total CH4 

emission. Ebullition events can release more CH4 within hours than daily (Comas and Wright, 

2012) or even annual average fluxes via other emission pathways (Glaser et al., 2004). Spatial 

and temporal variability of ebullition is technically challenging to quantify (Tokida et al., 

2005, Comas et al., 2011), but Goodrich et al. (2011) observed a clear temporal pattern of 

ebullition, contradicting the concept of ebullition as unpredictable, random events. 
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A compilation of CH4 flux data from boreal and subarctic peatlands showed a mean of 

83 mg CH4 m
-2 d-1 (Turetsky et al., 2014). Average CH4 flux from northern fens is higher 

(56.36 mg CH4 m
-2 d-1) than from bogs (25.98 mg CH4 m

-2 d-1), with restored peatlands having 

a higher flux than unrestored sites (15.37 and 10.98 mg CH4 m
-2 d-1, respectively; Abdalla et 

al., 2016). Individual studies have shown CH4 uptake from the atmosphere at unrestored 

peatlands, e.g., -4 mg CH4 m
-2 d-1 obtained from a boreal extracted peatland in Canada (Strack 

et al., 2014), and -7 mg CH4 m
-2 d-1 (Waddington and Day, 2007), while fluxes from restored 

sites have large variability, e.g., from -1.77 to 394.68 mg CH4 m
-2 d-1 (Strack et al., 2014) and 

a mean of 0.1 mg CH4 m
-2 d-1 (Waddington and Day, 2007). Ebullition is rarely included in 

measured fluxes.  

Methane fluxes are, to date, the main source of information on CH4-cycling post 

restoration. With only one study that quantified the ebullition contribution to total CH4 

emission at a restored site (Nugent, 2019), there is an undeniable necessity for further research 

to understand how much CH4 is emitted from restored sites via abrupt ebullition events, what 

environmental conditions drive ebullition at these sites, and if there are ebullition patterns 

across sites of different age post-restoration and geographical locations. Also, it is unknown if 

any ebullition occurs at currently extracted and unrestored sites.  

 

1.1.4.3. Methods of methane emission measurements 

 

While methods of flux measurements (either chamber method or eddy covariance towers) are 

well established (e.g., Goodrich et al., 2015, Strack et al., 2017, 2018, Rinne et al., 2018, 

Rankin et al., 2018), the methods of ebullition capture and quantification vary between studies. 

Some research has been conducted on peat cores in the laboratory (e.g., Baird and Waldron, 

2003, Baird et al., 2004, Tokida et al., 2005, Kellner et al., 2006, Green and Baird, 2012, 

2013), and others in situ (e.g., Rosenberry et al., 2003, Tokida et al., 2007a, b, Strack and 

Waddington, 2008, Gogo et al., 2011, Comas and Wright, 2012). Klapstein et al. (2014), 

Pelletier et al. (2007) and Stamp et al. (2013) used funnels to catch ebullitive gas, while Strack 

et al. (2005, 2006a) combined funnels with time domain reflectometry (TDR) probes. Comas 

and Wright (2012) equipped gas traps with time-lapse cameras. Rosenberry et al. (2003) used 
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hydraulic head to measure ebullition and Glaser et al. (2004) used GPS to calculate ebullition 

from peat surface elevation changes. 

Ebullition is difficult to separate from diffusion and plant mediated transport emission 

of CH4. All these emission pathways can contribute to fluxes measured with static chambers. 

The measurements that contain discrepancies in CH4 concentration change over time from 

linear regression, that may be due to episodic ebullition, are usually rejected. Windsor et al. 

(1992), and Tokida et al. (2007a) used the chamber method and included ebullition in CH4 

emission. They reported rapid changes in CH4 emission by two orders of magnitude over 

minutes or hours that contributed 50 – 64 % of total CH4 flux (Tokida et al., 2007a). Large 

ebullition events during spring ice thaw and snowmelt have been observed using static 

chambers, e.g., > 10 mg CH4 m
-2 h-1 (> 240 mg CH4 m

-2 d-1) (Tokida et al., 2007b) and > 200 

mg CH4 m
-2 d-1 (Windsor et al., 1992).  

Static chambers are likely to capture ebullition and steady CH4 emission from shallow 

layers of peat. Isotopic studies showed that CH4 emissions measured with the chamber method 

was produced in shallow peat from recently deposited plant tissues (Chanton et al., 1995, 

Glaser et al., 2004). According to Parsekian et al. (2011), episodic ebullition from below 1 m 

depth is difficult to detect using chamber methods due to spatial and temporal variability of 

these events. Other studies have combined the chamber method with high-resolution detectors 

that measured CH4 concentration continuously and enabled better detection of ebullition 

(Goodrich et al., 2011, Gogo et al., 2011).  

 

1.1.4.4. Factors controlling methane production and emission 

 

Methanogenic activity is sensitive to changing temperature, pH, the availability of substrate, 

fluctuating water table, presence of TEAs and their reducers, and the accumulation of short 

chain fatty acids (Segers, 1998, Coles and Yavitt, 2002, Horn et al., 2003, Andersen et al., 

2010, Ye et al., 2012).  Low pH of peat is not optimal for methanogens and enhanced 

methanogenesis has been observed at increasing pH (Garcia et al., 2000, Ye et al., 2012). 

Methanogenesis can be slowed down at pH < 6.0 as acetate turns into acetic acid and becomes 

toxic for methanogens at concentrations higher than 5-10 mM (Bräuer et al., 2004, Russell, 
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1991). Nevertheless, methanogens occur and are active in the harsh environment of acidic 

peatlands in cold regions far from their environmental optima and are classified as 

extremophiles together with other Archaea that can thrive in places inhabitable for many other 

microorganisms (e.g., Reed et al., 2013).  

Methane fluxes are driven mainly by factors affecting CH4 production (Waddington et 

al., 1996, MacDonald et al., 1998, Pelletier et al., 2007, Turetsky et al., 2008, 2014, Abdalla et 

al., 2016, Strack et al., 2017). Methanogenesis generally increases exponentially with 

temperature (Dunfield et al., 1993, Davidson and Janssens, 2006, Lai, 2009, Andersen et al., 

2010), but the amount of CH4 emitted from peatlands depends on the water table level, with 

deeper water table enhancing CH4 oxidation and lowering emission. The combined effect of 

the water table (WT) and soil temperature explained 40 % in CH4 flux variability at natural and 

flooded sites (Turetsky et al., 2014). An exponential relationship of WT and CH4 flux was 

observed at natural, drained and flooded peatlands in temperate and subtropical climate zones 

(Turetsky et al., 2014). Peatland drainage lowered CH4 flux considerably, even by 84 % 

(Abdalla et al., 2016, Turetsky et al., 2014). However, Goodrich et al. (2011) captured the 

largest peak of ebullition events when the water table level decreased and temperature 

increased.  

Vascular plants increase CH4 flux (e.g., Chanton et al., 2005, Nugent, 2019). A 

synthesis of CH4 emission from peatlands in different regions, including northern peatlands, 

showed that when the dominant plant functional type was vascular plants, there was 

significantly higher CH4 flux, with the largest flux being at sedge-dominated locations, while 

no effect of non-vascular plants on the CH4 flux was found (Turetsky et al., 2014). Also, the 

importance of vascular plants in controlling CH4 flux depends on the WT depth, e.g., at low 

water table when the roots were above the waterlogged zone, the presence of vascular plants 

increased the flux to a lesser extent than at shallow water table when roots were in the saturated 

zone (Waddington et al., 1996). Higher CH4 emission and lower CH4 concentration in pore 

water were measured from locations dominated by graminoids than from those dominated by 

Sphagnum, due to sedge-mediated CH4 transport that reduced the subsurface pool of dissolved 

CH4 (Gogo et al., 2011, Murray et al., 2017). The role of vascular plants is important post-

restoration, since restored peatlands in Canada tend to return to an early peatland succession 
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stage with fen-like type of vegetation dominated by sedges, that in combination with wet or 

flooded conditions (also characteristic for some of  these sites), may result in high CH4 

emission (Strack et al., 2014).  

Vascular plants produce root exudates that supply labile carbon for microbial processes 

including methanogenesis (Ström et al., 2005, Bridgham et al., 2013). In contrast, low quality 

carbon substrate causes disturbance in CH4 production in extracted and restored peatlands 

(Waddington and Day, 2007) and becomes the main control on CH4 fluxes when water table is 

stabilized (Strack et al., 2016). Strack et al. (2016) measured higher CH4 production at a 

restored peatland where graminoids and shrubs were present. Also, CH4 oxidation (Reumer et 

al., 2018) and the abundance of methanotrophs (Juottonen et al., 2018) depends largely on the 

availability of CH4. The reestablishment of vegetation is essential for improving carbon 

quality, but a 2-year delay caused by low carbon quality was observed between recovery of 

peat forming vegetation and that of peat microbial community (Andersen et al., 2006, 2013a). 

Methane emission at restored sites can remain low for a long time even if the new vegetation is 

well developed (Tuittila et al., 2000a). A further lag was observed in recovery of CH4 

production and oxidation and the recovery of CH4-cycling microorganisms in restored 

peatlands (Reumer et al., 2018). Roots promote CH4 production, but also oxidation by 

supplying oxygen to the rhizosphere (Ström et al., 2005, Bridgham et al., 2013). Some 

vascular plants (e.g., Carex spp.) grow their roots to great depths (Saarinen, 1996, Saarnio and 

Silvola, 1999) extending the zone of CH4-cycling microorganisms’ activity. Frenzel and 

Rudolf (1998) showed that no rhizospheric oxidation was associated with Eriophorum spp. 

although these species were responsible for the majority of CH4 emission.  

 

1.1.4.5. Biogenic free-phase gas formation and storage  

 

Natural peatland ecosystems have a unique function of storing subsurface biogenic free-phase 

gas, but little is known if this ability is maintained in actively extracted, unrestored and 

restored sites and if restoration promotes the recovery of this function. Only part of the CH4 

that is produced in peatlands reaches the atmosphere. Although, as described above, the 

majority can be oxidized, some CH4 also remains in the peat. The subsurface CH4 pool occurs 
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in a gaseous form or dissolved in pore water. Methane is the major component of biogenic 

free-phase gas, accounting for up to half of the gas volume (Glaser et al., 2004, Tokida et al., 

2007a, Stamp et al., 2013); however, Strack et al. (2005) reported up to 84 % of CH4 in gas 

collected at < 1 m depth. The amount of CH4 in the gaseous state can be three times greater 

than in the dissolved phase, as observed in a floating mat by Fechner-Levy and Hemond 

(1996). Free-phase gas constitutes up to 19 % of the volume of the peat deposit (Rosenberry et 

al., 2006 and references therein). 

Bubbles of biogenic gas form when dissolved gas concentration exceeds a certain 

threshold (Beckwith and Baird, 2001, Baird et al., 2004, Gogo et al., 2011) or when the partial 

pressures of dissolved gases exceed the hydrostatic pressure (Fechner-Levy and Hemond, 

1996). Methane molecules are non-polar and therefore CH4 solubility in water is low (e.g., 

only 3.122 x 10-5 mol fraction will be dissolved at 15 ˚C and pressure of 1 atmosphere; 

Gevantman, 1992). As for any gas, CH4 solubility decreases as the temperature increases and is 

directly proportional to the pressure of the gas above the solvent (Henry’s law: Cg = k ·Pg, 

where Cg is solubility of gas, Pg is partial pressure of gas, k is a proportionality constant that 

depends on the identity of gas, the solvent and the temperature of the solution; Henry, 1832). 

The volume of gas (V) is directly proportional to the temperature (T) and the number of gas 

moles (n) and inversely proportional to the pressure (P), which is expressed in the ideal gas 

law: PV = nRT where R is the gas constant (Oxford World Encyclopedia, 2014). Thus, 

increasing temperature and decreasing atmospheric pressure (Patm) cause bubble expansion 

(exsolution of gases from pore water) and can trigger ebullition (Fechner-Levy and Hemond, 

1996, Baird et al., 2004, Kellner et al., 2006, Strack et al., 2006a, Tokida et al., 2007a), while 

decreasing temperature and increasing Patm shrink bubbles, increase CH4 solubility and 

immobilize bubbles that were stuck in peat pores, which also may cause ebullition events 

(Fechner-Levy and Hemond, 1996, Baird et al., 2004).  

Peat structure, depending on the type of peat and its degree of decomposition, has been 

recognized as one of the major controls on the distribution, storage and release of free-phase 

gas (Baird et al., 2004, Kellner et al., 2005, Strack et al., 2005, 2006a, Comas et al., 2011, 

Chen and Slater, 2015). Peat porosity accounts for 65 % of peat’s ability to store gas, while the 

spatial distribution of peat components account for the remaining 35 % (Kettridge and Binley, 
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2011). Kellner et al. (2005) found a relation between spatial variation in peatland vegetation 

and spatial variation in peat structure that drove different biogenic gas storage ability of peat. 

Parsekian et al. (2011) found higher gas content under woody vegetation and lower under 

lawns and open water. Dense sedge root system can act as a barrier preventing bubble release 

(Strack et al., 2006a, Coulthard et al., 2009, Kettridge et al., 2011).  

The subsurface movement of gas and water creates a dynamic system with spatial 

variability of free-phase gas distribution (Comas et al., 2005, 2014) and rapid changes in its 

concentration (Comas et al., 2007). The free-phase gas content depends on CH4 production and 

increases as the CH4 concentration in pore water increases (Strack and Mierau, 2010). It is also 

driven by hydrological conditions, that can be altered by low porosity and already accumulated 

free-phase gas. These conditions slow down lateral groundwater drainage by lowering 

saturated hydraulic conductivity, thereby promoting further gas accumulation (Kettridge et al., 

2013, Waddington et al., 2015).  

The amount of free-phase gas resident in the peat matrix and changes in its content can 

be measured at a plot scale with TDR probes and moisture probes (e.g., Baird et al., 2004, 

Kellner et al., 2004, Strack et al., 2005, Tokida et al., 2005, see section 1.1.4.3). Rosenberry et 

al. (2003) used hydraulic head and Kellner et al. (2004), hydraulic head with pressure 

transducers buried at certain depths to calculate gas content in peat. Ground-penetrating radar 

(GPR) has been used in a few studies to assess the free-phase gas content non-invasively on a 

scale of several meter long transects down to the bottom of the peat deposit. The method is 

based on common offset (CO) and common midpoint (CMP) surveys with low frequency 

antenna (100 – 200 MHz) combined with the Dix equation for interval electromagnetic wave 

velocity calculation (Parsekian et al., 2010; 2011 after Dix, 1955) and the complex refractive 

index model (CRIM) for volumetric water content determination (Ɵ); then, the volumetric gas 

content is calculated from porosity and Ɵ (e.g., Parsekian et al., 2010, Strack and Mierau, 

2010, Comas et al., 2014). Almost all previous studies using GPR for gas content estimation 

have been conducted on natural peatlands (Comas et al., 2005, 2007, 2008, 2011, Parsekian et 

al., 2010, 2011, Strack and Mierau, 2010). Only one study (Mwakanyamale et al., submitted) 

quantified free-phase gas in post-extracted restored and unrestored sites. This element of CH4 
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cycling requires further research in managed peatlands to assess if the subsurface CH4 pool 

recovers with restoration and whether progress can be observed with the age of restoration.  

 

1.2. RESEARCH GAPS 

 

Peat extraction drastically changes peatland ecosystems and alters hydrological and 

geochemical conditions, while restoration returns harvested sites to early stages of peatland 

succession that resemble fen-like conditions, often with high water table and sedge-dominated 

vegetation. As highlighted throughout the literature review, there are several gaps in 

knowledge on post-extraction peatlands’ CH4 cycling. Specifically, the following questions 

remain: 1) Does ebullition occur at unrestored and actively harvested sites and if so, what is its 

contribution to total CH4 flux? 2) Does ebullition and the pool of subsurface dissolved and 

free-phase CH4 increase following restoration and as the restored site ages? 3) Are the patterns 

of seasonal changes in ebullition, free-phase gas content and dissolved CH4 concentrations 

similar to those at natural peatlands? 4) How do methanogenic and methanotrophic community 

members and their activity in post-extracted restored and unrestored sites vary from these at 

natural peatlands? Even when some data are available to contribute to answering these 

questions, to my knowledge, there are no studies that combine understanding of the return of 

CH4 cycling in restored peatland across all these processes within one study site. 

 

1.3. OBJECTIVES  

 

In order to address the knowledge gaps I have identified, the objectives of the research 

presented in this thesis were: 

1. To characterize methanogenic and methanotrophic community composition and 

abundance in an actively extracted site, post-extraction unrestored and restored sites 

with regards to different age of restoration and physicochemical characteristics of peat, 

and to quantify potential rates of CH4 production and oxidation (Chapter 2). 
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2. To quantify the amount of CH4 emitted from these sites through abrupt ebullition and 

steady CH4 flux and determine factors affecting both pathways of CH4 emission 

(Chapter 3). 

3. To quantify free-phase gas content in these sites and its changes over summer and 

determine factors that govern its accumulation and release (Chapter 4). 
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CHAPTER 2: Methane cycling microorganisms and CH4 production and oxidation rates 

in horticultural peatlands: Comparing natural, currently extracted, unrestored, and 

different ages of restored sites. 

 

 

2.1. ABSTRACT 

 

Horticultural peat extraction removes the top peat layer, where the majority of microbial 

activity occurs. The peat microbial community is largely responsible for organic matter 

turnover and greenhouse gas emissions, but our understanding of its response through 

extraction and restoration remains limited. We determined how physicochemical conditions in 

natural, restored, unrestored, and actively extracted peatlands influence the methanogenic and 

methanotrophic community members and the rate of potential methane (CH4) production (MP) 

and methane oxidation (MO). Methane cycling microorganisms comprised < 0.1 % of the 16S 

rRNA gene amplicon sequence data. Methane cycling communities were similar in sites 

restored in 1991 and 2009 (25 and 7 years prior to our research). A different, shared pattern of 

microbial membership was observed at sites restored in 2012, Unrestored, Natural, and Active. 

Methanotrophs generally reached their highest abundances close to the water table (WT), at 

high and moderate concentrations of phosphate, propionate, and citrate and low concentrations 

of formate. In contrast, most methanogens were associated with the opposite side of these 

gradients. The abundance of methanogens increased with depth, while methanotrophs were 

more evenly distributed in both oxic and anoxic zones. MP was highest in the Natural site, with 

hot spots at the site restored in 2009, and lowest at the Unrestored site. MP was significantly 

higher at depths immediately below the WT compared to depths 10 – 20 cm above the WT and 

was affected by the concentration of several short chain fatty acid ions, Fe3+, and electrical 

conductivity. MO was not significantly influenced by physicochemical factors, and did not 

vary between depth zones, but was highest in the Natural site. The presence of dense vascular 

plants and high WT at restored sites seemed to drive the structure of CH4-cycling communities 

more strongly than the age of restoration of the peatlands. However, while spontaneous re-

vegetation at parts of the Unrestored site increased the abundance of CH4-cycling 



 

21 

 

microorganisms compared to that at bare peat locations, MP and MO remained close to zero, 

suggesting that CH4 cycling function is slower to return without active restoration.  

 

 

2.2. INTRODUCTION  

 

Wetlands are the largest natural methane (CH4) emitters, contributing at least 20 % of global 

CH4 emission from all sources (Shindel et al., 2004, Bridgham et al., 2013). The amount of 

CH4 released from these ecosystems is determined by the microbial processes of CH4 

production by methanogenic Archaea in waterlogged anoxic conditions and CH4 oxidation by 

methanotrophic Bacteria in oxic conditions (Horn et al., 2003, Andersen et al., 2013a,  Esson 

et al., 2016). Microorganisms phylogenetically close to archaeal anaerobic methane oxidizers 

(ANME) have been sporadically found in peatlands (Raghoebarsing et al., 2006, Etto et al., 

2012); however, the anaerobic oxidation of CH4 (AOM) is not well understood, but can 

potentially be as important in the gas budget as aerobic oxidation of CH4 (Smemo and Yavitt, 

2007, Zhu et al., 2012). 

Peatlands in the Canadian boreal region selected for horticulture peat extraction are 

usually well developed bogs with peat deposits that are > 2 m meters deep (ECCC, 2018). 

These peats naturally form vertical zonation: acrotelm, catotelm (Ingram, 1978) and mesotelm 

(Clymo and Bryant, 2008). Catotelm makes up the major bulk of peat, and is saturated with 

pore water (anoxic conditions). Acrotelm forms on top of catotelm, and is therefore younger, 

usually less decomposed, partially unsaturated, and contains abundant substrates for microbial 

processes. Mesotelm describes a zone of water table fluctuation, situated between the acrotelm 

and catotelm (Clymo and Bryant, 2008). The presence of the poorly decomposed acrotelm with 

large pore sizes prevents excessive fluctuation of the water table (WT; Waddington et al., 

2015), keeping the oxic and anoxic zones relatively stable for methanogens and 

methanotrophs. An undisturbed acrotelm is a habitat for peat forming plants. Methanogens rely 

on the presence and productivity of vascular plants to release root exudates and produce litter, 

both sources of labile carbon for methanogens (Tuittila et al., 2000a, Bridgham et al., 2013). 

Some plants (e.g., Carex spp.) can grow their roots down to the depth of 230 cm (Saarinen, 

1996, Saarnio and Silvola, 1999), supplying exudates to the zones otherwise poor in labile 
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substrates (Tuittila et al., 2000a, Bridgham et al., 2013). These roots also supply oxygen (O2) 

to anoxic peat, supporting CH4 oxidation (Ström et al., 2005, Bridgham et al., 2013) and 

regeneration of terminal electron acceptors (TEA), e.g., formation of Fe3+ at high 

concentrations, which can potentially suppress methanogenesis even in waterlogged conditions 

(Metje and Frenzel, 2005). The highest potential rates of CH4 production and the highest 

abundance of methanogens have been found below the WT (shallow peat, mesotelm), where 

methanogens have access to a fresh carbon source from decaying litter and root exudates and 

where conditions are anoxic (Sundh et al., 1994, Martí el al., 2015), while CH4 oxidation was 

observed around the oxic-anoxic boundary where O2 and CH4 are readily available (Sundh et 

al., 1995, Segers, 1998, Clymo and Bryant, 2008). Once appropriate redox conditions are 

established, the availability of the carbon substrate is the most important factor controlling CH4 

production and oxidation (Couwenberg 2009, Ho et al., 2013, Reumer et al., 2018) and the 

abundance of methanogens (Sun et al., 2012) and methanotrophs (Juottonen et al., 2012).  

Methanogenesis is the terminal stage of the degradation of organic matter and depends 

on syntrophic bacteria (Conrad, 1999, Bridgham et al., 2013). Short chain fatty acid ions (e.g., 

lactate, acetate, succinate, butyrate, pyruvate, and propionate) are products of fermentation of 

organic matter and serve as electron donors in anaerobic reactions of organic matter turnover 

(Min and Zinder, 1990). Their accumulation in protonated forms inhibits methanogenesis 

(Horn et al., 2003). Acetate is used as an electron donor in the acetoclastic pathway of CH4 

production by members of the Methanosaeta and Methanosarcina genera (Schmidt et al., 

2016), but at pH < 6, it turns into acetic acid that is toxic to methanogens (Russell, 1991, Horn 

et al., 2003, Bräuer et al., 2004). The majority of known methanogens utilize the 

hydrogenotrophic pathway of CH4 production that dominates in ombrotrophic peatlands, where 

formate can replace H2 (Galand et al., 2002, Horn et al., 2003, Bridgham et al., 2013). 

Methanogenesis is thermodynamically less favourable compared to other decomposition 

pathways (e.g., sulfate and nitrate reduction; Conrad, 1999, Hausmann et al., 2016) and can be 

suppressed in the presence of non-oxygen TEAs and their reducers. Large WT fluctuations at 

extracted peatlands promote the regeneration of TEAs, including nitrite (NO2
-), nitrate (NO3

-), 

sulphate (SO4
2-), and ferric iron (Fe3+) (Küsel et al., 2008). Dissolved and particulate organic 

matter also serve as TEAs (Lovely et al., 1996, Gao et al., 2019).  
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Some proportion of the CH4 produced in the anoxic zone can be oxidized by 

methanotrophs while diffusing through the oxic zone up to the atmosphere (e.g., Roslev and 

King, 1996, Popp et al., 2000, Esson et al., 2016). There are four bacterial groups that contain 

known methanotrophs: Alphaproteobacteria, Gammaproteobacteria, Verrucomicrobia, and 

Methylomirabilota (formerly candidate phylum NC10, whose members conduct anaerobic CH4 

oxidation coupled to nitrification, Ho et al., 2013). In acidic boreal wetlands, type II 

methanotrophs (Alphaproteobacteria) from the genera Methylocella, Methylocystis, and 

Methylocapsa predominate and actively assimilate CH4 (Dedysh, 2009). These genera are 

classified as stress tolerating (i.e., tolerant of constant high acidity, low temperatures, but stable 

conditions; Ho et al., 2013, Putkinen et al., 2018). At higher pH (5.0 – 6.0), type I 

methanotrophs (Gammaproteobacteria), classified as competitor-ruderal (i.e., associated with 

disturbed peatlands and unstable conditions; Ho et al., 2013, Putkinen et al., 2018), become 

active. At these higher pH values, typically both type I and II metabolize CH4 (Dedysh, 2009, 

Ho et al., 2013). Some methanotrophs can use short chain fatty acid ions for growth (Dedysh et 

al., 2005). 

The natural hydrological conditions are disturbed in extracted peatlands and so is the 

stability of the oxic and anoxic zones. The WT is lowered by the installation of drainage 

ditches and fluctuates extensively due to peat subsidence (increased bulk density and decreased 

specific yield) in the exposed catotelmic zone (e.g., Price, 1996, 1997). The top layers of peat 

are removed together with the primary production and seedbank (Quinty and Rochefort, 2003); 

thus, no source of labile carbon is available, and the chance for self-recovery of peatland 

vegetation is slim (Poulin et al., 2005). The remaining lower quality peat of various thicknesses 

is left behind and is poorly colonized by methanogens and methanotrophs (e.g., Waddington 

and Day, 2007, Basiliko et al., 2013, Reumer et al., 2018).  

Peat extraction is a drastic and initially abrupt alteration to the ecosystem, but once the 

extraction starts, it lasts 20 – 30 years (Wind-Mulder and Vitt, 2000). During this interval, the 

resilience of soil microorganisms (e.g., fast growth rate, physiological flexibility, rapid 

evolution; Allison and Martiny, 2008) and their ability to move (e.g., chemotaxis; Ebrahimi 

and Or, 2017) may promote the establishment of new microbial community structure. 

Additionally, post-extraction peat shows high water retention due to its small pore size 



 

24 

 

(Waddington and Price, 2000), meaning it can form anoxic microsites above the WT (Estop-

Aragonez et al., 2013) that could potentially sustain anaerobic microbial metabolisms. There is 

no published research on methanogenic activity specifically in these microsites, but studies on 

CH4 production in freshwater wetlands revealed a possibility of oxic CH4 production (Angle et 

al., 2017).  

Peatland restoration aims to re-establish the natural hydrological conditions and 

peatland vegetation, with the primary goal of recovering a fully self-sustaining, functional 

ecosystem able to accumulate peat (Rochefort et al., 2003). Although the microbial component 

cannot be directly restored, and microbial community regeneration is beyond the scope of 

regular site monitoring, research shows that restoration efforts improve the microbial 

characteristics of post-extracted peatlands (Andersen et al., 2006, 2010, 2013a,b, Bossio et al., 

2006, Reumer et al., 2018). Since peatland restoration in Canada started only about 30 years 

ago, the available data are limited by the age of the restored sites (Strack et al., 2016). Young 

restored peatlands vary in ecohydrological and functional features from their original natural 

form of a bog. The vegetation is usually dominated by graminoids and the vascular plant cover 

is higher than at natural sites (Tuitilla et al., 2000b, Gonzalez and Rochefort, 2014, Putkinen et 

al., 2018). The WT is generally shallow, and the site’s chemical features can be closer to those 

of fens (Wind-Mulder et al., 1996, Wind-Mulder and Vitt, 2000). The microhabitat, 

geochemistry and the type of vegetation are the strongest determinants for the microbial 

community composition (Jaatinen et al., 2007, Lin et al., 2014, Robroek et al., 2015, Putkinen 

et al., 2018). Thus, lack of vegetation at abandoned sites or shifts in vegetation at restored sites, 

in combination with altered hydrological conditions, will shape the microbial community 

characteristics differently than at unextracted peatlands.  

To date, there is little published research that assesses methanogenic and 

methanotrophic communities in post-extracted, restored, and unrestored peatlands. Putkinen et 

al. (2018) found a link between Sphagnum recovery at restored peatlands and the 

methanogenic and methanotrophic abundance, community structure, and activity. They 

observed differences in the methanogenic community between young (2 years) and old (17 – 

63 years) restored sites and increasing potential rates of CH4 production from the youngest 

restored, through the older restored, to the natural, and large potential rates of CH4 oxidation in 
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hummocks (Putkinen et al., 2018). Juottonen et al. (2012) found only moderate differences in 

methanogenic community and no difference in methanotrophic community composition 

between natural and 10 – 12 year old restored sites, but the restoration was limited to filling in 

the drainage ditches with peat. In contrast, the abundance of CH4-cycling microorganisms 

recovered well in a restored site 15 years post-restoration (ditch damming only) with the return 

of Sphagnum (Reumer et al. 2018). The authors observed distinct methanogenic community 

composition at natural and restored sites, different from those in active and unrestored 

peatlands; however, they suggested more than another 15 years would be required to fully 

reverse the impact of peat extraction on microbial communities (Reumer et al., 2018). 

Nevertheless, most of the microbiological studies on actively extracted, unrestored, and 

restored peatlands are focused on the entire microbial community (e.g., Galand et al., 2005, 

Artz et al., 2008, Basiliko et al., 2003, 2013, Andersen et al., 2006, 2010, 2013a, b). Basiliko 

et al. (2013) reported the archaeal community being site specific. Restoration resulted in an 

archaeal community similar as in the natural peatland, with all restored sites having similar 

community composition (Basiliko et al., 2013).  

The goal of this study was to determine how different physicochemical conditions 

influence the methanogenic and methanotrophic community characteristics and their potential 

for CH4 production and oxidation in actively extracted (Active), post-extraction unrestored 

(Unrestored), restored, and undisturbed sites (hereafter referred to as Natural). We hypothesize 

that: 

1) Both the abundance and diversity metrics of methanogens and methanotrophs will be 

lower at the Active and Unrestored sites compared to the restored and Natural sites. The 

restored and the Natural sites will have similar methanogenic community composition 

that will vary from that at Unrestored and Active sites.  

2) The abundance and diversity metrics of methanogens will be higher in deep peat where 

stable anoxic conditions prevail, while methanotrophs will occur mainly in shallow peat 

where oxic conditions prevail. 

3) The abundance of methanotrophs and potential rates of CH4 oxidation (MO) will not be 

affected by the concentration of inorganic ions and short chain fatty acid ions, assuming 

that O2 is available.  
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4) Given the recurring nature of potential TEAs, i.e., quickly changing concentration as 

the WT fluctuates, they will not affect the abundance of methanogens but rather their 

activity. The accumulation of short chain fatty acid ions will be associated with lower 

activity of methanogens, except for formate and acetate that are essential compounds in 

hydrogenotrophic and acetoclastic methanogenesis, respectively.  

 

2.3. STUDY SITE 

 

The study was conducted at a horticultural peat extraction complex of peatlands near Seba 

Beach, Alberta (53° 33' N, 114° 44' W). Prior to peat extraction, the original peatlands were 

boreal bogs. Six sites from Active, through Unrestored, restored at different times, to Natural 

were included in the research. We selected three sites restored with moss layer transfer 

technique (Quinty and Rochefort, 2003): restored in 1991 (RES-1991), 2009 (RES-2009), and 

2012 (RES-2012) (Fig. A.1.1). The depth of the peatlands was assessed by ground penetrating 

radar (GPR) surveys (Chapter 4). The Natural site was a treed bog with over 5 m thick peat 

deposit, characteristic hummocks and hollows and poorly decomposed Sphagnum peat (Fig. 

A.1.3A). RES-1991 was one of the oldest peatlands restored in Canada. The peat deposit was 3 

– 4 m deep, depending on the location. The site was flooded with a partially floating mat. After 

prolonged drought, the WT remained at or slightly above the peat surface, but parts of the 

peatland were still inaccessible due to wet conditions. The drainage ditches were blocked but 

not filled in. A mosaic of dense hummocks of Sphagnum and sedges dominated the peatland 

vegetation (Fig. A.1.3B). Peat at RES-2009 was 1.5 – 2.5 m deep, largely covered with sedges, 

grasses and shrubs with overgrowing Sphagnum and true moss (Fig. A.1.3C). RES-2012 was 

relatively large (~ 40 ha) but only 7 ha were selected for intensive study (Fig. A.1.3D). The 

shallow ( ~ 1.5 m) and dry east part of RES-2012 gradually transitioned to deeper (> 3 m) peat 

with wet conditions in the west part. The wet part was severely flooded following heavy rain 

events. We sampled in a moderately wet middle part. The Unrestored site was a part of a larger 

extracted site left unrestored for the research purpose in 2012 at which time the drainage 

ditches were filled up with peat and the surface levelled. No other restoration effort was taken, 

and natural peatland vegetation had not recovered. The great majority of the site remained 

bare, though birch and sedges progressively colonized the west part of the site and peatland 
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margins (Fig. A.1.3E). The peat was moderately decomposed (H5 – H7 in the Von Post scale) 

at vegetated parts and poorly decomposed (H3 – H4) at the bare part. The peat deposit 

exceeded 2.5 m depth. The Active site was < 2 m deep at the sampling location, with poorly 

decomposed Sphagnum peat (H3 – H4) compacted by heavy machinery and active drainage 

ditches. The peat surface was stripped of vegetation (Fig. A.1.3F). More information on 

vegetation at the sites can be found in Chapter 4.  

 

 

2.4. METHODS  

2.4.1. Sampling 

 

Samples for molecular analyses were collected in August 2016 at high WT levels. At each site 

except the Active, two cores were sampled targeting major peat surface cover types: sedgy and 

mossy at the restored sites, bare peat and sedgy at the Unrestored site, and hummocks and 

hollows that were both covered with dense moss at the Natural site. One core representing bare 

peat was sampled from the Active site. A total of 11 cores (119 samples with depth sectioning) 

were collected for molecular analyses. Eleven cores for paired physicochemical analyses were 

taken within a 20 cm radius of the molecular cores. Peat was sampled with a Russian corer to 

the depth of 1 m. Additionally, one 10 cm long sample per core was taken from the greatest 

depth possible to sample in the given conditions. Peat segments of 10 cm in length were 

packed into sterile plastic bags and immediately flash frozen in liquid nitrogen, transported the 

same day in dry ice and stored at -80 C. Corresponding segments of peat for physicochemical 

analyses were packed in Ziploc bags, immediately placed in coolers with ice, transported to the 

lab and stored at -20 C. During sampling, minimal exposure to ambient air and aseptic 

conditions were ensured. All equipment was thoroughly washed with 70 % ethanol before and 

between sampling. 

Cores for microcosms were sampled at the Natural, RES-2009 and Unrestored sites in 

August 2017 when the WT was ~20 cm deeper than during the 2016 sampling. Triplicate cores 

were collected from hummocks and hollows at the Natural site, from sedge- and moss-

dominated locations at RES-2009 and bare peat at the Unrestored site. We used PVC pipes, 

sharpened at one end, to minimize peat compaction during sampling. We used 70 % ethanol to 
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sanitize the equipment. The depth of sampling was calculated with respect to the actual WT 

level at each sampling plot. Three depths were targeted: a 10 cm thick peat layer immediately 

below the WT (depth zone A), 0 – 10 cm above the WT (depth zone B), and 10 – 20 cm above 

the WT (depth zone C). The pipes were immediately sealed and placed in a cooler with ice. 

Corresponding peat for physicochemical analysis was sampled into plastic Ziploc bags and 

placed in a cooler with icepacks. Cores were stored at 4 C and physicochemical samples at -

20 C. Sampling procedures ensured minimal exposure of samples to O2. A total of 15 cores 

were collected (44 samples). Due to a shallow WT position, one core from RES-2009 

comprised of only two peat samples immediately below and above the WT. 

 

2.4.2. Microcosms 

 

We followed the protocol of Daté (2016) to prepare the microcosms. Cores were processed in a 

glove box in a nitrogen (N2) atmosphere with up to 3 % hydrogen added to bond trace oxygen 

(O2) and form H2O for removal by filters. The O2 concentration was constantly monitored and 

an anoxic atmosphere maintained. Ethanol 70 % was used to clean all equipment during peat 

core processing. Cores were cut into segments representing depths A, B, and C. Each sample 

was placed in a Ziploc bag and thoroughly homogenized by hand. For each sample, a 10 g 

subsample was placed in a 250 mL sterile jar and inundated in MilliQ water purged with N2 to 

ensure anoxic conditions during incubation for CH4 production potential assessment. Another 

10 g of peat was placed in a separate sterile jar for oxic microcosms to quantify CH4 oxidation 

potential. Oxic and anoxic blank microcosms were prepared for each batch of samples 

separately. An oxic blank was an empty sterilized jar, while an anoxic blank was a sterilized jar 

with distilled water. Anoxic microcosms were tightly closed in the glovebox with lids and 

Teflon tape wrapped around the jar thread to isolate the microcosms from atmospheric O2 and 

prevent gas leaks. Oxic microcosms were exposed to ambient air and then closed with lids and 

Teflon tape. No inhibitors of CH4 production or oxidation were added to the microcosms as we 

designed this experiment to resemble natural conditions. All microcosms were placed in a 

growth chamber at 10 C for a 24-hour preincubation (temperature equilibration). The next 

day, the anoxic microcosms were flushed with N2 and oxic microcosms with ambient air. A 
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total of 44 oxic and 44 anoxic microcosms were incubated at 10 ˚C in darkness for six weeks 

for anoxic conditions and at least two weeks for oxic. Gas from the headspace of anoxic 

microcosms was sampled every day during the first week of incubation, then every three days. 

Gas from the headspace of oxic microcosms was sampled every day until it reached the 

ambient level (~ 2 ppm), which could span from 7 to 9 days, then a mixture of CH4 and 

ambient air was added to obtain [CH4] ~100 ppm in the microcosm headspace. Then, gas was 

sampled every day for at least seven days (hence, the total incubation time was at least 2 

weeks). Methane concentrations were measured using a Shimadzu GC-2014 gas 

chromatograph equipped with a flame ionization detector and injected with EST Flex 

automatic sampler. Potential CH4 production (MP) and CH4 oxidation (MO) rates were 

calculated from the slope of CH4 concentration increase (in anoxic microcosms) or decrease (in 

oxic microcosms), respectively, corrected with the slope for the blank samples. 

The incubation temperature was chosen based on 30-minute temperature averages for 

peat at the RES-2009 site at 20 cm depth, measured with a HOBO logger from August 8th to 

25th, 2017, during core collection. The average peat temperature for that time window was 

11.0 C. Thermocouple wires attached to the CS1000 water content reflectometry data loggers 

(Campbell Scientific) installed at sites restored in 2012 and 1991 (the youngest and the oldest 

restored sites) showed that soil temperature was lower by about 2 C at 50 cm depth compared 

to 25 cm depth. In the majority of cases, the water table level at our sampling plots was within 

the 25 – 50 cm depth zone, therefore the incubation temperature was set for 1 C less than the 

11 C measured at 20 cm depth. The temperature of incubation was below the optimum (25 

C), but still within the acceptable range for methanogenesis (Metje and Frenzel, 2005).  

 

2.4.3. Physicochemical and environmental conditions 

 

The Von Post scale of peat humification was used to assess the degree of decomposition of 

peat (Government of Canada, 2013). The WT was measured in water wells installed near each 

sampling location. Peat porosity (St) was calculated from bulk density (Db) and particle density 

(Dp) as follows: St = 1 – (Db Dp
-1), (Hao et al., 2008) in 10 cm increments down to 1 m depth. 

Peat cubes of known volume (Vt) were collected at each depth. The cubes were weighed and 
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dried at 70 °C (Andersen et al., 2013a) until constant mass (ms). Soil bulk density was 

calculated using Db = ms Vt
-1 (Hao et al., 2008). Dried samples were ground and sieved 

through 500 µm mesh. A known mass of the sample (ms) was placed in a volumetric cylinder 

with a known volume of kerosene (fluid displacement method). The difference between the 

volume of kerosene with peat and the initial volume of kerosene gives the volume of soil 

particles (Vs). Particle density was calculated from Dp = ms Vs
-1 (Hao et al., 2008). The ratio of 

carbon to nitrogen (C:N) was calculated from total carbon (C) and total nitrogen (N) 

percentage concentration measured on ground, sieved, and freeze-dried peat. Total C and total 

N were measured at the Agriculture and Food Laboratory at the University of Guelph, Ontario 

using the Elementar Vario Macro Cube. Conductivity and pH of peat was measured in dried, 

ground samples inundated in deionized water in 1:15 ratio (w/w) using Hanna conductivity/pH 

meter.  

For DOC and anion concentration, 2 g of flash frozen peat (liquid nitrogen, stored at -

80 C) was transferred into centrifuge tubes and shaken at 450 rpm with 10 g of MilliQ water 

for 1 hour. Tubes were centrifuged at 5000 rpm for at least 10 minutes. We followed standard 

operating procedures of the Ecohydrological Lab for dissolved organic carbon (DOC), and 

organic and inorganic ion concentration analyses in water. Briefly, the supernatant was filtered 

through 0.45 µm filters and diluted 1:1 with MilliQ water in test tubes. DOC was measured 

using the non-purgeable organic carbon method on a Shimadzu TOC-LCPH/CPN equipped 

with a non-dispersive infrared (NDIR) gas analyzer. The calibration was performed using 

certified standards diluted within the expected range of DOC concentration in triplicate for 

each concentration. For the analysis of organic acid anions and inorganic anions, a part of the 

initial supernatant was filtered through a 0.2 µm polypropylene filter and stored at -20 C prior 

to analysis. We targeted acetate, lactate, succinate, butyrate, pyruvate, propionate, citrate, 

nitrite (NO2
-), nitrate (NO3

2-), sulphate (SO4
2-), and phosphate (PO4

3-). Samples were analyzed 

with a Dionex (Thermo Fisher) ICS-5000 Capillary Ion Chromatograph. The calibration was 

made in external mode using triplicate of at least five different standard concentrations.  

To determine the concentration of ferric iron (Fe3+) in peat, the ferrozine method was 

used (Stookey, 1970 modified according to Lovley and Phillips, 1986 and Viollier et al., 2000). 

The ferric iron concentration was calculated from the concentration of Fe2+ subtracted from the 

total concentration of Fe2+ and Fe3+. Ferrous ions form a colour complex with ferrozine 
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(monosodium salt hydrate of 3‐(2‐pyridyl)‐5,6‐diphenyl‐1,2,4‐triazine‐p,p'‐disulfonic acid) that 

absorbs visible light with a peak at 562 nm wave length. The absorption was measured with a 

UV-visible spectrophotometer (Thermo Scientific, Evolution 260 Bio). For the analysis of 

Fe2+, 0.5000 g of dried and sieved (500 µm, plastic mesh) peat was freeze dried, digested on a 

shaker with 5 mL 0.5 M HCl for 1 hour to mobilize Fe(II) and centrifuged at 4300 rpm for 10 

minutes. 50 µL of the peat solution was added to 2.45 mL of ferrozine solution (1 g L-1 of 

ferrozine in 50 mM HEPES buffer adjusted to pH 7 using HCl and NaOH). To measure the 

concentration of total Fe2+ and Fe3+, 200 µL of 6.25N hydroxylamine hydrochloride (2.17 g in 

5 mL of MilliQ water) was added to the remaining peat solution and digested for 1 hour on a 

shaker to mobilize Fe(III) and reduce it to Fe(II). 50 µL of the peat solution was added to 2.45 

mL of ferrozine solution. All samples were prepared in triplicate and measured immediately 

after preparation. All steps of the analysis (except the initial peat weighing) as well as reagent 

preparation were performed in a glovebox (similar conditions as used in microcosm 

preparation) using an analytical balance accurate to 0.00001g. All liquids used in the glovebox 

were purged with N2 to remove O2. Sample digestion was performed at room temperature. In 

this method, Fe(II) and Fe(III) adsorbed on mineral particles and Fe(II) immobilised in 

minerals are mobilized and measured. We used MilliQ water of 18.2MΩ cm-1 resistance. The 

initial standards were prepared in the glovebox from a solution of FeCl2.4H2O in 0.5 M HCl in 

concentrations 50 mM, 75 mM, 150 mM, and 300 mM and stored in tightly sealed amber 

bottles in the glovebox. The dilutions of the initial standards were made to obtain the 

calibration curve (R2 > 0.99) covering the range of Fe2+ concentration in our peat samples (at 

least seven different concentrations prepared in triplicates). The dilutions were stored for no 

longer than a month in tightly sealed amber jars at 4C. Fe2+ salts are easily oxidized, therefore 

the quality control on the calibration curve was made using standards of FeSO4.4H2O in 0.5 M 

HCl prepared in identical conditions and concentrations as the FeCl2.4H2O standards. The 

concentration of Fe2+ measured in the quality control samples was within 10 % of the 

concentration calculated from the same absorbance using the calibration curve.  

Descriptive statistics for physicochemical variables (n, mean, sd) were calculated using 

the R package Rmisc (Hope, 2013) and converted to csv files using tables package (Murdoch, 

2019). Kruskal-Wallis one-way analysis of variance was used to determine if the  

physicochemical factors varied between sites. 
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2.4.4. Microbial community 

 

DNA was isolated using the MoBio PowerSoil® DNA Isolation Kit for 0.25 g of soil sample 

following the procedure of the manufacturer, with 50 µL of Solution C6 used instead of 100 

µL for elution. DNA was kept at -20 C until analysis. Quality control on DNA extracts was 

performed following the DOE Joint Genome Institute (JGI) standard operational procedure 

(SOP) “iTag sample amplification QC” prior to analysis (Daum, 2016). Targeted Illumina 

sequencing was performed at JGI laboratories following “iTag Sample Preparation for Illumina 

Sequencing, v.1.0” SOP (Daum, 2017). Briefly, the amplicon libraries (iTags) were generated 

and sequenced using the Illumina MiSeq platform. A total of 119 samples were processed and 

2x301 base pair amplicons were obtained spanning the V4 region of the 16S rRNA gene to 

determine the presence of Bacteria and Archaea. Primers used were: 16S rRNA V4 region 

primers: FW (515F): GTGCCAGCMGCCGCGGTAA, RV (805R): 

GGACTACHVGGGTWTCTAAT. The reads were demultiplexed, contaminants removed, and 

adapters trimmed using BBDuk version 37.90 (Bushnell, n.d.). Forward and reverse reads were 

split using khmer version 2.1.1 (Crusoe et al., n.d.) and screed version 1.0 (Crusoe et al., n.d.). 

Further analysis was carried out in QIIME 2 v. 2018.11 and 2019.11 (Bolyen et al., 2018). 

Metadata files were checked for validity using Keemei (Rideout, 2016). The sequences were 

denoised and corrected using DADA2 (q2-dada2 plugin, Callahan et al., 2016). A feature 

classifier was trained for 16S rRNA using q2-feature-classifier plugin (Bokulich et al., 2018) 

based on the 132 release of SILVA database with a threshold of 99 %+ identity for taxonomic 

assignments (Quast et al., 2013). A total of 56 samples with 16S rRNA sequence count lower 

than 20,000 were filtered out, resulting in 63 samples remaining in the database (Tab. A.2.1). 

The methanogenic and methanotrophic communities were analysed based on exact sequence 

variants (ESVs) tables rarefied to the depth of 28,000 based on the lowest number of sequence 

counts. The raw reads are available at:  

http://genome.jgi-psf.org/pages/dynamicOrganismDownload.jsf?organism=Lanleaitagspl1 and 

http://genome.jgi-psf.org/pages/dynamicOrganismDownload.jsf?organism=Lanleaitagspl2. 

Alpha diversity and richness were calculated in QIIME 2 (Bolyen et al., 2018). Since 

DADA2 output was free of singletons, we did not use abundance-based coverage estimator 

(ACE) or Chao1 and Chao2 metrics, as these rely on the abundance of low frequency features 

http://genome.jgi-psf.org/pages/dynamicOrganismDownload.jsf?organism=Lanleaitagspl1
http://genome.jgi-psf.org/pages/dynamicOrganismDownload.jsf?organism=Lanleaitagspl2
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to estimate the number of under sampled species (Gotelli and Chao, 2013). Richness and 

diversity plots and taxa barplots were visualized in R (R Core Team, 2019) using the ggplot2 

package (Wickham, 2016). We applied the number of observed ESVs, Faith’s index (PD, 

stands for ‘Faith’s diversity’; Faith, 1992) and Shannon’s index (H; Shannon and Weaver, 

1949). The non-parametric Kruskal-Wallis test was used to determine significant differences 

between grouped alpha diversity metrics. We grouped them according to the location of the 

sample in relation to the WT fluctuation zone (WTFZ; within, or below).  

The principal coordinates analysis (PCoA) of weighted and unweighted UniFrac 

(Lozupone and Knight 2005, Lozupone et al., 2007) was used to determine the methanogenic 

and methanotrophic community’s similarity between samples and sites. Beta diversity was 

calculated in R using the phyloseq package (McMurdie and Holmes, 2013) with the tidyverse 

package (Wickham, 2017) and qiime2R to read QIIME 2 output files (Bisanz, 2018).  

Heatmaps of the absolute abundance of methanogens and methanotrophs on the 

normalized dataset were made in QIIME 2 on the rarefied dataset with taxa collapsed at the 

genus level. Abundances were normalized by adding a pseudocount 1 followed by a log10 

transformation in QIIME 2.  

Canonical correspondence analysis (CCA) was performed using the vegan R package 

(Oksanen et al., 2019) to determine the relationship between physicochemical variables and the 

absolute normalized abundance of methanogens and methanotrophs in the rarefied dataset. 

CCA models were validated according to Oksanen (2012) using an ordistep function. CCA 

graphs were made using ggplot2 (Wickham, 2016), ggvegan (Simpson, 2019), and ggrepel 

(Slowikowski, 2019). The WT variable used for CCA analysis was the depth of peat in relation 

to the WT at the time of sampling, e.g., when the actual WT level was at -10 cm below the 

ground, the sample from 10 – 20 cm depth was assigned 0 cm, and the sample from 0 – 10 cm 

depth was +10 cm.  

 

2.4.5. Physicochemical drivers of potential rates of CH4 production and oxidation 

 

Principal component analysis (PCA) in R was used to ordinate the physicochemical variables 

of peat in the microcosms. Linear mixed effect (LME) models were built for MP and MO with 
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principal components (PCs) as the explanatory variables and the peat core location as a random 

variable. One-way ANOVA calculated using the nlme R package (Pinheiro et al., 2019), was 

applied to the models to identify which PCs significantly explained the variability in MO and 

MP. All LME models were validated for distribution of residuals. R2 was calculated using the 

MuMIn package in R (Barton, 2019). Kruskal-Wallis one-way analysis of variance with Dunn 

post-hoc analysis and p-values adjusted with the Benjamini-Hochberg method (R packages: 

dplyr (Wickham et al., 2019), and FSA (Ogle et al., 2019)) were used to determine the spatial 

variability of MP and MO among sites, depths, and surface cover types. Additional R packages 

used for calculation and visualization of MP and MO analysis output included factoexta 

(Kassambara and Mundt, 2017) and dplyr (Wickham et al., 2019). Shapiro-Wilk test in R (R 

Core Team, 2019) was used to test if data were normally distributed. Additionally, skewness 

and kurtosis were calculated and histogram of frequencies was used to identify data 

distribution.  

 

2.5. RESULTS 

2.5.1. Physicochemical and hydrological conditions 

 

The water table fluctuation zone (WTFZ) was calculated from the lowest and highest levels of 

the WT (Fig. 2.1). Over 1,300 WT measurements were collected in years 2016 and 2017. The 

WT fluctuated from -5.5 cm to -79 cm at the Natural site (with larger fluctuations at the 

hummock site than at the hollow), from +20.5 cm to -60 cm at RES-1991, from +10 cm to -87 

cm at the RES-2009, from +20 cm to -79 cm at RES-2012, from +6.5 cm to -79 cm at the 

Unrestored, and from -3 cm to -67 cm at the Active site. The Unrestored site had the lowest 

porosity and the highest WT fluctuations, while RES-1991 and the Natural site had the highest 

porosity and relatively stable WT, aside from the hummock locations at the Natural site.  
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Figure 2. 1. Water table fluctuation and porosity at studied sites.  

 

Almost all physicochemical factors, except [lactate] and [pyruvate], varied significantly 

between sites (Kruskal-Wallis one-way analysis of variance; Tab. A.2.4). The depth profiles of 

peat physicochemical properties showed individual patterns for each site in most cases, but the 

highest [succinate] was found in shallow peat of the Natural site and RES-1991 compared to 

greater depths and other sites (Tab. A.2.1). Also, [PO4
3-] and [pyruvate] was the highest in 

surface peat of the Natural site and all restored sites but not at Unrestored and Active sites 

(Tab. A.2.1.).  

Among the 63 samples with adequate sequence counts for inclusion in the molecular 

analysis, the only sample from the Natural hummock (20 – 30 cm depth) showed unique 

chemical balance (the highest [DOC], C:N, EC, [succinate], [pyruvate], [PO4
3-], and one order 

of magnitude higher [citrate] than in other sites, but the lowest pH, [formate], and very low 
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[Fe3+], but relatively high [SO4
2-]). We did not detect any methanogens or methanotrophs in 

this sample. The mean [DOC] was comparable for the remaining sites and surface cover types 

aside from a relatively low values found in the Active site and Unrestored sedgy location 

(mean 1.4 and 1.2 mg g-1, respectively) (Tab. 2.1, Tab. A.2.1). The lowest C:N ratios were in 

sedgy cores of the Unrestored, RES-2009, RES-1991 and in the Active site (15.5, 19.4, 21.7, 

and 20.2, respectively) with higher values for the Unrestored bare peat, Natural hollow, and 

RES-2012 (32.3, 34.4, and 30.8 – 37.3, respectively). The mean EC was comparable between 

sites and surface cover types, in most cases > 200 µS cm-1, with the lowest value for the Active 

site (140.4 µS cm-1). Fe3+ was the most abundant TEA except for at the Active and bare 

location of the Unrestored site, where SO4
2- was observed in higher concentrations than Fe3+. 

[Fe3+] exceeding 1000 µg g-1 of dry peat was found in the sedgy core from RES-2009. 

Butyrate, pyruvate, and lactate were the least, and acetate and formate the most abundant short 

chain fatty acid ions. The Unrestored and Active sites were relatively poor in short chain fatty 

acid ions, while the restored sites comparatively rich.  

The samples for the microcosm experiment were collected in 2017 at the WT about 20 

cm deeper than during 2016 core collection, and had different physicochemical characteristics 

than samples for the microbial analysis (Tab. 2.2, Tab. A.2.2). We analysed peat 

physicochemical characteristics for both molecular samples and microcosm samples to 

determine if there is an impact of peat properties on the abundance of methane cycling 

microorganisms and methane production and oxidation rates. Here we compare peat collected 

for microcosms (2017) with corresponding depths from 2016. [DOC], C:N, and pH did not 

vary considerably between samples from 2016 and 2017, but EC was notably higher in 2017. 

At the RES-2009 site, [acetate] increased over twofold in 2017 compare to 2016. [Formate] 

remained below 10 µg g-1 of dry peat at the Natural site in both years and increased from <10 

(2016) to over 18 µg g-1 of dry peat (2017) at RES-2009. [Succinate] and [citrate] were higher 

in 2017 compared to 2016 at all sites. Core #2 collected in 2017 at RES-2009 had the highest 

[acetate], [propionate], [succinate], [butyrate], and [pyruvate], but relatively low [formate] 

compared to other cores from both years. The [Fe3+] were similar within each peatland in 2016 

and 2017, e.g., the Natural site showed consistently the lowest [Fe3+] and [SO4
2-] in both years 

and [NO2
-] and [NO3

-] were the lowest of all TEAs. [PO4
3-] from 2017 was higher than in 2016 

across all sites. 
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Table 2. 1. Mean values and standard deviations of physicochemical variables in 63 samples with 

sequence count above the rarefication threshold. DOC – dissolved organic carbon (mg g-1), EC – 

electrical conductivity (µS cm-1), WT – water table (cm); short chain fatty acids (µg g-1 of dry peat): 

ACE – acetate, BUT – butyrate, CIT – citrate, FOR – formate, LAC – lactate, PYR – pyruvate, PRO – 

propionate, SUC – succinate; ions (µg g-1 of dry peat). 
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Table 2. 2. Mean values and standard deviations of physicochemical variables of peat samples collected 

for the microcosm experiment. DOC – dissolved organic carbon (mg g-1), EC – electrical conductivity 

(µS cm-1), WT – water table (cm); short chain fatty acids (µg g-1 of dry peat): ACE – acetate, BUT – 

butyrate, CIT – citrate, FOR – formate, PYR – pyruvate, PRO – propionate, SUC – succinate; ions (µg 

g-1 of dry peat). Lactate concentration in all samples was 0 µg g-1 dry peat. 
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2.5.2. Abundance of methanogens and methanotrophs  

 

Methanogens were found in 60 of 63 samples, missing only from surface peat (0 – 10 cm) of 

the Unrestored bare peat core, the RES-2009 sedgy core (0 – 10 cm), and the sample from 

Natural hummock (20 – 30 cm, Tab. A.2.3). Methanotrophs were found in 61 of 63 samples, 

missing from Unrestored bare peat at 30 – 40 cm depth and from the Natural hummock sample 

(Tab. A.2.3). Based on 16S rRNA amplicon sequencing, the sum of both methanotrophs and 

methanogens accounted for < 0.1 % of the total bacterial and archaeal community (Fig. 2.2). 

Lower relative abundance of both groups was found in RES-2012, and the Unrestored site, 

while RES-1991 and RES-2009 showed the highest abundance. At Natural hollow, the 

abundance of methanogens noticeably increased at 60 – 70 cm (below the WTFZ). At RES-

1991 mossy location the abundance of methanotrophs decreased with depth and that of 

methanogens increased, while in the sedgy core a sudden large increase in the abundance of 

both groups at 10 – 20 cm depth was observed. Methanogens dominated over methanotrophs in 

the mossy core from RES-2012 and in RES-2009 below the WTFZ. The sedgy core at the 

Unrestored site showed more methanogens than the bare peat core. Only at the lower boundary 

of the WTFZ did the abundance of methanogens increase. The only existing sample from the 

Active site had more methanogens than methanotrophs. 

 

2.5.3. Methanogenic community  

 

Methanogens were distributed along depth patterns characteristic for each site and similar 

group composition was present at RES-2012, the Unrestored and Active sites (Tab. A.2.3 and 

Fig. 2.3A). The majority of methanogens belonged to the classes Methanobacteria, 

Methanomicrobia, Thermococci, and Thermoplasmata within the phylum Euryarchaeota 

(32,139 of 40,122 sequence counts; 19 taxa of 21 identified methanogens). The codes for 

methanogenic taxa follow the alphabetic order of the taxa names in Tab. 2.3. 

Methanobacterium (MG3) was the only genus observed from the Methanobacteria class 

(Thauer et al., 2008, Liu, 2010). Three methanogenic orders of the class Methanomicrobia 

were found: Methanosarcinales (Garcia et al., 2000, Liu, 2010, Lackner et al., 2018), 

Methanomicrobiales (Garcia et al., 2000, Thauer et al., 2008, Liu, 2010), and Methanocellales 
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(Sakai et al., 2008). Two genera of Methanosarcinales, Methanosaeta (MG13) and 

Methanosarcina (MG14), are related to the only known acetoclastic methanogens (Lackner et 

al., 2018). The class Methanocellales was represented by three genera: Methanocella (MG4; 

Sakai et al., 2008), Rice Cluster I (MG5, Sakai et al., 2008) and an uncultured genus within an 

uncultured family (MG6). All three genera were present mainly in RES-1991. Six genera of 

Methanomicrobiales were detected: Methanoregula (MG7, Sakai et al., 2012), 

Methanospirillum (MG8, Ferry et al., 1974), Methanosarcina sp. (MG9; Rice Cluster II; e.g., 

De Vrieze et al., 2012), an uncultured archaeon MG10; Cluster II family), and two other 

uncultured methanogenic Archaea (MG11, and MG12) that were present only in RES-1991. 

Three uncultured methanogenic genera (MG18 and MG19, MG20) of the order 

Methanomassiliicoccales (Borrel et al., 2014; class Thermoplasmata) are related to H2-

depended methylotrophic methanogens (which reduce methanol or methylamines using H2; 

Evans et al., 2015, Lang et al., 2015) but are also the only methanogenic order without the 

capacity for hydrogenotrophic methanogenesis (Vanwonterghem et al., 2016). MG20 was 

present only in the deepest peat (340 – 350 cm) of RES-1991, while MG18 was present in the 

whole profile of RES-1991 and RES-2009, but was found only at greater depths at RES-2012 

and the Unrestored site (Fig. 2.3A, Tab. A.2.3). The greatest abundance of MG19 was found 

below 50 cm at the RES-2009. An uncultured methanogen from the class Thermoplasmata 

(MG21) was present only at the Natural site and was the only Thermoplasmata found in cores 

from that peatland. Three uncultured members of the methanogenic order Methanofastidiosales 

(Verwonterghem et al., 2016, Lyu et al., 2018), class Thermococci (MG15, MG16, MG17) 

occurred only in very small numbers in deep peat from RES-1991 and RES-2009. Two other 

methanogens were classified as Candidatus Methanomethylicus (MG2, Verwonterghem et al., 

2016) of the phyla Crenarchaeota (class Verstraetearchaeia) and an uncultured methanogenic 

archaeon of the class Bathyarchaeia (MG1; Lyu et al., 2018). These two organisms are related 

to methylotrophic methanogens (Evans et al., 2015, Vanwonterghem et al., 2016). Cand. 

Methanomethylicus was found in deep peat of RES-2012 and RES-1991. MG1 thrived in all 

sites regardless of the surface type cover, but only below the depth of  20 – 30 cm.  
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Figure 2. 2. Relative abundance of methanogens and methanotrophs in the 16S rRNA amplicon 

sequencing. Letters a – k denote depths: a (0 – 10 cm), b (10 – 20 cm), c (20 – 30 cm), d (30 –  40 cm), 

e (40 – 50 cm), f (50 – 60 cm), g (60 – 70 cm), h (70 – 80 cm), i (80 – 90 cm), j (90 – 100 cm), k is the 

deepest sample collected from the site (340 – 350 cm at RES-1991, 150 – 160 cm at RES-2009 mossy, 

113 – 123 cm at RES-2009 sedgy,  140 – 150 cm at RES-2012 mossy, 130 – 140 cm at RES-2012 

sedgy). ACT – Active, NAT – Natural, UNR – Unrestored, M – mossy, S – sedgy, B – bare peat. 
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Overall, few methanogenic taxa were observed in the Natural site down to 70 cm depth, 

with peat at 60 – 70 cm containing their largest abundance dominated by Methanosarcina sp. 

(MG9). RES-1991 showed the largest diversity of methanogens among all peatlands, mainly 

uncultured Bathyarchaeia (MG1), Cand. Methylomethylicus (MG2), Methanobacterium 

(MG3), Methanocella (MG4), Methanoregula (MG7), the uncultured member of Rice Cluster 

II (MG10), Methanosaeta (MG13), and uncultured Methanomassiliicoccales (MG18). RES-

2009 was dominated by an uncultured Thermoplasmatales archaeon (MG19) at high 

abundance levels not seen at other sites. RES-2012 and the Unrestored sites (especially the 

sedgy cores) were very similar to each other in methanogenic community composition and 

relative abundances. These sites contained mainly Cand. Methanomethylicus (MG2), 

Methanobacterium (MG3), the uncultured archaeon from Rice Cluster II (MG10), and the 

uncultured member of Methanomassiliicoccaceae (MG18). Peat from the Active site contained 

uncultured Bathyarchaeia (MG1), Cand. Methylomethylicus (MG2), Methanoregula (MG7), 

and the uncultured member of Rice Cluster II (MG10).   

Alpha diversity and richness of methanogens generally increased with depth, and were 

the highest in RES-1991, but at the remaining sites, they showed similar values (Fig. 2.4A). 

Other restored sites showed similar values and patterns as the Unrestored site. The values for 

the sample from the Active site were equivalent to the highest diversity at the Natural site. The 

Kruskal-Wallis pairwise comparison showed that observed ESVs (nB = 14, nW  = 46, p = 0.004, 

H = 8.05), Faith’s (p = 0.004, H = 7.92), and Shannon (p = 0.021, H = 5.34) diversity indices 

were significantly higher in samples from below (B) than from within (W) the WTFZ.  

The weighted UniFrac beta diversity PCoA showed clustering by site but not depth and not the 

location in relation to the WTFZ (Fig. 2.5A). The methanogenic communities from RES-2009 

and RES-1991 clustered close to each other but were grouped by site. The communities in the 

Natural site were similar to those in the Unrestored and RES-2012. In the unweighted UniFrac 

PCoA (Fig. A.2.2A), some samples from RES-1991 and RES-2009 at 0 – 40 cm depth 

clustered relatively close together while the majority of the remaining samples  formed another 

cluster with site transition from RES-1991 through RES-2009 (the older restored site) to RES-

2012, the Unrestored, Active and Natural sites which showed similar diversity.  
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Figure 2. 3. Heatmaps of absolute abundance of methanogens (A) and methanotrophs (B) in the normalized dataset. Taxa are clustered by abundance. Three 

taxa (uncultured Methanomicrobiales, Methanofastidiosales, and Methanomassiliicoccles) were identified only to the level of order are not shown. Letters a 

to k denote depths: a (0 – 10 cm), b (10 – 20 cm), c (20 – 30 cm), d (30 – 40 cm), e (40 – 50 cm), f (50 – 60 cm), g (60 – 70 cm), h (70 – 80 cm), i (80 – 90 

cm), j (90 – 100 cm), k is the deepest sample collected from the site (340 – 350 cm at RES-1991, 150 – 160 cm at RES-2009 mossy, 113 – 123 cm at RES-

2009 sedgy,  140 – 150 cm at RES-2012 mossy, 130 – 140 cm at RES-2012 sedgy). M – mossy, S – sedgy, B – bare peat. See table 2.3 for the explanation 

of codes for identified methanogens and methanotrophs. 
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Figure 2. 4. Alpha richness and diversity metrics of CH4-cycling organisms: A) methanogens, B) 

methanotrophs in the Active site, Unrestored, restored in 1991 (RES-1991), in 2009 (RES-2009), in 

2012 (RES-2012), and the Natural site. Letters a – k denote depths: a (0 – 10 cm), b (10 – 20 cm), c (20 

– 30 cm), d (30 – 40 cm), e (40 – 50 cm), f (50 – 60 cm), g (60 – 70 cm), h (70 – 80 cm), i (80 – 90 cm), 

j (90 – 100 cm), k is the deepest sample collected from the site (340 – 350 cm at RES-1991, 150 – 160 

cm at RES-2009 mossy, 113 – 123 cm at RES-2009 sedgy, 140 – 150 cm at RES-2012 mossy, 130 – 

140 cm at RES-2012 sedgy). M – mossy, S – sedgy, B – bare peat.  

A) 
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Figure 2. 4. [Continuation]. Note different scale on the y-axis is for methanotrophs and methanogens.  

 

 

 

B) 



 

46 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. 5. Weighted UniFrac Beta diversity measures for CH4-cycling organisms in the Natural, 

Active, Unrestored, and restored sites. A) methanogens, B) methanotrophs. WT – water table, WTFZ – 

water table fluctuation zone. 

A) 



 

47 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. 5. [Continuation] 

 

B) 
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2.5.4. Methanotrophic community  

 

The codes for methanotrophic taxa follow the alphabetic order of the taxa in Tab. 2.3. Fifteen 

ESVs related to methanotrophic genera from phyla Proteobacteria were found (Tab. 2.3). 

Methylocella (MT1, Dedysh et al., 2005), Methylocystis (MT2, Larmola et al., 2010), and 

Methyloferula (MT3, Dedysh et al., 2015) belong to class Alphaproteobacteria. The remaining 

methanotrophs were Gammaproteobacteria of a methanotrophic class Methylococcales (Orata 

et al., 2018) and family Methylomonaceae; genera: Candidatus Methylospira (MT4, Danilova 

et al., 2016), Methylocaldum (MT5; Bodrossy et al., 1997), Methylomagnum (MT6, Khalifa et 

al., 2015), Crenothrix (MT8, Oswald et al., 2017), Methylobacter (MT9; Smith et al., 2018), 

Methyloglobulus (MT10, Deutzmann et al., 2014, Schink and Deutzmann, 2015), 

Methylomonas (MT11, Bowman et al., 1990, Kalyuzhnaya et al., 1999), Methylovulum 

(MT12; Mateos-Rivera et al., 2018), pLW-20 (MT13, Nercessian et al., 2005), one uncultured 

(MT14) and two unidentified genera (MT7, and MT15).  

Each site had their unique composition of methanotrophs distributed more uniformly 

than methanogens; however, similarities between sites were observed, e.g., between RES-2012 

and the Unrestored site or between RES-1991 and RES-2009 (Tab. A.2.3 and Fig. 2.3B). We 

found methanotrophs even at depths where peat was waterlogged. RES-1991 contained 14 of 

15 identified methanotrophs, excepting Methyloferula (MT3). RES-2009 was dominated 

mainly by Methylobacter (MT9), Cand. Methylospira (MT4), and an uncultured 

Methylomonaceae (MT14) with some Methylocystis (MT2) and Crenothrix (MT8). RES-2012 

was colonized mainly by Cand. Methylospira (MT4) and Methylocystis (MT2), with the 

addition of Crenothrix (MT8) and Methylomonas (MT11) at depths below 50 cm. Similar 

methanotrophic composition was found in the Unrestored site (except the surface peat of the 

bare peat core, which contained Methyloferula only) and in the Natural site, where additionally 

Methylocella (MT1) was present. The only sample from the Active site, from depth 70 – 80 

cm, showed low abundance of Methylocystis (MT2) and Crenothrix (MT8). The most abundant 

methanotroph at RES-1991 and RES-2009 was Methylobacter (MT9). It was not observed at 

the Natural, Unrestored, and RES-2012, possibly not captured due to its low abundance (Tab. 

A.2.3).  
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The alpha richness and diversity metrics for the methanotrophic communities did not 

show a clear pattern with depth (Fig. 2.4B). The highest values were observed at RES-1991. 

The values for other sites were similar and relatively consistent across the depths in the peat 

profiles. Faith’s index (PD) was similar in most of the sedgy RES-2012, sedgy Unrestored, and 

mossy RES-2009 profiles.  

The weighted UniFrac PCoA of methanotrophic communities showed similarities 

between RES-2009 and RES-1991, but not RES-2012 (Fig. 2.5B). The sample from the Active 

site was similar to the ones at restored sites. The communities in the Natural site were 

relatively similar to each other but not separated from other sites in the ordination. 

Communities from the Unrestored site were closely grouped with RES-2012 in both weighted 

and unweighted UniFrac PCoA. The unweighted UniFrac (Fig. A.2.2B) grouped all samples 

from RES-1991 along one axis. Other samples accompanied the RES-1991 on this line, but 

there was no site or depth pattern within this cluster aside from the Natural, Unrestored, and 

RES-2012 samples being close together. The communities from the medium depths of the 

RES-2009 were similar to each other and formed two separate clusters.  

The Kruskal-Wallis pairwise comparison of observed ESVs, Faith, and Shannon for the 

methanotrophic community showed no significant difference (p > 0.05) between samples from 

within and below the WTFZ. 

 

2.5.5. Taxa abundance relationships with the physicochemical and environmental conditions 

 

The CCA model validation excluded some explanatory variables as redundant leaving C:N, 

WT, formate, propionate, citrate, PO4
3- and Fe3+ in the model (Fig. 2.6). [PO4

3-], [Fe3+], 

[formate], and C:N were the dominant factors controlling the abundance of targeted taxa. Most 

methanotrophs grouped close to the WT, at high and moderate [PO4
3-], [propionate], and 

[citrate] and low [formate], while most methanogens were on the opposite site of these 

gradients. Alphaproteobacteria were likely to reach their highest abundance at high  

[propionate], C:N, [PO4
3-], and WT, and low [Fe3+]. Two uncultured methanogens from orders 

Methanomassiliicoccales (MG20) and  Methanocellales (MG6) were the most abundant in 
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Table 2. 3. Methanogenic Archaea and methanotrophic Bacteria identified in peat samples with 

sequence count above the rarefication threshold and their codes used in the canonical correspondence 

analysis.  
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deep peat with high [formate]. Methylobacter (MT9) and Methanospirillum (MG8) preferred 

moderate to high [Fe3+] and low C:N observed at RES-2009.  

 

2.5.6. Potential rates of CH4 production and oxidation 

 

The potential rates of CH4 production (MP) and CH4 oxidation (MO) measured to assess the 

activity of methanogens and methanotrophs around the WT at sites RES-2009, the Natural, and 

Unrestored, showed different range of values for each site with similar patterns in MO at the 

restored and Unrestored sites. A total of 11 of 44 MP and 16 of 44 MO microcosms were 

rejected due to r2 <0.75 for the slope of CH4 concentration change over time or when positive 

MO was observed, meaning possible CH4 production was still occurring in the samples. Low 

MO was found in the Unrestored site at bare peat locations (0.36 – 0.89 µmol g-1 d-1), mossy 

and sedgy locations of RES-2009 (< 2 µmol g-1 d-1), and 10 – 20 cm above the WT at the 

Natural site hollow (1.02 µmol g-1 d-1; Fig. A.2.3, Tab. A.2.2). The highest MO was observed 

in the hummock directly below the WT (7.11 CH4 µmol g-1 d-1). Kruskal-Wallis for MO by site 

and type of surface cover (H(4) = 14.616, p = 0.005568) followed by Dunn test with p values 

adjusted with the Benjamini-Hochberg method  showed that MO at Natural hummocks varied 

significantly from RES-2009 mossy (p = 0.01814), RES-2009 sedgy (p = 0.01614) and 

Unrestored bare peat (p = 0.01968, Fig. 2.7). When MO was compared between sites without 

specified cover type (Kruskal Wallis H(2) = 14.198, p = 0.0008261), it was significantly higher 

at the Natural site than at RES-2009 (p = 0.00112) and Unrestored (p = 0.0058). MO did not 

differ significantly between the depth zones. No significant differences in either MP or MO 

were found between types of surface cover without specifying management status.  

 

 

 

 

 



 

52 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. 6. Canonical correspondence analysis (CCA) of physicochemical conditions and their 

relationship with the absolute normalized abundance of methanogens and methanotrophs. Fe3 – ferric 

iron, PO4 – phosphate, CIT – citrate, PRO – propionate, FOR – formate, CN – total C:N ratio, WT – 

depth of peat in relation to the water table level at the time of sampling, WTFZ – water table fluctuation 

zone. See Tab. 2.3. for the explanation of codes for methanogens and methanotrophs.  
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MP did not vary significantly between sites and surface cover (Fig. 2.7). MP in RES-

2009 and the Unrestored site was below 0.09 µmol g-1 d-1 except for high MP in core #2 (4.36 

and 2.52 µmol g-1 d-1) and one sample from below the WT in a mossy core (3.71 µmol g-1 d-1). 

MP in the Natural site was 0.01 – 1.53 µmol g-1 d-1 (Tab. A.2.2). Higher MP was observed in 

peat below the WT compared to above it, aside from at the Unrestored site and Natural hollow 

(Fig. A.2.4) but only at 10 – 20 cm above the WT was it significantly lower than below the WT 

(Kruskal-Wallis for MP by depth zone H(2) = 10.393, p = 0.00554; Dunn post-hoc p = 

0.00416, Fig. 2.7).  

Three principal components (PC1, PC2, PC3, Fig. 2.8 and Fig. 2.9) of the 

physicochemical variables were included in the LME models as the explanatory variables for 

MP and MO. A significant positive relationship between MP and PC2 (F1,17 = 31.88, p < 

0.0001) was found. PC2 consisted of [propionate], [acetate], [butyrate], [succinate], [pyruvate], 

[Fe3+], and EC (Tab. 2.4A). MO did not show significant relationships with the 

physicochemical properties of peat. The ordination was influenced by a few samples (RES-

2009-2A and 2B, NAT-2C and 6C, and UNR-4A) that showed unique physicochemical 

characteristics.   

 

Figure 2. 7. Mean potential CH4 production rates (MP) and mean potential CH4 oxidation rates (MO) 

for each site and depth zone. Zone A is 0 – 10 cm below the water table (WT), zone B is 0 – 10 cm 

above the WT, and zone C 10 – 20 cm above the WT. MO and MP that vary significantly between sites 

or depth zones are labelled with no symbol in common. Symbols should be compared within a graph 

only, not between graphs.  
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Figure 2. 8. Principal component analysis (PCA) showing variable (left) and sample (right) ordination 

of PC1 and PC2. See Tab. 2.4A, B (below) for explanation of variable and sample codes. 
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Figure 2. 9. Principal component analysis (PCA) showing variable (left) and sample (right) ordination 

of PC2 and PC3. See Tab. 2.4 A, B (below) for explanation of variable and sample codes. 
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Table 2. 4. Contribution of physicochemical variables to PC1, PC2, and PC3 (A) and codes used in the 

PCA sample ordination in Fig. 2.8 and 2.9 (B). RES-2009 - site restored in 2009, NAT - Natural site, 

UNR – Unrestored site, [ACE] – acetate, [BUT] – butyrate, [CIT] – citrate, [FOR] – formate, [PRO] – 

propionate, [PY R] – pyruvate, [SUC] – succinate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

57 

 

2.6. DISCUSSION 

2.6.1. Methanogenic and methanotrophic communities  

 

We hypothesized that the abundance and diversity of CH4-cycling microorganisms would be 

the highest in all restored sites and in the Natural site, and the lowest in the Unrestored and 

Active sites. However, we observed similar abundance of methanogens and methanotrophs 

averaged for each site in RES-2012, the Unrestored, and Natural sites (< 500 sequence counts), 

while it was  higher in RES-1991 (929 sequence counts) and in RES-2009 (788 sequence 

counts). It should be noted that the Natural profile was limited to only a few depths and the 

Active profile to one depth. Both methanogenic and methanotrophic alpha diversity was the 

highest in RES-1991 and then comparable across the other sites. We did not observe a clear 

pattern of methanogenic and methanotrophic community composition, abundance and diversity 

with the age of restoration. The ratio of the sums of methanogenic to methanotrophic sequence 

counts also did not show any pattern with the age of restoration. The methanogenic ESV 

numbers were comparable with OTU numbers reported for peatlands by Yavitt et al., 2012, 

and so was Shannon diversity except for the values in RES-1991 that were twice as high as 

reported for a range of peatlands in North America (Yavitt et al., 2012). The general increase 

of methanogenic alpha diversity metrics with depth, and significantly higher values for 

communities below the WTFZ compared to the ones above the WTFZ, were expected. The 

ratio of the sums of methanogenic to methanotrophic sequence count followed the general 

pattern of increase with depth. Shallow peat is usually exposed to WT fluctuation but at greater 

depths it is constantly waterlogged, thus providing unchanged anoxic conditions required by 

methanogens prevail. However, beta diversity did not show clear dissimilarities between the 

methanogenic communities within the WTFZ and below the WTFZ. No significant diversity 

variation with depth was found for the methanotrophic community. Methanotrophs were more 

ubiquitous and often uniformly distributed in the peat profile as they are better adapted to life 

at various depths and redox conditions; e.g., Blodau and Moore (2003) determined that 

methanotrophs responded to changes in WT fluctuation within days while methanogens 

required months. The presence of methanotrophs in waterlogged peat can be explained with 

oxic microsites in the bulk anoxic peat, which could be related to the WT fluctuations and 
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trapping air bubbles (Baird et al., 2004) and O2 supply by the root system (Strack et al., 

2006b).  

Following Reumer et al. (2018), who obtained similar CH4 turnover trends for all 

restored sites, we expected all restored sites to be similar in their CH4 cycling community, but 

only RES-1991 and RES-2009 had similar communities. In contrast, the youngest restored site, 

RES-2012, had a distinct community structure that was similar to the one in Unrestored, 

Active, and Natural sites. Beta diversity did not clearly separate any of the sites from each 

other, likely due to their location in the same peatland complex. Yavitt et al. (2012) found 

similar methanogenic community composition (UniFrac) in sites located close to each other. 

We expect that the vegetation (i.e., abundance of graminoids) combined with hydrological 

conditions can supersede the age of restoration, and hence result in the observed similarities 

between RES-1991 and RES-2009. We sampled at a moderately wet, less sedgy part of RES-

2012, which may explain why its microbial community resembled those of the Unrestored and 

Natural sites. Andersen et al. (2013b) reported more similarities in microbial functions in 

Natural and vegetated Unrestored sites compared to a restored one, finding a greater 

importance of vegetation than restoration-related physicochemical features of peat for the 

microbial processes. In contrast, Reumer et al. (2018) found the methanogenic community of 

unrestored sites similar to each other but not to these at restored and natural sites.  

A fairly large portion of the methanogenic community in the Seba Beach peatlands 

were organisms with no cultured relatives. We detected taxa that were only recently identified 

as methanogenic: Bathyarchaeia, Verstraetearchaeia and Methanofastidiosales (Lyu et al., 

2018). Methanomicrobiales dominated the methanogens in Seba Beach sites, similar to other 

bogs and fens (Horn et al., 2003, Cadillo-Quiroz et al., 2006, Hoj et al., 2008, Godin et al., 

2012). Methanoregula (MG7, one of the Methanomicrobiales) known for its abundance in 

acidic bogs (Sun et al., 2012, Reumer et al., 2018) and Bathyarchaeia (MG1) were the most 

abundant methanogens and were found across all peatlands. Methanomicrobiales and 

Bathyarchaeia (previously Bathyarchaeota) formed the majority of the archaeal community in 

terrestrial ecosystems and are potentially symbiotic with each other (Xiang et al., 2017). The 

methanogenic community at the Natural site was dominated by Cand. Methanomethylicus and 

Methanosarcina sp. of Rice Cluster II that has been detected in northern bogs (e.g., Cadillo-
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Quiroz et al., 2006) and fens (e.g., Godin et al., 2012). RES-1991 contained almost all 

methanogenic taxa identified in our study including acetoclastic Methanosaeta and 

Methanosarcina that were not observed in the Natural site. Other methanogens that were found 

in RES-1991, have been observed at natural bogs and fens. Methanomassiliicoccales was 

widely distributed in European bogs and fens (Söllinger et al., 2015), Methanosaetaceae 

(MG13) was abundant in fens (Galand et al., 2005, Godin et al., 2012) and Methanobacterium 

(MG3) was found in Canadian natural, restored and unrestored post-extracted peatlands by 

Basiliko et al. (2013) and in natural acidic northern Finnish peatlands by Metje and Frenzel 

(2005). We detected Rice Cluster I at low abundance only in the surface peat of RES-1991, 

while it was abundant in a natural Canadian peatland (Basiliko et al., 2013). It appeared that 

lack of vegetation at the Unrestored site determined the absence of Methanoregula and 

Methanosaeta. Likely the encroachment of non-wetland plant species in the Unrestored sites 

shifted the methanogenic community, at least partially, towards the ones observed at the 

youngest restored site, but it did not translate directly into higher methanogenic activity.  

Our results indicate that there might be a link between the abundance of vascular plants 

in restored sites and the CH4-cycling community structure, but we did not find significant 

differences between methanogens in the mossy and sedgy locations. Cadillo-Quiroz et al. 

(2009) found that the archaeal community structure varied in peat depending on the species of 

plant and the presence of roots. Putkinen et al. (2018) reported that Methanosaetaceae were 

associated with shrubs, Methanobacteriaceae with sedges and Methanoregulaceae with 

Sphagnum moss. These associations were not observed in Seba Beach peatlands.  

The structure of the methanotrophic communities in Seba Beach sites was fairly similar 

to that observed in other peatlands. Gammaproteobacteria of the order Methylococcales 

dominated the methanotrophs. Similar community composition with low abundance of type II 

methanotrophs and high abundance of Methylococcales was reported by Narrowe et al. (2017) 

in wetland soils. The largest abundance of Alphaproteobacteria was found in the Natural site, 

which is in accordance with their identification as stress tolerant in natural peatlands (Ho et al., 

2013). Alphaproteobacteria have been found in boreal fens and acidic bogs (Yrjälä et al., 

2011, Juottonen et al., 2012, Esson et al., 2016). Methylocella (MT1) is a facultative anaerobe 

that can utilize CH4, acetate, succinate, and pyruvate, but prefers acetate over CH4 and shuts 
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down methanotrophy in the presence of acetate (Dedysh et al., 2005). Methylocystis (MT2) can 

also use acetate instead of CH4 (Belova et al., 2011). Methylomonas (MT11) and 

Methylovulum (MT12) found mainly in RES-1991 (mean pH 5.1) were the active type I 

methanotrophs in an acidic bog (Esson et al., 2016). Methylobacter was one of the most 

abundant methanotrophic taxa detected in our samples and was found only in the older restored 

sites (RES-1991 and RES-2009). Methylobacter is ubiquitous in various environments, found 

in both oxic and anoxic conditions, can use various C1 substrates with denitrification potential 

that could sustain respiration when O2 is depleted, and has been reported as the most abundant 

key taxon for CH4 oxidation in wetlands (Smith et al., 2018). The versatility of this genus 

likely explains its abundance in disturbed peatlands; however, the abundance of this and other 

methanotrophs in anoxic peat could be due to the presence of inactive organisms.  

We expected the Unrestored site to vary in its CH4-cycling community from the 

restored and the Natural sites and indeed, the methanotrophic profile of the bare peat location 

at the Unrestored site was unique; four out of six methanotrophic taxa present in the bare peat 

core (Cand. Methylospira, Crenothrix, Methylomonas, and Methylovulum) were not found in 

the top 70 cm of the core – their largest abundances were detected below the WTFZ. Intense 

WT fluctuations could have forced these microorganisms down into deep peat. Both 

methanogens and methanotrophs can be shifted in the peat profile by fluctuating water table in 

disturbed peatlands (Andersen et al., 2013a, b). The diversity and abundance of 

methanotrophic Bacteria was higher in older restored sites than in Unrestored or young 

restored sites showing that restoration promotes regeneration of the methanotrophic 

community in post-extracted peatlands.  

 

2.6.2. Potential rates of CH4 production and oxidation  

 

We hypothesized that MP would be highest in the sedgy restored site followed by the Natural 

and Unrestored, but MP was low at the restored site and comparable to MP in the Unrestored. 

Rates of MP at RES-2009 were mostly < 0.1 µg g-1 of dry peat, similar to values reported by 

Yrjälä et al. (2011) and Reumer et al. (2018), with only a few CH4 production hot spots at 

RES-2009 likely related to the presence of sedgy roots and their exudates (e.g., Knorr et al., 
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2008a, Robroek et al., 2015) and/or the presence of acetoclastic methanogens. The overall MP 

at the Natural and RES-2009 was higher than at the Unrestored as observed in another study 

(Basiliko et al., 2007). MP in the Natural site showed a broader range of values (0.01 – 1.53 

µmol g-1 d-1) than a natural Finnish mire at a similar temperature of incubation (0.25 – 0.5 

µmol g-1 d-1, Metje and Frenzel, 2005), and was comparable with MP reported by Putkinen et 

al. (2018) for a natural fen at 15 ˚C (0.48 – 1.92 µmol g-1 d-1).  

As hypothesized, MP was significantly higher below than above the WT (Sundh et al., 

1994, Waddington and Day, 2007, Knorr et al., 2008b). MP that occurred above the WT in our 

study showed that CH4 production was not limited to permanently waterlogged peat (Glatzel et 

al., 2004, Juottonen et al., 2012), contrary to the observation of Andersen et al. (2013a). 

We expected high MO in the Unrestored site, but it was considerably lower than at the 

Natural site. This supports the importance of substrate availability in CH4 oxidation (Juottonen 

et al., 2012). No significant differences in MO among depth zones reflected the depth-

independent distribution of methanotrophs at the Seba Beach sites, while other studies showed 

the WT level dependence of MO (e.g., Whalen and Reeburgh, 2000). The zone above the WT 

is predominantly unsaturated and thicker at hummocks than at hollows. MO at hummocks in 

our study was higher (1.02 – 7.11 µmol g-1 d-1) than in the remaining sites (< 2 µmol g-1 d-1, 

similar to rates < 2.4 µmol g-1 d-1 in restored and natural fens (Putkinen et al., 2018)). These 

rates were comparable with MO at 25 ˚C in unrestored and active sites reported by Reumer et 

al. (2018) and in a fen at 15 ˚C (Yrjälä et al., 2011). MO in the Natural site was at the level of 

MO at hummocks and hollows in a Tibetan peatland (Deng et al., 2013). The Seba Beach 

Natural site consisted mainly of poorly decomposed Sphagnum and MO is known to increase 

with Sphagnum cover (Putkinen et al., 2018), which is likely linked to symbiotic 

methanotrophs that colonize Sphagnum (e.g., Raghoebarsing et al., 2005, Larmola et al., 2010, 

Kip et al., 2011).  
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2.6.3. The effect of inorganic ions and short chain fatty acid ions on the methanogenic and 

methanotrophic community structure and potential rates of CH4 production and oxidation.  

 

Since the Seba Beach sites were likely one peatland before peat extraction, we expected that 

physicochemical characteristics would be similar in all restored sites; however, the two oldest 

restored sites had moderate to high [Fe3+] and low C:N while the other sites had low [Fe3+], 

high C:N and, aside from the Active site, high [propionate]. These features were reflected in 

the similarities between methanogenic and methanotrophic communities in RES-1991 and 

RES-2009 and between RES-2012, Unrestored, Natural, and Active sites. [Fe3+] was the only 

potential TEA significantly linked to MP (Linear mixed effect models with MP and PCA 

output as explanatory variables; the significance of PC2 composed of short chain fatty acid 

ions and Fe3+) and to the abundance of CH4-cycling microorganisms (CCA analysis). High 

[Fe3+] in RES-2009 could have had a negative impact on CH4 production, hence the generally 

low MP observed at this site, but it did not seem to decrease methanogenic population. We 

suppose that high [Fe3+] in RES-2009 was supplied from clay. The organic-mineral soil 

interface was at 150 – 160 cm depth, with the WT fluctuation down to 90 cm depth. High 

[Fe3+] (2187.5 µg g-1 of dry peat) was found in the bottom peat that was mixed with clay. 

Jeffrey et al. (2019) observed a relationship between CH4 emission from wetlands and the 

geochemistry of underlying sediment that was expressed as a significant negative relationship 

between CH4 flux and the concentration of Fe3+ and SO4
3-.  

With SO4
2- present only in the first 30 cm of peat, and with very low [NO2

-] and [NO3
-], 

high [Fe3+] was the most abundant TEA, and thus most likely the main factor supressing 

methanogenesis at RES-2009. Iron is also required by methanogens in physiological processes 

(Basiliko and Yavitt, 2001), which additionally enhances the importance of Fe3+. All Seba 

Beach restored sites showed higher [Fe3+] than the Natural site, similar to the higher [Fe] 

observed in restored fens than in natural ones by Aggenbach et al. (2013). High [Fe] hinders 

restoration progress as  Fe2+ is toxic to plants. A reliable O2 supply via roots to deplete the 

[Fe2+] is required, and the dominance of vascular plants like sedges in restored sites is likely 

due to their resistance to high [Fe2+] (Begg et al., 2004, Aggenbach et al., 2013).  
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Although microorganisms require PO4
3- for physiological processes, PO4

3- inhibits 

acetoclastic methanogenesis (Conrad et al., 2000, Paulo et al., 2005); however, the highest 

abundance of acetoclastic Methanosaeta and Methanosarcina at the Seba Beach sites were 

close to the WT (likely due to root exudates supply) where also moderate to high [PO4
3- ] was 

found. The highest abundance of microorganisms in peatlands was previously found in the 

mesotelm, where they mobilize PO4
3-, reducing its limitation (Lin et al., 2014). Many 

hydrogenotrophic methanogens and methanotrophs were found at moderate to high [PO4
3-] in 

the mesotelm at the Seba Beach sites which underlines its importance for microbial growth and 

CH4 cycling.  

Contrary to our hypothesis that some TEA and short chain fatty acids would affect MO, 

we found no significant relationships. Acetate (together with propionate, butyrate, and 

succinate) was one of the main factors that significantly affected MP, but there were only a few 

samples (e.g., sedgy core #2. RES-2009 from 2017) that contained large amounts of these 

protonated acids and thus drove the importance of these variables in our analyses. We did not 

find the relationship posited by Horn et al. (2003), where formate, acetate, propionate, and 

butyrate inhibit the production of CH4. Since the availability of substrate is one of the most 

important factors controlling methanogenesis (e.g., Couwenberg, 2009), the link between the 

high abundance of short chain fatty acids and high MP we observed was likely related to the 

abundance of labile carbon from root exudates in the dense rhizosphere at RES-2009.  

 

2.7. CONCLUSIONS 

 

RES-1991 and RES-2009 showed similar methanogenic and methanotrophic community 

characteristics, which were different from the shared profiles seen in RES-2012, the 

Unrestored, Natural, and Active sites. Methanogen counts, abundance, and evenness increased 

with depth, whereas methanotrophs were more evenly distributed in peat profile. The highest 

MP was found immediately below the WT. Fe3+ was the most important TEA affecting CH4 

community characteristics and MP. The highest [Fe3+] were found in the restored sites. The 

shallow peat at RES-2009 was likely supplied with [Fe3+] from the mineral soil under the peat 

deposit, which could have led to the observed methanogenesis suppression, even though the 
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CH4-cycling community was relatively well developed. MP hot spots were found RES-2009, 

some of them linked to the presence of dense sedges and high concentration of short chain fatty 

acid ions. The Natural site showed relatively uniform and high MP and the highest MO, 

especially at hummocks. MO was similar below and above the WT, but MP was significantly 

higher immediately below the WT compared to 10 – 20 cm above it for all locations. MO was 

not driven by any of our measured physicochemical factors, while MP was affected by the 

concentration of acetate, propionate, butyrate, succinate, and pyruvate. The abundance of 

methanogens and methanotrophs was associated with the concentration of formate, citrate, 

propionate and phosphate. Restoration promoted the development of active CH4-cycling 

microorganisms while post-extraction abandonment resulted in largely inactive and less 

diverse communities. The spontaneous re-vegetation of the Unrestored site increased the 

abundance of CH4-cycling organisms compared to the bare peat, but not MP and MO, which 

remained close to zero. Restoration assists the recovery of  methanogenic and methanotrophic 

community; however, the presence of dense vascular plants, mainly sedges, at early stages of 

restoration, in combination with high WT, is likely to form different community structure than  

at the Natural site and may overshadow the contribution of the site’s restoration age to the 

microbial community development.  
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CHAPTER 3: Steady and ebullitive methane fluxes from active, restored and unrestored 

horticultural peatlands  

 

 

3.1. ABSTRACT 

 

Peatlands used for horticultural peat extraction lose their ecological function of carbon 

accumulation. While their restoration has been shown to increase methane (CH4) flux 

compared to unrestored sites, the time required for the greenhouse gas (GHG) balance to 

recover and the factors affecting the recovery remain unclear. We quantified CH4 emission 

from several ages of restored sites, as well as unrestored post-extraction (Unrestored) and 

actively extracted (Active) sites, and compared them to CH4 emission from a natural boreal 

bog (Natural). All study sites were located within one horticulture peatland complex in central 

Alberta, Canada. Both steady (diffusive and steady ebullitive) fluxes and abrupt ebullitive 

events were determined using manual chambers and a portable greenhouse gas analyzer. 

Abrupt ebullition occurred only at two restored sites that showed the highest steady flux, were 

flooded/wet and dominated by vascular plants. Ebullition accounted for 7 %  of total CH4 

emission at the site restored in 1991 (25 – 26 years post-restoration), and 6 % at the site 

restored in 2012 (4 – 5 years post-restoration). The third restored site (7 – 8 years post-

restoration), showed no abrupt ebullition and mean steady flux lower than at the Natural site, 

likely caused by geochemistry of peat overriding shallow water table and dense sedge cover. 

The lowest CH4 emission was found at the Unrestored and Active sites. At sites where it 

occurred, ebullition was significantly but weakly correlated with CH4 flux, [CH4] in pore 

water, soil temperature, water table (WT), gross ecosystem production (GEP), and percentage 

cover of moss. Steady CH4 fluxes were driven by soil temperature at 20 cm depth, the WT, 

GEP, and the cover of shrubs and graminoids. The physicochemical peat characteristics can 

supersede these environmental factors and suppress CH4 emission even in restored, wet, and 

sedge-dominated sites. Restoration enhanced CH4 emission compared to the Unrestored site. 

Restored sites with more fen-like conditions (wet and sedgy) are likely to show abrupt 

ebullition events and higher CH4 fluxes than undisturbed bogs, with local controls seemingly 

more important than time since restoration on resulting CH4 emission. 
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3.2. INTRODUCTION 

 

Approximately 67 % of peatlands are located in the northern hemisphere in temperate, boreal 

and subarctic regions above 45°N and are referred to as the northern peatlands (Limpens et al., 

2008, Serkebaeva et al., 2013, Xu et al., 2018). They began to develop after the last glacial 

period, and continued accumulating organic matter during the Holocene, acting as a sink for 

carbon dioxide (CO2) and cooling the atmosphere (Harden et al., 1992). These peatlands store 

up to 1000 Pg (Pg = 1015 g) of carbon (Gorham, 1991, Yu, 2012, Amesbury et al., 2019). 

Natural peatlands, thanks to their low pH, waterlogged peat, the presence of vegetation with 

decay resistant litter, and the nutrient poor environment for microorganisms, combined with 

low temperatures of northern latitudes, promote organic matter accumulation (e.g., Frolking et 

al., 2011), with current accumulation rates up to 10 cm per 100 years (0.1 cm yr-1, Glaser et al., 

2004).  

About 26.8 % of the world’s peatlands (113 million ha) is located in Canada (Xu et al., 

2018), but only 34,000 ha have been disturbed for horticultural peat extraction (ECCC, 2018), 

while according to Canadian Sphagnum Peat Moss Association, this number is overestimated, 

since ECCC add 1000 ha to the estimation each year, and was 31,676 ha in 2017 (CSPMA, 

2018). Thus, horticulture use of peatlands constitutes more of a local environmental 

disturbance in Canada (Price et al., 2003). Meanwhile, peat extraction in Europe represents a 

proportionally larger contribution (~ 6 %, Vasander et al., 2003). Peat in Canada is extracted 

solely for horticultural purposes with the vacuum-harvesting method, which has been widely 

used since 1980s as an alternative to the peat cutting method (Environment Canada, 2006, 

2015). Horticulture peat extraction proceeds until it reaches peat of undesirable quality for the 

industry, usually for 20 – 30 years (Tuittila et al., 2000a, Wind-Mulder and Vitt, 2000, 

Waddington et al., 2009b); however, the industry ensures that peat of sufficient thickness for 

restoration is left after peat extraction. Peatland restoration in Canada started in 1990s and thus 

Canadian restored sites are relatively young (Rochefort, 2000). However, measurable changes 

occur at restored peatlands even within the first decades after restoration, e.g., the recovery of 

peatland vegetation following the moss layer transfer technique of restoration (Graf and 

Rochefort, 2016), improved hydrological conditions (higher and more stable water table, 
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McCarter and Price, 2015), and subsequently the return of the carbon accumulation function of 

peatland (e.g., Nugent et al., 2018).  

Currently, natural northern peatlands represent a weak net sink of carbon dioxide 

(CO2), and a source of methane (CH4; Roulet et al., 1994, Baird et al., 2009, Frolking et al., 

2011). Wetlands are the largest natural source of CH4 with peatlands alone accounting for 5 – 

10 % of the global CH4 emission to the atmosphere (Blodau, 2002, McKenzie et al., 2009). 

Peat extraction disrupts the natural gas balance as peat fields become CO2 emitters and sinks 

for CH4 (Sundh et al., 2000, Turetsky et al., 2002, Waddington et al., 2002); however, if left 

open, drainage ditches remain a source of CH4 (Sundh et al., 2000, Waddington and Day, 

2007, Strack and Zuback, 2013, Nugent, 2019).  

Methane is produced in waterlogged anoxic conditions by methanogenic Archaea in the 

last stage of anaerobic degradation of organic matter and it is utilized by methanotrophic 

Bacteria (Garcia et al., 2000, Rosenberry et al., 2006, Lai, 2009, Couwenberg and Fritz, 2012, 

Andersen et al., 2013a). Produced CH4 can be released from peatlands to the atmosphere via 

diffusion through the peat matrix, plant-mediated transport through aerenchyma (diffusion and 

pressurized flow), and ebullition of free-phase gas bubbles (Chanton, 2005, Coulthard et al., 

2009, Couwenberg 2009, Green and Baird, 2013, Stamp et al., 2013). A portion of CH4 

diffusing through the oxic peat zone becomes oxidized to CO2 (Fechner-Levy and Hemond, 

1992). Plant-mediated transport accounts for 30 – 100 % of total CH4 emission (Whiting et al., 

1992, Bridgham et al., 2013 and the references therein). The contribution of ebullition to the 

total CH4 emission varies, although it is considered an important mode of CH4 release (e.g. 

Glaser et al., 2004, Tokida et al., 2005, Strack and Waddington, 2008, Coulthard et al., 2009, 

Parsekian et al., 2010). Steady ebullition occurs when bubbles are released in a steady stream, 

while episodic ebullition refers to a single abrupt release of large amounts of free-phase gas 

(Green and Baird, 2012). In this study, we refer to a linear increase in CH4 concentration 

([CH4]) in the chamber headspace as steady flux and this can possibly contain both diffusive 

emission and steady ebullition, while ebullition is used to describe the episodic ebullition 

events only.   

Increasing temperature intensifies CH4 production (Dunfield et al., 1993, Lai, 2009) 

and enhances both diffusion and ebullition rates (Fechner-Levy and Hemond, 1996, 
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Waddington et al., 2009a, Gogo et al., 2011, Jeffrey et al., 2019). The water table (WT) level, 

together with the capillary fringe, set the boundaries between oxic and anoxic zones in the peat 

deposit and affects largely CH4 production and emission (Guertin et al., 1987, Niedermeier and 

Robinson, 2007, Lai, 2009, Couwenberg and Fritz, 2012, Martí el al., 2015). Shallow WT is 

associated with higher CH4 fluxes (Strack et al., 2017), while a falling WT (decreasing 

hydrostatic pressure) triggers ebullition (Fechner-Levy and Hemond, 1996). Rising WT can 

entrap atmospheric air in surface peat, forming air pockets and promoting CH4 exsolution from 

pore water and bubble growth (Baird et al., 2004). Following peat extraction, fields lack an 

acrotelm, known to regulate hydrological conditions in peatlands. The remnant cutover peat 

has lower porosity and specific yield resulting in a WT that fluctuates more than in natural 

peatlands (Price et al., 2003, Basiliko et al., 2007) and induces instability of the anoxic zone 

for methanogens. In contrast, some restored sites can become flooded, resemble a fen-like 

ecosystem, and emit more CH4 than natural bogs (Strack et al., 2014, Jordan et al., 2016, 

Putkinen et al., 2018).  

 The presence of vascular plants increases the steady CH4 flux due to CH4 venting 

through aerenchymatic tissue (e.g., Ström et al., 2005, Koelbener et al., 2010, Green and Baird, 

2012). Plant-mediated emission and rhizospheric CH4 oxidation lowers gaseous and dissolved 

[CH4] (Ström et al., 2005, Coulthard et al., 2009, Kettridge et al. 2011). Root exudates provide 

labile carbon for methanogenesis and increase CH4 flux, which is linked to the magnitude of 

primary production (Waddington et al., 1996, Joabsson et al., 1999, Marinier et al., 2004).  

Vegetation is removed from extracted peatlands and restoration at its early stages often leads to 

recovery of peat forming vegetation different than at natural bogs (e.g., higher cover of sedges 

and other vascular plants, Gonzalez and Rochefort, 2019). Thus, CH4 emission patterns are 

likely to vary from those at natural sites. The role of plants in ebullition is not fully understood, 

but the presence of sedges (e.g., C. rostata and E. vaginatum) has been linked to higher CH4 

ebullition in some studies (Christensen et al. 2003; Ström et al., 2005, Strack et al., 2006a, 

Gogo et al., 2011, Klapstein et al., 2014). In contrast, dense roots are known to trap gas 

bubbles preventing their release (Strack et al., 2006a, Coulthard et al., 2009).  

Several studies report CH4 fluxes from restored peatlands (e.g., Komulainen et al., 

1998, Tuittila et al., 2000a, Waddington and Day, 2007, Wilson et al., 2009, Mahmood and 
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Strack, 2011, Juottonen et al., 2012, Strack and Zuback, 2013, Strack et al., 2014, 2016, 2017), 

but it is unknown how the flux and CH4 dissolved in pore water develops over time post-

restoration. To the best of our knowledge among ebullition studies on peatlands (e.g., Strack et 

al., 2005, 2006a, Tokida et al., 2007a,b, Gogo et al., 2011, Goodrich et al., 2011, Stamp et al., 

2013, Klapstein et al., 2014), there is only one that involves ebullition quantification at a 

restored site (Nugent, 2019) and no such studies are available for a chronosequence of restored 

sites, or for unrestored and currently extracted sites. We do not know whether the ebullitive 

contribution to total CH4 emission from these sites is substantial or what factors contribute to 

ebullition post-extraction.  

The objectives of the study were to quantify CH4 emission from sites restored following 

horticultural peat extraction, including ebullition contribution, evaluate how these fluxes vary 

over the growing season, determine the development of CH4 flux and pore water concentration 

over time since restoration, and compare results with currently extracted (Active), unrestored 

post-extraction (Unrestored) and natural bog (Natural) sites. We also investigated the 

environmental factors that controlled CH4 stocks and fluxes. We hypothesized that: 

1) CH4 emission would be higher at restored sites than at the Natural site and will be 

the lowest at the Unrestored and Active sites. The older restored sites would have a 

higher CH4 emission than the younger ones. Ebullition will occur at the Natural and 

restored sites only. 

2) The [CH4] in pore water, steady flux, and ebullition will increase over the growing 

season. The [CH4] in pore water will reflect the emission pattern; it will increase 

from the Active and Unrestored sites, through young restored to the oldest restored 

and Natural sites.  

3) Ebullition will be driven by the same environmental factors as steady emission 

including the percentage cover of vascular plants (shrubs and graminoids), soil 

temperature, water table, and the [CH4] in pore water.  
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3.3. STUDY SITE 

 

The Seba Beach peatland complex is located in central Alberta, Canada (53° 33' N, 114° 44' 

W) west of the city of Edmonton. The site has been used for peat extraction since 1975 (Wind-

Mulder and Vitt, 2000). The complex comprises closely neighboring currently extracted, 

natural, and post-extraction restored, and unrestored sites (Fig. A.1.1). Most likely they were a 

part of the same peatland that became divided into extraction sites and separated by access 

roads. We chose a currently extracted (Active) site, an unrestored (Unrestored), three sites 

restored in 2012, 2009 and 1991 (RES-2012, RES-2009, RES-1991, respectively) and a natural 

peatland (Natural) within the peatland complex. The natural site was a treed boreal bog with 

well-developed hummocks and hollows and constituted a reference site (Fig. A.1.3A). The 

moss layer transfer technique was used to restore RES-1991, RES-2009 and RES-2012 (see 

Rochefort et al., 2003 for details of the method). The ditches in RES-1991 (Fig. A.1.3 B) have 

been blocked but not filled with peat (both are standard methods, Quinty and Rochefort, 2003). 

The site was flooded, with the presence of a partially floating mat, dense Sphagnum forming 

mats and hummocks, and dense sedges. A thick layer (> 20 cm) of newly developed fresh peat 

suggests that the peat accumulation exceeded the regular rates of 0.1 cm per year. RES-2009 

(Fig. A.1.3C) was a shallow site (< 150 cm to 240 cm) with wet and moderately wet to dry 

parts. The latter was covered with a Sphagnum carpet overgrown with dense sedges and 

shrubs, while the wet part had a mix of shrubs, cattail, and true moss. The study site at the 

RES-2012 (Fig. A.1.3D) was set up in the southern part of the peatland. The east side of the 

study site was flooded and overgrown with graminoids but with little to no Sphagnum 

coverage, while the west part was dry, partially bare, with cottongrass tussocks and patches of 

true moss (largely Polytrichum strictum). The middle part was moderately wet with a drainage 

ditch running across the borderline between the wet and dry part, filled with peat but still 

saturated and covered with dense moss. The wet and moderately wet parts were flooded in 

2017. The Unrestored site (Fig. A.1.3E) was left unrestored in 2012 for research purposes after 

the ditches were filled with peat and the surface levelled. A part of the site was vegetated with 

Betula spp. and Carex spp., but the majority of the peat surface was bare. The Active site was 

completely bare peat with drainage ditches located ~ 30 m apart (Fig. A.1.3F). The study was 

conducted in the northern part of the site close to the access road. Access boardwalks were 
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installed at all sites except the Active (due to active peat extraction) to minimize peat 

disturbance during data collection. More information on vegetation at these sites is presented in 

Chapter 4.  

 

3.4. METHODS 

3.4.1. CH4 flux measurements 

 

Plots were established in May and June 2016 at all study sites but the Active. Two main types 

of surface cover were targeted for the plot locations at each site in triplicate: sedgy and mossy 

at RES-1991, RES-2009, and RES-2012, sedgy and bare peat at the Unrestored, and mossy 

hummocks and hollows at the Natural. Altogether, six metal collars (60 × 60 cm) were 

installed up to 20 cm into the ground at each site (30 collars in total) and left in place for the 

remainder of the study (See Fig. A.1.2 for detailed location of the collars). Three collars were 

placed in the ground at the Active site only for the time of measurement and removed 

immediately afterwards due to heavy machinery operating at the site.  

A transparent chamber, 60 × 60 × 30 cm, was placed on the collar and a portable gas 

analyzer (Los Gatos Research, GGA-30p ultraportable greenhouse gas analyzer) was used to 

measure [CH4] and [CO2] in the chamber headspace, corrected for moisture content, 

simultaneously every second. The chamber was equipped with two battery-powered fans that 

mixed the air inside the chamber and a cooling system to prevent overheating. The cooling 

system was a closed circuit of cold water constantly pumped through a copper tubing installed 

inside the chamber just in front of the fans.  

Long, 30 – 45-minute, measurements were conducted under full light and used for 

calculating CH4 flux. Methane exchange was measured from May 17th to July 5th
, 2016 with 

the portable analyzer. Due to equipment malfunction, CH4 flux was measured using gas 

samples collected in vials between July 11th to August 31st, 2016. Almost all flux 

measurements in 2017 were performed with the portable analyzer, except when the access to 

the plots was limited due to severely flooded conditions and the vial method was used instead. 

Both methods give comparable results (Murray, 2017). Gas exchange from each plot was 

measured biweekly from May 17th to August 31st in 2016 and every week from May 8th to 
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August 28th in 2017. Fluxes at the Active site were measured once a month from May to 

August 2017. For CH4 flux measurement with vials, we used a syringe to collect 20 mL of gas 

from the chamber headspace into evacuated 12 mL exetainers (Labco Ltd. UK). In 2016, 

samples were collected at 5, 15, 25, and 35 minutes after chamber closure, while in 2017 

samples were collected at 5, 10, 15, and 20 minutes as data from in field measurements of 

[CH4] with the portable analyzer indicated that accumulation of CH4 in the chamber reduced 

measured flux over longer closure times. In both cases, ambient air was collected to vials at 

least once for each set of measurements at a site. Methane concentration in vial samples was 

measured using a gas chromatograph (GC; Shimadzu GC2014 with EST Flex automatic 

sampler) at the Wetland Soil and Greenhouse Gas Exchange Lab at the University of Waterloo. 

Measurements were collected at different times of day during the growing season at each collar 

to avoid bias. Steady CH4 fluxes were calculated based on the linear increase in [CH4] in the 

chamber over time, corrected for actual volume of the chamber and air temperature. For flux 

measurements using vials, fluxes were considered acceptable when the R2 of the CH4 

concentration increase or decrease in the chamber headspace was  0.75 (Strack et al., 2018). 

When the concentration was < 5 ppm and varied less than 0.5 ppm (precision of the GC, 

determined from repeated analysis of standards) over the closure period, the flux was 

considered below detection and set to zero. In cases where the initial concentration was > 5 

ppm followed by a decline in concentration over time, the measurement was discarded as this 

likely indicates ebullition caused by disturbance during the measurement. In the case of 

measurements with the portable analyzer (precision 0.25 ppb; Los Gatos Research, n.d.), 

concentration change for each measurement was visually inspected and the linear portion used 

for steady flux calculation. When no increasing or decreasing trend in [CH4] was detected, or 

flux was within the precision of either instrument, the value was set to zero. 

Altogether, 98 CH4 measurements using vials (including 16 rejected; 16.33 %) were 

taken during May – August 2016 and 2017; 486 measurements using the portable analyzer 

were taken including 8 rejected (1.65 %). Among the accepted ones, ebullition was quantified 

in 41 (8.44 %) of the portable analyzer measurements. Two high resolution measurements at 

RES-2012-2 (sedgy, flooded collar) and two at RES-2012-3 (mossy, moderately wet collar) 

that captured intensive bubbling were rejected as the steady flux and baseline slope were 

unidentifiable (see details of ebullition calculations below).  
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3.4.2. Ebullition calculation 

 

Ebullition identification and quantification was performed following Goodrich et al. (2011) 

and Nugent (2019). Ebullition was defined as an abrupt change in the slope of the CH4 

concentration over time during the chamber closure. The first difference and the standard 

deviation of the first difference (> 0.01) were used to identify ebullition events during 

measurements made with the portable GHG analyzer. Since steady emission likely occurred 

simultaneously with ebullition, the magnitude of ebullition was determined from the difference 

between the base slope and the ebullition slope and converted to units of mg CH4 m
-2 d-1 using 

the same method as for the steady flux calculation. Lack of ebullition was expressed as 0 mg 

CH4 m
-2 d-1 of ebullitive flux.  

 

3.4.3. CH4 concentration in pore water  

 

Pore water samplers were made of 30 cm long, 2.5 cm inner diameter PVC pipes, perforated in 

the middle 10 cm of the pipe length, blocked on both ends, covered with synthetic nylon 

(Nitex®) and equipped with tubing sufficiently long to reach from the bottom of the sampler to 

the peat surface, where a valve was installed to close and open the system as needed (e.g., 

Strack et al., 2004). A pair of samplers was installed close to each collar at all sites, except the 

Active, with one at 25 cm and one at 50 cm depth. Methane in pore water and subsurface free-

phase gas were sampled from June 12th until the end of August 2017 at the time of gas flux 

measurements. Gas accumulated at the top of the tubing was collected first, which could 

possibly cause the exsolution of CH4 from pore water to the gaseous phase (i.e., due to 

negative pressure from the syringe) and therefore we used the [CH4] in the gaseous phase to 

correct the total [CH4] in pore water. We aimed for 20 mL of subsurface gas to be sampled into 

an evacuated exetainer. If < 20 mL was available, a known volume of gas was taken and 

topped up with the ambient air to 20 mL to maintain similar pressure in all vials. Ambient air 

samples were also collected to account for ambient [CH4].  

Similarly, 20 mL of pore water was collected in a 60 mL syringe, mixed with 20 mL of 

ambient air and shaken vigorously for 5 minutes. To prevent cross-contamination with other 
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pore water samples, the syringe was flushed with small amount of pore water from the current 

sampler prior to each sampling. If < 20 mL of pore water was available, a known amount was 

collected and analyzed as above. The gas in the headspace of the syringe was collected in an 

evacuated vial and the [CH4] determined on the GC. Methane concentration in pore water was 

calculated after Kampbell and Vandergrift (1998). 

 

3.4.4. Environmental conditions 

 

The temperature in the chamber during flux measurement was recorded every minute using a 

HOBO logger (ONSET, HOBO U23 Pro v.2 external temperature data logger). For each flux 

measurement, the mean temperature value was calculated and used for individual correction of 

molar volume in the chamber. Also during each flux measurement, the soil temperature was 

measured adjacent to the collar using an Omega HH200A temperature probe at depths: 2, 5, 

10, 15, 20, 25, 30 cm. Additionally, HOBO loggers (HOBO U23 Pro v.2) were installed at 

each site except RES-2012 in 2016 and the Active site in both years. They recorded average air 

temperature and soil temperature at 20 cm depth every 30 minutes.  

Carbon dioxide exchange was measured from May 17th to July 5th
, 2016 with the 

portable analyzer. Due to equipment malfunction, CO2 exchange was measured using an 

infrared gas analyzer (IRGA EGM-4 PPSystems) from July 11th to August 31st, 2016. Almost 

all gas measurements in 2017 were performed with the portable analyzer except when the 

access to the plots was limited due to severely flooded conditions and the IRGA was used 

instead. Measurements were taken with the same frequency as for CH4 fluxes. An opaque tarp 

was placed on the chamber to obtain short, 2-minute, measurements in dark conditions that 

were used to calculate respiration (R) (Strack et al., 2016). Then, the tarp was removed and the 

chamber vented until the ambient [CH4] in the headspace was reached. Changes in [CO2] over 

the first two minutes of the longer closures used for CH4 flux determination were used to 

calculate net ecosystem exchange (NEE). Gross ecosystem productivity (GEP) was calculated 

from a difference between NEE and R.  

Water wells were installed adjacent to the collars. When collars were close to each 

other, often only one well was installed between the two collars. The elevation difference 
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between wells and ground surface in the collar was measured to account for differences in the 

peatland microtopography and used for the WT correction. A levelogger (Solinst) was installed 

at each site in one of the wells to monitor the WT level every 30 minutes over the growing 

season in 2016, but only two loggers were installed in 2017 (at the Natural site and RES-2009). 

Barologgers (Solinst) were installed at RES-2012 in 2016 and at RES-1991 in 2017 and used to 

correct the levelogger data. All missing values for the atmospheric pressure in the 2017 

growing season (May 8th – July 17th) were taken from the nearest meteorological station where 

hourly average pressure data were available (Edmonton Stony Plain CS, about 60 km east from 

Seba Beach peatlands complex, coordinates: 53°32'50.080" N, 114°06'30.070" W, elevation 

766.30 m, Government Canada, 2018. The atmospheric pressure recorded at Seba Beach sites 

and the Stony Plain CS station for the period of time when both sets of data were available 

showed a strong correlation (y = 0.878x + 11926; r2 = 0.82). Corrected levelogger values were 

used to calculate WT using a regression equation obtained from manual WT measurements. 

The levelogger at RES-1991 sank in 2016 and we were unable to retrieve the data. Monthly 

total precipitation and average air temperatures were taken from the Tomahawk AGDM 

meteorological station located about 11.5 km SSW from Seba Beach peatland complex 

(coordinates: 53°26'22.000" N, 114°43'06.000" W, elevation 814.00 m, Government Canada, 

2018) that was the closest station to our study site. Long term average mean temperature and 

precipitation (1981 – 2010) were taken from the nearest possible meteorological station 

Edmonton Stony Plain (53°32'51.006" N , 114°06'30.090" W, elevation 766.30 m, Government 

Canada, 2018) that stored long term data. The long term averages were not available at the 

Tomahawk station.   

 

3.4.5. Statistical analysis 

 

All statistical analyses were completed in R (R Core Team, 2019). Descriptive statistics for 

geochemical variables (n, mean, sd) were calculated in Rmisc package (Hope, 2013) and 

converted to csv files using pdftables package (Persson, 2016). Linear mixed effect (LME) 

models were built in nlme package (Pinheiro et al., 2019) and marginal ANOVA with Tukey 

pairwise comparison applied to determine how the steady CH4 flux and [CH4] in pore water at 

25 cm and 50 cm depth varied between sites and over time. Separate models were built to 
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determine the significance of environmental variables for explaining variation in CH4 flux, and 

[CH4] in pore water at both depths. As ebullition was only observed at RES-1991 and RES-

2012, differences between sites were clear and no further statistical analysis was conducted, 

except of correlations between ebullition and environmental variables, CH4 flux and [CH4] in 

pore water calculated using Spearman rank correlation in ggpubr package in R (Kassambara, 

2018). In all LME models, plot (collar) was specified as a random variable to account for 

repeated measurements at the same plot. Final models with environmental controls were 

obtained by subsequent removal of variables with the highest p value until only variables with 

p value > 0.05 remained in the model. LME models were validated by inspecting the normality 

and homogeneity of residuals and patterns of residuals versus fitted values. The R2 of the 

models was calculated in MuMIn package in R (Barton, 2019). Package lsmeans (Lenth, 2016) 

and function lsmeans with Tukey pairwise comparison was used to check at which sites CH4 

flux, and [CH4] in pore water varied significantly over time during the summer season. The 

same procedure was applied when significant relationship between dependent variable and the 

type of vegetation cover (e.g., mossy, sedgy, bare peat) occurred. Graphs were made in ggplot2 

package (Wickham, 2016). 

 

3.5. RESULTS 

 

All data included in this study is compiled in Tab. A.3.1. deposited at Scholars Portal 

Dataverse. 

 

3.5.1. Environmental conditions 

 

The air temperature was higher in May 2016 and 2017 than the long term average, but similar 

to the average in the rest of the season (Tab. A.3.2). May and June 2016 were dry, but the rest 

of the season was wet, with August precipitation over 100 mm higher than the long-term 

average. The 2017 summer season started with regular precipitation in May, followed by wet  

conditions in June where most of the precipitation occurred in the second half of the month. 

The precipitation in July and August 2017 was lower than in 1981 – 2010 (by half in August), 
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which was reflected in decreasing WT at the end of the season. But, even at lower than normal 

precipitation, the WT remained higher than in 2016 and the restored sites remained partially 

flooded.  

Patterns of WT fluctuation in 2016 were similar at all sites. In 2017, WT fluctuations 

were synchronized at the Natural and restored sites, except RES-1991; whereas at the 

Unrestored and Active sites, WT showed an overall decrease over time. The largest 

fluctuations of the WT were observed at the Unrestored site in both years (Fig. 3.1).   

 Peat temperatures were generally highest in RES-2012 and the Unrestored sites, lower 

in the other two restored sites (Fig. 3.2) and lowest in the Natural site. The pattern of 

temperature varied between the study years. In 2016, the temperature had an increasing 

tendency until the end of July (~ day 210) and then decreased in August. In 2017, the initial 

rapid increase of temperature continued until the second week of July (~ day 190), stabilized 

for the rest of the summer season and slightly decreased at RES-2012 and the Unrestored (the 

warmest sites) and RES-1991 (the flooded site) by the end of the study period (Fig. 3.2).  

 

3.5.2. Gross ecosystem production (GEP) 

 

The GEP at the restored sites was the largest over the summer 2016 and 2017 (from 26.3 ± 

21.4 g of CO2 m
-2 d-1 at RES-1991 to 33.1 ± 20.3 g of CO2 m

-2 d-1 at RES-2009). Restored 

sites’ GEP was at least twice as high as at the Natural (from 12.3 ± 9.4 at the hummock to 14.0 

± 9.3 at the hollow; Tab. A.3.3), while at the Unrestored it was lower than at the Natural (9.0 ± 

8.4 g of CO2 m
-2 d-1). The lowest GEP was observed at the Active site (0.6 ± 0.4 g of CO2 m

-2 

d-1).  

 

3.5.3. Steady CH4 fluxes 

 

Steady fluxes accounted for the majority of CH4 emission at RES-2012 and RES-1991, where 

ebullition also occurred (Tab. 3.1). Fluxes were not significantly different at the Natural, RES-

2009, Unrestored and Active sites, but were the lowest at the Unrestored and Active (Tab. 3.1). 
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Figure 3. 1. Water table (WT) fluctuation over time in summer 2016 and 2017 at the Natural, Active, 

Unrestored and three restored sites: RES-1991 – site restored in 1991, RES-2009 –  site restored in 

2009, RES-2012 – site restored in 2012. The WT was measured continuously with leveloggers. Missing 

data were replaced with manual measurements. 

 

 

Fluxes at RES-1991 and RES-2012 were significantly higher than those at other sites (195.2 ± 

181.1 and 178.2 ± 536.5 mg CH4 m
-2 d-1, respectively; Tab. 3.1). The temporal (day of year; 

DOY) pattern of steady log-transformed CH4 flux over the growing season varied significantly 

between sites (DOY x site; Tab. 3.2), and between years 2016 and 2017 (F1, 523 = 18.4, p < 

0.0001, not included in tables). In 2016, only flux at RES-2012 and RES-1991 increased over 

the season, while in 2017 the tendency occurred at all sites except the Unrestored and Active  

(Fig. 3.3). The flux at the Natural site and RES-2009 followed the same temporal pattern in 

both years.  
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Figure 3. 2. Mean daily peat temperature (˚C) at 20 cm depth over time measured continuously with 

HOBO loggers in summer 2016 and 2017 at the Natural, Unrestored and three restored sites: RES-1991 

– site restored in 1991, RES-2009 –  site restored in 2009, RES-2012 – site restored in 2012. Missing 

values were replaced with manual temperature measurements at the same depth. No logger was 

installed at the Active site.  

 

The type of peat surface cover significantly affected the steady CH4 flux (i.e., 

significant difference among collars grouped by site and surface cover, F10, 516 = 15.8, p < 

0.0001), but the differences were largely driven by the site itself. Thus, no significant 

differences in CH4 flux were found between the surface covers within any given site. Only 

RES-1991 sedgy plots had significantly higher flux than all other surface types, except RES-

1991 mossy (Tab. 3.1).    

The steady CH4 flux was significantly explained mainly by the peat temperature at 20 

cm depth, GEP, WT, and the percentage cover of shrubs and graminoids (Tab. 3.3). The steady 

flux was not significantly affected by the [CH4] in pore water or ebullition.  
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Table 3. 1. Mean, and standard deviation of CH4 steady flux, ebullition, and total CH4 emission (mg m-2 

d-1) over the summer 2016 and 2017. RES-1991 – site restored in 1991, RES-2009 – site restored in 

2009, RES-2012 – site restored in 2012. The Tukey pairwise comparison was done for steady CH4 flux. 

Letters in common indicate values that do not vary significantly from each other.  
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Table 3. 2. The linear mixed effect models’ output. Models were built for the spatial and temporal 

variability of the dependent variable with Site, DOY (day of year), and Site x DOY as fixed explanatory 

variables and the plot (collar) as a random variable to avoid pseudo-replication. R2m –  marginal R2, 

variance explained with fixed variables; R2c – conditional R2, variance explained by both fixed and 

random factors (Barton, 2019). PW25[CH4] and PW50[CH4] are concentrations of CH4 in pore water at 

25 cm and 50 cm depth, respectively. The model for PW25[CH4] showed no significant patterns when 

the interaction DOY x Site was included, therefore a separate model with no interaction was built and 

the output included in the table.  

 

 

 

 

 

 

 

Table 3. 3. The linear mixed effect models’ output. Models were built with fixed explanatory variables: 

GEP (gross ecosystem production, g CH4 m-2 d-1), SHR (percentage shrub cover), FOR (percentage forb 

cover), GRA (percentage graminoid cover), MOS (percentage moss cover), T (temperature ˚C) at a 

significant depth (e.g., T25 means T at 25 cm depth), WT (water table, cm). The significant depth was 

found by building a separate model for temperatures at depths: 2, 5, 10, 15, 20, 25, and 30 cm. All 

significant environmental variables were used to build models with paired interactions between them. 

The output of the latter is given in the table. Plot (collar) was used as a random variable. R2m – 

marginal R2, variance explained with fixed variables; R2c – conditional R2, variance explained by both 

fixed and random factors (Barton, 2019). PW25[CH4] and PW50[CH4] are concentrations of CH4 in 

pore water at 25 cm and 50 cm depth, respectively. 
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Figure 3. 3. Mean and standard error of log-transformed steady CH4 fluxes over time in May – August 

2016 and 2017. RES-1991 – site restored in 1991, RES-2009 – site restored in 2009, RES-2012 – site 

restored in 2012. 

 

3.5.4. Ebullition 

 

Ebullition occurred only at two sites, flooded RES-1991 and wet/moderately wet parts of RES-

2012 (Tab. 3.1), regardless of the vascular plant cover (Tab. 3.4, Tab. A.3.4). Considering all 

CH4 measurements at RES-1991 and RES-2012, including the ones that did not contain 

ebullition events, the contribution of ebullition to total CH4 emission was 6.7 % at RES-1991 

and 5.9 % at RES-2012 (percentage contribution calculated from Tab. 3.1). The mean 

ebullitive flux from RES-2012 was higher than at RES-1991 but occurred in rare spontaneous 
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events of large CH4 emission. At RES-1991, ebullition was more regular and emitted smaller 

amounts of CH4 (Tab. A.3.4). There was a significant positive correlation with the percentage 

cover of moss and ebullition, but no such correlation with vascular plant cover (Tab. 3.4). At 

RES-2012, more CH4 was emitted via ebullition at sedgy than at mossy locations (1203.6 ± 

2359.9 and 967.2 ± 1135.3 mg CH4 m
-2 d-1, respectively), but at RES-1991, ebullition was 

similar at sedgy and mossy plots (Tab. A.3.4).  Ebullition was also significantly positively 

correlated with soil temperature, WT, GEP, steady CH4 flux and [CH4] in pore water at both 

depths of 25 and 50 cm (Tab. 3.4).  

 

Table 3. 4. Spearman rank correlation between ebullition and CH4 flux, [CH4] in pore water at depths 

25 cm and 50 cm (PW25[CH4], PW50[CH4]), and environmental variables: T10 – temperature (˚C) at 

10 cm, Taverage - average temperature (˚C) at 2 – 30 cm, WT – water table (cm), GEP – gross 

ecosystem production (g CO2 m-2 d-1), MOS – percentage cover of moss.  

 

 

 

 

 

 

 

 

The mean log-transformed ebullition over time (day of year) is shown in Fig. 3.4. 

Ebullition started at the end of May 2017 at RES-1991 and over a month later (beginning of 

July) at RES-2012. It increased over time at RES-1991 but did not show a pattern at RES-

2012. The equipment malfunction on July 5th, 2016 prevented further collection of ebullition 

data that year, but the measurements taken by that time showed lack of ebullition at RES-2012 

(consistent with year 2017) and the beginning of ebullition on June 6th at RES-1991.  
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Figure 3. 4. Mean and standard error of log-transformed ebullitive fluxes over time in May – August 

2016 and 2017. RES-1991 – site restored in 1991, RES-2012 – site restored in 2012. 

 

3.5.5. CH4 concentration in pore water  

 

The [CH4] in pore water at 50 cm was higher than at 25 cm depth at all sites (Fig. 3.5). The 

latter varied significantly between sites (Tab. 3.5) with higher values at RES-1991 than at 

RES-2009 (Tukey pairwise comparison, p = 0.0266) and at the Unrestored site (p = 0.0102). 

The [CH4] at 25 and 50 cm depth was significantly affected by the type of peat surface cover 

(F9, 20 = 3.4, p = 0.0106 and F9, 21 = 16.3, p < 0.0001, respectively; see Tukey pairwise 

comparison for which types of peat surface cover the [CH4] in pore water was significantly 

different, Tab. 3.5) and significantly increased over the summer (significant p-values for day of 

year (DOY) in Tab. 3.2); however, at 50 cm depth, the [CH4] pattern in time significantly 

depended on the site (DOY x Site, p = 0.0105 in Tab. 3.5). The Natural hummock and hollow, 
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RES-1991, and RES-2012 showed the highest increase of [CH4] in pore water at 50 cm, while 

RES-2009 had lower mean values that only slightly increased over the season. The values for 

the Unrestored site oscillated around zero and did not increase in time at either depth (Fig. 3.5). 

The [CH4] in pore water at both depths was the highest at sedgy RES-1991 and RES-2012 but 

not always significantly different from other sites and types of vegetation cover (Tab. 3.5). 

Also, pore water [CH4] was usually higher at restored sedgy than at mossy locations within a 

site except RES-2009 that had more [CH4] in pore water under moss (Tab. 3.5). The pore water 

[CH4] at both depths significantly depended on the temperature at 25 cm depth (T25), and the 

WT was a factor significantly affecting [CH4] in pore water at 25 cm depth (Tab. 3.3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 5. Mean and standard error of [CH4] in pore water over time in June – August 2017 in the 

Natural, Unrestored and three restored sites: RES-1991 – site restored in 1991, RES-2009 – site 

restored in 2009, RES-2012 – site restored in 2012. 
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Table 3. 5. Mean, and standard deviation of [CH4] in pore water (mg L-1) at 25 cm and 50 cm depth 

during summer 2017. RES-1991 – site restored in 1991, RES-2009 – site restored in 2009, RES-2012 – 

site restored in 2012. Letters in common indicate values that do not vary significantly from each other. 

They should be interpreted within a depth and not between depths. Pore water was not collected at the 

Active site.  
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3.6. DISCUSSION 

3.6.1. Methane emission and pore water concentration 

 

Steady fluxes accounted for the majority of the total CH4 emission. The mean steady flux at the 

Natural peatland (6.8 mg m-2 d-1) was lower than the average for pristine northern bogs, which 

is 26 mg m-2 d-1 (Abdalla et al., 2016). Steady fluxes at our restored sites were either lower 

than the average for northern restored sites of 15 mg m-2 d-1 reported by Abdalla et al., (2016) 

as observed at site RES-2009 (7.7 mg m-2 d-1) or exceeded that average over tenfold at RES-

1991 and RES-2012 (average fluxes 195.2 and 178.2 mg m-2 d-1, respectively). High CH4 

emission was also observed by Vanselow-Algan et al. (2015) 30 years after rewetting. Steady 

mean flux at the Natural site was tenfold lower than at natural subarctic and boreal peatlands 

(mean 83 mg CH4 m
-2 d-1, Turetsky et al., 2014); however, that mean was exceeded at RES-

1991 and RES-2012. Steady fluxes at RES-1991 and RES-2012 were comparable to those 

reported by Nugent (2019) for bare drainage ditches at a post-extracted site at the beginning of 

the summer season (~135 mg m-2 d-1, converted from 98 nmol m-2 s-1), to CH4 flux from a 

recolonized cutover peatland (0.11 – 232.60 mg m-2 d-1, Mahmood and Strack, 2011), to CH4 

emission from natural flooded wetlands, e.g., 6.2 – 3165 mg m-2 d-1 (Pelletier et al., 2007), and 

to fluxes obtained at wetlands in northeastern Ontario (91 – 350 mg m-2 d-1; Bubier et al. 

(1993) where much lower fluxes were measured at non-flooded parts of the sites). Our steady 

fluxes from the restored sites were within the range of fluxes obtained at a Canadian boreal 

post-extracted restored site by Strack et al. (2014) (-1.77 to 394.68 mg CH4 m
-2 d-1). As 

expected, the mean steady flux remained very low at the Unrestored and Active sites, as 

observed in other studies (Waddington and Day, 2007, Strack et al., 2014) and was similar to 

flux at the unrestored part of Bois-del-Bel peatland in Quebec, Canada (Strack and Zuback, 

2013). 

We hypothesized that ebullition would occur at all restored and Natural sites, but it was 

observed only at two restored sites where also high steady CH4 emission was measured. These 

restored sites were the oldest and the youngest, which indicates that at this very early stage of 

restoration, environmental conditions play more important role in CH4 dynamics than the age 

of restoration itself. The ebullition contribution to CH4 emission in our study was comparable 

to rates measured in former drainage ditches at the restored part of Bois-del-Bel, where the 
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same method of ebullition quantification was used (9 %, Nugent, 2019). In contrast, the 

contribution of ebullition in other studies varied, e.g., 1.5 – 3.3 % (Green and Baird, 2013), 20 

% (Strack and Waddington, 2008), 17 – 50 % (Christensen et al., 2003), 50 – 64 % (Tokida et 

al., 2007a) and 89 % of the total CH4 flux (Lansdown et al., 1992). Even a few percent 

contribution of ebullition should not be neglected in post-extraction and post-restoration 

monitoring of affected sites, as the amount of CH4 released to the atmosphere can be 

substantial (Glaser et al., 2004, Goodrich et al., 2011). Based on our research, we recommend 

including the quantification of CH4 emission through ebullition in regular monitoring of 

flooded, wet, and moderately wet restored sites, particularly at revegetated locations. Including 

this type of data would improve the quality, reliability and credibility of the GHG inventories 

from post-extracted horticultural peatlands. We also recommend using portable gas analysers. 

This method minimized the number of rejected measurements in our research by tenfold 

compared to the manual method, captured ebullition events that would be rejected in manual 

measurements, and increased the rate of acceptable linear measurements due to frequent 

concentration recording.  

As we had hypothesized, we did not observe ebullition or high CH4 fluxes at the 

Unrestored and Active sites, and expect this to be the case even if the sites become temporarily 

wet after prolonged rain events. The main CH4 emission driver, CH4 production, was close to 

zero at the Unrestored site, linked to lower methanogen abundance (Chapter 2) and so was the 

measured steady CH4 flux. It is unlikely that the microbial community would recover fast 

enough during wet periods to result in substantial CH4 emissions (e.g., Blodau and Moore, 

2003, Knorr and Blodau, 2009), particularly given the recalcitrant nature of the peat exposed at 

these sites (Basiliko et al., 2007).  

To a certain degree, [CH4] in pore water reflected the emission pattern as hypothesized, 

but since the emission did not show the expected pattern of increase from the Active through 

Unrestored, RES-2012, RES-2009, RES-1991, to Natural, our hypothesis was supported only 

partially. Low [CH4] in pore water in the Unrestored site indicates that the pool of dissolved 

CH4 is likely not to recover without active peatland restoration. However, [CH4] in pore water 

can be low even in restored sites (e.g., RES-2009) where CH4 production is suppressed by peat 

chemical conditions (Chapter 2). 
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We converted the ebullition magnitude to the unit of flux (mg m-2 d-1) to assess the total 

CH4 emission from the sites. However, the extrapolation of ebullition to nighttime can produce 

inaccurate results since increased ebullition and peat surface displacement have been observed 

at night compared to day time (Goodrich et al., 2011, Gogo et al., 2011, Glaser et al., 2004). 

Higher night CH4 fluxes and [CH4] in pore water have been observed as well (Waddington et 

al., 1996), but higher daytime fluxes have been reported from an Australian seasonal wetland 

(Jeffrey et al., 2019). Future research on nighttime CH4 fluxes at post-extracted sites is 

required to clarify the diurnal pattern of CH4 and CO2 emission and to quantify the contribution 

of ebullition to emission more accurately.  

 

3.6.2. Environmental factors controlling CH4 emission  

 

Ebullition quantification can be technically challenging due to equipment requirements, 

spontaneous nature, and large spatial variability of ebullition events (e.g., Goodrich et al., 

2011; Parsekian et al., 2011). However, our study showed that ebullition increased in time 

during the summer season at RES-1991. Similar temporal patterns were observed by Goodrich 

et al. (2011) at a natural fen. Goodrich (2010) linked the peat structure (less compact, less 

decomposed, more porous peat characteristic for natural bogs) to more constant ebullition 

events that show temporal patterns, both diel and seasonal with increasing ebullition in 

summer, and were likely driven by CH4 production. No seasonal pattern was found at RES-

2012 but rather spontaneous events emitting large amounts of CH4. This happened at both 

mossy and sedgy locations of RES-2012. Irregular, spontaneous and fairly large ebullition 

events are associated with small pore sizes, more compact and decomposed layers in peat that 

trap accumulating gas until its pressure is large enough to overcome the trapping forces (Glaser 

et al., 2004, Kellner et al., 2006). Peat in RES-2012 was in fact less porous than in RES-1991 

(0.92 and 0.96, respectively; Chapter 4), although peat decomposition was similar in both sites 

(Chapter 2). Peat structure likely drove rare and large ebullition events at RES-2012. These 

events occurred mainly at severely flooded, sedgy locations, but also at mossy parts of RES-

2012 that were not flooded or extensively wet. It is possible that at RES-2012, the positive 

significant correlation between ebullition and percentage moss cover was at least partially due 

to the peat structure rather than the presence of moss itself (e.g., low porosity of the first 10 cm 
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of surface peat (Chapter 4) that could cause short-term accumulation of gas close to the peat 

surface and its abrupt release once the gas pressure was sufficient to burst through the thin 

layer of peat. The lack of correlation between ebullition and the percentage cover of sedge 

could have been caused by the complex interaction of multiple processes including increased 

CH4 production due to root exudation (Joabsson et al., 1999), more efficient CH4 emissions via 

aerenchyma (Ström et al., 2005) and trapping gas bubbles in dense sedge roots (Klapstein et 

al., 2014). 

The percentage cover of vascular plants (shrubs and graminoids) significantly affected 

steady CH4 flux (e.g., Mahmood and Strack, 2011), but not ebullition and [CH4] in pore water. 

This was in contrast to the findings of Murray et al. (2017) that showed a significant 

correlation between percentage cover of different plant functional groups and [CH4] in pore 

water. Also, at all restored sites except RES-2009, pore water [CH4] was higher at sedgy than 

at mossy locations (e.g., Waddington et al., 1996), but other studies have reported lower [CH4] 

in pore water and higher CH4 fluxes under sedges than under moss, which was associated with 

plant mediated transport of CH4 (Green and Baird, 2012, Murray et al., 2017, Strack et al., 

2017). Productivity of the vegetation likely increased CH4 production due to supply of root 

exudates (Zhai et al., 2013), an observation also supported by the significant correlation 

between GEP and both steady and ebullition fluxes.  

The increasing soil temperature over summer in shallow peat and the WT were likely 

the main drivers of the mean steady flux, ebullition, and [CH4] in pore water increase in time 

(Strack and Waddington, 2008, Strack et al., 2017). While we had hypothesized this seasonal 

pattern over time for all sites (except ebullition only at restored and Natural sites), it did not 

occur in the Unrestored site. The WT was generally lower and fluctuating more intensively in 

2016 compared to 2017, likely causing different patterns of CH4 flux increase in time at the 

same peatland in these two years (e.g., no increase in 2016 at the Natural site and RES-2009 

that occurred in 2017). We also observed a correlation between ebullition and pore water [CH4] 

as previously reported by Strack and Waddington (2008). These factors are directly linked to 

optimum conditions for CH4 production (anoxia and relatively high temperatures) and have 

previously been identified as major drivers of CH4 flux (MacDonald et al., 1998, Pelletier et 

al., 2007, Turetsky et al., 2008, Strack et al., 2017).  
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RES-2009 was the only restored site where ebullition did not occur and CH4 fluxes 

were considerably lower than at other restored sites, despite wet conditions (at least in 2017) 

and high cover of sedges. This contradicted our hypothesis that the CH4 flux would be the 

highest at all restored sites. The [CH4] in pore water was also the lowest at RES-2009 of all 

restored sites. Microcosm experiment  (Chapter 2) showed that CH4 production was suppressed 

at RES-2009 and that this was likely caused by large concentration of ferric iron due to shallow 

peat and close vicinity of clay to the lower boundaries of the WT fluctuation zone. Peat 

chemical properties can be as important for CH4 production and emission as hydrological 

conditions (e.g., Westermann and Ahring, 1987, Kellner et al., 2007, Reiche et al., 2008, Ye et 

al., 2016, Jeffrey et al., 2019) and may have increasing importance at restored peatlands where 

peat extraction reduces the thickness of the peat layer, potentially allowing greater influence of 

the underlying substrate. Since non-oxygen terminal electron acceptors (TEAs) can affect CH4 

production and emission in restored sites, it is recommended to include these analyses in 

studies on CH4 processes in post-extraction peatlands. Also, more research on the impact of 

these interactions on the overall outcome of peatland restoration would benefit making 

informed decisions on restoration planning. The research of Emsens et al. (2016) showed that 

rewetting fens rich in iron negatively impacts peatland restoration success by inducing organic 

matter break down, which was not observed when the [Fe] was low. This shows a possibility 

that the effect of high [TEAs] can reach beyond CH4 processes in managed peatlands.    

 

3.7. CONCLUSIONS 

 

Restoration increased steady CH4 fluxes that were driven mainly by soil temperature, water 

table and GEP, with the percentage cover of shrubs and graminoids being of lesser importance. 

Steady CH4 fluxes comprised the majority of CH4 emission, while ebullition contributed only 6 

– 7 % of total CH4 emission and occurred only on flooded/wet and sedge-dominated restored 

sites, while no ebullition was recorded at the Natural site. No ebullition was observed at the 

Unrestored and Active sites. Sites where ebullition occurred had the highest steady CH4 flux, 

larger than the Natural bog that was dominated by Sphagnum and had a deeper water table than 

the restored sites. Ebullition was correlated with soil temperature, water table, GEP, and 

percentage cover of moss, but not sedges and shrubs. Ebullition also depended on the 
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concentration of CH4 in pore water and steady CH4 flux. Restoration recovered the subsurface 

dissolved pool of CH4. In contrast, no clear evidence of CH4 emission or pore water 

concentration recovery was found at the Active and Unrestored sites, where bare peat and low, 

frequently fluctuating water table prevailed. Methane emission was suppressed at the site 

restored eight years prior to our research even though the site was wet and dominated by 

vascular plants. We attribute this to unique geochemistry of the site with considerable 

concentration of ferric iron, likely originating from the clay underlaying the shallow peat 

deposit with highly fluctuating water table. Therefore, local environmental factors were more 

important for driving recovery of post-restoration CH4 stock and flux than the age of the 

restored site.  
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CHAPTER 4: Subsurface free-phase gas content in natural, extracted, unrestored, 

and restored horticulture peatlands 

 

 

4.1. ABSTRACT 

 

Little is known about free-phase gas accumulation in post-extraction horticultural peatlands. In 

this study, we assessed the subsurface pool of free-phase gas and possible factors affecting its 

dynamics. Ground-penetrating radar (GPR) surveys were conducted at a horticulture peatland 

complex in May, June, July, and August 2017, at a currently extracted site (Active), post-

extraction unrestored site (Unrestored), three sites restored 5, 8, and 26 years prior to our 

research (in 2012, 2009, and 1991: RES-2012, RES-2009, and RES-1991, respectively), and at 

a natural bog (Natural) within one horticulture peatland complex. The radargrams were used to 

assess the volumetric gas content (VGC) in these sites at a monthly temporal resolution.  The 

VGC was the highest in Unrestored (11.8 %) and Natural (10.1 %), lower in Active (9.6 %), 

RES-1991 (9.5 %) and RES-2009 (9.9 %), and the lowest in RES-2012 (7.2 %). Additionally, 

water content reflectometry probes and thermocouples were installed at sites restored in 2012 

and 1991 to record hourly fluctuation of volumetric gas content (VGC) and soil temperature at 

25, 50, and 75 cm depth. Results from the water content probes indicated that the hourly 

changes in VGC over time mimicked temperature fluctuation. Gas release was sometimes 

associated with decreases in atmospheric pressure and sharp increases of water table (WT) 

after longer period of WT drawdown. Generally, the VGC increased with depth and 

occasionally reached > 20 % close to the bottom of the peat deposits. We did not find clear 

evidence of free-phase gas recovery progress in post-extraction peatlands with the age of 

restoration, but rather local conditions driving its accumulation. Presumably, compacted peat in 

the Unrestored and Active sites acted as a semi-confining layer and was responsible for high 

VGC, where CH4 (one of the main components of the free-phase gas) production and emission 

was close to zero. The VGC alone cannot be interpreted as the restoration of the CH4 balance 

in post-extracted sites and CH4 flux is not a good predictor of subsurface VGC. Results 

indicate that biogenic gas accumulation in peat recovers at restored sites and is also maintained 

to a certain degree at Unrestored and Active sites, but the mechanisms determining the amount 



 

94 

 

of accumulated free-phase gas at restored and Unrestored sites appear to vary in relation to site 

management and local conditions.  

 

4.2. INTRODUCTION  

 

Peatlands are terrestrial freshwater ecosystems with at least a partially waterlogged acidic 

organic matter deposit  > 40 cm thick, and characteristic peat forming vegetation, e.g., 

Sphagnum moss and sedges (Laine and Vasander, 1996, National Wetlands Working Group, 

1997). Undisturbed peatlands sequester carbon dioxide (CO2) but also emit considerable 

amounts of methane (CH4) due to the presence and activity of methanogenic Archaea that are 

responsible for the last stage of organic matter decomposition in anoxic conditions (e.g., Horn 

et al., 2003). Not all produced CH4 is emitted; in fact, biogenic gas can be stored in peatlands 

and constitute up to one fifth of peat volume (Rosenberry et al., 2006 and references therein). 

A part of the subsurface CH4 pool is dissolved in pore water, but since CH4 has low solubility 

in water (Gevantman, 1992), the majority occurs in a gaseous state (Fechner-Levy and 

Hemond, 1996) as one of the main components of biogenic free-phase gas (20 – 54 % of total 

gas volume; Shannon et al., 1996, Glaser et al., 2004 and references therein, Tokida et al., 

2007b, Stamp et al., 2013). Shannon et al., (1996) observed the volumetric gas content (VGC, 

defined as percent of pore space that is not occupied by water) increase in September compared 

to December of the previous year but this increase was site-specific. Given that the peat matrix 

is deformable and its buoyancy increases with the free-phase gas content, the compressibility 

of gas is of limited issue (e.g., Strack et al., 2006a). The remaining components of the free-

phase gas below the water table are nitrogen (N2) and small amounts of CO2 (Comas and 

Wright, 2012). To the best of our knowledge, the studies on biogenic gas accumulation and 

release are limited to natural peatlands (Comas et al., 2005, 2007, 2008, 2011, Parsekian et al., 

2010, 2011, Strack and Mierau, 2010), with only one study on restored and unrestored sites to 

date (Mwakanyamale et al., submitted). Further research is required to understand the 

accumulation of free-phase gas in managed peatlands.  

One of the main controls on the free-phase gas distribution, movement, trapping, and 

release is the peat structure, which is controlled by peat type and degree of decomposition in 

undisturbed peatlands (Baird et al., 2004, Kellner et al., 2005, Strack et al., 2005, 2006a, 
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Comas et al., 2011, Kettridge and Binley, 2011, Chen and Slater, 2015, Ramirez et al., 2016). 

Peatland vegetation contributes to variation in peat structure and free-phase gas storage, e.g., 

free-phase gas content has been found to be higher under woody vegetation and lower under 

lawns and open water (Kellner et al., 2005, Parsekian et al., 2011). The amount of stored CH4 

depends on the balance between the amount of produced CH4 and the amount of CH4 lost to 

oxidation and emission. The majority of oxidation occurs in the presence of oxygen (O2) when 

CH4 diffuses through the zone of peat above the WT or below the WT when plant roots supply 

O2 (Ström et al., 2005, Bridgham et al., 2013). Some studies suggest anaerobic CH4 oxidation 

(AOM) occurs in peatlands, although the mechanisms of AOM governed by Archaea and 

coupled to non-oxygen terminal electron acceptor reduction are still not fully understood in 

peatlands (e.g., Smemo and Yavitt, 2007, 2011). Methane production depends on anoxia, the 

availability of substrate (Coles and Yavitt, 2002), the presence of active methanogens, the 

presence and activity of competitor microorganisms, peat geochemistry (e.g., Segers, 1998), 

pH (Ye et al., 2012) and temperature (Andersen et al., 2010). Methane production slows down 

as the temperature decreases but can also increase over winter likely due to substrate 

accumulation (Juottonen et al., 2008, Couwenberg and Fritz, 2012). Large amounts of biogenic 

gas are accumulated under ice and snow and released during the spring thaw, accounting for 

almost a half of the annual CH4 emission (Windsor et al., 1992, Huttunen et al., 2003, Tokida 

et al., 2007b, Slater and Comas, 2009).  

Biogenic free-phase gas forms when dissolved gas concentration exceeds a certain 

threshold (Beckwith and Baird, 2001, Baird et al., 2004, Gogo et al., 2011) or when the partial 

pressures of dissolved gases exceed the hydrostatic pressure (Fechner-Levy and Hemond, 

1996). The formation of free-phase gas and the balance between gaseous and dissolved phase 

are governed by the ideal gas law and Henry’s law. Increasing temperature and decreasing 

atmospheric pressure (Patm) raise free-phase gas volume due to gas expansion and exsolution of 

gases from pore water (Fechner-Levy and Hemond, 1996, Baird et al., 2004, Kellner et al., 

2006, Strack et al., 2006a, Tokida et al., 2007a), while decreasing temperature increases CH4 

solubility, and increasing Patm shrinks and mobilizes free-phase gas bubbles (Fechner-Levy and 

Hemond, 1996, Baird et al., 2004). 
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 Once present, bubbles can move, merge, grow, shrink and become trapped in peat, 

creating a lag between gas production and emission (Kellner et al., 2005, Waddington et al., 

2009a, Kettridge and Binley, 2011). They move until they encounter an obstacle (e.g., pores of 

smaller diameter), aggregate or increase their volume due to CH4 production or pressure and 

temperature changes, and become immobilized (Kellner et al., 2005, Waddington et al., 2009a, 

Kettridge and Binley, 2011). Gas accumulation creates overpressurized areas in peat, leading to 

peat deformation and subsequent rupture of peat layers, causing spontaneous gas release 

(Rosenberry et al., 2006, Waddington et al., 2009a). Two conceptual models of free-phase gas 

storage (a part of larger models of CH4 cycling) can be applied to specific sites (Baird et al., 

2004, Parsekian et al., 2011, Comas et al., 2011, 2014). In the model of Coulthard et al. 

(2009), shallow peat (up to 1 m deep) is the major source of bubbles and ebullition (abrupt or 

steady release of subsurface free-phase gas through the peat matrix to the atmosphere) in 

peatlands, due to the presence of trapped air acting as nuclei for bubble growth and the 

presence of labile substrate for methanogens. Confining layers that accumulate small amounts 

of free-phase gas can form when bubbles clog the peat pores preventing subsurface gas from 

upward movement (Romanowicz et al., 1995, Kellner et al., 2004, Strack et al., 2005, 2006a). 

Glaser’s et al. (2004) model is based on the presence of confined woody peat layers acting like 

traps for biogenic gas produced mainly in deep peat (below 2 m depth). The presence of 

confining peat layers that have limited permeability and flexibility promotes formation of large 

entrapped gas deposits (Rosenberry et al., 2003, Glaser et al., 2004, Strack et al., 2006a).  

The entrapped free-phase gas plays an important role in regulating peatland hydrology. 

It reduces hydraulic conductivity by blocking the peat pores (Beckwith and Baird, 2001, 

Kettridge et al., 2013, Waddington et al., 2015), affects the pressure gradients thereby 

changing patterns of water and solute movements (Kellner et al., 2004), and increases peat 

buoyancy that leads to surface level oscillations (Glaser et al., 2004, Strack et al., 2006a). The 

recovery of free-phase gas in restored sites can be an important factor returning this peatland 

function post-extraction.  

Peat extraction involves procedures that drastically alter natural peatland ecosystems 

(e.g., installation of drainage ditches, removal of all vegetation, and decades of peat harvesting 

with heavy machinery) and potentially releases subsurface biogenic gas accumulated in the 
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peat deposit. Furthermore, lowering the WT increases the thickness of the unsaturated zone and 

can enhance CH4 oxidation. Once peat extraction is completed, it is unknown to which degree 

the pool of free-phase gas and CH4 is able to recover in unrestored site and if the recovery of 

subsurface CH4 progresses with the age of restoration. Our objectives were to quantify 

subsurface free-phase gas in a currently extracted (Active) site, a site left unrestored in 2012 

(Unrestored), in sites restored at different times (1991, 2009, and 2012: RES-1991, RES-2009, 

and RES-2012, respectively) and in a natural site (Natural) and identify potential relationships 

between the VGC and environmental variables. We hypothesized that:  

1) The largest amounts of free-phase gas will be found in RES-1991 and RES-2012 where 

ebullition, the largest steady CH4 fluxes, and the highest [CH4] in pore water were 

detected (Chapter 3). RES-2009, where relatively low CH4 production and emission 

were observed, will likely have lower free-phase gas content than other restored sites 

but will be comparable to that at the Natural peatland. Both Unrestored and Active sites 

will have the lowest content of free-phase gas. 

2) As the air and soil temperatures increase, the VGC will increase over the summer in 

Natural and restored sites. Since potential CH4 production rates were very low in the 

Unrestored site (Chapter 2) we do not expect such increase in seasonal VGC in 

Unrestored and Active sites.  

 

4.3. STUDY SITE 

 

The study site was located in Seba Beach horticulture peatland in central Alberta, Canada (53° 

33' N, 114° 44' W; Fig. A.1.1 and enlarged sites in Fig. A.1.2) and managed by Sun Gro 

Horticulture using the peat vacuum harvesting method. The complex consists of sites at various 

stages of peat extraction and post-extraction restoration. For our study, we chose a natural bog 

(Natural, Fig. A.1.3A) as a reference site, sites restored at different times: in 1991 (RES-1991; 

Fig. A.1.3B), in 2009 (RES-2009; Fig. A.1.3C), and in 2012 (RES-2012; Fig. A.1.3D), an 

unrestored (Unrestored, Fig. A.1.3E), and a currently extracted site (Active, Fig. A.1.3F).  

The Natural site was a treed bog with well-developed hummocks and hollows. The 

vegetation was dominated by Sphagnum, but true mosses were also present in hollows, Picea 



 

98 

 

mariana (Mill.) B.S.P. (black spruce), Rhododendron groenlandicum (Oeder) Kron & Judd 

(Labrador tea), Andromeda polifolia L. var. glaucophylla (Link) DC. (bog rosemary), 

Vaccinium vitis-idaea L. (lingonberry), Vaccinium oxycoccos L. (bog cranberry), Rubus 

chamaemorus L. (cloudberry), Maianthemum canadense Desf. (Canada mayflower). The depth 

of the peat deposit reached 500 – 540 cm at the study location with poorly decomposed and 

highly porous Sphagnum peat (Tab. 4.1).  

Peat in RES-1991 was 360 – 470 cm deep at the main study location where the CH4 

emission and molecular studies were conducted (Chapter 2 and 3) but the ground-penetrating 

radar (GPR) surveys were carried out in 2017 when much of the peatland was severely 

flooded, which made that part of the site inaccessible. Instead, we used access from a 

boardwalk installed in 2016 away from metal collars used for flux measurements, about 150 m 

east from the main study location where the peat deposit was 360 – 398 cm deep (see the map 

of RES-1991 in Fig. A.1.2). The moss-dominated locations were covered mainly with dense 

Sphagnum forming a partially floating mat where also Drosera spp. was found, while at sedge-

dominated locations, true mosses were present instead of Sphagnum. Sedges were dominated 

by Carex aquatilis Wahlenb. (water sedge) with other graminoids, e.g., Carex canescens L. 

(silvery sedge) and Scirpus cyperinus L. (Kunth) (wool grass), found in lower abundance. 

Occasionally shrubs (Betula spp. and Salix spp.) were present. Peat was poorly decomposed 

and highly porous (Tab. 4.1). The water table was constantly above the peat surface.  

The composition of graminoids at RES-2009 was similar to those at RES-1991. Both 

Sphagnum and true mosses were abundant at RES-2009, except for the spots where dense 

sedge tussocks and Salix spp. shrubs covered 100 % of the surface. Eriophorum vaginatum L. 

(cottongrass) was also found. Dense Typha spp. (cattail) was abundant in the west (wet) part of 

the site closer to the access road but our transects were not located in this zone. Peat at the 

GPR transect locations was 192 – 240 cm deep but was even shallower (< 150 cm) at other 

spots (Chapter 2).  

The thickness of moderately decomposed peat in RES-2012 (Tab. 4.1) at the GPR 

locations increased from 190 cm at the east part to 300 cm at the west part of the site. The 

vegetation was dominated by Eriophorum vaginatum (Fig. A.1.3D), Carex canescens and 

small amounts of Agrostis scabra Willd. (ticklegrass). Polytrichum spp. was the most abundant 
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moss, with Sphagnum constituting only a small fraction of moss cover. Dwarf Salix spp. and 

Betula spp. were the main shrubs found at the site.  

The Unrestored site was a small part of a post-extraction site where the peat deposit did 

not exceed 265 cm depth, and ditches were filled with peat. The surface was leveled in 2012, 

but for the purpose of research, no further restoration tasks were conducted. A part of the site 

became spontaneously colonized by Betula spp. and Carex canescens, but bare peat dominated 

at the site. The mean porosity of the first 1 m peat layer was 0.85, lower than at the currently 

extracted site (0.91; Tab. 4.1). Sedgy peat with compressed horizontally oriented debris was 

found below 60 – 70 cm depth underlaying well-decomposed Sphagnum peat.  

The surface of the Active site was entirely bare peat. The peat deposit was 190 – 220 

cm deep where our study was conducted. Down to 1 m depth, peat consisted of moderately 

decomposed Sphagnum, but an increase in porosity from 0.84 to 0.94 in the first 60 cm 

indicated peat compaction at the surface (Fig. 4.1, Tab. A.4.1).   

 

4.4. METHODS  

4.4.1. Ground-penetrating radar (GPR) 

 

The pulse EKKO ground penetrating radar with antenna 200 MHz was used to assess the 

subsurface volumetric gas content (VGC) in peatlands (Doolittle and Butnor, 2009, Slater and 

Comas, 2009). The choice of the antenna frequency is a compromise between penetration 

depth and resolution. Lower frequencies (e.g., 100 MHz) penetrate soil deeper but with lower 

resolution, while higher frequencies (e.g., 200 MHz) reach shallower depths at higher 

resolution (Cassidy, 2009, Parsekian et al., 2010). Peatlands in our study were relatively 

shallow; thus a better resolution was chosen for the GPR surveys. The vertical resolution is 

equal to ½ - 1 of the EM wavelength calculated as λ = V f-1 where V is the velocity of the EM 

wave and f is the antenna frequency (Møller and Vosgerau 2006). The velocity of 0.036 m ns-1 

frequently obtained for peat gives the vertical resolution of 0.09 – 0.18 m.  

During GPR surveys, an electromagnetic (EM) wave pulse is sent by the transmitter 

into the ground, where it propagates until it is reflected by underground reflectors (depths at 

which the dielectric permittivity changes) and returns to the peat surface where it is registered 
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by the receiver (Comas et al., 2008, Parsekian et al., 2010). Since the signal is attenuated in 

mineral soil, the depth of the peat deposit can be assessed using common offset (CO) with both 

the transmitter and receiver being moved along the transect in equal distance increments (e.g., 

every 5 – 10 cm) while the distance between them remains unchanged (Fig. 4.1). The depth of 

the peat deposit is then used in common-midpoint (CMP) image processing (Parsekian et al., 

2010). The CMP method (Fig. 4.1) gives a one-dimensional vertical velocity profile that 

enables volumetric water content (Ɵ) and VGC calculation from vertical variations in EM 

wave velocity (Lunt et al., 2005, Slater and Comas, 2009, Parsekian et al., 2010, Strack and 

Mierau, 2010). In this technique, the transmitter and receiver are placed parallel to each other 

at the middle of the transect (the common midpoint) and are subsequently moved apart in equal 

steps (5 – 10 cm) while the EM wave pulse is sent and received at each position. The GPR 

registers the time that it takes for the EM wave to travel from the transmitter to the reflector 

and then back to the receiver, hence two-way travel time in Fig. 4.1. The CMP approach can be 

used when subsurface dip angle is smaller than 15° (Neal, 2004). Peat layers oriented 

horizontally and parallel to each other, which was assessed in CO radargrams at the study sites 

(Fig. 4.1, Fig. A.4.1), meet this technical requirement for the CMP approach (Parsekian et al., 

2010). Each site was surveyed once a month along 2 – 6 transects at each site; only two 

transects were set up at RES-1991 due to severely flooded conditions that limited access with 

the GPR equipment and three transects at the Natural site due to dense vegetation and uneven 

terrain. The beginning and the end of each transect was marked in the field at the beginning of 

the season and remained there until the end of the August GPR survey to ensure data collection 

at the same transects each month. Altogether, 110 surveys were conducted (CMP and CO) in 

May – August 2017 and 10 rejected due to low quality radargrams. 

The ground-penetrating radar (GPR) is sensitive to changes in the dielectric properties 

of soil caused by changes in soil moisture content (Warner et al., 1990). Other factors (e.g., 

humification, bulk density) can also affect bulk dielectric properties (Doolittle and Butnor, 

2009), but change in soil water content is the strongest control that causes the signal 

attenuation (Parsekian et al., 2010). Dielectric permittivity is related to the propagation 

velocity of the EM wave in peat (Cassidy, 2009) according to V = c (Ɛr(b)
0.5)-1, where V is the 

EM wave velocity, c is the speed of the light in vacuum (0.3 m ns-1), and Ɛr(b) is the dielectric 

permittivity of bulk peat (Huisman et al., 2003).  



 

101 

 

We applied the complex refractive index model (CRIM) that has been previously used 

for VGC calculations in peatlands (e.g., Parsekian et al., 2010, Strack and Mierau, 2010, 

Comas et al., 2014, Mwakanyamale et al., submitted). It allows for calculation of the 

volumetric water content (Ɵ) from dielectric and volumetric properties of water, soil and air:  

Ɛr(b) 
α = Ɵ Ɛr(w) 

α + (1-ƞ) Ɛr(s) 
α + (ƞ-Ɵ) Ɛr(a) 

α 

where α accounts for the orientation of the electrical field and the arrangement of peat layers 

and depends on peat humification (0.35; Kellner and Lundin, 2001, Parsekian et al., 2012); 

Ɛr(s); Ɛr(w); Ɛr(a) are the dielectric permittivity of soil particles (2 for peat), water (80 at 21 °C, 

84.1 at 10 °C, and 86.1 at 4.1 °C), and air (1) respectively, and ƞ is porosity (Comas et al., 

2008, 2011, 2014). Since the temperature of peat at 75 cm depth was between 5 and 10 ˚C, we 

used Ɛr(w) = 86 (Malmberg and Maryott, 1956) for VGC calculations in the entire peat deposits 

as the temperature at greater depths was likely around 5 ˚C. The VGC was calculated from the 

difference between porosity and Ɵ (e.g., Strack and Mierau, 2010). Before CRIM was applied, 

interval velocities (the EM wave velocities for peat intervals between two reflectors) were 

calculated from the Dix relation (Parsekian et al., 2010; 2011 after Dix, 1955).  

 GPR images were processed in REFLEXW version 9.0 (Sandmeier, n.d. a). Static 

correction of start time was applied to correct the zero time to peat surface. Dewow filter was 

applied to eliminate low frequency component from GPR data. Due to attenuation and 

spherical electromagnetic wave spreading of the signal, the gain was applied to the dewowed 

data. We used Automatic Gain Control (AGC) to amplify the attenuated signal (Sandmeier, 

n.d. b). Semblance analysis was used to identify most likely true reflectors. The semblance 

output gives an assessment of EM velocities at the depths of these reflectors (Parsekian et al., 

2010). Based on the semblance analysis, the arrival time of the signal at the chosen reflectors 

was picked manually (Comas et al. 2007, Parsekian et al., 2010, Mwakanyamale et al., 

submitted). 

We calculated the VGC in the whole peat profiles from the surface down to the bottom 

of the peat deposit including the zone of potentially unsaturated peat (above the WT). The WT 

reflectors could not be identified due to noise from the air wave. Because of high spatial 

variability of the VGC and the reflector depths on different transects of the same 
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Figure 4. 1. Examples of ground-penetrating radar (GPR) common offset (CO) and common midpoint 

(CMP) radargrams. GPR survey was conducted at the Active site on June 19th, 2017. 
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peatland, fixed depth zones were established across all transects (0 – 25 cm, 25 – 50 cm, 50 – 

100 cm, 100 – 150 cm, 150 – 200 cm, 200 – 250 cm etc. down to the bottom of the peat 

deposit, as outlined in Fig. 4.4). Then, vertical weighted VGC was calculated for each depth 

zone within a transect. For example, if the first reflector was at 60 cm, the VGC above this 

reflector was used for depth zones 0 – 25 cm, and 25 – 50 cm, while the VGC for the 50 – 100 

cm depth zone was calculated as a weighted average of the VGC above the reflector (50 – 60 

cm) and below the reflector (60 – 100 cm). Finally, a mean for a given depth zone was 

calculated from the values obtained in this depth zone at each transect within the site and 

month. These monthly means were used to calculate the average VGC for each site over the 

whole season. The potentially unsaturated zone could increase the VGC down to the first 

reflector; thus, we also calculated the VGC for the fixed depth zones that were unaffected by 

unsaturated peat (see Fig. 4.4 for these zones marked with asterisk).  

 

4.4.2. Volumetric gas content change over time in restored peatlands 

 

CS616 (Campbell Scientific) water content reflectometer probes (referred to as CS probes 

hereafter) were installed at the end of May 2016 at depths 25 cm, 50 cm, and 75 cm at RES-

2012 and RES-1991, at both moss- and sedge-dominated parts of each site. The probes were 

positioned vertically with the depth of interest at the upper end of the metal rods in the probes 

(the position of the targeted depth at the probes are indicated with blue arrow in the top left 

picture in Fig. A.1.5). A cut ~ 10 cm wide was made in peat above the depth of insertion so 

that the probe could be installed. Care was taken to avoid disturbance to any peat layers that 

the probes were measuring. The probes registered variations in the time that it takes for an 

electromagnetic wave to travel the distance along the transmitter length, through the soil and 

back to the receiver and the period from the wave of the recorded signal is related to 

volumetric water content (Campbell Scientific Inc., 2012). The period was measured every 

hour along with soil temperature that was measured by adjacent thermocouple wires installed 

at corresponding depths. The period was corrected for the temperature following manufacturer 

calibrations (Campbell Scientific Inc., 2012, Mwakanyamale et al., submitted). The VGC was 

calculated by subtracting Ɵ from the porosity (Baird et al., 2004). We present the VGC change 

in relation to the first recorded measurement in May 17th (RES-2012) and May 25th (RES-
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1991), because the differences between values measured by different probes can result in the 

difference in Ɵ up to 1.5 % while the precision of the measurement is 0.1 % (Campbell 

Scientific Inc., 2012). Therefore, the change in the VGC over time in relation to the first 

measurement allows the evaluation of small changes of gas content, useful for exploring gas 

accumulation and release.  

 

4.4.3. Porosity  

 

Eleven peat cores were collected from 0 – 100 cm depth in 10 cm increments by cutting out 

shallow peat (0 – 50 cm) and using a Russian sampler for deeper layers of peat. If possible, a 

sample from below 100 cm was collected (Fig. 4.1, Tab. A.4.1). We cored the same depths that 

were analysed for microbial community and geochemistry (Chapter 2). At each site, except the 

Active site, two cores were collected targeting: hummocks and hollows at the Natural, bare and 

sedgy surface at the Unrestored, and mossy and sedgy locations at RES-1991, RES-2009 and 

RES-2012. Only one core was taken at the Active site (bare peat). Peat segments of known 

volume were dried in the oven at 70 ˚C until the mass of peat was constant (all moisture 

removed; Basiliko et al., 2007, Andersen et al., 2013a) to determine bulk density. Particle 

density was measured using the displacement of kerosene by a known mass of peat with 

kerosene used instead of water due to low particle density of peat relative to mineral soils. Bulk 

density and porosity of peat was calculated according to Hao et al. (2008) for each 10-cm peat 

increment. Humification of all collected peat samples was determined prior to drying, using the 

von Post scale (Government of Canada, 2013). 

The actual peat porosity at a given depth was used to calculate the VGC between 

reflectors down to 100 cm. For depths below 100 cm, porosity at 90 – 100 cm was used (Strack 

and Mierau, 2010). However, if porosity was available for 90 – 100 cm and then for a short 

segment from deeper in peat profile (e.g., 130 – 140), we applied the porosity at 90 – 100 cm 

down to 130 cm depth and then the porosity at 130 – 140 cm for the rest of the profile. If 

porosity was missing for the surface peat, the value from the depth immediately below was 

used. In cases of missing porosity for any depth intervals in the top 100 cm, the mean porosity 

was calculated from measured values immediately above and below that depth (all extrapolated 
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and mean values are highlighted in grey in Tab. A.4.1). Peat below the cored depths was 

difficult to obtain without squishing the samples, and especially challenging to obtain at sites 

where peat was compacted and/or contained large amounts of wooden debris. Even though the 

peat deposit in RES-1991 was relatively more accessible, we applied the same sampling plan 

as at other peatlands for consistency (down to 100 cm depth and then the deepest possible 

sample, which was at 340 – 350 cm). If peat below the sampling depths was in real life more 

porous than the applied value, the VGC presented here would be underestimated and if less 

porous, the VGC would be overestimated. The mean porosity in Tab. 4.1 was calculated only 

from values obtained from the field, excluding values for depths where porosity was 

extrapolated. All values used in calculations are given in Tab. A.4.1. 

 

4.4.4. Environmental conditions 

 

The water table (WT) was measured manually in water wells close to GPR transects at the time 

of GPR data collection and additionally by leveloggers (Solinst) installed at RES-1991 and 

RES-2012 in 2016 that recorded data hourly. The levelogger at RES-1991 sank and we were 

unable to retrieve the data. The atmospheric pressure was recorded in summer 2016 every hour 

at RES-2012 with a barologger (Solinst).  

  

4.5. RESULTS 

 

Peat in the Unrestored site was the most decomposed and had the lowest porosity compared to 

other sites (Tab. 4.1) with considerably low porosity at the peat surface (0.56, Tab. A.4.1, Fig. 

4.2e). RES-2009, the Unrestored and Active sites had lower porosity in shallow peat than in 

the rest of the profiles (Fig. 4.2d, e, f) and the highest mean bulk density of all sites (0.06 – 

0.07 g cm-3, Tab. 4.1). The highest particle density was found at the restored sites (1.31 – 1.37 

g cm-3, Tab. 4.1). The highest porosity was in RES-1991 (0.96) and in the Natural site (0.95, 

Tab. 4.1).  

The WT was consistently deep in the Active site during the GPR surveys. At other 

sites, it decreased over the season with the lowest levels in July and August, except RES-1991 
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where the WT was always above the ground surface (Tab. 4.2). The soil temperature down to 

75 cm depth increased until mid-August and then decreased (Fig. 4.3E). Temperature 

fluctuation at 25 cm depth was more pronounced than at 50 and 75 cm. The change in the VGC 

at these depths followed the soil temperature fluctuations where increasing temperature was 

reflected in increasing VGC (Fig. 4.3A, B, and E). Several abrupt gas release (ebullition) 

events were identified based on the CS probe record at both RES-1991 and RES-2012 at the 

same time (black arrows in Fig. 4.3A that apply to all panels below the arrows). They 

corresponded to an atmospheric pressure decrease and a steep increase of the WT level (Fig. 

4.3C, D).  

The output of CS probes gave an estimate of a change in VGC (Fig. 4.3A, B). The 

highest increase in VGC, reaching up to 20 – 23 % at RES-2012 and RES-1991, respectively, 

was observed at 25 cm at moss-dominated locations. At other depths, both sedgy and mossy, 

the VGC increased up to 18 %. The highest VGC at 25 cm was observed at the end of July, 

while at greater depths it occurred around August 20th. While the general pattern of VGC 

change over time was similar at both sites, the estimated VGC varied between depths at each 

site (Fig. 4.3A, B). The highest VGC at RES-2012 was measured at 25 cm depth, was lower at 

50 cm and was the lowest at 75 cm. At all three depths, it was higher at sedgy than at mossy 

locations. At RES-1991, the VGC was the highest at 25 cm under moss and the lowest at 25 

cm under sedges. Also, higher VGC was found at 75 cm than at 25 cm at sedge microsites. Due 

to equipment malfunction, we were unable to record data from depths 50 cm and 75 cm at 

moss-dominated microsites. Since peat was saturated over the summer season at RES-1991 the 

VGC at 25 cm was not affected by atmospheric air. In contrast, WT did drop below 25 cm at 

RES-2012 (Fig. 4.3D). Thus, VGC at this depth could have been affected by atmospheric air 

and drops in VGC may be due to wetting up of the peat. The WT in wells close to the CS 

probes showed highly fluctuating WT dropping down below 25 cm for most of the summer at 

RES-2012, but rising above 25 cm and remaining above this level in the second half of August 

2016. 

 

 



 

107 

 

Table 4. 1. Mean (sd) and range of bulk density, porosity, and peat humification in Von Post scale: 1 – 

4 is fibric peat, 5 – 6 mesic peat, and 7 – 10 humic peat (Croft et al., 2001). Only values obtained from 

the field samples are considered, without extrapolated porosity values that were used for the VGC 

calculation when porosity at a depth was missing. Data were partially included in Chapter 2 of the 

thesis.  

 

 

Using the GPR surveys, we were able to investigate differences in the VGC across a wider 

range of sites and locations within each site, but at a much lower temporal resolution than CS 

probes (i.e., monthly). The highest VGC weighted over fixed depths zones within a peatland 

(depth zones shown in Fig. 4.4) and averaged over all months and transects was found in 

Unrestored (11.8 %) and in Natural (10.1 %) sites, was slightly lower in RES-2009 (9.9 %), 

RES-1991 (9.5 %), and Active (9.6 %), and the lowest in RES-2012 (7.2 %). Lack of the VGC 

data from RES-1991 in May likely caused an underestimation of the mean VGC in this site. 

When compared to only June – August means, the mean for RES-1991 showed the highest 

VGC of all restored sites, while RES-2012 the lowest (4.4 %). The Natural site had one of the 

highest VGC, but the mean calculated from June through August was 8.9 %, close to 9.5 % 

found in RES-1991, and 9.0 % in RES-2009. These means do include the peat zone above the 

WT (unsaturated zone) that can affect the VGC down to the first reflector (the depth zones 

potentially affected by the unsaturated zones are indicated in Fig. 4.4 with asterisk). The mean 

VGC calculated as above but excluding the potentially unsaturated surface zones were higher: 

14.4 % (Natural), 9.1 % (RES-2009), 7.8 % (RES-2012), 13.5 % (Unrestored) and 13.8 % 
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(Active). The WT at RES-1991 was always above the peat surface, and thus the estimated 

VGC in saturated conditions remained 9.5 %.  

The pattern of mean VGC fluctuation between months over the summer varied between 

sites but some common trends and potential for highly dynamic VGC at fixed peat depth 

intervals was observed (Tab. 4.3, Fig. 4.4). When the VGC in the entire peat profile was 

considered (including the potential influence of the unsaturated peat zone), in Natural, RES-

2009, and Active sites, the highest VGC was observed in May, decreased in June, and 

increased in July followed by another decrease in August. In RES-1991, the VGC increased 

consistently over the whole summer (data for May not available), with the highest 

 

Table 4. 2. Mean (sd) water table during GPR surveys at the Natural, Unrestored, Active, and three 

restored sites: RES-1991 – restored in 1991, RES-2009 – restored in 2009, RES-2012 –  restored in 

2012. No GPR was conducted in May at RES-1991. 
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Figure 4. 2. Change in peat porosity with depth. When standard error is given, the value is a mean from 

two peat samples.  
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Figure 4. 3. Subsurface free-phase gas content change over time in two restored peatlands: A) RES-

2012 and B) RES-1991 (restored in 2012 and 1991, respectively) at depths 25, 50, and 75 cm at mossy 

and sedgy locations in summer 2016. The gas content was calculated from the output of water content 

reflectometry probes in relation to the first recorded value in May 17th at RES-2012 and May 25th at 
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RES-1991; C) atmospheric pressure record with a barologger ; D) water table record with a levelogger 

at RES-2012; E) Soil temperature at RES-2012. Black arrows indicate VGC decrease events.  

 

 

 

Table 4. 3. Monthly mean (sd) volumetric gas content (VGC %) obtained from VGC weighted over 

fixed depth zones (the zones are outlined in Fig. 4.4) in the Natural, Unrestored, Active and three 

restored peatlands: RES-1991 – restored in 1991, RES-2009 – restored in 2009, RES-2012 – restored in 

2012. No GPR was conducted in May at RES-1991. In the column with potentially unsaturated zone 

excluded, when the WT was above –18 cm (within the minimum vertical resolution of GPR), we 

assumed that the impact of the unsaturated zone was negligible, hence the same values as when the 

unsaturated zone was included in calculations (RES-2009 in May and June, RES-2012 in June and 

August, and the Unrestored in June).  
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Figure 4. 4. Weighted mean volumetric gas content (VGC %) and the range of values (in the brackets) in Natural, Unrestored, Active and three restored 

sites: RES-1991 – restored in 1991, RES-2009 – restored in 2009, RES-2012 – restored in 2012. Data for May at the RES-1991 are missing due to 

extensive flooding at that site. Asterisk denotes the depth zones that were potentially affected by unsaturated peat (down to the first reflector). When the 

WT was above -18 cm (within the minimum vertical resolution of GPR at 200 MHz, we assumed that the impact of the unsaturated zone was negligible 

(RES-2009 in May and June, RES-2012 and in the Unrestored site in June) and this profiles do not have asterisk. The water table for the Active site in May 

was not available. Ground-penetrating radar (GPR) surveys were conducted in summer 2017. 
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values in August. The trend was opposite in RES-2012, with the VGC decreasing from May to 

only 3.6 % in August. The Unrestored site showed another unique pattern of VGC change 

between months with increase from May to June as opposed to a decrease observed at other 

sites. Then, in July and August, the VGC generally decreased.  

When the VGC in peat depth zones that could have been affected by the unsaturated 

zone were excluded, the pattern of free-phase gas accumulation over time was similar. This 

however, disappeared in the Active site (Tab. 4.3) where almost the entire profile was 

potentially affected by the unsaturated zone due to deep first reflector (Fig. 4.4). The first well-

defined reflectors in the semblance analysis and reflector pick-up were often found at greater 

depths than the WT, e.g., WT at -19 cm and the first reflector was at 270 cm depth in the 

Natural site in June, which means that a large part of the peat profile was not accounted for in 

these calculations. In many cases, the VGC calculated only for peat below the potential 

influence of the unsaturated zone was not representative for the whole peat profile.  

 We found high spatial variability of VGC between transects at the same site and with 

time within the same transect (Fig. 4.5). The variability of the VGC follows the spatial 

variability of reflectors between transects at a site, temporal changes in the water content and 

dynamic nature of the spatial distribution of water and gas in peat matrix (Fig. A.4.1). 

Sometimes an elevated mean weighted VGC at a certain depth was a result of high VGC in one 

transect only at this depth; e.g., 6.6 % at RES-2012 in August at 200 – 250 cm (Fig. 4.4) was 

driven by 15 % VGC at 165 – 250 cm in one transect while in other transects, the free-phase 

gas constituted only 2 – 5 % of the peat volume. Similarly, the weighted mean VGC > 20 % at 

200 – 300 cm in RES-1991 (Fig. 4.4) was determined by 35 % VGC in one of the transects at 

this depth, while in the other one the VGC was 10 – 11 %. A noticeably high VGC at the 

bottom of RES-2009 that persisted over the whole summer season, was caused by elevated 

VGC (14 – 31 %) in three transects in June (Fig. 4.5 shows two transects T3 and T5), rather 

evenly distributed free-phase gas in July (except one transect that always showed low VGC) 

and again elevated VGC only in one transect (24 %) in August. The VGC in the Active site 

below 100 cm depth in June was also not spatially consistent; 15 – 19 % VGC was found at 

these depths in two transects out of six. However, the mean VGC > 20 % in the Natural site in 

July was determined by consistently high VGC in all transects at these depths (Fig. 4.5 shows 
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two transects T1 and T2). Also, the mean weighted VGC at the bottom of the peat sediment in 

the Unrestored site in June and July was rather consistent spatially. Only two transects in July 

showed > 5 % of gas, which was considerably lower than in other transects at this depth (15 – 

20 %).   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 5. Examples of the volumetric gas content (VGC) depth profiles at two chosen transects from 

summer 2017 ground-penetrating radar (GPR) surveys at the Natural site and the site restored in 2009 

(RES-2009). The graphs show spatial variability of the VGC between transects surveyed the same day. 

T1, T2, T3, and T5 are transect numbers at these sites.  

 

4.6. DISCUSSION 

4.6.1. Subsurface free-phase gas content in peat 

 

The VGC in the studied peatlands was comparable to the ones reported in previous research on 

the VGC in natural peatlands (up to 20 %, e.g., Rosenberry et al., 2003, Comas et al., 2007, 

2008, 2011, Strack and Mierau, 2010, Parsekian et al., 2010, 2011, 2012, Comas et al., 2014). 
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The VGC > 20 % in deep peat at the Natural and restored sites was similar to the VGC of 24 % 

previously reported by Parsekian et al. (2010) at similar depths. The average VGC in our study 

was very similar to the ones obtained by Mwakanyamale et al. (submitted), where authors 

measured VGC at the Seba Beach complex in 2014 (three years prior to our research), and 

obtained values of 7 % VGC at RES-2012 and 13.4 % at the Unrestored site, including the 

unsaturated zone. Considering high horizontal and vertical variability of the VGC in peat at 

Seba Beach sites, and reported elsewhere (Comas et al., 2005, 2014), the differences between 

sites, although present, are relatively small and would likely vary if the transects were chosen 

at other locations within the sites.  

The VGC calculated including, and separate calculations that excluded the zones of 

potential influence of unsaturated peat, are presented in this research to clarify that atmospheric 

air could potentially change the VGC down to the first reflector. However, when the first 

reflector is considerably deeper than the WT, the calculations excluding peat between the 

surface and the first reflector can be not representative for the peatland. Thus, here we discuss 

the VGC that accounts for the entire peat profile, including the potentially unsaturated zone. 

The WT gives only an estimate of a depth where the atmospheric air does not disturb the 

biogenic gas content, but the capillary fringe that keeps peat partially saturated above the WT 

also sets up the boundaries between saturated and unsaturated zone (Niedermeier and 

Robinson, 2007). Additionally, highly fluctuating WT that is characteristic for disturbed 

peatland ecosystems (Price, 1996), can trap atmospheric air and cause an overestimation of the 

biogenic gas content in subsurface peat (Baird et al., 2004). 

The VGC in Seba Beach peatlands seemed to be independent of the post-extraction 

management (i.e., large amounts of gas in the Unrestored and restored sites, and the increase in 

the VGC in the Active and restored sites except RES-2012). Despite a clear increase of mean 

VGC calculated for June – August from RES-2012 through RES-2009 to RES-1991 (4.4 %, 

9.0 %, and 9.5 %, respectively), there was no clear evidence of the VGC recovery progress 

with time post-restoration due to many possible factors governing free-phase gas accumulation. 

Important factors include CH4 production (Chapter 2) that clearly occurred in the Active site 

even during extraction, hydrology, peat structure that promotes either gas trapping or release, 

vegetation cover that also affects peat structure (e.g., Kellner et al., 2005), the amount of 

emitted CH4 (Chapter 3), and the amount of CH4 that becomes oxidized (Sundh et al., 1995). 
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Overall, none of these components alone would be a good predictor of the VGC and the VGC 

alone would not be a good predictor of CH4 balance recovery progress; however, the age of 

restoration could have contributed to the VGC in these sites by providing time for gas to 

accumulate post-restoration. However, this was not observed. Additionally, high spatial 

variability in free-phase gas distribution in the peat deposit can overshadow the time post-

restoration by elevating the mean VGC at some depths and/or locations within a given site.  

The direct relationship between VGC and CH4 emission was not observed either, even 

though other research has shown the average VGC and CH4 flux synchronized in time (Comas 

et al., 2007). Sites RES-2009, Unrestored and Active with low CH4 emission and potential 

production rates (e.g., 0.2 µmol g-1 d-1 of CH4 produced and 0.2 mg m-2 d-1 of CH4 emitted at 

the Unrestored site; Chapter 2 and 3) accumulated considerable amounts of gas over time. A 

few CH4 production hot spots at RES-2009 (Chapter 2) could at least partially explain CH4 

accumulation. Although the presence of free-phase gas could be related to air entry in the 

unsaturated zone, large volumes of gas at depth were also frequently measured at all of these 

sites. The Natural site appeared to follow this pattern as well; high VGC was paired with 

moderate CH4 emission (mean 9 mg m-2 d-1; Chapter 3). In contrast, in RES-2012, where CH4 

emission was large (257 mg m-2 d-1 including ebullition), the subsurface VGC was low and 

decreased over summer as the flux increased (Chapter 3). Only at the oldest restored site, RES-

1991, both gas accumulation and CH4 emission (209 mg m-2 d-1; Chapter 3) were high, which 

was probably linked to high CH4 production and low oxidation rates in the waterlogged peat 

deposit. Methane fluxes, that are to date the main source of information about CH4 cycling in 

post-extracted peatlands, therefore appear to be not the best proxy for the subsurface VGC. 

Flooded restored sites like RES-1991 can show a different pattern of VGC accumulation in 

relation to CH4 emission than non-flooded sites. Thus, our first hypothesis based on 

proportional relation between CH4 emission and VGC was not supported.  

In spite of no clear relationship between the VGC and the CH4 emission, the latter was 

probably partially responsible for the VGC change with depth within the profile. The 

decreasing VGC toward the surface of the peat deposit in Seba Beach sites was likely due to 

CH4 emission from the shallower peat zones (Glaser et al., 2004, Coulthard et al., 2009) that 

created a CH4 concentration gradient stimulating the upward diffusion of CH4 from deeper peat 
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layers. The upward gas movement was also detected by Comas et al. (2011). However, it is not 

known whether ebullition is mainly sustained by a deep or shallow pool of free-phase gas 

(Parsekian et al., 2011, Comas et al., 2014). Since the most intensive CH4 production occurs in 

shallow peat immediately under the WT due to the availability of substrate and anoxic 

conditions (Chapter 2, Chanton et al., 1995, Glaser et al., 2004, Couwenberg and Fritz, 2012, 

Bridgham et al., 2013, Klapstein et al., 2014), high VGC in deep peat in Seba Beach sites was 

likely derived from low CH4 production rates over a longer period of time and/or free-phase 

gas lateral and upward movements. To raise the VGC from 0 % to 22 % in 1 m2 of a layer 269 

cm thick (i.e., the VGC in July at  271 – 540 cm shown in Fig. 4.5, transect 2 of the Natural 

site) from June 1st to August the 31st (92 days), assuming 50 % contribution of CH4 to the 

VGC, the daily CH4 production rate of 0.6 nmol CH4 g
-1 (dry peat) d-1 would be required to 

account for such an amount of gas to accumulate (197 g of CH4 in 2.69 m3 peat bulk). This rate 

is three orders of magnitude lower compared to that around the water table in shallow peat 

(Chapter 2). Since the residence time of CH4 in peat can be 28 – 120 days in the first 1 m depth 

(Strack and Waddington, 2008), this production rate could support the 22 % of VGC even if it 

was produced only in one season at steady rates. However, Comas et al. (2007) reported that 

the subsurface free-phase gas does not accumulate steadily and rapid changes in its 

accumulation can be detected in weekly measurements. Also, Charman et al. (1994) dated 

gaseous CH4 at depths < 150 cm at a natural peatland for 2,400 radiocarbon years which means 

that at least a part of free-phase gas can be thousands of years old in the Seba Beach sites. It is 

not known if the old pool of CH4 was released during the extraction or if some of it remained 

in the peat and new CH4 production being added to the pool of old CH4. Since VGC was often 

still high at depth at Active and Unrestored sites, there is no strong evidence that gas is lost 

throughout the profile during extraction. Further research, including radiocarbon dating of 

gaseous CH4 are recommended to better understand the processes that govern free-phase gas 

accumulation, its age, depth of origin, movement and release in post-extracted and restored 

peatlands.  

Likely, the peat structure was largely responsible for free-phase gas accumulation at 

these study sites. Kettridge and Binley (2011) assessed that the variation in peat porosity 

accounted for 65 % of trapping abilities of peat, and the spatial distribution of peat components 

for the remaining 35 %. Ramirez et al. (2016) reported that peat of low porosity can store free-
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phase gas for a longer period of time than peat of high porosity. This explains unexpectedly 

high amounts of free-phase gas in the Unrestored site and its accumulation over the summer in 

the Active site. The low peat porosity in these sites was likely caused by peat subsidence due to 

exploitation, drying, enhanced decomposition (peat oxidation), and highly fluctuating WT 

(e.g., Price, 1997, Waddington et al., 2015) and constituted a semi-confining layer trapping a 

slowly increasing volume of free-phase gas (Kellner et al., 2004, Strack et al., 2005, 2006a). 

Low porosity decreases the permeability of peat, saturated hydraulic conductivity, and lateral 

drainage and as such promotes gas accumulation (Kettridge et al., 2013, Waddington et al., 

2015). Similar mechanisms caused by already accumulated free-phase gas in highly porous 

sites (e.g., the Natural and RES-1991) would drive further gas accumulation. Low peat porosity 

of the surface peat at RES-2012 could act as a semi-confining layer for short-term 

accumulation of free-phase gas followed by abrupt and steady CH4 ebullition (Chapter 3). This 

could result from recurring discontinuous gas pockets or zones of high gas pressure (Kellner et 

al., 2004), with ebullition events hence resulting in low VGC at this site. We presume that peat 

structure and possible lateral gas movements at depths > 200 cm at RES-2009 were responsible 

for high VGC at these depths. A fairly continuous reflector was present at 200 cm depth, 

clearly visible in RES-2009 T4 transect radargrams where the peat deposit reached maximum 

depth of 240 cm for the site (Fig. A.4.1, transect T4). Additionally, dense sedge roots can 

enhance rhizospheric oxidation of CH4 (e.g., Watson et al., 1997, Popp et al., 2000) lowering 

CH4 flux at the surface, while the CH4 pool at greater depths could remain relatively large.  

 

4.6.2. Environmental conditions driving the VGC in peat 

 

The accumulation of CH4 over winter under the ice and snow (Slater and Comas, 2009) was 

reflected in high VGC in May. The ice was still thawing in May leaving patches of frozen peat 

that disappeared by June 6th releasing the accumulated free-phase gas (e.g., Tokida et al., 

2007b, Comas et al., 2008, Juottonen et al., 2008), observed as a declination in VGC, except 

for the Unrestored site. A subsequent increase in VGC in July was observed as the 

temperatures increased (Dunfield et al., 1993, Lai, 2009).  
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Similar free-phase gas response to atmospheric and hydraulic pressure changes that has 

been observed in natural peatlands (Fechner-Levy and Hemond, 1996, Rosenberry et al., 2003, 

Glaser et al., 2004, Strack et al., 2005, Tokida et al. 2005,  Tokida et al., 2007a, Comas et al., 

2008, Waddington et al., 2009a) was also recorded at our restored sites. Sudden VGC decline 

was associated with an atmospheric pressure drop and sharp increase in the WT after a longer 

period of WT drawdown. During these events, the WT dropped to almost -40 cm at RES-2012 

(Fig. 4.3D), below the depth of the CS probes installed at 25 cm depth. Likely, the VGC 

records at this depth were affected by the presence of atmospheric air. When the WT raised, 

the VGC dropped as a result of replacing air with water which could be falsely interpreted as 

ebullition. However, sudden VGC decrease was observed at the same time at flooded RES-

1991, where rising WT would shrink the gas bubbles or prevent their growth and increase their 

mobility in peat pores as peat expands with rehydration (Strack et al., 2006a). As bubbles 

move upwards, the low atmospheric pressure promotes their release from near surface peat 

(Comas et al., 2011). Also, with peat rewetting, its volume expands making the VGC appear 

lower than it is, which could contribute to the VGC decrease at sharp WT increase.  

 

4.7. CONCLUSIONS 

 

The processes of free-phase gas accumulation and release appear to be similar at restored and 

Natural peatlands. This peatland function can be recovered quickly post-restoration, but also 

can be sustained at the Unrestored and Active sites likely due to free-phase gas accumulation in 

compacted peat of low porosity. The age of restoration likely contributes to a complex network 

of factors that determine VGC accumulation, i.e., peat properties and hydrological conditions 

that govern subsurface water and free-phase gas movement, but no clear evidence was found 

that the time post-restoration was the main or only factor. The VGC was highly variable 

horizontally and vertically in peat deposits, but also varied greatly between months, and this 

could overshadow the effect of the restoration age. High amounts of free-phase gas (> 20 %) 

were often found at greater depths, but the place of origin, its age and movement directions are 

unknown, and further research is recommended to understand the free-phase gas dynamics at 

these depths. Methane emission does not always reflect the VGC and should not be used as a 

proxy for the VGC assessment in post-extracted peatlands, even though a proportional 
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relationship was found in previous research on natural bogs. Considerable free-phase gas 

accumulation in the Unrestored and Active peatlands indicated that the VGC alone does not 

determine the return of the CH4 dynamics in post-extraction peatlands. 
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CHAPTER 5: Conclusions 

 

 

5.1. SUMMARY OF RESULTS 

 

According to results obtained in my study, post-extraction peatland restoration stimulates the 

recovery of all elements of CH4 cycling from CH4 production to storage, oxidation and release. 

Despite generally low abundance of CH4-cycling microorganisms compared to the abundance 

of all Bacteria and Archaea, we observed significant differences in CH4 cycling between 

restored and unrestored sites. First, the abundance and diversity of CH4-cycling 

microorganisms was considerably higher in the oldest restored site than in other sites and the 

community was similar to that in the site restored in 2009. These sites were restored 25 and 7 

years prior to our research but shared similar vegetation (mostly vascular plants dominated by 

graminoids) and both were wet (the oldest restored site was often flooded), thus we attribute 

the microbial similarities between these sites to local environmental conditions rather than the 

age of restoration. Interestingly, the site restored in 2012 (the youngest restored site, with peat 

sampled at the drier part of the site), the Natural, Unrestored and Active sites had similar CH4-

cycling community, but these similarities did not translate directly to the methanogenic and 

methanotrophic activity. Potential rates of CH4 production and oxidation were measured only 

at three sites: Natural, Unrestored and RES-2009. The highest potential rates of CH4 

production and oxidation were found in the Natural site, but the rates of CH4 production at the 

Unrestored were close to zero, similar to the ones in RES-2009 with that difference that a few 

CH4 production hot spots were found at the restored site. These hot spots were likely driven by 

the presence of dense sedge roots and their exudates. We attributed this generally low rate of 

CH4 production in RES-2009 to high concentration of Fe3+ that could inhibit methanogenesis 

and was linked to a shallow peat deposit and underlaying clay rich in Fe3+. Highly fluctuating 

water table could promote upward movement of Fe3+ in the peat profile.  

 Study results also indicate that the occurrence and activity of methanogens and 

methanotrophs was largely driven by the oxic – anoxic boundary in peat that is roughly 

determined by the water table position. Thus stable hydrological conditions are essential for 

these microorganisms to thrive. However, methanotrophs appeared to be more ubiquitous than 
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methanogens. They were more evenly distributed in peat profiles, although their highest 

abundance was found close to the water table, but their activity did not vary below and above 

the water table. Also, the highest abundance of Alphaproteobacteria associated with 

undisturbed but harsh conditions of natural peatlands, was found in the Natural and the oldest 

restored sites, with Methylocystis moderately abundant in other sites as well. In contrast, 

methanogens preferred deeper peat where anoxic conditions were undisturbed. Their activity 

was significantly higher immediately below the water table than 10 – 20 cm above the water 

table. Methanotrophic activity appeared to be indifferent to physicochemical factors; however, 

the highest abundance of methanotrophs close to the water table coincided with high 

phosphate, propionate, and citrate concentrations. Methanogenesis was sensitive to the 

concentration of Fe3+, several short chain fatty acids and EC (the concentration of dissolved 

solids ionized in pore water). Also, the abundance of methanogens in deep peat coincided with 

a high concentration of formate. Indeed, the great majority of identified methanogens was 

hydrogenotrophic. Acetoclastic methanogens were present mainly in the oldest restored site.  

 We found that CH4 emission from flooded/wet and sedge-dominated locations at the 

restored sites (the oldest and the youngest) was two orders of magnitude higher than that at the 

Natural site. This included both high steady fluxes and abrupt ebullition that occurred only at 

these sites. Steady fluxes contributed the majority of CH4 emissions with ebullition accounting 

for only 6 – 7 %. Surprisingly low CH4 emissions and low CH4 concentration in pore water, 

which barely increased over the summer, were observed in the third restored site, RES-2009. 

This indicates that chemical conditions in restored sites can suppress not only CH4 production, 

but subsequently CH4 emission and the subsurface pool of dissolved CH4. Peat chemistry can 

also supersede the effect of hydrological conditions and vegetation on CH4 cycling. Despite the 

possibility of initially high CH4 emissions from restored sites, restoration is necessary as far as 

the recovery of CH4 cycling processes is considered. Without restoration, not only CH4 

production, as shown in Chapter 2, but also emissions remain close to zero, as observed at the 

Seba Beach Unrestored and Active sites. Also, the pool of CH4 dissolved in pore water at the 

Unrestored site did not recover and did not increase over the summer like in restored and 

Natural sites.  
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Methane production, emission, and the concertation in pore water appear to be linked to 

each other, but the subsurface free-phase gas content and its patterns over the summer do not 

always follow other components of CH4 cycling in post-extraction restored and unrestored 

peatlands. We observed almost as high volumetric gas content (VGC) in the Unrestored and 

Active sites as in the Natural and restored; however the mechanism of free-phase gas 

accumulation was likely driven by low porosity of compacted and mineralized peat in the 

Unrestored and Active sites. However, we do not know if some of the free-phase gas remained 

in peat in spite of extraction or if the entire gas volume observed was produced at low rates 

during extraction and post-extraction. Nevertheless, even slow production rates can add up to a 

measurable increase of the VGC, even in severely disturbed peatlands, thereby maintaining the 

free-phase gas storage.  

The VGC in Seba Beach sites proved to be highly dynamic with high spatial (vertical 

and horizontal) and temporal variability. The most pronounced changes in VGC were observed 

in shallow peat following changes in atmospheric pressure and fluctuating water table. High 

VGC was often found in deep peat layers. Its high values in May suggested free-phase gas 

accumulation in wintertime and CH4 production occurring under ice and snow in all sites; 

however, the free-phase gas release observed as a decrease in VGC in June compared to May 

did not occur in the Unrestored site likely due to peat structure acting as a semi-confining layer 

that trapped the gas in the peat.  

Overall, CH4 fluxes, often used to assess the recovery of CH4 cycling mechanisms in 

restored sites, cannot predict the subsurface pool of free-phase gas. In fact, in some peatlands, 

like in RES-2012, high CH4 emission can be coupled to low VGC indicating that the majority 

of CH4 is emitted and not stored. Also, given high VGC in the Unrestored and Active sites, I 

advise that the VGC alone should not be used as a proxy for CH4 cycling recovery post-

extraction but rather considered together with other components of CH4 cycling. 

 

5.2. SIGNIFICANCE OF THE RESEARCH 

 

My research is the first to show how peatland extraction and further management (either lack 

of restoration or restoration) changes all major components of CH4 cycling in Canadian peat 
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extraction sites: production, oxidation, storage, and emission. It contributes to overall 

understanding of the role of peatland restoration in returning ecosystem function and ultimately 

leads to a conclusion that peatland restoration is necessary to re-establish mechanisms of CH4 

cycling as a part of returning the carbon balance in disturbed peatlands. It also provides more 

detailed information for the industry regarding the improvement of processes associated with 

peatland restoration. My study is an encouragement for researchers to merge different 

disciplines and methodologies to answer complex research questions in the field of 

environmental management. Presented research can potentially contribute to more accurate 

assessment of CH4 emission from extracted and restored sites. It highlights the necessity of 

including other potential sources of CH4 emission from managed peatlands, e.g., ebullition 

post-restoration and potential release of free-phase gas in early stages of peatland extraction. 

Our research can also serve as a baseline to similar studies on CH4 cycling in peatlands 

disturbed by other forms of management, e.g., peatland drying for agriculture and disturbance 

caused by the mining industry.  

 

5.3. RECOMMENDATION FOR FUTURE RESEARCH  

 

With rapidly developing  molecular methodologies and increasing availability of 

metagenomics and metatranscriptomics, future functional analyses of microbial genomes from 

post-extraction restored and unrestored sites are highly recommended to identify the processes 

and interactions between the microorganisms that could affect the abundance, diversity, and 

activity of CH4-cycling microorganisms. Since the presence and activity of microorganisms 

depend on peat chemistry (e.g., the presence of potential terminal electron acceptors and other 

compounds that can inhibit or stimulate methanogenesis) and environmental conditions (e.g., 

peatland hydrology, the quality of carbon substrate and the presence of vascular plants 

supplying root exudates, temperature, and pH), I recognize the importance of conducting 

microbiological studies in parallel to chemical analyses to enable linking the presence and 

function of microbes to the local conditions prevailing in disturbed peatlands.  

Molecular analyses are relatively demanding in terms of methodology, cost, and effort 

and can be too complicated and time-consuming for the industry to implement in their regular 
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post-restoration peatland monitoring; thus, the recommended studies would have more of an 

academic implication and, connected to other elements of CH4 cycling, could potentially 

support decision making about peatland management.  

Also, future long-term research that would track changes in CH4 cycling post-

restoration occurring at the same site over time would help eliminate the local site-specific 

conditions and focus on the progress of CH4 cycling processes’ recovery. I recommend close 

geochemical monitoring of shallow restored peatlands, since considerable concentrations of 

ions can occur in these sites, depending on the water table fluctuation and the chemistry of the 

mineral soil underlaying the peat deposit. If these ions are potential TEAs, they can possibly 

inhibit methanogenesis.  

I also acknowledge the need for diurnal and wintertime measurements of CH4 emission 

at both undisturbed and disturbed peatlands. Methane emission is often measured over the 

growing season and then extrapolated to the entire year assuming certain contribution of winter 

fluxes to the annual CH4 emission, but this contribution is highly variable in natural peatlands 

(e.g., Melloh and Crill, 1996, Pelletier et al., 2007, Saarnio et al., 2007) and is unknown in 

post-extracted and restored sites. Also, the daily CH4 fluxes are often extrapolated to diurnal 

fluxes, but higher night emissions (both steady flux and ebullition) have been observed in 

northern peatlands (Waddington et al., 1996, Glaser et al., 2004, Gogo et al., 2011, Goodrich 

et al., 2011). More studies on night and wintertime fluxes at post-extracted sites could improve 

the assessment of the annual CH4 emission, most importantly from restored sites that can emit 

more CH4 than natural peatlands.   

I strongly recommend a series of GPR surveys prior to peat extraction and then 

immediately after water table lowering and removal of the vegetation to assess how much gas 

has been released to the atmosphere either as CH4 or CO2. Later surveys to assess the emission 

can be challenging to interpret since my study showed that the free-phase gas content can 

quickly increase even due to peat compaction. The assessed emission should be included in 

national reports on greenhouse gas emissions from peat extraction. Given results from my 

study and the previous study of Mwakanyamale et al. (submitted) that both unrestored and 

restored peatlands can accumulate considerable amounts of free-phase gas over a short period 

of several years, and high VGC is often present in deep peat, future studies on the age of the 
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residing gas with respect to depth, including temporal variability in the percentage of gas of 

different age, combined with hydrological studies would greatly contribute to our 

understanding of free-phase gas storage and dynamics in post-extraction peatlands.  
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Appendix 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A. 1.  1. Location of the Seba Beach horticulture peatland complex. RES-1991 – site restored in 

1991, RES-2009 – site restored in 2009, RES-2012 – site restored in 2012. Sources: Esri, DigitalGlobe, 

GeoEye, i-cubed, USDA FSA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS 

User Community. Source of Alberta map: 

https://en.m.wikipedia.org/wiki/File:Canada_Alberta_location_map_2.svg 
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Figure A. 1.  2. Study sites at Seba Beach peatland complex. RES-1991 – site restored in 1991, RES-

2009 – site restored in 2009, RES-2012 – site restored in 2012. Source: Parkland, Parkland County, 

Digital Globe, Geo-Eye, CNES/Airbus DS. Blue frames indicate the location of the study. 
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Figure A. 1. 2. [Continuation]. Water wells were installed adjacent to collars. The legend is available at 

the end of Fig. A.1.2. (page 159). 
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Figure A. 1. 2. [Continuation]. Water wells were installed adjacent to collars. The legend is available at 

the end of Fig. A.1.2. (page 159). 
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Fig. A. 1. 2. [Continuation]. Water wells were installed adjacent to collars. No permanent installation 

was allowed at the Active site.  
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Figure A. 1.  3. Pictures of the study site in Seba Beach horticulture complex: the Natural site (A), 

restored in 1991 (RES-1991; B), restored in 2009 (RES-2009; C), restored in 2012 (RES-2012; D), 

Unrestored (E), and currently extracted site (Active; F). Pictures A and C were taken during the ground-

penetrating radar (GPR) surveys. Photo A, and C credit: Martin Brummell.  
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Figure A. 1.  4. A Campbell Scientific (CS) probe (left top picture) with a CS1000 logger (right top 

picture) and the installation setup at the site restored in 1991 (bottom picture). The blue arrow shows 

the position of the targeted depth (upper end of the metal rods).  
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Appendix 2 

 

Table A. 2. 1. Physicochemical properties of 63 peat samples with methanogenic and methanotrophic sequence count above the rarefication threshold. DOC 

– dissolved organic carbon (mg g-1), EC – electrical conductivity (µS cm-1), WT – water table (cm); short chain fatty acid ions (µg g-1 of dry peat): ACE – 

acetate, BUT – butyrate, CIT – citrate, FOR – formate, LAC – lactate, PYR – pyruvate, PRO – propionate, SUC – succinate; inorganic ions (µg g-1 of dry 

peat). 
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Table A. 2. 2. Physicochemical properties of peat samples collected for microcosm experiment. DOC – dissolved organic carbon (mg g-1), EC – electrical 

conductivity (µS cm-1), WT – water table (cm); short chain fatty acid ions (µg g-1 of dry peat): ACE – acetate, BUT – butyrate, CIT – citrate, FOR – 

formate, LAC – lactate, PYR – pyruvate, PRO – propionate, SUC – succinate; inorganic ions (µg g-1 of dry peat).  
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Table A. 2. 3. The absolute abundance of methanogens and methanotrophs in the 63 rarefied peat samples. See Tab. 2.3 for the codes. 
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Table A. 2. 4. Kruskal-Wallis one-way analysis of variance of physicochemical peat properties between 

sites (data from 2016). 
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Figure A. 2. 1. Physicochemical properties of peat from the Natural, Unrestored, Active, and  three 

restored sites in Seba Beach horticulture peatland complex. DOC – dissolved organic carbon, C:N – 

total carbon to nitrogen ratio, Von Post – peat decomposition index in Von Post scale, EC – electrical 

conductivity.  
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Figure A. 2. 1. [Continuation] 
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Figure A. 2. 1. [Continuation] 
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Figure A. 2. 1. [Continuation] 
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Figure A. 2. 1. [Continuation] 
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Figure A. 2. 2. Beta diversity visualization. A) Unweighted UniFrac (beta diversity) of methanogens, B) 

Unweighted UniFrac (beta diversity) of methanotrophs in the Natural, Active, Unrestored, and at three 

restored peatland sites.  
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Figure A. 2. 2. [Continuation] 
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Figure A. 2. 3. Potential CH4 production rates (MP) and potential CH4 oxidation rates (MO) in the 

Natural, restored in 2009 (RES-2009), and Unrestored sites. Letters A – C denote the depth of peat in 

relation to the water table (WT): A (0 – 10 cm below the WT), B (0 – 10 cm above the WT), C (10 – 20 

cm above the WT). M – mossy, S – sedgy, B – bare peat. 
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Figure A. 2. 4. Mean potential CH4 production rates (MP) and mean potential CH4 oxidation rates (MO) 

in the Natural, restored in 2009 (RES-2009), and Unrestored sites at depths 0 – 10 cm below the WT 

(A), 0 – 10 cm above the WT (B), and 20 – 30 cm above the WT (C). M – mossy, S – sedgy, B – bare 

peat.  
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Appendix 3 

 

Table A. 3. 1. Steady and ebullitive CH4 fluxes, CH4 concentration in pore water, and environmental 

factors measured at Seba Beach horticulture peatland complex. The table is deposited in: Bieniada, 

Aneta, 2019, "CH4 flux, [CH4] in pore water and environmental factors, Seba Beach peatlands", 

https://doi.org/10.5683/SP2/ZKNAUF, Scholars Portal Dataverse, DRAFT VERSION  

  

Table A. 3. 2. Monthly mean temperature and total precipitation (Tomahawk meteorological station, 

Government Canada, 2018) in summer 2016 and 2017 and long-term monthly means for summer 

months (Edmonton Stony Plain station, Government Canada, 2018).  

  

 

 

 

 

 

 

 

Table A. 3. 3. Range, mean, and standard deviation of gross ecosystem production (g m-2 d-1) during 

summer 2016 and 2017. RES-1991 – site restored in 1991, RES-2009 – site restored in 2009, RES-2012 

– site restored in 2012.  
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Table A. 3. 4. Mean and standard deviation of CH4 emitted through ebullition at RES-1991 and RES-

2012. RES-1991 – site restored in 1991, RES-2012 – site restored in 2012. Collar #2 at RES-2012 was 

placed at flooded part of the peatland, while # 3 and 4 at moderately wet and # 5 at dry locations.  
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Appendix 4 

 

Table A. 4. 1. Peat porosity at 10-cm increments in the Natural, Unrestored, Active, and three restored 

sites: RES-1991 – site restored in 1991, RES-2009 – restored in 2009, RES-2012 – restored in 2012. 

Grey fields indicate depths at which porosity was missing and the values were extrapolated from 

neighboring depths when in the top peat layer or the bottom layers, otherwise calculated as mean from 

adjacent depths immediately above and below. Some values are mean of two samples collected at the 

same depth (indicated with standard error in Fig. 4.1). 
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Figure A. 4. 1. Common offset (CO) radargrams of transect T1, T3, and T4 at site RES-2009 in May, 

June, July, and August showing an example of spatial variability in peat stratification between transects, 

continuity of layers, and temporal variability depending on changing soil moisture. The depth of peat 

was calculated based on the average velocity obtained from common midpoint (CMP) surveys, hence 

individual depth scale on Depth (m) axis. High volumetric gas content (> 20 %) was observed below 2 

m depth. 
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Figure A. 4. 1. [Continuation]. August radargram is not available. 
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Figure A. 4. 1. [Continuation] 


