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Abstract

Discriminatively trained neural classifiers can be trusted only when the input data comes
from the training distribution (in-distribution). Therefore, detecting out-of-distribution
(OOD) samples is very important to avoid classification errors. In the context of OOD
detection for image classification, one of the recent approaches proposes training a clas-
sifier called “confident-classifier” by minimizing the standard cross-entropy loss on in-
distribution samples and minimizing the KL divergence between the predictive distribution
of OOD samples in the low-density “boundary” of in-distribution and the uniform distri-
bution (maximizing the entropy of the outputs). Thus, the samples could be detected as
OOD if they have low confidence or high entropy. In this work, we analyze this setting
both theoretically and experimentally. We also propose a novel algorithm to generate the
“boundary” OOD samples to train a classifier with an explicit “reject” class for OOD sam-
ples. We show that this approach is effective in reducing high-confident miss-predictions on
OOD samples while maintaining the test-error and high-confidence on the in-distribution
samples compared to standard training. We compare our approach against several recent
classifier-based OOD detectors including the confident-classifiers on MNIST and Fashion-
MNIST datasets. Overall the proposed approach consistently performs better than others
across most of the experiments.
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Chapter 1

Introduction

Discriminatively trained deep neural networks have achieved state-of-the-art results in
many classification tasks such as speech recognition, image classification, and object de-
tection. This has resulted in deployment of these models in real life applications where
safety is paramount (e.g., autonomous driving). However, recent progress has shown that
deep neural network (DNN) classifiers make overconfident predictions even when the input
does not belong to any of the known classes [32]. This follows from the design of DNN
classifiers that are optimized over in-distribution data without the knowledge of OOD data.
The resulting decision boundaries are typically “unbounded/open” as shown in Figure 1.1a
resulting in over-generalization [10, 38].

Formally, from a statistical standpoint, we can formulate the problem of detecting the
out-of-distribution samples as follows. We assume that the training samples are generated
by an underlying distribution, which is modeled either as P, (z,y) or P;,(z), where the
random variables, z € X and y € Y = {1, ..., K} denote the input and label respectively.
We then classify the samples with sufficiently low probability (relative to the in-distribution
data) as belonging to the out-of-distribution. In our proposed approach, we model this
problem as a classification problem and aim to assign a label of 1 for in-distribution data
and 0 otherwise.

There have been many approaches proposed to address this problem. Lee et al. [25] pro-
pose to explicitly train a classifier using the OOD samples generated by a modified-GAN
[11] (trained with a different objective explained in Section. 3.1). They empirically try
to show that, for effective OOD detection, the generated OOD samples should follow and
be close to the low-density boundaries of in-distribution, and the proposed GAN training
indeed tries to do that. A multi-class softmax DNN classifier is trained with in-distribution



samples to minimize the standard cross-entropy loss (minimizing the output entropy) and
the generated OOD samples are trained with a KL loss that forces the classifier’s predictive
distribution to follow a uniform one (maximizing the output entropy). The resulting clas-
sifier is called a “confident-classifier”. One can then classify a sample as being in or out-of
distribution based on the maximum prediction probability or the entropy of the output.
Sricharan and Srivastava [11] also follow a similar approach with slight modifications.

47=digit 2!

Figure 1.1: Figure shows how the decision boundaries would change and become more
bounded when a typical classifier is trained with an auxiliary (“reject”) class containing
OOD samples. (a) The unbounded decision boundaries of a typical 4-class classifier. Digit
9 is incorrectly classified as digit 2 with very high confidence. (b) A 5-class classifier trained
with OOD samples ‘x’ that are close to in-distribution and form the fifth (“reject”) class,
resulting in bounded decision boundaries. Digit 9 is correctly classified as belonging to the
“reject” (OOD) class.

Contribution. One of the key assumptions in Lee et al. [25] and Sricharan and Sri-
vastava [11] is that the effect of maximizing the entropy for OOD samples close to the
low-density boundaries of in-distribution might also propagate to samples that are far
away from in-distribution. This training is expected to result in “bounded/closed” regions
in input space with lower entropy over the in-distribution, and the rest of the region (cor-
responding to OOD), with higher entropy. The ideal decision boundary in such a scenario
would be as shown in Figure 1.1b. We find that even though such a solution exists, the
proposed training algorithm is unlikely to reach it. We justify this both theoretically and
experimentally for a ReLU network (network with ReLLU activation units) that was indeed
used in Lee et al. [25]. Assuming training with OOD samples close to the in-distribution
boundary, we find that having an explicit reject class for OOD samples results in a solu-
tion close to the one depicted in Figure 1.1b. Therefore we propose to use such a classifier



instead. We give intuitive arguments to justify the proposal. This forms the first key
contribution in this work.

Moreover, with toy experiments (refer to Section 5.2) on low-dimensional synthetic
data, we analyze if a GAN can indeed produce samples that can follow the low-density
boundaries of in-distribution. We find that, even though GANs produces samples close
to the low-density boundaries of in-distribution, it is unable to cover the whole boundary,
thus resulting in a sub-optimal OOD detector when trained on such samples. We therefore
propose a novel algorithm to generate “boundary” OOD samples using a manifold learning
network, (e.g., variational auto-encoder (VAE)) and show that the generated samples are
diverse and cover the in-distribution boundaries better than the method proposed in Lee
et al. [25]. The resulting classifier trained with those samples improves the OOD detection
results. This forms the second key contribution in this work.!

'Note that the content in this thesis is almost the same as 2 of our papers, Vernekar et al. [11]. and
Vernekar et al. [43].



Chapter 2

Related Work

There have been many approaches in the literature proposed to address the problem of
OOD detection in the context of image data. These methods can broadly be classified
into density estimation based (explicit or implicit estimation of Py, (X) or P;,(X,y), either
parametrically or non-parametrically), reconstruction based (e.g., using an auto-encoder or
PCA), distance based (e.g., clustering based), domain based (e.g. using SVMs), classifier
based (e.g., calibrated classifiers, explicit out-of-distribution training) approaches. Most of
the successful ones are either generative [34, 415, 35] or classifier-based approaches [18, 19, 9,

, 20, 30]. Generative approaches either explicitly or implicitly estimate the input density
or use reconstruction error as a criterion to decide if input belongs to OOD. Classifier-
based approaches, on the other hand, incorporate OOD detection as a part of the classifier
network. The approach proposed in this work belongs to the latter category. Therefore we
limit our related work discussion to only classifier-based approaches.

Typical discriminatively trained classifiers that model the conditional probability P(y|z)
without any additional constraints, by definition, can make reliable classification decisions
only on in-distribution data. For out-of-distribution data, the classifier output is arbitrary.
Moreover, any meta information from the output of the classifier (e.g., prediction entropy)
or the features learned are discriminating in nature and are sufficient to predict y given =,
but are not sufficient to characterize x itself. For instance, in cow vs. cat classification, the
classifier can learn to extract only the eyes feature for classification, as these are enough to
classify the training data. Given a test animal that has eyes similar to a cat but otherwise
is totally different from either of the classes (OOD), the classifier would incorrectly classify
it as a cat with high confidence. Therefore if a separate density model is built over the
features learned by the classifier, it would still assign a high density to the test sample.
Therefore the meta information in-principle cannot be used to ascertain if the input is in or
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out of distribution. However, most of the recent approaches [18, 26, 27, 9] in the literature
follow this approach.

Hendrycks and Gimpel [18] propose a baseline approach to detect OOD inputs, called
max-softmax by thresholding the maximum softmax output of a pre-trained classifier.
Liang et al. (ODIN [27]) improve upon this using temperature scaling [16] and adding
input perturbations. The assumptions is that these changes result in larger separation
between in and out of distribution data in terms of their output predictions.

Lee et al. [26] propose an approach based on the assumption that the class-conditional
features of a softmax classifier follow Gaussian distributions. Mahalanobis distance (MD)
from the mean of the Gaussians is used as one of the measures to detect OOD. This is then
combined with input perturbations similar to ODIN to enhance the OOD detection results.
This method obtains state-of-the-art results on most of the baseline datasets used in OOD
detection literature. Despite good results, the method can be seen as OOD detection on
feature space rather than pixel space, not conforming to the usual definition of OOD (By
definition, the in-distribution, p;,(x) is defined for z € X in pixel space, and hence OOD
is also defined in the same space). Hence the effectiveness of the method highly depends
on the features learned by the classifier. Moreover, there is no theoretical guarantee that
the training algorithm forces the features to follow a Gaussian distribution.

Kliger et al. [22] use an SSL-GAN [33] training approach where the discriminator of
the GAN is an K+1 class classifier and the K+1th class represents the out-of-distribution
class. The samples for the K+1th class are generated by the generator of the GAN.
The discriminator at the end of the training is used for OOD detection. However, they
propose this design as the optimal outlier detector for a given false positive rate. This
is because, during the process of training a GAN, the generator generates a mix of fake
(out-of-distribution) and true (in distribution) data; but the discriminator which is the
classifier is trained to mark everything generated by the generator as fake resulting in false
positives in the classifier.

Hendrycks et al. [19] propose to train a classifier with a confidence loss where OOD
data is sampled from a large natural dataset. Hein et al. [17] also follow a similar approach
using a confidence loss and uniformly generated random OOD samples from the input
space. In addition, they not only minimize the confidence at the generated OOD samples,
but also in the neighbourhood of those samples. However, because both these approaches
use the confidence-loss, they suffer from the problems explained in this work. Moreover,
such approaches are only feasible for input spaces where it is possible to represent the
support of OOD with finite samples (assuming uniform distribution over OOD space).
This is not possible when the input space is R?, whereas the method proposed in this work



is still applicable.

Geifman et al. [13] propose to use Bayesian prediction uncertainties given by MC-
Dropout [1 1] for OOD detection. However, the uncertainty measure given by MC-Dropout
based Bayesian classifiers only characterizes the uncertainty in model prediction between
the known classes and ignores the unknown class prediction uncertainty. Therefore such
methods are less effective for OOD detection.



Chapter 3

Background

3.1 Confident-Classifier

Lee et al. [25] propose a joint training of a GAN and a classifier based on the following
objective:

min max min Er,, .|~ 108 Po(y = §1)] + B, [KLU(W)| Po(y]))]

J/

-~

@ (b)
+Ep, () [log D(2)] + Epg @ [log(1 — D(x))] (3.1)
©

where P, (z) is the data distribution, Pg(z) is the generator distribution and 6 is
the classifier model parameter. (b)+(c) is the modified GAN loss and (a)+(b) is the
classifier loss ( is the classifier’s parameter) called the confidence loss. The discriminator
through the original GAN loss, (c¢) makes the generator produce samples in the high density
regions of in-distribution. The KL loss, (b), forces the generator to produce samples that
give uniform predictive distribution at the output of the classifier; which means that the
classifier is less confident about its prediction over these generated samples. It results in the
generator producing samples in the low-density region of in-distribution. If the classifier
model parameter 6 is set such that the classifier outputs uniform prediction for any OOD
sample, then the KL loss, (b), is 0 and it would encourage the generator to generate OOD
samples. However, if the sample is far away from in-distribution, the GAN loss (c¢) will

7



be high and hence it forces the generator to not generate samples far from in-distribution.
One can therefore expect that the combined loss, (b)+(c) can encourage the generator to
produce the samples in the low-density boundary of in-distribution. f is a hyper-parameter
that controls how close the OOD samples are to the in-distribution boundary. If 3 is 0,
then there is no effect of the classifier on GAN and hence GAN works as usual to produce
samples that look like in-distribution. As you increase 3, the GAN generated samples move
away from the high-density parts of in-distribution and at optimal 3, they tend to be in the
low-density boundary of in-distribution. For the classifier, the KL loss pushes the OOD
samples generated by GAN to produce a uniform predictive distribution, and therefore
have higher entropy. This enables one to detect OOD samples based on the entropy or the
confidence at the output of the classifier.

3.2 Variational Autoencoder

Variational auto-encoder [21] is a probabilistic auto-encoder that not only minimizes the
reconstruction error like the regular auto-encoder but also tries to enforce a prior over
the latent dimensions z by minimizing the distance between the aggregate approximate
posterior [29] (defined in Eq. 4.3) and the prior over the latent variables. VAE minimizes
the following evidence lower bound (ELBO):

Eopin () 108 0 ()] = Eunp ) [E:[l0g po (2] 2)] — KL(g(2[2)[po(2))]
+ B ) [KL(g6 (2]2) [ Po (2] 7))] :
> Egepin () [E:[logpe(z]2)] — KL(gs(2]2)[[pe(2))] (3:3)

where p;, () is the in-data distribution, py(z) is an arbitrary prior over the latent di-
mensions (we assume a multivariate Gaussian with zero mean and Identity covariance),
¢s(2z|z) (we assume a multivariate Gaussian) is the encoder network output, py(z|z) is the
reconstruction probability represented by the decoder network and py(z|z) is the true pos-
terior. 6 and ¢ are the parameters of encoder and decoder network respectively. g,(z|z) is
the approximate posterior as maximizing ELBO implicitly minimizes the distance between
the true posterior py(z|x) and g4(z|x).



Chapter 4

Reject Classifier

4.1 Why minimizing confidence loss is insufficient for
OOD detection

Let f : R — RE be the neural network function that maps input in R? to K output
classes (input to the softmax layer). Let fy : RY — R be the function that maps the input
to output for a specific class k € {1,2,3...K}. For a neural network with affine activations
(e.g., ReLU and Leaky ReLU), each fi is a continuous piece-wise affine function over a
finite set of polytopes, {Q1,Q2, - ,Q} such that R? = Ulj\il @i, as described in [7]. This
means that each f; is affine within each Q; (I € {1,2,3...M}). If the input space is R,
some of these polytopes stretch to infinity (grow without bounds). Let Q° = @, denote
these “infinity polytopes”. The choice of the neural network structure and the weights
define fi’s. Figure 4.1a illustrates these polytopes and f;’s for a simple 3-class ReLU
classifier, where the input space is R. In this example, there are 4 polytopes in which Q°
and Q7° stretch to infinity.

Hein et al. [17] mathematically show that a ReLU classifier (with softmax output)
produces arbitrarily high confidence predictions (approaching 1) far away from the training
data in almost all directions on an unbounded input space. This happens over ()7°’s. Their
results are summarized as follows.

For any x € R, there exists a 3 > 0 such that for all a; > 8}, cyx € Q5°. Let fi(x) =
(v}, z)+a be the piece-wise affine function for class k over Q. Let k* = arg maxy, (v, fiz).!

Note, k* = arg maxk<v§€, ) = arg maxy <U,lf, Biz), Yoy > 5. Also note, we define k* only for infinity



or 0 Qo Qr 0 Qo
(a) (b)

Figure 4.1: fi’s and @Q,’s for an example 3-class ReLU classifier where the input z € R.
Q3 and Q3° are infinity polytopes. (a) For sufficiently large (small) x, there is a unique
E*=1in QF (k* =1in Q). (b) For sufficiently large x, there are multiple £*’s in Q3°
(k* ={2,3}). For sufficiently small z, there is a unique k* = 3 in Q{°.

Then, as oy — o0, the confidence for input «o;x for class £* becomes arbitrarily high if k*
is unique. i.e,

efix (i)
a—00 Zl:l efiloz)

But if there are multiple k*’s, arbitrarily large confidence values cannot be obtained
far away from the in-distribution in the direction of x. For instance, as shown in Figure
4.1b?%, for QF°, k* = {2,3} and therefore arbitrarily high confidence predictions cannot be
achieved as oy — oo. Having multiple k£*’s for every );° is highly unlikely, given that we
are dealing with floating point numbers and also that it is not explicitly enforced during
training. Therefore, arbitrarily high confidence values far away from the in-distribution
are likely inevitable.

The above analysis is for the case where the input domain is unbounded (R¢). For
bounded domains (for example, [0, 1] for images), as pointed out in Hein et al. [17], since
we cannot let ay — 00, the above analysis cannot be directly applied to get arbitrary high
confidence values. However the above technique in principle can be applied to increase the
prediction confidence for samples far away from the in-distribution. Hein et al. [17] conduct
experiments to support the claim. The theoretical analysis of which can be done as follows.
Let Z9 represent the bounded input domain. Similar to the unbounded case, let Q9 denote
“infinity polytopes” that stretch till the bounds of the input domain Z¢. For any = € Z<,

polytopes. Intuitively k* is the class for which the dot product between the slope of f; and the input
vector x is the maximum.

2Note, for z € R, k* = argmaxy[slope of fx(cqz)] (= arg maxy[negative slope of fx(a;x)]) as a; — oo
(g = —00).
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there exists a 3 > 0 such that for all a; > £, ayxr € QF. Let fl(z) = (vi,z) + al be
the piece-wise affine function for class k over @Q;. Let k* = argmaxy(vl, Biz). Then, as o
increases, the confidence for input oz for class k* keeps increasing until the bounds of the
domain is reached if k* is unique. If fi«(Bx) > fi(Bix) Vk # k* (ignoring the effect of bias
term for simplicity), the confidence for input ayx for the class k* is very high. Therefore,
even for the case of bounded input space, one can obtain confidence predictions for OOD
samples high enough for it to be considered as in-distribution samples.

Derived Result. The higher the confidence of the output, the lower the entropy.
Hence a direct corollary of Hein et al.’s [17] result is that the entropy of the classifier out-
put for data far away from the in-distribution data in all directions would almost always
be arbitrarily low (approaching 0) like the in-distribution samples. This renders methods
that detect OOD samples based on the confidence or the entropy of the classifier outputs
ineffective. For the case of bounded input domain, as one can increase the prediction
confidence for OOD samples far from the in-distribution, the entropy of the classifier out-
put also decreases causing those OOD samples to be classified as in-distribution samples.
Therefore, the approaches in Lee et al. [25] and Sricharan and Srivastava [11] would be
ineffective.

4.2 Adding an explicit “reject” class

When OOD samples are generated close to the in-distribution and follow its low-density
boundaries as proposed in Lee et al. [25] and Sricharan and Srivastava [11], we recommend
adding an explicit reject class for OOD samples instead of minimizing the loss in Eq.
3.1(b). Let the resulting classifier be called the reject-classifier. By adding an explicit
reject class, our goal is to obtain a decision boundary close to the ideal decision boundary
shown in Figure 1.1b, where the decision boundary of a K+1 classifier divides the input
space into regions such that the in-distribution region is classified as one of the first K
classes and the rest of the region as the K+1th class, i.e., the reject class. The intuition on
how such a decision boundary can be obtained is as follows. The arbitrarily high confidence
predictions happen in polytopes that stretch to infinity (or stretch till the bounds of input
space in case of bounded input space). Each of the “infinity polytopes” has its own class
(or classes), k*(or k*’s) where high confidence predictions occur. If adding an explicit
“reject” class results in k* = reject-class for all the “infinity polytopes” (i.e there is only
one k*), the arbitrarily high confidence predictions would only happen at the reject class
for OOD samples far-off from training data. Therefore, these samples will be detected as
OOD. We argue that in reject-classifier training, since we explicitly maximize the prediction

11



confidence of K+1th-class for boundary OOD samples, we expect the same effect to persist
for OOD samples far from the in-distribution as well (i.e., &* = K + 1) resulting in close
to ideal decision boundaries depicted in Figure 1.1b. This claim is supported by our
experiments on a toy dataset (Figure 5.1) and the superior performance of the reject-
classifier over the confident-classifier on MNIST [24] and Fashion MNIST [1(] datasets
(Table. 5.1). Note that how close the resulting decision boundary of the reject-classifier is
to the ideal one depends on how well the OOD samples follow the in-distribution boundary.
We find that the method proposed in Lee et al. [25] to generate boundary OOD samples
is not diverse enough as evidenced by experiments in Section. 5.2. Therefore we propose a
novel approach for boundary OOD sample generation which is described in the next section
that results in better boundary OOD samples that cover the in-distribution boundary
quite effectively. This is evident from our experiments described in the experiment section
(Section. 5.2).

Lee et al. [25] indeed experiment with adding an explicit reject class instead of using
a confident-classifier, but the results are found to be worse. But this is because instead
of using the boundary OOD samples they use another natural image dataset called “seen
OOD” similar to Hendrycks et al. [19] to train the classifier. However for images, it is
difficult to represent the entire OOD space with a small number of samples and therefore,
such methods may not perform that well. Moreover as pointed out in both Lee et al. [25]
and Hendrycks et al. [19], as these “seen OOD” samples aren’t diverse, when used to
train a reject classifier, they can overfit to these training OOD samples. In contrast, we
use boundary OOD samples that can guide the decision boundary of the classifier to be
bounded around the in-distribution regions as depicted in Figure 1.1b.

Note that both the reject-classifier and the confident-classifier use boundary OOD sam-
ples for training. The confident-classifier tries to equalize f;’s for boundary OOD samples
(i.e., maximize the entropy of output predictions) and expect this to persist over OOD
samples far from the in-distribution as well (i.e., have multiple £*’s). The reject-classifier
on the other hand maximizes the prediction confidence of K+1th class for boundary OOD
samples and expects it to persists over OOD samples far from the in-distribution (i.e., have
a single k* at k = K + 1). In the unbounded case, for a confident-classifier, while it is
proven that one can almost always find arbitrarily high confidence regions far from the
in-distribution, for a reject classifier we can still expect those OOD samples to be classified
as belonging to the K+41th class. In the bounded case too as shown previously, one can
obtain decreasingly low entropy regions far from the in-distribution for the confident clas-
sifier whereas for the reject-classifier it is similar to the unbounded case. As evident from
the experimental results in Figure 5.1 we can indeed find OOD samples with low entropy
for the confident-classifiers without stretching to infinity, whereas for the reject-classifier,

12



all those OOD samples far away from the in-distribution are correctly classified as OOD.
The results in Table. 5.1 further reinforces the superiority of the reject-classifier over the
confident classifier.

4.3 QOut-of-distribution Sample Generation

The proposed approach leverages the following generic assumptions [5, 31, 36] that hold
true for a wide range of problems, primarily for image data, which is the data used to
validate our approach.

The manifold hypothesis states that the higher dimensional real-world data in the
input space is likely concentrated on a much lower-dimensional sub-manifold.

The multi-class manifold hypothesis states that, if data contains multiple classes,
different classes correspond to disjoint sub-manifolds separated by low-density regions in
the input space.

To fully cover the “boundary” of in-distribution, we identify two categories of OOD
samples that are to be generated. As shown in Figure 4.2, Type I) are the OOD samples
that are close but outside the in-distribution sub-manifolds; Type II) are the OOD samples
that are on the sub-manifolds but close to the “boundary” of the in-distribution.

4.3.1 OOD samples outside the data manifold

These samples are obtained by adding small perturbations to in-distribution samples that
are concentrated on the manifold. These perturbations should be added in directions such
that the resulting samples should fall outside the manifold. The directions locally normal
to the data-supporting manifold can be thought of as the directions that are less likely
to contain in-distribution samples and the tangent directions as the more likely ones.
Therefore we add perturbations in the normal directions to get OOD samples.

Deep generative models such as VAEs [21] and GANs [15] can model the data manifold
of observations x € X through corresponding latent variables z € Z via a mapping function
g:Z — X as x = g(z). With a choice of reasonably lower dimensional z and a flexible
generative function g, the model can efficiently represent the true data manifold. Following
the multi-class manifold hypothesis, we use a conditional generative model that is
conditioned over the class labels. For our experiments, we use a conditional variational

auto-encoder (CVAE).
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(a) Type I (b) Type II

Figure 4.2: Categories of OOD samples that we generate: (a) Type I (yellow), which in-
cludes samples that are close to the data but outside the in-distribution sub-manifolds, and
(b) Type II (black), which includes samples that lie on the in-distribution sub-manifolds
and trace the in-distribution boundary; in-distribution clusters are represented through
blue and red points.

Let h: X - Zand g : Z — X denote the encoder and decoder functions of CVAE,
respectively. The tangent space of the manifold at a point x € X is given by the column
space of the Jacobian®

J(z) = (4.1)

z=h(z)

Let N(x) denote the null-space of J* () (left null space of J(x)). Then the basis vectors
of N(x) span the normal bundle of the manifold at x. Let v(z) ~ N(z) be a randomly
sampled unit vector from N(z), then the perturbed sample is given by,

T =1x+ pu(z) (4.2)

where § € R is a hyper-parameter that controls how far the perturbed sample is from
the in-distribution point. In our experiments, we use a stochastic # that is uniformly

3While z is stochastic, we just use its mean estimate for generating OOD samples outside the manifold.
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Figure 4.3: Generated OOD samples using the proposed method; Type I OOD samples
typically modify the background pixels (normal components have the least variance), while
Type IT OOD samples modify the object pixels.

sampled from in the range [0.1,1.0]. As discussed before, for better OOD detection, the
boundary samples generated should be diverse; because the proposed approach generates
OOD samples by randomly perturbing every in-distribution training sample, the diversity
of the generated samples is ensured. This is visually apparent from the experimental results
on a 3D-dataset shown in section 5.2 of appendix. Figure 4.3 illustrates the perturbed
samples for MNIST and Fashion MNIST datasets. One can observe that the perturbations
added mostly modify the background pixels than the object pixels. This is because the
normal directions to the manifold mostly represent least variance components of the image.

4.3.2 0OOD samples on the data manifold

These are the samples that are in the low-density regions of the input space but close to
the in-distribution boundaries on the manifold.
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For a variational auto-encoder, the aggregate posterior ¢(z) [29] is given by,

4(z) = / 12| pin ()2 (4.3)

xT

where p;,(x) is the probability density function of in-distribution and ¢(z|z) is the
approximate posterior. Assuming a smooth decoder, the high-density regions in the aggre-
gate posterior can be thought of as corresponding to densely populated regions in the input
space, and the input space density would gradually decrease as we sample away from the
high-density regions in the aggregate posterior. Therefore the in-distribution boundary on
the manifold can be approximated by regions at a distance away from the high-density ar-
eas where the density dips below a certain threshold. For our experiments, we approximate
¢(z) with a uni-modal Gaussian distribution whose mean /i and covariance > are estimated
using the encoder mappings of in-distribution samples. We use Mahalanobis distance as
a criterion to determine the distance from the mean to sample and generate the required
OOD samples. Let r be the Mahalanobis distance from the mean of ¢(z) that encompasses
95% of the training data. The OOD samples are generated by decoding the uniformly
sampled samples from the latent space over the surface of a hyper-ellipsoid [37] defined by
Eq. 4.4, where i, and 3, are the mean and covariance estimates of q(z), respectively.

(z — ﬂz)Tiz_l(z —f1.) = r? (4.4)

It is fair to assume a uni-modal Gaussian distribution for ¢(z) as we fit a Gaussian per class
and also that we minimize the KL-divergence between the ¢(z) and a Gaussian prior p(z).
Moreover, a substantial gain in the ODD detection results when the classifier is trained
with these samples can also be taken as evidence pointing towards the validity of such an
assumption.

The generated OOD samples described in Sections 4.3.1 and 4.3.2 are then used to
train an n + 1 class softmax classifier, where the n + 1** class represents the OOD class.
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Chapter 5

Experiments

Experiments' are divided into two sections; the first section explains the toy experiments
on a low-dimensional dataset to support our theoretical analysis of the confident-classifier,
the second section gives details of OOD detection experiments on MNIST and Fashion
MNIST using the proposed method.

5.1 Limitations of Confident-Classifiers

We consider two cases with respect to how OOD samples are generated. In these experi-
ments, the input space is R? and the in-distribution consists of two-classes. The samples
for each of these classes are generated by sampling from 2 Gaussians with identity covari-
ances and means (-10, 0) and (10, 0) respectively, on the Cartesian coordinates. Anything
outside 3 standard deviations (Mahalanobis distance) from the in-distribution means is
considered OOD. The architecture of the neural network used is similar to the one used
in Lee et al. [25], which is a ReLU-classifier with 2 fully-connected hidden layers with 500
neurons each.

Boundary OOD samples. Following the case in Lee et al. [25], for training, OOD
samples are generated close to the in-distribution as shown in Figure 5.1a. For testing,
OOD samples are uniformly sampled from a 2D box [—50, 50]? excluding the in-distribution
regions.

From Figure 5.1b, we observe that the ReLU-classifier trained to optimize confidence
loss results in highly confident predictions for many OOD samples far from the in-distribution

LCode: https://github.com/iclr2020-ai/ICLR2020
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Figure 5.1: Plots for boundary OOD samples experiments. (a) Training data in 2D. (b)
Maximum prediction output on test data for a confident-classifier. (c) Classification output
of a classifier with a “reject” class on test data (TC = true class, PC = predicted class).

data. This renders the classifier ineffective at classifying the in and out of distribution
samples based on the maximum prediction score (confidence) or the entropy of the out-
put. However, from Figure 5.1c, for a classifier trained with explicit reject class, the test
OOD samples are indeed classified as OOD. This supports the aforementioned intuitions
in Section 4.2.

Note that these are not results specific to a certain architecture of the neural network.
Experiments with different hyper-parameters such as the number of hidden neurons, chang-
ing input dimensions, using sigmoid activation functions instead of ReLLU lead to similar
results. We remark however that for sigmoid networks, the results were not as extreme (in
terms of the number of OOD samples with high-confidence) as for ReLU networks. This
is understandable because sigmoid activation outputs will not produce arbitrarily large
values, unlike the ReLLU counterparts.

General OOD samples. In this case, both train and test OOD samples are uniformly
sampled from a 2D box [—50, 50]? excluding the in-distribution regions. From Figure 5.2,
we observe that both confidence loss and reject class based classifiers are able to distinguish
in and out of distribution samples effectively. Therefore, there is no clear winner between
the two. However as mentioned previously, such approaches are only feasible for input
spaces where (approximately) representing the entire OOD region with a finite number of
samples is possible. This is definitely not possible for example when the input space is R
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Figure 5.2: Plots for general OOD samples experiments. (a) Training data in 2D. (b)
Maximum prediction output on test data for a confident-classifier. (c) Classification output
of a classifier with a “reject” class on test data.

5.2 Generating OOD samples using a GAN vs. Our
approach

Lee et al. [25] propose to generate OOD samples in the low-density regions of in-distribution
by optimizing a joint GAN-classifier loss, (3.1). With a toy experiment, they show that the
generator indeed produces such samples and also these samples follow the “boundary” of
the in-distribution data. However, in the experiment, they use a pre-trained classifier. The
classifier is pre-trained to optimize the confidence loss on in-distribution and OOD samples
sampled close to the in-distribution. Therefore the classifier already has the knowledge of
those OOD samples. When a GAN is then trained following the objective in (3.1), it
likely generates those OOD samples close to the in-distribution. But it is evident that this
setting is not realistic as one cannot have a fully informative prior knowledge of those OOD
samples if our objective is to generate them.

Therefore, we experiment by directly optimizing (3.1) where the classifier is not pre-
trained. The in-distribution data for the experiment is obtained by sampling over the
surface of a unit sphere from its diagonally opposite quadrants to form 2 classes respec-
tively as shown in Figure 5.3. We find that (with much hyper-parameter tuning), even
though a GAN ends up producing OOD samples close to the in-distribution, it does an
unsatisfactory job at producing samples that could follow the entire in-distribution bound-
ary. Moreover, there is less diversity in the generated samples which make them ineffective
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Figure 5.3: Generated OOD samples using a joint training of a GAN and a confident-
classifier. We observe that the generated OOD samples don’t cover the entire in-
distribution boundary.

at improving the classifier performance in OOD detection. Our intuition is that the loss
in Eq. (3.1(b)+3.1(c)) that forces the generator of the GAN to generate samples in the
high entropy regions of the classifier doesn’t necessarily enforce it to produce samples that
follow the entire in-distribution boundary. The inability of GANSs to generate such samples
for a simple 3D dataset indicates that it would be even more difficult in higher dimensions.

In comparison to the GAN based boundary OOD generation, our approach as visually
apparent from Figure 5.4 produces samples that cover the in-distribution boundary quite
effectively. While it is difficult to visualize how well the off-manifold OOD samples cover
the boundary, one can imagine them having a good coverage on the off-manifold boundary
as they are obtained by perturbing each training sample in the direction given by the null-
spaces. Hence the diversity of the OOD samples is ensured. For on-manifold boundary
OOD samples, as evident from Figure 5.4c, it forms a closed boundary around the in-
distribution points.
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Figure 5.4: Generated boundary OOD samples using our approach. (a) 3d plot of
in-distribution data with out-of-manifold boundary OOD samples. (b) 3d plot of in-
distribution data with on-manifold boundary OOD samples. (c¢) 2d projection of in-
distribution data with on-manifold boundary samples to show that they cover the in-
distribution boundary on the manifold.

5.3 MNIST and Fashion MNIST experiments

We validated our approach on MNIST and Fashion MNIST as in-distribution datasets
and several other OOD datasets. For all MNIST as in-distribution experiments, we use a
CVAE with a latent dimension of 8, and for Fashion MNIST, the latent dimension is set
to 10. We compare our approach against the recent classifier-based OOD detectors such
as confident-classifier, ODIN and Mahalanobis distance-based approach without feature
ensemble (MD), methods based on softmax-score 18], uncertainty of the classier obtained
via MC-dropout [13], and mutual information between predictions and model posterior
[12]. The architecture for both CVAE and the classifier used are shown in the appendix.
Both the networks are trained till convergence.

5.3.1 OOD Datasets

MNIST is used as an OOD dataset for Fashion MNIST as in-distribution, and vice-versa.
For MNIST 0-4 experiment, we use images in class 0 through 4 as in-distribution and class
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5 through 9 as OOD and similarly for Fashion MNIST 0-4 experiments. The other datasets
used as OOD for all our experiments, including the synthetic ones, are listed below.

Omniglot [23] contains different handwritten characters from 50 different alphabets.
The images are downsampled to 28 x 28.

EMNIST-letters [(] contains hand-written English alphabets. This is one of the chal-
lenging datasets for MNIST as in-distribution experiments given its similarity of MNIST
as both are hand-written characters. Therefore, most of the OOD detection approaches
tend to perform worse on this compared to other OOD datasets.

NotMNIST [1] is similar to MNIST, except that it contains synthetic images of char-
acters A through I of various fonts.

Gaussian noise includes gray-scale images, where each pixel is sampled from an in-
dependent normal distribution with 0.5 mean and unit-variance.

Uniform noise includes gray-scale images where each pixel is sampled from an inde-
pendent uniform distribution in the range [0, 1].

Sphere OOD contains data sampled from the surface of a 784 dimensional hyper-
sphere centered at the origin with a radius equal to the maximum Euclidean distance of
in-distribution samples from the origin and reshaped to 28 x 28. This is used to show the
effectiveness of our approach not only on the datasets that are restricted to a finite range
such as images in [0, 1]¢ but also for a general case of R<.

5.3.2 Evaluation metrics for OOD detection

We experimented with two different metrics as OOD score to determine if the given input
sample is in or out of distribution. OOD class probability is the n + 1" class prediction
probability. In-distribution max probability is the maximum prediction probabilities
of the in-distribution classes. A higher (lower) OOD class probability (in-distribution max
probability) indicates a higher probability of a sample being OOD. Except for MNIST 0-4
experiments, we find that the former metric gives the best results. We report only the best
score in Table 5.1. We use the area under the ROC curve (AUROCY), the area under the
precision-recall curve (AUPRYT), the false positive rate at 95% true positive rate (FPR95])
and the detection error as the metrics for evaluation. These metrics are commonly used
for evaluating OOD detection methods [25, 19]. The details of which are in the as follows.

FPR at 95% TPR is the probability of an OOD input being misclassified as in-
distribution when 95% of in-distribution samples are correctly classified as in-distribution
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(i.e, the true positive rate (TPR) is at 95%). True positive rate is calculated as, TPR =
TPTJF%, where TP and FN denote the true positives and false negatives, respectively. The
false positive rate (FPR) is computed as FPR = %, where FP and TN denote the
false positives and true negatives, respectively.

Detection error is the minimum mis-classification probability over all possible thresh-
olds over the OOD score. We assume that the test set contains equal number of in and
out of distribution samples.

AUROC is the area under the receiver operating characteristic curve, which is a thresh-
old independent metric. ROC curve is a plot of TPR versus FPR. AUROC can be inter-
preted as the probability that a positive example is assigned a higher detection score than
a negative example. For a perfect detector, AUROC is 100%.

AUPR is the Area under the Precision-Recall (PR) curve. PR curve is a plot of
precision (TP = (T'P + FP)) versus recall (T'P = (T P+ FN)). The metric AUPR-In and
AUPR-Out represent the area under the PR curve depending on if in or out of distribution
data are specified as positives, respectively.

5.3.3 Other OOD Detection Methods

In this section we describe in detail the other classifier-based OOD detection methods we
compared against and also describe their implementation details.

Max Softmax
Hendrycks and Gimpel [15] propose a baseline approach to detect OOD inputs, called max-

softmax by thresholding the maximum softmax output of a pre-trained classifier. The OOD
detection score is obtained as follows:

OOD Score =1— max }{p(yﬂx)} (5.1)

ie{1,....K

OOD detection score is thresholded to determine if the given input samples belongs to
in or out of distribution.
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MC-Dropout

MC-Dropout [11] for classification can be used to give a measure of uncertainty in the
prediction outputs. While these prediction uncertainties do not entirely capture the out-of-
distributionness of the input, it still gives satisfactory results. The OOD score is obtained
as follows.

If o; represents the variance of p(y;|z), then the OOD score is the mean of these variance
over all the classes, i.e.,

1
OOD Score = ?Efiﬁ%’ (5.2)

In our experiments, as the classifier used uses MC-Dropout, we average over 100 differ-
ent runs of the model for each input to obtain the OOD detection score.

ODIN

Liang et al. [27] propose to improve upon Max-Softmax by using temperature scaling and
input pre-processing on a pre-trained classifier.

Temperature Scaling. Let the logits of the neural network be represented by f =
(f1, .- fi), where K is the number of classes. Then the temperature scaled softmax output
of the neural network for class 7 € 1, ..., K is given by,

exp(fi(z)/T)
Sisiexp(f(x)/T)

Si(@;T) = (5.3)

where T' € R" is the temperature scaling hyper-parameter. For a given input z, the
prediction softmax probability is obtained as Sj(z;7T") = max; S;(2;T). The idea here is to
tune T such that the softmax score for in and out-of-distribution data is far apart on an
average.

Input pre-processing. The input x is perturbed before feeding it to the neural
network as follows:
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T =1 — esign(—V, log(Sy(x; T))) (5.4)

where € is the magnitude of perturbation. Note that unlike the adversarial perturbations
[20] that perturb to decrease the softmax score, the perturbation here is added to increase
the softmax score. The intuition is that the perturbation here has a stronger influence on
the softmax-score of in-distribution samples than the OOD samples and hence makes them
more separable.

OOD Score. To obtain the OOD score, the input z is perturbed according to Eq.
5.4 and then fed to the temperature scaled neural network. The max-softmax probability
score is used as the OOD score.

In our implementation, we set the temperature, 7" = 1000 as mentioned in the paper
and € is tuned for each OOD dataset in the range of 0.0 to 0.2.

Mahalanobis Distance Method

Lee et al. [26] propose an approach based on the assumption that the class-conditional
features of a softmax classifier follow a multivariate Gaussian distribution. Therefore, the
classifier can be thought of as a generative classifier. For the parameters of the generative
classifier, they assume a tied covariance Y for the class-conditional and a different mean
p. for each class, ¢ € {1, ..., K'}. The covariance and mean are empirically estimated from
the pre-trained classifier as follows:

1 1

fie = in:yi:cf(xi)a 5= Nzczi:yz:(:<f(xi) — fie) (f (2s) — fic)" (55)

Where N, is the number of training samples with label ¢. The Mahalanobis distance
score is then calculated as,

M () = masx — (f() — i) S (f () — i) (5.6)
The Mahalanobis distance score is then combined with input perturbations similar to

ODIN to obtain a unified OOD score. They also extend the Gaussian assumption to not
only the penultimate layer features, but also features in the other layers as well to obtain an
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ensemble version. However we skip the ensemble implementation as this requires training a
logistic regressor on top of the features with OOD dataset which in principle is not correct.
The hyper-parameter € is tuned with ranges similar to the ones used in ODIN for each
OOD dataset.

Mutual Information based OOD Detection

The intuition here is that the mutual information between the predictions and the model
posterior [12] is indicative of how uncertain the model is about its predictions. And this
uncertainty can be thought of as an indication of out-of-distributionness of the input sample
as discussed earlier. The higher the mutual information, the higher is the prediction
uncertainty. The mutual information, which is the OOD score in this case is calculated as
follows:

[[SL’] = H[y’&l, Dtmm] - Ep(w|Dtmm) [H[ylxv Dtmin] (57)

where H[y|z]| is the output entropy of the classifier and w is the model parameter.
For the expectation, as we did for MC-dropout case, we do an empirical average over the
predictions for 100 runs on input sample.

5.3.4 Experimental Architecture

The encoder and the decoder parts of the CVAE architecture, and the classifier used are
described in Figure 5.5a, 5.5b and 5.5¢ respectively. The latent dimension (d) is chosen per
dataset. For MNIST, d = 8 and for Fashion MNIST, d = 10. The number of features after
the convolutions in the encoder is represented by f. “cond x” is the one-hot representation
of class labels. k in the classifier architecture represents the number of classes in the training
data.

5.3.5 Detection Results

Table 5.1 and Table 5.2 compare our approach with other approaches for OOD detection
experiments on MNIST and Fashion MNIST as in-distribution datasets. Since the classifier
is trained with OOD samples, there is a possibility of reduction in the classification accu-
racy of in-distribution classes in comparison to training without OOD class. We therefore
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report classification accuracy of a classifier trained with and without OOD samples. We
find that there is no significant change in accuracy. Training our method requires tun-
ing hyper-parameter such as g from Eq. 4.2, OOD class weight, and learning rate. The
hyper-parameters were chosen based on the in-distribution classification accuracy and the
AUROC of the validation generated OOD samples and the random noise datasets. For
all our experiments we use a stochastic 5 uniformly sampled in the range [0.1, 1], OOD
class weight is set to 0.1, while the weights for the rest of the classes is set to 1.0, and
Adadelta [18] is the optimizer used with learning rates of 0.1 and 0.01 for Fashion-MNIST
and MNIST experiments, respectively. We do not tune the hyper parameters per OOD
dataset unlike ODIN and Mahalanobis distance-based approaches, where the perturbation
magnitude is tuned per OOD dataset. Even without this advantage, our method still
performs better than these baselines for most of the OOD datasets.

We would like to remark that our approach gives good OOD detection results consis-
tently on all the OOD datasets used unlike the baselines compared. This indicates that
our approach is robust to change in OOD datasets. For MNIST 0-4 vs. MNIST 5-9 and
Fashion MNIST 0-4 vs. Fashion MNIST 5-9 where in and out of distribution samples are
quite similar, and therefore harder to distinguish, the state-of-the-art methods such as
Mahalanobis distance based method [26] and ODIN ([27]) surprisingly perform a lot worse
than expected, while the reject-classifier out-performs them by a large margin (compare
FPR at 95% TPR values.)

5.3.6 Discussion on Computational Complexity

For generating OOD samples outside the manifold, we randomly sample from the left-null-
space of the Jacobian as described earlier. But the complexity of this step depends on
the number of basis vectors in the null-space and its dimensions. For the MNIST case,
with the input dimensions 28 x 28 and latent dimension of 8, the Jacobian computed at
a data point will have 8 vectors of dimension 784 (i.e., 28 x 28) tangent to the manifold.
Therefore, there are 776 (i.e., 784-8) basis vectors in the left-nullspace of the Jacobian,
each of dimension 784 that are perpendicular to the manifold. For colored images such
as CIFAR and Tinylmagenet, the number of basis vectors are almost 3 times of that for
gray-scaled images. To cover the in-distribution boundary effectively in all directions,
many OOD samples for each in-distribution training sample are to be generated by taking
random linear combinations of the basis vectors, which is quite expensive. This gives a
quantitative measure of effective OOD sample complexity. However, we find that only
a few OOD samples are sufficient to guide the decision boundary of the classifier to be
bounded around the in-distribution regions evidenced by their OOD detection results.
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Table 5.1: OOD detection results I

FPR at Detection AUPR AUPR
(accll]i flgi‘;dglo[) , 00D 95% TPR | Errorl, AUROCT Outt Int
acc after OOD) Reject-Classifier/Confident-Classifier/ODIN /MD
F-MNIST 0.0/7.9/0.4/94.2 0.2/5.6/1.8/11.9 100.0/98.5/99.8/86.6 100.0/98.8/99.8/92.0 100.0/98.4/99.8/74.0
EMNIST-letters  1.6/31.0/25.7/31.2  3.0/13.2/11.7/13.6  99.6/93.0/94.4/93.2 99.6/93.0/94.3/92.7 99.6/92.4/94.1/93.2
MNIST NotMNIST 0.0/26.5/11.3/34.8  0.0/12.3/6.9/16.3 100.0/94.0/97.8/91.7 100.0/93.9/100.0/91.7  100.0/93.8/97.7/92.3
(99.0/98.9) Omniglot 0.0/0.0/0.0/98.5 0.0/1.0/0.2/46.9 100.0/100.0/100.0/19.8 ~ 100.0/100.0/100.0/40.8  100.0/100.0/100.0/35.0
20798 Gaussian-Noise  0.0/0.0,/0.0/99.9 0.0/0.0/0.0/24.6 100.0/100.0/100.0/50.9  100.0/100.0/100.0/71.8  100.0/100.0/100.0/35.1
Uniform-Noise ~ 0.0/0.0/0.0/82.6 0.0/0.0/0.0/26.4 100.0/100.0/100.0/65.0  100.0/100.0/100.0/76.0  100.0/100.0/100.0/63.9
Sphere-OOD 0.0/21.6/0.0/80.4 0.1/6.6/1.4/14.9 100.0/96.8/99.8/87.6 100.0/97.8/99.9/91.7 100.0/95.2/99.8/79.9
MNIST 4.1/87.4/70.2/2.4 4.2/36.3/28.9/3.6 98.7/67.0/76.7/99.5 98.2/65.2/73.2/99.5 100.0/64.8/77.3/99.4
EMNIST-letters ~ 6.4/87.3/83.5/10.1  5.4/41.8/13.6/7.3 97.9/61.1/66.6/98.1 96.8/60.0/62.0/98.3 98.5/61.6/66.6/98.1
FMNIST NotMNIST 0.8/78.9/80.2/7.2 1.2/32.2/33.9/5.8 99.7/73.7/69.3/97.8 99.5/73.0/63.0/97.4 99.8/72.4/70.5/98.2
Omniglot 0.0/59.8/9.6/58.4 0.9/22.1/7.1/26.8 99.8/85.6/97.9/83.2 99.9/85.8/97.6/84.9 99.6/85.1/98.2/83.4

(91.9/91.2)

Gaussian-Noise
Uniform-Noise
Sphere-OOD

0.0/32.2/4.5/99.7
0.2/71.0/99.4/1.7
0.6/99.3/100.0/0.0

0.2/9.6/3.8/19.9
1.3/16.4/24.7/3.3
0.8/50.0/50.0/0.0

99.8/95.8/98.0/80.0
99.8/88.6/74.7/98.9
99.7/29.6/0.25/100.0

99.9/96.7/96.7/87.0
99.8/91.8/82.9/99.2
99.4/39.1/30.7/100.0

99.5/94.7/95.6/66.3
99.8/82.9/61.6/97.9
99.8/37.4/30.7/100.0

MNISTO-4
(99.8/99.6)

MNIST5-9
F-MNIST
EMNIST-letters
NotMNIST
Omniglot
Gaussian-Noise
Uniform-Noise

17.2/21.9/20.4/50.0
0.2/1.7/2.0/41.4
2.7/22.1/26.4/12.9
0.0/10.9/28.0/2.8
0.0/0.0/2.3/0.0
0.0/0.0/0.0/0.2
0.0/0.0/0.0/25.9

10.0/12.0/11.5/14.
1.6/3.1/3.4/15.1
3.8/12.4/13.9/7.6
0.1/7.7/13.3/3.1
0.0/0.1/3.6/0.4
0.0/0.0/0.1/2.4
0.0/0.0/0.4/5.1

4

95.1/92.9/93.4/92.3
99.8/99.4/99.4/92.5
99.2/92.9/92.3/96.9
100.0/97.5/93.5/99.3
100.0/100.0/99.1/100.0
100.0/100.0/100.0/97.5
100.0/100.0/99.9/95.9

94.0/92.1/91.3/93.8
99.8/99.5/99.4/93.3
99.3/92.0/90.4/96.6
100.0/97.5/92.7/99.2
100.0/100.0/99.3/100.0
100.0/100.0/100.0/98.6
100.0/100.0/99.9/97.6

94.9/93.6/94.2/90.1
99.7/99.3/99.3/91.9
99.1/93.6/93.2/97.1
100.0/97.6/93.7/99.4
100.0/100.0/98.8/100.0
100.0/100.0/99.7/92.2
100.0/100.0/99.6/89.4

Sphere-OOD 0.0/7.1/0.2/22.7 0.1/5.5/2.0/6.9 100.0/98.2/99.6/96.5 100.0/98.6/99.7/97.6 100.0/97.4/99.3/93.8
F-MNIST5-9 19.7/55.8/29.2/75.8  12.3/17.1/14.6/26.4  92.5/89.5/92.1/79.5 88.7/90.2/91.3/79.8 94.3/87.1/92.8/77.7
MNIST 1.8/67.3/53.5/2.0 2.3/23.6/21.1/3.4 99.5/83.5/86.4/99.0 99.4/84.2/86.1/99.3 99.6/81.7/85.7/98.5
FMNISTOA EMNIST-letters ~ 1.2/71.6/48.4/14.1  2.4/24.2/20.3/7.6 99.6/82.6/87.9/97.6 99.6/83.8/87.7/98.0 99.7/79.8/87.9/96.9
(94.2/94.8) NotMNIST 0.2/76.0/57.7/11.0  1.2/26.8/23.6/8.0 99.9/79.9/84.1/97.0 99.8/81.3/83.8/96.8 99.9/77.1/83.9/97.2
ol 9% Omniglot 1.0/62.3/15.5/11.1  2.5/18.3/9.1/7.1 99.5/88.6/96.5/97.5 99.6/90.6/96.0/97.9 99.3/85.8/96.7/95.7

Gaussian-Noise
Uniform-Noise
Sphere-OOD

0.0/0.3/0.0/99.3
0.0/9.8/1.3/36.3
0.0/89.6/95.5/0.0

0.4/2.0/0.4/41.7
0.3/5.4/3.0/8.5
0.0/38.3/41.6/0.0

100.0/99.7/100.0/53.4
100.0/98.1/99.2/95.0
100.0/65.8/59.8/100.0

100.0/99.8/100.0/62.6
100.0/98.6/99.4/96.6
100.0/67.7/62.4/100.0

100.0/99.7/100.0/47.9
100.0/97.5/98.9/90.1
100.0/61.9/55.0/100.0
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Table 5.2: OOD detection results 11

ID Model

OOD

FPR at
95% TPR |

Detection
Error|

AUROCT

AUPR
OutT

AUPR
Int

Reject-Classifier /Max-Softmax/MC-Dropout,/Mutual-Info

MNIST

F-MNIST
EMNIST-letters
NotMNIST
Omniglot
Gaussian-Noise
Uniform-Noise
Sphere-OOD

0.0/1.61/2.1/54.3
1.6/28.0/24.5/22.0
0.0/13.1/12.5/22.1
0.0/0.0/0.0/92.8
0.0/0.0/0.0/100.0
0.0/0.0/0.0/100.0
0.0/0.8/1.3/7.6

0.2/3.3/3.5/14.5
3.0/12.6/11.2/11.1
0.0/7.1/6.7/9.1
0.0/0.5/0.6/19.5
0.0/0.0/0.0/49.3
0.0/0.0/0.0/43.8
0.1/2.6/3.1/4.2

100/99.5/99.4/90.8
99.6/93.6/94.6/95.0
100.0/97.4/97.6/95.5

100.0/100.0/100.0/84.5
100.0/100.0/100.0/17.2
100.0/100.0/100.0/45.2

100.0/99.3/99.2/97.3

100/99.5/99.5/91.5
99.6/93.4/94.4/94.7
100.0/97.8/97.9/96.0

100.0/100.0/100.0/88.7
100.0/100.0/100.0/37.7
100.0/100.0/100.0/56.4

100.0/99.5/99.4/99.3

99.5/99.4/86.2
99.6/93.0/94.1/94.7
100/0/97.0/97.1/94.0

100.0/100.0/100.0/73.9
100.0/100.0/100.0/34.0
100.0/100.0/100.0/42.9

100.0/99.1/99.0/93.1

F-MNIST

MNIST
EMNIST-letters
NotMNIST
Omniglot
Gaussian-Noise
Uniform-Noise
Sphere-OOD

4.1/84.5/68.9/19.4
6.4/88.1/77.8/37.6
0.8/83.1/67.0/24.2
0.0/39.0/32.5/26.8
0.0/99.1/98.5/72.2
0.2/96.9/96.5/48.8
0.6/97.2/71.2/1.8

4.2/34.5/25.0/11.9
5.4/41.1/33.1/21.1
1.2/35.2/25.1/14.3
0.9/17.1/14.8/10.4
0.2/17.5/15.8/9.6

1.3/29.4/24.2/16.8
0.7/50.0/17.0/2.5

98.7/70.6/82.2/93.5
97.9/62.3/73.4/84.2/
99.7/68.9/81.7/91.7
99.8/91.4/93.5/95.2
99.8/80.0/82.1/92.5
99.8/70.1/76.8/90.9
99.7/48.4/88.2/99.6

98.2/70.9/83.0/91.3
96.8/62.3/73.2/79.6
99.5/66.4/80.3/87.6
99.9/91.4/93.7/95.6
99.9/87.8/89.1/95.3
99.8/78.6/84.0/92.5
99.4/50.6/91.4/99.5

100.0/68.2/80.3/94.9
98.5/61.3/72.2/87.9
99.8/68.6/80.8/93.6
99.6/91.8/95.5/93.1
99.5/65.5/67.9/83.4
99.8/58.11/64.8/87.9
99.8/47.7/82.4/99.6

MNISTO0-4

MNIST5-9
F-MNIST
EMNIST-LETTERS
NotMNIST
Omniglot
Gaussian-Noise
Uniform-Noise
Sphere-OOD

17.2/18.2/15.7/15.3
0.2/3.1/4.4/8.8
2.7/25.3/21.6/21.4
0.0/21.4/16.2/15.9
0.0/0.2/0.1/0.5
0.0/0.0/0.0/0.0
0.0/0.0/0.0/0.0
0.0/1.0/1.9/2.5

10.0/10.6/9.7/9.9
1.6/4.0/4.6/5.9
3.8/12.8/12.2/12.2
0.1/10.44/9.3/9.4
0.0/1.7/1.9/2.4
0.0/0.3/0.4/1.0
0.0/0.6/0.9/2.2
0.1/2.8/3.4/3.6

95.1/94.2/94.8/94.5
99.8/99.0/98.8.97.8
99.2/92.8/93.5/93.4
100.0/95.5/96.4/96.5
100.0/99.4/99.4/99.2
100.0/99.7/99.7/98.8
100.0/99.7/99.6/98.3
100.0/99.2/99.0/98.6

94.0/93.0/93.1/92.8
99.8/99.2/99.0/98.4
99.3/90.6/91.6/91.3
100.0/95.5/96.4/96.1
100.0/99.6,/99.6/99.4
100.0/99.8.99.8/99.4
100.0/99.8/99.8/99.0
100.0/ 99.4/99.3/99.1

94.9/94.8/95.4/95.1
99.7/98.7/98.4/96.6
99.1/93.3/93.9/94.1
100.0/95.0/95.9/96.4
100.0/98.9/99.0/98.8
100.0/98.9/98.9/95.8
100.0/99.1/99.0/95.2
100.0/98.6/98.5/97.5

F-MNIST0-4

F-MNIST5-9
MNIST
EMNIST-letter
NotMNIST
Omniglot
Gaussian-Noise
Uniform-Noise
Sphere-OOD

19.7/73.5/67.1/32.8
1.8/44.9/43.9/73.9
1.2/69.8/66.6/43.1
0.2/71.9/67.0/38.6
1.0/44.8/41.3/29.6
0.0/0.3/0.5/98.3
0.0/27.7/20.5/8.4
0.0/86.5/67.3/10.7

12.3/26.1/23.4/17.3
2.3/15.9/16.0/16.9
2.4/26.7/25.4/20.5
1.2/24.3/20.8/17.0
2.5/15.3/14.0/11.5
0.4/2.3/2.3/12.2
0.3/8.6/7.9/5.3
0.0/33.7/20.4/7.8

92.5/80.1/83.4/89.8
99.5/91.0/91.4/87.7
99.6/80.4/82.2/87.4
99.6/82.8.86.1/90.8
99.5/91.6/93.0/94.7
100.0/99.8/99.7/87.3
100.0/96.4/97.2/98.0
100.0/71.6/86.2/97.3

88.7/80.4/83.3/87.6
99.4/91.2/91.3/89.5
99.6/81.1/82.8/86.5
99.8/84.3/87.7/90.4
99.6/92.1/93.8/94.9
100.0/99.8/99.8.92.4
100.0/97.2/97.8/98.6
100.0,/73.4/88.0/96.7

88.7/78.1/82.0/91.2
99.6/90.4/90.5/82.3
99.7/79.6/81.5/97.9
99.7/80.2/83.4/91.0
99.3/91.0/92.2/93.9
100.0/99.7/99.7.74.2
100.0/95.5/96.5/96.6
100.0/67.3/83.0/97.8
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Chapter 6

Conclusion and Future Work

We have shown in this work that the confident-classifier almost always has OOD samples
that produce high confidence outputs (in the contexts described earlier). We provided
empirical evidence that favor using an explicit “reject” class instead. However, the ODD
detection capabilities of a reject-classifier depend on the extent to which the generated
OOD samples follow the low-density boundaries of in-distribution. We also propose a
novel algorithm for generating “effective” OOD samples for training a K+1-class classifier
for OOD detection and the results for most of the experiments on gray-scale datasets are
consistently better for our approach in comparisons to other methods compared.

The effectiveness of our approach depends on the quality of boundary OOD samples
generated by VAE. For colored images such as CIFAR and TinylmageNet, one could use
more sophisticated generative auto-encoders such as VAE/GAN [28] or Adversarial Auto-
encoders [29] that have better reconstructions and likelihood results on colored datasets.
As discussed earlier, generating off-manifold boundary OOD samples might be computa-
tionally expensive for colored images due to nullspace calculations. To avoid that, one
could uniformly perturb the image in random directions at € distances and use those per-
turbed images as off-manifold OOD samples. The intuition is that, since the number of
directions perpendicular to the manifold are much larger compared to the ones tangent to
the manifold, uniform random perturbations would generate samples in the perpendicular
to the manifold with high probability. So as future work, we would like to explore this
option for colored datasets such as CIFAR and TinylmageNet.

31



References

[1] Joshua V. Dillon Alexander A. Alemi, Ian Fischer. Uncertainty in the variational
information bottleneck. arXiv preprint arXiv:1807.00906, 2018.

2] Jinwon An and Sungzoon Cho. Variational autoencoder based anomaly detection
using reconstruction probability. In: SNU Data Mining Center, Tech. Rep., 2015.

[3] R. Arora, A. Basuy, P. Mianjyz, and A. Mukherjee. Understanding deep neural net-
works with rectified linear unit. International Conference on Learning Representations
(ICLR), 2018.

[4] Yaroslav Bulatov. Notmnist dataset. Google (Books/OCR), Tech. Rep.[Online]. Avail-
able: http://yaroslavvb. blogspot. it/2011/09/notmnist-dataset. html, 2, 2011.

[5] L Cayton. Algorithms for manifold learning. Technical Report CS2008-0923, UCSD.,
2005.

[6] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André van Schaik. Emnist: an
extension of mnist to handwritten letters. arXiv preprint arXiv:1702.05373, 2017.

[7] Francesco Croce and Matthias Hein. A randomized gradient-free attack on relu net-
works. arXiv preprint arXiw:1811.11493, 2018.

[8] Taylor Denouden, Rick Salay, Krzysztof Czarnecki, Vahdat Abdelzad, Buu Phan, and
Sachin Vernekar. Improving reconstruction autoencoder out-of-distribution detection
with mahalanobis distance. arXiv preprint arXw:1812.02765, 2018.

[9] Terrance DeVries and Graham W Taylor. Learning confidence for out-of-distribution
detection in neural networks. arXiv preprint arXiv:1802.04865, 2018.

[10] C. Drummond and R.C. Holte. Severe class imbalance: Why better algorithms arent
the answer. Proc. 16th European Conf. Machine Learning, pages 539-546, 2005.

32



[11] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Repre-
senting model uncertainty in deep learning. In international conference on machine
learning, pages 1050-1059, 2016.

[12] Yarin Gal, Riashat Islam, and Zoubin Ghahramani. Deep bayesian active learning
with image data. CoRR, abs/1703.02910, 2017.

[13] Yonatan Geifman, Guy Uziel, and Ran El-Yaniv. Boosting uncertainty estimation for
deep neural classifiers. CoRR, 2018.

[14] 1. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, S. Ozair D. Warde-Farley,
A. Courville, and Y. Bengio. Generative adversarial nets. In Advances in neural
information processing systems (NIPS), 2014.

[15] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In
Advances in neural information processing systems, pages 2672-2680, 2014.

[16] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern
neural networks. In International Conference on Machine Learning (ICML), 2017.

[17) M. Hein, M. Andriushchenko, and J. Bitterwolf. Why relu networks yield high-
confidence predictions far away from the training data and how to mitigate the prob-
lem. arXiw preprint arXiv:1812.05720, 2019.

[18] Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-
distribution. In International Conference on Learning Representations (ICLR), 2016.

[19] Dan Hendrycks, Mantas Mazeika, and Thomas Dietterich. Deep anomaly detec-
tion with outlier exposure. In International Conference on Learning Representations
(ICLR), 2019.

[20] C. Szegedy I. J. Goodfellow, J. Shlens. Explaining and harnessing adversarial exam-
ples. International Conference on Learning Representations (ICLR), 2015.

[21] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. International
Conference on Learning Representations (ICLR), 2014.

[22] Mark Kliger and Shachar Fleishman. Novelty detection using gan. arXiv preprint
arXiw:1802.10560, 2018.

33



23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

32]

[33]

[34]

Brenden M. Lake, Ruslan Salakhutdinov, and Joshua B. Tenenbaum. Human-level
concept learning through probabilistic program induction. Science, 350(6266):1332—
1338, 2015.

Yann LeCun and Corinna Cortes. Mnist handwritten digit database (2010), 2010.

Kimin Lee, Honglak Lee, Kibok Lee, and Jinwoo Shin. Training confidence-calibrated
classifiers for detecting out-of-distribution samples. International Conference on
Learning Representations (ICLR), 2018.

Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified frame-
work for detecting out-of-distribution samples and adversarial attacks. arXiv preprint
arXiv:1807.03888, 2018.

Shiyu Liang, Yixuan Li, and R. Srikant. Enhancing the reliability of out-of-distribution
image detection in neural networks. In International Conference on Learning Repre-
sentations (ICLR), 2018.

Anders Lindbo, Boesen and Sren Larochelle Hugo Winther Ole Snderby, Kaae. Au-
toencoding beyond pixels using a learned similarity metric. International Conference
on Machine Learning, 2016.

Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, lan Goodfellow, and Brendan
Frey. Adversarial autoencoders. arXiv preprint arXiv:1511.05644, 2015.

Andrey Malinin and Mark Gales. Predictive uncertainty estimation via prior networks.
Neural Information Processing Systems, 2018.

H Narayanan and S Mitter. Sample complexity of testing the manifold hypothesis.
Advances in Neural Information Processing Systems, 2010.

Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are easily fooled:
High confidence predictions for unrecognizable images. In Computer Vision and Pat-
tern Recognition (CVPR), 2015.

Augustus Odena. Semi-supervised learning with generative adversarial networks. In-
ternational Conference on Machine Learning, 2016.

S. Pidhorskyi, R. Almohsen, D. A. Adjeroh, and G. Doretto. Generative probabilistic
novelty detection with adversarial autoencoders. In Advances in neural information
processing systems (NeuRIPS), 2018.

34



[35] Jie Ren, Peter J. Liu, Emily Fertig, Jasper Snoek, Ryan Poplin, Mark A. De-
Pristo, Joshua V. Dillon, and Balaji Lakshminarayanan. Likelihood ratios for out-
of-distribution detection. arXiv preprint arXiv:1906.02845, 2019.

[36] Salah Rifai, Yann N, Dauphin, Pascal Vincent, Yoshua Bengio, and Xavier Muller.
The manifold tangent classifier. Advances in Neural Information Processing Systems,
2011,

[37] R. Y. Rubinstein. Generating random vectors uniformly distributed inside and on the
surface of different regions. Furopean Journal of Operational Research, 1982.

[38] W. J. Scheirer, A. Rocha, A. Sapkota, and T. E. Boult. Towards open set recognition.
IEEE transactions on pattern analysis and machine intelligence, 2012.

[39] Alireza Shafaei, Mark Schmidt, and James J. Little. Does your model know the
digit 6 is not a cat? a less biased evaluation of outlier detectors. arXiv preprint
arXiw:1809.04729, 2018.

[40] G. Spigler. Denoising autoencoders for overgeneralization in neural networks. arXiv
preprint arXiw:1709.04762, 2019.

[41] K. Sricharan and A. Srivastava. Building robust classifiers through generation of
confident out of distribution examples. Third workshop on Bayesian Deep Learning
(NeurIPS), 2018.

[42] Aaron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent
neural networks. In International Conference on Machine Learning (ICML), 2016.

[43] Sachin Vernekar, Ashish Gaurav, Vahdat Abdelzad, Denouden Taylor, Salay Rick,
and Krzysztof Czarnecki. Out-of-distribution detection in classifiers via generation.
NeurIPS Safety and Robustness in Decision Making workshop, 2019.

[44] Sachin Vernekar, Ashish Gaurav, Denouden Taylor, Buu Phan, Vahdat Abdelzad,
Salay Rick, and Krzysztof Czarnecki. Analysis of confident-classifier for out-of-
distribution detection. ICLR SafeML workshop, 2019.

[45] W. Wang, A. Wang, A. Tamar, X. Chen, and P. Abbeel. Safer classification by
synthesis. arXiw preprint arXiv:1711.08554, 2017.

[46] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset
for benchmarking machine learning algorithms, 2017.

35



[47] Z.Dai, Z.Yang, F.Yang, W. W. Cohen, and R. Salakhutdinov. Good semisupervised
learning that requires a bad gan. In Advances in neural information processing systems
(NIPS), 2017.

[48] Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint
arXw:1212.5701, 2012.

36



	List of Tables
	List of Figures
	Introduction
	Related Work
	Background
	Confident-Classifier
	Variational Autoencoder

	Reject Classifier
	Why minimizing confidence loss is insufficient for OOD detection
	Adding an explicit ``reject'' class
	Out-of-distribution Sample Generation
	OOD samples outside the data manifold
	OOD samples on the data manifold


	Experiments
	Limitations of Confident-Classifiers
	Generating OOD samples using a GAN vs. Our approach
	MNIST and Fashion MNIST experiments
	OOD Datasets
	Evaluation metrics for OOD detection
	Other OOD Detection Methods
	Experimental Architecture
	Detection Results
	Discussion on Computational Complexity


	Conclusion and Future Work
	References

