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Abstract

In this thesis, methods of exploiting and consequently, mitigating the nonlinearities in
Cross-Phase Modulation (XPM) dominated fiber-optic communication is suggested using
the model provided by Ciena Corporation. An enhanced Bit Error Rate (BER) per Signal
to Noise Ratio (SNR) is obtained using the solutions provided in this work compared
to the state of the art methods used in Ciena Corporation. Solutions include exploiting
the properties of XPM in order to devise methods to detect the received data with less
probability of error in optical communication and also to come up with new constellation
designs, suitable for XPM-dominated optical channels.

Coherent optical communication and specifically, phase-modulated optical communi-
cation has received much attention due to its higher spectral efficiency and also better
receiver sensitivity. However, due to the optical Kerr effect, two major phase nonlineari-
ties are added to the phase of the received signal at the end of an optical fiber link called
Self-Phase Modulation (SPM) and XPM.

This thesis is focused on XPM dominated fiber-optic links and tries to exploit the
properties of XPM in order to obtain a better performance compared to the methods in
which the cancellation of XPM noise is the main objective. Finally, a constellation design
is discussed, considering the model we use in this thesis. Constellation design suitable for
optical communication and in particular, XPM dominated fiber-optic channels, has already
been a topic of vast research, but the outcome of such efforts is highly dependant on the
model used to produce XPM values. Thus, our work is unique in its own way.
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Chapter 1

Introduction

1.1 Overview

Currently, coherent fiber-optic signaling is widely used in the area of communication re-
garding the subtle fact that the word ”coherent” has a different meaning here than that
used in digital communication. In the literature, an optical communication system is re-
garded as coherent as long as there is optical signal mixing at the receiver end, even without
carrier recovery at the receiver which is unlike the convention in digital communication.
For example, in a DPSK optical system where there is no carrier recovery, we still consider
the system to be coherent. Moreover, Phase Modulation (PM) optical communication is
an example of coherent fiber-optic communication which is the case considered throughout
this thesis [1].

Currently, the main technology used in high-capacity long-haul and ultra-long-haul
fiber-optic links is Wavelength Division Multiplexing (WDM) [1]. To further enhance the
capacity, narrower frequency spacing is used in modern WDM optical systems which gives
rise to multiple nonlinear effects on the output of the fiber alongside other linear and
nonlinear effects such as Chromatic Dispersion (CD) and Amplified Spontaneous Emission
(ASE) [1].

Erbium-Doped Fiber Amplifiers (EDFAs) are used at the end of each fiber span in order
to boost the optical signal power, making high-rate data transmission possible in optical
communications. On the other hand, EDFAs affect the performance of the system in that
they can intensify the nonlinear effects. ASE, Four-Wave Mixing (FWM) and XPM are
among these nonlinearities [2].
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XPM, which is the subject of this thesis, is generated due to the intensity dependency
of the refractive index in an optical medium (the optical Kerr effect) [1]. This phenomenon
is also the main culprit for SPM. XPM is then an intensity-dependent phase-shift of the
signal propagating along the fiber link. When using WDM, this phase-shift depends on
the intensity of the signal on neighboring channels, too. Obviously, in a PM optical com-
munication system, it becomes more vital to account for XPM and try to mitigate it.

In the literature reviewed in the next section and in this thesis, these nonlinearities and
specifically, XPM should be somehow modelled and then be analyzed. What follows, is a
summary of works done in this area.

The rest of this thesis is organized as follows: In chapter 2, the XPM model that is used
throughout this thesis is presented and analysed. In chapter 3 the effect of considering the
shapes of the XPM clouds is investigated which is followed by the work in chapter 4 on
considering the memory and also inter-polarization correlation of XPM values. Also, in
section 4.1 from chapter 4, a thorough literature review on iterative decoding in digital
and optical communication domain is presented and further in that chapter, a channel
coding and an iterative decoding method is employed and the results are obtained and
presented. Finally, in chapter 5, works in the area of constellation design for optical
communication are mentioned and some constellation designs are suggested to reduce the
error rate compared to our benchmark which is 16QAM. A conclusion and insights for
future works are presented in chapter 6.

1.2 Literature Review

In WDM coherent optical communications, after compensation of fiber dispersion, XPM-
induced nonlinear phase is summed coherently after each span which makes it the dominant
phase nonlinearity in WDM systems [3, 4]. Besides, it can be interpreted intuitively and
also observed analytically that unlike the case for SPM, XPM-induced nonlinear phase
noise has a Gaussian distribution, statistically speaking [3, 5, 6].

One of the most commonly used methods to model XPM, as described in [1], is the
pump-probe model. In this simple model, only two WDM channel are considered. This
model is obtained by observing the main channel (probe) after perturbing the neighboring
channel (probe). This model is used in [7, 8] to account for XPM nonlinearities and an
optimum 16-ary constellation design was proposed for XPM-dominant optical channels in
the sense that 16QAM is only optimum for AWGN channels.
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For a large number of spans, the nonlinear phase noise can be modeled using a transfor-
mation of a Wiener process which results in different optimum constellation designs output
[9], possibly not the best result for an XPM-dominated optical channel. In that work, the
performance is evaluated based on Symbol Error Rate (SER) since simple Gray mapping
is not going to be the optimum choice anymore. Nevertheless, other mappings can results
in a better BER using channel coding techniques and soft decoding methods. In other
works, the objective is to model XPM phase nonlinearity using different approaches. In
[5], starting from Non-Linear Shrödinger Equation (NLSE) for optical wave propagation
in an optical fiber, Beygi et al. (2012) came up with continuous-time and discrete-time
models for an optical channel concluding that an optical channel can be modeled as a lin-
ear dispersive channel with AWGN and a complex scaling factor. Note that based on the
assumption that XPM-induced phase noise has a Gaussian distribution and also assuming
that the average phase nonlinearity is compensated, the rest can be approximated using
the first term in the Taylor expansion and as a result the nonlinearity generated by XPM
can be modeled as a zero-mean additive Gaussian noise. This interpretation is used in [6]
and the P. Poggiolini et al. attempted to come up with an expression for the variance of the
Gaussian noise that accounts for XPM. It was concluded that the variance is proportional
to P 3

ch where Pch = Ptot

Nch
and Ptot is the total power of WDM transmitted signal over all

channels an Nch is the number of channels.

Due to the nature of propagation in fiber-optics, XPM has memory and also the XPM
on both x and y polarizations of a WDM channel show high correlation. In all previously
mentioned works, the models presented for XPM lacks these properties and therefore a
part of data is dismissed in the decoding process. In the next chapter, the modeled used
for XPM in this thesis is presented as derived by Ciena Corporation and followed by that
is an analysis on the properties of this model.
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Chapter 2

Modelling SPM and XPM
Nonlinearities

2.1 Discrete-time Memory Model by Ciena

Nonlinearities model in fiber as used and provided by Ciena Corporation [10, 11], in sum-
mary, is derived as described in what follows [12].

A Split-Step Fourier Method (SSFM) is used to model the nonlinearities in a fiber in an
easier way than before [13]. In SSFM, a fiber with length L (in km) is subliminally divided
into M segments with length δ = L/M and as a result, the whole nonlinearity introduced
at the end of the fiber link is a function of nonlinearities generated at each section. The
nonlinearity at the end of each section then could be obtained by a solving a simplified
version of NLSE, thanks to SSFM. The length of each segment (step size, i.e., δ) should be
small enough so it can be ensured that the linear and nonlinear effects affect the output,
independently [12, 11].

As organized and explained in [12], an integration based Equation in frequency domain
is derived for nonlinear phase noise and a discrete-time model for SPM and XPM is obtained
based on that. The ”additive” XPM-induced nonlinearity on the x-polarization of the
transmitted data at time t = 0 (i.e., Ax(0)) can be represented as the following equation

∆Ax = SPM1 + SPM2 +
∑
w

(
XPM1w +XPM2w +XPM3w +XPM4w

)
(2.1)
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in which the summation is over all neighboring channels in WDM (i.e., w is any arbitrary
neighboring channel) and SPM and XPM terms has the following form [10]

SPM1 =
∑
m,n

Cspm
m,nAx(m)Ax(n)Ac

x(m+ n)

SPM2 =
∑
m,n

Cspm
m,nAx(m)Ay(n)Ac

y(m+ n)

XPM1w =
∑
m,n

Cxpmw
m,n Ax(m)Bx(n)Bc

x(m+ n)

XPM2w =
∑
m,n

Cxpmw
m,n Ax(m)By(n)Bc

y(m+ n)

XPM3w =
∑
m,n

Cxpolmw
m,n Bx(m)Ax(n)Bc

x(m+ n)

XPM4w =
∑
m,n

Cxpolmw
m,n Bx(m)Ay(n)Bc

y(m+ n)

where Ax and Ay are the streams of symbols (complex numbers corresponding to the
transmitted constellation points) on the x and y polarizations of the channel under obser-
vation and Bx and By stand for the streams of symbols on the x and y polarizations of the
neighboring channel (namely, w). Moreover, c is the complex conjugate operator. The size
and entries of the C matrices used in above Equations is computed and provided by Ciena
Corporation which depend on the type and length of the fiber, the level of phase noise
compensation, the number of neighboring channels considered, etc. However, in order for
this model to be consistent with the results of carrier recovery, we need to make sure that
the average power of transmitted signal on each channel is set to 0.5 W and also remove the
”conditional mean” of SPM and XPM values in order to obtain the effective values. This
conditional mean can be derived analytically (will mention later on) and also be computed
using Monte Carlo simulations. The procedure of deducting the conditional mean is as
follows

∆Aex = ∆Ax − E[∆Ax|Ax(0)] (2.2)

Carefully note that in Equation 2.2, E[∆Ax|Ax(0)] is the conditional mean which is
conditioned on the data transmitted at time t = 0. As a result, the model used for the
channel, throughout this work, is as follows
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Fig. 2.1. A typical output of a 25-span long optical link at SNR = ∞ using 16QAM
constellation design

Y = X + Z + ∆Aex (2.3)

where Y, X, Z, and ∆Aex are received signal, transmitted signal, AWGN, and effective
phase nonlinearity added to the signal, respectively.

Since XPM-dominated optical communication is the subject of this thesis, we only
consider XPM terms and discard SPM terms for the sake of simplicity. As mentioned
before, conditional means can be computed both analytically and experimentally. For
example, in the case of using 16-ary constellation design, we need to compute 16 conditional
mean values. All told, according to Equation 2.3, a typical output of an XPM-dominated
optical link at SNR = ∞ resembles Fig. 2.1.

Back to the analytic way of computing conditional means, by fixing Ax(0) and consid-
ering only XPM terms, we have (for the sake of demonstration only XPM1w is considered)

6



E[XPM1w|Ax(0)] =
∑
m,n

Cxpmw
m,n E[Ax(m)Bx(n)Bc

x(m+ n)]

However, since Ax(0) is fixed and every data point on the neighboring channel is chosen
uniformly randomly from a 16QAM constellation with the average power of 0.5 W, we can
conclude that E[Bx(n)Bc

x(m+n)] = 0 for all m 6= 0. This is correct due to the assumption
that any constellation design used in here is symmetrical with respect to the origin and
different data point are chosen independently. As a result, we have

E[XPM1w|Ax(0)] = Ax(0)
∑
0,n

Cxpmw
0,n E[|Bx(n)|2]

=
Ax(0)

2

∑
0,n

Cxpmw
0,n

(2.4)

The last equality holds, since the average power of the transmitted constellation is
assumed to be 0.5 W. Finally, a similar approach can be used to come up with an expression
corresponding to other XPM terms and as a result we have

E[∆Ax|Ax(0)] = E
[∑

w

(
XPM1w +XPM2w +XPM3w +XPM4w

)]
=
∑
w

(
E[XPM1w] + E[XPM2w] + E[XPM3w] + E[XPM4w]

)
= Ax(0)

∑
w

(∑
0,n

Cxpmw
0,n +

1

2

∑
m,0

Cxpolmw
m,0

) (2.5)

Note that the above expression depends only on Ax(0), even though we did not make
any assumptions about the transmitted symbols on Ax or Ay at different time-stamps
which means that fixing Ax(m) for m 6= 0 would not have any effect on the conditional
mean XPM added to Ax(0). Also, since Ay terms only appear in XPM4w which also have
independent Bx and By multiplicative terms, fixing Ay(m) for any m would not have any
effect on the conditional mean of XPM on Ax(0). However, as it will be shown later on,
considering the data on the neighboring time-stamps or on the other polarization, could
significantly enhance the decoding error rate.
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2.2 Summary

A discrete-time, memory model for XPM-induced nonlinearity provided by Ciena Cor-
poration is employed throughout this thesis and we model the output of the channel as
expressed in Equation 2.3. The ”effective” XPM added to the transmitted constellation is
computed as in Equation 2.2 using the formula for the conditional mean in Equation 2.5.

This model enables us to exploit properties that previously have been overlooked, such
as the memory and inter-polarization correlation of the XPM values.

8



Chapter 3

The Effect of Considering the Shapes
of the XPM Clouds

3.1 Introduction

As mentioned before, XPM clouds are Gaussian distributed. However, the shapes of the
clouds are not circular and are tilted with respect to x and y axes, meaning that the in-
phase and quadrature components of the XPM nonlinearities are not necessarily equal in
power and there is a correlation between them. This is even evident by the looks of the
XPM clouds as shown in Fig. 2.1 and Fig. 3.1. It can be observed that the clouds of XPM
corresponding to the points far from the origin are more stretched. Also, using 2D heat
map shown in Fig. 3.1, we can see that the concentration of received points is higher closer
to the transmitted constellation point. Another point to be mentioned is the direction of
maximum variance of each cloud which is going to be exploited later on to come up with
a heuristic-based constellation design.

3.2 Conditional Covariance Matrices

It is practically unjustifiable to attempt to find the mathematical expressions for the 2-by-2
covariance matrices of in-phase and quadrature components of XPM values conditioned on
the data transmitted (namely, conditional covariance matrices). Alternatively, what can be
done is to find these values using a Monte Carlo simulation in an offline manner. The result
will be sufficiently accurate values for the constants we were looking for, quite same as the

9



Fig. 3.1. Heat scatter plot of the output of a 25-span long optical link at SNR = ∞ using
16QAM constellation design

values for the conditional means with the mere difference that conditional mean values are
easier to be computed analytically. Table 3.1 contains the conditional covariance matrices.
As expected by the looks of clouds, there is a good symmetry between the conditional
covariance matrices and the minor difference which could be ignored is due to the fact that
in Monte Carlo simulation there is only a limited number of samples. Additionally, we can
observe that the entries of the covariance matrices properly reflect the properties of the
XPM clouds as seen in Fig. 3.1. For instance, the constellation points at the outer corners
have higher in-phase and quadrature XPM power and also a higher covariance compared
to those of the inner constellation points. Also, as mentioned before, by examining the
covariance matrices in Table 3.1, it can be verified that the entries are accurate enough
for the our purpose since the numbers that are supposed to be theoretically equal, are less
than 5% off.
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[
0.0105 0.0065
0.0065 0.0104

]
(a) Conditioned on
Ax(0) = (−3, 3)

[
0.0102 0.0020
0.0020 0.0047

]
(b) Conditioned on
Ax(0) = (−1, 3)

[
0.0105 −0.0022
−0.0022 0.0047

]
(c) Conditioned on

Ax(0) = (1, 3)

[
0.0104 −0.0064
−0.0064 0.0104

]
(d) Conditioned on

Ax(0) = (3, 3)

[
0.0046 0.0021
0.0021 0.0104

]
(e) Conditioned on
Ax(0) = (−3, 1)

[
0.0046 0.0007
0.0007 0.0047

]
(f) Conditioned on
Ax(0) = (−1, 1)

[
0.0048 −0.0007
−0.0007 0.0047

]
(g) Conditioned on

Ax(0) = (1, 1)

[
0.0048 −0.0021
−0.0021 0.0103

]
(h) Conditioned on

Ax(0) = (3, 1)

[
0.0047 −0.0021
−0.0021 0.0104

]
(i) Conditioned on
Ax(0) = (−3,−1)

[
0.0047 −0.0007
−0.0007 0.0047

]
(j) Conditioned on
Ax(0) = (−1,−1)

[
0.0047 0.0007
0.0007 0.0048

]
(k) Conditioned on
Ax(0) = (1,−1)

[
0.0047 0.0022
0.0022 0.0105

]
(l) Conditioned on
Ax(0) = (3,−1)

[
0.0104 −0.0063
−0.0063 0.0103

]
(m) Conditioned on
Ax(0) = (−3,−3)

[
0.0104 −0.0020
−0.0020 0.0048

]
(n) Conditioned on
Ax(0) = (−1,−3)

[
0.0104 0.0022
0.0022 0.0048

]
(o) Conditioned on
Ax(0) = (1,−3)

[
0.0101 0.0062
0.0062 0.0103

]
(p) Conditioned on
Ax(0) = (3,−3)

Table 3.1. Conditional Covariance Matrices: Covariance matrices of real and imaginary
components of the XPM values on a fixed Ax(0)

3.3 Simulations

Simulations are based on the model provided by Ciena Corporation for a 25-span long
Enhanced-Large Effective Area Fiber (E-LEAF) optical links considering three channels
(two neighboring channels) with 90 percent dispersion compensation. Considering the case
of using 25-span long fiber link, and the values computed previously for conditional means
and covariance matrices, we can compare two decoding methods; closest decoding (as the
benchmark) and decoding using covariance matrices. Furthermore, it should be noted that
the simulations are done for an uncoded communication and in order to obtain a BER, we
only consider a simple Gray mapping for 16QAM constellation as in Figure 3.2.

As mentioned earlier, the channel model is as follows
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Fig. 3.2. Gray mapping used in uncoded communication for 16QAM constellation design

Y = X + Z +XPM (3.1)

where Y, X, Z, and XPM are received signal, transmitted signal, AWGN, and XPM
nonlinearity added to the signal, respectively. In neither of the decoding methods used
here, the memory of the XPM values is considered and only the shapes of the Gaussian-
distributed clouds is considered. Closest decoding is based on the assumption that the total
noise is a Gaussian one with a diagonal matrix as its covariance matrix. The other method
considers the actual covariance matrices and then computes ML probabilities under the
assumption of Gaussian distribution of the overall noise for which the covariance matrix
can be computed as follows

Σt = Σcnst +
N0

2
I2 (3.2)
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Fig. 3.3. Comparison of BER vs SNR graphs corresponding to two methods of decoding
(blue curve: closest decoding, red curve: decoding using covariance matrices)

Where Σt is the total covariance matrix used in decoding corresponding to one of the 16
possibilities (assuming a 16-ary constellation) and Σcnst is the covariance matrix computed
for the cloud corresponding to one of the 16 possibilities of the constellations at SNR =
∞ and I2 is the 2-by-2 identity matrix. N0/2 is the power of the additive white Gaussian
noise per polarization per carrier phase (in-phase/quadrature). Due to the independence
of the Gaussian noise and XPM, the total covariance matrix would be the summation of
the covariance matrices of these two additive impairments.

3.4 Result

As shown in Fig. 3.3, using computed covariance matrices yields an enhanced BER for the
uncoded optical communication. Especially of interest, is the BER of uncoded communi-
cation of about 0.03. This is important to us because after using channel coding and soft
decoding in Ciena Corporation, the final BER will drop to the error floor at this approxi-
mate uncoded BER. The channel coding and the soft decoding method used in this thesis
will be discussed in the next chapter.

Compared to closest decoding, exploiting the shapes of the XPM clouds in decoding
yields, approximately, 0.15 dB improvement in the SNR to obtain an uncoded BER of 0.03
which in practice, brings about a noticeable power saving in the transmission end.
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3.5 Summary

Additive XPM nonlinearity form a Gaussian distributed cloud around the transmitted
constellation point. The shape and the orientation of the XPM clouds is a function of
the signal transmitted. It was shown in this chapter that taking the shapes of the XPM
clouds into account improves the SNR in the uncoded BER of interest by 0.15 dB which
is substantial in terms of the power saved in the transmitter.
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Chapter 4

Exploiting Inter-Polarization and
Time Correlation of XPM Values

4.1 Introduction

Both conventional and state-of-the-art research in optical communications revolve around
models that neglect the memory of XPM values and also the correlation of XPM values
on the two polarizations of a channel. One of the merits of the model provided by Ciena
Corporation is that it reflects the properties that could be exploited for better decoding
of the received signals. The intuition behind this is based on the formula derived using a
simplified model for the correlation of XPM on neighboring time-stamps (time correlation)
and polarizations (inter-polarization correlation). The details are provided further in this
chapter and the proofs are provided in Appendix A. This intuition led us to the suspicion
that there must be a high correlation between the “effective” XPM added to the data on
the two polarizations and neighboring time-stamps. In the second and third sections of
this chapter (sections 4.2 and 4.3), a demonstration of these properties is provided.

Moreover, channel coding and an iterative demapping/decoding method is used to
further improve the error rate. Iterative decoding has been subject to extensive research
in the area of digital communication, especially after the discovery of turbo codes [14].
Iterative decoding is based on the turbo principle [15] and that’s why it is also called
turbo decoding. Turbo principle, in general, is formulated as follows: the receiver system,
iteratively performs Maximum A Posteriori (MAP) given a priori probabilities available at
each iteration and after a certain number of iterations, the hard decision output is made,
based on the calculated MAP in the last iteration.
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In [16], the process of iterative decoding is well explained and also, a coding and de-
coding system for multilevel modulation schemes is suggested. The coding system used
in [16] comprises of two coding systems, i.e., a memory-4 half-rate convolutional channel
encoder and a mapper (e.g., 16QAM), concatenated serially with a random interleaver in
between. In each iteration, Log-Likelihood Ratio (LLR) values are computed for each bit
by a demapper block and extrinsic information is then gets fed to the decoder after going
through a deinterleaver matched to that used in the transmitter and then the extrinsic
information from the decoder goes through an interleaver matched to the one used in the
transmitter and the output is then used by the demapper as a priori information on the
bits. Afterwards, the new extrinsic information is then calculated by the demapper and
gets fed to the decoder again. It is insightful to mention that thanks to the random in-
terleaver, bits in a symbol can be considered independent random binary variables. The
decoder (APP calculator), employs BCJR algorithm in order to compute a posteriori prob-
abilities which is a well established algorithm and is also used in other works including the
state of the art. An abstract yet sufficient explanation on BCJR algorithm can be found
in [15].

Authors in [16] and some other works that will be mentioned in the following, assume
non-Gray mappings and also, Anti-Gray Mapping (AGM) which result in superior perfor-
mances when employed in junction with iterative decoding, compared to Gray mapping
schemes.

Additionally, an example of iterative coding for a parallel concatenated (turbo) codes
can be found in [15]. In [17], LDPC is used for the purpose of channel coding and iterative
decoding then is employed to decode the signal received from the channel. Again, in each
iteration, extrinsic data gets passed between Variable Node Decoder (VND) and Check
Node Decoder (CND) blocks as a priori information for the destination block.

As the need for faster data transmission rates have been increasing over the last two
decades, high-SE modulation schemes have been used in optical communication and con-
sequently, with the same power usage in the transmitter, the ability to decode the channel-
distorted signal in the receiver with the same error rate has become more vital. Optical
communication could also benefit from the achievements in digital communications men-
tioned earlier. During the last two decades, computationally reasonable iterative methods
have been vastly investigated by scholars alongside coded modulations schemes [18] in order
to achieve lower error rates in fiber-optic communications. Coded modulation helps better
achieve the Shannon limit of a channel by removing the condition of separate coding and
modulation blocks. A comprehensive survey on coded modulation schemes such as Bit-
Interleaved Coded Modulation (BICM) and Trellis-Coded Modulation (TCM) is provided
in [19] which also includes some of the publications reviewed in this thesis.
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In [20], I. B. Djordjevic et al. propose a bit-interleaved LDPC-coded modulation scheme
for ultra high-speed optical communication (i.e., 100 Gb/s and above) which combines the
coding and modulation steps and also the multiplexing step in the case of multi-input
applications. This task is done by writing (n, k)-LDPC rows of input codes from m source
channels into an m × n interleaver matrix followed by a mapper fed by m column-wise
chosen bits from the interleaver matrix. Decoding is done by iterating soft extrinsic LLR
information between LDPC decoder and APP demapper and using perpetually refined a
priori information provided in each iteration. The results of this work are compared to
that of the work in [21] which are considered the benchmark in [20]. In [21], authors use
direct detection as opposed to coherent detection used in [20]. Also, I. B. Djordjevic et al.,
in [22] have previously investigated LDPC coding for lower rate optical systems.

As mentioned earlier, higher modulation formats such as 16QAM are used in modern
optical systems due to the need to exploit the capacity of the channel. However, these
modulation schemes are more vulnerable to noise and nonlinearities in fiber channels.
Authors in [23], propose a channel coding and an iterative decoding method similar to
that in [16]. The outer encoder in this work is a (255, 239)-RS code and the inner encoder
is a high-rate (Rin = 0.8) bit-interleaved coded modulation block, i.e., BICM which result in
a total rate of Rt ≈ 0.75. Here, the inner decoder itself is a serially concatenated encoding
system consisting of a convolutional encoder, a random interleaver, and a mapping block.
As a result, the decoding process is similar to that of in [16] followed by the outer decoder
based on RS codes. This procedure results in a final BER of less than 10−15.

A recent work in the area of optical communications employs machine learning tech-
niques to come up with a neural network-aided BICM decoder. Authors in [19] use a feed
forward neural network to obtain the channel conditional probabilities and subsequently,
modify the computed LLR values for iterative decoding.

As it will be explained in details in section 4.4, channel coding and iterative decoding
used in this thesis is base on the work in [24].

4.2 Correlation of XPM on Ax(0) and Ay(0)

Due to the rigorous nature of the mathematical model we use for the XPM nonlinearity
and hence for the sake of simplicity and demonstration, we only consider XPM1w and
XPM2w representing the additive XPM terms on x and y polarizations out of the four
equations (see chapter 2). For the variance of the XPM on Ax(0), we have
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0.0131 0.0064 0.0045 0.0107
0.0064 0.0133 0.0108 0.0043
0.0045 0.0108 0.0133 0.0065
0.0107 0.0043 0.0065 0.0132




0.0073 0.0063 −0.0034 0.0015
0.0063 0.0075 −0.0014 0.0036
−0.0034 −0.0014 0.0075 −0.0008
0.0015 0.0036 −0.0008 0.0075


(a) Ax(0) = (−3, 3), Ay(0) = (−3, 3) (b) Ax(0) = (−3, 3), Ay(0) = (−1,−1)

Table 4.1. 4-by-4 Conditional Covariance Matrices: Covariance matrices of real and
imaginary components of the XPM values corresponding to two instances of fixed Ax(0)
and Ay(0) (first and last two columns and rows of the covariance matrices correspond to

the real and imaginary parts of the XPM on Ax(0) and Ay(0), respectively)

σ2 = 0.25
∑

m6=0,n

|Cxmpw
m,n |2 + 0.16|Ax(0)|2

∑
n

|Cxpmw
0,n |2 (4.1)

Also shown in Appendix A is that for the covariance of the XPM on x and y polarizations
we have

ρ2xy = 0.16Ax(0)Ay(0)
∑
n

|Cxpmw
0,n |2 (4.2)

It is evident from Equation 4.1 and Equation 4.2 that the magnitude of the covariance of
the XPM values on the two polarizations is relatively noticeable compared to the variance
of the XPM values and depending on the data on x and y polarizations, the covariance
could be even larger than the variance, itself. This means that, involving the data on y
polarization must be helpful in decoding the received signal on the x polarization, hence the
simultaneous decoding of the data on x and y polarizations. This fact is also conceivable
from the computed values for the 4-by-4 covariance matrices by simulations for a fixed
Ax(0) and Ay(0).

As shown in Table 4.1, the magnitude of the covariance between the real and imaginary
parts of the XPM added to Ay(0) and the real and imaginary parts of the XPM added
to Ax(0), is noticeable relative to variance of these values. As an example, we can see
from both matrices in Table 4.1 that there is a high covariance between the real part of
the XPM on Ax(0) and the real and imaginary parts of the XPM on Ay(0), almost as
high as the variance of the XPM on Ax(0) and Ay(0). This means that the covariance
matrices are far from a diagonal one and hence involving the 4-by-4 covariance matrices
including the covariance between the real and imaginary parts of the XPM on Ax(0) and
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Ay(0) could be much more beneficial compared to closest decoding or decoding using only
the shapes of the XPM clouds (2-by-2 covariance matrices in the previous chapter). Also,
comparing the entries of the two covariance matrices in Table 4.1, we can see that the
signal transmitted on y polarization has a substantial impact on the covariance matrices.
As we can see in these tables, for a fixed Ax(0), we obtain two different 2-by-2 conditional
covariance matrices given two different transmitted constellation point on Ay(0). These
observations are consistent with our expectation to see high inter-dependency between the
XPM values on the two polarizations of a channel.

4.3 Time Correlation

Another property of XPM phase nonlinearity to be exploited, is time correlation. Similar
to what we had for the correlation of the XPM values on synchronous transmitted data
on x and y polarizations, we can inspect the correlation of XPM values on consecutive
time-stamps. As we were able to come up with an expression for the variance of XPM on
Ax(0) (see Equation 4.1), we can derive a formula for the covariance of XPM values on
consecutive transmitted data, as follows, under the assumption that only Ax(0) and Ax(1)
are fixed

ρ2time = 0.16Ax(0)Ax(1)
∑
n

Cxpmw
0,n Cxpmw

0,n−1 (4.3)

Again, the proof for Equation 4.3 can be found in Appendix A. Similar to what we had
in the case of x and y polarizations, we can compute the covariance and variances, using
Monte Carlo simulations. Table 4.2 contains the 4-by-4 covariance matrices for a fixed
Ax(0) and Ax(1). As suspected, high correlation between the XPM values on Ax(0) and
Ax(1) can be observed. As it can be seen from the covariance matrices in Table 4.2, there
is a good correlation between real and imaginary parts of the XPM on Ax(0) and Ax(1).
Also, comparing these two tables, we can see how the constellation point transmitted on
Ax(1) changes the covariance matrix. This is also in full consistency with Equation 4.3
which shows the direct relationship of the covariance of the XPM values on Ax(0) and
Ax(1) with the constellation point transmitted on Ax at these time-stamps.
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Fig. 4.1. Block diagram for PA channel coding (Credit for the image: [24])
0.0101 0.0065 0.0061 0.0064
0.0065 0.0108 0.0066 0.0064
0.0061 0.0066 0.0101 0.0062
0.0064 0.0064 0.0062 0.0101




0.0109 0.0068 −0.0025 0.0023
0.0068 0.0109 −0.0021 0.0025
−0.0025 −0.0021 0.0048 −0.0007
0.0023 0.0025 −0.0007 0.0051


(a) Ax(0) = (−3, 3), Ax(1) = (−3, 3) (b) Ax(0) = (−3, 3), Ax(1) = (−1,−1)

Table 4.2. 4-by-4 Conditional Covariance Matrices: Covariance matrices of real and
imaginary components of the XPM values corresponding to two instances of fixed Ax(0)
and Ax(1) (first and last two columns and rows of the covariance matrices correspond to

the real and imaginary parts of the XPM on Ax(0) and Ax(1), respectively)

4.4 Channel Coding and Soft Decoding

A potentially effective channel coding used in this thesis is based on the work in [24]. The
coding of the information bits in this work consists of a 2-D product code consisting of
on Single Parity Check (SPC) coding, a pseudo-random interleaver, and a rate-1 recursive
convolutional code. Product codes are also called Turbo Product Codes (TPC) since
iterative (turbo) decoding has been employed to decode product codes and as a result, the
coding system up until the interleaver is regarded as TPC/SPC in [24]. The block diagram
of the overall encoding procedure known as Product Accumulate (PA) code is shown in
Fig. 4.1 [24].

The name PA for the coding system is assigned regarding the fact that using a rate-1
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Fig. 4.2. Set-partitioning mapping used in the coded communication for 16QAM
constellation design

accumulator (1/(D+ 1) operator) after the product codes makes this system quite unique
and efficient.

After the channel coding stage, the output bits will be mapped to the 16QAM symbols
according to the mapping in Fig. 4.2. Set-partitioning mapping is particularly used in
here because of its superior performance compared to other mappings, e.g., Gray mapping,
when iterative decoding is applied.

The decoding system is performed in an iterative manner as shown in Fig. 4.3. The
procedure is explained in details in [24]. The information obtained from the channel, soft
Lch values, are computed as follows
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Fig. 4.3. Turbo decoder of PA codes

Lch(y) = ln
Pr(r|y = 0)

Pr(r|y = 1)
(4.4)

However, in the light of the insight we obtained from previous sections, in order to
obtain better BER-per-SNR performance, we can compute Lch values more accurately
with the assistance of the conditional covariance matrices. It should be noted that since
we use a modulation with 4 bit/symbol spectral efficiency, each complex value r corresponds
to 4 bits of channel-coded data, meaning that each received point is used 4 times in the
procedure of computing Lch values.

4.5 Simulation

Similar to the previous chapter, simulations are done using the model provided by Ciena
Corporation for a 25-span long E-LEAF optical links considering three channels (two neigh-
boring channels) with 90 percent dispersion compensation. Results are obtained for both
uncoded and coded communications. In order to exploit the correlation in both time and
polarization, the 8-by-8 covariance matrices corresponding the real and imaginary parts
of the XPM on fixed Ax(0), Ax(1), Ax(−1), and Ay(0) are used in demapping. Also, to
observe the comparatively higher effect of the XPM added to Ay(0) on the XPM added
to Ax(0), the 4-by-4 covariance matrices corresponding to the real and imaginary parts of
the XPM on fixed Ax(0) and Ay(0) is also computed and used for decoding. The model
used for the channel is the same as before in Chapter 3 (see Equation 3.1). The total co-
variance matrices are computed in the same manner as Equation 3.2, except that instead
of the 2-by-2 Identity matrix (I2), we use the 8-by-8 or 4-by-4 identity matrix (I8 for fixed
Ax(0), Ax(1), Ax(−1), and Ay(0), and I4 for fixed Ax(0) and Ay(0)). Again, for uncoded
communication, a simple Gray mapping is employed to obtain the BER vs SNR graph as
shown in 3.2.
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Fig. 4.4. Comparison of BER vs SNR graphs corresponding to four methods of
demapping

Due to the high computational complexity of computing Lch values with the assistance
of 8-by-8 covariance matrices and its relatively low gain in BER, it is discarded in channel-
coded communication results.

Also, in order to have a moderate time complexity for the coding and decoding pro-
cesses, the number of iterations between the inner and outer decoder is set to be 10.
Furthermore, based on the fact that 130 number of simulations is done, each for a 5× 215-
bits long information sequence, the error rate that is especially of interest is about 7×10−6.
This is because of the fact that at this BER, there are approximately 150 occurrences of
error in the output bit sequence which is large enough to make the computed BER to be
stable. The parameter t, introduced in 4.1 is set to be 5 which in result, yields a coding
rate of R = t/(t+ 2) ≈ 0.714 and enables us to categorize the coding system used in here
as a high-rate one [24].

4.6 Results

For the uncoded communication, a noticeable improvement in the required SNR is obtained
as much as 0.75 dB compared to the closest decoding by using the 8-by-8 covariance
matrices at the BER of target (BER ≈ 0.03).
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Fig. 4.5. Comparison of BER vs SNR graphs corresponding to three methods of
demapping in PA-coded communication

However, for the PA-coded communication and iterative decoding results, we can ob-
serve an enhanced required SNR to obtain the error rate of 7× 10−6 as shown in Fig. 4.5.
Also, by comparing curves in Fig. 4.4 against those in Fig. 4.5, it can be observed that
the SNR required in the uncoded communication to achieve the BER of 0.03 is close to
that of required in PA-coded communication to achieve the BER of the error floor. Also,
we can observe that at the BER of observation, there is a noticeable improvement in the
required SNR by using 4-by-4 x/y-polarization covariance matrices (0.4 dB compared to
closest decoding method, to say the least).

4.7 Summary

In this chapter, the correlations between consecutive samples of XPM in time and XPM
samples on x and y polarizations were investigated. It was theoretically showed that there
must be a high correlation of the aforementioned sort. Experimental results confirmed the
suspicion and showed improvements in terms of uncoded BER-vs-SNR performance. Ad-
ditionally, PA channel coding and turbo decoding were applied and alongside the findings
from previous sections of this chapter, showed a significant enhance in the SNR required to
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achieve a desired coded BER, compared to the benchmark, i.e., minimum-distance (closest)
decoding.
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Chapter 5

Constellation Design for
XPM-Dominated Optical Channel

5.1 Introduction

Due to the demand of a yet higher bit rate in fiber-optic communications, spectral efficiency
needs to be maximized and one way to do so is to employ constellation designs with high
bit/symbol spectral efficiency (e.g., 4 or higher), alongside other methods such as Dense
Wavelength Division Multiplexing (DWDM). This will result in higher susceptibility to
noise and an increase in the error rate. A part of the solution to the aforementioned issue
is to find constellation designs with less probability of error as well as FEC techniques.
Many efforts have been made in this area and different constellation design have been
suggested considering different communication channel models. Nevertheless, due to the
unique nature of XPM in fiber-optics, it is essential to attempt to find an XPM-specific
constellation design given any bit/symbol spectral efficiency.

Constellation design in the area of optical communication has received much attention
by scholars, especially during the past decade. Different scenarios of optical channels have
been considered and accordingly, various constellation designs have been obtained for 2D,
3D, and higher dimensional modulation schemes. Below, a number of the works in this
area are mentioned and their assumptions and approaches are discussed.

L. Beygi et al. employed a probabilistic model of the phase and amplitude of the re-
ceived signal to obtain an expression describing SER of optical channels dominated by
Non-Linear Phase Noise (NLPN) [25]. Annular constellation formats are assumed before-
hand and the radius and phase-shift of the rings are then optimized numerically, considering
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SER as the optimization criterion. However, due to the two-stage decoding method intro-
duced in [25], the phase-shift of the constellation rings do not affect the performance of
the optical system and therefore they are not subject to optimization.

The approach introduced in [26] is employed by T. Pfau et al. in [9] to optimize different
16-ary constellation designs suitable for an AWGN channel impaired by linear phase noise.
An expression for SER is derived using the channel model introduced above and then
minimized numerically under the constraint of constant-power 16-ary constellation [26].
Although the method in [9] does not consider NLPN such as SPM and XPM, but the
outcome is insightful and will prove beneficial for XPM-dominated optical channel, as
shown later in this thesis.

In [27], ASE-dominated optical channel is considered by I. B. Djordjevic et al. and an
optimum signal constellation is then obtained by minimizing the MSE of the signal constel-
lation representing the source. Their method to achieve the optimal constellation design,
in minimum-MSE sense, is an iterative one. The process starts with an arbitrary constel-
lation of the target size (M), say M -ary QAM. Then the optimum source distribution is
obtained using Arimoto-Blahut algorithm. After that, a long sequence of samples from the
optimum source distribution is generated and grouped together in M clusters based on the
Euclidean distance of their distance to M constellation points from the previous iteration.
A point belongs to the cluster with the minimum distance from the constellation point
representing that cluster. The new constellation points are obtained by computing the
center of mass of the points belonging to each of the M clusters. This process is repeated
until convergence or reaching a predefined maximum number of iterations. As claimed in
[27], the resulting constellation point will be optimum in the minimum-MSE sense.

I. B. Djordjevic and Tao Liu et al., in [28, 29], propose a constellation design algorithm
similar to that in [27]. However, in [28, 29], the design algorithm is modified to suit
multidimensional modulation schemes. The difference is in the initiation method. In order
to initiate the process, D-dimensional Cartesian product of PAM constellation designs is
employed [28, 29].

A new approach to signal constellation design is introduced in [30]. Authors in [30],
used the analogy between vector quantization of a Gaussian source and the D-dimensional
constellation design for a ASE-dominated scenario.

A slightly different version of the approaches in [27] is presented in [7, 8, 31]. Con-
sidering XPM-dominated optical channel, Tao Liu et al. proposed an iterative algorithm
to obtain an optimum 2D-16ary constellation design in maximum log-likelihood sense, in
[7, 8]. The rest of the algorithm is similar to that proposed in [27], i.e., grouping training
samples and computing new constellation points by computing the center of mass of each
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group (cluster), iteratively. Moreover, in [31], authors also investigated optical channels
dominated by linear phase noise and applied the same constellation design method.

Before any attempt to find a better alternative for constellation design, we need to
find an easily manageable mathematical model for the output of an XPM-dominated op-
tical channel. In [7, 8], a discrete-time memory-less pump-probe model is used which is
introduced and explained in detail in [1]. Moreover, other discrete-time models have been
obtained starting from the very Equations defining the transmission of optical wave through
the fiber link, i.e., NLSE [5, 3]. Other works used a model defining a channel impaired with
Phase Noise (PN) for the purpose of constellation design optimization in which the results
are applicable to XPM-dominated channels and show improvement in terms of BER and
SER [25, 9, 26].

Secondly, we need to decide an optimization method and criterion (an objective func-
tion). In [7, 8], received data are clustered based on maximum cumulative log-likelihood
criterion and the new constellation points are computed as the average of the transmit-
ted constellation points corresponding to the received data points in each cluster. This
procedure is then repeated as many times as needed for the method to converge, up to a
threshold or for the iteration reaching a predefined maximum number. More easily, the
clustering method could be simply based on minimum mean square error Mean Square
Error (MSE) as in [32]. Nonetheless, analytical methods could also be used. In [9], based
on the work in [26], an expression for the probability of the error is derived in the presence
of phase-noise and AWGN. In [25], a joint probability density function (pdf) of the nor-
malized amplitude and compensated phase is employed to derive an expression for SER
and then the constellation design is numerically optimized by minimizing SER. Also, in
that work, based on the level of vulnerability of each constellation point at each SNR,
a predefined constellation format is used, e.g., it is assumed that the final constellation
design is supposed to be in rings of 4/8/4 points and the radius distribution of the rings is
the subject of the optimization (not considering the relative phase-difference between the
rings due to the robustness of the proposed decoding method).

In this work, the model provided by Ciena Corporation is used to model an XPM-
dominated channel for the purpose of constellation design as elaborated in the next section.

5.2 Optimization Algorithm

The optimization algorithm is based on the intuition obtained by observing the properties
of XPM clouds and the previous works mentioned in section 5.1. It is assumed that the final
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constellation design is supposed to be in a predetermined multiple-rings annular format
(e.g., 1/6/9 rings). It is insightful to observe that fixing one constellation point at (0,0)
could be beneficial to the obtained SER under the constraint of 0.5 W average constellation
power. As a result, a number of strong candidates (to be mentioned later) are chosen to be
the format of the final constellation design and then the normalized radius of the second
ring and the phase-difference between the two rings are the subjects of optimization.

The optimization method, however, is simple. It is based on a numerical optimization
method suitable for non-differentialble objective functions which is empirical SER in this
case. Since simple Gray coding is no longer the best option, which is not necessarily a
disadvantage, empirical SER is chosen over BER as the optimization criterion, for the
time being. Nelder-Mead Simplex method could be used as the optimization method [33].
However, low convergence-rate and getting trapped in local minima are drawbacks of this
method.

Also, simulations show that the dependence between effects of the phase-difference and
the normalized-radius on empirical SER is almost negligible in the optimization process.
Assuming 2-rings annular constellation designs, one can justify the aforementioned obser-
vation by arguing that adding white Gaussian noise to the XPM clouds, will not change
their orientations (proof in Appendix B). Additionally, since the phase-difference has no
effect on the average power, it can only impact the inter-ring symbol errors (an inter-ring
symbol error happens when a point from one of the rings is sent and a point from the
other ring is detected at the receiver, due to the impairments). Therefore, given that ∆θ0
is an optimum phase-difference for the normalized radius of r0 > 1, it can be concluded
that it is also the optimum phase-difference for any other normalized radii. Consequently,
we can optimize them separately, using a uni-variant numerical optimization method such
as Golden-Section search [34] which is empirically proved to be faster and more likely to
converge to the optimum point.

After simulations, it was brought to our notice that in some cases, the phase-difference
does not play a significant role in computing the empirical SER and henceforth, the nor-
malized radius of the second ring is the only parameter left to be optimized. Also, it was
mentioned earlier on that empirical SER is chosen as the optimization criterion. Never-
theless, we can use BER as the optimization criterion accompanied by a proper mapping
rule since in practice, uncoded BER is more important than SER.
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5.3 Simulation

Optimization is done for a channel model described in Equation 3.1, at SNR = 14 dB,
chosen heuristically based on the fact that 16QAM constellation design yields an uncoded
BER of 0.03 at an SNR close to 15 dB. Moreover, as mentioned before, empirical SER
is used as the optimization criterion and approximately, 0.1 is considered as the SER
corresponding to an uncoded BER of 0.03 for 16QAM constellation design. Therefore, any
improvements in terms of SNR at SER = 0.1 is imperative.

Based on the works surveyed previously in this chapter, and also in order to manage
the time complexity of optimization algorithm the annular formats considered for the
simulations are the following two and three rings designs: 1/6/9 (1/9/6), 1/7/8 (1/8/7),
4/8/4, and 4/12. Also, another reason for choosing only two and three rings formats is the
fact that the multivariate optimization algorithm used here (Nelder-Mead Simplex method)
is likely to get trapped in local minima, although those local minima could be as good as
the optimum point. Finally, we initialize the optimization process with reasonable values,
and then the second and also maybe the third ring’s normalized radii and phase-differences
are optimized.

The decoding performed in computing empirical SER at each iteration of optimization
is done using 2-by-2 conditional matrices introduced in chapter 3. This method was chosen
over more sophisticated alternatives, due to the intuition that the shape of the constellation
point has little to do with inter-polarization and time correlation of XPM values (see
chapter 4).

5.4 Results

The SER of the obtained constellations design at the SNR of 14 dB is summarized in Table
5.1. As shown in the following table, 1/6/9 format has the best performance and 1/7/8
format is almost as good as that. Also, the fact that the performance-gap between 1/6/9
and 1/9/6 formats is more than that between 1/7/8 and 1/8/7 formats is in consistency
with our intuition. This is because 1/7/8 format is almost similar to 1/8/7 format but
on the other hand, 1/6/9 and 1/9/6 formats are more distant in appearance. Finally, we
can see other annular formats have inferior performance, compared to the ones mentioned
earlier. One possible reason could be the fact that 4/8/4 and 4/12 formats do not have
the advantage of a constellation point in the origin.

Moreover, since the calculation of empirical SER is done using Monte Carlo simulations
and the number of samples is limited, the outcome could be inaccurate. As a result, the
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Fig. 5.1. Comparison of SER vs SNR corresponding to optimum 1/6/9, 1/7/8, and
16QAM constellation designs

Annular Constellation Symbol Error Rate
1/6/9 0.102
1/9/6 0.135
1/7/8 0.106
1/8/7 0.116
4/8/4 0.128
4/12 0.133

Table 5.1. BER of different optimum annular constellation designs at the SNR of 14 dB

optimization process is done multiple times for each annular format and the numbers in
Table 5.1 are an average of multiple outputs. Therefore, we can say the marginal difference
in the performance of 1/6/9 and 1/7/8 formats is meaningful. This can also be observed
in the SER-vs-SNR curves corresponding to these two annular formats.

Fig. 5.1 compares the performance of the two strongest candidates according to Table
5.1 versus the benchmark, i.e., 16QAM constellation. It can be observed in Fig. 5.1 that
using the optimum 1/6/9 constellation design results in an improvement of about 1 dB
in the SNR required to obtain an SER of 0.1, compared to 16QAM constellation design.
Also, it can be observed that Optimum 1/6/9 constellation design marginally outperforms
Optimum 1/7/8 constellation design.
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(a) Optimum 1/6/9 constellation design (b) Optimum 1/7/8 constellation design

Fig. 5.2. Output of a 25-span long optical link at SNR = ∞ using the two annular
constellation designs

Fig. 5.2a and 5.2b show the output of a 25-span long fiber-optic link operating at
SNR=∞ and employing 1/6/9 and 1/7/8 signal constellation designs, respectively.

5.5 Summary

In this chapter the effect of constellation design on the error rate of the optical communi-
cation system was investigated and some potentially better constellations were suggested
to be used in XPM-dominated fiber-optics signaling. Based on both intuition and ana-
lytical reasoning, some annular constellation designs were considered as the format of our
final solutions and then the radii of their rings and phase-differences between the rings
were optimized using two numerical optimization methods, i.e., Golden-Section search
and Nelder-Mead Simplex method. The resulting constellation designs show a noticeable
improvement in the SNR required for the optical system to operate in accordance with
standards. Finally, it should be mentioned that the 1/6/9 and 1/7/8 constellation for-
mats, showed better performance compared to other two and three rings annular formats
and also the reference 16QAM constellation design.
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Chapter 6

Conclusion and Future Works

In this thesis, mitigating Cross-Phase Modulation (XPM) in fiber-optic communication
was investigated and solutions have been proposed form exploiting the correlation of XPM
values in time and between polarizations to suggesting constellation designs in order reduce
the error rate in an XPM impaired optical channel.

Depending on the computational capacity of the optical system, exploiting memory of
the XPM values of time-stamps other than immediate neighboring ones could be investi-
gated, although it is suspected that it would not improve the performance considering the
computational complexity overhead.

Additionally, finding an optimum mapping rules for different modulation schemes could
be an interesting future work. Also, we performed simultaneous decoding of data on x and
y polarizations in chapter 4. This could give a new impetus to 4D constellation design
comprising in-phase and quadrature components of signal on the two polarizations.
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Appendix A

Proof for Variance and Covariance
Formulas

A.1 Proof for the variance formula

Here, we assume only Ax(0) is fixed and the data on other data stamps on every channel is
chose uniformly randomly from a 16QAM constellation design with the average power of
0.5 W. Also, as mentioned in section 4.2, the proof will be provided for the case where only
XPM1w and XPM2w is considered as the main sources of XPM on both polarizations.
Therefore, we have

σ2 = E[XPMxXPMx]− E[XPMx]E[XPMx]

where XPMx is assumed to be the total XPM on Ax(0). However, since we know
XPMx = XPMx1w +XPMx2w, we have

σ2 = E[XPMx1wXPMx1w] + E[XPMx2wXPMx2w]

+E[XPMx1wXPMx2w] + E[XPMx2wXPMx1w]

− E[XPMx]E[XPMx]

(A.1)

Note that the first two terms in equation above are basically identical as a result of the
form of XPM terms. The same goes for the last two terms of the Equation A.1. For the
first term (also the second one) we have
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E[XPMx1wXPMx1w] =∑
m,n

∑
m′,n′

Cxpmw
m,n Cxpmw

m′,n′ E[Ax(m)Ax(m′)]E[Bx(n)Bx(n′)Bx(m′ + n′)Bx(m+ n)] =∑
n6=n′

Cxpmw
0,n Cxpmw

0,n′ |Ax(0)|2E
[
|Bx(n)|2

]
E
[
|Bx(n′)|2

]
+∑

m6=0,n

|Cxpmw
m,n |2E

[
|Ax(m)|2

]
E
[
|Bx(n)|2

]
E
[
|Bx(m+ n)|2

]
+

∑
n

|Cxpmw
0,n |2|Ax(0)|2E

[
|Bx(n)|4

]
+��:

0· · ·

Note that the rest of the terms are equal to be zero due to the symmetries of the
constellation design. Given the constellation design and the average power of 0.5 W, we
have

E[XPMx1wXPMx1w] = 0.25|Ax(0)|2
∑
n

∑
n′

Cxpmw
0,n Cxpmw

0,n′ + 0.125
∑

m6=0,n

|Cxpmw
m,n |2

+ 0.33|Ax(0)|2
∑
n

|Cxpmw
0,n |2

Now, using the identity equation
∑

n

∑
n′ C

xpmw
0,n Cxpmw

0,n′ = |
∑

nC
xpmw
0,n |2−

∑
n |C

xpmw
0,n |2,

we have

E[XPMx1wXPMx1w] = 0.25|Ax(0)|2
[∣∣∑

n

Cxpmw
0,n

∣∣2 −∑
n

|Cxpmw
0,n |2

]
+ 0.125

∑
m6=0,n

|Cxpmw
m,n |2 + 0.33|Ax(0)|2

∑
n

|Cxpmw
0,n |2

And with proper simplifications, we have

E[XPMx1wXPMx1w] = |Ax(0)|2
[
0.25

∣∣∑
n

Cxpmw
0,n

∣∣2 + 0.08
∑
n

|Cxpmw
0,n |2

]
+ 0.125

∑
m 6=0,n

|Cxpmw
m,n |2

(A.2)

40



Moreover, for the third term (also the fourth term), we have

E[XPMx1wXPMx2w] =∑
m,n

∑
m′,n′

Cxpmw
m,n Cxpmw

m′,n′ E[Ax(m)Ax(m′)]E[Bx(n)By(n′)By(m
′ + n′)Bx(m+ n)] =

∑
n,n′

Cxpmw
0,n Cxpmw

0,n′ |Ax(0)|2E
[
|Bx(n)|2

]
E
[
|By(n

′)|2
]

+��:
0· · ·

Following the same procedure as seen previously, we get

E[XPMx1wXPMx2w] = 0.25|Ax(0)|2
∣∣∑

n

Cxpmw
0,n

∣∣2 (A.3)

However, we can easily derive the following equation from Equation 2.4, we have

E[XPMx1w +XPMx2w] = Ax(0)
∑
n

Cxpmw
0,n (A.4)

Finally, combining Equations A.1, A.2, A.3, and A.4, we get

σ2 = 0.25
∑

m 6=0,n

|Cxmpw
m,n |2 + 0.16|Ax(0)|2

∑
n

|Cxpmw
0,n |2

which is the same as Equation 4.1.

A.2 Proof for inter-polarization correlation formula

Again, the proof will be provided for the case where only XPM1w and XPM2w are consid-
ered. Assuming only Ax(0) and Ay(0) are fixed and every other data is chosen uniformly
randomly from a 16QAM constellation with the average power of 0.5 W, the formula for
the covariance of XPM on Ax(0) and Ay(0) is computed as follows

ρ2xy = E[XPMxXPMy]− E[XPMx]E[XPMy]

following the same notation as in previous section, we have
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ρ2xy = E[XPMx1wXPMy1w] + E[XPMx2wXPMy2w]

+E[XPMx1wXPMy2w] + E[XPMx2wXPMy1w]

− E[XPMx]E[XPMy]

(A.5)

Again, for the first term we have

E[XPMx1wXPMy1w] =∑
m,n

∑
m′,n′

Cxpmw
m,n Cxpmw

m′,n′ E[Ax(m)Ay(m′)]E[Bx(n)By(n′)By(m
′ + n′)Bx(m+ n)] =
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n 6=n′

Cxpmw
0,n Cxpmw

0,n′ Ax(0)Ay(0)E
[
|Bx(n)|2
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E
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|By(n

′)|2
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+��:
0· · ·

Similar to what we had before, we can conclude that

E[XPMx1wXPMy1w] = 0.25Ax(0)Ay(0)
∣∣∑

n

Cxpmw
0,n

∣∣2 (A.6)

Now, similarly, for the third term in Equation A.5, we can derive what follows

E[XPMx1wXPMy2w] = Ax(0)Ay(0)
[
0.25

∣∣∑
n

Cxpmw
0,n

∣∣2 + 0.08
∑
n

|Cxpmw
0,n |2

]
(A.7)

Finally, based on Equations A.5, A.6, A.7, and A.4, we get

ρ2xy = 0.16|Ax(0)|2
∑
n

|Cxpmw
0,n |2

which is the same as Equation 4.2.
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A.3 Proof for time correlation formula

In order to come up with the formula in Equation 4.2, we assume only Ax(0) and Ax(1)
are fixed. Similar to what we had before, we have the following equations

ρ2time = E[XPMx(0)XPMx(1)]− E[XPMx(0)]E[XPMx(1)]

ρ2time = E[XPMx1w(0)XPMx1w(1)] + E[XPMx2w(0)XPMx2w(1)]

+E[XPMx1w(0)XPMx2w(1)] + E[XPMx2w(0)XPMx1w(1)]

− E[XPMx(0)]E[XPMx(1)]

(A.8)

And for the first term, we have

E[XPMx1w(0)XPMx1w(1)] =∑
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∑
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Cxpmw
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0,n′ Ax(0)Ax(1)E
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|Bx(n)|2

]
E
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|Bx(n′ + 1)|2

]
+
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Cxpmw
0,n Cxpmw

0,n−1Ax(0)Ax(1)E
[
|Bx(n)|4

]
+��:

0· · ·

which after simplifications, equals to

E[XPMx1w(0)XPMx1w(1)] = Ax(0)Ax(1)
[
0.25

∣∣∑
n

Cxpmw
0,n

∣∣2
+ 0.08

∑
n

Cxpmw
0,n Cxpmw

0,n−1

] (A.9)

And similarly, for the third term in Equation A.8 we have

E[XPMx1w(0)XPMx2w(1)] = 0.25Ax(0)Ax(1)
∣∣∑

n

Cxpmw
0,n

∣∣2 (A.10)
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And combining Equations A.8, A.9, A.10, and A.4 yields the following

ρ2time = 0.16Ax(0)Ax(1)
∑
n

Cxpmw
0,n Cxpmw

0,n−1

which is the same Equations as 4.3.
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Appendix B

Proof for The Effect of AWGN on
the Orientation of XPM Clouds

Given that Σ is the covariance matrix of Gaussian-shaped cloud of XPM values added to a
certain constellation point, the cloud’s orientation is determined by the its perpendicular
eigenvectors, say v1 and v2 with e1 and e2 as the corresponding eigenvalues (any real
symmetric matrix has an orthonormal base of eigenvectors). Assuming that the AWGN
has the power of N0/2 per in-phase/quadrature component, the covariance matrix of the
total noise added to the constellation point is computed as follows

Σt = Σ +
N0

2
I2 (B.1)

where I2 is the 2-by-2 identity matrix. Following the Equation B.1, we have

Σtv1 = Σv1 +
N0

2
I2v1 = e1v1 +

N0

2
v1 = (e1 +

N0

2
)v1

which means v1 is also an eigenvector of Σt and the same statements is true for v2
meaning that the orientation of the clouds does not change with AWGN.
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