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A Hybrid Bayesian Network Model for Predicting
Delays in Train Operations

Abstract

We present a Bayesian network-(BN) based train delay prediction model to

tackle the complexity and dependency nature of train operations. Three dif-

ferent BN schemes, namely, heuristic hill-climbing, primitive linear and hybrid

structure, are investigated using real-world train operation data from a high-

speed railway line. We first use historical data to rationalize the dependency

graph of the developed structures. Each BN structure is then trained with the

gold standard k -fold cross validation approach to avoid over-fitting and evalu-

ate its performance against the others. Overall, the validation results indicate

that a BN-based model can be an efficient tool for capturing superposition and

interaction effects of train delays. However, a well-designed hybrid BN struc-

ture, developed based on domain knowledge and judgments of expertise and

local authorities, can outperform the other models. We present a performance

comparison of the predictions obtained from the hybrid BN structure against

the real-world benchmark data. The results show that the proposed model on

overage can achieve over 80% accuracy in predictions within a 60-minute hori-

zon, yielding low prediction errors regarding mean absolute error (MAE), mean

error (ME) and root mean square error (RMSE) measures.

Keywords: High-speed rail; Train operation; Punctuality; Bayesian networks;

Delay prediction; Performance evaluation.
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1. Introduction

A railway system comprises several subsystems, such as network infrastruc-

ture, rolling-stock, control and communication, and various operational rules

and policies with the goal of providing reliable train services to transport pas-

sengers or goods. However, many uncertainties may arise from these subsystems5

that can disturb the planned activities and operations, resulting in unexpected

delays (Wen et al., 2017). As a service complaint, train delays impose a huge

cost on passengers and operators, contributing to the inefficiency of train op-

erations (Van Oort, 2011). In the United Kingdom, for instance, 14 million

train-minute delays were recorded during 2006-2007 on the British national rail10

network that cost over £1 billion in terms of lost time to the passengers (Office,

2008). Consequently, reducing delays is of great importance to train operators

and desirable to passengers (Marković et al., 2015). Specifically, the validity of

all levels of railway operations planning, such as creating feasible and realizable

timetables, predicting real-time traffic, predicting conflicts, and providing reli-15

able passenger information, depends highly on the accurate estimation of train

process times that are subject to delay incidents (Kecman & Goverde, 2015b;

Kecman et al., 2015b; Kecman & Goverde, 2015a). Therefore, delays should

be predicted and compensated in time, otherwise there may be a disruption

or domino effect of the propagated delays (Zhang et al., 2018). While part of20

the delay factors influencing train process times is predictable and controllable,

most of them are not only uncontrollable but also unpredictable, adding to the

challenges of managing railway operations.

In real-world train operations, delay prediction relies heavily on the expe-

rience and intuition of a local dispatcher rather than a network-wide compu-25

tational instrument (Martin, 2016). Given the complex structure of a railway

network and interdependent train operations between a large set of origins and

destinations, a local dispatcher’s estimation of delays and the subsequent de-

cisions are strongly dependent on the state of traffic and network and limited

to a local geographical area. In large and dense network areas, however, the30
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domain knowledge and expertise of local dispatchers must be supported by an

advanced computational tool that can account for the interdependencies of train

operations and interrelated delay factors. Creation of such an advanced tool has

been hindered by two fundamental limitations. Firstly, methodologically, there

has been a lack of models capable of simultaneously examining multiple compo-35

nents of delay incidents intertwined with stochastic operations and interaction

effects. Secondly, technologically, there has been a need for collection and incor-

poration of massive train operation data. Recently, the integration of graph and

probability theories led to the introduction of Bayesian networks (BNs) that en-

abled practitioners to overtake these limitations. Specifically, BNs methodology40

is a representational tool meant to capture complex structures and “organize

one’s knowledge about a particular situation into a coherent whole” (Darwiche,

2009). At the same time, it allows for incorporation of massive historical data

in identifying the contingencies between multiple events and updating the state

of different variables given real-time data. These features, convoluting differ-45

ent factors and fusing massive data, have given BNs an advantage over other

artificial intelligence techniques.

In this paper, we present three different BN designing architectures, namely,

a heuristic, a naive, and a hybrid method, to represent the relationship and

superposition of interdependent variables identified in the delay chain of trains.50

Using information obtained from historical data, we rationalize the contingency

graph of the proposed BN structures. Next, we apply the gold standard k -fold

cross-validation method to train and evaluate the proposed BNs. The hybrid BN

structure, having a higher performance compared to the other models, is then

tested against real-world benchmark data under different performance measures.55

To the best of our knowledge, this is the first hybrid BN-based delay prediction

model introduced into the relevant prediction literature. The main idea behind

the hybrid structure introduced here is to distinguish between the delay due to

the most recent performed operation and the delay propagated from previous

operations. The proposed ideas were made possible through examining the60

similarities and differences between the naive and heuristic structures supported
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by domain knowledge and expertise of local authorities. Our results can be

generalized to similar problems in other networks in order to better support

train dispatching and delay management decisions.

The remainder of this paper is structured as follows. The next section65

presents a brief overview of the related literature and summarizes our contribu-

tions. Section (3) provides the methodological framework and formal descrip-

tion of the terms and the concepts used in this study. Section (4) describes

the historical data and our general assumptions, and continues with training

and validating results of the candidate BNs. Section (5) focuses on evaluating70

the performance of the hybrid BN model discussed under different performance

measures. Finally, conclusions and future research directions are presented in

Section (6).

2. Literature Review

Train timetables are traditionally scheduled using train motion equations75

with the input of the estimated running and dwelling times at individual sta-

tions and sections. To minimize the probability of schedule deviation in actual

operations, the parameters of these equations are usually tuned or optimized

based on historical train data (Kecman & Goverde, 2015b). However, these

techniques are not adaptive, often failing to address the time-varying nature80

of train operation settings. For example, each new operational configuration

would require re-optimizing the timetables, which is computationally extensive.

Some of these drawbacks could be overcome by applying data-driven approaches

and statistical models to estimate the process times based on various contribut-

ing factors (Kecman & Goverde, 2015b). The underlying problem is related to85

the delay prediction practice that has received considerable attention due to

its vital importance to train operations management and passenger information

provision (Meester & Muns, 2007).

A number of prediction models have been developed in the literature, which

can be classified by their scope, model types and solution methods (Marković90
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et al., 2015). Traditional methods such as regression models have been intro-

duced to predict delays. However, these methods require frequent updates of

train positions and rich data. Micro- and macro-level simulation tools have

been applied to simulate delays at different level of details. The simulation

models, developed based on fixed distributions, require frequent updates from95

train positions and real-time train data (Kecman et al., 2015b). The update

requirements are mostly due to time-varying operational conditions and the in-

teraction between different subsystems (stations, sections and trains) under the

effects of infrastructure and operational rules. Yuan (2006) and Yuan et al.

(2002) presented a delay prediction model that deals with the stochastic be-100

havior, dependency of train delays and delay propagation to assess stability and

punctuality of a published timetable against primary delays. An artificial neural

network model was proposed to predict the delay of passenger trains in Iranian

Railways (Yaghini et al., 2013). The accuracy level of the proposed model was

found to be superior to other statistical models such as decision tree and multi-105

nomial logistic regression methods. Peters et al. (2005) developed an intelligent

real-time delay prediction model that predicts the delay of the upstream or

downstream trains based on the delays currently incurred in the network. The

prediction accuracy of the proposed model was compared against a rule-based

system with a set of predefined rules in a deterministic manner. However, these110

models are not flexible enough to incorporate the domain knowledge of experts

and local dispatchers as well as the operational characteristics.

A generic statistical model for estimating the running and dwelling times

was proposed by Kecman & Goverde (2015b). Three global predictive mod-

els: robust linear regression, regression trees, and random forests are presented115

based on advanced statistical learning techniques. Moreover, based on the ro-

bust linear regression and some refinements, they calibrated local models for

each particular train line, station or block section. The presented models were

evaluated using an aggregated set of historical data on the level of block sections.

In another effort, the real-time prediction of train delays was used to detect in-120

stabilities in the timetable and retrieve a feasible train schedule (Marković et al.,
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2015). Kecman (2014) also proposed a real-time delay prediction model based

on historical arrival and departure data. Event graphs were used in Hansen

et al. (2010), to forecast running and arrival times. A stochastic model for de-

lay propagation in large transportation networks was proposed by Berger et al.125

(2011), to process massive streams of real-time data. In the same way, the sta-

tistical models are not adaptive enough to incorporate the domain knowledge

of local dispatchers and the networks’ characteristics.

A model for real-time prediction of train delays using Bayesian reasoning can

be found in Kecman et al. (2015a). They used two months of historical traffic130

realization data from the Swedish infrastructure manager in a simulated real-

time environment. The computational results indicated that the predictions

are reliable for up to 30-minute horizons. Their main assumption, however, is

that the train orders and routes within the prediction horizon are known, which

is often not the case in the real-world. A Bayesian model for predicting the135

propagation of delays can be found in Kecman et al. (2015b), which uses real-

time events based on their specific order. Martin (2016) proposed a prototype

rail advisory system that applies a series of predictive reasoning and machine

learning models, to predict the effects of various disruptions. Also train move-

ment data, collected from the infrastructure track occupation records, sensors140

in rolling-stock, or mobile GPS devices, were used by Flier et al. (2009) to find

robust train paths. Marković et al. (2015) presented a comparison between the

performance of support vector regression and neural networks for analyzing pas-

senger train arrival delays and the influence of infrastructure on arrival delays.

Using numerous test instances they show that support vector regression outper-145

forms other models in predicting arrival delays. However, to date, identifying

which BN architectures are most valid/reliable for predicting train delays for

each particular network structure has not been well studied.

Clearly, there is still a need for better predictive models that account for

massive real-world train operation data, domain knowledge and expertise of lo-150

cal authorities. In this paper, for the first time we propose a hybrid BN-based

predictive model for predicting arrival and departure delays, built upon test-
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ing different BN architectures, wealth of train operation records, and domain-

specific knowledge. The proposed model is easy to interpret and generalize

while at the same time computationally efficient. The work presented in this155

paper contributes to the literature with a new delay prediction model obtained

based on heuristic and naive prediction models, train movement data, and do-

main knowledge. The application of the proposed BN model in real-life train

operations can contribute to the development of a more robust train operation

management and information system for improved dispatching and user services.160

3. Methodological Framework and Preliminaries

3.1. Bayesian Networks

Let us consider n random variables X1, X2, ... , Xn, and a directed acyclic

graph (DAG) where each node j (1 ≤ j ≤ n) of the graph is associated to the

variable Xj . Then the graph is a BN, representing the dependencies of X1,165

X2,... , Xn, if:

P (X1, X2, ..., Xn) =

n∏
j=1

P (Xj | parents(Xj)), (1)

where parents(Xj) denotes the parent nodes of Xj . The parent nodes are

the set of all nodes Xi each of which is directly linked to node j with an arc in

the graph in BN, i.e., i→ j. The distribution P (Xj|parents(Xj)) is viewed as

a local distribution function, which can be expressed by a probabilistic classifi-170

cation or regression function (Nielsen & Jensen, 2009).

There are two parts of a BN which must be determined. The first part is the

structure of the graph, which can be created either randomly by data learning

using heuristic methods, or can be designed on the basis of domain-specific

knowledge. Hybrid BN structures can also be developed, for example, through175

domain-specific knowledge and refining or merging heuristic/random structures

based on observed dynamics and dependences between variables. This is mostly

done by refining a given structure through adding or removing variables or

7



  

connections if desired, to achieve a superior BN structure in terms of a pertinent

explanatory measure. The second part of designing a BN is the solution of the180

network parameters or the state of a node given the state(s) of its parent node(s)

(Kecman et al., 2015a). The states, which are defined by either conditional

probabilities or regression models, can be inferred or regressed directly from

observations through either a diagnostic or causal inference method (Nielsen &

Jensen, 2009).185

3.2. Dependency Representation

In this paper, we use the event-activity modeling approach to formulate de-

lay dependencies. It models the running and dwelling operations defined in

a timetable as alternating activities in a network structure which is called an

event-activity graph. It is also a convenient way of describing delay propagation190

that represents a train run by an interconnected sequence of events and activ-

ities. The main train activities are running, dwelling and waiting operations,

each of which needs a minimum amount of time to be accomplished. Each event,

such as departure, arrival or passage at any track section, represents the begin-

ning or the end of a process. The events are either arrival or departure types195

that can occur simultaneously (in case of more than one train). The events

are connected by the corresponding running and dwelling activities. This is also

similar to the logic applied in other studies to represent the relationship between

train delays (Dollevoet et al., 2014; Kecman et al., 2015b; Martin, 2016).

Consider, for example, a typical train passes through S number of stations200

according to its published timetable, which is scheduled to arrive at time tAs at

the station s ∈ S, and scheduled to depart at time tDs from the same station.

However, due to various disturbances during its operation, the train can deviate

from the scheduled operations and have the realizations of actual arrival time

t̂As and actual departure time t̂Ds . Figure (1) depicts two successive stations205

s and s′, where the parameters inside the parentheses display the scheduled

and actual time of the events, respectively. In railway operations terminology,

delays are commonly called arrival and departure delay. The (positive) differ-
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Figure 1: The general scheme of train movements at two successive stations s and s′ = s + 1.
Up: nominal and actual arrivals (A), Down: nominal and actual departures (D).

ence between actual and scheduled times, (t̂As − tAs )+ = max(t̂As − tAs , 0) and

(t̂Ds − tDs )+ = max(t̂Ds − tDs , 0), are defined as arrival and departure delays at210

station s, respectively. Similarly, the actual dwell time of a train at station s is

defined as the difference between its departure and arrival times (t̂Ds − t̂As ), and

the actual running time is defined, for two consecutive stations s and s′, as the

time taken to traverse the section connecting the two stations (t̂As′ − t̂Ds ). Like-

wise, (tDs − tAs ), and (tAs′ − tDs ) are the scheduled dwell time and the scheduled215

running time defined in the published timetable. In practice, some additional

time - buffer time - is added to improve schedule reliability and reduce the effect

of disturbances and recovering operations from unexpected delays during trains’

running and dwelling activities.

To model the delay chain of trains, we represent each arrival/departure event220

of a train run as a node of a BN. In this way, each arc of the BN represents cor-

responding train activity. The number of events corresponds to the number of

scheduled arrival and departure events. All components are connected together

through successive events and activities based on their relationship, such that

the model represents the logical connection among the different events and ac-225

tivities. The principle idea is to predict the process time of each train’s running

and dwelling activity depending on the state of its parent nodes that reflect

the actual position (or delay) of the immediate upstream events. Without loss

of generality, we assume that the parent nodes play the role of explanatory

variables to each of their child nodes.230
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4. Training and Validation of BN Models

4.1. Description of the Data Set

The data used in this study come from train operation records on Wuhan-

Guangzhou (WH-GZ) high-speed rail (HSR) line in China. The WH-GZ HSR

connects Wuhan in Hubei province to Guangzhou in Guangdong province with235

a 1096km double-track HSR line including 18 stations, as shown in Figure (2).

A total of 15 stations and 14 sections, from GZS to CBN, are managed by the

Guangzhou Railway Bureau and the rest is managed by the Wuhan Railway

Bureau. The train movement data were extracted from the Guangzhou Bureau

database for the period from Feb. 2015 to Nov. 2015, which includes 378,510240

arrival and departure events between the stations on the specified line, excluding

early arrivals and departures. We use 75% of the collected observations for

training and comparing the candidate BN structures. The remaining 25% of the

observations are withheld to test the superior prediction model and evaluate its

prediction performance.245

As reported by China Railway Corporation, the operation punctuality of its

HSR lines on average is about 85% because of delays during train operations

(China-Railway-Corporation, 2016). On one hand, the departure delay is due

to the late arrivals or due to disturbances in train operation at stations. On the

other hand, the arrival delay is due to departure delay in the previous station250

or due to a disturbance during traversal time in track sections. Therefore it is

important to focus on both the departure and arrival delays. Figures (3) and

(4) reveal that arrival and departure delays follow the same distribution, and

there exists a linear relationship (or a chain) with a high correlation between the

arrival and departure delays at stations. Indeed, the correlation of the arrival255

and departure delays at different stations is found to be at least 94%. We use

these findings to characterize and calibrate delay dependencies in the proposed

BN structures with different complexity level.
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Figure 2: Map of Wuhan-Guangzhou HSR.
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(a) Histogram of arrival delay observations (b) Histogram of departure delay observations

Figure 3: Frequency distribution of arrival and departure delay at all stations (bin: 1 min).

4.2. Training and Validation

In this study, we trained and examined three different BN structures in260

R-project using the “bnlearn” package. The estimation of parameters is car-

ried out using the maximum likelihood estimation (MLE) method to build the

relationship between parent and child variables (Nagarajan et al., 2013).

The first network structure, denoted as HC, is developed using the hill-

climbing method to learn heuristically the network structure from the empirical265

data. This approach starts from a DAG with n number of nodes and no arcs

but being added one-by-one sequentially. More specifically, a network score is

used to measure the additional explanatory power of the model when a new arc

is added, or a current arc is reversed or removed between any pairs of nodes. In

each step the action (addition, removal or reversion) that achieves the highest270

score is picked. The iterative procedure continues until a higher value of the

score measure cannot be obtained (Buntine, 1996). Figure (5) displays the BN

structure obtained with the hill-climbing method.

Our second architecture is a primitive linear structure, denoted as PL, with

n nodes, in which each event is connected to its immediate upstream event in275

the order they appear in the timetable. With the origin and destination nodes

GZN and CBN, respectively, in this structure, events occur in a fixed sequence

j → j+1, where j = 1, 2, ..., n−1, and n is the total number of events in a train

12



  

Figure 4: Scatter plot of all arrival vis-á-vis departure delay instances.
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Figure 5: BN structure obtained by the hill-climbing heuristic.
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run. In other words, every local node j is conditioned only on the most recent

node j − 1, where j − 1→ j is the newly performed operation. In probabilistic280

reasoning, this means that the arrival (departure) time distribution of a train

at each station is a function of the departure (arrival) time distribution of the

most recent performed operation.

The architecture of the third proposed BN model, named hybrid BN model

and denoted as HB, is based on the structure obtained by the heuristic hill-285

climbing method and the structure of the primitive linear, which is then refined

using domain knowledge and the expert judgments about the sequence of sta-

tions and the relationships between consecutive train operations. More specifi-

cally, we investigated the network structure obtained from the heuristic method

and found out that each arrival (departure) node at the network is connected di-290

rectly to its immediate upstream departure (arrival) event i.e., j → j+1. This is

similar to the sequence of events in the primitive linear model as well. However

in the heuristic BN structure (HB), most of the arrival (departure) events were

connected to their second previous arrival (departure) event, i.e., j− 1→ j + 1.

This was in line with our preliminary knowledge that a train when coming to295

(or departing from) a station, it would inhere a propagated arrival (departure)

delay from the last visited station. In addition, it can possibly incur a newly

formed delay during its most recent operation. As depicted in Figure (5), most

of the arrival (departure) events were connected to their second previous arrival

(departure) event. Moreover, the heuristic structure has some nodes with more300

than two parents; however, we could not find any generalizable logic behind

this. Overall, the main idea underlying the hybrid structure is to distinguish

between the delay propagated from upstream operations and the delay due to

most recent (newly) performed operation in the prediction process. We note

that this can be generalized to the similar problems in the other networks.305

Figure (6) depicts the graphical representation of the hybrid BN structure

with the origin and destination nodes GZN and CBN, respectively. In this struc-

ture, events occur in a fixed sequence j → k and j → k+1 and k → k+1, where

k = j+1, j = 1, 2, ..., n−1, and n is the total number of events in a train run. In

14



  

Figure 6: (Color online) Schematic representation of the hybrid BN architecture; station-level
arrival and departure events are connected through running and dwelling activities along with
the propagated delay links; for example “aQY” and “QYd”, respectively, stand for arrival (at)
and departure (from) station “QY”.

other words, except for the first and last nodes, every local node is conditioned310

on the two most recent nodes, where j → k is the newly performed operation re-

sulting in event k, and j → k+1 accounts for the propagated delay from previous

operations. In probabilistic reasoning, this means that the arrival (departure)

time distribution of a train at each station is a function of two components: the

process time distribution of all previous operations, and the predicted process315

time of the most recently performed operation. More explicitly, the former part

casts the superposition (propagation) of delays and the latter term considers

the chance of having a newly formed delay. In this representation, each node

has only a small number of parameters to estimate, compared to the complex

structure obtained by the heuristic hill-climbing method.320

To estimate the parameters while avoiding over fitting, the proposed BN

structures were trained and evaluated using the k -fold cross-validation method.

We compared the predictive performance of the proposed BN models using the

gold standard cross-validation method with ten runs of 10-fold cross-validation.

15
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Figure 7: Ten runs of 10-fold cross validation of HC, PL and Hybrid BN structures; median
points are connected.

The results are presented in Figure (7), where the Log-likelihood loss value325

(average prediction error) of each BN structure is provided in box plots. The

value of the loss function for each BN structure shows that the PL structure is

not as good as the HB structure. Especially, the whiskers of the hybrid structure

are lower than the respective whiskers of the PL, as well as the outliers, meaning

that hybrid BN structure outperforms PL structure in terms of robustness, and330

that HC is the worst of the three. Indeed, the results show that the Log-

likelihood loss of hybrid structure is about 44 with a standard deviation of 1.23.

Therefore, we selected the hybrid structure as the prediction model to evaluate

against the real-world benchmark data.

5. Performance Evaluation335

To investigate how the predictions from the proposed model match with

the real-world benchmark data, we performed the following series of analyses.

Firstly, a comparison of the real and predicted arrival and departure delay

16



  

distributions for each station is provided in Figures (8) and (9). Moreover,

in Figure (10) the scatter plots of the observed vs. the predicted values for340

arrival and departure delays are presented. From these results, we can see that

the predictions match well with observations, both for arrival and departure

events. Especially, in the interquartile range, the whiskers and the right tail

match closely between these figures for each station. Moreover, as can be seen

in Figure (10), the majority of predictions are close to the depicted diagonal345

lines for both arrival and departure events. This indicates that the predictions

are satisfactorily close to the observed one.

(a) Real Arrival Delays (b) Predicted Arrival Delays

Figure 8: Comparison of predicted and observed arrival delay distribution for different sta-
tions.

Secondly, prediction errors are measured using three criteria, namely, the

MAE, ME and RMSE as defined in Equations (2)-(4). These errors are calcu-

lated for predicted arrival and departure delays at each station s ∈ S.350

MAEs =

∑n
i=1 |psi − osi |

n
, (2)

RMSEs =

√∑n
i=1(psi − osi )

2

n
, (3)

MEs =

∑n
i=1 p

s
i − osi

n
. (4)

17



  

(a) Real Departure Delays (b) Predicted Departure Delays

Figure 9: Comparison of predicted and observed departure delay distribution for different
stations.

(a) Arrival Delays (b) Departure Delays

Figure 10: Scatter plots of actual vis-á-vis predicted arrival and departure delays.

where, psi , and osi are, respectively the predicted and observed delay values

for ith arrival or departure events at station s, and n is the total number of

observations. These measures quantify the average deviation of the predictions

from the observed values. The closer these measures are to zero, the better is

the model’s performance level. All three measures for the predicted arrival and355

departure delays for all of the stations are presented in Figure (11). We can see

that the prediction errors are very low. For example, the mean absolute pre-

diction error for all predicted events is around 30 seconds, while the maximum

prediction absolute error is less than 90 seconds. Moreover, RMSE for both

18



  

predicted arrival and departure delays are less than two minutes, which are rel-360

atively larger than the MAE suggesting the existence of a few outlier prediction

errors. These findings support the prediction power of the proposed model.

(a) Arrival Delays

(b) Departure Delays

Figure 11: (Color online) Magnitude of prediction errors in terms of MAE, ME and RMSE
for different stations.

In Section (4), we found that the average loss over ten runs of 10-fold cross

validation is about 44%. In other words, the predictions from HB matches in

56% of the times with observations, which is not satisfactorily high for our pur-365

poses. This is, mostly, due to the fact that the prediction space is discrete.

To overcome this problem, we employed discretization to transfer the contin-

uous variables to bins (intervals) for prediction and inference purposes. By

discretization, we can use quantitative and qualitative factors to measure the

model’s predictability. We considered bins with three minutes width as the370
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prediction intervals. Our choice of three minutes intervals was obtained from

domain knowledge that late arrivals of less than 90 seconds are not considered

as delays. We note that as the width of intervals increases the predictions accu-

racy will increase, since each prediction will have a higher probability of falling

within the corresponding interval. However, this causes our predictive model375

to resemble a randomized prediction scheme. Next, each actual and estimated

value of delay events, respectively, is assigned to the bin it lies within. The

predicted bin is then compared with the true one obtained from the actual ob-

servation, using confusion (error) matrix measures for binary classification as

represented in Table (1).380

Table 1: Schematic of a confusion matrix with bins for observed and predicted delays.

Bins Predictions

Observations
No. of True Positive (TP) No. of False Negative (FN)
No. of False Positive (FP) No. of True Negative (TN)

Accuracy =
No. of TP Cases

Total No. of Cases
, (5)

Sensitivity =
No. of TP Cases

(No. of TP Cases) + (No. of FN Cases)
, (6)

Specificity =
No. of TN Cases

(No. of FP Cases) + (No. of TN Cases)
. (7)

The confusion matrix provides different performance measures, such as Ac-

curacy, Sensitivity and Specificity for evaluating the predictions (Sokolova &

Lapalme, 2009). We restate the definitions of these measures in Equations (5)-

(7) as they are applied to our work. The results of Accuracy, Sensitivity and385

Specificity measures are depicted in Figure (12). The Accuracy measure in-

dicates the overall effectiveness of predictions, that is, whether the BN model

passes the minimum requirements. We obtained overall accuracy to be over
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Figure 12: (Color online) Prediction power in terms of Accuracy, Sensitivity and Specificity.

80%, with a no information rate of 58%. The overall accuracy needs to be higher

than the no-information rate for the model, and this occurs for the proposed390

model. Sensitivity (True Positive Rate, or Recall) measures the proportion of

cases that are correctly identified, which in our case is the percentage of bins

that are correctly identified; it is more than 60% on average over all stations.

Finally, Specificity (True Negative Rate) represents how effectively the proposed

BN model avoids the wrong predictions. An alternative to no information rate395

is the Kappa statistic, which is illustrated through the use of a confusion ma-

trix. This statistic shows the overall agreement between the observed accuracy

against an expected accuracy (random chance), which generally means it is less

misleading than simply using accuracy as a metric. This statistic takes values

between -1 and 1. An absolute Kappa value of 1 shows a complete agreement400

while a value of zero shows complete disagreement. Kappa statistics higher than

30% are considered acceptable. For the presented BN, we found the Kappa value

to be 69%, which confirms that the prediction strength of the proposed model

is substantial (Landis & Koch, 1977).

A prediction instance is shown in Figure (13). The presented time-space405
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diagram shows the planned (grey) paths, the predicted train paths (orange),

the realized (green) train paths in space and time. As can be seen in the first

half of this figure (on the left side), all the predictions are close to the respective

actual observed operations until the CZW station, after which the prediction

error starts to grow. This is because of the error accumulation which could be410

addressed fairly easily in real-world operation as predictions could be updated

using real-time data (e.g., arrival time at the preceding station, the position of

the corresponding train along the track and the adjusted timetable).

We finally turn to the computational aspect of the proposed prediction

model. Overall, the computational time used for training and testing of the415

proposed model did not exceed ten minutes, which is not computationally time

intensive.

Figure 13: (Color online) Time-distance diagram of planned, predicted and realized train
paths.

6. Concluding Remarks

The research presented in this paper employs Bayesian reasoning to con-420

struct a delay prediction model for train operations. Three different candidate
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BN structures were trained and tested using the gold standard k -fold cross val-

idation method against historical train operation data. The results indicated

that a hybrid heuristic BN structure, built upon naive and heuristic struc-

tures and refined by domain knowledge and experts judgments, can achieve a425

higher prediction performance, compared to other structures. Using real-world

benchmark data, different performance comparison measures indicated that the

hybrid BN structure performs satisfactorily in predicting train delays. Indeed,

the proposed model was shown to have significant performance in terms of accu-

racy, sensitivity and specificity measures. Specifically, the proposed model can430

achieve over 80% accuracy for a 60-minute prediction horizon.

The proposed BN model distinguishes between two different delay elements

in the train operations, namely, propagated delay and a possible delay in the

current operation. This property is expected to be important to ensure that

the model is able to be generalized well from the training data of the specific435

HSR line to any data from other HSR lines. Moreover, the proposed model

has two main advantages: (a) it is simple, which makes it interpretable and

computationally efficient, and (b) it incorporates the interrelationships of causal

factors and superposition of arrival and departure delay components. These

properties allow the proposed model to incorporate various specific variables,440

such as online traffic condition parameters, causes of delay, and quantitatively

compute and capture route conflicts. It is expected that the prediction error

could be reduced if the spatiotemporal properties of each track section are also

included in the prediction model.

Our future research includes extensions of the proposed model to integrate445

online traffic data to support delay management and passenger information

systems by providing predictions about delays. This research aims to provide a

tool that runs online contingency scenarios. To create such a contingency tool,

we need decision support tools that can learn over time with new operation

data, and then inform the affected passengers and propose optimum dispatching450

decisions in case of necessary changes due to delays. The HB reported here is

central to that aim.
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A Hybrid Bayesian Network Model for Predicting Delays in Train Operations 

Research Highlights 

 

 Three different Bayesian network structures are introduced to tackle the complexity and 

superposition nature of delays in train operations. 

 Train operation data is used to learn the BN structures under the golden standard k-fold cross 

validation method.  

 The outperforming heuristic-based structure is elaborated as a hybrid BN delay prediction model. 

 The hybrid BN model is tested against real-world data using different performance measures. 


