
Embedded Systems Security:
On EM Fault Injection on RISC-V

and BR/TBR PUF Design on FPGA

by

Mahmoud A. Elmohr

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2020

c© Mahmoud A. Elmohr 2020

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

With the increased usage of embedded computers in modern life and the rapid growth
of the Internet of Things (IoT), embedded systems security has become a real concern.
Especially with safety-critical systems or devices that communicate sensitive data, security
becomes a critical issue. Embedded computers more than others are vulnerable to hardware
attacks that target the chips themselves to extract the cryptographic keys, compromise
their security, or counterfeit them.

In this thesis, embedded security is studied through two different areas. The first is
the study of hardware attacks by investigating Electro Magnetic Fault Injection (EMFI)
on a RISC-V processor. And the second is the study of the countermeasures against
counterfeiting and key extraction by investigating the implementation of the Bistable Ring
Physical Unclonable Function (BR-PUF) and its variant the TBR-PUF on FPGA.

The experiments on a 320 MHz five-stage pipeline RISC-V core showed that with the
increase of frequency and the decrease of supplied voltage, the processor becomes more
susceptible to EMFI. Analysis of the effect of EMFI on different types of instructions
including arithmetic and logic operations, memory operations, and flow control operations
showed different types of faults including instruction skips, instructions corruption, faulted
branches, and exception faults with variant probabilities. More interestingly and for the
first time, multiple consecutive instructions (up to six instructions) were empirically shown
to be faulted at once, which can be very devastating, compromising the effect of software
countermeasures such as instruction duplication or triplication.

This research also studies the hardware implementation of the BR and TBR PUFs on
a Spartan-6 FPGA. A comparative study on both the automatic and manual placement
implementation approaches on FPGA is presented. With the use of the settling time as
a randomization source for the automatic placement, this approach showed a potential to
generate PUFs with good characteristics through multiple trials. The automatic place-
ment approach was successful in generating 4-input XOR BR and TBR PUFs with almost
ideal characteristics. Moreover, optimizations on the architectural and layout levels were
performed on the BR and TBR PUFs to reduce their footprint on FPGA.

This research aims to advance the understanding of the EMFI effect on processors,
so that countermeasures may be designed for future secure processors. Additionally, this
research helps to advance the understanding of how best to design improved BR and TBR
PUFs for key protection in future secure devices.

iii

Acknowledgements

First and foremost, I would like to express my sincere appreciation to my supervisor,
Professor Catherine Gebotys. Without her guidance and support, this thesis would not
have been possible.

Many thanks to Professor Nachiket Kapre for his insights and advice at the early stages
of the PUF design.

I also sincerely appreciate the time and effort spent by the thesis review committee,
Professor Hiren Patel and Professor Kshirasagar Naik.

Thanks are extended to my labmates: Bahareh Sadrabadi, Haohao Liao, Karim Amin,
Mahmoud Khalafallah, and Mustafa Faraj for the encouragement and their friendship.

Special recognition to Mahmoud Khalafallah for the fruitful collaboration on the PUF
research and to Haohao Liao for laying the groundwork for the EMFI research. Their
valuable discussions and the experience they shared contributed significantly to the thesis
progress.

Finally, I would like to express my gratitude to my parents Aly Elmohr and Nagwa
Elbedawy, and my sister Alaa Elmohr for their endless love and support.

iv

Dedication

This thesis is dedicated to my parents, for they have always believed in me, supported
me, and the reason I have reached this point in my life.

v

Table of Contents

List of Tables x

List of Figures xi

Glossary xiii

Abbreviations xiv

1 Introduction 1

1.1 Motivation . 1

1.2 Research Goals . 4

1.3 Thesis Organization . 5

2 EMFI Background and Related Work 6

2.1 Physical Attacks . 6

2.2 Relevant Fault Injection Techniques . 7

2.2.1 Clock glitching . 7

2.2.2 Voltage glitching . 8

2.2.3 Micro-probing . 8

2.2.4 Optical fault injection . 8

2.3 Electro Magnetic Fault Injection . 9

2.4 EMFI Previous Research . 11

vi

3 PUF Background and Related Work 14

3.1 Physical Unclonable Functions . 14

3.2 Relevant PUF Architectures . 15

3.2.1 SRAM PUF . 15

3.2.2 RO PUF . 16

3.2.3 Arbiter PUF . 16

3.3 BR and TBR PUFs . 18

3.4 XOR PUFs . 20

3.5 Strong PUFs Characteristics . 20

3.6 BR/TBR PUFs Previous Research . 22

4 EMFI Experimental Setup 27

4.1 EMFI Setup . 27

4.1.1 Hardware . 28

4.1.2 Software . 30

4.1.3 EM Pulse Characteristics . 30

4.2 The Target Device . 32

5 EMFI Experiments and Results 34

5.1 Identifying the Best Spot for EMFI . 34

5.2 Examining the Various Conditions for EMFI 38

5.2.1 Effect of the Clock Frequency . 38

5.2.2 Effect of the Supplied Voltage . 38

5.3 Timing Analysis of the Target Instruction 41

5.3.1 Measuring Execution Time on Different Memories 41

5.3.2 Identifying the Best Position For the Target Instruction 43

5.4 Faulting Multiple Instructions . 47

5.5 Analysis of Faulted Instructions . 52

vii

5.5.1 Arithmetic and Logic Operations 54

5.5.2 Memory Operations . 55

5.5.3 Flow Control Operations . 58

6 XOR BR/TBR PUFs Design on FPGA 62

6.1 Overall System Architecture . 63

6.2 PUFs Evaluation Metrics . 65

6.3 BR/TBR PUFs Realizations on FPGA . 67

6.3.1 BR PUF Realization on FPGA . 67

6.3.2 TBR PUF Realization on FPGA 68

6.4 Implementation Approaches . 68

6.4.1 Automatic Placement Approach . 69

6.4.2 Manual Placement Approach . 71

6.5 Implementation of the 4-input XOR BR PUF 73

6.6 Implementation of the 4-input XOR TBR PUF 76

7 Conclusion 79

7.1 Summary . 79

7.2 Discussion . 81

7.3 Contributions . 83

7.4 Future Work . 84

References 85

APPENDICES 92

A BR/TBR PUFs Codes 93

A.1 MUX Module . 93

A.2 DE-MUX Module . 94

viii

A.3 Original Single BR PUF Stage Module . 95

A.4 Optimized Single BR PUF Stage Module 96

A.5 BR PUF Top Module . 97

A.6 Original Single TBR PUF Stage Module 98

A.7 Optimized Single TBR PUF Stage Module 99

A.8 TBR PUF Top Module . 100

ix

List of Tables

5.1 Number of faults injected for each loop iteration in Code 5.1. Pulse ampli-
tude = 170 V, VDD = 1.8 V and frequency = 320 MHz 41

5.2 Instructions formats and descriptions for arithmetic and logic operations . 54

5.3 Faults analysis for arithmetic and logic operations 55

5.4 Instructions formats and descriptions for memory operations 56

5.5 Faults analysis for memory operations . 57

5.6 Instructions formats and descriptions for control flow operations 58

5.7 Faults analysis for unconditional jump operations 59

5.8 Faults analysis for conditional branch operations 61

6.1 LFSR taps for different PUF sizes . 65

6.2 Automatic placement approach PUF characteristics 69

6.3 Automatic placement approach PUF characteristics with selected settling
times . 70

6.4 Manual placement approach PUF characteristics 71

6.5 4-input XOR BR PUF characteristics . 74

6.6 4-input XOR BR PUF modeling accuracy on Chip-1 using SVM and deep
learning [33] [34] . 75

6.7 4-input XOR TBR PUF characteristics . 77

6.8 4-input XOR TBR PUF modeling accuracy on Chip-1 using SVM and deep
learning [33] [34] . 78

x

List of Figures

3.1 SRAM cell . 16

3.2 RO PUF architecture [69] . 17

3.3 Arbiter PUF architecture with 128 stages [69] 17

3.4 Even ring of inverters [13] . 18

3.5 BR PUF with 64 stages [13] . 19

3.6 TBR PUF with 64 stages [57] . 20

3.7 XOR PUF . 21

4.1 EMFI hardware setup . 28

4.2 Probe tip over the chip . 29

4.3 BPS-201 client GUI . 31

4.4 EM pulse characteristics . 32

4.5 SiFive board . 33

5.1 Shmoo plots for the number of faults injected over the chip using different
EM pulse amplitudes and resolutions. Keeping frequency = 320 MHz and
VDD = 1.8 V . 37

5.2 Shmoo plots for the number of faults injected over the chip using different
frequencies. Keeping pulse amplitude = 170 V and VDD = 1.8 V 39

5.3 Shmoo plots for the number of faults injected over the chip using different
supplied voltages and frequencies. Keeping pulse amplitude = 170 V . . . 40

5.4 Execution time of 100 NOPs using different memory configurations 43

xi

5.5 Timing analysis for target instruction positioning and corresponding types
of faults injected. Pulse amplitude = 170 V, VDD = 1.8 V and frequency
= 320 MHz . 46

5.6 Histogram for the number of ADD instructions skipped at once. VDD =
1.8 V and frequency = 320 MHz . 50

6.1 Mojo Board . 63

6.2 PUF Ecosystem . 64

6.3 Galois Linear-Feedback Shift Register . 64

6.4 BR PUF Schematic and Layout on FPGA 67

6.5 TBR PUF Schematic and Layout on FPGA 68

6.6 Manual Placement Layout on FPGA for 64-bit BR PUF 72

6.7 Optimized BR PUF Schematic and Layout on FPGA 73

6.8 Straightforward and Optimized TBR PUF Layouts on FPGA 76

xii

Glossary

CNC machine Computer Numerical Control Machine: a motorized maneuverable tool
which is controlled by a computer 27, 29, 30, 34

JTAG Joint Test Action Group: an industry standard for verifying designs and testing
printed circuit boards after manufacture 30, 35

RISC-V An open source Instruction Set Architecture (ISA) based on the Reduced In-
struction Set Computer (RISC) principal 2, 4, 13, 30, 33, 34, 46, 52, 79, 81, 83,
84

SPICE Simulation Program with Integrated Circuit Emphasis: a general-purpose, open-
source analog electronic circuit simulator used in integrated circuit design to predict
circuit behavior 22

VDD Voltage Drain Drain: refers to the positive operating voltage of a field effect semi-
conductor device 27

xiii

Abbreviations

AES Advanced Encryption Standard 1, 2, 11, 12, 82

ALU Arithmetic Logic Unit 52

ANN Artificial Neural Network 23, 24

ASIC Application Specific Integrated Circuit 22, 23

BHT Branch History Table 33

BR Bistable Ring 3–5, 14, 15, 18–20, 22–26, 62, 64, 67–70, 73–77, 79, 80, 83, 84

BSPs Board Support Packages 30

BTB Branch Target Buffer 33

C.NOP Compressed No Operation 41, 44–47, 52, 55, 57, 59, 61

CAD Computer Aided Design 67, 73

CRPs Challenge-Response Pairs 15–17, 20–23, 25, 26, 65, 75, 77, 83

DTIM Data Tightly Integrated Memory 33

ECC Elliptic Curve Cryptography 2, 82

EEPROM Electrically Erasable Programmable Read-Only Memory 6, 14

EM Electro-Magnetic 2, 4, 7, 9–12, 27, 28, 30, 31, 34–36, 38, 41, 43, 45–47, 49, 51, 52, 79,
81–83

xiv

EMFI Electro-Magnetic Fault Injection 2, 4–7, 9–13, 27, 38, 39, 49, 52, 79–84

FIA Fault Injection Attack 2, 3, 13

FPGA Field-Programmable Gate Array 3–5, 11, 19, 22, 23, 25, 62–64, 67–69, 71, 73, 76,
79, 80, 83, 84

FSM Finite State Machine 63, 64

GPIO General Purpose Input Output 32, 43

GUI Graphical User Interface 30

HDL Hardware Description Language 67, 68, 83

IC Integrated Circuit 3, 14

IO Input Output 32, 81

IoT Internet of Things 1

ISA Instruction Set Architecture 2

ITIM Instruction Tightly Integrated Memory 33, 41–43

LFSR Linear-Feedback Shift Register 63

LR Linear Regression 20

LUT Look Up Table 62, 67, 68, 71, 73, 76, 80

MPSoC Multi-Processor System on Chip 3

PAC Probably Approximately Correct 24

PC Program Counter 58

PC Personal Computer 27, 29, 30, 63–65

PDA Personal Digital Assistant 1

PEM Photon Emission Microscopy 6

xv

PLL Phase-Locked Loop 27, 32

POK Physically Obfuscated Key 14

PUF Physical Unclonable Function 3–5, 14–26, 62–70, 73–77, 79, 80, 83, 84

QFN Quad Flat No-leads 32

QSPI Quad Serial Peripheral Interface 32

RAM Random Access Memory 12, 14

RAS Return Address Stack 33

RO Ring Oscillator 14–16, 18

RSA Rivest–Shamir–Adleman 2, 82

RTL Register Transfer Level 13, 80, 84

SCA Side-Channel Attack 2, 3

SDK Software Development Kit 30

SHA-3 Secure Hash Algorithm 3 2

SoC System on Chip 3, 32

SPI Serial Peripheral Interface 32, 33

SRAM Static Random Access Memory 6, 14, 15, 18

SVM Support Vector Machine 20, 25, 26, 73, 75–77

TBR Twisted Bistable Ring 3–5, 14, 15, 19, 23–26, 62, 64, 67, 68, 73, 76, 77, 79, 80, 83,
84

UART Universal Asynchronous Receiver-Transmitter 63

USB Universal Serial Bus 27, 29, 30, 32, 63

xvi

Chapter 1

Introduction

This chapter presents the motivation behind this research in Section 1.1, states the goals
of the thesis in Section 1.2, and finally goes through the thesis organization and gives a
summary of each chapter in Section 1.3.

1.1 Motivation

From cars to digital cameras, MP3 players, digital watches, cell phones, pacemakers, and
traffic light controllers, embedded computers increasingly saturate our lives. Many modern
embedded systems such as Personal Digital Assistant (PDA), sensors, routers, and smart
cards handle and communicate sensitive data, which makes their security a serious issue.
Also, embedded devices are used in safety-critical systems such as automotive systems and
medical care devices, making it very crucial to secure such systems [50]. Especially with
the growth of the Internet of Things (IoT), more of the embedded devices are connected
to the internet which imposes more vulnerabilities and scales up the number of possible
attack vectors [37].

Computer security has been extensively researched in terms of goals and solutions.
The main security goals could be outlined as confidentiality, data integrity, authentication
and availability [77]. Cryptographic primitives such as symmetric-key ciphers, public-key
ciphers, and one-way hash functions were introduced to help achieve the aforementioned
security goals. Furthermore, protocols relying on combinations of these primitives can
provide end-to-end security if designed carefully. With extensive research on logical attacks
and cryptanalysis, standards and cryptosystems such as Advanced Encryption Standard

1

(AES) [68], Rivest–Shamir–Adleman (RSA) [51], Elliptic Curve Cryptography (ECC) [44]
and Secure Hash Algorithm 3 (SHA-3) [19] as well as best practices for protocols were
provided to make such logical attacks almost infeasible.

However, for embedded systems, more concerns arise due to their limited resources and
the unprotected environments they operate in [50]. Thus, embedded systems are not only
susceptible to software logical attacks. Embedded devices are more susceptible to physical
attacks: a different kind of attack that operates on the physical hardware, exploiting the
system implementation to breach its security. Such attacks can compromise the aforemen-
tioned standards that are expected to be secure against logical attacks. Examples can be
found in [60], [23] and [47] attacking AES, RSA and ECC respectively.

Physical attacks can be passive, referred to as a Side-Channel Attack (SCA), where
an attacker exploits the unintentional leakage from the device such as timing information,
power consumption, heat radiation, Electro-Magnetic (EM) emissions or even sound. Pas-
sive SCA can be used to learn about the computations performed on the device while
running the target cryptographic algorithm, and eventually may be used to recover the
cryptographic keys [1]. Physical attacks can also be active as in Fault Injection Attack
(FIA), where an attacker tries to influence the device to make a computational error.
Such computational errors can lead to bypassing some security checks or creating new
side-channels [1], which makes FIA more dangerous and powerful than SCA.

FIA can be launched using different techniques; Some are simple and inexpensive such as
clock glitching and voltage glitching. These FIAs might be capable of skipping instructions
or corrupting them, resulting in loading or storing faulty data in corrupted addresses [6].
However, typically the glitching effect is global, thus an attacker may not be able to address
specific registers or specific areas of the chip. Also, access to the power line or clock line
needs to be provided. Some other FIA can be complex and provide a local effect such as
micro-probing, optical fault injection and Electro-Magnetic Fault Injection (EMFI). While
micro-probing and optical fault injection can be very precise and powerful, they require
the decapsulation of the chip package to gain direct access to the silicon die, which is a
sophisticated process with the risk of damaging the chip [29]. The fact that EMFI does
not require package decapsulation nor requires access to any pins or lines of the chip makes
it a very powerful FIA technique. For that reason, this research focuses on EMFI attacks
on a RISC-V microprocessor. The reasoning behind choosing RISC-V as a target is being
a new open-source Instruction Set Architecture (ISA), which is gaining a lot of interest in
academia and industry recently, and it has never been studied for EMFI attacks as per our
knowledge.

2

Physical attacks can be very powerful. They can enable an attacker to skip authenti-
cation routines using FIA, and recover encryption keys with the help of SCA. But what
is more devastating is that in some attacks, an attacker can even directly readout crypto-
graphic keys stored in memories [69], which is a huge security breach. To face this threat, a
new cryptographic primitive referred to as a Physical Unclonable Function (PUF) was in-
troduced recently to overcome the key storage problem [27]. With the use of this primitive,
instead of storing keys in memory, keys can be derived using physical one-way functions.

A PUF briefly is a physical one-way function that is practically infeasible to replicate.
Two instances of the same PUF are expected to yield independently random responses
(outputs) to the same challenges (inputs). Silicon PUFs, which are the most widely pro-
posed architectures of PUFs, exploit the slight intrinsic variations during the Integrated
Circuit (IC) fabrication as their source of randomness. Thus, they are practically infeasible
to clone even with the knowledge of the architecture [9].

The most important advantage of silicon PUFs is that they provide an easy to realize
PUF implementation on silicon chips, eliminating overheads required to interface the PUF
to the chip. This helped PUFs to gain the interest not only of researchers but also industry.
PUFs are now provided by many companies such as Intrinsic ID [32] and eMemory [22],
and incorporated in several hardware platforms including Microsemi [43] SmartFusion2
System on Chip (SoC) Field-Programmable Gate Array (FPGA), NXP [48] SmartMX2
P60 family of secure controllers, Intel [31] Stratix 10 SoC FPGA and Xilinx [73] Zynq
Ultrascale+ Multi-Processor System on Chip (MPSoC).

Generally, there are two main types of silicon PUFs: delay-based PUFs which depend
on the delay measurements of a signal traversing two long symmetric paths controlled
by the challenge bits, and memory-based PUFs which leverage the bi-stability nature of
closed-loop circuits to generate responses [42]. Delay-based PUFs have the advantage of
the large challenge-response space, while it suffers from the vulnerability against modeling
attacks. However, memory-based PUFs are resilient against modeling attacks but lack the
large challenge-response space. The Bistable Ring (BR) PUF introduced in [13] tries to
get the best of both worlds by merging both delay-based PUFs and memory-based PUFs
approaches to create a stronger PUF with a large challenge-response space, yet, resilient
to modeling attacks. This newly introduced architecture alongside with its variant, the
Twisted Bistable Ring (TBR) PUF [57] are very promising due to their characteristics.
Hence, the motivation for this thesis to also investigate their application approaches on
FPGA and their associated challenges.

3

1.2 Research Goals

In this masters thesis, two different research projects are presented: the first discusses
EM fault injection on a RISC-V processor, and the other investigates the implementation
approaches of BR and TBR PUFs on FPGA.

• The research goals of the EMFI part are outlined as follows:

1. Developing a deeper understanding of the EMFI attacks and their capabilities
on the state of the art RISC-V processor.

2. Examining the conditions under which the processor is more susceptible to
faults.

3. Exploring the possibility of faulting multiple instructions at once.

4. Analyzing the fault injection effect on different types of instructions (logical,
arithmetic, memory operations, branches, and jumps).

• For the PUF part, the research goals are summarized below:

1. Investigating the BR and TBR implementations on FPGA.

2. Exploring different FPGA layout approaches such as manual placement and
automatic placement and their effect on PUFs characteristics.

3. Optimizing both PUFs on architecture level and layout level to reduce utilized
area.

4. Implementing 4-input XOR BR and TBR PUFs with good characteristics to
serve as a base for launching more advanced modelling attacks, since the 4-
input XOR BR PUF was not successfully modeled yet according to literature.

4

1.3 Thesis Organization

The rest of this thesis is organized as follows:

Chapter 2 provides an introduction to physical attacks and their types, it discusses
fault injection techniques, with more emphasis on EMFI. Finally, it summarizes the pre-
vious research conducted on EMFI.

In Chapter 3, the PUF principals and characteristics are explained. The different
types of PUF are briefly illustrated with more details on the BR PUF family. Also, a
literature review is provided summarizing BR and TBR PUF related work.

Chapter 4 describes the EMFI experiments setup. It gives details on the hardware
components and the software components used, as well as illustrates the target development
board and its underlying processor.

In Chapter 5 the EMFI experiments and their results are explained in detail. The
chapter includes the different experiments, alongside with the codes used, as well as the
results of each experiment.

Chapter 6 illustrates the BR and TBR implementations on FPGA and discusses their
characteristics. The chapter describes the overall system architecture, and the ecosystem
designed to accommodate the PUFs. It also depicts the metrics used to evaluate the
PUFs characteristics. Details on the BR and TBR implementations on FPGA, the layout
approaches and the optimizations performed to reduce the PUFs size are also provided.

Finally Chapter 7 concludes the paper by summarizing its experiments and results,
listing the main contributions and providing further research directions.

Since the thesis is compromised of two different research works, road maps for readers
who are interested in only one part are presented as follows:

• For the EMFI part: Chapter 2 provides the background and summarizes the literature
review. Then Chapters 4 and 5 illustrate the EMFI experiments setup and results
respectively. And finally Chapter 7 provides the conclusion for both parts.

• For the PUF part: Chapter 3 presents the background and lists the previous research.
Then Chapter 6 details the PUF implementations on FPGA and their characteristics.
And similarly Chapter 7 concludes both parts.

5

Chapter 2

EMFI Background and Related Work

In this chapter an introduction to physical attacks and their types is provided in Section 2.1.
The chapter also explains fault injection attacks and their techniques in Section 2.2 with
more emphasis on EMFI in Section 2.3. Finally, the related work is listed in Section 2.4.

2.1 Physical Attacks

Physical attacks can be classified as invasive, semi-invasive and non-invasive according to
their degree of physical penetration and access to the chip [4].

• Invasive attacks involve not only decapsulating the package of the chip but also
getting physical access to the chip internals and even more sometimes include altering
the chip’s physical structure. An example of this type of attack is micro-probing
attacks, which use microscopic needles onto the internal wiring of a chip; enabling it
to inject faults or readout data buses revealing memory content [36].

• Semi-invasive attacks require decapsulating the chip but do not physically access
the die neither modifies the circuitry. An example of this type is Photon Emis-
sion Microscopy (PEM) which uses photon emissions associated with the switch-
ing of transistors to observe the data processed inside semiconductor chips. With
this ability, data stored in Static Random Access Memory (SRAM), Electrically
Erasable Programmable Read-Only Memory (EEPROM) and Flash memories can
be extracted [65].

6

• Non-invasive attacks as the name indicates, do not physically alter the chip nor
its packaging. EMFI could be considered non-invasive if the packaging is not decap-
sulated. EMFI utilizes EM pulses directed to the chip inducing current that changes
the processor’s transistors states. These changes can cause instructions skips or cor-
ruptions leading to skipping authentication routines or recovering keys with some
additional analysis [18].

Another classification is based on the attacker’s role in the execution of the crypto-
graphic modules into passive and active attacks.

• Passive (side-channel) attacks in which the attacker only analyzes the physical
leakage from the executing device while running the cryptographic module, to learn
about the computations performed and recover cryptographic keys. The source of
leakage could be the device’s power consumption, EM emission, or time variations [1].

• Active (fault injection) attacks in which the attacker actively manipulates the
device running the cryptographic module, causing computational errors that can be
used to skip authentication routines or to create other side-channel leakages. The
techniques used to cause faults include clock glitches, laser beams, and EMFI [6].

2.2 Relevant Fault Injection Techniques

As explained earlier, fault injection is the process of intentionally influencing an electronic
device’s behavior to deviate it from its proper functionality [29]. In fault injection attacks,
these intentional faults are used to breach the system’s security with some knowledge of
the system being attacked.

Different techniques can be used to achieve fault injection. In this section the most
common techniques are briefly explained including clock glitching, voltage glitching, micro-
probing and optical fault injection, while EMFI is explained in detail in Section 2.3.

2.2.1 Clock glitching

Clock glitching relies on the modification on the clock signal of the target device for a fixed
period to cause faults. In this method, the attacker increases the clock frequency to fall
below the critical path of the circuit, causing incorrect data writes to registers [29].

7

Different kinds of faults can be injected such as instructions being corrupted or skipped,
corrupted data being loaded to memory or registers or corrupted addresses being used for
memory operations or jump instructions [6]. The clock glitch effect depends on which
registers are affected by that critical path violation.

Clock glitching is one of the easiest to deploy techniques, but also one of the easiest to
countermeasure by adding extra circuitry to detect and control the clock behavior.

2.2.2 Voltage glitching

Voltage glitching similarly relies on increasing or decreasing the voltage supplied to the
device above or below the threshold for a fixed period of time to cause faults [7].

This technique can cause behavioral changes to the circuit as registers might fail to hold
their values, or when voltage is decreased logic levels might not be raised to the correct
values and get interpreted wrongly [1]. Also, short variations in supplied voltage known as
spikes can cause other types of faults affecting memory and code flow [79].

2.2.3 Micro-probing

In the micro-probing method, tiny needles called probes are placed on internal signal lines
on the die. The probes can be used to read and observe the internal signals which might be
used as a side-channel, or even data buses can be readout revealing memory content [36].
Micro-probing can also be used for fault injection, as the probes can be used to overwrite
the internal signals permanently or at a specific time during execution [66].

One disadvantage of micro-probing is being invasive, meaning that the chip has to be
decapsulated and often further modified using focused ion beam systems to access the
internal signals. Also, countermeasures detecting the probes are promising and effective.

2.2.4 Optical fault injection

Optical fault injection exploits the fact that transistors are vulnerable to photons. With
the use of strong laser beams, an attacker can switch on or off transistors [1]. Since laser
beams are very narrow compared to standard light, precise targeting to specific transistors
is feasible [70].

8

The precision provided by the optical fault injection attack makes it very powerful,
allowing the attacker to manipulate the instruction itself by flipping specific bits in the
instruction register during the fetch stage and change the target instruction into another.
However, the disadvantages include the possible requirement of chip decapsulation as well
as the higher risk of damaging the chip if the laser energy is high [1].

2.3 Electro Magnetic Fault Injection

EMFI is the use of electromagnetic induction to alter the functionality of the device. The
attacker uses an EM probe to generate a magnetic flux that is responsible for inducing
a current in the target device, which alters the device operation. This method of fault
injection is more localized than the glitching techniques and less invasive than optical or
micro-probing approaches since often decapsulation is not required.

According to the Maxwell-Faraday equation, varying a current in a ring-shaped con-
ductor generates a magnetic field and vice versa. The intensity of the magnetic field B in
a ring-shaped conductor with radius R and current I in vacuum is calculated according to
Equation 2.1. Where µo is the magnetic constant and µr is the magnetic permeability of
the material that the magnetic field is passing through.

B =
µoµrI

2R
(2.1)

Which could be formulated for a one loop coil as in Equation 2.2 according to [29].
Where b is the radius of the coil and z is the distance from the plane of the coil.

B =
µrIb

2

2(b2 + z2)
3
2

(2.2)

Then the magnetic flux across a surface plane with an area A can be calculated by
Equation 2.3. Where θ is the angle between the surface plane and the coil plane.

φB = BAcos(θ) =
µrIb

2Acos(θ)

2(b2 + z2)
3
2

(2.3)

9

Similarly, according to the Maxwell-Faraday equation, varying a magnetic field gen-
erates a potential across a loop conductor and induces current that depends on the time
derivative of the magnetic flux as in Equation 2.4.∮

E.dl = − d

dt

∫∫
B.dS (2.4)

In summary, to apply EMFI a variant current should be applied using an EM probe to
generate magnetic flux. The variation in current could be harmonic as a sinusoidal signal
or a transient pulse. The magnetic flux generated by the probe tip would induce a current
in the target device to influence its operation.

To maximize the current induced in the device, the time derivative of the magnetic
flux should be maximized. Thus, the shorter the rise time of the EM pulse the higher
the derivative, hence the higher the induced current. Also, to maximize the magnetic flux
itself, which in turn affects its time derivative and the induced current, the parameters in
Equation 2.2 should be considered by:

• µr: Making the probe tip from a material with a high magnetic permeability.

• I: Increasing the current of the pulse.

• θ: Placing the probe tip to be perpendicular to the target chip to make θ = 0, thus
cos(θ) = 1.

• z: reducing the distance between the probe tip and the target chip.

10

2.4 EMFI Previous Research

Since the introduction of the EMFI concept, many studies on EMFI have been reported in
the literature studying its behavior on different targets and exploiting EMFI for practical
attacks. In [17] Dehbaoui et al. applied EMFI on AES implementations on both 8-bit
AVR Atmega-128 and a Xilinx Spartan-3 FPGA. Experiments on the AVR microcontroller
showed faults on the various AES rounds, some of the faults depend on the cipher-text and
some are constant. The occurrence rate of the faults was found to be positively correlated
with the EM pulse amplitude, reaching a success rate of 100% for a pulse amplitude of 100
V. It was also observed that a negative spike in the power supplied to the target occurs
upon applying the EM pulse. However, the authors related the faults behavior of their
experiments to a similar behavior observed in [6] on the same target responding to clock
glitching. Thus, it was concluded that the EMFI caused timing violations similar to the
clock glitching effect.

The experiments on the hardware implementation of AES on FPGA showed variant
faults depending on the location of the probe tip over the chip. Which shows a local
effect in contrast to the global effect caused by clock glitching. The authors explained that
local behavior by assuming the possibility of having multiple sub-critical paths that can be
affected depending on the probe location. To verify their hypothesis, a countermeasure was
implemented on the FPGA implementation to monitor the data path delay and activates an
alarm signal when timing constraints are violated. However, according to the experiments
performed on different locations on the chip for multiple rounds, only 10% of the faults
injected was accompanied by the trigger of the alarm signal. Moreover, more than 95% of
the triggered alarm signals were false alarms without any faults injected.

In [49] Ordas et al. discussed the effectiveness of the delay fault model introduced in [17],
and extended it with the sampling fault model. The experiments conducted on both Xilinx
Spartan-3E FPGA and ARM cortex M4 microcontroller showed that to induce a fault, there
are two EM power thresholds: VLow and VHigh. When an EM pulse above VHigh is produced
at any time, bit-set or bit-reset faults are injected, which complies with the previous delay
fault model. More interestingly, if the EM pulse is below VHigh but above VLow, faults can
be injected only if the pulse is produced just before the occurrence of the rising clock edge
or more precisely during the sampling window of the registers. The increased susceptibility
of the chips for EMFI near the rising edge supports the sampling fault model, as if the
delay fault model was correct, faults would have been injected regardless of the timing of
the EM pulse.

11

In [40], Liao et al. proposed the charge-based fault model. The experiments conducted
on a PIC16F687 microcontroller complied with the sampling fault model introduced in [49]
in the sense that the microcontroller is susceptible before the rising edge of the clock.
However, when the clock frequency was reduced, the fault injection was not possible.
Moreover, with these lower clock frequencies, faults could be injected when the supplied
voltage to the microcontroller is decreased below the nominal value.

The explanation provided by the authors is that considering a node charging from 0
to 1 logic levels, with slow clock frequency a maximum amount of charge is built up on
the capacitors at that node. In that case, the EM pulse would not be able to reduce
a sufficient amount of charge on that node to change its level to 0. However, with faster
clock frequencies, the charge would be accumulated for a short time resulting in less charge
being accumulated, which can be affected by the EM pulse. Similarly, with reduced voltage
supplied to the target, the capacitance would charge slower resulting in a less accumulated
charge during the clock period, making it possible for the EM pulse to affect that charge
and change it to 0.

The paper also discussed the effect of the EMFI on the PIC16F687 microcontroller
and the instruction replacements with their corresponding probabilities. Also, an attack
on AES to retrieve its key was demonstrated by exploiting the fault on the XORWF
instruction which is used to XOR the key byte with the AES state.

Cui et al. in [16] discussed the use of the second-order EMFI attacks. Unlike first-order
EMFI attacks which are directed towards the target to introduce deterministic faults,
second-order EMFI attacks are directed towards other components interacting with the
target, such as memories and system interconnects.

The authors applied a second-order EMFI on an ARM processor to defeat a TrustZone-
based secure boot implementation. The attack relies on corrupting the data in the Random
Access Memory (RAM) which contains the secure boot code, causing the secure boot to
enter a fault condition that starts executing the debug command-line interface. Accessing
the debug command line allows the attacker to modify the TrustZone memory and execute
an arbitrary code bypassing the secure boot.

In summary, different studies on EMFI have been reported in the literature. Different
fault models have been introduced such as the delay fault model in [17], the sampling
fault model in [49], and the charge-based model in [40]. Moreover, other researchers have
applied EMFI in attacking real applications such as secure boot [16], and AES [40].

12

The EMFI attacks were proposed targeting different microcontroller architectures in-
cluding PIC [40], AVR [17] and ARM [49]. In these studies injected faults involved single
instruction skips, single instruction corruption or caused exceptions. EMFI has never been
studied on the RISC-V architecture in the literature although some research papers estab-
lished emulation framework for FIA on RISC-V in [20], launched an FIA simulation on the
Register Transfer Level (RTL) of a RISC-V core in [39], and proposed countermeasures for
the RISC-V architecture to resist possible FIA in [72]. However, these studies are based
on simulations with no empirical results, and are not specific to EMFI.

13

Chapter 3

PUF Background and Related Work

This chapter provides an introduction to silicon PUFs and classifies their types in Sec-
tion 3.1. It also goes through the different PUFs architectures in Section 3.2, with more
emphasis on BR and TBR PUFs in Section 3.3. The XOR PUF is illustrated in Section 3.4
followed by a discussion on the characteristics required for a strong PUF in Section 3.5.
And finally, the previous research is discussed in Section 3.6.

3.1 Physical Unclonable Functions

PUFs have been introduced in the last 15 years as promising primitives acting as die-specific
random functions. Such primitives can be used for authentication and cryptographic key
generation without the need for storing keys in secure EEPROM or battery-packed RAM.
Since the introduction of silicon PUFs in [27], many architectures have been introduced
in the literature, providing different techniques to extract randomness from the intrinsic
variations during the IC fabrication [9]. These architectures can be classified into two main
groups according to their challenge-response space into strong and weak PUFs [55].

• Weak PUFs have few fixed challenges, sometimes just a single challenge. This
type of PUFs can also be called a Physically Obfuscated Key (POK) [28], since
they are mainly used for internal key derivation. Although POKs or weak PUFs are
harder to read out using invasive attacks compared to digital storage in non volatile
memory, the secret keys are still susceptible to side channel attacks as in any physical
cryptosystem [67]. Examples for weak PUFs would be: the SRAM PUF [30] and the
Ring Oscillator (RO) PUF [69].

14

• Strong PUFs have a very large challenge-response space. The challenge-response
space should be too large to readout all the corresponding Challenge-Response Pairs
(CRPs) in a feasible time. The CRPs ideally should be independent and complex
in a way that no adversary can drive unknown CRPs from a set of known ones.
Thanks to their large CRPs space, strong PUFs can be used for authentication using
challenge-response protocols.

A basic procedure would work as follows: a trusted third party reads out a large
number of CRPs for each device and save them to a database. When authentication
is needed, the verifier sends challenges to the device and compares the responses
received to the ones stored in the database [57].

Strong PUFs however, are susceptible to machine learning modelling attacks, which
makes constructing a practical strong PUF very difficult and considered to be still
an open problem [53]. Examples for strong PUFs would be: the arbiter PUF [41]
and the BR PUF [13].

3.2 Relevant PUF Architectures

Different architectures have been introduced to implement PUFs. In this section, the most
popular architectures are explained such as the SRAM PUF, the RO PUF and the arbiter
PUF, while the BR and TBR PUFs are explained in detail in Section 3.3

3.2.1 SRAM PUF

The SRAM PUF [30] utilizes the fact that an SRAM cell upon power-up would be randomly
initialized to 0 or 1 without any write operation. As shown in Figure 3.1, an SRAM cell can
be viewed as two cross-coupled inverters. When no power is applied, the output of both
inverters Q and Q is 0. When power is applied, both inverters try to pull up their outputs
to 1. Which puts the cell in a metastable state since the inverters are cross-coupled. But
practically, due to mismatches between transistors, one inverter would have a stronger pull-
up than the other and the cell will tend to stabilize storing 0 or 1 depending on the process
variation per each cell. Since the random process variations at the time of manufacturing
are random, and hence is cell-specific, SRAM cells can be used as PUFs.

15

Bit LineBit Line

Word Line

QQ

Figure 3.1: SRAM cell

3.2.2 RO PUF

The RO PUF [69] is based on measuring the frequencies of digital oscillator circuits. The
architecture depicted in Figure 3.2 consists of multiple instances of a ring oscillator, each
is built using an odd number of inverters in a ring. The uncontrollable process variation
causes inverters to have slightly different delays. This variation in gates delays in each
ring oscillator causes each to have a different frequency slightly deviating from the design
value. Two frequency counters, as well as a comparator, are used to produce the response
of 0 or 1 depending on which ring oscillator has a higher frequency. To accommodate
challenges, two multiplexers are introduced to feed the frequency counters the outputs of
two instances out of the multiple instances exist. The RO PUF’s challenge-response space
is not considered large though, as from N instance of ring oscillators only

(
N
2

)
CRPs can be

produced, which is equivalent to N(N−1)
2

. However, many of these pair-wise comparisons
are redundant, resulting in only a maximum of independent log2N ! CRPs available for N
instances, which is is not large, making RO PUF to still be considered a weak PUF [53].

3.2.3 Arbiter PUF

The arbiter PUF [41] is one of the first introduced architectures for strong PUFs. The
idea behind the arbiter PUF is basically to establish a race between two symmetric digital
paths. A step signal is applied to both paths and an arbiter circuit at the end of both
paths determines which path is faster and outputs the response bit accordingly. Again
the uncontrollable process variation in silicon would make the delay of both paths slightly

16

Figure 3.2: RO PUF architecture [69]

different, favoring one path on another. To incorporate challenges, the architecture in
Figure 3.3 is used by implementing the two paths as a chain of switch blocks controlled
by the challenge bits. The switch block, which could be realized using two multiplexers,
is basically a circuit that connects two input signals to its two outputs, by either crossing
the inputs or traversing them straight. This architecture has the advantage of having
exponential CRPs. For N switch blocks, 2N CRPs can be produced. However, as delays of
each stage is independent and accumulative, the arbiter PUF could be considered a linear
structure, which makes it easily modeled [53].

Figure 3.3: Arbiter PUF architecture with 128 stages [69]

17

3.3 BR and TBR PUFs

The BR PUF combines the elements of the RO PUF and the SRAM PUF with an expo-
nential challenge response space similar to the Arbiter PUF. Its conceptual idea is based on
the fact that a ring of even number of inverters eventually converges to only two possible
stable states. To illustrate more, consider the ring of eight inverters in Figure 3.4. If the
inverters are initialized to all 0s, then each inverter will try to force its output to be 1. If all
inverters managed to do so, then all inverters’ inputs will become 1s, and each inverter will
try to force its output to be 0. But all 0s or all 1s states are not stable as they contradict
with the functionality of the inverters, which can only be stable in two states ”01010101”
or ”10101010”. As the inverters form a feedback loop, they affect each other, and since
practically it is impossible to have identical inverters, these slight variations between them
will cause some of the inverters to have more drive than others causing oscillations until
they eventually reach one of the two stable states or don’t stabilize in a reasonable time.

Figure 3.4: Even ring of inverters [13]

The described even ring is considered a weak PUF as it gives only one response, with no
challenges introduced. In order to have a strong PUF out of this weak PUF, the architec-
ture in Figure 3.5 is used. For each inverting stage in the ring, there is a block containing
two inverters instead of one, associated with a MUX and a DE-MUX controlled by a chal-
lenge bit to select which inverter contributes to the ring. To accommodate initialization,
the inverters are replaced with either NOR gates or NAND gates with one of the inputs
connected to a reset signal. This way all the inverters could be reset and initialized to 0
simultaneously before the PUF action takes effect. With this architecture, with N stages

18

of the mentioned inverting block associated with N-bit challenges, there would exist 2N

different rings each should ideally yield to an independent and random response. The 1-bit
response is usually the output of one inverting stage after a fixed time.

Figure 3.5: BR PUF with 64 stages [13]

Another variant for the BR PUF was introduced in [57] as the TBR PUF. In the BR
PUF, depending on the challenge bits, one inverter contributes to the ring and the other
is not utilized. However, in the TBR PUF both inverters are utilized while the challenge
bits determine the position of the inverter whether it will be in the forward path or the
backward path as shown in 3.6.

The main advantage of the BR PUF is being similar to the delay-based PUFs by
having a very large challenge-response space, but also its architecture is actually behaving
as memory-based PUFs which are resilient to machine learning modeling attacks. So it is
expected that the BR PUF would also be resistant to machine learning modeling attacks
as well since there is no known mathematical model for the BR PUF as claimed by its
developers [13].

However, BR PUF implementations on FPGA were reported to have particular bits of
the challenges to have larger influence on the responses than other challenge bits [75] [25]
leading to the success of some modelling attacks against both BR and TBR PUFs as
in [57], [75] and [25].

19

Figure 3.6: TBR PUF with 64 stages [57]

3.4 XOR PUFs

To make PUFs more resilient against machine learning modeling attacks, the PUF’s re-
sponse could be obfuscated by XORing multiple PUF instances’ outputs as depicted in
Figure 3.7 to produce a final response. Which adds non-linearity to the system, making
modeling attacks more difficult [69].

While XOR PUFs showed more resistance against modeling attacks, however, in [56], 4
and 5-input XOR arbiter PUFs with 64 and 128-bit challenges were attacked using Linear
Regression (LR). Also in [74] 3-input XOR 32-bit and 64-bit BR PUF were modelled using
Support Vector Machine (SVM). However, the attack failed to model 4-input XOR BR
PUFs and even 3-input XOR BR PUFs with challenge bits more than 64.

3.5 Strong PUFs Characteristics

A strong PUF should achieve three main properties: reproducability, unpredictability and
uniqueness [53] [12].

• Reproducability of a PUF is to have, with a high probability, similar responses
resulting from the same challenges when measured at different times under possi-
bly varying operating conditions. This is an intra-chip property which means it is
defined per each PUF instance considering its own CRPs. A strong PUF should
be reproducible or otherwise the responses would be noisy, making it unreliable for
authentication purposes.

20

PUF PUFPUF

Challenge

Final Response

ResponseResponse

Response

Figure 3.7: XOR PUF

• Unpredictability is the fact that the responses are expected to be random in rela-
tion to the challenges. Even with the knowledge of some CRPs of a PUF instance,
unobserved responses should remain sufficiently random with no way to predict them
through their corresponding challenges. Unpredictability is also an intra-chip prop-
erty applying to each PUF instance individually. It is very important for a PUF to
be unpredictable, or an adversary will be able to model the PUF with the knowledge
of some CRPs, enabling the adversary to clone the PUF and compromise authenti-
cation.

• Uniqueness is the capability of identifying each PUF instance from a set of PUF
instances that have gone through the same manufacturing process. This requires that
responses resulting from the same challenges on different PUF instances should be
dissimilar with high probability. Unlike reproducibility and unpredictability, unique-
ness is an inter-chip property defined over the class of all PUF instances. Uniqueness
is the property that actually makes such architectures be called PUFs by providing
an identity and fingerprint to each chip.

21

3.6 BR/TBR PUFs Previous Research

The BR PUF was introduced by Chen et al. in [14] as a promising candidate for strong
PUFs. The bistable ring consisting of an even number of inverters was introduced as a
weak PUF, however, with introducing the architecture depicted in Figure 3.5 a strong
PUF with exponential CRPs is established. FPGA implementations were used to show
the quality of the BR PUF. Experiments were run on eight Xilinx Virtex-II Pro FPGA
boards, implementing 32, 64, 128-bit BR PUFs. However, no details were mentioned on
the layout used for implementing the PUF.

To measure stabilization, the ring state was examined 28 times at different time points,
resulting in an average settling time over the eight boards of 5.26 µs, 10.78 µs and 23.09
µs to reach 90% of stabilized responses for the 32, 64 and 128-bit BR PUFs respectively.
However, the maximum settling time among the eight chips were reported to be 8.44 µs,
22.25 µs and 37.20 µs for the 32, 64 and 128-bit BR PUFs respectively.

The implementation of the 64-bit BR PUF showed a very low inter-chip hamming
distance of 14.8% which is far away from the ideal value of 50%. However, a good intra-
chip hamming distance of 0.8% was reported. The interesting finding in this paper is that
the responses with short settling times were found to be more reliable, however, constant
among different chips. while responses with long settling times showed more uniqueness of
the chip but less reliable. Therefore suggesting to use only the CRPs with longer settling
times (between 35 µs and 47 µs) as a simple solution to achieve better identification.

Since the paper in [14] relied on FPGAs to show the characteristics of the BR PUF,
which seemed to be layout biased. A sequel in [15] by Chen et al. used transistor-level
SPICE simulations to further investigate the BR PUF characteristics. The simulations
used the nominal process variation, mismatch and noise models from industry to predict
the characteristics of an Application Specific Integrated Circuit (ASIC) implementation of
the BR PUF. Due to the relatively large number of transistors of one BR PUF stage (16
transistors) and the fact that the BR PUF is a loop structure, simulations were very slow,
thus only a 32-bit implementation was used.

Based on experiments on 15 instances, the results show that 90% of the responses
stabilize in 2.315 µs. Inter-chip hamming distances ranging from 35.7% to 67.6% with a
50.9% average were reported, which is acceptable as the ideal value is 50%. Also, intra-chip
hamming distance ranging from 0.2% to 3.0%, with an average of 1.3% were reported with
the use of ten different sets of random transient noise in the simulations.

22

Unlike the results presented in [14], the settling time of responses didn’t affect the
uniqueness of the PUF with the ASIC simulation, but uniqueness is presented through
all settling times. These results show that the BR PUF actually has the potential of a
strong PUF despite the biased characteristics experienced in [14] which might have been
an FPGA implementation issue.

In [76], Yamamoto et al. tried to propose methods for evaluating the predictability of
PUF responses inspired by differential and linear cryptanalysis, and applied these methods
on the BR PUF. The paper tries to investigate the correlation between the responses gen-
erated by challenges that have small hamming distance as well as the correlation between
the responses generated by challenges whose particular bits are forced to be 1 or 0.

The experiments run on four Xilinx Spartan-6 FPGAs with custom layout showed that
88% of the challenges with only 1 bit of hamming distance lead to the same response which
is a very huge percentage. This percentage decreases with the increase of the challenges
hamming distance to reach 66.5% when 16 bits are different which is still not negligible.
This correlation allows an attacker to predict unknown responses from some known CRPs
given small hamming distances between the challenges. However, this correlation tends to
be less for the CRPs with longer settling time, being 68.1% when only 1 challenge bit is
different and only 55% when 16 bits are different.

Another type of correlation reported was that some NOR gates have a larger influence
on the responses than others. It was observed that five particular bits in the challenge
being fixed with some values lead to a probability of 71.4% of having a response of 1.
Other combinations of four bits in the challenge can lead to a probability of around 69% of
the responses being 1. The influence decreases with the number of bits combined reaching
54.5% for particular single bits. These correlations also make unknown responses more
predictable using a set of known CRPs if the influential bits are figured out.

In [58], Schuster et al. introduced the TBR PUF as an alternative implementation
of the BR PUF, along with analysis using Artificial Neural Network (ANN) on FPGA
implementations of both BR and TBR PUFs. The 64-bit PUFs implemented on 20 different
Digilent NEXYS boards with Xilinx Spartan-6 FPGA showed noise ranging from 2% to
19% and bias deviation ranging from 18% to 48% for the BR PUF. However, for the
TBR PUF the noise was reported to range from 7% to 23% with a bias deviation ranging
from 1% to 38%. An interesting note is that while for the TBR PUF the instances are
distributed among both characteristics, meaning that some good TBR PUF instances exist,
for example one having moderate noise of 9% and low bias of 1% as well. However, for the

23

BR PUF the instances with low noise have very high bias deviation, and those with lower
bias deviation have very high noise. These results showed biased BR PUF implementations,
however for TBR PUFs some were biased and some were not. But this is not enough to
say that TBR PUFs are better than BR PUFs since these results are specific to these
implementations and show bias anyway.

The neural network used to analyze both PUFs consisted of 64 input neurons repre-
senting the 64 bits of the challenge in addition to another bias neuron constantly set to
1. The input layer was fully connected to the output layer which consists of two neurons
representing a one-hot encoding since it is a classification problem with 0 or 1 outputs.
Five-fold cross-validation was used for the learning process. The results of this modelling
attack yielded to a successful linear approximation for both BR and TBR PUFs with learn-
ing errors ranging from 0% to 20% for both PUFs. The main difference is that for the
BR PUF the majority of instances (14 instances) were approximated with learning errors
below 10%. However, for the TBR PUF the majority of instances (16 instances) were
approximated with learning errors above 10%. Which might indicate that the presented
TBR PUF implementations show better performance against machine learning linear ap-
proximation than the presented BR PUF implementations. However, that does not give
any superiority of the TBR PUF over the BR PUF, since their presented implementations
showed favorable characteristics of the TBR PUF from the first place, which as commented
before is more of a layout bias specific to their implementation.

Interestingly, it was found after the training of the neural networks that there were
no patterns on the weights of each of the input neurons except for the weight of the bias
neuron, meaning that the ANN acted naively relying mainly on the bias regardless of the
challenge bits values. Which makes sense for this case since the PUFs implementations
were biased to begin with.

Ganji et al. in [25] and its extension [24] aimed to provide a provable framework for ML
attacks against PUFs even those without a known mathematical model. As an example,
the papers apply their technique on the BR and TBR PUF family being claimed not to have
a know mathematical model [14]. The paper in [25] starts by showing theoretically that for
all PUFs when presented as Boolean functions, it holds that their degree as F2-polynomial
is greater than one. Leading to the conclusion that not all challenge bits have an equal
influence on the PUF responses, thus could be Probably Approximately Correct (PAC)
learned. While the phenomenon of having particular influential bits has been observed
in many previous implementations, but this paper provided a mathematical proof of the
existence of such influential bits that holds for every PUF.

24

Further experiments were conducted on BR and TBR PUFs implementations on Altera
Cyclone IV FPGAs. Using 30000 CRPs, it was found that in all instances, at least one
influential bit existed, while the maximum number of influential bits (the combination of
bits in a pattern that gives 100% probability of response being 1 or 0) is fixed, being only
5 for 64-bit BR and TBR PUFs. The characteristics of the implemented PUFs were not
detailed, only it was mentioned that they were originally highly biased thus different manual
placement and routing configurations were applied without describing any. However, it is
worth mentioning that in this work the authors took the PUFs’ readings at different points
of time, and if responses were not the same for all times, they were considered unstable.
While one can argue that BR PUFs are known to have a period of time till stabilization.
And according to the previous work [14] [76], they showed that the CRPs with short settling
times are actually biased due to the implementation layout, while the ones with long CRPs
are the ones exhibiting the uniqueness of the PUF. Thus, excluding the CRPs with long
settling times raises doubts about the accuracy of the resulted data.

Applying three different weak learner models (monomials, decision trees, and decision
lists) boosted with the adaptive boosting algorithm, with training sets of 100 and 1000
CRPs of total 30000 CRPs, the authors were able to demonstrate successful modeling for
both BR and TBR PUFs with variant accuracy. Results showed that without boosting,
decision lists were able to predict the BR PUF behavior with 67.24% and 84.59% with the
use of 100 and 1000 training set sizes respectively. Decision lists also were able to predict
the implemented BR PUFs with higher accuracy of both 74.84% and 84.34% with the use
of 100 and 1000 training set sizes respectively. With the help of the boosting algorithm,
the accuracy increased dramatically reaching 98.32% for the BR PUF with 50 boosting
iterations using 1000 CRPs as a training set. As well as reaching 99.37% for the BR PUF
with the same parameters.

These results show that the implemented BR PUF is more resistant than the TBR
PUF against the modelling attacks which contradicts with the data presented in [58],
which as previously mentioned is mainly an implementation bias. And there is no evidence
in the literature that either BR or the TBR PUF is better than the other since all the
implementations in the literature are FPGA based, which cannot be fully symmetric and
with no bias.

The work in [74] by Xu et al. evaluated the BR and TBR PUFs using SVM. Moreover,
it introduced the XORing of multiple PUF instances’ outputs to enhance the security as
well as the uniformity of the BR PUF. The intuition behind their modeling attack is that
the BR PUF’s response could be predicted as a summation of weights corresponding to
each stage. The weight of each stage could be represented as the difference between the

25

pull-up strength and the pull-down strength of each NOR gate. If the sum of all stages’
weights is positive then that would yield to a response of 1, otherwise, it would be a
response of 0. Using that model with SVM of a linear kernel and applying that on BR
PUF implementations of different sizes (32, 64, 128 and 256 bits) on 8 Xilinx Spartan-6
FPGA boards, successful modelling exceeding 95% prediction accuracy was performed on
all PUF sizes. To reach 95% of prediction accuracy, 780 CRPs were needed as a training
set in the case of 32-bit BR PUF. Similarly, 1350, 2400 and 6000 CRPs were needed to
achieve 95% prediction accuracy on 64, 128 and 256-bit BR PUFs respectively.

The authors showed that the TBR PUF could be predicted using the same model, and
applied the same attack reaching 95% prediction accuracy using only 420, 750, 1250 and
2700 CRPs as training sets for the 32, 64, 128 and 256-bit TBR PUFs respectively. Which
seems even easier than modelling the BR PUF.

As results on both BR and TBR PUFs, showed that individual instances are not secure,
the authors proposed XORing multiple PUF instances’ outputs to obfuscate the individual
PUF responses and add some non-linearity, inspired by the same approach on the arbiter
PUF. The same modeling attack was performed on XORed BR PUFs using SVM but
this time with polynomial kernel corresponding to the number of instances XORed. The
modeling attempt was only successful on 2-input XOR of 32, 64 and 128-bit PUF sizes,
failing on the 256-bit size. And succeeded as well on 3-input XOR only with 32 and 64-bit
PUF sizes, failing on both 128 and 256-bit sizes. And never succeeded with 4-input XOR
of any size. Which shows a real improvement on the BR PUF security.

Not only improvement on the PUF’s security but also an improvement on the PUF’s
bias was observed. As reported, the single PUFs were highly biased having the best two
instances with 40% and 60% bias, while the rest of the instances are above 70%. However,
after XORing, the bias gets nearer to the ideal value of 50%. For example, all 4-input
XOR PUFs had biases between 40% and 60%. Reaching around 50% with 8-input XOR.
Despite these improvements, the drawback of the XOR PUF was the increased noise since
if one PUF instance is not stable then the XORed value will not be stable too. Thus, an
increased noise over a single BR PUF.

In summary, the BR PUF was introduced in [14] as a promising architecture, followed
by the introduction of its variant the TBR PUF in [58] to improve its characteristics.
Several modelling attacks in [76], [58], and [25] revealed the presence of specific challenge
bits that have more influence on the PUF response than others. The XOR BR PUF was
studied in [74] and showed that 4-input XOR BR PUFs are resilience against modelling
attacks.

26

Chapter 4

EMFI Experimental Setup

This chapter goes through the setup used for the EMFI experiments, its hardware compo-
nents, software components, and the EM pulse characteristics in Section 4.1. In addition,
more information about the target processor is provided in Section 4.2.

4.1 EMFI Setup

As shown in Figure 4.1, the EMFI station utilizes a burst power station, an EM probe, a
probe tip, a CNC machine, an oscilloscope, a power supply, the target board and a Personal
Computer (PC).

The burst power station controlled by the PC generates a low-rise-time voltage pulse
to the EM probe which generates an EM pulse delivered by the probe tip placed over the
target chip. To control the timing of the generated pulse, prior to the target instruction,
the target processor sends a trigger signal to the burst power station which responses with
the pulse after a specific delay. The oscilloscope is used to measure the delay from the
trigger to the pulse, the delay’s jitter as well as the pulse rise time. The CNC machine
worked as a movable XYZ stage to place the probe tip over the target chip. To control the
supplied voltage, the voltage regulator in the target board was removed and the core’s VDD
pin was connected to the power supply. For frequency control, the on-chip Phase-Locked
Loop (PLL) was used to provide frequencies up to 384 MHz. The PC also interfaces with
the target board via Universal Serial Bus (USB) for code upload and debugging.

27

Figure 4.1: EMFI hardware setup

4.1.1 Hardware

A detailed description of each hardware component is as follows:

• EM pulse generation system:

The burst power station BPS-201 along with the ICI probe from Langer EMV-
Technik [38] form the EM pulse generation system that is able to generate EM pulses
with amplitude ranging from 130 V to 180 V and a minimum delay between two
consecutive pulses of 100 µs. The system can generate pulses with a fixed frequency
or upon a trigger signal, which is the mode used.

• EM probe tip:

A 1 mm in diameter home-made probe tip is attached to the EM probe and placed
approximately 200 µm over the chip as displayed in Figure 4.2

28

Figure 4.2: Probe tip over the chip

• Power supply.

The 1687B power supply from BK Precision [10] comes with the feature of remote
access using USB, which was beneficial for experiment automation by controlling the
voltage supplied to the core using scripts on the PC side.

• Oscilloscope

The RTH-1002 handheld digital oscilloscope from Rohde & Schwarz [54] is a two
Channel, 60-MHz oscilloscope, with an acquisition rate of up to 50000 waveforms per
second and 5G sample per second sampling rate.

• CNC machine

The Nomad 883 Pro from Carbide 3D [11] is a low-cost CNC machine with a resolu-
tion of .0005 in (0.0127 mm).

29

4.1.2 Software

To control the hardware components and to facilitate experiment automation, three com-
ponents on the PC side were involved: BPS-201 client Graphical User Interface (GUI) to
control the EM pulse generation system, Freedom E SDK as a tool-chain for the target
and scripts to automate the whole process.

• BPS-201 client GUI:

Langer EMV-Technik provides BPS-201 client GUI to control its BPS-201 system.
The software allows for many parameters to be configured, such as pulse voltage,
pulse polarity, external trigger activation, and trigger-to-pulse delay.

For all experiments conducted in this research, the parameters shown in Figure 4.3
were fixed, except for the pulse voltage. The single pulse mode was used with positive
polarity for the pulse. The external trigger was enabled on the rising edge, while
choosing the minimum trigger delay of 130 ns, which is the delay from the trigger to
the pulse sent to the probe, not accounting the delay caused by the probe itself.

• Freedom E SDK:

Freedom E SDK is a Linux-based Software Development Kit (SDK) developed by
SiFive [61] to facilitate building and uploading RISC-V codes to its supported plat-
forms. It uses RISC-V GNU tool-chain beside Board Support Packages (BSPs) de-
signed for its platforms, alongside with scripts and makefiles for builds and uploads.

• Automation scripts:

Python scripts were designed to control the CNC machine and power supply via USB
as for each experiment’s requirements. Also, Bash scripts were used to modify the
codes if needed, build and upload them to the target. Bash scripts were also used to
reset the target every run and retrieve the content of the register file of the target
after every run using JTAG.

4.1.3 EM Pulse Characteristics

It is very important to measure the characteristics of the pulse generated by the probe,
to better understand its the effect on the faults injected and the corresponding timing
analysis.

30

Figure 4.3: BPS-201 client GUI

The oscilloscope was used with channel one connected to the trigger signal from the
target processor, and channel two connected to the EM probe. All measurements were
taken with a pulse voltage of 170 V and a trigger delay of 130 ns.

As Figure 4.4a shows, the average delay from the trigger to the pulse out of the probe
is 290 ns. Unfortunately, the delay actually ranges from 284 ns to 296 ns due to the 12
ns jitter created by the system as displayed in Figure 4.4b. The delay measurements were
taken from the time the trigger signal reached 50% of its amplitude to the time the pulse
signal reached 50% of its amplitude.

Figure 4.4c shows the rise time of the pulse signal from 10% to 90% of its amplitude to
be 7 ns. However, the rise time would be 12 ns if measured from 5% to 95% of the signal’s
amplitude as in 4.4d.

31

(a) Delay from trigger to pulse (b) Pulse jitter

(c) Rise time 10%-90% (d) Rise time 5%-95%

Figure 4.4: EM pulse characteristics

4.2 The Target Device

For the experiments conducted in this research, HiFive1 Rev B development board from
SiFive [61] was used. The board shown in Figure 4.5 features SiFive’s FE310-G002 chip as
the main SoC, beside a 32-Mbit (8-MB) Serial Peripheral Interface (SPI) flash memory, as
well as a Segger J-Link OB module [59] which bridges USB to JTAG [64].

The FE310-G002 chip is built around an E31 core complex, a General Purpose In-
put Output (GPIO) complex, in addition to a dedicated Quad Serial Peripheral Interface
(QSPI) controller to interface with the flash memory with an execute-in-place mode, as
well as a clock generation module containing a programmable PLL. The 48-pin chip is fab-
ricated in TSMC CL018G 180 nm process and packaged in a Quad Flat No-leads (QFN)
package. It uses 1.8 V to supply the core and 3.3 V for the Input Output (IO) pads [63].

32

Figure 4.5: SiFive board

The E31 core on FE310-G002 is a high-performance single-issue in-order execution
five-stage pipeline processor. The five stages are: instruction fetch, instruction decode and
register fetch, execute, data memory access, and register writeback. The core supports
standard Multiply, Atomic, and Compressed RISC-V extensions (RV32IMAC ISA) [62].

The core features a 16-KB Data Tightly Integrated Memory (DTIM) as well as a 16-KB
two-way set-associative L1 cache. The instruction cache can be configured to have one way
as an Instruction Tightly Integrated Memory (ITIM). Since fetching an instruction from
ITIM takes only one clock cycle, the same as an instruction cache hit, ITIM is considered
a more predictable and a higher performance instruction fetch option compared to fetching
from the flash memory via SPI. However, for the DTIM the access latency from the core
is two clock cycles for full words [63].

For improved performance, the core contains a branch prediction hardware which com-
prises a 28-entry Branch Target Buffer (BTB) which predicts the address of taken branches,
a 512-entry Branch History Table (BHT) which predicts if a conditional branch is to be
taken or not, and a six-entry Return Address Stack (RAS) which predicts the address of
functions/routines returns. With this additional hardware, a correctly predicted control-
flow instruction has no misprediction penalty, however, a mispredicted one will incur a
three-cycle penalty [63].

33

Chapter 5

EMFI Experiments and Results

Five different types of experiments were performed on the RISC-V core. In this chapter, a
detailed illustration of the experiments is provided, as well as their results. The objectives
of these experiments are as follows:

1. To identify the best location over the chip where faults are more likely to be injected,
which is detailed in Section 5.1.

2. To examine the various conditions such as supplied voltage and clock frequency on
the faults susceptibility, as illustrated in Section 5.2.

3. To perform timing analysis on when to trigger the EM system for faults to be injected,
which is discussed in Section 5.3.

4. To explore if many instructions can be faulted at once, as depicted in Section 5.4.

5. To analyze the effect of the fault injection on individual instructions, which is pro-
vided in Section 5.5.

5.1 Identifying the Best Spot for EMFI

To identify the best spot over the chip to inject faults, a scan over the chip using the CNC
machine holding the probe tip was performed, and the numbers of faults injected per spot
were recorded as developed in [40].

34

The code used for this experiment as illustrated in Code 5.1 is based on a main loop that
iterates for 10 times. For each iteration, the EM system trigger is asserted and multiple
ADDI instructions are performed. The window of the ADDI instructions (300 instructions)
is large enough so that regardless of the accurate timing of the applied EM pulse, one of
the instructions should be exposed to the EM pulse. If one of the instructions is faulted,
then the final sum will be different from the expected correct sum, hence an injected fault
is detected. Another scenario could be that the faulted instruction is corrupted causing an
exception, which is detectable as well by the exception routine. By the end of the program,
register x19 should contain one of the following three values:

• 0xAA: which means no fault was injected

• 0xBB: which means sum is not correct, thus a fault was successfully injected.

• 0xCC: which means there was an exception raised causing the processor to enter the
trap vector. Exceptions could be due to invalid instructions or invalid addresses.

After each run, the JTAG is used to halt the processor and access all the general-purpose
registers to be logged in files for further analysis.

Code 5.1: Test program to capture any fault injected to any of multiple ADDI instructions

main:

#Initializations

li x22 ,10 #Number of rounds for the main loop 10

addi x19 ,x0 ,0x99 #Initializes Error Code to be 0x99

#Main Loop

LOOP:

li x16 ,301 #Correct Sum

li x17 ,1 #Initializes x17 to be 1

(Assert the trigger) #Sets an IO to assert the trigger

addi x17 ,x17 ,1

.

.

(300 times in total)

.

35

.

addi x17 ,x17 ,1

sub x14 ,x16 ,x17 #x14=x16 - x17

bne x14 ,x0 ,FAULT #If x14 not 0, jump to FAULT

(De -Assert the trigger) #Clears an IO to de-assert the trigger

addi x22 ,x22 ,-1 #Decrements rounds counter by 1

bne x22 ,x0 ,LOOP #keeps in loop until counter is 0

#No Fault Injected

NO_FAULT:

addi x19 ,x0 ,0xAA #Error Code 0xAA for no fault

j NO_FAULT

#Fault Injected

FAULT:

addi x19 ,x0 ,0xBB #Error Code 0xBB for fault injected

j FAULT

#Exception Fault

early_trap_vector:

csrr x5 ,mcause #Exception code for the exception cause

csrr x6 ,mepc #PC when the exception took place

csrr x7 ,mtval #The corrupted instruction/address

addi x19 ,x0 ,0xCC #Error Code 0xCC for exception fault

j early_trap_vector

Utilizing the aforementioned code, six different scans over the chip with variant param-
eters were performed. For each experiment, the code was run 10 times on each spot (this is
not to be mistaken for the 10 iterations in the code, as the whole experiment was applied
for 10 rounds). The numbers of faults injected on each coordinate were used to draw shmoo
plots to visualize the best location for injecting the faults as displayed in Figure 5.1. For all
experiments, the maximum functional frequency defined by the manufacturer (320 MHz)
and the nominal supply voltage (1.8 V) were used.

In the beginning, with an EM pulse amplitude of 170 V, a scan over the 6 × 6 mm chip
with steps of 381 µm was performed. This yielded into 17 × 17 spots covered. Figure 5.1a
shows one large spot to the bottom left corner of the chip where faults can be injected.
Also, it shows a smaller spot on the top right corner where faults can be injected. A
similar experiment targeting the bottom left ninth of the chip (2 × 2 mm) but with a

36

(a) Vp=170 V (low resolution) (b) Vp=170 V (high resolution)

(c) Vp=160 V (low resolution) (d) Vp=160 V (high resolution)

(e) Vp=150 V (low resolution) (f) Vp=150 V (high resolution)

Figure 5.1: Shmoo plots for the number of faults injected over the chip using different EM
pulse amplitudes and resolutions. Keeping frequency = 320 MHz and VDD = 1.8 V

37

higher resolution (a step of 190 µm) was performed, but as shown in Figure 5.1b still that
did not show the exact best spot to inject faults.

To narrow down the spots where faults can be injected, the EM pulse amplitude was
reduced to 160 V, and the same experiment with the higher resolution was performed.
While in Figures 5.1c and 5.1d the spots seem to narrow down, but still not accurate.

Eventually, with the use of an EM pulse amplitude of 150 V, it was clear which spot
exactly over the chip is the best to inject faults (which is 190 µm to the right of the left
edge of the chip and 950 µm above the bottom edge of the chip) as displayed in Figures 5.1e
and 5.1f.

5.2 Examining the Various Conditions for EMFI

In this section, experiments examining the effect of both clock frequency as well as voltage
supplied to the core on EMFI are presented similar to the approach in [40].

5.2.1 Effect of the Clock Frequency

To study the effect of clock frequency on the fault injection, the same program in Code 5.1
was utilized with different clock frequencies (200 MHz, 240 MHz, 280 MHz, and 320 MHz)
with a scan over the chip with steps of 381 µm. For all experiments, the core was operating
on the nominal supply voltage (1.8 V) and the EM pulse amplitude used was 170 V.

As Figure 5.2 shows, the higher the frequency the more faults are injected. As operating
with 200 MHz or less, no faults could be injected. And with the maximum functional
frequency (320 MHz), even different spots start to be fault susceptible.

5.2.2 Effect of the Supplied Voltage

The same program in Code 5.1 was used again but this time with varying the voltage
supplied to the core. Three supply voltages were used (1.8 V, 1.7 V, and 1.6 V) on two
different frequencies (240 MHz and 280 MHz) with a scan over the chip with steps of 381
µm. For all experiments, the EM pulse amplitude used was 170 V. With no EMFI, the core
was empirically verified to be functional operating on the three different supply voltages
at the listed clock frequencies.

38

(a) Clock frequency=200 MHz (b) Clock frequency=240 MHz

(c) Clock frequency=280 MHz (d) Clock frequency=320 MHz

Figure 5.2: Shmoo plots for the number of faults injected over the chip using different
frequencies. Keeping pulse amplitude = 170 V and VDD = 1.8 V

The variation in the numbers of faults injected in Figures 5.3a, 5.3c and 5.3e (all
operating on 240 MHz) provides evidence that by decreasing the supplied voltage, the
core is more susceptible to fault injection. Same goes for Figures 5.3b, 5.3d and 5.3f (all
operating on 280 MHz). Moreover, while operating on 1.6 V, the spots on the top right
corner appeared with 280 MHz clock frequency, which was only possible with 320 MHz
clock frequency if operating on nominal voltage of 1.8 V.

The data visualized in both Figures 5.2 and 5.3 indicates that the processor is more
susceptible to EMFI with the increase of clock frequency and with the decrease in supplied
voltage, which complies with the charge-based fault model introduced in [40].

39

(a) VDD=1.8 - Freq=240 (b) VDD=1.8 - Freq=280

(c) VDD=1.7 - Freq=240 (d) VDD=1.7 - Freq=280

(e) VDD=1.6 - Freq=240 (f) VDD=1.6 - Freq=280

Figure 5.3: Shmoo plots for the number of faults injected over the chip using different
supplied voltages and frequencies. Keeping pulse amplitude = 170 V

40

5.3 Timing Analysis of the Target Instruction

This section provides a timing analysis of the code execution on the different types of
memories, and explores the best position for the target instruction to inject faults.

5.3.1 Measuring Execution Time on Different Memories

In the previous experiments, as shown in Code 5.1, the main loop is iterated for 10 rounds
trying to inject a fault. It was noticed in Table 5.1 that faults never been injected from
the first round and they would only start being injected from the second round and up.

Table 5.1: Number of faults injected for each loop iteration in Code 5.1. Pulse amplitude
= 170 V, VDD = 1.8 V and frequency = 320 MHz

Round number Number of faults Percentage
1 0 0%
2 163 30.2%
3 194 35.9%
4 51 9.4%
5 28 5.2%
6 31 5.7%
7 26 4.8%
8 20 3.7%
9 14 2.6%
10 13 2.4%

The hypothesized explanation is that the first iteration is loaded from the flash memory,
however, the subsequent iterations are loaded from the cache. Thus the timing is different
since loading instructions from the flash memory is expected to take a longer time.

To investigate that, a simple program as shown in Code 5.2 was used to measure the
execution time of 100 Compressed No Operation (C.NOP)s. The program asserts the EM
system’s trigger, executes 100 C.NOPs and finally de-asserts the trigger. The program
iterates for 10 rounds to measure the difference between iterations. The same program was
loaded once on the flash memory and once on the ITIM, which is supposed to be one way
of the two-way set-associative cache as described in Section 4.2.

41

Code 5.2: Test program to check execution time of flash memory as well as cache and ITIM

main:

#Initializations

li x22 ,10 #Number of rounds for the main loop 10

#Main Loop

LOOP:

(Assert the trigger) #Sets an IO to assert the trigger

C.NOP

.

.

(100 times in total)

.

.

C.NOP

(De -Assert the trigger) #Clears an IO to de-assert the trigger

addi x22 ,x22 ,-1 #Decrements rounds counter by 1

bne x22 ,x0 ,LOOP #keeps in loop until counter is 0

Since the frequency used in the experiment is 320 MHz, which means a period of 3.125 ns
per cycle, 100 cycles are expected to be executed in 312.5 ns on ITIM for the 10 iterations,
a longer time on the flash memory for the first iteration but 312.5 ns for the 9 subsequent
iterations since instructions are supposed to be cached by then.

The results obtained as shown in Figure 5.4 confirm that the execution time on flash
memory took a long time (46.67 µs) for the first time, but the subsequent cached iterations
took 312.5 ns. However, for the ITIM it showed a variant execution time around 400 ns
for the first iteration and 312.5 ns for the subsequent iterations.

The long execution time of the first iteration on flash memory explains why no faults
were injected on the first iteration. However, the unpredictable execution time of the ITIM
for the first iteration makes it unreliable to use. Thus, all further experiments use the flash
memory with codes using a loop of two iterations, relying on the second iteration only,
knowing that the first iteration will never inject a fault.

42

(a) Execution time on flash (b) Execution time on cache

(c) Execution time on ITIM (d) Execution time on ITIM

Figure 5.4: Execution time of 100 NOPs using different memory configurations

5.3.2 Identifying the Best Position For the Target Instruction

The experiment in Section 5.1 identified the hottest spot to inject faults, but still, the
exact timing on which instruction is faulted is not yet identified. While it is known that
trigger-to-pulse delay of the EM system is around 290 ns as shown in Figure 4.4, which is 93
cycles if using a clock frequency of 320 MHz. But this delay is measured from the time the
trigger signal reaches 50% of its peek, which actually consumes around an additional five
ns. Also that delay does not account for the time consumed executing the store instruction
responsible for asserting the trigger. Moreover, this store instruction is actually a store
to the memory mapped GPIO, which has a larger execution time than a regular store to
memory. Thus the real timing when the target instruction is faulted is definitely beyond
93 cycles.

43

In this experiment, the exact timing is measured empirically. The program in Code 5.3,
puts N C.NOPs after the trigger assertion, followed by only one ADD instruction as a
target, followed by 10 C.NOPs afterwards to ensure isolation of the target instruction. This
experiment was repeated with 20 variation each with a different N numbers for C.NOPs
ranging from 101 to 120. Each variation was run for 100 rounds for statistical analysis.

Code 5.3: Test program to determine the best position for the target instruction after
trigger assertion

main:

#Initializations

li x22 ,2 #Number of rounds for the main loop 2

addi x19 ,x0 ,0x99 #Initializes Error Code to be 0x99

#Main Loop

LOOP:

li x16 ,7 #Correct Sum

li x17 ,5 #Initializes x17 to be 5

li x13 ,2 #Initializes x13 to be 2

(Assert the trigger) #Sets an IO to assert the trigger

C.NOP

.

.

(N times in total)

.

.

C.NOP

add x17 ,x17 ,x13

C.NOP

.

.

(10 times in total)

.

.

C.NOP

sub x14 ,x16 ,x17 #x14=x16 - x17

44

bne x14 ,x0 ,FAULT #If x14 not 0, jump to FAULT

(De -Assert the trigger) #Clears an IO to de-assert the trigger

addi x22 ,x22 ,-1 #Decrements rounds counter by 1

bne x22 ,x0 ,LOOP #keeps in loop until counter is 0

#No Fault Injected

NO_FAULT:

addi x19 ,x0 ,0xAA #Error Code 0xAA for no fault

j NO_FAULT

#Fault Injected

FAULT:

addi x19 ,x0 ,0xBB #Error Code 0xBB for fault injected

j FAULT

#Exception Fault

early_trap_vector:

csrr x5 ,mcause #Exception code for the exception cause

csrr x6 ,mepc #PC when the exception took place

csrr x7 ,mtval #The corrupted instruction/address

addi x19 ,x0 ,0xCC #Error Code 0xCC for exception fault

j early_trap_vector

The results of this experiment are shown in Figure 5.5 which represents a bar chart for
the number and the type of faults injected per each target instruction position, ranging
from 101 to 120 C.NOPs after trigger assertion. The results could be discussed as follows:

• It seems the exact positioning of the target instruction is not very strict, and faults
can be injected to many positions. This could be justified by the jitter the EM system
has as depicted in Figure 4.4, thus the pulse might hit different instruction positions.

• Positioning the target instruction after 109 C.NOPs gives the highest probability for
fault injection. Which will be the position used for further experiments analyzing
fault injection on individual instructions in Section 5.5. It can also be noticed that
in terms of number of instructions skipped, positioning the target instruction after
110 C.NOPs would give a higher probability of instruction skips.

45

Figure 5.5: Timing analysis for target instruction positioning and corresponding types of
faults injected. Pulse amplitude = 170 V, VDD = 1.8 V and frequency = 320 MHz

• Instructions are more likely to be skipped than producing corrupted outputs. These
corrupted outputs appear as random numbers stored in the destination register in-
stead of the correct sum.

• In rare cases target instructions might get corrupted itself resulting in exception faults
being raised. With further investigation using the ”mcause” register, the exception
appears to happen due to the instruction being decoded as an illegal instruction.
Looking at the ”mtval” register, it shows that the corrupted instructions decoded
were all 0s, which is defined as illegal instruction by the RISC-V ISA.

• Not only the target instructions are the ones to get corrupted, but also the surround-
ing C.NOPs tend to get corrupted as well due to the jitter of the EM system. But
since a C.NOP is encoded as 0x0001, it is much easier to be corrupted to all 0s
causing exception faults.

46

• More interestingly, it is noticed that in some cases, although an exception was raised,
and with the knowledge of the ”mepc” register, it is concluded that the exception
occurred to a C.NOP placed after the target position. However, the destination
register of the ADD instruction appears to contain corrupted data or having the
initial value meaning the instruction was corrupted or skipped. Meaning that both
the target instruction and that following C.NOP were faulted with one EM pulse.
Which is the motivation behind the next experiment in Section 5.4.

5.4 Faulting Multiple Instructions

As was noticed from the experiment in 5.3, a skip to the target instruction as well as
an exception fault to a following C.NOP was experienced, meaning that two instructions
were faulted at once. Also, the existence of a relatively large window of time when an
instruction can be faulted, as depicted in Figure 5.5, points to the possibility of having
multiple instructions faulted at once.

To test that possibility, the program in Code 5.4 was used. The program targets 10
ADD instructions, all having the same two input operands but 10 different destination
registers. The 10 ADD instructions are placed after 107 C.NOPs after the trigger. That
was chosen based on Figure 5.5 which shows that the instructions after 107 to 116 C.NOPs
after the trigger assertion are the most probable ones to be faulted. The 10 destination
registers are initialized at the beginning of the program to the same initial value. The logic
behind the experiment is that if no faults are injected all 10 registers should have the same
ADD operation result, however, if some keep the initial value or a wrong result then their
corresponding ADD instructions were skipped or corrupted.

The experiment was performed with different EM pulse amplitudes and repeated 1000
times for each to perform statistical analysis. It is worth to mention that only instruction
skips were included in the analysis. Exception faults were excluded from this analysis as if
an exception occurs it would prevent the following instructions from being faulted anyway.
Also, Corrupted results were not included being rare and also corrupted results make the
fault detectable if instruction duplication is used by the developer. Thus, multiple skips
are more important to analyze.

47

Code 5.4: Test program to explore if multiple instructions can be faulted at once

main:

#Initializations

li x22 ,2 #Number of rounds for the main loop 2

addi x19 ,x0 ,0x99 #Initializes Error Code to be 0x99

#Main Loop

LOOP:

li x12 ,3 #Initializes first operand x12 to be 3

li x13 ,4 #Initializes second operand x13 to be 4

li x14 ,5 #Initializes destination reg x14 to be 5

li x15 ,5 #Initializes destination reg x15 to be 5

li x16 ,5 #Initializes destination reg x16 to be 5

li x17 ,5 #Initializes destination reg x17 to be 5

li x18 ,5 #Initializes destination reg x18 to be 5

li x24 ,5 #Initializes destination reg x24 to be 5

li x28 ,5 #Initializes destination reg x28 to be 5

li x29 ,5 #Initializes destination reg x29 to be 5

li x30 ,5 #Initializes destination reg x30 to be 5

li x31 ,5 #Initializes destination reg x31 to be 5

(Assert the trigger) #Sets an IO to assert the trigger

C.NOP

.

.

(107 times in total)

.

.

C.NOP

add x14 ,x12 ,x13 #1st target instruction

add x15 ,x12 ,x13 #2nd target instruction

add x16 ,x12 ,x13 #3rd target instruction

add x17 ,x12 ,x13 #4th target instruction

add x18 ,x12 ,x13 #5th target instruction

add x24 ,x12 ,x13 #6th target instruction

add x28 ,x12 ,x13 #7th target instruction

add x29 ,x12 ,x13 #8th target instruction

48

add x30 ,x12 ,x13 #9th target instruction

add x31 ,x12 ,x13 #10th target instruction

C.NOP

.

.

(10 times in total)

.

.

C.NOP

(De -Assert the trigger) #Clears an IO to de-assert the trigger

addi x22 ,x22 ,-1 #Decrements rounds counter by 1

bne x22 ,x0 ,LOOP #keeps in loop until counter is 0

#No Exception Faults

NO_EXCEPTION:

addi x19 ,x0 ,0xAA #Error Code 0xAA for no exception

j NO_EXCEPTION

#Exception Fault

early_trap_vector:

csrr x5 ,mcause #Exception code for the exception cause

csrr x6 ,mepc #PC when the exception took place

csrr x7 ,mtval #The corrupted instruction/address

addi x19 ,x0 ,0xCC #Error Code 0xCC for exception fault

j early_trap_vector

The empirical EMFI results indicate that multiple instructions can be faulted at once.
Figure 5.6 show the number of instructions skipped at once with different EM pulse am-
plitudes (150 V, 160 V and 170 V). As a general observation, not only the number of
faults increases by the increase of the EM pulse amplitude which is observed in previous
experiments, but also the number of instructions faulted at once increases.

Figure 5.6a shows that with EM pulse amplitude of 150 V, the maximum number of
instructions skipped at once is four. Even though, it is unlikely to have three or four
instructions skipped at once. However, the probability of having two instructions skipped
at once is non-negligible being 9.4% and similar to having only one instruction skipped,
which has a probability of 10.8%. In total, the probability of having no skips at all is as
high as 72.5%, while the probability of having at least one instruction skipped is 22.1%, in
addition to 5.4% of the rounds having exception faults.

49

(a) Vp=150 V (b) Vp=160 V

(c) Vp=170 V

Figure 5.6: Histogram for the number of ADD instructions skipped at once. VDD = 1.8
V and frequency = 320 MHz

50

In Figure 5.6b a dramatic fall in the probability of having no skips is observed as it
reached 12.4% only when the EM pulse amplitude is increased to 160 V. In contrast, the
probability of having at least one instruction skipped dramatically increased to reach 70.3%,
in addition to 17.3% of the rounds having exception faults. The probability of having
multiple instructions skipped at once increased notably especially for two instructions
being skipped at once reaching a probability of 20.6%. Even with a small probability
having five instructions skipped at once became possible.

While with an EM pulse amplitude of 170 V, as displayed in Figure 5.6c the prob-
ability of having no skips at all did not change much compared to when the EM pulse
amplitude was 160 V. However, instead of having the highest probability towards having
only one instruction skipped, the probability of having skips is distributed over the dif-
ferent possibilities of having two, three, four and five instructions skipped at once being
17.6%, 7.8%, 19.8%, and 13.1% respectively. Moreover, a low probability for having six
instructions skipped emerged. With these results, the probability of having at least four
instructions skipped at once becomes 33.3%, the probability of having at least three in-
structions skipped at once is 41.4% and for having at least two instructions skipped at
once the probability goes as high as 58.7%. Meaning that with an EM pulse amplitude of
170 V, having multiple instructions skipped at once is more probable than having only one
instruction skipped or no instructions skipped at all.

While the target processor is treated as a black box, with not much knowledge of the
actual implementation in silicon, one cannot determine for sure the effect of the EM pulse
on the core. However, possible explanations for having multiple instructions being skipped
or faulted at once could be portrayed as follows:

• The long rise time of the generated EM pulse as displayed previously in Figure 4.4,
which ranges from seven ns to 12 ns can roughly cover four instructions working with
320 MHz clock frequency. Thus, could be responsible for the multiple instructions
skips.

• The fact that the target is a five-stage pipelined processor, and the ability of the EM
pulse to have a global effect, makes it possible to affect up to five different instructions
in the different five pipeline stages.

• By combining the two previous hypotheses, assuming that five instructions in the
five pipeline stages are affected, in addition to the effect of the rise time that can
cover four instructions, which effectively can add only three more instructions, then
up to eight instructions can be hypothetically be faulted at once.

51

5.5 Analysis of Faulted Instructions

In this section, experiments on the individual instructions are presented to analyze the
effect of EMFI on different instructions. The RISC-V base instructions could be categorized
into three main categories:

• Arithmetic and Logic Operations which are mainly performed by the Arithmetic
Logic Unit (ALU) such as addition, bit-wise ANDing, ORing, etc.

• Memory Operations used to move data from memory to registers and vice versa.

• Flow Control Operations which accommodates procedure calls and conditional
execution, such as jump and branch instructions.

For each category, a set of instructions was chosen to perform the analysis. The pro-
grams used for experiments follow the template in Code 5.5 that fixes the number of
C.NOPs prior to the target to be 109 C.NOPs as it provides the highest probability of
fault injection as shown in Figure 5.5. All experiments were performed using a clock fre-
quency of 320 MHz with a supplied voltage of 1.8 V and EM pulse amplitude of 170 V. For
each instruction studied, the experiments were repeated 1000 times to perform statistical
analysis.

Code 5.5: Template program to examine individual instructions fault injection

main:

#Initializations

li x22 ,2 #Number of rounds for the main loop 2

addi x19 ,x0 ,0x99 #Initializes Error Code to be 0x99

#Main Loop

LOOP:

Registers Initialization

(Assert the trigger) #Sets an IO to assert the trigger

C.NOP

.

52

.

(109 times in total)

.

.

C.NOP

Target Instruction

C.NOP

.

.

(10 times in total)

.

.

C.NOP

Check Result

(De -Assert the trigger) #Clears an IO to de-assert the trigger

addi x22 ,x22 ,-1 #Decrements rounds counter by 1

bne x22 ,x0 ,LOOP #keeps in loop until counter is 0

#No Fault Injected

NO_FAULT:

addi x19 ,x0 ,0xAA #Error Code 0xAA for no fault

j NO_FAULT

#Fault Injected

FAULT:

addi x19 ,x0 ,0xBB #Error Code 0xBB for fault injected

j FAULT

#Exception Fault

early_trap_vector:

csrr x5 ,mcause #Exception code for the exception cause

csrr x6 ,mepc #PC when the exception took place

csrr x7 ,mtval #The corrupted instruction/address

addi x19 ,x0 ,0xCC #Error Code 0xCC for exception fault

j early_trap_vector

53

5.5.1 Arithmetic and Logic Operations

The instructions examined under this category are: ADD, SUB, AND, OR, and XOR. The
instructions formats and descriptions are presented in Table 5.2

Table 5.2: Instructions formats and descriptions for arithmetic and logic operations

Instruction Description
ADD rd, rs1, rs2 Adds rs1 to rs2 and stores the result to rd
SUB rd, rs1, rs2 Subtracts rs2 from rs1 and stores the result to rd
AND rd, rs1, rs2 Performs ANDing on rs1 and rs2 and stores the result to rd
OR rd, rs1, rs2 Performs ORing on rs1 and rs2 and stores the result to rd

XOR rd, rs1, rs2 Performs XORing on rs1 and rs2 and stores the result to rd

The programs used to examine the arithmetic and logic operations follow the template
in Code 5.5. The modifiable part in the template is filled as shown in Code 5.6 for the OR
instruction.

Code 5.6: The modified part of Code 5.5 to examine OR instruction fault injection

LOOP:

Registers Initialization

li x12 ,0 x331F99E5 #Initializes first operand x12

li x13 ,0 xF1EBCEAD #Initializes second operand x13

li x16 ,0 xF3FFDFED #Initializes x16 to the correct result

li x17 ,0 xAAAAAAAA #Initializes reg x17 with 0xAAAAAAAA

.

.

Target Instruction

or x17 ,x13 ,x12

.

.

Check Result

sub x14 ,x16 ,x17 #x14 = x16 - x17

bne x14 ,x0 ,FAULT #If x14 not 0, jump to FAULT

54

The program in Code 5.6 initializes the registers x12 and x13 with two random numbers,
initializes x16 with the correct result of the OR operation on both x12 and x13. The
target instruction utilizes the OR instruction using x12 and x13 as operands and x17 as
a destination registers. Eventually, the result of the target instruction in x17 is compared
with the expected result stored in x16 to determine if a fault is injected or not. The same
program in Code 5.6 is utilized for other arithmetic and logic operations with changes
according to the instruction under test.

The results in Table 5.3 show a similar effect on all examined arithmetic and logic
operations. On average, around 61% of the rounds were performed correctly without any
faults. The majority of faults were instruction skips, representing 29% of rounds on average.
However, some corrupted results were reported instead of instruction skips, representing
an average of 9%. Also, on average, around 1% of the rounds examined exception faults
on the surrounding C.NOPs.

Table 5.3: Faults analysis for arithmetic and logic operations

Fault Type
Instruction

ADD SUB AND OR XOR
No fault 64.6% 59.1% 60.4% 59.2% 62.2%

Instruction skip 28.3% 27.2% 32.9% 30.1% 26.2%
Corrupted result 5.0% 10.9% 6.3% 10.4% 11.6%
Exception fault 2.1% 2.8% 0.4% 0.3% 0%

5.5.2 Memory Operations

Only LW (Load Word) and SW (Store Word) were analyzed under this category. Half word
and byte memory operations were not considered since they are not widely used and are
expected to give the same results. The instructions formats and descriptions are presented
in Table 5.4

The programs used to examine the LW and SW instruction follow the template in
Code 5.5, with the modifiable part filled with the Code 5.7 for the LW instruction and
similarly in Code 5.8 for the SW instruction.

55

Table 5.4: Instructions formats and descriptions for memory operations

Instruction Description

LW rd, imm(rs1)
1- Adds rs1 register to imm value to form the address x.

2- Loads data from memory with address x to the register rd.

SW rs2, imm(rs1)
1- Adds rs1 register to imm value to form the address x.

2- Stores data from the register rs2 to memory with address x.

The program in Code 5.7 stores pre-determined data to the memory using the address
0x80001000. The target instruction loads the data stored in the same address to the register
x17. Eventually, the data in x17 is compared with the expected data which was stored
previously in memory.

Code 5.7: The modified part of Code 5.5 to examine LW instruction fault injection

LOOP:

Registers Initialization

li x13 ,0 x80001000 #Initializes x13 with the memory address

li x16 ,0 xF1EBCEAD #Initializes x16 with the data to be stored

li x17 ,0 xAAAAAAAA #Initializes reg x17 with 0xAAAAAAAA

sw x16 ,0(x13) #Stores data from x16 to memory

.

.

Target Instruction

lw x17 ,0(x13) #Loads data from memory to reg x17

.

.

Check Result

sub x14 ,x16 ,x17 #x14 = x16 - x17

bne x14 ,x0 ,FAULT #If x14 not 0, jump to FAULT

The program in Code 5.8 stores initial data to the memory using the address
0x80001000. The target instruction overwrites that initial data and stores pre-determined
data to the same memory address. Eventually, the data in that memory address is loaded to
x17 and compared with the data which was expected to be stored by the target instruction.

56

Code 5.8: The modified part of Code 5.5 to examine SW instruction fault injection

LOOP:

Registers Initialization

li x13 ,0 x80001000 #Initializes x13 with the memory address

li x16 ,0 xF1EBCEAD #Initializes x16 with the data to be stored

li x17 ,0 xAAAAAAAA #Initializes reg x17 with 0xAAAAAAAA

sw x17 ,0(x13) #Initialize the data in memory with 0xAAAAAAAA

.

.

Target Instruction

sw x16 ,0(x13) #Stores data from reg x17 to memory

.

.

Check Result

lw x17 ,0(x13) #Loads data stored in memory to reg x17

sub x14 ,x16 ,x17 #x14 = x16 - x17

bne x14 ,x0 ,FAULT #If x14 not 0, jump to FAULT

The results displayed in Table 5.5 show that for the LW instruction, 43.6% of the rounds
were performed correctly with no faults. The probability of having an LW instruction
skipped is 33.8%, while with a probability of 4.3% the LW instruction is performed with
corrupted data being loaded to the destination register. Also, exception faults to the
surrounding C.NOPs appeared in 18.3% of the rounds.

For the SW instruction, 52% of the rounds did not experience any faults. Interestingly,
throughout the 1000 rounds, none of the rounds experienced corrupted data being stored
in memory, however, 32.2% experienced instruction skip. Similarly, with a probability of
15.8%, the surrounding C.NOPs were reported to experience exception faults.

Table 5.5: Faults analysis for memory operations

Fault Type
Instruction
LW SW

No fault 43.6% 52.0%
Instruction skip 33.8% 32.2%
Corrupted result 4.3% 0%
Exception fault 18.3% 15.8%

57

5.5.3 Flow Control Operations

For the flow control operations, the following instructions were analyzed: JAL (Jump and
Link), JALR (Jump and Link Register) and BNE (Branch Not Equal). The instructions
formats and descriptions are presented in Table 5.6.

Table 5.6: Instructions formats and descriptions for control flow operations

Instruction Description

JAL rd, imm
1- Constructs address x by shifting imm value left by 1.

2- Jumps to the instruction with address x.
3- Adds 4 to the program counter and stores the result in rd.

JALR rd, imm(rs1)
1- Constructs address x by adding rs1 register to imm value.

2- Jumps to the instruction with address x.
3- Adds 4 to the program counter and stores the result in rd.

BNE rs1, rs2, imm

1- Constructs address x by shifting imm value left by 1
and adding the result to the program counter.

2- Jumps to the instruction with address x if rs1 6= rs2.
Otherwise the program counter increments normally.

The programs used to examine the JAL, JALR and BNE instructions follow the tem-
plate in Code 5.5, with the modifiable part filled with Code 5.9 for JAL and JALR in-
structions, and similarly in Code 5.10 for BNE instruction

The program in Code 5.9 initializes x14 to be 2, then the target instruction JAL jumps
to a label named BRANCHED and stores the address of the next instruction (Program
Counter (PC) + 4) to x13. IF the target instruction is executed correctly then x14 will
be assigned the value 5, then the program will jump to the CHECK label. If the target
instruction is skipped then x14 will maintain the value 2 and the program will proceed
to the CHECK label anyway. Eventually, x14 is checked to determine if the jump was
executed or not, also x13 is compared with the expected linked PC. The program used
to test JALR instruction is similar to the one in Code 5.9, only it uses JALR as a target
instruction (jalr x13,x17), with the label’s address pre-loaded to x17.

58

Code 5.9: The modified part of Code 5.5 to examine JAL instruction fault injection

LOOP:

Registers Initialization

li x12 ,0 x200102ac #Initializes x12 with the Correct linked PC

li x13 ,0 xAAAAAAAA #Initializes x13 with 0xAAAAAAAA

li x14 ,2 #Initializes x14 with 2

li x16 ,5 #Initializes x16 with 5

.

.

Target Instruction

jal x13 ,BRANCHED #Jumps to BRANCHED and stores (PC + 4) to x13

.

.

Check Result

CHECK:

bne x14 ,x16 ,FAULT #If didn’t jump to BRANCHED , jumps to FAULT

bne x12 ,x13 ,FAULT #If linked PC is not correct , jumps to FAULT

.

.

BRANCHED

li x14 ,5 #Loads x14 with 5

j CHECK #Jump to CHECK

The results in Table 5.7 show that jump instructions have never been skipped. However,
the address saved in the linking process is corrupted in 29.8% and 26% of the rounds for
JAL and JALR respectively. On average, 56% of the jumps were executed correctly, and
15.5% of the rounds experienced exception faults on the surrounding C.NOPs.

Table 5.7: Faults analysis for unconditional jump operations

Fault Type
Instruction

JAL JALR
No fault 53.5% 58.8%

Instruction skip 0% 0%
Corrupted link 29.8% 26.0
Exception fault 16.4% 14.7%

59

Since BNE is a conditional branch instruction, two different experiments were conducted
on the instruction, once with a positive condition where the branch should be taken, and
another with a negative condition where the branch should not be taken. The program in
Code 5.10 examines BNE instruction in a positive condition. The code initializes x12 and
x13 with two different values and initializes x14 with 2. The target instruction compares
x12 and x13 and jumps if they are not equal. Since they are not equal, if the instruction
was executed without faults it should jump to BRANCHED label where x14 would be
loaded with 5 and eventually jumps to CHECK label to determine if the branch was taken
or not. The program used to examine BNE in a negative scenario is similar to the one in
Code 5.10 except for initializing both x12 and x13 with the same value.

Code 5.10: The modified part of Code 5.5 to examine BNE instruction fault injection

LOOP:

Registers Initialization

li x12 ,0 x331F99E5 #Initializes x12 with a random value

li x13 ,0 xF1EBCEAD #Initializes x13 with a random value

li x14 ,2 #Initializes x14 with 2

li x16 ,5 #Initializes x16 with 5

.

.

Target Instruction

bne x12 ,x13 ,BRANCHED #Jumps to BRANCHED if x12 is not equal to x13

.

.

Check Result

CHECK:

bne x14 ,x16 ,FAULT #If didn’t jump to BRANCHED , jumps to FAULT

.

.

BRANCHED

li x14 ,5 #Loads x14 with 5

j CHECK #Jump to CHECK

60

The results depicted in Table 5.8 show that for the BNE instruction with a positive
condition, 96.1% of the rounds were performed correctly with no instruction skips. The only
faults occurred were the exception faults on the surrounding C.NOPs. For the negative
scenario where the branch is not expected to be taken, it is infeasible to know if the
instruction is skipped or executed correctly since both would result in the branch not to be
taken. These two possibilities combined represent 80% of the rounds. More interestingly,
19.1% of the rounds took the branch when they were not expected to. Exception faults on
the surrounding C.NOPs were present on 0.9% of the rounds.

Table 5.8: Faults analysis for conditional branch operations

Fault Type
Instruction

BNE +VE BNE -VE
No fault 96.1% 80%

Instruction skip 0% NA%
False jump NA% 19.1%

Exception fault 3.9% 0.9%

61

Chapter 6

XOR BR/TBR PUFs Design on
FPGA

As discussed in Section 3.6, attacks on single BR and TBR PUF implementations on FPGA
were successful in previous research. However, modelling attacks in the literature were not
successful on XOR BR PUFs with more than three instances XORed. Hence, the motiva-
tion to implement 4-input XOR BR an TBR PUFs with good characteristics on FPGAs to
serve as a base for launching more advanced modelling attacks and investigations, such as
in [33] [34] where deep learning techniques were applied on these implementations. Though,
in this thesis the focus is only on the hardware implementation aspects, while the attack
techniques are detailed in [33] [34].

This chapter starts by a system level overview of the hardware and software components
used to implement and evaluate the PUFs in Section 6.1. The evaluation metrics for the
implemented PUFs are explained in detail in Section 6.2 before discussing the realization
of both BR and TBR PUFs on FPGAs and their mappings into Look Up Table (LUT)s
in Section 6.3. Section 6.4 discusses two different approaches on implementing single BR
PUFs on FPGA, namely the automatic and manual placement approaches. And finally,
Section 6.5 and Section 6.6 discuss the implemented XOR BR and TBR PUFs respec-
tively and their proposed optimizations. As well as listing their characteristics and their
performance against modelling attacks according to [33] [34].

62

6.1 Overall System Architecture

For the hardware implementations of PUFs, Mojo V3 boards were used. The board in
Figure 6.1 features a Spartan-6 XC6SLX9 Xilinx FPGA with a clock source of 50 MHz,
alongside with an ATmega32U4 AVR microcontroller with an 8 MHz clock crystal.

Figure 6.1: Mojo Board

As shown in Figure 6.2, the PUF is implemented on the FPGA side, in addition to
a Finite State Machine (FSM) for control, as well as a Universal Asynchronous Receiver-
Transmitter (UART) module for receiving challenges and sending responses. The UART
module on top of the FPGA is connected to the UART of the AVR microcontroller, which
in return transfers the data through the USB port of the Mojo board connected to an
external PC.

A script employed on the PC side is responsible for generating and sending random
challenges to the board, receiving the responses and storing them into log files in order to
evaluate the PUF’s characteristics as will be thoroughly discussed in Section 6.2.

Challenges are generated using a Galois Linear-Feedback Shift Register (LFSR) pseudo-
number generator, which as displayed in Figure 6.3 is basically a shift register, however,
some bits (also known as taps) are XORed with the output bit before being shifted. To
obtain maximum length LFSRs for different PUF sizes, the taps in Table 6.1 were used.

63

UART Module

TxRx

FPGA

AVR
Microcontroller

TxRx

D+

D-

U
A
R
T

U
A
R
T

USB

D+

D-

USB

Mojo V3 Board

USB

PUF
XOR

FSM
Challenges Responses

Figure 6.2: PUF Ecosystem

0 1 0 0 1 0 11

Figure 6.3: Galois Linear-Feedback Shift Register

Challenges are sent byte by byte through serial communication to the FPGA, where
the FSM receives each byte, stores them and concatenates them to form the full challenge
vector sent to the PUF. To make sure that the challenge is received correctly, the challenge
bytes are XORed together forming one byte which is sent to the PC side to be compared
with a similar byte generated from the transmitted challenge.

After the FSM forms the full challenge vector, it transfers it to the PUF at once as
well as releases the reset signal for the PUF at the same time. Then the FSM waits for
a predetermined time so that the PUF converges to a stable state before capturing the
response. BR and TBR PUFs’ response is usually the output of one stage of the ring,
however, in this implementation, all the stages’ outputs are derived to make sure that all
stages have the same capacitive load, as otherwise one stage would have different load than
others, which might bias the PUF. The same note was considered in the literature for the
BR PUF as in [76]. Another advantage of deriving all stages’ outputs is to distinguish

64

Table 6.1: LFSR taps for different PUF sizes

PUF Size Taps Positions
64 64, 63, 61, 60 [3] [71]
128 128, 126, 101, 99 [3]
256 256, 254, 251, 246 [71]

between the stabilized and unstabilized responses. To do so, the response bytes are ORed
together forming one byte that is sent to the PC side. For a stabilized ring, that byte
should be either ‘10101010’ (0xAA) representing ’1’ or ‘01010101’ (0x55) representing ’0’,
other than that, it indicates an unstabilized ring, which should not be added to the CRPs
database.

6.2 PUFs Evaluation Metrics

As previously discussed in Section 3.5, a strong PUF should achieve three main properties:
reproducibility, unpredictability and uniqueness [53] [12]. In this section, the evaluation
metrics that measure these three properties are defined. These metrics are: PUF noise,
PUF bias, and Inter-Chip hamming distance. Also, the individual challenge bits influence
is considered being another important characteristic of PUFs.

• PUF Noise: A reproducible PUF would give a consistent response to a certain
challenge per each chip, however, in reality, a PUF might give inconsistent responses
for the same challenge. To measure noise, the same challenge is applied to the same
chip for many iterations, a majority vote is taken to determine the supposedly right
response and the same process is repeated for all challenges. Then, the noise can be
calculated as in Equation 6.1 as the number of deviating responses over the number
of iterations applied, taking the average eventually over all challenges applied.

N =

∑
wrong responses

iterations×# challenges
(6.1)

A reliable PUF should have an ideal noise of 0.

65

• PUF Bias: PUF bias represents the tendency of the PUF to respond with 0 or 1
more likely to different challenges. Bias can be calculated as the number of responses
representing ’1’ over the total number of challenges applied as in Equation 6.2.

B =
responses of ′1′

challenges
(6.2)

An unpredictable PUF should have an ideal bias of 0.5.

• Individual Challenge Bits Influence: Challenge bits should ideally contribute
equally to the resulted response and not by only some of the challenge bits, which
affects the unpredictability of the PUF. For each challenge bit, its influence is calcu-
lated as the number of responses representing ’1’ over the total number of challenges
with that bit being ’1’ as in Equation 6.3, also the influence is calculated when that
challenge bit is ’0’ as in Equation 6.4.

Infl(i, 1) =
responses of ′1′

challenges with ith bit = 1
(6.3)

Infl(i, 0) =
responses of ′1′

challenges with ith bit = 0
(6.4)

An unpredictable PUF should have an ideal influence of each bit as 0.5.

• Inter-Chip Hamming Distance: Different chips should give different responses
to the same challenge. Inter-chip hamming distance represents how many responses
were dissimilar for the same challenge on different chips. The normalized hamming
distance between two different chips would be calculated as in Equation 6.3 as the
number of dissimilar responses for the same challenge over the number of challenges.

NHD =
dissimilar responses

challenges
(6.5)

A unique PUF should have an ideal normalized inter-chip hamming distance of 0.5.

In this research, to obtain the actual characteristics of the implemented PUFs, three
typical Mojo boards were used. The same PUF designs were loaded on the three boards
and 1 Million different challenges were applied on each for three iterations. All experiments
were conducted at room temperature.

66

An important note is that as stabilized and unstabilized responses could be distin-
guished in the presented implementations, the unstabilized responses were excluded from
the characteristics calculations.

6.3 BR/TBR PUFs Realizations on FPGA

This section, illustrates the realization of both BR and TBR PUFs and their mapping from
schematic into FPGA LUTs. These mappings are the output of Xilinx ISE tool.

6.3.1 BR PUF Realization on FPGA

A single stage of the BR PUF as introduced in [14] should contain one MUX, one DEMUX
and two inverting elements such as NOR gates as displayed in Figure 6.4a. Writing a Hard-
ware Description Language (HDL) code describing such a circuit and trying to synthesize
it for FPGA using Computer Aided Design (CAD) tools would result in optimizing it to
only one LUT that has the functionality of one NOR gate. Although that is true from the
digital logic point of view, it is not from the PUF functionality point of view. However,
with the careful use of the CAD tool, one can control the optimizations and manage to
separate the four components into five LUTs as shown in Figure 6.4b.

Reset

Challenge

In Out

(a) Single BR PUF Stage Schematic [14]

Reset

Challenge

In
Out

DEMUX

2-1
LUT

2-1
LUT

NOR

2-1
LUT

NOR

2-1
LUT

MUX

3-1
LUT

(b) Single BR PUF Stage Layout

Figure 6.4: BR PUF Schematic and Layout on FPGA

67

6.3.2 TBR PUF Realization on FPGA

For the TBR PUF, the components of a single stage were not clarified in [58] but abstracted
as displayed in Figure 3.6. However, it is reasonable to interpret that abstract design to
the more detailed one in Figure 6.5a, which was also adopted in [25]. A straight forward
implementation would try to transform each component of the PUF into a separate LUT
as shown in Figure 6.5b, resulting in a total of 6 LUTs for one TBR PUF stage.

Challenge

Out
FW

Reset

Out
BW

In
BW

In
FW

(a) Single TBR PUF Stage Schematic

s

Reset

Challenge

NOR

2-1
LUT

NOR

2-1
LUT

MUX

3-1
LUT

In
FW

In
BW Out

BW

MUX

3-1
LUT

MUX

3-1
LUT

MUX

3-1
LUT

Out
FW

(b) Single TBR PUF Stage Layout

Figure 6.5: TBR PUF Schematic and Layout on FPGA

6.4 Implementation Approaches

The FPGA development flow passes through six main processes: circuit design usually
by writing HDL codes, synthesising HDL into netlists, mapping these netlists to the
available FPGA resources, placement of these mappings onto the FPGA, routing and
connecting these resources on FPGA and finally generating the bitstream to be loaded
to the FPGA.

Xilinx ISE, the tool used for the development process, is capable of performing all
the aforementioned processes automatically given the HDL code. Also, the option of
manual placement and routing by the developer is available to allow for targeting specific
performance improvements.

In this section, both automatic and manual placement approaches for BR PUF imple-
mentation are discussed with the corresponding implementations’ characteristics presented.

68

6.4.1 Automatic Placement Approach

The automatic placement and routing approach is usually the most used approach used in
FPGA development, unless further requirements need manual intervention. This approach
was tested for the BR PUF implementation using five different settling times after which
the PUF responses are taken. The main goal was to observe the responses convergence
over time to check the point where waiting for more time would not make a difference.

Surprisingly, the results in Table 6.2 show that, for the three chips used for evaluation,
the percentage of stabilized responses does not necessarily increase with the increase of the
settling time, and it appears to be random. Moreover, the same chip tends to be biased
towards 0 responses at some settling time, and with a different settling time it tends to be
biased toward responses of 1. Hence, it indicates that with the change of the settling time,
the whole placement and routing by the tool changes producing totally different PUFs.

Table 6.2: Automatic placement approach PUF characteristics

Metric
Settling Time (cycles)

64 128 256 512 1024
stabilized responses Chip 1 (%) 83 68 90 92 88
stabilized responses Chip 2 (%) 86 78 88 92 88
stabilized responses Chip 3 (%) 76 73 88 92 87

Bias Chip 1 (%) 12 55 17 60 41
Bias Chip 2 (%) 5 82 22 65 31
Bias Chip 3 (%) 21 71 31 36 53
Noise Chip 1 (%) 0.7 1.1 0.3 0.5 0.5
Noise Chip 2 (%) 1 0.7 0.4 0.4 0.4
Noise Chip 3 (%) 1.6 1 0.4 0.4 0.6

NHD Chips 1&2 (%) 21 44 20 20 25
NHD Chips 1&3 (%) 26 38 25 31 28
NHD Chips 2&3 (%) 30 35 23 36 33
NHD Average (%) 26 39 23 29 29

Max influence Chip 1 (%) 4 72 8 77 26
Max influence Chip 2 (%) 2 93 14 77 17
Max influence Chip 3 (%) 7 85 18 22 72

69

With this conclusion, another approach was suggested by using the settling time as a
randomization source to produce different PUF implementations. And with the trial of
many different settling times, some of the implementations would yield good PUFs with
good properties.

The results shown in Table 6.3 are for some of the selected trials with much-improved
properties. For the three presented settling times (500, 575 and 600 cycles), the percentage
of the stabilized responses is around 90% which is good for BR PUFs. The bias is around
the ideal value of 50% with an offset ranging from 3% to 16% which is acceptable. However,
the inter-chip hamming distance between the chips is not very good especially with the
cycles and 600 cycles settling time implementations. Also, it is very obvious that some
individual challenge bits have a huge influence on the responses.

Table 6.3: Automatic placement approach PUF characteristics with selected settling times

Metric
Settling Time (cycles)
500 575 600

stabilized responses Chip 1 (%) 92 89 89
stabilized responses Chip 2 (%) 94 86 89
stabilized responses Chip 3 (%) 92 90 90

Bias Chip 1 (%) 64 39 57
Bias Chip 2 (%) 61 44 66
Bias Chip 3 (%) 47 59 60
Noise Chip 1 (%) 0.3 0.5 0.4
Noise Chip 2 (%) 0.3 0.6 0.5
Noise Chip 3 (%) 0.3 0.4 0.5

NHD Chips 1&2 (%) 20 30 26
NHD Chips 1&3 (%) 26 34 23
NHD Chips 2&3 (%) 24 31 25
NHD Average (%) 23 32 25

Max influence Chip 1 (%) 77 21 74
Max influence Chip 2 (%) 76 29 80
Max influence Chip 3 (%) 38 72 74

70

6.4.2 Manual Placement Approach

Various manual placement layouts were examined, all giving biased responses. Thus, only
one layout will be discussed in this thesis, which is the same used in [76] on the same
FPGA family. As Figure 6.6a shows, the two LUTs of the DeMux are combined in one
LUT with two outputs, each NOR gate and the MUX are separated in different slices to
ease up routing. The same stage layout is repeated 64 times as shown in Figure 6.6b.

The manual placement approach was also tested using the same five settling times
producing the results in Table 6.4. Unlike with the automatic approach, the percentage
of the stabilized responses increases with the increase of the settling time. The results
also show a consistent bias that might slightly fluctuate due to the convergence of other
responses with the increase of the settling time. Although one chip was very biased towards
responses of 0, the other two had biases near 50%. However, the chips had a very low inter-
chip hamming distance.

Table 6.4: Manual placement approach PUF characteristics

Metric
Settling Time (cycles)

64 128 256 512 1024
stabilized responses Chip 1 (%) 84 88 93 94 96
stabilized responses Chip 2 (%) 78 86 91 93 96
stabilized responses Chip 3 (%) 78 85 91 93 96

Bias Chip 1 (%) 20 18 18 24 25
Bias Chip 2 (%) 50 43 48 52 45
Bias Chip 3 (%) 48 38 45 53 42
Noise Chip 1 (%) 1.1 0.2 0.3 0.3 0.2
Noise Chip 2 (%) 1.5 0.5 0.3 0.2 0.3
Noise Chip 3 (%) 1.7 0.7 0.4 0.4 0.4

NHD Chips 1&2 (%) 43 34 36 32 23
NHD Chips 1&3 (%) 41 29 33 23 21
NHD Chips 2&3 (%) 18 18 16 14 13
NHD Average (%) 34 27 28 26 19

Max influence Chip 1 (%) 14 13 13 18 20
Max influence Chip 2 (%) 40 34 39 61 37
Max influence Chip 3 (%) 40 29 37 37 34

71

DeMux NOR NOR MUX

(a) Single BR PUF stage placement on FPGA

Stage 1

Stage 2

Stage 64

Stage 32 Stage 33

(b) 64 BR PUF stages placement on FPGA

Figure 6.6: Manual Placement Layout on FPGA for 64-bit BR PUF

72

6.5 Implementation of the 4-input XOR BR PUF

Although the automatic placement approach did not yield into an ideal PUF, it provided
a way to manipulate the CAD tool to get a good one. And as for the XOR BR PUF there
are many instances of the BR PUF XORed, which gives more room for the automatic
placement to achieve more randomness and better properties. Something the manual
placement approach will not be able to provide. Thus, the automatic placement approach
was used for the XOR BR and TBR PUFs.

While the goal of this research is to implement a 4-input XOR BR PUF with 64, 128
and 256-bit challenges, only the 64-bit 4-input XOR BR PUF fits into the FPGA. Thus,
an optimization was needed to minimize the number of LUTs of each BR PUF stage. The
optimization was introduced to the architecture level by removing the DEMUX as in Fig-
ure 6.7a. As shown, eventually the MUX chooses between the output of either NOR gates,
which is the important matter for the BR PUF functionality. Whether supplying the input
to only one NOR gate as in the original design or to both NOR gates as in the optimized
design, it would not make a difference to the BR PUF functionality. This optimization can
reduce the number of LUTs in each stage from five to three as in Figure 6.7b.

Reset

In
Out

Challenge

(a) Optimized Single BR PUF Stage
Schematic

Reset

Challenge

In
Out

NOR

2-1
LUT

NOR

2-1
LUT

MUX

3-1
LUT

(b) Optimized Single BR PUF Stage
Layout

Figure 6.7: Optimized BR PUF Schematic and Layout on FPGA

Preliminary experiments in [33] [34] were conducted over the optimized and non-
optimized implementations of the 64-bit BR PUF to empirically confirm that the opti-
mization presented does not affect the security of the PUF. The obtained results showed
that the optimized and non-optimized architectures have similar performances against both
SVM and Deep learning modeling attack techniques.

73

Table 6.5: 4-input XOR BR PUF characteristics

Metric
PUF Size & Type

64-Bit 64-Bit 128-Bit 256-Bit
Original Optimized Optimized Optimized

Settling Time (Cycles) 1250 1024 4000 9600
stabilized responses Chip 1 (%) 83 81 81 86
stabilized responses Chip 2 (%) 81 82 83 85
stabilized responses Chip 3 (%) 80 79 82 85

Bias Chip 1 (%) 54 48 50 47
Bias Chip 2 (%) 52 49 49 54
Bias Chip 3 (%) 51 47 48 53
Noise Chip 1 (%) 1.2 1.7 2.0 1.2
Noise Chip 2 (%) 1.4 1.6 1.8 1.2
Noise Chip 3 (%) 1.4 1.7 1.9 1.2

NHD Chips 1&2 (%) 44 55 56 47
NHD Chips 1&3 (%) 50 48 51 50
NHD Chips 2&3 (%) 46 43 52 59
NHD Average (%) 47 53 52 50

Max influence Chip 1 (%) 58 46 51 45
Max influence Chip 2 (%) 54 45 51 58
Max influence Chip 3 (%) 53 43 47 56

The results in Table 6.5 show almost ideal PUFs with biases ranging from 47% to 54%
around the ideal value of 50%. Noises are negligible with a maximum of 2%, noting that the
unstabilized responses were excluded from any calculations. Also, no individual influential
challenge bits exist, as the maximum influence of a challenge bit on any chip with all the
PUF sizes is only 59%. The inter-chip hamming distance is around 50% which is the ideal
value. The only drawback is the relatively low percentage of stabilized responses, which
is around 80%. One of the reasons for this issue is that by XORing four different PUF
instances if only one instance is not stabilized then the response of the XOR PUF will
not be stabilized either, hence lower stabilized responses compared to a single PUF. The
other reason is that BR PUFs have relatively low stabilized responses in general, which is
a known drawback of the BR PUF family even for a single instance.

74

The implemented PUFs were tested against modeling attacks using both SVM with
a polynomial kernel of degree four and deep learning in [33] [34]. Table 6.6 shows the
modelling accuracy and the number of CRPs needed for both methods. The results shown
for deep learning are for a fully connected neural network of 12 levels each comprising 2000
neurons, beside an input layer of M neurons where M is the challenge size of the PUF and
an output layer of two neurons representing a one-hot decoding.

Table 6.6: 4-input XOR BR PUF modeling accuracy on Chip-1 using SVM and deep
learning [33] [34]

Training Size

PUF Size, Type & Modeling Technique
64-Bit 64-Bit 128-Bit 256-Bit

Original Optimized Optimized Optimized
DL SVM DL SVM DL SVM DL SVM

500 56.3% 54.3% 50.1% 52.2% 50.1% 50.1% 53.2% 53.2%
1K 60.7% 55.4% 51.4% 52.7% 50.6% 50.3% 53.3% 53.3%
5K 67.8% 59.5% 67.6% 53.2% 51.8% 51.1% 88.8% 53.3%
10K 89.9% 61.7% 98.1% 54.1% 85.9% 51.8% 94.6% 53.3%
20K 95.5% 63.3% 99.2% 54.6% 96.7% 52.4% 96.4% 53.3%
50K 98.1% 64.5% 99.1% 55.2% 98.2% 53.7% 96.4% 53.4%
100K 98.6% 64.5% 98.1% 56.3% 98.8% 54.3% 96.7% 53.4%

The results in [33] [34] show that the 4-input XOR BR PUFs of all sizes were resilient
against SVM. However, deep learning was powerful enough to attack all the sizes with
variant accuracy. Most importantly, the performances of the optimized and non-optimized
implementations against the attacks are similar, evermore, the optimized implementation
showed a slightly more resilience against SVM.

According to Table 6.6, an attacker needs as much as 10000 CRPs to guarantee a precise
modelling (with more than 85% accuracy). While with even 1000 CRPs the deep learning
performance would not differ much than SVM. Thus, to overcome such a powerful attack,
1000 CRPs could be set as an upper bound for the number of CRPs an adversary can
collect before the PUF stops sending responses.

75

6.6 Implementation of the 4-input XOR TBR PUF

After the success of the automatic approach with the XOR BR PUF, the same approach
was used with the TBR PUF. With the same problem of the 128 and 256-bit versions not
fitting within the FPGA, an optimization on the TBR PUF implementation was needed.

Although there was no optimization possible on the architecture level, an optimiza-
tion on the LUT layout level was achievable. The optimization represented in Figure 6.8b
merges each NOR gate with its preceding MUX compared to the straightforward imple-
mentation in Figure 6.8a, resulting in a total of only four LUTs for one TBR PUF stage
instead of six. This optimization does not affect the functionality of the TBR PUF as it
maintains two inverting elements and two different paths, in addition to the fact that the
merged LUT actually has the same logic of the two separate LUTs combined.

s

Reset

Challenge

NOR

2-1
LUT

NOR

2-1
LUT

MUX

3-1
LUT

In
FW

In
BW Out

BW

MUX

3-1
LUT

MUX

3-1
LUT

MUX

3-1
LUT

Out
FW

(a) Straightforward Single TBR PUF Stage Layout

Reset

Challenge

MUX

3-1
LUT

In
FW

In
BW

Out
BW

MUX

3-1
LUT

MUX + NOR

4-1
LUT

MUX + NOR

4-1
LUT

Out
FW

(b) Optimized Single TBR PUF Stage Layout

Figure 6.8: Straightforward and Optimized TBR PUF Layouts on FPGA

As with the BR PUF, preliminary experiments were conducted in [33] [34] over the
optimized and non-optimized implementations of the 64-bit TBR PUF showing similar
performances against both SVM and Deep learning techniques. Thus, empirically confirm-
ing that the optimization presented does not affect the security of the PUF

The results in Table 6.7 show similar characteristics with the BR PUFs in terms of the
almost ideal bias and inter-chip hamming distance, the lack of influential challenge bits
and, the negligible noise. However, a slightly higher noise and a lower stabilized responses
percentage for the TBR PUFs over the BR PUFs can be noticed. This could be explained
by the fact that an N-bit TBR PUF holds a ring of 2N inverters compared to only N
inverters in an N-bit BR PUF. This can also be noticed through the larger settling times
for the TBR PUFs.

76

Table 6.7: 4-input XOR TBR PUF characteristics

Metric
PUF Size & Type

64-Bit 64-Bit 128-Bit 256-Bit
Original Optimized Optimized Optimized

Settling Time (Cycles) 6600 6000 13400 19000
stabilized responses Chip 1 (%) 81 72 78 68
stabilized responses Chip 2 (%) 87 76 67 67
stabilized responses Chip 3 (%) 77 73 74 73

Bias Chip 1 (%) 51 51 47 53
Bias Chip 2 (%) 51 54 52 47
Bias Chip 3 (%) 50 53 53 49
Noise Chip 1 (%) 2.0 3.2 2.6 3.1
Noise Chip 2 (%) 2.0 3.2 3.2 3.0
Noise Chip 3 (%) 2.4 3.4 3.0 2.7

NHD Chips 1&2 (%) 44 52 49 54
NHD Chips 1&3 (%) 44 55 46 55
NHD Chips 2&3 (%) 45 44 47 46
NHD Average (%) 44 50 47 52

Max influence Chip 1 (%) 57 55 44 53
Max influence Chip 2 (%) 57 59 56 45
Max influence Chip 3 (%) 55 59 55 46

The same modelling techniques were applied on the TBR PUF to examine its resilient
against modelling attacks. The TBR PUF also was not attackable with the SVM but the
deep learning technique was able to model it with all the PUF sizes. The only difference
is in the number of CRPs needed to reach the same precision. As for the BR PUF, only
10000 CRPs were needed to guarantee 85% prediction accuracy. For the TBR PUF, 20000
CRPs were needed.

77

Table 6.8: 4-input XOR TBR PUF modeling accuracy on Chip-1 using SVM and deep
learning [33] [34]

Training Size

PUF Size, Type & Modeling Technique
64-Bit 64-Bit 128-Bit 256-Bit

Original Optimized Optimized Optimized
DL SVM DL SVM DL SVM DL SVM

500 61.2% 53.6% 54.3% 52.5% 56.9% 52.4% 57.5% 54.2%
1K 66.5% 56.8% 54.5% 53.6% 58.8% 52.4% 57.7% 54.9%
5K 90.9% 62.2% 84.4% 56.7% 63.3% 53.7% 71.5% 59.4%
10K 95.3% 64.7% 85.9% 58.5% 76.4% 55.3% 87.2% 60.9%
20K 96.9% 66.9% 94.2% 59.8% 85.7% 57.7% 94.9% 62.4%
50K 98.2% 68.7% 97.1% 60.6% 95.6% 59.4% 97.1% 63.5%
100K 98.6% 68.7% 97.3% 60% 96.7% 62.5% 97.7% 62.9%

78

Chapter 7

Conclusion

This chapter concludes the thesis by giving a brief summary of this research in Section 7.1.
It also discusses the research outcomes in Section 7.2, states the main research contribu-
tions in Section 7.3, and finally provides potential research directions for future work in
Section 7.4.

7.1 Summary

In this thesis two different topics are presented under the embedded systems security
umbrella. The first studies EM fault injection on a RISC-V processor, and the other
investigates the implementation approaches for BR and TBR PUFs on FPGA.

For the EM fault injection part, an EMFI setup centered on Langer EMV-Technik’s
burst power station BPS-201 and its EM probe was used. The setup has between 284 ns
and 296 ns delay from the trigger signal until the pulse is generated, with a rise time of
12 ns. The target board is a HiFive1 Rev B development board featuring a single-issue
in-order execution five-stage pipeline RV32IMAC RISC-V core with a maximum functional
frequency of 320 MHz.

The experiments started by scanning the chip with different EM pulse voltages to iden-
tify the best location over the chip where faults are more likely to be injected. Experiments
were also conducted on the chip with various operating conditions in terms of clock fre-
quency and supplied voltage, and it was confirmed that the higher the frequency and the
lower the supplied voltage, the easier faults can be injected.

79

A timing analysis was performed to identify the delay needed between the trigger
assertion in the code and the target instruction. It was found that the 110th instruction
located after the trigger assertion is the one with the highest probability of having faults
injected. It was also found that multiple instructions can be faulted at once. In fact,
results showed that up to six instructions can be faulted at once.

Experiments were performed to analyze the effect of EMFI on different instructions,
targeting arithmetic and logic operations, memory operations and flow control operations.
Results show that arithmetic and logic operations respond to EMFI in a similar way to
memory operations. On average around 50% of the time, the instructions are performed
without faults, around 30% of the time instructions are skipped, and the remaining 20%
results in corrupted data or the surrounding instructions get faulted causing exception
faults. On the other hand, EMFI on unconditional jump instructions corrupt the return
address linking with a probability of 28%. Interesting results for conditional branch in-
structions show that instructions do not get skipped, however, in scenarios where branching
conditions are not met, 19% of the time the branch is taken while it is not expected to.

For the PUF part, hardware implementations of the BR and TBR PUFs were realized
on Xilinx Spartan-6 FPGA. The manual and automatic placement approaches were exam-
ined on the BR PUF, leading to the conclusion that it is hard to implement a non-biased
BR PUF on FPGAs due to the asymmetry in the connections between different LUTs on
FPGA. On the other hand, although the automatic routing yielded to biased implementa-
tions, it was found that any small change in the RTL code such as changing the settling
time results into a whole different implementation on the layout level, hence different PUF
characteristics. Which can be used as a randomization factor to reach a non-biased PUF
after multiple trials.

The automatic routing approach was effective in implementing 64, 128 and 256-bit
4-input XOR BR and TBR PUFs with almost ideal characteristics due to the increased
randomness provided by having multiple PUF instances. Though, due to the limited re-
sources on the used FPGA, optimizations were conducted on the architecture and layout
levels to reduce the number of LUTs utilized specially for the 128 and 256-bit PUF im-
plementations. The Architectural optimizations on the BR PUF reduced the number of
utilized LUTs from five to three, while the layout optimizations on the TBR PUF reduced
the number of utilized LUTs from six to four.

80

7.2 Discussion

The results presented in this research for the EMFI on RISC-V are interesting in many
ways. Starting with the locations over the chip where faults are injected as shown in
Figure 5.1 in Section 5.1, both locations are at the corners of the chip. Knowing that the
chip is 6 X 6 mm and the die is 3 X 3 mm centered at the middle of the chip, it raises
doubts that the EM pulses were not pointed to the die, but rather on the wiring.

• The bottom left corner hosts the VDD, IVDD, and the QSPI CLK pins. Since the
QSPI is connected to the flash memory and the faults are injected to the codes run
from the cache, the QSPI CLK pin or wiring is excluded. Also, the IVDD pin is
supplying the IO complex, which should not affect the core and cause the reported
fault. Thus, one of the explanations is that the EM pulse affected the VDD pin or
its wiring to the die causing a voltage glitch, which is the cause of the faults injected.

• The top right corner hosts the RESET pin as well as the AON (Always ON) IVDD
pin. Similarly, the EM pulse might have affected any of the two signals and caused
a glitch.

• Another explanation is that maybe the probe is not perfectly perpendicular to the
chip causing the magnetic flux to be aimed at the die while in the shmoo plots it
seems not, or the edge of the probe (which might be on the die) is causing the fault
injection.

The data visualized in both Figures 5.2 and 5.3 in Section 5.2 indicates that the proces-
sor is more susceptible to EMFI with the increase of clock frequency and with the decrease
in supplied voltage, which complies with the charge-based fault model introduced in [40].

The BPS-201 burst power station showed a variant jitter and trigger-to-pulse delay
depending on various conditions. For example, if the system is turned on for a long
time, it gets heated and that affects its jitter and delay. Thus, the results in Section 5.3
and Section 5.4 might be slightly different than the ones reported in [21] performing the
same experiments. Similarly, the experiments in Section 5.5 can yield different results
than presented if conducted in a different time under different conditions. However, these
variations are small but affect the accuracy of the fault injection.

81

The results reported in Section 5.4 are very interesting, showing that multiple con-
secutive instructions (up to six instructions) can be faulted at once. This can be very
devastating to developers, as it makes software countermeasures like instruction duplica-
tion or triplication infeasible.

While the target processor is treated as a black box, with not much knowledge of the
actual implementation in silicon, one cannot determine for sure the effect of the EM pulse
on the core. However, possible explanations for having multiple instructions being skipped
or faulted at once could be portrayed as follows:

• The long rise time of the generated EM pulse as displayed previously in Figure 4.4 in
Section 4.1, which ranges from seven ns to 12 ns can roughly cover four instructions
working with 320 MHz clock frequency. Thus, could be responsible for the multiple
instructions skips.

• The fact that the target is a five-stage pipelined processor, and the ability of the EM
pulse to have a global effect, makes it possible to affect up to five different instructions
in the different five pipeline stages.

• By combining the two previous hypotheses, assuming that five instructions in the
five pipeline stages are affected, in addition to the effect of the rise time that can
cover four instructions, which effectively can add only three more instructions, then
up to eight instructions can be hypothetically be faulted at once.

The experiments conducted in Section 5.5 showed different vulnerabilities against EMFI
on various instructions. These vulnerabilities can be exploited to apply practical attacks
on security primitives such as AES, RSA, ECC, or operating system’s secure boot. The
ability to skip arithmetic instructions such as ADD instruction can help attacking many
ciphers like by manipulating the encryption round numbers causing the skip of rounds,
or exploiting the XOR and instruction to corrupt the key XORing with the state in AES
causing a side-channel leakage. Also, the ability to fault branches can be used to attack
secure boot and skip authentication routines in general.

82

For the BR PUF design, the investigation of the manual placement and automatic
placement implementation approaches resulted in interesting conclusions. The manual
placement approach showed that due to the layout constraints on the FPGA and the pre-
fabricated interconnections of the FPGA, it is very hard to design a non-biased BR PUF
on FPGA since the BR PUF requires symmetry to ensure a non-biased design and there
will always be variations by the design in the different ring paths.

While the automatic placement approach on a single BR PUF produced biased PUFs
as with the manual placement approach, however, it was noticed that with the change of
the settling time of the PUF the whole placement procedures are run again differently, pro-
ducing different PUFs with different characteristics. Through multiple trials with different
settling times, a non-biased PUF can be produced, which was efficient in the design of the
4-input BR and TBR PUFs. Not only settling time, any other modification on the HDL
code would force the re-run of the placement procedures. Even a trivial block could be
implemented with the PUF on FPGA, and that block can be changed to force the re-run
of the placement without changing the PUF settling time.

The BR PUF design introduced in [13] comprised of a DEMUX, 2 NOR gates and a
MUX for each stage as shown in Figure 6.4 in Section 6.3. However, this DEMUX seems to
be redundant, as the MUX eventually chooses between either NOR gates’ output. Hence,
the optimization in Figure 6.7 in Section 6.5 be removing the DEMUX was perfromed with
the expectation of not effecting the PUF’s security, which was confirmed by the modeling
attacks performed in [34].

As the results of the modeling attacks in Table 6.6 and Table 6.8 show that an attacker
needs as much as 10000 CRPs to guarantee a precise modelling. Thus, a simple counter-
measure to overcome such a powerful attack, is to set 10000 CRPs as an upper bound for
the number of CRPs an entity can collect before the PUF stops sending responses.

7.3 Contributions

While EMFI on processors might have been discussed in previous research as well as the
implementation of BR PUF on FPGA, the novelty and the main contributions of this thesis
could be listed as follows:

1. This research is the first to apply EMFI on a RISC-V processor [21]. In this research,
an analysis of the EM effect on different instructions has been conducted. As well as
an exploration of the different conditions which makes the processor more susceptible

83

to fault injection. The procedures used and outcomes can help in studying EMFI on
other processors as well.

2. As per our knowledge, this research is the first to report multiple instructions being
faulted at once using EMFI. which can be very devastating as discussed earlier.

3. Most of the previous research regarding BR and TBR PUFs did not detail their
implementations on FPGA or the approaches used. In this thesis, the FPGA imple-
mentations are detailed and different approaches are discussed and compared.

4. The introduction of the settling time or any minor change in the RTL code as a
randomization factor to achieve good PUF characteristics is one of the contributions
of this research, enabling a practical approach to implement PUFs on FPGAs.

5. Both BR and TBR PUFs are optimized on architectural and layout level in this
research. Which reduces the size of the implemented PUFs and enables multiple
PUF instances to be implemented and XORed to increase the PUF security.

7.4 Future Work

As this research focused more on the analysis of the EMFI effect on RISC-V, no real
attacks were performed in this thesis. However, future work can include the exploitation
of the vulnerabilities analyzed. These exploitations can work on compromising ciphers or
authentication routines such as in operating systems’ secure boot.

Also, since faulting multiple instructions at once can compromise the software coun-
termeasures, this drives a research direction towards applying hardware countermeasures,
either on the instruction level or the architecture level. As RISC-V is open source and the
RTL code of the core used in this research is available online, an emulation of the same
core on FPGA is achievable, as well as the possibility to develop and test various hardware
countermeasures on the RISC-V architecture on FPGA.

For the BR/TBR PUF design on FPGA, various countermeasures can be applied and
tested, such as challenge bits obfuscation to complicate the relationship between the chal-
lenges and the responses to an attacker as discussed in [34].

Another research direction would be to apply the same implementation approaches on
different FPGA families such as Intel and Microsemi, and even different Xilinx FPGAs.
This would help in understanding the effects of the different approaches for FPGA based
PUFs in general without the risk of being specific to a certain FPGA family.

84

References

[1] Maurice Aarts. Electromagnetic Fault Injection using Transient Pulse Injections. PhD
thesis, Master’s thesis, Eindhoven University of Technology, Netherlands, 2013.

[2] Michel Agoyan, Jean-Max Dutertre, David Naccache, Bruno Robisson, and Assia Tria.
When clocks fail: On critical paths and clock faults. In International Conference on
Smart Card Research and Advanced Applications, pages 182–193. Springer, 2010.

[3] Peter Alfke. Efficient shift registers, lfsr counters, and long pseudo-random sequence
generators. http://www. xilinx. com/bvdocs/appnotes/xapp052. pdf, 1998.

[4] Nikolaos Athanasios Anagnostopoulos. Optical fault injection attacks in smart card
chips and an evaluation of countermeasures against them. Master’s thesis, University
of Twente, 2014.

[5] Siva Prashanth BALAMURALI. An improved public unclonable function design for
xilinx fpgas for hardware security applications. 2018.

[6] Josep Balasch, Benedikt Gierlichs, and Ingrid Verbauwhede. An in-depth and black-
box characterization of the effects of clock glitches on 8-bit mcus. In 2011 Workshop
on Fault Diagnosis and Tolerance in Cryptography, pages 105–114. IEEE, 2011.

[7] Alessandro Barenghi, Luca Breveglieri, Israel Koren, and David Naccache. Fault
injection attacks on cryptographic devices: Theory, practice, and countermeasures.
Proceedings of the IEEE, 100(11):3056–3076, 2012.

[8] Alessandro Barenghi, Luca Breveglieri, Israel Koren, Gerardo Pelosi, and Francesco
Regazzoni. Countermeasures against fault attacks on software implemented aes: effec-
tiveness and cost. In Proceedings of the 5th Workshop on Embedded Systems Security,
page 7. ACM, 2010.

85

[9] Todd Bauer and Jason Hamlet. Physical unclonable functions: A primer. IEEE
Security & Privacy, 12(6):97–101, 2014.

[10] BK precision. https://www.bkprecision.com.

[11] Carbide 3D. https://carbide3d.com.

[12] Urbi Chatterjee, Rajat Subhra Chakraborty, and Debdeep Mukhopadhyay. A puf-
based secure communication protocol for iot. ACM Transactions on Embedded Com-
puting Systems (TECS), 16(3):67, 2017.

[13] Qingqing Chen, György Csaba, Paolo Lugli, Ulf Schlichtmann, and Ulrich Rührmair.
The bistable ring puf: A new architecture for strong physical unclonable functions. In
2011 IEEE International Symposium on Hardware-Oriented Security and Trust, pages
134–141. IEEE, 2011.

[14] Qingqing Chen, György Csaba, Paolo Lugli, Ulf Schlichtmann, and Ulrich Rührmair.
The bistable ring puf: A new architecture for strong physical unclonable functions. In
2011 IEEE International Symposium on Hardware-Oriented Security and Trust, pages
134–141. IEEE, 2011.

[15] Qingqing Chen, György Csaba, Paolo Lugli, Ulf Schlichtmann, and Ulrich Rührmair.
Characterization of the bistable ring puf. In Proceedings of the Conference on Design,
Automation and Test in Europe, pages 1459–1462. EDA Consortium, 2012.

[16] Ang Cui and Rick Housley. {BADFET}: Defeating modern secure boot using second-
order pulsed electromagnetic fault injection. In 11th {USENIX} Workshop on Offen-
sive Technologies ({WOOT} 17), 2017.

[17] Amine Dehbaoui, Jean-Max Dutertre, Bruno Robisson, and Assia Tria. Electromag-
netic transient faults injection on a hardware and a software implementations of aes.
In 2012 Workshop on Fault Diagnosis and Tolerance in Cryptography, pages 7–15.
IEEE, 2012.

[18] Amine Dehbaoui, Amir-Pasha Mirbaha, Nicolas Moro, Jean-Max Dutertre, and Assia
Tria. Electromagnetic glitch on the aes round counter. In International Workshop on
Constructive Side-Channel Analysis and Secure Design, pages 17–31. Springer, 2013.

[19] Morris J Dworkin. Sha-3 standard: Permutation-based hash and extendable-output
functions. Technical report, 2015.

86

[20] Schuyler Eldridge, Alper Buyuktosunoglu, and Pradip Bose. Chi re: A configurable
hardware fault injection framework for risc-v systems. 2018.

[21] Mahmoud A. Elmohr, Haohao Liao, and Catherine H. Gebotys. Em fault injection
on arm and risc-v. To appear in 21st International Symposium on Quality Electronic
Design (ISQED). IEEE, 2020.

[22] eMemory. https://www.ememory.com.tw.

[23] Thomas Finke, Max Gebhardt, and Werner Schindler. A new side-channel attack
on rsa prime generation. In International Workshop on Cryptographic Hardware and
Embedded Systems, pages 141–155. Springer, 2009.

[24] Fatemeh Ganji, Shahin Tajik, Fabian Faessler, and Jean-Pierre Seifert. Having no
mathematical model may not secure pufs. Journal of Cryptographic Engineering,
7(2):113–128, 2017.

[25] Fatemeh Ganji, Shahin Tajik, Fabian Fäßler, and Jean-Pierre Seifert. Strong machine
learning attack against pufs with no mathematical model. In International Conference
on Cryptographic Hardware and Embedded Systems, pages 391–411. Springer, 2016.

[26] Fatemeh Ganji, Shahin Tajik, and Jean-Pierre Seifert. Why attackers win: on the
learnability of xor arbiter pufs. In International Conference on Trust and Trustworthy
Computing, pages 22–39. Springer, 2015.

[27] Blaise Gassend, Dwaine Clarke, Marten Van Dijk, and Srinivas Devadas. Silicon
physical random functions. In Proceedings of the 9th ACM conference on Computer
and communications security, pages 148–160. ACM, 2002.

[28] Blaise Laurent Patrick Gassend. Physical random functions. PhD thesis, Mas-
sachusetts Institute of Technology, 2003.

[29] Marjan Ghodrati. Thwarting electromagnetic fault injection attack utilizing timing
attack countermeasure. PhD thesis, Virginia Tech, 2018.

[30] Jorge Guajardo, Sandeep S Kumar, Geert-Jan Schrijen, and Pim Tuyls. Fpga intrin-
sic pufs and their use for ip protection. In International workshop on cryptographic
hardware and embedded systems, pages 63–80. Springer, 2007.

[31] Intel. https://www.intel.com.

[32] Intrinsic ID. https://www.intrinsic-id.com.

87

[33] Mahmoud KhalafAlla, Mahmoud A. Elmohr, and Gebotys. Going deep: Using deep
learning techniques with simplified mathematical models against xor br and tbr pufs
(attacks and countermeasures). To appear in 2020 IEEE International Symposium on
Hardware-Oriented Security and Trust. IEEE, 2020.

[34] Mahmoud Khalafallah. Comprehensive study of physical unclonable functions on
fpgas: correlation driven implementation, deep learning modeling attacks, and coun-
termeasures. 2020.

[35] Paul Kocher, Ruby Lee, Gary McGraw, Anand Raghunathan, Srivaths Moderator-
Ravi, and Srivaths Moderator-Ravi. Security as a new dimension in embedded system
design. In Proceedings of the 41st annual Design Automation Conference, pages 753–
760. ACM, 2004.

[36] Oliver Kömmerling and Markus G Kuhn. Design principles for tamper-resistant smart-
card processors. Smartcard, 99:9–20, 1999.

[37] Philip Koopman. Embedded system security. Computer, 37(7):95–97, 2004.

[38] LANGER EMV-Technik GmbH. https://www.langer-emv.com.

[39] Johan Laurent, Vincent Beroulle, Christophe Deleuze, and Florian Pebay-Peyroula.
Fault injection on hidden registers in a risc-v rocket processor and software counter-
measures. In 2019 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pages 252–255. IEEE, 2019.

[40] Haohao Liao and Catherine Gebotys. Methodology for em fault injection: Charge-
based fault model. In 2019 Design, Automation & Test in Europe Conference &
Exhibition (DATE), pages 256–259. IEEE, 2019.

[41] Daihyun Lim, Jae W Lee, Blaise Gassend, G Edward Suh, Marten Van Dijk, and
Srinivas Devadas. Extracting secret keys from integrated circuits. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, 13(10):1200–1205, 2005.

[42] Roel Maes and Ingrid Verbauwhede. Physically unclonable functions: A study on
the state of the art and future research directions. In Towards Hardware-Intrinsic
Security, pages 3–37. Springer, 2010.

[43] Microsemi. https://www.microsemi.com.

[44] Victor S Miller. Use of elliptic curves in cryptography. In Conference on the theory
and application of cryptographic techniques, pages 417–426. Springer, 1985.

88

[45] Nicolas Moro, Amine Dehbaoui, Karine Heydemann, Bruno Robisson, and Em-
manuelle Encrenaz. Electromagnetic fault injection: towards a fault model on a 32-bit
microcontroller. In 2013 Workshop on Fault Diagnosis and Tolerance in Cryptography,
pages 77–88. IEEE, 2013.

[46] Nicolas Moro, Karine Heydemann, Amine Dehbaoui, Bruno Robisson, and Em-
manuelle Encrenaz. Experimental evaluation of two software countermeasures against
fault attacks. In 2014 IEEE International Symposium on Hardware-Oriented Security
and Trust (HOST), pages 112–117. IEEE, 2014.

[47] Erick Nascimento, Lukasz Chmielewski, David Oswald, and Peter Schwabe. Attacking
embedded ecc implementations through cmov side channels. In International Confer-
ence on Selected Areas in Cryptography, pages 99–119. Springer, 2016.

[48] NXP. https://www.nxp.com.

[49] Sébastien Ordas, Ludovic Guillaume-Sage, and Philippe Maurine. Electromagnetic
fault injection: the curse of flip-flops. Journal of Cryptographic Engineering, 7(3):183–
197, 2017.

[50] Srivaths Ravi, Srivaths Ravi, Anand Raghunathan, Paul Kocher, and Sunil Hattan-
gady. Security in embedded systems: Design challenges. ACM Transactions on Em-
bedded Computing Systems (TECS), 3(3):461–491, 2004.

[51] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Communications of the ACM, 21(2):120–
126, 1978.

[52] Lionel Riviere, Zakaria Najm, Pablo Rauzy, Jean-Luc Danger, Julien Bringer, and
Laurent Sauvage. High precision fault injections on the instruction cache of armv7-m
architectures. In 2015 IEEE International Symposium on Hardware Oriented Security
and Trust (HOST), pages 62–67. IEEE, 2015.

[53] MAES Roel. Physically unclonable functions: Constructions, properties and applica-
tions. Katholieke Universiteit Leuven, Belgium, 2012.

[54] Rohde & Schwarz. https://www.rohde-schwarz.com.

[55] Ulrich Rührmair and Daniel E Holcomb. Pufs at a glance. In Proceedings of the
conference on Design, Automation & Test in Europe, page 347. European Design and
Automation Association, 2014.

89

[56] Ulrich Rührmair, Frank Sehnke, Jan Sölter, Gideon Dror, Srinivas Devadas, and
Jürgen Schmidhuber. Modeling attacks on physical unclonable functions. In Proceed-
ings of the 17th ACM conference on Computer and communications security, pages
237–249. ACM, 2010.

[57] Dieter Schuster and Robert Hesselbarth. Evaluation of bistable ring pufs using single
layer neural networks. In International Conference on Trust and Trustworthy Com-
puting, pages 101–109. Springer, 2014.

[58] Dieter Schuster and Robert Hesselbarth. Evaluation of bistable ring pufs using single
layer neural networks. In International Conference on Trust and Trustworthy Com-
puting, pages 101–109. Springer, 2014.

[59] SEGGER. https://www.segger.com.

[60] Nidhal Selmane, Sylvain Guilley, and Jean-Luc Danger. Practical setup time violation
attacks on aes. In 2008 Seventh European Dependable Computing Conference, pages
91–96. IEEE, 2008.

[61] SiFive. https://www.sifive.com.

[62] SiFive, Inc. SiFive E31 Manual, 9 2019. v19.08p0.

[63] SiFive, Inc. SiFive FE310-G002 Manual, 5 2019. v19p05.

[64] SiFive, Inc. SiFive HiFive1 Rev B Getting Started Guide, 5 2019. V1.1.

[65] Sergei Skorobogatov. Using optical emission analysis for estimating contribution to
power analysis. In 2009 Workshop on Fault Diagnosis and Tolerance in Cryptography
(FDTC), pages 111–119. IEEE, 2009.

[66] Sergei Petrovich Skorobogatov. Semi-invasive attacks: a new approach to hardware
security analysis. 2005.

[67] Sudheendra Srivathsa. Secure and energy efficient physical unclonable functions. 2012.

[68] Advance Encryption Standard. Federal information processing standards publication
197. FIPS PUB, pages 46–3, 2001.

[69] G Edward Suh and Srinivas Devadas. Physical unclonable functions for device au-
thentication and secret key generation. In 2007 44th ACM/IEEE Design Automation
Conference, pages 9–14. IEEE, 2007.

90

[70] Jasper GJ Van Woudenberg, Marc F Witteman, and Federico Menarini. Practical
optical fault injection on secure microcontrollers. In 2011 Workshop on Fault Diagnosis
and Tolerance in Cryptography, pages 91–99. IEEE, 2011.

[71] Roy Ward and Tim Molteno. Table of linear feedback shift registers. Datasheet,
Department of Physics, University of Otago, 2007.

[72] Mario Werner, Robert Schilling, Thomas Unterluggauer, and Stefan Mangard. Pro-
tecting risc-v processors against physical attacks. In 2019 Design, Automation & Test
in Europe Conference & Exhibition (DATE), pages 1136–1141. IEEE, 2019.

[73] xilinx. https://www.xilinx.com.

[74] Xiaolin Xu, Ulrich Rührmair, Daniel E Holcomb, and Wayne Burleson. Security
evaluation and enhancement of bistable ring pufs. In International Workshop on
Radio Frequency Identification: Security and Privacy Issues, pages 3–16. Springer,
2015.

[75] Dai Yamamoto, Masahiko Takenaka, Kazuo Sakiyama, and Naoya Torii. Security
evaluation of bistable ring pufs on fpgas using differential and linear analysis. In 2014
Federated Conference on Computer Science and Information Systems, pages 911–918.
IEEE, 2014.

[76] Dai Yamamoto, Masahiko Takenaka, Kazuo Sakiyama, and Naoya Torii. Security
evaluation of bistable ring pufs on fpgas using differential and linear analysis. In 2014
Federated Conference on Computer Science and Information Systems, pages 911–918.
IEEE, 2014.

[77] Tanveer Zia and Albert Zomaya. Security issues in wireless sensor networks. In 2006
International Conference on Systems and Networks Communications (ICSNC’06),
pages 40–40. IEEE, 2006.

[78] Loic Zussa, Amine Dehbaoui, Karim Tobich, Jean-Max Dutertre, Philippe Maurine,
Ludovic Guillaume-Sage, Jessy Clediere, and Assia Tria. Efficiency of a glitch detector
against electromagnetic fault injection. In 2014 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pages 1–6. IEEE, 2014.

[79] Loic Zussa, Jean-Max Dutertre, Jessy Clédiere, Bruno Robisson, Assia Tria, et al. In-
vestigation of timing constraints violation as a fault injection means. In 27th Confer-
ence on Design of Circuits and Integrated Systems (DCIS), Avignon, France. Citeseer,
2012.

91

APPENDICES

92

Appendix A

BR/TBR PUFs Codes

A.1 MUX Module

Code A.1: MUX Module RTL Code in Verilog

module Mux(

input in_0 , // first input to the MUX

input in_1 , // second input to the MUX

input sel , //the MUX ’s selector

output out //the MUX ’s output

);

assign out = sel ==1? in_1 : in_0; // definition of the MUX

endmodule

93

A.2 DE-MUX Module

Code A.2: DE-MUX Module RTL Code in Verilog

module DeMux(

input in , //the DEMUX ’s intput

input sel , //the DEMUX ’s selector

output out_0 , // first output of the DEMUX

output out_1 // second output of the DEMUX

);

assign out_0 = sel ==1? 1’b0 : in; // definition of the DEMUX

assign out_1 = sel ==1? in : 1’b0; // definition of the DEMUX

endmodule

94

A.3 Original Single BR PUF Stage Module

Code A.3: Original Single BR PUF Stage Module RTL Code in Verilog

module BRStage(

input rst , // reset signal

input challenge , // corresponding challenge bit

input in , // input signal to the stage

output out // output signal of the stage

);

wire nor_0_in; //1st output of the DEMUX and input to 1st nor gate

wire nor_1_in; //2nd output of the DEMUX and input to 2nd nor gate

wire nor_0_out; // output of 1st nor gate and 1st input to the MUX

wire nor_1_out; // output of 2nd nor gate and 2nd input to the MUX

// makes sure the DEMUX is not removed for optimizations

(* KEEP_HIERARCHY = "true" *)

DeMux DeMux_inst (// instantiates the DEMUX and connects its port

.in(in),

.sel(challenge),

.out_0(nor_0_in),

.out_1(nor_1_in)

);

// instantiate the nor gate and connect their port

nor nor_0(nor_0_out ,nor_0_in ,rst);

nor nor_1(nor_1_out ,nor_1_in ,rst);

// makes sure the MUX is not removed for optimizations

(* KEEP_HIERARCHY = "true" *)

Mux Mux_inst (// instantiates the MUX and connects its port

.in_0(nor_0_out),

.in_1(nor_1_out),

.sel(challenge),

.out(out)

);

endmodule

95

A.4 Optimized Single BR PUF Stage Module

Code A.4: Optimized Single BR PUF Stage Module RTL Code in Verilog

module BRStage(

input rst , // reset signal

input challenge , // corresponding challenge bit

input in , // input signal to the stage

output out // output signal of the stage

);

// makes sure both nor gates are not removed for optimizations

(* KEEP = "true" *) wire nor_0_out; // output of 1st nor gate

(* KEEP = "true" *) wire nor_1_out; // output of 2nd nor gate

// instantiate the nor gate and connect their port

nor nor_0(nor_0_out ,in ,rst);

nor nor_1(nor_1_out ,in ,rst);

//no need to explicitly keep the hierarchy of the MUX since both nor

gates are kept , so the MUx won ’t be removed

Mux Mux_inst (// instantiates the MUX and connects its port

.in_0(nor_0_out),

.in_1(nor_1_out),

.sel(challenge),

.out(out)

);

endmodule

96

A.5 BR PUF Top Module

Code A.5: BR PUF Top Module RTL Code in Verilog

module PUFTop #(parameter CHALLENGE_WIDTH = 64)(

input rst , // reset signal

input [CHALLENGE_WIDTH -1:0] challenge , //full challenge

output [CHALLENGE_WIDTH -1:0] response // response of all stages

);

generate

wire [CHALLENGE_WIDTH -1:0] in_out; // signals between stages

genvar i;

for (i = 0; i < CHALLENGE_WIDTH; i=i+1) begin : stage

BRStage stage_inst (// instantiates one BR stage

.rst(rst),

.challenge(challenge[i]),

.in(in_out[i]),

// connects output of one stage to the input of next

.out(in_out [(i+1)%CHALLENGE_WIDTH])

);

end

// assigns the final response with the signals between stages

assign response = in_out;

endgenerate

endmodule

97

A.6 Original Single TBR PUF Stage Module

Code A.6: Original Single TBR PUF Stage Module RTL Code in Verilog

module TBRStage(

input rst , // reset signal

input challenge , // corresponding challenge bit

input in_0 , // forward path input to the stage

input in_1 , // backward path input to the stage

output out_0 , // forward path output of the stage

output out_1 // backward path output of the stage

);

// makes sure all muxes and gates are kept separate and not optimized

(* KEEP = "true" *) wire nor_0_in; // input to the 1st nor gate

(* KEEP = "true" *) wire nor_1_in; // input to the 2nd nor gate

(* KEEP = "true" *) wire nor_0_out; // output to the 1st nor gate

(* KEEP = "true" *) wire nor_1_out; // output to the 2nd nor gate

// instantiate the nor gate and connect their port

nor nor_0(nor_0_out ,nor_0_in ,rst);

nor nor_1(nor_1_out ,nor_1_in ,rst);

Mux InMux_0 (// instantiates the 1st input MUX

.in_0(in_0), .in_1(in_1),

.sel(challenge), .out(nor_0_in)

);

Mux InMux_1 (// instantiates the 2nd input MUX

.in_0(in_1), .in_1(in_0),

.sel(challenge), .out(nor_1_in)

);

Mux OutMux_0 (// instantiates the 1st output MUX

.in_0(nor_0_out), .in_1(nor_1_out),

.sel(challenge), .out(out_0)

);

Mux OutMux_1 (// instantiates the 2nd output MUX

.in_0(nor_1_out), .in_1(nor_0_out),

.sel(challenge), .out(out_1)

);

endmodule

98

A.7 Optimized Single TBR PUF Stage Module

Code A.7: Optimized Single TBR PUF Stage Module RTL Code in Verilog

module TBRStage(

input rst , // reset signal

input challenge , // corresponding challenge bit

input in_0 , // forward path input to the stage

input in_1 , // backward path input to the stage

output out_0 , // forward path output of the stage

output out_1 // backward path output of the stage

);

//the inputs of the nor gates are left for optimization

wire nor_0_in; // input to the 1st nor gate

wire nor_1_in; // input to the 2nd nor gate

(* KEEP = "true" *) wire nor_0_out; // output to the 1st nor gate

(* KEEP = "true" *) wire nor_1_out; // output to the 2nd nor gate

// instantiate the nor gate and connect their port

nor nor_0(nor_0_out ,nor_0_in ,rst);

nor nor_1(nor_1_out ,nor_1_in ,rst);

Mux InMux_0 (// instantiates the 1st input MUX

.in_0(in_0), .in_1(in_1),

.sel(challenge), .out(nor_0_in)

);

Mux InMux_1 (// instantiates the 2nd input MUX

.in_0(in_1), .in_1(in_0),

.sel(challenge), .out(nor_1_in)

);

Mux OutMux_0 (// instantiates the 1st output MUX

.in_0(nor_0_out), .in_1(nor_1_out),

.sel(challenge), .out(out_0)

);

Mux OutMux_1 (// instantiates the 2nd output MUX

.in_0(nor_1_out), .in_1(nor_0_out),

.sel(challenge), .out(out_1)

);

endmodule

99

A.8 TBR PUF Top Module

Code A.8: TBR PUF Top Module RTL Code in Verilog

module PUF_chain #(parameter CHALLENGE_WIDTH = 64)(

input rst , // reset signal

input [CHALLENGE_WIDTH -1:0] challenge , //full challenge

output [2* CHALLENGE_WIDTH -1:0] response // response of all stages

);

generate

wire [2* CHALLENGE_WIDTH -1:0] in_out; // signals between stages

genvar i;

for (i = 0; i < CHALLENGE_WIDTH; i=i+1) begin : stage

TBRStage stage_inst (// instantiates one TBR stage

.rst(rst),

.challenge(challenge[i]),

.in_0(in_out[i]),

.in_1(in_out [2* CHALLENGE_WIDTH -i-1]),

.out_0(in_out[i+1]),

.out_1(in_out [(2* CHALLENGE_WIDTH -i)%(2* CHALLENGE_WIDTH)])

);

end

// assigns the final response with the signals between stages

assign response = in_out;

endgenerate

endmodule

100

	List of Tables
	List of Figures
	Glossary
	Abbreviations
	Introduction
	Motivation
	Research Goals
	Thesis Organization

	EMFI Background and Related Work
	Physical Attacks
	Relevant Fault Injection Techniques
	Clock glitching
	Voltage glitching
	Micro-probing
	Optical fault injection

	Electro Magnetic Fault Injection
	EMFI Previous Research

	PUF Background and Related Work
	Physical Unclonable Functions
	Relevant PUF Architectures
	SRAM PUF
	RO PUF
	Arbiter PUF

	BR and TBR PUFs
	XOR PUFs
	Strong PUFs Characteristics
	BR/TBR PUFs Previous Research

	EMFI Experimental Setup
	EMFI Setup
	Hardware
	Software
	EM Pulse Characteristics

	The Target Device

	EMFI Experiments and Results
	Identifying the Best Spot for EMFI
	Examining the Various Conditions for EMFI
	Effect of the Clock Frequency
	Effect of the Supplied Voltage

	Timing Analysis of the Target Instruction
	Measuring Execution Time on Different Memories
	Identifying the Best Position For the Target Instruction

	Faulting Multiple Instructions
	Analysis of Faulted Instructions
	Arithmetic and Logic Operations
	Memory Operations
	Flow Control Operations

	XOR BR/TBR PUFs Design on FPGA
	Overall System Architecture
	PUFs Evaluation Metrics
	BR/TBR PUFs Realizations on FPGA
	BR PUF Realization on FPGA
	TBR PUF Realization on FPGA

	Implementation Approaches
	Automatic Placement Approach
	Manual Placement Approach

	Implementation of the 4-input XOR BR PUF
	Implementation of the 4-input XOR TBR PUF

	Conclusion
	Summary
	Discussion
	Contributions
	Future Work

	References
	APPENDICES
	BR/TBR PUFs Codes
	MUX Module
	DE-MUX Module
	Original Single BR PUF Stage Module
	Optimized Single BR PUF Stage Module
	BR PUF Top Module
	Original Single TBR PUF Stage Module
	Optimized Single TBR PUF Stage Module
	TBR PUF Top Module

