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1-The multi-scale entropy analysis can unveil the self-similarity in time 

series. 

2-The result of multi-scale entropy for fractional Gaussian noise is well 

modeled by a decreasing q-exponential function. 

3-The Hurst exponent of a time series can be determined by the multi-

scale entropy analysis.  
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Abstract

Several methods exist for measuring the complexity in a system through
analysis of its associated time series. Multi-scale entropy appears as a suc-
cessful method on this matter. It has been applied in many disciplines with
great achievements. For example by analysis of the bio-signals, we are able
to diagnose various diseases. However, in most versions for the multi-scale
entropy the examined time series is analyzed qualitatively. In this study,
we try to present a quantitative picture for the multi-scale entropy analysis.
Particularly, we focus on finding relation between the result of the multi-
scale analysis and the Hurst exponent which quantifies the persistence in
time series. For this purpose, the fractional Gaussian noise time series with
different Hurst exponents are analyzed by the multi-scale entropy method
and the results are fitted to a decreasing q-exponential function. We observe
remarkable relation between the function parameters and Hurst exponent.
This function can simulate the result of analysis for the white noise to the
1/f noise.

Keywords: Multi-scale Entropy, Fractional Gaussian Noise, Hurst
Exponent

1. Introduction1

Time series give many information about the examined system. Such2

information are mostly coded as self-similar patterns in time series. The ex-3
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istence of these patterns is usually due to the long range interaction between4

system components and/or long term memory in their dynamics. Every pat-5

tern exhibits an order or regularity in the system and allows us to predict6

the system’s behavior statistically. This is what most of the scientists called7

complexity [1]. Albeit, some other definitions of the complexity exist which8

differ with the above explanation. Most of them deal with the amount of9

information that we need for understanding of the system behavior. Re-10

garding to this perspective, the concept of entropy appears as a simple and11

powerful measure for quantifying the complexity. It can be found by simple12

googling many literature which discuss alternative methods for entropy esti-13

mation of the complexity in real world data. Here we try to reconcile these14

two treatments of the complexity.15

Several methods have been proposed for identification of the self-similar16

pattern in time series [2]. The self-similarity may exist in time series graph17

which be revealed by the fractal and multi-fractal analysis [3, 4]. The scale-18

free distribution of values is another indication for self-similarity in time19

series [5]. The power law relationship for the auto-correlation function is20

the most well known feature which represents the self-similar pattern in time21

series. It deserves to note that the above aspects of self-similarity may be22

related to one another.23

For the first time, It was H. E. Hurst a British hydrologist who pointed24

out to the self-similarity of a time series while studying on the optimum dam25

size for the Nile river in 1951. He developed a method for measuring the self-26

similarity which is known as rescale range analysis (RS) [6]. The result of RS27

analysis is expressed as a value between 0 and 1, which is called the Hurst28

exponent. There are many other methods that directly or indirectly compute29

the Hurst exponent for a time series. Now, we only name some of them and30

refer the interested readers to literature [2, 7]. As some instances, we briefly31

point out to the following methods, detrended fluctuation analysis (DFA)32

[8, 9, 3], power spectral analysis and its variants [10], wavelet method [11],33

methods based on the complex networks theory [12] (see also it’s references).34

In this work, we are intended to show that the multi-scale entropy (MSE)35

[13, 14, 15, 16, 17, 18, 19], can be also used for estimation of the Hurst36

exponent. For this end, we apply the MSE method to analyze the fractional37

Gaussian noise (FGN) time series with various Hurst exponents. Then we38

fit the obtained results by the decreasing q-exponential as a model function.39

We will find that the value of parameters are nicely related to the Hurst40

exponents.41
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We organize this paper as follows. In the next section we briefly review42

the fractional Gaussian noise and meaning of the Hurst exponent. The basic43

variant of multi-scale entropy is discussed in the third section. Fourth section44

is devoted to the results and their interpretation. We summarize our work45

at the final section.46

2. Fractional Gaussian Noise47

The fractional Brownian motion (FBM) is one of the most well known48

stochastic processes which has been widely studied analytically [20]. It is49

used in modelling various phenomena in science and engineering [21, 22].50

Researchers are interested in studying and using FBM for its properties like51

as self-similarity [21, 22].52

The one dimensional FBM which we denoted it as BH(t), is a non-53

stationary stochastic process which starts at zero, BH(0) = 0. The process54

is known to have zero means, 〈BH(t)〉 = 0, and Gaussian distribution for its55

increments. The auto-covariance function of the process is,56

〈BH(t+ τ)BH(t)〉 =
1

2

(
|t+ τ |2H + |t|2H − |τ |2H

)
. (1)

For simplicity, we assume that 〈B2
H(1)〉 = 1. The parameter H is the Hurst57

exponent, a real value between 0 and 1 which determines the persistence of58

process. For H = 0.5 we have ordinary Brownian motion or Wiener process.59

Dependence of auto-covariance function on t is the reason for non-stationary60

feature of FBM. By using equation 1 in the case τ = 0, we obtain, <61

B2
H(t) >= t2H or < B2

H(at) >= a2H < B2
H(t) >. By simple calculation62

it can be generalized to all other moments. This result indicates that the63

FBM process is self-similar in distribution, BH(at)
d
= aHBH(t).64

As we mentioned earlier, FBM time series has non-stationary character65

and is not suitable for modelling the stationary processes. The increments of66

FBM as denoted as, ∆BH(t) = BH(t+ ∆t)−BH(t), define another stochas-67

tic process, named as fractional Gaussian noise (FGN). By using the auto-68

covariance function of FBM and some algebraic manipulation, we can prove69

that the auto-covariance of this new process is,70

〈∆BH(t+ τ)∆BH(t)〉 =
1

2

(
|τ + ∆t|2H + |τ −∆t|2H − 2|τ |2H

)
. (2)

3



In the case, τ � ∆t, we can approximate the auto-covariance function as,71

〈∆BH(t+ τ)∆BH(t)〉 ∼ H(2H − 1)τ 2H−2. (3)

The case H > 0.5 demonstrates the existence of long range dependence in72

series. The FGN also inherits the property of self-similarity from its parent;73

by putting τ = 0 in equation 2 we arrive at the desired result for second74

moment. The Gaussain distribution of ∆BH(t), allows us to generalize the75

obtained result easily to all other moments.76

It is important to note that the Hurst exponent is an indicator for both77

self-similarity and long range dependence in FGN time series.78

3. Multi-scale Entropy79

In statistical mechanics, entropy is a quantity for measuring disorder in80

system. A system may have many microscopic states and each state has81

certain probability of occurrence. The goal of statistical mechanics is to82

predict these probabilities. All the entropies like as Gibbs-Shannon , Renyi83

and Tsallis, are expressed in terms of the state probabilities.84

When disorder is increased in the system, this means that most of the85

states are likely to occur then it is so hard to predict the state of system.86

Entropy also increases in this case. If disorder decreases, some states will87

be preferred and system becomes predictable, therefore entropy is decreased.88

The spatial and temporal patterns are indication of the regularity or order89

in a system. Any regularity makes the system predictable. Entropy can90

measure the amount of predictability or in other word the complexity of91

system.92

The most challenging problem is the estimation of entropy for a given93

system from its time series data. Here we only focus on the multi-scale94

entropy analysis which is the most powerful method for investigating the95

complexity of time series. In following we describe the method and refer the96

interested readers for convincing statements to Refs. [13, 14].97

Assume, we have a time series of length N which is denoted by series of98

values, {x1, . . . , xN}.99

The interaction between system and its environment may induce noises in100

the system time series. Short range correlations in noises can be accumulated101

and make a long range effect which is non-original. In the first step, it is102

necessary to reduce the effect of unwanted noises and short range correlations103
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from signal by the coarse-graining procedure. In this steps we partitioned104

time series into non-overlapping windows with equal length τ , then the coarse105

grained time series is constructed by averaging on data in each window,106

x
(τ)
i =

1

τ

τ∑

j=1

x(i−1)τ+j (4)

and putting them in a new sequence, {x(τ)1 , . . . , x
(τ)
N/τ}. In literature, τ is107

called the scale factor.108

For the resulted time series we can define the m−dimensional vectors like109

as,110

X(τ)
m (i) = {x(τ)i , . . . , x

(τ)
i+m−1}. (5)

In the next step, we count the number of vector pairs that have distance111

less than r and denote it by nm(r, τ). We repeat the same computation for112

(m + 1)−dimensional vector pairs and obtain nm+1(r). The sample entropy113

is defined as,114

SE(m, r, τ) = − log(nm+1(r, τ)/nm(r, τ)). (6)

It is clear that the sample entropy has zero or positive value, because115

nm+1(r, τ) is less than nm(r, τ).116

In final step we plot the sample entropy against the scale factor. For the117

white noise we observe a decreasing behavior and it is proved analytically.118

For the short range correlated signals it is expected to find the same behavior119

as the white noise since coarse-graining procedure eliminates the short range120

correlations. The long range dependence in time series does not change after121

the coarse-graining operation then for 1/f noise the sample entropy does not122

vary with scale factor and remains constant. In the next section we analysis123

the FGN data series with different Hurst exponent by MSE method.124

4. Results125

First of all, we should generate the needed FGN series with different126

range of Hurst exponent for our analysis. The FGN samples are obtained127

through differencing of the fractional Brownian motion data. There are sev-128

eral ways for generating the Brownian motion time series with given Hurst129

exponent. Among them, we choose three algorithms; Hosking [23], random130

midpoint displacement [24] and Rambaldi-Pinazza [25]. These algorithms131

employ different approaches for doing this. The Hosking algorithm uses the132
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Figure 1: Part of the FBM (left) and FGN (right) time series for three values of the Hurst
exponent, ∼ 0.3,∼ 0.5 and ∼ 0.7. For comparison purpose, the FBM time series are scaled
to interval [0, 1]. Time series with small Hurst exponent is more denticulated.

FBM covariance property. In the random midpoint displacement method133

the self similarity and Gaussian distribution of increments are used and fi-134

nally the Rambaldi-Pinazza algorithm considers the integral representation135

of FBM. Thus, we construct 48 samples with Hurst exponent between 0.15136

and 0.9 and size of 65535. In construction procedure all data are scaled be-137

tween 0 and 1. This scaling does not alter the Hurst exponent. Figure 1138

shows the plot for FBM and its associated FGN series for three values of the139

Hurst exponent, ∼ 0.3,∼ 0.5 and ∼ 0.7. We observe that by increasing the140

Hurst exponent the difference between adjacent values in FBM time series141

decreases. It should be noted that the procedure of generating FBM time142

series is not completely exact. Therefore it is necessary to measure the Hurst143

exponent again for all samples data. Here we use DFA for this purpose.144

Before analyzing the prepared FGN data by MSE, we should set two145

parameters, m and r. The first one determines the dimension of vectors, see146

equation 5, and the latter defines a threshold for closeness of vectors. Here147
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Figure 2: The MSE analysis for three sample time series with the Hurst exponent, ∼ 0.3,∼
0.5 and ∼ 0.7. The plot for time series with small Hurst exponent decreases more rapidly
than others. The results of fitting with the decreasing q-exponential are plotted by solid
lines. The values of q parameter for these time series are 2.07, 3.42 and 6.35 respectively.
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Figure 3: The decreasing q-exponential function for wide range of q from 1 to 400. The
large value of q mimics the MSE result for 1/f noise.
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Figure 4: The parameter q against the Hurst exponent. The value of q rapidly grows by
increasing the Hurst exponent, which ensures us for simulating the behavior of 1/f noise.

we put m = 2 and r = 0.15σ where σ is the standard deviation of time series.148

In figure 2 we plot the result for three time series with the Hurst exponent149

equal to, ∼ 0.3,∼ 0.5 and ∼ 0.7. As is seen in this figure, all plots show150

decreasing behavior but for large value of the Hurst exponent, this behavior151

is more gentle.152

This behavior could be justified by closer look at the different stages of153

the MSE calculation. In the coarse graining procedure, we elimiate the short154

range correlated (high frequency) noises in time series, hence the variance155

of the resulting coarse grained time series decreases. Since r is constant,156

decreasing in variance causes that nm+1(r, τ) tends to nm(r, τ) and conse-157

quently the sample entropy decreases too [18]. It is expected that the time158

series with lesser Hurst exponent shows more decrease in the variance and159

also in the sample entropy because the high frequency noises are dominated160

for lower values of H.161

It is important to mention that the FGN series with H = 0.5 is the same162

as the white noise and as we expected, its result completely overlaps with163

the white noise result.164

In order to find the relation between the MSE analysis and the Hurst165

exponent, it is required to model the result of analysis with a model func-166

tion. This function should be well fitted to all the FGN results only by167

changing some parameters. The number of these parameters must be at168

minimum. Here we choose, the following function which is defined in terms169
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Figure 5: The parameter β against the Hurst exponent. The value of β decreases by
increasing the Hurst exponent. It seems that for large value of the Hurst exponent, this
decreasing becomes more rapidly.
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Figure 6: The parameter A against the Hurst exponent. The behavior of A is different for
H < 0.5 and H > 0.5. First it increases slowly then rapid decreasing is observed.

of q-exponential function,170

f(x;A, q, β) = Aeq(−βx) = A[1− β(q − 1)x]
1

1−q (7)

A, q and β are three real positive numbers. q must be one or greater than171

one to have decreasing behavior for the model function. In figure 2 we fit172

the results of analysis for the above mentioned three sample time series by173

this model function. As is seen, the analysis results are well fitted to the174
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Figure 7: The correlation measure of fitting procedure. The MSE analysis results for time
series that are generated by the Hosking algorithm and the Rambaldi-Pinazza method are
well fitted by our suggested function.
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Figure 8: The fit standard error measure of fitting procedure. The MSE analysis results
for time series that are generated by the Hosking algorithm and the Rambaldi-Pinazza
method are well fitted by our suggested function.

suggested function. The values of q parameter are 2.07, 3.42 and 6.35 for175

time series with the Hurst exponent ∼ 0.3,∼ 0.5 and ∼ 0.7 respectively.176

The larger Hurst exponent leads to the greater value of q parameter and the177

gentle decrease of the model function.178

One advantage of using such function, is mimicking behavior of the MSE179

results from white noise to 1/f noise by only one function. This statement is180

illustrated graphically in figure 3. By increasing the value of q, the function181
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becomes close to the horizontal straight line which is the behavior of the182

obtained result for the 1/f noise.183

We fit all the results that obtained from the MSE analysis of the FGN time184

series by the mentioned function. Figures 4 and 5 show the fit parameters, q185

and β against the Hurst exponent. We observe increasing behavior for q and186

decreasing behavior for β. The parameter q varies between 1.5 for H = 0.136187

to 18.9 for H = 0.86. Simultaneously, β changes in the range of 0.25 to 0.01.188

The parameter A softly increases from 2.3 to 2.45 for H < 0.5 then rapid189

decreasing can be observed, see the figure 6. We know that the FGN process,190

when H → 1 simulates the 1/f noise. It can be understood through the large191

value of q and small value of β for time series with large Hurst exponent,192

because the resulting model function becomes very close to the horizontal193

straight line.194

The fit standard error and correlation are two important measures which195

determine the goodness of fitting. It is worth to note that both of them196

indicate that all the curve fittings are well done. The correlation coefficient197

for nearly all data is more than 0.99 (see figure 7) and the fit standard error198

for most of the fitting procedures are less than 0.001 (see figure 8). The199

results for time series which were generated by the Hosking algorithm and200

the Rambaldi-Pinazza method are better fitted to the model function than201

others.202

Finally, we mention that for the MSE analysis we use the program written203

by M. Costa etal., where can be downloaded from physionet.org [26]. In204

fitting procedure we benefit from the curve fitting function in SciPy which is205

the Python library for the scientific and technical computing.206

5. Conclusion207

The MSE analysis is favorable way for the abnormally detection in phys-208

iological time series. It has been widely used for analysis of the heart beats209

and the electroencephalogram time series. Many diseases were distinguished210

by such analysis without any need to use the invasive methods. This way of211

the analysis of complexity has been applied to technical time series too. In212

this study, we were interested to answer a fundamental question, how MSE213

can be used for detection of the long range dependence in time series. In214

other word, we were looking to explore the relation between the MSE anal-215

ysis result and the Hurst exponent of a time series. We chose the FGN time216

series with different Hurst exponent as our data samples for analysis. It was217
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found that by the function, Aeq(−βx), all the results for the FGN time se-218

ries can be modeled. We explored the nice relation between parameters of219

model function; q, β and A, with the Hurst exponent. We also reported the220

curve fitting measures which demonstrated that the well fitting were done.221

In future, we would interested to find the effect of trends on the result of222

the MSE analysis and apply it on natural time series, particularly the daily223

temperature data and finding a way for the climate classification.224
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