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*Highlights (for review)

1-The multi-scale entropy analysis can unveil the self-similarity in time
series.

2-The result of multi-scale entropy for fractional Gaussian noise is well
modeled by a decreasing g-exponential function.

3-The Hurst exponent of a time series can be determined by -he multi-
scale entropy analysis.



*Manuscript

Click here to view linked References

Multi-scale entropy analysis and Hurst «:moaent

Saeid Mollaei®, Amir Hossein Darooneh™?, Sow.~ e Karimi®

?Department of Physics, University of Zanjar , Zanju », Iran.
b Department of Applied Mathematics, University of Wa. rloo, 1 aterloo, Ontario,
Canada.
¢Department of Physics, University of Ui »mi , U omia, Iran.

Abstract

Several methods exist for measuring ti.> complexity in a system through
analysis of its associated time series Mnlti-scale entropy appears as a suc-
cessful method on this matter. It has " en applied in many disciplines with
great achievements. For example , anc'ysis of the bio-signals, we are able
to diagnose various diseases. Howev r, in most versions for the multi-scale
entropy the examined time seric~ 18 analyzed qualitatively. In this study,
we try to present a quantitative picture for the multi-scale entropy analysis.
Particularly, we focus on indi.~ relation between the result of the multi-
scale analysis and the Hu st ex)onent which quantifies the persistence in
time series. For this propoese, vie fractional Gaussian noise time series with
different Hurst exporn.ntc arr analyzed by the multi-scale entropy method
and the results are f'cted 1o 1 decreasing g-exponential function. We observe
remarkable relatic 1 L *ween the function parameters and Hurst exponent.
This function ce. -imulate the result of analysis for the white noise to the
1/ f noise.

Keywords: “Julti-scale Entropy, Fractional Gaussian Noise, Hurst
Exponent

1. Intrc luct’on

" ime se -ies give many information about the examined system. Such
inforn.~tic , are mostly coded as self-similar patterns in time series. The ex-
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istence of these patterns is usually due to the long range intc action between
system components and/or long term memory in their ¢ yn.mics. Every pat-
tern exhibits an order or regularity in the system an. al’ows us to predict
the system’s behavior statistically. This is what mo<” of tu. scientists called
complexity [1]. Albeit, some other definitions of tl e com, lexity exist which
differ with the above explanation. Most of them a.~1 = th the amount of
information that we need for understanding cr th . -ystem behavior. Re-
garding to this perspective, the concept of entrupy ar pears as a simple and
powerful measure for quantifying the complexi, It can be found by simple
googling many literature which discuss altc mative methods for entropy esti-
mation of the complexity in real world da.~ hore we try to reconcile these
two treatments of the complexity.

Several methods have been proposed ..~ identification of the self-similar
pattern in time series [2]. The self-s " **y may exist in time series graph
which be revealed by the fractal and ndti-fractal analysis [3, 4]. The scale-
free distribution of values is anoithc. indication for self-similarity in time
series [5]. The power law rels“~nsh'n for the auto-correlation function is
the most well known feature whici, “epresents the self-similar pattern in time
series. It deserves to note that the above aspects of self-similarity may be
related to one another.

For the first time, It wa. H. £. Hurst a British hydrologist who pointed
out to the self-similarit y of a time series while studying on the optimum dam
size for the Nile river 1. * 151 He developed a method for measuring the self-
similarity which is ] nown as rescale range analysis (RS) [6]. The result of RS
analysis is expressed as ~ value between 0 and 1, which is called the Hurst
exponent. Therr a1 many other methods that directly or indirectly compute
the Hurst expo. ~n, for a time series. Now, we only name some of them and
refer the inte ested . aders to literature [2, 7]. As some instances, we briefly
point out t - the fc.lowing methods, detrended fluctuation analysis (DFA)
[8, 9, 3], »~wer .~ ectral analysis and its variants [10], wavelet method [11],
methods basea »n the complex networks theory [12] (see also it’s references).

In thi. wor'., we are intended to show that the multi-scale entropy (MSE)
[13, 4, 1F 16, 17, 18, 19], can be also used for estimation of the Hurst
expo ent. !or this end, we apply the MSE method to analyze the fractional
C'~nssian noise (FGN) time series with various Hurst exponents. Then we
fit b obtained results by the decreasing g-exponential as a model function.
We v il find that the value of parameters are nicely related to the Hurst
exponents.
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We organize this paper as follows. In the next section v~ briefly review
the fractional Gaussian noise and meaning of the Hurst ¢x} onenc. The basic
variant of multi-scale entropy is discussed in the third s. ~ti m. Fourth section
is devoted to the results and their interpretation. Y. sui.marize our work
at the final section.

2. Fractional Gaussian Noise

The fractional Brownian motion (FBM) is “ne of the most well known
stochastic processes which has been wide!;r studi d analytically [20]. It is
used in modelling various phenomena i “cie.... and engineering [21, 22].
Researchers are interested in studying and ner 3 FBM for its properties like
as self-similarity [21, 22].

The one dimensional FBM whi .. - denoted it as By(t), is a non-
stationary stochastic process which st."cs at zero, By (0) = 0. The process
is known to have zero means, (By.*, = J, and Gaussian distribution for its
increments. The auto-covarian~e fun.tion of the process is,

1
(Bu(t+7)By() = o ([t + 7" + [t = [7[*"). (1)

For simplicity, we assume tu. t /3%(1)) = 1. The parameter H is the Hurst
exponent, a real value oet veen 0 and 1 which determines the persistence of
process. For H = 0.5 we hav . ordinary Brownian motion or Wiener process.

Dependence of ¢ “to-covariance function on ¢ is the reason for non-stationary
feature of FBM. By using equation 1 in the case 7 = 0, we obtain, <
B%(t) >= t*% <« B}(at) >= a* < B%(t) >. By simple calculation
it can be gener.'ired to all other moments. This result indicates that the
FBM proces, is self-similar in distribution, By (at) < a’ By (t).

As we ni.m 10on d earlier, FBM time series has non-stationary character
and is ne’, saitab.c for modelling the stationary processes. The increments of
FBM as denote 1 as, ABy(t) = By(t + At) — B (t), define another stochas-
tic process, ~.med as fractional Gaussian noise (FGN). By using the auto-
cova iance “unction of FBM and some algebraic manipulation, we can prove
that .he ar ¢o-covariance of this new process is,

(ABp(t+7)ABy (1) = = (|7 + At + |7 — AP = 2|17P7) . (2)

N —
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In the case, 7 > At, we can approximate the auto-covarian. ~ function as,
(ABy(t+7)ABy(t)) ~ H(2H — 1)7 177, (3)

The case H > 0.5 demonstrates the existence of 1 ng rage dependence in
series. The FGN also inherits the property of self-s.milari y from its parent;
by putting 7 = 0 in equation 2 we arrive at t.e desired result for second
moment. The Gaussain distribution of ABy (¢, .lows us to generalize the
obtained result easily to all other moments.

It is important to note that the Hurst exponei t is an indicator for both
self-similarity and long range dependence in 1 *M time series.

3. Multi-scale Entropy

In statistical mechanics, entropy ' ¢ quantity for measuring disorder in
system. A system may have ma .- mi roscopic states and each state has
certain probability of occurrence. The goal of statistical mechanics is to
predict these probabilities. All (ne c...ropies like as Gibbs-Shannon , Renyi
and Tsallis, are expressed in terms o. the state probabilities.

When disorder is incre .seuw ‘u the system, this means that most of the
states are likely to occur “hen it is so hard to predict the state of system.
Entropy also increases .n this ase. If disorder decreases, some states will
be preferred and syste n b :cor ies predictable, therefore entropy is decreased.
The spatial and ter pora. » (tterns are indication of the regularity or order
in a system. Any 1coularity makes the system predictable. Entropy can
measure the ame~—nt of predictability or in other word the complexity of
system.

The most cha. nging problem is the estimation of entropy for a given
system fror its time series data. Here we only focus on the multi-scale
entropy anai, ‘s v hich is the most powerful method for investigating the
complex’.y of “ime series. In following we describe the method and refer the
intereste 1 read: rs for convincing statements to Refs. [13, 14].

A-_.me, we have a time series of length N which is denoted by series of
valus, {z1,..., 2N}

Tu. - ir*craction between system and its environment may induce noises in
ti =25y .. m time series. Short range correlations in noises can be accumulated
ana nake a long range effect which is non-original. In the first step, it is
necessary to reduce the effect of unwanted noises and short range correlations
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from signal by the coarse-graining procedure. In this step. we partitioned
time series into non-overlapping windows with equal lenc ch - then the coarse
grained time series is constructed by averaging on dat. ir each window,

o1
7)== e (4)
j=1
and putting them in a new sequence, {a:gT)/ ..,r(.T.)T}. In literature, 7 is

called the scale factor.
For the resulted time series we can definc *he m —dimensional vectors like
as,

XQ0) ={x" -t} (5)

In the next step, we count the n» .~her o1 vector pairs that have distance

less than r and denote it by n,,(r, 7). Vie repeat the same computation for

(m 4 1)—dimensional vector pairs =1 ¢ tain n,,,1(r). The sample entropy
is defined as,

Sg(m,r,7) = - 108 tma1(r, 7) /np(r, 7)). (6)

It is clear that the sam='~ entropy has zero or positive value, because
Nyt (7, T) 18 less than n, 7, 7).

In final step we plot the . ~m )le entropy against the scale factor. For the
white noise we observ. a .ecreasing behavior and it is proved analytically.
For the short range coric’ ater signals it is expected to find the same behavior
as the white noise . ce coarse-graining procedure eliminates the short range
correlations. The 1ong r«.~ge dependence in time series does not change after
the coarse-grain ag peration then for 1/f noise the sample entropy does not
vary with scale . ~.or and remains constant. In the next section we analysis
the FGN data series with different Hurst exponent by MSE method.

4. Resv.es

First . f al', we should generate the needed FGN series with different
rang : of Frirst exponent for our analysis. The FGN samples are obtained
thro. ¢h dif erencing of the fractional Brownian motion data. There are sev-
er~l ways for generating the Brownian motion time series with given Hurst
ex, or.ent. Among them, we choose three algorithms; Hosking [23], random
midp vint displacement [24] and Rambaldi-Pinazza [25]. These algorithms
employ different approaches for doing this. The Hosking algorithm uses the
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Figure 1: Part of the FBM (lef') and "GN (right) time series for three values of the Hurst
exponent, ~ 0.3,~ 0.5 and ~ v.7 For ¢ bmparison purpose, the FBM time series are scaled
to interval [0, 1]. Time serie , with . - all Hurst exponent is more denticulated.

FBM covariance property. (n the random midpoint displacement method
the self similarity ana “~aussian distribution of increments are used and fi-
nally the Rambs..' Pinazza algorithm considers the integral representation
of FBM. Thus, we construct 48 samples with Hurst exponent between 0.15
and 0.9 and <.ze o1 “5535. In construction procedure all data are scaled be-
tween 0 an. 1. This scaling does not alter the Hurst exponent. Figure 1
shows the nlov “»r #BM and its associated FGN series for three values of the
Hurst ex ponewn.”, ~ 0.3,~ 0.5 and ~ 0.7. We observe that by increasing the
Hurst ex,onen . the difference between adjacent values in FBM time series
decreases. It should be noted that the procedure of generating FBM time
serie ' is not completely exact. Therefore it is necessary to measure the Hurst
exponewn. again for all samples data. Here we use DFA for this purpose.
Brrore analyzing the prepared FGN data by MSE, we should set two
para.neters, m and r. The first one determines the dimension of vectors, see
equation 5, and the latter defines a threshold for closeness of vectors. Here
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Figure 2: The MSE analysis for three sample . .1e series with the Hurst exponent, ~ 0.3, ~
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Fionwre 3: rhe decreasing g-exponential function for wide range of ¢ from 1 to 400. The
lar e v alue of ¢ mimics the MSE result for 1/f noise.
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Figure 4: The parameter g against the Hurst ex, -nent. The value of ¢ rapidly grows by
increasing the Hurst exponent, which ensv - =< for simulating the behavior of 1/ f noise.

we put m = 2 and r = 0.150 where 7 .~ tue standard deviation of time series.
In figure 2 we plot the result f = thre~ time series with the Hurst exponent
equal to, ~ 0.3,~ 0.5 and ~ 0./. As is seen in this figure, all plots show
decreasing behavior but for 1~rge value of the Hurst exponent, this behavior
is more gentle.

This behavior could be | *sti.ed by closer look at the different stages of
the MSE calculation. 7.1 th 2 coarse graining procedure, we elimiate the short
range correlated (high ™ -qu‘ncy) noises in time series, hence the variance
of the resulting co’ »se grained time series decreases. Since r is constant,
decreasing in variance ~uses that n,,.1(r,7) tends to n,,(r,7) and conse-
quently the samrple =ntropy decreases too [18]. Tt is expected that the time
series with lessc - F.urst exponent shows more decrease in the variance and
also in the s7 mple e..sropy because the high frequency noises are dominated
for lower ve e of 1.

It is irporta.’ to mention that the FGN series with H = 0.5 is the same
as the v hite n. ise and as we expected, its result completely overlaps with
the white ~oie result.

I'. ordc~ to find the relation between the MSE analysis and the Hurst
expo ent, i, is required to model the result of analysis with a model func-
ti-m  1ms function should be well fitted to all the FGN results only by
chcnring some parameters. The number of these parameters must be at
miniium. Here we choose, the following function which is defined in terms
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Figure 6: The sara neter A against the Hurst exponent. The behavior of A is different for
H < 0.5and .7 > 0.5. first it increases slowly then rapid decreasing is observed.

of g-exp mentia function,

flw; A, q,8) = Aey(—Bx) = A[l — B(q — 1)a] ™ (7)

A a ana g are three real positive numbers. ¢ must be one or greater than
on. to have decreasing behavior for the model function. In figure 2 we fit
the 1. sults of analysis for the above mentioned three sample time series by
this model function. As is seen, the analysis results are well fitted to the




175

176

177

178

179

181

-
1.00{ @ oo Q DPB OID 0 @0 o0
Y K K 0
= 0.98 o 7
o
= o
< 0.96 -
[AN]
4
& 0.94
(@]
O
0.92 1
O RP
O Hosking
0901 o pup .
01 02 03 04 05 v 0 08 09
H

Figure 7: The correlation measure of fitting proc. lure. The MSE analysis results for time

series that are generated by the Hosking al

well fitted by our suggested function.

0.007 A

0.006 -

0.005 A

0.004 -

0.003

0.002 -

0.001 -

0.000 A

FIT STANDARD ERROR

—0.0 .11

~+hm aud the Rambaldi-Pinazza method are

O RP
® -1 Hosking
o RMD
4
" 4
¢
0 o 0° ©
O Ho
F° 0% 40%mamons o
- .002 ~ T T T T T T T T
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

H

Figure 8: The f¢ stawn '=rd error measure of fitting procedure. The MSE analysis results
for time seriec the . are generated by the Hosking algorithm and the Rambaldi-Pinazza

method are we’' “.tted by

our suggested function.

suggeste.' func ion. The values of ¢ parameter are 2.07,3.42 and 6.35 for
time Lcvies with the Hurst exponent ~ 0.3,~ 0.5 and ~ 0.7 respectively.
The 'arger lurst exponent leads to the greater value of ¢ parameter and the

gentle ~~.ease of the

model function.

U’ .« wdvantage of using such function, is mimicking behavior of the MSE
resu. s from white noise to 1/ f noise by only one function. This statement is
illustrated graphically in figure 3. By increasing the value of ¢, the function

10
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becomes close to the horizontal straight line which is the “ehavior of the
obtained result for the 1/f noise.

We fit all the results that obtained from the MSE an. 've.s of the FGN time
series by the mentioned function. Figures 4 and 5 sb . 7 the St parameters, ¢
and [ against the Hurst exponent. We observe inc1 2asing Hehavior for ¢ and
decreasing behavior for 3. The parameter ¢ varies be vee, 1.5 for H = 0.136
to 18.9 for H = 0.86. Simultaneously, 8 change, in *..> range of 0.25 to 0.01.
The parameter A softly increases from 2.3 to ..+5 fco H < 0.5 then rapid
decreasing can be observed, see the figure 6. We mow that the FGN process,
when H — 1 simulates the 1/ f noise. It ca.. he unc erstood through the large
value of ¢ and small value of § for time .~ries with large Hurst exponent,
because the resulting model function b~~~ very close to the horizontal
straight line.

The fit standard error and correl. viu. =2 two important measures which
determine the goodness of fitting It 's worth to note that both of them
indicate that all the curve fittings ~1. well done. The correlation coefficient
for nearly all data is more thar ? 99 (=ee figure 7) and the fit standard error
for most of the fitting procedure. are less than 0.001 (see figure 8). The
results for time series which were generated by the Hosking algorithm and
the Rambaldi-Pinazza me hod «-e better fitted to the model function than
others.

Finally, we mentior che , for the MSE analysis we use the program written
by M. Costa etal., wi: cea be downloaded from physionet.org [26]. In
fitting procedure wr benefit from the curve fitting function in SciPy which is
the Python library for e scientific and technical computing.

5. Conclusion

The MS 1 ar aly-is is favorable way for the abnormally detection in phys-
iological time s i s. It has been widely used for analysis of the heart beats
and the ‘lectrc »ncephalogram time series. Many diseases were distinguished
by such «nalys’s without any need to use the invasive methods. This way of
the #aalys’s of complexity has been applied to technical time series too. In
this tudy, ve were interested to answer a fundamental question, how MSE
can be woed for detection of the long range dependence in time series. In
ot. er word, we were looking to explore the relation between the MSE anal-
ysis . »sult and the Hurst exponent of a time series. We chose the FGN time
series with different Hurst exponent as our data samples for analysis. It was

11
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found that by the function, Ae,(—pfx), all the results for t..> FGN time se-
ries can be modeled. We explored the nice relation be.we >n parameters of
model function; ¢, 8 and A, with the Hurst exponent. Wr also reported the
curve fitting measures which demonstrated that the vell ..‘ting were done.
In future, we would interested to find the effect ¢ f trencs on the result of

the

MSE analysis and apply it on natural time serie. n-.ticularly the daily

temperature data and finding a way for the cli-aate assification.
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