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Abstract

Cryptographic algorithms are being applied to various kinds of embedded devices such
as credit card, smart phone, etc. Those cryptographic algorithms are designed to be resis-
tant to mathematical analysis, however, passive Side Channel Attack (SCA) was demon-
strated to be a serious security concern for embedded systems. These attacks analyzed the
relationship between the side channel leakages (such as the execution time or the power
consumption) and the cryptographic operations in order to retrieve the secret information.
Various countermeasures were proposed to thwart passive SCA by hiding this relationship.

Another different type of SCA, known as the active SCA is Fault Injection Attack
(FIA). FIA can be divided into two phases. The first one is the fault injection phase where
the attacker aims at injecting a fault to a target circuit with a specific timing and spatial
accuracy. The second phase is the fault exploitation phase where the attacker exploits the
induced fault and forms an attack. The major targets for the fault exploitation phase are
the cryptographic algorithms and the application-sensitive processes. Over the last one
and a half decades, FIA has attracted expanding research attention.

There are various techniques which could be used to conduct an FIA such as laser,
Electromagnetic (EM) pulse, voltage/clock glitch, etc. EM FIA achieves a moderate spatial
resolution and a high timing resolution. Moreover, since the EM pulse can pass through
the package of the chip, the chip does not need to be fully decapsulated to run the attack.
However, there remains a lack of understanding of the fault injected to the cryptographic
devices and the countermeasures to protect them. Therefore, it is important to conduct
in-depth research on EM FIA.

This dissertation concentrates on the study of EM FIA by analyzing the experimen-
tal results on two different devices, PIC16F687 and LPC1114. The PIC16F687 applies a
two-stage pipeline with a Harvard structure. Faults injected to the PIC16F687 resulted in
instruction replacement faults. After analysis of detailed experiments, two new Advanced
Encryption Standard (AES)-128 attacks were proposed and empirically verified using a
two-step attack approach. These new AES attacks were proposed with less computational
complexity unlike previous Differential Fault Analysis (DFA) algorithms. Instruction spe-
cific countermeasures were designed and verified empirically for AES to prevent known
attacks and provide fault tolerant protection.

The second target chip was the LPC1114, which utilizes an ARM Cortex-M0 core
with a three-stage pipeline and a Von Neumann structure. Fault injection on multiple
LDR instructions were analyzed indicating both address faults and data faults were found.
Moreover, the induced faults were investigated with detailed timing analysis taking the
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pipeline stall stage into consideration. Fault tolerant countermeasures were also proposed
and verified empirically unlike previous fault tolerant countermeasures which were designed
only for the instruction skip fault.

Based on empirical results, the charge-based fault model was proposed as a new fault
model. It utilizes the critical charge concept from single event upset and takes the supply
voltage and the clock frequency of the target microcontroller into consideration. Unlike
previous research where researchers suggested that the EM pulse induced delay or pertur-
bation to the chip, the new fault model has been empirically verified on both PIC16F687
and LPC1114 over several frequencies and supply voltages.

This research contributes to state of the art in EM FIA research field by providing
further advances in how to inject the fault, how to analyze the fault, how to build an attack
with the fault, and how to mitigate the fault. This research is important for improving
resilience and countermeasures for FIAs to secure embedded microcontrollers.
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Chapter 1

Introduction

Secure cryptographic algorithms are not secure from physical attacks if they are imple-
mented incorrectly. In the past 15 years, Side Channel Attack (SCA) was one of the major
security concerns in embedded devices [18]. Different from traditional cryptanalysis, in
SCA, attackers either passively record and analyze the unintentional physical leakage from
the cryptographic module, or actively inject a malicious faulty data to change the normal
operation of the cryptographic module to reveal the secret information. This chapter intro-
duces the motivation of the research along with some necessary background information.
Finally, the outline of this thesis is provided.

1.1 Motivations

Embedded devices have been applied to a wide spectrum of applications and they play
an important role in our daily life. With the widespread use of the embedded devices,
handling sensitive data and interconnecting within the wireless infrastructure, security
problems have become a growing concern. After the first announcement of passive SCA
[19], many countermeasures have been proposed and applied such as dual rail [20], masking
[21], adding random delays [22], etc. However, these countermeasures may not provide
sufficient protection against active attacks such as the Fault Injection Attack (FIA) .

FIA has been applied to many cryptographic algorithms. Bao et al. proposed an FIA
against the public key cryptosystem [23]. Even Advanced Encryption Standard (AES) was
vulnerable to FIA by using the Differential Fault Analysis (DFA) [24]. FIA could also be
applied to bypass the security checks such as checking the correctness of the PIN or the
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secure boot [25]. These concerns along with limited research in this area motivate us to
conduct research into FIA, specifically the Electromagnetic (EM) FIA. Few countermea-
sures have been proposed for FIA such as error detection code, instruction duplication, etc
[26]. These countermeasures will be further described in Chapter 2.

In this section, we first provide a brief introduction to the security concerns for the
embedded devices and then talk about the reasons for choosing EM FIA as the attack
technique.

1.1.1 Security Concerns for Embedded Devices

Unlike the standard personal computer which performs general purpose tasks, the embed-
ded devices are usually specifically designed with fixed tasks [27]. The study of the security
requirement of embedded devices has a long history. However, it is still a hard process to
determine the security requirement for an embedded device. Usually, researchers specify
the security requirement based on known attack models while new threats are unforeseen
[28]. Additionally, the security capabilities must be defined before the development. Some
highly constrained embedded systems may not be able to incorporate the added area or
energy cost necessary for incorporating security. For example, the RFID tags usually have
limited hardware resources [29]. Nevertheless, the embedded device may suffer from a high
risk of attack if it has insufficient security [30]. There are various attacks which may be
launched based on different kinds of embedded devices and attack objectives. Typically,
these attack could be [31]:

• Unauthorized access to the asset. The attacker could steal the personal information
like the password or some other digital contents without authorization.

• Communication with unauthorized devices. The attacker could copy sensitive infor-
mation to his own unauthorized hard drive or USB drive.

• Execute unauthorized code or firmware. Malicious software could be capable of
executing unauthorized applications.

• Clone the device. The attacker could steal some secret codes or the IP cores from
the device and then clone it.
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1.1.2 EM FIA vs other FIAs

There are numerous approaches for conducting an FIA. Table 1.1 shows five widely used
techniques for FIA. A typical successful FIA usually requires the attacker to inject a fault
at a specific location with a precise timing [32]. For example, Jeong et al. proposed an
attack which was based on the assumption that the fault could be injected in a round
counter register so that the number of steps needed for the compression function in HMAC
was reduced [33]. Thus, from Table 1.1, Laser beam could possibly be one of the best
choices to produce a successful FIA since the required fault must only be injected to the
round counter register where a high spatial accuracy is required. However, it requires
access to the silicon since the laser cannot pass through the chip package and the setup
of the experiment is usually more complex than other techniques. Additionally, the target
device may be hard to obtain because it is from another country or it is of military purpose,
or the target device uses a unique key for each single device. Under these circumstances,
the attacker has to compromise the attack accuracy for ensuring the device under attack
is not damaged. Hence, EM FIA might be a good attack technique since it has a lower
possibility of damaging the chip. In the meanwhile, it provides a higher spatial resolution
and timing resolution compared with voltage/clock glitch.

Table 1.1: Some fault injection techniques [1]

Technique Accuracy[space] Accuracy[Time] Cost Damage
Laser beam High High High Probably
Clock glitch Low High Low No
Voltage glitch Low Moderate Low No
Temperature Low Low Low Possibly
EM pulse Moderate High Moderate Possibly

1.2 Background

Figure 1.1 shows the security model of an SCA. The traditional cryptanalysis usually
exploits the weakness or the usage of the cryptographic algorithms. For example, if the
application uses Data Encryption Standard (DES) to encrypt the data, it could suffer from
the brute force attack analyzing the input and output data in Figure 1.1 with a simple
personal computer 1. Different from the traditional attacks, in an SCA, the adversary tries

1Lecture notes in ECE 710 topic 21: Communication Security

3



to take advantage of unintentional side channel leakages shown in Figure 1.1 for break-
ing unprotected (or insufficiently protected) implementations of cryptographic algorithms,
which include power consumption, EM emanation, timing analysis, etc. Additionally, the
adversary could also use FIA (Fault injection in Figure 1.1) to actively alter the normal
behavior of the cryptographic module and analyze the input and/or faulty output data. In
the following sections, the taxonomy of the SCA will be provided. The definition of FIA
is presented along with a basic introduction of the FIA usages.

Cryptographic Module
Input data Output data

Fault Injection

Side channel leakage

 Main  channel

Figure 1.1: SCA model

1.2.1 Taxonomy of SCA

There are mainly two ways to categorize the SCA based on two different criteria. The
first criterion is whether the adversary actively changes the behavior of the cryptographic
module. Based on this criterion, we could categorize the attack into the passive attack or
the active attack:

• Passive attack: In a passive attack, the adversary does not change the operation
of the cryptographic module and only uses its leakage information to reveal the
secret information. Power analysis (Simple Power Analysis (SPA) [34], Differential
Power Analysis (DPA) [19]), and EM analysis (Differential Electromagnetic Analysis
(DEMA) [35], Simple Electromagnetic Analysis (SEMA) [36]), acoustic SCA [37] are
typical passive attacks.

• Active attack: In an active attack, the cryptographic module is manipulated and
it does not operate within its specification. The adversary can then obtain the secret
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information through analysis of the “faulty” outputs or behavior [38]. FIA is a typical
active attack.

Another criterion is based on the level of decapsulation of the chip package required by the
attack. SCA can be divided into three different categories based on this criterion:

• Non-invasive Attack: The attacker does not change or damage the package of
the cryptographic module [39]. Consequently, the cryptographic module is running
normally. For instance, the adversary may only use the power pin or the clock pin
to conduct the attack.

• Invasive Attack: The attacker needs to decapsulate the chip and have physical
access to the data transferred inside the chip by using a probe or other direct electrical
contacts. For example, the microprobing attack [40] involves using direct physical
contact with the die surface of the chip to read or manipulate the data in the device.

• Semi-invasive Attack: The attacker needs to make moderate changes to the pack-
age of the chip [41, 38]. Semi-invasive attack is a greater threat to cryptographic
systems since it is almost as efficient as the invasive attack and could be of low
cost at the same time [42]. EM FIA is a typical semi-invasive attack where the at-
tacker does not need to have physical contact with the die surface of the chip but
decapsulating part of the chip package may be required [43].

Since the focus of this thesis is on EM FIA, only the active FIA will be further detailed
in the next section.

1.2.2 Active SCA—FIA

Before introducing FIA, it is beneficial to give a clear definition of the concept of fault,
error and failure from the research area of the fault tolerant system. A fault is a physical
defect or flaw which occurs in the software or hardware system [44]. An error is the result
of a fault. If the error causes abnormal behavior of a system, it is called a failure. With
these terminologies, FIA is defined below:

Definition. FIA is an active SCA which involves using physical methods such as laser, EM
pulse, voltage glitch, temperature, etc. to artificially inject a fault to the physical electronic
device. The induced fault causes errors which consequently lead to security failures [45].
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FIA involves two phases to form a complete attack. In the fault injection phase, the
attacker aims at injecting a fault at a suitable time during a security operation such
as ciphering, authentication, etc. The injected fault is usually target specific [45]. The
second phase is the fault exploitation phase which involves exploiting the injected fault
by investigating the erroneous output or the failure [45]. The major targets for the fault
exploitation are cryptographic algorithms and application-sensitive process where the data
(which normally is the data in the control flow) cannot be modified [45]. With both targets,
we could divide the FIA usages as follows:

1. Attack the cryptographic algorithms: The attacker aims at injecting a fault
during the computation of the output of a cryptographic algorithm and then ana-
lyze the faulty output to retrieve the secret information. Various DFA algorithms
were published for different cryptographic algorithms such as AES [46], Secure Hash
Algorithm (SHA)-3 [47]. The attacker may also try use FIA to modify the round
register in the cryptographic module to reduce/increase the round of operations and
make the module output the ciphertext earlier/later. Some research papers applied
FIA to break cryptographic algorithms such as HMAC [33] and AES [48, 49].

2. Application-sensitive process:

(a) Assist the passive SCA: FIA could also be used to assist the passive SCA.
One of the example is to disable the countermeasure for the passive SCA by
using FIA. Yao et al. applied FIA to assist the passive SCA towards a software
AES implementation embedded with masking countermeasure [50]. FIA forced
the processor to disable the mask.

(b) Bypass security checks: FIA could be applied to skip an instruction in a
security check program. For example, Figure 1.2 presents a sample code for
a pin check program. If the attacker could use FIA to skip the reducePin-
TryCounter(), he could unlimitedly input the pin [2].

Various techniques were applied to inject a fault as shown in Table 1.1. FIA was
applied to various cryptographic algorithms including AES, SHA2, SHA3, Elliptic Curve
Cryptography (ECC) and Chinese remainder theorem (CRT)-based Rivest Shamir Adle-
man (RSA). Therefore, FIA raises security concerns for a wide variety of cryptographic
applications. Table 1.2 shows several FIAs on different cryptographic algorithms.
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Figure 1.2: A typical PIN check program [2]

Table 1.2: Some FIAs and the target cryptographic algorithms

Year Cryptographic algorithm Practically implemented
1997 [51] CRT-based RSA No
2000 [52] ECC No
2003 [53] AES No
2010 [46] AES Yes
2013 [33] HMAC No
2015 [47] SHA3 No

1.3 Summary and Overview of the Thesis

In this chapter, we presented the motivation and the necessary background information
for this research. The objective of this research is to investigate the EM FIA efficiency
targeting the embedded devices, develop a deep understanding of the mechanisms of this
attack, and finally propose and verify potential countermeasures to thwart EM FIA. The
whole thesis is divided into seven chapters.

Chapter 2 talks about the theory of EM FIA at the beginning. Then, we present a
summary of the previous research on FIA with a focus on EM FIA. The delay fault model
and the sampling fault model are presented and two DFAs targeting the symmetric key
cipher are explored. Finally, we give a brief summary about the countermeasures proposed
for FIA.

Chapter 3 introduces the experimental setup and some additional experimental mea-
surements required before running the attack. A handheld setup and an automated plat-
form are both presented with detail. The EM pulse generation equipment is presented with
their specifications. We also elaborate on the measurement equipment to analyze the jitter
and the equipment delays to ensure a correct timing analysis could be performed when the
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fault is induced.

The experimental results on PIC16F687 are presented in Chapter 4. We first present
the handheld setup, which was used to test the fault injectability of the chip with the EM
pulse system. The handheld experiment indicated that the fault was injected only when
the chip was overclocked. The experiments with the automated platform were described
next including a scan to find out the best location to inject the fault and statistical re-
sults on the faulty instruction. An EM FIA methodology was proposed which would be
further used to inject the fault to the LPC1114. An AES-128 attack was physically imple-
mented by targeting two different instructions. We finally present the empirically verified
countermeasures.

Chapter 5 discusses the empirical results on the LPC1114 which contains an ARM
Cortex-M0. Using the attack methodology proposed on the PIC16F687, a handheld ex-
periment was done first. The Universal Asynchronous Receiver/Transmiter (UART) was
utilized to send out the faulty data to the desktop for off chip analysis. The induced faults
on the LPC1114 consisted of the function fault and the Hardfault. The function fault could
further be divided into the address fault and the data fault. The fault injected to different
LDR instructions were analyzed. A detailed timing analysis was performed by considering
the pipeline stall stage. A fault tolerant countermeasure was proposed and verified.

The new charge-based fault model is presented in Chapter 6. The charge-based fault
model applies the critical charge concept from single event upset research. It takes the
clock frequency and the supply voltage into consideration. The fault model was empirically
verified on both PIC16F687 and LPC1114.

Chapter 7 gives a brief summary to the thesis. The contributions and limitations of
this research are also discussed. Some possible future research directions are proposed.
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Chapter 2

Theory of the EM FIA and Previous
Research

In this chapter, we first present the theory of EM FIA in Section 2.1. Also, some papers
which analyzed the physical effect of the EM pulse on the injecting fault are discussed.
Based on the definition of FIA, the attack is divided into the fault injection phase and
the fault exploitation phase. Therefore, the previous research on FIA are divided into two
parts. The fault injection part is introduced in Section 2.2 where we present different fault
injection techniques including both non-EM FIA and EM FIA. Another important part
of the fault injection phase is setting up the fault model. The discussion about the fault
model is presented in Section 2.2.2. The fault exploitation in previous research is introduced
in Section 2.3 targeting both cryptographic algorithms and application-sensitive process.
Finally, the previous researched countermeasures are summarized in Section 2.4.

2.1 Theory of the EM FIA

The basic theory of EM fault injection is to use an EM probe to generate a fast changing
magnetic flux and alter the operation of the target device [54]. Figure 2.1 presents an
example of an EM probe tip with a cylindrical ferrite core. The magnetic flux is generated
by sending a current through the coils on the probe tip. The magnetic permeability of
ferrite is greater than air. Thus, by surrounding the coil over a ferrite core, it increases the
magnetic flux density generated by the same current. Additionally, the smaller diameter at
the end of the ferrite core helps localize the magnetic field [55]. The magnetic flux density
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Figure 2.1: EM probe tip

generated by a coil of loop current is illustrated in Figure 2.2.

Assume the current through the loop is i, µ0 is the permeability of the medium, the
radius of the loop is a and the distance perpendicular to the loop plane is z, according to
Biot Savart’s law [56], the magnetic flux density B(z) is:

B(z) =
µ0

2
× a2i

(a2 + z2)
3
2

(2.1)

The magnetic flux cross a surface plane with an area of S is:

Φ = B(z)S cos θ (2.2)

where θ is the angle between the surface plane and the loop plane.

Figure 2.2: Magnetic flux density generated by a coil of loop current [3]

The target of FIA is an embedded device with a semiconductor chip running the crypto-
graphic algorithm. The semiconductor consists of closed circuit loops. Based on Faraday’s
law of induction, the induced electromotive force is:

ε = − d

dt
(Φ) (2.3)
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Merging equation 2.1, 2.2 and 2.3, the induced electromotive force to the closed circuit in
the semiconductor chip is:

ε = − d

dt

(
µ0

2
× a2i

(a2 + z2)
3
2

S cos θ

)
(2.4)

The induced electromotive force generates a transient current in the closed circuit of the
semiconductor chip which slows down or speeds up the circuit and causes a fault eventually.
From equation 2.4, these following parameters may positively help induce the fault [54]:

• µ0: A magnetic material with a higher magnetic permeability.

• θ: Place the probe tip to be perpendicular to the die surface which makes θ to be 0◦.
Thus, cos θ = 1.

• z: A smaller distance between the probe tip and the die surface.

• v: A higher pulse voltage helps generate a larger loop current i and increases the
magnetic flux.

• tr: A shorter rise time of the voltage pulse generates a large magnetic flux within a
shorter time which increases the induced electromotive force eventually.

Omarouayache et al. researched the EM probe design to inject faults [55]. With
simulation, they found that the maximum magnetic flux density is along the perimeter
of the current loop instead of at the center of the probe when z = a/10. Furthermore,
they also found that a probe tip with a sharpened end is better to focus the generated
magnetic field, which might be helpful in inducing a local fault. Another research paper
further found that the magnetic field is mainly coupled with the chip’s interconnections
[57]. Their experiment utilized an on-chip voltage sensor which allowed a more accurate
measurement.

Previous research also examined the EM pulse effect on the wire, chip and gate levels
[58]. During the experiment of the wire level, they checked the voltage perturbation on a
GPIO pin of the chip and found that the injected perturbation follows Faraday’s law. From
the chip level, the author found that there was no obvious perturbations on the power or
ground pins when the attack point was far from these pins. They further hypothesized that
the robust design of the power network could eliminate the noise or other coupling effects.
However, other research papers pointed out that the effect of the injected EM pulse could
be observed from the power trace of the target chip [59, 60].

11



Some previous research papers analyzed the parameters that might affect the EM in-
duction to the chip such as the effect of the z-distance, pulse voltage, pulse width, etc. The
analysis of these parameters were either done by using a second measurement probe to
model the target chip or simply focusing on the fault occurrence. For example, Velegalati
et al. applied a measurement probe to measure the induced voltage and found that with
a larger distance, the induced voltage is smaller [32]. Similar measurement was done by
Carlier [54]. Dehbaoui et al. analyzed the fault occurrence with regard to the pulse voltage
[59]. Pulse width was analyzed by Moro et al. and it was suggested that the stress applied
to the circuit is reduced with a longer pulse width [7]. This could be explained with the
Faraday’s law of induction if the pulse width is connected to the pulse rise time. However,
the relationship between the pulse width and pulse rise time was not stated in the paper.
The pulse width was also mentioned in other research papers but it was simply chosen to
be smaller or equal to the clock period [61, 4].

However, some other parameters such as the shape of the probe, the diameter of the
probe were not fully investigated. For example, Velegalati et al. found that the probe with
a larger diameter may shut down the system running on the chip while the probe with a
smaller diameter could inject graphics errors [32]. However, they failed to induce faults to
their additive loop program running on the chip and they did not provide an explanation.
Ordas et al. analyzed the effect of the probe shape [4]. The “sharp”, “flat”, and “cresent”
probes were used in their experiments. They applied the latter two probes to induce fault
to a Xilinx Field Programmable Gate Array (FPGA) with the AES running on it. With
the “flat” probe, both bad ciphering fault and the “no-response” fault were observed while
with the “cresent” probe, only the bad ciphering fault was injected. However, they did
not provide an explanation for this phenomenon possibly due to either the complexity
of the EM coupling between the EM pulse and the circuit under attack or the lack of
understanding of the details of the target chip. Ordas et al. also performed EM FIA with
different pulse polarities. They found that the susceptibility of the chip was different with
different pulse polarities.

In summary, the attacker did not know the details of the silicon or the RTL design
of the chip [61, 49, 49, 7, 32, 4] in most previous research. The parameters empirically
analyzed and explained by the researchers were the pulse voltage, pulse injection time,
and the rising time of the pulse. In our research work, the details of the target chips were
also unknown. Moreover, we did not have control over the rising time of the pulse due
to the limitation of the equipment. Also, the pulse polarity had minimal impact on our
experimental results. Hence, we only analyzed the effect of the z-distance, pulse voltage,
pulse injection time (for timing analysis), and the position of the probe as discussed in
details in Chapter 4 and 5.
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2.2 The Fault Injection

In this section, the previous research on fault injection ability and fault models will be
discussed. First, we introduce different techniques that could be used to inject the fault in
Section 2.2.1. Then, we present detailed investigation on previous fault models, especially
the fault model proposed with EM FIA in Section 2.2.2 with a in-depth analysis of how
each fault model was derived from the experimental result.

The main purpose of this section is to give introduction to different fault injection
techniques and fault models presented in previous research. There are some research papers
which utilized similar target chips or provide more details as we did in our experiments.
These research papers will be discussed in Section 4.9.1 and 5.6.1 as a comparison with
our experimental results.

2.2.1 Previous Research on FIA

As noted previously in Section 1.1.2, different physical techniques could be applied to per-
form FIA. In this section, we present some research papers which utilized these techniques
to conduct FIA. The non-EM FIA techniques including power underfeeding, clock/power
glitch, laser etc. are introduced first from the perspective of cost, experimental setup,
difficulty, spatial/timing accuracy, level of invasion. Then, in Section 2.2.1.2, we present a
table where some of the previous research papers in EM FIA are listed. More details of
the associated paper will further be discussed in the subsequent sections.

2.2.1.1 Previous Research with Non-EM FIA Techniques

Barenghi et al. successfully applied the power underfeeding to retrieve the AES key from
a self designed silicon die with 65 nm technology [62]. The AES was clocked at 1.3 MHz
with an external clock source. The most important equipment used in their experiment was
a power supply with a sufficient accuracy of 0.1 mV . The attacker gradually reduced the
supply voltage with 0.1 mV per step starting from 0.45 V . With each supply voltage, they
did ten thousand encryption operations and found the percentage of the faulty ciphertext
increased gradually. It is worth noting that power underfeeding is different from power
glitch. The power underfeeding reduces the supply voltage of the chip permanently while
the supply voltage is only reduced for a short period of time (usually a single clock cycle)
with power glitch [26].
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Another two kinds of low cost FIA techniques are clock glitch and power glitch. These
fault injection techniques require direct access to the clock pin or the power pin [26]. The
power glitch may also require removing the external capacitors in the core power domain
[6]. A trigger signal is usually output from the target chip to help insert the glitch at
the correct time [63, 6]. For example, Korak et al. evaluated the clock glitch attack on
the LPC1114 which embedded an ARM Cortex-M0 core and Atmel ATxmega 256 [63].
Both microcontrollers were running with a 24 MHz clock and a 3.3 V supply voltage.
Then, at a specific pipeline stage of a target instruction, a clock glitch was inserted to fault
the target instruction. They found that for the LPC1114, only when the supply voltage
was reduced to 1.2 V (which was beyond the minimum nominal supply voltage 1.8 V ),
a reproducible fault could be injected. They also verified that without inserting a clock
glitch, the LPC1114 worked correctly with a 1.2 V supply voltage. With the added trigger
signal, they were able to perform analysis of the fault injected to different pipeline stages.

The above three attack techniques offer a low probability of damaging the device. Also,
they do not require the decapsulation of the chip package. Therefore, they are typically
classified as non-invasive attacks. One popular example of invasive attack is the laser
FIA. Compared with other non-invasive attacks, the laser FIA typically requires a fully
decapsulated chip to ensure the silicon die is optically exposed [64]. The laser FIA has a
high spatial and timing resolution which allows the attacker to induce even a single bit
fault [65]. This high precision FIA technique was applied in several research papers where
the attack changed the normal memory operation [66], retrieved the private key of RSA
[60] and revealed the AES key [67, 68]. However, the experimental setup is complex and
requires significant technical skills [26]. The experiment also involves a collaboration of
different equipment such as the microscope, camera, motorized x-y-z stage, optical table,
etc. [64, 9]. Moreover, the increasing number of metal layers in the chip limited the laser
FIA from the front side [4].

Another class of FIA is the semi-invasive attack. These attacks may require partially
decapsulate the chip. The forward or reverse body biasing injection proposed in [69, 70] is a
typical semi-invasive attack. This attack method applies a transient bias to the substrate.
This transient bias could be injected through a tungsten needle by direct contact with the
substrate [70]. Tobich et al. also pointed out that this bias could be used to induce local
faults. It is considered as a local power glitch fault injection method [71]. The backside of
the package must be opened such that the attacker could have direct access to the silicon
substrate. A weighing scale was utilized to ensure the electrical contact between the probe
and the substrate [70]. The forward body biasing attack was applied to a CRT-based
RSA [69] running on a secure microcontroller with hardware countermeasures embedded.
The associated DFA algorithm for CRT-based RSA typically relies on injecting faulty data
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[51]. Only 0.22% of the faults injected resulted in an exploitable faulty answer. Also, the
hardware countermeasures on the microcontroller were disabled.

2.2.1.2 Previous Research on EM FIA

EM FIA is typically a semi-invasive attack since in general, one does not need to fully
decapsulate the chip but may need to thin the package such that the distance between
the silicon die and the probe is reduced [43]. There are two different kinds of EM FIAs.
The first one is called the harmonic EM FIA and the second one is the transient EM FIA.
The harmonic EM FIA utilizes continuous sinusoidal EM waves to inject the fault while
the transient EM FIA applies the high energy EM pulses [72]. Poucheret et al. applied
the harmonic EM FIA to change the frequency of a ring oscillator which was implemented
on a 90 nm prototype chip [73]. Several EM injection campaigns were conducted over
the target chip. The frequency of the ring oscillator was increased by roughly 10% of the
nominal frequency independent of the probe location. Hence, they considered that EM
FIA was global, which was unlike the local effect discovered from most transient EM FIA
in previous research [7, 59, 4]. They further assumed that the global effect was possibly
related to the EM wavelength. The transient EM FIA is the type of injection technique
utilized in this dissertation. Unless otherwise specified, EM FIA in this dissertation always
refers to the transient EM FIA.

EM FIA has a higher spatial resolution compared with clock/power glitch FIA due to
its local property [49, 7]. This local property may lead to different faulty responses by
moving the EM probe over the chip [7]. Table 2.1 presents some of the previous research
on EM FIA. These research papers focus on different areas of EM FIA including generally
testing the feasibility of injecting a fault using the EM pulse [32] (row 8), elaborating fault
models [7] (row 2), [4] (row 12 and 13), running attacks [74] (row 5), [49] (row 6), [75] (row
14), etc. These papers will further be discussed in associated sections. The experimental
setup of EM FIA is similar in previous research and it will be further detailed in Chapter 3
as a comparison with our experimental setup. The faulty response from the chip depends
on the probe tip, the parameters of the pulse (to be further detailed in Table 3.1 in Chapter
3) and the DUT. Generally, the EM pulse causes data corruptions and these corruptions
lead to different results with different DUTs. Another important fact of EM FIA is the
complexity of analyzing the faulty response. Due to the lack of ability to observe the real
time behavior of the chip from the circuit level when inducing the EM pulse, the faulty
response is complex and the hypothesis may be impossible to be verified [76].
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2.2.2 Fault Models

The definition of the fault model varies with different research areas. Particularly in FIA,
a fault model defines the type of the fault the attacker could inject or want to inject [7].
Fault model is important in conducting an FIA. If a fault model is not characterized based
on real experiments, the associated attack algorithms may fail to be implemented. For
example, Blömer and Seifert [53] present an attack which assumes a single bit fault can
be injected each time after the first key addition in AES, which may not be feasible. In
this section, a summary of the fault models used in different research areas is presented.
Then, we provide a detailed description about the fault models proposed particularly for
EM FIA.

Various fault models were presented in the last decade. Table 2.2 shows the summary of
some of these fault models. These fault models were classified based on different categories.
For example, the bit flip and byte fault are based on the data size affected by the induced
fault. Similarly, the transient, semi-transient and permanent fault are defined with regard
to how long the fault remains within the circuit. The delay fault model and sampling fault
model were proposed specifically for EM FIA and will be discussed in Section 2.2.2.1.

Table 2.2: Some fault models proposed in FIA

Fault model Description
Bit flip [78], set/reset [53] Target data is manipulated by flipping or set-

ting/resetting a bit
Byte fault [78] Random bits of a target byte are altered
Instruction skip/replace [78] Target instruction is skipped, executed as

NOP or replaced
Transient fault [45] The fault is only induced during fault injection
Semi-permanent effect fault [45] The fault continues for a period of time
Permanent fault/stuck at ‘0’/‘1’ fault [45] The fault permanently exists after it is injected
Sampling fault [4] Fault occurs at writing to a register
Delay fault [59] The propagation delay is increased causing a

setup time violation

The fault model concept is also used in other research areas. For example, the single
event upset is the type of error caused by charged particles [79] and the soft error is similar
to the transient fault, but refers to memory faults.

Fault simulation and modeling is also utilized in the design for testing of digital systems
[80]. For example, the fault could be categorized as single fault versus multiple faults or
function fault versus structural fault [80]. The structural fault could be used to model
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the change of the interconnections between component while the function fault models the
change of the functionality of the circuit.

2.2.2.1 Fault Model in EM FIA

It is necessary to study the previous fault models proposed with EM FIA. The previous
fault models are also listed in Table 2.1 (sampling and delay faults in last 2 rows). These
fault models will be further explained based on the experimental result with the associated
research paper.

Velegalati et al. [32] described a simple experiment that demonstrated an Android
system running on a Samsung chip was successfully influenced by the EM pulse (row 8 in
Table 2.1). A simple counter program was targeted by using three different types of probe
tips. However, none of the probe tips corrupted the operation of the counter. Two fault
models were observed. The first one was a graphics error where the display function was not
running correctly and the second one was a total system shutdown. They discovered that
a wider magnetic field might influence a larger part of the chip which resulted in a system
shutdown. Only the probe tip which had a smaller diameter caused the graphics error
while the remaining larger probe tips shutdown the whole system completely. Velegalati et
al. [32] demonstrated that EM FIA was practical. However, the system crash or graphics
error may not be utilized to conduct an attack.

Dehbaoui et al. [59] proposed a delay fault model to explain the fault mechanisms in
their experiments. In this paper, Dehbaoui et al. [59] conducted the EM fault injection
experiment towards both software and hardware implementations of AES. The parameters
of the associated experiments are listed in row 4 and 5 of Table 2.1.

AES was first implemented in a 350 nm AVR microcontroller which used a Harvard
architecture. The result demonstrated that the fault occurrence increased with the increase
of the pulse voltage. Additionally, they also investigated the assembly code and explained
the fault was caused by an instruction skip or replacement by using the EM pulse to affect
the executing flow of the program. Furthermore, since the behavior of the induced fault
was very similar to the fault injected by using clock glitch where the clock frequency was
temporarily boosted, they hypothesized that the induced fault caused a timing constraint
violation which eventually resulted in the instruction skip effect. Faults were also success-
fully injected to the last round of AES running on a Xilinx FPGA with 100 MHz clock.
Their results implied that the EM pulse had a localized effect. Moreover, by positioning
the probe tip at a specific location which contained the critical path, the fault occurrence
was higher than other positions. They further hypothesized that the induced fault caused
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a transient decrease in the supply voltage due to the coupling between the EM pulse and
the power ground network of the chip. Eventually, it increased the propagation delay and
led to a timing constraint violation. The same delay fault model was also observed by Moro
et al. in 2013 by injecting the fault to a 32-bit microcontroller with an ARM Cortex-M3
core [7] (row 2 of Table 2.1).

Ordas et al. [4] showed that, the delay fault model was not as realistic as the proposed
sampling fault model listed in row 13 of Table 2.1. The sampling fault model is presented
in Figure 2.3. Both the EM pulse voltage and the injection time affect the fault injection
result. If the EM pulse voltage is greater than VHigh, the EM pulse is able to induce a
large delay during the data propagation. Hence, whenever the fault injection happens, a
timing fault is injected marked as A while no fault can be injected if the EM pulse voltage
is less than VLow. A sampling fault is injected if the EM pulse voltage is within the range
from VLow to VHigh and the injection time is within the susceptible window marked as (1)
in Figure 2.3.

Figure 2.3: Sampling fault model [4]

The difference between the delay fault model (referred to as the timing fault in Figure
2.4 [59, 7]) and the sampling fault is illustrated in Figure 2.4. Dn denotes the time duration
that the data needs to recover back to its normal state. For a delay fault, the attacker
induces a delay during the data propagation. Therefore, as long as the fault injection time
is before the next rising edge of the clock, fault can be successfully injected as shown in the
upper part of Figure 2.4. No matter the EM pulse is induced at t1, t2 or t3, fault occurs
at the second rising edge because the induced delay causes a setup time violation. On the
contrary, for a sampling fault, if the input voltage is within the range from VLow to VHigh,
the EM pulse must be induced at t1 or t2 in order to inject the fault since the data has no
sufficient time to recover back to its normal state.
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Figure 2.4: Difference between delay (or timing) fault and sampling fault [4]

Figure 2.5: Probability of the faulty response [4]
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Ordas et al. [4] further verified this fault model by conducting an experiment targeting
a Xilinx FPGA running at 50 MHz. In Figure 2.5, the x-axis is the time when the EM
pulse is induced and the y-axis is the probability that a faulty response happens. The
experiment showed that VLow was between 40 V and 50 V (since at 40 V , no fault was
injected and at 50 V , fault could be injected). Additionally, VHigh was below 150 V since
faults can always be injected when the EM pulse voltage was set to 150 V . When the EM
pulse was less than VHigh but higher than VLow, the probability of successfully injecting a
fault was significantly high when the injection time was within the susceptible window and
reduced to 0 when the injection time was outside of this window. Moreover, the duration
of the susceptible window was around 9 ns when the EM pulse voltage was 50 V and
increased to 11 ns when the EM pulse voltage was set to 100 V . The probability of the
faulty response was similar to a periodic signal and its period was 20 ns which was the same
as the clock period. Note that the susceptible window duration was empirically shown to
be independent of the clock period and located on both sides of the clock edge.

2.3 The Fault Exploitation

In this section, previous research on the fault exploitation part of FIA is discussed. Two
most widely analyzed targets for fault exploitation are the cryptographic algorithm and
the application-sensitive process [45]. The DFA is the typical fault exploitation approach
for the cryptographic algorithm and will be introduced in Section 2.3.1. We will use the
attack on secure boot to show the fault exploitation on the application-sensitive process.

2.3.1 Fault Exploitation on the Cryptographic Algorithms

The cryptographic algorithm is a typical target for the fault exploitation by using the DFA.
The attacker analyzes the correlation between the faulty output and the correct output of
a cryptographic module to reveal the secret information. Numerous DFAs were published
during the last two decades targeting both public key cipher [81] and symmetric key cipher.
Both attacks are based on the ability to inject some faulty data during a specific part of
the algorithm. In the following section, a detailed description of the AES DFA algorithm
is presented.
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2.3.1.1 DFA towards the Symmetric Key Cipher

AES was designed to replace the DES as a new standard for various applications [81]. Even
though this cipher is extremely strong against brute force attack or other mathematical
cryptanalysis, DFA makes it vulnerable to FIA. In the following sections, two different
DFA attacks targeting the AES algorithm are discussed.

Table 2.3: Notations for AES

Notation Meaning

M j
i j − th byte of the i− th state (after the i− th round)

SRj
i j − th byte after the i− th shift rows

SBj
i j − th byte after the i− th sbox

MCj
i j − th byte after the i− th mix columns

Kj
i j − th byte of the i− th round key

Cj j − th byte of the ciphertext
SB−1 Inverse sbox
SR−1 Inverse shift rows

For consistence, the notations shown in Table 2.3 are used for describing the DFA
attack targeting AES. AES is running the intermediate calculation based on a 4*4 matrix.
Denote the i− th state matrix, ciphertext and i− th key matrix as:

i− th state =


M0,0

i M0,1
i M0,2

i M0,3
i

M1,0
i M1,1

i M1,2
i M1,3

i

M2,0
i M2,1

i M2,2
i M2,3

i

M3,0
i M3,1

i M3,2
i M3,3

i



ciphertext =


C0,0 C0,1 C0,2 C0,3

C1,0 C1,1 C1,2 C1,3

C2,0 C2,1 C2,2 C2,3

C3,0 C3,1 C3,2 C3,3



i− th key =


K0,0

i K0,1
i K0,2

i K0,3
i

K1,0
i K1,1

i K1,2
i K1,3

i

K2,0
i K2,1

i K2,2
i K2,3

i

K3,0
i K3,1

i K3,2
i K3,3

i


Giraud et al. proposed a DFA algorithm against AES based on a bit flip fault model

where only one bit is flipped before the beginning of the final round [24]. Assume AES-128
is the target, the whole DFA algorithm works as follows [24]:
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1. Ciphertext C = SR(SB(M9))⊕K10.

2. Denote CSR(j) and K
SR(j)
10 as the data after applying shift rows transform to the

index of the ciphertext and the last round key K10, respectively. we have CSR(j) =
SB(M j

9 )⊕KSR(j)
10 .

3. Assume one bit is flipped in M j
9 . Denote the j − th faulty byte of the 9 − th state

and the j − th faulty byte of the ciphertext as M̂ j
9 , Ĉj, respectively. Denote the

induced bit fault as e. Thus, M̂ j
9 = M j

9 ⊕ e. Similar to step 2, we can determine

ĈSR(j) = SB(M̂ j
9 )⊕KSR(j)

10 .

4. By combining step 2 and step 3, we have CSR(j) ⊕ ĈSR(j) = SB(M j
9 ) ⊕ SB(M̂ j

9 ) =

SB(M j
9 )⊕ SB(M j

9 ⊕ e). For other correct bytes in M9, C
SR(i) ⊕ ĈSR(i) = 0 where i

is the index of the correct byte in M9

5. Guess the single bit fault e and find M j
9 which matches CSR(j)⊕ ĈSR(j) = SB(M j

9 )⊕
SB(M j

9 ⊕ e). For each M j
9 , increase the corresponding counter if it is a correct

solution. Finally, with another set of correct ciphertext and faulty ciphertext, the
correct M j

9 is expected to have a higher counter value.

6. Apply the fault injection to the remaining 15 bytes in M9 and finally determine the
value of M9.

7. With M9 known to the attacker, the last round key K10 is easy to be retrieved.
Finally, the attacker could get the initial key from the last round key which eventually
breaks the AES-128.

However, for this DFA attack, the fault model requires a precise space and timing to inject
a single bit fault to one byte of M9 without affecting other bytes. Hence, this attack might
be difficult to implement.

Different from the previous DFA which aims at injecting a fault after the 9− th round,
some other papers [82, 83, 5] target the key scheduling algorithm of AES.

Kim and Quisquater proposed another DFA based on a fault model where one random

byte is corrupted at K9. Assume K0,0
9 is corrupted with a fault a. We denote K̂0,0

9 as the
faulty key byte. Figure 2.6 illustrates the propagation of this faulty byte across the key
scheduling algorithm in the last two rounds. Four bytes in the 9 − th round key and two

bytes in the 10− th round key are corrupted with the same fault a. They are K̂0,0
9 , K̂0,1

9 ,
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Figure 2.6: Faulty key byte propagation [5]

K̂0,2
9 , K̂0,3

9 , K̂0,0
10 and K̂0,3

10 , respectively. The RotWord performs a one byte circular and
the SubWord applies the AES sbox on the 4 input bytes from the last column of the 9− th
round key. Thus, four other bytes are corrupted in the 10 − th round key with a fault c.

They are K̂3,0
10 , K̂3,1

10 , K̂3,2
10 and K̂3,3

10 , respectively.

The faulty bytes in the round key also affect the intermediate calculation as shown in
Figure 2.7 [5]. Assume the correct ciphertext is C and the faulty ciphertext is Ĉ. It is easy
to observe that the relationship among a, the correct ciphertext, and the faulty ciphertext:

SB−1(SR−1(C0,i ⊕K0,i
10 ))⊕ SB−1(SR−1(Ĉ0,i ⊕ K̂0,i

10 )) = a, i ∈ [0, 1, 2, 3]

The following equation explains the relationship between the correct last round key and
the faulty last round key:

K0,i
10 = K̂0,i

10 , i ∈ [1, 3]

K0,i
10 = K̂0,i

10 ⊕ a, i ∈ [0, 2].
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Figure 2.7: Propagation of the faults in the last two rounds after K0,0
10 is injected with a

fault [5]

Two pairs of the correct ciphertext and the faulty ciphertext are sufficient to retrieve
the K0,i

10 , i ∈ [0, 1, 2, 3]. Assume these two pairs of correct ciphertext and faulty ciphertext

are denoted as C, Ĉ and D, D̂ and the injected fault is a1 and a2, respectively. The first
algorithm is to find the possible candidates for (K0,1

10 , K
0,3
10 , a1, a2) is described below:

1. Find the candidate for (K0,1
10 , K

0,3
10 , a1, a2). For all the possible combinations of

K0,1
10 , K

0,3
10 , calculate α1, α2, β1, β2:

α1 = SB−1(SR−1(C0,1 ⊕K0,1
10 )⊕ SB−1(SR−1(Ĉ0,1 ⊕K0,1

10 )

α2 = SB−1(SR−1(C0,3 ⊕K0,3
10 )⊕ SB−1(SR−1(Ĉ0,3 ⊕K0,3

10 )

β1 = SB−1(SR−1(D0,1 ⊕K0,1
10 )⊕ SB−1(SR−1(D̂0,1 ⊕K0,1

10 )

β2 = SB−1(SR−1(D0,3 ⊕K0,3
10 )⊕ SB−1(SR−1(D̂0,3 ⊕K0,3

10 )

2. If α1 = α2 and β1 = β2, put (K0,1
10 , K

0,3
10 , a1, a2) into a new list L2 where a1 = α1, a2 =

β1.

After obtaining the new list L2, the next step is to retrieve K0,2
10 and build the third list

L3 which contains all the possible candidates for (K0,1
10 , K

0,2
10 , K

0,3
10 , a1, a2).
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1. For each possible K0,2
10 , choose a candidate from list L2, calculate α1, α2, β1, β2 as

follow:

α1 = SB−1(SR−1(C0,2 ⊕K0,2
10 )⊕ SB−1(SR−1(Ĉ0,2 ⊕K0,2

10 ⊕ a1)

α2 = SB−1(SR−1(C0,3 ⊕K0,3
10 )⊕ SB−1(SR−1(Ĉ0,3 ⊕K0,3

10 )

β1 = SB−1(SR−1(D0,2 ⊕K0,2
10 )⊕ SB−1(SR−1(D̂0,2 ⊕K0,2

10 ⊕ a2)

β2 = SB−1(SR−1(D0,3 ⊕K0,3
10 )⊕ SB−1(SR−1(D̂0,3 ⊕K0,3

10 )

2. If α1 = α2 = a1 and β1 = β2 = a2, put (K0,1
10 , K

0,3
10 , K

0,3
10 , a1, a2) into a new list L3

where a1 = α1, a2 = β1.

Now the only unknown key byte in the first row of the 10 − th key is K0,0
10 . Note

that other key bytes in the first row are also unknown but they have a limited number of
candidates. The four key bytes in the first row can be retrieved after applying the last
step:

1. For each possible K0,0
10 , choose a candidate from list L3, calculate α1, α2, β1, β2:

α1 = SB−1(SR−1(C0,0 ⊕K0,0
10 )⊕ SB−1(SR−1(Ĉ0,0 ⊕K0,0

10 ⊕ a1)

α2 = SB−1(SR−1(C0,3 ⊕K0,3
10 )⊕ SB−1(SR−1(Ĉ0,3 ⊕K0,3

10 )

β1 = SB−1(SR−1(D0,0 ⊕K0,0
10 )⊕ SB−1(SR−1(D̂0,0 ⊕K0,0

10 ⊕ a2)

β2 = SB−1(SR−1(D0,3 ⊕K0,3
10 )⊕ SB−1(SR−1(D̂0,3 ⊕K0,3

10 )

2. If α1 = α2 = a1 and β1 = β2 = a2, output (K0,0
10 , K

0,1
10 , K

0,2
10 , K

0,3
10 , a1, a2) and stop.

3. Finally, (K0,0
10 , K

0,1
10 , K

0,2
10 , K

0,3
10 ) are revealed as the correct four bytes of the first row

in matrix 10− th key.

The attacker only needs to inject another three faults in the 2nd, 3rd and 4th row of the
10− th key and run the previous algorithms again to obtain the rest key bytes. Eventually,
the last round key is revealed. Hence, the attacker could retrieve the initial key. Kim and
Quisquater also simulated the attack on a 3.2 GHz Pentium 4 PC and successfully retrieved
one row in around 0.5 seconds.
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2.3.2 The Application-sensitive process

The fault exploitation could also be used to target application-sensitive process where the
data processed should not be modified. The system security will be compromised if the
data is modified [45]. The secure boot is one of this kind of application-sensitive process.
In this section, we introduce the secure boot process and provide several examples of the
fault exploitation on the secure boot.

The system on chip usually needs to communicate with external memory components
which could not be trusted [6]. The secure boot process ensures the loaded data from
external memory is not manipulated by the attacker by verifying its digital signature.
Figure 2.8 presents a generic secure boot sequence [6]. Previous research proposed two
possible attack approaches.

The first approach is attacking the signature verification or authentication process
during the secure boot [25]. If the signature verification fails, the program jumps to an
infinite loop. Assume the signature is invalid and the attacker is able to skip the branch
instruction (to the infinite loop) as the result of a fault injection. In this case, the attacker
could bypass the secure boot process.

Figure 2.8: Secure boot process [6]

The second approach aimed at injecting a fault during copying of the data from the
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external memory to the internal memory before executing the cryptographic verification
[6].

Figure 2.9: Modification of the external flash memory [6]

First, the attacker must know the destination address of the internal memory. This
address is where the shellcode is going to be stored after being copied from external flash.
Then, the attacker modifies the first level bootloader BL1 with a format of malicious
shellcode plus pointers as shown in Figure 2.9. After that, the attacker keeps injecting
fault during the copying phase. An exploitable injected fault may corrupt the load or
store instruction and the pointer value is copied into the Program Counter (PC) register.
Finally, the program successfully jumps to the shellcode and the cryptographic verification
is bypassed.

2.4 Countermeasures

In this section, we provide a basic overview of the countermeasures designed for FIA.
Countermeasures could be categorized based on different criteria. The first criterion is
whether the countermeasure utilizes physical components or logical controls [84]. Based
on this criterion, the countermeasures could be divided into physical countermeasures and
logical countermeasures:
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• Physical Countermeasures: Physical countermeasures aim at enhancing or mon-
itoring the physical properties of the semiconductor to defeat or detect an FIA at-
tempt. For example, a temperature sensor could be used to detect a sudden change
of the operating temperature of the semiconductor which might be caused by a fault
injection attempt (for instance, the attacker increases the operating temperature to
increase the propagation delay and inject a fault). A real world example is the IBM
4764 Cryptographic coprocessor which applies different kinds of sensors to detect
the tampering event as an FIA attempt [85]. However, this kind of countermeasure
requires a mixed design which is usually very complex and of high cost [86].

• Logical Countermeasure: Logical countermeasures aim at detecting or correcting
any induced fault by using parity check bits, cyclic redundancy check, and other kinds
of error detection codes. Some designs duplicate the encryption or the instruction to
compare the two results. Some fault tolerant designs such as the majority voter [87]
can also be applied as the logical countermeasures. These countermeasures are easy
to apply compared with the physical countermeasures. However, they may lead to a
large overhead and may not detect all the faults injected [84, 26]. They may also aid
the passive SCA such as the DPA [88].

Another criterion is the objective of the countermeasure. If the countermeasure only
aims at detecting the FIA attempt, it is classified as the fault detection countermeasure. If
the countermeasure not only detects the FIA attempt, but also corrects the faulty behavior
of the chip after the fault is injected, it is called the fault tolerant countermeasure [61].

2.5 Summary

In this chapter, the basic theory of EM FIA was introduced. Additionally, we introduced
the previous research on FIA based on its two phases: the fault injection and the fault
exploitation. The countermeasures proposed were also summarized. Several hardware
countermeasures designed for EM FIA are summarized in Appendix A.

In general, most previous research in the attack part of FIA could be divided into three
categories as shown below:

1. Research with a complete FIA: In this category, the researcher successfully found
vulnerabilities in an FIA and physically implemented FIA. Examples are the secure
boot attack implemented with clock glitch [6], the fault assisted passive SCA where
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the masking countermeasure was skipped using clock glitch [50], the round addition
attack for AES using EM FIA [49].

2. Research focused on the fault exploitation: Some previous research hypoth-
esized a fault model and evaluated the security of a cryptographic algorithm with
regard to this particular fault model [24, 89, 82]. However, they did not physically
run the attack with a particular FIA technique.

3. Research focused on the fault injection: The previous research focused on the
fault injection by mainly evaluating different fault injection techniques like laser [66],
clock glitch [63], and EM [59]. Some of them also focused on building the associated
fault model with a specific fault injection technique [7, 4]. However, they did not
physically implement an attack.

Even though some previous research formed a complete FIA, limited attacks were im-
plemented with EM FIA [49, 74]. Some of the previous fault models did not take the clock
frequency and the supply voltage into consideration [7, 4] and it was pointed out that re-
ducing the supply voltage either help induce more reproducible fault with clock glitch [90]
or make the target chip be more sensitive to clock glitch [6]. To the best of our knowledge,
previous research did not analyze the combination of other fault injection techniques with
EM FIA. Hence, there remains a lack of research on the impact of EM FIA with clock
frequency, supply voltage and other parameters of the device under analysis.

The other part of the previous research is how to mitigate FIA. Some hardware coun-
termeasures had a high fault detection rate [14], but they could not be implemented in an
off the shelf microcontroller. It also had a high hardware overhead [15]. Some software
countermeasures could be implemented in software to protect the microcontroller, but they
were proposed based on the instruction skip fault model [91]. Software countermeasures
for specific instructions were proposed and empirically verified by Moro et al. [61]. How-
ever, the countermeasure was not implemented on a complete cryptographic algorithm.
Moreover, the countermeasure previously proposed for the LDR instruction detected the
fault but did not correct the fault. Therefore, proposing and empirically verifying software
countermeasures with a complete algorithm based on the understanding of the fault is
important to protect the off the shelf microcontrollers.

The next chapter will provide details of the experimental setup used in the remaining
chapters.
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Chapter 3

Experimental Setup and Terminology

In this chapter, the experimental setup is presented in Section 3.1. Then, the charac-
terization of the probe is discussed in Section 3.2 along with a table which presents the
terminologies that will be used in the following chapters. Finally, the limitations of the
equipment is summarized.

3.1 Experimental setup

The typical experimental setup for EM FIA is shown in Figure 3.1. The equipment required
for EM FIA includes an oscilloscope, a pulse generator, a EM probe, a motorized x-y-z
stage, etc. as shown in many research papers with similar setup [49, 59, 74]. The pulse
generator can generate a voltage or current pulse which is later delivered to the EM probe
to produce a strong transient EM pulse. A trigger signal is usually sent out from the DUT
to synchronize the EM pulse [7, 59, 74, 58, 2, 54]. The EM pulse could be synchronized
with the target clock cycle by using this trigger signal with some timing analysis. Due
to the local property of EM FIA, most previous research applied a scan over the chip by
using the motorized x-y-z stage to analyze the relationship between the faulty response
and the probe location and find the best spot for injecting the fault [7, 4, 2, 59]. These
scans typically require an automatic collaboration of different equipment to collect a large
amount of data.

During this research, two stations were developed using two sets of probes and EM pulse
generators from Langer EMV-Technik [8]. The first set of probes and pulse generator
is a prototype system called Burst Power Station (BPS)201, whereas the BPS202 is a
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Figure 3.1: Typical experimental setup used in EM FIA [7]

(a) (b)

Figure 3.2: (a): Handheld experiment setup. (b): Automated platform with a CNC
machine as x-y-z stage
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completely functional EM injection system with remote control capability. Additionally,
the diameter of the probe tip of the BPS202 is only 500 um which offers a better spatial
resolution for running a scan over the silicon die to locate the best position for FIA.

The BPS201 offers a larger probe tip with an approximate 2.1 mm diameter which is
more robust against damage. Thus, it was used for handheld experiments to identify if a
fault could be injected under specific conditions. In contrast, BPS202 was used for running
statistical analysis where large amounts of data were collected due to its remote control
capability.

Figure 3.2 shows the two different kinds of EM FIA experimental setups which were
developed. In Figure 3.2a, the prototype BPS201 system is shown and the probe is hand-
held (or held by the probe holder but moved by hand). A Computer Numerical Control
(CNC) machine works as the x-y-z stage to move the probe tip as shown in Figure 3.2b
for the BPS202 system. The resolution of the CNC machine is 12.7 um [92]. For this
automated platform, a master python script acts as the main controller for the experiment
as shown in Figure 3.3a. Figure 3.3b visually defines the position of the probe and the
CNC machine. This control script will be discussed in subsequent chapters along with the
associated experiments. This automated platform was utilized during the experiments for
PIC16F687 detailed from Section 4.3 to Section 4.8. It was also used during injecting the
fault to the LPC1114 which will be detailed in Section 5.2.2, however, the BPS201 was
used in all subsequent experiments in Chapter 5 due to the damage of the probe tip of the
BPS202.

Both BPS201 and BPS202 provide GUI to configure the EM pulse as shown in Figure
3.4. They could run in either the pulse mode where a single pulse is sent or the burst mode
where a defined number of pulses are sent over a defined time duration. Other parameters
can also be configured through this software such as the pulse frequency, pulse voltage,
and trigger to pulse delay. Moreover, BPS202 also has the scripting capability to configure
these parameters.

Both EM FIA systems have the external trigger mode which is applied to better control
the timing of injecting the fault. In the external trigger mode, the voltage pulse, which is
used to generate the EM pulse, is triggered with an adjustable delay after the BPS system
receives the rising edge or the falling edge of the trigger signal. The trigger action could
be set to either “single pulse” or “start pulsing”. In our experiments, unless otherwise
specified, all the pulses are generated by using a single pulse, rising edge trigger setting.
Under this setting, only one pulse will be generated for each rising edge of the trigger
signal.

In our experiments, the overclocking approach was applied to help inject the fault. This
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Figure 3.3: Control flow of the automated FIA platform

approach first determines a maximum clock frequency where the chip could run stably.
Then, the clock frequency is reduced slightly (in all experiments) to further ensure fault-
free stability of the chip without EM FIA. Hence, when EM pulses are delivered and faults
are injected, the induced faults must be caused by the EM pulse instead of overclocking.
Similar method was used in previous research where the supply voltage was reduced to
help inject the fault with clock glitch [63].

3.2 Terminology and Characterization of the Probe

The terminology and characterization of the probe will be presented in this section. The
probe characterization mainly helps us to verify the controllability and accuracy of the
associated parameters such as voltage, delay, etc. These parameters significantly influence
the result of a fault injection experiment as found in previous research [7, 59, 4]. Thus,
characterizing the probe before conducting the fault injection experiment helps improve
the efficiency of developing and verifying a fault model and mounting an FIA.

Table 3.1 gives a summary of the parameters and the associated terminologies that will
be used in this section and also in the following chapters. The Tgt inst is the instruction

34



Figure 3.4: Main dialogue of the control software [8]

under attack. The EM pulse is delivered over a specific pipeline stage of the Tgt inst. The
Flt inst is defined as a single instruction which functionally creates the faulty state which
empirically occurred with the EM pulse injection of the Tgt inst. If this Flt inst could be
found, the induced fault is classified as the instruction replacement fault.

Table 3.1: Terminologies and the associated parameters used in the thesis

Fclk clock frequency of the external clock of the DUT
VDD Supply voltage of the DUT
Vp Pulse voltage
Dt2p Delay from the trigger to the pulse
Pcycle Prefetch cycle
Tgt inst Target instruction
Flt inst Faulty instruction

The measurement of the voltage pulse sent out by the probe is shown in Figure 3.5 and
3.6. In these oscilloscope plots, channel one (C1 in Figure 3.5 and 3.6) was connected to
the trigger signal and channel two (C2 in Figure 3.5 and 3.6) was connected to the voltage
pulse port of the probe. From Figure 3.5a and 3.5b, the actual delay between the trigger
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(a) Dt2p = 274 ns Vp = 180 V (b) Dt2p = 284 ns Vp = 150 V

(c) Rising time (d) Pulse jitter

Figure 3.5: Oscilloscope plots for BPS201 probe
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(a) Dt2p = 174 ns Vp = 450 V (b) Dt2p = 184 ns Vp = 500 V

(c) Rising time (d) Pulse jitter

Figure 3.6: Oscilloscope plots for BPS202 probe
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to the pulse is increased by 10 ns when we increased the setting of the Dt2p by 10 ns.
Moreover, the pulse voltage was increased when we set Vp to a higher value by comparing
Figure 3.5a with 3.5b. Similar behaviors were found for BPS202 as shown in Figure 3.6a
and 3.6b. The rising time of the voltage pulse for BPS201 and BPS202 is approximately 13
ns and 3 ns, respectively (see figures 3.5c and 3.6c). Another important timing parameter
is the jitter. The jitter of the voltage pulse was measured to be approximately 14 ns and
10 ns for BPS201 and BPS202, respectively (see figures 3.5d and 3.6d).

3.3 Limitations of the Equipment and Assumptions

The limitations of the equipment mainly exist in two areas. The first one is the timing
limitation and the second one is the spatial limitation. Both will be introduced in this
section along with some other limitations.

There are mainly three timing limitations. The first timing limitation is the minimum
pulse period of the BPS system. The minimum period for two consecutive pulses is 100
us for BPS201 while it is reduced to 50 us with BPS202. Hence, a delay factor has to
be inserted in our test programs in Chapter 4 and 5 to ensure the time duration between
asserting the trigger is larger than the minimum period of the associated BPS system.
Otherwise, the second pulse will not be generated. The second timing limitation is the
resolution of changing the Dt2p. The resolution for both BPS201 and BPS202 systems is 10
ns. This resolution mainly limits two major experiments. The first one is the AES attack
which will be further discussed in Chapter 4. If we would have had a higher resolution, such
as 0.1 ns as utilized in previous research [49], we might have been able to scan through the
associated clock cycle with a fixed clock frequency to further explore faulty responses. The
second experiment is the empirical verification of the charge-based fault model in Chapter
6. In this experiment we had to change the clock frequency accordingly to make sure the
delay between the pulse to the associated clock edge remained constant. The third timing
limitation is the minimum Dt2p. The minimum Dt2p is 274 ns and 174 ns for BPS201
and BPS202, respectively. Hence, to correctly place the EM pulse over the target clock
cycle, NOP s were often inserted between the instruction which asserts the trigger and the
associated Tgt inst.

There are two spatial limitations. The first spatial limitation is the difficulty of mea-
suring the z-distance. The CNC machine could adjust the z-distance. However, we could
not let the probe tip touch the chip directly since it may damage the probe tip. Hence, we
can only estimate the z-distance. The second spatial limitation is the probe tip location
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with regards to the silicon die of the target chip. This probe location can only be estimated
visually with regards to the die and chip orientation.

In addition to the timing and spatial limitations, there are some other limitations
brought by the equipment. Both pulse generators offer flexibility in controlling the pulse.
However, the BPS201 could correctly generate the pulse based on the configuration in
external trigger mode only when the Vp is set between 130 V to 180 V . In contrast, the
operating range of Vp for BPS202 is from 50 V to 500 V . Both pulse generators could
only change the Vp by 10 V per step. Moreover, the probe for BPS201 is not shielded,
which produces a significant interference to other signals, equipment, etc. This interference
could be identified by comparing the trigger signal captured by the oscilloscope in Figure
3.5a with Figure 3.6a. However, this interference is not the reason for the induced fault
(later detailed in Chapter 4 and 5). The interference could always be observed from the
oscilloscope as long as the BPS201 is generating the pulse, but only when the probe is close
enough to the silicon die, the fault is injected. Hence, this interference is likely generated
due to the coupling between the cable which connects the trigger signal to the oscilloscope
and the BPS201 probe. Moreover, Even though the voltage pulse could be measured on
both probes, the probe for BPS201 does not have a separate port to measure the voltage
pulse. The probe tip has to be removed so that the oscilloscope could be connected to
measure the generated voltage pulse.

The diameter of the probe tip for BPS202 is 500 um. Therefore, the probe tip needs
to be placed close enough to the silicon die in order to inject the fault. Based on the
feedback from the manufacturer, the distance between the DUT and the probe tip needs
to be smaller than 100 um1. However, they also noted that this distance is target specific.
At the same time, any direct contact between the probe tip and the silicon die needs to be
avoided to prevent any damage to the probe tip. Hence, it is difficult to protect the probe
tip and inject the fault at the same time.

The oscilloscope used in our experiments does not provide the functionality of measuring
the jitter. Hence, the jitter measurement was done by setting the display model to infinite
such that all the generated pulses were displayed in the oscilloscope screen. The jitter was
measured by using the cursor. The Dt2p was also measured by using the cursor. Therefore,
there might be some measurement errors.

During our experiments, the probe tip was damaged several times. The probe tip of
BPS202 was sent back to the manufacturer twice for repair. The probe tips of BPS201
were also damaged several times. Though we could repair the probe tip by soldering the

1Based on the communication with Lars Glaesser from Langer EMV-Technik
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copper wires back to the ferrite core, the repair process was extremely time consuming and
the generated EM pulse was likely different due to the lack of proper tools.

The LPC1114 was placed over a custom breadboard. The chip was backside decapsu-
lated and the pins were bent over. Hence, it was difficult to ensure a totally horizontal
surface (PIC16F687 was equipped with a universal board). With this restriction, the ex-
periments on chip #2 of LPC1114 were conducted with a handheld setup, which will be
detailed in Chapter 5.

Based on our previous analysis of the system, two consecutive EM pulses could only
be generated with at least a 100 us or 50 us period if we apply either the BPS201 or the
BPS202 system, respectively. Assume only one fault injection system is used. Therefore,
it is reasonable to assume that two consecutive EM pulse could not be generated with less
than 50 us. To the best of our knowledge, the only available complete commercial EM
FIA system is designed by Riscure and has a minimum period for generating the EM pulse
of 1 us [77]. Hence, in Section 4.8 and 5.5 where the countermeasures were designed and
verified, we assume that the fault could not be injected within 1 us. Moreover, the fault
tolerant countermeasure (see Section 2.4) is further defined as the countermeasure which
corrects the injected fault targeting a single specific instruction.

3.4 Summary

This chapter presented the experimental setup used in the following chapters. Both hand-
held experimental setup and automated platform were introduced. The master control
python script was designed with different functionalities based on the purpose of the ex-
periment, as will be detailed in subsequent chapters. The characterization of the probe
was also presented and is important in running the detailed timing analysis in later exper-
iments. The limitations of the system were analyzed along with the associated effects in
our following experiments. In the next chapter, we will introduce our experimental results
on PIC16F687.
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Chapter 4

Experimental results on PIC16F687

In this chapter, we will introduce our experimental results on the PIC16F687 microcon-
troller. First, an overview of the target chip is presented. We present the experimental
results with the handheld setup and also talk about the results from the automated plat-
form. A two-step attack methodology is introduced with empirical results on attacking a
software implementation of the AES-128. Countermeasures are proposed and empirically
verified at the end of this chapter.

4.1 Overview of the PIC16F687

The target chip is PIC16F687 designed by Microchip [11]. It was chosen as the first target
due to its simplicity and dual-in-line (DIP) package. It is designed with a Harvard structure
where the program memory and the data memory are separated and accessed with separate
buses. It has 128 bytes Static Random Access Memory (SRAM), 256 bytes Electrically
Erasable Programmable Read Only Memory (EEPROM), and 2K*14 bits flash memory. In
the datapath, the only register available is the W (or accumulator) register. The package
of the chip is divided into four different types:

• Backside decapsulated chip: The backside package is removed along with the copper
shield. The silicon substrate is exposed.

• Frontside decapsulated chip: The package of the chip is totally removed from the
frontside and the die is exposed.
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• Cavity chip: Part of the package is removed by drilling a cavity.

• Original chip: The package of the chip is not removed.

Figure 4.1: From top to bottom: backside decapsulated chip, frontside decapsulated chip,
cavity chip and original chip [9]

These four kinds of chips are shown in Figure 4.1. The locations of the flash memory,
EEPROM and SRAM in the silicon die viewed from the backside are identified as shown in
Figure 4.2. The location of each memory is important for EM FIA since the orientation of
the probe tip and the target circuit influences the induced electromotive force as described
in Section 2.1.

According to the PIC16F687 user manual [11], there are four clock cycles denoted as
Q1, Q2, Q3, Q4 to finish one instruction cycle denoted as Tcy. Additionally, the instructions
are fetched and then executed in two instruction cycles. The PIC16F687 applies a two-
stage pipeline where execution of the current instruction and fetch of the next instruction
are done within one instruction cycle. These features are depicted in Figure 4.3. OSC1
denotes the original clock signal from the clock source which could either be an internal
oscillator or an external oscillator. OSC2/CLKOUT is output through PIN RC4 while
the chip is running in RC mode. Note that the OSC1 or the actual Q cycles could not be
determined or identified externally from the chip.
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Figure 4.2: Backside view of the PIC16F687 die [9]

Additionally, during the execution cycle of a instruction, Q1 is always the decode
stage. For most instructions, Q2, Q3, Q4 follows a read-modify-write process where Q2
is used to read the data (either from the register or from the literal), data processing is
done at Q3, and the processor writes back to the destination register at Q4. It is likely
that the processor loads the fetched instruction to the instruction register at Q2 after the
instruction executed in parallel has been decoded [10]. Therefore, if the EM pulse changes
the instruction, Q2 is likely the target clock cycle.

Figure 4.3: Clock/Instruction cycle [10]

Figure 4.4 presents a special case for the two-stage pipeline flow. Normally, each in-
struction needs one instruction cycle to be fetched and the second instruction cycle to be
executed. With the two-stage pipeline, in each instruction cycle, one instruction will be
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executed. However, if the executed instruction changes the PC, another instruction cycle
is required to flush the fetched instruction. As shown in Figure 4.4, the CALL SUB 1
instruction changes the PC to execute the instruction addressed at label SUB 1. Thus,
the fetched fourth instruction is executed as a NOP instruction in Tcy4.

Figure 4.4: Pipeline flow [10]

The maximum clock frequency allowed under different supply voltages for PIC16F687
is shown in Figure 4.5. The maximum clock frequency is 20 MHz when the supply voltage
is set to 5.5 V .

Figure 4.5: Voltage-Frequency graph [11]

Table 4.1 presents the instructions that have been analyzed during our experiments.
Other instructions and macros are listed in Appendix B.1. These target instructions were
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chosen to include memory reading/writing, ALU operations, and conditional operations.
The PIC16F687 utilizes a 14-bit encoding for each instruction. The field f is the binary
encoding of the register file address. Similarly, the field k is the binary encoding of the
literal, constant or label. d is the destination selection bit (select f or w according to the
value of d). Further analysis indicates that some instructions share similar encoding even
though they have different functionalities. For example, the hamming distance between
the opcode of GOTO k and MOV LW k is two when k is less than 256.

The PIC16F687 supports direct, indirect and relative addressing mode [11]. The indi-
rect addressing mode is achieved by accessing the INDF register. This register is not a
physical register. Any instructions accessing this register actually access the data pointed
by the File Select Register (FSR).

Table 4.1: Instruction description and the associated opcode

Instruction Description Opcode (14 bits)
MOVLW k Move literal k to W register 11 0000 kkkk kkkk
MOVWF f Move the content in W register to f 00 0000 1fff ffff
BCF f, b Clear bit b of the content stored in f 01 00bb bfff ffff
GOTO k Jump to the next instruction addressed at

0x80
10 1kkk kkkk kkkk

XORWF f, d Exclusive or the contents of W register with f
and then store the result back to f/W

00 0110 dfff ffff

SUBWF f, d Subtract W from F, the result was stored back
to F/W based on d

00 0010 dfff ffff

IORWF f, d Inclusive or the contents of W register with f
and then store the result back to f/W

00 0100 dfff ffff

DECFSZ f, d Decrement f, skip the next instruction if f = 0
and store the result back to f/W

00 1011 dfff ffff

DECF f, d Decrement f, result is stored back to f/w 00 1011 dfff ffff
INCF f, d Increment f, result is stored back to f/w 00 1010 dfff ffff
COMF f, d Complement f, result is stored back to f/w 00 1001 dfff ffff
NOP No operation 00 0000 0000 0000

The PICkit3 programmer/debugger could be used to program/read/erase the PIC16F687
with scripting capability. However, the reading process only dumps out the program mem-
ory, user ID, device ID, configuration memory and the EEPROM memory [93]. Hence,
this debugger does not provide access to the instruction register which stores important
information for investigating the instruction replacement/skip fault. Also, the fault test
program must have the functionality to transfer the faulty data from SRAM to EEPROM
such that it could be further dumped out with the PICkit3 for off chip analysis. The
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PICkit3 also supports reading the SRAM memory on the fly in debug mode. However,
the debug function is only available with a specific header chip but not supported with
PIC16F687. The test programs have to be carefully designed such that the faulty instruc-
tions could be identified.

Except for the terminologies shown in Table 3.1, Dp2n denotes the delay from the pulse
to the end of Qn cycle (n ∈ [1, 2 , 3 , 4]). In the experiments of PIC16F687, the instruction
replacement fault was observed.

The experiments on PIC16F687 were conducted with three chips. Chip #1 is a front
side cavity chip. This chip was utilized in the handheld experiment in Section 4.2. Both
chip #2 and chip #3 are backside decapsulated. Chip #2 was applied in Section 4.3, 4.4,
4.5, 4.6, 4.8, and also from Appendix B.2 to B.5. Chip #3 was utilized in Section 4.7.

4.2 Handheld Experiment on Chip #1

The handheld experiment mainly investigated the fault injectability with the available
BPS201. A front side cavity chip, chip #1, was utilized as shown in Figure 4.6. The cavity
was drilled to decrease the distance between the probe tip and the silicon die since faults
could not be injected with a regular chip. The diameter of this probe tip is around 2.1 mm
and it does not have a sharpened end.

Figure 4.6: Large probe tip from BPS201 over a front side cavity chip, chip #1 of
PIC16F687

The first step of the FIA experiment is to inject the first fault to the target chip. For
better analysis of the fault, a specific program was developed. The flow of the program is
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shown in Figure 4.7. The main functionality of the program is to write a fixed value to the
SRAM memory, using MOVWF as the Tgt inst, and after writing 96 bytes to different
memory addresses (see listing 4.1), check if the values stored in the SRAM memory are
correct. The 96 bytes are written to SRAM memories from address 0x20 to 0x7F. The code
that contains the loop to write the literal to the target SRAM and generate the trigger
signal is shown in listing 4.1. As indicated by Velegalati et al.[32], the EM pulse may shut
down the whole chip. Thus, LED 0 flashes every iteration to show that the program is still
running when the data stored in the SRAM is fault free. If the data stored in the SRAM
memory is changed, it confirms the presence of the fault and the program enters a fault
handling loop where the faulty data is transferred from the SRAM to the EEPROM for off
chip analysis. During the writing process, a trigger signal is asserted before writing each
byte to the SRAM and de-asserted after each byte is written. This trigger signal is used
to synchronize the EM pulse with the Tgt inst.

Write 96 bytes

Check 96 bytes 

one by one

Fault occurs?Flash LED 0

Turn on LED 1 and

Write data from SRAM to EEPROM 

from 0x20 to 0x7F

No

Start

Yes

Figure 4.7: Program for handheld experiment

The fault could not be injected if the chip was not overclocked, even though the Vp was
set to the maximum value. To make sure the fault was caused by the EM pulse instead of
the overclocking (see Figure 4.5 for maximum nominal clock frequency), we verified that
chip #1 could run the test program without faults with a 64 MHz clock (see Section 3.1
for the overclocking approach). To successfully inject the fault into chip #1, we set Fclk as
61.5 MHz resulting in a 16.26 ns clock period and a 4*16.26 = 65.04 ns instruction cycle.

The program was written in assembly language to provide a detailed analysis of the
timing as shown in listing 4.1. The minimum Dt2p for BPS201 is 274 ns. With a 65.2
ns instruction cycle, there should be four instructions (4 × 65.04 < 274 < 5 × 65.04 )
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between asserting the trigger and the target MOVWF INDF . Hence, three additional
NOP s were added to locate the EM pulse over the target MOVWF INDF instruction.
Assume the trigger signal was asserted at time 0 (at the end of instruction cycle 0 in Figure
4.8). The execution cycle (instruction cycle 5) of the MOVWF INDF instruction started
at 260.16 ns and ended at 325.20 ns as shown in Figure 4.8. Therefore, the EM pulse was
delivered during the execution of the MOVWF INDF (instruction cycle 5). The value
written to the SRAM was 0x55.

1 MOVLW 0x20
2 MOVWF FSR ; Use i n d i r e c t addre s s ing mode .
3 LOOP2
4 BCF STATUS, RP1
5 BCF STATUS, RP0
6 MOVLW 0x20
7 MOVWF PORTC ; Assert the t r i g g e r .
8 NOP
9 NOP

10 NOP
11 MOVLW 0x55 ; Move l i t e r a l to W r e g i s t e r be f o r e wr i t i ng i t to SRAM
12 MOVWF INDF ; Target MOVWF i n s t r u c t i o n . Write content o f the W reg to

the r e g i s t e r pointed by FSR.
13 MOVLW 0x00
14 MOVWF PORTC ; De−a s s e r t the t r i g g e r
15 INCF FSR, 1 ; increment the address in FSR
16 CALL Delay1 ; The de lay subrout ine . Used due to the minimum pul s e per iod

.
17 BTFSS FSR, 7 ; b i t [ 7 ] o f FSR =`1 ' , i n d i c a t i n g 96 bytes have been wr i t t en

to the SRAM
18 GOTO LOOP2

Listing 4.1: Program used for handheld experiment

Figure 4.8: Timing analysis of the processor executing program 4.1 with Dt2p = 274 ns,
showing EM pulse occurring during instruction cycle 5

Several experiments were performed and faulty data was analyzed. As shown in Figure
4.9, two experiments indicated the faulty value was 0x54, which confirmed that EM FIA
successfully changed the value inside the memory.
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(a)

(b)

Figure 4.9: Partial memory dumps indicating (a):fault injected at address 0x2B and (b):
fault injected at addresses 0x2F, 0x3D and 0x68

The attack flipped the last bit of the memory from ‘1’ to ‘0’. Further analysis of the
program indicated that the fault was not a reset bit fault but was actually related to
the prefetch of the instruction which follows the MOVWF INDF . As shown in Fig-
ure 4.8, the chip is also prefetching the MOV LW 0x00 instruction in parallel when the
MOVWF INDF instruction is executing. In fact, it was empirically shown that the
MOV LW 0x00 instruction was replaced with the BCF INDF, 0 instruction (see Section
4.4.3). As shown in Table 4.1, both instructions have a similar opcode with a hamming
distance of 2.

In some experiments, even though the fault handling loop is executed, no faulty data
was found in the EEPROM. This kind of fault will be classified as a control fault where
the Tgt inst is likely replaced with a jump instruction which forces the program to execute
the fault handling loop. An example is presented in Section 4.4.3 where the Tgt inst is a
MOV LW instruction. The next experiments will use the CNC machine with an automated
setup (see Chapter 3).
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4.3 Identify the Best Location for Injecting the Fault

on Chip #2

After the handheld experiment, we built the automated platform to run EM FIA. The
automated platform allows us to repeatedly run the experiment under the same setting
and conduct a statistical analysis on the faulty behavior. Moreover, the motorized x-y-
z stage enables us to precisely move the probe over the die of the chip and find out a
best location to inject the fault. The BPS202 system was used due to its remote control
capability. The AES-128 attack was also mounted on this automated platform. All the
experiments done on the automated platform used a backside decapsulated chip (which was
referred to as chip #2). There are mainly two reasons for using a backside decapsulated
chip. First, driven by the mobile phone market, more flipchip packages are applied in the
last decade due to the advantage of high performance and small package size [94]. Second,
if the chip is decapsulated from the front side, it is more likely to damage the chip because
of the bonding wires.

Figure 4.10 demonstrates how the probe tip was protected during the experiment. A
probe cover was utilized to make sure the minimum distance between the probe tip and
the package of the chip was 0.25 mm. Moreover, the silicon die was approximately 0.25
mm lower than the package when the chip was decapsulated from the backside. Therefore,
when the probe tip was moving over the die, the minimum z-distance from the tip to the
die was approximately 0.5 mm.

Probe cover

Probe tip

Figure 4.10: The probe tip protected by the cover over the target chip
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4.3.1 Effect of the Vp and the Probe Location

To analyze the impact of the Vp and probe location, two scans were performed to find a
best point where fault is most likely to be injected. In the first scan, the probe was moved
over the whole silicon die of the chip with a low resolution. In the second scan, the probe
was moved in a sensitive area found by the first scan with a high resolution.

The same target program (shown in listing 4.1) was used in the scan. However, since
chip #2 was used in this scan, the maximum Fclk was changed to approximately 56.5
MHz. Then, a 54.56 MHz clock was applied to help inject the fault. With Fclk set
to 54.56 MHz, the delay from the trigger to the start and the end of the Pcyl of the
MOV LW 0x00 instruction was 293.3 ns and 366.6 ns, respectively. Thus, we set the
Dt2p as 294 ns to deliver the EM pulse while the chip was prefetching the MOV LW 0x00
instruction.

4.3.1.1 Scan Over the Die of The Chip

The first experiment we conducted on the automated platform was a scan over the die of
the chip. As shown in Figure 3.2b, the probe was attached to the CNC machine by using
a custom made probe holder. The size of the die of the PIC16F687 is approximately 2
× 2 mm2. The objective of this scan was to determine a sensitive area where the fault
was more easily to be injected. The CNC was set to move 0.254 mm per step. Initially,
the probe tip was placed approximately over a corner of the die. To ensure that the scan
covered the die area, the probe tip was moved over a grid of 9 × 9 points to form a square
of 4.13 mm2. A counter was used to record how many rounds out of a maximum of 10
rounds, had a successful fault injection at that specific xy coordinate. Moreover, for each
round, the probe tip only stayed at each point for 12 s maximum trying to inject a fault.
Whether the fault was injected or not, the probe tip would move to the next point after
this time duration. After all the 81 points were finished, the scan would start over in the
next round again until all the 10 rounds were finished. The final result is shown as shmoo
plots in Figure 4.11, which corresponds to roughly the same backside view of the die in
Figure 4.2.

The shmoo plots in Figure 4.11 indicated that the Vp has a significant impact on the
fault injectability when it is below 200 V . No fault could be injected when the Vp is 50 V
or 60 V and more faults are injected at a larger area over the die when the Vp is increased.
However, when the Vp is greater than 200 V , there is no significant difference for the fault
injectability. With this finding, another scan with a higher resolution was conducted with
the Vp less than 200 V .
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(a) Vp = 50 V (b) Vp = 60 V (c) Vp = 70 V (d) Vp = 80 V

(e) Vp = 90 V (f) Vp = 100 V (g) Vp = 150 V (h) Vp = 200 V

(i) Vp = 250 V (j) Vp = 300 V (k) Vp = 350 V (l) Vp = 400 V

(m) Vp = 450 V (n) Vp = 500 V

Figure 4.11: Shmoo plot for number of fault been injected at each coordinate over 10
rounds for the experiment scan over the die of chip #2 under different Vp
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Figure 4.12: Cumulative shmoo plots over all Vp settings. Left: scan over the die; Right:
scan over the sensitive area

Moreover, from the left part of Figure 4.12 which plots the total number of faults
injected at each point over 10 rounds for all the 14 different Vps (which makes a maximum
number of faults to be 140), a sensitive area is roughly found in the (green) square.

4.3.1.2 Scan Over the Sensitive Area

The second scan was done over the sensitive area found in the last experiment. The
resolution was increased to 0.0635 mm per step to find the best point to inject the fault.
Thus, the total number of points for each round was 13 × 13 = 169. Also, since when
Vp ≥ 200 V , the delivered EM pulse reached its limit and could not inject significantly
more faults to the chip, the Vp was limited up to 200 V in this scan. The result of this
scan is shown as shmoo plots in Figure 4.13.

Similarly, to the right side of Figure 4.12, the three points with the most number of
faults (75 out of 80 rounds) injected are listed with index 1, 2, 3 in Table 4.2. The final
best point was chosen as the second one.

After determining the best location for injecting the fault, we also analyzed the effect
of the z-distance at this best location and found that with a increased z-distance, the fault
was more difficult to be injected. The result of the z-distance experiment is presented in
appendix B.2. Additionally, several test programs were developed to investigate possible
Flt insts. The experimental results for these test programs are presented in the next
section.
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(a) Vp = 50 V (b) Vp = 60 V (c) Vp = 70 V (d) Vp = 80 V

(e) Vp = 90 V (f) Vp = 100 V (g) Vp = 150 V (h) Vp = 200 V

Figure 4.13: Shmoo plot for number of fault been injected at each coordinate over 10
rounds for the experiment scan over the sensitive area of the chip under different Vp

Table 4.2: Best probe position (xy) for largest number of faults injected using cumulative
shmoo plot on right hand side of Figure 4.12

Index of the best point x-coordinate (mm) y-coordinate (mm)
1 0.5715 1.143
2 0.6985 1.27
3 0.6985 1.3335
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4.4 Case Study: Analysis of The Flt inst

To further analyze Flt insts, several different programs were designed. In this section,
we will provide the details in investigating the instruction replacement fault based on
different test programs. Generally, each program utilizes two loops. The first one is the
normal function loop. In this loop, the program continues a write-check process until a
fault occurs (similar to Figure 4.7). When the fault occurs, the program jumps into the
second loop called the fault-handling loop. In the fault-handling loop, the program writes
the faulty data into the EEPROM for off-chip analysis. All the experiments in this section
were done with Vp = 500 V , VDD = 5 V , Fclk = 52 MHz.

4.4.1 Test Program One

Listing 4.2 presents part of the code for test program one. The program first writes a
0xAA to the general purpose register whose address is 0x20. Then, it writes a 0x55 to this
address again. This process ensures that every bit is flipped during our writing process. If
no fault is injected, the value stored at the register should be 0x55.

1 MOVLW 0x20
2 MOVWF PORTC ; Assert the t r i g g e r
3 NOP
4 MOVLW 0xAA ; Move l i t e r a l 0xAA to W r e g i s t e r
5 MOVWF 0x20 ; Move the data in W r e g i s t e r to SRAM at address 0x20
6 MOVLW 0x55 ; Move l i t e r a l 0x55 to W r e g i s t e r
7 MOVWF 0x20 ; Target i n s t r u c t i o n . Move the data in W r e g i s t e r to SRAM at

address 0x20
8 MOVLW 0x00 ; Target i n s t r u c t i o n .
9 MOVWF PORTC ; De−a s s e r t the t r i g g e r

Listing 4.2: Test program one

The timing diagram for test program one is shown in Figure 4.14. In this timing
diagram, the Q cycle of each instruction is also labeled. The timing diagram is used to
analyze which instruction cycle is affected by the EM pulse. When Dt2p was set to 254
ns, the EM pulse targeted the fourth instruction cycle where the MOVWF 0x20 was
prefetched. Similarly, the EM pulse was placed over the fifth instruction cycle where the
MOV LW 0x00 was prefetched when Dt2p was 334 ns. Based on the faulty data in Table
4.3 and assume the fault was injected in the Pcyl, the associated Flt insts are shown in
Table 4.3. The hamming distance between the Tgt inst and the Flt inst is ”1” for both
cases, as shown in Table 4.4 where “x” stands for don’t care. We could find that the
hamming distance between the Tgt inst and the Flt inst is only 1.
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Figure 4.14: Timing diagram for test program one

Table 4.3: Possible faults injected on test program one

Dt2p (ns) Faulty Value (hex) Tgt inst F lt inst
254 0xAA MOVWF 0x20 NOP
334 0x54 MOV LW 0x00 BCF INDF, 0

Table 4.4: Hamming distance between Tgt inst and Flt inst of test program one

Tgt inst opcode Flt inst opcode Hamming distance
MOVWF 0x20 0000001 0100000 NOP 0000000 xx00000 1
MOV LW 0x00 1100xx0 0000000 BCF INDF, 0 0100000 0000000 1

4.4.2 Test Program Two

Test program two was designed with a more complex write-check loop as shown in listing
4.3. Instead of only writing a single byte to the SRAM, 0x55 and 0x03 are written to
the SRAM memory whose addresses are 0x20 and 0x21, respectively. Then, the values at
both addresses are added together and stored at address 0x23. In this way, when the fault
occurs at either address, we could have an extra check at address 0x23. This extra check
outputs additional information when the fault occurs. If no fault is injected, the expected
data at these three address locations should be 0x55, 0x03 and 0x58, respectively. Initially,
the data stored at all three addresses is 0xAA.

1 MOVLW 0x20
2 MOVWF PORTC ; Assert the t r i g g e r
3 NOP
4 NOP
5 NOP
6 MOVLW 0x55 ; Target i n s t r u c t i o n
7 MOVWF 0x20 ; Target i n s t r u c t i o n
8 MOVLW 0x03 ; Target i n s t r u c t i o n
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9 MOVWF 0x21 ; Target i n s t r u c t i o n
10 NOP
11 NOP
12 MOVLW 0x00 ; Target i n s t r u c t i o n
13 MOVLW 0x00 ; Dupl icated MOVLW 0x00 to ensure the t r i g g e r s i g n a l w i l l be de

−a s s e r t e d
14 MOVWF PORTC ; De−a s s e r t the t r i g g e r
15 MOVF 0x20 , W ; Move the content at0x20 to W reg
16 ADDWF 0x23 , F ; Add the content o f W reg with content at 0x23 , s t o r e the

r e s u l t back at 0x23
17 MOVF 0x21 , W; Move the content at 0x21 to W reg
18 ADDWF 0x23 , F ; Add the content o f W reg with content at 0x23 , s t o r e the

r e s u l t back at 0x23

Listing 4.3: Test program two

Figure 4.15: Timing diagram for test program one

The timing diagram of this program is shown in 4.15. From test program one, we
understood that the fault was injected during the Pcyl of each instruction. Hence, the EM
pulse was induced during the instruction cycle 3, 4, 5, 6, 9 to check the result. The faulty
values were shown in Table 4.5. When the EM pulse targeted instruction cycle 3 and 5, the
MOV LW instruction was possibly replaced with the NOP instruction. Consequently, the
previous value stored at W register was finally moved to the associated SRAM memory.
The MOVWF instruction could also be replaced with the NOP instruction if the EM
pulse targeted instruction cycle 4 and 6. If the EM pulse was induced during instruction
cycle 9, the MOV LW 0x00 was replaced with the BCF INDF, 0 instruction. This
Flt inst cleared the last bit of a register pointed by the file select register (FSR). Thus,
different faulty value combinations were found when the FSR pointed to different addresses
as shown in the last two rows of Table 4.5.

Table 4.6 presents the hamming distance between the Tgt inst and the Flt inst of
test program two. When the literal value is changing, the hamming distance between the
MOV LW instruction and the NOP instruction also changes. Hence, in some cases, the
hamming distance is increased. However, there are some opcodes that are undefined for the
PIC16F687. The opcodes with bit[13:7] equals to “0000000” have 128 possible encodings.
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Table 4.5: Fault injection result on test program two

Dt2p (ns)
Target instruction
cycle

Fault Value (hex)@addr Targeting
instruction

Flt inst
0x20 0x21 0x23

No EM pulse N/A 0x55 0x03 0x58 N/A N/A
184 3 0x20 0x03 0x23 MOV LW 0x55 NOP
254 4 0xAA 0x03 0xAD MOVWF 0x20 NOP
334 5 0x55 0x55 0xAA MOV LW 0x03 NOP
414 6 0x55 0xAA 0xFF MOVWF 0x21 NOP
644 (FSR = 0x20) 9 0x54 0x03 0x57 MOV LW 0x00 BCF INDF, 0
644 (FSR = 0x21) 9 0x55 0x02 0x57 MOV LW 0x00 BCF INDF, 0

Table 4.6: Hamming distance between Tgt inst and Flt inst of test program two

Tgt inst opcode Flt inst opcode Hamming distance
MOV LW 0x55 1100xx0 1010101 NOP 0000000 xx00000 5
MOVWF 0x20 0000001 0100000 NOP 0000000 xx00000 1
MOV LW 0x03 1100xx0 0000011 NOP 0000000 xx00000 4
MOVWF 0x21 0000001 0100001 NOP 0000001 xx00000 2
MOV LW 0x00 1100xx0 0000000 BCF INDF, 0 0100000 0000000 1

Only 8 out of these 128 encodings are defined as shown in Table 4.7. The datasheet does
not specify what happens if an undefined instruction occurs and there is no exception
handler in PIC16F687 [11]. Thus, all the undefined instructions are probably executed as
NOP .

Table 4.7: Instructions defined with opcode bit[13:7] = 0000000

Instruction Description opcode bit[6:0]
NOP No operation xx00000
CLRWDT Clear watchdog timer 1100100
RETFIE Return from interrupt 0001001
RETURN Return from subroutine 0001000
SLEEP Go into standby mode 1100011

Hence, Table 4.6 could be reconstructed where the opcode of the NOP instruction is
replaced with an undefined instruction and the hamming distance could be even smaller.
Table 4.8 presents the new hamming distance between the Tgt inst and the Flt inst.
After considering all the undefined instruction as the NOP instruction, the new hamming
distance between the MOV LW instruction and the NOP instruction is reduced.
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Table 4.8: Reconstruct Table 4.6 with undefined instruction executed as NOP

Tgt inst opcode Flt inst opcode Hamming distance
MOV LW 0x55 1100xx0 1010101 NOP 0000000 1010101 2
MOVWF 0x20 0000001 0100000 NOP 0000000 0100000 1
MOV LW 0x03 1100xx0 0000011 NOP 0000000 0000011 2
MOVWF 0x21 0000001 0100001 NOP 0000001 0100001 1
MOV LW 0x00 1100xx0 0000000 BCF INDF, 0 0100000 0000000 1

4.4.3 Test Program Three

In addition to some abnormal memory operation behaviors, fault injection could also lead
to a jump behavior. In this section, an example is given to show that the EM pulse could
cause the program to unexpectedly jump to other addresses.

1 MOVLW 0x20
2 MOVWF PORTC ; Assert the t r i g g e r
3 N ∗NOPs
4 MOVLW 0x55
5 MOVWF 0x20
6 MOVLW 0x80 ; Target i n s t r u c t i o n
7 MOVWF PORTC ; De−a s s e r t the t r i g g e r
8 MOVF 0x20 , W;
9 ADDWF 0x22 , F ;

10 MOVF 0x21 , W;
11 ADDWF 0x22 , F ;
12 . . . . . .
13 MOVLW 0x20 ; S ta r t i ng address : 0x20
14 MOVWF FSR ; Trans fe r data from SRAM to EEPROM;
15 LOOP ; S ta r t i ng wr i t i ng to EEPROM
16 BCF STATUS, RP0
17 BCF STATUS, RP1
18 MOVF INDF, W ; The address f o r t h i s i n s t r u c t i o n i s 0x80
19 . . . . . .
20 GOTO LOOP

Listing 4.4: Test program three

Test program three shows a case where a MOV LW instruction could be replaced with
a GOTO instruction or a MOVWF instruction. Initially, 0x21 was written to the FSR
and N was set to 5. The value 0x55 was written to SRAM at address 0x20. The data at
address 0x20 and address 0x21 was added together and stored at address 0x22. If no fault
is injected, the expected values at these three locations are shown in the first row of Table
4.9.
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Table 4.9: Fault injection result on test program three targeting MOV LW

Test
program

Dt2p (ns)
Fault Value (hex)@addr

Flt inst
0x20 0x21 0x22

Three No EM pulse 0x55 0x00 0x55 N/A

Three (N = 5)
484 0x55 0x55 0xAA MOVWF INDF
484 0xFF 0x00 0x00 GOTO 0x80

Three (with four more NOPs)
484 0x55 0x00 0x00 GOTO 0x80
484 0x55 0x55 0xAA MOVWF INDF

Three (with FSR set to 0x20) 484 0x55 0x00 0x00 GOTO 0x80
Three (N = 3) 334 0x54 0x00 0x54 BCF INDF, 0

After injecting the fault targeting the Pcyl of the MOV LW 0x80 instruction, two
groups of faulty value combinations were obtained. The first set of faulty values is shown
in the third row of Table 4.9. A faulty 0x55 was written to address 0x21. Therefore, the
MOV LW 0x80 was likely replaced with the MOVWF INDF . The hamming distance
between this group of instructions is 2 as shown in Table 4.10. To verify this, the FSR
was changed to 0x20. This type of fault could not be detected because even though the
MOV LW 0x80 was replaced with the MOVWF INDF , the value stored at address 0x20
was not changed. Only when the MOV LW 0x80 was replaced with the GOTO 0x80, the
fault could be detected by the program as shown in the seventh row.

The second group is shown in the fourth row of Table 4.9. From reading the EEPROM,
the faulty value stored at address 0x20 was 0xFF. The default value for the EEPROM was
0xFF. Hence, it was likely that the program skipped writing to the EEPROM at address
0x20. Actually, the address of the MOV F INDF, W instruction (at line 18 of listing
4.4) is 0x80 and when the Flt inst was the GOTO 0x80, the MOV LW 0x20 and the
MOVWF FSR instruction at line 13 and 14 were skipped. Hence, the EEPROM write
loop started from address 0x21. Consequently, the faulty value at address 0x20 was 0xFF.
The hamming distance between the MOV LW 0x80 and the GOTO 0x80 is only 2 as
shown in Table 4.10.

Table 4.10: Hamming distance between Tgt inst and Flt inst of test program three

Tgt inst opcode Flt inst opcode Hamming distance

MOV LW 0x80 1100xx1 0000000
MOVWF INDF 0000001 0000000 2

GOTO 0x80 1010001 0000000 2
BCF INDF, 0 0100001 0000000 1

In order to verify this, four more NOP s were added to change the address of the
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instruction MOV LW 0x20 to 0x80. Then, if the MOV LW 0x80 is replaced with the
GOTO 0x80, it is expected that no fault occurs at address 0x20 and 0x21. However, the
sum at address 0x22 should be 0x00 since all the following instructions are skipped due to
the faulty GOTO 0x80. The fourth row in Table 4.9 shows that the MOV LW 0x80 was
indeed replaced with the GOTO 0x80. By adding more NOP s inside the loop, it was also
verified that by changing the k of the MOV LW k instruction, the associated address k in
the faulty instruction GOTO k was changed accordingly.

When two NOP s were removed and N was set to 3, it was found that the Tgt inst was
only replaced with the BCF INDF, 0. The faulty value is shown in the last row of Table
4.9. Since the BPS system could only change the Dt2p by 10 ns per step, the Dp22 (Dp2n

with n = 2) of the Pcyl of the MOV LW 0x80 was changed from 16 ns to 12.15 ns. This
might cause different bits to be flipped in the opcode, which results in a different Flt inst.

From test program three, the Flt inst could be different with the same experimental
setup. Moreover, by changing Dp22 of the Pcyl of the Tgt inst, the injected fault varied.
Therefore, it is important to study the statistical result of each experiment. The fault
injection experiment was performed on test program three for 340 rounds for each different
cases. The statistical result is shown in Table 4.11. In over 98% of the tests, the fault
was successfully induced to both test programs. When N was set to 3, the only faulty
instruction was the BCF INDF, 0. When N was set to 5, 42% of the Flt inst was the
GOTO 0x80 and the occurrence was slightly increased to 56% when the Flt inst was the
MOVWF INDF .

Table 4.11: Statistical result of the fault injected on test program three targeting MOV LW

Test program Dp22 (ns) Flt inst Occurrence

Three (N=5) 16
MOVWF INDF 56.4%

GOTO 0x80 42.3%
Three (N=3) 12.15 BCF INDF, 0 98.4%

4.5 The XORWF Instruction on Chip #2

The XORWF instruction is used to implement the XOR function which is widely used in
cryptographic algorithms such as AES. Microchip released a software AES implementation
in their application note [17]. By investigating this code, the XORWF instruction is
utilized to finish the key addition in each round of AES. Therefore, it is important to
analyze the faulty behavior of this instruction. In this section, the faulty response of the
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XORWF instruction will be provided. After the analysis, a physically implemented AES-
128 attack is discussed. All the experiments in this section were done with Vp = 500 V ,
VDD = 5 V , Fclk = 52 MHz.

The faulty response of the XORWF instruction was analyzed with a test program and
the experimental results are presented in appendix B.3. From the experimental results,
the XORWF 0x20, F instruction could be faulted and was replaced with one of four
different faulty instructions, specifically NOP , IORWF 0x20, W , IORWF 0x20, F ,
and XORWF 0x20, W . Therefore, it is possible that we could inject a fault to the
software implementation of AES which could generate a faulty ciphertext. With the faulty
ciphertext, it may be possible to retrieve the key. In the next section, the attack on AES,
targeting the XORWF instruction, is presented.

4.5.1 AES Attack Targeting the XORWF Instruction

In this section, the Microchip software implementation of AES-128 [17] was utilized as our
target program. The attack focused on the last round operation of AES. The attack was
a ciphertext-only attack. However, the attacker must be able to record both the correct
and the faulty ciphertext. The notations used for presenting the attack on AES-128 are
shown in Table 4.12. The program calculates the round key on the fly. Since PIC16F687
is an 8-bit microcontroller, the 16-byte key is stored from address 0x30 to 0x3F (where an
address is represented as 0x3m, m ∈ [0 : F ] ). The intermediate data is stored from address
0x20 to 0x2F. After finishing the ARK10(), the ciphertext is output from address 0x20 to
0x2F. There are two steps to finish the ARKi() algorithm as shown in Figure 4.16. In step
1○, the key in address 0x3m is moved to the W register by using the MOV F 0x3m, W

instruction. By using the XORWF 0x2m, F instruction, the key is XORed with the
intermediate state and the result is stored back to address 0x2m in step 2○.

②①

0x3m W regMOVF 0x3m, W 0x2mXORWF 0x2m, F

Figure 4.16: Instructions used in ARKi of software implementation of AES, m ∈ [0 : F ]

The ciphertext Cm is generated and stored at address 0x2m after ARK10(). Therefore,
if the XORWF 0x2m, F instruction is replaced with a NOP instruction by injecting a
fault, LSm could be output directly as the faulty ciphertext Ĉm. Hence, the associated
key byte Km

10 could be easily retrieved by calculating Ĉm ⊕ Cm. With this finding, the
complete AES-128 attack will be presented in two steps.
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Table 4.12: Notations for AES targeting XORWF instruction

Notation Description
LSi i− th byte of the last state before applying the ARK10()

Kj
i

∗
j − th byte of the i− th round key candidate

Kj
i j − th byte of the i− th round key

Ki The i− th round key
Ci i− th byte of the ciphertext

Ĉi i− th byte of the faulty ciphertext
SBi() The sbox operation in i− th round
MCi() The mix-column operation in i− th round
SRi() The shift-row operation in i− th round
ARKi() The add round key operation in i− th round

4.5.1.1 Step 1: Characterize the Flt inst

It was necessary to check the faulty response of the XORWF instruction in the AES-128
program before running the attack. The attack was conducted based on the assumption
that the attacker knows everything except the key. Hence, it was reasonable to artificially
insert a trigger signal to help deliver the EM pulse over the XORWF instruction as a proof
of concept. This trigger signal was activated only during the last round. The ARKi() part
for the AES-128 program is shown in listing 4.5. When the round counter is 1, the program
is executing the last round and a trigger signal is activated. The key and the plaintext
were set to a known value in order to calculate the 16 bytes of the last round key K10 and
the last state LS. The experiment was conducted for 340 rounds with Dt2p set to 254 ns.

1 key add i t i on :
2 . . .
3 MOVLW 0x1
4 SUBWF round counter , w
5 BTFSS STATUS, Z ; Last round?
6 GOTO n o t r i g g e r ; Not l a s t round
7 BCF STATUS, RP0 ; Last round
8 BCF STATUS, RP1
9 MOVLW b '00100000 '

10 MOVWF PORTC
11 n o t r i g g e r :
12 3∗NOPs
13 MOVF 0x30 ,W ; block [ 0 ] ˆ= key [ 0 ] ;
14 XORWF 0x20 ,F ; Target i n s t r u c t i o n
15 NOP;
16 NOP;
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17 MOVLW b '00000000 '
18 MOVWF PORTC ; de−a s s e r t the t r i g g e r

Listing 4.5: Revised ARKi part for AES-128

The fault injection experiment indicated that the faulty response was different from
the XORWF test program even though the Dp22 of the Pcyl of the XORWF was the
same as 15.23 ns. The Flt inst and the occurrence is shown in Table 4.13. Since the
fault was induced to the Pcyl of the Tgt inst, the address of the Tgt inst might also affect
the bit flipped during loading the instruction from the FLASH memory to the instruction
register. The address of each instruction also changed the physical location which stored
the instruction. Therefore, by moving the probe tip to a new position, it might be helpful to
increase the possibility of replacing the XORWF instruction with a NOP or a MOVWF
instruction which would output the last state LS or the last round key K10, respectively
as the faulty ciphertext.

Table 4.13: Fault injection result on AES-128 code targeting the XORWF instruction

Tgt inst/Opcode Flt inst Opcode Hamming distance Occurrence
XORWF 0x20, F/ SUBWF 0x20, F 0000101 0100000 1 65.8%
0001101 0100000 MOVWF 0x20 0000001 0100000 2 31.4%

Based on this hypothesis, a new scan was performed with the AES-128 program where
the ARKi() was modified to assert a trigger signal at the last round. The result of the
scan is shown in Figure 4.17. Since it is easier to retrieve the last round key K10 when the
Flt inst is a MOVWF or a NOP , the position for the probe was chosen as the one with a
red rectangle shown in Figure 4.17b. At this position, for 8 out of 10 rounds, the Flt inst
was the MOVWF instruction.

4.5.1.2 Step 2: Build The Attack Algorithm

With a location where the Tgt inst was replaced with the desirable Flt inst with a high
probability, the attack algorithm 1-a was built. The pseudo code for the attack algorithm
1-a is shown in listing 4.6. By using random plaintexts, the last state LS is expected to
be different with the same key. Only if the XORWF instruction is replaced with the
MOVWF instruction, the faulty ciphertext would be consistent which is the associated
last round key byte Ki

10
∗
. If the faulty ciphertext byte is not in the Candidate i list, either

the current faulty ciphertext byte or all the previous faulty ciphertext bytes are resulted
from a different Flt inst other than the MOVWF instruction.
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(a) NOP (b) MOVWF (c) SUBWF (d) All

Figure 4.17: Shmoo plot for number of faults injected with Flt inst as (a): NOP , (b):
MOVWF , (c): SUBWF and (d): all injected fault.

A single fault injection attempt is done with each byte where the Ki
10

∗
is still not

revealed. Whenever the Ki
10

∗
is found, the associated index is removed from the index list

since no more tests are required for this byte. Therefore, for the first two plaintexts, all the
16 bytes are tested. Afterwards, only the unrevealed key byte is tested with fault injection.

After all the 16 key bytes are found, the initial key is calculated by a reverse key
scheduling algorithm. If this K0

∗ is the same with the key programmed to the chip, the
attack is successful.

1 s u c c e s s = 0 # Total number o f keys that have been s u c c e s s f u l l y r e t r i e v e d
2 t o t a l = 0 # Total number o f keys that have been t e s t e d
3 whi le (1 ) :
4 K0 = random ( key ) # Randomly generate a 16 byte i n i t i a l key
5 f o r i in range (16) :
6 Candidate i =[] # Setup an empty l i s t f o r each byte o f key candidate
7 index = range (16) # The index f o r 16 bytes key
8 whi le ( l en ( index ) > 0) : # i f the re remains unknown key byte
9 P = random ( p l a i n )# Randomly generate a p l a i n t e x t

10 C = Enc(P, K0 ) # The f i r s t round o f encrypt ion w i l l generate the
c o r r e c t c i p h e r t e x t

11 f o r i in index :
12 program ( t r i g g e r i ) # Program the chip where the t r i g g e r i s

t a r g e t i n g the i−th byte o f ARK10

13 pu l s e . on
14 time . s l e e p (12)
15 pu l s e . o f f

16 i f Ĉi != Ci : # I f a f a u l t was i n j e c t e d

17 i f Ĉi not in Candidate i :

18 Candidate i . append (Ĉi )
19 e l s e :
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20 Ki
10

∗
= Ĉi

21 index . remove ( i )

22 K0
∗ = L a s t T o I n i t i a l (K0

10
∗

to K15
10

∗
) # Use the 16 bytes l a s t round key to

c a l c u l a t e the i n i t i a l key
23 i f K0

∗ == K0 ;
24 s u c c e s s = s u c c e s s + 1
25 t o t a l = t o t a l + 1 # Total number o f keys that have been t e s t e d

Listing 4.6: AES-128 attack algorithm 1-a targeting XORWF

16 different keys were tested and the result is shown in Table 4.14. The attack required
an average of around 9 plaintexts to retrieve all the key bytes. During the tests, the
induced fault did not always cause a Flt inst as MOVWF . In some cases, the Flt inst
was actually a SUBWF or a NOP instruction where the algorithm could not output the
associated Ki

10 for the current plaintext. Hence, it increased the number of plaintexts
required to get all the key bytes.

Table 4.14: AES-128 attack result with the attack algorithm 1-a targeting XORWF

Total test 16
Successful test 16

Number of plaintexts
Avg 8.88
Std 2.25

Number of EM pulses
Avg 307.6
Std 63.9

In fact, if the Flt inst is a NOP instruction, the output is the last state LS and the last
key byte could also be found. Therefore, the attack algorithm 1-b was considered where

both the Ĉi and the Ĉi ⊕ Ci are added to the associated list Candidate i (see line 18 of

listing 4.6). If either the Ĉi or the Ĉi⊕Ci is in the list Candidate i, it is suggested as the
correct key byte. Therefore, this attack algorithm considers both cases where the Flt inst
is either a MOVWF or a NOP instruction. In this way, the number of plaintexts might
be reduced to increase the attack efficiency. The result of this attack is shown in Table
4.15.

From Table 4.15, the number of plaintexts required before outputting the 16 bytes K0
∗

was reduced to 5.3. However, the success rate was reduced from 100% to 68.75%. The
reason for the failed tests was investigated. During the m−th test with the m−th plaintext

for the i− th byte, the Flt inst was an INSTA and both Ĉi and Ĉi ⊕ Ci were not in the
list Candidate i. At the n − th test with the n − th plaintext for the i − th byte, the

66



Table 4.15: AES-128 attack result with the attack algorithm 1-b targeting XORWF

Total test 16
Successful test 11

Number of plaintexts
Avg 5.31
Std 1.30

Number of EM pulses
Avg 222.3
Std 80.9

Flt inst was an INSTB, either Ĉi or Ĉi ⊕ Ci was collided with the result of the m − th
test. A wrong key guess was output as Ki

10
∗

= Ĉi or Ki
10

∗
= Ĉi ⊕ Ci.

Since both the Ĉi and Ĉi ⊕ Ci will be appended to the associated list Candidate i
in each fault injection attempt, the list stored 2 × number of plaintexts elements. For
example, for key byte 0, if 5 plaintexts has been tested but K0

10
∗

has not been output yet,
list Candidate 0 have 10 elements in it. Since there are only at most 256 values for each
key byte, the possibility for a wrong key byte guess increases with the length of the list.

4.6 The DECFSZ Instruction on Chip #2

The DECFSZ instruction is used to decrement a register and check if it reaches 0. The
next instruction is skipped if the result is 0. Therefore, it is most likely used when a
program needs to branch to a different address based on the result of decrementing a
register. Hence, the DECFSZ instruction could possibly be used in the program shown
in Figure 1.2 to determine the number of trials left for the user to input the pin. An
attacker could possibly inject the fault to the DECFSZ instruction, which might allow
the attacker to unrestrictedly input the pin. This kind of attack is referred as the bypass
security check attack.

Additionally, the previous AES-128 attack targeting the XORWF instruction requires
retrieving the last round key byte by byte. By carefully investigating the software imple-
mentation of the AES-128, the DECFSZ instruction is utilized to check if the encryption
reaches the last round and if the mix-column operation should be omitted. The assembly
code of this part is shown in listing 4.7. Before the last round, the round counter has
been decremented to 1. During the last round, the DECF round counter, W instruc-
tion decrements the round counter to 0 but stores the result in the W register. If the
zero-flag is set, the program executes the GOTO last round instruction and skips the mix-
column operation. After that, the DECFSZ round counter, F instruction decrements
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the round counter again and stores the result back to the round counter register. The
GOTO loop encrypt instruction is skipped and the encryption subroutine is finished with
the RETURN instruction.

1 encrypt :
2 MOVLW 0x01
3 MOVWF rcon ; RCON i n i t i a l i z a t i o n
4 CALL key add i t i on ; i n i t i a l key add i t i on
5 MOVLW 0x0A ; s t a r t the round counter f o r the loop
6 MOVWF round counter ;
7 l oop enc rypt :
8 CALL s u b s t i t u t i o n S ; S−box l a y e r
9 CALL e n c s h i f t r o w ; Sh i f t−row l a y e r

10 DECF round counter ,W ; Last round?
11 BTFSC STATUS, Z ; Check the zero−f l a g
12 GOTO l a s t r ou nd ; Yes , no mixcolumn
13 CALL mix column ; No , perform the mix−column
14 l a s t r ou nd :
15 CALL enc key schedu l e ; Key schedu l ing
16 CALL key add i t i on ; key add i t i on
17 DECFSZ round counter ,F ; Target i n s t r u c t i o n , l a s t round?
18 GOTO loop encrypt ; No , conduct the next round ope ra t i on s
19 RETURN

Listing 4.7: Assembly code for AES-128 encryption subroutine [17]

If the DECFSZ round counter, F is replaced with a NOP instruction, the AES-128
executes an additional round without mix-column operation. Assume this additional round
is the 11-th round and the generated faulty ciphertext is Ĉ. Then we have

ARK11(SR11(SB11(C))) = Ĉ (4.1)

K11 = Ĉ ⊕ SR11(SB11(C)) (4.2)

Therefore, with one single fault injection, the whole 16 bytes key K11 could be retrieved.
Consequently, the K0 could be recovered using a reverse key scheduling algorithm. Com-
pared with the AES-128 attack in Section 4.5.1 where the key byte is retrieved one by one,
the new attack would likely require fewer EM pulses to get the whole key.

In this section, we present the analysis and the attacks by targeting the DECFSZ
instruction. First, a test program was built to understand the Flt insts. The experimental
results are shown in appendix B.4. The possible Flt insts for the test program are NOP ,
MOVWF , INCF 0x20, F . Then, an assembly program was designed to mimic the
behavior of the code shown in Figure 1.2. A proof of concept attack was implemented to
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show that EM FIA could allow the attacker to guess the pin an unlimited number of times.
Finally, the AES-128 attack is presented with a two-step methodology.

4.6.1 Bypass security checks attack

The assembly program shown in listing 4.8 was designed to work as the target of the
attack. Initially, 0x09 is stored at address 0x20. Assume the attacker inputs a guess of
the pin once and the pin is always wrong in each iteration of the INPUT PIN loop.
The attacker could at most try a input guess ten times and the program jumps into a
LOCKED LOOP . Each time the attacker inputs the pin, an additional counter would
increment by one. Therefore, if no fault is injected, the counter should store 0x0A. With
this design, the number of EM pulses delivered could be used to represent how many times
the attacker inputs a pin.

1 INPUT PIN :
2 MOVLW b '00100000 '
3 MOVWF PORTC ; Assert the t r i g g e r
4 NOP
5 NOP
6 NOP
7 NOP ; ( Assume the a t tacke r input pin with in these four NOPs)
8 DECFSZ 0x20 , F ; Target i n s t r u c t i o n
9 GOTO NOT ZERO

10 GOTO LOCKED LOOP
11 NOT ZERO:
12 . . . ; De−a s s e r t the t r i g g e r here
13 GOTO INPUT PIN

Listing 4.8: The assembly program to mimic the code shown in 1.2

The experiment was performed for 500 tests with Dt2p set as 254 ns (Dp22 of the Pcyl

of the DECFSZ instruction was 15.23 ns). In each test, the EM pulse was delivered for
approximately 2.5 seconds (with an approximate 13 ms error since the control script was
implemented in python). Since the trigger signal was asserted approximately every 120 us,
the maximum number of EM pulses delivered over 2.5 seconds should be 20833 +/- 108.

The result of the attack is shown in Table 4.16 where NEM denotes the number of EM
pulses delivered during a single round. There are two main findings:

1. The attack was not successful for 46.4% percent of the tests. During these tests,
either no fault could be injected within the first 10 rounds or the faulty instruction
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did not lead to a significant increase of the data stored at address 0x20. For example,
if the Flt inst was a NOP , the attacker could only guess the pin once more.

2. When NEM was ≥ 20833, it indicated that the attacker could guess the pin an
unlimited number of times within this 2.5 seconds. These tests were considered as
successful attacks. Hence, the attack was successful with a 31.2% rate. In fact, if the
Flt inst is a MOVWF , it sets the data at address 0x20 to be 0x20. The program
has another 32 rounds to output the trigger signal (The attacker then has another
32 opportunities to input a pin guess). Within these 32 rounds, if the Flt inst is a
MOVWF for one of the round, it refreshes the data stored at address 0x20 again.
Consequently, the attacker could input the pin guess for an unlimited number of
times.

Table 4.16: Experimental result of the bypass security check test

Percentage Average Standard deviation
NEM ≥ 20833 31.2% 20934 28.7
NEM ≤ 15 46.4% 11 1.1
16 ≤ NEM ≤ 20832 22.4% 1162 1849

4.6.2 The AES Attack Targeting the DECFSZ Instruction

In this section, a round addition attack was performed by targeting the DECFSZ instruc-
tion used in the software implementation of AES-128. The attack was a ciphertext-only
attack since only the ciphertext/faulty ciphertext were required. Also, the attack was
based on the assumption that the attacker knows everything except the key. A trigger
signal was inserted to help deliver the EM pulse to the associated Tgt inst. The encryp-
tion subroutine was revised as shown in listing 4.9. The trigger signal was only activated
during the last round when the round counter was 1. Similar to the attack described in
Section 4.5.1, the attack was implemented in two steps.

1 encrypt :
2 MOVLW 0x01
3 MOVWF rcon ; RCON i n i t i a l i z a t i o n
4 CALL key add i t i on ; i n i t i a l key add i t i on
5 MOVLW 0x0A ; s t a r t the round counter f o r the loop
6 MOVWF round counter ;
7 l oop enc rypt :
8 CALL s u b s t i t u t i o n S ;
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9 CALL e n c s h i f t r o w
10 DECF round counter ,W
11 BTFSC STATUS, Z
12 GOTO l a s t r ou nd
13 CALL mix column
14 l a s t r ou nd :
15 CALL enc key schedu l e
16 CALL key add i t i on ; key add i t i on
17 MOVLW 0x01
18 SUBWF round counter , w ;
19 BTFSS STATUS, Z ; Last round?
20 GOTO n o t r i g g e r ; No , t r i g g e r i s not a c t i va t ed
21 BCF STATUS, RP0
22 BCF STATUS, RP1
23 MOVLW b '00100000 '
24 MOVWF PORTC ; Act ivate the t r i g g e r
25 n o t r i g g e r :
26 4∗NOPs
27 DECFSZ round counter ,F ; Target i n s t r u c t i o n
28 GOTO loop encrypt
29 RETURN

Listing 4.9: The revised encryption subroutine with a trigger signal

4.6.2.1 Step 1: Characterize the Flt inst

The first step of the attack is to identify a probe location where theNOP instruction is most
likely to be the Flt inst. The scan was performed exactly the same as described in Section
4.5.1.1 with the associated faulty instructions changed. The Dt2p was set to 254 ns and the
Dp22 of the Pcyl of the DECFSZ was 15.23 ns. The Flt insts by targeting the DECFSZ
with test program five (see appendix B.4) and program in listing 4.9 were different even
though the Dp22 was the same. The associated Flt insts were NOP , MOVWF , DECF
and COMF . The result of the scan is shown in Figure 4.18. Since the NOP instruction
is the desired Flt inst, the probe was moved to the location indicated by the red rectangle
in Figure 4.18a. At this location, the Flt inst was the NOP instruction for 8 out of 10
rounds.

4.6.2.2 Step 2: Build the Attack Algorithm

After finding the best location, the attack algorithm 2 was built as shown in listing 4.10.
In this attack algorithm, the plaintext is fixed before the current attack is successful or
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(a) NOP (b) MOVWF (c) COMF

(d) DECF (e) All

Figure 4.18: Shmoo plot for the number of faults injected with Flt inst as (a): NOP , (b):
MOVWF , (c): COMF and (d): DECF (e): all injected fault.

the number of attack attempts is over 50. Whenever the fault is injected, the possible
K11

∗ is calculated and a reverse key scheduling algorithm is used to compute the initial
key candidate K0

∗. If the number of attack attempts for the current key is over 50, this
attack will be identified as failed and the attack will move to the next randomly generated
key K0.

1 s u c c e s s = 0 # Total number o f keys that have been s u c c e s s f u l l y r e t r i e v e d
2 t o t a l = 0 # Total number o f keys that have been t e s t e d
3 whi le (1 ) :
4 K0 = random ( key ) # Randomly generate a 16 byte key
5 s u c c f l a g = 0
6 P = random ( p l a i n )# Randomly generate a p l a i n t e x t
7 C = Enc(P, K) # The f i r s t round o f encrypt ion w i l l generate the c o r r e c t

c i p h e r t e x t
8 at tack at tempt cnt = 0 # Number o f a t tacks had been t r i e d
9 whi le ( s u c c f l a g == 0) and ( at tack at tempt cnt < 50) : # i f the attack

hasn ' t been s u c c e s s f u l
10 program ( ) # Program the chip
11 pu l s e . on
12 time . s l e e p (12)
13 pu l s e . o f f
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14 at tack at tempt cnt = attack at tempt cnt + 1

15 i f Ĉi != Ci : # I f f a u l t was i n j e c t e d

16 K11
∗ = SR(SB(Ci ) ) ⊕ Ĉi

17 K0
∗ = Add i t i onToIn i t i a l (K11

∗ ) #
18 i f K0

∗ == K0 ;
19 s u c c e s s = s u c c e s s + 1
20 s u c c f l a g = 1
21 t o t a l = t o t a l + 1 # Total number o f keys

Listing 4.10: The AES-128 attack algorithm 2 targeting DECFSZ

Table 4.17: AES-128 attack result with the attack algorithm 2 targeting DECFSZ

Total test 100
Successful test 100

Number of attack attempts
Avg 1.48
Std 0.86

Number of EM pulses
Avg 7.05
Std 6.06

The result of the attack is shown in Table 4.17. The attack was performed on 100
different keys and all the keys were successfully revealed. Moreover, the average number of
EM pulses before finding the key was slightly over 7. Therefore, the attack is significantly
more efficient than the attack based on algorithm 1-a and 1-b where the XORWF was the
Tgt inst. The average number of attack attempts was 1.48. This indicated that around
two out of three attack attempts, the Flt inst was the NOP instruction.

4.7 Extend The AES-128 Attack To Chip #3

To make sure the attack is general, robust and reproducible, the attack was performed on
chip #3 (which was also decapsulated from the backside). Due to process variation, chip
#3 could run with a higher clock frequency at 61 MHz. Chip #3 was placed on the board
after removing chip #2. Since the relative position between the probe tip and the silicon
die could only be estimated (see Section 3.3), the faulty instructions are possibly different
due to this positioning error and low scanning resolution during characterization of the
Flt inst.
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4.7.1 The AES-128 Attack Targeting the XORWF

The Fclk was set as 58.521 MHz and the Dt2p was set to 224 ns. Thus, with test program
in listing 4.5, Dp22 of the Pcyl of the XORWF was still 15.23 ns.

4.7.1.1 Step 1: Characterize the Flt inst

To identify the location where the Flt inst is most likely to be a MOVWF instruction or
a NOP instruction, a similar scan was conducted again. However, from the result of the
scan on chip #2, the sensitive area where the fault could be injected was roughly over the
flash memory on the chip (though this is just an estimate). Therefore, instead of scanning
over a total of 81 points, the scan on chip #3 was done with only 36 locations to increase
the scan efficiency. These 36 locations formed a 1.6 mm2 area which approximately covered
all the flash memory. The result of the scan is shown in Figure 4.19.

The best attack position is indicated with a red rectangle in Figure 4.19a. At this
location, the Flt inst was always the NOP instruction over 10 rounds. Therefore, the
output faulty ciphertext was the last state LS. Hence, the attack algorithm 1-c, which
is similar to the attack algorithm 1-a shown in listing 4.6, was proposed. Instead of the

Ĉi, the Ĉi ⊕ Ci is appended to the Candidate i list since this is most likely to be the last
round key.

(a) NOP (b) MOVWF (c) SUBWF (d) All

Figure 4.19: Shmoo plot of chip #3 for number of faults injected with Flt inst as (a):
NOP , (b): MOVWF , (c): SUBWF and (d): all injected fault.

4.7.1.2 Build the attack algorithm

The attack result with the attack algorithm 1-c is shown in Table 4.18. Compared with the
result shown in Table 4.14, the average number of plaintexts required was reduced. At the
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probe location on chip #3, the Flt inst was the NOP instruction for 10 out of 10 rounds
whereas for the probe location on chip #2, the Flt inst was the MOVWF instruction for
only 8 out of 10 rounds. Therefore, it was more likely to append a byte which was not
the last round key to the Candidate i list in the first attack. The average number of EM
pulses was also reduced since less plaintexts were required.

Table 4.18: AES-128 attack result with the attack algorithm 1-c targeting XORWF on
chip #3

Total test 22
Successful test 22

Number of plaintexts
Avg 4.23
Std 1.38

Number of EM pulses
Avg 129.8
Std 19.6

The attack algorithm 1-b was also tried on chip #3. The result is shown in Table 4.19.
There was only one test where the initial key was failed to be retrieved whereas 5 out of 16
tests were failed for the experiment on chip #2 with the attack algorithm 1-b. Moreover,
the average number of plaintexts required was only reduced for 5% compared with the
attack with the attack algorithm 1-c. Since the possibility of getting a Flt inst as NOP
was high, the attack efficiency will not be significantly increased by considering that the
Flt inst was either a NOP instruction or a MOVWF instruction.

Table 4.19: AES-128 attack result with the attack algorithm 1-b targeting XORWF on
chip #3

Total test 31
Successful test 30

Number of plaintexts
Avg 4.03
Std 1.38

Number of EM pulses
Avg 124.7
Std 24.5

4.7.2 The AES-128 Attack Targeting the DECFSZ

The Dt2p was also set to 224 ns and Fclk was set to 58.521 MHz. The assembly code of
the AES-128 encryption subroutine was modified such that a trigger was embedded. The
program is shown in listing 4.9. The attack was also based on the two-step approach.
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4.7.2.1 Step 1: Characterize the Flt inst

A scan was performed exactly the same as described in Section 4.5.1.1 with the associated
faulty instructions changed. Similarly, the scan on chip #3 was only done on 36 locations
which formed a square with approximately 1.6 mm2 area. The result of the scan is demon-
strated in Figure 4.20. One of the injected faults resulted in a faulty data 0xE1 in the
round counter register. However, we did not find a single instruction which could lead to
this result. Therefore, the Flt inst was not found for this faulty data. The best location
for performing the attack is indicated with a red rectangle as shown in Figure 4.20a. At
this location, the fault was injected in every round and the only Flt inst was the NOP
instruction.

(a) NOP (b) DECF (c) INCF

(d) 0xE1 (e) SUBWF

Figure 4.20: Shmoo plot for number of faults injected with Flt inst as (a): NOP , (b):
DECF , (c): INCF and (d): 0xE1 fault (e): all injected fault.

4.7.2.2 Step 2: Build the Attack Algorithm

The attack algorithm was the same as the attack algorithm 2 as shown in listing 4.10. The
result of the attack is shown in Table 4.20. It took an average of 8.77 EM pulses to retrieve
the key.
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Table 4.20: AES-128 attack result with the attack algorithm 2 targeting DECFSZ on
chip #3

Total test 120
Successful test 120

Number of attack attempts
Avg 1.64
Std 1.05

Number of EM pulses
Avg 8.77
Std 6.89

4.8 Countermeasure

After identifying the Flt inst for some instructions, it is now possible to propose practical
fault tolerant countermeasures and empirically verify them. Four instructions were chosen
to study possible countermeasures. These four instructions are MOVWF , MOV LW ,
XORWF , DECFSZ. These instructions cover basic byte-oriented memory operation,
literal operation, arithmetic instruction and control instructions. Moreover, one possible
Flt inst when injecting the fault to the MOV LW is the GOTO instruction. Therefore,
the jump instruction was also taken into consideration. Since we had no access to the
hardware, all the proposed countermeasures were in software by adding extra instructions.
The added instructions for the countermeasure are underlined in associated listings.

In each countermeasure designed for a specific instruction, the experiment was per-
formed on chip #2 to verify the efficiency of the countermeasure using the same setup
(Fclk = 52 MHz and VDD = 5 V ). Vp was set to 500 V to ensure the proposed counter-
measure was effective. First, a fault was injected to the associated program without the
countermeasure. After adding the countermeasure, the efficiency of the countermeasure
was verified by running the program 100 rounds with the same setting. Also, we assume
that the fault could not be injected more than once within 13 instructions, which is 13 *4
* 1000/52 = 1 us. This is as discussed in Section 3.3.

4.8.1 Countermeasure for the MOVWF Instruction

The MOVWF instruction is similar to the idempotent instruction introduced in [91].
Since the only Flt inst for MOVWF empirically observed was NOP , a duplication of
the MOVWF instruction would be sufficient. Moreover, duplication of the MOVWF
does not change the functionality of the program. The test code is similar to the code
shown in listing 4.2 with a duplicated MOVWF 0x20 instruction. When the duplicated
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MOVWF 0x20 instruction was not added, the fault was injected at address 0x20 when
Dt2p was set to 254 ns. The faulty data at address 0x20 was 0xAA since the MOVWF 0x20
instruction was replaced with NOP and the data stored at address 0x20 was unchanged.
After adding the duplicated MOVWF INDF to the program, 0x55 was correctly stored
to address 0x20. For all the 100 rounds, no faulty data was found. Therefore, the proposed
countermeasure provides a fault tolerant protection over the MOVWF instruction. The
overhead is an additional instruction, which takes 14 bits extra FLASH memory. The
latency of the program is also increased by an extra instruction cycle.

4.8.2 Countermeasure for the MOV LW Instruction

In test program three shown in listing 4.4, when N was set to 5, the MOV LW 0x80
instruction was replaced with the MOVWF INDF or the GOTO 0x80. Both Flt insts
need to be taken into consideration to design the countermeasure. The countermeasure is
shown in listing 4.11. The initial value stored at address 0x21 is 0x00 and FSR is set to
0x21.

The countermeasure provides two protections. First, after executing theMOV LW 0x80
instruction, the previous data stored at address 0x21 is written back to itself again as shown
at line 9 and 10. Moreover, since the MOV LW 0x80 instruction could also be replaced
with the GOTO 0x80 instruction, another GOTO Feedback instruction is inserted. The
address of this instruction is 0x80. Therefore, if the MOV LW 0x80 instruction is replaced
with the GOTO 0x80 instruction, the program will jump back to the MOV LW 0x80
instruction again.

1 MOVLW 0x20
2 MOVWF PORTC
3 5∗NOPs
4 MOVLW 0x55
5 MOVWF 0x20
6 Feedback :
7 MOVLW 0x80 ; Target i n s t r u c t i o n
8 MOVWF PORTC
9 MOVLW 0x00

10 MOVWF INDF; Store the i n i t i a l va lue back to the F i l e r e g i s t e r pointed by
FSR.

11 MOVF 0x20 , W;
12 ADDWF 0x22 , F ;
13 MOVF 0x21 , W;
14 ADDWF 0x22 , F ;
15 . . . . . .
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16 MOVLW 0x20 ; S ta r t i ng address : 0x20
17 MOVWF FSR ; Trans fe r data from SRAM to EEPROM;
18 LOOP ; S ta r t i ng wr i t i ng to EEPROM
19 BCF STATUS, RP0
20 BCF STATUS, RP1
21 GOTO Continue
22 GOTO Feedback ; The address f o r t h i s i n s t r u c t i o n i s 0x80
23 Continue :
24 MOVF INDF, W
25 . . . . . .
26 GOTO LOOP

Listing 4.11: Countermeasure for MOVLW instruction

With Dt2p set to 484 ns, the experiment was run for 100 rounds and no fault was
found in the program. Therefore, this countermeasure successfully thwarted the attack
targeting the MOV LW 0x80 instruction. However, the software designer needs to be
careful since the countermeasure is literal dependent. The penalty for this countermeasure
is four additional instructions for each MOV LW instruction, which take additional 4*14
bits FLASH memory. The latency is increased by two additional instruction cycles due to
the added MOV LW 0x00 and MOVWF INDF instruction at line 9, 10 in listing 4.11.

To defeat this countermeasure, the attacker has to inject two faults to the Tgt inst
and either the instruction at line 9, 10 or 22, which is impossible since it was assumed the
attacker could not inject two faults within 13 instructions.

4.8.3 Countermeasure for the XORWF Instruction

The XORWF instruction is similar to the separable instructions like ADD R1, R1, R2
as described in [91]. However, in PIC16F687, the W register is the only register that can
be used to store a temporary variable. Thus, instead of using extra registers to provide
the protection, extra data memory is utilized in this case.

The countermeasure was verified using the AES-128 code as shown in listing 4.5. The
new code with the countermeasure is shown in listing 4.12. The added instructions for the
countermeasures are underlined.

1 key add i t i on :
2 . . .
3 MOVLW 0x1
4 SUBWF round counter , w
5 BTFSS STATUS, Z ; Last round?
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6 GOTO n o t r i g g e r ; Not l a s t round
7 BCF STATUS, RP0 ; Last round
8 BCF STATUS, RP1
9 MOVLW b '00100000 '

10 MOVWF PORTC
11 n o t r i g g e r :
12 3∗NOPs
13 MOVF 0x30 ,W; W = key [ 0 ] ;
14 XORWF 0x20 ,F ; Target I n s t r u c t i o n . Block [ 0 ] xor key [ 0 ] and s to r ed back to

address 0x20
15 XORWF 0x60 ,F ; Dupl icate the key add i t i on us ing second memory l o c a t i o n
16 2∗NOPs
17 MOVLW 0x00 ;
18 MOVWF PORTC ; de−a s s e r t t r i g g e r
19 MOVF 0x20 , W
20 SUBWF 0x60 , W ; check i f data at address 0x20 = data at address 0x60
21 BTFSS STATUS, Z ; I f Zero f l a g was set , sk ip the next i n s t r u c t i o n
22 GOTO MAIN ; Restart the encrypt ion
23 . . . . .
24 RETURN
25 s t o r e v a r :
26 MOVF 0x20 , W
27 MOVWF 0x60
28 . . .
29 RETURN
30 encrypt :
31 MOVLW 0x01
32 MOVWF rcon ; RCON i n i t i a l i z a t i o n
33 CALL s t o r e v a r ;
34 CALL key add i t i on ; i n i t i a l key add i t i on
35 MOVLW ROUNDS ; s t a r t the round counter f o r the loop
36 MOVWF round counter
37 l oop enc rypt :
38 CALL s u b s t i t u t i o n S ; s u b s t i t u t i o n l a y e r
39 CALL e n c s h i f t r o w ; s h i f t r o w l a y e r
40 CALL s t o r e v a r ; Copy the in t e rmed ia te s t a t e
41 DECF round counter ,w
42 BTFSC STATUS, Z
43 GOTO l a s t r ou nd
44 CALL mix column ; mix column l a y e r
45 CALL s t o r e v a r ; Copy the in t e rmed ia te s t a t e
46 l a s t r ou nd :
47 CALL enc key schedu l e
48 CALL key add i t i on ; key add i t i on
49 DECFSZ round counter , f
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50 GOTO loop encrypt
51 RETURN

Listing 4.12: Countermeasure for protecting the XORWF instruction

The idea of this countermeasure is to do the key addition twice, but with two mem-
ory locations. The memory locations from address 0x60 to 0x6F are used to store the
intermediate state inside the AES-128 encryption. Therefore, during the encryption, the
intermediate value must be copied each time before executing the key addition subroutine.
The store var subroutine is used to copy the intermediate state to the memory addressed
from 0x60 to 0x6F.

The experiment was conducted for 100 rounds and no faulty ciphertext was generated.
Therefore, this countermeasure provides a fault tolerant protection to the XORWF in-
struction. However, it requires additional memory to store the intermediate state before
each ARK() layer. Also, it requires checking every byte of the intermediate state after
the ARK(). The data storage overhead is another 16 bytes data memory. The code
storage overhead is 41*14 bits more FLASH memory. Each store var subroutine takes
34 instruction cycles. For a complete AES program, the CALL store var instruction is
executed 20 times. Hence, the latency overhead for a complete AES is 34 * 20 + 20 * 2
(CALL store var instructions) + 5 * 11 (other added instructions inside the key addition
subroutine) = 775 instruction cycles.

This countermeasure could fail if the attacker is able to inject faults to both the Tgt inst
and either the XORWF 0x60, F (at line 15) or the GOTO MAIN (at line 22). However,
this is not feasible since faults could not be injected within 13 instructions.

4.8.4 Countermeasure for the DECFSZ Instruction

The DECFSZ instruction was utilized to conduct a powerful attack on AES. The coun-
termeasure for protecting AES over the fault injected to the DECFSZ instruction is
shown in listing 4.13. The second round counter register is added as shown at line 8. The
constant stored at the second round counter is 0x0B instead of 0x0A. Both round coun-
ters are decremented for each round. Then, during the last round, before executing the
DECFSZ round counter, F instruction, both round counters store 0x01. If the target
instruction is faulted, the GOTO loop encrypt is executed while it should be skipped. The
second round counter will decrement again and force the program to jump back to the
RETURN instruction preventing the program from running more rounds.

1 encrypt :
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2 MOVLW 0x01
3 MOVWF rcon ; RCON i n i t i a l i z a t i o n
4 CALL key add i t i on ; i n i t i a l key add i t i on
5 MOVLW 0x0A ; s t a r t the round counter f o r the loop
6 MOVWF round counter ;
7 MOVLW 0x0B
8 MOVWF round counte r s e c ; Store 0x0B to the second round counter
9 l oop enc rypt :

10 DECF round counter sec , F
11 BTFSC STATUS, Z
12 GOTO BACK RET
13 CALL s u b s t i t u t i o n S
14 CALL e n c s h i f t r o w
15 DECF round counter ,W
16 BTFSC STATUS, Z
17 GOTO l a s t r ou nd
18 CALL mix column
19 l a s t r ou nd :
20 CALL enc key schedu l e
21 CALL key add i t i on ; key add i t i on
22 MOVLW 0x01
23 SUBWF round counter , w
24 BTFSS STATUS, Z
25 GOTO n o t r i g g e r
26 BCF STATUS, RP0
27 BCF STATUS, RP1
28 MOVLW b '00100000 '
29 MOVWF PORTC
30 n o t r i g g e r :
31 4∗NOPs
32 DECFSZ round counter ,F ; Target i n s t r u c t i o n
33 GOTO loop encrypt
34 BACK RET:
35 RETURN

Listing 4.13: Countermeasure for protecting the DECFSZ instruction

The experiment was performed with Dt2p set to 254 ns for 100 rounds. No faulty
ciphertext was output. Therefore, this countermeasure successfully thwarted the attack.
The overhead for this countermeasure is an additional single byte data memory for storing
the second round counter and another five more instructions. These five instructions take
5*14 bits FLASH memory. The latency overhead is 2 + 1*10 +2*10 (BTFSC takes two
instruction cycles if it skips the next instruction) = 32 instruction cycles.

This countermeasure might be bypassed if the attacker could skip the Tgt inst and
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then skip the GOTO BACK RET instruction at line 12. This is not feasible within our
assumption.

4.8.5 Countermeasure to Protect the AES

The single countermeasure proposed for the XORWF or the DECFSZ could not totally
prevent the AES key from being retrieved by the attacker. For example, if the DECFSZ
instruction is protected by using the countermeasure proposed in Section 4.8.4, the key
could be retrieved by using the attack algorithm proposed in Section 4.5.1 where the
XORWF instruction was faulted, and vice versa. Therefore, it is important to combine
both countermeasures together so that the previous attacks described in Section 4.5.1
and 4.6.2 could be prevented. Hence, both countermeasures for the XORWF and the
DECFSZ were applied to AES, exactly as shown in sections 4.8.3 and 4.8.4, respectively.
Triggers for both types of faults were inserted. The code for this countermeasure is shown
in appendix B.5.

The verification experiment for this countermeasure was performed for 100 rounds.
No faulty ciphertext was generated. Hence, it provides a solid protection to the AES-
128 program from the attacks proposed in Section 4.5.1 and 4.6.2. This countermeasure
utilizes 17 bytes more data memory to store the intermediate state and the round counter.
Moreover, it takes another 46 instructions, which utilize 46*14 bits FLASH memory. The
latency overhead for a complete AES program is another 775+32 = 807 instruction cycles.

4.9 Summary and Comparison

In this chapter, FIA experiments on PIC16F687 were introduced with detailed analysis
on the effect of the induced fault. The EM pulse empirically influenced the prefetch cycle
of the Tgt inst and under a successful fault injection, the instruction was replaced with
a Flt inst. Table 4.21 summarizes all the instructions that had been tested and the
associated possible Tgt insts from different test programs.

In previous research, the methodologies were mostly focused on the experimental setup
where the researcher listed out the equipment used, the controllability of the parameters
of the generated pulse, or the underlying silicon geometries [7, 4, 32].

With the Flt insts revealed, two AES-128 attacks were physically implemented us-
ing a two-step methodology. After identifying the Flt inst, the implemented attacks are
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Table 4.21: The instructions that had been tested with all the observed Flt insts in dif-
ferent test programs

Tgt inst F lt inst

MOV LW 0x80
MOVWF INDF

GOTO 0x80
BCF INDF, 0

MOVWF ADDR NOP

XORWF ADDR, F

XORWF ADDR, W
IORWF ADDR, W
IORWF ADDR, F

NOP
MOVWF ADDR

SUBWF ADDR, W
IORWF ADDR, F IORWF ADDR, W

SUBWF ADDR, W
MOVWF ADDR

NOP

DECFSZ ADDR, F

DECF ADDR, F
INCF ADDR, F
COMF ADDR, F
MOVWF ADDR

NOP

straightforward and do not require complex analysis of the propagation of the fault in
the cryptographic algorithm compared with the attacks discussed in [24, 82, 83, 5]. For
example, Giraud et al. proposed a DFA which required a single bit fault on the last round
of AES [24], which was not feasible in our case with either BPS201 or BPS202. With
our experimental results, the engineering effort in characterizing the fault pays off from
the perspective of finding a simpler DFA algorithm. Moreover, the attack requires a small
number of EM pulses to retrieve the whole key, which shows that the cryptographic devices
running without countermeasures are significantly vulnerable to the attack. For the AES
attack targeting the XORWF instruction, the plaintext must be changed after the itera-
tion for all the key bytes which are not revealed yet. When attacking the AES targeting
the DECFSZ instruction, we do not need to have control over the plaintext. However,
we need to record the plaintext so that we could verify if the retrieved key was correct.

Moreover, the attack methodology was demonstrated with chip #3, which indicates
that the proposed attack is reliable and reproducible. Since it appeared that the chip was
more sensitive to the fault over the flash memory area, the characterization phase could
be done with a scan over a smaller area, which improves the efficiency.

Currently EM FIA could retrieve the K10 or K11 for AES-128 by faulting the XORWF
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or the DECFSZ instruction, respectively. With K10 or K11 revealed, the initial round
key could be calculated. However, the attack is not sufficient to retrieve the initial key if
AES-192 or AES-256 is utilized. Assume AES-256 is now running on the chip, the attacker
needs to get both K13 and K14 to calculate the initial round key. If there is an additional
fifteenth round, K14 and K15 are needed to calculate the initial key. However, the attacker
could target the XORWF instruction first and retrieve K14. Then, K15 can be retrieved
by targeting the DECFSZ instruction. With two attacks combined, the attack can still
break the security of AES-256 and reveal the initial key. A similar attack methodology
also applies to AES-192.

Countermeasures were also designed and empirically verified based on the Flt insts for
the MOVWF , MOV LW , XORWF and DECFSZ instruction, which covers the byte-
oriented instruction, the literal control instruction, the jump instruction, and the arith-
metic instruction. The countermeasures consider all possible statistical faulty instructions.
Hence, they provide robust protections over the target instructions. The countermeasures
designed for the XORWF and DECFSZ instruction were also empirically verified with
a real AES implementation as demonstrated in Section 4.8.3, 4.8.4 and 4.8.5.

4.9.1 Comparison with Previous Research

There were also few previous research papers which utilized the PIC16F as the target or
applied EM FIA to physically retrieve the key of AES. Skorobogatov applied laser FIA to
the PIC16F84 and PIC16F628 and modified the memory contents successfully [41]. This
attack did not target any specific instruction but rather delivered the laser beam to the
memory directly and modified the data contents.

Oswald applied the voltage glitching attack to the PIC16F687 microcontroller [95].
Unlike our research, the microcontroller was running with a nominal clock speed (8 MHz)
and the supply voltage was set to 4 V . Their target instruction was the GOTO instruction
which was skipped under fault injection. As mentioned by Oswald, their experiments were
used to demonstrate the fault injectability instead of performing a full attack towards
a cryptographic algorithm. Hence, unlike our research where we analyzed the possible
Flt insts of each target instruction, they did not further analyze the associated faulty
instruction.

The presented EM FIA attack targeting the DECFSZ instruction described in Section
4.6.2 was also implemented using a laser FIA approach in [9]. The chip under attack was
also PIC16F687. Unlike this research, the laser beam is able to skip multiple consecutive
instructions with different laser pulse energy settings.
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Dehbaoui et al. implemented another AES-128 attack in 2012 [74]. However, they did
not perform the attack in assembly code level and did not find the corresponding faulty
instruction. Their attack was based on a random byte fault model. Compared with our
self-designed attack algorithms, their DFA algorithm was designed by Piret et al.[96]. The
device under attack was an 8-bit AVR microcontroller. The microcontroller was clocked
at 3.57 MHz. A trigger signal was activated at the beginning of the 9-th round. By
sweeping through the 9-th round with 10 ns per step, they found the correct timing in
inducing single byte fault to a specific byte. This single byte fault led to four faulty bytes
in the ciphertext due to the mix-column operation and could leak information for four
key bytes. The fault had to be injected at four different columns such that all the 16 key
bytes could be retrieved. Additionally, for each injected byte fault, three sets of non-linear
equation were set up and the attacker had to iterate through all the possible sub-key bytes.
Compared with our attack which targeted the XORWF instruction, we did not need to
iterate through all the sub-key bytes and no non-linear equation was required to be solved.

Another attack which successfully broke the AES-128 was proposed in [49]. The at-
tacker was able to inject faults to the incrementing round counter (the instruction was not
specified) by using the EM pulse and introduced an additional round. The AES-128 was
running on a microcontroller with an ARM-Cortex M3 core. The chip was clocked at 24
MHz, unlike our overclocking (however the rising time of their system was only 2 ns).
The attacker was able to sweep through the last round of AES by 100 ps per step (unlike
our 10 ns resolution), and they found a time window where the fault was injected to the
round counter without triggering the HardFault exception. The desired result was that the
round counter was not incremented to 10. However, unlike our research, the faulty value
in the round counter was not analyzed, nor were any faulty instructions. Even if the round
counter was set to 9, the attacker still needed to exhaustively search each key byte within
their DFA. Then, each key byte would have two different candidate bytes. Hence, another
exhaustive search needed to be done over 216 different combinations. Consequently, the
total search space was 28 × 216. This is unlike the proposed AES attack targeting the
DECFSZ instruction, where no additional exhaustive search was required.

Unlike the previous research using the Forward/backward body-bias injection, the probe
must be in contact with the substrate [69, 70, 71]. Their successful attack to the CRT based
RSA running on a secure microcontroller implemented with a 90 nm technology did not
analyze the faulty instructions.

Moro et al. [91] designed a replacement sequence for different categories of instructions
to mitigate the fault injection attack, however, unlike this research, only the instruction skip
fault model was examined and the countermeasures were not verified empirically. Moro
et al. [61] empirically verified some countermeasures designed for specific instructions,
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however, countermeasures for a complete cryptographic algorithm were not provided.

The next chapter will provide research results on the LPC1114 microcontroller.
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Chapter 5

Experimental results on LPC1114

This chapter begins with a brief introduction to the LPC1114 microcontroller, which con-
tains an ARM Cortex-M0 core. We will present the EM FIA experimental results targeting
the LPC1114.

Similarly to Chapter 4, results of a handheld experiment to check the fault injectability
and clock frequency are reported. In addition, the automated platform results which find
the best location for detailed analysis are presented.

Due to the damage of the chip, the fault injection experiments were done on two
LPC1114 chips. Also, the experiments performed on LPC1114 were based on the BPS201
system since the BPS202 was damaged and we were not able to inject faults into LPC1114
with the 0.5 mm diameter probe tip. On chip #1, the address fault was the only fault
that could be injected while both the address fault and the data fault could be injected on
chip #2. Moreover, only chip #1 was placed on the automated platform and the BPS201
was utilized. All the experiments on chip #2 were performed with a handheld setup due
to the limitations of the equipment as described in Section 3.3.

5.1 Introduction to the LPC1114

LPC1114 is a 32 bit microcontroller with an ARM Cortex-M0 core and manufactured by
NXP with 32 kB on-chip flash programming memory [97]. The nominal maximum fre-
quency is 50 MHz and the nominal supply voltage range is from 1.8 V to 3.6 V . The
microcontroller is designed with a Von Neumann architecture where the program and the
data share the same memory space unlike the Harvard architecture of the PIC16F687.
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Thus, it is a good comparative platform for researching EM FIA. The Cortex-M0 imple-
ments the ARMv6-M architecture which supports the 16-bit Thumb instruction set and a
small portion of 32-bit instructions from the Thumb-2 [98]. The instructions that had been
tested during our experiments are shown in Table 5.1 along with the associated encoding.
The LPC1114 was also decapsulated from the backside as shown in Figure 5.1. The copper
shield was removed to ensure the EM pulse would not be blocked.

Table 5.1: Target instruction description and the associated encoding for LPC1114

Instruction Description Encoding (16 bits)
LDR < Rt >, [PC, # < imme >] Calculate an address from

the PC and an immediate
offset, then load a word
from memory and write it
to a register

01001 + Rt + imme

LDR < Rt >, [< Rn >, # < imme >] Calculate the address from
a base register and an offset
register value,

01101 + imme + Rn + Rt

LDMIA < Rn >!, < registers > Load multiple registers
from consecutive memory
locations using an address
from a base register

11001 + Rn + register list

CMP < Rn >, < Rm > Compare register and up-
date the flag

0100001010 + Rm + Rn

CMP < Rn >,# < imm8 > Compare immediate and
update the flag

00101 + Rn + imm8

The LPC1114 utilizes a three-stage pipeline where two instructions are fetched in par-
allel in every other clock cycle as shown in Figure 5.2. Similar to the PIC16F687’s pipeline
flow, the processor may have to flush the pipeline if there is a branch instruction executing.
The LPC1114 is different from the PIC16F687 in terms of the memory access instructions
such as LDR, STR. The LPC1114 has an extra pipeline stall stage since these instruc-
tions take two cycles to be executed. For a single load instruction, the Advanced High-
performance Bus (AHB) retrieves the data from the memory during the execution stage.
The pipeline is stalled for one cycle for transferring the data to the destination register
[99]. This is an important property for analyzing the timing when injecting the fault to
the LPC1114.

Another important feature of the LPC1114 is the Nested Vectored Interrupt Controller
(NVIC) which manages the system exceptions and peripheral interrupts [97]. When there
is a system exception or an interrupt request, the NVIC checks the interrupt vector table

89



Figure 5.1: Original chip and backside decapsulated chip

based on the exception number or interrupt request number. The interrupt vector table
stores the corresponding address for the exception handler or the interrupt service routine.

The HardFault exception plays a crucial role in our experiment. The exception number
is 3 which indicates that it is the third highest priority exception. When a HardFault
exception is triggered, the processor takes the exception and pushes eight registers R0,
R1, R2, R3, R12, LR, PC, xPSR onto the stack. The register information will be used to
analyze the reason of the HardFault [100]. By default, the HardFault handler is a infinite
loop. It could be configured to output the register information from the stack.

There are two startup codes used to initialize the microcontroller in the Keil uVision5
[101]. One of them is written in C programming language while the other one is written in
assembly. Both codes must be compatible with the selected device. The C code is typically
used to configure the pins, clock frequency, peripherals, etc. The assembly code is mostly
used to deal with the exception handlers and the interrupt service routine. Only the Reset
handler or Non-maskable interrupt could preempt the fixed priority HardFault handler.

The trigger signal is generated on the PIO0 2 pin which is configured as general purpose
output. A value was written to the GPIO0DATA register addresses from 0x50000000
to 0x50003FFC to assert or de-assert the trigger. The bits [13:2] of the address of the
GPIO0DATA register are used to create a mask for writing or reading operations for the
12 GPIO pins. The write process to the i-th GPIO pin is only valid when the (i+2)-th bit
of the address of the GPIO0DATA register is 1. The UART module was utilized to send
out the faulty data for off chip analysis.
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Figure 5.2: Three stage pipeline flow for ARM Cortex-M0 [12]

5.2 Experiment on Chip #1

In this section, the fault injection result on chip #1 will be introduced. The experiments
done on chip #1 were divided into two parts. The first part was based on a handheld
experiment where we aimed at injecting the first fault with a specific frequency. The
second part was based on the CNC machine where an automated platform was built. A
detailed timing analysis was done on the injected address fault. Unfortunately, before we
could run more experiments, the chip was damaged possibly due to an unexpected short
circuit.

5.2.1 Handheld Experiment on Chip #1

In this section, we will present the EM FIA result targeting the LPC1114 with a handheld
experimental setup. Figure 5.3 shows the orientation of the probe tip. Note that this
probe tip is the same as the one we used in Figure 4.6 even though they look different.
The ferrite core is shorter because it was damaged. The copper wire was soldered back to
the ferrite core after the damage.

To start with EM FIA, a test program was designed to investigate how a fault could
be injected to the LPC1114. The test program is presented in listing 5.1. The program
loads the same data value (or literal) to two different registers and then checks if the data
values stored in the registers are equal. The two LDR instructions in the fifth and sixth
line are LDR PC − relative instructions. The assembler stores the constant value inside
a specific address range in the code section referred as the literal pool. Then, it generates
the offset between the PC and the address at which the constant is stored.
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Figure 5.3: BPS201 probe tip over the die of the LPC1114

The program will branch into the FAULT subroutine if R3 6= R4, which indicates
that a fault occurs. The FAULT subroutine is an infinite loop and a GPIO output will
be driven high to turn on an LED. A variable N is applied to make sure the EM pulse
could successfully be delivered during the fetch/decode/execute of the target instruction
even when the minimum Dt2p is used under different clock frequencies. This variable N
actually works as an adjustable delay from the trigger to the target clock cycle.

1 main
2 Assert t r i g g e r ;
3 N∗NOPs;
4 LDR R3 , =(0xFEDCBA98) ;
5 LDR R4 , =(0xFEDCBA98) ;
6 CMP R3 , R4 ;
7 BNE FAULT;
8 De−a s s e r t t r i g g e r ;
9 B main ;

Listing 5.1: Test program one for handheld experiment targeting LPC1114

5.2.1.1 Experiment with Fclk = 48 Mhz and VDD = 3.3 V

Initially, the processor was running at a nominal 48 MHz Fclk and VDD was set to 3.3
V . N was set to 13. As shown in Figure 5.4a (code 1-a), the delay from the trigger to
the end of the execution stage of the LDR R3 instruction (in cycle 14) is 14*1000/48 =
291.7 ns while the Dt2p was set to 284 ns (EM pulse injected in cycle 14). However, even
when we set the Vp to the maximum, no fault could be injected. Moreover, we adjusted
the Dt2p by 10 ns per step to scan through all the clock cycles where LDR, CMP or BNE
instructions were fetched, decoded or executed, but no fault was injected.
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(a) Test code 1-a, N= 13

(b) Test code 1-b, N= 15

(c) Test code 1-c,N= 26

Figure 5.4: Timing diagram for test program 1-a, 1-b and 1-c
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Then, we wanted to check if the fault could be injected during the fetch stage of the
two LDR instructions. N was set to 15 and the associated timing diagram is shown in
Figure 5.4b (code 1-b). The delay from the trigger to the end of the fetch stage of two
LDR instructions is 291.7 ns (end of cycle 14) and the Dt2p was set to 284 ns. However,
no fault could be injected with the maximum Vp.

We also scanned through all the possible delay settings from 274 ns up to 504 ns with
10 ns per step using a trial and error method for both test programs. However, we still
did not inject any faults under the 48 MHz clock frequency and 3.3 V supply voltage even
though the Vp was set to 180 V which is the maximum pulse voltage for BPS201 system.

In summary, when the chip is running with a nominal clock frequency and nominal
supply voltage, a fault could not be injected with the BPS201 system even though we
set the Vp to its maximum value. Hence, the chip was overclocked (see Section 3.1) to
investigate the fault injectability.

5.2.1.2 Experiment with Fclk = 104.4Mhz and VDD = 3.3V

Since we could not inject the fault with a nominal clock frequency and supply voltage,
we overclocked the chip to inject the fault more easily. First, we found that the chip
was still running correctly when Fclk was boosted to 107.2 MHz. For up to 30 minutes,
the chip could correctly output the trigger signal at 107.2 MHz. If we kept increasing
the frequency to 108 MHz, the chip stopped outputting the trigger signal and had to be
reset to be functional. Then, we reduced the Fclk to 104.4 MHz. Further experiments
showed that with overclocking technique (see Section 3.1), a fault could be injected and
the program branched into the permanent FAULT loop. We fixed the Fclk to 104.4 MHz
where the chip executed the program correctly without any faults. The number of NOP s
was increased to 26 as shown in Figure 5.4c (code 1-c). The delay from the trigger to the
end of the stall stage of the LDR R4 instruction was 287.4 ns and Dt2p was set to 284
ns. The program successfully jumped into the FAULT loop and the LED was turned on
successfully which indicated that the fault was injected.

The UART was embedded inside the FAULT loop. Therefore, if a fault is injected,
the faulty value will be sent out by the UART to the PC.

To analyze the faulty behavior, a simulation was performed first by using the debug
function in the Keil uvision5 [101]. The disassembly window shows how each instruction
is encoded and where it is stored in the memory. The result is shown in Table 5.2. The
LDR R4, = (0xFEDCBA98) instruction is a LDR, PC−relative with an offset of 0x30.
The DCW is a directive that allocates a half word of memory.
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Table 5.2: Simulation result for test code 1-c

Address (in hexadecimal) Encoding(in hexadecimal) Instruction
0x00000A14 0x4C0C LDR R4, [PC, #0x30]
0x00000A16 0x42A3 CMP R3, R4
0x00000A18 0xD19A BNE 0x00000950
0x00000A1A 0x480C LDR R0, [PC, #0x30]
...... ...... Other instructions
0x00000A48 BA98 DCW 0xBA98
0x00000A4A FEDC DCW 0xFEDC

From Table 5.3, the faulty value for test code 1-c was 0x480CD19A and it is equivalent
to the encoding of the CMP R3, R4 and BNE 0x00000950 (0x00000950 was the address of
the FAULT loop) instruction. Therefore, it is likely that the offset was not correctly added
to the PC or the two set bits in the offset were reset when the fault was injected. Hence, the
correct data was not loaded from the literal pool. Consequently, the next two instructions
were loaded into register R4. In fact, the BNE FAULT and LDR R0, [PC, #0x30] were
fetched together from Figure 5.4c. Thus, it is assumed that the induced fault was caused
due to fetching the data from a faulted address. Therefore, this fault was categorized as
the address fault.

The handheld experiment empirically verified the proposed methodology for how to
inject a fault by using overclocking technique. However, more experiments needed to
be done to analyze the faulty behavior. Thus, the automated platform experiment was
designed to run more in depth analysis to investigate the reason why the load instructions
fetched the next two instructions from the memory.

5.2.2 Automated Platform Experiment on chip #1

After the initial experiment with the handheld setup, an automated platform was built.
Note that BPS201 was utilized due to the damage of the probe of the BPS202. The
automated platform first aimed at finding out a best location where the fault could be
injected more easily. Then, we developed other test programs to investigate how the faulty
value was sent out from the UART at this best location.

5.2.2.1 Scan Over the Die of The LPC1114

To find out the best position for injecting the fault, we also utilized the CNC machine to
work as the motorized x-y-z stage to build the platform and run the scan over the die of
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the chip. Similarly, we analyzed the impact of the Vp by running the scan several times
with different Vps. Test program 1-c was utilized for this scan. The supply voltage was set
to 3.3 V and the clock frequency was set to 104.4 MHz.

Similar to the experiments performed on the PIC16F687, we run a scan over the die of
the chip to find out the best coordinate for injecting the fault. The die size of the LPC1114
is around 2 × 2 mm2. The resolution of the scan was set to 0.254 mm and the probe tip
was initially placed close to the left bottom corner of the die. The probe tip was moving
over a square with 9 × 9 points in total, which covered an area of 4.13 mm2.

(a) Vp = 150 V (b) Vp = 160 V (c) Vp = 170 V (d) Vp = 180 V

Figure 5.5: Shmoo plot for the number of faults injected at each point over 10 rounds for
the scan over the die of the LPC1114 under different Vps

The shmoo plots are shown in Figure 5.5. When the Vp is reduced, the fault is injected
at fewer points. Thus, we select the red rectangle point shown in Figure 5.5d as the best
point. The associated x and y coordinate for this point was 1.016 mm and 0.508 mm,
respectively.

After the best coordinate was found, several other different test programs were designed
to investigate the faulty behavior. In our experiment, two different faults were found. The
first fault was injected since the LDR PC− relative instruction loaded data from a wrong
address. The second kind of fault was a HardFault injected to the circuit. Both faults will
be further analyzed in the following sections.

5.2.2.2 Analysis for The Fault Targeting the LDR PC − relative Instruction

We needed to identify which instruction was actually being faulted and how the fault
occurred during the experiment using test code 1-c. We designed three more test programs
to better analyze the fault occurred when targeting the LDR PC − relative instruction.
The associated timing diagrams are shown in Figure 5.6a, 5.6b and 5.6c. For all these
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cases, faults were induced successfully and the faulty values are listed in Table 5.3. The
faulty value was consistent for each case when it was output by the UART. The faulty
behaviors were further analyzed below. The frequency was still fixed at 104.4 MHz and
the supply voltage was 3.3 V .

5.2.2.3 Analysis on the Effect of Code Sequence

As shown in Figure 5.4c, when the LDR R3 instruction is being decoded, the CMP R3, R4
instruction is being fetched. When the LDR R4 instruction is being executed, the pro-
cessor is also decoding the CMP R3, R4. In order to make the analysis simpler, test
program 1-d was generated to help eliminate the impact of other instructions which were
decoding or executing in parallel with the target instruction. Sixteen NOP s were added
after the two LDR instructions and six NOP s were added between the CMP R3, R4
and BNE FAULT instruction. Figure 5.6a shows the timing for test code 1-d (also
shown in listing 6.2). From the second row of Table 5.3, the faulty value was 0xBF004C17.
Additionally, the fault was injected with the same Dt2p of 284 ns, when the EM pulse
was delivered over cycle 30 in Figure 5.4c. Thus, the CMP R3, R4 and BNE FAULT
instructions were not the reason for the injected fault since they were far away from the
EM pulse due to the many NOP s added. The simulation result is shown in Table 5.4.
The faulty value indicated that the LDR R4 instruction loaded the opcode of itself and
the next NOP into register R4.

Table 5.3: Summary of the fault injection result by using UART to read the faulty output
with Dt2p set as 274, 284, 294, 304 ns

Test code
Faulty value in R4 (R5 in the last
row) (received from UART)

Associated instructions

1-c 0x480CD19A LDR R0, [PC, #0x30], BNE 0x00000950
1-d 0xBF004C17 NOP , LDR R4, [PC, #0x5C]
1-e 0x20004C17 MOV S R0,#0, LDR R4, [PC, #0x5C]
1-f 0xBF004D17 NOP , LDR R5, [PC, #0x5C]

Test code 1-e (Figure 5.6b) was almost the same as test code 1-d except the first NOP
after the LDR R4 was replaced with a MOV S R0 instruction. The faulty value was
changed to 0x20004C17 which indicated that the MOV S R0 instruction was loaded into
the register R4. We also analyzed if the fault could be injected when the destination register
was changed from R4 to R5 as shown in test code 1-f in Figure 5.6c. The faulty value was
changed to 0xBF004D17 which demonstrated that the fault could also be injected with a
different destination register
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(a) Test code 1-d, N = 26, more NOP s added after the LDR,R4 instruction

(b) Test code 1-e, N = 26, change the first NOP after LDR R4 to MOV S R0

(c) Test code 1-f, N = 26, change target register to R5

Figure 5.6: Timing diagrams of test program 5.1 where EM pulse is injected in cycle 29,
30, 31 and 32

Table 5.4: Simulation result for test code 1-d, 1-e and 1-f

Address (in hexadecimal) Encoding(in hexadecimal) Instruction

0x00000A14
0x4C17 (1-d,e) LDR R4, [PC, #0x5C] (1-d,e)
0x4D17 (1-f) LDR R5, [PC, #0x5C] (1-f)

0x00000A16
0xBF00 (1-d,f) NOP27 (1-d,f)

0x2000 (1-e) MOV S R0 (1-e)
0x00000A18 0xBF00 NOP28
0x00000A1A 0xBF00 NOP29
...... ...... Other instructions
0x00000A74 BA98 DCW 0xBA98
0x00000A76 FEDC DCW 0xFEDC
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In summary, the LDR PC − relative instruction could be faulted. The induced fault
caused the processor to fetch data from a wrong address. Here are the key findings in this
section:

1. The fault is injected to the LDR PC − relative instruction.

2. The faulty LDR PC − relative could load the value from the same faulty address
independent of the instruction stored at that address and the target register of the
LDR PC − relative instruction.

5.2.2.4 Analyze the Timing and Address

After analyzing the faulty behavior on some different programs, there are two remaining
questions to be resolved. First question is the timing issue. During which pipeline stage,
is the LDR PC− relative instruction faulted? Second question is called the address issue.
Comparing test program 1-d with 1-c, why were the faulty values output from different
addresses in the memory?

For test program 1-c, 1-d, 1-e, 1-f, the delay from asserting the trigger signal to the
fetch, decode and execute cycle of the LDR R4/R5 instruction is the same. Moreover,
fault could be injected with the same range of Dt2ps as shown in Table 5.3. Therefore,
for a specific Dt2p and a specific pipeline stage of LDR R4 instruction, the delay between
the pulse and this edge is the same. Hence, we will only analyze test program 1-d for
the timing and also develop some additional test programs to determine the details of the
address fault.

Table 5.5: Delay from trigger to the four cycles for LDR R4/R5 instruction

Pipeline stage Start (ns) End (ns) Cycle (in Figure 5.6a)
Fetch 239.5 249.0 26
Decode 249.0 258.6 27
Execute 268.2 277.8 29
Pipeline stall 277.8 287.4 30

Table 5.5 presents the delay from the trigger to the four clock cycles where LDR R4/R5
was fetched, decoded, executed and the pipeline stall stage. Also, from Table 5.3, the fault
was injected when Dt2p ranged from 274 ns to 304 ns. Other Dt2ps ranging from 314 ns
to 344 ns, no function faults could be injected. For the discussion of these faults which
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are injected in cycle 31 and 32 (equivalent Dt2p 294 ns and 304 ns), see detailed analysis
in Section 5.3 with experimental results on chip #2.

To better understand the address issue, some more test programs were developed. The
objective was to study the relationship between the address where the literal was stored
and the address where the faulty value was stored. For example, from Table 5.3 and
Table 5.4, the address for the literal was 0x00000A74 and the address where the faulty
value was stored was 0x00000A14. The test programs insert different number of NOP s
to increase the address where the literal was stored. Then, we checked where the output
faulty value was stored. The address for the literal in different test programs ranged from
0x00000A48 to 0x00000A80. We could not add more NOP s afterwards. Otherwise, the
branch instruction inside the code will have an out of range error. Moreover, we could not
reduce the address of the literal to be below 0x00000A48 since we need to make sure the
delay between the trigger to the target LDR R4 instruction was the same. The literal was
placed in a word-aligned literal pool. Thus, the increment for the address was 4.

Equation 5.1 illustrates the relationship between the two addresses. The EM pulse may
have revised the address on the address bus and finally causes the fault. The arrow shows
the original address on the left and the faulted address on the right side. The range of
values of M is integers from 4 to 8, which all get faulted to ‘1’.

0x00000AMN =⇒ 0x00000A1N ; 0x48 6 0xMN 6 0x80. N ∈ [0, 4 , 8 , C] (5.1)

In summary, with the timing analysis on the injected fault, the LDR PC − relative is
likely faulted during the execution stage where the target address is sampled by the AHB
to fetch the data from the literal pool and the faulty address is summarized in equation
5.1.

Other than the LDR PC − relative instruction, the LDR < Rt >, [< Rn >, # <
imme >] and LDMIA < Rn >!, < registers > instructions were also utilized as
our fault injection targets. However, we were unable to inject faults to them initially.
Before we could determine the reason why faults were not injected, chip #1 was damaged
together with the first probe tip. However, further experiments on the second chip with
the second probe tip indicated that faults could be successfully injected into the targeted
LDR < Rt >, [< Rn >, # < imme >] and LDMIA < Rn >!, < registers >
instructions. The experimental results on chip #1 where faults failed to be injected are
summarized in the Appendix C for reference since they were not fully investigated. With
the second probe tip and chip #2, the address fault was successfully induced along with
the data fault. In the next section, experimental results on chip #2 are presented.
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5.3 Experiment on Chip #2

This section presents the results of experiments on chip #2, using a handheld setup, focused
on various types of load instructions of the LPC1114. All experiments were performed with
Fclk = 100MHz and VDD = 3.3V . The reason for using handheld setup was discussed in
Section 3.3.

5.3.1 Experiments Targeting the LDR PC − relative Instruction

The experiment on the second chip started with targeting test program 1-d, which fo-
cused on the LDR PC − relative instruction. The timing diagram of test program 1-d is
illustrated again in Figure 5.7a.

(a) Test code 1-d, N = 26, more NOP s added after the LDR,R4 instruction

(b) Test code 1-g,N= 26, LDR R3 was placed directly after asserting the trigger

Figure 5.7: Timing diagrams of test program 1-d and 1-g

The experiment was conducted with 100 rounds for each Dt2p. However, when Dt2p

was set to 274 ns (cycle 28). We found that the fault could be injected to either R3 or
R4 whereas for the previous experiment on chip #1 with the same Dt2p and Vp, the fault
could only be injected to R4. The faulty values in R3 with Dt2p set to 274 ns (cycle 28)
were shown in Table 5.6 where the column of count indicates the number of occurrence
for this faulty value. The only faulty value for R4 was BF004C17. When Dt2p was set to
274 ns, it was likely that the EM pulse could affect the execution stage (cycle 27) of the
LDR R3 instruction due to the 14 ns jitter (see Figure 3.5d). With a increasing Dt2p,
the fault could only be induced to R4 and the associated faulty values were similar to test
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program 1-g (to be further detailed below). The analysis of the fault induced to register
R4 will be provided after presenting the results on test program 1-g.

Table 5.6: Faulty values in R3 with EM pulse injected in cycle 28

Faulty value Count Faulty value Count Faulty value Count
BF4C4C17 1 FEDC3C17 1 FEDCB817 4
BF404C17 1 FEDCB818 3 FEDCB813 3
FEDCBC17 2 FE5C3C17 3 FEDCB811 2
BF004C17 3 FEDCB898 2 N/A N/A

In order to make sure the fault was only injected to R4 and make the analysis simpler,
test program 1-g was designed. The difference between test program 1-d and 1-g is that
the LDR R3 instruction was placed directly after asserting the trigger as shown in Figure
5.7b where the LDR R3 instruction was executed in cycle 1. In this way, the LDR R3
instruction will not be affected by the EM pulse. As expected, all the faulty values we
received indicated that no fault occurred in register R3. The faulty value was shown along
with the associated count in Table 5.8. Also, test program 1-h was designed with some
redundant NOP s removed so that the offset of the LDR R6, [PC, #0x4C] instruction
was reduced. Based on equation 5.1, the address of 0xFEDCBA98 was reduced to 0xA64
to ensure that the address faulty value would still come out from address 0x00000A14.
Moreover, the destination register was changed from R4 to R6, which changed the opcode
of the target LDR PC − relative instruction from 0x4C17 to 0x4E13. The simulation
results for test program 1-g and 1-h are shown in Table 5.7. The fault injection results for
test program 1-g and 1-h are presented in Table 5.8 and 5.9, respectively.

Table 5.7: Simulation result for test code 1-g and 1-h

Address (in hexadecimal) Encoding(in hexadecimal) Instruction

0x00000A14
0x4C17 (1-g) LDR R4, [PC, #0x5C] (1-g)
0x4E13 (1-h) LDR R6, [PC, #0x4C] (1-h)

0x00000A16 0xBF00 NOP
...... ...... Other instructions
0x00000A64 (1-h)

BA98 DCW 0xBA98
0x00000A74 (1-g)
0x00000A66 (1-h)

FEDC DCW 0xFEDC
0x00000A76 (1-g)

There are mainly four findings for test code 1-g and 1-h:
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Table 5.8: Summary of the faulty value for test program 1-g with different delay settings
(correct value should be FEDCBA98)

Dt2p (ns)
/(Cycle #)

Faulty value in R4 (Hex) and their count
Address fault Data fault Combined fault

Fault value Count Fault value Count Fault value Count
274 (28) No N/A No N/A No N/A
284 (29) BF004C17 8 No N/A No N/A
294 (30) BF004C17 23 No N/A No N/A
304 (31) BF004C17 22 FEDCB898 4 No N/A

314 (32) BF004C17 12
FEDCB818 2 BF484C17 2
FEDCB813 2 FEDCB817 1

324 (33) BF004C17 1

FEDCB818 4 FEDCBC17 2
FEDCB898 3 FEDC3C17 2
FEDCB813 3 FEDCB817 2
FEDCB810 3

FE5C7C17 1
FEDCB811 2

334 (34) No N/A
FEDCB898 3 FEDC3C17 2
FEDCB811 2

FEDCBC17 1
FEDCB818 2

344 (35) No N/A
FEDCB898 13

No N/A
FEDCB818 1

354 (36) No N/A No N/A No N/A
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Table 5.9: Summary of the faulty value for test program 1-h with different delay settings
(correct value should be FEDCBA98)

Dt2p (ns)
/(Cycle #)

Faulty value in R6 (Hex) and their count
Address fault Data fault Combined fault

Fault value Count Fault value Count Fault value Count
274 (28) No N/A No N/A No N/A
284 (29) BF004E13 26 No N/A No N/A
294 (30) BF004E13 18 No N/A No N/A
304 (31) BF004E13 25 FEDCBA18 2 No N/A

314 (32) BF004E13 13
FEDCBA13 5

FEDC3E13 1
FEDCBA18 2

324 (33) BF004E13 4 FEDCBA13 1
FEDC3E13 1
BF404E13 1

334 (34) No N/A
FEDCBA11 5

FEDCBE13 1FEDCBA13 4
FEDCBA10 1

344 (35) No N/A

FEDCBA18 7

No N/A
FEDCBA13 6
FEDCBA11 5
FEDCBA10 2

354 (36) No N/A No N/A No N/A

1. Instead of only finding the address fault, another different kind of fault was found.
For example, when Dt2p was set to 344 ns, we did not find BF004C17 as the faulty
value. However, another faulty value FEDCB898 was found. The hamming distance
between this faulty value and the correct data which was supposed to be loaded into
register R4 is 1. Hence, this kind of fault is defined as the data fault. This kind
of faulty value was also found with the experimental results on test program 1-h as
shown in Table 5.9.

2. There were some other faulty values which were likely caused by affecting both the
execution and the pipeline stall stage. For example, when Dt2p was set to 334 ns,
one possibly faulty value was BF4C4C17. The hamming distance between this faulty
value and the faulty value from the address fault (which was BF004C17) was 2.
Therefore, the EM pulse probably induced the fault in both the execution and the
pipeline stall stage. Consequently, the AHB returned BF004C17 and it was faulted
again during writing to register R4. Thus, this kind of fault was defined as the
combined fault. Moreover, the combined fault occurred only when both data fault and
address fault were assumed to be injected. Similar combined faulty value BF404E13
was also observed in Table 5.9.
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3. Another different kind of faulty value was in form as FEDC + 4C17 where the first
four hex digits were likely from the correct address while the remaining four hex
digits were from the wrong address. The ARM v6-M architecture supports halfword
aligned memory access [98]. Hence, the EM pulse might be affecting the selection
signal of the multiplexer of the AHB [102], resulting in a halfword address fault.
The faulty value FEDC + 4C17 was likely faulted again during the pipeline stall
stage, which caused a final combined fault. For example, faulty value FEDCB817,
FEDCBC17, FE5C7C17 were all classified as the combined fault. Also, if we consider
these faulty values as data fault, FEDCBA98 should be the data on the bus after the
execution stage (cycle 29) and many bits needs to be flipped to get these faulty values
as shown in Table 5.10. Since the rising time of the pulse generated by BPS201 is 13
ns, the EM pulse might be able to affect both the execution stage and the pipeline
stall stage, which finally caused the combined fault. Similar faulty values such as
0xFEDC3E13 was also found for test code 1-h in Table 5.9.

Table 5.10: Hamming distance between the final faulty value and the value on the data
bus after the execution stage

Final faulty value
data on the bus after the execution stage

FEDC + 4C17 FEDC + BA98
FEDCBC17 4 7
FEDCB817 5 6
FE5C7C17 3 10
FEDC3C17 3 8

Figure 5.8: Fault distribution illustration for test program 1-g

4. When Dt2p was set to 284 ns, only the address fault was injected to register R4.
With increasing Dt2p, it was more likely to inject the data fault before Dt2p reached
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354 ns. Similarly, the address fault was more easily to be injected with reducing
Dt2p as shown in Figure 5.8 assuming the jitter for the EM pulse follows a normal
distribution. It may be that the jitter was larger than 14 ns, however, this would
not explain the faults being injected over a much wider time region, that of 7 cycles
(284 ns - 344 ns). Since the ARM Cortex-M0 focuses on low power, it may be that
the succeeding NOP instructions did not change the control signals to reduce the
switching within the architecture. In effect, the fault could still be injected several
cycles after the LDR R4/R6 had completed since the control signals were each cycle
relatching the same data into R4/R6. It is interesting that consistent to all tables
5.8 and 5.9, the faults could no longer be injected after 5 NOP s which followed the
LDR R4/R6 instruction. This may be due to the instruction buffer containing 3
words of instructions. Also, from Figure 5.7b, the LDR R4 was fetched together
with the 27-th NOP instruction. Hence, after completing 6 instructions (LDR R4 +
5 NOP s), it contains the next 6 instructions and the control signals were removed.

5.3.2 Targeting the LDR < Rt >, [< Rn >, # < imme >] Instruc-
tion

The LDR < Rt >, [< Rn >, # < imme >] instruction has similar functionality
compared with the LDR PC − relative instruction. Instead of calculating the address
using PC + offset, the base address is now stored in a different register Rn. The final
address is calculated from the base register plus the immediate offset. Therefore, test
program two was designed to check the fault injection result on the LDR < Rt >, [<
Rn >, # < imme >] instruction. Test program 2-a is shown in listing 5.2.

1 I n i t i a l i z a t i o n ;
2 main
3 Assert t r i g g e r ;
4 LDR R2 , [ R0 , #0x4 ] ;
5 N∗NOPs;
6 LDR R3 , [ R1 , #0x8 ] ; Target i n s t r u c t i o n
7 NOPs;
8 CMP R2 , R3 ;
9 NOPs;

10 BNE FAULT;
11 De−a s s e r t t r i g g e r ;
12 LDR R3 , =(0x01234567 )
13 B main ;

Listing 5.2: Test program 2-a targeting the LDR immediate offset instruction
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The memory map is shown in Figure 5.9a. The memory from 0x10000000 to 0x10001000
(SRAM region) is filled with data starting from 0x00000000 and incremented by one ev-
ery word. Thus, if a faulty value is the same as one of the values stored in these ad-
dresses, it would be easy to find the associated faulty address. Then, 0xFEDCBA98 is
written to address 0x10000000 and 0x5A5A5A5A is written to both address 0x10000004
and 0x10000010. The base address stored in register R0 is 0x10000000 and in register R1
is 0x10000008. Thus, after executing the LDR R2, [R0, #0x4] and LDR R3, [R1, #0x8]
instruction, the value stored at register R2 and R3 should be 0x5A5A5A5A.

(a) Test program 2-a (b) Test program 2-b

Figure 5.9: Data value stored in the memory with the LDR < Rt >, [< Rn >, # <
imme >] instruction

The timing diagram for both test program 2-a and 2-b is shown in Figure 5.10. Com-
pared with test program 1-g (Figure 5.7b), the destination register of the target instruc-
tion is changed from R4 to R3 and the LDR PC − relative instruction is changed to
LDR < Rt >, [< Rn >, # < imme >] instruction.

Figure 5.10: Timing diagram for test program 2-a where N=26

The experimental results are shown in Table 5.11. No pure data fault was discovered.
Faulty values 0x00000000 and 0xFEDCBA98 were defined as the address fault for the
following reasons:

1. The value 0xFEDCBA98 was only stored at address 0x10000000 and 0x00000A78
(literal pool). Hence, it was likely that the destination address of the instruction

107



Table 5.11: Summary of the faulty value for test program 2-a with different delay settings
(correct value should be 5A5A5A5A for both registers)

Dt2p (ns)
/(Cycle #)

Faulty value (Hex) in Register Rx and their count
R3 R2

Address fault Combined fault Address fault
Fault value Count Fault value Count Fault value Count

274 (28) No N/A No N/A No N/A

284 (29)
00000000 10

No N/A No N/A
FEDCBA98 3

294 (30)
00000000 21

No N/A No N/A
FEDCBA98 3

304 (31)
00000000 15

FEDCBA18 2 No N/A
FEDCBA98 11

314 (32)
00000000 8

No N/A 00000000 1
FEDCBA98 2

324 (33) No N/A No N/A 00000000 2
334 (34) No N/A No N/A No N/A

LDR R3, [R1, #0x8] was calculated as [R1] − #0x8 while it was supposed to be
[R1]+#0x8. Consequently, the AHB returned the value stored at address 0x10000000
instead of the value stored at address 0x10000010.

2. The fault value 0x0000000 should not be the pure data fault because the hamming
distance between 0x5A5A5A5A and 0x0000000 is 16. We might also consider it as the
combined fault. For example, if the AHB returned the value from a wrong address,
say 0x10000008, and it returned 0x00000002 from the memory but was faulted again
during the pipeline stall stage, the faulty value would possibly be 0x00000000. To fur-
ther verify this, test program 2-b was designed where we stored different initial values
to SRAM to make the hamming distance between the initial value and 0x00000000
much larger, the memory map is shown in Figure 5.9b. However, 0x00000000 was
still the faulty value we found. Thus, 0x0000000 is an address fault. The combined
fault was also observed with faulty value as 0xFEDCBA18 when Dt2p was set to 304
ns.

Additionally, the fault also occurred in register R2. However, the EM pulse was unable
to affect the LDR R2, [R0, #0x4] instruction. If the EM pulse changed the destination
register from R3 to R2 in the pipeline stall stage and induced the address fault in the
execution stage, we may expect this faulty value in register R2 but in the meantime, R3
should also be faulted with storing the initial data. However, no fault occurred in both
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R2 and R3 at the same time. The reason for the fault injected to R2 might be the control
signals on the datapath were faulted.

5.3.3 Targeting the LDMIA < Rn >!, < registers > Instruction

LDMIA < Rn >!, < registers > is another different kind of LDR instruction that is
of interest. This instruction loads multiple words into a list of registers from consecutive
memory locations with the base address stored in register Rn. Test program three shown
in listing 5.3 was designed to investigate the possible faulty response of the LDMIA <
Rn >!, < registers > instruction. The program initially stored 0xFEDCBA98 to memory
locations whose addresses are 0x10001000, 0x10001004 and 0x10001008. After that, the
program applied a LDMIA instruction to load the data stored in these three locations
to register R1, R3 and R4, respectively at line 11 as shown in listing 5.3. Since no LDR
instruction was added before the target instruction, 28 NOP s were utilized whereas in
test program 1 and 2, only 26 NOP s were added before the target instruction (LDR
instructions takes two clock cycles to execute). Thus, the delay between trigger to the
execution stage of the target instruction was the same (cycle 29 is the execution stage and
cycle 30 is the first stall stage as shown in Figure 5.11).

1 main
2 LDR R0 , =(0x10001000 ) ;
3 LDR R1 , =(0xFEDCBA98) ;
4 LDR R3 , =(0xFEDCBA98) ;
5 LDR R4 , =(0xFEDCBA98) ;
6 STMIA R0 ! , {R1 , R3 , R4} ; Store 0xFEDCBA98 to address from 0x10001000 to 0

x10001008
7 LDR R0 , =(0x10001000 ) ;
8 Assert t r i g g e r ;
9 28∗NOPs;

10

11 LDMIA R0 ! , {R1 , R3 , R4} ; Target i n s t r u c t i o n
12 NOPs;
13 CMP R1 , R3 ;
14 BNE FAULT;
15 CMP R3 , R4 ;
16 BNE FAULT;
17 De−a s s e r t t r i g g e r ;
18 Clear the value in R1 , R3 , R4 ;
19 B main ;

Listing 5.3: Test program three targeting the LDMIA instruction
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Figure 5.11: Timing diagram for test program three

The timing diagram of test program three is shown in Figure 5.11. Since the LDMIA
instruction in test program three had three destination registers (R1, R3, R4), it took 4
cycles to finish execution where the last three cycles were all in pipeline stall stage [103].
Therefore, the address for reading data from the memory was likely sampled at cycle 29,
30, 31 and the data was written back to R1, R3, R4 at cycle 30, 31, 32, respectively.

Table 5.12: Faulty value in R1 with test program three

Dt2p (ns)
/(Cycle #)

Faulty value in R1 (Hex) and their count
Address fault Data fault Combined fault

Fault value Count Fault value Count Fault value Count
274 (28) 00000000 8 No N/A 000000C5 8
284 (29) 00000000 14 FEDCB298 1 000000C5 14

294 (30) No N/A
FEDCB298 5

No N/A
FEDCB088 1

304 (31) No N/A
FEDCB098 6

No N/A
FEDCB088 1

314 (32)to 354 (36) No N/A No N/A No N/A

Table 5.13: Faulty value in R3 with test program three

Dt2p (ns)
/(Cycle #)

Faulty value in R3 (Hex) and their count
Address fault Data fault Combined fault

Fault value Count Fault value Count Fault value Count
274 (28) No N/A No N/A No N/A
284 (29) No N/A No N/A 000000C5 7
294 (30) 00000000 7 No N/A 000000C5 1
304 (31) 00000000 42 No N/A No N/A
314 (32)to 354 (36) No N/A No N/A No N/A

The fault injection results are shown in Table 5.12 and 5.13. Based on these results,
here are two findings:

1. When Dt2p was set to 274 ns, both the address fault and the combined fault could
be injected to R1 while no fault occurred in R3. The faulty value 0x000000C5 was
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considered as the combined fault because this word was not stored in any memory
locations. Moreover, it should not be a pure data fault since the hamming distance
between 0xFEDCBA98 and 0x000000C5 is 22. Hence, it was possibly that an address
fault was injected first and the associated faulty value was 0x00000000. Then, during
writing back to the destination register, four bits were flipped which resulted in a
0x000000C5.

2. It was expected that the fault could be injected to R1 first. With increasing Dt2p,
fault should be injected to R3 and R4. More faults were injected to register R3 as
shown in Figure 5.12. However, the fault was never injected to R4 even the Dt2p was
increased to 354 ns.

Figure 5.12: Fault distribution in R1 and R3

5.3.3.1 Targeting the CMP Instructions

In modern microprocessors, the secure boot process is widely applied to generate a chain
of trust [25]. Each level of the bootloader will decrypt the next level image and verify
its signature such that no malicious software could be run by the processor. Under this
circumstance, the CMP instruction is of special interest since it is the most likely used
instruction to verify the signatures.

1 main
2 LDR R3 , =(0xFEDCBA98) ;
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3 LDR R4 , =(0xFEDCBA98) ;
4 Assert t r i g g e r ;
5 N∗NOPs;
6

7 CMP R3 , R4 ;
8 BNE FAULT;
9 De−a s s e r t t r i g g e r ;

10 B main ;

Listing 5.4: Test program four targeting the CMP instruction

Test program four was designed to check if the fault could be injected to the CMP
instruction. As shown in listing 5.4, we first load the same value to R3 and R4. Then,
we use the CMP instruction to compare the value in register R3 and R4. If the CMP
instruction is corrupted, the processor will jump to the FAULT loop where the UART
will send out the faulty data. However, by changing N from 26 to 28 and trying all the
possible Dt2ps from 274 ns to 404 ns with 10 ns per step, no faulty data was sent out by
the UART.

Another different type of CMP instruction is the compare immediate instruction shown
in the last row of Table 5.1. Instead of comparing the values stored in two different register,
the CMP < Rn > # < imm8 > compares the value in register Rn to a immediate.
The program is the same as listing 5.4 except that we replaced the CMP R3, R4 with
the CMP R3, 0x98 and we load 0x00000098 to R3 register initially. The reason is the
permitted value for the immediate is from 0 to 255. We also changed N from 26 to 28
and scanned through all possible delay settings from 274 ns to 404 ns. However, the
experimental result shows that no faulty data was sent out by UART.

In fact, the processor did not branch to the FAULT loop every time for all the test
programs when an abnormal behavior happened. In some cases, the processor just stopped
outputting the trigger signal and also did not sent out any output information from the
UART. The processor was likely halted in these cases. By checking the processor manual,
the halted phenomenon probably occurred when the processor jumped to the HardFault
handler. In the next section, the HardFault will be investigated.

5.4 HardFault

Fault exceptions are triggered when the processor detects a fault. In ARM Cortex-M0,
the HardFault exception is the only exception type that handles a fault. The HardFault
occurs in various situations. For example, when the processor tries to execute the BKPT
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instruction with the debug function disabled, the HardFault exception will be triggered
[104]. Also, the HardFault exception is triggered when an undefined instruction is executed.

During our fault injection experiment, the fault injected to the LDR PC − relative
instruction did not always lead to a faulty value sent out by the UART. Under these cases,
the induced fault halted the processor.

In fact, the processor was likely executing the HardFault handler which is a infinite loop
by default as described in Section 5.1. In order to identify what happened when the EM
pulse halted the processor, we revised the HardFault handler based on the design described
in [104]. The new HardFault handler will output the eight registers which are pushed onto
the stack through UART when the processor takes an exception.

To test if the function of the HardFault handler was correct, we artificially inserted a
HardFault by adding a BKPT instruction. If the microcontroller is not running in the
debug mode, the BKPT instruction will trigger a HardFault exception. A simulation was
performed first and the associated eight registers were recorded. Then, we programmed
the chip and compared the output register information from the UART with the simulation
result. It showed that all the register information was the same as the simulation, which
indicated that the HardFault handler had the correct functionality. The code is shown in
listing 5.5.

1 main
2 Assert t r i g g e r ;
3 26∗NOPs;
4

5 LDR R4 , =(0xFEDCBA98) ;
6 3∗NOPs
7 LDR R3 , =(0xFEDCBA98) ;
8 3∗NOPs
9 CMP R3 , R4 ;

10 3∗NOPs ; The address o f the th i rd NOP i s 0x000009FC
11 BKPT #0x08 ; Used to a r t i f i c i a l l y t r i g g e r a HardFault . Removed l a t e r f o r

FIA experiment
12 BNE FAULT;
13 De−a s s e r t t r i g g e r ;
14 B main ;

Listing 5.5: Test program five for HardFault handler
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Figure 5.13: Timing diagram for code in listing 5.5

5.4.1 Complexity of the HardFault

After verifying that the HardFault handler was working properly, the BKPT #0x08 in-
struction in line 11 was removed and the EM pulse was utilized to inject the HardFault.
The timing analysis for this code is shown in Figure 5.13 with the BKPT instruction
removed. However, the faulty value sent out by the HardFault handler when the fault was
injected by the EM pulse was complex. Moreover, the output register information was
also strange. For example, Table 5.14 shows two groups of the output register information
using the same code as shown in listing 5.5. These faulty values were collected on chip #2
with Fclk = 100 MHz and Dt2p was set to 294 ns.

In the first group, the PC was 0x0000094E, which pointed to the BX LR instruction
in the delay subroutine (This delay subroutine is used to ensure two consecutive EM
pulses could be generated correctly). In the delay subroutine, the R0 is initially set to
0x00000600. Then, R0 is decremented until it reaches 0 when the BX LR instruction
is executed to return to the main loop. Therefore, the HardFault possibly occurred at
executing the delay subroutine. In our code, both after we assert or de-assert the trigger
signal, this delay subroutine is called. However, there are 300 clock cycles between trigger
and decrementing R0 to 0x57C. Therefore, the EM pulse was unable to affect the delay
subroutine. In the second group, the Link register stored 0x0000044B which should be the
return address of a subroutine. However, the instruction at this address is used to setup
the UART and is actually inside the startup code. There are no subroutine calls inside the
startup code.

In summary, the HardFault handler outputs unexplainable information most of the
time. Only when the experiment was done on chip #1 with Fclk = 104.4 MHz and Dt2p

was set to 274 ns, did the processor output stable information from the handler which
could be used for analysis. Therefore, the analysis on the HardFault was only carried out
with this experimental setup.
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Table 5.14: Two groups of register information output from UART on injecting HardFault
to chip #2

Register First group Second group
R0 0x0000057C 0x10000000
R1 0x00000004 0x00000004
R2 0x00000008 0x00000004
R3 0x00000000 0x000000C8
R12 0x00000000 0x00000000
Link register 0x00000A11 0x0000044B
PC 0x0000094E 0x000009FC
Program Status Register (PSR) 0x21000000 0x01000000

5.4.2 HardFault on Chip #1 with Fclk = 104.4 MHz, VDD = 3.3
V , Dt2p = 274 ns.

The experiment on chip #1 was done with Fclk = 104.4 MHz and VDD = 3.3 V . The Dt2p

was set to 274 ns. The output register information is shown in Table 5.15. These faulty
values were consistent. The most significant bit of the PSR, which is the negative flag, was
set to 1. It indicated that the result of an operation was negative. However, there were
no negative operations in our code. Another finding was that the microcontroller took the
HardFault exception when PC was 0x000009FC. The instruction at this address was the
32-nd NOP which is shown as NOP32 in timing diagram 5.13. Thus, the processor was
likely fetching the NOP32, decoding NOP31 and executing NOP30 at this time when
HardFault occurred assuming no fault was injected to the PC.

Table 5.15: Register information from simulation and received from UART after injecting
the fault with EM pulse

Register From UART From simulation
R0 0xFC000000 0x50003FFC
R1 0x00000FC5 0x00000004
R2 0x00000004 0x00000004
R3 0x00000000 0xFEDABC98
R12 0x00000000 0x00000000
Link register 0x00000A21 0x00000A21
PC 0x000009FC 0x000009FC
PSR 0xA1000000 0x21000000

To understand the register information, we ran another simulation and set the program
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counter to 0x000009FC. The simulation result shows the correct register values before the
fault occurs when the PC is 0x000009FC. From Table 5.15, we could find that the data in
R0, R1, R3 and the PSR had been changed when the fault occurred. The faulty value in
R0 and R1 looked highly related to the value previous loaded into R0.

To investigate the relationship between the faulty value and the correct value, we
changed the value stored at R0 before the fault occurred. The value in R0 was the address
for the GPIO0DATA register. Therefore, we changed the address of the GPIO0DATA reg-
ister but made sure bit 4 of the address was 1 so that the trigger signal could be asserted
and de-asserted correctly. Table 5.16 presents parts of our testing result. Note that, only
these three register values were changing when the address of the GPIO0DATA register
was changed.

Table 5.16: Register information output by the HardFault handler after injecting the fault
with the EM pulse (All values are in hexadecimal)

GPIO0DATA address (bit[15:0]) R0 (bit[31:24]) R1 (bit[15:0]) PSR (bit[31:24])
0010 10 0004 01
0090 90 0004 81
001C 1C 0005 01
00F0 F0 0004 81
03BC BC 00C5 A1
07BC BC 01C5 A1
1C5C 5C 0705 A1
3FFC FC 0FC5 A1

We found the following rules concerning the faulty value in R0 and R1, assuming the
GPIO0DATA address is encoded as addr [31 : 0]:

1. R0 [31 : 24] = addr [7 : 0]. R0 [23 : 0] are always ‘0’s.

2. R1 [15 : 4] = “00” + addr [15 : 8] + “00”. R1 [3 : 0] = 0x4 if addr [3 : 0] = 0x0 or 0x8.
Otherwise, R1 [3 : 0] = 0x5. “+” means concatenation.

3. If addr [15 : 8] 6= 0x00, bit[29] of the PSR is always set to 1. This bit is the car-
ry/borrow sign. Bit[24] of the PSR is always 1 which indicated that the processor
was running in Thumb state.

The faulty value was consistent and we could identify a specific relationship between
the faulty value and the original value. It is similar to a shifting behavior on register
R0 and register R1. These behaviors might be due to the remaining instructions in the
pipeline or the bus error where the AHB returned wrong data.
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5.5 Countermeasure

As discussed in Section 2.4, countermeasures could be divided into the fault tolerant coun-
termeasure and the fault detection countermeasure. The fault detection countermeasure
for the LDR instruction is exactly the same as what we did in our test program to detect
a fault [61]. Therefore, only the fault tolerant countermeasure is considered in this section.

In the following sections, the duplication countermeasure proposed previously in [91]
will first be examined. Then, we propose our own fault tolerant countermeasure verified
with empirical results.

Recall test program one which is shown in listing 5.1 and assume the LDR R4 instruc-
tion is the attack target which therefore needs to be protected by the countermeasure.
Moreover, all the verification was done on chip #2 with Vp = 180 V , Fclk = 100 MHz and
VDD = 3.3 V . These countermeasures presented in this section were designed based on the
assumption that the attacker could only induce a single fault within 20 instructions and
the countermeasure is only focused on the target instruction. These 20 instructions take
200 ns to execute, which is far less than the 1 us minimum period of the Riscure system
as described in section 3.3.

5.5.1 Duplication Countermeasure

The duplication countermeasure was verified based on test code 1-d with the LDR R4 in-
struction duplicated as described by Moro et al.[91]. If the duplication countermeasure can
thwart EM FIA, the program should never branch to the FAULT loop. The simulation
result for this part of code is shown in Table 5.17. The first instruction after the duplicated
LDR R4 was changed to a MOV S R0, #0 since the address at which 0xFEDCBA98 was
stored was changed to 0x78. According to equation 5.1, if the duplication countermeasure
could not protect R4 from being faulted, the opcode of the instruction at address 0xA18
and 0xA1A will be output by the UART.

The fault injection experiment was performed for 100 rounds per Dt2p. The result is
shown in Table 5.18. From this table, the fault could still be injected with slightly increased
Dt2p. Also, the induced address fault followed equation 5.1. Compared with the result for
test program 1-g shown in Table 5.8 where the address fault could be injected with Dt2p

set to 284 ns, the fault started to be injected when Dt2p was set to 294 ns. This is likely
because the fault was injected to the second LDR R4 instruction.

In summary, the duplication countermeasure for LDR instruction provides fault toler-
ant protection only if the target instruction is skipped or executed as NOP . Otherwise, the
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Table 5.17: Simulation result for test code cm-1

Address (in hexadecimal) Encoding(in hexadecimal) Instruction
0x00000A14 0x4C18 LDR R4, [PC, #0x60]
0x00000A16 0x4C18 LDR R4, [PC, #0x60]
0x00000A18 0x2000 MOV S R0, #0
0x00000A1A 0xBF00 NOP
...... ...... Other instructions
0x00000A78 BA98 DCW 0xBA98
0x00000A7A FEDC DCW 0xFEDC

Table 5.18: Faulty value in R4 with duplication countermeasure

Dt2p (ns) Faulty value Count
274 No function fault N/A
284 No function fault N/A
294 BF002000 5
304 BF002000 8
314 BF002000 23
324 BF002000 23
334 No function fault N/A
344 No function fault N/A

attacker could inject the fault to the duplicated instruction which will not be corrected. As
long as the attacker could inject the fault to the last LDR R4 instruction, no matter how
many LDR R4 instructions are added, the fault is still able to be injected. Therefore, the
duplication countermeasure does not work. Hence, another fault tolerant countermeasure
was designed and will be discussed in the next section.

5.5.2 Fault Tolerant Countermeasure

The fault tolerant countermeasure not only aims at detecting the induced fault but also
correcting it. Considering that the attacker could inject a function fault to any LDR PC−
relative instruction, a dual protection mechanism was applied in the fault tolerant counter-
measure. The test program CM-1 shown in listing 5.6 illustrates how this countermeasure
was designed. Instead of simply adding duplicated LDR R4 instruction, compare instruc-
tions were also added. Since only a single fault could be injected within 20 instructions,
the attacker could only inject a fault to one of the LDR R4 instructions. Hence, if the
fault is injected to the first LDR R4 instruction, the second one could be executed without
the fault. If the attacker aims at injecting the fault to the second LDR R4 instruction,
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the first one will be fault free and the program will not execute the second one. Thus, this
program could correct the fault induced to the LDR R4 instruction.

1 main
2 Assert t r i g g e r ;
3 26∗NOPs;
4 LDR R3 , =(0xFEDCBA98) ;
5 LDR R4 , =(0xFEDCBA98) ; Target i n s t r u c t i o n
6 CMP R3 , R4 ; Check i f R3 = R4 ;
7 BEQ cont inue ; Yes ;
8 LDR R4 , =(0xFEDCBA98) ; No . Execute the second LDR i n s t r u c t i o n
9 CMP R3 , R4 ; Check i f R3 = R4 ;

10 BNE FAULT;
11 cont inue
12 De−a s s e r t t r i g g e r ;
13 . . . Other i n s t r u c t i o n s ;

Listing 5.6: Test program CM-1

To verify this countermeasure, the experiment was conducted with Dt2p ranging from
274 ns to 414 ns and no function fault could be induced. Therefore, this countermeasure
successfully corrected the induced fault.

5.5.3 The HardFault Handler As a Countermeasure

The previous two countermeasures don’t provide a protection for an induced HardFault.
An induced HardFault will force the processor jumps into the HardFault handler. As men-
tioned in Section 1.2.2, FIA consists of the fault injection and the fault exploitation phase.
If the induced fault is not exploitable, the secret information could be protected. Therefore,
the HardFault handler integrated in the Cortex-M0 is a possible built in countermeasure.
By default, the HardFault handler is just an infinite loop which does not output anything
to the attacker. The designer could add different functions to the HardFault handler. For
example, the HandFault handler could be used to erase the cryptographic key. However,
not every fault injected to the chip results in a HardFault. Therefore, the processor de-
signer needs to carefully design under which condition, should the HardFault exception be
triggered to cover more types of injected faults.
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5.6 Summary

In this chapter, we analyzed the fault injected to LPC1114 which embeds an ARM Cortex-
M0 processor. In summary, two different kinds of faults could be consistently injected.
The first type of fault is defined as the function fault. In the function fault, HardFault
exception is not triggered and the processor is still running in thread mode. Generally,
the function fault is more exploitable compared with the HardFault. The function fault
consists of the address fault and the data fault. The address fault is likely caused during
the execution stage of the LDR instruction where the AHB samples the address and fetches
the data from the associated memory location. The data fault is probably caused during
the pipeline stall stage where the AHB writes back the data to the destination register.
However, the function fault injected with different types of LDR instructions varies. With
the address fault injected to the LDR < Rt >, [< Rn >, # < imme >], the destination
register might be loaded with all ‘0’s. Hence, this fault could be used to further develop
DFA algorithms to break some cryptographic algorithms such as AES.

Another fault was the HardFault. With the revised HardFault handler, we successfully
retrieved the faulty information from the stack. The complexity of the HardFault was
analyzed. However, due to the lack of the detailed implementation of Cortex-M0, it is
difficult to fully explore the induced HardFault. Table 5.19 lists all the instructions we
have tested on LPC1114 and the fault injection result.

Table 5.19: Instructions that have been tested on LPC1114

Instruction Fault injection result
LDR < Rt >, [PC, # < imme >] Function fault, HardFault
LDR < Rt >, [< Rn >, # < imme >] Function fault, HardFault
LDMIA < Rn >!, < registers > Function fault, HardFault
CMP < Rn >, < Rm > HardFault
CMP < Rn >,# < imm8 > HardFault

5.6.1 Comparison with Previous Research

Table 5.20 lists five research papers which had faults injected to different ARM processors.
Paper [32] gave a general introduction on injecting faults to an ARM Cortex-A9 processor
with hand made probe tip. However, they were unable to corrupt their target counter
program but only observed graphics corruption or system crash. They did not provide a
specific target instruction.
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As detailed in Section 2.2.1.1, Korak et al. applied both clock glitch and power glitch
attack on LPC1114 with a Cortex-M0 core [63]. The chip was running at 24 MHz (the
maximum nominal clock frequency is 50 Mhz). The fault could be injected by glitching the
clock with underpowering the processor to 1.2 V (the nominal supply voltage range is 1.8
V to 3.6 V ). The fault could be injected in the fetch or execute stage. For the arithmetic
instruction and branch instruction, the fault injected to the fetch stage prevented the target
instruction from being executed. For LDR instruction, it caused the loaded value to be
all ‘0’s when attacking the fetch stage. This is unlike our experimental results where a
function fault could not be injected by targeting the fetch stage of the LDR instruction.
They further discovered that when the glitch was inserted during the “second execution
cycle” of the LDR instruction, it caused the LDR Rt [Rn] instruction to be executed as a
MOV S Rt,Rn. This is unlike our experiment, where it was more likely to induce a data
fault where several bits of the loaded data were flipped. Moreover, the “second execution
cycle” is likely the pipeline stall stage (as discussed in Section 5.1) but the author did not
analyze what the processor was doing in each cycle.

EM FIA was utilized to inject the fault to an ARM Cortex-M3 core [7]. The clock
frequency was 56 MHz. The supply voltage was not specified by the author. They first
analyzed the fault induced to a single load instruction and found that the loaded value was
incorrect. However, the type of the load instruction was not specified. Moreover, they did
not explicitly specify which pipeline stage was their target. In their second experiment, the
target instruction was still a load instruction (likely a LDR PC − relative). They set the
EM pulse to sweep over a 20 ns window with 200 ps per step. In each step, they performed
a scan over the chip. They observed three different types of faults: Interrupt/exception
triggered, crash of the microcontroller, and a faulty value loaded into the destination
register. However, they did not specify where this 20 ns time window was located. Hence,
there was no timing analysis performed. Similarly, in their third experiment where an
additive loop was utilized as the target, they swept through a 4 us window (this additive
loop took around 3.5 us to finish) with 200 ps per step. However, they just simply listed
their result without further timing analysis. When they analyzed the effect of the pulse
voltage, the target instruction was the LDR PC − relative instruction which was also
utilized in our experiment. However, they only found with a higher pulse voltage, the
hamming weight of the loaded value was increased.

Another research paper proposed a method to bypass the secure boot of an ARM
processor [6]. However, the processor core was not specified while the architecture was
likely the ARMv8-M. The attack algorithm was introduced in Section 2.3.2. The main
idea of the attack was to use voltage glitch to force the destination register of LDR or
LDMIA instruction to be changed to the PC. Here we mainly discuss their attack result.
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Table 5.20: Research papers with FIA result on ARM

Paper Core
Target instruction/pro-
gram

Fault type
Fault injection
technique

[32] Cortex-A9 Counter program
Graphics er-
ror/System crash

EM

[63] Cortex-M0
ADDS, LDR, STR,
BEQ

Instruction skip,
LDR→ MOV

Voltage/Clock
glitch

[7] Cortex-M3 LDR Load faulty data EM

[6] N/A LDR, LDMIA
Change destination
register to PC

Voltage glitch

Our
thesis

Cortex-M0
LDR PC − relative,
LDR < Rt >, [< Rn >
, # < imme >], LDMIA

Data fault, address
fault, combined
fault

EM

The attack was implemented by using voltage glitch. The chip was clocked at 800 MHz
and the supply voltage was set to 1.1 V (0.1 V under the nominal value). To make the
fault injection more effective, the capacitors were also removed from the PCB. They used
two test programs to mimic the behavior of copying data from external memory to the
volatile internal memory. The attack was performed by different combinations of glitch
length (randomly chosen between 700 ns to 1000 ns), glitch voltage (randomly chosen
between -1.4 V to -1.0 V ) and glitch delay (randomly chosen between 30 us to 35 us).

When LDR instruction was utilized as the target, there was only 1 out of 10000 com-
binations of glitch length and glitch voltage led to a successful attack. The success rate for
glitching the LDMIA instruction was higher. There were 27 out of 10000 combinations of
glitch length and glitch voltage led to a successful attack. The author further hypothesized
that the LDMIA instruction was easier to be faulted because it required less bits to be
flipped to change the destination register to PC. Compared with our research work, we
were unable to flip bits in the opcode which resulted in another valid instruction. Some bits
might be flipped, resulting in an illegal instruction and triggered the HardFault exception.

We also proposed countermeasures to thwart EM FIA targeting the LDR PC−relative
instruction. Unlike our proposed countermeasure, the instruction duplication countermea-
sure for LDR PC−relative instruction designed in [91] did not provide sufficient protection
in our experiments. Therefore, understanding the fault injection mechanism is important
in designing efficient countermeasures.

The next chapter will introduce the charge-based fault model with empirical verification
on both the PIC16F687 and LPC1114.

122



Chapter 6

Charge-based Fault Model

In this chapter, the proposed charge-based fault model is introduced. The definition of the
charge-based fault model is presented in Section 6.1 along with a methodology of how to
empirically verify the model. In the following two sections, we demonstrate our empirical
results on verifying the fault model on the PIC16F687 and the LPC1114.

6.1 Charge-Based Fault Model

As discussed in Section 2.2.2.1, the delay fault model [7] and the sampling fault model [4]
were previously researched.

Since the delay fault model has already been illustrated to be not practical in EM FIA
[4], we mainly focus on checking whether the sampling fault model was practical with our
experiments.

In our experiments, the fault model parameters that affect the fault injectability are
combinations of the supply voltage, the clock frequency, and the position of the EM pulse
within a specific clock cycle. Based on this finding, we proposed the charge-based fault
model.

Critical charge is defined as the minimum amount of charge collected by a circuit node
which finally causes an “upset” [105]. In the digital circuit, ‘1’ or ‘0’ at a node represents
the capacitor at this node is charged or discharged. With a higher clock frequency, the time
to charge/discharge the capacitor is reduced. Additionally, with a lower supply voltage,
the current to charge/discharge the capacitor is reduced. Therefore, the capacitor at this
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node may not be fully charged/discharged with a faster clock or smaller supply voltage.
Based on these findings, we summarized the charge-Based fault model as follows:

Definition. Charge-Based Fault Model: The EM pulse could increase/decrease the
charge (either via noise or power-ground network) accumulated at a specific node. This
change of the charge results in the change of the state at this node. If this change of
charge persists when a clock edge arrives and it is greater than the critical charge, the fault
is injected. To reduce the critical charge, one can either increase the clock frequency or
decrease the supply voltage.

Figure 6.1 illustrates how the fault is injected based on the charge-based fault model.
When the EM pulse (indicated by the red arrow) is injected, it modifies the accumulated
charge at the capacitor before the next flip flop. Assume the initial charge at this node
is Qi, when the EM pulse is induced, Qi is decreased or increased. If this node is not
fully charged/discharged, the EM pulse might be able to force a ‘0’/‘1’(when it should be
‘1’/‘0’) to be latched into the next flip flop and finally causes the fault.

Figure 6.1: Charge based fault model

In the following sections, we will present empirical validation of this charge-based fault
model on both the PIC16F687 and the LPC1114 microcontroller. Figure 6.2 illustrates our
methodology for verifying the charge-based fault model. The methodology is proposed as
follows:

1. Assume a fault is injected at a specific Dt2p with a frequency Fclk and a supply voltage
VDD.

2. We find all possible edges that might cause this fault based on the timing and also
the data sheet of the chip.
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3. We calculate the distance from the pulse to the edge. For example, in Figure 6.2,
the distance from the pulse to edge 1 is D1 −Dt2p where D1 = N ÷ Fclk.

4. We increase the delay setting from Dt2p to D̂t2p.

5. Calculate the new clock frequency as F̂clk = N ÷ (D̂t2p + D1 − Dt2p). Check if the
fault could be injected. In this way, the delay from the pulse to edge 1 remains the
same.

6. If the fault could not be injected, gradually reduce the supply voltage until the fault
could be injected again. Record this V̂DD.

EM pulse

Dt2p

D1

Figure 6.2: Example for empirical verification of the charge-based fault model

6.2 Empirical Verification on PIC16F687

To empirically check the fault model on PIC16F687, we utilized the program in listing 6.1.
The probe was located at the best location as shown in Table 4.2.

1 MOVLW 0x20
2 MOVWF FSR ; Use i n d i r e c t addre s s ing mode .
3 LOOP2
4 BCF STATUS, RP1
5 BCF STATUS, RP0
6 MOVLW 0x20
7 MOVWF PORTC ; Assert the t r i g g e r .
8 NOP
9 NOP

10 NOP
11 MOVLW 0x55 ; Move l i t e r a l to W r e g i s t e r be f o r e wr i t i ng i t to SRAM
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12 MOVWF 0x20
13 MOVLW 0x01 ; Target MOVLW i n s t r u c t i o n
14 MOVWF 0x21
15 NOP
16 MOVLW 0x00
17 MOVWF PORTC ; De−a s s e r t the t r i g g e r
18 CALL Delay1
19 BTFSS FSR, 7
20 GOTO LOOP2

Listing 6.1: Program used for empirically verify the charge-based fault model on PIC16F687

Figure 6.3: The nine clock edges in the prefetch cycle of the target instruction for
PIC16F687

The initial frequency was set at 52 MHz and the supply voltage was set at 5 V . A
fault could be injected with a 304 ns delay setting. The fault was injected because the
MOV LW 0x01 instruction was replaced with the NOP instruction. Finally, the faulty
value stored at address 0x21 was 0x55. The system utilized in this experiment was the
BPS202 and Vp was set to 500 V .

Since in PIC16F687, one instruction cycle consists of four clock cycles and we could not
confirm which clock edge should be the correct target and the data sheet of the PIC16F687
uses both rising edge and falling edge of the clock as the triggering edge in their figures,
we considered all the nine edges within this instruction cycle where the MOV LW 0x01
instruction was fetched to make our verification to be more robust. These nine edges
are shown in Figure 6.3. The first edge might belong to the previous instruction cycle.
However, we still considered it as one of our possible edges.

Table 6.1 presents the experimental result for verifying the charge-based fault model on
PIC16F687. A negative value indicates that the EM pulse was induced after the associated
edge. Initially, a fault was able to be injected with Fclk = 52 MHz and VDD = 5 V with
Dt2p = 304 ns. Based on this, we calculated the distance between the pulse to all the nine
possible edges. Then, the delay setting was increased to 344 ns and we calculated nine
different clock frequencies which could ensure the distance from the pulse to the associated

126



Table 6.1: Experiment result for the charge-based fault model verification on PIC16F687,
Fclk in MHz, delay in ns and VDD in V

Fclk Dt2p
Distance between EM pulse to the Nth edge

FIA/5 V FIA/VDD1 2 3 4 5 6 7 8 9
52 304 3.7 13.3 22.9 32.5 42.2 52.8 61.4 71.0 80.6 Yes Yes/5
46.01 344 3.7 − − − − − − − − No Yes/4.2
46.18 344 2.5 13.3 − − − − − − − No Yes/4.2
46.33 344 1.4 − 22.9 − − − − − − No Yes/4.4
46.48 344 0.2 − − 32.2 − − − − − No Yes/4.4
46.61 344 −0.7 − − − 42.2 − − − − No Yes/4.4
46.74 344 −1.7 − − − − 52.8 − − − No Yes/4.7
46.87 344 −2.6 − − − − − 61.4 − − No Yes/4.7
46.99 344 −3.5 − − − − − − 71.0 − No Yes/4.8
47.10 344 −4.3 − − − − − − − 80.6 No Yes/4.9

edge was the same. However, we found that, after we reduced the clock frequency, no fault
could be injected after 5 minutes (approximately 2.5 million EM pulses injected within
this time duration). Therefore, it illustrated the first part of the charge-based fault model.
The reduced frequency ensured that there was more time to charge/discharge the capacitor
which finally made the critical charge increased. In this case, two bits in the opcode need
to be reset to result in the faulty instruction as NOP . Hence, the capacitor accumulated
more charges when the clock frequency was reduced, which made it to be more difficult to
be discharged to ‘0’ with the EM pulse.

In the meanwhile, if we reduce the supply voltage to a certain level, the fault could be
injected again. Additionally, we had run the chip for over 30 minutes to ensure the correct
functionality with the reduced supply voltage. Thus, it demonstrated the second part
of the charge-based fault model where the reduced supply voltage decreased the charge
current and reduced the critical charge. We could also tell from the Table that, lower
supply voltage is required for lower frequency to inject the fault. Additionally, the injected
fault was the same as we had initially.

We also need to consider the 10 ns jitter introduced by the BPS202 system. Hence,
the distance between the pulse to the associated edge might be changing all over the time.
However, this does not change the feature that the actual delay between the trigger to the
pulse was increased by 10 ns every time when we increase the Dt2p by 10 ns. Moreover,
based on the analysis of the Fltinst in Chapter 4, it is reasonable to assume that the
distance from the pulse to the associated clock edge is the same if two fault injection
experiments targeting the same test program and the same Tgtinst have the same Fltinst.
For example, consider the first row in Table 6.1, the Dt2p was set as 304 ns. If the jitter
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was taken into consideration, the actual Dt2p should be 304 + x ns and x ∈ [−5, 5] when
the fault was injected. The number of clock cycles from the trigger to the second edge
was 4*4+0.5 = 16.5 cycles. Therefore, we could calculate the delay from the pulse to the
second edge as 1000/52*16.5 - (304 + x) = 13.3 - x ns. After we increased the delay setting
to 344 ns, to ensure the distance between the pulse and the second edge was the same,
the delay from the trigger to the second edge could be calculated as 344 + x + 13.3 - x
= 357.3 ns. Hence, the new frequency could be calculated as 16.5 * 1000/357.3 = 46.18
MHz. Therefore, the jitter does not affect the verification of the fault model.

6.3 Empirical Verification on LPC1114

The program used to empirically verify the charge-based fault model was the program
1-d shown in Chapter 5. For simplicity, it is shown in listing 6.2. The experiment was
performed with chip #1 on the automated platform with the best location indicated in red
rectangle in Figure 5.5. Initially, we set Fclk to 104.4 MHz and VDD to 3.3 V . When Dt2p

was set to 284 ns, the fault was able to be injected. Then, the faulty value was sent out
through UART. The timing diagram is presented in Figure 6.4.

1 main
2 Assert t r i g g e r ;
3 26∗NOPs;
4

5 LDR R3 , =(0xFEDCBA98) ;
6 LDR R4 , =(0xFEDCBA98) ;
7 16∗NOPs;
8 CMP R3 , R4 ;
9 6∗NOPs;

10 BNE FAULT;
11 De−a s s e r t t r i g g e r ;
12 B main ;

Listing 6.2: Test program 1-d used to empirically verify the charge-based fault model on
LPC1114

Based on our analysis in Chapter 5, the fault was injected during the execution stage.
However, to provide a complete validation for our charge-based fault model. We considered
all the edges at the end of the clock cycle from cycle 26 to cycle 31. The experimental
result is shown in Table 6.2. The Nth edge in Table 6.2 refers to the end of the (N + 25)th
cycle in Figure 6.4. For example, the fourth edge in Table 6.2 is the end of the 29th cycle
in Figure 6.4 where the address is sampled by the AHB bus. The fault injection system
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Figure 6.4: Test code 1-d used for empirical verification of the charge-based fault model

applied was the BPS201 and Vp was fixed at 180 V . From Table 6.2, the EM pulse was
induced in cycle 30. Considering the 14 ns jitter brought by the BPS201 system, the pulse
could be affecting either the end of cycle 29 or the end of cycle 30.

Table 6.2: Experimental result for the charge-based fault model verification on LPC1114,
Fclk in MHz, delay in ns and VDD in V

Fclk Dt2p
Distance between EM pulse to the Nth edge

FIA/3.3 V FIA/VDD1 2 3 4 5 6
104.4 284 -35.0 -25.4 -15.8 -6.2 3.4 12.9 Yes Yes/3.3
100.37 294 -35.0 − − − 4.9 − No Yes/2.06
100.51 294 − -25.4 − − 4.5 − No Yes/2.07
100.65 294 − − -15.8 − 4.1 − No Yes/2.08
100.77 294 − − − -6.2 3.7 − No Yes/2.09
100.89 294 − − − − 3.4 − No Yes/2.1
101.00 294 − − − − 3.0 12.9 No Yes/2.11

From Table 6.2, we could find similar properties as we discussed in Section 6.2. When
the clock frequency was reduced, the fault could no longer be injected after 5 minutes even
though we kept the distance between the pulse and the associated edge the same. Then,
the supply voltage was reduced to check if the same fault could be injected again. Also,
the chip could run fault free for 30 minutes with each reduced supply voltage and the
associated clock frequency when the EM pulse injection was not applied. Only by reducing
the supply voltage, the fault could be injected again. Moreover, it requires a lower supply
voltage to inject the fault if the clock frequency is smaller. The fault type was the same
as the result of the first row.
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6.4 Summary

In this chapter, we proposed the charge-based fault model. This fault model utilizes the
critical charge concept from the single event upset. The delay fault model suggests that
the induced EM pulse introduces a delay [7] and the sampling fault model states that
the induced EM pulse causes a perturbation of the data [4]. In our charge-based fault
model, the induced EM pulse could charge/discharge the capacitor at a specific node.
The charge/discharge must be greater than the critical charge to induce the fault. The
charge-based fault model is related to the circuit frequency and supply voltage.

Moreover, we empirically verified our fault model on two different microcontrollers.
However, due to the lack of tools to check the real time status of the register value in
the microcontroller, it is impossible to directly validate the fault model. For example, for
PIC16F687, we were unable to directly check if the bits in the instruction were flipped but
only observe the final faulty value at the associated memory address to infer the correct
faulty instruction.

It was obvious that the sampling fault model did not match our results since when the
distance from the pulse to every possible edge was kept the same, with a reduced frequency,
the fault could no longer be injected. When we reduce the supply voltage, the fault could
be injected again. This is unlike previous research where Ordas et al. stated that for a
sampling fault model, the probability of injecting the fault over the whole clock cycle was
independent of the clock frequency [4]. In our fault model, the clock frequency plays a
vital role in the fault injectability.

There were some other research papers which also suggested that using a lower supply
voltage could help either make the induced fault more reproducible [90], or make the
induced fault to be more effective [6]. However, these two FIA experiments were performed
with clock glitch.
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Chapter 7

Conclusions

This chapter concludes the thesis. First, a brief summary of this dissertation is presented
in Section 7.1 along with the discussion about the difference of the fault injected to the
PIC16F687 and the LPC1114. The limitations are also investigated. The contributions
are summarized in Section 7.2. The possible future research directions are presented in
Section 7.3.

7.1 Summary, Discussion and Limitation

Since the first attack proposed in [51], FIA becomes a severe threat to embedded devices
and hardware with the development of many fault injection techniques. Among these
techniques, EM FIA provides a moderate spatial resolution, low potential of damaging the
device and a simpler setup. However, there remains a lack of understanding on the injected
fault and the associated countermeasures.

One of the main challenges of EM FIA is to completely characterize the injected fault.
Most previous research did not provide a detailed analysis of the induced fault, resulting
in insufficient countermeasures to thwart EM FIA. This challenge motivated the in-depth
research in EM FIA targeting embedded devices.

In this thesis, we presented our experimental results on two microcontrollers. As dis-
cussed in Chapter 5, the faults injected to the PIC16F687 and the LPC1114 are different.
Compared with the PIC16F687, the induced fault on the LPC1114 is more difficult to
explore. The target instruction is replaced with a faulty instruction on the PIC16F687.
However, the same kind of fault was not injected with the LPC1114. The instructions
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from the PIC16F687 share similar encoding, thus the hamming distance is small between
similar instructions. For instance, the hamming distance between XORWF and IORWF
is only one. Moreover, the hamming distance between NOP and other instructions is also
small. This may contribute to the reason that the instruction replacement fault is more
likely to be injected on the PIC16F687. In contrast, the ARMv6-M architecture has a
different Instruction Set Architecture (ISA) and will HardFault on illegal instructions and
other exceptions. We did not observe the instruction replacement fault in our experiments,
but observed many HardFaults. Similar results were found by previous research [61].

Previous research also includes attacks which utilized system failures or design flaws
such as “Row-hammer” which could corrupt the data in adjacent rows of DRAM memory
[106], “Meltdown” which utilizes the out of order execution of the processor to access the
kernel memory [107], and “Spectre” which exploits the branch prediction to access arbitrary
memory [108]. However, these attacks require loading the attacker’s own software onto the
target chip. On the contrary, for embedded microcontrollers, the attacker may not have the
ability to load their own software onto the microcontroller. Hence, these software-based
attacks are outside the scope of this dissertation.

There remain some limitations in this thesis. The major limitations are summarized
below:

1. The faulty instruction identified for the PIC16F687 could not be directly verified
due to the lack of direct access to the instruction register. However, this restriction
also applied to previous research on FIA [7, 63, 59]. Similarly, faults injected to the
LPC1114 and the charge-based fault model were only verified empirically within the
limits of our equipment.

2. Some analysis for the faults injected to the LPC1114 ended without a complete
verification due to the damaged equipment. For example, the explanation for not
being able to inject the fault to register R4 for the LDMIA R0!, R1, R3, R4 is
unknown and was not validated empirically. However in general, due to the lack of
observability of the fault induced from the circuit level, the induced fault might be
complex and extremely hard to explain, which is similar to previous research [76].

The limitations for the equipment were previously discussed in Section 3.3. Due to
these limitations, the attacks discussed in Chapter 4 were based on the assumption that
the attacker knows the software and also the timing where the EM pulse should be delivered.
Assume now we have a perfect EM fault injection system with a high timing resolution for
adjusting the Dt2p (such as 100 ps accuracy utilized by Dehbaoui et al. [49]). With the
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passive SCA, it may be feasible to identify the last round of AES. The artificially inserted
trigger signal could be removed and the correct timing for delivering the EM pulse could be
identified by scanning through the last round by adjusting the Dt2p with 100 ps per step.
A similar approach was utilized in [49] (see Section 4.9.1). Even if we have no access to the
software or if the AES code is obfuscated, the timing for delivering the EM pulse could still
be identified by analyzing the associated faulty output. For example, given the new attack
from Section 4.6.2 where a single EM pulse reveals the entire AES key if the associated
Flt inst is the NOP instruction, the attacker could scan the EM pulse over each invocation
of the obfuscated AES or unknown code, checking the possible revealed AES key derived
from the faulty ciphertext (by running AES on the possible key with same plaintext) until
the correct AES key is found (which matches the correct ciphertext). Alternatively, if
the obfuscated code is implemented along with fault tolerant countermeasures, the EM
FIA system may have more difficulty trying to generate EM pulses to fault the target
instruction as well as additional EM pulses to fault the countermeasures (assume the
attacker has access to multiple EM FIA systems). Thus, countermeasures in addition to
obfuscation are likely important.

7.2 Contributions

In-depth research of EM FIA on two different embedded microcontrollers was presented in
this thesis. The contributions for this research work are summarized below.

The first contribution is a complete instruction-centric EM FIA methodology for closed-
source microcontrollers (see Section 4.9 for detailed description). Previous research did not
suggest an in-depth methodology for characterizing the microcontroller at the instruction
level followed by proposing instruction specific countermeasures for the exploitable fault.
Some previous research analyzed the underlying silicon geometries [7, 59] without focusing
on the faulty behavior of the associated instruction. This methodology is important for
evaluating the security vulnerabilities for closed-source microcontrollers since it develops
specific countermeasures for any possible attacks focused on the associated instructions.

Second, we provide for the first time a statistical characterization of faulty instructions
(see Chapter 4). We show the probability of different faulty instructions and suggest that it
is likely related to the address of the target instruction and also the delay between the EM
pulse to a specific clock edge which is not pointed out in the previous research. Moreover,
previous research did not statistically analyze all the possible faulty instructions [95, 59].
Identifying all the possible faulty instructions is critical for designing the associated instruc-
tion specific countermeasures. For example, the MOV LW instruction might be replaced
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with a GOTO or two other instructions (see Section 4.4.3). If this faulty instruction is
not taken into consideration, the added countermeasure might be skipped and the fault
is still injected. Unlike previous research, the countermeasures include protection from all
statistically possible faults which may occur.

The third contribution is a new instruction specific attack on AES for a microcontroller.
With the faulty instruction revealed, we proposed two AES attacks with a two-step method-
ology targeting the XORWF instruction (see Section 4.5.1.2 for attack algorithm 1-a and
1-b and 4.7.1.2 for 1-c) and the DECFSZ instruction (see Section 4.6.2.2 for attack al-
gorithm 2). Unlike AES attacks with EM FIA proposed in [74, 49], our attacks are less
complex since we do not need to solve any non-linear equations or perform any exhaustive
search. This new attack highlights that microcontrollers running without countermeasures
are susceptible to EM FIA with very few number of EM pulses required.

Fourth, we provide a more robust understanding of the fault with detailed timing anal-
ysis combined with the action of the microcontroller when the fault is injected (see Chapter
5). With this understanding, a fault tolerant countermeasure for the LDR instruction is
provided for the first time. This countermeasure is unlike previous research where only
fault detection is provided [61].

The fifth contribution is the charge-based fault model. Unlike the fault models proposed
in previous research [7, 4], the charge-based fault model suggests that the induced EM pulse
could change the charge accumulated at a circuit node. It also considers the clock frequency
and supply voltage which could affect the fault injectability. We could not inject a fault
with the fault models proposed in previous research [7, 4]. This charge-based fault model
is important in providing a guideline on how to inject the fault with EM pulse on some
embedded microcontrollers.

7.3 Future Research Directions

The experiments done on PIC16F687 showed that cryptographic algorithms were vulner-
able under FIA. However, the trigger signal was artificially added to deliver the EM pulse
at the correct timing in the AES-128 attack proposed in Chapter 4. Therefore, one fur-
ther work direction is to remove the trigger but use passive SCA to help find the correct
timing to deliver the EM pulse. Researchers from Riscure had already successfully used
this methodology to find out when to inject the fault [25]. However, if the delay between
the pulse to the end of Q2 cycle is changed, the faulty instruction might also be changed.
Thus, the difficulty of running a successful attack might be increased significantly.
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Public key cryptography is widely used in authentication. While an attack on the
symmetric key cipher was done on the PIC16F687, another research work that could be
done with PIC16F687 is to perform an attack targeting a public key cipher. For example,
the RSA attack demonstrated in [51] could be applied with our results on the PIC16F687.
For example, likely the ALU instructions in PIC16F687 will be used in calculating Mp or
Mq. Hence, we can fault these instructions and get a faulty Mp or Mq. This should also
be feasible with inducing the observed faults on the LPC1114.

The processor with an ARM core is widely used in different markets [109]. Therefore,
the security inside these cores are critical. With the current result on the LPC1114, another
research direction is to conduct a real attack. It is possible to run a DFA attack with other
cryptographic algorithms running on the LPC1114. Moreover, EM FIA on other similar
but more advanced ARM cores is also a promising research direction. The ARM Trustzone
technology utilizes an additional bit in the address bus to identify a secure/non-secure world
request [110]. The address fault induced to the Cortex-M0 might be applied to other ARM
processors to attack the Trustzone technology where the attacker may gain access to the
secure world from a non-secure world request.

Future research could also focus on countermeasures in hardware. For both chips uti-
lized in our experiment, there is no access to the hardware. RISC-V is an open source ISA
with many giant tech companies as its members such as Google, NVIDIA, NXP,etc [111].
Therefore, it may be possible to research adding hardware countermeasures to processors
implementing the RISC-V ISA on an FPGA emulation platform. For example, a new
pipeline stage was added to allow the processor to encrypt and decrypt the instructions
before decoding them [112]. Moreover, a simulation was done on attacking the hidden
registers in RISC-V processor with FIA [113]. However, the security analysis on RISC-V
was still limited. Therefore, physically injecting faults to the RISC-V based processor and
analyzing its faulty behavior are of interest [114]. Future research would involve statisti-
cally characterizing faults on other embedded microcontrollers/microprocessors in addition
to exploiting faults in attacks and countermeasures.
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Appendix A

Hardware Countermeasures for EM
FIA

There were some countermeasures particularly designed for EM FIA from the previous re-
search. Most of the countermeasures were designed based on associated fault models. They
are summarized in Table A.1. The objective of these countermeasures is to raise an alarm
when the EM pulse is detected. They were all verified on FPGAs which were executing
cryptographic algorithms such as AES [13, 15, 16], Simon cipher [120] or PRESENT cipher
[14]. In Table A.1, there are two different detection rates. The first one is the EM injection
detection rate. This detection rate describes the percentage of the tests where the alarm
is raised successfully with an EM pulse induced to the circuit. The fault detection rate is
the percentage of the test where the alarm is raised when the induced EM pulse actually
causes a faulty output.

Table A.1: Summary of countermeasures designed for EM FIA

Countermeasure
Detection rate Fault

modelEM injection Fault
Voltage glitch detector [13] 32% 91% delay fault
Phase Lock Loop (PLL)-based
[120]

N/A 79.28% phase change in the clock signal

Hogge-based phase detector [14] N/A 93.15% phase change in the clock signal
Dual-complementary flip flop [15] 7% 100% N/A
D-Flip flop detector [16] N/A 92% Sampling fault

In 2014, Zussa et al. [13] proposed a glitch detector as a countermeasure to EM FIA.
The glitch detector shown in Figure A.1 could detect the sudden delay increase which is
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caused by fault injection in the critical path. The delay denoted in the figure is the guarding
delay which is greater than the critical path delay but smaller than the clock period. As
suggested by the delay fault model, faults are injected by the coupling between the EM
pulse and the power ground network which reduces the supply voltage and increases the
delay. The timing diagram in Figure A.2 shows how the glitch detector raises the alarm.
When the supply voltage is reduced, the guarding delay is increased which causes the alarm
to be set at 1 indicating a fault injection attempt. The experimental result showed that
one glitch detector in the chip was sufficient for detecting the fault injection attempt by
power glitch or clock glitch. However, for EM FIA, even five glitch detectors were not
efficient possibly due to the local property of the EM pulse. Additionally, by making a
smaller probe tip, the attacker can have an enhanced spatial resolution. The highest EM
injection detection rate was 32%. However, the fault detection rate was 91%.

Figure A.1: Glitch detector [13]

(a) (b)

Figure A.2: (a): Normal operation when no extra delay is induced (b): Timing diagram
when a glitch is detected and alarm is on [13]

Another countermeasure proposed for EM FIA utilized the PLL [120]. The author
believed the EM pulse could cause phase shift in the clock network which could be further
detected by the PLL. When an EM pulse is induced, it causes the PLL to enter an unlocked
state. The EM injection detection rate was not revealed, however, the fault detection rate
was 79.28% as presented in their second paper [14]. However, PLL is not always available in
low-end chips, which limits the usage of this countermeasure. Breier et al. further improved
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this countermeasure by replacing the PLL with a Hogge phase detector [14]. The structure
of the Hogge phase detector is shown in Figure A.3. Since the Data signal is synchronized
to the CK signal, any phase change in the ring oscillator causes the same effect to the
Data signal. Therefore, a DelayFactor is added to ensure the phase change in CK arrives
earlier at the Hogge phase detector. The overall fault detection rate was 93.15%. However,
this countermeasure only outputs an alarm when the EM pulse is induced before the delay
factor shown in Figure A.3 [14]. If the EM pulse is injected directly to the Hogge phase
detector, the circuit may fail to raise the alarm [14]. This behavior was also observed from
their injection scan over the chip surface. There was a large area where no alarm was
asserted. One solution might be put more on chip ring oscillators. However, this might
increase the overall power consumption since the clock signal is always toggling in the ring
oscillator.

Figure A.3: Structure of the Hogge phase detector [14]

Deshpande et al. designed a dual complementary flip flop detector as a countermeasure
to thwart EM FIA [15] as shown in Figure A.4. The alarm signal will arise if Qs equals Q.
However, this countermeasure imposes a large overhead. In their final implementation on
a Cyclone-IV FPGA, this countermeasure utilized 81.5% more dedicated registers. Com-
pared with the other countermeasures [120, 14], it achieved a 100% percent fault detection
rate even though only 7% of EM pulses created faults. However, there remains a possibility
that the fault is injected to both flip flops, which will not be detected.

Another countermeasure proposed for EM FIA was based on the sampling fault model
[16]. This countermeasure utilizes a detector composed of four D-type flip flops as shown
in Figure A.5. These four flip flops are initialized with different values. Q1 and Q4 are
initialized at 1 while Q2 and Q3 are initialized at ‘0’. Additionally, Q1 and Q3 switches at
the rising edge of the clock while Q2 and Q4 switches at the falling edge of the clock.
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Figure A.4: Structure of the dual complementary flip flop [15]

Figure A.5: The structure of the D-type flip flop countermeasure [16]

Figure A.6: The full schematic of the D-type flip flop countermeasure [16]
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Based on the sampling fault model, the fault is induced at a triggering clock edge.
Assume Q2 is faulted at a falling clock edge when it should be changed from ‘0’ to ‘1’.
This induced fault makes the Q1⊕Q2 stays at ‘0’ when there is a rising edge of the clock.
This ‘0’ will further be sampled by the D flip flop and result in an alarm signal to detect
the fault as shown in Figure A.6. The feedback from the output of the D flip flop back
to the three-input AND gate will lock this ‘0’. The blue dashed circuit adds an extra
protection for the combination where Q1, Q2, Q3, Q4 are ‘1’, ‘0’, ‘1’, ‘0’, respectively. This
combination is also a faulty state. However, it does not lead to an alarm if this blue dashed
circuit is not added. This detector circuit was regularly spread through an FPGA with an
AES circuit. It detected 78% to 95% of the fault injected by the EM pulse, and 100% of
the fault injected with the reverse body biasing injection.

In summary, countermeasures designed to particularly thwart EM FIA require a com-
plete understanding of the injected fault. The countermeasures discussed in this appendix
were all verified on FPGA but could not detect 100% of the faults injected by EM pulses.
Further verification may be required for applying these countermeasures to other platforms
such as ASIC, microcontroller, etc.
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Appendix B

Additional Experiments on
PIC16F687

B.1 Instruction/Macro description

This appendix lists the instructions and also the Macros which were not our target but
used in test programs listed in Chapter 4.

Table B.1: Instruction description and the associated opcode

Instruction in PIC16F687 Description
BTFSS f, b Bit test the b-th bit of register f, skip the next

instruction if it is ‘1’
BTFSC f, b Bit test the b-th bit of register f, skip the next

instruction if it is ‘0’
MOVF f, d Move the content in register f to a destination

based on d
CALL k Call a subroutine at address k
STATUS The STATUS register in PIC16F687 which

contains the arithmetic status, the reset sta-
tus and the bank selection bits

RP0, RP1 The bank selection bit in the STATUS register
PORTC PORTC register which contains eight readable

and writable bits. The trigger signal is imple-
mented on bit [5](RC5)
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B.2 z-distance Effect at Best Coordinate

This appendix provides the experimental results for analyzing the z-distance effect. The
probe was placed over the best coordinate as shown in Table 4.2. As mentioned in Section
4.3, the minimum z-distance was about 0.5 mm. We set this z-distance as the origin in
z-axis. Then, we gradually increased the z-distance by 0.0635 mm per step. The Vp was set
at 500 V to ensure the delivered EM pulse was as strong as possible. The fault injection
experiment was conducted for 20 rounds for each z-distance as shown in Figure B.1. The
number of pulses sent to the chip before the first fault was injected, was also recorded.
Finally, we calculated the average number of pulses required to inject a fault at a specific
location and the number of induced faults out of 20 rounds.

It requires more EM pulses to inject the fault when the z-distance is larger and finally
when the z-distance is greater than 0.254 mm, no faults could be injected.

As mentioned in equation 2.4, the induced electromotive force drops as the cubed power
of the z-distance. Therefore, it is expected that while the z-distance increases, it is more
difficult to inject the fault.

(a) Number of faults injected over 20 round for
each z-distance

(b) Average number of EM pulses before fault
occurs

Figure B.1: Effect of the z-distance
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Table B.2: Faulty data and the associated Flt inst (The original value at 0x20 is 0x55
before executing the XORWF instruction)

Tgt inst
Faulty data at different addresses

Flt inst
0x20 0x21 0x30

Correct data values 0x33 0x00 0x66 N/A

XORWF 0x20, F

0x55 0x77 0x66 IORWF 0x20, W
0x55 0x66 0x66 NOP
0x77 0x66 0x66 IORWF 0x20, F
0x55 0x33 0x66 XORWF 0x20, W

B.3 Test Program for the XORWF Instruction

Test program four was designed to analyze the faulty response of the XORWF instruction.
The correct data after executing the XORWF 0x20, F instruction stored at address 0x20,
0x30, 0x21 are shown in second row of Table B.2.

1 MOVLW 0x20
2 MOVWF PORTC; Assert the t r i g g e r
3 3∗NOP
4 MOVF 0x30 , W
5 XORWF 0X20 , F ; Target i n s t r u c t i o n
6 MOVWF 0x21 ; Move the content o f W reg to r e g i s t e r at 0x21 ;
7 MOVLW 0x00
8 MOVWF PORTC

Listing B.1: Test program four

The experiment was performed for three tests and each test consisted of 340 rounds
with Dt2p set to 254 ns. Therefore, the Dp22 of the Pcyl of the XORWF instruction was
15.23 ns. There are four different combinations of faulty data found as shown in Table B.2.
With the faulty data, the associated Flt inst was found. For example, the Flt inst was
IORWF 0x20, W when the faulty data was 0x55, 0x77, 0x66 at address 0x20, 0x21, 0x30
(row 4 of Table B.2), respectively. Hence, the data stored at the W register was changed to
0x77 after executing the faulty instruction. After executing the MOVWF 0x21 instruction
at line 6 of listing B.1. This faulty data was stored at address 0x21 while the data stored
at address 0x20 and 0x30 remained unchanged.

The largest hamming distance between the Tgt inst and the Flt inst is 3 where the
Flt inst is the NOP instruction as shown in Table B.3.

The occurrence of each Flt inst over three tests is shown in Table B.4. FR denotes
the total number of rounds with a fault injected and FRN=1 denotes the number of rounds
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Table B.3: Hamming distance between Tgt inst and Flt inst of test program four

Tgt inst opcode Flt inst opcode Hamming distance

XORWF 0x20, F 0001101 0100000

IORWF 0x20, W 0001000 0100000 2
NOP 0000000 0100000 3

IORWF 0x20, F 0001001 0100000 1
XORWF 0x20, W 0001100 0100000 1

Table B.4: Statistical result of the fault injected on XORWF 0x20, F in test program
four

Test
number

Flt inst Occurrence/FR
# of EM pulses before first fault

FRN=1Max Min Avg Std

1

IORWF 0x20, W 40.3%/137 23 1 4.64 3.41 23
NOP 57.9%/197 11 1 4.70 2.70 31
IORWF 0x20, F 1.76%/6 9 1 4.33 3.27 2

2

IORWF 0x20, W 43.8%/149 15 1 4.82 2.87 18
NOP 53.2%/181 9 1 4.53 2.69 36
IORWF 0x20, F 2.94%/10 8 3 5.40 2.07 0

3

IORWF 0x20, W 38.8%/132 18 1 4.61 3.03 25
NOP 58.2%198 10 1 4.69 2.64 38
IORWF 0x20, F 2.65%/9 6 1 3.44 1.81 1
XORWF 0x20, W 0.29%/1 1 1 N/A N/A 1

where a single EM pulse could successfully inject a fault. The Table also presents the
number of EM pulses required to induce the fault. Faults could be injected with a small
number of EM pulses. For all the four different Flt insts, the average number of EM
pulses required to inject the fault was around 5. Additionally, the total number of rounds
where a fault could be induced with a single EM pulse was 175. Therefore, around 17%
of the rounds, a fault could be induced with the first EM pulse. The induced fault was
reproducible with a similar occurrence for each type of the fault and a small standard
deviation. The average occurrence and the standard deviation for each occurrence are
shown in Table B.5.

Table B.5: The average and standard deviation of the occurrence for each Flt inst

Flt inst Avg Std
IORWF 0x20, W 41.0% 2.56%
NOP 56.4% 2.80%
IORWF 0x20, F 2.45% 0.615%
XORWF 0x20, W 0.097% 0.167%
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B.4 Test Program for the DECFSZ Instruction

A test program was designed to find possible Flt insts for the DECFSZ instruction.
Additionally, the probe tip was moved back to the location as indicated in Table 4.2. The
test program is shown in listing B.2.

1 NORMAL:
2 MOVLW 0x20
3 MOVWF PORTC
4 4∗NOPs
5 DECFSZ 0x20 , F ; Target i n s t r u c t i o n
6 GOTO FAULT LOOP
7 . . .
8 GOTO NORMAL
9 FAULT LOOP:

10 Write to EEPROM.

Listing B.2: Test program five

Initially, the data stored at address 0x20 is 0x01. Therefore, if the DECFSZ 0x20, F is
correctly executed, the program should skip the next GOTO FAULT LOOP instruction.
The fault injection experiment was run for three tests with 340 rounds per test. The Dt2p

was set to 254 ns. Hence, the Dp22 of the Pcyl of the DECFSZ was 15.23 ns. Three sets
of faulty data were found at address 0x20 and the associated Flt insts are shown in table
B.6. The hamming distance between the Tgt inst and the Flt inst is shown in Table B.7.
The largest hamming distance is 4 when the Flt inst was the NOP instruction.

Table B.6: Faulty data and the associated Flt inst for test program five

Tgt inst
Faulty data at address
0x20

Flt inst

DECFSZ 0x20, F
0x01 NOP
0x20 MOVWF
0x02 INCF 0x20, F

Table B.7: Hamming distance between Tgt inst and Flt inst of test program five

Tgt inst Opcode Flt inst Opcode Hamming distance

DECFSZ 0x20, F 0010111 0100000
NOP 0000000 0100000 4

MOVWF 0x20 0000001 0100000 3
INCF 0x20, F 0010101 0100000 1
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Table B.8: Statistical result of the fault injected on DECFSZ instruction in test program
five

Test
number

Flt inst Occurrence/FR
# of EM pulses before first fault

FRN=1Max Min Avg Std

1

NOP 60.0%/204 35 1 4.41 3.42 29
MOVWF 0x20 25%/85 22 1 5.16 3.46 8
INCF 0x20, F 15%/51 41 1 8.55 9.16 6

2

NOP 53.5%/182 45 1 4.55 4.30 26
MOVWF 0x20 25.6%/87 18 1 5.09 3.09 10
INCF 0x20, F 20.9%/71 39 1 7.92 7.28 9

3

NOP 50.9%/173 27 1 4.38 3.65 26
MOVWF 0x20 29.7%/101 15 1 4.95 3.53 20
INCF 0x20, F 19.4%/66 40 1 7.95 8.69 6

The statistical result is presented in Table B.8. The percentage of the experiment where
the first EM pulse injected the fault was around 13.7%. The average number of EM pulses
before injecting the first fault with the Flt inst as NOP was around 4.4. The average
and the standard deviation of the occurrence of different Flt insts during three tests are
shown in Table B.9

Table B.9: The average and standard deviation of the occurrence for each Flt inst of
DECFSZ in test program five

Flt inst Avg Std
NOP 54.8% 4.69%
MOVWF 0x20 26.8% 2.56%
INCF 0x20, F 18.4% 3.07%

After the experiment on test program five, at this specific location, three possible
Flt insts were found and the NOP instruction was also one of the Flt insts. Therefore,
it is possible to perform a bypass security check attack (see Section 4.6.1) and a round
addition attack on AES-128 (see Section 4.6.2).

B.5 Combined Countermeasure for both the XORWF

and DECFSZ

The code shown in listing B.3 explains the design of the countermeasure. The instructions
added for this countermeasure are underlined. This countermeasure is a combination of the
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countermeasure for the XORWF and the DECFSZ proposed in Section 4.8.3 and 4.8.4,
respectively. Two trigger signals are generated so that EM pulses could be delivered over
the XORWF instruction and the DECFSZ instruction during the last round of AES-
128. A delay factor (approximate 100 us) is inserted in line 25 to provide enough delay so
that both EM pulses could be generated consecutively. In this way, the verification of the
countermeasure is more robust.

1 encrypt :
2 MOVLW 0x01
3 MOVWF rcon ; RCON i n i t i a l i z a t i o n
4 CALL s t o r e v a r ; Store the in t e rmed ia te s t a t e to p ro t e c t the XORWF
5 CALL key add i t i on ; i n i t i a l key add i t i on
6 MOVLW 0x0A ; s t a r t the round counter f o r the loop
7 MOVWF round counter ;
8 MOVLW 0x0B
9 MOVWF round counte r s e c ; Store 0x0B to the second round counter

10 l oop enc rypt :
11 DECF round counter sec , F
12 BTFSC STATUS, Z
13 GOTO BACK RET
14 CALL s u b s t i t u t i o n S
15 CALL e n c s h i f t r o w
16 CALL s t o r e v a r ; Store the in t e rmed ia te s t a t e to p ro t e c t the XORWF

i n s t r u c t i o n
17 DECF round counter ,W
18 BTFSC STATUS, Z
19 GOTO l a s t r ou nd
20 CALL mix column
21 CALL s t o r e v a r
22 l a s t r ou nd :
23 CALL enc key schedu l e
24 CALL key add i t i on ; key add i t i on
25 CALL Delay ; A smal l de lay added to make sure both the \ g l s {em} pu l s e

could be d e l i v e r e d at both t r i g g e r s
26 MOVLW 0x01
27 SUBWF round counter , w
28 BTFSS STATUS, Z
29 GOTO n o t r i g g e r
30 BCF STATUS, RP0
31 BCF STATUS, RP1
32 MOVLW b '00100000 '
33 MOVWF PORTC
34 n o t r i g g e r :
35 4∗NOPs
36 DECFSZ round counter ,F ; Target i n s t r u c t i o n
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37 GOTO loop encrypt
38 BACK RET:
39 RETURN

Listing B.3: Countermeasure for protecting the AES from attacks proposed in Section 4.5.1
and 4.6.2
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Appendix C

Unsuccessful Experiment Details
Targeting the
LDR < Rt >, [< Rn >, # < imme >]
and LDMIA < Rn >!, < registers >
Instructions on Chip One of LPC1114

In this appendix, we will provide the experimental results which targeted the LDR <
Rt >, [< Rn >, # < imme >] and LDMIA < Rn >!, < registers > with chip #1 and
probe tip one. The function fault was failed to be injected with chip one and probe tip
one. These results could not further be verified on the second chip, nor analyzed in detail
due to the damage of the probe tip one. The experiments in this appendix were also done
with Fclk = 104.4Mhz and VDD = 3.3V .

To analyze if a fault could be injected with different kinds of LDR instructions, we
designed several different test programs. The program shown in listing C.1 utilized the
LDMIA instruction as the target instead of the LDR PC − relative instruction. We
first stored the same value at address 0x10001000, 0x10001004 and 0x10001008 as shown
in lines 2 to 6. The simulation of the result is shown in Table C.1. Instead of loading
a single word from one single memory location, the LDMIA instruction loads multiple
words from consecutive memory locations. Thus, in our program, we checked register R1,
R3 and R4 to see if a fault occurred. However, even though we scanned through all the
delay settings from 274 ns to 404 ns with 10 ns per step, no faulty value was sent out by
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the UART.

1 main
2 LDR R0 , =(0x10001000 ) ;
3 LDR R1 , =(0xFEDCBA98) ;
4 LDR R3 , =(0xFEDCBA98) ;
5 LDR R4 , =(0xFEDCBA98) ;
6 STMIA R0 ! , {R1 , R3 , R4} ; Store 0xFEDCBA98 to address at 0x10001000 to 0

x10001008
7 LDR R0 , =(0x10001000 ) ;
8 Assert t r i g g e r ;
9 26∗NOPs;

10

11 LDR R2 , =(0x00000000 ) ; To make the code s i m i l a r to the LDR PC−r e l a t i v e
program where f a u l t could be i n j e c t e d s u c c e s s f u l l y ;

12 LDMIA R0 ! , {R1 , R3 , R4} ;
13 NOP;
14 NOP;
15 NOP;
16 NOP;
17 CMP R1 , R3 ;
18 BNE FAULT;
19 CMP R3 , R4 ;
20 BNE FAULT;
21 De−a s s e r t t r i g g e r ;
22 B main ;

Listing C.1: Test program two targeting the LDMIA instruction

Table C.1: Simulation result for test code where a LDMIA instruction is the target

Address (in hexadecimal) Encoding(in hexadecimal) Instruction
0x00000A42 0x4C0C LDR R2, [PC, #0x44]
0x00000A44 0xC81A LDM R0!, [R1, R3−R4]
0x00000A46 0xBF00 NOP
...... ...... Other instructions

For test program 1-c to 1-f, the fault was induced since the offset was added to the PC
or the set bits in the offset were reset. Another experiment was designed with test code
three as shown in listing C.2. The LDR R2, [R0, #0x4] and the LDR R3, [R1, #0x8]
instructions use the immediate offset addressing where the target address is calculated
by using a base register plus the offset value. We want to check if the EM pulse could
cause a fault where the offset is not added to the base register. To make the test program
successfully detect the fault when the offset was not added, we wrote the same value to
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Figure C.1: Data value stored in the memory when targeting LDR immediate offset in-
struction

the memory at address 0x10001004 and 0x10001010 (both words are in the SRAM region
of LPC1114) and also initialized the memory at address 0x10001000 as 0xFEDCBA98.

1 main
2 Store va lue s to a s s o c i a t e memory address ;
3 LDR R0 , =(0x10001000 ) ;
4 LDR R1 , =(0x10001008 ) ;
5 Assert t r i g g e r ;
6 26∗NOPs;
7

8 LDR R2 , [ R0 , #0x4 ] ;
9 LDR R3 , [ R1 , #0x8 ] ;

10 NOP;
11 NOP;
12 NOP;
13 NOP;
14 CMP R1 , R3 ;
15 BNE FAULT;
16 CMP R3 , R4 ;
17 BNE FAULT;
18 De−a s s e r t t r i g g e r ;
19 B main ;

Listing C.2: Test program three targeting the LDR immediate offset instruction

The memory map is shown in Figure C.1 and the simulation result is shown in Table C.2.

We stored 0x10001000 at register R0 and 0x10001008 in register R1. After executing
the two instructions (LDR R2, [R0, #0x4] and LDR R3, [R1, #0x8] ), R2 should have
the same value as R3 if no fault is injected.

However, the experimental result indicated that no faulty data was output from the
UART even though we scanned through all the possible Dt2p from 274 ns to 404 ns with
10 ns per step.
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Table C.2: Simulation result for test code which uses a register + immediate offset as the
destination address

Address (in hexadecimal) Encoding(in hexadecimal) Instruction
0x00000A16 0x6842 LDR R2, [R0, #0x4]
0x00000A18 0x688B LDR R3, [R1, #0x8]
0x00000A1A 0xBF00 NOP
...... ...... Other instructions
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