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Abstract 

Design and control are two distinct aspects of a process that are inherently related though these aspects are 

often treated independently. Performing a sequential design and control strategy may lead to poor control 

performance or overly conservative and thus expensive designs. Unsatisfactory designs stem from 

neglecting the connection of choices made at the process design stage that affects the process dynamics. 

Integration of design and control introduces the opportunity to establish a transparent link between steady-

state economics and dynamic performance at the early stages of the process design that enables the 

identification of reliable and optimal designs while ensuring feasible operation of the process under internal 

and external disruptions. The dynamic nature of the current global market drives industries to push their 

manufacturing strategies to the limits to achieve a sustainable and optimal operation. Hence, the integration 

of design and control plays a crucial role in constructing a sustainable process since it increases the short 

and long-term profits of industrial processes. 

Simultaneous process design and control often results in challenging computationally intensive and 

complex problems, which can be formulated conceptually as dynamic optimization problems. The size and 

complexity of the conceptual integrated problem impose a limitation on the potential solution strategies that 

could be implemented on large-scale industrial systems. Thus far, the implementation of integration of 

design and methodologies on large-scale applications is still challenging and remains as an open question. 

The back-off approach is one of the proposed methodologies that relies on steady-state economics to initiate 

the search for optimal and dynamically feasible process design. The idea of the surrogate model is combined 

with the back-off approach in the current research as the key technique to propose a practical and systematic 

method for the integration of design and control for large-scale applications. 

The back-off approach featured with power series expansions (PSEs) is developed and extended to achieve 

multiple goals. The proposed back-off method focuses on searching for the optimal design and control 

parameters by solving a set of optimization problems using PSE functions. The idea is to search for the 

optimal direction in the optimization variables by solving a series of bounded PSE-based optimization 

problems. The approach is a sequential approximate optimization method in which the system is evaluated 

around the worst-case variability expected in process outputs. Hence, using PSE functions instead of the 

actual nonlinear dynamic process model at each iteration step reduces the computational effort. The method 

mostly traces the closest feasible and near-optimal solution to the initial steady-state condition considering 

the worst-case scenario. The term near-optimal refers to the potential deviations from the original locally 

optimum due to the approximation techniques considered in this work. 

A trust-region method has been developed in this research to tackle simultaneous design and control of 

large-scale processes under uncertainty. In the initial version of the back-off approach proposed in this 

research, the search space region in the PSE-based optimization problem was specified a priori. Selecting 

a constant search space for the PSE functions may undermine the convergence of the methodology since 

the predictions of the PSEs highly depend on the nominal conditions used to develop the corresponding 

PSE functions. Thus, an adaptive search space for individual PSE-optimization problems at every iteration 

step is proposed. The concept has been designed in a way that certifies the competence of the PSE functions 

at each iteration and adapts the search space of the optimization as the iteration proceeds in the algorithm. 

Metrics for estimating the residuals such as the mean of squared errors (MSE) are employed to quantify the 

accuracy of the PSE approximations. Search space regions identified by this method specify the boundaries 
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of the decision variables for the PSE-based optimization problems. Finding a proper search region is a 

challenging task since the nonlinearity of the system at different nominal conditions may vary significant ly. 

The procedure moves towards a descent direction and at the convergence point, it can be shown that it 

satisfies first-order KKT conditions.  

The proposed methodology has been tested on different case studies involving different features. Initially, 

an existent wastewater treatment plant is considered as a primary medium-scale case study in the early 

stages of the development of the methodology. The wastewater treatment plant is also used to investigate 

the potential benefits and capabilities of a stochastic version of the back-off methodology. Furthermore, the 

results of the proposed methodology are compared to the formal integration approach in a dynamic 

programming framework for the medium-scale case study. The Tennessee Eastman (TE) process is selected 

as a large-scale case study to explore the potentials of the proposed method. The results of the proposed 

trust-region methodology have been compared to previously reported results in the literature for this plant. 

The results indicate that the proposed methodology leads to more economically attractive and reliable 

designs while maintaining the dynamic operability of the system in the presence of disturbances and 

uncertainty. Therefore, the proposed methodology shows a significant accomplishment in locating 

dynamically feasible and near-optimal design and operating conditions thus making it attractive for the 

simultaneous design and control of large-scale and highly nonlinear plants under uncertainty. 
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1 Introduction 

The dynamic nature of the current global market is driving industries to push manufacturing strategies to 

their limits to achieve a sustainable and optimal operation. For a long period of time, profitability was one 

of the main concerns of manufacturers; however, lately, that attitude has shifted towards the development 

and optimal operation of profitable and sustainable processes. The alarming conditions of climate change, 

conflict and resource scarcity, and waste production are the main motivations to include sustainability in 

the chemical process industries. Nowadays, sustainability embraces almost all aspects of company policies 

related to economics, social, safety, and environmental attitudes. Traditionally, several aspects of the 

processes are handled independently. This outlook has great potential to be upgraded for most real-world 

case studies. Clearly, the desired improvement is possible by incorporating multiple aspects of the process 

that encompass long-term process sustainability.  

One of the core fragments of that combined problem is the simultaneous optimization of process design 

and control. In the past, these two aspects of the process, i.e., steady-state process design economics and 

dynamic behaviour, were treated independently and solved in a sequential fashion. However, this approach 

may lead to poor control performance or overly conservative and thus expensive designs (Luyben, 2004). 

The naive designs stem from neglecting the inherent connection of choices made at the process design stage 

that affects the process dynamics. Alternatively, integration of design and control introduces the opportunity 

to establish a transparent link between conflicting objectives of steady-state economics and dynamic 

performance at the early stages of the process design that enables the identification of reliable and optimal 

designs while ensuring feasible operation of the process under internal and external disruptions.  

Over the past decade, there has been a dramatic increase in the development of multi-faceted approaches 

for the integration of multiple aspects; in particular, integration of design and control (Rafiei and Ricardez-

Sandoval, 2020a). Hence, a large and growing body of the current literature in this field has attempted to 

propose novel methods that resolve some unanswered and challenging questions in the field. Simultaneous 
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process design and control as the core of the integrated approach can be formulated conceptually as dynamic 

optimization problems. The size and complexity of the conceptual integrated problem impose limitations 

on the potential solution strategies that could be implemented on large-scale industrial systems.  

Consequently, integration of design and control for a relatively large-scale application might become 

intractable even for high-performance computers. Indeed, the available methodologies applied multiple 

simplifying assumptions to make the problem tractable and have been implemented either on an isolated 

unit operation or simple industrial case studies (Alhammadi and Romagnoli, 2004; Diangelakis et al., 2016; 

Ricardez-Sandoval et al., 2011). This indicates a need for an efficient and applicable simultaneous design 

and control method for large-scale industrial applications. Then, to fill the gap in the applicable methods, 

the central goal pursued in this PhD study is to present a practical and systematic method for the integration 

of design and control for large-scale applications.  

This work presents a new methodology for integration of design and control that is based on the back-off 

approach to initiate the search for optimal and dynamically feasible process design. For the purpose of 

steady-state optimal design and process, all process parameters are assumed at their nominal values; 

however, any type of model mismatch, simplification, linearization or parametric uncertainty may lead to 

imprecise model predictions. Therefore, the optimal solution obtained from the nominal condition can be 

infeasible or highly sub-optimal due to the uncertainties or disturbances, which can emerge from different 

sources. On the other hand, the conceptual formulation of a simultaneous design and control problem results 

in a dynamic nonlinear optimization problem that is often sensitive to initialization. Lack of educated initial 

conditions may result in failure to achieve convergence to an optimal solution. A back-off approach is an 

attractive option where the ideal steady-state optimal condition is used as the foundation to improve the 

regulation of optimality and dynamic feasibility (Perkins, 1989; Perkins et al., 1989). Back-off terms are 

originally defined as the required draw-backs of the steady-state condition from active constraints in order 

to maintain dynamic feasibility under uncertainty and disturbances (Bahri et al., 1995; Figueroa et al., 1996; 

Kookos and Perkins, 2016; Narraway and Perkins, 1994). 
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As mentioned above, the integration of design and control problem often leads to challenging and complex 

formulations. One of the central strategies in the engineering discipline to handle the size and complexity 

of the theoretical formulations of the integrated problem is to employ surrogate models and/or 

decomposition methods. Model-based approaches have been proposed where the nonlinear behaviour of 

the system is approximated using suitable model structures (Bettebghor et al., 2011; Bhosekar and 

Ierapetritou, 2018; Chawankul et al., 2007; Forrester and Keane, 2009; Gerhard et al., 2008, 2005; 

Ricardez-Sandoval et al., 2008; Sanchez-Sanchez and Ricardez-Sandoval, 2013a; Trainor et al., 2013; 

Viana et al., 2013). Likewise, dynamic high fidelity models of the process are represented using 

approximation and model reduction techniques for simultaneous design and control (Burnak et al., 2019a; 

Diangelakis et al., 2017; Malcolm et al., 2007; Moon et al., 2011; Pistikopoulos et al., 2015). Accordingly, 

in attempts to reduce the computational burden of the approach, power series expansions (PSEs) have been 

used as a basis to capture the behaviour of the system for optimal process improvement under uncertainty.  

The idea of the surrogate model is combined with the back-off approach in the current research as the key 

technique to propose a new and efficient methodology for simultaneous design and control. 

1.1 Research objectives  

Despite the extensive body of research on the integration of design and control, a systematic framework 

that addresses simultaneous design and control of large-scale systems under uncertainties is sparse. Thus, 

the main goal of the research is to propose and develop a methodology for the integration of design and 

control with the aim of achieving economical, environmentally friendly and computationally attractive 

process designs, particularly for large-scale applications. The specific objectives of the current study are as 

follows: 

 Propose a practical method for integration of design and control that can address the simultaneous 

design and control of large-scale and highly nonlinear systems under uncertainty and disturbances.  

To accomplish this goal, the system is represented using low-order models with online 
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identification of the worst-case scenario while the validity of those replicas is certified in a trusted 

interval. The procedure sequentially moves toward a descent direction from an educated initial 

condition. 

 Take into account probabilistic-based uncertainties for integration of design and control. To achieve 

this objective, variability in the process constraints and objective function are considered by means 

of statistical terms.  

 Inspect the quality of the identified optimal solution for simultaneous design and control. Check if 

the surrogate models are sufficient for the replacement of the actual nonlinear behaviour of the 

process.  

1.2 Research work contributions 

The current PhD study is aimed to provide the following contributions: 

 A new back-off methodology (trust-region) that performs simultaneous design and control of large-

scale and highly nonlinear systems under uncertainty and disturbances. Significant reductions in 

the computational costs have been achieved by developing a decomposition algorithm that involves 

simple optimization problems that can lead to the optimal process designs. As a result, the proposed 

method empowers the simultaneous design and control of large-scale systems.  

 A stochastic back-off approach that can address the simultaneous design and control of medium-

scale processes under probabilistic-based uncertainty and disturbances. The method is designed in 

a way that provides the user with an additional degree of freedom to rank the significance of the 

constraints with a reasonable computational cost. 

 A trust-region method that may guarantee convergence to a local optimum solution. The proposed 

methodology moves optimization variables towards a descent direction and the convergence 

satisfies the first-order KKT conditions.  
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 The proposed trust-region technique has the potential to deal with black-box models since 

piecewise surrogate models (PSEs) replace the actual behaviour of the process.  

1.3 Outlines of the work 

The remainder of this thesis is organized as follows: 

Chapter 2 provides a general problem statement for the integration of design and control, followed by a 

discussion of the main challenges and proposed remedies in the literature. In addition to the literature review 

of the subject, the challenges that are currently being faced in the field of integration of design and control 

are identified so that academic and industrial practitioners can recognize the main obstacles and perceive 

the approaches that might be more relevant for their specific applications. Open problems and future 

research perspectives are identified. The literature review in this chapter has been published in (Rafiei and 

Ricardez-Sandoval, 2020a) 

Chapter 3 presents a basic back-off approach that focuses on searching for the optimal design and control 

parameters by solving the set of optimization problems using mathematical expressions obtained from PSE. 

The PSE model coefficients, i.e. the sensitivity terms, can be calculated numerically and analytically.  The 

benefits and limitations of numerical and analytical PSE coefficients are examined. The work presented in this 

chapter has been published in (Rafiei-Shishavan et al., 2017). 

Chapter 4 presents a new stochastic back-off approach. The basic back-off presented in Chapter 3 was 

extended to accommodate probabilistic (stochastic)-based uncertainties and disturbances. The key idea in 

the present approach is to represent variability in the process constraints and objective function by means 

of statistical terms, e.g. confidence intervals. This approach provides the user with an additional degree of 

freedom to rank the significance of the constraints through the use of coverage probabilities. The present 

methodology has the potential to specify more economically attractive designs compared to the worst-case 

variability methodologies presented in Chapter 3. The results of this chapter have been published in (Rafiei-

Shishavan and Ricardez-Sandoval, 2017; Rafiei and Ricardez-Sandoval, 2018). 
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Chapter 5 presents a trust-region approach to address the simultaneous design and control of large-scale 

systems under uncertainty. The approach is on the foundation of the basic back-off approach presented in 

Chapter 3. The concept is designed in a way that certifies the competence of the PSE functions at each 

iteration and systematically acquires the search space of the optimization as the iteration proceeds in the 

algorithm. The proposed approach was tested in a wastewater treatment plant and the Tennessee Eastman 

(TE) process. The results indicate that the proposed methodology leads to more economically attractive and 

reliable designs while maintaining the dynamic operability of the system in the presence of multiple 

disturbances. Part of the results presented in this chapter has been publication in (Rafiei and Ricardez-

Sandoval, 2020b). 

In Chapter 6 incentives directed towards the evolution of an integrated approach are identified. Emerging 

trends are discussed as the possible pathways the industry and academy might take to achieve the ideal 

framework of integrating all the decision levels, considering the complexities, obligations, and dimensions 

of a real-world enterprise. Promising strategies that are often implemented individually and that can expand 

the operating window of an integrated approach are outlined under the emerging trends. Potential 

applications of an integrated scheme are presented. The discussions presented in this chapter have published 

in (Rafiei and Ricardez-Sandoval, 2020a). 

Finally, Chapter 7 presents the conclusions obtained from the present research work and outlines potential 

future work that can be considered for this research. 
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2 Literature review 

Reasonably, a sustainable enterprise aims to protect nature and human and ecological health without 

sacrificing economic efficiency, innovations and business improvements. Thus, the key features for the 

specification of a sustainable process involve profitability, controllability, flexibility, reliability, and 

product quality satisfaction, safety, and environmental inducements (Kuhlman and Farrington, 2010). In 

general, a cost-effective and profitable process is defined based on the capability of the system to generate 

profit. Controllability is known as the ability of a system to retain desired outputs variables in specific 

bounds by changing available manipulate variables in spite of external/internal disruptions. In view of that, 

using a flexible process that can maintain and fulfill all significant constraints such as safety and 

environmental incentives under varying operating conditions plays a vital role in the success of the process. 

Another key factor is reliability which refers to the dependability of the system and probability of the failure 

of a system or component to function under stated conditions for the process lifecycle. 

Over the past decade, there has been a dramatic increase in the development of multi-faceted approaches 

for the integration of multiple aspects, in particular, integration of design and control. Additionally, recent 

technological and computational advances have empowered the development of efficient solution 

strategies. Hence, a large and growing body of the current literature in this field has attempted to propose 

novel methods that resolve some unanswered and challenging questions in the field. There have been a few 

reviews that have classified the contributions in this area, see e.g. (Burnak et al., 2019b; Ricardez-Sandoval 

et al., 2009a; Sakizlis et al., 2004; Sharifzadeh, 2013; Vega et al., 2014a; Yuan et al., 2012). There are 

advantages but also significant challenges in promoting the integration of design and control strategies. 

Every solution strategy holds a number of features that have been proposed to tackle specific challenges of 

the subject in a certain way. This chapter presents the main challenges in simultaneous design and control 

along with some of the solution techniques which have been published in the literature. While this chapter 

provides a brief review of the subject, the main goal is to identify the challenges that are currently being 
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faced in this area. The discussion and literature review of this chapter has been published in (Rafiei and 

Ricardez-Sandoval, 2020a). 

The chapter initially presents a general problem statement for the integration of design and control, followed 

by a discussion of the main challenges and proposed remedies in the literature (Section 2.2). Current 

applications of an integrated scheme are presented in Section 2.3. 

2.1 Problem statement 

The integration of design and control problem can be conceptually formulated as a mixed-integer nonlinear 

dynamic optimization (MIDO) formulation in which the design and control parameters are the key decision 

variables, i.e. 

min
𝜼(𝑡),𝜸(𝑡),𝒖(𝑡)

Θ = Θ𝑑𝑦𝑛 (𝒙̇(𝑡),𝒙(𝑡), 𝒚(𝑡),𝜼(𝑡), 𝝇(𝑡), 𝒖(𝑡), 𝒅(𝑡), 𝜻, 𝑡) 

Subject to: 

𝐹(𝒙̇(𝑡), 𝒙(𝑡),𝒚(𝑡), 𝜼(𝑡), 𝝇(𝑡), 𝒖(𝑡), 𝒅(𝑡), 𝜻, 𝑡) = 0 

𝐹0(𝒙̇(𝑡0), 𝒙(𝑡0), 𝒚(𝑡0), 𝜼(𝑡0), 𝝇(𝑡0), 𝒖(𝑡0), 𝒅(𝑡0), 𝜻, 𝑡0) = 0 

ℎ(𝒙̇(𝑡), 𝒙(𝑡), 𝒚(𝑡), 𝜼(𝑡), 𝝇(𝑡), 𝒖(𝑡),𝒅(𝑡), 𝜻, 𝑡) = 0 

𝑔(𝒙̇(𝑡), 𝒙(𝑡), 𝒚(𝑡), 𝜼(𝑡), 𝝇(𝑡), 𝒖(𝑡),𝒅(𝑡), 𝜻, 𝑡) ≤ 0 

𝜼 ∈ [𝜼𝐿 , 𝜼𝑈] 

𝒖 ∈ [𝒖𝐿, 𝒖𝑈] 

𝝇 ∈ {𝜍1 ,… , 𝜍𝑁} 

𝑡 ∈ (0, 𝑡𝑓] 

(2-1) 

where 𝐹 represent the system of differential-algebraic equations (DAEs) with their initial conditions 𝐹0; ℎ 

and 𝑔 are equality and inequality constraints. The DAE model represents the essential aspects of the process 

including material and energy balances, transport phenomena, thermodynamics, chemical kinetics, 

equilibrium relations, logical constraints, and other physical property relationships. In addition to the 

fundamental mathematical model, other key features and relations particular to the system such as the 

product qualifications and demands, geometry considerations and operational limitations can be considered 

as equality and inequality constraints (ℎ and 𝑔). 𝒙, 𝒙̇ ∈ ℝ𝑛𝑥 are system’s states and their differentials that 
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are functions of time (𝑡); 𝒚 ∈ ℝ𝑛𝑦  are algebraic variables. Through this study, 𝜼 is a vector of continuous 

design variables such as equipment sizes and continuous operating conditions that can take different values 

at different time intervals, e.g. product quality set-points. On the other hand, 𝒖 are time-varying control 

variables, e.g. manipulated variables that can be used for control. 𝝇 represents integer decision variables 

including the choice and sequencing of process units or the control structure selection. These continuous 

and discrete decision variables can be time-invariant or time-varying, e.g. they can take on different values 

for different time periods. 𝒅 represents time-dependent disturbances and 𝜻 is a vector containing uncertain 

parameters. Deviations from the steady-state conditions are most likely due to the time-invariant or rather 

slowly time-varying uncertainties, process time-varying disturbances, and transition between different 

operating modes. The deviations can be originated from different sources, including imperfect knowledge 

of the behaviour of the system, raw material impurities, equipment failure, measurement error, and 

production target fluctuations. Not only is the aim of simultaneous design and control to identify an optimal 

process design but also to maintain an acceptable level of operation in the presence of parameter uncertainty 

and disturbances. Representation of uncertainties and corresponding recognition enables decision-makers 

to account for possible undesirable scenarios that may occur during operation and reduce process 

variability. Consideration of uncertainty and disturbances is one of the challenges of the field. Further 

thoughts on this challenge are provided in Section 2.2.1. 

2.2 Challenges  

Typically, simultaneous design and control is an optimization-based approach that carries all the challenges 

associated with mixed-integer nonlinear programming (MINLP) and mixed-integer dynamic optimization 

(MIDO). There is no generally accepted methodology that covers all the aspects of a given problem and 

that can explicitly solve Problem (2-1). However, academic practitioners have attempted to resolve a few 

obstacles while performing integration of design and control. The challenges in this field may be classified 

as follows: a) uncertainty and disturbances, b) multiple objectives, c) problem size inflation, d) structural 
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(integer) decision variables, f) local vs. global optimality, and e) incorporation of advanced control 

strategies. 

The available techniques were originally classified into three main categories: controllability index-based 

approaches, dynamic optimization, and robust-based approaches (Ricardez-Sandoval et al., 2009a). Later 

on, Yuan et al. (2012) added two other categories to the previous classifications: embedded control 

optimizations and black-box optimization approaches. An objective of the current study is to identify the 

most common challenges in the integration of design and control and provide a summary of methodologies 

and their contributions to address the challenges in this subject. 

2.2.1 Uncertainty and disturbances 

Uncertainty can be classified into four categories (Pistikopoulos, 1995): 

I. Model inherent uncertainty; e.g. physical properties.  

II. Process inherent uncertainty; e.g. flowrate fluctuations.  

III. External uncertainty; e.g. product demand, price, and environmental incentives.  

IV. Discrete uncertainty; e.g. equipment availability.  

In chemical engineering applications, all types of uncertainties may occur. Any kind of model mismatch, 

simplification, linearization, or parametric uncertainty may lead to imprecise model predictions. Process 

disturbances are the changes in the input variables that affect the output of the process and are often referred 

to as external perturbations that are typically time-dependent. Therefore, the optimal solution obtained from 

the nominal condition can become infeasible or sub-optimal due to these deviations. A sensible description 

of the uncertainties and disturbances enables the integrated methodologies to remain feasible in the presence 

of perturbations. Handling uncertainty becomes more crucial when constraint violations raise safety or 

environmental concerns. In order to incorporate the uncertainty into the process models, multiple techniques 

have been introduced in the literature. 
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Uncertainty quantification techniques aim to assess process variability. In general, uncertainty 

quantification is graded in terms of deterministic (definite a finite number of scenarios) and stochastic 

(uncertainty is treated as random variables). In the deterministic approaches, the occurrence of the 

uncertainty and process disturbances are limited to pre-defined finite situations (i.e. scenarios) in which the 

realization of each perturbation/uncertainty are assumed to be known a priori. The multi-scenario approach 

is one of the most widely used methods for handling uncertainty and disturbances. Multi-scenario 

optimization is a tool for semi-infinite problems that need to operate under a variety of different conditions 

(Laird and Biegler, 2006). Most of the contributions in the simultaneous design and control mainly focus 

on this type of uncertainty description. The majority of the robust approaches are developed for the 

deterministic approaches which could be too limiting in practice since the specific occurrence of the 

uncertainty and disturbances are assumed to be perfectly known a priori. Therefore, there is a need for a 

more realistic and efficient representation of uncertainties and process disturbances. 

One of the open-ended challenges in the field is the specification of process designs that can tolerate 

stochastic descriptions with probability distribution functions of uncertain parameters and disturbances. In 

stochastic modeling, probability distributions of the process outputs are estimated in the presence of 

uncertainties. Uncertainty is often introduced assuming random realizations of the uncertain parameters, 

which are typically estimated from observations based on historical data or process heuristics. Stochastic 

optimization is a tool to deal with the inherent system noise and probabilistic-based uncertainties and 

disturbances. In general, excessive function evaluations are required by the stochastic methods, which make 

them highly expensive. Also, the volume of the search region grows rapidly as the dimension of the 

uncertainty/disturbance set grows, which also limits the application of these methods. Challenges associated 

with stochastic programming makes the approach intractable for large-scale systems. A few researchers 

have implemented a stochastic optimization approach with embedded control that adaptively optimizes 

control choices for a given design (Malcolm et al., 2007; Moon et al., 2011). A number of studies have 

performed a worst-case variability distribution analysis for simultaneous design and control under random 
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realizations in the disturbances. In the latter studies, uncertainty propagation is performed using Monte 

Carlo sampling technique (Bahakim and Ricardez-Sandoval, 2014; Koller et al., 2018; Rafiei-Shishavan et 

al., 2017; Rafiei and Ricardez-Sandoval, 2018; Ricardez-Sandoval, 2012; Valdez-Navarro and Ricardez-

Sandoval, 2019a). Meeuse and Tousain (2002) defined a measure to assess the relationship between design 

and a closed-loop performance in the presence of stochastic disturbances. In another study, a Gaussian 

process model has been trained in an iterative manner to represent the uncertainty as the input to the 

simultaneous design and control framework (Chan and Chen, 2017). Washington and Swartz (2014) 

proposed a parallel computing approach for dynamic optimization using a multiple shooting of process 

under stochastic uncertainty through a set of possible parameter scenarios based on a discrete probability 

distribution. Vega et al. (2014b, 2014a) used controllability indices to translate integrated design and control 

into MINLP problems for different uncertainty sources, and solved the mathematical problem using genetic 

algorithms. It is worthy of note that some stochastic programming approaches such as random search, 

stochastic approximation, and genetic algorithms have the potential to achieve the global optimal solution, 

which is highly desired but the required computational effort is still excessive even for offline design 

optimizations (Gentle et al., 2012). Global optimization is still an open challenge that requires further 

developments. This subject is further discussed in Section 2.2.5.  

Robust approaches have been employed to deal with uncertainty and other sources of unknown parameters 

in the system. The maximum process variability aims to search for the worst-case scenario where the largest 

violation of the constraints occurs; then, the system is optimized in a way to deal with that critical (worst-

case) condition. In previous studies, robust control approaches on a basis of a representative nominal linear 

model have been implemented to assess the effects of model uncertainty and nonlinearity with respect to 

the nominal model (Chawankul et al., 2007, 2005). Robust control tools borrowed from Lyapunov theory 

and structured singular value analysis have also been used to develop metrics to identify the worst-case 

process variability, process feasibility, and stability (Ricardez-Sandoval et al., 2009b, 2009c, 2008). In 

addition, critical realizations in the disturbances can be estimated from structured singular value and then 



13 

 

combined with a simulation-based calculation of the responses to that worst disturbance to identify the 

worst-case condition; this method has been referred to as the hybrid worst-case approach (Ricardez-

Sandoval et al., 2011, 2010). In an iterative approach, the amount of back-off required to achieve dynamic 

feasibility is calculated under the worst-case (maximum) deviation in the cost function and process 

constraints (Mehta and Ricardez-Sandoval, 2016; Rafiei-Shishavan et al., 2017). Despite these efforts, it 

has been realized that such robust approaches tend to be highly conservative since the worst-case scenario 

might be unlikely to occur during operation. This problem becomes strictly critical in the presence of 

uncertainties with large domains. Accordingly, methods have been recently proposed to achieve robustness 

to a user-defined level of process variability due to stochastic realizations. Statistical quantification of the 

uncertainty provides the flexibility to assign different levels of satisfaction to each constraint depending on 

their relevance or significance. Therefore, a degree of freedom is authorized by the decision-maker to 

reduce the conservatism in the integrated solutions (Koller et al., 2018; Rafiei-Shishavan and Ricardez-

Sandoval, 2017; Rafiei and Ricardez-Sandoval, 2018). In summary, in the simultaneous design and control 

framework, companies aim to have a prescription against potential extreme situations that may put in risk 

the operation and or create an undesirable event, e.g. safety hazard. However, those extreme conditions 

might not happen very often and the corresponding arrangements oblige additional financial burden on the 

overall cost. While some constraints must be ensured at a high probability level, e.g. safety constraints, 

others may not be critical, e.g. levels in storage tanks. Full compliance of the process constraints under the 

worst-case scenario in the disturbances and uncertain parameters may result in overly conservative and 

expensive designs. Therefore, to reduce redundancy, it is essential to select a level of appropriate 

precautions while maintaining acceptable levels of satisfaction for the process goals and constraints.  

2.2.2 Multiple objectives  

Decisions made at the design stage according to the steady-state economics often conflict with those needed 

to maximize the dynamic controllability. For example, for a heat exchanger design, the smaller the heat-

transfer area, the lower the steady-state economics but more aggressive control actions would be required 
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thus negatively affecting process performance, and eventually the operating costs. Accordingly, to take into 

account the trade-off between the conflicting goals of the process, a multi-objective framework can be 

applied which systematically optimizes a collection of objective functions. An index is required to assess 

the contribution of the controllability aspects into the overall profitability of the process. Therefore, 

controllability indexes are used to construct the link between process economics and process performance 

to investigate the interactions between process design and control goals. Taking these interactions into 

account enable designers to seek for conditions in which the system has the ability to reject process 

variability due to uncertainties and/or disturbances in an optimal fashion. Thus, one of the resolutions for 

the integration of design and control is to introduce the controllability of the system as one of the objectives 

in a multi-objective framework. Some controllability and flexibility metrics have been introduced as 

objectives or constraints within the simultaneous design and control optimization formulation. Relative gain 

array (Alhammadi and Romagnoli, 2004; Luyben and Floudas, 1994a),  singular value decomposition 

(Palazoglu and Arkun, 1986), integral of squared error (Lenhoff and Morari, 1982), resilience index and 

condition number (Nguyen et al., 1988) have been used to quantify the dynamic performance. Although the 

calculation of the controllability indexes is straightforward, the main drawback is the lack of a clear and 

direct connection between the process economics and process controllability, i.e. the allocation of an 

economic cost to the process control strategy. In addition, most of the existing methods made use of linear 

models to assess process controllability, which restricts the accuracy of the methods for nonlinear 

constrained large-scale systems. Table 2-1 summarizes the approaches that carry out the multi-objective 

function approach for simultaneous design and control. 
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Table 2-1: Indicative list, multi-objective optimization approach 

Authors Contribution 

(Lenhoff and Morari, 1982) Bounding technique based on the Lagrangian theory 

(Palazoglu and Arkun, 
1986) 

Robustness indices are used as the operability indicators appeared in the constraints that result 
in a semi-infinite programming problem 

(Luyben and Floudas, 
1994a, 1994b) 

Open-loop controllability measures were used to translate a superstructure of design alternatives 
into a multi-objective (MINLP) problem  

(Meeuse and Tousain, 
2002) 

Relative Gain Array (RGA) and singular value decomposition-based indices are employed in a 
multi-objective optimization method that provides clear insight for the trade-off between closed-

loop variance and economics  

(Blanco and Bandoni, 
2003) 

Dynamic convergence and stability were analyzed in an eigenvalue optimization framework 

(Alhammadi and 

Romagnoli, 2004; Luyben, 

1992) 

RGA and condition number are used to indicate the pairing process between the variables and 

ease of control, respectively 

(Asteasuain et al., 2006) off-spec polymer and transition time are minimized along with capital cost during grade 

changeover between grades in the styrene polymerization process 

(Sharifzadeh and Thornhill, 
2013, 2012) 

A multi-objective function is considered that is based on the assumption of perfect control and 
inversion of the process model 

(Bernal et al., 2018) Set-point tracking performance and economic costs are balances based on an offline utopia 
tracking procedure 

Sustainability consists of numerous features, e.g. process economics, performance, flexibility, reliability, 

safety, and environmental impacts. Several metrics have been defined to represent those sustainability 

features. Some of the factors which can be used to quantify the environmental concerns are human toxicity 

potential by ingestion (HTPI), global warming potential (GWP), human toxicity potential by exposure 

(HTPE) (Kalakul et al., 2014). Figure 2-1 shows a schematic of the key objectives often pursued in optimal 

and sustainable process designs. As depicted in the figure, multiple aspects of the process are correlated, 

even if they do not seem correlated at first glance. Changes in one aspect can either directly or indirectly 

affect the remaining features of the process. For example, poor controllability of a chemical plant might 

lead to lower product qualities and thus higher utility and waste management costs as well as extreme 

environmental concerns. Accordingly, to design a sustainable process, further consideration of correlated 

factors is essential. The integration of multiple aspects of the process offers greater opportunities to improve 
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the process in terms of satisfying process economics, process operating goals and environmental criteria. 

The sustainability metrics and lifecycle assessment factors can be considered to allocate targets for the 

process in terms of the objective functions and constraints in a multi-objective framework. Several studies 

that have simultaneously determined economic operation and environmental criteria using sustainability 

metrics along with the operational aspects of the process have been reported (Li et al., 2009; Wang et al.,  

2013). 

 

Figure 2-1: Interconnectivity of the multiple objectives  

For a multi-objective optimization, there would be a set of solutions in which it is impossible to find a better 

outcome unless at least one individual or preference criterion worsens; this is known as the Pareto optimal 

solutions. The task is to systematically quantify the trade-offs in satisfying the different objectives and 

choose the appropriate Pareto solution. Ranking the objectives is a challenging task since the conflicting 

objectives of design and control performance must be balanced to ensure both steady-state economics and 

dynamic feasibility. Often, preference information is limited or simply is not available, particularly for 

highly interconnected systems. Moreover, the vague connection fails to detect systematically the 

importance of the objectives and complex preference information. Three major categories of multi-

objective programming based on the decision-maker articulation are methods with a priori articulation of 
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preferences, a posteriori articulation of preferences, and with no articulation of preferences (Marler and 

Arora, 2004). In a priori articulation methods, the user specifies the preferences only in terms of objective 

functions; however, in the methods with a posteriori articulation, the potential solutions are available for 

the user to decide a preference. One of the most well-known classical methods for the multi-objective 

optimization framework is the weighted sum method in which all objective functions are combined to form 

a single function (Marler and Arora, 2004). However, the method is insufficient in the case of a highly 

correlated system due to the existence of constant weights or non-convex Pareto optimal solutions. Further 

discussions of the deficiencies of common multi-objective methods can be found elsewhere (Marler and 

Arora, 2004).  

For the purpose of integrated approaches, adopting the weights becomes even more challenging when 

additional aspects need to be included in the problem such as sustainability, environmental and safety 

indexes. Alhammadi and Romagnoli (2004) proposed a methodology that incorporates economics, 

environmental, heat integration and operational considerations within a multi-objective optimization 

framework. Those authors implemented the proposed methodology on a Vinyl Chloride Monomer plant. 

The weights are usually selected from a priori trial-and-error simulations or from process heuristics. 

Therefore, there is a need to use systematic and practical multi-objective approaches that rely on intuitive 

weights. Accordingly, Luyben (1992) used a method with no articulation of preference to avoid assigning 

arbitrary weights. The authors utilized the trade-off information from the Pareto optimal solution using 

partial derivatives of a utility function that relates the various objectives in an interactive iterative approach. 

Bernal et al. (2018) employed the utopia point, which is an infeasible point that minimizes all the individua l 

objectives of the multi-objective problem independently. Those authors aimed to find the closest optimal, 

feasible solution to the utopia point for the optimal design and control of a catalytic distillation column.  

In general, most of the multi-objective solution strategies are sufficient for relatively small-scale problems; 

yet, the solutions might become intractable for a large-scale problem involving multiple objectives and a 

significantly large number of decision variables. This caveat with the complex system arises since the 
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integration of multiple aspects of the process mostly results in compound formulations for the integrated 

problems. In addition to the challenges regarding the efficiency of the multi-objective framework for 

integrated approaches, the inclusion of integer decision variables imposes another limitation to the multi-

objective approaches. Although there are a few contributions that considered integer decision variables for 

integrated design and control in a multi-objective framework (Gebreslassie et al., 2012; Luyben and 

Floudas, 1994a, 1992), most of the current methods involving multi-objective optimization have been 

developed for formulations that only consider continuous variables. In the existence of the discrete 

variables, the feasible set is no longer convex. Therefore, the complexity of the multi-objective optimization 

problem increases and may become nearly intractable for large-scale applications. The mixed-integer multi-

objective programming approaches in the presences of uncertainty is a challenging task and still remains as 

an open challenge in this area. A review of the methods devoted to multi-objective mixed-integer 

programming can be found elsewhere (Alves and Clímaco, 2007). 

2.2.3 Problem size inflation 

The integration of design and control is a complex problem by nature since it aims to account for conflicting 

aspects of the process. Generally, solution strategies require the need to specify a model that describes the 

dynamic behaviour of the process. As such, the size and complexity of the problem depend directly on the 

process model used in the analysis and the assumptions made while developing the model, e.g. model 

structure error, parameter uncertainty, external perturbations, etc. To reduce the complexity in the analysis, 

practitioners have therefore proposed multiple approaches to deal with the subject such as employing 

surrogate models and decomposition techniques. 

2.2.3.1 Surrogate models 

Process systems engineering consistently seeks efficient techniques in computational modeling and 

optimization to introduce novel solutions for highly complex problems. The performance of the systems 

can be presented using highly sophisticated mathematical models; however, in a broad view, sophisticated 

mechanistic models are not suitable, particularly when these high-fidelity models result in complex 
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formulations with high computational demands, e.g. computational fluid dynamic (CFD) models. Such high 

computational demands are commonly unaffordable using conventional computational resources. 

Furthermore, the parameters of high-fidelity models are often restricted to within a certain region. Instead 

of using high fidelity models that would require an intensive computational effort, surrogate models are 

introduced as a data-driven tool to develop a correlation between the input-output performance of the 

system and present approximate models to alleviate the burden of sophisticated replicas. By using low-

order (surrogate) models, engineers attempt to estimate a fair approximation of the process behaviour with 

an acceptable level of accuracy. Several taxonomies for surrogate models have been developed (Bhosekar 

and Ierapetritou, 2018). They can be classified into non-interpolating and interpolating methods. Non-

interpolating methods aim to minimize the sum of squared errors such as quadratic polynomials and other 

regression models whereas interpolating methods pass through all sample data such as radial basis functions 

and kriging models (Jones, 2001). Recently, artificial intelligence (AI) techniques such as the artificial 

neural network (ANN) has also been employed to approximate functions from sample data. Surrogate 

models are extremely convenient to reduce the complexity and computational demands of the problem 

when multiple evaluations of the cost and constraint functions are required. The models can be widely used 

in large-scale problems, stochastic and global optimization programming. Efficient, highly predictive 

surrogate models are key to predict systems' behaviour accurately with a fair amount of computational 

effort. The appropriate surrogate model must be decided based on the application and prescribed features. 

For example, plant behaviour can be captured using power series expansions (PSEs) as analytical 

representations that replace the nonlinear complex model of the system. PSE functions have been used as 

a basis to develop new approaches for the optimal design and control of dynamic systems under uncertainty. 

Previous works have used this modeling tool for optimal process improvement under uncertainty (Bahakim 

et al., 2014; Bahakim and Ricardez-Sandoval, 2015; Rasoulian and Ricardez-Sandoval, 2016, 2015, 2014). 

Model-based approaches have also been proposed where the nonlinear behaviour of the system is 

approximated using suitable model structures (Chawankul et al., 2007; Gerhard et al., 2008, 2005; Ricardez-

Sandoval et al., 2008; Sanchez-Sanchez and Ricardez-Sandoval, 2013a; Trainor et al., 2013). Malcolm et 
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al. (2007) replaced the full nonlinear system equations with a simpler adaptive state-space to compute 

optimal control actions in an embedded control optimization procedure. Moon et al. (2011) extended the 

linearized embedded control optimization framework to a plantwide flowsheet and showed the effective 

complexity reduction of the method of integrating design and control. In a stepwise procedure, dynamic 

high fidelity models of the process are represented using approximation and model reduction techniques 

for simultaneous integration of design, scheduling, and control (Burnak et al., 2019a; Diangelakis et al.,  

2017; Pistikopoulos et al., 2015). Generally, it is essential to have a clear definition of the goals of the 

model to select a legitimate set of variables as inputs and outputs. The main challenge in the selection of 

surrogate models is the determination of the accuracy of the replicas in the corresponding region of the 

input space. A single surrogate model might fail to approximate a complicated function, especially when 

the original system features different responses depending on the input region. A common practice is to 

build several surrogate models on a similar learning basis to improve model prediction (Bettebghor et al.,  

2011). Likewise, discontinuous and derivative-discontinuous of the objective and constraint functions 

occurs quite often in complex dynamic models. If adequate information of the system is available, it may 

be possible to prevent discontinuities by dividing the input space into several continuous regions. The issue 

of discontinuity is the central downside of a surrogate model facing the optimization problem. Bhosekar 

and Ierapetritou (2018) classified the surrogate models with respect to the applications into three categories: 

prediction and modeling, derivative-free optimization (DFO), and feasibility analysis. The difference 

between available surrogate methods and advances in each section are discussed in that study. Surrogate 

models are widely used in engineering problems and global optimization techniques (Bhosekar and 

Ierapetritou, 2018; Forrester and Keane, 2009; Viana et al., 2013). Those models provide inexpensive 

evaluations of the functions and the gradients. Surrogate-based representation of the model is the key 

strategy to represent a highly nonlinear formulation in a certain way that it ensures the solution is attainable 

and the effort for obtaining the model is acceptable. Surrogate-based methods are extremely popular in the 

integrated optimization framework. The main point is to select the accuracy, the type, and the validity 

regions in an efficient way for every application. On the other hand, surrogate models may not provide 
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good estimations for the entire operating region and should be implemented cautiously. The faulty 

estimation of the functions and derivatives coming from such models may drive the integration of design 

and control problem to an infeasible condition. To overcome the latter, instead of defining a model for the 

entire process domain, the behaviour of the system is examined using piecewise surrogate models. For 

instance, the behaviour of the system is examined using piecewise PSE models in an iterative manner in 

which the nominal condition is updated as the iterative procedure converges to an optimal solution (Rafiei 

and Ricardez-Sandoval, 2018). 

2.2.3.2 Decomposition approaches 

The size of the original integration of design and control problem imposes a limitation on the potential 

solution strategies that can be implemented. The main idea in decomposition approaches is to partition the 

problem into a set of interconnected sub-problems that can be handled with inexpensive procedures. The 

susceptibility of such approaches stems from the complexity to maintain adequate information flow 

between the sub-problems of the optimization framework. In order to compensate for the limited 

information flow, decomposing techniques often succeed gradually, i.e. in an iterative manner. Abd Hamid 

et al. (2010) decomposed the simultaneous design and control problem into four sub-problems and solved 

the hierarchy of pre-analysis, design analysis, controller design analysis, and the final selection and 

verification to satisfy design, control and cost criteria. Some practitioners employed the decomposition-

based solution approach to integrated design and control for binary and multiple element reactive 

distillation and a cyclic distillation processes in a systematic hierarchical manner (Andersen et al., 2018; 

Mansouri et al., 2016a, 2016b). Diangelakis et al., (2017) and Pistikopoulos et al., (2015) used multi-

parametric programming to solve the integrated design and control as a function of one or multiple 

parameters. By decomposing the original system, those last studies built a foundation to explore the 

interactions between design and control. Most recently, the decomposition approach is used to develop 

offline maps of optimal receding horizon policies that allow a direct implementation in a MIDO formulation 

for process design optimization (Burnak et al., 2019a). To summarize, decomposition methods aim to 

https://en.wikipedia.org/wiki/Parameters
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reduce large-scale problems to easier-to-solve optimization problems. The key is how to separate the 

problem and how to maintain information between those individuals without losing key information 

between the sub-problems. 

As discussed in Section 2.2.3, several surrogate models and decomposition approaches have been proposed 

by academic practitioners to reduce computational costs associated with simultaneous design and control.  

As the integration is performed offline, the computational costs might not seem like a limiting barrier to 

most approaches. However, if the integrated approach is implemented on a relatively large-scale 

application, the computational demands might become intractable even for high-performance computers. 

For highly-nonlinear large-scale problems, global or even local optimal solutions might be unattainable. 

For that reason, attempts using surrogate models and decomposition approaches can be developed with the 

aim to reduce the computational burden of the framework and propose practical methods that can be 

successfully implemented in an industrial setting. 

2.2.4 Structural (integer) decision variables 

Equipment sizes, operating conditions, and controller tuning parameters are examples of continuous 

variables that must be specified while performing simultaneous design and control. In addition, integer 

variables associated with the topology of the process and the control scheme, e.g. control structure selection 

and the number of trays and feed location in a distillation column, are key integer (structural) decisions. 

Considering integer decision variables along with the continuous variables provide much greater flexibility 

for improving the economics and performance of a large variety of problems. However, discontinuity of 

the derivatives due to the presence of integer variables makes it an MINLP, thus increases the problem’s 

complexity. Several algorithms have been proposed to solve MINLPs such as branch and bound algorithm 

(BB) (Dakin, 1965; Gupta and Ravindran, 1985), generalized benders decomposition (GBD) (Geoffrion, 

1972), outer approximation (OA) (Duran and Grossmann, 1986; Viswanathan and Grossmann, 1990). A  

general classification of the methods can be found elsewhere (Biegler and Grossmann, 2004). As shown in 

Equation (2-1), taking into account the discrete decision variables for the integration of design and control 
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formulates a MIDO. Normally, MIDO problems can be approximated by MINLPs using advanced 

discretization techniques. The resulting MINLP problems can then be handled with an algorithm that suits 

the problem under consideration. Note that these MINLP methods have been mainly developed for 

deterministic approaches. The main limitation of the currently available methods is their shortage to deal 

with uncertainties and disturbances that follow a stochastic description. Adding stochastic considerations 

increases drastically the problem’s complexity. Thus, the computational effort for process optimization 

under stochastic uncertainty descriptions may become prohibitive and may lead to intractable MIDO 

solutions for large-scale applications. Additionally, MIDO and NLP problems are often sensitive to 

initialization. Lack of an educated initial guess may also result in failure to achieve convergence. Table 2-

2 provides a list of studies that have addressed the integration of design and control using MINLP 

techniques.  
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Table 2-2: Prominent works that have employed MINLP for integration of design and control 

Authors Contributions 

(Papalexandri and Pistikopoulos , 
1994a, 1994b) 

A variable gain matrix is introduced to explore controllability and flexibility HENs for 
the purpose of synthesis and/or retrofit without decomposition 

(Mohideen et al., 1997, 1996a, 
1996b) 

Robust stability criteria are considered to maintain desired dynamic characteristics in 
an MINLP formulation  

(Bansal et al., 2003) A decomposition approach to primal, dynamic optimization and master, mixed-integer 
linear programming sub-problems that doesn’t require the solution of the adjoint 

intermediate master problem 

(Asteasuain et al., 2006) A multi-objective mixed-integer dynamic optimization approach was performed on 
grade transition in styrene polymerization 

(Flores-Tlacuahuac and Biegler, 2007) A robust solution for a MIDO using a simultaneous dynamic optimization approach 

(Nie et al., 2015)  A discrete-time formulation optimization approach for the integration of production 
scheduling and dynamic process operation using Generalized Benders Decomposition 
(GBD) algorithm to solve the resulting large nonconvex mixed-integer nonlinear 
program 

(Trainor et al., 2013) Robust feasibility and stability analyses are formulated as convex mathematical 
problems and incorporated within the methodology to avoid the solution of MINLP 
for dynamic feasibility and stability evaluation  

(Sanchez-Sanchez and Ricardez-

Sandoval, 2013b) 

Optimal process synthesis and control structure design are obtained using integrated 

dynamic flexibility and dynamic feasibility in a single optimization formulation 

(Kookos and Perkins, 2016, 2001) A bounding scheme to successively reduce the size of the search region to select an 
economic control structure using MINLP  

(Meidanshahi and Adams, 2016) A built-in optimization package of gPROMS is used to solve the MIDO via the 

deterministic outer approximation method for a semi-continuous distillation system 

(Burnak et al., 2019a; Diangelakis et 
al., 2017; Diangelakis and 
Pistikopoulos, 2017) 

A single prototype software system (PAROC framework) that uses multi-parametric 
programming for integrated design, control and scheduling  

2.2.5 Local vs global optimality 

Convexity is the curtail constraint for global optimality in most of the optimization approaches. In nonlinear 

programming (NLP), the global optimality of the local optimal point is satisfied under certain convexity 

assumptions (Tawarmalani and Sahinidis, 2004). Local solutions specify points that satisfy the objective 

function only within a neighborhood of the solution. Rigorous search methods are required to show that a 

particular local solution is also a global (Biegler, 2010). However, there has been significant progress in 

the field of global optimization solvers during the last decades. Global optimization methods are categorized 
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as deterministic and stochastic methods according to their convergence abilities. Kronqvist et al. (2019) 

presented a review of deterministic software for solving convex MINLPs. 

There is a relatively small body of literature that is concerned with searching for global optimality in 

problems involving process integration. Nonconvex generalized Benders decomposition (NGBD) has been 

developed to solve simultaneous design and operation problems (Li et al., 2012, 2011b, 2011a). The 

performance of the proposed method has been compared to BARON (Tawarmalani and Sahinidis, 2004) 

and showed a more efficient convergence routine. Simultaneous scheduling and control of continuous 

processes (Chu and You, 2012) and batch processes (Chu and You, 2013) have been studied in a 

decomposed framework. The main disadvantage of the proposed method is that the resulting problem may 

lead to a large-scale problem, which might be computationally intractable. Several relaxation techniques 

have been proposed to reduce the complexity of the problem and being able to achieve global solutions 

within reasonable computational times. Further details regarding the reformulations and relaxation 

techniques of the global optimization approaches can be found elsewhere (Ruiz and Grossmann, 2017). 

Although global MINLP methods might seem promising in converging to the global optimal solution, the 

computation load remains unaffordable for complex integrated problems (Nie et al., 2015). Thus far, any 

firm conclusion cannot be drawn on the performance of solvers for nonconvex problems and for that kind 

of problems we still rely on local MINLP solvers; particularly for problems like that shown in Equation (2-

1), which rely on functions that may depend on uncertainties and disturbances. 

The stochastic global optimality solvers are usually incapable of handling equality and inequality 

constraints except when they represent the boundaries on the decision variables (Matallana et al., 2011). 

The application of the methods is still restricted on highly constrained problems and convergence cannot 

be guaranteed. Stochastic optimization techniques such as particle swarm optimization (Lu et al., 2010), 

genetic algorithm (Revollar et al., 2010), and tabu search-based algorithm (Exler et al., 2008; Schluter et 

al., 2009) have been used in the literature to obtain a global optimal solution for simultaneous design and 

control. The existence of a global optimum is beneficial in terms of giving insights into the best possible 



26 

 

performance of the system as a tool for the decision-making process. The estimation of a global solution 

enables decision-makers to measure how far the system operates from the optimum and design operating 

policies that can reduce that gap. Furthermore, such information helps to decrease the incidence of 

convergence to the suboptimal conditions. 

NLP problems are usually sensitive to the initial guesses. In the absence of a feasible initial point, many of 

the currently available algorithms may fail to converge (Bajaj et al., 2018). A back-off approach is an 

appealing option where the steady-state optimal point is used to establish the economic incentive to improve 

the regulation of key process variables and maintain feasibility in the transient domain. There is a large 

number of published studies that consider ad hoc initial guesses, i.e. optimal steady-state designs, and 

proposed several methodologies to estimate how far the design must be placed from active dynamic path 

constraints. (Bahri et al., 1996, 1995; Figueroa et al., 1996; Kookos and Perkins, 2016, 2001; Narraway and 

Perkins, 1994, 1993; Perkins et al., 1989). To this regard, several methodologies have calculated back-off 

terms in a series of simple optimization problems that moved away in a systematic fashion from the optimal 

steady-state design to a new feasible operating condition (Rafiei-Shishavan et al., 2017; Rafiei-Shishavan 

and Ricardez-Sandoval, 2017; Rafiei and Ricardez-Sandoval, 2018). One limitation of this approach is that 

they rely on an optimal steady-state solution to initiate the search for the dynamically feasible condition. 

However, in the case of intrinsically dynamic processes (periodic systems), which do not have a steady-

state condition, back-off approaches lose that key feature. Intrinsically dynamic processes such as periodic 

dynamic systems never reach a steady-state. The issue of intrinsically dynamic operations is discussed in 

(Swartz and Kawajiri, 2019). Transitions between different operating conditions need to be taken into 

account while optimizing such dynamics systems. 

In summary, most of the available solvers have acceptable performance for smooth (convex) problems. 

Integrated framework results in complex formulations in particular for real-life applications. In order to 

guarantee convergence to a global optimum, the actual problems must often be simplified and reduced in 

size using multiple assumptions, e.g. surrogate models. Further algorithmic research and solver software 
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developments for non-convex systems are required to bring the promise of efficient global optimization 

closer to reality.  

2.2.6 Incorporation of advanced control strategies 

Advanced process control strategies have evolved over the past few decades. These strategies offer both 

economic improvement and process performance upgrades. Model predictive control (MPC) is an advanced 

multivariable optimization-based control algorithm that has been in use in chemical process industries over 

the last two decades. Consideration of the MPC into the simultaneous design and control was first 

articulated by Brengel and Seider (1992). Those authors evaluated the economic objectives, as well as 

controllability, within MPC algorithms in response to multiple disturbances. The use of MPC is expected 

to improve the performance of the designed system since the optimal control actions implemented in the 

plant are obtained from the solution of a constrained optimization problem. Furthermore, the ability of the 

MPC to handle the interactions and process constraints among the process variables may result in better 

optimal process designs than those obtained from decentralized control strategies. On the downside, 

advanced control schemes require solving an optimization problem online that increases the complexity of 

the integrated design framework (Sakizlis et al., 2003). In general, the key issues in the field are a priori 

stability and feasibility considerations for MPC. Thus, integration of design and control strategies should 

take these aspects into account to specify a stable and feasible process design that can efficiently operate in 

closed-loop. Sakizlis et al. (2003) incorporated MPC into a simultaneous process design and control 

problem. Those authors decomposed the problem into a control design primal problem with a linearized 

version of the process model and a control design master problem with the rigorous dynamic model. 

Chawankul et al. (2007) integrated the cost of variability and capital and operating costs into one objective 

function to the simultaneous calculation of the process design variables and the MPC tuning parameter. 

Francisco et al. (2011) used MPC to decide plant dimensions, control system parameters, and a steady-state 

condition. In another study, an iterative decomposition framework for the simultaneous process flowsheet 

and MPC design that includes dynamic flexibility and robust feasibility tests has been introduced (Sanchez-
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Sanchez and Ricardez-Sandoval, 2013a). Moreover, Gutierrez et al. (2014) selected controller structure 

based on a communication cost term that penalizes pairings between the manipulated and the controlled 

variables. Both centralized and decentralized control strategies are considered through an MPC-based 

control superstructure. Multi-parametric MPC approach has been used for simultaneous consideration of 

design and control problems (Burnak et al., 2019a; Diangelakis and Pistikopoulos, 2017). In a different 

approach, Li et al. (2016) integrated an advanced control strategy with sustainability assessment tools to 

identify and assess the optimal process operation in terms of sustainability performance. 

Based on the above, most of the applications presented in the literature have considered an internal linear 

model in the MPC framework. However, linear MPC formulation is limited since it is based on the linear 

approximations of nonlinear dynamics and path constraints, as opposed to Nonlinear MPC (NMPC) which 

relies on the nonlinear constraints and dynamics of the problem. Evidently, linear MPC results in a convex 

underlying optimization problem which guarantees the global solution at every time horizon. In contrast,  

the non-convexity of the optimization problem of NMPC formulation prevents such guarantees to be 

provided. To the authors’ knowledge, the performance of NMPC for simulations design and control has yet 

to be attempted. It is still an open challenge since the non-convexity of the nonlinear problem will be added 

to the size of the integrated problem, which would obviously increase the problem’s complexity and 

computational effort. A deeper investigation is needed to evaluate the pros and cons of the NMPC 

embedded in simultaneous design and control and fair comparison of the associated features and limitations 

such as computational costs.  

2.3 Current applications 

The complexity of the resulting problem is the main burden that prevents the implementation of the 

integrated approach on industrial-scale applications. Recent technological advances in computer science 

have facilitated the implementation of more advanced methodologies for industrial case studies. For most 

of the industrial applications, the process flowsheet is assumed to be known a priori when performing 
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simultaneous design and control; however, there is no guarantee that the process flowsheet is the best choice 

since the flowsheet synthesis and its effects on the optimality of the process are often not considered. Yuan 

et al. (2012) indicated that, if the process flowsheet synthesis is expected to be considered, heuristics can 

then be used to narrow down the selection of promising configurations. Obtaining a superstructure that 

involves the optimum flowsheet candidates is often considered as a non-trivial task. Besides, constructing 

a comprehensive superstructure for a large-scale industrial problem may become intractable as it adds a 

significant number of integer variables to the original optimization. In order to provide a systematic basis 

for the evaluation and optimization of synthesis alternatives, Papalexandri and Pistikopoulos (1996) 

proposed a generalized modeling framework based on fundamental mass/heat-transfer principles. Recently, 

there is a growing interest in process intensification (PI), which can be achieved through the integration of 

operations, functions, and phenomena with the aim to establish sustainable production levels in the industry 

(Lutze et al., 2010). Systematic phenomena based identification of flowsheet alternatives has also been 

presented using a decomposition-based solution approach (Babi et al., 2014; Lutze et al., 2013). More 

recently, phenomenological descriptions, mass and energy conservation, logical and thermodynamic 

relations, and operational restrictions were used to define an objective function and constraints within a 

single MINLP framework (Demirel et al., 2017). PI techniques are introduced to increase process efficiency 

and lower the process economics by reducing the required equipment and specifying an optimal flowsheet. 

This definition strictly complies with the targets aimed for integration of design and control. Tian et al.,  

(2018) provided a comprehensive review of the development of various PI technologies with the focus on 

the separation, reaction, hybrid reaction/separation, and alternative energy sources. The operability of the 

proposed intensified processes is still an open question (Baldea, 2015; Dias and Ierapetritou, 2019; Tian et 

al., 2018; Tian and Pistikopoulos, 2019). As reported in the latter works, accounting simultaneously for 

operability, controllability, and safety aspects at the design stage are the main challenges in these conceptual 

designs. The solution for this issue is an opening to establish an integrated approach for promising flowsheet 

specified using PI techniques. 
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To the best of authors’ knowledge, the application of simultaneous design and control methodologies on 

large-scale industrial processes is sparse. Indeed, the available methodologies applied multiple simplifying 

assumptions to make the problem tractable. The existing methods have been implemented either on an 

isolated unit operation, simple industrial case studies or as a retrofit option for a large-scale process instead 

of full design/flowsheet considerations. Combined heat and power (CHP) network (Diangelakis et al.,  

2016), production of vinyl chloride monomer (VCM) (Alhammadi and Romagnoli, 2004), and the widely 

known Tennessee Eastman process (Ricardez-Sandoval et al., 2011) are examples of industrial large-scale 

case studies for which simultaneous design and control have been considered. Despite significant 

achievements and numerous publications in the field, there is still a large gap between proposed theoretical 

methods and practical industrial applications. One of the reasons for this gap might be the lack of an 

industrial benchmark that could be used to examine the convenience of proposed methodologies for real-

life applications. There is no generally accepted benchmark that includes the multi-facet characteristics 

needed for a comprehensive case study such as conflicting objectives, multiple sources of uncertainties with 

a known distribution, and operating mode transitions. The existence of a benchmark case study would 

enable academic and industrial practitioners to make a fair comparison of the proposed methods and gain 

insight into the limitations and features of each approach. 

In summary, enterprise-wide sustainability involves aspects from molecular-scale design to macroscale 

facilities. Typically, these aspects are treated as independent sub-problems. Maintaining consistent 

information flow among the sub-problems in an integrated fashion provides additional opportunities in 

pursuing the ultimate goals of sustainable environmentally-friendly processes. Integration of design and 

control represents the core and foremost component of such an integrated approach. Simultaneous process 

design and control mostly results in the specification of a relatively complex and computationally intensive 

formulation, which can be conceptually formulated as a mixed-integer dynamic optimization problem. The 

size and complexity of the original integrated problem impose limitations on the potential solution strategies 

that can be implemented on large-scale industrial cases. In this chapter, the main challenges of the 
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integration of design and control were classified. There are still a few open questions and challenges in the 

field that require further investigation. 
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3 Basic back-off approach 

As mentioned in Chapter 2, simultaneous design and control mostly results in NLP, MINLP or MIDO 

formulations. Those nonlinear programming problems are often sensitive to initialization. Lack of educated 

initial conditions may result in failure to achieve convergence to an optimal solution. A back-off approach 

is an attractive alternative that relies on steady-state economics to initiate the search for the optimal and 

dynamically feasible process design. Furthermore, in attempts to reduce the computational burden of the 

nonlinear programming PSE are used as the surrogate model for the proposed methodology.  

A new back-off approach to those previously reported in the literature is presented for simultaneous design 

and control. The key idea is to combine PSE with the concept of the back-off approach to simultaneously 

specify the optimal design and control scheme that remains dynamically feasible under a given set of 

process disturbances and uncertainty in the parameters. The basic back-off methodology and results 

presented in this chapter have been published in Rafiei-Shishavan et al. (2017). 

This chapter initially presents the idea of back-off followed by a discussion of the PSE models. The 

proposed basic methodology has been discussed in Section 3.3. The results of the implementation on a 

medium-scale case study are shown in Section 3.4. 

3.1 Back-off approach 

The idea of back-off was originally proposed by Perkins et al. (1989) and also discussed by Perkins (1989), 

i.e. steady-state optimization might be used to establish the economic incentive to improve regulation of 

key process variables in the transient domain. Narraway et al. (1991) formulated a combined steady-

state/dynamic economic analysis in order to assess the economic performance under disturbances. 

Narraway and Perkins (1993) proposed an optimization framework that makes use of linear process models 

to calculate the required amount of back-off; that framework was later extended to consider nonlinear 

process models, which were used to estimate how far the design must be moved away from active 
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constraints (Narraway and Perkins, 1994). Dimitriadis and Pistikopoulos (1995) presented a unified 

approach for the quantification of dynamic feasibility and flexibility for optimal process design, which led 

to further development in this field. Bahri et al. (1996, 1995) developed a method for determining the 

essential open-loop back-off from a steady-state optimal point to ensure dynamic feasibility. A joint 

optimization-flexibility problem that can be solved in an iterative fashion at the steady-state was formulated. 

The proposed formulation involved a decomposition method that included two levels of optimization 

problems. The first optimization formulation aimed to search for the optimality of the system at the steady-

state with flexibility for a fixed set of process disturbances. The second optimization formulation assesses 

the feasibility of the design identified in the previous stage using different disturbance profiles. Figueroa et 

al. (1996) extended the method proposed by Bahri et al. (1996, 1995) and provided a criterion to ensure the 

dynamic feasibility of the system, i.e. that study presented a joint dynamic optimization-flexibility analysis 

where the optimization of the design parameters and controllers tuning parameters were also considered in 

the analysis. Kookos and Perkins (2016, 2001) used the back-off approach for simultaneous process and 

control design. In their work, a sequence of combined configurations of design and control were solved 

using a bounding scheme to successively reduce the size of the search region. The main idea in those works 

was to progressively generate tighter upper and lower bounds on the optimal dynamically feasible design 

and control scheme. In addition to simultaneous design and control, the back-off concept has also been used 

for integration of control and scheduling (Valdez-Navarro and Ricardez-Sandoval, 2019a, 2019b) and 

integration of design, control, and scheduling (Koller et al., 2018).  

Back-off terms ensure dynamic feasibility in spite of uncertainty especially in the case of safety and 

environmental constraints; however, they can be difficult to formulate and implement particularly for large-

scale applications. The main challenge in the back-off methods is to calculate in a systematic fashion the 

amount of back-off required to accommodate the transient operation of the process. The back-off term can 

be imposed on constraints or optimization variables to compensate for transient behaviour. Different 

techniques have been employed to calculate the amount of back-off in the literature. Visser et al. (2000) 



34 

 

linearized both constraints and state-space models of the original optimization problem to calculate the 

back-off magnitude in constraints to compensate uncertainty. Diehl et al. (2006) employed a linearization 

technique of the uncertainty set based on constraint derivatives which lead to the amount of penalty term 

(back-off) for robust nonlinear optimization. Srinivasan et al. (2003) updated the initial back-off term in an 

iterative routine using state probability density function computed at the optimal solution. Alternately, a 

robust optimization formulation applied through the incorporation of back-off terms in the constraints was 

presented by Shi et al. (2016). In that work, the back-off terms were calculated from MC simulations. 

Implementation of a new back-off method has been developed in the current research. In this work, the 

back-off amount was identified from a series of simple optimization problems. The optimum design 

obtained by recursive steps moving away from the optimal steady-state design to a new feasible operating 

condition that can accommodate pre-defined realizations in the uncertain parameters and time-dependent 

disturbances. The proposed back-off approach is taking into account the dynamic behaviour of the system 

caused by any kind of disruptions and estimates the amount of compensation with respect to the initial 

steady-state condition. Back-off terms are used to determine the required modifications to move the 

operating point away from the active constraints into the feasible region. Figure 3-1 illustrates the basic 

idea behind the proposed back-off approach. Figure 3-1(a) shows the optimal design point which is feasible 

at the steady-state condition. However, this point might violate constraints when transient changes are 

accounted in the analysis as schematically illustrated by a red dotted region in Figure 3-1(a). In order to 

maintain dynamic feasibility, the optimal steady-state design has to be moved away (back-off) to a new 

dynamically feasible operating region. Figure 3-1(b) shows the direction and the magnitude of back-off that 

is required to specify a new dynamic feasible operating point under process disturbances and parameter 

uncertainty. The key challenge in this method is to determine the magnitude of back-off required to 

accommodate the transient operation of the process in the presence of process disturbances and parameter 

uncertainty. 
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Figure 3-1: Idea of Back-off: a) dynamically infeasible steady-state design, b) Optimal feasible design 

under process dynamics 

3.2 Power series expansion (PSE) 

The simultaneous consideration of design and control results in an optimization problem as mentioned in 

Equation (2-1). In an attempt to reduce the computational burden of the nonlinear programming of the 

conceptual formulation (Equation 2-1), surrogate models are used in this study to represent the cost and 

constraint functions in the optimization problem. PSE is an analytical representation of a function as an 

infinite sum of expressions that are calculated based on the sensitivities, i.e. derivatives of the function in 

terms of its variables around a nominal condition. A complex function (𝑓(𝝌)) can be represented around 

𝝌0  using PSE approximation as follows: 

𝑓(𝝌) = 𝑓(𝝌0)+∑
1

𝑙!
∇𝑙𝑓(𝝌)𝑇|𝝌0

∞

𝑙=1

(𝝌 − 𝝌0)
𝑙 (3-1) 

∇𝑙𝑓(𝝌) is the lth order gradient of the 𝑓(𝝌). Thus, model behaviour is quantified using a series expansion 

that replaces the nonlinear complex model of the system. The process constraints and the cost function are 

represented as PSE functions, which are explicitly defined in terms of the optimization variables at the 

vicinity of the worst-case scenario. The worst-case variability for each constraint and the cost function is 

evaluated from time-dependent realizations in the disturbances and time-invariant uncertain parameters.  

That is, the process model is simulated using the nominal condition defined by 𝜼𝑛𝑜𝑚  for all discrete 

realizations considered in the uncertain parameters 𝜻 using the pre-defined set of time-dependent 
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realizations in the disturbances 𝒅(𝑡). Once the largest (worst-case) variability in the constraints has been 

identified, the time and the realization where the condition occurred are located, i.e. 𝑡𝑤𝑐  and 𝜁𝑗 (see Figure 

3-2). PSE representations for each constraint are only valid around a worst-case scenario in the optimization 

variables 𝜼 and for each realization j considered for the uncertain parameters, i.e. 𝜁𝑗. Thus, sth actual process 

constraint can be represented as a PSE constraint function as follows: 

𝑔𝑠(𝒙, 𝒚, 𝜼, 𝒅, 𝜻, 𝑡) ≤ 0  ⟺ 𝑔𝑠𝑃𝑆𝐸(𝜼)|𝑡𝑤𝑐,𝜻𝑗  ≤  0 

(3-2) 

𝒙 ∈ ℝ𝑛𝑥  are system’s states; 𝒚 ∈ ℝ𝑛𝑦  are algebraic variables. 𝜼 is a vector of continuous design variables 

such as equipment sizes and continuous operating conditions, e.g. product quality set-points and control 

variables. 𝒅 represents time-dependent disturbances and 𝜻 is a vector containing uncertain parameters. 𝑡𝑤𝑐  

is used to denote the time that the largest (worst-case) variability in the process constraint 𝑔𝑠  happens due 

to the time-varying disturbances. 

 

Figure 3-2: Worst-case variability point around which PSE functions are developed 
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Once the worst-case variability point is identified the expansions can be built around it. In order to compute 

the PSE, the gradients of the system are required. Accordingly, the PSE function of sth inequality constraint 

is as follows:  

𝑔𝑠𝑃𝑆𝐸(𝜼) = 𝑔𝑠(𝜼𝑛𝑜𝑚)|𝑡𝑤𝑐,𝜁𝑗 +∑
𝜕𝑔𝑠
𝜕𝜂𝑝

|
𝑡𝑤𝑐,𝜁𝑗

(𝜂𝑝− 𝜂𝑝𝑛𝑜𝑚)

𝑃

𝑝=1

+∑
1

2

𝜕2𝑔𝑠
𝜕𝜂𝑝

2 |
𝑡𝑤𝑐,𝜁𝑗

(𝜂𝑝− 𝜂𝑝𝑛𝑜𝑚)
2

𝑃

𝑝=1

+ 𝑅2(𝜼) (3-3) 

Likewise, the PSE of the cost function can also be constructed. Note that Equation (3-3) can be expanded 

to higher-order approximations, which will improve the quality of the PSE approximation (𝑔𝑠𝑃𝑆𝐸 ) at the 

expense of higher computational costs spent on calculating higher-order sensitivity terms. The error 

incurred in approximating a function by its nth-order expansion, residual, is denoted by the function 𝑅𝑛(𝜼). 

The order of approximation is generally chosen depending on the degree of nonlinearity in the system, the 

number of optimization variables (𝜼), the desired accuracy of the results, and the budget available for 

estimation of the high-order sensitivity terms.  

Sensitivities are required to construct the PSE functions in Equation (3-3). The sensitivities can be 

calculated either numerically or analytically. Each method has its own pros and cons which are discussed 

next.  

3.2.1 Numerical sensitivity calculation 

The numerical sensitivities for the PSE functions have been calculated using finite-differences. The 

procedure is as follows:  

The closed-loop system of equations (𝐹) is simulated around a nominal condition defined by 𝜼𝑛𝑜𝑚  (and for 

a particular realization j in the uncertain parameters 𝜻𝑗 ) using a pre-defined set of time-dependent 

realizations in the disturbances 𝒅(𝑡) and worst-case variability is identified, i.e. jth uncertain parameter at 

𝑡𝑤𝑐 . This procedure is then repeated for forward and backward points assigned to each optimization variable 

𝜂𝑝  while keeping the rest of the optimization variables constant and equal to their nominal values, i.e. 𝜼𝑛𝑜𝑚  
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(see Figure 3-3). Function evaluations for the forward (𝜼+) and backward (𝜼−) points around the nominal 

condition (𝜼𝑛𝑜𝑚) are used to calculate gradients as follows: 

∂𝑔𝑠
∂𝜂𝑝

|
𝑡𝑤𝑐,𝜁𝑗

= (𝑔𝑠(𝜂𝑝
+)|𝑡𝑤𝑐,𝜁𝑗 − 𝑔𝑠(𝜂𝑝

−)|𝑡𝑤𝑐,𝜁𝑗) 2Δ𝜂𝑝⁄  (3-4) 

∂2𝑔𝑠
∂𝜂𝑝𝜕𝜂𝑝

|
 𝑡𝑤𝑐,𝜁𝑗

= (𝑔𝑠(𝜂𝑝
+)|𝑡𝑤𝑐,𝜁𝑗 − 2𝑔𝑠(𝜂𝑝𝑛𝑜𝑚 )|𝑡𝑤𝑐,𝜁𝑗 +𝑔𝑠(𝜂𝑝

−)|𝑡𝑤𝑐,𝜁𝑗) Δ𝜂𝑝
2⁄  (3-5) 

where Δ𝜂𝑝  is the finite-difference step used to calculate forward and backward points of pth decision 

variable, i.e. Δ𝜂𝑝 = 𝜂𝑝𝑛𝑜𝑚(Δ𝜂). The existence of an explicit closed-loop model in the PSE approach is not 

necessary since the analytical expression can be approximated using numerical approaches, i.e. the 

sensitivities required in expansion can be calculated numerically. Following this reasoning, the method can 

be implemented for black-box models. 

 

Figure 3-3: Simulations for the nominal condition, forward and backward points at the worst-case 

scenario 

3.2.2 Analytical sensitivity calculation 

The closed-loop dynamic model (𝐹) can be represented as follows: 
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𝐹(𝒙̇,𝒙, 𝒚, 𝜼, 𝒅, 𝜻, 𝑡) = 0   
(3-6) 

where 𝒙 and 𝒚 are the states of the system and algebraic variables, respectively; 𝒖 represents manipulated 

variables, 𝒅 is the disturbances affecting the process, and 𝜻 denotes the uncertain parameter set; 𝜼 represents 

the optimization variables and includes the process design variables, e.g. the size of the unit, and the 

controller tuning parameters, e.g. the controller’s gain; 𝑡 represents time. In the analytical approach, the 

sensitivity of the ωth closed-loop state variable with respect to the pth optimization variable, 𝛷𝜔,𝑝 , is 

calculated by taking the derivative of the closed-loop dynamic model (𝐹) with respect to each optimization 

variable, (Maly and Petzold, 1996), i.e. 

𝐹1 ∶    
𝜕𝐹

𝜕𝑥𝜔
𝛷𝜔,𝑝|𝜻𝑗

+
𝜕𝐹

𝜕𝑥𝜔
′ 𝛷𝜔,𝑝

′ |
𝜻𝑗
+
𝜕𝐹

𝜕𝜂𝑝 
= 0 ;    ∀𝜔 = 1,… ,𝛺    ;   ∀𝑝 = 1, … ,𝑃 (3-7) 

where: 

𝛷𝜔,𝑝|𝜻𝑗
=
𝑑𝑥𝜔
𝑑𝜂𝑝

|
𝜻𝑗

 (3-8) 

Note that 𝛷𝜔,𝑝 needs to be calculated for every jth realization of the uncertain parameter. As shown in (3-

7), the computation of the first-order sensitivity requires an additional (𝛺x𝛲) system of equations (denoted 

as function F1), which need to be integrated simultaneously with the closed-loop dynamic model equations 

(𝐹). Thus, the first-order gradients for sth constraint function (𝑔𝑠) can be calculated in terms of first-order 

sensitivity of states 𝛷𝜔,𝑝|𝜻𝑗
: 

𝜕𝑔𝑠
𝜕𝜂𝑝

|
𝜻𝑗

(𝑡) =  𝛤 (𝒙, 𝒚, 𝒖,𝛷𝜔,𝑝|𝜻𝑗
, 𝜼, 𝒅, 𝜻𝑗 ,𝑡)    (3-9) 

Note that 
𝜕𝑔𝑠

𝜕𝜂𝑝
|
𝜻𝑗

 is slightly different from the sensitivity descriptions presented in (3-4) since it represents a 

function that determines the sensitivity of 𝑔𝑠  with respect to 𝜂𝑝  at every time 𝑡, i.e. numerical sensitivit ies 

in Equation (3-4) denote local sensitivities. As shown in Figure (3-4), the sensitivity at the worst-case 
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variability in 𝑔𝑠  ( 
𝜕𝑔𝑠

𝜕𝜂𝑝
|
𝑡𝑤𝑐 ,𝜁𝑗

)can be extracted from 
𝜕𝑔𝑠

𝜕𝜂𝑝
|
𝜻𝑗

(𝑡) by searching for the point in time (𝑡𝑤𝑐) at which 

the worst-case variability in the sth constraint function (𝑔𝑠) is observed due to changes in the disturbances 

and at a particular realization in the uncertain parameters. 

 

Figure 3-4: Gradient calculation using the analytical approach 

This same approach can be used to estimate the sensitivities for the rest of the constraints and of the cost 

function (𝛩). Second-order sensitivity can be calculated by taking the derivative of the first-order 

sensitivity functions (𝐹1) shown in (3-7) with respect to each optimization variable, i.e. 

𝐹2 ∶  
𝜕𝐹1
𝜕𝛷𝜔,𝑝

𝛹𝜔,𝑝,𝜍|𝜻𝑗
+
𝜕𝐹1
𝜕𝛷𝜔,𝑝

′
𝛹𝜔,𝑝,𝜍
′ |

𝜻𝑗
+
𝜕𝐹1
𝜕𝜂𝜍

= 0 ;       ∀𝜔 = 1,… , 𝛺   ;   ∀𝑝 = 1, … ,𝛲   ;   ∀𝜍 = 1,… ,𝛲 (3-10) 

𝛹𝜔,𝑝,𝜍|𝜻𝑗
=
𝑑𝛷𝜔,𝑝
𝑑𝜂𝜍

|
𝜻𝑗

   (3-11) 

where the second-order sensitivity function F2 has dimensions 𝛺x𝛲x𝛲. Thus, second-order sensitivity can 

be obtained by the simultaneous integration of functions F2, F1 and F. Hence, second-order sensitivities can 

be obtained as follows: 
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∂2𝑔

∂𝜂𝑝𝜕𝜂𝜍
|
𝜻𝑗 

(𝑡) = Υ(𝒙, 𝒚,𝒖,𝛷𝜔,𝑝|𝜻𝑗
, 𝛹𝜔,𝑝,𝜍|𝜻𝑗

, 𝜼, 𝒅, 𝜻𝑗 , 𝑡) (3-12) 

The local second-order sensitivity at the worst-case variability, i.e. Equation (3-5), can be extracted from 

∂2𝑔

∂𝜂𝑝𝜕𝜂𝜍
|
𝜻𝑗 

(𝑡) using the same procedure described above for the first-order sensitivity function (see Figure 

3-4). In general, the lth order sensitivity term can be obtained by defining a function 𝐹𝑙  with 

dimensions 𝛺x𝑃1x𝛲2x … x𝛲𝑙 , which will need to be integrated simultaneously with the previous sensitivity 

functions, 𝐹𝑙−1 , 𝐹𝑙−2,… , 𝐹1  , and the closed-loop function 𝐹. Note that a new index 𝜍 of the same dimensions 

as index 𝑝 was introduced in equations (3-10)-(3-12) to indicate the calculation of mixed-partial second-

order derivatives, i.e. derivatives involving two or more independent variables.  

3.3 Methodology  

This section summarizes the procedure of the basic back-off methodology employed to address the 

integration of design and control under process disturbances and parameter uncertainty. The key calculation 

that needs to be performed multiple times in this methodology is the identification of a PSE function, which 

is used to represent the process constraints and cost function considered in the optimal design and control 

formulation. The current methodology focuses on the computation of continues optimization variables. This 

approach can be potentially extended to deal with structural decisions by adding integer optimization 

variables in the analysis.  

The procedure proposed for the present back-off methodology is presented in Figure 3-5. The step-by-step 

back-off procedure is described next to address simultaneous design and control. 
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Figure 3-5: Basic back-off algorithm for integration of design and control 

Step 1 (initialization)  

Define upper (𝜼𝑈  ) and lower bounds (𝜼𝐿  ) for optimization variables (𝜼 ). Specify the maximum number 

of iterations (𝑁𝑖𝑡𝑒𝑟 ). Define step size for the finite-difference calculations (Δ𝜂). Also, define a tolerance 

criterion (𝜖) and a convergence examination period (𝑁𝑐 ) that will be used later on to terminate the algorithm. 

Set the iteration index to 𝑖 = 1. 

Step 2 (Optimal steady-state design without uncertainty and disturbances): 

In this step, the initial point of the procedure is specified which is used to back-off from. The optimal steady-

state design can be obtained as follows: 
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    𝛩𝑠𝑠(𝒙,𝒚, 𝜼0 , 𝒅𝑛𝑜𝑚,𝜻𝑛𝑜𝑚)𝜼0 
min  

Subject to: 

𝐹𝑠𝑠(𝒙,𝒚, 𝜼0 , 𝒅𝑛𝑜𝑚,𝜻𝑛𝑜𝑚) = 0 

ℎ𝑠𝑠𝑞(𝒙,𝒚, 𝜼0 ,𝒅𝑛𝑜𝑚,𝜻𝑛𝑜𝑚) = 0 , ∀𝑞 = 1,…𝑄 

𝑔𝑠𝑠𝑠(𝒙,𝒚, 𝜼0 ,𝒅𝑛𝑜𝑚,𝜻𝑛𝑜𝑚) ≤ 0 , ∀𝑠 = 1, …𝑆 

𝜼𝐿 ≤ 𝜼0 ≤ 𝜼
𝑈 

(3-13) 

where 𝛩𝑠𝑠  is the cost function at steady-state; ℎ𝑠𝑠 : ℝ
𝑃 → ℝ𝑄  and 𝑔𝑠𝑠 ∈ ℝ

𝑃 → ℝ𝑆  are equality and inequality 

constraints; 𝑥 ∈ ℝ𝑛𝑥 represents the system’s states. 𝐹𝑠𝑠  includes process model equations, i.e. 𝐹 in Problem 

(2-1) at the steady-state. Upper (𝜼𝑈) and lower (𝜼𝐿) bounds are imposed on decision variables and should 

be similar to those defined for Problem (2-1). Moreover, disturbances and uncertain parameters are set to 

their nominal values, i.e. 𝒅𝑛𝑜𝑚  and 𝜻𝑛𝑜𝑚 . The results of this optimization problem (𝜼0) can be used as the 

starting (initial) point to search for the dynamically operable design that optimizes an objective function for 

this process. 𝜼0  defines the nominal condition (𝜼𝑛𝑜𝑚 ) for the first iteration in the present procedure to 

develop the PSEs. The proposed trust-region method searches the closest dynamically feasible condition to 

the initial starting point.  

Step 3 (Develop PSE-based functions): 

The proposed back-off approach is a robust approach since the methodology aims to find the optimal 

solution which ensures that the system remains dynamically feasible in the presence of the largest (worst-

case) variability observed in the constraints. The process model is simulated using the nominal condition 

defined by 𝜼𝑛𝑜𝑚  for all discrete realizations considered in the uncertain parameters 𝜻 using the pre-defined 

set of time-dependent realizations in the disturbances 𝒅(𝑡) to evaluate the worst-case variability for each 

constraint and the cost function. Once the time and the uncertainty realization at the worst-case variability, 

i.e. 𝑡𝑤𝑐  and 𝜁𝑗, are identified, the PSE functions can be developed (see Section 3.2). The PSE sensitivit ies 

are calculated numerically or analytically as discussed in Section 3.2. Typically, second-order PSEs are 

used since they often provide sufficient accuracy for most engineering calculations. The order of the PSE 

depends on the process nonlinearity and also the required accuracy. Increasing the order of PSE is 
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computationally expensive. In order to calculate higher-order PSE additional forward and backward points 

are required. 

Step 4 (Optimization of the PSE-based functions) 

Once the PSE-based functions are constructed for each process constraint (𝑔) and the optimization’s cost 

function (𝛩), a PSE-based optimization problem can be formulated as follows: 

min
𝜼, 𝝀

       ∑𝑤𝑗

𝐽

𝑗=1

𝛩(𝜼)|t𝑤𝑐,𝜻𝑗 + ∑∑𝑀1

𝑆

𝑠=1

𝐽

𝑗=1

𝜆𝑠,𝑗  

Subject to: 

𝑔𝑠𝑃𝑆𝐸(𝜼)|𝑡𝑤𝑐,𝜻𝑗
≤ 𝜆𝑠,𝑗    ;     ∀𝑠 = 1,… , 𝑆  ;   ∀ 𝑗 = 1,… , 𝐽 

𝜼𝑛𝑜𝑚(1− 𝛿) ≤ 𝜼 ≤ 𝜼𝑛𝑜𝑚(1 + 𝛿) 

∑ 𝑤𝑗 = 1
𝐽

𝑗=1
 

λ𝑠,𝑗 ≥ 0 

(3-14) 

where 𝛿 is a user-defined tuning parameter that determines the lower and upper bounds imposed on the 

optimization variables (𝜼). This parameter determines the size of the search space region in the optimization 

variables that will be considered while solving Problem (3-14). The PSE functions will only be valid around 

a nominal region defined by 𝜼𝑛𝑜𝑚 . Thus, 𝛿 specifies the space region for which the PSE-based optimization 

is allowed to explore for the optimal design and controller tuning parameters. 𝜆𝑠,𝑗 is an optimization variable 

used to avoid infeasibility, i.e. it represents the magnitude in the sth constraint function 𝑔𝑠 , and at the jth 

realization in the uncertain parameter, that needs to be added to avoid infeasibility. The PSE-based 

optimization forces 𝜆𝑠,𝑗 to zero to specify a dynamically feasible system. 𝑀1  represents a big number that 

needs to be degrees of magnitude higher than the actual cost function referred to as the big-M method. The 

weight 𝑀1  in the penalty term needs to be large enough to force the feasibility variables ( 𝜆𝑠,𝑗) to be driven 

to zero and therefore minimize the objective function. Conversely, an overly large value of 𝑀1  can create 

convergence problems for the optimization since the calculation of the sensitivity of the cost function to the 

optimization variables may only be dominated by the penalty function term. Hence, 𝑀1  is problem specific 

and needs to be selected in connection with the nature of the problem. 𝑤𝑗  is a weight assigned to the 
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probability of occurrence of the jth realization in the uncertain parameters; this parameter is user-defined 

and can be specified from process experience or historical data.  

The solution obtained from Problem (3-14) aims to determine the search direction in which the optimization 

variables 𝜼 need to be moved (backed-off) to specify an optimal process design and control scheme. As 

discussed earlier, PSE approximations provide inexpensive evaluations of the actual nonlinear behaviour 

of the system. However, the evaluations are valid for a certain vicinity (worst-case scenario) of the nominal 

condition and should be implemented cautiously. Accordingly, instead of defining a model for the entire 

process domain, the behaviour of the system is examined in an iterative manner in which the nominal 

condition is updated. Consequently, an iterative framework is needed in which optimal solutions obtained 

from (3-14) at the current iteration step are used to build a new PSE-based optimization in the subsequent 

iteration. The solution at each iteration represents an improvement in the search direction for the 

optimization variables. This procedure is carried out in an iterative manner until one of the convergence 

criteria described in Step 5 in the algorithm is satisfied. It should be noted that the feasibility variables (𝝀) 

should be zero at the convergence point for the design and control parameters to be dynamically feasible 

under the given process disturbances and parameter uncertainty. If any of the elements in 𝝀 fails to converge, 

then the tuning parameters such as 𝛿 and the order of the PSE functions need to be adjusted and the method 

restarts from Step 1. 

Step 5 (Convergence Criterion) 

A floating average convergence technique is considered here as a stopping criterion. 

𝑇𝑜𝑙𝑓𝑙𝑜𝑎𝑡
Θ =

(∑ Θ𝑣 −
𝑖−𝑁𝑐
𝑣=𝑖−2𝑁𝑐+1

∑ Θ𝑟
𝑖
𝑟=𝑖−𝑁𝑐+1

)

∑ Θ𝑟
𝑖
𝑟=𝑖−𝑁𝑐+1

⁄    (3-15) 

𝛩𝑣  and 𝛩𝑟  represent the PSE cost (𝛩𝑃𝑆𝐸 ) obtained from the solution of Problem (3-14) at the vth and rth 

iterations, respectively. Similarly, for the optimization variables: 

𝑇𝑜𝑙𝑓𝑙𝑜𝑎𝑡
𝜼 =

(∑ 𝜼𝑣 −
𝑖−𝑁𝑐
𝑣=𝑖−2𝑁𝑐+1

∑ 𝜼𝑟
𝑖
𝑟=𝑖−𝑁𝑐+1

)

∑ 𝜼𝑟
𝑖
𝑟=𝑖−𝑁𝑐+1

⁄    (3-16) 



46 

 

where 𝜼𝑣  and 𝜼𝑟 represent optimization variables obtained from the solution of Problem (3-14) at the vth 

and rth iterations, correspondingly. As shown in (3-15), a sampling period 𝑁𝑐  is specified first; then the 

mean of the PSE-based cost function (𝛩𝑃𝑆𝐸 ) obtained from iterations (𝑖 − 2𝑁𝑐 + 1) to (𝑖 − 𝑁𝑐 ) is compared 

to the mean of the same function obtained from iterations (𝑖 − 𝑁𝑐 + 1) to (𝑖). That is, the differences in 

means, i.e. the cost function values, are required to be less than a threshold value (𝜖). If |𝑇𝑜𝑙𝑓𝑙𝑜𝑎𝑡
𝛩 | or 

|𝑇𝑜𝑙𝑓𝑙𝑜𝑎𝑡
𝜼

|
𝑝
  are below a threshold value (𝜖), then STOP, an optimal solution has been found, i.e. 𝜼𝑖+1  .  

Otherwise, set 𝑖 = 𝑖 + 1 and go back to Step 3. Alternatively, the algorithm is also terminated if the 

maximum number of iterations is reached, i.e. 𝑖 ≥ 𝑁𝑖𝑡𝑒𝑟 . Note that the stopping criteria are checked for 𝑖 ≥

2𝑁𝑐 . 

3.4 Case study: wastewater treatment plant 

An existent wastewater treatment plant, located in Manresa, Spain plant was used as a case study to test the 

proposed methodology (Bahakim and Ricardez-Sandoval, 2014; Vega et al., 2014b). A general flowsheet 

of the plant is shown in Figure 3-6. The goal of the process is to regulate the level of the substrate 

concentration in the biodegradable waste stream due to the environmental incentives. The process consists 

of maintaining the substrate concentration (𝑠𝑤 ) in the bioreactor and the dissolved oxygen concentration 

(𝑐𝑤) in the settler at the desired levels in presence of process disturbances corresponding to the change in 

the feed properties (𝑥𝑖 , 𝑠𝑖 , 𝑞𝑖). The control scheme considered for this case study includes two PI controllers 

that regulate the substrate concentration and the dissolved oxygen by adjusting the purge flowrate (𝑞𝑝) and 

the turbine speed (𝑓𝑘), respectively. 
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Figure 3-6: Flowsheet: wastewater treatment plant 

𝑥𝑤  
Biomass concentrations in the 

bioreactor 

𝑥𝑑  ,  𝑥𝑏 , 𝑥𝑟 Biomass concentrations at the 

different layers in the clarifier unit 

𝑠𝑤 Organic substrate concentrations 

in the bioreactor 

𝑐𝑤 Dissolved oxygen concentration 

𝑞𝑝 Purge flowrate 

𝑓𝑘  Turbine speed 

𝑥 𝑖 , 𝑠𝑖  Inlet biomass and organic 

substrate concentration 

𝑞𝑖 Feed flowrate 

𝑞𝑟  Recycle flowrate 

Each of the layers in the decanter unit was assumed to have a uniform concentration across its spatial 

domain, i.e. spatial concentration gradients on each layer were neglected. Table 3-1 provides the model 

equations regarding the rate of the biomass and organic substrate concentrations (mg L)⁄  inside the 

bioreactor as well as the difference in settling rate of biomass concentration among the different layers in 

the decanter.  

Table 3-1: Model equations of the wastewater treatment plant 

Description Equations 

Rate of change in biomass 
𝑑𝑥𝑤
𝑑𝑡

= µ𝑤  𝑦𝑤  
𝑥𝑤 𝑠𝑤
𝑘𝑠 + 𝑠𝑤

− 𝑘𝑑 
 𝑥𝑤

n

𝑠𝑤
− 𝑘𝑐  𝑥𝑤+

𝑞

𝑉𝑟
(𝑥𝑖𝑟−𝑥𝑤) 

Rate of consumption of the organic substrate 
in the reactor 

𝑑𝑠𝑤
𝑑𝑡

=  −µ𝑤  
𝑥𝑤 𝑠𝑤
𝑘𝑠 + 𝑠𝑤

+𝑓𝑑𝑘𝑑 
 𝑥𝑤

n

𝑠𝑤
+𝑓𝑑  𝑘𝑐  𝑥𝑤+ 

𝑞

𝑉𝑟
(𝑠𝑖𝑟 − 𝑠𝑤) 

The difference in settling rate of biomass 
concentration among different layers in the 
decanter  

𝑑𝑥𝑏
𝑑𝑡

=
1

𝐴𝑑 𝑙𝑏
(𝑞𝑖 + 𝑞2 −𝑞𝑝)(𝑥𝑤− 𝑥𝑏) +

1

𝑙𝑏
(𝑣𝑠𝑑 − 𝑣𝑠𝑏) 

𝑑𝑥𝑑
𝑑𝑡

=
1

𝐴𝑑 𝑙𝑑
(𝑞𝑖− 𝑞𝑝)(𝑥𝑏 −𝑥𝑑)−

1

𝑙𝑑
𝑣𝑠𝑑  

𝑑𝑥𝑟
𝑑𝑡

=
1

𝐴𝑑 𝑙𝑟
𝑞2(𝑥𝑏 − 𝑥𝑟) +

1

𝑙𝑟
𝑣𝑠𝑏 

Rate of dissolved oxygen 

𝑑𝑐𝑤
𝑑𝑡

= 𝑘𝑙𝑎  𝑓𝑘 (𝑐𝑠 − 𝑐𝑤) − 𝑘01 µ𝑤   
𝑠𝑤  𝑥𝑤
𝑘𝑠+ 𝑠𝑤

−
𝑞

𝑉𝑟
𝑐𝑤 

Model parameters and their corresponding nominal values are described in Table 3-2. 
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Table 3-2: Process model parameters: wastewater treatment plant 

Symbols Description Value 

µ𝑤  Specific growth rate 0.1824 (hr -1) 

𝑦𝑤  The fraction of converted substrate to biomass 0.5948 
𝑘𝑠  Saturation constant 300 (hr -1) 

𝑘𝑑  Biomass death rate 5x10-5 (hr -1) 
𝑘𝑐  Specific Cellular activity 1.33x10-4 (hr -1) 
𝑘𝑙𝑎  Oxygen transfer into the water constant 0.7 (hr -1) 

𝑘01  Oxygen demand constant 1.00x10-4 (hr -1) 
𝑐𝑠  Oxygen specific saturation 8.0 (hr -1) 

𝑓𝑑  The fraction of death biomass 0.2 

𝑛 Potential model structure error 2 

The following process constraints determine the feasible operational region for this process: 

0.01 ≤
𝑞𝑝(𝑡)

𝑞2(𝑡)
 ≤ 0.2 

0.8 ≤
𝑉𝑟𝑥𝑤(𝑡)+ 𝐴𝑑𝑙𝑟𝑥𝑟(𝑡)

24 𝑞𝑝𝑥𝑟(𝑡)
≤ 15 

𝑠𝑤(𝑡) ≤ 100 

(3-17) 

The first two constraints shown above represent the feasible limits on the ratio between the purge to the 

recycle flowrates and the purge age in the decanter, respectively. Note that all three process constraints 

should be within their feasible limits during operation. For the present case study, the annualized total cost 

of the plant (𝛩𝑤 ) is given by the summation of capital cost, operating cost and variability cost. A dynamic 

variability cost (𝑉𝐶𝑤) is considered and defined as a function of the largest variability observed in the 

substrate concentration throughout the process. One of the key constraints of this process is to maintain the 

substrate concentration below a certain threshold in the outlet stream (Equation 3-17). Since the substrate 

contains toxic components, the surge in the concentration from a specific level will lead to high penalty 

costs. Based on the above, the annual total cost (𝛩𝑤 ) for this process is as follows: 

𝛩𝑊  =  0.16(3500𝑉𝑟  + 2300𝐴𝑑)⏟                
𝐶𝐶𝑤

+ 870(𝑓𝑘  + 𝑞𝑝)⏟        
𝑂𝐶𝑤

+ 105𝑠𝑤𝑚𝑎𝑥(𝑡)⏟        
𝑉𝐶𝑤

 
(3-18) 

where 𝑠𝑤𝑚𝑎𝑥  (𝑡) is the largest variability in the substrate concentration at any time 𝑡. Note that a higher 

variable cost is assigned to the variability in the substrate concentration. For the present case study 

optimization variables are design variables and PI controller tuning parameters as follows: 
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𝜼 = [𝐴𝑑  ,𝑉𝑟 , 𝑠𝑤𝑠𝑝  ,  𝑐𝑤𝑠𝑝, 𝐾𝑐1 , 𝐾𝑐2 , 𝜏𝑖1 , 𝜏𝑖2]. (3-19) 

where the volume of the reactor (𝑉𝑟) and cross-sectional area for the decanter (𝐴𝑑) are design variables.  

Substrate set-point (𝑠𝑤𝑠𝑝), controller gain (𝐾𝑐1), and time constant (𝜏𝑖1) correspond to the controller that 

regulates the substrate (𝑠𝑤 ) whereas 𝑐𝑤𝑠𝑝 , 𝐾𝑐2, and 𝜏𝑖2  correspond to the dissolved oxygen (𝑐𝑤) control 

loop. 

The optimal design and control problem presented above for the wastewater treatment plant was solved 

under different scenarios and conditions. In addition, the effect of key parameters for the present 

methodology is studied. Each of these analyses is described next. 

3.4.1 Computation of the sensitivities 

The aim of this scenario is to compare the performance of the methodology using an analytical and a 

numerical approach for the computation of the PSE sensitivity terms, i.e. the PSE model coefficients as 

shown in Section 3.2. A combination of step changes in the disturbances was considered shown in (3-20). 

The first realization in the disturbances corresponds to the disturbances’ nominal values. Each combination 

of step changes in the disturbances was performed every 2,000 seconds. In the analysis, the maximum 

number of iterations 𝑁𝑖𝑡𝑒𝑟  was set to 200 whereas the floating average convergence criteria (𝜖) described 

in Step 5 of the algorithm was set to 1x10-2 for the sampling period of 𝑁𝑐 = 20. To simplify the analysis,  

the first-order approximation was used.  

As shown in Figure 3-7 and Table 3-3, the optimal cost obtained when gradients were calculated 

numerically and analytically was found to be similar (difference of around 0.5%). This result suggests that 

the gradients calculated from the numerical approach are as efficient as those calculated analytically 

𝒅𝟏(𝑡): 𝑞𝑖(
m3

hr
) = [500, 480 ,520, 480, 500 ,520 ,520] 

𝒅𝟐(𝑡):  𝑥𝑖 (
mg

L
) = [366 ,371 ,361, 366, 371 ,366, 366] 

𝒅𝟑(𝑡):  𝑠𝑖 (
mg

L
) = [80 ,75, 85 ,80 ,75,85 ,80] 

(3-20) 
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provided that the step sizes (Δ𝜂) in the finite-difference sensitivity calculation are suitable. The system 

converged after 42 iterations for both the cases. 

 

Figure 3-7: PSE-based cost function using analytical and numerical sensitivities, wastewater treatment 

plant 

Table 3-3: PSE-based cost function using analytical and numerical sensitivities 

 PSE-based approach Formal 

Integration Analytical Numerical 

Optimization variable 

Area (m2) 1,366.7 1,329.7 1,441.2 
Volume (m3) 1,134.5 1,160.9 1,186.8 
𝑠𝑤𝑠𝑝  93.6 93.6 93.14 

𝑐𝑤𝑠𝑝  0.009 0.015 0.023 

𝐾𝑐1  0.09 0.16 0.32 

𝐾𝑐2  0.01 0.03 0.07 
𝜏𝑖1  2.86 4.27 6.54 

𝜏𝑖2  13.98 9.12 10.1 

Total Cost ($/a) 1.7893 x106 1.7834 x106 1.9376 x106 

Iterations 42 42 - 

Total CPU Time (s) 332 134 543 

As shown in Figure 3-7, a back-off of about 35% in terms of the total cost (𝛩𝑤 ) was obtained for this case 

study and represents the amount of back-off needed to accommodate the process dynamics due to 

disturbances. All feasibility variables (𝝀) for both cases converged to zero (not shown for brevity), which 
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indicates that the final optimal design and control scheme obtained by the present approach is dynamically 

feasible under the given set of process disturbances.  

 

Figure 3-8: Cost function for different step sizes (Δ𝜂) 

As shown in Table 3-3, the total CPU time required when the analytical approach was used was found to 

be more than twice the numerical approach. This is due to the fact that for the analytical approach a larger 

system of differential equations needs to be solved compared to the numerical approach. Note that the step 

size (Δ𝜂) used in the finite-difference method while calculating the numerical sensitivities is chosen offline. 

If the step size (Δ𝜂) is not tuned properly, an optimal or even a dynamically feasible solution may not be 

achieved. No step size is required using the analytical method, which is one of the advantages of calculating 

the gradients analytically at the expense of higher computational costs other than the accuracy. The step 

size (Δ𝜂) was set to 0.005 for the results shown in Table 3-3. As shown in Figure 3-8, the method failed to 

converge when a larger step size is used (Δ𝜂=1x10-1); this is because the sensitivity gradients calculated 

may not be accurate around the worst-case variability point for the constraints and the cost function. On the 

other hand, when a very small step size is chosen (Δ𝜂1x10-7) the gradient calculation may capture noise and 

also failed to converge to an optimal solution due to the miscalculation of the PSE sensitivity terms. 
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Therefore, tuning the step size to a proper value while using the numerical method to calculate the gradients 

is key to compute representative and accurate PSE functions of the system. In the analytical method, the 

number of ODE’s increases significantly as the order of approximation is increased as discussed in Section 

3.2.2.  The design obtained from the basic back-off approach was validated using the formal integration 

approach. Formal integration of design and control is solved using a sequential dynamic optimization 

framework (Problem 2-1) in MATLAB. As shown in Table 3-3, the results obtained from the PSE-based 

method converge to a somewhat similar optimal design as that obtained from the formal integration process 

(less than 5% difference). However, the computational cost obtained from the proposed back-off approach 

is around 50% less as compared with the formal integration method. This result provides a guideline on 

how the total CPU time scales up with an increase in the problem size and the degree of nonlinearity.  

3.4.2 Effect of tuning parameter 𝜹 

The effect of the tuning parameter (𝛿) on the optimal process design and control scheme configuration was 

studied. Four different 𝛿 values were chosen offline and compared, i.e. 𝛿 = {0.05, 0.08, 0.1 and 0.13}; 

second-order PSE approximations were employed to represent the cost function and process constraints in 

this study. The sensitivities were calculated using the numerical technique. As shown in Figure 3-9, the 

system converged after 82 and 62 iterations when 𝛿 was set to 0.05 and 0.08, respectively. Although the 

algorithm required a larger number of iterations to converge when 𝛿=0.05, this specification also returned 

a lower cost (1.86x106 $/a) when compared to that achieved with 𝛿=0.08 (1.93x106 $/a). The system did 

not converge after 200 iterations when 𝛿 was set to 0.1 and 0.13. In those cases, PSE functions may no 

longer be valid for wider search space regions. Since the lowest cost was obtained when 𝛿 =0.05, this is 

considered as an appropriate value for the present case study. Note that further decreasing the search space 

for the current case-study did not create significant changes in the obtained solution. Noteworthy, the order 

of the PSE functions can have an effect on 𝛿 value; however, their influence may not significantly improve 

convergence while using overly large 𝛿 values since the PSE approximations heavily rely on the fact that 

they are only valid around a nominal point. Thus, allowing the PSE optimization problem to move away 
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significantly far from the region where the PSE descriptions are valid by setting larger 𝛿 values may still 

result in inaccurate calculations of the back-off. For that reason, the order of PSE was studied to explore 

the impact on the convergence when using different 𝛿 values. As expected, increasing the order of PSE did 

not improve the convergence considerably while it was checked for first and second-order PSE, i.e. 

convergence criteria were met at roughly the same iterations (i.e. system converged after142 iterations for 

both first and second-order PSE) and total cost for a fixed 𝛿 value (i.e. 0.09) was found to be similar (i.e. 

within 0.2% error of tolerance) when using and first and second-order PSE approximations. As a 

consequence, the selection of this parameter is problem specific and also depends on the region that is being 

explored at each iteration step.  

 

Figure 3-9: Cost function convergence chart for different tuning parameters 𝛿 

In summary, a new back-off approach for the integration of design and control of chemical processes has 

been presented using PSE functions. The PSE functions represent the actual process constraints and the 

cost function, which are explicitly defined in terms of the optimization variables, at the worst-case scenario 

and at a particular realization in the uncertain parameters. The present methodology is a model-based 

approach and assumes that a dynamic process model is available for simulations. However, the model might 
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associate with uncertainties and disturbances. The dynamic model is required for the sensitivity 

calculations. A wastewater treatment plant has been presented to evaluate the performance and benefits of 

the proposed method. A comparison between the computation of the PSE sensitivity terms using an 

analytical and a numerical approach was performed. The results show that both methods are equally 

efficient to calculate the PSE sensitivity terms; however, proper tuning of the finite-difference calculation 

is required offline. Higher computational costs were observed from the analytical calculation when 

compared with the numerical technique as more ODE’s have to be solved in the first. Most of the CPU time 

required by the present approach is spent on the computation of the PSE sensitivity terms; thus, the total 

CPU time is expected to increase as more complex and highly nonlinear systems are considered. The 

proposed basic back-off approach considers deterministic uncertainty and disturbance profile and is the 

foundation of the proposed back-off algorithm which works efficiently for integration of design and control 

of small- to medium-scale processes. 
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4 Stochastic back-off approach 

In modeling analysis, uncertainty can emerge due to multiple sources such as model structure error or the 

lack of knowledge in the actual model parameter values, i.e. parameter uncertainty (see Section 2.2.1). All 

types of uncertainties occur often in chemical engineering applications. Handling uncertainty becomes 

critical when the violation of constraints involves environmental or safety restrictions. A current challenge 

in simultaneous design and control is the specification of process designs that can accommodate stochastic 

descriptions of uncertain parameters and disturbances. In this regard, Tsay et al. (2017) formulated a 

dynamic optimization where the uncertain parameters are treated as dynamic disturbance variables with 

continuous pseudo-time trajectories. Wang and Baldea (2014a) used pseudo-random multilevel signals to 

impose uncertainty in an identification-based optimization for the optimal design of dynamic systems. 

Those same authors extended the approach using a control system with a switching control law at the design 

stage which allows obtaining designs at user-defined conservativeness (Wang and Baldea, 2014b). Koller 

et al. (2018) determined back-off terms to compensate for the effect of stochastic uncertainty and 

disturbances to provide an optimal solution for integration of design, control, and scheduling for 

multiproduct systems. Few studies have performed a worst-case variability distribution analysis for 

simultaneous design and control using random realizations in the disturbances (Bahakim and Ricardez-

Sandoval, 2014; Ricardez-Sandoval, 2012). In those approaches, full compliance of process constraints 

may result in overly conservative designs since the worst-case scenario may not likely occur during 

operation. In most engineering applications, a high probability of satisfaction is often required for some 

constraints, e.g. safety restrictions, whereas others may not be critical, e.g. liquid level control in storage 

tanks. Therefore, performing an integrated stochastic-based design and control approach may result in more 

economically attractive designs compared with the worst-case scenario approach. 

This chapter aims to present a new stochastic back-off technique for integration of design and control that 

can accommodate probabilistic (stochastic)-based uncertainties and disturbances. The stochastic back-off 
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approach is on the basis of the basic back-off approach presented in Chapter 3. The occurrence of the 

uncertainty for the basic back-off approach is limited to the finite realizations in the uncertainty and 

disturbances. The key idea in this chapter is to represent variability in the process constraints and objective 

function by means of statistical terms, e.g. confidence intervals. That is, PSE-based functions of the 

constraints specified at a user-defined coverage probability are explicitly identified in terms of the 

optimization variables in the presence of stochastic realizations in the uncertainty and disturbances. The 

results of this chapter have been published in (Rafiei-Shishavan and Ricardez-Sandoval, 2017; Rafiei and 

Ricardez-Sandoval, 2018). 

In the current chapter, the methodology of the stochastic back-off is presented first. Later, the results of the 

implementation of the approach to the wastewater treatment plant are discussed. 

4.1 Methodology  

This section describes the stochastic back-off methodology introduced in this PhD research. Similar to basic 

back-off, the current stochastic approach aims to search for the optimal design and control parameters by 

solving a set of optimization problems using mathematical expressions obtained from PSE. PSE functions 

of statistical terms of the expected cost and process constraints are developed around the nominal conditions 

in the design variables and controller tuning parameters. Different types of statistical terms can be used to 

represent the expected cost and constraints, e.g. expected value, standard deviation, variance and confidence 

interval. 

The present stochastic back-off methodology aims to find the optimal process design and control scheme 

under stochastic-based uncertainty and disturbances in an iterative manner. A schematic of the iterative 

stochastic back-off approach algorithm proposed in this chapter is shown in Figure 4-1. Each of the steps 

in the algorithm is described next.  
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Figure 4-1: Algorithm for the stochastic back-off methodology 

Step 1 (Algorithm Initialization): 

Similar to Step 1 in Chapter 3, specify the order of the PSE functions to be used in the analysis (i.e. the 

number of terms in the PSE function), upper and lower bounds for each optimization variable (𝜼), the 

maximum number of iterations (𝑁𝑖𝑡𝑒𝑟 ), the search space in the decision variables (𝛿), and a tolerance 

criterion (𝜖) that will be used to terminate the algorithm. In addition to those mutual parameters, define the 

acceptable tolerance for the convergence of the statistical terms (𝜖𝑀𝑐 ) and a minimum number of 

realizations (𝑁). Set the iteration index to 𝑖 = 1. 
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In the current work, the uncertain parameters and time-varying disturbances are considered as random 

variables correlated by probability distribution functions 𝑃𝐷𝐹(𝜶𝜻) and 𝑃𝐷𝐹(𝜶𝑑), respectively; where 𝜶𝜻 

and 𝜶𝑑  represent the statistical parameters of the probability distribution (e.g. mean and variance for normal 

distribution or upper and lower bounds for uniform distribution). Historical data can be used to characterize 

the variability in the uncertain parameters. The mathematical description of the uncertain parameters and 

disturbances is as follows: 

𝜻 = {𝜻 |𝜻~𝑃𝐷𝐹(𝜶𝜻)} 

𝒅(𝑡) = {𝒅|𝒅~𝑃𝐷𝐹(𝜶𝒅)}; 0 < 𝑡 < 𝑡𝑓 

(4-1) 

Step 2 (Optimal steady-state design without uncertainty and disturbances): 

As discussed in Chapter 3, the result of this optimization problem (𝜼0) is used as the starting (initial) point 

to search for the optimal dynamically operable design that can accommodate stochastic realizations in the 

uncertain parameters and disturbances.  

Step 3 (Develop PSE-based functions: statistical terms): 

As shown in (4-1), this algorithm assumes that the disturbances are stochastic time-varying random 

variables. Monte Carlo (MC) sampling was employed for the propagation of the uncertain parameters and 

disturbances into the system and the corresponding identification of the PSE functions for the constraints 

(ℎ) and cost function (𝛩). Two types of statistical terms have been considered to capture the behaviour of 

the cost and constraint functions, i.e. variance and confidence interval. If confidence interval has been 

chosen to develop the PSE-based functions, the procedure for Step 3 is as follows:  

The key idea is to develop PSE-based functions that describe the process variability in terms of the 

confidence interval for process constraints (ℂΙ𝜌(𝑔𝑃𝑆𝐸)) and the expected value for the cost function 

(𝔼(𝛩𝑃𝑆𝐸 )). The confidence interval (ℂΙ) is estimated from data obtained from simulations. The percentile 

bootstrap method has been used to compute the confidence interval from the simulated data (Davison and 

Hinkley, 1997). In order to ensure that the estimated confidence intervals are within a reasonable level of 
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accuracy, a systematic procedure has been considered to ensure that a sufficiently large number of MC 

samples are being used in the computation of these estimates, (see steps a through e below). Note that the 

confidence interval calculation is independent of the distribution of the process constraints since they are 

estimated from data collected from the simulations. Based on the above, MC realizations are generated for 

the disturbance (𝒅) and uncertain parameters (𝜻) and are used as inputs for simulation of the dynamic model 

around a nominal condition in the optimization variables (𝜼𝑛𝑜𝑚 ). The number of MC samples required to 

describe the probability distribution in the observables is determined based on the desired accuracy in the 

estimation and the available computational budget to perform the uncertainty propagation. In this regard, 

selecting an appropriate number of MC realizations is critical to identify the key statistical properties of the 

cost function and process constraints. An iterative approach is therefore employed in this work to determine 

the required number of MC samples. This procedure is as follows: 

a) Specify a minimum number of realizations (N) and a tolerance criterion to check for convergence 

on the estimation of the statistical terms in the cost function and constraints due to uncertainty and 

disturbances (𝜖𝑀𝐶 ). Also, initialize an index (𝑘), which keeps track of the batches of the MC 

samples, i.e. set 𝑘 = 1.  

b) Using the descriptions provided in (4-1), generate a batch of MC samples that will contain N 

realizations of the uncertain parameters and disturbances. 

c) For each realization included in the batch, simulate the system using fixed (nominal) values in the 

optimization variables (𝜼𝑛𝑜𝑚 ). The N simulation results obtained from the current MC samples are 

collected in a set 𝑅. These results are appended to simulation results from past MC sample 

realizations, i.e. 

𝑅𝑘 = {𝑅,𝑅𝑘−1} (4-2) 

d) where 𝑅𝑘−1 represent the simulation results collected from 𝑘 = 1 to 𝑘 − 1.  
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e) Calculate the statistical terms of cost function and process constraints for the set 𝑅𝑘 . That is,  

compute confidence intervals ℂ𝛪𝑅𝑘
𝜌𝑠 (𝑔𝑠) at the desired coverage probability (𝜌𝑠) for the process 

constraints (𝑔𝑠). 

f) Compare statistical terms of the current set (𝑅𝑘 ) with the previous set (𝑅𝑘−1) using the following 

formulation: 

𝑇𝑜𝑙𝑀𝐶 = (ℂ𝛪𝑹𝑘
𝜌𝑠(𝑔𝑠)− ℂ𝛪𝑹𝑘−1

𝜌𝑠 (𝑔𝑠)) ℂ𝛪𝑹𝑘
𝜌𝑠(𝑔𝑠)⁄  (4-3) 

If 𝑇𝑜𝑙𝑀𝐶 falls below a user-defined threshold (𝜖𝑀𝐶 ), then STOP, convergence in the statistical terms have 

been obtained. Otherwise, update 𝑘 = 𝑘 + 1 and go back to Step b), i.e. generate another batch of N MC 

samples and add it to the previous set of samples. This procedure is repeated until the tolerance (𝜖𝑀𝐶 ) is 

satisfied, which indicates that the statistical characteristics of the process constraints have converged. Note 

that 𝑘 represents the index that keeps track of the number of N MC samples required by this method to 

comply with the tolerance criterion (see Step e) above). 

The addition of multiple sources of uncertainty (each with their own probability distribution function) will 

directly impact the computational costs of the present approach. To achieve a satisfactory accuracy in the 

statistical terms, e.g. confidence interval in the cost function and process constraints, a larger set of 

combinations in the different realizations of the multiple uncertain parameters are needed. Hence, the 

number of required MC samples that need to be simulated will be increased significantly thus requiring 

additional computational resources. Note that the procedure described above is performed around a nominal 

condition in the optimization variables, i.e. 𝜼𝑛𝑜𝑚 . Hence, the procedure needs to be repeated for forward 

and backward points assigned to each optimization variable while keeping the rest of the optimization 

variables constant and equal to their nominal values as shown in Figure 4-2. Calculation of forward and 

backward points is required in order to obtain sensitivity terms in the PSE for the constraints and cost 

function at the corresponding confidence interval for the specified coverage probability.  
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Figure 4-2: Simulations for the nominal condition, forward and backward points using uncertainties and 

disturbances realizations as input 

Finite-differences have been used in this work to calculate the PSE sensitivities using data collected from 

simulations. For example, the first-order sensitivity term of the confidence interval of the sth constraint at a 

coverage probability 𝜌𝑠  in terms of the pth decision variable can be calculated as follows: 

∂ℂΙ𝜌𝑠(𝑔𝑠)

∂𝜂𝑝
|
 𝑑(𝑡),𝜻 

= (ℂΙ𝜌𝑠(𝑔𝑠(𝜂𝑝
+))|𝑑(𝑡),𝜁 − ℂΙ

𝜌𝑠(𝑔𝑠(𝜂𝑝
−))|𝑑(𝑡),𝜁) 2Δ𝜂𝑝⁄  (4-4) 

where ℂΙ𝜌𝑠(𝑔𝑠 ) is the confidence interval of sth constraints with the coverage probability of 𝜌𝑠 ; Δ𝜂𝑝  

represents the difference between the forward points (𝜂𝑝
+) and the backward points (𝜂𝑝

−). Note that tuning 

the step size offline is required to compute representative PSE sensitivities. Similarly, the second-order 

sensitivity term can be calculated as follows: 

∂2ℂΙ𝜌𝑠(𝑔𝑠)

∂𝜂𝑝𝜕𝜂𝑝
|
 𝒅(𝑡),𝜻 

= (ℂΙ𝜌𝑠(𝑔𝑠(𝜂𝑝
+))|𝒅(𝑡),𝜻 −2ℂΙ

𝜌𝑠(𝑔𝑠(𝜂𝑛𝑜𝑚))|𝒅(𝑡),𝜻 +ℂΙ
𝜌𝑠(𝑔𝑠(𝜂𝑝

−))|𝒅(𝑡),𝜻) Δ𝜂𝑝
2⁄  (4-5) 

Higher-order sensitivity terms can be identified in a similar fashion at the expense of higher computational 

costs since additional forward and backward points around the nominal point are required. Accordingly, 
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mathematical expressions for the expected value of the cost function (𝛩) and confidence interval of the sth 

constraint functions (𝑔) using PSE approximations can be formulated as follows: 

𝔼(𝛩𝑃𝑆𝐸(𝜼))|𝒅(𝑡),𝜻 = 𝔼(𝛩(𝜼𝑛𝑜𝑚))|𝒅(𝑡),𝜻+∑
1

𝑙!
𝛻𝑙𝔼(𝛩(𝜼))|

𝒅(𝑡),𝜻,𝜼𝑛𝑜𝑚
(𝜼− 𝜼𝑛𝑜𝑚)

𝑙

𝑙=1

 (4-6) 

ℂΙ𝜌𝑠(𝑔𝑠𝑃𝑆𝐸(𝜼))|𝒅(𝑡),𝜻
= ℂΙ𝜌𝑠(𝑔𝑠(𝜼𝑛𝑜𝑚))|𝒅(𝑡),𝜻+∑

1

𝑙!
∇𝑙ℂΙ𝜌𝑠(𝑔𝑠(𝜼))|𝒅(𝑡),𝜻,𝜼𝑛𝑜𝑚

(𝜼− 𝜼𝑛𝑜𝑚)
𝑙

𝑙=1

 (4-7) 

where 𝔼(𝛩𝑃𝑆𝐸 (𝜼)) is the PSE expansion of the expected value of the cost in terms of optimization variables 

(𝜼). Likewise, ℂΙ𝜌𝑠(𝑔𝑠𝑃𝑆𝐸 (𝜼)) is the PSE expansion of the confidence interval the of the sth constraint with 

the coverage probability of 𝜌𝑠 ; ∇
𝑙𝔼(𝛩(𝜼)) and ∇𝑙ℂΙ𝜌𝑠(𝑔𝑠(𝜼)) represent the lth sensitivity terms of the 

expected value of the cost function (Θ) and confidence interval of the sth constraint (𝑔) with the coverage 

probability of 𝜌𝑠 , respectively. Note that the gradient terms are assessed at the nominal condition of 

optimization variables (𝜼𝑛𝑜𝑚 ) due to random realizations in the disturbances (𝒅(𝑡)) and uncertain 

parameters (𝜻). Also, note that the expected value of the cost function is evaluated in the presence of 

stochastic realizations in the time-varying disturbances and time-invariant uncertainties. Admittedly, 

adding more decision variables results in higher computational expenses as it involves another set of 

sensitivity calculations, i.e. at nominal (𝜼𝑛𝑜𝑚 ) forward (𝜂𝑝
+) and backward (𝜂𝑝

−) points, which would require 

MC simulations for each of these points. 

Another alternative is to describe the process variability in terms of the expected value and variance 

/standard deviation. If variance has been chosen as the statistical term, calculation of Step 3 Equation (4-7) 

is as follows: 

The expected value and variance of the process constraints in the time domain are computed from the 

simulation of 𝑁 MC samples and used to build the corresponding PSE functions. This procedure is then 

repeated for calculation of the variance of forward and backward points assigned to each optimization 

variable. Sensitivity terms for the expected value and variance are then calculated using the data collected 
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from simulations. Accordingly, mathematical expressions for the standard deviation sth constraint functions 

(𝑔𝑠) using PSE approximations can be formulated as follows: 

𝜎(𝑔𝑠𝑃𝑆𝐸(𝜼))|𝒅(𝑡),𝜻
= 𝜎(𝑔𝑠(𝜼𝑛𝑜𝑚))|𝒅(𝑡),𝜻 +∑

1

𝑙!
∇𝑙𝜎(𝑔𝑠(𝜼))|𝒅(𝑡),𝜻,𝜼𝑛𝑜𝑚

(𝜼− 𝜼𝑛𝑜𝑚)
𝑙

𝑙=1

 (4-8) 

where ∇𝑙𝜎(𝑔𝑠(𝜼)) are the lth order gradients of the expected value and standard deviation of constraint (𝑔𝑠). 

Note that a similar convergence approach (steps a through e) should be taken to ensure convergence of the 

standard deviation as discussed above.  

Step 4 (Optimization of the PSE-based functions): 

The PSE-based functions constructed in the previous step for the process constraints and the cost function 

are embedded within a PSE-based optimization problem, i.e. 

   𝔼(𝛩𝑃𝑆𝐸(𝜼)|𝒅(𝑡),𝜻)+∑ 𝑀1 𝜆𝑠
𝑆

𝑠
𝜼,𝝀 
min  

Subject to: 

ℂΙ𝜌𝑠(𝑔𝑠𝑃𝑆𝐸(𝜼))|𝒅(𝑡),𝜻
≤ 𝜆𝑠  ,∀𝑠 = 1,… , 𝑆 

𝜼𝑛𝑜𝑚(1− 𝛿) ≤ 𝜼 ≤ 𝜼𝑛𝑜𝑚(1 + 𝛿) 

𝜆𝑠 ≥ 0 , ∀𝑠 = 1,… , 𝑆 

(4-9) 

where 𝜆𝑠  is an optimization variable used to avoid infeasibility in the sth constraint function (𝑔𝑠𝑃𝑆𝐸 ). The 

weight 𝑀1  is a sufficiently large penalty term use to drive the feasibility variables (𝜆𝑠) to zero and enable 

the specification of a dynamically feasible system that minimizes the expected value of the cost function. 

This method also referred to as the big-M method, is used here to ensure feasible solutions in Problem (4-

9), particularly in the first iterations where the process constraints cannot accommodate dynamic feasibility. 

Setting values close the unity for the coverage probability (𝜌𝑠) will seemingly reduce the possibility of 

violation of the constraints at the expense of specifying more conservative designs. As mentioned above, 

the PSE functions are only valid around the vicinity of nominal conditions in the decision variables (𝜼𝑛𝑜𝑚 ); 

hence, the search space in the optimization variables is restricted by means of δ, which aims to specify a 

region where the PSE approximations remain valid. Accordingly, the present method requires an iterative 
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approach to identify an optimal design and control scheme that can comply with the process constraints at 

user-defined coverage probabilities. As shown in Figure 4-1, the solution of Problem (4-9) is used as the 

basis to search for a new direction in the optimization variables at each iteration step in the algorithm. 

Alternatively, if the variance is chosen as the statistical term, PSE-based optimization problem will be as 

follows: 

    𝔼(𝛩𝑃𝑆𝐸(𝜼)|𝒅(𝑡),𝜻)+ 𝜅 𝜎(𝛩𝑃𝑆𝐸(𝜼)|𝒅(𝑡),𝜻)+∑ 𝑀1 𝜆𝑠
𝑆

𝑠
𝜼,𝝀 
min  

Subject to: 

𝔼(𝑔𝑠𝑃𝑆𝐸(𝜼)|𝒅(𝑡),𝜻) + 𝛾𝑠  𝜎(𝑔𝑠𝑃𝑆𝐸(𝜼)|𝒅(𝑡),𝜻) ≤ 𝜆𝑠  ,∀𝑠 = 1,… , 𝑆 

𝜼𝑛𝑜𝑚(1− 𝛿) ≤ 𝜼 ≤ 𝜼𝑛𝑜𝑚(1 + 𝛿) 

𝜆𝑠 ≥ 0 , ∀𝑠 = 1,… , 𝑆 

(4-10) 

where δ, 𝑀1 , and 𝜆𝑠  are similar to Problem (4-9). 𝜅 and 𝛾𝑠  are weights assigned to the cost function and sth 

process constraint and are aimed to account for process variability as a function of the spread observed in 

the distribution of the cost function and process constraints. For example, setting 𝛾𝑠=1 suggests that the sth 

constraint should be satisfied at least in 83.9 % of the time (under the assumption of a normal distribution 

in 𝑔𝑠). Setting 𝜅 and 𝛾𝑠  to large values will surely reduce violation of the constraints at the expense of 

specifying more conservative designs. In general, the distributions for the constraints and cost function are 

expected to be non-Gaussian since process models are typically nonlinear. Thus, this approach is only an 

approximation to the actual distribution while using the above-mentioned weights.  

Step 5 (Convergence Criterion): 

A floating average convergence technique, i.e. the difference in means, is employed as a stopping criterion  

similar to the basic back-off approach in Chapter 3. If the criterion is satisfied, then STOP, an optimal 

solution has been found; otherwise, update the nominal condition and go to Step 3. Table 4-1 lists the tuning 

parameters that are required by the present methodology and their recommended values. 
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Table 4-1: Tuning parameters, Stochastic back-off methodology 

Tuning parameter Description  Recommended values1 

𝑁𝑐 Convergence examination period, the higher the value the longer to 
check for convergence of the back-off algorithm 

10-30 

𝑁𝑖𝑡𝑒𝑟 Maximum number of iterations allowed in the stochastic back-off 

algorithm 

≥300 

𝛿 Size of the search space region of the optimization variables at each 
iteration step. PSE functions are expected to be representative of the 

system’s variability within this region 

0.05-0.15 

𝜖 Termination tolerance for the stochastic back-off algorithm ≤1x10-3 

𝜖𝑀𝐶 Termination tolerance for the convergence of the statistical terms ≤1x10-3 

PSE order Order of the PSE expansion. Problem-specific and directly correlated to 
the nonlinearity of the problem under consideration 

1, 2  

Δ𝜼 Step size considered to estimate the sensitivity of the cost function and 
process constraints with respect to the optimization variables 

0.01𝜼𝑛𝑜𝑚-0.02𝜼𝑛𝑜𝑚 

𝑀 Penalty term that forces the system to move within the dynamic 
feasibility region 

103𝛩-105 𝛩 

4.2 Results  

The wastewater treatment plant explained in Chapter 3 (Section 3.4) is used as a case study. Table 4-2 

shows the cost function and the process constraints that determine the feasible operating region for this 

process. As shown in Table 4-2, a variability cost (𝑉𝐶𝑤) is considered to maintain the substrate 

concentration near a threshold (i.e. 100 mg/L) since any deviation in the substrate level leads to high penalty 

costs. While a positive deviation may impose a municipality penalty for the excessive deposition of this 

organic material to the environment, a drop in the substrate concentration below the threshold reduces plant 

performance and adversely affects the process economics. Note that all the three process constraints 

indicated in Table 4-2 must remain feasible during operation (up to a certain confidence level); hence, they 

are considered as dynamic path constraints. 

                                                 

1 Recommended from previous experiences with different engineering applications. 
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Table 4-2: The objective and dynamic path constraints of the wastewater treatment plant 

Description Equations 

Cost function: 

 𝐶𝐶𝑤 : capital cost 

 𝑂𝐶𝑤 : operating cost 

 𝑉𝐶𝑤 : variability cost 

𝛩𝑊  =  0.16(3500𝑉𝑟  + 2300𝐴𝑑)⏟                
𝐶𝐶𝑤

+870(𝑓𝑘  + 𝑞𝑝)⏟        
𝑂𝐶𝑤

+105(100 − sw)
2⏟          

𝑉𝐶𝑤

 

Constraints: 

 Maximum allowable substrate concentration 
in the treated water that leaves the decanter 

 

 Minimum and maximum allowed ratio 

between the purge to the recycle flowrates 
 
 

 

 Allowed purge age in the decanter 

 

𝑠𝑤
𝑢𝑝(𝑡) ≤ 100 

 

R1
𝑙𝑜: 0.01 ≤

𝑞𝑝(𝑡)

𝑞2(𝑡)
  

R1
𝑢𝑝
: 
𝑞𝑝(𝑡)

𝑞2(𝑡)
≤ 0.2 

 

R2
𝑙𝑜: 0.8 ≤

𝑉𝑟𝑥𝑤(𝑡) + 𝐴𝑑𝑙𝑟𝑥𝑟(𝑡)

24 𝑞𝑝𝑥𝑟(𝑡)
 

R2
𝑢𝑝
:
𝑉𝑟𝑥𝑤(𝑡) + 𝐴𝑑𝑙𝑟𝑥𝑟(𝑡)

24  𝑞𝑝𝑥𝑟(𝑡)
≤ 15 

Optimization variables [𝐴𝑑 , 𝑉𝑟  , 𝑠𝑤𝑠𝑝 , 𝑐𝑤𝑠𝑝 ,𝐾𝑐1 ,𝐾𝑐2 , 𝜏𝑖1 , 𝜏𝑖2] 

The stochastic back-off methodology presented in Section 4.1 has been implemented on the wastewater 

treatment plant. Second-order PSE expansions were used in the current analysis. In the present study, the 

accuracy of the PSE sensitivities was initially verified offline through simulations; similarly, they have 

been validated at the optimal condition for each scenario. This checking procedure can be embedded in the 

methodology to determine if, at each step in the iteration of the present back-off technique, the PSE 

expansions are constructed in a way that complies with the desired user-defined accuracy. This 

implementation requires higher computational efforts and is beyond the scope of this chapter. 𝛿 was set to 

0.1 whereas the convergence criteria for the back-off technique were set to 𝜖 =1x10-3. The computational 

experiments performed in this research were conducted using MATLAB2017a® on a computer running 

Microsoft Windows Server 2016 standard. The computer was equipped with 16 GB RAM and Intel® Xeon® 

CPU E5-2620 v4 @ 2.10GHz. To explore the potential benefits and limitations of the present method, the 

optimal design of the wastewater treatment plant was performed under different scenarios. Section 4.2.1 

presents a comparison on the statistical terms that can be used in the present methodology to assess process 

variability under uncertainty, i.e. confidence intervals and expected value and variance. Section 4.2.2 

explores the performance of the methodology using different sources of uncertainty, and with different 
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probability distribution functions. The effect of using different weights on the coverage probability of the 

constraints is discussed in Section 4.2.3 whereas Section 4.2.4 evaluates the computational cost of the 

present approach and discusses the scalability of the methodology.  

4.2.1 Effect of statistical terms 

As previously stated, different statistical terms can be used to represent the probability of the cost function 

and process constraints due to probabilistic-based descriptions for the disturbances and uncertain 

parameters in the PSE-based optimization problem. Two basic approaches are currently being adopted in 

the stochastic back-off methodology. Primarily, statistical terms of the cost function and process constraints 

in the PSE-based optimization problem were estimated using expected values and variances. However, the 

nonlinearity of the system that produces non-Gaussian distributions in the process constraints may result in 

poor estimations of expected value and variances. The issue of inaccurate estimation of probability 

characteristics due to the Gaussian distribution assumption can be avoided using the confidence intervals 

of process constraints at certain coverage probabilities. Both methods have been implemented on the 

wastewater treatment plant case study. As indicated in Table 4-3, the trajectory profile for the disturbances 

is assumed to be a series of step changes while magnitudes are described by a normal probability 

distribution function with a pre-specified mean and variance. In the case of using expected value and 

variance (Sc1), the constraints shown in Table 4-3 for this case study are required to be satisfied at the 

probability of 𝜇 + 3𝜎 , i.e. 0.99 whereas in the present approach, coverage probability of confidence 

intervals for the constraints was explicitly set to 0.99 (Sc2). 
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Table 4-3: Effect of using different statistical terms in the stochastic back-off methodology 

 Sc1 Sc2 

Confidence weights All constraints @ 𝝁 + 𝟑𝝈 All constraints @ ℂ𝚰𝟎.𝟗𝟗 
Disturbances  Step changes 

𝑞𝑖~𝒩(600,20) 
Step changes 

𝑞𝑖~𝒩(600,20) 

Optimization variables   

Area (m2) 3,034.21 1,945.31 
Volume (m3) 3,024.95 1,682.54 

𝑠𝑤𝑠𝑝 70 94.74 

𝑐𝑤𝑠𝑝 0.03003 0.01389 

𝐾𝑐1 0.032 3.26 

𝐾𝑐2 0.111 0.066 
𝜏𝑖1 64.40 53.50 

𝜏𝑖2 34.55 14.89 

Cost ($/a) 9.2845x107 4.4539x106 

 

Figure 4-3: Cost function for Sc1 and Sc2 

As shown in Table 4-3 and Figure 4-3, the confidence interval approach (Sc2) produces a more 

economically attractive design since it captures accurately the variability in the constraints due to random 

step changes in the disturbance. Sc1 specified design with a large volume of the aeration tank and a large 

cross-sectional area for the decanter (see Table 4-3). Similarly, Sc1 specified overly conservative controllers 

that diminished plant performance. The results in Figure 4-3 indicate that the design obtained using larger 

weights on the constraints’ variance is more conservative than that those specified by the confidence 

interval approach. As a result, the process design and control scheme for Sc1 resulted in a plant cost that is 
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at least one order of magnitude higher than that obtained by Sc2. Figure 4-3 also reveals that there is a larger 

amount of back-off from the optimal steady-state design when using expected value and variance (Sc1) 

compared to the confidence interval-based approach (Sc2), i.e. back-off in Sc1 is 97% larger than the back-

off amount obtained for Sc2. Therefore, the variance-based approach produces a design and control scheme 

that is 95% more expensive than that obtained by the present method. Figure 4-4 shows the convergence of 

the substrate set-point for both scenarios. As expected, Sc1 converged to the lowest allowable substrate set-

point whereas Sc2 specified a substrate set-point that is more economical since it is closer to the substrate 

constraint limit. 

 

Figure 4-4: Substrate set-point for Sc1 and Sc2 

Figure 4-5 shows the simulation results at the optimal solution obtained from Sc1 and Sc2. These results 

were generated using a sufficiently large number of MC realizations in the disturbances so that convergence 

in the statistical terms was supposedly ensured. As shown in Figure 4-5, the process constraints do not 

follow a Gaussian distribution; thus, the Gaussian distribution assumption is not adequate for this system 

since the variance does not completely capture the behaviour of the constraints under the effect of 

disturbances. Different constraints are active for the two scenarios (red dashed lines in Figure 4-5). These 
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results confirm that the confidence interval approach proposed in this study is a more accurate 

representation of coverage of constraints whereas the variance-based approach fails to capture accurate 

approximations for the process nonlinear constraints; hence, the significant differences observed with 

respect to the confidence interval approach (Sc2).  
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Figure 4-5: Simulation results. Sc1: using expected value and variance (a,b,c); Sc2: using confidence 

interval (d,e,f). Red dashed lines indicate input limits on the constraints. 
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Table 4-4: Effect of uncertainty 

 Sc3 Sc4 Sc5 

Confidence weights All constraints @ ℂΙ0.99 All constraints @ ℂΙ0.99 All constraints @ ℂΙ0.99 

Disturbances 

𝑞𝑖 = 𝐴𝑠𝑖𝑛(𝑤𝑡) + 𝑞𝑖𝑛𝑜𝑚 

𝐴 = 𝒩(10,10) 
𝑤 =𝒩(0.001,0.001) 

𝑞𝑖 = 𝐴𝑠𝑖𝑛(𝑤𝑡) + 𝑞𝑖𝑛𝑜𝑚 

𝐴 = 𝒩(10,10) 
𝑤 =𝒩(0.001,0.001) 

𝑞𝑖 = 𝐴𝑠𝑖𝑛(𝑤𝑡) + 𝑞𝑖𝑛𝑜𝑚 

𝐴 = 𝒩(10,10) 
𝑤 =𝒩(0.001,0.001) 

Uncertainty 
No time-invariant 
uncertain parameter 

𝜇𝑤 = 𝒰(0.1,0.2) 

𝜇𝑤 = 𝒰(0.1,0.2) 
𝑘𝑐 = 𝒰(0.66x10

−4, 1.99x10−4) 

𝑘𝑑 = 𝒰(2.5x10
−5, 5.5x10−5) 

𝑠𝑖 =𝒩(366,5) 
𝑥𝑖 =𝒩(80,5) 

Optimization variables    

Area (m2) 1,696.04 2,584.41 3,453.72 

Volume (m3) 1,402.68 2,469.10 2,240.45 

𝑠𝑤𝑠𝑝 98.27 91.22 90.44 

𝑐𝑤𝑠𝑝 0.006951 0.001214 0.003397 

𝐾𝑐1 12.50 1.24 1.25 

𝐾𝑐2 0.047113 0.042849 0.047749 
𝜏𝑖1 10 42.27 52.26 

𝜏𝑖2 35.44 64.04 69.21 

Cost ($/a) 1.7320x106 1.0073x107 1.1690x107 

4.2.2 Effect of uncertainty  

The aim of this section is to evaluate the performance of the back-off methodology under the effect of 

disturbances, single and multiple uncertainties. As shown in Table 4-4, a time-varying sinusoidal 

disturbance in the inlet flowrate (𝑞𝑖 = 𝐴𝑠𝑖𝑛(𝑤𝑡) + 𝑞𝑖𝑛𝑜𝑚) with a frequency and amplitude that follow 

normal distributions with specified means and variances are considered (𝑞𝑖𝑛𝑜𝑚 = 600). In Sc3-Sc5, the 

coverage probability of confidence interval of all the process constraints shown in Table 4-2 was set to 0.99 

(i.e. ℂΙ0.99). As shown in Figure 4-6 and Table 4-4, the present approach compensates for the various 

uncertainties and disturbances considered at the expense of economics; thus, the system moves further away 

from steady-state optimal design to compensate for the potential occurrence of single and multiple 

realizations. Consequently, the amount of back-off is generally seen as a factor strongly related to the 

significance, type and variation of the uncertainties, i.e. larger (or more drastic) changes in uncertainty may 

cause larger amounts of back-off. Sc5 has the largest cost compared to Sc3 and Sc4 due to the multiple 

sources of uncertainties considered in that scenario. As shown in Table 4-4, Sc5, which considers the effect 

of disturbance and multiple uncertainties, specified a plant cost that is 91% higher than that specified by 
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Sc3, which only considers disturbance effects. Moreover, Sc4 returned a plant that is 82% more expensive 

than that obtained for Sc3; this result provides an indication of the impact of single parameter uncertainty 

(𝜇𝑤) on the system. For the present case study, the area of the decanter (𝐴𝑑), the volume of the reactor (𝑉𝑟) 

and the substrate set-point (𝑠𝑤𝑠𝑝) dominate the process economics (see cost function in Table 4-2). Thus, 

changes in these variables will directly impact the process dynamics and therefore the selection of the 

optimal design and control scheme.  

 

Figure 4-6: Cost function for different scenarios in uncertain parameters 

As illustrated in Figure 4-7, the substrate set-point moves away from the threshold (100 mg/L) in exchange 

for the assurance of constraint satisfaction at the specified coverage probability limit in the presence of 

disturbances and uncertainties.  
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Figure 4-7: Substrate set-point different scenarios in uncertain parameters 

4.2.3 Effect of coverage probability of process constraints 

As mentioned above, this methodology provides an additional degree of freedom to the user to assign 

different probabilities of satisfaction to each constraint, i.e. coverage probability for the confidence interval 

of each constraint. While critical constraints need to be prioritized, violation of non-critical restrictions 

might be tolerated during operation. Table 4-5 shows the details and results of various scenarios considered 

in this section using different coverage probabilities for the confidence intervals of the constraints. The 

uncertainties and disturbance specifications outlined for Sc5 in Table 4-4 were used to perform this analysis.  
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Table 4-5: Effect of coverage probability 

Constraints Sc6 Sc7 Sc8 

𝑠𝑤
𝑢𝑝 @ ℂI0.5 @ ℂI0.99 @ ℂI0.9999 

𝑅1
𝑙𝑜 @ ℂI0.9999 @ ℂI0.5 @ ℂI0.9999 

𝑅1
𝑢𝑝

 @ ℂI0.9999 @ ℂI0.5 @ ℂI0.9999 

𝑅2
𝑙𝑜 @ ℂI0.9999 @ ℂI0.5 @ ℂI0.9999 

𝑅2
𝑢𝑝

 @ ℂI0.9999 @ ℂI0.5 @ ℂI0.9999 

Optimization variables   

Area (m2) 2,194.85 2,314.61 3,694.62 

Volume (m3) 1,820.07 2,248.86 2,495.53 
𝑠𝑤𝑠𝑝 99.99 98.81 88.84 

𝑐𝑤𝑠𝑝 0.008230 0.000595 0.070516 

𝐾𝑐1 0.226 20 1.032 

𝐾𝑐2 0.031928 0.029829 0.061932 
𝜏𝑖1 57.81 70 47.18 

𝜏𝑖2 70 61.91 13.66 

Cost ($/a) 1.8530x106 2.3179 x106 1.5230 x107 

As shown in Table 4-5, specifying a higher probability of satisfaction in the constraints, i.e. 0.9999 (Sc8) 

instead of 0.99 (Sc5), significantly impacts the process economics, i.e. Sc8 produced a design and control 

scheme that is 23% more expensive than that obtained by Sc5. Figure 4-8 shows the convergence of the 

cost function for the different scenarios considered in this section. As shown in the figure, lowering the 

probability of satisfaction, particularly in the key process constraints, can potentially improve the process 

economics. For example, changing the coverage probability specification on constraint 𝑠𝑤
𝑢𝑝

from 0.9999 

(Sc8) to 0.5 (Sc6) while keeping the rest at a constant coverage probability reduces the plant costs by almost 

87%. Likewise, setting the coverage probability of constraint 𝑠𝑤
𝑢𝑝

 to 0.99 while keeping the remaining 

constraints to 0.5 (Sc7) specified a plant design that is 80% less expensive than that obtained for Sc5 (i.e. 

all the constraints were set to 0.99 probability of satisfaction). 
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Figure 4-8: Cost, the effect of confidence weights 

These results show that the substrate concentration in the decanter is a key constraint in this process since 

it directly impacts the process variability costs (Table 4-2). Figure 4-9 shows the simulation results using 

the optimal design and control scheme obtained from Sc6. This figure indicates that using a high coverage 

probability in the constraints interval forces the system to remain in the desired boundaries of constraints 

at the expense of higher cost. As a result, there is no violation of the constraints on the purge ratio (𝑅1) and 

purge age (𝑅2); however, the constraint on the maximum allowed substrate is tolerable to be violated at 

most 50%, which agrees with the coverage probability specified for this constraint (see Table 4-5).  
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Figure 4-9: Simulation results (Sc6) 
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Table 4-6: Effect of multiple sources of uncertainty 

 Sc9 

Confidence weights All constraints @ ℂΙ0.99 

Disturbances 

𝑞𝑖 = 𝐴𝑠𝑖𝑛(𝑤𝑡)+ 𝑞𝑖𝑛𝑜𝑚 

𝐴 = 𝒩(10,10) 
𝑤 = 𝒩(0.001,0.001) 

Uncertainty 

𝜇𝑤 = 𝒰(0.1,0.2) 
𝑘𝑐 = 𝒰(0.66x10

−4, 1.99x10−4) 
𝑘𝑑 = 𝒰(2.5x10

−5 ,5.5x10−5) 
𝑠𝑖 =𝒩(366,5) 
𝑥𝑖 =𝒩(80,5) 
𝑛 = 𝒰(1.8,2.2) 

 

Area (m2) 3,476.70 
Volume (m3) 2,273.37 
𝑠𝑤𝑠𝑝 90.22 

𝑐𝑤𝑠𝑝 0.006228 

𝐾𝑐1 1.24 

𝐾𝑐2 0.033603 

𝜏𝑖1 49.42 
𝜏𝑖2 63 

Cost ($/a) 1.2154x107 

4.2.4 Computational costs 

This section aims to provide estimates on the computational demands associated with the present stochastic 

back-off methodology. Once the optimal problem has been defined, most of the CPU time required by the 

present approach is used to estimate the sensitivities needed to build the probabilistic-based PSE functions, 

i.e. see Step 3 in the algorithm. The accuracy of the PSE functions is highly correlated with the number of 

MC samples required and the desired accuracy in the results, which is mostly controlled by the tolerance 

criterion (𝜖𝑀𝐶 ). Table 4-6 shows the results of Sc9 in which multiple sources of uncertainties and 

disturbances have been considered. Figure 4-10 shows the CPU time and the required number of MC 

samples per iteration that were needed to solve Sc3 and Sc9. Sc3 only considers a time-varying disturbance, 

i.e. it does not consider model parameter uncertainty. In addition to a stochastic disturbance, Sc9 also 

considers multiple sources of uncertainties as well as a model structure error (see Table 4-6). Note that the 

uncertainty considered on power term 𝑛 in the process (see Section 3.4) can be considered as a potential 

source of model structure error since it directly affects a time-dependent state variable for this system, i.e. 
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the biomass concentration. In the present analysis, the power term n in the differential state equation for the 

biomass concentration was assumed to follow a uniform distribution. As shown in Table 4-6, Sc9 produced 

a design and control scheme that is 4% more expensive than that obtained by Sc5, which is the same scenario 

but without consideration of model structure error. As shown in Figure 4-10, there exists a correlation 

between CPU time and problem size. That is, Sc9 required approximately 1.46 hours to converge (i.e. total 

CPU time), which is 46% higher than the total CPU time required by Sc3. On average, Sc3 required 

1.22x103 MC samples whereas Sc9 involved 37% more samples i.e. 3.25x103. As shown in Figure 4-10, a 

few peaks in the required number of MC samples are observed for Sc3, e.g. around iteration 40. This 

behaviour suggests that sinusoidal changes in the disturbances (with random realizations in the frequency) 

together with the system nonlinearities around 𝜼𝑛𝑜𝑚  at those iterations directly affect the computation of 

the sensitivity terms in the PSE-based functions; hence, a larger number of simulations are needed to ensure 

convergence in the statistical terms.  

 

Figure 4-10: CPU time and number of required MC samples at different iterations for Sc3 and Sc9 

In terms of scalability, undoubtedly, adding more decision variables makes the problem more intense as it 

involves the computation of another set of sensitivity calculations. Also, the model complexity will increase 
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the computational costs, i.e. the more complex model the longer to simulate. Nevertheless, the main 

computational expenses in this method are directly correlated with the number and the nature of stochastic 

uncertain parameters considered in the analysis. Adding an additional uncertain parameter increases the 

domain of the uncertain space thus requiring the need to consider a larger set of realizations between the 

uncertain parameters, which requires the need to perform additional simulations and eventually increases 

the computational demands of the present approach.  

In summary, a stochastic back-off methodology that addresses simultaneous design and control using 

stochastic uncertainty descriptions was presented. The key idea is to describe the confidence interval of 

process constraints at user-defined coverage probabilities using PSE-based functions. PSE functions are 

explicitly defined in terms of the optimization variables. The method provides an additional degree of 

freedom since it can allocate different levels of confidence for the process constraints using coverage 

probability of confidence intervals. The wastewater treatment plant introduced in Section 3.4 was used to 

illustrate the benefits and limitations of the present approach. The results presented in this study indicate 

that the proposed back-off approach leads to more economically attractive designs when compared to the 

variance-based approach. The main burden of the current stochastic-based technique is the need for 

numerous simulations of the system to obtain the PSE functions. For that reason, the next step in this 

research is to reduce the number of required samples in the analysis to achieve a certain level of accuracy 

in the calculations using advanced sampling and uncertainty quantification methods. In the current 

methodology, the search space region (𝛿) in the PSE-base optimization problem was specified a priori.  
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5 Trust-region approach 

The aim of this chapter is to present a practical and systematic method for the integration of design and 

control for large-scale applications. In chapters 3 and 4, the search space region in the PSE-based 

optimization problem was specified a priori. Selecting a constant search space for the PSE functions may 

undermine the convergence of the methodology since the predictions of the PSEs highly depend on the 

nominal conditions used to develop the corresponding PSEs. In the current chapter, a trust-region 

framework is proposed that relies on an adaptive search space for individual decision variables in PSE-

based optimization problems at every iteration. The concept is designed in a way that certifies the 

competence of the PSE functions at each iteration and systematically acquires the search space of the 

optimization as the iteration proceeds in the algorithm.  

The key idea is to represent the system using PSEs as piecewise models in an iterative manner while the 

validity of those expansions is certified in a trusted interval. The mean of squared errors is used as a metric 

to quantify the accuracy of the PSE approximations. Identified search regions specify the boundaries of the  

decision variables for the PSE-based optimization problems. The proposed algorithm shows a significant 

accomplishment in locating dynamically feasible and near-optimal design and operating conditions. The 

proposed approach was tested for the integration of design and control of the wastewater treatment plant 

(introduced in Chapter 3) as an illustrative example and the Tennessee Eastman (TE) process. The results 

indicate that the proposed methodology has the potential to identify economical, computationally attractive 

and reliable designs for large-scale applications. Part of the results presented in this chapter has been 

published in (Rafiei and Ricardez-Sandoval, 2020b). 

The chapter is organized as follows: Section 5.1 presents the methodology of the trust-region method 

followed by an illustrative example to discuss details of the implementation (Section 5.2). Later, the 

application of the proposed methodology on a large-scale application, i.e. the TE process, is presented 

(Section 5.3). The simultaneous design and control of the TE plant is studied in two stages. First, the design 
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and control of the reactor section are considered. Second, the trust-region method for simultaneous design 

and control of the complete TE plant is implemented.  

5.1 Methodology 

The basic back-off approach featured with PSEs was introduced earlier in Chapter 3. The basic back-off 

approach is extended to tackle simultaneous design and control of the large-scale process. The extended 

back-off approach is called trust-region approach since it systematically identifies trusted intervals for the 

validity of the surrogate models. Similar to the basic back-off, PSEs are employed to capture plant 

behaviour; in particular, they are used to represent the cost function and process constraints in Problem (2-

1). Hence, PSE replicas in the optimization problem lessen the burden of nonlinear programming by 

approximating process nonlinear behaviour over a small region in the neighborhood of a nominal condition . 

Even though PSE models provide inexpensive evaluations of the functions, they are often limited to the 

vicinity of the nominal condition and cannot provide good estimations for the entire operating region. In 

that event, faulty estimations of the PSE function may lead to inaccurate or even unrealistic predictions. 

Thus, the accuracy of the expansions and their validity region must be carefully chosen. The predictability 

properties of the approximation are highly correlated to the nominal condition in which the PSEs are 

expanded upon. For that reason, the behaviour of the system is examined using piecewise PSE models in 

an iterative manner in which the nominal condition is updated as the procedure moves towards a solution. 

The approach is a sequential approximate optimization method in which the system is evaluated around the 

worst-case variability expected in process outputs. The method mostly traces the closest feasible and near-

optimal solution to the initial steady-state condition considering the worst-case scenario. A surrogate model 

(PSE) has been used to approximate the actual model behaviour of the process and alleviate the intense 

computational demands. The term near-optimal refers to the potential deviations from the original locally 

optimum due to the approximation techniques considered in this work, e.g. the use of a low-order process 

model to represent the system’s behaviour around a nominal operating point. In the previous chapters, an 
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adequate (trust) region and thus a fixed search space for the PSE-based optimization problem at each 

iteration has been defined a priori. The key assumption made in those works is that a conservative region 

was specified that was identified offline. In addition, it is assumed that the search space region remains 

constant for all the decision variables during the implementation of the algorithm. The previous method 

works efficiently for small- and medium-scale applications. However, that approach might become 

cumbersome to handle large-scale and highly nonlinear systems. For highly nonlinear and large-scale 

processes, identification of a trust-region around a nominal value that remains valid for the entire back-off 

procedure is a challenging task and might become intractable. In the present approach, an adaptive search 

strategy is proposed to identify the trust-region for each decision variable systematically. Moreover, the 

trust-region is identified for every decision variable (𝜼) at each iteration. Accordingly, the adaptive 

approach may impose some restrictive boundaries on some decision variables regarding the effect of the 

decision variables in the deviation of the PSE function from the actual nonlinear process behaviour. 

Particularly for highly nonlinear systems, while the procedure chooses to retain those decision variables at 

their nominal values on some iterations, the rest of the decision variables may be allowed to be explored in 

a wider region. Furthermore, developing the trust-region offers the assurance of convergence to a locally 

optimum solution at the end of the sequential procedure, as it will be described in Section 5.1.2. The 

convergence of the approach to a locally optimal solution extremely depends on the qualifications of the 

PSE approximations during the entire sequence of the procedure. In addition, in the basic back-off approach 

the order of the PSE is decided a priori and remains constant for the entire procedure; however, in the 

current work, the approach can systematically update the order of PSE based on a user-defined level of 

accuracy.  

The trust-region method presented in this chapter is an iterative framework; a schematic of the sequence of 

the proposed algorithm is presented in Figure 5-1. Each of the steps in the algorithm is described next.  
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Figure 5-1: Algorithm for the trust-region approach 

Step 1 (Algorithm Initialization): 

This step is similar to Step 1 of the basic back-off approach (Chapter 3). Upper (𝜼𝑈 ) and lower bounds 

(𝜼𝐿  ) for optimization variables (𝜼 ), the maximum number of iterations (𝑁𝑖𝑡𝑒𝑟 ). PSE validation tolerance 

(𝜖𝑇𝑅), convergence tolerance (𝜖), convergence examination period (𝑁𝑐 ) are defined similarly to the basic 

approach. Moreover, define the acceptable error range for the PSE validation that is used to define the trust-

region (𝜖𝑇𝑅) and step size for the finite-difference calculations (Δ𝜂) which is also used as the smallest 

acceptable trust-region. 
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Step 2 (Optimal steady-state design without uncertainty and disturbances): 

In this step, the initial point for the procedure is specified. Original back-off approaches have been 

developed based on the idea of moving away from the ideal condition in which uncertain parameters and 

disturbances are set to their nominal values (Bahri et al., 1995; Kookos and Perkins, 2004; Narraway and 

Perkins, 1994; Perkins, 1989; Rafiei-Shishavan et al., 2017). Alternatively, the optimal steady-state design 

can be obtained by solving Problem (3-13) in Chapter 3. The results of the optimization problem (𝜼0) can 

be used as the starting (initial) point to search for the dynamically operable design that optimizes an 

objective function for this process. The proposed trust-region method searches the closest dynamically 

feasible condition to the initial starting point. Typically, the idealistic steady-state condition is the most 

convenient condition to start the search for a new dynamically feasible condition in the presence of 

uncertainty and disturbances. However, the steady-state optimum might be unavailable or difficult to 

obtain, e.g. the optimal steady-state of a black-box model such as the Tennessee Eastman (TE) process. In 

those cases, the procedure can be initiated from a user-defined educated condition, e.g. current designs from 

similar plants. 

Step 3 (Develop PSE-based functions): 

The proposed trust-region framework aims to find the optimal solution which ensures that the system 

remains dynamically feasible in the presence of the largest (worst-case) variability observed in the 

constraints as discussed in Chapter 3. Function evaluations for the forward (𝜼+) and backward (𝜼−) points 

around the nominal condition are used to estimate the sensitivity of the cost and constraint functions to 

optimization variables (see Figure 5-2). The first- and second-order gradients of the sth inequality constraints 

(𝑔𝑠) are calculated as follows: 

∂𝑔𝑠
∂𝜂𝑝

|
𝑡𝑤𝑐,𝜁𝑗

= (𝑔𝑠(𝜂𝑝
+)|𝑡𝑤𝑐,𝜁𝑗 − 𝑔𝑠(𝜂𝑝

−)|𝑡𝑤𝑐,𝜁𝑗) 2Δ𝜂𝑝⁄  
(5-1) 

∂2𝑔𝑠
∂𝜂𝑝𝜕𝜂𝑝

|
 𝑡𝑤𝑐,𝜁𝑗

= (𝑔𝑠(𝜂𝑝
+)|𝑡𝑤𝑐,𝜁𝑗 − 2𝑔𝑠(𝜂𝑝𝑛𝑜𝑚 )|𝑡𝑤𝑐,𝜁𝑗 +𝑔𝑠(𝜂𝑝

−)|𝑡𝑤𝑐,𝜁𝑗) Δ𝜂𝑝
2⁄  

(5-2) 
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where Δ𝜂𝑝  is the finite-difference step used to calculate forward and backward points of pth decision 

variable, i.e. Δ𝜂𝑝 = 𝜂𝑝𝑛𝑜𝑚(Δ𝜂). Once the numerical sensitivities of cost function and constraints with 

regard to all decision variables have been identified, the quality of the constructed PSE is examined in a 

primary PSE check. The error between the actual functions and their PSE evaluations at the nominal 

condition (𝜼𝑛𝑜𝑚 ) must remain negligible for all the cost and constraints (e.g. less than 1%). In the primary 

PSE check, if the error is not acceptable the default order of the PSE should be updated to ensure rigorous 

calculations at nominal condition since the entire procedure is constructed based on this calculation. 

Originally, second-order PSEs are used as the accuracy often is mostly acceptable for most engineering 

calculations. The order can later be updated if the default value is incapable of capturing the dynamic 

behaviour to a certain level of accuracy. The order of the PSE depends on the process nonlinearity and also 

the required accuracy. Increasing the order of PSE is computationally expensive. In order to calculate 

higher-order PSE additional forward and backward points are required. 

 

Figure 5-2: Simulations for the nominal condition, forward and backward points at the worst-case 

scenario  

Step 4 (Identify the trust-region): 
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PSE functions are often valid for small vicinity around the nominal condition (𝜼𝑛𝑜𝑚 ) at which they have 

been developed. The trust-region for each decision variable at each iteration of the procedure is identified 

to avoid inaccurate representations of the actual nonlinear system. To specify the trust-region at each 

iteration step 𝑖, the area is explored in which the error of the PSE evaluations compared to the actual 

functions remains within a certain threshold defined by the user (𝜖𝑇𝑅). Once the gradients of the constraints 

and cost function are calculated and the PSE functions are built (Step 3), the constructed PSE functions can 

be used to evaluate the cost and constraint at different points (𝜼∗) away from the nominal condition. The 

mean squared error (MSE) is used as the performance metric to identify the region in which the PSEs are 

valid. The errors between the actual value of the cost function and process constraints and their 

corresponding PSE approximations are estimated as follows: 

𝑀𝑆𝐸𝑆 =
1

2
{(
𝑔𝑠(𝜼𝑛𝑜𝑚+ 𝜹)− 𝑔𝑠,𝑃𝑆𝐸(𝜼𝑛𝑜𝑚+ 𝜹)

𝑔𝑠(𝜼𝑛𝑜𝑚+ 𝜹)
)

2

+(
𝑔𝑠(𝜼𝑛𝑜𝑚−𝜹)− 𝑔𝑠,𝑃𝑆𝐸(𝜼𝑛𝑜𝑚−𝜹)

𝑔𝑠(𝜼𝑛𝑜𝑚 −𝜹)
)

2

}  

∀𝑠 = 1,… 𝑆 

(5-3) 

𝑀𝑆𝐸𝜃 =
1

2
{(
𝛩(𝜼𝑛𝑜𝑚 +𝜹)−𝛩𝑃𝑆𝐸(𝜼𝑛𝑜𝑚+𝜹)

𝛩(𝜼𝑛𝑜𝑚 +𝜹)
)

2

+(
𝛩(𝜼𝑛𝑜𝑚−𝜹)− 𝛩𝑃𝑆𝐸(𝜼𝑛𝑜𝑚 −𝜹)

𝛩(𝜼𝑛𝑜𝑚− 𝜹)
)

2

} (5-4) 

where 𝜹 ∈ ℝ𝑃  represents the distance from the nominal value of the decision variables (𝜼𝑛𝑜𝑚 ) and is 

defined for each decision variable (𝜼 ∈ ℝ𝑃). The interval of the trust-region (𝜹) defines the region in which 

the PSE approximations are valid and can be used as equivalent representations of the actual nonlinear 

model. 𝑔𝑠,𝑃𝑆𝐸  and 𝛩𝑃𝑆𝐸  are the PSE function of sth constraint and the cost function developed for the worst-

case scenario as follows:  

𝛩𝑃𝑆𝐸(𝜼
∗) = 𝛩(𝜼𝑛𝑜𝑚)|𝑡𝑤𝑐,𝜁𝑗 +∑

𝜕𝛩

𝜕𝜂𝑝
|
𝑡𝑤𝑐,𝜁𝑗

(𝜂𝑝
∗ − 𝜂𝑝𝑛𝑜𝑚)

𝑃

𝑝=1

+∑
1

2

𝜕2𝛩

𝜕𝜂𝑝
2 |
𝑡𝑤𝑐,𝜁𝑗

(𝜂𝑝
∗ − 𝜂𝑝𝑛𝑜𝑚)

2
𝑃

𝑝=1

+𝑅2(𝜼
∗) (5-5) 

𝑔𝑠,𝑃𝑆𝐸(𝜼
∗)= 𝑔𝑠(𝜼𝑛𝑜𝑚)|𝑡𝑤𝑐,𝜁𝑗 +∑

𝜕𝑔𝑠
𝜕𝜂𝑝

|
𝑡𝑤𝑐,𝜁𝑗

(𝜂𝑝
∗ − 𝜂𝑝𝑛𝑜𝑚)

𝑃

𝑝=1

+∑
1

2

𝜕2𝑔𝑠
𝜕𝜂𝑝

2 |
𝑡𝑤𝑐,𝜁𝑗

(𝜂𝑝
∗ − 𝜂𝑝𝑛𝑜𝑚)

2
𝑃

𝑝=1

+ 𝑅2(𝜼
∗) (5-6) 

Likewise, 𝑔𝑠  and 𝛩 in (5-3) and (5-4) are the actual values of sth constraint and the cost function, 

respectively. The trust-region interval is obtained from the following optimization problem:  
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min
𝜹

1

𝑀𝑆𝐸𝛩 +∑ 𝑀𝑆𝐸𝑠
𝑆
𝑠=1

 

Subject to: 

𝑀𝑆𝐸𝑠 ≤ 𝜖𝑇𝑅 ,∀𝑠 = 1,…𝑆    

𝑀𝑆𝐸𝛩 ≤ 𝜖𝑇𝑅 

𝜹𝐿 < 𝜹 < 𝜹𝑈 

(5-7) 

This optimization problem aims to search for the maximum acceptable region 𝜹 ∈ ℝ𝑃  for all decision 

variables around the nominal values (𝜼𝑛𝑜𝑚 ) such that the MSE tolerance (𝜖𝑇𝑅) is satisfied. The smallest 

acceptable interval (𝜹𝐿 ) is defined according to the finite-difference step size (Δ𝜂) that is used to estimate 

the PSE functions in Step 3. The upper bound of the interval (𝜹𝑈 ) is defined by the user. Problem (5-7) 

fails to converge if the original constructed PSEs are not accurate enough. In that case, higher-order PSE 

functions can be used to improve the quality of the expansions. Moreover, if small changes in the decision 

variables produce an unacceptable error, the system will be driven to update the order of the PSE with the 

aim to increase the prediction capabilities of these functions around (𝜼𝑛𝑜𝑚 ) and therefore reduce the MSE. 

Figure 5-3 shows the schematic of the selection of trusted intervals.  

 

Figure 5-3: Schematic of the trust-region concept 

The formulation of Problem (5-7) results in a sequential optimization strategy since the simulation of the 

actual nonlinear model is required for the evaluation of the MSEs. Thus, the DAE model (𝐹 in Problem (2-
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1)) is solved in an inner loop using integration algorithms and the information is directed to the NLP solver 

as shown in Figure 5-4. 

 

Figure 5-4: Sketch of sequential optimization 

Although the implementation of the approach is relatively simple, it is prone to some deficiencies. First,  

only partial information from DAE is exchanged with the NLP; in particular, the DAE solver acts as a 

black-box for the optimization. This integration scheme might affect the pursuit of the optimal solution. 

Second, excessive iterations in the optimization approach might be required as the NLP attempts to find a 

descent direction which may result in high computational demands. Furthermore, the convergence is highly 

influenced by the length of the integration of the DAE solver, i.e. interval(0, 𝑡𝑓  ]. Above all, in the case of 

an unstable system that is highly sensitive to initial conditions, the sequential method might remain 

insufficient (Biegler, 2010). To circumvent these issues, an alternative approach is proposed next, which 

aims to search for the trust-region using an iterative method.  

5.1.1  Stepwise search (alternative method for Step 3) 

Here a systematic stepwise search method is introduced to identify the trusted region. The presented 

stepwise search method is an alternative in case the sequential formulation of trust-region shown in Problem 

(5-7) fails to converge or leads to unacceptable computational costs. The schematic of this algorithm is 

shown in Figure 5-5.  
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Figure 5-5: Schematic of the stepwise search for trust-region 

This procedure of searching for the trusted region is as follows: 

a) Specify a maximum number of steps (𝑁𝑇 ) and a tolerance criterion to check for the validity of the 

PSE estimation of the cost function and constraints (𝜖𝑇𝑅). Also, initialize an index (𝑘), which keeps 

track of the increments in the search space, i.e. set 𝑘 = 1. Start from the first decision variable, i.e. 

𝑝 = 1. The initial interval is defined according to the step size of the finite-difference (𝛥𝜂) as 

follows: 

𝛿𝑝
𝑘  = 𝜂𝑝𝑛𝑜𝑚𝛥𝜂 , 𝑘 = 1, ∀𝑝 = 1,…𝑃 (5-8) 

b) The PSE sensitivities generated in Step 2 of the general procedure shown in Equation (5-5) and (5-

5) are used to estimate the cost function and constraint values at a new interval. The pth decision 
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variable is changed while keeping the rest of the decision variables at their nominal value. The PSE 

at the corresponding interval is calculated as follows: 

𝛩𝑃𝑆𝐸
𝑘 (𝜂𝑝𝑛𝑜𝑚 + 𝛿𝑝

𝑘) = 𝛩(𝜂𝑝𝑛𝑜𝑚)|𝑡𝑤𝑐,𝜁𝑗
+
𝜕𝛩

𝜕𝜂𝑝
|
𝑡𝑤𝑐,𝜁𝑗

(𝛿𝑝
𝑘)+

1

2

𝜕2𝛩

𝜕𝜂𝑝
2
|
𝑡𝑤𝑐,𝜁𝑗

(𝛿𝑝
𝑘)
2
+𝑅2(𝛿𝑝

𝑘) (5-9) 

𝑔𝑠,𝑃𝑆𝐸
𝑘 (𝜂𝑝𝑛𝑜𝑚 + 𝛿𝑝

𝑘) = 𝑔𝑠(𝜂𝑝𝑛𝑜𝑚)|𝑡𝑤𝑐,𝜁𝑗
+
𝜕𝑔𝑠
𝜕𝜂𝑝

|
𝑡𝑤𝑐,𝜁𝑗

(𝛿𝑝
𝑘) +

1

2

𝜕2𝑔𝑠
𝜕𝜂𝑝

2 |
𝑡𝑤𝑐,𝜁𝑗

(𝛿𝑝
𝑘)
2
+𝑅2(𝛿𝑝

𝑘) (5-10) 

c) MSE is used to measure the differences between the PSE estimation and the actual cost function 

and process constraints. The MSEs for the constraints and cost function at the kth step of interval 

increase for the pth decision variable are as follows: 

𝑀𝑆𝐸𝑔𝑠,𝑝
𝑘 = 

1

2
{(𝑔𝑠(𝜂𝑝𝑛𝑜𝑚 + 𝛿𝑝

𝑘)|
𝑡𝑤𝑐,𝜁𝑗

−𝑔𝑠,𝑃𝑆𝐸(𝜂𝑝𝑛𝑜𝑚 + 𝛿𝑝
𝑘)|

𝑡𝑤𝑐,𝜁𝑗
)

2

+(𝑔𝑠(𝜂𝑝𝑛𝑜𝑚 − 𝛿𝑝
𝑘)|

𝑡𝑤𝑐,𝜁𝑗
−𝑔𝑠,𝑃𝑆𝐸(𝜂𝑝𝑛𝑜𝑚 − 𝛿𝑝

𝑘)|
𝑡𝑤𝑐,𝜁𝑗

)

2

} , ∀𝑠 = 1,… , 𝑆 

(5-11) 

𝑀𝑆𝐸𝜃,𝑝
𝑘 = 

1

2
{(Θ(𝜂𝑝𝑛𝑜𝑚 + 𝛿𝑝

𝑘)|
𝑡𝑤𝑐,𝜁𝑗

− Θ𝑃𝑆𝐸(𝜂𝑝𝑛𝑜𝑚 + 𝛿𝑝
𝑘)|

𝑡𝑤𝑐,𝜁𝑗
)

2

+(Θ(𝜂𝑝𝑛𝑜𝑚 − 𝛿𝑝
𝑘)|

𝑡𝑤𝑐,𝜁𝑗
− Θ𝑃𝑆𝐸(𝜂𝑝𝑛𝑜𝑚 − 𝛿𝑝

𝑘)|
𝑡𝑤𝑐,𝜁𝑗

)

2

} 

(5-12) 

where 𝑀𝑆𝐸𝑔,𝑠
𝑘  is the error in the sth inequality constraints caused by the changes in pth decision 

variable at kth interval. Similarly, 𝑀𝑆𝐸Θ
𝑘  is the error of the cost function due to the changes in pth 

decision variable at kth interval. 

d) In principle, the interval is gradually increased and at each step of increase (𝑘) it is determined 

whether the error is acceptable or not. If MSEs calculated in 5-11 and 5-12 fall beyond a user-

defined threshold (𝜖𝑇𝑅), then STOP, a trusted interval has been identified for the pth decision 

variable (𝛿𝑝 ) at the previous increment (𝑘 − 1). Otherwise, while 𝑘 < 𝑁𝑇 update 𝑘 = 𝑘 + 1 and 

go back to Step b, i.e. increase the interval size and calculate the updated MSE. Note that 𝑘 

represents the index that keeps track of the number of times that the step is changing, i.e. 
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If 𝑀𝑆𝐸𝑔𝑠,𝑝
𝑘 ≤ 𝜖𝑇𝑅 , ∀𝑠 = 1,… , 𝑆 and 𝑀𝑆𝐸Θ

𝑘 ≤ 𝜖𝑇𝑅 

Then 

𝛿𝑝
𝑘+1  = 𝛿𝑝

𝑘 + 𝜂𝑝𝑛𝑜𝑚𝛥𝜂 , ∀𝑝 = 1, …𝑃 

(5-13) 

Also, if the maximum allowable increase (𝑁𝑇 ) is reached, then STOP, a trusted interval has been 

identified for the pth decision variable (𝛿𝑝 ). The interval is calculated for decision variables one at 

a time. Once the interval is confirmed for pth decision variables, update the decision variable (𝑝 =

𝑝 + 1) and go back to Step b. Thus, the MSE at the new interval is calculated and tolerance criterion 

𝜖𝑇𝑅  is checked for the errors created by changing the decision variables. If the changes in a certain 

decision variable create larger deviations, the corresponding decision variable will remain constant 

and the sensitivity to other decision variables will be examined. The search continues until the 

maximum allowable deviations for all decision variables have been identified. The step size in the 

current work has a linear growth starting from the step size used to calculate numerical gradients, 

i.e. Δ𝜂. The step-growth can also be geometric if the system allows severe changes in the step size. 

The effect of the combination of changes in decision variables on the error-index is missing since 

the stepwise approach identifies the trust-region changing one decision variable at a time while 

keeping the rest of the decision variables at their nominal values. 

Problem (5-7) simultaneously changes the decision variables and thus captures the effects of the changes 

of decision variables, i.e. trust-regions, on the error-index. However, the stepwise search (Section 5.1.1) 

independently identifies the effect of changes in every decision variable, i.e. the contribution of the trust-

region of one decision variable to the error-index is measured while the rest of the variables are set to their 

nominal values. Ideally, the solution of Problem (5-7) is preferred; however, the optimization problem may 

become challenging for large-scale systems and also result in high computational costs as discussed above.  

In summary, I define an individual interval for each decision variable, i.e. allowable search space for pth 

decision variable (𝛿𝑝 ). Identifying 𝜹 is a considerable improvement to the previously introduced back-off 

methodology. The unique search space for each decision variable enables the algorithm to solve, at each 
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iteration step, PSE-based optimization problems that would approach the local optimal solution of the 

original problem in a systematic manner. Although identification of the trust-region requires higher CPU 

times, the algorithm performs efficiently in terms of the number of successive iterations required to 

converge, i.e. some decision variables are explored in a wider region compared to others thus allowing the 

algorithm to converge faster. Furthermore, the quality of the PSEs is preserved within a certain threshold  

during the execution of the algorithm. 

Step 5 (Optimization of the PSE-based functions): 

The PSE functions of the cost function and the constraints built-in Step 3 are embedded within a PSE-based 

optimization problem defined as follows: 

   𝛩𝑃𝑆𝐸(𝜼)|𝑡𝑤𝑐,𝜁𝑗 +∑ 𝑀1 𝜆𝑠
𝑆

𝑠
𝜼,𝝀,𝝁 
min + ∑ 𝑀2 𝜇𝑞

𝑄

𝑞
 

Subject to: 

ℎ𝑃𝑆𝐸𝑞(𝜼))|𝑡𝑤𝑐,𝜁𝑗
−𝜇𝑞 = 0 , ∀𝑞 = 1,… ,𝑄 

𝑔𝑃𝑆𝐸𝑠(𝜼))|𝑡𝑤𝑐,𝜁𝑗
− 𝜆𝑠 ≤ 0 , ∀𝑠 = 1,… , 𝑆 

𝜂𝑝𝑛𝑜𝑚
(1− 𝛿𝑝) ≤ 𝜂𝑝 ≤ 𝜂𝑝𝑛𝑜𝑚

(1+ 𝛿𝑝)  ,∀𝑝 = 1,… ,𝑃 

𝜆𝑠 ≥ 0 , ∀𝑠 = 1,… , 𝑆 

𝜇𝑞 ≥ 0 , ∀𝑞 = 1,… , 𝑄 

(5-14) 

where the search space for the pth decision variables is limited to 𝛿𝑝  identified from Step 4; 𝜆𝑠  and 𝜇𝑞 are 

optimization variables used to avoid infeasibility in the sth and qth constraint function (𝑔𝑃𝑆𝐸 𝑠  and ℎ𝑃𝑆𝐸 𝑞), 

respectively. The weights 𝑀1  and 𝑀2  are sufficiently large penalty terms used to drive the feasibility 

variables (𝝀, 𝝁) to zero and enable the specification of a dynamically feasible system that minimizes the 

cost function. The latter also referred to as the big-M method, is used here to ensure feasible solutions in 

Problem (5-14), particularly in the first iterations of the algorithm where the process constraints cannot 

accommodate dynamic feasibility with the limited search space region defined by 𝜹. The selection of 𝑀1  

and 𝑀2  heavily dictate the path to reach to the feasible region in the proposed back-off procedure. Therefore, 

the system might take different pathways to encounter the infeasibility in the constraint concerning the 

weights assigned to the infeasibility of the constraints and corresponding penalty terms. Although some 



94 

 

heuristics can be used to specify appropriate penalty terms, adopting the weights and penalty terms are user-

defined and are mostly decided based on the nature of the process. Typically, assigning a penalty term 

which is at least two orders of magnitudes higher than the highest cost observed in the system provides 

acceptable results.  

Step 6 (Convergence Criterion): 

A floating average convergence technique, i.e. the difference in means, is considered here as a stopping 

criterion and is defined as follows: 

𝑇𝑜𝑙𝑓𝑙𝑜𝑎𝑡
Θ =

(∑ Θ𝑣 −
𝑖−𝑁𝑐
𝑣=𝑖−2𝑁𝑐+1

∑ Θ𝑟
𝑖
𝑟=𝑖−𝑁𝑐+1

)

∑ Θ𝑟
𝑖
𝑟=𝑖−𝑁𝑐+1

⁄    (5-15) 

where 𝛩𝑣  and 𝛩𝑟  represent the cost function values obtained from the solution of Problem (5-14) at the vth 

and rth iterations, respectively. If |𝑇𝑜𝑙𝑓𝑙𝑜𝑎𝑡
𝛩 | ≤ 𝜖, then STOP, the method converged to an optimal solution. 

Otherwise, set 𝑖 = 𝑖 + 1, update the optimization variables (𝜼𝑛𝑜𝑚 ) with the most recent solution obtained 

from Problem (5-14) and go back to Step 3. Alternatively, the algorithm is also terminated if the maximum 

number of iterations is reached, i.e. 𝑖 ≥ 𝑁𝑖𝑡𝑒𝑟. A summary of the steps of the current trust-region method is 

available on Appendix A. Table 5-1 lists the tuning parameters required by the present method and their 

recommended values.  
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Table 5-1: Tuning parameters of the trust-region technique 

Tuning parameter Description  Recommended values 

𝑁𝑐 Convergence examination period, the higher the value the longer to 
check for convergence of the algorithm 

10-30 

𝑁𝑖𝑡𝑒𝑟 Maximum number of iterations allowed in the algorithm ≥300 

𝜖 Termination tolerance for the algorithm ≤1x10-3 

𝜖𝑇𝑅 Tolerance criteria for the validation of PSE expansions of cost and 

constraints 

5-10% 

𝜹𝑈 Maximum allowable trust-region in Problem (5-7) 0.1𝜂𝑛𝑜𝑚 

PSE order Order of the PSE expansion. Problem-specific and directly correlated to 
the nonlinearity of the problem under consideration- default value can 

be set to 2 and it will be updated if necessary  

2-4  

Δ𝜂 Step size considered to estimate the sensitivity of the cost function and 
process constraints with respect to the optimization variables 

0.01𝜂𝑛𝑜𝑚-0.02𝜂𝑛𝑜𝑚 

𝑀1, 𝑀2 Penalty term that forces the system to move within the dynamic 

feasibility region 
103𝛩-105 𝛩 

5.1.2 Optimality conditions 

In this section, the equivalence of the simultaneous optimization of the design and control formulated as a 

dynamic optimization (i.e. Problem (2-1)) and the PSE-based optimization (Problem (5-14)) and its 

significance to the first-order optimality conditions in the proposed trust-region method is discussed. 

Typically, feasibility has a higher priority than optimality in the solution of optimization problems (Biegler, 

2010).  Accordingly, in the back-off formulation due to the existence of the penalty terms in the cost 

function (i.e. ∑ 𝑀1  𝜆𝑠
𝑆
𝑠  and ∑ 𝑀2  𝜇𝑞

𝑄
𝑞 ) and the higher weights assigned to the infeasibility (𝑀1 ,𝑀2), the 

PSE-based optimization prioritizes the search for a feasible direction by forcing the feasibility variables 

(𝝀, 𝝁) to zero. Once the feasibility is maintained, the optimization searches for a descent direction to reduce 

the objective function in such a way that it contains local optimality characteristics.  

Let impose some restrictions on the formal integration of design and control problem introduced in Problem 

(2-1). The bounded optimization Problem (5-14) can be reformulated as follows: 

min
𝜼
Θ (𝒙̇, 𝒙, 𝒚, 𝜼, 𝒅, 𝜻, 𝑡) 

Subject to: 

𝐻: {
𝐹𝑚𝑜𝑑𝑒𝑙(𝒙̇, 𝒙,𝒚, 𝜼,𝒅, 𝜻, 𝑡) = 0                   
ℎ𝑞(𝒙̇, 𝒙,𝒚, 𝜼, 𝒅, 𝜻,𝑡) = 0 , ∀𝑞 = 1,… 𝑄

 

(5-16) 
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𝑔𝑠(𝒙̇,𝒙, 𝒚, 𝜼, 𝒅, 𝜻, 𝑡) ≤ 0 , ∀𝑠 = 1,… 𝑆 

𝜂𝑝
𝐿 < 𝜂𝑝𝑛𝑜𝑚

(1− 𝛿𝑝) < 𝜂𝑝 < 𝜂𝑝𝑛𝑜𝑚
(1+ 𝛿𝑝) < 𝜂𝑝

𝑈   ,∀𝑝 = 1,…𝑁𝐷𝑒𝑐 

where 𝐻 is the combination of the dynamic model and the equality constraints since these are the constraints 

that must be persistently satisfied. In what it follows, it is assumed that the optimization problem has 

reached the region where there exists a feasible solution that can be achieved for the bounded decision 

variables, i.e. all feasibility variables (𝝀, 𝝁) have approached zero. Otherwise, the optimization might fail 

to identify a solution since the decision variables are bounded to a limited search space defined by 𝜹. The 

boundaries imposed on the decision variables are the same obtained in Step 4 using the trust-region interval 

(𝛿𝑝 ) for each pth decision variable. If a local solution can be obtained from Problem (5-16), then the first-

order Karush-Kuhn-Tucker (KKT) optimality conditions are as follows: 

𝛻𝜂𝐿(𝜼
∗ , 𝒖∗ ,𝝂∗ ,𝒖𝐿

∗ ,𝒖𝑈
∗ ) = 𝛻𝜼𝛩+ 𝛻𝜼𝑔

𝑇𝒖∗+𝛻𝜼𝐻
𝑇𝝂∗−𝒖𝐿

∗ +𝒖𝑈
∗   

Feasibility: 

𝐻(𝒙̇,𝒙, 𝒚, 𝜼, 𝒅, 𝜻,𝑡) = 0 ,   

𝑔𝑠(𝒙̇,𝒙, 𝒚, 𝜼, 𝒅, 𝜻, 𝑡) ≤ 0 , ∀𝑠 = 1,… 𝑆 

(5-17) 

Complementarity: 

𝑔𝑇𝒖∗ = 0 , 𝒖∗ ≥ 0  

 

where 𝒖∗ and 𝝂∗  are corresponding multipliers for the inequality and equality constraints, respectively 

whereas 𝒖𝐿
∗  and 𝒖𝑈

∗  are the corresponding bound multipliers for the decision variables.  

On the other hand, PSEs are obtained under the assumption that the surrogate dynamic models are given 

by Equation (3-1) capture the characteristics of the actual constraints and cost function around a nominal 

point (𝜼𝑛𝑜𝑚 ). Although the dynamic model does not appear in the PSE-based formulation, it is implicit ly 

considered through the development and construction of the PSE functions. Thus, the dynamic model of 

the system is satisfied implicitly by the PSE-based optimization (Problem 5-14). Hence, the dynamic model 

associated with equality constraints (𝐻𝑃𝑆𝐸 ) is considered as they both are intrinsically fulfilled in the 

development of the PSE functions. Based on the above, the KKT conditions for the PSE-based problem are 

as follows: 
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𝛻𝜼𝐿(𝜼
∗ , 𝒖∗ ,𝝂∗ ,𝒖𝐿

∗ ,𝒖𝑈
∗ ) = 𝛻𝜼𝛩𝑃𝑆𝐸 +𝛻𝜼𝑔𝑃𝑆𝐸

𝑇 𝒖∗ +𝛻𝜼ℎ𝑃𝑆𝐸
𝑇 𝝂∗−𝒖𝐿

∗ +𝒖𝑈
∗  

 

Feasibility: 

𝐻𝑃𝑆𝐸(𝜼)= 0  

𝑔𝑃𝑆𝐸𝑠(𝜼)≤ 0 , ∀𝑠 = 1,… 𝑆 

(5-18) 

Complementarity: 

𝑔𝑇𝒖∗ = 0 , 𝒖∗ ≥ 0  

 

By comparing equations (5-17) and (5-18) it can be observed that both problems are equivalent in the 

neighborhood of the nominal condition if the numerical derivation of the PSE functions and actual functions 

are equivalent (Biegler et al., 1985). A sufficient condition is as follows: 

𝛻𝜼𝛩𝑃𝑆𝐸 = 𝛻𝜼𝛩, 𝛻𝜼𝑔 = 𝛻𝜼𝑔𝑃𝑆𝐸, 𝛻𝜼ℎ = 𝛻𝜂ℎ𝑃𝑆𝐸 
(5-19) 

As shown in Step 3 and Equation (5-1) and (5-2), during the development of the PSE approximations we 

obtain the gradients of the cost function and constraints with respect to the decision variables, i.e.  

𝛻𝛩(𝜼)|𝑡𝑤𝑐,𝜁𝑗 and 𝛻𝑔𝑠(𝜼)|𝑡𝑤𝑐 ,𝜁𝑗 . The only difference between the two formulations originates from the 

numerical error in the sensitivity calculations. Thus, it can be concluded that the PSE-based optimization 

in the present approach is equivalent to the bounded formal integration in the vicinity of the nominal 

condition. Therefore, an optimal solution to the bounded formal integration shown in Problem (5-16) can 

be translated into an optimal solution for PSE-based optimization in Problem (5-14). If the proposed 

algorithm converges, then the solution satisfies first-order KKT local optimality conditions and is 

equivalent to the solution obtained from a formal integration around that optimal point. In summary, the 

trust-region method guarantees convergence to a local optimum if at all iterations there is a local solution 

for the PSE-based optimization. At each iteration, the PSE-based optimization is required to converge to a 

local optimum solution; otherwise, the procedure may result in sub-optimal solutions due to a misleading 

search direction in the decision variables.  



98 

 

The proposed trust-region method still carries some limitations that can be further explored. For instance, 

structural (integer) decision variables involving changes in the design and/or control structure cannot be 

considered at this point and is a part of the future work considered in this research. The proposed approach 

can be extended to simultaneously design and control of batch processes. In batch processes, the dynamic 

behaviour of the system is closely tied with the design parameters and may extremely affect the performance 

of the process. Consequently, simultaneous design and control provides an attractive opportunity for further 

improvements in batch processes, in particular for biological systems. The biological systems are associated 

with multiple uncertain parameters and are typically designed as batch processes. Moreover, most of the 

biological processes consider manual or open-loop control strategies that require deliberate tuning 

considerations at the design stage. The current back-off approach is capable of performing integration 

design and control for batch processes with multiple uncertain parameters with open-loop or manual control 

strategies as long as the model of the system is available. 

5.2 Illustrative case study: wastewater treatment plant 

The wastewater treatment plant introduced in Chapter 3 was used as a case study to test the proposed trust-

region framework. The process is designed to regulate the level of the substrate concentration (𝑠𝑤 ) in the 

biodegradable waste stream. Table 5-2 provides the cost function and the process constraints that determine 

the feasible operating region for this process. The disturbance profile comprises step changes in the inlet 

flowrate (𝑞𝑖) that happen at multiple time intervals (i.e. every 10 hours). The magnitudes of step changes 

are reported in Table 5-2. The computational experiments performed in this chapter were conducted using 

a computer running Microsoft Windows Server 2016 Standard. The computer was equipped with 96 GB 

RAM and 2 processors of Intel® Xeon® CPU E5-2620 v4 @ 2.10GHz. 
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Table 5-2: Model equations of the wastewater treatment plant 

Description Equations 

Cost function: 

 𝐶𝐶𝑤 : capital cost 

 𝑂𝐶𝑤 : operating cost 

𝛩𝑊  =  0.16(3500𝑉𝑟  + 2300𝐴𝑑)⏟                
𝐶𝐶𝑤

+870(𝑓𝑘  + 𝑞𝑝)⏟        
𝑂𝐶𝑤

 

Constraints: 

 Maximum allowable substrate concentration in the 

treated water that leaves the decanter 

 Minimum and maximum allowed ratio between the 
purge to the recycle flowrates 

 Allowed purge age in the decanter 

 

 

𝑠𝑤(𝑡) ≤ 100 

0.01 ≤ 
𝑞𝑝(𝑡)

𝑞2(𝑡)
≤ 0.2 

0.8 ≤
𝑉𝑟𝑥𝑤(𝑡) + 𝐴𝑑𝑙𝑟𝑥𝑟(𝑡)

24 𝑞𝑝𝑥𝑟(𝑡)
≤ 15 

Optimization variables [𝐴𝑑 , 𝑉𝑟  , 𝑠𝑤𝑠𝑝 , 𝑐𝑤𝑠𝑝 ,𝐾𝑐1 ,𝐾𝑐2 , 𝜏𝑖1 , 𝜏𝑖2] 

Disturbance realizations (𝑞𝑖)-step changes  
{600, 630, 580,610,580} 

5.2.1 Results 

This case study is primarily used to test the capabilities of the trust-region method for a medium-scale 

application. The simultaneous design and control of this plant has been studied using three different 

approaches, formal integration approach (Problem (2-1)), basic back-off with a fixed search space (Chapter 

3), and the trust-region algorithm proposed in the current chapter. Moreover, the trust-region is identified 

using two distinct methods, i.e. standard search for the validation region using the formulation presented in 

Problem (5-7), and an alternative stepwise iterative strategy proposed to identify the trusted interval, shown 

Section 5.1.1. The implementation of the formal integration of design and control optimization problem 

was performed in Pyomo (version 3.6) using a simultaneous discretization approach for dynamic 

optimization with and automatic discretization scheme (backward/collocation point). The tuning 

parameters and details regarding the basic back-off with a fixed search space have been reported in Chapter 

3. For the trust-region method, the acceptable error range for the PSE validation (𝜖𝑇𝑅) is set to 5%. The 

initial condition for all three methods is set to steady-state optimum under the assumption of no uncertainty 

and disturbances. Table 5-3 summarizes the results for the four different approaches considered for this 

case study. 
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Table 5-3: Summary of the results: formal integration, basic back off, and trust-region 

 Formal 

integration 

Basic back-off 

(fixed search 

space) 

Trust-region 

method 

Trust-region 

method using the 

stepwise search 

Decision variables 

Area (m2) 1,165.7 1,197.7 1,165.38 1,164.75 
Volume (m3) 1,437.7 1,421.7 1,438.4 1,438.9 

𝑠𝑤𝑠𝑝 90 90.4 90 90 

𝑐𝑤𝑠𝑝 0.06 0.06 0.06 0.06 

𝐾𝑐1 0.30 0.32 0.30 0.30 

𝐾𝑐2 0.11 0.31 0.69 0.83 

Cost ($/a) 4.965x108 5.013x108 5.003 x108 5.003x108 

Converged iteration - 62 42 42 

CPU (s) 14.15 20.13 1,226 167 

As indicated in Table 5-3, all approaches converged to approximately similar results (i.e. less than 1% 

differences in cost function values and significant decision variables). The similarity in the outcomes 

obtained from these methods demonstrates the ability of the techniques to perform simultaneous design and 

control. The solutions obtained from the basic back-off and the trust-region are equal to the optimal solution 

of formal integration framework and the gradients of the first order KKT conditions are the same (not shown 

for brevity). The discrepancy in the gain of the second controller (𝐾𝑐2) is because the optimization is not 

that sensitive to changes in this decision variable. As listed in Table 5-3, the formal integration technique 

requires relatively short CPU times and performs faster than other techniques; however, the application of 

formal integration is limited to relatively small or medium-scale problems. As the size and complexity of 

the process increase, e.g. by adding more uncertain scenarios combined with additional time-dependent 

disturbances, the implementation of formal integration (i.e. dynamic optimization) becomes challenging 

and computationally demanding. For the basic back-off, a constant search space (2% of the nominal value 

of the decision variables) was used that was specified offline. A fixed search space must be chosen in a way 

that provides validity of the PSE function for all decision variables during the entire back-off procedure; 

therefore, a conservative search space according to the smallest acceptable region was defined for this case 

study. On the other hand, the trust-region method is able to systematically choose different regions for 

decision variables at different stages of the integration procedure. Accordingly, the trust-region converged 

to the optimal solution after 42 iterations since the PSE-based optimization has more freedom to change the 
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decision variable’s search space per iteration, whereas the basic back-off reaches to the same solution after 

62 iterations. The proposed trust-region is capable of updating the order of PSE systematically based on a 

user-defined level of accuracy. Accordingly, the order of PSE may change at each iteration. For the current 

case study, second-order PSE remains sufficient for most of the iterations. Note that the CPU time for the 

trust-region is 2 orders of magnitude higher than the basic back-off. Since the current case study is a 

medium-scale problem, it is non-trivial to find a suitable search space for the basic back-off while the trust-

region finds that value systematically at the expense of higher CPU times. As will be shown in the next 

section, the systematic identification of trusted interval is crucial for large-scale processes with highly 

nonlinear behaviour since the appropriate fixed search space is difficult to detect. Figure 5-6 shows a 

comparison between the two trust-region identification methods proposed in this study (see Step 4 in 

Section 5.2). One method represents the solution of the problem (5-7) while the other is the stepwise method 

presented in Section 5.1.1. Both methods can capture the sensitivity of error-index (MSE) to the changes 

in the decision variables. Problem (5-7) is designed in a way that all decision variables are changing at the 

same time and the correlated impact on the error-index can be measured. On the other hand, the stepwise 

search (Section 5.1.1) independently identifies the effect of changes in every decision variable. The 

differences between the two approaches shown in Figure 5-6 stem from the correlation between the changes 

of decision variables. Solving Problem (5-7) in a sequential approach carries out the main portion of 

computations in the procedure and thus causes high CPU demands (see Table 5-3). The stepwise iterative 

search for the validation region with a lower CPU cost can replace the standard procedure of defining the 

region attained from Problem (5-7). Other than low CPU demands, the stepwise iterative approach is an 

attractive alternative for cases when the optimization in Problem (5-7) becomes challenging and 

computational taxing. 
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Figure 5-6: Comparison of the trust interval obtained from (Problem (5-7)) and alternative stepwise search  

5.3 Large-scale case study: the Tennessee Eastman plant 

In order to show the capabilities of the proposed trust-region method on a large-scale system, the method 

was used to perform integration of design and control of the Tennessee Eastman (TE) plant (Downs and 

Vogel, 1993). This process produces two main products (G and H) and a by-product (F) from four main 

reactants (A, C, D, and E) and an inert reactant (B). The process includes five major units: a two-phased 

exothermic reactor, the product condenser, a vapor-liquid separator, a recycle compressor, and a product 

stripper column. The mechanistic model of the process is not explicitly available, which restricts the 

application of model-based techniques for process optimization such as formal integration of design and 
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control. Instead, a Fortran code is available to simulate the plant under different operating scenarios. The 

TE plant is designed in a way that includes 12 manipulated variables, 41 output measurements, 19 

composition measurements, and 20 potential disturbances. Multiple process goals and constraints including 

product composition, product rate, control scheme, and operating conditions have been defined for this 

plant (Downs and Vogel, 1993). Main goals are as follow, i.e. 

 Product composition: process variability restrictions are applied on the product’s stream, e.g. 

fluctuations exceeding 5% variations in the product stream are not desired in the process. 

 Production rate: Six modes of operation have been defined for the TE plant according to the mix 

of products and the total mass flow of the production stream. The production rate must remain 

within a certain limit of the desired target product, e.g. 5% variations. 

 Operation conditions: Those must remain within the equipment constraints including liquid levels, 

reactor pressure, and other safety constraints.  

 Control goals: Minimum movements required for the valves and smooth disturbance rejection. 

The control of the TE plant has been widely investigated (Larsson et al., 2001; Luyben, 1996; Lyman and 

Georgakis, 1995; McAvoy and Ye, 1994; Ricker, 1996; Sriniwas and Arkun, 1997). A previous study used 

process heuristics to develop a decentralized control configuration for this plant (Ricker, 1996). Figure 5-7 

shows a schematic of the decentralized control strategy proposed in that study, which consists of 17 PI 

controllers spread throughout the plant. In the present study, the decentralized control configuration has 

been used; however, some of the optimal tuning parameters were obtained for the controllers in a 

simultaneous design and control framework. Downs and Vogel, (1993) identified multiple operating modes 

for the TE plant. For the purposed of current research, the 50/50-G/H operating mode is only considered. 

The operating cost is defined according to the total operating cost at the base case specified by Downs and 

Vogel (1993). The capital cost function is adopted from the cost considered in a previous study (Ricardez-

Sandoval et al., 2011). Therefore, the process units are considered as pressure vessels made of carbon steel 

with a length/diameter ratio of 4 and the bare module cost for each unit is calculated using diameter (𝐷𝑢𝑛𝑖𝑡 ) 
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and maximum allowed working pressure (𝑃𝑢𝑛𝑖𝑡). Similarly, multiple process constraints according to the 

process goals and equipment safety are defined. Table 5-4 provides the objective and constraints of the 

process considered in this study. 

 

Figure 5-7: Schematic of the decentralized control strategy (Ricker, 1996) 
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Table 5-4: Key optimization characteristics of the TE process 

Objectives:  

Capital cost ($ a)⁄ ∶ 𝐶𝐶 = 𝑟(5946𝐷2.1(19.82 − 12.55 lnP + 2.36(lnP)2)360/315 

Operating cost ($ hr⁄ ) ∶ 

𝑂𝑃 = (purge $)(purge rate)+ (product $)(product rate)
+ (compressor $)(compressor work)+ (steam $)(steam rate) 

Total cost ($/a) = 𝐶𝐶 + (8760)𝑂P 

Constraints: 

Variation in the product stream ±5% Variability in the product’s G mol fraction  

±5% Variation in the product’s stream flowrate 

Safety  Reactor’s Pressure ≤ 2895 kPa 

Reactor’s Temperature ≤ 150 °C 

30 ≤ Reactor’s Liquid level ≤ 100  

Minimum target product (50/50-G/H) Product’s G mass flowrate ≥7038 kg/hr 

Product’s H mass flowrate ≥7038 kg/hr 

5.3.1 Scenario I: reactor only 

The implementation of the formal integration on the TE process as a large-scale process with a black-box 

model is computationally challenging and overly demanding. Thus, the trust-region framework proposed 

in this work is a powerful candidate to simultaneously consider the design and control of a plant whose 

dynamic behaviour is only available through external sources, e.g. chemical engineering software such as 

Aspen dynamics or HYSYS. In this study, the Fortran code has been used to conduct the sensitivities 

computations of the process to the decision variables and construct the piecewise PSE functions.  

In this section, the reactor section of the TE plant is only studied. Hence, design and control parameters of 

the reactor section are only considered as decision variables for this problem whereas the rest of the process 

variables and controller tuning parameters were set at their nominal values as specified by Ricker (1996, 

1995). Accordingly, 13 decision variables for optimization are considered, i.e. reactor design capacity, 

operating conditions for the reactor unit and the controller tuning parameters of the surrounding control 

loops. Table 5-5 summarizes the optimization variables for the implementation of the trust-region on the 

TE plant. The dynamic model of the TE plant has been used that includes all process units. Changes in the 
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reactor may affect other sections of the plant and are defined as optimization variables in the present 

analysis. Although the rest of the sections of the plant were not explicitly considered in the present analysis, 

e.g. operation and design of the separator and stripper, their effects on the reactor performance are explicit ly 

considered in the proposed trust-region approach through the use of the dynamic model for the complete 

TE plant. The objective of this problem is to define the design and control of the reactor section of this plant 

that minimizes the annualized capital and operating costs for this unit. Since the reactor section of this plant 

is studied, the reactor’s capacity is a decision variable whereas the flash unit and the stripper column’s bare 

module costs remained fixed to their constant values, i.e. 99.1 m3 and 4.43 m3. 

Table 5-5: Decision variables for the reactor section 

Decision variable ( 𝜼 ) 

Design Reactor’s design capacity (m3) 

Adjustable set-points Reactor’s pressure set-point (kPa) 
Reactor’s liquid level set-point (%) 
Reactor’s temperature set-point (°C) 
Production set-point (m3/hr); 

PI tuning parameters Kc, τI : Purge valve (stream 9)  
Kc, τI : Reactor liquid level (loop17) 
Kc, τI : Reactor pressure (loop5) 
Kc, τI : Reactor temperature  

Multiple disturbances affecting the reactor unit introduced by Downs and Vogel (1993) are considered for 

the present scenario. Table 5-6 shows the step changes in 5 different disturbances along with the 

corresponding magnitudes of the changes with respect to their nominal value. These disturbances are time-

dependent and occur at different intervals throughout the process. The combination of the disturbances 

creates highly challenging scenarios for the dynamic operation of the reactor unit (Ricker, 1996). 



107 

 

Table 5-6: Disturbances in the TE 

 Type Nominal Magnitudes Description  

idv(1) step 95% 4 A/C feed ratio, B composition constant (stream 4)  
idv(2) step 0.5 mol% 1 B composition, A/C ratio constant (stream 4)  
idv(3) step 45°C 2 D feed temperature (stream 2)  
idv(4) step 35°C 2 Reactor cooling water inlet temperature  

idv(6) step 396.1 kmol/hr 2 A feed loss (stream 1)  

In the current case study, the stepwise search for the trusted interval has been employed since the 

implementation of standard search using a sequential optimization approach (Problem (5-7)) was 

computationally taxing. The tuning parameters of the trust-region method used for the TE plant have been 

summarized in Table (5-7). 

Table 5-7: Tuning parameters of the trust-region method used for the TE plant 

Tuning parameter Description  Recommended values 

𝑁𝑐 Convergence examination period 10 

𝑁𝑖𝑡𝑒𝑟 Maximum number of iterations  500 

𝜖 Termination tolerance for the algorithm 1x10-2 

𝜖𝑇𝑅 Tolerance criteria for the validation of PSEs 10% 

Δ𝜂 Finite-difference step size  0.0051𝜼𝑛𝑜𝑚 

𝑀1, 𝑀2 Infeasibility penalty terms  105𝛩 

Although the optimal steady-state operation of the TE problem has been considered before, those studies 

were conducted for specific design factors and focused on the optimal operation at steady-state (Bahakim 

et al., 2014; Ricker, 1995). The optimal steady-state operating mode (50/50) and current reactor capacity 

(McAvoy and Ye, 1994) reported in the literature is used as the initial point to implement the trust-region 

framework (see Table 5-8).  

As shown in Figure 5-8, the trust-region introduces a more economically attractive design compared to the 

base case design currently considered for the reactor unit. As indicated in the figure, a 36% positive back-

off is obtained from the base case design and control configuration. The solution from the trust-region 

framework is the closest feasible solution to the initial base case while the cost is improved and dynamic 

feasibility is maintained in the presence of the disturbances considered for this study. As discussed in 

Section 5.1.2, the feasible and near-optimal solution offered by the trust-region has the potential to be a 



108 

 

locally optimal point for this process. Figure 5-9 shows how the system satisfies the process constraints and 

maintains feasibility by forcing feasibility variables (𝝀) to zero. Once the feasibility variables 𝝀 for all 

constraints are approaching zero, the dynamic feasibility of the system has been satisfied for the worst-case 

variability in the TE reactor’s operation due to the disturbances considered in the analysis. Some of the  

constraints remained active at the beginning of the algorithm and thus the proposed method gradually forced 

the feasibility variables (𝝀) and penalty function towards zero to retain dynamic feasibility.  

 

Figure 5-8: Cost function of TE using the trust-region method 
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Figure 5-9: The behaviour of feasibility variables (𝝀) for the rust-region algorithm 

The solution obtained from the trust-region is summarized for all the decision variables along with their 

initial value (base case) in Table 5-8. As discussed above, the trust-region successfully moved the process 

variables and resulted in a lower annualized cost compared to the base case while maintaining dynamic 

feasibility under process constraints. As indicated in Table 5-8, increasing the capacity of the reactor allows 

the system to operate at higher pressure; hence, the set-point was set to 2,894 kPa while it was 2,800 kPa 

at the base case. The maximization of reactor pressure is in favor of the process economics (Ricker, 1995). 

The trust-region method suggests a higher-pressure set-point close to the upper bound while avoiding a 

shut-down. To avoid poor controllability issues at high pressures, the method requires a larger reactor that 

makes control of the process smoother. 
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Table 5-8: TE decision variables along with their base case values 

Decision variables Base case (initial condition) Trust-region method 

Reactor’s design capacity (m3) 36.8 45.3 

Reactor’s pressure set-point (kPa) 2,800 2,894 

Reactor’s liquid level set-point (%) 65 55.5 

Reactor’s temperature set-point (°C) 122.9 124.6 

Production set-point (m3/hr) 22.9 23.8 

Kc, purge valve (loop5) 0.010 0.034 

τI ,purge valve (loop5) 1x10-3 5.71x10-4 

Kc, reactor liquid level (loop11) 0.8 0.81 

τI , reactor liquid level (loop11) 60 60 

Kc, reactor pressure (loop12) -1x10-4 -7.2x10-4 

τI , reactor pressure (loop12) 20 16.93 

Kc, reactor temperature (loop16) -8 -1.2 

τI , reactor temperature (loop16) 7.5 3.8 

Converged iteration NA 52 

Total cost ($/a) 2.55x106 1.63x106 

To compare the advances of the proposed trust-region framework with the original back-off technique, the 

basic back-off method (Chapter 3) with a fixed search space on the reactor section of the TE plant was 

implemented. Although a conservative search space was used, i.e. 𝛿𝑝 = 1% of all the nominal decision 

variables, the methodology was not able to converge to a solution even after 500 iterations. The basic back-

off with a fixed search space method drives decision variables to different outcomes, which indicates that 

the PSE representation of the system may not be accurate around some of the nominal operating conditions 

explored by the fixed search space region. The cost function values obtained from these methods are 

compared in Figure 5-10. As shown in this figure, using a fixed search space causes a negative total cost at 

some iterations, e.g. 200- 207-232, which indicates that PSE-based optimization converged to an infeasible 

point due to misrepresentation of the actual model at those iterations. As mentioned before, failure of the 

system to identify local optimum at every iteration deteriorates the identification of a local optimum at the 

convergence of the procedure; thus, an optimal local solution cannot be guaranteed. 
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Figure 5-10: Cost function of basic back-off with fixed search space and trust-region algorithm 

Figure 5-11 shows the performance of the feasibility variables (𝝀) for the basic back-off approach with a 

fixed search space. Although the cost of the basic back-off shows a converging behaviour, the procedure 

cannot maintain dynamic feasibility in the system; hence, process constraints are not satisfied, as shown in 

Figure 5-11. 
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Figure 5-11: The behaviour of feasibility variables (𝝀) for the basic back-off approach with a fixed search 

space. 

Figure 5-12 shows the search space for the key decision variables of the TE while using the trust-region 

algorithm. As indicated above, the method maintains the validity of the PSE in the entire trust-region 

technique by choosing different trust intervals for decision variables and the size of the search space changes 

as the iterations proceed. At some iterations, changes in one decision variable are restricted to small 

variations while the other decision variables can be explored in a wider range. Hence, the trust-region for 

some variables is smaller compared to the others and this can change as the algorithm proceeds. This result 

shows that specifying the search space is non-trivial and requires a sophisticated method to select suitable 

search space regions for each decision variable on which the PSE functions remain valid. 
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Figure 5-12: Search space for individual decision variables 

The high CPU cost (approximately 38.2 hours) is the price needed to ensure the quality of PSE function at 

each nominal condition and thus convergence of the trust-region method. Although the implementation of 

the trust-region algorithm requires higher computational costs, the method guarantees that an optimal local 

solution could be identified. As discussed in Section 5.2, for the wastewater treatment plant, the satisfactory 

search space can be obtained from offline sensitivity analysis and implementation of the trust-region 

method remains insignificant. However, in the case of the large-scale industrial processes such as the TE 

plant, the back-off with the fixed search space failed to converge to a dynamically feasible and near-optimal 

solution. Moreover, the formal integration of design and control cannot be performed because a process 

model for this plant is not explicitly available. The latter highlights the benefits of using the presented trust-

region framework for large-scale applications.  
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5.3.2 Scenario II: comparison with previous studies 

The integration of design and control of the TE plant has been previously studied under different scenarios 

(Ricardez-Sandoval, 2008; Ricardez-Sandoval et al., 2011, 2010). In the current section, the results obtained 

from the proposed trust-region method have been compared to those from the literature. Ricardez-Sandoval 

(2008) used random variations in the A, B and C feed composition in stream 4 (see Figure 5-7). The 

disturbance specification is shown in Table 5-9. Despite the small changes in the disturbance, it has a 

significant effect on product’s flowrate. Also, this disturbance has been reported as one of the most 

challenging disturbances to handle for the TE process (Ricker, 1996). 

Table 5-9: Disturbance specifications 

Component Nominal value Lower Bound Upper bound 

A 0.485 0.475 0.495 
B 0.005 0.002 0.008 
C 0.510 0.480 0.540 

Ricardez-Sandoval (2008) employed a robust modeling approach based on structured singular value (SSV) 

analysis for simultaneous design and control. Accordingly, the author estimated the critical time-dependent 

profile in the disturbance that generates the maximum variability in the process outputs. The SSV-based 

method results in conservative designs that remained feasible for the calculated critical disturbance profile, 

which generates the highest variability in the process constraints and cost function (Ricardez-Sandoval, 

2008; Ricardez-Sandoval et al., 2011). On the other hand, the proposed trust-region method results in robust 

designs since the surrogate models are developed around the worst-case variability in the constraints and 

cost function. However, in the current trust-region method the critical disturbance profile is defined a priori 

and remains unchanged during the calculations. That is, the critical disturbance is not estimated at each step 

of the iterations as it is performed in Ricardez-Sandoval (2008). To make a fair comparison, a similar 

disturbance profile to the critical time-dependent profile found at the optimal solution by Ricardez-Sandoval 

(2008) for the TE plant is considered in this work. Hence, a disturbance profile involving a series of steps, 

with magnitudes in the step changes and average frequency similar to those specified by Ricardez-Sandoval 

(2008), has been generated for the present scenario. The resulting disturbance profile in the feed 
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composition (stream 4) is used to implement the proposed trust-region method for simultaneous design and 

control of the TE plant. The cost, process design and adjustable set-points for the reactor section obtained 

from the trust-region method and SSV-based approach are reported in Table 5-10. Note that both 

approaches converge to design and control schemes that remained dynamically feasible under the 

disturbances in stream 4 (see Table 5-9). In the SSV-based approach, a variability cost was considered in 

the analysis to explicitly account for the largest (worst-case) variability in products G and H. The process 

variability of product G and H is defined as the deviation of the product’s mass flowrate with respect to 

their corresponding nominal value at steady-state (Ricardez-Sandoval, 2008). The present trust-region 

approach handles the maximum process variability in a different way. The PSEs are developed for the 

maximum deviation in the cost function of the process, including the cost due to the variability of product 

G and H. Thus, the variability of the cost function is taken to account. Note that the worst-case is defined 

for a disturbance that remained fixed in the calculations as opposed to is estimated from a robust analysis 

in the SSV-based approach. As shown in Table 5-10, the current trust-region method specified a design and 

control scheme that is 27% less expensive than that obtained from the SSV-based approach. The variability 

cost considered in the SSV-based method commits to 36% of the total cost, which aims to maintain the 

dynamic behaviour of the system around the nominal condition, whereas the capital cost has the lowest 

contribution to the total cost (5%). Consequently, in order to compensate for the variability cost and 

decrease the deviation in products’ flowrate, the SSV-based approach specifies a larger reactor capacity, 

which is approximately 2 times the capacity obtained from the trust-region. On the other hand, the capital 

cost contributes to a greater portion of the total cost in the trust-region method, thus, the approach does not 

result in large reactor capacities. The solution of simultaneous design and control obtained in the trust-

region can maintain feasibility under the specified disturbances with a smaller reactor capacity and at a 

higher pressure set-point. Nevertheless, there is no guarantee that the system remains feasible if the 

disturbance profile changes for the obtained solution. 
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Table 5-10: Comparison of results between SSV-based and trust-region method 

 SSV-based approach 

(Ricardez-Sandoval, 2008) 
Trust-region method 

Reactor’s design capacity (m3) 84.19 39.84 
Reactor’s pressure set-point (kPa) 2,600 2,847.3 
Reactor’s liquid level set-point (%) 63.20 59.60 

Reactor’s temperature set-point (°C) 117.0 123.4 
Production set-point (m3/hr) 23.11 23.2 
CPU time ~100 hr ~30 hr 
Total cost ($/a) 1.681x106 1.230x106 

5.3.3 Scenario III: complete TE plant  

Simultaneous design and control of the reactor section using the proposed trust-region has been addressed 

in the earlier sections. In those analyses, only design and control factors of the reactor are considered. Note 

that for analysis of the reactor section the design and control tuning parameters of the other units remained 

constant at their base case values. Although the effects of other units on the overall process performance 

are captured through the use of the dynamic model for the complete TE plant, their design and control 

parameters are not considered as optimization variables. Changes in the parameters of other units of the 

process, e.g. separator and stripper, may affect the process performance and economics. Thus, in this 

section, the optimal design and control of the three major units of the TE process are simultaneously 

considered.  

Table 5-4 provides the cost and constraints of the TE process. Equivalent objective and constraint functions 

are used for the reactor section and complete model. Table 5-11 present the set of optimization variables 

include 46 decision variables that are basically for all main units of the process.  
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Table 5-11: Decision variables for the complete model 

Decision variable ( 𝜼 ) 

Design Reactor capacity (m3) 
Flash separator (m3) 

Stripper column (m3) 

Adjustable set-points Reactor pressure set-point (kPa) 
Reactor liquid level set-point (%) 
Reactor temperature set-point (°C) 
Production set-point (m3/hr) 
Separator liquid level set-point (%) 

Stripper liquid level set-point (%) 
𝑦𝐴 set-point (%) 
𝑦𝐴𝐶 set-point (%) 

Mol % G set-point 

PI controller tuning parameters Kc, τI : Reactor liquid level (loop17) 
Kc, τI : Reactor pressure (loop5) 
Kc, τI : A feed rate (stream1) 

Kc, τI : D feed rate (stream 2) 
Kc, τI : E feed rate (stream 3) 
Kc, τI : C feed rate (stream 4) 
Kc, τI : Purge rate (stream 9)  
Kc, τI : Separator liquid flow (stream 10)  
Kc, τI : Stripper liquid flow (stream 11)  

Kc, τI : Production rate 
Kc, τI : Stripper liquid level (loop7) 
Kc, τI : Separator liquid level (loop6) 
Kc, τI : Mol % G in stream 11  
Kc, τI : Ration in loop 1 (𝑦𝐴) 

Kc, τI : Ration in loop 4 (𝑦𝐴𝐶) 
Kc, τI : Reactor coolant valve 
Kc, τI : Separator coolant valve 

The same disturbance configuration used in scenario I (see Section 5.3.1) shown in Table 5-6 has been used 

for the integrated design and control of the complete TE plant. Table 5-12 shows the results of the 

implemented trust-region for the complete TE plant. These results are compared to those obtained for the 

reactor section only (Section 5.3.1). As shown in the table, the integrated design and control of the complete 

TE plant results in 11% lower costs compared to the reactor section analysis. The complete TE problem 

has more freedom in terms of additional decision variables that can be adjusted to reduce the cost. The 

contribution of those decision variables to the economics and dynamic performance of the process has been 

captured and thus the proposed plant design is able to reduce the cost and maintain dynamic feasibility. The 

integration of design and control of the entire TE plant suggests different values for the parameters which 

were set to their base case values in the reactor analysis section. Considering additional decision variables 
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improves the economics of the plant; on the downside, the size of the problem and thus the computational 

cost increases as shown in Table 5-12. The capital cost takes up to 10% of the overall cost of the process; 

while 90% of the total cost is due to the operating costs. Reasonably, the trust-region approach decreases 

the overall cost by choosing larger capacities for the reactor, stripper, and separator (see Table 5-12). 

Consequently, the operational costs decrease and the system can operate at closer conditions to the specified 

margins, e.g. the system operates at a higher pressure adjacent to the upper limit. 

Table 5-12: Results of complete model 

Decision variables Complete TE plant 

Design  

Reactor (m3) 45.30  
Flash separator (m3) 117.12  
Stripper column (m3) 5.66  

Adjustable set-points 

Reactor’s pressure set-point (kPa) 2,893  
Reactor’s liquid level set-point (%) 54.60  

Reactor’s temperature set-point (°C) 123.3  
Production set-point (m3/hr) 23.49  
Separator’s liquid level set-point (%) 56.96 (50 at Base case) 
Stripper’s liquid level set-point (%) 50.55 (50 at Base case) 
𝑦𝐴 set-point (%) 34.79 (32.2 at Base case) 

𝑦𝐴𝐶 set-point (%) 19.05 (18 at Base case) 
Mol % G set-point 54.5 (55.83 at Base case) 

CPU time (hr) ~110  

Total cost ($/a) 1.45x106  

Converged iteration 62  

Figure 5-13 shows the convergence of both reactor and complete TE plant (reactor, separator, and stripper). 

The complete TE plant requires additional iterations in the trust-region procedure to satisfy the convergence 

criterion when compared to Scenario I; however, it results in a larger amount of back-off, i.e. lower cost 

compared to the initial base case value and therefore more economic benefits. Figure 5-13 clearly shows 

the trade-offs between computational costs and additional economic savings, i.e. while Scenario I (reactor 

only) required approximately one-third of CPU time of the present scenario (complete TE plant), it 

identified an optimal design and control solution that is 11% more economical than that obtained by 

Scenario I. This result illustrates the benefits of considering the optimal design and control of a large-scale 

plant and also is indicative of the corresponding CPU costs that will be incurred when attempting to solve 

such a problem. 
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Figure 5-13: Cost function of complete TE and reactor section using the trust-region method 

Figure 5-14 shows the performance of some of the nonzero feasibility variables (𝝀) for the trust-region 

approach. As illustrated in the figure, the feasibility in the process is maintained since the trust-region 

method forces all the feasibility variables to zero at the convergence. 

 

Figure 5-14: The behaviour of feasibility variables for the complete TE plant 
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As discussed in Section 5.1, the current trust-region method is capable of updating the order of PSE with 

respect to the region that is being explored at each iteration step. At certain nominal conditions, if the system 

has a highly nonlinear behaviour or the identified trust-regions too small the procedure adopts to increase 

the order of the PSE to improve the accuracy of the approximation. Figure 5-15 shows the order of the PSE 

that was employed among the iteration of the trust-region approach. As expected, at the early iterations, the 

low order of PSE shows satisfactory performance. Due to the changes in optimization variables, the system 

might show highly nonlinear behaviour at some iterations and thus higher-order PSEs may be required.  

 

Figure 5-15: PSE order during the trust-region procedure 

The search spaces obtained for individual decision variables of the three main units of the process, i.e.  

reactor, stripper, and separator, are shown in Figure 5-16. As indicated in the figure, the trust-region method 

maintains the validity of the PSE functions by choosing different trust intervals for decision variables at 

each iteration of the trust-region procedure. At some iterations, changes in one decision variable are 

restricted to a small search space while other decision variables can be explored in a wider range. In general, 

if large changes in one decision variable deteriorate the error-index, i.e. accuracy of the PSE, the procedure 

chooses to limit the allowable search space. Although small trusted intervals for specific decision variables 

may delay convergence, the accuracy of the PSE function due to the changes in the decision variables is 

ensured through the user-defined tolerance (see Step 4 in Section 5.1).  
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Figure 5-16: Trust-region intervals for individual decision variables 

To validate the design, the solution obtained from the trust-region method was tested using the disturbance 

specified for the process (Table 5-6). Figure 5-17 illustrates the variation in the product stream 

qualifications, i.e. G mol% and flowrate in stream 11, which must remain under 5% (see Table 5-4). As 

indicated, stream 11 (i.e. product stream) remains within their corresponding limits in the presence of the 

disturbance.  
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Figure 5-17: Variation in the product stream (stream 11) 

The dynamic operation of the reactor is illustrated in Figure 5-18. As shown in the figure, all three operating 

conditions, i.e. reactors’ pressure, temperature, and liquid level, remain feasible during the process time 

under specified disturbances. Accordingly, the system can operate at a higher pressure without any 

violations to its safety margin for the specified disturbance profile. Figure 5-19 shows the product 

variability in terms of variability of flowrate of product G and H. For the 50/50 operating mode, both G and 

H product flowrates must be greater than (7,038 kg/hr). Accordingly, the design obtained by the present 

method maintains the minimum target product for 50/50-G/H operating mode. For the solution obtained 

from the proposed trust-region method the minimum target value is active at some conditions but it does 

not present any constraint violation. 
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Figure 5-18: Reactor operating constraints 
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Figure 5-19: Minimum target product for (50/50-G/H) 

In summary, this chapter presented the trust-region approach which is an extension of the basic back-off 

approach. The proposed trust-region method can be applied for simultaneous design and control of large-

scale systems. The approach is designed in a way that systematically selects the size of the trusted interval 

region in which the error between the actual function and its PSE remains in a certain tolerance. The 

procedure is capable of updating the order of PSE regarding the area that is being explored or the desired 

accuracy of the PSE approximations. The quality of the solution obtained from the current region was also 

studied. If the proposed algorithm converges, then the solution satisfies first-order KKT local optimality 

conditions and is equivalent to the solution obtained from a formal integration problem around that optimal 

point. The methodology was implemented on a wastewater treatment plant and the TE process. The results 

indicate that the proposed methodology leads to more economically attractive and reliable designs while 

maintaining the dynamic operability of the system in the presence of multiple disturbances. The trust-region 



125 

 

method with adaptive search space shows a significant accomplishment in simultaneous design and control 

of the large-scale process while the basic back-off approach that uses a constant search space may fail to 

converge.  
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6 Emerging trends 

Today’s dynamic business market nature requires fast adaptation in the production process. To remain 

competitive, industries need to modify their production strategies and adjust to the rapidly evolving market 

demands as quickly as possible and in a safe and environmentally-friendly manner. Decision layers of 

process strategies, i.e. strategic/logistics, tactical, and operational, happen at different time and length 

scales. Traditionally, the settlements for each layer are acquired independently or inadequately combined 

with the adjacent layer. Central to the entire discipline of the integrated approach is maintaining an efficient 

flow of information between the multiple aspects of the process. The emerging trends in the field mainly 

include expanding the decision-making strategies to consider multiple layers of the process from different 

perspectives.  

This chapter presents ideas to support the development of new and more efficient opportunities for an 

integrated framework. My central goal is to highlight open problems and future research perspectives. Then, 

incentives directed towards the evolution of an integrated approach are identified. Future directions are 

suggested as the possible pathways the industry and academy might take to achieve the ideal framework of 

integrating all the decision levels, considering the complexities, obligations, and dimensions of a real-world 

enterprise. Promising strategies that are often implemented individually and that can expand the operating 

window of an integrated approach are outlined here. The discussions presented in this chapter have 

published in (Rafiei and Ricardez-Sandoval, 2020a). 

Emerging trends in the field are identified in 5 different categories which are discussed next. 

6.1 Design, control, scheduling, and planning 

The need for simultaneous design and control has already been established and widely discussed in the 

literature. Design parameters can dominate the dynamic behaviour of the system; hence, they have a pivotal 

role in reducing the complexity to operate and control the process at their desired targets. Illustrative 
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examples can be found in (Luyben, 2004). In the industrial processes, however, various time scales with 

the corresponding decision layers are often established that would also be affected by process design 

decisions. These layers often involve planning (long-term decisions, months to years), scheduling (short-

term decisions, days to months) and process control (operational, seconds to minutes) decisions. This 

intensified consideration should include design, planning, scheduling and control of the process as depicted 

in Figure 6-1.  

 

Figure 6-1: Integration of design, control, scheduling and planning 

To date, the research of the integrated framework has been mostly focused on the integration of design and 

control (Ricardez-Sandoval et al., 2009a; Vega et al., 2014a; Yuan et al., 2012), integration of control and 

scheduling (Baldea and Harjunkoski, 2014; Chu and You, 2015; Dias and Ierapetritou, 2016; Engell and 

Harjunkoski, 2012; Flores-Tlacuahuac and Grossmann, 2011; Harjunkoski et al., 2009; Valdez-Navarro 

and Ricardez-Sandoval, 2019a), integration of planning and scheduling (Maravelias and Sung, 2009), and 

integration of control, scheduling and planning (Chu and You, 2015). Simultaneous integration of all four 

aspects (i.e. planning, scheduling, control, and design) has yet to be attempted. Shobrys and White (2002) 

reported the major benefits for the integration of planning, scheduling, and control. They also discussed the 

barriers that need to be overcome to achieve a technically feasible integration. Grossmann (2005, 2012) 

reviewed the scope and application of mathematical programming techniques to Enterprise-wide 

Optimization (EWO) problems where planning, scheduling, real-time optimization, and control are 
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included. Economic MPC (EMPC) has emerged as an attractive alternative to account for the process 

economic at the control stage. The key goal is to replace the standard tracking objective function with an 

objective function that captures the economics of the process in the transient domain (Ellis et al., 2014; 

Müller et al., 2014; Rashid et al., 2016). Correspondingly, for most of the scheduling and planning 

problems, the design is assumed to remain fixed. However, there has been evidence of a correlation between 

design and process scheduling. There are few studies that have recently investigated the simultaneous 

consideration of design, control, and scheduling (Koller et al., 2018; Koller and Ricardez-Sandoval, 2017; 

Patil et al., 2015; Pistikopoulos et al., 2015; Pistikopoulos and Diangelakis, 2016). Logically, in any aspect 

that the control performance of the system is a subject of interest, the design of the system should be taken 

into consideration to yield a stable, feasible and flexible control scheme. The integration of each of the 

components of the process advances the resilience and operability of the process along with the performance 

of the process. Furthermore, considering all aspects of the process appears to positively shift the short-term 

and long-term profits of the entire system. The ever-increasing interest in optimal and efficient operations 

would thus motivate process industrial practitioners to implement intensified considerations at the early 

stages of the design. Considering the design features together with decisions made at the different layers of 

control, scheduling and planning offers more room for improvement of the sustainability of the entire 

process by directly affecting the control and indirectly affecting scheduling and planning. A comprehensive 

study using simple to medium-size case studies could assess the benefits and limitations emerging from the 

simultaneous consideration of the multiple aspects and/or levels of the process.  

The chemical supply chain is a sequence of processes and activities from production to distribution that 

includes the transformation of raw material to desired products. The chemical supply chain components 

have different time scales. Naturally, judgments at each layer are made by different decision-makers with 

diverse expertise, i.e. management experts at headquarters and process engineers at plant operation. Those 

experts have internal or local objectives that are often different from others and that can even contradict the 

objectives considered on other layers. As a result, the decision at each layer can be transferred as hard 
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(aggressive) constraints to the other layers in a sequential approach. The outputs of a block set decision 

rules for the following block, which would aim to meet their own targets in an optimal fashion and satisfy 

imposed decision rules. Thus, the internal decisions and actions at each layer are vague to the other layers, 

which may contradict the actions in the other layers. This inconsistency itself adds another source of 

uncertainty to the system which is not favorable. Additionally, all individual layers have their own 

uncertainties coming from different sources. In a sequential or disintegrated approach, uncertainties might 

be ignored at some levels since they have no effect on the outcome of the current level. In contrast, the 

ignored uncertainty generates severe deviations in a subsequent layer in which the origin of disruptions 

does not exist. Likewise, uncertainties might overlap in different layers and if considered separately, it will 

be a source of a higher redundant conservative policy. Consistent information flow between these layers is 

possible using an integrated approach which is the key component to align the short-term milestones with 

the long-term decisions. Moreover, resolutions at each layer can be carried out to the other layers not only 

as boundaries but also as objectives and operational constraints. 

On the basis of the aforementioned definition of planning and scheduling, the integration of design, control,  

scheduling, and planning suggests modifications that are not beyond the battery limits of a plant. Thus, the 

decisions are internal and require adaptation to external situations such as feed quality variations, 

availability of the utilities, and distribution. For example, price fluctuations and distribution to retailers are 

handled as external uncertainties that can affect the plant; however, the reverse does not apply. Recently, 

the topic of multi-enterprise instead of single enterprise has gained interest (Sahay and Ierapetritou, 2016). 

The approach illustrates some of the external unknown factors and decreases the magnitude of 

unpredictable factors. Therefore, the systems instead of operating with those external variables as complete 

unknown dynamics can somehow manipulate those externally imposed variations. The role of a single plant 

as an item from a larger collection of systems can be considered in a chemical supply chain framework. 

The chemical supply chain offers large saving opportunities for companies at the expense of solving larger 
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(intensive) optimization formulations. An interconnected approach is key to define aligned activities for 

several portions of the process.  

6.2 Supply chain optimization 

The decision layers with highly diverse time scales are interconnected though they are typically treated 

independently. Integration of the multiple aspects increases the profitability of the process in terms of 

shortening product manufacturing, improving product quality, widening the process capabilities, etc. 

Grossmann and Westerberg (2000) stated that: “Process Systems Engineering is concerned with the 

improvement of decision making processes for the creation and operation of the chemical supply chain. It 

deals with the discovery, design, manufacture, and distribution of chemical products in the context of many 

conflicting goals.” According to the updated definition of process system engineering (PSE), the key goals 

of the discipline can be broadened from process unit operation to the chemical supply chain. The chemical 

supply chain starts at small scales categorized as molecules, molecular clusters, and small particles or 

entities for single and multi-phase systems. The design and analysis of process units as a part of the 

flowsheet are referred to as intermediate scales. The collection of suppliers, warehouses and distribution 

centers defines a commercial enterprise at the macroscale level.  

 

Figure 6-2: Chemical supply chain 

Multiple blocks of a chemical supply chain are shown in Figure 6-2. Each of these blocks is different in 

time-, length-scales, and objectives to fulfill. However, the ultimate goal of all the blocks is to achieve a 

level of profitability and sustainability that is acceptable for the company. Through the chemical supply 
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chain, fundamental scientific discoveries at the molecular or microscopic level (i.e. discovery and design 

of new molecular structures) are highly interconnected with the logistics for manufacturing and production 

planning (i.e. supply chain planning and scheduling) (Grossmann, 2004). Each of these levels is briefly 

discussed next. 

Microscopic level: a systematic procedure for setting up, solving and analyzing Computer-aided Molecular 

Design (CAMD) problems has been proposed (Harper et al., 1999; Harper and Gani, 2000). Gani (2004) 

described product design based on the needs and desires that can form the fundamental of the first node in 

the chemical supply chain. The author discussed the challenges and opportunities of a systematic CAMD 

to identify/ design new products and processing routes. The concept of CAMD has been implemented in 

computer-aided software-tool for sustainable process synthesis-intensification of a bio-diesel system (Tula 

et al., 2017). Economic and environmental sustainability targets are also considered for a systematic optimal 

product−process design by (Cignitti et al., 2018). The second node of the supply chain is defined based on 

the fluid-flow phenomena based on the conservation laws. For example, computational fluid dynamics 

(CFD) enables the quantifications of the fluid-flow and multi-phase characteristics of the system (see 

Section 5.3).  

Intermediate level: decisions of design characteristics (e.g. capacity), the control of a single unit, and the 

intensified flowsheet design and control take place at this level. Demand forecasts are depicted to the supply 

chain network as the external conditions over a short- to medium- time horizon (Schulz et al., 2005; Shah, 

2005). Scheduling and planning are strategic decisions made at this level. A detailed discussion of the key 

modeling approaches that can address the practical integration of medium-term production planning and 

short-term scheduling problems are provided elsewhere (Maravelias and Sung, 2009). 

Macroscopic level: forecasting ultimate goals of the process including but not limited to future market 

demands, production capacity, raw material availability, production targets and other logistic decisions take 

place at this level. Furthermore, the connection of the enterprise with other supply chain contributors is 

considered at this stage, which may lead to a multi-enterprise network.  
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Supply chain optimization is emerging as a modern research direction that involves manufacturers, 

suppliers, retailers, and distributors at the enterprise level. In addition, the current manufacturing 

environment for the modern process industry moves companies toward collaborative strategies in which 

multiple enterprises instead of acting independently are tied together and serve as a large incorporated 

complex to the global market. In the multi-enterprise network, additional factors of collaboration and 

competition inevitable increases the problem’s complexity. However, collaborative approaches carry higher 

constructive potentials and convenient outcomes for involved partners. The studies presented thus far in the 

literature have made use of simplified models and provided some insights allowing a narrow understanding 

of some particular scenarios. The issues of a multi-enterprise supply chain and an overview of integrated 

decision-making have been discussed by (Dias and Ierapetritou, 2017). These advances facilitate the 

reduction of the gap between the current state of the manufacturing industry and an enterprise-wide 

optimum condition for operational management.  

One example involving the supply chain is in the food sector. Food processing units such as thermal and 

non-thermal processing are classic unit operations that can be designed and controlled using available 

simultaneous design and control strategies. Food processes are subject to large deviations in raw materials. 

The availability of raw material is mostly seasonal and directly related to the availability of agricultura l 

products. The efficient production of a company in food manufacturing is also tied to multiple contributors 

including raw material suppliers (agriculture), distributors, retailers, and customers. Thus, integration of 

design and control seems to be limited to tackle the large variations and external decisions for these systems. 

Strategic planning and scheduling decisions also need to be considered in the decision-making process to 

meet market demands. There is a great potential of increasing the flexibility and the optimality of the 

companies by including strategic planning and scheduling aspects. In order to meet the market demand in 

an optimal and sustainable manner, the organizations should act as a cooperative organization (supply chain 

management). This outlook is possible while the whole process is addressed in an integrated framework. 



133 

 

In summary, a natural progression in the field of integrated process design is expanding the integration 

framework to include the supply chain optimization and maintaining a transparent link between key aspects 

of the process. This is a bigger picture compared to the scheduling and planning which expands the vision 

of the process design farther and provides broad enhancement possibilities. Supply chain management is a 

large-scale multi-period optimization problem that will grow exponentially if it is combined with design 

and control decisions. A legitimate connection between contributors to the supply chain improves the 

sustainability of the process as well as profitability for a longer time scale. Consideration of process design 

aspects at larger time scales requires the development of efficient multi-scale modeling and optimization 

techniques. Fortunately, computers are rapidly evolving and becoming more powerful, which would enable 

us to formulate and attempt to solve large-scale integrated problems. The current potentials in computing 

technology support (until some extend) the solution of complex problems originated from the combination 

of supply chain optimization with design and control decisions. 

6.2.1 Multi-scale optimization 

Modern technologies aim at particular materials with specific qualifications, e.g. synthesis of nanomaterials 

with a certain particle size distribution. To capture key atomistic processes, specific molecular modeling 

tools such as kinetic Monte Carlo and/or molecular dynamics can be implemented. Macroscopic conditions 

such as temperature have the potential to shape the morphology and structure of fine-scale (molecular) 

materials. Thus, control of the events at the macroscale level affects the properties at the molecular scale. 

In materials science, simultaneous design and control of the micro/nanoscales and macroscales aims to 

target specific properties more efficiently by designing a material at the molecular scale with ad hoc 

characteristics. the combination of these two scales forms a basic multi-scale system. In order to maintain 

the connection between the molecular and macroscopic scale, an intermediate tool is needed for the multi-

scale scheme. Therefore, model behaviour at the molecular level is linked to the macroscopic behaviour by 

means of reduced-order (surrogate) models. Biegler et al. (2014) considered a heterogeneous collection of 

device scale and process scale models; those authors captured the multi-scale, multi-fidelity model 
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behaviour by means of distributed and lumped parameter models of varying complexity. Simultaneous 

optimization of design and control can be implemented to optimally determine the macroscopic conditions 

in which the molecular dynamics will satisfy the objectives of the process. More broadly, supply chain 

contains a wide range of time and spatial scales from the molecular to the macroscale levels that necessitate 

the existence of multi-scale modeling and optimization methods. Efficient and accurate model reduction 

strategies are applied to integrate the multiple scales of the problem within the optimization framework. 

The critical challenge in that approach is the handling of uncertainty and disturbances along with the 

disparity of time scales in the optimization framework. Uncertainty can be quite diverse in nature and also 

scale-dependent, e.g. uncertainty in the process model parameters and product demands may occur at 

different time scales. Moreover, the level of detail and the magnitude of the uncertainty and variables are 

different at each layer. As a result, multi-scale modeling and optimization require the consideration of 

meticulously balanced links between the different time and spatial scales. These links are representative of 

model behaviour of a level into another level. Typically, reduced-order models (RMs) are employed as 

agents that maintain the link between the current level and the previous one. Figure 6-3 shows a schematic 

of the multi-scale optimization of chemical supply chain linked through RMs. The significant parameters 

in an RM can be identified using standard systems identification techniques. RMs have been developed to 

transfer the behaviour of the corresponding level to the other level. Those RMs should be constructed 

according to the significant properties that will be optimized. Selecting the significant parameters at each 

level raises another challenge that might require intense identification steps and hence increase the 

computational burden.  
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Figure 6-3: Multi-scale optimization of chemical supply chain linked through RMs 

In summary, efficient techniques are required to recognize the key parameters and reduce the full model to 

a significant and descriptive set of parameters. Also, it is critical for maintaining a well-adjusted link 

between stages that carries the necessary information to achieve an optimal process design that considers 

the multiple scales of the process. The multi-scale subject is an emerging area that can be further explored 

in the future. For instance, the design of the system at the molecular level using Kinetic Monte Carlo 

simulations can be related to the controllability and other design and operational management factors at 

larger scales. 

6.3 Computational fluid dynamics (CFD) 

Typically, process simulation models are built on the basis of a number of ideal assumptions with lumped 

parameter descriptions. Likewise, surrogate models are widely used to handle large-scale and complex 

models. Generally, those models are incapable of distinguishing the interactions between material design, 

complex fluid behaviour and transport effects (Biegler et al., 2014). Failure in capturing the equitable 
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behaviour of the system might eventually drive the model-based optimization to sub-optimal or even 

unrealistic solutions. Computational Fluid Dynamics (CFD) has been developed as a standard numerical 

tool to capture the interaction between the process components, such as flow, heat and mass transfer, phase 

change and mechanical movements. CFD is a sophisticated modeling approach that tends to provides 

detailed knowledge, e.g. spatial information on flow patterns, turbulence conditions, mixing behaviour. The 

information could be highly precise and effective in forecasting the performance of the system that cannot 

be described using conventional (low-order) models. For instance, CFD modeling has found its place in the 

modeling of bioreactors and fermentation processes (Farzan and Ierapetritou, 2017; Singh and Hutmacher, 

2009; Tajsoleiman et al., 2019) while other modeling techniques fail to accurately model them. Up to now, 

far too little attention has been paid to integration approaches using CFD. The main challenge faced during 

the integration of multiple aspects of the process using CFD technique is the high computational burden. 

Nowadays, it is still challenging to solve integration of design and control problems involving CFD 

applications; however, advances in computing science appear to be promising for such pathways in the 

future. On the one hand, the inclusion of CFD will deteriorate the performance of the current integration 

approaches by increasing the computational demands; on the other hand, CFD model can provide additional 

insights regarding the behaviour of the process that the conventional modeling techniques might fail to 

capture. Accordingly, hybrid models are potential remedies to avoid the high computational times needed 

for solving complex problems resulting from the application of integrated approaches. The key idea in these 

models is to combine mechanistic knowledge-based models with data-driven approaches to capture 

convoluted process relationships (Venkatasubramanian, 2009). For example, a low computational cost 

hybrid multi-scale thin film deposition model that couples artificial neural networks (ANNs) with a 

mechanistic (first-principles) multi-scale model was constructed by Chaffart and Ricardez-Sandoval 

(2018). They combined continuum differential equations, which describe the transport of the precursor gas 

phase, with a stochastic partial differential equation (SPDE) that predicts the evolution of the thin film 

surface in a multi-scale framework. In a similar way, CFD modeling can be used to model the second node 

(from left to right) of the chemical supply chain shown in Figure 6-2 using a multi-scale or hybrid technique; 
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thus, the behaviour of small-scale components in the supply chain can be related to the other layers using 

standard multi-scale modeling techniques. Furthermore, CFD is capable of modeling irregular geometries 

in the form of a mesh. The application of CFD simulation software is widespread and is becoming a standard 

tool in the chemical industry. For further work, CFD techniques could be integrated into the design and 

control framework as a modeling tool to consider the geometry of the process. In the meantime, integrated 

approaches are based on the assumption of a fixed (known) geometry of the process, e.g. a reactor with 

unknown capacity but with a fixed shape. Changes in the geometry will affect the process model 

extensively; conversely, CFD models are developed based on the fundamental physics that makes them 

independent of the geometry. This ability of CFD can provide an additional degree of freedom which turns 

geometry into a decision (optimization) variable and therefore offers the potential to identify novel and 

optimal process designs. Defining physical boundaries in the numerical simulations, i.e. meshing, impose 

limitations on the application of CFD in the design process; however, recent advances in this field aim to 

embed the physical boundaries into the CFD problem using methods such as the fictitious domain, 

immersed boundary, and diffuse domain/interface methods (Aland et al., 2010; Patankar et al., 2000; 

Sotiropoulos and Yang, 2014). Using such methods, the simulation of moving boundaries without the need 

for manipulation of the underlying mesh/grid becomes possible. Hence, the geometry of the domain of 

interest (i.e. process equipment) can be easily modified if the design of the process is involved in the 

optimization procedure (Treeratanaphitak, 2018). This dominant feature is of great interest for a wide range 

of fields including nanotechnology, materials’ design and reaction engineering. Moreover, CFD models are 

scale independent and remain valid for a wide range in the design parameters. The validity of the model 

enables the optimization to pursue the optimum condition in a broad variety of choices. To authors’ 

knowledge, integration of CFD models while performing simultaneous design and control has not been 

explored in the literature; hence, the motivation to advance the field in this front and provide new insight 

into optimal process design. 
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6.4 Expert decisions 

Other areas that are critical to advance this field are integration of expert decisions into the process design. 

Expert decisions still play a crucial role at almost all levels of decision layers in the industries. Artificia l 

intelligence (AI) techniques can be used to obtain systematic coordination between data and act as a 

decision-supporting tool. Usually, a massive amount of data is available that might be obtained from the 

historical data of similar processes; however, often these data are ignored particularly when the enterprises 

exclude systematic strategic decisions. Additionally, the integration of multiple aspects of the chemical 

supply chain consists of an enormous set of uncertainties that differ extremely in nature, i.e. sources, 

quantities, patterns. AI techniques can then be used to capture complex patterns and handle a large set of 

data with the aim to specify low-order though highly predictive surrogate (ANN) models. Figure 6-4 shows 

a schematic application of AI in the integrated algorithms. Recent advances in machine learning and big 

data analysis for decision-making provide additional support to capture useful uncertainty information and 

handle large data that lights up further improvements in this field (Ning and You, 2018). Additionally, AI 

enables the system to insert some sort of tactical planning decisions such as suggesting the course of action 

for the decision-making process. This is expected to be a fruitful research area in the near future. 

 

Figure 6-4: Schematic of AI application in the integrated algorithms 

Having discussed the emerging trends, integration of such aspects and expanding the simultaneous design 

and control may open new research avenues to companies and improve their position in terms of being agile 
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and responsive to the dynamic and rapidly evolving global market. Clearly, new frontiers are not limited to 

the emerging trends discussed in this paper. Further advances in all individual sub-problems involving 

process integration as well as efficient optimization techniques, sophisticated data analysis procedures, and 

high-performance computing environments would also become a major breakthrough in the future. All 

these improvements support the attachment of the components of a multi-enterprise system shown in Figure 

6-2 and practically implement the all-inclusive integrated problem. Implementation of an inclusive 

integrated scheme requires a platform that enables the connection and information flow between different 

factors.  

6.5 Potential applications 

The simultaneous design and control concepts have the potential to be broadened to fields beyond the 

chemical engineering discipline. Specific applications in other research fields can also be considered, e.g. 

nanotechnology (catalyst materials design), biotechnology (biological and biomedical systems), health 

(drug delivery), food engineering (thermal/non-thermal processing), agriculture (eco-friendly pesticides 

and fertilizers), business (investment decisions), advanced manufacturing (production of thin films), etc. 

To the best knowledge of the authors, no one has attempted to implement the integrated approach in such 

fields. Figure 6-5 shows a schematic of the currently explored and potential future applications of integrated 

approaches. Systematic integrated decision-making strategies, i.e. integration of design and control as the 

initial step, offer considerable benefits for the modern industries. Undoubtedly, such integrated attitudes 

are extremely appealing for companies which are seeking automation and building systematically links 

between the multiple aspects of this problem. A potential new application where integration of design and 

control has not been considered yet is presented next. 
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Figure 6-5: Schematic for the current and potential applications of integrated approaches 

One of the applications of the integrated approach and systematic decision-making could be in the area of 

healthcare. In modern healthcare, technology combined with medical expertise can be used to improve 

patient care. Data based and systematic decision-making supports the treatment procedure and increases 

the effectiveness of the treatment. The quality of treatment can potentially increase by effectively providing 

the correct medication to the patient and at optimal success rate while maintaining close surveillance and 

monitoring of the patient’s health and improvement. Health information incorporates information 

technologies and handles a large set of data coming from the patients’ medical records, clinical 

documentation, and related research. Primarily, AI techniques can be implemented to classify and narrow 

down the possible diagnoses according to the symptoms to aid the assessment procedure commonly referred 

to as computer-aided diagnosis. For instance, AI technology can be used to identify the correct treatment 

for a patient or to specify the uncertainty description for key events that may affect the patient during the 

treatment. Biomedical modeling techniques can then be employed to obtain a model that can describe the 

patient’s response to various treatments, the uncertainties surrounding the treatment and the disease, and 

external events that can affect the patient’s treatment. Surrogate models could be developed to model these 

characteristics and assess the patient’s performance in response to specific treatments under the effect of 

uncertain or unexpected events. Data collected from the research and medical records can be used to 
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validate those models. Moreover, it is possible to personalize and validate the obtained model for a specific 

patient using personal medical records. This problem can be formulated as a simultaneous design, control,  

and scheduling problem. The specification of the treatment method, which could be considered as the design 

variables, size and frequency of a dose of a medicine or drug, and the optimal treatment intervals can all be 

considered as decision variables of the integrated problem. The schematic of the integration of design and 

control concept for the healthcare problem is shown in Figure 6-6. The conceptual problem has the potential 

to add more factors and combine technology with medical expertise. 

 

Figure 6-6: Conceptual integration of design and control for a healthcare system 

This technology enables the implementation of a specific control strategy (either in closed-loop or open-

loop) to decide the dosage and the treatment frequency, systematically. For instance, an MPC controller 

scheme can be used to provide optimal control actions in the system. Therefore, feedback from the patients 

is inserted into the curing process. Optimization can alternatively specify optimal open-loop control actions 

instead of feedback control actions for the problem. In addition to the patients’ model, external factors can 

be added to the integrated framework which affects the curing process, e.g. reducing the average patient’s 

waiting time, preparing and analyzing the test results in-between treatments. All these considerations in the 

treatment process can eventually increase the success rate of the treatment procedure and improve the 

patient’s health. To the authors’ knowledge, case studies addressing integration of design and operations 
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management in this critical area are not available; hence the need to develop such benchmark studies to 

evaluate the benefits and limitations of existing approaches to advance this field. 

6.6 Outlook  

Sustainable enterprises aim to protect nature and human and ecological health without sacrificing economic 

efficiency, innovations and business improvements. Within the framework of trade globalization and the 

dynamic market, quick adaptation is an essential policy that companies should pursue to remain as leaders 

in their sectors and enhance profits and sustainability. Every process incorporates a diverse set of conflicting 

objectives that need to be considered to achieve a sustainable and near-optimal operation. Inclusive 

awareness of the several features of the process, i.e. sustainability, can be obtained in an integrated 

approach. The integration of multiple aspects of the process aims for the consideration of the correlation 

between different layers of the process that results in flexible designs that can handle unpredictable 

disruptions efficiently. The integrated approaches have been mainly explored in terms of the integration of 

design and control; control and scheduling; scheduling and planning; and recently design, control, and 

scheduling. In general, the inherent interconnection between process design and control decisions with the 

upper manufacturing layers motivates the need to pursue the development of efficient techniques that can 

take those aspects into account and enable a formal process integration.  

There are still a few open questions and challenges in the field that require further investigation, which can 

be summarized as follows: 

 Sustainability can be improved by employing an integrated approach that leads to an overall 

environmentally-friendly, safe, profitable and energy-efficient process. Instead of addressing each 

aspect (or a combination of those) independent of other aspects, the inherent interconnection 

between these aspects, combined with the specification of suitable sustainability metrics, would 

enhance process sustainability. Thus, taking several aspects of the process into account would 
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streamline the decision-making procedure since it would enable the simultaneous selection of 

multiple decision variables affecting the operability, lifetime and economics of the process. 

 Future directions tend to include wider decision layers in a bigger picture ranging from microscopic 

to macroscopic time and length scales. The provision of the chemical supply chain into the process 

design will enhance the profit of commercial enterprises. The collaborative strategies of an 

incorporated complex of multiple enterprises carry higher promises in the success of sustainable 

processes. 

 A successfully integrated methodology requires recognition of dominant factors in multiple layers 

referred to as the multi-scale modeling techniques. Maintaining a good qualitative and quantitative 

information flow between the stages of the process is key to efficiently optimize multi-scale 

systems. Moreover, new computational tools enabling the optimization of key linking variables 

between the different scales are needed to allow the integration of systems at multiple time and 

spatial scales. 

 More research is needed to assess the addition of advanced control strategies in an integrated 

framework and investigate the benefits and limitations of sophisticated control schemes such as 

NMPC and eventually EMPC. Issues such as closed-loop stability, state estimation and fast 

convergence of the control algorithms are still open challenges that may also impact process 

integration. In addition, global optimization approaches are subject to certain limitations; 

particularly for large-scale and highly constrained (non-convex) case studies under uncertainty. 

Thus, further algorithmic research and solver software developments are required to bring the 

promise of efficient global optimization closer to reality.  

 Future work needs to be conducted to establish the incorporation of CFD into the integrated 

approach as a modeling tool that can capture the interaction between the different process 

components and therefore accomplish a highly detailed process integration for CFD systems. 
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Chemical reactor engineering, in particular, heterogeneous catalytic processes, are expected to 

greatly benefit from future developments in this area. 

 In the modern world, the development of methods that can handle massive data for systematic 

decision-making is extremely desired. Additionally, AI enables the system to insert expert opinions 

into systematic decision-making. Applications of AI technology, in particular, machine learning 

techniques such as artificial neural networks, can become a breakthrough in this area to attempt the 

optimal integration of industrial-scale applications.  

 The application of an integrated approach is not limited to the PSE discipline and development of 

applications in other fields such as healthcare, systems biology and agriculture are needed to gain 

insight into the existing integrated technologies. 

Furthermore, there is still a large gap between the academia and industry to place the suggested methods 

into practice for real-life applications. The gap stems from the complex nature of the problem; nevertheless, 

the current advances in computer science signals confidence in converting integrated (complex) problems 

into achievable (solvable) goals in the future. Greater efforts are needed to include efficient uncertainty 

quantification techniques as well as the addition of sophisticated modeling techniques into the formulations. 

In brief, the integrated approach has a bright and promising future, though many challenges have yet to be 

overcome before a standard industrial-oriented framework can be devised.  
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7 Conclusions and future work 

Moving towards optimal and sustainable operations has become a key concern for most of the industries to 

remain competitive in the current dynamic global market. The optimal operation of a process is highly tied 

with the design aspects of the process as they are inherently co-dependent. Integration of design and control 

aims to improve the efficiency of a plant during operation. The simultaneous consideration of design and 

control mostly results in the specification of complex and computationally demanding problems, 

particularly for industrial-scale applications.  

In the current research, a new back-off approach for the integration of design and control of chemical 

processes has been presented using PSE functions. The key idea is to back-off from the optimal steady-

state design to identify a new dynamically feasible operating condition at low computational costs. The 

work focuses on calculating various optimal design and control parameters by solving a set of optimization 

problems in an iterative fashion using PSE expressions. The PSE functions represent the actual process 

constraints and the cost function, which are explicitly defined in terms of the optimization variables 

expanded around the worst-case scenario. Computation of the PSE sensitivity terms using an analytical and 

a numerical approach was compared. The results show that both methods are equally efficient to calculate 

the PSE sensitivity terms; however, proper tuning of the finite-difference calculation is required offline. 

Higher computational costs were observed from the analytical calculation when compared with the 

numerical technique as more ODE’s have to be solved in the first. Most of the CPU time required by the 

present approach is spent on the computation of the PSE sensitivity terms; thus, the total CPU time is 

expected to increase as more complex and highly nonlinear systems are considered. 

The trust-region method is an extension of the basic back-off approach to address large-scale industrial 

systems. The key idea in this work is the development of the PSE function of the cost function and 

constraints while the validity of those expansions is certified in a trusted interval. The basic back-off 

approach remains insufficient for highly nonlinear and large-scale processes since the identification of a 
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trust-region around a nominal value that remains valid for the entire back-off procedure is a challenging 

task and might become intractable. Alternatively, the trust-region approach uses an adaptive search strategy 

to identify the validity region for each decision variable systematically. The trust-region is identified for 

every decision variable at each iteration. Accordingly, the adaptive approach may impose some restrictive 

boundaries on some decision variables regarding the effect of the decision variables in the deviation of the 

PSE function from the actual nonlinear process behaviour. Particularly for highly nonlinear systems, while 

the procedure chooses to retain those decision variables at their nominal values on some iterations, the rest 

of the decision variables may be allowed to be explored in a wider region. The system successively seeks 

for local optimality under disturbances. The convergence to a local optimum is assured since the 

representation of the approximate functions is maintained. The convergence of the approach to a locally 

optimal solution extremely depends on the qualifications of the PSE approximations during the entire 

sequence of the procedure. The system moves towards a descent direction and the convergence can satisfy 

the first-order KKT conditions. Furthermore, the approach can systematically update the order of PSE based 

on a user-defined level of accuracy. Black-box models can also be addressed using the proposed trust-

region technique. The results indicate that the proposed methodology leads to more economically attractive 

and reliable designs while maintaining the dynamic operability of the system in the presence of multiple 

disturbances. Also, the application of the method on a large-scale system has been compared to the method 

previously reported in the literature for the TE plant. 

A stochastic back-off methodology that addresses simultaneous design and control using stochastic 

uncertainty descriptions was also developed in this research. The key idea is to describe the confidence 

interval of process constraints at user-defined coverage probabilities using PSE-based functions. The 

method provides an additional degree of freedom since it can allocate different levels of confidence for the 

process constraints using coverage probability of confidence intervals. The results indicate that the 

proposed stochastic back-off approach leads to more economically attractive designs when compared to the 
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worst-case and variance-based approaches. The high computational demand is the main barrier for the 

implementation of the stochastic back-off on large-scale processes such as the TE plant. 

7.1 Future work 

The findings of this study have a number of important implications for future practice and can potentially 

be extended in different ways as explained below. 

 Process synthesis and control structure selection have not been addressed in the current research. 

That is, continuous decision variables are considered for the integration of design and control 

concept. Integer variables associated with the topology of the process and the control scheme, e.g. 

control structure selection, are assumed to be known a priori. Evidently, considering integer 

decision variables along with the continuous variables provide much greater flexibility for 

improving the economics and performance of a large variety of problems. However, discontinuity 

of the derivatives due to the presence of integer variables extends the formulations to MINLP 

thereby increasing the problem’s complexity. For future research directions, the addition of integer 

decision variables is highly recommended. 

 One key future objective in this research is to achieve an optimal process design within an 

acceptable computational cost, in particular for large-scale systems. The foremost barrier to the 

implementation of the stochastic-based methodology is computational costs. The main burden of 

the proposed stochastic-based technique is the need for numerous simulations of the closed-loop 

system in order to obtain satisfactory accuracy of the PSE functions. For that reason, the next step 

in this research is to reduce the number of required samples in the analysis to achieve a certain level 

of accuracy in the calculations. Propagation of the uncertainties using MC sampling can be 

relatively straightforward to perform. Depending on the application, however, using other 

uncertainty propagation techniques such as Multilevel Monte Carlo (MLMC) may strongly reduce 

the computational demands (Kimaev and Ricardez-Sandoval, 2018). MLMC is considered as an 
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alternative which takes advantage of a geometric sequence of time steps that reduces the required 

numbers of samples using a range of different levels of discretization. The application of MLMC 

technique may result in attractive computational times compared to the standard MC sampling 

method. Once the computational burden of the stochastic back-off is relieved the probabilistic-

based realization of uncertainty and disturbances for large-scale applications can be considered. 

 In this research, PSE functions have been used as the modeling tool to propose a new methodology 

for the optimal design and control of dynamic systems under uncertainty. PSE functions represent 

the analytical expressions of the cost and constraints in the optimization problem. Simulation 

results are used to approximate the sensitivities of the PSE functions by means of finite-difference 

technique. Accordingly, the need to have access to the explicit closed-loop process model equations 

in the PSE approach is not required. That is, the present approach only requires access to the process 

outputs due to changes in the inputs. Following this reasoning, the automated communication 

between different programming languages such as MATLAB where the proposed back-off 

methodology can be implemented, and common process simulators available in the market is 

possible. Particularly, process simulators such as ASPEN and HYSYS are powerful tools used to 

develop comprehensive dynamic plant models. A communication link between a process simulator 

and a programming language, e.g. HYSYS and MATLAB, can be developed to implement the 

proposed back-off methodology for large-scale applications. The main challenge would be the 

difficulty of the convergence of the system in the dynamic mode. This difficulty might be due to 

the changes in the design parameters that affect the convergence of the dynamic mode. Indeed, 

dynamic simulation requires a good sense of appreciation of margins of design parameters and all 

related issues, e.g. complexity of obtaining physical property data at each nominal condition. 

Restrictions of the design variables, i.e. upper/lower bounds on decision variables, should be 

specified cautiously to avoid potential numerical instabilities while performing the simultaneous 

design and control using the proposed back-off methodology.  
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 The incorporation of advanced control strategies is expected to improve the performance of the 

designed system. The integration of a sophisticated control scheme such as model predictive control 

(MPC) into the design process results in significant advantages in process economics and 

performance. MPC is an advanced method of process control algorithm that has been in use in 

chemical process industries for decades. The ability of the MPC to handle the interactions and 

process constraints among the process variables may result in better optimal process designs than 

those obtained from decentralized control strategies. Enhanced control performance of the system 

improves the process economics and leads to short-term and long-term profits of the entire system. 

 The straightforward implementation of the proposed technique allows further incorporation of the 

other aspects such as planning and scheduling into the integration framework. Accordingly, the 

procedure can be potentially extended to include transitions in the operating modes of the process.  

For example, the optimal transition between several modes of operation can also be addressed using 

decision variables that can take different values at different time intervals. 

 The proposed methodology can be extended for simultaneous design and control of applications 

beyond the chemical engineering discipline such as nanotechnology (catalyst materials design), 

biotechnology (biological and biomedical systems), food engineering (thermal/non-thermal 

processing), agriculture (eco-friendly pesticides and fertilizers), and advanced manufacturing 

(production of thin films). 

 Mathematical treatment that provides convergence guarantee along with theorems and proofs of 

the optimality of the final design is part of the future work. Similar concepts taken for the 

convergence of the derivative free optimization can be used to initiate the mathematical proof. 

Although the proposed methodology shares the common features of conventional trust-region 

methods that examine the validity of the approximation, it differs from those methods as the 

surrogate models at each iteration may be different. In the proposed trust-region method, surrogate 

models, i.e. PSEs, are developed for different nominal conditions of the process at each iteration. 
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Accordingly, the behavior of the actual nonlinear models should be studied at certain conditions to 

reinforce consistency between the iterations; for example, PSEs should be developed at a certain 

time at all iterations instead of the worst-case scenario.  
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Appendix A 

The summary of the proposed trust-region algorithm introduced in chapter 5 is presented here. 

Step 1: Define upper (𝜼𝑈  ) and lower bounds (𝜼𝐿  ) for optimization variables (𝜼 ), the maximum number of 

iterations (𝑁𝑖𝑡𝑒𝑟 ); PSE validation tolerance (𝜖𝑇𝑅), convergence tolerance (𝜖), convergence examination 

period (𝑁𝑐 ); step size for the finite difference calculations, which will be used as the smallest acceptable 

trust-region. Set the iteration index to 𝑖 = 1. 

Step 2: Set the uncertain parameters and disturbances to their nominal values and solve the steady-state 

optimization problem. Alternatively, one could use an educated initial guess in case the optimal steady-

state solution is not available, e.g. process designs based on heuristics. Set the solution (𝜼𝟎) as the nominal 

optimization variables for the first iteration (𝜼𝑖=1 = 𝜼𝟎). 

Step 3: Using 𝜼𝒊 simulate the process under uncertainty and disturbances, identify the worst-case scenario 

(highest variability) for each constraint, i.e. the uncertain parameter (𝜁𝑗) and the time that largest variability 

in each constraint occurs (𝑡𝑤𝑐). Simulate the model for 𝜼+and 𝜼−using 𝜁𝑗 and record the cost and constraint 

values at 𝑡𝑤𝑐 . Use the collected data to calculate the sensitivity of the cost and constraints and thus PSE 

expansions of cost and constraint functions. 

Step 4: Build the MSE for the cost and constraint functions according to equations (5-3 and 5-4) using the 

sensitivities calculated in Step 3. 

Solve the trust-region optimization (problem (5-7)) and identify the search interval for each decision 

variable (you may use the stepwise search method described in section 5.1.1 as an alternative approach to 

estimate the search space interval for each decision variable). If the identified trust-region is too small, go 

back to Step 3 and increase the order of PSE function. If increased PSE order does not significantly improve 

the accuracy in the estimations, proceed with the small search space region. 
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Step 5: Construct and solve the PSE based optimization problem (problem (5-14)) using the PSE expansions 

built in Step 3 and the search space (trust-region) for each decision variable identified in Step 4.  

Step 6: Check for convergence (equation (5-15)). If |𝑇𝑜𝑙𝑓𝑙𝑜𝑎𝑡
𝛩 | ≤ 𝜖, then STOP, the method converged to 

an potential optimal (local) solution. Otherwise, set 𝑖 = 𝑖 + 1, update the optimization variables (𝜼𝑛𝑜𝑚 ) 

with the most recent solution obtained from Step 5 and go back to Step 3. 
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