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Abstract 

Recently, integrated gasification combined cycle power generation system (IGCC) has been 

considered as an attractive technology which is capable of curbing CO2 emissions and reducing 

impact on environment due to the increasing global carbon dioxide emissions from combustion of 

fossil fuels in these decades. IGCC is an advanced power system consisting of two main sections, 

namely the gasification and purification part and the gas-steam combined cycle power generation 

part. There has been substantial interest in studying the modeling and optimization of the gasifier 

performance in IGCC to improve the efficiency of fuel and power generation, versatility, reliability 

and economics in IGCC systems. Previous studies on modelling for gasification such as 

computational fluid dynamic (CFD) models and reduced order models (ROM) have been 

presented; however, these modelling approaches are not suitable for conducting optimization 

since they are too complex and computationally intensive. Recently, there have been an 

increasing number of studies where artificial neural networks (ANN) and recurrent neural 

networks (RNNs) have been used to model different applications in chemical engineering. This is 

mostly because neural networks are suitable for describing the complex nonlinear multifactorial 

systems at low computational costs.  

The aim of this study is to present the construction and validation of both ANN and RNN models 

to accurately and efficiently predict both steady state and dynamic performance of a pilot-scale 

gasifier unit. The corresponding ANN and RNN models’ performance were validated using data 

generated from a gasifier’s ROM. After validation of ANN and RNN models, optimization studies 

on the steady state and transient performance of the gasifier were performed under different 

scenarios, e.g. co-firing and load-following. In the optimization studies at steady state, results 

show that increasing the peak temperature limitation of the gasifier can promote a high maximum 

carbon conversion, and it seems unlikely to improve H2 production significantly without reducing 

the carbon conversion within the gasifier. In the dynamic optimization studies, the results from 
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load-following scenario show that increasing the peak temperature limitation of the gasifier can 

lead to higher CO compositions at the outlet of the gasifier. For the co-firing scenario, the results 

show that an increase on the coal to pet-coke ratio can promote a higher carbon conversion in 

the gasifier. These optimization studies further showcase the benefit of the ANN and RNN models, 

which were able to obtain relatively accurate predictions for the gasifier similar to the results 

generated by ROM at a much lower computational cost.  
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Chapter 1 

Introduction 

Nowadays, there is a global interest to reduce CO2 emissions and other heat-trapping gases to 

the atmosphere to curb global warming. Global CO2 emissions from the combustion of fossil fuels 

are anticipated to exceed 6 billion tonnes by 20351. At present, approximately one third of total 

CO2 emissions are produced from coal-fired power generation plants, making it the second largest 

production source of greenhouse gases. It is expected that coal will persist as the main fuel for 

power generation in 2035, and that coal proportion of the total distribution to CO2 emissions will 

remain relatively unchanged between now and then2. This situation is expected to cause the 

worldwide capacity of coal-fired power plants to increase by approximately 40%. Hence, the 

demand for coal-based power plants is anticipated to increase CO2 emissions and thus causing 

a negative impact on global warming. Sustainable coal-fired power plants that can operate under 

near-zero emissions are thus needed to fight against climate change and global warming. As a 

result, there is currently an urgent need to develop and implement efficient carbon capture and 

storage (CCS) technologies3. However, a recent report from the World’s first commercial-scale 

CO2 capture facility in SaskPower’s Boundary Dam power plant, Canada, showed that a 20% 

reduction in power generation was required to operate the CO2 capture plant2. Therefore, more 

efficient power production technologies need to be developed to compensate for the expenses 

associated with CO2 capture systems.4  

Integrated gasification combined cycle (IGCC) plants are advanced power systems consisting of 

a gasification and a quench unit, a water-gas shift reactor, a purification unit, a gas turbine, a heat 

recovery steam generator, a steam turbine and an air separation unit. IGCC plants has been 

considered as one of the most efficient power plants since they can reduce the production of solid 

wastes and lower sulfide and nitride emissions; also they require less expensive gas-cleaning 

equipment and they possess high fuel flexibility.5 Recently, more attention has been placed on 
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the development of efficient gasification units that can handle different amounts of loading and 

feedstock types. It has been widely recognized that fuel flexibility allows power plants to adapt to 

changes in fuel and retain an effective cost energy production scheme. 

The gasification unit is perhaps the most important process in an IGCC plant. Fuel, oxygen and 

steam are fed into the gasifier to produce raw syngas, which mainly consist of CO, H2, and CO2. 

The mixture of raw syngas is promptly cooled in quench vessels; subsequently, most of the H2S 

and COS impurities are removed via a gas cleanup unit and then solidified for transportation. After 

impurity removal, clean syngas is sent to the gas turbine and then to a heat recovery steam 

generator.6 Therefore, there has been crucial interest in studying the performance of IGCC 

gasification unit in order to improve the versatility of fuel and the operability, controllability and 

efficiency of IGCC power generation systems.7  

Computational fluid dynamic (CFD) models are commonly used to simulate the performance of 

the gasifiers because of their ability to explicitly describe mixing flows in this system and therefore 

provide sufficiently accurate predictions.8,9,10 These models can provide meaningful and 

comprehensive insights about the overall design and performance of the gasifier; however, 

although CFD models are accurate and provide a relatively detailed outlook compared to other 

gasification simulation models, they are often found to be computational intensive, which can 

significantly limit their implementation for process optimization, online monitoring, and process 

control applications.11 This has motivated the development of alternative, computationally efficient 

modelling techniques. Reduced order models (ROMs) are an alternative approach that can 

capture the essential features of multi-phase flow structure inside the gasifier at reduced 

computational costs.12,13 However, although ROMs require substantially lower computational 

costs compared to CFD models, they are still computationally expensive and may not be applied 

for process optimization, monitoring and on-line control purposes.  
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Artificial neural network (ANN) is another effective modelling approach that can be implemented 

to predict the performance of gasification unit in IGCCs at reduced computational costs. ANN are 

inspired by the biological neural networks in human brain which consist of robust mathematical 

model to produce relational patterns between input and output parameters for nonlinear 

multifactorial systems.14 In addition, recurrent neural network (RNN) is a class of ANN that are 

especially suitable for simulating time series systems such as the dynamic operation of a gasifier. 

After the training process, both ANN and RNN model can perform prediction and generalization 

with sufficient accuracy at low computational costs. Recently, there has been an increasing 

number of studies where artificial neural network has been used to predict the performance of 

multiple applications in chemical engineering, e.g., transport of the precursor gas phase of a thin 

film surface, simulation of a thin film formation by chemical vapour deposition, synthesis, design, 

control, scheduling and optimization of process control engineering.15,16,17 However, to the 

authors’ knowledge, both ANN and RNN have not been previously used for modelling and 

optimization of entrained flow gasifiers in IGCC system. As a result, ANN and RNN model are 

required to overcome the limitations imposed by computationally intensive CFD model and ROM 

in optimization problems involving the gasification unit in IGCC plants. 

 

1.1 Research objectives 

The aim of this study is to develop ANN and RNN models to describe and predict the behavior 

between the main features of IGCC gasification units in both the stationary and transient domains. 

The proposed models were trained and validated using sets of input and output data generated 

from a ROM model previously developed within our research group.12 Subsequently, the fully-

developed nonlinear ANN and RNN models are used to perform optimization on the stationary 

and transient operating conditions of a gasifier with the aim to gain a deeper understanding on 
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the optimal operation of these units under common scenarios. The specific objectives of the 

current study are as follows: 

• Develop an ANN model to describe the steady state performance of a pilot-scale entrained 

flow gasifier. The validated ANN model would be subsequently embedded within 

optimization formulations to determine the operating conditions that would maximize the 

efficiency of this unit under different operational scenarios. 

• Develop a recurrent neural network (RNN) to accurately and efficiently predict the dynamic 

performance of the pilot-scale gasifier. The performance of the RNN will be compared to 

a ROM model, which has been previously validated using experimental data and data 

obtained from CFD simulations. The RNN model will be embedded within an optimization 

formulation to investigate the optimal operation of a gasifier under the most common 

dynamic operating scenarios encountered in gasification such as load-following and co-

firing. 

The contribution of this work is to illustrate the performance of the gasification unit using artificial 

neural networks and showcase their benefits in terms of accuracy in the predictions and 

computational efficiency. 

 

1.2 Outline of this study 

This thesis is organized as follows:  

Chapter 2 presents a literature review on the most common modelling methods to describe 

the performance of gasification systems, including CFD, ROM and ANN models. The goal of this 

review is to provide insight into the current models and identify the advantages and benefits of 

ANN modelling in the literature on the steady-state and dynamic simulation of gasification units.  
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Chapter 3 presents the development and validation of an ANN model that can predict the 

performance of a pilot-scale gasification unit at steady state. During the ANN training process, 

eight backpropagation methods have been compared to select the most suitable training 

algorithm for the ANN model. Subsequently, the ANN model was considered for the optimization 

of the gasification unit, i.e., maximization of the carbon conversion and maximization of both 

carbon conversion and hydrogen gas.  

Chapter 4, a recurrent neural network (RNN) model was developed to capture the 

transient operation of the pilot-scale gasifier. The resulting RNN was validated using the data 

generated by dynamic ROM, which was validated using CFD simulations and experimental data 

taken from an actual pilot-scale gasification unit. The recurrent neural network model was 

identified using a new method of generating data, which is a combination of two common 

operating scenarios in gasification (i.e., load-following and co-firing). In addition, dynamic 

optimization studies on the performance of the gasifier were conducted under load-following and 

co-firing.  

           Chapter 5 presents the conclusions drawn from this study and a brief overview of potential 

areas of future research.  
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Chapter 2 

Literature Review 

This chapter presents the relevant literature on the different modeling methods and 

optimization approaches considered for gasification units. The scope of this review will include a 

general overview of IGCC power plant, the role of gasification process in IGCC and a brief 

description on the gasification unit. Additionally, this chapter will review the status of modelling 

and optimization on gasifiers and introduce artificial neural network methods including 

construction, algorithms and applications on energy systems in the chemical engineering field. 

This review aims to highlight the need for research in modelling and optimization of steady state 

and dynamic performance of gasification unit using ANN; in particular, the features of 

implementing dynamic optimization to identify optimal operating conditions for this gasification 

process.  

 

2.1 Gasification unit in IGCC plant 

2.1.1 Overview of IGCC power plant 

Integrated gasification combined cycle (IGCC) power plants are recognized as one of the most 

attractive methods of coal-based power production with considerably low CO2 emissions.18 In 

IGCC systems, the impurity removal process is included, in which most of H2S and COS are 

removed. Comparing to other power generation plants, the main benefits of IGCC are lower solid 

wastes production, higher fuel flexibility, higher efficiency, low pollution gas emissions.19 

A brief description of the process of a typical IGCC plant with CO2 capture is shown in Figure 1. 

In IGCC plants, fuel, oxygen, and steam are fed to the gasification unit to produce raw syngas 

mainly consisting of CO, H2, and CO2. This mixture is promptly cooled in quench vessels and is 

sent to a water-gas shift reactor before the gas cleaning unit removes the carbon in the form of 
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CO2. Subsequently, particulates and sulfur impurities are removed via a gas cleanup unit. After 

impurity removal, the clean syngas is fed to the gas turbine and then sent to a heat recovery 

steam generator coupled with a steam turbine.  

 

 

Figure 1. Brief process flowsheet of IGCC power plant 

 

Multiple studies have been conducted to improve the efficiency, availability and economics of 

power generation of IGCC system.20,21,22,23 The current emphasis is placed on the entrained-flow 

gasifier’s operation for improvement and development of IGCC power plant. The gasification unit 

in IGCC plant is required to have high flexibility to change flowrate and type of feed, since the 

development and commercialization of IGCC power plants are required to be improved in terms 

of technology and equipment selection for different feedstocks.24 In addition, the efficiency of the 

gasification unit also affects the operation of the rest of the IGCC plant. Therefore, as gasification 

is the key process of IGCC plant, the focus of this research is on the modelling and optimization 

of the operating conditions for both the steady state and dynamic performance of entrained-flow 

gasifiers in IGCC plants.  
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2.1.2 Gasification technologies 

Gasification is a process in which a fossil fuel-based carbonaceous feed is transformed into 

gaseous products such as, carbon monoxide (CO), hydrogen (H2), and carbon dioxide (CO2), 

commonly referred to as raw syngas. The most important reactions taking place in this process 

involve coal pyrolysis reaction, char and volatile combustion and sulfur reaction. During 

gasification, the fuel is blended with steam and oxygen and fed into the gasifier where fuel is dried 

and decomposed to volatiles, char and ash; the later process is referred to as coal pyrolysis. After 

this process, the main volatile products, combustible gases such as hydrogen, carbon monoxide, 

methane and ethane are produced. All these combustible gases react with oxygen to produce 

heat and provide the energy required by the heterogeneous char gasification reactions to produce 

hydrogen, carbon monoxide and methane. Due to the reactions taking place in the unit, the sulfur 

content in the fuel is transformed into H2S(g).6,20  

In the industry, there are mainly four types of gasification units that can be found, i.e., fixed-bed, 

fluidized-bed, entrained-flow and molten-bath gasifiers. Each type of gasification system presents 

some advantages and disadvantages on the performance, operating conditions and feed 

availability as illustrated in Table 1. In terms of fixed-bed gasifiers, it has benefits of consuming 

less oxygen (O2), simple construction, low pressure dropping and high carbon conversion; 

however, this type of gasifier has higher methane content in the outlet and it is hard to control the 

temperature distribution along the length of the gasifier.3 In fluidized-bed gasifiers, the reaction 

rate is moderate due to good mixing of reactants and the temperature distribution along the 

gasifier is easier to control; however, these systems present high erosion rate of the bed material 

surfaces inside the gasifier, higher dust load due to the entrainment of particles and agglomeration 

for certain type of fuels.3 Molten-bath gasifier is capable of both caking and non-caking coke; 

however, their disadvantages are high oxidation rate and complicated regeneration system.20 

Regarding entrained-flow gasifiers, they have high throughput and efficiency with very short 
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residence time (i.e., in the order of seconds or less) and are suitable for all coal types; however, 

they require a large amount of oxidant; also, the combustion temperature is high inside these 

gasifiers, which has the potential to damage the refractory material of this equipment.8  

 

Table 1. Advantages and disadvantages of different types of gasifiers25 

Gasifier types Advantages Disadvantages 

Fixed-bed gasifier Consume less oxygen (O2) 

Simple construction 

Low pressure dropping 

High carbon conversion 

Higher methane content in outlet 

Hard temperature distribution control 

 

Fluidized-bed gasifier Moderate reaction rate 

Good mixing of reactants 

Easy temperature distribution control 

High erosion rate of surfaces 

High dust load 

Entrained-flow gasifier High throughput and efficiency 

Short residence time 

High flexibility of fuel types 

Large amount of oxidant 

High combustion temperature 

Molten-bath gasifier Capable of both caking and non-

caking coke 

High oxidation rate 

Complicated regeneration system 

 

Among the different types of gasifiers, entrained-flow gasifiers are the most common commercial 

gasifiers currently in the market since it has higher throughputs compared to other gasification 

equipment. Hence, the present research focused on this type of gasifiers. In particular, this study 

focused on a pilot-scale entrained flow gasifier owned by CanmetENERGY (Natural Resources 

Canada). As illustrated in Figure 2, this pilot-scale gasifier’s diameter and length are 0.21 m and 

2.2 m, respectively. Fuel, steam (H2O), oxygen (O2) and nitrogen (N2) are fed into the gasifier to 
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produce raw syngas. At the gasifier inlet, oxygen is injected through the burner by eight jets and 

mixed with the fuel stream at a high velocity. Steam preheated to 500 K is passed through the 

outer burner annulus at a low velocity, and the fuel is carried through the reactor inlet by a stream 

of nitrogen carrier gas. The gasifier is lined with refractory and insulation materials in order to 

reduce its heat loss, as it has a large surface area to volume ratio. There are more details about 

this gasification unit which can be found elsewhere.26 

 

 

Figure 2. (a) Configuration of the pilot-scale gasifier; (b) Inflow structure of the gasifier 

and its feeds 

To advance the technological development of gasification units, a deeper understanding of 

gasifier’s feed flowrates and the coal feed types on the operability of this unit are needed to obtain 

an optimal and more efficient performance of the gasifier under different conditions, e.g., load 

following and co-firing. Since it is costly to conduct experimental tests on the entrained flow 

gasifier, computational models are required to assess the performance and economics of the 
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gasification units at different operating conditions. Therefore, a review of the modeling 

approaches used to simulate entrained flow gasifiers is presented next. 

 

2.2 Modeling of gasification process 

In an IGCC power plant, the complex integration of the different units is reflected in the responses 

of a unit to external and internal disturbances and the interaction between each of the units thus 

affecting the operability, controllability and efficiency of the IGCC. Since an IGCC power plant is 

one of those technologies that has the potential to balance the power distribution networks and 

compensate for variable electricity supply, the responses of the gasifier and other equipment can 

lead to undesired operational fluctuations to different load demands.27,28,29 Therefore, IGCC plants 

need to have high flexibility to change the feed flowrate when combined with alternative energy 

sources and being able to maintain continuous operation with different solid fuels to meet the 

targets of compensating for variable electricity supply.13 However, it is relatively challenging to 

achieve flexibility and incorporate variability for an IGCC plant due to the high complexity and 

interconnectivity of the different units involved in this process. As a result, there is a need to study 

the transient behaviour of each component of the IGCC in order to gain insight into the dynamic 

response of the units under different disturbances, such as changes to the fuel load and variability 

in feed composition. Previous studies have evaluated and analysed the dynamic performance of 

key IGCC power plant units such as the air separation and CO2 capture units;7,30 however, studies 

focused on the dynamic behaviour of other critical IGCC components such as the gasification unit 

are limited. There are three common approaches that can be employed to simulate the behaviour 

of the gasification process, i.e., computational fluid dynamics (CFD), reduced order model (ROM) 

and more recently artificial neural network (ANN) models. Each of these modelling approaches is 

discussed next. 
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2.2.1 Computational fluid dynamics (CFD) 

Computational fluid dynamics (CFD) models are often used to simulate gasifiers because of their 

ability to explicitly handle gasification flows and mixing and therefore provide sufficiently accurate 

predictions. In a CFD model, detailed multi-phase sub-models are often implemented to simulate 

the flow patterns and complex processes; hence, they have been widely used to investigate 

different types of gasification unit’s performance, including fluidized-bed gasifiers, entrained flow 

gasifiers, slagging gasifiers. Xue and Fox presented a computational fluid dynamics model for 

biomass gasification process taking place in fluidized-bed gasifier simulations. The physical and 

chemical processes of multi-phase gasification and interaction of different phases are modeled 

within a multi-fluid framework derived from kinetic theory of granular flows.31 Slezak et al. 

presented a CFD simulation of a commercial-scale entrained-flow gasifier to study the effects of 

simulating both the coal particle density and size variations.32 Sze Zheng Yong and Ahmed 

Ghoniem developed a steady state model based on CFD to describe the flow and heat transfer 

characteristics of slagging gasification unit.33 Most notably, Fletcher et al. developed a CFD model 

to simulate the flow and reaction in an entrained flow gasifier that they built based on the CFX 

package, which is a useful tool for gasifier design and analysis.9 E. H. Chui et al. described the 

development of a CFD-based simulation for commercial coal gasification technology and its 

implementation; those authors used that model to capture physical phenomena and supplement 

the experimental program for better understanding of the coal gasification processes.8 Fernando 

et al. developed a two dimensional CFD model to simulate the dynamic performance of a moving 

bed updraft biomass gasifier.34 Murgia et al. developed a comprehensive CFD model to simulate 

the fixed bed gasification process within an air-blown updraft coal gasifier, which characterize the 

complex behaviour of time-dependent sub-process where coal drying, de-volatilization and char 

reactions take place.35 Although CFD models are accurate and provide a more detailed outlook 

compared to other gasification simulation models, they are often found to be computationally 
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intensive, which can significantly limit their implementation for the dynamic optimization of this 

unit.  

 

2.2.2 Reduced order model (ROM) 

To reduce the computational costs associated with the modelling of gasification units, recent 

studies have shown that the development of one-dimensional ROMs describing the important 

features of gasification unit is a computationally attractive approach to study the steady state and 

transient behaviour of nonlinear energy systems. ROMs require much lower computational effort 

compared to CFD models, accounting for the most important features of gasification process. 

These ROMs can be used to provide detailed information about the multi-phase flow structure of 

a gasification unit such as its solid particle concentration, composition, and temperature 

distribution along the length of the gasifier by developing a reactor network based on the mixing 

or laminar flow characteristics. Inside each reaction zone, the one-dimensional governing 

equations of gas and solid phases for mass, energy, and momentum are solved for each zone to 

provide a distribution of different properties. Gazzani et al. described the development of a 

reduced order model for the Shell-Prenflo gasifier in IGCC, which is used for chemicals and power 

production due to its high efficiency and compatibility with a wide range of coal quality.38 Yang et 

al. developed a detailed model using ROM for a slurry-feed membrane wall entrained flow gasifier 

with two-stage oxygen supply in order to obtain an in-depth understanding of the gasifier and 

achieve optimal design and operation.39 The same authors established a dynamic ROM gasifier 

model including slag flow behaviour simulation using a network of reactors, in which the reactor 

is divided into several zones based on the flow characteristics in the gasifier.40  In Li et al. study, 

a reduced order model (ROM) of a commercial-scale opposed multi-burner gasifier is presented 

based on a network of reactors. In that study, the effects of particle size on the temperature and 

carbon conversion were discussed.41 Monaghan and Ghoniem developed a comprehensive 
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dynamic ROM using a network of ideal chemical reactors in series to approximate the fluid mixing 

and recirculation inside entrained flow gasifiers and study its transient response under dynamic 

operation.6 Sahraei et al. proposed a reactor network ROM which utilizes plug flow reactor (PFR) 

and continuous stirred tank reactor (CSTR) models to simulate the different zones inside an 

entrained-flow gasifier. This ROM model is built up to represent CanmetENERGY’s pilot-scale 

entrained-flow gasifier described in the previous section and that will be used in this research. 

That model was developed based on the streamlines of multi-phase flow via conservation 

equations describing the momentum, heat and mass transfer inside the gasifier.13 With regards 

to the computational cost, the ROM model required on average about 257 s of CPU time per 

simulation (Intel® Core™ i7-4770 CPU @ 3.40Hz, 3392 Mhz, 4 Core(s), 8 Logical Processor(s)).42  

However, even though the ROMs require substantially lower computational costs compared to 

CFD models, they still require considerable numerical analysis and thus they are still 

computationally expensive for optimization, online monitoring and control purposes. 

 

2.2.3 Artificial neural network models 

Artificial neural networks (ANN) are another modelling method that can be used to predict the 

performance of the gasification unit in IGCCs at reduced computational costs. ANN are inspired 

by the biological neural networks in a human brain, and they utilize robust mathematical models 

to produce cause-effect relational patterns between complex data systems such as nonlinear 

multifactorial systems.43  

ANN have been used to model numerous applications in Chemical Engineering;16,15 in particular, 

there have been a handful of works that have applied ANN to gasification systems. Ongen et al. 

proposed an ANN model to observe variations in the syngas related to operational conditions in 

a tannery industry wastewater treatment sludge gasification system.46 Mikulandric et al. analyzed 

the possibilities of neural networks to predict process parameters of a fixed bed gasifier in a 
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biomass gasification process with high speed and accuracy.47 Puig-Arnavat presented an ANN 

model for biomass gasification in fluidized bed reactors.48 In a study reported by Guo B et al., an 

artificial neural network model has been developed to simulate this biomass gasification 

processes in fluidized bed gasifier under high pressure in order to obtain a comprehensive 

gasification profile.49 George Joel et al. developed an ANN model for a gasification process which 

generate energy from renewable and carbon-neural biomass based on extensive data obtained 

from experimental investigations.50  

The studies mentioned above are related to modelling the steady state performance of a gasifier. 

Recurrent neural network (RNN) is a class of ANN that are especially suitable for simulating time 

series dynamic systems. Traditional artificial neural networks (i.e., the feedforward neural 

network) are static approximators and consequently have difficulties to describe the transient 

operation of highly complex chemical systems.51,52 Thus, in order to design discrete-time neural 

networks for transient systems, it is required to implement a neural network architecture that can 

learn from the current state of the system when predicting future states. The architecture of an 

RNN contains cyclic connections between specific nodes that allows the network to remember 

and learn from its own predictions, which is well-suited to model temporal data such that those 

that emerges in dynamic process systems. After sufficient training, the RNN can perform 

prediction and generalization with sufficient accuracy at high speed and can achieve greater 

accuracy at lower training costs compared to feed-forward neural networks.53 Nowadays, there 

have only been minimal studies associated with the application of RNN to describe the dynamic 

operation of energy production systems, and even fewer studies have developed RNN for 

gasification systems. Chin-Hsing Cheng and Jian-Xun Ye discussed an energy recovery system 

of the electric motorcycle using artificial neural network to improve the dynamic performance and 

life cycle of batteries.54 Velappagari Sekhar proposed an RNN-based controller to improve the 

low-voltage ride-through ability of the grid-connected wind energy conversion system.55 Souza et 
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al. modelled a biomass gasification process in a fluidized bed gasifier based on the concepts of 

ANN to correlate between the composition of the produced gas and the characteristics of different 

biomasses for several operating conditions.56 Pandey et al. developed an ANN-based modelling 

approach to estimate the low heating value of the gasification products.57 In a study performed by 

Kallol Roy et. al., a model based on RNN was presented to determine the scheduling of a micro 

grid system and analyzed the technical and economic time-dependent constraints.58 Mikulandric 

et. al presented a dynamic neural network-based model for a biomass gasification process and 

compared its performance against experimental data.59  

Moreover, only very few studies in the energy sector have shown that the models based on ANN 

can be embedded within optimization formulations to improve the efficiency of energy systems. 

Wang Jianlong and Wan Wei implemented a desirability function based on artificial neural network 

for optimizing biohydrogen production process.60 Kalogirou S. A. developed an artificial neural 

network model to optimize a solar-energy system in order to maximize its economic benefits.61 In 

Wang Jiangfeng et al. study, an ANN model with the multi-layer feed-forward network is used to 

optimize the thermodynamic parameters for supercritical CO2 power cycle with energy efficiency 

as objective function.62 To date, there has been no previous studies in which ANN and RNN 

models were developed and used to explore the optimal steady state and dynamic operation of a 

pilot entrained flow gasifier in an IGCC plant; hence the novelty of the research considered in this 

study. Given the relevance of neural networks for this study, a general description of these 

methods is provided next. 

 

2.3 Artificial Neural Networks 

An artificial neural network consists of several layers of simple computing nodes, referred to as 

neurons, which predict different aspects of the input-output parameter relationship using nonlinear 

summing techniques. These layers typically consist of a number of hidden layers, as well as an 
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output layer. The hidden layer of the ANN determines the relationship between the inputs and the 

outputs, and the values calculated by hidden layer neurons are subsequently fed to the next layer. 

In the output layer, a linear transfer function maps the hidden layer outputs onto the range of the 

desired output parameters. The neurons in each layer of the ANN are interconnected via a series 

of weighted connection lines, as illustrated in Figure 3.  

 

 

Figure 3. Brief configuration of artificial neural network 

 

Each neuron consists of a weighted linear function and a transfer function, as denoted in Figure 

4. There are mainly three types of transfer function (activation function) using in hidden layer, 

which are step-like functions, sigmoidal transfer functions and radial basis functions. The step-

like functions are kind of threshold function and the networks with such neurons of step-like 

functions in hidden layer divide the input space into polyhedral areas. However, the step-like 

functions have discontinuous derivatives, preventing the use of gradient-based error minimization 

training procedures. Sigmoidal transfer functions allow to define popular continuous graded 
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response neurons and it is widely used in neural networks for regression. Radial basis functions 

are always used in pattern recognition problems.63 

 

Figure 4. The structure of a neuron and its activation function 

As shown in Figure 4, ξi denotes the linear weights function for the ith neuron, which is defined as 

the sum of each of the jth outputs from the previous layer (input layer); whereas fB denote the 

input value of the jth input parameter from the jth neuron in the input layer, and the terms wi,j and 

bi in ξi denote the weight and bias values applied to the ith neuron, respectively. Furthermore, the 

function ƒ denotes the transfer function applied to ξi. The transfer function applied in the hidden 

layers of an ANN usually consists of a sigmoidal function that maps ξi onto a nonlinear curve, 

whereas a linear transfer function is typically applied to the output layer to map ξi onto the range 

of the output parameters. 

In order for the artificial neural network to function properly, it is necessary to adjust the weights 

and the biases of each neuron such that the artificial neural network can predict the output results 

for a given set of input parameters. This can be accomplished through supervised training, in 

which the network is provided with a series of input parameters and their corresponding output 

values. Training supervised networks requires a measure of the discrepancy between the network 
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and target outputs; the difference between these values yields an error function, often referred to 

as the network performance, which is defined as follows: 

9(c, ") =
.

E
Å Çℎ6,8Çf

($)É − i($)É
/E

$Ö.
               (1) 

where 9(c, ") denotes the objective function of the training process; c and " denote the vector 

of weights and biases that will be optimized over the course of the training process.  Furthermore, 

the symbol > represents the number of data pairs used to train the network, whereas f($) and i($) 

denote the %TÜ	inputs and target outputs of the artificial neural network, respectively, and ℎ6,8 

represents the hypothesis nonlinear function defined such that ℎ6,8Çf($)É denotes the output 

values predicted by the artificial neural network. 

At the beginning of the network training, each of the weights and biases (b$,B	and #$) are randomly 

generated from a uniform distribution within the active range of the tangent sigmoid transfer 

function and their values are subsequently updated via backpropagation (BP). In the classical BP 

algorithms, the network is trained using gradient descent where in the partial derivative of the 

performance is calculated with respect to b$,B	and #$. These gradients are subsequently used to 

update the weights and biases as follows: 

b$,B = b$,B − m
á

á	6à,â
9(c, ")                                                             (2) 

#$ = #$ − m
á

á	8à
9(c, ")                   (3) 

where m denotes the network learning rate, which determines the size of step changes during 

each iteration of the training process. At the beginning of the network training, the derivatives of 

the objective function, and thus the changes in the weights and biases, are large with respect to 

the network inputs. As the learning progresses, however, the derivative values and the values of  

b$,B	and #$ stabilize as the network approaches a local minimum on the error surface.   
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In order to avoid overfitting in the neural network model, it is necessary to analyze the ANN 

performance during training in order to prevent the network from simply memorizing the training 

data. For the ANN training algorithm implemented in this work, an early stopping method was 

utilized, which partitions the input-output dataset provided into three parts: the training set, the 

validation set, and the testing set. During network training, the training set is used to optimize the 

weights and biases of each neuron so as to minimize the error between the ANN model outputs 

and the training data outputs. After each epoch of training, the network is fed with the input data 

from the validation set and used to predict the network output under these conditions. These 

predicted outputs are subsequently compared to the validation data outputs in order to calculate 

the validation error. The network is then subsequently re-trained for another epoch using the 

training dataset. This process continues until the validation error is either sufficiently small or it 

doesn’t significantly change after a certain number of successive epochs.64 After the training has 

been completed, the testing dataset is used to validate the performance of the ANN model. If the 

testing error obtained from this process is insufficiently small, then the input-output data is 

redistributed between three datasets and the network is retrained until the errors meet the user-

defined criterion.45  

 

2.4 Summary 

In this chapter, a review of relevant studies on diverse modeling approaches on the gasification 

unit in IGCC system is presented. In the first part, a brief description of IGCC power plant and the 

gasification process in IGCC was provided with the aim to explain the key role of the gasifier in 

IGCC, and the need to model the steady state behaviour and transient performance of this unit. 

In order to conduct optimization on operating conditions of gasifier, the development of 

computationally efficient models that can capture key features of the gasifier is essential to assess 
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the behaviour of a gasifier. Subsequently, in the second part, CFD model, ROM and artificial 

neural network model on energy systems were reviewed. The limitations in using CFD models 

and ROM simulations are explained since computational cost of these two models are much 

higher compared with ANN models. Since the ANN models have low computational time, they are 

suitable to perform optimization on steady state and transient behaviour of the gasifier. The next 

chapter presents the development of ANN model for CanmetENERGY’s pilot-scale gasifier, and 

the steady-state optimization of this pilot entrained-flow gasifier.  
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Chapter 3 

Modelling and Optimization of a Pilot-scale Entrained-Flow Gasifier 

using Artificial Neural Networks 

This chapter presents the construction of an artificial neural network (ANN) of a pilot-scale gasifier 

unit, which was trained using data generated for a large set of randomly-generated input 

conditions from a pilot-scale gasifier reduced order model (ROM) previously developed in our 

research group. Section 3.1 briefly introduces the reduced order model (ROM) of the pilot-scale 

gasifier considered in this study. Section 3.2 presents the validation of the fully-trained ANN via 

comparing its performance to the gasifier’s ROM model. Section 3.3 presents the optimization 

studies proposed in this work using the validated ANN model. The scenarios considered in this 

study were aimed to determine the operating conditions that would maximize carbon conversion 

and the optimal conditions that would maximize both carbon conversion and production of 

hydrogen gas, which are two conflicting objectives. Note that most of the contents of this chapter 

has been already published in a journal.42 

 

3.1 Introduction of ROM for a pilot-scale gasifier 

The entrained-flow IGCC gasifier system modeled in this work consists of a tonne-per-day (TPD) 

pilot-scale gasifier owned by CanmetENERGY, Natural Resources Canada, which is briefly 

illustrated in Figure 2.26 This pilot gasifier is lined with refractory and insulation materials in order 

to reduce its heat loss, as it has a large surface area to volume ratio. Fuel, steam (H2O), oxygen 

(O2) and nitrogen (N2) are fed into the gasifier to produce raw syngas. The pet-coke’s temperature 

often ranges from 270 K to 330 K before it is loaded into the gasifier, as the initial temperature 

significantly affects the gasifier temperature profile when the fuel is mixing with the steam. In 

addition, the composition of the pet-coke in the fuel (i.e., the mass fraction of ash, volatiles, and 
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moisture) plays a crucial role in the reaction process and the formation of the volatile products.  

As mentioned above, IGCC gasifier models are conventionally modelled using CFD models65,66,8, 

which can provide an accurate and detailed outlook for the gasification system but they can be 

extremely computationally expensive. This has motivated the development of more efficient 

modelling methods such as reduced order models (ROMs). These ROMs are an alternative 

approach that can be used to provide detailed information about the multi-phase flow structure of 

a gasification unit such as its solid particle concentration, composition, and temperature 

distribution along the length of the gasifier.  

Sahraei et al.13 proposed a reactor network ROM consisting of different plug flow reactor (PFR) 

and continuous stirred tank reactor (CSTR) models to simulate each of the different zones at 

steady state inside the entrained-flow gasifier mentioned above. The key input parameters of the 

ROM are inlet flow rate of pet-coke, steam, oxygen and nitrogen, the initial temperature of the 

pet-coke, and the percent composition of ash, volatiles, and moisture within the pet-coke. The 

pet-coke composition contained a molar fraction of 0.046 ash, 0.127 volatiles, and 0.005 moisture 

and 0.822 carbon. The ROM was developed over an explicit input parameter range determined 

experimentally on the pilot-scale gasifier, and consequently the ROM is only valid for this specific 

range of operating conditions.  

The performance of a gasifier can be described by the conversion of its reactants, the 

concentration of its desired products at the outlet, and the temperature distribution throughout the 

unit.25 In the ROM model, the carbon conversion is the main important output parameter for 

characterizing the gasifier performance, as it serves to measure the fraction of solid coal 

converted into the more useful syngas form. In addition, the gasifier products, i.e., CO and H2, 

provide a much lower heating value and require lower operating temperatures, and thus they are 

able to achieve much greater efficiency than their solid fuel alternatives. Consequently, it is 

important to be able to predict the molar percentage of CO and H2 in the outlet gas flow as a 
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function of the input parameters. Another significant observable of the gasifier system is the 

internal temperature, which has a significant effect on the reactions taking place. Specifically, the 

peak temperature of the gasifier are monitored in order to keep it below the maximum temperature 

that the refractory brick layer within the gasifier can bear.25 Furthermore, standard measurement 

devices such as thermocouples are often used in industrial reactors to monitor the temperature 

at key locations inside the unit. For the specific IGCC gasifier unit considered in the ROMs model 

work, there are four thermocouples located on the wall of the gasifier reactor, so that the 

operations can observe and monitor the temperature distribution at these discrete locations. The 

location of each thermocouple is detailed in Figure 2. 

The ROM reactor network considered in this work decomposes the gasifier system into three 

different types of zones referred to as the jet expansion zone (JEZ), external recirculation zone 

(ERZ), and down-stream zone (DSZ) regions, as outlined in the Figure 5.  
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Figure 5. (a) Reactor network of the gasifier; (b) Corresponding regions of the reactor 

network inside the gasifier 

As shown in Figure 5, the JEZ and DSZ are modeled as plug flow reactors (PFRs) whereas the 

ERZ zones are modeled as continuous stirred tank reactors (CSTRs). Rather than solving the 

differential equations across the entire gasifier domain using CFD techniques, the ROM reduces 

the order of equations inside each gasifier zone, e.g., ERZ zones can be considered as a single 

node because of uniform particle and temperature distributions. In the JEZ region, the steam, and 

oxygen are suddenly expanded at the gasifier inlet, which causes the flow of fuel to spread out. 
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When the flow reaches the gasifier wall, a portion of the stream recycles back to the top of the 

gasifier through the ERZ region while the rest of the stream flows towards the DSZ region at the 

bottom of the reactor. Inside each reaction zone, the gasifier’s behaviour is simulated based on 

the flow characteristics (i.e., whether they are mixed or laminar) and the one-dimensional 

governing equations of gas and solid phases for mass, energy, and momentum are solved for 

each zone to provide a distribution of different properties. The conservation equations of mass, 

energy and momentum used to simulate each zone of the gasifier are listed in Table 2 (see the 

Nomenclature section for the definition of the model parameters).  

Table 2. Mathematical model of the multi-phase flow in the ROM12 
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As indicated in previous studies, the ROM used in this work was validated using both CFD 

simulation results12 and experimental data12 obtained from CanmetENERGY’s pilot-scale gasifier. 

A more detailed model description of the ROM as well as the descriptions for the model 

parameters presented in this table can be found elsewhere in the literature.12 However, it is 

important to note that even though the ROMs require substantially lower computational costs 

compared to CFD models, they still require considerable numerical analysis and thus they are still 

computationally expensive for optimization, monitoring and online control applications. 

 

3.2 Development of ANN model for a pilot-scale gasifier  

In this work, an artificial neural network was developed to calculate the key outputs of the pilot-

scale gasification unit such as the carbon conversion, outlet composition, peak temperature, and 

temperature at the thermocouples’ location, as a function of the relevant system parameters, such 

as the inlet gas flowrates, the inlet temperature, and the fuel composition. The developed ANN 

consisted of a number of sub-ANNs that were each developed to predict the performance of each 

output parameter individually as a function of the inputs. The sub-ANNs were developed using a 

two-layer neural network structure that consisted of a single hidden layer with a tan-sigmoid 

transfer function and an output layer with a linear transfer function, as illustrated in Figure 3. Note 

that the two-layer neural network structure was selected as the basis for the ANN as it is 

considered to be the most suitable structure for nonlinear model fitting regression problems.67 

Furthermore, no significant performance improvements were observed when the number of layers 

in the ANN sub-networks were increased. Each ANN was trained using data obtained from the 

ROM reported previously in Section 3.1.13 The following sections will provide a brief overview of 

the ANN methodology implemented in this work. A general overview of the feedforward ANN 

structure and its backpropagation algorithm is provided, followed by a brief description of the 
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gasifier variables that serve as the input and output parameters to the ANNs. Subsequently, the 

performance of various back-propagation algorithms on the ANN training are compared, and the 

optimal number of hidden layer neurons are determined for each ANN in order to optimize their 

predictive capabilities.  

 

3.2.1 Input and output training data 

The carbon conversion (T1), the molar composition of CO (T2) and H2 (T3), peak temperature of 

the gasifier (T4), and the temperature at the four thermocouples located on the wall of the gasifier 

reactor (i.e., T5 - T8), all serve as the desired measurable outputs for the gasifier system, and thus 

are considered as the key output parameters (T) to be predicted using the ANN model. On the 

other hand, the key input parameters (P) that affect the gasifier performance are the injected fuel 

flowrate (P1), the oxygen flowrate (P2), the nitrogen flowrate (P3), the steam flowrate (P4), the initial 

fuel temperature (P5), and the fuel compositions of ash (P6), volatiles (P7), and moisture (P8). 

Consequently, these parameters serve as the inputs which the ANN model would use to predict 

the desired outputs. More information about each of these input and output parameters can be 

found in Section 3.1. Furthermore, Table 3 provides a comprehensive list of the input (P) and 

output (T) parameters, their nominal values, and the corresponding minimum and maximum input 

parameter values over which the ANN was trained. These input ranges were determined 

experimentally using the ROM in order to guarantee that they are feasible and capable of 

obtaining reasonable results for both the ROM and ANN models. Note that the fuel composition 

parameters (P6, P7, & P8) cannot be accurately controlled, as the fuel composition can only be 

coarsely altered by changing the type of coal used. Consequently, the ranges for these 

parameters were determined by applying a ±5% fluctuation around the expected values for each 

fuel component, as this was determined to provide satisfactory composition bounds via laboratory 

experiments.12  
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Table 3. Key gasifier input and output parameters 

Input parameters (P) 
 

Nominal condition 
(¥EFG) 

Lower bound 
(¥G$E) 

Upper bound 
(¥GHI) 

P1: Fuel flowrate (kg/h) 41.2 41.2 52.3 
P2: O2 flowrate (kg/h) 37.2 28.4 37.2 
P3: N2 flowrate (kg/h) 12.1 11.0 12.1 
P4: Steam flowrate (kg/h) 10.7 0 21.8 
P5: Fuel temperature (K) 300 270 330 
P6: Mass fraction of ash 
in fuel  0.046 0.0414 0.0506 

P7: Mass fraction of 
volatiles in fuel  0.127 0.1143 0.1397 

P8: Mass fraction of 
moisture in fuel  0.005 0.0045 0.0055 

Output parameters (T) 
 

Output values at nominal condition 

T1: Conversion  0.9134 
T2: Outlet CO composition 0.5135 

T3: Outlet H2 composition 0.2176 

T4: Peak temperature (K) 2.6631 ´ 103 

T5: Temperature: Thermocouple 1 (K) 1.9114 ´ 103 

T6: Temperature: Thermocouple 2 (K)  1.7864 ´ 103 

T7: Temperature: Thermocouple 3 (K) 1.6726 ´ 103 

T8: Temperature: Thermocouple 4 (K) 1.6090 ´ 103 

 

In order to train the ANN model, it is necessary to generate a large number of data points for each 

model output using various combinations of each of the input parameters. For the study presented 

in this work, the ANN data was generated using 8,000 combinations of input parameters randomly 

generated from a uniform distribution, between their upper and lower bounds as listed in Table 3. 

Trial-and-error simulations were performed to determine a suitable data set for the identification 
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of the ANNs. Increasing the sample size beyond 8,000 samples increases the computational effort 

but it does not improve the prediction capabilities of the ANNs. Each of these input parameter 

combinations were passed through the ROM in order to determine their corresponding output 

parameter values; these input and output parameters were subsequently paired up and fed into 

the training process used to generate the ANNs model. 

 

3.2.2  Selection of back-propagation algorithm 

The backpropagation method is one of the most crucial concepts for enabling the self-learning 

capabilities of an ANN.68 This methodology refers to the ability of a neural network to adjust the 

values of its weights and biases based on the error in the network outputs.69 As a result, it is 

important to select a good back-propagation method to ensure that the network can accurately 

and efficiently learn to predict the outputs of a system given a set of inputs without being subject 

to overfitting. In this study, we compared eight different BP algorithms with the aim of choosing 

the best fitting algorithm for the gasifier data collected. Each BP algorithm considered is not 

discussed within this paper for the sake of brevity; further discussion about these algorithms can 

be found within the literature.70,71 Each BP algorithm was used to train a two-layer ANN with 10 

neurons in the hidden layer in order to predict the outlet CO composition (T2) as a function of each 

of the input parameters P. 

The results of the network training for each BP algorithm are presented in Table 4. These results 

reveal that the Levenberg-Marquardt algorithm is the best BP algorithm for the ANN system 

considered in this work, as it managed to achieve the lowest mean squared training error with a 

minimum value of 2.30×10-7. Furthermore, the training was stopped after 138 epochs. Even 

though the Scaled conjugate gradient and One-step secant BP can achieve the similar error 

magnitude and R value to the Levenberg-Marquardt algorithm, both of them needed more training 
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iterations which means that they required more time to obtain the optimal weights and bias of their 

corresponding ANN models. The weakest BP training algorithms are Gradient descent with 

momentum and Gradient descent, which needed the most iteration numbers to find the optimal 

weights and bias and produced the largest magnitude of mean squared errors of the trained ANN 

models.  

 

Table 4. Comparison of the backpropagation algorithms 

BP algorithm R values 
Mean squared 

error 

Iteration 

number 

Levenberg-Marquardt  0.999 2.30×10-7 138 

Scaled conjugate gradient  0.999 6.36×10-7 363 

One-step secant BP  0.999 3.71×10-7 349 

BFGS Quasi-Newton  0.996 1.12×10-5 128 

Gradient descent with momentum and 

adaptive LR  

0.998 1.85×10-4 227 

Gradient descent with momentum  0.980 0.0178 1,000 

Resilient backpropagation  0.999 1.70×10-6 600 

Gradient descent  0.998 0.0155 1,000 

 

 

These results are further validated in Figure 6 which showcases the training and validation mean 

square errors at each epoch of the network training using the Levenberg-Marquardt algorithm. 

This figure additionally illustrates that the network training results were reasonable, as the train 

and validation errors both displayed similar characteristics, and these two errors did not change 

significantly upon further training. As shown in Figure 6, the validation error reached the minimum 
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best validation mean squared error (MSE), when MSE of validation does not decrease for six 

consecutive epochs. As a result, the Levenberg-Marquardt algorithm was implemented to train 

the ANN model developed in this work. 

 

 

Figure 6. Mean square errors obtained during training, validation, and testing, using the 

Levenberg-Marquardt algorithm 

 

3.2.3  Neural network structure 

The aim of this section is to perform optimization on the number of hidden layer neurons for each 

of the eight sub-ANNs developed in this work to predict each gasifier output. Each sub-network 

was developed using the two-layer architecture described previously, using the Levenberg-

Marquardt algorithm for back-propagation. In this study, each sub-network was initialized with a 

hidden layer containing only a single neuron, and the sub-networks were trained to predict each 

of the model outputs as a function of the inputs. Subsequently, the number of neurons in each 
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hidden layer was incremented by one and the networks were re-trained using the same data. This 

data was used to calculate the mean squared validation and testing errors for each network as a 

function of the number of hidden layer neurons. This process was repeated until the sub-network 

was observed to be memorizing the data, (i.e., when sub-network’s validation error decreased 

but its testing error was observed to increase), at which point the optimization process was 

terminated for that network. 

The results of the identification of the optimal structure for each of the ANN developed in this work 

are shown in Table 5. The normalized mean squared error (MSE) for the eight output parameters 

(T1 - T8) is less than 5´10-5. This model fitting was achieved by adjusting the number of neurons 

in hidden layer. Furthermore, the maximum percentage error between the actual output obtained 

by the trained ANN and the target output generated by the ROM for test and validation sets in the 

training process are sufficiently low, i.e. less than 3% for all the output parameters except for the 

temperature at thermocouple 1 (T5). Although the maximum percentage error in the temperature 

at thermocouple 1 (T5) is 6.0% and 5.24% for test set and validation set respectively, they are still 

in reasonable agreement with the ROM data. Noted that the maximum percentage error between 

the test and validation set are similar to each other for each output parameter, which is an 

indication that there is no overfitting in each ANN model.  
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Table 5. The optimal number of hidden layer neurons, and resulting testing and 

validation errors, for each output parameter captured by the ANN 

Output parameters 
Neuron 

number 

Normalized MSE Maximum percentage error  

test validation test validation 

Conversion (T1) 5 2.7559 ´ 10-5 3.7119 ´ 10-5 2.5641% 2.6741% 

CO composition (T2) 4 1.9744 × 10-5 2.0141 ´ 10-5 1.2188% 1.5834% 

H2 composition (T3) 3 2.0877 ´ 10-5 2.3952 ´ 10-5 2.2514% 1.7657% 

Peak temperature (T4) 5 2.8234 ´ 10-5 3.2510 ́  10-5 2.4972% 2.2134% 

Thermocouple 1 (T5) 6 1.9301 ´ 10-5 1.5632 ́  10-5 6.0075% 5.2366% 

Thermocouple 2 (T6) 6 1.8556 ´ 10-5 1.8901 ́  10-5 2.9233% 2.5796% 

Thermocouple 3 (T7) 6 2.6874 ´ 10-5 1.6053 ́  10-5 1.5751% 1.4401% 

Thermocouple 4 (T8) 6 3.7088 ´ 10-5 2.2285 ́  10-5 0.7688% 1.2136% 

 

Figure 7 illustrates the optimal neural network structure for each of the sub-networks and provides 

the general framework of the ANN model considered in this study.  
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Figure 7. Optimal neural network structure for the IGCC pilot-scale gasifier 
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Furthermore, Figure 8 showcases the linear regression analysis between the ANN outputs 

generated using the optimal number of hidden neurons and the corresponding output targets for 

T2, the molar fraction of CO at the outlet. As can be seen by these results, the ANN can adequately 

predict the target output data given the non-linear relationship between the inputs and outputs for 

the output parameter (T2). A similar performance was observed for the rest of the output 

parameters but it is not shown here for brevity. 

 

Figure 8. Regression between network output values and target output values for T1 

 

 

3.3 ANN model validation 

The objective of this section is to test and validate the performance of the ANN model described 

previously in Section 3.2. The ANN’s performance was evaluated with respect to the ROM which 

has been reported previously in the literature.24 Note that the accuracy of the ANN is dependent 
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on the predictive capabilities achieved via the training process described in Section 3.2. 

Therefore, the ANN output performance was validated subject to changes in each of the input 

parameters P listed in Table 3. In order to ensure good generalization for each ANN model, the 

trained ANN model was tested using 2,500 combinations of input parameter values that had not 

been previously used during the network training. As a result, each combination of the eight input 

parameters utilized in this study was generated afresh via random selection from a uniform 

distribution within the parameter ranges showcased in Table 3, i.e., the parameter ranges over 

which the networks were trained. Each of these combinations were inspected a priori in order to 

ensure that they were different from the data used to train the ANN model and its sub-networks. 

Table 6 presents 10 out of the 2,500 combinations of input parameters used to validate the 

performance of the ANN. The performance of both the ROM and ANN models for these ten 

combinations of input parameters, as assessed through each of the eight output parameters, are 

illustrated in Figure 9. Note that the outputs for the remaining 2,490 sample points used for model 

validation are not shown here for the sake of brevity; however, their results were comparable to 

those illustrated in Figure 9. In addition, Table 6 displays the sum of squared errors of the outputs 

between the results of the ROM and the ANN model for the full batch of 2,500 input operating 

condition combinations. These results show that the ANN model is able to adequately capture the 

behavior of the gasifier unit, and that the ANN model is not overfitting. As shown in Figure 9, the 

profile of each eight outputs determined using the ROM match those determined using each of 

the ANN sub-networks.  
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Table 6. First ten combination of input parameters used to validate the ANN 

Input parameter 1 2 3 4 5 6 7 8 9 10 

P1 (Fuel flowrate, 

kg/h) 
44.93 48.19 50.80 43.67 45.42 43.60 46.11 46.68 49.68 42.90 

P2 (O2 flowrate, 

kg/h) 
35.48 34.31 32.08 31.57 29.40 29.18 30.06 36.48 35.22 35.87 

P3 (N2 flowrate, 

kg/h) 
11.40 11.63 11.37 11.28 11.62 11.89 12.02 11.91 11.99 11.63 

P4 (Steam 

flowrate, kg/h) 
20.46 0.12 20.99 18.05 16.46 16.39 3.92 6.72 20.42 6.01 

P5 (Fuel 
temperature, K) 

280.24 277.59 324.90 313.38 309.90 319.86 306.71 287.15 272.94 321.78 

P6 (Mass fraction 

of ash) 
0.0466 0.0484 0.0469 0.0452 0.0498 0.0429 0.0428 0.0470 0.0490 0.0449 

P7 (Mass fraction 

of volatiles) 
0.1389 0.1346 0.1392 0.1376 0.1277 0.1390 0.1210 0.1272 0.1267 0.1269 

P8 (Mass fraction 

of moisture) 
0.0046 0.0048 0.0048 0.0051 0.0047 0.0050 0.0054 0.0047 0.0049 0.0050 
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Figure 9. Comparison of the gasifier outputs obtained for the first ten combinations of 

input validation data as generated by the ANN model (represented as blue circles) and 

the ROM (represented as red dots) 

 

Furthermore, Table 7 shows that the errors in the ANN-predicted outputs remain sufficiently low, 

i.e., < 2.5 × 10-3 and < 6 × 10-2 for the mean and maximum relative errors respectively for all eight 

output parameters.  Note that the sum of squared errors for each of the temperatures (i.e., the 

peak temperature and the temperatures at the thermocouple locations), as shown in Table 7, are 

notably larger than the remaining output parameter errors; this is because the temperatures are 

of higher orders of magnitude compared to the other outputs, and thus they are subject to larger 

absolute errors. With regards to the computational cost, the ROM model and the ANN model 
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required on average about 257 s and 1.6 ´ 10-3 s of CPU time per simulation, respectively (Intel® 

Core™ i7-4770 CPU @ 3.40 Hz, 3392 Mhz, 4 Core(s), 8 Logical Processor(s)). This difference in 

the computational time illustrates that the ANN is approximately 1.6 ´ 105 times faster than the 

ROM model. This demonstrates that the ANN is significantly more computationally efficient 

compared to the ROM, while achieving sufficiently similar results. Overall, this validation study 

demonstrates that the ANN model is able to predict the steady state behavior of the gasification 

reactor accurately and can be used to perform optimization studies. 

Table 7. The mean squared, mean, and maximum errors obtained for all eight output 

parameters over 2,500 input combinations 

Output parameters MSE Mean error Max error 

T1 (Conversion) 4.7259 ´ 10-6 0.2204% 2.5641% 

T2 (CO composition) 3.1658 ´ 10-7 0.0662% 1.4744% 

T3 (H2 composition) 4.2342 ´ 10-7 0.2085% 1.5247% 

T4 (Peak temperature, K) 60.8380 0.1740% 2.1374% 

T5 (Thermocouple 1, K) 45.5503 0.1421% 5.3596% 

T6 (Thermocouple 2, K) 17.4942 0.1236% 2.8246% 

T7 (Thermocouple 3, K) 3.5040 0.0532% 1.7441% 

T8 (Thermocouple 4, K) 2.5240 0.0523% 1.0516% 
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3.4 Optimization: Carbon Conversion 

Integrated Gasification Combined Cycle (IGCC) system using coal gasification is a crucial 

component of future energy alternatives. Since gasification is the most important component of 

this system, it is particularly critical to understanding the operation and optimizing the gasification 

unit.72 In industrial applications, the performance of a gasification unit in an IGCC plant is 

characterized by its conversion of carbon (T1) into gaseous products such as CO, CO2 and CH4; 

as a result, it is crucial to manufacture IGCCs that meet or exceed specific carbon conversion 

requirements in order to maximize the gasifier performance.73,21 Note that the peak temperature 

of the gasifier reactor should be constrained to be within a reasonable range to avoid damaging 

the refractory wall due to the high temperature. For different gasifier reactor types, the material of 

the reactor wall would be different and therefore, the constraints of the peak temperature of 

gasifier can be adjusted so that they do not impose a safety hazard. Motivated by this, the first 

objective of this section is to optimize the gasifier carbon conversion at the reactor outlet under 

different peak temperature limitations using the ANN gasification model developed in Section 3.2. 

This optimization study was performed with respect to each of the input parameters ¥	mentioned 

in Section 3.2.1 according to the following optimization formulation: 

max
¥
\.(¥)                   (4) 

Subject to:	
∂∑∑	~}ë|∏  

\N	(¥) ≤ \N,GHI  

¥G$E ≤ 	¥ ≤ ¥GHI  

where ¥G$E  and ¥GHI  represents the lower and the upper bounds for all the eight input 

parameters considered in ¥ , which can be found in Table 3. \N,GHI  denotes the maximum 

allowable temperature that the refractory wall can bear, and the function of carbon conversion 
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(\.) is a nonlinear function estimated by the ANN gasification model. The above optimization 

formulation was performed using different bounds of the peak temperature, i.e., \N,GHI	 was set to 

2,400 K, 2,500 K, 2,600 K, and 2,700 K. This was done to obtain an insight to the effect of peak 

temperature limitation on the optimized results of carbon conversion and the remaining gasifier 

parameters. The results of the input parameters obtained from the different optimization runs were 

additionally fed into the ROM in order to validate the results of the ANN model, and the 

corresponding results of carbon conversion from ROM are similar to the optimized carbon 

conversion values run by ANN model. Then, these results from optimization by ANN were 

compared to the nominal reactor conversion predicted by the ROM using the nominal input values 

presented in Table 3. 

The results of the optimization study are presented in Table 8. As can be seen by these results, 

the maximum carbon conversion increases correspondingly with the limitations of peak 

temperature rising. Notably, the maximum carbon conversion increases drastically from 0.8111 

to 0.9702 when the limitation of peak temperature changes from 2,400 K to 2,600 K. While peak 

temperature limitation increases from 2,600 K to 2,700 K, the maximum carbon conversion does 

not increase notably (differences noted beyond five decimal digits). This result is consistent with 

the results obtained by ROM, as the percent error in the optimal carbon conversion between both 

modelling methods remain below 0.3% for the four different peak temperature limitation case 

studies considered here. At the nominal operating conditions (¥EFG) listed in Table 8, the ROM 

predicted a carbon conversion of 0.9134, which is about 5.85% lower than the value obtained 

from the present optimization case study (Case 3 & Case 4 in Table 8). Note that according to 

the results in Table 8, higher carbon conversions are associated with higher steam flow rates; 

thus, increasing the steam flow rates can promote higher carbon conversions. The results from 

the optimization also indicate that, as the maximum allowed peak temperature constraint is 

relaxed, the carbon conversion tends to increase significantly up until it reaches approximately 
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0.97 conversion, which seems to be the highest conversion that can be achieved for the nominal 

operation of the pilot-scale gasification unit considered in this study, when the limitation increase 

beyond \N,GHI	= 2,600 K, the conversion does not tend to change significantly. Furthermore, the 

results also illustrate that a lower fuel flowrate, a higher steam flowrate, a higher inlet fuel 

temperature, and higher mass fraction of ash, volatiles and moisture would also lead to a higher 

carbon conversion. As a result, the optimization study predicts that higher ratios of steam and 

oxygen to pet-coke are required in order to obtain higher carbon conversions. Table 8 additionally 

shows that the optimization results obtained using the ANN are similar to the values obtained 

using the ROM, which demonstrates that the ANN is able to accurately predict the gasifier outputs 

for optimization applications. Each of the optimization runs required an averaged CPU time of 

0.0808 s, however, the same optimization study using the ROM required 7,573 s; i.e., at least 

four orders of magnitude the time needed to perform the same optimization using the ANN. 
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Table 8. Carbon conversion optimization results 

 

 

3.5  Multi-objective optimization 

Another key performance indicator of an IGCC gasifier is the composition of the syngas it 

produces. Specifically, specific syngas components such as H2 require lower operating conditions 

than others, and it is thus beneficial to maximize the molar fraction of hydrogen in the final syngas 

composition so as to improve its efficiency. In an ideal gasifier system, it is desirable to maximize 

both the carbon conversion and the production of H2. However, these two objectives have been 

observed to be in conflict with each other, as the input conditions required to maximize carbon 

conversion negatively impact the hydrogen production, and vice versa.13 Motivated by this, a 

parameter name 
Nominal 

condition 

Case 1 (T4, max =2400K) Case 2 (T4, max =2500K) Case 3 (T4, max =2600K) Case 4 (T4, max = 2700K) 

P1 (Fuel Flow Rate, kg/h) 41.2 40 40 40 40 

P2 (O2 Flow Rate, kg/h) 37.2 30.8921 34.449 37.2 37.2 

P3 (N2 Flow Rate, kg/h) 12.1 12.1 12.1 11 11 

P4 (Steam Flow Rate, kg/h) 10.7 21.8 21.8 19.2112 19.2111 

P5 (Fuel Temperature, K) 300 330 330 330 330 

P6 (Mass Fraction Ash) 0.046 0.0506 0.0506 0.0506 0.0506 

P7 (Mass Fraction Volatiles) 0.127 0.1397 0.1397 0.1397 0.1397 

P8 (Mass Fraction Moisture) 0.005 0.0055 0.0055 0.0055 0.0055 

 
     

Optimized parameter      

T1 (Conversion) in optimization 

using ANN 

 0.8111 0.9033 0.9702 0.9702 

T1 (Conversion) run by ROM 0.9134 0.8114 0.9009 0.9690 0.9690 

Relative error  0.04% 0.27% 0.12% 0.12% 

      

Parameter in constrain      

T4 (Peak temperature, K) in 

optimization using ANN 

 2400 2500 2600 2620.2 

T4 (Peak temperature, K) run 

by ROM 

2663.1 2399.8 2501 2605.3 2627.2 

Relative error  0.01%  0.04%  0.20%  0.27% 
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second optimization study was performed with the aim to analyze the relationship and determine 

the optimal trade-off conditions between these two conflicting objectives. This multi-objective 

optimization study was performed with respect to each of the input parameters ¥	mentioned in 

Section 3.2.1 according to the following optimization formulation: 

max
¥
[(1 − b)\.(¥) + b\M(¥)]               (5) 

Subject to:	
∂∑∑	~}ë|∏  

\N	(¥) ≤ \N,GHI  

¥G$E ≤ 	¥ ≤ 	¥GHI  

where the parameter b  is a weight which denotes the significance of each of the individual 

objective functions, i.e., carbon conversion (\.) and hydrogen molar fraction in outlet (\M). In the 

above optimization formulation, the maximum allowed peak temperature was fixed at \N,GHI	 = 

2,600 K based on the optimization results obtained for the first case study discussed above. 

Furthermore, the upper and lower bounds ¥GHI and ¥G$E	are defined by the values listed in Table 

3. For this multi-objective optimization study, the weight parameter b was changed from 0 to 1 by 

increment of 0.1. The results of the multi-objective optimization obtained using the ANN model 

were validated by running the ROM as shown in Table 9. Note that the errors between the two 

modeling methods remained below 2.2%, showcasing that the ANN is capable of predicting the 

gasifier behaviour with sufficient accuracy compared to the ROM. Figure 10 provides a graphical 

illustration of the pareto front for the feasible search space accessible to the gasifier model that 

is formed based on the solutions to problem (5).  
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Table 9. Multi-objective optimization results 

parameter name w = 0 w = 0.1 w = 0.2 w = 0.3 w = 0.4 w = 0.5 w = 0.6 w = 0.7 w = 0.8 w = 0.9 w = 1 1-norm  

P1 (Fuel Flow Rate, kg/h) 40 40 40 40 40 40 40 40 40 40 52.3 40 

P2 (O2 Flow Rate, kg/h) 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 28.4 28.4 28.4 

P3 (N2 Flow Rate, kg/h) 11 11 11 11 11 11 11 11 11 11 11 11 

P4 (Steam Flow Rate, kg/h) 19.2112 19.5424 19.9225 20.366 20.8952 21.5464 21.8 21.8 21.8 18.1061 14.5294 18.0935 

P5 (Fuel Temperature, K) 330 330 330 330 330 330 330 330 330 330 330 330 

P6 (Mass Fraction Ash) 0.0506 0.0506 0.0506   0.0506 
  

  0.0506 
  

0.0506 0.0506 0.0506 0.0506 0.0506 0.0506 0.0506 

P7 (Mass Fraction Volatiles) 0.1397 0.1397 0.1397   0.1397 
  

  0.1397 
  

0.1397 0.1397 0.1397 0.1397 0.1397 0.1397 0.1397 

P8 (Mass Fraction Moisture) 0.0055 0.0055 0.0055   0.0055 
  

  0.0055 
  

0.0045 0.0055 0.0055 0.0055 0.0045 0.0045 0.0045 

Optimized parameter             

T1 (Conversion) results using 

ANN 

0.9702 0.9702 0.9701 0.9701 0.9699 0.9697 0.9696 0.9696 0.9696 0.7494 0.5471 0.7494 

T1 (Conversion) results using 

ROM 

0.9690 0.9690 0.9689 0.9688 0.9687 0.9684 0.9683 0.9683 0.9683 0.7492 0.5476 0.7492 

Relative error 0.12% 0.12% 0.12% 0.13% 0.12% 0.13% 0.13% 0.13% 0.13% 0.03% 0.09% 0.03% 

 
            

T3 (H2 molar fraction) results 

using ANN 

0.2400 0.2401 0.2404 0.2406 0.2408 0.2411 0.2412 0.2412 0.2412 0.265 0.2836 0.265 

T3 (H2 molar fraction) results 

using ROM 

0.2354 0.2356 0.2357 0.2358 0.2359 0.2360 0.2360 0.2360 0.2360 0.2638 0.2843 0.2638 

Relative error 1.95% 1.91% 1.99% 2.04% 2.08% 2.16% 2.20% 2.20% 2.20% 0.45% 0.25% 0.45% 
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Figure 10. Multi-objective optimization: pareto front, utopia point and 1-norm point 

 

As indicated in this figure and in Table 9, when ! increases, the mole fraction of H2 in the outlet 

syngas increases whereas the carbon conversion decreases, as was expected. Note that since 

the carbon conversion values ("#) are much larger than the hydrogen molar fraction values ("$), 

there is a slowly-decreasing trend of the results of carbon conversion between ! = 0 and ! = 0.8. 

When !  reaches 0.9, the value of !"$(&)  is similar to (1 − !)"#(&) , and consequently the 

optimized H2 fraction begins to rise significantly whereas the carbon conversion starts to decrease 

drastically corresponding to the notable decrease in the oxygen-to-fuel ratio at ! = 0.9. 

In order to determine the ideal trade-off point between the carbon conversion and the hydrogen 

production, the ANN gasifier model was implemented into a 1-norm bi-objective optimization 

scheme. This optimization approach seeks to minimize the 1-norm distance between the feasible 

search space, as defined by the pareto front, and the utopia point (i.e., the infeasible point that 

optimally satisfies both objectives simultaneously),74 in order to determine which set of feasible 
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conditions yield results that are closest to the utopia point (measured in terms of a 1-norm 

distance). The 1-norm minimization problem can be formulated as follows: 

min
-

. /0,2345/0(&)
/0,2345/0,267

+ /9,2345/9(&)
/9,2345/9,267

:              (6) 

Subject to:	
<==	>?@AB  

"C	(&) ≤ "C,EFG  

&EHI ≤ 	& ≤ &EFG  

where "#,EFG and "$,EFG denote the maximum conversion and H2 molar fractions obtainable within 

the optimization constraints of problem (5) and define the utopia point, ("#,EFG, "$,EFG). Note that 

the maximum conversion ("#,EFG) and minimum H2 molar fraction ("$,EHI) values are obtained by 

solving a single-objective optimization study that maximizes the carbon conversion, i.e., when 

! = 0 in problem (5); similarly, the minimum conversion ("#,EHI) and maximum H2 fraction ("$,EFG) 

values are obtained by solving the optimization study that maximizes the hydrogen production, 

i.e., when ! = 1. In addition, the constraint parameters &EHI, &EFG, and "C,EFG were fixed to the 

same values used in problem (2). The results of this optimization study are listed in Table 9 (1-

norm); in addition, the utopia point and the optimal trade-off point are denoted in Figure 10. Under 

these optimal conditions, the carbon conversion "# = 0.7494 is at 52.2% of the utopia point 

conversion, whereas the molar fraction of H2 in the outlet syngas "$ = 0.265 is at 42.7% of the 

syngas hydrogen fraction at the utopia point, as shown in the Figure 10. These results reveal that 

it is not possible to significantly improve the hydrogen production within the gasifier without 

noticeably reducing the carbon conversion. Note that the ANN model required about 0.1617 s of 

CPU time to determine the optimized results for the multi-objective optimization described above. 

However, it is challenging to conduct the same optimization study using the ROM model due to 

the computation costs; hence, this demonstrates that the ANN is significantly more 
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computationally efficient compared to the ROM, while achieving sufficiently similar results. Hence, 

the optimization using ANN shows that it is particularly efficient and accurate to perform 

optimization studies on the pilot-scale gasification unit.  

 

3.6 Summary 

The aim of this chapter was to present an ANN model composed of eight sub-networks that can 

predict the stationary operation of an IGCC gasification system. The number of neurons in the 

hidden layer of ANN model were determined via optimization for each sub-network. In addition, 

Levenberg-Marquardt was selected as the back-propagation algorithm for training. This method 

provided the fastest and most reliable network training when compared to eight different training 

algorithms. Subsequently, the ANN model was successfully validated and was able to accurately 

predict the gasifier outputs at significantly lower computational costs compared to the ROM 

model. The validated ANN model was used to perform two different optimization studies. Those 

studies showed that increasing the peak temperature constraint in the reactor would cause a 

higher maximum carbon conversion. Also, the results from a multi-objective optimization 

formulation showed that it is very unlikely to improve H2 production in the gasifier without reducing 

the carbon conversion. The results presented in this chapter assumed that the gasifier operates 

at steady-state; nevertheless, the operation of a gasification units is often subject to transient 

changes that occur in the IGCC plant; hence the need to develop an inexpensive time-dependent 

model that considers the transient operation of these units. 
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Chapter 4 

Modelling and Optimization of a Pilot-scale Entrained-Flow Gasifier 

using Reccurent Neural Networks 

This chapter presents the construction and validation of a recurrent neural network (RNN) that 

can efficiently predict the dynamic performance of a pilot-scale gasifier unit. The RNN model 

consists of a set of sub-networks that predict the transient behavior of the each of the key process 

outputs as a function of the input parameters of the pilot-scale gasifier. The performance of the 

RNN was compared to a dynamic ROM model, which was validated using experimental data and 

computational fluid dynamics. The RNN model was embedded within an optimization formulation 

to investigate the optimal operation of a gasifier under key operational constraints. The results 

from these optimization studies illustrate the benefits of the RNN, which were able to identify 

optimal time-dependent profiles in key input variables that improve the efficiency and availability 

of the gasifier under load-following and co-firing. Most of the results of this chapter has been 

submitted for publication to Fuel.75 

 

4.1 Introduction of dynamic ROM 

The dynamic behavior of an IGCC gasifier can become computationally expensive to simulate 

using CFD;32 hence, one-dimensional reduced order models (ROMs) are most commonly used 

to simulate the transient operation of these units. ROMs have been developed to provide detailed 

gasifier performance data as a function of key inputs to this system, such as the feed composition 

and the inlet reactor flow patterns. The present work considers a dynamic ROM previously 

presented by Sahraei et al. that considered the gasifier as a reactor network consisting of two 

continuous stirred-tank reactors (CSTRs) and three plug-flow reactor (PFRs), which aim to 

capture the gasifier’s laminar and mixing flow structures.24,12 That ROM was used to simulate a 
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pilot entrained-flow IGCC gasifier owned by CanmetENERGY, Natural Resources Canada; this 

system is presented in Figure 2.24 The dynamic ROM reactor network decomposes the pilot 

entrained flow gasifier into three types of zones referred to as the jet expansion zone (JEZ), the 

external recirculation zone (ERZ), and the down-stream zone (DSZ), as illustrated in Figure 5. In 

this model, the JEZs and DSZ are modeled using PFRs, whereas CSTRs are used to model the 

ERZs. More details about the description of the gasifier, its configuration parameters and the 

reactor network flow pattern can be found elsewhere.24,12 In order to estimate the velocity profiles, 

species compositions and temperature profiles of the multi-phase flow inside the pilot-scale 

gasifier, the ROM solves the mass, energy, and momentum balance equations for the gas, liquid 

and solid phases within each zone inside the gasifier. A full list of these equations for the present 

dynamic model are listed in Table 10. The key input parameters of the dynamic ROM are the inlet 

flow rate of the fuel, steam, oxygen, nitrogen, and limestone (CaO), as well as the percent 

composition of ash, volatiles, and moisture within the fuel. A more detailed description of the inlet 

flow rate for different feedstocks and the reactor network flow patterns is presented elsewhere.12 
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Table 10. Mathematical model of the multi-phase flow in the dynamic ROM24 

 

 

Note that in the dynamic gasifier system modeled using the ROM, the fuel type could change over 

the course of the operation and thus the composition of the fuel can vary significantly over time. 

Also, the variability in the fuel’s ash composition can significantly affect the gasifier’s availability, 
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since the ash is formed and melted inside the gasifier at high operating temperatures. Most of the 

ash deposits on the gasifier’s wall and leaves the gasifier as a form of slag that may cause 

clogging within the unit.24,76 Consequently, limestone is added to the gasification unit as a fluxant 

to reduce the viscosity of the slag and to avoid blockage within the entrained flow gasifier. 

Therefore, a minimum CaO mass of 21% with respect to the fuel fed into the gasifier is required 

to maintain a lower slag viscosity and prevent slag blockage.24 The present work considers two 

types of fuel to be fed into the gasifier unit: Alberta petroleum coke and Genesee coal. Molar 

compositions for each type of fuel are shown in Table 11. 

 

Table 11. Fuel composition 

 Alberta petroleum coke (%) Genesee coal (%) 

ash 0.046 0.247 

volatiles 0.127 0.269 

moisture 0.005 0.061 

carbon 0.822 0.423 

 

 

The performance of a gasifier can be described by the conversion of its reactants, the 

concentration of its desired products at the gasifier’s outlet and the temperature distribution 

throughout the unit.25 In addition, the viscosity and thickness of the deposited ash slag are two 

additional essential system parameters that can be used to characterize the dynamic performance 

of the gasification unit. At the reactor outlet, critical system parameters such as the carbon 

conversion and the molar fraction of key gasifier syngas products (i.e., CO and H2) provide 

important measurements that indicate the performance of the gasification unit and its ability to 

convert the solid input fuel into a more-desirable syngas. Another significant observable of the 

gasification system is the internal temperature distribution within the reactor, i.e., the reactor’s 
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peak temperature and the temperature measured with the thermocouples located inside the 

gasifier. The peak temperature of gasifier is of particular importance as it is critically necessary to 

guarantee that the reactor temperature will at no point increase beyond the maximum temperature 

that the gasifier’s refractory wall layer can bear.77 As shown in Figure 2, the temperature is 

monitored at key locations along the unit corresponding to the locations of thermocouples within 

an actual gasifier unit. Furthermore, the gasifier performance within a dynamic IGCC plant is 

significantly affected by the viscosity and thickness of the slag formed by the deposited molten 

ash, since the slag collected along the wall of gasifier may lead to blockage near the outlet of the 

unit if the viscosity and thickness of slag are high.76 These output parameters are the dominant 

factors playing an important role for the ash particles to stick inside the gasification unit, and thus 

they have a significant influence on the gasifier’s availability.  

In dynamic gasification systems, the inlet flowrates and fuel composition can change over time 

depending on the nature of the IGCC power plant, the requested power demands and potential 

disturbances that may affect the unit during operation.24 There are two primary scenarios typically 

considered in IGCC power production: load-following and co-firing. In the first, the power 

generation can be adjusted during operation by manipulating the fuel loading according to the 

electricity demands as well as the power supply from alternate energy sources.78 For the co-firing 

scenario, power plants often burn different type of fuels (i.e., coals) to maintain continuous 

operation and improve the availability of the fuel and the efficiency of the unit. In this work, the 

dynamic the performance of the pilot entrained-flow gasifier is analyzed under the conditions that 

are likely to occur during operation, i.e., co-firing and load-following. 

Table 12 presents the operational conditions considered in this study for the gasification unit. As 

shown in this table, the gasifier can operate between a near full capacity and a minimum partial 

load capacity, which is restricted to 70% of the plant’s full capacity, due to the high operating cost 

of IGCC power plant. The changes in the operating conditions of this pilot entrained flow gasifier 
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are implemented via a reduction of the load from the peak load condition to a minimal partial load 

with a ramp rate of 5% per min and increasing it back to the peak value at a ramp rate of 3.3% 

per min. During these changes in fuel load, the ratios of oxygen/fuel and steam/fuel are 

maintained to avoid the temperature exceeding the thermal constraint of the refractory wall. Note 

that the ramping rate in the feed flowrate of the fuel is restricted to a maximum ramp of 5% per 

min as the changes in the operating conditions may limit the life span of the refractory of the 

gasifier. Also, the ramping up process is typically slower than ramping down due to the nature of 

gasification process and gas turbine flexibility.78 Moreover, limestone/ash weight ratio remains 

fixed at 21% to keep the viscosity of the slag less than 25 Pa s and thus avoid clogging near the 

outlet of the gasifier reactor. In most of the coal gasification units, the viscosity of coal 

exponentially decreases with an increase in temperature and the slag with viscosity below 25 Pa 

s flows down the gasifier walls and is discharged through the tapping device.79 To perform co-

firing while at full fuel-load capacity, the feedstock was linearly changed (3.33% per min) from 

Alberta petroleum coke feed to a 60:40 blended feed of petroleum coke and Genesee coal. Note 

that the oxygen/fuel and steam/fuel ratios were also maintained constant during co-firing to avoid 

any damage to the refractory brick layer due to changes in temperature. Both load-following and 

co-firing have been used in the present analysis for the identification of the RNN model for this 

unit, which is described next.  

 

Table 12. Operating condition of the pilot-scale gasifier in IGCC  

 Full capacity Minimum partial load        

(70% capacity) 

Fuel (kg/h)  41.2 28.84 

Oxygen (kg/h)  37.2 26.04 

Steam (kg/h)  10.7 7.49 
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4.2 Development of recurrent neural network model 

Recurrent neural networks (RNN) are a class of artificial neural networks that feed the outputs of 

the system neurons back to themselves, to other adjacent neurons, or to neurons within preceding 

network layers. The most relevant property of RNN is that they manifest highly nonlinear transient 

behavior and return the outputs as feedbacks to the input layer in a time sequence; this makes 

RNNs a helpful tool to model the nonlinear relation between the input and output parameters of 

complex dynamic systems such as a gasification unit.80 Although traditional black box models are 

available to perform identification for dynamic systems, e.g., ARX or ARMAX, they are still linear 

models. In the case of an RNN model, their model structure contains nonlinear activation functions 

inside each neuron of the hidden layers, which makes them efficient and sufficient to capture the 

transient performance of highly nonlinear systems. Consequently, this work considers a recurrent 

neural network architecture to predict the key outputs of the gasification unit (i.e., the carbon 

conversion, syngas composition, temperature profile and ash slag properties) for a given set of 

inlet gas flowrates and fuel compositions. As shown in Figure 11, the gasifier’s RNN model was 

developed as a network of sub-RNNs such that each sub-RNN predicts the performance of each 

output parameter individually as a function of the input parameters at the current time as well as 

the output parameter values at previous time steps.  
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Figure 11. Brief structure of recurrent neural network model for all key outputs 

 

All input parameters and output parameters used for the identification of the RNNs model are 

listed in Table 13. As depicted in Figure 12, each sub-RNN consists of a shallow, two-layer 

structure comprised of a hidden layer with a tan-sigmoid transfer function and an output layer with 

a linear transfer function. In the output layer, the output is connected back to the input layer as 

the feedback. The complete RNN gasifier model was trained using data derived from the dynamic 

ROM. The following sections describe the design, training and optimization of the RNN model 

considered in this study. 
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Table 13. Input and output parameters for the gasifier 

Input parameters (P’) 
 

Nominal 

conditions 
(&óòô) 

Initial 

conditions 
(&öõ) 

Lower bound 
(&EHI) 

Upper bound 
(&EFG) 

P’1: Fuel flowrate (kg/h) 41.2 41.2 28.84 43.26 

P’2: O2 flowrate (kg/h) 37.2 37.2 26.04 39.06 

P’3: N2 flowrate (kg/h) 12.1 12.1 11.0 12.1 

P’4: Steam flowrate (kg/h) 10.7 10.7 7.49 11.235 

P’5: Limestone (CaO) flowrate (kg/h) 0.416 0.416 0.34 4.56 

P’6: Mass fraction of ash in fuel  0.046 0.046 0.046 0.1026  

P’7: Mass fraction of volatiles in fuel  0.127 0.127 0.127 0.1397 

P’8: Mass fraction of moisture in fuel  0.005 0.005 0.005 0.0201 

Output parameters (T) 
 

 
Output values at nominal condition 

T1: Conversion  
 0.9134 

T2: Outlet CO composition 
 0.5135 

T3: Outlet H2 composition 
 0.2176 

T4: Peak temperature (K) 
 2663.1 

T5: Temperature: Thermocouple 1 (K) 
 1911.4 

T6: Temperature: Thermocouple 2 (K)  
 1786.4 

T7: Temperature: Thermocouple 3 (K) 
 1672.6 

T8: Temperature: Thermocouple 4 (K) 
 1609.0 

T9: Maximum refractory temperature (K) 
 1911.4 

T10: Refractory temperature at outlet (K) 
 1609.0 

T11: Slag viscosity (Pa s) 
 12.3 

T12: Slag thickness (mm) 
 1.055 
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Figure 12. Detailed structure of a sub-network for one key output 

 

4.2.1 Overview of recurrent neural networks 

In a recurrent neural network architecture, the dynamics of a system can be estimated by treating 

the predicted model outputs and the process inputs at previous sampling instances as input data 

for the current network predictions.81 That is, the inputs to the network for a dynamic process at 

a given sampling point consist of the current process inputs and predicted outputs from previous 

sampling points. As shown in Figure 13, an RNN can operate under two modes: i) open-loop 

mode, which is used during training of the network and uses the outputs from the process as 

inputs to the network at each time interval; and ii) closed-loop mode, which is implemented during 

the testing and validation stages and consists of using the output predictions coming from the 

RNN model at the current time interval as inputs to the RNN to predict the output for the next time 

interval. The latter represents the actual scheme of operation of the RNN model considered in 

this work. 
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Figure 13. Two important modes of recurrent neural network 

 

The nonlinear autoregressive network with exogenous inputs (NARX) model is a recurrent 

dynamic network with feedback connections enclosing several layers of the network which is 

commonly used in time-series modeling; thus, it is particularly suitable for nonlinear dynamic 

systems identification. In this auto-regressive scheme, the system output at a time step ö is 

modelled as a nonlinear mapping of the previous values of the system inputs and outputs, in 

addition to the current input parameter values, i.e.,  

ú(ù) = û {	ü(ù), ü(ù − 1), …	, ü(ù − °¢), ú(ù − 1), ú(ù − 2), …	, úkù − °£q~          (7) 

where the next value of the dependent output signal ú(ö) is regressed on previous values of the 

output signals ú(ö − §),…  ,úkö − óúq  whereas ü(ö), ü(ö − §),…	, ü(ö − óü).  ü(ö)	 represent the 
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values of the input signals at the current time step; óü and óú are discrete time-indexes that 

denote the finite time delay of the input and output signals, respectively. û(∙) represents the 

predictor function applied to the system.  

In this work, we employed an RNN model based on the NARX architecture shown in (7), as 

depicted in Figure 14. The terms ¶	, ß§and ß® in Figure 14 represent the dimensions of the inputs, 

weights and bias matrices in the hidden and output layers, respectively. The complete RNN model 

can be described as follows: 

©(ù) = ™̂ (´^(™#(´#∅(ù) + ≠#)) + ≠^               (8) 

where Æ§	represents the nonlinear activation sigmoid function in the hidden layer, Æ®	represents 

the linear function in the output layer; similarly, ´§	and ´® represent the matrices of network 

weights connecting the input layer to the hidden layer and the hidden layer to the output layer, 

respectively. Note that the weighting matrices ´§  and ´®  have dimensions ß§x¶ and ß®xß§ , 

respectively. In addition, ≠§	 and ≠®	 represent the bias terms for the functions Æ§  and Æ® , 

respectively. The function ∅(ö) is represented as follows: 

∅(ù) = Øü(ù), ü(ù − 1), …	, ü(ù − °¢), ú(ù − 1), ú(ù − 2), …	, úkù − °£q∞                 (9) 

The RNN training is the process of finding the weights and the biases of the network, i.e., ´§, 

´®, ≠§	and ≠®, such that the underlying training model captures the nonlinear dynamic behavior 

of the actual system. That is, the objective of the training process is to minimize a loss function 

often represented as the sum of the mean squared errors (MSE), i.e.,  

MSE = #
≥
¥ (ú(ù) 	−	úµ(ù))^≥

∂∑#                                                             (10) 

where úµ and ú represent the target data and the output prediction of the RNN model at time t. In 

this study, the loss function is minimized using the Levenberg-Marquardt algorithm via feeding 
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the data set (i.e., the training data set). In order to avoid overfitting in the RNN model, it is 

necessary to analyze the RNN performance during training in order to prevent the network from 

simply memorizing the training data. An early stopping method was employed in this work for the 

RNN training algorithm, which sub-divided the input-output dataset into three parts: the training 

set, the validation set, and the testing set. The training set is used to optimize the weights of each 

neuron so as to minimize the errors between ∏(π) and úµ(π) as shown in equation (10). After each 

epoch of training, the network is fed with the input data from the validation set and used to predict 

the network output under these conditions. This process continues until the validation error is 

either sufficiently small or it does not significantly change after a certain number of successive 

epochs. Once the training has been completed, the testing dataset is used to validate the 

performance of the RNN model. If the testing error obtained from this process is insufficiently 

small, then the input-output data is redistributed between three datasets and the network is re-

trained until the errors fall below a user-defined criterion. 

 

Figure 14. RNN model based on the NARX architecture 
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4.2.2 Input and output training data 

Table 13 shows the key input parameters (P’) that affect the gasifier’s transient performance. The 

flowrate of the fuel (P’1), oxygen (P’2), nitrogen (P’3) and steam (P’4) have been restricted to the 

upper and lower bounds shown in this table. These bounds match with the operating conditions 

at which the dynamic ROM was developed, as well as the experimental tests on the pilot 

entrained-flow gasifier used to validate the ROM. Note that the lower and upper bounds of fuel 

composition parameters (i.e., P’6, P’7, & P’8 in Table 13) were defined based on the two types of 

fuels used in this study, i.e., Alberta petroleum coke and Genesee coal. Table 13 also lists the 

output parameters (T) as well as their corresponding minimum and maximum values over which 

the RNN model was trained. More information about each of these input and output parameters 

can be found in Section 4.1. Similar to the input parameters P’, the range of values for each T 

was determined based on the range of allowable values used in the development of the dynamic 

ROM and the experimental tests on the pilot-scale gasifier that were used to validate the ROM.  

As described in Section 4.1, the load-following and co-firing scenarios were used in the present 

study to analyze the gasifier’s dynamic performance within the range of operating conditions 

considered for that unit. An overview of the identification test used to identify the RNN is illustrated 

in Figure 15. For this study, cycles consisting of a combination of co-firing and load-following were 

run continuously until a sufficiently large number of cycles that are acceptable for systems 

identification was reached. Each cycle includes two regions for load-following. On each of these 

regions, the fuel load is changed using ramps until it reaches the targeted load set-point. After 

each ramp test in the load-following, two cycles of co-firing are performed. During co-firing, the 

composition of the fuel is changed in a ramp fashion until it reaches a specified target (i.e., a ratio 

between the types of fuels considered in this work). As shown in Figure 15, the fuel load is initially 

set at the full capacity using petroleum coke as the fuel (i.e., r1 in Figure 15). Then, load-following 

is performed (r2 in Figure 15); in this region, the plant’s fuel load of pet-coke is gradually modified 
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such that it decreases to a pre-set partial load at a ramp rate of 5% per minute. Co-firing is 

performed next (i.e., r3 in Figure 15), the fuel load is maintained at the pre-set partial load 

condition (i.e., constant fuel loading), the feedstock is linearly changed in a ramp fashion from a 

pure petroleum coke feed to a blended feed of petroleum coke and coal, as shown at the bottom 

of Figure 15. In region 4 (r4 in Figure 15), the plant’s fuel load of mixture feed is gradually increase 

back to a pre-set high fuel load in a ramp fashion at a rate of 3.3% per minute. When the feed 

load reaches region 5 (r5 in Figure 15), the fuel load is kept at the pre-set partial load (constant 

loading) condition whereas the feedstock is ramped back from the blended feed of petroleum 

coke and coal to the pure petroleum coke (i.e., co-firing). This cycle is repeated multiple times 

until sufficiently enough data has been gathered from the dynamic ROM to perform the 

identification of the RNN model. Note that the fuel composition is maintained at a particular value 

during load-following cycles, whereas the fuel loading is maintained during the co-firing cycles, 

as shown in Figure 15. For each cycle, the partial fuel load is set to a random uniformly-selected 

value between 70% and 100% of the peak fuel flow rate under load-following conditions. Likewise, 

the ratio of the blended feed under co-firing conditions is randomly selected from a uniform 

distribution between a 100:0 ratio (i.e., pure petroleum coke) and a 60:40 ratio of petroleum coke 

to coal. As shown in Figure 15, the oxygen to fuel and steam to fuel ratios remained constant to 

prevent the peak system temperature from exceeding the thermal constraint of the gasifier 

refractory wall layer. Moreover, during each cycle, the CaO/ash weight ratio is maintained at a 

randomly-generated value chosen from a uniform distribution between 15% and 25%. This range 

of values was selected since it reflects the range of values at which dynamic ROM was developed 

(i.e., the nominal value of CaO/ash is 21%).  
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Figure 15. An overview of the identification test 

A set of 40,000 data points involving 50 cycles were collected from the ROM to train the RNN. 

Each data point contains information of the input variables (P’) and the corresponding outputs (T) 

at each time interval, which was set 10 seconds. The purpose of generating such a large dataset 

was to ensure that the RNN model would have sufficiently enough information to capture the 

transient characteristics of the gasification unit that are likely to occur during operation. The data 

was divided into three datasets: 35 cycles for training dataset, 10 cycles for validation dataset, 5 

cycles for testing.  
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4.2.3 Recurrent neural network structure 

The aim of this section is to perform optimization on the number of hidden layer neurons for each 

of the 12 sub-RNNs developed in this work to predict the dynamics between each of the inputs 

and outputs considered in the gasifier unit. Each sub-network was developed using the two-layer 

architecture described previously. As indicated above, the Levenberg-Marquardt algorithm was 

employed to train the RNN. To optimize the structure of RNNs model, each sub-network was 

initialized with a hidden layer containing only one single neuron, and the sub-networks were 

trained to predict each of the outputs listed in Table 13 as a function of all the input variables. 

Consequently, the number of neurons in each hidden layer was incremented by one for each 

identification run and the networks were re-trained using the same identification data. The mean 

squared errors (MSE) were calculated as shown in equation (10) for the validation and testing 

tests using the data for each network. This process was repeated until overfitting was detected, 

i.e., when the sub-network’s validation error decreased but its testing error increased; at this point, 

the optimization process was terminated. This procedure was repeated for each sub-network 

considered in the RNN. Identification of the RNN model was performed using the Neural Network 

Toolbox available in Matlab 2017. 

The performance of the structures considered for each of the RNN developed in this work are 

shown in Table 14. As shown in this table, the mean percentage error obtained for each output 

(T) during the validation test is less than 5%; also, the maximum percentage errors between the 

predictions obtained by the RNN and the target output generated by ROM for the test and 

validation sets in the training process are sufficiently low, i.e., below 8.5%. Note that the maximum 

percentage error between the test and validation sets are similar to each other for each output 

parameter, which is an indication that there is no overfitting on each sub-RNN model.  
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Table 14. Results from the RNN identification 

Output parameters 
No. of 

neurons 

Mean percentage error Maximum percentage error 

test validation test validation 

Conversion (T1) 5 0.98% 0.99% 1.53% 1.51% 

CO composition (T2) 4 0.62% 0.72% 1.78% 1.71% 

H2 composition (T3) 3 0.68% 0.70% 0.86% 0.82% 

Peak temperature (T4) 5 0.30% 0.48% 1.33% 1.02% 

Thermocouple 1 (T5) 6 0.60% 0.61% 4.08% 3.65% 

Thermocouple 2 (T6) 6 0.44% 0.50% 2.92% 2.58% 

Thermocouple 3 (T7) 6 0.58% 0.61% 1.62% 1.22% 

Thermocouple 4 (T8) 6 0.48% 0.65% 1.66% 1.21% 

Maximum refractory 

temperature (T9) 

6 0.51% 0.87% 4.03% 3.57% 

Refractory temperature at 

outlet (T10) 

6 0.68% 0.71% 1.61% 1.23% 

Slag viscosity (T11) 5 2.54% 2.26% 5.63% 5.54% 

Slag thickness (T12) 8 2.84% 4.41% 7.97% 8.21% 

 

 

4.2.4 RNN Model Performance 

The aim of this section is to compare the performance of the RNN described in Section 4.2.3 to 

fresh new data that was not used during the identification of the RNN model. Hence, the RNN’s 

performance was compared with the predictions obtained from the ROM, which was previously 

validated using experimental data and CFD simulations. The dataset used for this comparison 

was obtained by simulating the ROM for 110 h; these data were generated using the same bounds 

on the input parameters P for the training dataset of 40,000 points (50 cycles) considered in the 

identification test. A set of 8,000 new fresh data points were recorded from the dynamic ROM to 

perform this comparison. Note that this dataset is different from data set used during the 

identification of the RNN model. Figure. 16 and Figure. 17 present typical load-following and co-
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firing scenarios, respectively, which were used to evaluate the performance of the RNN. As shown 

in Figure. 16, the profile of each output determined by the dynamic ROM agree with those 

predicted by each of the RNN sub-networks. The most significant deviations are observed for the 

slag thickness. In this case, the dynamic response of the slag thickness shown in Figure. 16 

illustrates that when fuel load starts to decrease at around 5 min, slag viscosity starts to increase 

due to the reduction of refractory temperature at the outlet, which leads to an increase of the slag 

thickness at the outlet of the gasifier. In Figure. 17 (co-firing scenario), the slag thickness starts 

to increase at around 15 mins from 0.0012 m to 0.0018 m since coal is added into the fuel at time 

10 mins and coal has a higher ash content, which leads to an increase in the slag thickness. Both 

responses in slag thickness follow the behavior observed from the dynamic ROM for this variable. 

 

 

 

Figure 16. Identification results for load-following 
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Figure 17. Identification results for co-firing 

To further compare the performance of the proposed RNN model, an additional set of data 

involving 5 cycles like those described in Figure.15 were considered. This comparison is 

illustrated in Figure.18, which shows that the RNN is able to adequately capture the behavior of 

the gasifier unit during load-following followed by co-firing. With regards to the computational 

costs, the dynamic ROM and the RNN required on average 11,796 s (196.6 mins) and 0.28 s of 

CPU time for the load-following scenario and 4,475 s (74.58 mins) and 0.18 s of CPU time for co-

firing scenario, respectively (Intel® Core™ i7-4770 CPU @ 3.40Hz, 3392 Mhz, 4 Core(s), 8 

Logical Processor(s)). This difference in computational times illustrates that the RNN is able to 

predict the transient behavior of the gasifier approximately five orders of magnitude faster than 

the dynamic ROM. This demonstrates that the RNN is able to capture the overall behavior of the 

gasifier unit using shorter CPU times than those required by the dynamic ROM. Therefore, the 

RNN developed in this work can be used to perform optimization studies. 
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Figure 18. Identification results for combination of load-following and co-firing 

4.3 Optimization: Load-following scenario 

To meet the targets for seasonal and sudden changes in electricity demands, IGCC plants are 

required to have high flexibility to change the feed flowrate when this technology is combined with 

other alternative energy sources.24 One of the metrics used to evaluate the performance of a 

gasification unit in an IGCC plant is the composition of the syngas at the outlet, e.g. CO. As a 

result, it is crucial to manufacture IGCCs that meet specific product composition requirements in 

order to maximize gasifier performance.73,21 Note that the peak temperature of the gasifier reactor 

should be maintained below a threshold to avoid damaging the refractory wall due to the high 

temperature. Similarly, the slag thickness should also be maintained within an acceptable limit to 

avoid slag blockage at the bottom of the gasification unit.  

Based on the above, the aim of this case study is to seek for the time-dependent profile in the fuel 

flowrate using two different objective functions (OFj). The first objective (OF1) aims to maximize 
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the mean value of composition of CO at the reactor outlet whereas the second objective (OF2) 

aims to minimize sum squared errors between the composition of CO and a pre-specified target 

set-up point of CO at each time interval. The optimization problem under consideration can be 

formulated as follows: 

max
ëj0(∂6),	ëjª(∂6)

	ºΩæ                                      (11) 

Subject to:  

ø==	>?@AB  

					ùH = ¿∆ù;	∀¿ = 0, 1, 2,⋯ , ° 

				P′#(ù«) = 	P#∂« 

"C	(-′(ùH)) ≤ "C,EFG  

"#^	(-′(ùH)) ≤ "#^,EFG  

-EHI ≤ 	-′(ùH) ≤ -EFG  

where OFj are defined as follows: 

																																																												ºΩ# =
#
I
∑ "̂ k-′(ùH)qI
H∑# 																																																													(12) 

																																																												ºΩ̂ = 	∑ ("̂ k-′(ùH)q − T̂∗)I
H∑# 																																																	(13) 

where ùH	represents the time points at which the outputs are predicted from the RNN; ° is the 

number of time points, ∆ù is the length of the sampling interval; -EHI and -EFG represent the lower 

and the upper bounds for the input parameters -′, which are listed in Table 13. As shown in Table 

13, P#∂« is the initial operating condition of the fuel flowrate whereas "C,EFG and "#^,EFG denote the 

maximum allowable temperature that the refractory wall can bear and the maximum allowable 

thickness that avoids the blockage at the bottom of gasifier, respectively. "̂∗ in (13) represents 

the pre-specified target set-up point for CO. The above optimization formulation was solved under 

three different temperature constraints, i.e., "C,EFG was set to 2,800K, 2,700K, and 2,600K. The 
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latter was performed to obtain insight on the sensitivity of the peak temperature constraint on the 

optimal solution. The maximum slag thickness ("#^,EFG) was set to 1.28 mm. As shown in problem 

(11), the RNN gasification model is used to predict the CO composition ("̂ ), peak temperature 

("C) and slag thickness at the outlet of gasifier ("#^) at each time instant by adjusting the fuel 

flowrate (a′#) and limestone (CaO) flowrate (a′ ), which are the optimization variables considered 

for this case study. Note that P′  is a fluxant used to control the slag thickness inside the gasifier. 

The above optimization problem was implemented in Matlab 2017 and solved using the interior 

point algorithm available through the built-in function fmincon. Control vector parameterization 

was used to solve the nonlinear dynamic optimization problem shown in (11). 

Table 15 presents the results obtained when OF1 is maximized using three different peak 

temperature limits. As shown in Table 15, the composition of CO increased slightly from 0.5319 

to 0.5357 when "C,EFG was changed from 2,600 K to 2,800 K, respectively. As illustrated in Figure 

19, when the maximum allowed temperature is relaxed from 2,600K to 2,800K, the time-

dependent profiles for the fuel flowrate increase and reach a high fuel load condition. Note that 

the changes in the flue flowrate are non-trivial and follow different profiles thus illustrating the 

benefits of performing optimization for this process. These results also show that there exists a 

nonlinear correlation between the fuel load and the maximum allowed peak temperature within 

the gasifier. Moreover, the flowrate of CaO also increased in a nonlinear fashion from 2.7059 kg/h 

to 3.1946 kg/h when "C,EFG was increased from 2,600K to 2,800K, as shown in Figure.19. The 

results obtained for the fuel and CaO flowrates are reasonable since an increase in the fuel 

flowrate would cause a higher thickness of slag at the outlet of gasifier; thus, a higher CaO 

flowrate (fluxant) is needed for inlet of gasifier to avoid the blockage inside the gasifier. The 

maximum slag thickness remained below 1.28 mm (i.e., within the limitation of slag thickness) for 

the three peak temperature constraints considered in this study. 
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Table 15. CO composition optimization (OF1) results for load-following scenario 

 "C,EFG = 2,800Ã "C,EFG = 2,700Ã "C,EFG = 2,600Ã 

Mean value of 

CO composition  
0.5357 0.5347 0.5319 

Max peak 

temperature (K) 
2,744 2,695 2,596 

Max slag 

thickness (mm) 
1.28 1.275 1.274 

 

 

 

 

Figure 19. Optimization results for load-following scenario (OF1) 

 

 



 

 

74 

Figure. 20 shows the results of solving problem (11) using OF2 shown in equation (13), i.e., 

minimization of the sum of the squared errors. As shown in this figure, problem (11) was solved 

using three pre-specified set-points for the CO composition, i.e., T2* in equation (13) was set to 

0.536, 0.534, and 0.532, respectively. To simplify the analysis, the maximum allowable 

temperature ÕŒ,ôœ– was fixed at 2,700 K for this optimization case study whereas the maximum 

slag thickness was set to 1.28 mm. As shown in Figure. 20, the fuel flowrate profiles increase and 

reach a higher value when the pre-specified set-up point (i.e., T2* in (13)) was increased from 

0.532 to 0.536; accordingly, the maximum peak temperature inside the gasifier increased from 

2,584 K to 2,695 K, respectively. In OF2 optimization, the CO composition slightly increases from 

case 1 to case 3; however, the value of fuel flowrate and peak temperature increase in a much 

larger scale. These result shows that both fuel flowrate and peak temperature are sensitive to the 

CO composition at the outlet of the gasifier and a relatively small difference in CO composition 

may lead to large changes on fuel flowrate and peak temperature. These results also show that 

there is a nonlinear relationship between fuel flowrate and CO composition, i.e. both the fuel 

flowrate and peak temperature exhibit non-trivial profiles that can only be obtained from 

optimization. The maximum slag thickness at the outlet of the gasifier increased slightly from 

1.2749 mm to 1.2782 mm when the target set-up point of CO was changed from 0.532 to 0.536, 

respectively. Therefore, a higher CaO flowrate was needed to maintain the slag thickness within 

its corresponding limit. With regards to the computational costs, the average CPU time needed to 

solve the optimization problems for the load-following scenarios discussed above was 68 s (Intel® 

Core™ i7-4770 CPU @ 3.40Hz, 3392 Mhz, 4 Core(s), 8 Logical Processor(s)), which is a 

sufficiently low compared to the CPU time needed to simulate a single operating condition using 

the dynamic ROM. 
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Figure 20. Optimization results for load-following scenario (OF2) 

 

 

 

4.4 Optimization: Co-firing scenario 

IGCC power plants need to have flexibility to operate using different type of fuels.24 Co-firing can 

increase the availability of the fuel and be used to reduce the costs of the plant and their footprint 

to the environment. In this co-firing scenario, the performance of the gasifier is assessed using 

the mean value of carbon conversion (T1). Consequently, we aim to find the optimal fuel flowrate 

(P′#), ratio of coal to pet-coke (θ), which represents the ratio of the blending fuel at the end of co-

firing process, and the limestone flowrate (P′ ) that maximizes the mean value of carbon 

conversion. This optimization problem can be formulated is as follows: 
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max
ëj0(∂6),“,ëjª(∂6)

#
I
	∑ "#(-′(ùH))I

H∑# 	              (14) 

Subject to:  

ø==	>?@AB  

				ùH = ¿∆ù;	∀¿ = 0, 1, 2,⋯ , ° 

"C	(-′(ùH)) ≤ "C,EFG  

"#^	(-′(ùH)) ≤ "#^,EFG  

-EHI ≤ 	-′(ùH) ≤ -EFG  

θEHI ≤ 	θ ≤ θEFG  

where "C,EFG , "#^,EFG  were set to 2,700 K and 1.28 mm, respectively. During the co-firing 

scenario, the fuel type changes from pure pet-coke to a mixture of pet-coke and coal; therefore, 

upper and lower bounds for θ were set to 0 (pure pet-coke) and θEFG, which is the maximum ratio 

of coal to pet-coke that can be accomplished with the dynamic ROM. The rest of the parameters 

in the co-firing optimization problem (14) remained the same as in the load-following scenario 

described above. Also, the optimization problem (14) was solved using the same optimization 

procedure used to solve problem (11). 

With the aim to obtain an insight on the effect of the ratio of the blending fuel on the mean value 

of carbon conversion, problem (14) was solved using different θEFG values, i.e., 0.3, 0.4, 0.5 and 

0.6. Figure.21 illustrates the changes in the fuel composition and CaO flowrate. As shown in Table 

16, when θEFG  increased from 0.3 to 0.6, the average carbon conversion during co-firing 

increased from 94.89% to 96.81%. Thus, increasing the ratio of coal to pet-coke can lead to an 

increase in mean carbon conversion during co-firing. This is expected since coal has less fixed 

carbon and more volatiles than petroleum coke. Meanwhile, a higher limestone flowrate is needed 

when the coal to pet-coke ratio (θ) is increased. This is mostly because coal has higher ash 

composition than petroleum coke; thus, a larger CaO flowrate is needed to avoid the growth of 
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the slag thickness inside the gasifier’s walls. The RNN-based optimization problem required on 

average 115 s of CPU time for the co-firing optimization scenarios considered in this study. This 

makes the RNN model highly attractive to perform complex studies involving the optimal operation 

of large-scale gasification systems. 

 

Table 16. Carbon conversion optimization results for co-firing scenario 

 Different maximum coal to pet-coke ratio (θEFG) 

θEFG 0.3 0.4 0.5  0.6 

Mean value of carbon 

conversion 
0.9489 0.9559 0.9588 0.9681 

Fuel flowrate (kg/h) 30.0117 30.2671 30.2036 30.2899 

CaO flowrate (kg/h) 4.2537 4.3434 4.4953 4.7422 

Coal to pet-coke ratio (θ) 0.2999 0.3972 0.4950 0.5959 

 

 

Figure 21. Optimization results for co-firing scenario 

 

4.5 Summary 

This chapter presented a systematic approach to build a recurrent neural network (RNN) that is 

able to predict the dynamic behavior of a pilot-scale entrained flow gasifier. The RNN was trained 
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by a series of input/output data generated using a new identification method that combines two 

of the most common transient scenarios that occur in operation. The performance of the RNN 

was validated using the dynamic ROM model and it was shown to be highly predictive of the 

transient operation of the gasifier at significantly lower computational costs. The RNN was then 

used to seek for the optimal time-dependent profiles in key inputs under two scenarios often found 

in the operation of IGCC plants, i.e., load-following and co-firing. Results from the optimization 

studies showed that, for the load-following scenario, increasing the maximum allowed peak 

temperature inside the reactor can lead to higher CO compositions at the outlet of the gasifier. 

Also, results from the co-firing scenario showed that an increase on the coal to pet-coke ratio can 

promote a higher carbon conversion inside the gasifier.  
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Chapter 5 

Conclusions and recommendations 

5.1 Conclusions 

The objective of this thesis was to illustrate the potential application of artificial neural networks 

to describe the complex and highly nonlinear behaviour of entrained-flow gasification units. As it 

was presented in this thesis, the ANN and RNN designed in this study were able to obtain 

reasonable accurate predictions for the gasification unit and were in reasonable agreement with 

to the results generated by a gasifier’s ROM model at a much lower computational cost. The main 

conclusions obtained from this work are described next. 

In order to predict the important outputs of a gasification unit in IGCC plant, an artificial neural 

network model was presented. This ANN model consisted of eight sub-networks; the number of 

neurons in the hidden layer for each neural network were determined by minimizing the error 

between actual output and the target output. In addition, tests were performed by comparing eight 

different training algorithms; the Levenberg-Marquardt training algorithm was selected due to its 

high efficiency and reliability. The resulting ANN was able to accurately predict the gasifier outputs 

at significantly lower computational costs comparing to ROM. The difference between ANN and 

ROM in terms of computational costs illustrates that the ANN is approximately 1.6 ´ 105 times 

faster than the ROM model. The validated ANN was used to perform two different optimization 

studies on the pilot-scale gasification unit. From the optimization study involving the maximization 

of carbon conversion, the results showed that relaxing the peak temperature constraint improve 

carbon conversion. In the multi-objective optimization study, the utopia point approach illustrated 

that it is very unlikely to improve H2 production significantly without reducing the carbon 

conversion within the gasifier. The results from these two optimization studies also demonstrated 

that the ANN model can be embedded within optimization formulations and provide acceptable 
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and near-optimal solutions in shorter computational times, i.e., at least four orders of magnitude 

faster when compared to a ROM-based optimization formulation.  

A recurrent neural network model was presented to predict the dynamic behavior of the pilot-scale 

entrained flow gasifier. The proposed recurrent neural network model contained twelve sub-

networks for each key output. The number of neurons in the hidden layer for each neural network 

was determined via optimization using the Levenberg-Marquardt algorithm. The performance of 

the RNN was compared to that obtained by the dynamic ROM model and it was shown to be 

highly predictive of the transient operation of the gasifier at significantly lower computational costs, 

i.e., approximately 5 orders of magnitude faster than the ROM model. From the optimization 

studies, the results for the load-following scenario showed that increasing the maximum allowed 

peak temperature inside the reactor would increase the CO composition at the outlet of the 

gasifier. Also, from the co-firing scenario, the results showed that an increase on the coal to pet-

coke ratio can promote a higher carbon conversion at the outlet of the gasifier. These optimization 

studies also showed that the efficiency of the gasification unit can be improved if optimal (non-

trivial) time-dependent profiles that satisfy key operational constraints during co-firing and load-

following can be identified using optimization techniques combined with a highly predictive and 

computationally efficient RNN gasification model.  

 

5.2 Recommendations 

The research presented in this thesis can be extended in different ways to further advance the 

development and implementation of state-of-the-art optimization, on-line monitoring and control 

strategies for gasification units. The recommendations that can be pursued as part of the future 

work in this research are as follows: 
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• In the present work, the simulation and optimization of the gasification unit was 

performed using neural networks. In the future work, the implementation of the 

low-order gasification models connected with an IGCC plant can be explored. 

Integration of the neural network models with the rest of the plant would be key 

to assess the performance the operability and controllability of the complete 

IGCC plant.  

• The previously proposed ROM model describing the complex performance of 

the gasification unit in IGCC was implemented assuming that the design was 

fixed. Recent studies have indicated the need to develop novel design and 

controls strategies that can improve the operability and performance of 

emerging systems in the energy sector.11 Hence, as part of the future work, the 

interactions between the design and operability of the gasification unit could be 

considered since they can further improve the efficiency of the gasification unit. 

Also, integration of design and control introduces the opportunity to establish a 

link between conflicting objectives of steady-state economics and dynamic 

performance at the early stages of the process design for the gasification unit, 

which enables the identification of reliable and optimal designs and provide 

additional opportunities in pursuing the ultimate goals of sustainable 

environmentally-friendly process.  

• The RNN model presented in this work was developed under the assumption 

that the gasifier operates under two of their most common scenarios, i.e., load 

following and co-firing. Nevertheless, there exists other scenarios that may be 

relevant to the operation of this unit, e.g. feed composition variability or 

oscillatory changes in the fuel flowrate, which is a common operation found 

during plant start-up or shutdown.78 In the future work, a low-order neural 
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network model that can account for a wide variety of transient operating 

conditions for the gasifier should be considered. It is expected that such model 

would be more comprehensive and realistic though it may also require a 

significant amount of effort for their development, e.g. have access to plant 

and/or simulated data that can be used to build such a network. 

• In this presented research, optimization studies involving carbon conversion as 

well as hydrogen and carbon monoxide production were performed for the 

gasification unit. To date, integrated gasification combined cycle (IGCC) is still 

a promising technology which can generate clean, affordable and secure power; 

however, coal-fed IGCC power plant has lower net plant efficiency comparing 

to natural gas combined cycle (NGCC) power plant. Therefore, in order to make 

IGCC technology more competitive, the development of an optimal design and 

operations management strategies that can take into account the rest of the 

IGCC units is proposed with the aim to increase the thermal efficiency and 

technological development of IGCC plants. 

• To date, data collection is still a problem for training acceptable neural networks 

for gasification units. In the current study, data obtained from a pilot-scale 

gasifier was used to build the corresponding neural networks. Although these 

models are quite attractive for their low computational costs, they required a 

significant amount of effort for their development. The latter worsens as the 

complexity and size of the model increases. There are limited studies in the 

literature that report information on the operation of industrial-scale gasifiers. A 

follow-up study that is suggested as part of the future work involves the 

development of inexpensive low-order models, e.g. neural networks, that can 

predict the behaviour of commercial-scale gasifiers. The development of such 
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models would be key to determine suitable operating conditions that can 

improve the efficiency of such large-scale units. 

• The results from dynamic optimization illustrate that there exists a nonlinear 

relationship between some process variables, e.g. large changes in the fuel 

flowrate are required to adjust the CO composition target by very small amounts. 

This shows that optimization is key since it can provide insight on the dynamic 

operability of this process. In the future, a model-based control scheme can be 

designed to maintain the operation of this process on target. For instance, the 

proposed controller can be formulated as a model predictive controller that can 

employ a neural network as the internal process model for the gasifier. 

• The neural networks considered in this work does not take into account the 

effects of output parameters as inputs to other neural networks. Although the 

predictability properties of the neural networks proposed in this work was 

deemed acceptable. Further improvement may be achieved if the outputs of 

some neural networks can be used as inputs to other networks. Therefore, in 

the future work, the output parameters which are predicted from sub-neural 

network models can be considered as input parameters for prediction of other 

output parameters by coupling the sub-neural network models. 
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