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Abstract

Interest in numerical modeling of permafrost has increased over the past decade due to

accelerating rates of permafrost thaw. Discontinuous permafrost regions are particularly

susceptible to climate change since small increases in mean annual temperature may lead

to significant permafrost thaw, landscape change, changes in hydrologic connectivity, and

greenhouse gas (GHG) emissions. The influence of local heterogeneities on the short- and

long-term evolution of permafrost bodies is poorly understood. In order to numerically

simulate the freeze-thaw processes in heterogenous media, a robust numerical model is

desirable to overcome potential instabilities induced by heterogeneity in soil thermal prop-

erties. Here, such a model is developed, supplemented by a careful evaluation of the impact

of heterogeneity upon the soil freezing curve, and applied to investigate the influence of

local heterogeneity upon discontinuous permafrost evolution.

Numerical models of permafrost evolution in porous media typically rely upon a smooth

continuous relation between pore ice saturation and sub-freezing temperature, rather than

the abrupt phase change that occurs in pure media. Soil scientists have known for decades

that this function, known as the soil freezing curve (SFC), is related to the soil water

characteristic curve (SWCC) for unfrozen soils due to the analogous capillary and sorptive

effects experienced during both soil freezing and drying. Herein we demonstrate that other

factors beyond the SFC-SWCC relationship can influence the potential range over which

pore water phase change occurs. In particular, we provide a theoretical extension for the

functional form of the SFC based upon the presence of spatial heterogeneity in both soil

thermal conductivity and the freezing point depression of water. We infer the functional

form of the SFC from many abrupt-interface 1-D numerical simulations of heterogeneous

systems with prescribed statistical distributions of water and soil properties. The pro-

posed SFC paradigm extension has the appealing features that it (1) is determinable from

measurable soil and water properties, (2) collapses into an abrupt phase transition for ho-

mogeneous media, (3) describes a wide range of heterogeneity within a single functional

expression, and (4) replicates the observed hysteretic behavior of freeze-thaw cycles in soils.

SFCs are used in all the permafrost models that use a continuum phase-change crite-

rion. Here, an efficient enthalpy-based continuum numerical approach is introduced for

solving heat transfer problems with non-isothermal phase change. In order to simulate

permafrost over time spans of several years, a robust and efficient model is required. In

the present setting, the heat transfer problem is converted to a minimization problem,

in which we minimize a potential function that characterizes the governing heat transfer
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PDE within a time discrete framework. The use of the trust region minimization algo-

rithm proves desirable due to the highly nonlinear energy functional which also involves

non-convex terms induced by phase change. Results obtained show satisfactory agreement

with existing analytical solutions. Moreover, the grid and timestep convergence studies

conducted to examine the dependence of the solution on mesh and timestep sizes indicate

robust convergence rates. This is the first application of trust region energy minimization

algorithm in permafrost simulation.

The two-dimensional enthalpy-based numerical model with continuum phase-change is

applied to study the effect of heterogeneity in the soil freezing point on conduction-driven

talik formation. This model is rigorously verified against Lunardini’s solution (Lunardini,

1981), which is an analytical solution of the Stefan Problem with a non-isothermal phase-

change criterion. Stochastic realizations of spatially correlated distributed soil thermal

parameter fields are generated using the geostatistical software library (GSLIB) for a vari-

ety of correlation lengths and variances in material properties. These are used as input to

the 2-D permafrost model under fully saturated conditions. The simulation results indicate

that local heterogeneities have conditional effects on the formation of unfrozen zones and,

eventually, taliks. This influence is exacerbated under the presence of advective heat trans-

fer, where small perturbations to the liquid water saturation can lead to preferential flow

conduits. This work is extended by conducting sensitivity analysis to study the relative

dependence of talik formation on different sources of heterogeneity (e.g. soil density and

boundary conditions).
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Sarah Grass, Mark Ranjram, Mahkameh Taheri, Shaghayegh Akbarpour Safsari, Leland

Scantlebury, Genevieve Brown, Dr. Hongli Liu, Hongren Shen, and Ming Han).

Moreover, I would like to thank my dearest friend Dr. Mohammadreza Hirmand for

his collaborative support through several conversations. I would also like to acknowledge

the contribution and helpful field-related advice of Élise Devoie, which led me to conduct
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1.1 Introduction

Regions exposed to subzero temperatures are highly influenced by seasonal freeze/thaw

cycles (FTCs), and nearly a quarter of the exposed land on Earth is underlain by per-

mafrost. The term ‘permafrost’ refers to soil or rock that remains below zero for at least

two full years and is usually covered by a layer of soil. This mantling layer is called the

soil active layer and is regularly exposed to freezing and thawing conditions on an annual

basis (Quinton and Baltzer, 2013). The bottom elevation of permafrost is controlled by

the geothermal gradient, average annual surface temperature, and advective heat transfer

beneath permafrost body; and the surface elevation (referred to as the permafrost table) is

limited by energy fluxes at the ground surface. The permafrost thickness is defined by the

elevation difference between the permafrost table and base. A soil profile in permafrost

regions is schematically shown as in Figure 1.1. Talik in general means unfrozen ground,

but in permafrost terminology, it refers to a zone in permafrost environment that remains

unfrozen. The hydrology and carbon balance of cold regions is strongly influenced by the

presence of permafrost in the subsurface. Since the biological processes in these regions

are highly sensitive to changes occurring in the permafrost FTCs (Belshe et al., 2012), any

change in soil FTCs will disturb the carbon balance of the permafrost region. The drastic

impacts of rapid climate change on the permafrost zones are becoming evident, as observed

in an increase in carbon release rates, emergence of thermokarst lakes (Bouchard et al.,

2017), changes in the discharge of Arctic rivers, and disappearance and shrinkage of Arctic

lakes (White et al., 2007). Soil FTCs have a very important role in many processes and

strongly influence the geo-mechanical, hydro-mechanical, and thermal properties of soil (Qi

et al., 2006; Tang and Yan, 2014; Jamshidi et al., 2015); soil stability (Oztas and Fayetor-

bay, 2003; Kemper and Rosenau, 1986); greenhouse gas (GHG) emission (Kurganova et al.,

2007); hydrology (Wang et al., 2009); and biological activity (Larsen et al., 2002; Teepe

et al., 2001). The implications of these changes are still being investigated. In particular,

the effect of local and mesoscale heterogeneity on permafrost thaw is poorly understood. It

has been observed that the degradation of the permafrost table in the Arctic and sub-Arctic

regions occurs variably in space. However, a gap exists in the literature on the impacts

of heterogeneity on the long-term and short-term evolution of permafrost bodies (Ippisch,

2001). This local heterogeneity in soil properties or surface energetics may be a major

driver of talik formation, a phenomenon that can impact landscape evolution, hydrologic

connectivity, and GHG emission. Permafrost models which specially address the presence

of spatial heterogeneity in soil and water properties may help to better understand these
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impacts.
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Figure 1.1 A schematic overview of soil profile in permafrost zones

1.2 Motivation and objectives

A proper representation of freeze/thaw processes in hydrological models is important for

understanding the factors controlling permafrost thaw and predicting the impacts of cli-

mate change. Several numerical models have been developed for simulating soil-water-ice

systems using different criteria for phase change phenomena (i.e. isothermal and non-

isothermal) with different levels of complexity for various purposes (Chessa et al., 2002;

Comini et al., 1974; Grenier et al., 2018; Painter et al., 2016). In this research, a stable

and convergent model which can study the impact of soil-water-ice system heterogeneity

on the short- and long-term evolution of permafrost bodies, formation of taliks, and lateral

thaw of permafrost was developed. Moreover, the effect of lateral (perpendicular to the

vertical cross-section) flow on talik formations has been investigated, which, to the best

of the author’s knowledge, has not been studied to this date. The previously developed

models are mostly one-dimensional and often suffer from stability issues, which signifi-

cantly constrain grid and timestep sizes; thus, here, an efficient, stable, and demonstrably

convergent 2-D model capable of handling heterogeneity is developed to study and test
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the effect of different sources of heterogeneity in soil-water-ice systems. In such statistical

study, compared to a field scale simulation, the computational cost of the simulation sets

are high due to the high volume of required stochastic realizations. This computational

cost and run time of each simulation was the main limiting factor for not extending the

model to three dimensions.

The overarching goal of this research is to study the effect of heterogeneity on the

thermal behavior of soil-water-ice systems. In particular, we attempt to better under-

stand (1) the influence of heterogeneity on upscaled soil freezing curves, (2) the impact

of heterogeneity on talik formations and evolution, and (3) the relative importance of dif-

ferent types of heterogeneity on landscape permafrost evolution. To reach this goal, an

enhanced numerically stable model is first developed and applied. This model is specifi-

cally designed to be applicable to heterogeneous media, where soil thermal and hydraulic

properties (heat capacity, thermal conductivity, freezing point, and hydraulic conductiv-

ity) may be spatially variable. Two methods where deemed to be suitable options: the

extended finite element method (XFEM), which explicitly models the frozen/unfrozen in-

terface, and continuum enthalpy approach, which solves the energy balance in terms of

enthalpy rather than temperature, and treats the freezing front as a continuum between

frozen and unfrozen. Challenges associated with the XFEM include the stability of the

method in heterogeneous media and the generation of complex interface geometries in 2-D

problems. The stability issue can be tackled by implementing and testing stabilization

methods, e.g. the Galerkin least squares (GLS) method, and complex interfaces can be

handled, in part, by simplifying assumptions. The main issue with the models which treat

phase change using a sharp interface criteria is that the criteria does not comply with the

physics of phase change in soil, in which phase change generally occurs over a narrow range

of temperatures. The enthalpy method requires a realistic freezing function; thus, a theo-

retical criterion has been developed for justifying the freezing temperature range of soils.

After verifying the models’ results against the existing analytical solutions for a simple

case (i.e. the Stefan problem), the model is applied to a number of different field-scale

problems. The developed tools and analysis of the simulation results are used to study the

effect of heterogeneity on permafrost thaw.

This thesis has the following objectives:

1. Develop and evaluate a heterogeneity-informed theoretical criterion for determining

the soil freezing function temperature range to be used in the continuum approach;

2. Develop and test a stable and robust 2-D freeze/thaw model, which supports arbitrary
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heterogeneity, using the saturated continuum approach; and

3. Deploy the developed model to study the effect of heterogeneity on permafrost thaw.

In particular, the following hypotheses are tested using the developed model:

(a) Local scale soil heterogeneity may be an important driver of talik formation and

evolution, and

(b) The spatial distribution and correlation scale of soil and radiation heterogeneity

has a non-negligible influence upon the evolution of discontinuous permafrost.

1.3 Thesis structure and statement of contribution

The work done for this doctoral research is structured in the following 5 chapters:

Chapter 2 summarizes a background of permafrost and its physics, a review on existing

permafrost models, and permafrost model.

Chapter 3 consists of a paper published in Advances in Water Resources (2018) 111:319-

328. The paper was co-authored by myself and my supervisor, Dr. James R. Craig, and

Dr. Barret L. Kurylyk, Assistant Professor in the Department of Civil and Resource

Engineering and Centre for Water Resources Studies at Dalhouse University. This paper

presents a theoretical extension for the form of soil freezing curve (SFC) based on local

spatial heterogeneity in soil. In this paper, I developed a 1-D XFEM formulation for

simulating nonlinear heat transfer with phase change in soil. I implemented the model in a

code written in Matlab for simulating different realizations of a heterogeneous soil column.

I also prepared the manuscript. Dr. Craig provided the key idea of investigating the effect

of local heterogeneity in soil on the shape of SFC. Moreover, he provided guidance through

supervising the mathematical formulations and editing the manuscript. Dr. Kurylyk

provided collaborative suggestions and guidance through editing the manuscript.

Chapter 4 includes a paper published in Computational Geosciences (2019). The paper

is co-authored by myself, my supervisor, Dr. James R. Craig, and Dr. M. Reza Hirmand,

post-doctoral fellow in the Department of Mechanical and Mechatronics Engineering at

the University of Waterloo. In this paper, a robust, stable, and convergent trust region

algorithm is presented for simulating nonlinear heat transfer with phase change using

an enthalpy formulation. I implemented the developed algorithm in a computer program

written in C++, designed and ran the test-case simulations, and wrote the manuscript. Dr.
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Craig provided supervision through the development of the mathematical formulations and

editing the manuscript. Dr. Hirmand provided collaborative support through suggesting

the implementation of a trust region scheme, developing the algorithm, and editing the

manuscript.

In Chapter 5, the effect of soil and surface heterogeneity on permafrost thaw is studied.

A sensitivity analysis is performed using Sobol’ sensitivity analysis scheme to identify the

soil parameters that permafrost thaw is the most sensitive to. Finally, the effect of an

adjacent hydrologic feature such as a channel fen on the lateral and vertical permafrost

thaw is investigated.

Chapter 6 summarizes the conclusions of the research conducted in this dissertation.
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Chapter 2

Background and literature review
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2.1 Effect of permafrost thaw

As mentioned in Section 1.1, permafrost thaw has a very important role in many processes

and strongly influences the geo-mechanical, hydro-mechanical, and thermal properties of

soil.

2.1.1 Greenhouse gas (GHG) emission

The Earth’s climate is determined by the amount of solar energy gained by its atmosphere.

GHGs play a critical role in making the Earth habitable. GHGs enable the atmosphere to

absorb reflected radiant heat and keep the Earth warm, which supports life. This effect is

called the GHG effect. One of the most important causes of climate change is an increase

in GHG release. This global warming has a significant impact on the changes in soils

freeze/thaw cycles (FTCs) and permafrost thaw, but is also a byproduct of thaw due to

carbon release. Due to decomposition of plants and microbial activity during the past

thousands years, a significant amount of nitrogen and carbon has been trapped within and

beneath the permafrost (Teepe et al., 2001; Zimov and Schuur, 2006). Carbon dioxide

(CO2) and nitrous oxide (N2O) are two of the most important GHGs, and the emission

of CO2 and N2O is increasing dramatically due to permafrost thaw. The subsequent gas

release due to permafrost thaw, therefore, accelerates the climate change in a positive

feedback loop.

2.1.2 Soil physical properties

It has been observed that presence or absence of ice changes the bulk physical properties of

soils. Frozen soils are extremely stable, strong, and impervious (frozen saturated soil), and

therefore, freezing soil is used as a technique to temporarily stabilize the soil in projects such

as the construction of retaining walls, tunnels, and foundations. However, regular soil FTCs

can cause significant changes in the soil’s hyro- thermo- mechanical properties. As a case

in point, Jamshidi et al. (2015) reported that soils’ exposure to FTCs leads to a significant

increase in its hydraulic permeability via cracking and pore separation. The degree of

the increase in soil hydraulic conductivity depends on the characteristics of scenario of

the FTC of the soil, i.e., the temperature range and number of FTCs. However, in some

specific cases, FTC can lead to slight decrease in soil hydraulic conductivity (Hayashi et al.,

2003). Conversely, the soil hydraulic conductivity in frozen saturated soils is near zero.
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Eventually, as the ice lenses existing within the pores melt (due to thaw), the hydraulic

conductivity of the soil increases significantly.

2.1.3 Hydrology

Freeze/thaw cycles influence the hydrogeological and hydrological processes controlled by

the permafrost presence, specifically the annual evolution of the active layer. Permafrost

thaw increases the total depth of active layer and talik, which leads to higher hydraulic

conductivity and infiltrability of the soil. This happens because after thawing, the ice-

lenses, which block the water path, do not exist in the pores (Walvoord and Kurylyk,

2016).

When the average temperature of a permafrost region raises, local taliks can form. In

some cases, the talik connects the active layer to a permanently unfrozen zone at depth.

Consequently, water may flow into the unfrozen soil through the taliks. These vertically

forming taliks that connect the active layer and sub-permafrost region are known as open

taliks. Heat advection through the open taliks accelerates the permafrost thaw rate. Con-

sequently, new open taliks form, which facilitate ground/surface water exchange (Walvoord

and Kurylyk, 2016). They can also open up larger connections between surface water fea-

tures (Connon et al., 2014). Rowland et al. (2011) studied how advective heat transfer

affects talik formation, which mostly happens beneath lakes and ponds. They indicated

that sub-permafrost groundwater flow increases the localized degradation of permafrost.

This may lead to shrinkage of lakes or bogs resting above the permafrost. As may be

inferred from Figure 2.1, unfrozen holes in the permafrost layer can provide conduits for

groundwater flow. In permafrost regions, groundwater flows in three different zones: (1)

the active layer, (2) the year-round unfrozen zones within the permafrost (taliks), and (3)

the permanently unfrozen zone beneath the permafrost. The flows within these zones are

known as supra-permafrost groundwater, in-permafrost groundwater, and sub-permafrost

groundwater, respectively (Kurylyk et al., 2014).

The active layer plays the most important role in the runoff process regardless of the

variation of seasonal flood runoff levels (Hayashi et al., 2003). Wang et al. (2009) reported

that in their case study (Qinghai-Tibet plateau) the direct runoff ratio has minimal influ-

ence and the precipitation has little effect on the total annual river runoff. Rather, the

effect of the temperature of active layer is dominant. Walvoord et al. (2012) recognized

that the understanding of talik formation and its morphology is important because the
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Figure 2.1 Talik forming in permafrost

groundwater recharge and discharge mostly occurs through open taliks. Here, we recog-

nize that the formation of taliks may be, in part, influenced by local heterogeneity in soil

characteristics and energy budget.

2.2 Physics of permafrost

Permafrost evolution is controlled by (1) the availability and movement of water in the

pore-space of soil and (2) the transfer of energy between the soil matrix, ice, water, and,

(most notably) in phase change. In heat transfer problems, it is essential to distinguish

between three different types of heat transfer: conduction, convection, and radiation. Heat

transfer via conduction takes place from a higher temperature zone to a lower one by kinetic

motion or impact of molecules. This mechanism is the dominant mode of heat transfer

in solids. Convection is a type of heat transfer that is caused by the relative motion of

fluid with respect to the solid surface. In this type of heat transfer, fluid flow is coupled

with the heat transfer because the velocity of the fluid comes to action. If the motion is

caused by the buoyancy effects, which results from density difference of fluids with different

temperatures, the heat transfer is called natural convection. However, if the motion of the

fluid is externally induced, the heat transfer is called forced convection or advection in the

case of transport of energy due to pressure gradient induced groundwater flow. Thermal

radiation is a type of heat transfer which occurs via electromagnetic waves emitted from

material’s body due to its internal energy variation (Miller, 2012).

The freezing and thawing of porous media experiencing sub-zero temperature has an
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indirect influence on the conductive heat transfer because the thermal properties of frozen

soil (e.g. thermal conductivity and bulk heat capacity) are different from that of thawed

soil. Ice formation also affects advective heat transfer because ice lenses can block the

pores, and, consequently, the hydraulic conductivity of the soil decreases. In addition,

note that water can migrate towards freezing front (freezing reduces pore pressure by

inducing a pressure gradient). Since advective heat transfer depends on the groundwater

flow velocity, this type of heat transfer is often restricted due to ice formation.

2.2.1 Governing equations

The governing equations of heat and mass transfer in permafrost systems are the equations

of continuity (mass balance) and energy conservation. Here, the flow is considered incom-

pressible and non-viscous, and the following equations are based on the same assumption.

Conservation of mass: The mass balance principal or the continuity equation states:

in a fixed volume, the rate of change of mass with respect to time is equal to the net rate

of flow through the boundaries (Reddy and Gartling, 2010). The continuity equation for

flows in porous media is represented by the Richards’ equation, which can be defined as

∂ϑ

∂t
= −∇·j, (2.1)

j = −λ∇Φ, (2.2)

Φ = p+ z, (2.3)

in which ϑ [−] is the volumetric water content, j [L1T−1] is the water flux (discharge per

unit area), λ [L1T−1] is the isotropic hydraulic conductivity, Φ [L1] is the hydraulic head,

p [L1] is the pressure head, and z [L1] is the elevation. It is assumed that flow is driven

by potential gradient using Buckingham-Darcy law (Equation 2.2). For saturated systems

with phase change, Equation 2.1 can be simplified to:

∂ϑ

∂Φ

∂Φ

∂t
= ∇·(λ∇Φ) . (2.4)

Conservation of energy: The first law of thermodynamics states that the time rate of

change of a system’s total energy is equal to the sum of the net rate of work done by the

forces and the net heat transfer to the system. This law can be expressed in a conservation
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form for porous media as follows:

∂

∂t
(ρcT ) +∇·(ρwcwvT ) = −∇·q + hb, (2.5)

q = −K∇T, (2.6)

where q [M1T−1Θ−3] is the heat flux vector, v
[
LT−1

]
is the velocity vector, and hb

[M1L−1T−3] is an internal heat source (e.g. latent heat from phase change and lateral

advective heat transfer due to in-to page water flow); ρw [ML−3] and cw [L2T−2Θ−1]

are the density and specific heat capacity of water; whereas, ρc [M1L2T−2Θ−1] and K

[M1L1T−3Θ−1] are the effective bulk heat capacity and isotropic thermal conductivity of

the soil-water-ice media, respectively. In this research, conductive heat transfer assumed

to be the only source of heat transfer in xz-plane and advective heat transfer in y direc-

tion (into plane). Consequently, the equation of energy conservation would be sufficient to

simulate the freeze/thaw of soil. The energy conservation law for such system is expressed

as

∂

∂t
(ρcT ) =

∂

∂x

(
K
∂T

∂x

)
+

∂

∂z

(
K
∂T

∂z

)
− ∂

∂y
(ρwcwjyT ) , (2.7)

jy = −λ∂Φ

∂y
, (2.8)
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where jy [L1T−1] is the into-plane water flux, and ∂Φ/∂y denotes the slope of ground in y

direction. Assuming a unit length in y direction, Equation 2.7 can be simplified to:

∂

∂t
(ρcT ) =

∂

∂x

(
K
∂T

∂x

)
+

∂

∂z

(
K
∂T

∂z

)
+ ρwcwλαy∆T, (2.9)

where αy is the slope in y direction, and ∆T [Θ] is the temperature difference between the

ambient soil and flowing water.

The general boundary and initial conditions of this problem are

T = T̃ (x, t) on ΓD, (2.10)

−K∇T ·n = q̃ (x, t) on ΓN, (2.11)

T = T0 (x, 0) over Ω, at t = 0, (2.12)

where T̃ (x, t) and q̃ (x, t) are, the temperature and heat flux over the Dirichlet (ΓD)

and Neumann (ΓN) boundaries, respectively, and n is the vector normal to the Neumann

boundary.

Soil-water-ice system apparent properties

As soil is a composite material, the thermal properties of soil are defined in terms of the

properties of its constituents. The properties used in the previous equations are defined as

follows:

Saturated isotropic hydraulic conductivity λ: The hydraulic conductivity of porous

media indicates the ability of the porous media to transport water, and its dimension is

L1T−1. Soil hydraulic conductivity is often expressed as a tensor since hydraulic conduc-

tivity of porous media can differ in difference directions due to the anisotropy of the media.

Here, it is assumed that soil is isotropic.

Isotropic thermal conductivity K : This property indicates the ability of a material

to conduct heat, and its dimension is M1L1T−3Θ−1. The average isotropic thermal conduc-

tivity of the soil-water-ice system can be calculated based on three volumetric averaging
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methods: arithmetic, harmonic, and geometric methods, which are calculated as follows:

Ka = n(SwKw + SiKi) + (1− n)Ks, (2.13)

1

Kh

=
1

nSwKw

+
1

nSiKi

+
1

(1− n)Ks

, (2.14)

Kg = Kw
SwnKi

SinK(1−n)
s , (2.15)

where, n, S, ρ, c, and k are the porosity, saturation, density, bulk heat capacity, and

thermal conductivity, respectively. The ‘w’, ‘i’, and ‘s’ subscripts denote the parameters

of water, ice, and soil phases. In Equation 2.13 the assumption is that the soil compo-

nents are parallel thermal resistors, which leads to a linear relation between the thermal

conductivities of the soil components. If the medium is considered as thermal resistors in

series, the representative thermal conductivity can be calculated by Equation 2.14, which

defines a volumetric harmonic relation between the soil constituents. For the case that

multi-dimensional heat transfer occurs, the orientation of the soil constituents cannot be

conceptualized either in parallel or in series; thus, geometric averaging is preferable and

can be calculated by Equation 2.15 (Walvoord and Kurylyk, 2016). Clauser and Huenges

(1999) also suggested that geometric mean is more appropriate than the arithmetic mean

for soil thermal conductivity. Similar to soil hydraulic conductivity, thermal conductivity is

often expressed as a tensor; however, due to isotropic assumption, soil thermal conductivity

is represented as a scalar.

Specific heat capacity c: Specific heat capacity is an intrinsic property of a substance

that measures the amount of energy needed to raise the temperature a unit mass of that

substance by one Kelvin without phase change. The dimension of the specific heat capacity

is M1L2T−2Θ−1. Since the effective bulk heat capacity of soil (ρc) is independent of the

orientation of the soil components, volumetric arithmetic averaging can typically be used

in calculating the representative bulk heat capacity, which is expressed as below:

ρca = n(Swρwcw + Siρici) + (1− n)ρscs. (2.16)

Latent heat Lf : The latent heat of fusion is the amount of energy required for occurrence

of phase change in a unit mass of a substance without any change in temperature. The

dimension of this property is M1L2T−2.
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The soil freezing curve: The term ‘phase’ is typically used to determine a region in

space throughout which the physical properties are uniform (Tester and Modell, 1997).

Regarding this definition, the different states of a material (i.e. gas, liquid, and solid)

are considered as different phases of it. Permafrost systems can consist of four different

components: soil, liquid water, ice, and gas. This composition makes the soil freezing

characteristics complicated. The complexity stems from the dependency of soil properties

and water freezing temperature on factors such as air pressure and water content. To

determine the soil freezing characteristics in the lab, it is essential to measure the unfrozen

water potential (i.e. water pressure) and mass fraction simultaneously (Spaans and Baker,

1996). During soil freezing process, water and ice coexist at the temperatures below the

soil’s freezing point, and the characteristics of this coexistence is strongly influenced by

temperature. As soil temperature decreases during freezing, the water pressure becomes

more negative, which leads to a drop in the soil’s water content. Water pressure (Ψw) and

ice pressure (Ψi) at the freezing front can be related to the following differential equation,

which is called the Clapeyron equation (Spaans and Baker, 1996). A detailed derivation

of the generalized Clapeyron equation is demonstrated by Kay and Groenevelt (1974);

Groenevelt and Kay (1974).

1

ρw

dpw −
1

ρi

dpi =
Lf

T
dT, (2.17)
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in which p is the pressure, ρ is the density, and T is the temperature at the freezing front

in Kelvin (K). This equation is an approximation that may be only valid for pure water at

the freezing front when the temperature is close to the water’s freezing point. Ice potential

pi is often considered negligible, and most of the existing models do not account for it. In

the general case of frozen soil, this assumption may not be justified. The water pressure

assuming a negligible ice pressure can be directly calculated as follows:

pw = ρwLf ln
T

Tm

, (2.18)

where Tm is the pure water melting point in Kelvin (273.15 K at atmospheric pressure).

Koopmans and Miller (1966) noted that soil freeze/thaw is a hysteretic process. In

a hysteretic freeze/thaw process, thawing and freezing do not occur via the same path

(Figure 2.3), which means that for the same temperature, we may expect different freezing

curves under freezing and thawing conditions. Flerchinger et al. (2006) demonstrated a

similarity between the soil freeze/thaw and drying/wetting processes. The same hysteretic

behavior is observed in the soil drying and wetting processes for pressure-water saturation

relation (Spaans and Baker, 1996). Smerdon and Mendoza (2010) studied the hysteretic

behaviour of riparian peatlands in the Western Boreal Forest of Canada and reported that

the hysteretic behaviour occurs potentially due to heterogeneity in porosity of the soil and

different thermal properties of frozen and thawed soil. They also demonstrated through

sensitivity analyses that assuming a freezing range between −0.25 to −2 ◦C leads to more

accurate simulation results. Rubio et al. (2011) conducted a study in a laboratory scale

investigating the hysteretic characteristics of the thermal properties of a silt loam soil,

and noted important controlling factors on the hysteretic behaviour such as the level of

saturation and the shape of the layer of water surrounding soil particles.

2.3 Modeling permafrost

To understand and predict the impact of FTCs in porous media, it is common to deploy

numerical models. Existing models of solidification/liquefaction, freeze/thaw, or general

phase change incorporate methods that tend to fall into two main categories: front tracking

and continuum methods. The front tracking approach is a classic free boundary problem

based on solving the governing equations for temperature in the frozen vs. unfrozen regions

of the domain and tracking the location of the sharp interface in each timestep, typically
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by applying the Stefan condition at the interface. The Stefan condition, which arises from

an energy balance at the interface at the interface, defines the local velocity of the interface

based on the heat flux jump at the sides of it. The sharp interface causes a discontinuity in

the derivatives of the temperature field, which can be addressed using various techniques,

such as extended finite element method (XFEM) (Chessa et al., 2002; Salvatori and Tosi,

2009), adaptive mesh methods (Khoei, 2005), or the phase-field method, in which the in-

terface is not sharp but tracked explicitly (Wheeler et al., 1992). Because this method

predicts the location of the interface precisely, it is popular in solidification problems, in

which the exact location of the interface between the solid and liquid phases is important.

The issue with this method is that it may be impossible to track multiple sharp interfaces

of complex shapes in 2-D and 3-D problems; alternately, there may not be any sharp in-

terfaces. This is generally the case for freeze/thaw of soil, in which the phase change is a

non-isothermal process due to, in part, local variability in the matric potential of frozen

soil. The non-isothermal freezing leads to the presence of a slushy zone consisting of frozen

and unfrozen water. The spatial variability in water pressure, water quality, and soil prop-

erties have influence on the characteristics of the slushy zone. To simulate the slushy zone

evolution, a continuum approach is typically implemented. In this approach, a single gov-

erning equation is solved for heat transfer with two phases, and the transition between the

fully frozen and fully thawed is zones is represented by a temperature-ice saturation rela-

tion called the freezing function. Either temperature or enthalpy may be used as the state

variable. Here, the Stefan condition is implicitly satisfied at the interface, and the sharp

interface, a singularity in the sharp interface numerical solution, is smoothed out and needs

no special accommodation. This continuum approach is the one most commonly employed

in practical models of freeze/thaw in porous media (e.g., Voller et al., 1987; Swaminathan

and Voller, 1992; Alexiades and Solomon, 1993; Nedjar, 2002), in part because it is the

most numerically stable. A drawback of this approach is that the temperature range used

in the soil freezing function lacks a rigorous and reasonable justification at the common

scales of application, particularly when sub-grid scale heterogeneity is present. In most

of the literature, a continuous function is used, often with the slushy zone present over

a 1 to 4◦C temperature range (e.g., McKenzie et al., 2007). It is suggested here that a

useful physically-based rationale for defining the characteristics of the slushy zone may

be found by invoking the presence of soil-water-ice system heterogeneities. The aqueous

heterogeneity (i.e. spatial variation in the freezing point temperature) is related to solute

concentration and water matric potential (Flerchinger et al., 2006; Bao et al., 2016), and

the soil heterogeneity is ascribed to natural spatial variation in thermal diffusivity below
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the scale of the representative elementary volume (REV).

Permafrost or phase change models are introduced and developed for different dimen-

sions with levels of complexities. The classic two-phase solidification-liquefaction problem

(or in general a moving-boundary problem) is called the Stefan Problem, for which an

analytical solution exists. The Stefan Problem was first introduced by Josef Stefan (a

Slovenian physicist), whose research interest was the polar ice cap melt. The history and

review of the Stefan Problem is covered by Hill (1987). Evans (1951) presented the exis-

tence of a solution for the Stefan Problem, and Douglas (1956) showed the uniqueness of the

solution. An analytical solution for this problem (the Neumann solution) is presented in

explicit closed-form equations, which can be found in the studies done by Solomon (1966);

Rathjen and Jiji (1971) and Crank (1999a). Although an analytical solution exists for

variations of the Stefan Problem, the solutions are restricted to very simple configurations.

The problems for which the analytical solutions are presented are either one-dimensional

(Hill, 1987; Alexiades and Solomon, 1993) or two-dimensional with symmetric geometry

and boundary conditions, e.g., a two-dimensional corner freezing problem presented by

Rathjen and Jiji (1971). The simplicity associated with the problems with analytical so-

lutions obliges us to use numerical treatments for all other complicated problems. These

solutions, however, are useful for benchmarking (Kurylyk and Watanabe, 2013). Many

numerical models were presented to simulate the soil freezing and thawing processes and

combine the soil freeze/thaw with the flow models of porewater.

An early permafrost model presented was presented by Hwang et al. (1971) to study the

interaction of structural foundations and permafrost. The two-dimensional model imple-

ments the finite element method (FEM) and considers latent heat as a heat source varying

in space and time. The formulation was verified by checking results with the Neumann

solution (Solomon, 1966). In addition, the versatility of the approach was demonstrated

by illustrating the capability of the method to predict results for nontrivial problems of

practical significance.

Since then, multiple researchers have developed one-dimensional permafrost models,

often coupled to soil-vegetation atmosphere transfer (SVAT) models for simulation of cli-

mate and weather. Flerchinger (2000) introduced the simultaneous heat and water (SHAW)

model, which is a representative of many 1-D vertical models in the literature. The model,

which was originally developed by Flerchinger and Saxton (1989) to model soil FTCs, sim-

ulates water, heat, and solute transfer in a one-dimensional soil profile. As it is shown in

Figure 2.4, the model one-dimensional configuration is represented by vegetation canopy,
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Figure 2.4 The physical system description in SHAW model (Flerchinger, 2000)

snow cover, residue, and a certain depth of soil. A layered system is considered from plant

canopy to the specified soil depth, and each node layer is represented by a node. The up-

per boundary is subjected to a daily or hourly air temperature, wind speed, precipitation,

and solar radiation. The input energy from the upper boundary and the soil conditions

in the lower boundary determine the heat and water fluxes into the system. The balance

equations at each node are solved in an implicit finite difference scheme. After solving the

equations at each timestep, the energy, moisture and solute fluxes are interpolated between

the nodes.

Although SHAW and similar 1D models are capable of modeling freeze/thaw in soil,

they are not be entirely adequate for modeling of permafrost in some systems because

of its one-dimensional nature. For instance, they cannot handle the local influence of

lateral heterogeneity or collective melt. Similar one-dimensional models include the models

introduced by Jansson and Karlberg (2004) (COUP) , Zhang et al. (2003) (NEST), Hansson
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et al. (2004), and White and Oostrom (2006) (STOMP) suffer from the same issue. Other

models have extended the same model configuration to simulate carbon and nitrogen cycles

in soil (Jansson and Karlberg, 2004) or subsurface transport (White and Oostrom, 2006).

Hansson et al. (2004) introduced a numerically stable mass and energy transport model

to deal with the phase change in soil. This one-dimensional model is developed based on

HYDRUS-1D model (Šimunek et al., 1998). In the model, a modified Richards’ equation is

used to describe the variably saturated water flow. Due to the variability of the parameters

used in this model in space and time, the equations (Richards’ and heat transfer) are highly

nonlinear. An implicit finite difference scheme was used for solving the modified Richard’s

equation and discretization of the heat transfer equation in time domain. FEM was used

for the discretization of the heat transfer equation in space domain. The model was verified

by a laboratory freezing experiment and applied to a Swedish road to perform a long-term

analysis. As Ippisch (2001) reported, the vapor transport coupling has minor impacts on

the results.

Several researchers developed 2- and 3-D models for a realistic representation of per-

mafrost. Ippisch (2001) developed a 2- and 3-D numerical solver for heat, water, and gas

transport (a three-phase model), considering soil freeze/thaw. The model has been applied

to soils at laboratory to plot scale. A finite volume and finite difference scheme is used in

discretization of space and time domains, respectively. The results of this model has been

compared with a real permafrost site data and showed satisfying agreement. The simula-

tion results were sensitive to a slight change in water transport parameters. However, the

model was used to demonstrate that vapor transport (gas phase) is typically unimportant.

Moreover, considering solute transport was shown to have almost no effect on the simu-

lation results. There was an considerable deviation between calculated temperatures and

field data, which was attributed to the heterogeneity of the soil profile or, in general, het-

erogeneities of the parameters used in calculations. This study suggests that consideration

of the heterogeneity is important.

In order to simulate effect of climate and environmental changes or constructed facilities

(e.g., foundation of structures, pipelines), Krane (2007) introduced TEMP/W model, which

is a two-dimensional simulator based on FEM. This model is basically an add-on for GEO-

SLOPE model, which is a geotechnical modeling environment.

FEFLOW with piFreeze (DHI-WAYS, 2016) module and HydroGeoSphere (Schilling

et al., 2019) are two of the powerful 3-D models that can model simulate soil freeze/thaw

process coupled with unsaturated fluid flow. Langford et al. (2019) used FEFLOW with

20



piFreeze plug-in for their field-scale simulations, and deployed a spin-up initial condition

implementation for a more accurate validation with field data. Schilling et al. (2019)

efficiently integrated HydroGeoSphere with winter hydrolocial processes in a physically-

based manner for a catchment-scale problem.

Finally, the SUTRA-ICE model was introduced by McKenzie et al. (2007). This model

is a modification to the SUTRA model, which is a computer program that simulates fluid

transport in a saturated or unsaturated subsurface environment (first released by Voss,

1984). SUTRA-ICE can effectively simulate the phase change of porewater to ice occurring

over a rage of temperatures. McKenzie et al. (2007); Rühaak et al. (2015); ? studied the

effect of soil freeze on the thermal profile of peat bogs using SUTRA-ICE.

In this research, first, a computer program is developed in C++ for modeling permafrost

in heterogeneous media. An important step towards a powerful and robust numerical

model is convergence study, which lacks in most of the reviewed models. The convergency

of this model is examined via spatial and temporal convergence studies to ensure that

acceptable convergence rates are obtained. The details of the development, derivations

of the equations, spatial and temporal convergence analyses, and verification against the

analytical solution are elaborated on in Chapter 4. This model is also successfully validated

against field data (Section 5.3).

2.4 Soil heterogeneity

Heterogeneity in the field of hydrology has always been of importance (Wood et al., 1988;

Leblanc et al., 1991; Entekhabi and Eagleson, 1989), and several studies have been con-

ducted to investigate the effect of soil heterogeneity and spatial variability on surface and

subsurface flows (Russo and Bresler, 1981; Mallants et al., 1996; Rehfeldt et al., 1992; Mo-

hanty et al., 1991; Woodbury and Sudicky, 1991). Permafrost projections are estimated

by numerical simulations. These estimations are dependent upon the representation of

the soil-water-ice system (Harp et al., 2016). The soil-water-ice system is often considered

homogeneous (Vogel et al., 2019; Lamontagne-Hallé et al., 2018; Langford et al., 2019)

or layered (Signorelli et al., 2007), which is a reduced form of characterizing a 2- or 3-D

heterogeneous system for the sake of simplicity. However, due to unpredictable physical

processes, soils or rock masses in an aquifer or reservoir become heterogeneous; thus, spatial

variability is induced to their properties (i.e. physical, mechanical, hydraulic, and ther-

mal) (Bundschuh, 2010). Modelers can either use averaged or representative properties or
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explicitly simulate heterogeneity of soil. The traditional way of simulating soil systems in

permafrost models is to use homogeneous properties. Bundschuh (2010) reviewed different

methods of averaging heterogeneous geological properties. Considering soil as a homoge-

neous composite material has been justified by testing the thermal behavior of a block

of soil as a thermal resistor and showing that the block can be represented by equivalent

homogeneous thermal properties (i.e. thermal conductivity and heat capacity).

Atchley et al. (2015) developed a data-informed 1-D model to calibrate their model

parameters in an iterative manner using homogeneous parameters as a start point. They

illustrated that the data-informed adjustments creates an improved and robust system

response. Harp et al. (2016) extended the work done by Atchley et al. (2015) studied the

effect of soil property uncertainty on the projections of permafrost thaw. They showed that

soil property uncertainty has significant effects on the projections of annual permafrost

depth and active layer thickness, minor effects on the Stefan number estimations, and

minimal effects on the soil moisture predictions. Schneider et al. (2012) investigated the

effect of surface and subsurface heterogeneity on the observed temperatures at an alpine

permafrost site. Based on their 8-year temperature observation, assuming a relatively equal

angle, exposure, and micro-climate for all sites, the responses of the thermal regimes were

different, and a non-uniform temperature data was recorded.

Permafrost systems are highly heterogeneous, yet the implications of heterogeneity are

still unclear and understudied. Particularly, there has been little work done regarding the

effect of heterogeneity on permafrost thaw patterns and talik formations (Atchley et al.,

2015; Adams and Gelhar, 1992; Shen et al., 1995; Harp et al., 2016; Signorelli et al., 2007;

Rehfeldt et al., 1992; Ippisch, 2001).

2.4.1 Geostatistical representation of heterogeneity

Geostatistics is defined as “the study of phenomena that fluctuate in space” (Olea, 1991).

The Geostatistical tools help interpret and model spatial variability by characterizing the

uncertainty around some unknown using a probability distribution (Deutsch and Journel,

1997). In Geostatistics, a property field (e.g. thermal conductivity) can be characterized

as a spatially correlated random field. The most common description of such field is a

semivariogram, γ (h), which is half of a function (variogram) that describes the spatial

variability, interdependence, and the fluctuation scale of a random function, Z(x), repre-

senting the variance of the property as a function of distance between any two points in
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Figure 2.5 Geostatistics definitions: (a) Lag setting in variogram calculation (b) Variogram schematic:
Sill value is the maximum variance, where the variogram reaches plateau, and nugget effect (b) denotes

the variability in small scales

the field (study area, Ω). A variogram may be estimated from an existing field, Z(x), as:

γ (h) =
1

2N

N∑
i=1

[Z (xi)− Z (xi + h)]2, (2.19)

in which N is the number of lag points and h (the lag vector) is a vector denoting the

distance from the point at which spatial variability is being calculated and is specified by a

direction and a tolerance value (Figure 2.5a). Lag tolerance defines the minimum distance

of the data point pairs that are included in the variogram calculation. The length of h

must be greater or equal to the shortest distance between any pairs.

To generate spatial fields with different spatial correlation, theoretical variograms can

be defined in various forms depending upon the nature of the variability of the random

property of the study field. The three most common used variograms, the spherical, expo-
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nential, and Gaussian variograms, are respectively expressed as

γ (h) =


b+ c

(
3h
α
− 1

2

(
h
α

)3
)

if |h| < α

c if |h| > α

, (2.20)

γ (h) = b+ c

[
1− exp

(
−h

α

)]
, (2.21)

γ (h) = b+ c

[
1− exp

(
−
(

h

α

)2
)]

, (2.22)

where b is the nugget effect, a is the correlation length, and c is the sill value (the maximum

variance, where the variogram reaches plateau). Sill value is equal to the variance of entire

field without acknowledging spatial structure.

As illustrated in Figure 2.5a, direction is one the characteristics of a variogram; thus, to

specify a 3-D spatial variability, three variograms for the three orthogonal directions may

be defined; directional anisotropy can be induced by considering a different correlation

length for different directions (Simms, 2012).

To study the effect of heterogeneity on permafrost, the characterization of the hetero-

geneous medium must first be specified. Here, we assume different forms of heterogeneity

in soil: porosity, density, thermal conductivity, and hydraulic conductivity. To generate a

consistent heterogeneous soil realization, the correlations between soil properties must be

respected, i.e. we could not have high porosity soil with low hydraulic conductivity. This is

possible by relying upon pedotransfer functions, which are empirical functions linking soil

properties to some basic shared characteristics, such as bulk density. Here, the following

two functions are used to express thermal conductivity, K
[
W.m.−1K−1

]
, (Lawrence et al.,

2018) and hydraulic conductivity, λ [ m.s−1], (Liu and Lennartz, 2018) of peat soil in terms

of the bulk density of soil, ρs

[
kg.m−3

]
:

K =
0.135ρs + 64.7

2700− 0.947ρs

, (2.23)

log10 (λ) = 3.491− 15.802ρs + 19.552ρ2
s . (2.24)

Thus, we can generate ρs field and calculate resultant λ and K fields.

Quantifying the effect of heterogeneity in heterogeneous soil-water-ice systems is chal-

lenging because there is little work done characterizing the uncertainties in the spatial
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Table 2.1 Geostatistical model parameters

Property Value

Variogram type Exponential

Sill value 0.2

Nugget 0.0

Vertical correlation length 2.0 m

Horizontal correlation length 12.0 m

properties of peat, i.e. the sill value (c) or correlation length (a) of the experimental

variogram. Mallants et al. (1996) studied the effect of heterogeneity on unsaturated soil

hydraulic properties in a layered soil system for three different depths (0.1 m, 0.5 m, and

0.9 m), and found out that correlation length of cross-correlated lags calculated by a spher-

ical theoretical model was very close to that of direct semivariograms. In the past, the

permafrost modeling was done using completely homogeneous properties (McKenzie et al.,

2007; Bao et al., 2016; Wu and Zhang, 2010). In this research, geostatistical software li-

brary (GSLIB) (Deutsch and Journel, 1997) is deployed for generating an unconditional

spatially correlated realization of soil in a 2-D domain. GSLIB is an open source computer

program written in FORTRAN. One can use this program to quantify spatial variability

of existing fields using Geostatistics or generate random fields with specified Geostatistical

properties. The lack of spatial information describing peat thermal properties has led the

author to assume reasonable values based on related studies.

A key assumption here is that of similar spatial variability structure and scale for

thermal and hydraulic properties. Usowicz et al. (1996) showed that soil water content

and bulk density have the most influence on the spatial variability of thermal properties of

agricultural soil. Since fully saturated soil is assumed throughout the thesis, the empirical

functions from Lawrence et al. (2018) and Liu and Lennartz (2018) are chosen that express

thermal and hydraulic conductivity based on bulk density (Equations 2.23 and 2.24). In the

present work, similar to research by Simms et al. (2014) about the effect of soil heterogeneity

on horizontal ground loop heat exchangers, the horizontal correlation length was selected

to be 12 m and an aspect ration of 6 was selected for the horizontal vs. vertical anisotropy

(Usowicz et al., 1996). The nugget effect for this research is assumed to be 0 because the

properties are upscaled to the 2-D elemental scale of the finite element mesh for the sake

of numerical stability; thus, spatial variability for small scales is not likely to be influential.

A range of 10 to 760 kg.m−3 (Liu and Lennartz, 2018) is assumed for the variability of
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peat bulk density based on the meta study conducted by Liu and Lennartz (2018) on the

gradient of bulk density of various types peat soil. An exponential function (Equation 2.21)

is assumed for the theoretical variogram. Summary of the geostatistical model parameters

and values are listed in Table 2.1.

2.4.2 Heterogeneous soil realization using GSLIB

As mentioned in Section 2.4.1, a sequential Gaussian realization is generated (Figure 2.6a)

to simulate an unconditional and spatially correlated field, and the semivariograms of the

generated field (experimental semivariograms) are compared to the theoretical semivar-

iograms. The parameters in Table 2.1 are used in the sequential Gaussian simulations.

To evaluate how well the simulated realization performs vs. the theoretical variogram of

the same field, the experimental variogram of the simulated field is plotted against the

theoretical one. As is evident in Figure 2.6b, the semivariogram calculated for the simu-

lated field generally matches the theoretical semivariogram generated based on the same

geostatistical parameters.
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Figure 2.6 GSLIB simulation: (a) a realization generated by a sequential Gaussian simulation using
GSLIB (b) experimental variogram vs. theoretical variogram
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Chapter 3

A theoretical extension of the soil

freezing curve paradigm

28



Statement of contribution

The following chapter is written based on the following article:

Amiri, E. A., Craig, J. R., and Kurylyk, B. L. (2018). A theoretical extension of the

soil freezing curve paradigm. Advances in Water Resources, 111(November 2017),

319–328.

The paper was co-authored by myself and my supervisor, Dr. James R. Craig, and

Dr. Barret L. Kurylyk, Assistant Professor in the Department of Civil and Resource

Engineering and Centre for Water Resources Studies at Dalhouse University. This paper

presents a theoretical extension for the form of soil freezing curve (SFC) based on local

spatial heterogeneity in soil. In this paper, I developed the 1-D extended finite element

method (XFEM) formulation for simulating nonlinear heat transfer with phase-change

in soil. I implemented the model in a code written in Matlab for simulating different

realizations of a heterogeneous soil column. I also prepared the manuscript. Dr. Craig
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3.1 Introduction

Ground ice influences the mechanical, hydraulic, and thermal properties of soil (Qi et al.,

2006; Tang and Yan, 2014; Jamshidi et al., 2015), and thus permafrost thaw can cause

soil instability (Oztas and Fayetorbay, 2003; Kemper and Rosenau, 1986) and hydrologic

and hydrogeologic changes (Wang et al., 2009). Thawing permafrost also acts as a positive

climate change feedback by releasing sequestered carbon into the atmosphere (Kurganova

et al., 2007). Consequently, quantifying the influence of recent and future global warming

on permafrost thaw is an important research topic for climate scientists, hydrologists, and

geotechnical engineers (Walvoord and Kurylyk, 2016; Schuur et al., 2015; Hinzman et al.,

2005).

Numerical models are often employed to calculate rates of permafrost thaw because

analytical solutions to heat transfer problems involving phase change are limited by their

simplifying assumptions (Kurylyk et al., 2014). In numerical models, the front tracking

approach (Skrzypczak et al., 2012) precisely predicts the location of the phase change

interface, and thus it is popular in solidification problems, in which the exact location

of the interface between the solid and liquid phase is important. The issue with this

method is that it may be impossible to track multiple sharp interfaces of complex shape;

alternately, in most porous media, the phase change interface is not sharp. The latter

is generally the case for soil freezing and thawing, because pore water phase change is a

non-isothermal process due to capillary and sorptive forces, variable solute concentrations,

and soil heterogeneities (Painter et al., 2016). Thus, the freeze-thaw interface in soil exists

as a partially frozen ‘slushy zone’. In this case, a continuum enthalpy approach is typically

implemented to represent the phase change interface (Dall’Amico et al., 2011) in which the

transition between the fully frozen and fully thawed zones is simulated by considering a

temperature-ice saturation (or alternatively a temperature-liquid water saturation) relation

called the SFC (Koopmans and Miller, 1966). Here, the Stefan condition, which states that

the discontinuity in heat flux at the interface is equivalent to the rate of latent heat released

or absorbed (Lunardini, 1981), is implicitly satisfied. Also, the sharp interface, which is a

source of singularity in the numerical solution, is smoothed out and does not require any

special accommodation. This continuum approach is the one most commonly employed in

numerical models of freeze-thaw in porous media (e.g., Voller et al., 1987; Swaminathan

and Voller, 1992; Alexiades and Solomon, 1993; Nedjar, 2002), in part because it is the

most numerically stable.

SFCs are either derived theoretically based on the analogy between soil water charac-
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teristic curves (SWCCs) and SFCs (Koopmans and Miller, 1966) or empirically developed

from field or laboratory data using a simple mathematical expression such as a power

or exponential function (Kurylyk and Watanabe, 2013). The analog between SFCs and

SWCCs is predicated on an understanding that pore water is held by capillary and/or

sorptive forces during both soil freezing and soil drying, and this tightly held water retards

drying or freezing processes. The primary variable in SWCC-derived SFCs is pressure.

The Clausius-Clapeyron equation is used to express the equilibrium relationship between

the pressure of ice and water and soil temperature. The generalized form of the Clausius-

Clapeyron equation in terms of water and ice pressure can be written as (Ma et al., 2015)

1

ρw

dPw −
1

ρi

dPi =
Lf

T
dT (3.1)

in which P (N.m−2) is pressure, T is the temperature at the freezing front in Kelvin (K), and

Lf (J.kg−1) is the latent heat of fusion of pure water, ρ (kg.m−3) is density, and subscripts w

and i denote the water and ice phase respectively. This equation is an approximation that

is only valid at the freezing front when the temperature is close to the melting temperature

of water. Equation 3.1, which represents an equilibrium relation between pressure and

temperature, has several variations in the literature as reviewed by Kurylyk and Watanabe

(2013). This equation can be inserted into an existing SWCC to indirectly develop an

expression between pressure (or temperature) and the liquid saturation (Hansson et al.,

2004). The focus of the present study is independently derived SFCs for which the primary

variable is temperature. The main drawback of the independently-derived SFCs is that

they lack a rigorous theoretical justification for their range. Parameters for these SFCs

can be obtained based on fitting experimental curves, but there is uncertainty if the curves

are transferable when pressures, water contents, or other conditions change. Often, a

differentiable continuous function is used with the slushy zone ranging from about 1 to

4 ◦C (e.g., McKenzie et al., 2007).

The purpose of this study is to develop a theoretical understanding of how mechanisms

other than sorptive or capillary processes may contribute to the temperature range over

which water freezes in soils. In particular, this study examines how spatial variability in

the freezing point temperature and the soil properties may widen the SFC interval. The

aqueous heterogeneity (i.e., spatial variation in the freezing point temperature) is related to

solute concentration and water matric potential (Flerchinger et al., 2006; Bao et al., 2016),

and the soil heterogeneity is ascribed to natural spatial variation in thermal conductivity

at scales finer than a representative elementary volume (REV).
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Figure 3.1 Frozen soil slushy zone and equivalent heterogeneous layers: (a) Physical distribution of ice
and water in soil matrix, (b) Conceptualization as parallel ice-water transitions, (c) Equivalent slushy

zone. Tthaw and Tfreeze are the temperatures at which soil thaws and freezes.

3.2 Slushy zone characterization

The existence of a slushy zone in soil is generally understood to be caused by capillary

and sorptive forces, which impede the complete freezing of pore water. This is physically

analogous to the suction range over which soil dries (Koopmans and Miller, 1966). While we

acknowledge that these processes are very important in creating a temperature range over

which soil freezes and thaws, we herein demonstrate that the extent of the slushy zone can

also be partly ascribed to variations in both water purity and soil properties, which impact

the freezing point of water. It is noteworthy that the observed freezing temperature range

is mainly below and slightly above 0 ◦C, the freezing point for pure water (Williams and

Smith, 1989). While this gradual transition from pure ice to liquid water has been observed

in the field and laboratory experiments (e.g., Williams, 1964; Koopmans and Miller, 1966;

Spaans and Baker, 1996; Quinton et al., 2005; Zhou et al., 2014) and repeatedly used

for continuum modeling of freeze-thaw processes in porous media (e.g., Lunardini, 1985;

Flerchinger et al., 2006; McKenzie et al., 2007; Bense et al., 2009), few attempts have been

made to determine the theoretical factors which determine the extent and shape of the

temperature-ice fraction relation beyond the similarities between soil wetting/drying and
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Figure 3.2 Realizations analyzed by the extended finite element model, and the equivalent slushy zone.

soil freezing/thawing processes.

This research presents a novel procedure to investigate the temperature-ice fraction

relationship, in which an REV of the slushy zone is considered as an average of several

stochastically generated heterogeneous soil columns. Each column may consist of several

layers of soil with different properties, which are randomly distributed in space (Figures 3.1

and 3.2). These heterogeneities in the properties of the system can be represented by

a distribution (Figure 3.2), and this distribution causes a distribution in the freeze-thaw

interface (Figure 3.1b), which can in turn be represented as a gradually transitioning slushy

zone (Figure 3.1c). While treated as parallel 1-D systems, the conceptual model could also

describe independent intertwining pathways through the porous medium through which

freezing or thawing progresses. Each soil-water-ice system might have various degrees of

heterogeneity, and the characteristic heterogeneity of the system leads to a different SFC.

For instance, chemical heterogeneity of the pore liquid (ionic content) leads to a depression

in the soil freezing point; heterogeneity in the physical properties of soil affects both the

hydraulic conductivity (important for advective heat transfer) and the average thermal

properties. The focus of this research is to assess the effects of heterogeneous thermal

properties and liquid characteristics, particularly soil thermal conductivity and freezing

point, on SFCs.

The stochastically generated 1-D freeze-thaw progression models are simulated using

the XFEM (Khoei, 2015), as described in more detail later. In this approach, the interface

is driven by applying the Stefan condition. Each realization generates a different location

of the ice/water interface, leading to a spatial distribution of local temperature and ice

saturation within the 1-D column, as seen in Figure 3.3. Depending on the soil type,
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Figure 3.3 SFC as generated from multiple realizations of sharp interface problem: (a) Water
saturation profile and mean water saturation profile for multiple realizations, (b) Temperature profile

and mean water saturation profile for multiple realization, (c) Resultant SFC.

there may be residual water saturation (Sres
w ) at temperatures below the freezing point

due to water being tightly held (Cannell and Gardner, 1959; Miller, 1990; Spaans and

Baker, 1996; Watanabe and Mizoguchi, 2002). The slushy zone in fully saturated soil

would consist of two extreme fronts, i.e., the ice front (where the ice saturation, Si, is

equal to 1−Sres
w , where Sres

w is the residual liquid water content) and the liquid water front

(where the liquid water saturation, Sw, is equal to 1). These two fronts are separated by

the slushy zone. The spatial extent of this transition zone is herein ignored. Rather, the

average temperature across all realizations is mapped to the average ice saturation across

all realizations, generating a corresponding SFC (Figure 3.3c). Thus a distribution of sharp

interfaces is employed to arrive at a slushy zone or distributed SFC. In this study, the soil

is fully saturated.
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3.2.1 The 1-D model

The equations used in the one dimensional realizations are similar to the governing equa-

tions of the classic Stefan Problem, which has been applied both analytically and nu-

merically and appears in several works (Lunardini, 1981; Chessa et al., 2002; Bernauer

and Herzog, 2012). Thus, each of the one dimensional realizations is a two-phase Stefan

Problem but is further characterized by varying properties along the problem domain, Ω.

Although heat transfer in saturated soil can occur via conduction and advection, in

the current model, only heat transfer via conduction is considered. Hence, the energy

conservation equation over Ω applies

∂

∂t
(ρcT ) = −∇·q (3.2)

q = −k̄∇T (3.3)

in which q is the conductive heat flux density vector (kg.m−2) and ρc and k̄ are the

bulk volumetric heat capacity and bulk isotropic thermal conductivity of the soil-water-ice

media, respectively. These are calculated as the volumetrically weighted arithmetic mean

of the soil constituent thermal properties:

ρc = n(Swρwcw + Siρici) + (1− n)ρscs (3.4)

k̄ = n(Swkw + Siki) + (1− n)ks (3.5)

where, n, S, ρ, c, and k are the porosity, saturation, density, specific heat, and thermal

conductivity, respectively. The ‘w’, ‘i’, and ‘s’ subscripts denote the parameters of water,

ice, and soil particles. The boundary and initial conditions for this problem are

T = T̃ (z, t) on ΓD (3.6)

T (z, 0) = Tini (3.7)

where T̃ (z, t) is the temperature over the Dirichlet (ΓD) boundaries. In addition, another

condition must be satisfied at the interface between fully frozen and fully thawed media,
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in which the temperature should be equal to the freezing point of water (Tf).

Tint = Tf on Γint (3.8)

where Tint, Tf , and Γint are the interface temperature, soil freezing temperature, and in-

terface boundary, respectively. Equation 3.8 indicates that the temperature field is con-

tinuous. However, its gradient is discontinuous due to the latent heat released/absorbed

during porewater phase change and the different soil thermal properties below and above

the interface caused by the dissimilar thermal properties of pore ice and pore water.

As previously noted, the location of interface is tracked explicitly in this study. Hence,

an energy balance equation is required to allocate the interface position and control its

rate of migration. This equation is called the Stefan condition, which is applied on Γint,

and stipulates that the conductive heat flow discontinuity across the interface is equal to

the released or consumed latent energy with progression of that interface, i.e.,(
k+∇T+ − k−∇T−

)
= −nρwLfv (3.9)

where ρw is the water density (kg.m−3), Lf is the latent heat of fusion of water (334,000

J.kg−1), v is the speed of the interface progression (m.s−1), and + and - indicate positions

immediately below and above the interface. The interface calculations follow the “level set

method” presented in Salvatori and Tosi (2009).

XFEM formulation

Due to the continuity of the base (shape) functions used in the classic finite element

method (FEM), FEM is incapable of handling discontinuity of any kind within an element.

The sharp interface of ice/water in soil imposes weak discontinuity in the temperature

field resulting in discontinuity in its gradient field. XFEM is an enhancement to the

classic FEM to overcome its inability to capture discontinuities (Khoei, 2015). This is

accomplished by adding an enhanced field to the standard interpolation field; this process

is called enrichment. According to the nature of the Stefan Problem, the enriched field

should be continuous over Ω. However, the gradient of this field needs to be discontinuous.

The XFEM approximation of the temperature field can be written as

T (z, t) =
∑
I∈N

N I
std (z) T̄ Istd (t) +

∑
J∈M

N I
enr

(
|ϕ (z)| −

∣∣ϕ (zJ)∣∣)︸ ︷︷ ︸
enriched shape function

T̄ Jenr (t) (3.10)
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Figure 3.4 Verification problem geometry and boundary conditions

where N denotes the shape functions vector, T̄ is the nodal temperature vector, N andM
are respectively the standard and enrichment sets, the ‘std’ subscript denotes an associa-

tion with standard degrees of freedom, ‘enr’ subscript denotes values associated with the

enriched degrees of freedom. The Signed Distance Function (Chessa et al., 2002) is used as

the enrichment function, ϕ (z), which exhibits a discontinuity in the temperature gradient

field and is expressed as

ϕ (z) = | z − z̃ |sign(z − z̃) (3.11)

in which z̃ is the interface location. The weak form and fully discretized equations are

presented in Appendix A.1.1. This solution approach closely follows Merle and Dolbow

(2002). The accuracy of the XFEM for a homogeneous case was determined in this study

via comparison with results reported by (Merle and Dolbow, 2002) and verified against the

exact solution of the classic Stefan Problem (Solomon, 1966).

Verification of XFEM against the exact analytical solution of the Stefan Prob-

lem

In this example, a 10m one-dimensional domain under thawing condition is considered. The

conditions (boundary and initial) and geometry of the problem are shown in Figure 3.4.

The Neumann solution predicts the exact position of the interface and the analytical tem-

perature distribution along the domain as below:

Xinterface(t) = 2λ
√
αtht (3.12)

Tth(x, t) = Tl − (Tl − Tf)
erf
(

x
2
√
αtht

)
erf(λ)

, x < xinterface (3.13)

Tfr(x, t) = Tr + (Tf − Tr)
erf
(

x
2
√
αfrt

)
erf(λν)

, x > xinterface (3.14)
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Figure 3.5 Verification problem: (a) Evolution of interface vs. time , (b) Error of interface location
estimation, (c) Temperature profile along the domain at different time steps

where αth = Kth/(ρc)th is the Stefan number for the fully thawed part, αfr = Kfr/(ρc)fr is

the Stefan number for the fully frozen part, and λ is calculated by solving the following

nonlinear equation.

λ
√
π +

cfr (Tf − Tr)
νL exp (λ2ν2) erfc(λν)

+
cth (Tf − Tl)

L exp (λ2) erf(λ)
= 0 (3.15)

The XFEM solution for the Stefan problem, which is fully described in Appendix A.1, is

compared with the exact analytical solution. As is evident in Figure 3.5, the numerical

and analytical solutions show a perfect match.

The soil freezing function is here generated via averaging of multiple realizations of

one-dimensional freezing front propagation in both homogeneous and heterogenous media.

Care was taken to avoid artefacts in the resultant soil freezing function that could be
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Figure 3.6 Sketch of a heterogeneous soil layer realization thawed at right and frozen on left (T0 and Tl
are the temperatures at the freezing and thawing boundaries, respectively).

caused by boundary condition effects, numerical discretization errors, domain size issues,

insufficient number of realizations, i.e., the resultant model cannot be dependent upon the

geometric configuration or numerical parameters of the model.

3.2.2 Soil freezing curves

The SFC is herein generated via averaging of the multiple realizations of 1-D freezing front

propagation in both homogeneous and heterogeneous media. Care was taken to avoid

artifacts in the resultant SFC that could be caused by boundary condition effects, numer-

ical discretization errors, domain size issues, and insufficient number of realizations; i.e.,

the resultant model cannot be dependent upon the geometric configuration or numerical

parameters of the model.

In order to investigate the effects of soil heterogeneity on the SFC, the freezing zone is

assumed to consist of several heterogeneous soil columns, and each heterogeneous column

is represented by a realization which will be analyzed by the XFEM, Figures 3.1 and 3.2.

It is noteworthy that these realizations are assumed to be representatives of realistic soils.

After extracting the water saturation and temperature graphs from each realization and

averaging them along every fixed z cross section (Figures 3.3a and 3.3b) the SFC can be

derived (Figure 3.3c).
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Table 3.1 Constant properties used in simulations

Parameters Values Parameters Values

cs

[
J.kg−1.K−1

]
900 Ki

[
W.m−1.K−1

]
2.14

ρs

[
kg.m−3

]
2650 ci

[
J.kg−1.K−1

]
2108

n (porosity) 0.35 ρi

[
kg.m−3

]
920

Sres
w 0.12 Lheat

[
J.kg−1

]
334000

Kw

[
W.m−1.K−1

]
0.58 ∆t [s] 5×105

cw

[
J.kg−1.K−1

]
4187 nrealization

1 600

ρw

[
kg.m−3

]
1000 nlayer

2 300

1 number of realizations

2 number or soil layers is each realization

3.3 Numerical simulation and results

In this paper, two forms of heterogeneity are investigated independently: (1) soil thermal

conductivity, and (2) soil freezing point depression. First, we examine the impacts of

boundary conditions and explore the sensitivity of the SFC to the extrinsic parameters

of the soil-water-ice system of interest. We then aggregate and non-dimensionalize model

results to infer a general SFC that is a function of the standard deviation of media thermal

conductivity only. Lastly, we determine a SFC for the case where the media is homogeneous

but the freezing point is treated as a random variable, due to local variability of dissolved

solute concentrations.

The domain of interest (Figure 3.6) which is consistent in all the simulations included

in this research, is a 10 m 1-D heterogeneous soil column discretized into 300 homogeneous

elements. In the case of the soil being physically heterogeneous, the thermal conductivity

Table 3.2 Varying properties used in simulations

Boundary
Condition
Sensitivity
Analysis

Thermal
Conductivity
Heterogeneity

Freezing Point
Heterogeneity

Hysteresis
AnalysisParameters

Case 1 Case 2 Case 1 Case 2 Case 1 Case 2

mKs

[
W.m−1.K−1

]
2.92 1.32∼4.52 2.92 2.92 2.92 2.92 2.92

SDKs

[
W.m−1.K−1

]
0.2 0.2 0.3∼1.7 0 0 0.2 0

mTf
[◦C] −0.25 −0.25 −0.25 −0.42∼0 −0.25 −0.25 −0.25

SDTf
[◦C] 0 0 0 0.095 0.035∼0.14 0 0.095
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of the elements is log-normally distributed with mean, µ, and standard deviation, σ; these

are related to the untransformed mean, m and untransformed variance v, by the following

functions

µ = log

(
m2

√
v +m2

)
(3.16)

σ =

√
log
( v

m2
+ 1
)

(3.17)

The variability of the soil freezing point is represented using a log-normal distribution.

The material properties and statistical parameters used in the simulations are given in

Tables 3.1 and 3.2. The soil statistical parameters and thermal properties incorporated in

the simulations represent soil with a clay mineral constituent, reported by Williams and

Smith (1989) and can also be found in Bonan (2008). A sensitivity analysis was run to

choose an appropriate number of realizations such that the minimum difference between

the standard deviation of the Gaussion fitting function and the standard deviation of the

raw outputted data was achieved.

The representative average model-generated SFCs are here fit with a Gaussian fitting

function, which is defined as

S̄w

(
T̄
)

= (1− Sres
w ) e−( T̄−α

β )
2

+ Sres
w (3.18)

In which S̄w is the average water saturation, Sres is the residual water saturation, T̄ is the

average temperature, and α and β are the fitting parameters calculated from a least-squares

fitting procedure. Note that S̄w and T̄ indicate average or representative Sw and T in an

REV and therefore translates to Sw and T in the conventional SFC (Sw = F (T )). This

functional form has been used in the past but without justification of the choice for α and β

(e.g., McKenzie et al., 2007). Since the Gaussian function is continuous and differentiable,

it can be readily implemented in continuum modeling of soil freeze-thaw processes as most

model formulations require a continuous and differentiable function for the soil freezing

curve (e.g., McKenzie et al., 2007). How such a function can be implemented in conjunction

with a sorptive- or capillary-based soil freezing curve is a question that will be investigated

in future work.

41



_
      T (oC)

_  S
w

-0.4 -0.35 -0.3 -0.25 -0.2 -0.15
0

0.2

0.4

0.6

0.8

1

T0=-5,   Tl=+5
T0=-6,   Tl=+6
T0=-7,   Tl=+7
T0=-8,   Tl=+8
T0=-9,   Tl=+9
T0=-10,   Tl=+10

(a)

~
T 

_  S
w

-0.009 -0.006 -0.003 0.000 0.003 0.006
0

0.2

0.4

0.6

0.8

1

T0=-5,   Tl=+5
T0=-6,   Tl=+6
T0=-7,   Tl=+7
T0=-8,   Tl=+8
T0=-9,   Tl=+9
T0=-10,   Tl=+10

(b)

Figure 3.7 Effect of boundary conditions on the SFC considering soil thermal conductivity as the
sources of heterogeneity: (a) model-generated SFCs, (b) Normalized Gaussian fitted SFCs. The

horizontal axis in (a) represents the average temperature, while the horizontal axis in (b) represents the
scaled temperature (see Equation 15).

3.3.1 Sensitivity analysis: effect of boundary conditions on the

SFC

A set of sensitivity analyses was carried out to investigate the effect of boundary conditions,

geometry, and solution time. The effect of boundary conditions on the SFC is described in

this section, with the desirable outcome that the impacts of 1-D model boundary conditions

is negligible. In this analysis, twelve cases of Dirichlet boundary conditions are considered.

The thermal conductivity and freezing point depression are both considered as sources

of heterogeneity. As is evident in Figure 3.7a, the SFC is mildly impacted by boundary

conditions. However, by giving careful consideration to the trend followed by each case,

it can be interpreted as a sensitivity to the system temperature gradient (temperature

difference of the cold and warm boundaries). Hence, the following normalization of the

average temperature results in a narrow variation of SFC, (Figure 3.7b).

T̃ =

(
T̄ − Tf

)
abs (T0 − Tini)

(3.19)

in which T̃ is the scaled temperature , T̄ is the average temperature, and T0 and Tini are

the temperatures at the freezing boundary and the initial temperature of the soil domain,

respectively.

However, Figure 3.8 clearly illustrates that boundary conditions do not have a signifi-

cant influence on the SFC if the source of heterogeneity is the soil freezing point depression
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Figure 3.8 Effect of boundary conditions on the SFC considering freezing point as the source of
heterogeneity: (a) Model-generated SFCs, (b) Gaussian fitted SFCs

(recall here that the primary concern is describing the temperature range of the slushy

transition, not the precise shape of the curve). It is noteworthy that the SFCs are not

sensitive to the length of the solution time or medium if the medium is sufficiently large

that the problem is effectively semi-infinite.

3.3.2 Heterogeneity of the soil thermal conductivity field

The soil thermal conductivity is considered as the only heterogeneous parameter of the

soil thermal properties. Two cases are studied, with each case consisting of twelve sets of

realizations (Table 2). In the first case, the thermal conductivity mean is varied between

1.32 ∼ 4.52 W.m−1.K−1, and the standard deviation is held constant (0.2 W.m−1.K−1);

however, in the second case, the standard deviation is varied between 0.3∼1.7 W.m−1.K−1,

and the thermal conductivity mean is held constant (2.92 W.m−1.K−1). These values were

loosely based on the range of thermal properties depending on the porosity and type of soil

grains (e.g., Bonan, 2008). As is evident in Figure 3.9 and Figure 3.10, both the thermal

conductivity mean and standard deviation influence the SFC. By scaling the temperature

using the following equation,

T ∗ =
(
T̄ − Tf

)√ mKs

SDKs

(3.20)

the SFCs collapse into a single characteristic curve. Additionally, Figures 3.9b and 3.10b,

which depict the relationship between the normalized temperature and the water satura-

tion, indicate that the SFCs for a realistic range of the statistical parameters of permafrost

43



_
      T (oC)

_  S
w

-0.35 -0.3 -0.25 -0.2
0

0.2

0.4

0.6

0.8

1

SD=0.2
m=1.32
m=1.72
m=2.12
m=2.52
m=2.92
m=3.32
m=3.72
m=4.12
m=4.52

(a)

_
 T *

_  S
w

-0.3 -0.2 -0.1 0 0.1
0

0.2

0.4

0.6

0.8

1

SD=0.2
m=2.92
m=1.32 ~ 4.52

(b)

Figure 3.9 Effect of soil thermal conductivity mean on the SFC: (a) SFC, (b) Normalized Gaussian
fitted SFCs
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Figure 3.10 Effect of soil thermal conductivity standard deviation on the SFC: (a) model-generated
SFCs, (b) Normalized Gaussian fitted SFCs.

thermal conductivity are similar.

3.3.3 Heterogeneity of the soil freezing point depression

Like in the previous section, both the mean and standard deviation of the water freezing

point are parameters of interest. In the first case, the water freezing point depression

mean is varied between −0.42 to 0 ◦C (Banin and Anderson, 1974). and the standard

deviation is held constant (0.095 ◦C). In the second case, the standard deviation of the

freezing point depression is varied between 0.035∼0.140 ◦C and the mean is held constant

(−0.25 ◦C). As expected, the freezing point depression heterogeneity plays an important
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Figure 3.11 Effect of soil freezing point mean on its freezing function: (a) model-generated SFCs, (b)
Normalized Gaussian fitted freezing functions.
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Figure 3.12 Effect of soil freezing point standard deviation on its freezing function: (a) model-generated
SFCs, (b) Normalized Gaussian fitted SFCs

role. Figures 3.11b and 3.12b show that by normalizing the temperature, with the following

equation,

T̄ ∗∗ =

(
T̄ −mTf

)
SDTf

(3.21)

the soil freezing curves become identical. However, due to log-normally distributed freezing

points of the realizations, there are some artifacts in the extreme case such that the mean

is almost zero representing pure water. In this case, the freezing function gets straightened

to mimic a sharp interface and cannot be resolved by Equation 3.21, which should only be

considered valid for mTf
< −0.1 ◦C.
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Figure 3.13 SFC hysteresis: (a) Heterogeneous thermal conductivity, (b) Heterogeneous freezing point
depression.

3.3.4 Hysteresis in freeze-thaw conditions

After applying the procedure suggested in Section 3.2.2 for deriving the SFC for both

freezing and thawing conditions, it was observed that the SFC obeys a hysteresis cycle

during freeze-thaw, as is consistent with experimental observations (Koopmans and Miller,

1966). The hysteretic behavior of permafrost has been reported at many sites, including

a peat plateau in Scotty Creek, Canada (Quinton and Baltzer, 2013) and in riparian

peatlands of the western boreal forest, Canada (Smerdon and Mendoza, 2010). Two sets

of realizations were run to capture the hysteretic behavior, and each set represents one

condition (freeze or thaw). For the freezing scenario, a 10 m one-dimensional initially

unfrozen soil column is considered (initial condition is 5 ◦C) subjected to a top surface

freezing temperature of−5 ◦C at the freezing boundary. Whereas, for the thawing scenario,

the same domain is assumed initially frozen (inital condition is −5 ◦C) and subjected to

a top surface thawing temperature of 5 ◦C. As Figure 3.13 shows, the suggested process

mimics the hysteretic behavior revealed in field data.

3.3.5 Comparison of heterogeneity-based SFCs and existing SFCs

As mentioned in Section 3.1, the existence of a slushy zone in soil is generally understood to

be due to sorptive and capillary processes. Here, after testing the hypothesis that suggests

another rationale for the existence of a slushy zone, we infer that this temperature range

for pore water phase change can be partly ascribed to soil heterogeneities. Comparing the

laboratory results reported by Koopmans and Miller (1966) and others reviewed by Kurylyk
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and Watanabe (2013) to the results of this study, it is evident that the heterogeneity-

induced temperature range for slushy zone, which varies between 0.1 to 0.3 ◦C, is narrower

than those previously reported in lab results (e.g., about 2 ◦C but dependent on grain size

and distribution). Clearly, sorptive and capillary processes appear to account for well over

half the overall temperature range. However, the magnitude of heterogeneity effects are

not inconsiderable in comparison, and may be particularly important for modeling systems

on coarse grids where sub-cell heterogeneity will be present.

3.4 Conclusion

In this study, the effect of local sub-grid/sub-REV heterogeneity of soil thermal conduc-

tivity and depression point temperature on the SFC were investigated using a stochastic-

conceptual approach. It was found that heterogeneity in soil thermal conductivity and

depression point may be used to directly estimate an explicit functional form of the SFC

for saturated porous media in the absence of capillary or sorptive forces. The range of tem-

peratures over which the slushy zone was shown to exist in this study is narrower than those

reported in laboratory studies or those commonly used in existing field-scale permafrost

models for fine-grained soils, even in highly heterogeneous media. These discrepancies arise

because capillary and sorptive processes can expand the temperature interval of freezing

and thawing. Such processes have been studied for decades (Koopmans and Miller, 1966)

and were not the focus of the present study. The temperature range for the slushy zone

generated solely via thermal conductivity heterogeneity is only on the order of 0.2 ◦C for

highly heterogeneous media, and the maximum range due solely to heterogeneity in water

quality is on the order of 0.3 ◦C. While these ranges are small, they would be a signifi-

cant portion of typical SFC ranges, particularly for those observed in coarse grained soils.

Further studies will investigate how the SFC range due to heterogeneities as investigated

in this study interfaces with the SFC range due to capillary and sorptive forces, but at

present the ranges are hypothesized to be summative. This theoretical study suggests that

the slushy zone extent can be different than that determined only from the SWCC-SFC re-

lationship, and the results appears to be consistent with experimentally determined SFCs.

Additionally, this approach suggests that a knowledge of the temperature gradient and the

statistical parameters of soil thermal properties could be applied to obtain an estimate of

the shape and extent of the SFC, i.e., parameters of Equation 3.18, can be obtained.

The proposed approach for generating the SFC led to closed-form relationships for the
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SFC function that were dependent on the degree of soil and water quality heterogeneity,

and collapse into the sharp front condition for pure (i.e. non-porous) media. While not

yet extended to unsaturated systems where variability in water pressure will also play a

significant role in controlling the SFC, the approach provides a theoretical justification for

extending our understanding of both the shape and extent of the SFC in heterogeneous

media. The approach has been shown to replicate the observed hysteretic ice saturation-

temperature relation under freezing and thawing conditions, and may be used to help

justifying the selection of an appropriate SFC function for both column and field-scale

numerical studies of ice evolution in porous media. For practical application, we conjecture

that the relative influence of the individual terms are likely to be roughly additive, i.e., the

range in temperatures over which the freezing curve varies will be the sum of the ranges from

heterogeneous media, heterogeneous depression point, and the traditional curve determined

by analogy to SWCCs.

As a future extension to this work, different sources of heterogeneity can be applied

conjunctively. Moreover, the effect of advective heat transfer in the characteristics of

the slushy zone could be studied, as McKenzie et al. (2007) illustrated that advection

accelerates soil’s freeze-thaw processes. We expect that the inclusion of high rates of

advection would likely compress the SFC temperature range due to heterogeneities as

conductive processes would become less important. However, we would note that in ice-

saturated medium, conduction is normally the dominant process (Williams and Smith,

1989).
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Chapter 4

A trust region approach for

numerical modeling of

non-isothermal phase change
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4.1 Introduction

Permafrost underlies more than half of the exposed land in the Northwest territories of

Canada and elsewhere in the northern hemisphere (Zhang et al., 1999). During the past

decades, permafrost is thawing due to climate change particularly in regions of discontinu-

ous permafrost around 60◦N. The freeze/thaw processes in the soil have effects on climate

change (Schuur et al., 2008, 2015), hydrology, and geotechnical properties. Thawing per-

mafrost increases the rate of carbon release to the atmosphere due to high organic matter

in the thawed soil and release of trapped carbon. In terms of hydrology, changes in soil

freeze/thaw processes leads to changes in surface and subsurface water distribution and

energy balance (Walvoord and Kurylyk, 2016). Moreover, presence of ice instead of water

alters the thermo- hydro- geo-mechanical properties of soil (Chamberlain and Gow, 1979;

Qi et al., 2006; Jamshidi et al., 2015). Proper representation of the phase-change pro-

cess in water-saturated soil models is critical for 1) understanding controls on permafrost

thaw and 2) simulating the impacts of climate change; thus, considering the phase-change

process in the hydrological models is of importance. While many permafrost models have

been developed in the literature (e.g. Hwang et al., 1971; Chamberlain and Gow, 1979),

few of them performed convergence studies against grid and timestep sizes to examine

robustness of their finite element models. Most implementations found in the literature

use a relatively standard implementation of the Galerkin finite element method that is

sensitive to the sharpness of the transition range of temperatures over which phase change

occurs; with increasing sharpness, these methods can suffer from instability and may re-

quire excessively small timesteps. This time sensitivity manifests, in part, as inconsistent

numerical convergence.

Permafrost modeling is essence a thermal problem, in which phase-change occurs within

a temperature range. The simplest form of a phase change problem is called the Ste-

fan Problem, which is the classic two phase/single media, sharp-interface solidification-

liquefaction problem (a moving-boundary problem). The Stefan Problem was first in-

troduced by Josef Stefan (a Slovenian physicist), whose research interest was polar ice

cap melt. The history and review of the Stefan Problem is covered by Hill (1987). Evans

(1951) presented existence of a solution for the Stefan Problem, and Douglas (1956) proved

uniqueness of the solution. An analytical solution to this problem (the Neumann solution)

is available in form of an explicit closed-form expression, which can be found in the studies

done by Solomon (1966); Rathjen and Jiji (1971) and Crank (1999b). In the classic Stefan

Problem, phase-change occurs only at the material’s freezing point, i.e., sharp transition
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from one phase to the other. Soil-water systems, however, undergo phase-change gradu-

ally within a finite range of temperature due to local heterogeneity in pore pressure, soil

properties, and salinity (Amiri et al., 2018; Kurylyk and Watanabe, 2013). This is often

accounted for by introducing a freezing function where liquid water saturation is given

as a function of temperature Sw(T ) which reverts to the Heaviside function (i.e., binary

frozen/unfrozen) in the limit of the classic Stefan Problem. Lunardini (1985) proposed an-

alytical solutions for linear, exponential, and quadratic freezing functions in soils, in which

it was assumed that the heat transfer occurs via conduction only. Although analytical

solutions exist for variations of the Stefan Problem, the solutions are restricted to very

simple configurations. Analytical solutions are only available in 1-D (Hill, 1987; Alexiades

and Solomon, 1993) or for 2-D settings with simple geometry and boundary conditions,

e.g. the 2-D corner freezing problem presented by Rathjen and Jiji (1971). The simplicity

of the problems with analytical solutions obliges us to use numerical treatments in prac-

tical applications. These solutions, however, provide benchmarks for the verification of

numerical solutions (Kurylyk and Watanabe, 2013).

A variety of numerical schemes have been developed for simulating phase-change in

both homogeneous media (e.g. water only) and soil-water systems. Comini et al. (1974)

introduced a finite element model for nonlinear conductive heat transfer. In this model,

latent heat is not taken into account explicitly. Rather, the effect of latent heat is applied to

the bulk heat capacity by correcting and varying it rapidly within the freezing zone leading

to a temperature-dependent “effective heat capacity”. This has become the standard

approach for handling smoothly continuous phase change. Morgan et al. (1978) showed

that evaluating the heat capacity directly from the rate of change of enthalpy can lead

to better results rather than averaging the heat capacity. The averaging technique is

used to avoid missing any peak values of the effective heat capacity, which can lead to

inaccuracy. Nedjar (2002) implemented a relaxed linearization procedure that is applicable

to both stationary and transient heat transfer with an isothermal phase-change. Many

numerical models have been presented to simulate the soil freezing and thawing processes

and combine the soil freeze/thaw with the flow models of porewater. These models have

been developed for various purposes, with different level of complexity, and using different

numerical schemes. Grenier et al. (2018) conducted a thorough intercomparison between

the existing permafrost models for 2-D cases, studied the sources of the discrepancies in

the models’ simulation results, and proposed test cases and guidelines for modelers to test

their models. In their test cases, they showed that the existing models are in general

agreement, particularly, the group of models that solve same equations and utilize same
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characteristic curves. Even though the results are in agreement, there is still a need for

alternate approaches that have improved convergence characteristics.

The major difficulty in modeling permafrost is to track the evolution of the freezing

zone where the phase-change processes occur within the domain. One possible avenue of

development would be to mathematically model the freezing zone as an interface whose

evolution in the domain is described by an evolution law separate from the finite element

heat transfer equation itself. In such approaches, the freezing zone may be modeled as a

sharp interface (discontinuity) as in XFEM (Chessa et al., 2002), Discontinuous Galerkin

(Nourgaliev et al., 2016), and mesh adaptive finite element methods (Provatas et al., 1998),

or be smeared over a small region through regularization as in phase field formulations

(Zheng et al., 2015). In the present work, an energy approach to phase change is proposed

in which the freezing zone is tracked automatically as a part of the solution. The method

entails minimization of a physically based potential derived from the governing boundary

value problem through variational calculus. The method is distinct from usual finite ele-

ment weak formulations in that the finite element discretization is directly applied to the

potential functional, leading to a finite-dimensional minimization problem that must be

solved at each timestep, see (Hirmand and Papoulia, 2018) for an application of a similar

approach in the context of cohesive fracture. The proposed potential accounts for the la-

tent heat capacity of the soil-water-ice system within the freezing zone by introducing a

freezing/thawing function that is a highly non-linear, non-convex function of the unknown

variable, i.e. temperature, in freezing temperature ranges (Dall’Amico et al., 2011). This

necessitates the use of the trust-region minimization algorithm as the core ingredient of

the proposed method. Standard and modified Newton’s methods, e.g. Newton Raphson,

Picard (Celia et al., 1990), and L-scheme (Pop et al., 2004; List and Radu, 2016), may

fail to converge in certain cases when encountering locally non-convex or highly non-linear

functions. We will investigate mathematical soundness of the trust region finite element

formulation by performing convergence studies with grid size and timestep refinement and

comparing this to the standard Galerkin approach. Few studies are available that inves-

tigate convergence of non-isothermal (i.e., non-sharp interface) treatment of phase change

(Grenier et al., 2018).

Finally, the paper is organized as follows: formulation of the energy approach is pre-

sented in Section 4.2 where the governing boundary value problem and the proposed po-

tential function will be presented. Three types of freezing functions (linear, Gaussian,

and sinusoidal functions) used in the numerical simulations will also be presented in this

section. Section 4.5 presents the trust-region minimization algorithm employed for the
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solution of the minimization problem. Numerical simulation results including convergence

studies with timestep and mesh refinement and verification with existing simplified solu-

tions are presented in Section 4.6. Finally, Section 4.7 presents concluding remarks and

proposes possible future work.

4.2 Formulation of the energy approach

While many phase-change problems are cast in terms of temperature as state variable,

here, we use enthalpy, H [E]. Enthalpy is a thermodynamic quantity which represents the

total heat energy of a system relative to some arbitrary energy state. In this approach, the

phase-interface is calculated as a part of solution; thus, explicit tracking of the interface

is not needed. It is historically interesting that the enthalpy approach was not originally

introduced for simulating phase change but as an alternative formulation of heat conduction

problems with varying thermal conductivity by Eyres et al. (1946).

Consider a domain Ω ⊂ Rn, n ∈ {1, 2, 3}, of a soil-water-ice system bounded externally

by boundary Γ, as shown in Figure 4.1. The boundary Γ consists of disjoint parts ΓD and

ΓN on which temperature T and heat flux q are prescribed, respectively. It is assumed

that the boundaries are mutually exclusive and collectively exhaustive (ΓD ∩ ΓN = ∅ and

ΓD ∪ ΓN = Γ). Throughout this paper, we will use subscripts ‘w’, ‘i’, and ‘s’ to refer the

parameters associated with water, ice, and soil phases, respectively. The boundary value

problem governing the conservation of energy in the body can be expressed in terms of

enthalpy as (Ayasoufi and Keith, 2004)

∂H(T )

∂T
Ṫ +∇·(vHw(T )) = −∇·q + hb,

q = −K∇T,
T = T on ΓD,

q = q on ΓN,

(4.1)

in which T [Θ] is temperature, and H(T ) [E] and Hw(T ) [E] are the enthalpy of soil-water-
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Figure 4.1 The domain Ω and relevant definitions. The frozen, slushy, and thawed zones of the
soil-water-ice system are denoted by ΩFrozen, ΩSlushy, and ΩThawed, respectively

ice system and porewater, respectively, defined as

H(T ) =

∫ T

Tref

ρc(T ) dT + Lh (Sw(T )− Sres
w ) , (4.2)

Hw(T ) = nρwcw

∫ T

Tref

Sw(T ) dT , (4.3)

where n, S, ρ [ML−3], c [EM−1Θ−1], and K [MLT−3Θ−1] are the porosity, saturation, den-

sity, bulk heat capacity, and thermal conductivity, respectively. Furthermore, ρc [EL−3Θ−1],

K [MLT−3Θ−1], hb [ET−1] and Lh [E] are apparent bulk heat capacity, apparent thermal

conductivity, the energy due to body heat flux and latent heat of fusion, respectively. The

second term in Equation 4.2 represents the latent heat capacity induced in the system dur-

ing the phase-change process. Tref is an arbitrary reference temperature below the freezing

range. The temperature-dependent bulk media properties, i.e., ρc and K, are expressed as

(Walvoord and Kurylyk, 2016)

ρc(T ) = n(Sw(T ) ρwcw + (1− Sw(T ))ρici + (1− n)ρscs, (4.4)

K(T ) = Kw
SwnKi

SinK(1−n)
s . (4.5)

One can calculate the apparent thermal conductivity by averaging the thermal conductivity

of soil components arithmetically or harmonically. In the case that multi-dimensional heat

transfer occurs, geometric averaging is preferable and can be calculated by Equation 4.5

(Walvoord and Kurylyk, 2016).

The phase-change or slushy zone (ΩSlushy) is defined by the region where the temperature

is in the interval defined by the freezing temperature TF and and thawing temperature TT,

i.e. TF 6 T 6 TT in ΩSlushy. The relation between water saturation and temperature
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Figure 4.2 Soil freezing function schematics: (a) Freezing functions, (b) Derivatives of the functions

in this zone is technically hysteretic (Tian et al., 2014), but often a non-hysteretic is

employed in numerical applications by defining a single soil freezing function (SFC), Sw(T ).

Two commonly used freezing functions include linear and Gaussian functions (McKenzie

et al., 2007). Here, in addition, a sinusoidal freezing function is implemented. The linear,

exponential and sinusoidal freezing functions are expressed in TF 6 T 6 TT, i.e. within

the slushy zone, as

Sw(T ) =
1− Sres

w

TF − TT

(T − TT) + Sres
w , (4.6)

Sw(T ) = (1− Sres
w ) exp

[
−
(
T − Tf

β

)2
]

+ Sres
w , (4.7)

Sw(T ) =
1− Sres

w

2
sin

(
T − 0.5 (TT + TF)

TT − TF

π

)
+

1 + Sres
w

2
, (4.8)

where Sres
w is the residual water saturation and β is a shape parameter. Consistent with

the above definitions, the liquid water saturation is assumed to be 1.0 in the thawed zone

ΩThawed (i.e., where T > TT) and Sres
w in the frozen zone ΩFrozen (i.e., where T > TF). The

derivatives of the above freezing functions are expressed as:

dSw

dT
(T ) =

1− Sres
w

TF − TT

, (4.9)

dSw

dT
(T ) = −2 (1− Sres

w )
T − Tf

β2
exp

[
−
(
T − Tf

β

)2
]
, (4.10)

dSw

dT
(T ) =

π (1− Sres
w )

2 (TT − TF)
cos

(
T − 0.5 (TT + TF)

TT − TF

π

)
. (4.11)
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The schematics of the freezing functions and their derivatives are illustrated in Fig-

ure 4.2. To avoid numerical issues, it is generally preferable to use smooth and glob-

ally differentiable freezing functions. Since the linear freezing function contains two non-

differentiable points (at T = TT and T = TF), the use of exponential and sinusoidal forms

of the freezing function is preferable. The non-linear soil freezing functions in Equations 4.6

to 4.8 make the governing boundary value problem presented in this section non-linear in

nature.

4.3 Derivation of potential function

The present work follows the procedure of calculating the variational form of a BVP dis-

cussed in Bhatti (2005). Integrating the product of the energy conservation equation

(Equation 4.1 without advective and body force terms) multiplied by the test function δT

over the domain Ω, applying the divergence theorem and taking into account the boundary

conditions leads to

δπ =

∫
Ω

δT

(
∂H(T )

∂T
Ṫ −∇·

(
K∇T

))
dV. (4.12)

It follows,

δπ =

∫
Ω

δT

(
∂H(T )

∂T
Ṫ −∇. (K (T )∇T )

)
dV

=

∫
Ω

δT

(
∂H(T )

∂T

T − T̂
γ∆t

−∇. (K (T )∇T )

)
dV

=
1

γ∆t

∫
Ω

δT
∂H(T )

∂T
TdV︸ ︷︷ ︸

δπI

− T̂

γ∆t

∫
Ω

δT
∂H(T )

∂T
dV︸ ︷︷ ︸

δπII

−
∫

Ω

δT∇·
(
K∇T

)
dV︸ ︷︷ ︸

δπIII

, (4.13)

which implies that π = πI + πII + πIII. In what follows, we will obtain πI, πII and πIII.

Recall that G(T ) =
∫ T
Tref

∂H(T )
∂T

TdT , see Equation 4.33. Applying integration by parts yield

G(T ) = H(T )T −
∫ T

Tref

H(T ) dT . (4.14)
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πI is derived as

δπI = δ

(
1

γ∆t

∫
Ω

G(T ) dV

)
, (4.15)

πI =
1

γ∆t

∫
Ω

G(T ) dV . (4.16)

Following the same procedure, πII is calculated as

δπII = δ

(
− T̂

γ∆t

∫
Ω

H(T ) dV

)
, (4.17)

πII = − T̂

γ∆t

∫
Ω

H(T ) dV . (4.18)

For derivation of πIII we follow the same procedure:

δπIII = −
∫

Ω

δT
(
∇·
(
K∇T

))
dV

= −
∫

Γ

δTK∇T · ñdS︸ ︷︷ ︸
0

+

∫
Ω

K (∇δT·∇T ) dV

= δ

(
1

2

∫
Ω

K(∇T ·∇T ) dV

)
, (4.19)

πIII =
1

2

∫
Ω

K(∇T ·∇T ) dV . (4.20)

In an inverse procedure, one could equivalently show that the variation of π leads to the

expression given for δπ in equation Equation 4.31.

4.4 Matrix equations

In order to formulate a finite element solution to the problem given by Equations 4.31

and 4.32, the approximate trial and test functions Th and δTh are sought within finite

dimensional spaces Th and δTh spanned by linearly independent finite element basis func-

tions which approximate T and δT, respectively. The finite element approximations to the
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trial and test functions, Th and δTh, are expressed as

Th = ÑT T̃, (4.21)

δTh = ÑT δT̃, (4.22)

respectively, where Ñ contains the finite element shape functions and T̃ and δT̃ represent

nodal unknowns.

Substituting the finite element approximations Equations 4.21 and 4.22 in Equation 4.31,

and noting that δπh = δT̃ ·∇πh
(
T̃
)

, it is straightforward to obtain the corresponding dis-

crete gradient ∇πh
(
T̃
)

= g
(
T̃
)

as

g
(
T̃
)

= HT̃ + M̃
(
T̃
)

+ F̃, (4.23)

where

H =

∫
Ω

BTKBdV , (4.24)

M̃ =

∫
Ω

ÑT ∂H(T )

∂T
˙̃TdV , (4.25)

F̃ =

∫
Γ

ÑTq·ñdS, (4.26)

and B is a matrix containing the spatial derivatives of finite element shape function defined

as B = ∇Ñ.

The Hessian matrix Htotal = ∇2πh

(
T̃
)

, which may be viewed as being the equivalent

stiffness matrix in a standard Newton-Raphson scheme, is obtained as follows:

Htotal =
∂Ψ

∂T̃

= H +
∂M̃

∂T̃

= H +
∂M̃

∂ ˙̃T

∂ ˙̃T

∂T̃

= H +
1

γ∆t

∫
Ω

ÑT ∂H(T )

∂T
ÑdV . (4.27)
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4.4.1 Variational formulation

We now consider the time discrete case with N timesteps uniformly spaced with time

intervals ∆t: t ∈ {0, t1, t2, ..., tn, tn+1, ..., tN}, where ∆t = tn+1 − tn. Suppose that that

the solution Tn ≡ T (x, tn) is known at timestep tn and the solution Tn+1 ≡ T (x, tn+1)

is sought at timestep tn+1. We make use of the generalized Newmark scheme for time

domain integration in which the link between the time derivatives of the unknown field in

successive timesteps is made in an implicit fashion as

Tn+1 = T̂n+1 + γ∆tṪn+1, (4.28)

in which γ is the Newmark Coefficient and T̂n+1 = Tn + (1− γ) ∆tṪn. The method is

unconditionally stable for γ ≥ 0.5. Here and subsequently, we shall omit the subscript

n + 1 for simplicity; the formulation that follows concerns solution of the problem at

a given timestep tn+1. The spaces of admissible trial and test functions are defined as

follows:

T = {T ∈ H1 (Ω) | T = T̄ on ΓD}, (4.29)

δT = {δT ∈ H1 (Ω) | δT = 0 on ΓN}. (4.30)

in which the space H1 concerns the regularity requirement of the solution spaces. The

variational formulation representing a weak formulation of the boundary value problem

defined by Equation 4.1 is obtained by seeking the stationary point of a potential functional

π. This may be restated as: Find T ∈ T s.t. δπ = 0 ∀δT ∈ δT, where the variation δπ

and the corresponding potential π (for conductive heat transfer and hb = 0) are defined in

Section 4.3 by integrating Equation 4.1 multiplied by a test function δT

δπ =

∫
Ω

δT

(
∂H(T )

∂T
Ṫ −∇·

(
K∇T

))
dV, (4.31)

then, subsequently, the potential functions is derived as:

π =
1

γ∆t

∫
Ω

G(T ) dV − T̂

γ∆t

∫
Ω

H(T ) dV +
1

2

∫
Ω

K(∇T ·∇T ) dV . (4.32)
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For the details regarding the derivation of the potential Equation 4.32, the reader is referred

to Section 4.3. In the above, the function G(T ) is defined as

G(T ) =

∫ T

Tref

∂H(T )

∂T
TdT . (4.33)

It is worth noting that the particular form of the potential Equation 4.32 depends on the

type of the temporal discretization scheme employed due to the presence of time derivatives

of the temperature filed, Ṫ .

4.5 Solution strategy: the trust region algorithm

In a usual solution strategy, one would now linearize the discrete finite element equations

arising from Equation 4.31 within a standard iterative Newton-Raphson scheme. While

this would still be a valid approach, we found that standard Newton-Raphson procedures

fail to converge in many scenarios. This is firstly due to the highly non-linear nature of

the problem at hand, and secondly due the non-convex form of the enthalpy function in

potential Equation 4.32 which may affect the definiteness of the Jacobian matrix, a re-

quirement of the standard Newton-Raphson scheme. We, therefore, approach the solution

to the variational formulation expressed through Equations 4.31 and 4.32 from an en-

ergy minimization perspective using the trust region minimization algorithm (Nocedal and

Wright, 2006). The trust region algorithm always converges to a solution and is notably

capable of handling non-convex objective functions. It is known that the second-order

necessary conditions for minimality will be satisfied at the termination point (Nocedal and

Wright, 2006). The present approach also has a firm physical basis and, to the best of

authors’ knowledge, is the first application of energy minimization methods in modeling

phase-change processes.

We apply a finite element discretization to Equation 4.32 and tackle the resulting finite

dimensional minimization problem. Let πh(T) denote the discrete potential resulting from

applying the finite element discretization to π(T ), where T is the vector of nodal unknowns.

The trust region algorithm used for the minimization of πh(T) is outlined in Table 4.1. The

algorithm seeks the solution to the following constrained minimization problem in each of

its iterations

min
dT∈Rn

mk(dT) = πh(Tk) + g· dT +
1

2
dT·H· dT s.t. ‖dT‖ 6 ∆k, (4.34)
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Table 4.1 Trust-region algorithm description

At timestep n+ 1 and iteration k; given ∆̄ > 0, ∆ ∈
(
0, ∆̄

)
, and η̄ ∈

[
0, 1

4

)
Trust region loop: k = 1, 2, ... until convergence:

Convergence critera:

if ‖g(Tk)‖
‖g(T0)‖ ≤ εg and

πh(Tk)−πh(Tk−1)
πh(T0) ≤ επ → converged, next n

Minimize Equation 4.34 and solve for dT∗k

Calculate ηk =
πh(τ+dT∗

k)−πh(τ)

mk(dT∗
k)−mk(0)

if ηk <
1
4

∆k+1 = 1
4∆k+1

else

if ηk >
3
4 and ‖dT∗k‖ = ∆k

∆k+1 = min
(
2∆k+1, ∆̄

)
else

∆k+1 = ∆k

if ηk > η̄

Tk+1 = Tk + dT∗k
else

Tk+1 = Tk

End of trust region loop

where k is the iteration index and mk(dT) is a quadratic model of the potential around Tk

obtained from the first three terms of the Taylor series expansion of πh with g = ∇πh(Tk)

and H = ∇2πh(Tk) being the gradient and Hessian of the discrete potential, respectively.

For the details regarding the matrix form of the gradient and Hessian of the potential, the

reader is referred to Appendix B. Since the model is more accurate near Tk, the method

tries to find a minimum within a sphere of radius ∆k in which the model can be “trusted”.

We note here that were it not for the constraint ‖dT‖ 6 ∆k, the trust region method

would correspond exactly to the Newton-Raphson method in the case of a positive definite

Hessian. We recall that the Newton-Raphson iteration essentially minimizes a quadratic

model of the objective function on each of its iterations.

The iteration is initialized with an initial approximate solution T0, which is taken to be

the converged solution from the previous timestep, and an initial trust region radius ∆0,

which is taken to be correlated with the size of the freezing temperature range in our imple-

mentation. Within each iteration, a solution dT∗k to Equation 4.34 is accepted as a valid in-

crement in T only if the actual change to πh given by πh(Tk + dT∗k)−πh(Tk) is “big” enough

compared to the reduction induced in the quadratic model given by mk(0)−mk(dT
∗
k), see

the ratio ηk defined in Table 4.1. Additionally, the method modifies the size of the trust

region from one iteration to the next based on the value of η, so that ∆k+1 could be twice
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as large, twice as small, or equal to ∆k. The iterations are terminated when the desired

tolerance for the first order minimality condition, i.e. ||∇π|| ≤ επ, is achieved. It should

be noted that the solution obtained is not sensitive to the values chosen for ∆0, ∆̄, and

η̄. However, these parameters can affect the number of iterations required to converge and

must therefore be chosen wisely for each unique problem to optimize computational cost.

We took ∆0 = 102 ◦C, ∆̄ = 103 ◦C and η̄ = 0.1 in the numerical simulations presented in

Section 4.6.

In order to solve the constrained minimization subproblem defined by Equation 4.34, vari-

ous approximate methods such as the Dogleg or Conjugate gradient method could be used

(Nocedal and Wright, 2006). In the present work, we use the “nearly exact” method of

More and Sorensen (Nocedal and Wright, 2006; More and Sorensen, 1983) particularly be-

cause of its capability in handling indefinite Hessians. The method reduces Equation 4.34

to a 1-D root finding problem expressed as p(λ) = ∆k, p(λ) = −(H(Tk) + λI)−1g(Tk),

which must be solved for λ. It has been proven (More and Sorensen, 1983) that the

trust region algorithm converges to a solution Tk or a limiting value T∗ in the limit of

k → ∞ that satisfy the second-order optimality conditions (i.e., g = 0 and H positive

semi-definite). For more details on the theoretical convergence proof of the nearly-exact

trust region algorithm, the reader is referred to the work of More and Sorensen (1983).

4.6 Numerical simulation results

In this section, numerical finite element solutions of various 1-D and 2-D problems are

presented based on the trust region methodology presented in the previous section. So-

lutions are initially verified against existing analytical solutions for a 1-D soil column. In

addition, convergence studies are conducted in both 1-D and 2-D to examine robustness of

the finite element formulation and dependence of the results on timestep and mesh sizes.

The material and solution properties used in the simulations are found in Table 4.2.
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Figure 4.3 1-D problem domain configuration: geometry and boundary conditions. ∆T = T1 − T0
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Table 4.2 Properties used in simulations

Parameters Values Parameters Values

Ks

[
W.m−1.K−1

]
0.1 Ki

[
W.m−1.K−1

]
2.14

cs

[
J.kg−1.K−1

]
630 ci

[
J.kg−1.K−1

]
2108

ρs

[
kg.m−3

]
250 ρi

[
kg.m−3

]
920

n (porosity) 0.8 Lheat

[
J.kg−1

]
334000

Sres
w 0 ∆t [s] 28 to 7200

Kw

[
W.m−1.K−1

]
0.58 επ 1.0E−6

cw

[
J.kg−1.K−1

]
4187 εg 1.0E−5

ρw

[
kg.m−3

]
1000
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o
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Figure 4.4 Verifying FEM-TR model against: (a) the analytical solution for non-isothermal
phase-change presented by Lunardini (1981), (b) Neumann’s analytical solutions for a near isothermal

phase-change

4.6.1 One-dimensional soil column

The numerical solution is verified against an analytical solution presented by Lunardini

(1981) for a three-zone 1-D domain with non-isothermal phase change. The geometry of

the problem along with the boundary conditions are give in Figure 4.3. The three frozen,

slushy, and thawed zones were all taken into account in the analytic solution. As evident in

Figure 4.4a, the FEM-trust-region (FEM-TR) model developed here precisely matches the

analytical solution for a fairly wide range of freezing temperature intervals ∆T = TT −TF ,

from ∆T = 0.25◦C to ∆T = 5◦C. In order to test the model for the case approaching an
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Figure 4.5 Comparison between FEM-TR and FEM-Newton-Raphson methods by varying (a) timestep
size for freezing temperature range of 0.25◦C and (b) timestep size for freezing temperature range of 1◦C

isothermal phase-change (i.e., sharp interface criterion), we solved the problem with a very

small freezing temperature interval as ∆T = 0.05◦C (−0.05◦C to 0◦C). Results shown in

Figure 4.4b indicate that for a freezing temperature range of 0.05◦C, the slushy-zone gets

narrower as expected and the solution converges to the Neumann analytical solutions.

We also performed temporal and spatial convergence studies to examine robustness of

the proposed FEM-TR model with regards to independence of the results from timestep

and mesh grid sizes. In each case, two freezing temperature intervals of ∆T = 0.25◦C

and ∆T = 1◦C are considered to show that the numerical results are insensitive to this

input parameter. Results of the temporal and spatial convergence studies are shown in

Figures 4.5 and 4.6. In these graphs, the normalized error norm (L2 norm) in s defined as

ē =

√∫
Ω

(Tnumerical − Texact)·(Tnumerical − Texact) dV√∫
Ω
Texact ·TexactdV

, (4.35)

where Texact is the analytical solution and Tnumerical is the solution obtained from the nu-

merical simulation. It should be noted that, in the convergence studies, Texact is taken to

be the solution for the smallest timestep (in the timestep convergence study) or the solu-

tion for the finest mesh (in the mesh convergence study). For the temporal convergence

study (Figure 4.5), the mesh was kept fixed (500 uniform elements) and the problem was
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Figure 4.6 Comparison between FEM-TR and FEM-Newton-Raphson methods by varying (a) mesh
size for freezing temperature range of 0.25◦C and (b) mesh size for freezing temperature range of 1◦C

solved for a series of successively increasing timestep sizes ∆ti = ∆t0 × 2i, i = 0 : 8, where

∆t0 = 28.125 sec. For a temporally convergent method, one expects the rate of convergence

with timestep refinement corresponding to the Newmark’s scheme to be equal to 1.0 in a

log-log scale. We observe that this rate is recovered in the numerical simulation results

irrespective of the size of the freezing temperature interval.

Next, we consider convergence with mesh size refinement shown in Figure 4.6. Results

were obtained by solving the problem with a fixed timestep size ∆t = 1800 sec (total

solution time tN = 5.4×105sec) on a sequence of 10 FE meshes, each one having an element

size twice as small as the previous one. The finest mesh used was obtained by a uniform

discretization of the 1D domain with 10240 elements, i.e., h0 ' 10−4. As can be observed

in Figure 4.6, the estimated asymptotic rate of convergence in ē is approximately 2.0 as

expected from the linear two-noded elements used in our finite element implementation. We

notice that the results obtained with the linear SFC show slightly sub-optimal convergence

rates, which may be attributed to the discontinuity introduced by the derivative of this

function at the boundaries of the freezing zone region. These results confirm that the

proposed algorithm preserves robustness of the finite element method and is free of non-

physical timestep and mesh size dependence. We also report the results obtained by a

standard Newton-Raphson’s scheme in which the convergence criterion of the iterations

was significantly relaxed compared to the one used for the trust-region iteration (i.e., using
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Figure 4.7 Comparison between trust region, Newton-Raphson, and L-scheme algorithms: (a) residuals
and (b) trust region radius.

a relatively large εg = 10−2). As can be observed in Figures 4.5 and 4.6, this approach leads

to unsatisfactory results so that convergence of the numerical solution is highly influenced

by the error of the Newton-Raphson solver.

Finally, we show that a standard Newton-Raphson solution strategy is insufficient to

obtain a solution by showing an instance of loss of convergence in Newton-Raphson iter-

ations. Figure 4.7a compares profiles of the residual errors obtained in the proposed TR-
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Figure 4.8 2-D problem domain configuration: geometry and boundary conditions
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Figure 4.9 Diagonal temperature profile at different timesteps (t = 7.14 to t = 57.14 weeks)

FEM scheme, a standard Newton-Raphson scheme at t = 900 sec. The Newton-Raphson

scheme exhibits an oscillatory behaviour and fails to converge no matter how many iter-

ations are carried out. On the other hand, the trust region algorithm always successfully

achieved a solution within the pre-determined tolerance error. The trust region size is suc-

cessively changed within the trust region iterations, as shown in Figure 4.7b, and a solution

increment is only accepted if it leads to a satisfactory reduction in the objective functional

as discussed in Section 4.5. We have also reported the convergence profile of an L-scheme

solution strategy similar to the one proposed in (List and Radu, 2016) for the problem

of Section 4.6.1. As explained in (List and Radu, 2016), the constant L in the L-scheme
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Figure 4.10 Temperature distribution contours: (a) FEM-TR algorithm at t = 7.14 weeks and (b)
FEM-TR algorithm at t = 57.14 weeks
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Figure 4.11 Calculated convergence rates for a corner freezing problem by varying sizes of (a) timestep,
and (b) mesh

should satisfy L ≥ L0 where L0 = supT |H ′(T )|. We used L = 540 in the present simula-

tion by taking into account the above mentioned criterion. As is evident in Figure 4.7a,

no oscillation is observed in the solution obtained by the L-scheme, however, the iteration

fails to converge to the desired tolerance of εg within the the first 20 iterations are shown in

Figure Figure 4.7a. In fact, the L-scheme took more than 350 iterations to converge to the

same pre-determined tolerance in this case. Simulation of the problem using the FEM-TR

algorithm took approximately 23 times shorter than the L-scheme iteration when using

similar computer codes on the same machine.

4.6.2 Two-dimensional corner freezing block

To further examine the performance of the method in more complicated 2-D settings, a

soil domain with a freezing corner is simulated in this example. As shown in Figure 4.8, a

10×10 m initially thawed domain is considered with left and bottom sides maintained at a

temperature lower than the freezing temperature of the soil. The corner freezing problem

with isothermal phase-change has been solved both analytically (Budhia and Kreith, 1973;

Comini et al., 1974; Rathjen and Jiji, 1971) and numerically (Lazaridis, 1970; Chessa et al.,

2002) using other numerical methods. Figure 4.9 shows the numerical temperature distri-

bution along the diagonal of the domain at different instants of the simulation (t = 7.14

to t = 57.14 weeks), and Figure 4.12 illustrates the temperature history at different diag-
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Figure 4.12 Diagonal temperature history profile

onal nodes. Furthermore, Figure 4.10 shows the temperature distribution at two different

timesteps of the simulation. The proposed algorithm is based on a non-isothermal phase-

change criterion for which no analytical solution is available in the literature to the authors’

knowledge to perform a comparison. The mesh size and timestep sensitivity analyses shown

in Figure 4.11, however, show a convergent behaviour indicative of the robustness of the

numerical results.

4.7 Conclusion

In the present work, a finite element model was proposed for the simulation of heat transfer

with a non-isothermal phase-change on the basis of an energy minimization strategy. The

main goal of this model is to simulate permafrost processes or, in general, conductive heat

transfer problems with non-isothermal first order phase transition, in which the release of

latent heat occurs within a temperature range. The model is verified against an existing

analytical solution for 1-D non-isothermal phase-change, indicating favourable accuracy.

In addition, we showed that the method is capable of handling different regimes of phase

transition by showing numerical results obtained for a narrow freezing temperature range

(−0.05 to 0◦C) and making comparison with the Neumann solution available for the classi-

cal Stefan Problem. Several timestep and mesh size convergence studies was also presented

in 1-D and 2-D in order to show the robustness of the finite element formulation and that

the method is free of nonphysical timestep and grid size dependence. Based upon the con-
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vergence rates for different SFCs, the numerical behavior of the exponential and sinusoidal

SFCs are better than the linear SFC. The use of the trust region minimization algorithm is

am essential ingredient of the proposed method. In particular, it was shown that standard

and modified Newton’s solution strategies fail to obtain a solution in many cases in our

setting. Future efforts may be devoted to examine the efficiency of this model in coupled

heat transfer-fluid flow problems involving advective heat transfer.

71



Chapter 5

Effect of heterogeneity on permafrost

thaw
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Environmental Engineering, Élise G. Devoie, PhD Candidate in the Department of Civil

and Environmental Engineering. I developed and implemented the computer program

written in C++; designed and ran the experimental and sensitivity analysis simulations;

and wrote the major components of the manuscripts. Dr. Craig provided supervision over

designing the experimental and sensitivity analyses, and editing the manuscript. Dr. Mai

provided the idea of Sobol’ sensitivity analysis; prepared the descriptions of the details of

the Sobol’ scheme; and ran the Sobol’ analysis with the provided results of the sensitivity

analysis simulations. Devoie significantly contributes to the field data collection at the

Scotty Creek Research Station (SCRS); hence, she provided the field data and field related

insights, and prepared the study site descriptions.

73



5.1 Introduction

Permafrost underlies nearly a quarter of the exposed land on Earth. The recent state of

the global climate is causing permafrost degradation in several regions, including the dis-

continuous permafrost in the south of Northwest Territories (NWT), Canada (Quinton and

Baltzer, 2013). Climate projections show a rapid increase in the mean annual temperature

of the discontinuous permafrost zone of the NWT (Johannessen et al., 2004). Permafrost

thaw has several effects including, but not limited to, the changes in surface and subsurface

bodies that rely on groundwater exchange (Walvoord and Kurylyk, 2016); changes in the

thermal, hydro-mechanical, and geo-mechanical properties of soil (Qi et al., 2006; Tang

and Yan, 2014; Jamshidi et al., 2015); disturbance in the Earth’s carbon balance via an

increase in greenhouse gas (GHG) emissions due to an increase in microbial activities in the

unthawed soil (Kurganova et al., 2007); and changes in the landscape of permafrost peat

plateaus (Connon et al., 2014). During the last two decades, the permafrost body tem-

perature in discontinuous permafrost regions such as the NWT has increased from −2◦C

(Dyke and Brooks, 2000) to just below 0 ◦C (Devoie et al., 2019; Environment and Natural

resources - Northwest Territories, 2014); thus, a slight increase in the mean annual tem-

perature can lead to an extreme degradation or complete disappearance of the permafrost.

In addition to the mean climate forcing, heterogeneity in system properties and surface

energies can also impact the local evolution of permafrost. The question addressed here,

in part, is what is the significance of such local spatial variability? Recent efforts have

been made focusing on uncertainties in representing the hydrological processes (Slater and

Lawrence, 2013), in part, the thermal processes in the models (Koven et al., 2013).

Permafrost thaws occur in several modes. Jorgenson and Osterkamp (2005) categorized

permafrost thaw modes based on permafrost distribution, thaw rates, ecological effects

using hydrologic changes, soil types, and surface vegetation. It has been observed in the

Scotty Creek Research Station (SCRS) that, in some regions, lateral permafrost thaw is

more significant than the vertical degradation of permafrost. There has been little work

done studying the important drivers of lateral permafrost thaw. Ling et al. (2012) studied

the effect of thermokarst lakes (thaw lakes) on the formation of open taliks and lateral

permafrost thaw, and showed that lakes with mean bottom temperature of greater than 0
◦C act as heat sources with a positive feedback on talik formation. Kurylyk et al. (2016)

investigated the influence of lateral and vertical permafrost thaw on landscape changes,

and noted the importance of characterizing the lateral sources of energy in permafrost

modeling. The body temperature of discontinuous permafrost is typically close to zero,
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and its thickness is less than that of continuous permafrost (McClymont et al., 2013); thus,

a slight change in the input energy may lead to dramatic thaws.

The typical purpose of permafrost modeling is to produce realistic short- and long-

term projections of the state of permafrost. In this regard, multiple permafrost models

have been developed with different levels of complexity, e.g. incorporating coupled pro-

cesses and adding multidimensionality. The two-dimensional trust region model developed

in Chapter 4 has demonstrated superior convergence and stability relative to alternative

methods which makes it uniquely useful for testing over a wide range of conditions and

for the evaluation of ensembles. The main objectives of this chapter are to validate the

developed permafrost model, which has been verified against the analytical solution in Sec-

tion 4.6, with field data; to study the effect of heterogeneity on permafrost body evolution

through sensitivity analyses; and to investigate the effect of the presence of hydrologic

features and the resultant advective heat transfer on lateral permafrost thaw.

5.1.1 Study area

The SCRS is located in the southern NWT, approximately 50 km south of Fort Simp-

son. This research station is situated in an ecosystem-protected peatland dominated by

discontinuous permafrost, which is actively degrading due to increases in the mean annual

temperature and changes to precipitation regimes (Quinton et al., 2018). This site was

chosen for this study focusing on heterogeneity because the landscape is made up of a mo-

saic of differing land cover types, whose interfaces (and evolution) are dependent, in part,

on subsurface heterogeneity. The peat deposits in the study site range from 2 m to 8 m in

depth, overlaying low-permeability glacial till (Quinton et al., 2018). The dominant land-

cover types in the study area include fens, which act as low-gradient hydrological routing

features; collapse scar bogs, which mainly act as storage features; and peat plateaus (Quin-

ton et al., 2009). The peat plateaus are elevated above the surrounding wetland features

due to the presence of segregated ground ice, allowing the high-permeability peat to drain

to the surrounding wetland features and resulting in a relatively dry vadose zone which

is capable of supporting a black spruce canopy unlike the surrounding wetland features

(Quinton et al., 2009). Given the current degradation of the permafrost, the peat plateaus

in this landscape often include taliks which may be isolated, or may become connected

to each other and adjacent wetland features (Connon et al., 2018). Movement of water

through these features is thought to be a driver of preferential thaw in the landscape, which

may help explain variability in permafrost degradation rates (Connon et al., 2014). This
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is supported by observations of peat plateaus adjacent to wetland features that degrade

more quickly (both vertically and laterally) than plateaus with isolated taliks (McClymont

et al., 2013; Baltzer et al., 2014).

The field data used to describe the boundary conditions of the model were collected at

ten sites across the SCRS, capturing the variability in surface temperature across landcover

types. Data was collected using Onset HOBO U12 4-channel thermistors as well as Decagon

Em50 5-channel thermistors and loggers. Vertical temperature profiles extended to an

average depth of 80 cm below the soil surface, with sensor spacing between 10 and 20 cm,

depending on location. It should be noted that the data was collected by the Scotty Creek

research group at Wilfrid Laurier University.

5.2 Methodology

5.2.1 Heterogeneous field realization

To investigate the effect of heterogeneity on permafrost thaw patterns, realistic realiza-

tions of heterogeneous media respecting the specified geostatistical correlation structure

are required. Here, geostatistical software library (GSLIB) is deployed to generate spa-

tially correlated soil realizations using a sequential Gaussian approach (Section 2.4). In

this process, a realization of spatially correlated heterogeneous field is generated from the

specified semivariogram. Then, the heterogeneous soil property fields (density, thermal

conductivity, and hydraulic conductivity) are calculated using the generated perturbation

coefficient field. The mathematical procedure of this perturbation process is as follows:

Ψ (µp, Ξ (x, z) , σp) = µp + Ξ (x, z)σp, (5.1)

where µp, Ξ (x, z), and σp are the homogeneous property (mean value), perturbation co-

efficient, and standard deviation of the property, respectively. The calculated field is then

truncated (if necessary) using the feasible ranges of the properties reported in the literature

to avoid the unrealistic values.

5.2.2 Surface spatial variability

Due to the surface spatial variability (e.g. vegetation, topography, and snow pack) in per-

mafrost complex, the input surface energy and surface temperature will consequently be
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(a)

(b)

Figure 5.1 Process of generating a time-dependent standard deviation of boundary condition: (a)
temperature profiles collected at difference locations at the same time of the year (b) standard deviation

of the temperatures

heterogeneous. One way to represent would be to apply detailed soil-vegatation-atmosphere

(SVAT) model with variable leaf area index (LAI), evapotranspiration (ET), etc. How-

ever, this type representation requires extensive data and a complicated coupled modeling.
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Alternately, to precisely characterize the spatial variability in surface input energy and

generate a realistic semivariogram, extensive metadata collection is required, including

temperature collection at a multiple depths at a large number of different locations of a

research site for a long period. To the best of the author’s knowledge, such data does not

exist at SCRS, or not easily accessible. To circumvent the limited data, the correlation

length for surface is assumed variable (1 to 5 m based on visual inspection of landscape).

It should be noted that using “näıve” procedures for applying a shift in temperature time-

series (e.g. using additive or multiplicative factors) leads to unrealistic modifications such

as shifting the zero-curtain temperature range and period; thus, here, the time-dependent

spatial standard deviation of temperature is estimated using the temperatures collected

from nine different locations at the depth of 10 cm at the same time of the year (Fig-

ure 5.1a). Then, the standard deviation of the temperatures is calculated (Figure 5.1b)
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Figure 5.2 Temperature boundary condition correction procedure at point x: (a) mean temperature
boundary condition profile (b) mapping temperature profile to enthalpy domain (c) applying the
correction to the enthalpy (d) mapping the shifted enthalpy profile back to temperature domain
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and smoothed (Figure 5.1b) for a better behavior in the numerical model. To determine a

plausible surface boundary temperature distribution in space and time, a one-dimensional

spatially correlated field with a sill value of 1.0 and mean of 0 is generated. Correcting

the temperature boundary condition using the generated field is challenging. Because the

zero-curtain effect must be preserved, neither a multiplicative or additive factor can there-

fore be used to examine future plausible surface conditions. This issue arises due to the use

of temperature boundary condition rather than an input energy flux. One solution would

be to simulate the snowpack, vegetation, etc., coupled to two-dimensional model. This so-

lution requires an extremely complicated coupling and with several field-informed inputs,

which was here deemed infeasible. The proposed solution includes calculating the enthalpy

profile, applying a shift in the enghalpy using the field-informed standard deviation and

spatially correlated perturbation coefficients, and mapping the enthalpy profile back to the

temperature domain. The schematic of this procedure is illustrated in Figure 5.2. The

mathematical implementation of the procedure is as follows:

The correction subroutine is presented as

T̄c = Φ
(
x, t, σT (t) , T̄ , Lh, ρc, ξ, Sw,

)
, (5.2)

in which T̄c is the corrected surface temperature, x is the horizontal location of the bound-

ary, t is time, σT (t) is the time dependent standard deviation, T̄ is the mean surface

temperature, and Lh is the latent heat of fusion. Also, ρc, ξ, and Sw are the soil bulk heat

capacity, perturbation coefficient, and water saturation at x, respectively. The steps in

this subroutine are:

1. Convert the mean temperature (T̄ ) to mean enthalpy by assuming a buffer zone for

capturing the zero-curtain effect (here, −0.5 to +0.5 ◦C):

H̄
(
T̄
)

= ρcT̄ + SwLh, (5.3)

2. Apply the correction to the enthalpy, corresponding to a shift in total energy content

of surface:

Hc = H̄
(
T̄
)

+ ρcσT (t) ξ, (5.4)

3. Return to the temperature domain by converting the corrected enthalpy to temper-
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ature using the inverse of Equation 5.4:

Tc = H̄−1 (Hc) . (5.5)

The results and discussions of investigating the effect of surface spatial temperature

variability will be provided in Section 5.3.2

5.2.3 Sensitivity analysis using Sobol’ scheme

A global sensitivity analysis was performed in order to identify the most sensitive parame-

ters of the permafrost model. The method employed here is the Sobol’ sensitivity method

(Saltelli and Sobol’, 1995). The Sobol’ method is a variance-based sensitivity analysis de-

riving sensitivities of inputs (i.e. model parameters) based on estimates of the variance of

target variables (i.e. model outputs) that is caused by perturbing the inputs. The Sobol’

sensitivity indices derived using this method are traditionally the main and the total Sobol’

sensitivity indices. The first describes the impact of the perturbation of a single parameter

on the model output while the latter includes interactions of this parameter with other

model parameters. Both Sobol’ indices (main and total) are normalized with respect to

the overall model variability that can be achieved when all parameters are randomly per-

turbed. Hence, the main effect is bound between zero and one, where a zero sensitivity

indicates a parameter that is not sensitive at all, and a sensitivity of one indicates to a

parameter that is responsible for all changes in the model outputs. The total effect only

has a lower bound of zero. The upper bound can be greater than one due to parameter

interactions. The difference between the total and main effect of a parameter indicates

the magnitude of interactions between this parameter and any other parameter or group

of parameters. Although the theory behind the Sobol’ method is still the one introduced

by Saltelli and Sobol’ (1995), there are plenty of implementations available due to the

necessary approximation of the variances in the model outputs. Several of these methods

are compared by Saltelli et al. (2010). Cuntz et al. (2015) evaluated all these methods and

identified one set of implementations for the main and total effect that converges compa-

rably faster for insensitive parameters (see Appendix D in Cuntz et al., 2015). This set of

implementations has been used in several studies thereafter (Cuntz et al., 2016; Mai and

Tolson, 2019).

The Sobol’ sensitivity analysis is based on only model outputs. This is in contrast to

other sensitivity methods, so called derivative-based methods, that may also require the
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parameter sets that were used to derive these model outputs. The Sobol’ method, similar

to any other variance-based methods, only requires parameter sets that are uniformly sam-

pled covering the full parameter space. To achieve a uniform and most efficient sampling

of the high-dimensional parameter space, a stratified sampling method is commonly used

(Campolongo et al., 2007; Saltelli, 2002; Saltelli et al., 2008). In this work, the method

of Sobol’ sequences was used (Sobol, 1976). Note that it is only by coincidence that the

sampling and the sensitivity methods are based on Sobol’. Technically, any stratified sam-

pling method (e.g. Latin Hypercube sampling) could be coupled with the Sobol’ sensitivity

method.

The model outputs analyzed in the Sobol’ analysis were total permafrost and talik

areas, in consideration of the model parameters: correlation length, freezing point standard

deviation, and density standard deviation. Information about the fixed model parameters

are given in Table 5.2 with the ranges of parameters in Table 5.4. The table contains

information on the uniform ranges from which the model parameters are sampled using

the stratified sampling of Sobol’ sequences. In total K = 1000 Sobol’ sequences have

been used. The budget of a Sobol’ analysis deriving main and total effects for N model

parameters is (N + 2) × K; therefore, 5,000 simulations were run. Each simulation took

almost 2 hours on Sharcnet system; thus, a set of 500 parallel simulations were configured

(i.e. each parallel simulation consists of 10 simulations in a row). This budget calculation

is independent of the implementation but may require more parameter sets, K, to obtain

convergence of sensitivity estimates for insensitive parameters.

The results of the Sobol’ sensitivity analysis will be provided and discussed in Sec-

tion 5.3.1.

5.3 Validation and numerical results

The results obtained by the model developed for this research are validated against the

field data collected at the SCRS in the NWT. The simulation designed for validation is

based upon the measured temperatures at different depths of the active layer of a nearly

saturated peat plateau. The simulated temperatures at two different depths (z = 35 cm

and z = 65 cm) are compared with the the temperatures measured at the same depths of

the plateau (Figure 5.3). The validation period is 15 years (starting on August 20th, 2001

at 22 : 00 : 00 and ending on August 20th, 2016 at 21 : 30 : 00). The soil properties and

numerical solution parameters are listed in Table 5.1. The initial condition was calculated

81



Table 5.1 Properties used in the simulations with heterogeneous boundary condition

Parameters Values Parameters Values

Ks

[
W.m−1.K−1

]
0.1 Ki

[
W.m−1.K−1

]
2.14

cs

[
J.kg−1.K−1

]
630 ci

[
J.kg−1.K−1

]
2108

ρs

[
kg.m−3

]
250 ρi

[
kg.m−3

]
920

n (porosity) 0.8 Lheat

[
J.kg−1

]
334000

Sres
w 18% ∆t [s] 1600

Kw

[
W.m−1.K−1

]
0.58 επ 1.0E−4

cw

[
J.kg−1.K−1

]
4187 εg 1.0E−3

ρw

[
kg.m−3

]
1000

by fitting a curve to the temperature profile vs. depth using piecewise cubic Hermite

interpolating polynomial (PCHIP).

The simulated and measured temperature profiles are shown in Figure 5.4. The mean

absolute error (MAE) and standard error (SE) at z = 35 cm are 0.68 ◦C and 0.0011 ◦C,

and at z = 65 cm are 0.78 ◦C and 0.0022 ◦C, respectively. It should be noted that the

results were obtained without calibrating the model properties. As is evident in Figure 5.4,

the simulated temperature profiles are in an acceptable agreement with the measured

temperature profile during the 15-year simulation period. Particularly, the model captures

the active layer refreeze during the winter periods, which is not as successfully captured by

Active layer
35 cm

65 cm

Boundary condition: 
field data

Validation points

Permafrost

1 m

...

Initial 
condition

T

z

T

t

...

Figure 5.3 Schematics of the experimental simulation
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popular models such as the FEFLOW used by Langford et al. (2019) and NEST (Zhang

et al., 2003) used by Kurylyk et al. (2016). It should be noted that the forcing functions

used by Langford et al. (2019) and Kurylyk et al. (2016) are derived using a coupled model

(e.g. SHAW model), which is more complex than a temperature forcing function and may

explain some of this deficit in performance. The validation period for the model developed

in this research is 15 years, which is relatively longer than common validation periods in

the literature (one to six years).

5.3.1 Sensitivity analyses

To study the effect of soil heterogeneity on permafrost thaw rates, a set of sensitivity

analyses is carried out. The results are analyzed using Sobol’ sensitivity analysis scheme

(Section 5.2.3). An initially fully frozen two-dimensional domain (50 m in length and 5 m

in depth) is considered for each simulation. The domain is subjected to the 15-year field

(a)

(b)

Figure 5.4 Simulated vs. measured temperature profiles: (a) at depth = 35 cm (b) at dept = 65 cm
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Table 5.2 Constant properties used in the simulations

Parameters Values Parameters Values

Kw

[
W.m−1.K−1

]
0.58 Ki

[
W.m−1.K−1

]
2.14

cw

[
J.kg−1.K−1

]
4187 ci

[
J.kg−1.K−1

]
2108

ρw

[
kg.m−3

]
1000 ρi

[
kg.m−3

]
920

∆t [s] 3600 Lheat

[
J.kg−1

]
334000

επ 1.0E−4 εg 1.0E−3

collected temperature (starting on August 20, 2001 at 22:00:00 and ending on August 20,

2016 at 21:30:00) along the top boundary and allowed to cyclically thaw. At the end of each

simulation, the total permafrost and talik areas are calculated as the diagnostic functions

of the sensitivity analysis. The variable properties in each simulation are the heterogeneity

correlation length and standard deviations of soil density and freezing point. The mean

values of soil density and freezing point are 385
[
kg.m−3

]
and −0.75 [◦C], respectively.

The heterogeneous properties are generated using GSLIB. It should be noted that the

thermal conductivity (Ks) and hydraulic conductivity (λs) of soil become heterogeneous as

a by-product of the heterogeneity of soil density using the following pedotransfer functions:

K =
0.135ρs + 64.7

2700− 0.947ρs

, (5.6)

log10 (λ) = 3.491− 15.802ρs + 19.552ρ2
s . (5.7)

The summary of the parameters and cut-off ranges used in the sensitivity analysis is listed

in Tables 5.2 and 5.3. After running Sobol’ analysis, the main (S) and total (ST) Sobol’

sensitivity indices at the end of the simulation are calculated as follows:

The Sobol’ sensitivity indices of permafrost evolution and talik formation during the

last 10 years of simulation are depicted in Figures 5.6 and 5.7, which indicate a stable

Table 5.3 Heterogeneous soil properties used in the experimental analyses

Type
λs Ks cs ρs n Sres

w[
m.s−1

] [
W.m−1.K−1

] [
J.kg−1.K−1

] [
kg.m−3

]
[−] [−]

Peat
[
10−3, 10−6

]
[0.025, 0.1] 630 [10, 760] 0.8 0.18

Silty clay
[
10−5, 10−10

]
[0.4, 2.5] 1381 [700, 1300] 0.5 0.18

Fen 10−3 0.25 400 200 0.95 0
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Table 5.4 Main and total Sobol’ sensitivity indices at the end of the simulation

Parameter [min, max]
Permafrost area Talik area

S ST S ST

Correlation length [m] [1, 12] 0.230 0.247 0.867 0.886

Freezing point SD∗ [◦C] [0, 0.5] 0.755 0.764 0.0 0.071

Soil dry density SD∗
[
kg.m−3

]
[0, 375] 0.005 0.004 0.105 0.110

∗standard deviation

sensitivity analysis with almost no seasonal effect. The Sobol’ sensitivity analysis results

suggest that the total area of permafrost is most sensitive to the relatively narrow range

of soil freezing point, and the total area of talik is most sensitive to the heterogeneity

correlation length. An interpretation of the negligible sensitivity of freezing point (S ' 0)

on the talik formations is that the depth of active layer can increase due to permafrost

thaw, and talik area simply shifts down. It is interesting that the analyses indicate that soil

density (and therefore porosity and thermal conductivity) has minimal effect on both model

outputs; thus, it is inferred that the common homogeneity assumption for soil diffusivity

may be realistic in the permafrost simulation area (at least when in-plane advective heat

transfer is neglected). The distribution of the permafrost and talik areas at the end of

the 5,000 simulations are plotted in Figure 5.5. No clear interdependecies between the

 
Figure 5.5 Permafrost and talik area distributions in the sensitivity analysis
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parameters are evident since the main and total Sobol’ indices are similar.

(a)

(b)

Figure 5.6 Sobol’ analysis indices: (a) sensitivity of permafrost (b) sensitivity of talik
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(a)

(b)

Figure 5.7 Total Sobol’ analysis indices: (a) sensitivity of permafrost (b) sensitivity of talik
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5.3.2 Effect of surface input energy spatial variability on per-

mafrost thaw patterns

The surface input energy of a permafrost complex varies due to spatial variability of the

vegetation, land cover, snowpack, presence of adjacent hydrologic features, etc. The proce-

dure of accounting for these variabilities is elaborated on in Section 5.2.2; In this simulation,

a 50 m×5 m heterogeneous domain is considered, and a uniform initial condition of −2.1 ◦C

(fully frozen) is assumed. The surface boundary is subjected to a 10-year spatially het-

erogeneous surface boundary condition derived from the mean and standard deviation of

8 different locations at SCRS at 10 cm depth (Figure 5.1). The simulations are repeated

for 5 different boundary condition correlation lengths (α = 1 m, 2 m, 3 m, 4 m, and 5 m).

The boundary condition perturbation coefficients along the surface boundary for differ-

ent correlation lengths are plotted in Figures 5.8 to 5.12 (for a sample realization). The

domain’s spatial heterogeneity perturbation coefficients and resultant heterogeneous soil

property fields for the same sample realization are illustrated in Figures 5.13 to 5.15. The

distribution of the mean and standard deviation of the boundary condition perturbation

coefficients are showed in Figure 5.13, which confirms acceptable values for the mean (al-

most zero) and the standard deviation (almost 1.0) for the perturbation coefficients of 50

realizations. It should be noted that tolerances for the mean and standard deviation are

expected since the perturbation coefficients are randomly generated based on a theoreti-

cal semivariogram with a nugget value zero and sill value of 1.0 (details are presented in

Section 2.4).

A comparison between the water saturation profile of a sample realization and that of

the simulation with homogeneous boundary condition is depicted in Figure 5.15. As is

evident, in the absence of any form of advective heat transfer, the heterogeneous surface

boundary condition can lead to formation of a highly variable permafrost depth profile,

which may become preferential water pathways. The normalized ice saturation (S̄ice) is

presented by the spatial integration (vertically and horizontally) of the ice saturation field

in Figure 5.16. The normalized horizontal and vertical ice saturation are calculated as

follows:

S̄ice (z) =
1

W

∫ W

0

Sice (x, z) dx, (5.8)

S̄ice (x) =
1

D

∫ D

0

Sice (x, z) dz, (5.9)
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where W and D are the width and depth of the domain. Figure 5.16 shows the similarity

between the average of the results of 50 heterogeneous boundary condition realizations and

the result of the homogeneous boundary condition simulation. The formation of confined

taliks is evident in Figure 5.15c. The distribution of permafrost and talik areas for the

50 heterogeneous boundary condition simulations at the end of year 10 are plotted in Fig-

ure 5.17. Although the mean of the boundary condition perturbation coefficients for each

realization is almost zero (Figure 5.13a), a relatively wide range of permafrost depletion

and talik formation is evident, which depicts how spatial variability in the input energy

influences permafrost thaw patterns. The quartiles of the permafrost evolution and talik

formations during the solution time for the simulation set using α = 3 m is plotted in

Figure 5.18.

The boundary condition variability factor, τ [◦C], is presented here to quantify the

effect of boundary condition spatial variability on permafrost evolution, which can be a

representation of the level of land surface patchiness. τ is defined as the temporal mean

of the standard deviations of the surface temperature from the mean surface temperature

and is expressed as follows:

τ =
1

N

N∑
t=0

√√√√ 1

X − 1

X∑
i=1

(
Tc (xi, t)− T̄ (t)

)2
, (5.10)

in which TC is corrected surface temperature, T̄ is mean temperature, X is the number of

surface boundary nodes, N is the number of timesteps. Larger τ value represents higher

spatial variability in the boundary condition.

The scatter plot of permafrost area vs. τ for different realizations and correlation

lengths is depicted in Figure 5.19. Fitting a linear trendline to the data grouped by each

correlation length reveals an notable pattern. As the correlation length increases, the

sensitivity to the value of τ increases as well. At a constant τ value, the total area of

remaining permafrost is higher for the simulations with a larger correlation length. More-

over, for a constant correlation length, the total area of remaining permafrost increases in

the realizations with larger τ values. It can be interpreted that the τ coefficient is statis-

tically significant due to its correlation with remaining permafrost area. The combination

of τ coefficient and the correlation length of surface spatial heterogeneity may be used in

projecting the patterns of permafrost thaw.
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Figure 5.8 BC perturbation coefficients for a realization generated with GSLIB (correlation length -
α = 1 m)

Figure 5.9 BC perturbation coefficients for a realization generated with GSLIB (correlation length -
α = 2 m)
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Figure 5.10 BC perturbation coefficients for a realization generated with GSLIB (correlation length -
α = 3 m)

Figure 5.11 BC perturbation coefficients for a realization generated with GSLIB (correlation length -
α = 4 m)
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Figure 5.12 BC perturbation coefficients for a realization generated with GSLIB (correlation length -
α = 5 m)
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(a)

 
(b)

Figure 5.13 Boundary condition perturbation coefficient statistical parameters: (a) mean (b) standard
deviation
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(a)

(b)

(c)

Figure 5.14 Upscaled heterogeneous soil property fields: (a) soil property perturbation coefficients for
one realization (b) soil density (c) soil freezing point
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(a)

(b)

(c)

Figure 5.15 Effect of boundary condition heterogeneity on talik formations: water saturation for (a)
homogeneous boundary condition (b) heterogeneous boundary condition (α = 1m (b) heterogeneous

boundary condition (α = 5m))
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Figure 5.16 Normalized ice saturation integration. Mean vs. homogeneous case: (a) vertical integration
(b) horizontal integration
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(a)

 
(b)

Figure 5.17 (a) Permafrost area distributions for different realizations and correlation lengths at the
end of the simulation (a) Talik area distributions for different realizations and correlation lengths at the

end of the simulation

97



 Figure 5.18 Permafrost and talik evolution during the simulation period for the simulation with α = 3
m
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𝜎 =
1

𝑁
𝑇(𝑥 , 𝑡) − 𝑇(𝑡)

Figure 5.19 Permafrost area vs. boundary condition spatial variability factor (τ)
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5.3.3 Effect of advective heat transfer on lateral permafrost thaw

In this simulation, the effect of an adjacent hydrologic feature on lateral permafrost thaw is

studied with the goal of explaining the lateral degradation of permafrost observed at SCRS.

A conceptual configuration similar to the observed plateaus at SCRS is considered, which

is a 50 m× 8 m perennially frozen heterogeneous domain (−2.1 ◦C) initialized with a fen at

the top left of the cross section (Figures 5.20 and 5.21b). The fen has material properties

consistent with a flow through feature. Three 30-year simulations are run using boundary

conditions with three different mean annual surface temperatures: −2.0 ◦C, 0 ◦C, and

+2.0 ◦C (Figure 5.22). It should be noted that to generate a surface boundary condition

with the desired mean annual temperatures, the technique explained in Section 5.2.2 is

used. The properties used in this simulation are listed Tables 5.2 and 5.3. The details

of applying advective heat transfer are presented in Section 2.2.1. The partial differential

equation governing this problem is defined as

∂

∂t
(ρcT ) =

∂

∂x

(
K
∂T

∂x

)
+

∂

∂z

(
K
∂T

∂z

)
+ ρwcwλαy∆T, (5.11)

where λ [L1T−1] is the isotropic hydraulic conductivity, αy is the hydraulic gradient (i.e.

into page) in y direction, and ∆T [Θ] is the temperature difference between the ambient

soil and flowing water. ρw [ML−3] and cw [L2T−2Θ−1] are the density and specific heat

capacity of water. Here, the values below are assumed for the parameters of advective heat

transfer: The water saturation distribution at the end of year 30 is plotted in Figure 5.23.

Table 5.5 Advective heat transfer parameters

λ
[
m.s−1

]
αy [−] ∆T [◦C]

10−3 0.01 0.5

In addition, the ice saturation is integrated vertically and normalized using Equation 5.9.

The normalized ice saturation profiles are plotted in Figure 5.24 at 5-year intervals. The

simulation results indicate a massive lateral thaw due to the existence of a channel fen,

although a small temperature difference between the flowing water and ambient soil is

assumed. The advective heat transfer is applied only during spring and summer (when

the surface temperature is greater than zero). It can be inferred from Figure 5.23 that

an increase in the mean annual temperature leads to vertical depletion of permafrost, and

presence of a channel fen leads to a significant lateral degradation of permafrost. However,

changes in mean annual temperature do not impact the degree of lateral thaw, which is
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Figure 5.20 Schematics of the conceptual configuration of a permafrost-fen-bog complex

controlled by fixed inflowing temperature. More realistic simulations may be needed to

study the effect of λ, ∆T , and αy on degree of lateral thaw.

A mesh refinement study has been done to ensure the stability of the model for three

different element sizes: 1800 elements (Figure 5.25a), 3500 elements (Figure 5.25b), and

6000 elements (Figure 5.25c). As is evident in Figures 5.26 and 5.27, the solutions for

three different element sizes appear to be converging. This indicates that the solution is

not significantly impacted by the used grid resolution.
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Figure 5.21 (a) Mesh of the numerical solution and (b) simulation domain configuration and initial
condition

Figure 5.22 Boundary conditions with different mean annual temperatures (MATs)
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(a)

(b)

(c)

Figure 5.23 Water saturation distribution at the end of year 30. Mean annual temperature of the
surface boundary: (a) −2◦C, (b) 0◦C, and (c) +2◦C
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(a)

(b)

(c)

Figure 5.24 Normalized vertical integration of ice saturation. Mean annual temperature of the surface
boundary: (a) −2◦C, (b) 0◦C, and (c) +2◦C
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Figure 5.25 Finite element meshes for the grid size study (a) 1800 elements, (b) 3500 elements, and (c)
6000 elements
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(a)

(b)

(c)

Figure 5.26 Water saturation distribution at the end of year 30 for three different meshes. Mean annual
temperature of the surface boundary is 0 ◦C. (a) 1800 elements, (b) 3500 elements, and (c) 6000 elements
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Figure 5.27 Permafrost area timeseries for solutions with different grid sizes
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5.4 Conclusions

In this chapter, the developed permafrost model has been successfully validated against a

15-year temperature data collected at SCRS. The validated model has been deployed in

investigating the effect of soil spatial heterogeneity on permafrost thaw patterns. A set of

sensitivity analyses has been carried out to identify the parameters that permafrost thaw is

most sensitive to. The results of the sensitivity analyses are analyzed using Sobol’ scheme,

which is a variance-based sensitivity analysis method. The Sobol’ analysis indicated that

correlation length of the spatially correlated heterogeneous medium has minimal effect

on the long term evolution of permafrost when surface conditions are homogeneous. In

addition, permafrost evolution and talik formation are most sensitive to the variation of

freezing point (even within a very small temperature range) and heterogeneity correlation

length, respectively.

The heterogeneity of the surface energy boundary condition was represented by locally

perturbing field collected surface temperatures by generating spatially correlated surface

temperature field-informed by spatial temperature variance observed at SCRS. The aver-

aged 15-year permafrost and talik areas for 50 simulations are close to those of the simula-

tion with homogeneous boundary condition; however, a close look at the water saturation

contours of the heterogeneous cases reveals the effect of heterogeneity on the confined talik

formations, which may become preferential water pathways. A factor, τ , was introduced

for quantifying boundary condition variability, which is calculated as the time average of

the standard deviation of the surface temperature. Simulations with larger surface cor-

relation lengths showed more sensitivity to an increase in surface temperature variability.

Moreover, for a constant surface variability correlation length, the general pattern was that

more permafrost would remain frozen at the end of the realizations with higher spatial vari-

ability in boundary condition; however, a patchier distribution of surface land cover can

be expected at end of the simulation (e.g. confined and open talik formation). The most

important outcome of this experiment is the potential necessity of running higher spatial

resolution permafrost simulations that can handle talik formation because the thaw pat-

terns of permafrost using a heterogeneous boundary condition can be significantly different

from that of using a homogeneous boundary condition.

The effect of out-of-page flow on the lateral permafrost thaw has been investigated. The

results indicate that the presence of a hydrologic feature with a relatively higher hydraulic

conductivity than the ambient soil can lead to a massive lateral permafrost thaw, similar

to what is observed at SCRS.

108



Chapter 6

Conclusions and suggestions for

future research

109



6.1 Summary of the research

In this research, characterizing the effect of heterogeneity on permafrost thaw was the

central goal. As a starting point, a realistic and robust permafrost model was developed

that was capable of handling thaw scenarios in highly heterogeneous media without conver-

gence issues. In order to realistically capture the phase-change process in soil, the enthalpy

approach was deployed, which enables us to simulate phase-change over a range of tempera-

tures. The model was verified against the existing theoretical solution for a non-isothermal

phase change and was validated against 15 years of temperature data collected at Scotty

Creek Research Station (SCRS).

In Chapter 3 (Amiri et al., 2018), an extended finite element method (XFEM) model

was developed and implemented to study the the effect of microscopic heterogeneity on

the shape of soil freezing curves (SFCs). The study suggests that the relation between

the soil water characteristic curve (SWCC) and SFC might not be wholly characterizing

the extent of SFCs, and that local heterogeneity may also impact SFC shape and range.

The implemented approach led to a closed-form relationship for representing the SFC,

which is dependent solely upon the soil-water-ice system heterogeneity. It was shown that

the heterogeneity-informed SFC generated using a small standard deviation for the soil

properties yields to an almost sharp relation between temperature and water saturation,

which is expected for homogeneous materials. While the impact of heterogeneity in soil

properties at the representative elementary volume (REV) scale was shown to be small

relative to that due to the media pore size distribution, this is the first study to demonstrate

that local material heterogeneity plays any role in influencing the SFC.

Chapter 4 (Amiri et al., 2019) provides the details of the implementation of the trust

region algorithm that was deployed for alleviating the non-linearity induced by the non-

convex and highly non-linear functions used in the enthalpy approach. The model was

verified against the analytical solution provided by Lunardini (1981). The spatial and

temporal convergence studies were conducted to guarantee acceptable convergence rates.

In this chapter, it was shown that standard methods (e.g. standard Newton-Raphson

and L-scheme) suffer from convergence issues. Moreover, different functions were used for

representing the SFC to illustrate the effect of the shape of the SFC on the convergence

rates. Subsequent application of this model in Chapter 5 further confirmed the robustness

of implementation, as the model was deployed for 15,000 stochastic material property

distributions without failing.

Chapter 5 (Amiri and Craig, 2019) addresses the main goal of this research. The geo-
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statistical software library (GSLIB) was linked to the C++ computer program of the model

to run heterogeneous simulations. A comprehensive sensitivity analysis was conducted to

identify the sensitivity levels of permafrost thaw to the ranges of the heterogeneous soil

parameters with uniform external forcing. The Sobol’ sensitivity analysis indicated a min-

imal dependency of permafrost systems on the degree of heterogeneity of soil dry density

(and therefore thermal and hydraulic conductivities). In addition, the dependency of per-

mafrost evolution on the range of freezing point and talik formation on the heterogeneity

correlation length were shown. The results of the simulations using heterogeneous bound-

ary conditions revealed a completely different distribution of permafrost thaw pattern for

the 50 different realizations of the spatially correlated heterogeneous boundary condition

compared with the simulation with a homogeneous boundary condition. Results demon-

strated that while soil property heterogeneity moderately impacted system response, the

impact was fully eclipsed by the much stronger influence of boundary condition hetero-

geneity. The practical implications of this are that the conventional treatment of frozen

soils in permafrost models as laterally homogeneous is acceptable, but that local hetero-

geneity in surface energetics will generally need to be represented explicitly, particularly

when correlation lengths are large. Finally, an experimental simulation was designed and

conducted to investigate the effect of advective heat transfer on the vertical and lateral

degradation of permafrost, where influence of advection in the y-direction was treated as a

distributed energy source in the xz-plane. This experimental simulation set indicates that

the presence of a highly-conductive hydrologic feature, i.e. a channel fen, can accelerate

the lateral permafrost thaw rates. The use of boundary conditions with different mean an-

nual temperature revealed that an increase in the mean annual temperature solely cannot

create dramatic lateral permafrost degradation, although an increase in the mean annual

temperature has a direct effect on the vertical permafrost degradation.

6.2 Suggestions for future research

Some of the pathways that can be pursued as a continuation of this work are as follows:

1. The advective heat transfer considered in this model was taken to occur due to a

constant pressure head perpendicular to the domain of the problem. The energy

balance equation with mass balance can be coupled to better understand the effect

of advective heat transfer on permafrost thaw.
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2. The developed code can be coupled with land cover models for a better representation

of surface boundary heterogeneity.

3. The existing code can be extended to three dimensions. By this extension, a field scale

simulation can be run, which might provide better insights regarding the projections

of the state of permafrost in the Northwest Territories (NWT).

4. Extend the current work to unsaturated media. Such an extension requires a compli-

cated coupling of two-phase fluid flow (water and air) with heat transfer. Moreover,

this coupling enables the recreation of field conditions in summer, during which the

active layer is almost dry according to field observations.

6.3 Publications and presentations

6.3.1 Journal and conference articles

Chapters 3 and 4 of this thesis is published in peer-reviewed journals, and Chapter 5 is

prepared for a journal article. The list of the publications are as follows:

• Amiri, E. A., Craig, J. R., and Kurylyk, B. L. (2018). A theoretical extension

of the soil freezing curve paradigm. Advances in Water Resources, 111(November

2017), 319-328. https://doi.org/10.1016/j.advwatres.2017.11.021

• Amiri, E. A., Craig, J. R., and Hirmand, M. R. (2019). A trust region approach

for numerical modeling of non-isothermal phase change. Computational Geosciences,

911-923. https://doi.org/10.1007/s10596-019-09846-3

• Amiri, E. A., and Craig, J. R. (2019). Effect of Soil Thermal Heterogeneity on

Permafrost Evolution. In Cold Regions Engineering 2019 (pp. 492-499). Reston, VA:

American Society of Civil Engineers. https://doi.org/10.1061/9780784482599.057

6.3.2 Conference presentations

Segments of this research were presented at the following conferences:
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• Amiri, E. A., Craig, J. R. (2019). Effect of soil thermal heterogeneity on permafrost

evolution. 18th International Conference on Cold Regions Engineering, August 2019,

Quebec City, Quebec, Canada.

• Amiri, E. A., Craig, J. R. (2019). Soil freezing point heterogeneity and talik

formations. 27th IUGG General Assembly, July 2019, Montreal, Quebec, Canada.

• Amiri, E. A., Craig, J. R., Hirmand, MR., Devoie, E. G., Quinton, W. L. (2018).

Numerical simulation of lateral permafrost thaw in Northwest Territories. 5th Euro-

pean Conference on Permafrost. June 2018, Chamonix Mont-Blanc, France.

• Amiri, E. A., Craig, J. R., Hirmand, MR., Devoie, E. G. (2018). Controlling

factors on lateral permafrost thaw in the Northwest Territories: a numerical study.

2018 Joint Meeting of CGU, CSSS, CIG, ES-SSA and CSAFM. June 2018. Niagara

Falls, Ontario, Canada.

• Amiri, E. A., Craig, J. R. (2018). Numerical modelling of permafrost. Cold Re-

gions Research Centre Days. November 2018, Wilfrid Laurier University, Waterloo,

Ontario, Canada.
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Appendix A

Sharp interface model

This chapter thoroughly describes two methods of simulating the two-phase permafrost

problem: the extended finite element method (XFEM) and enthalpy method. The formu-

lations of both methods are derived for a fully saturated conditions. Special treatments is

needed for capturing the phase-interface (in XFEM) or slushy zone (in enthalpy method)

when modeling permafrost systems.

A.1 The XFEM model

Discontinuities within the problem’s domain can be captured by several methods and tech-

niques, one of which is the XFEM. This method is one of the most common numerical

methods for simulating discontinuous media. The idea, which was originally presented by

Belytschko and Black (1999) and Moës et al. (1999) for elastic crack propagation, primarily

relies on enhancing the approximations of a continuous function for a discontinuous space

by adding discontinuous enrichment functions. This method enables the discontinuity to

arbitrarily find its path within the element. There are two types of discontinuities: weak

and strong. In the former type, the primary variable (e.g., temperature) is continuous, but

its gradients are discontinuous, e.g., in problems with phase change. Strong discontinuity

refers to a discontinuity in the primary variable, e.g., problems involving crack propaga-

tion or contact between two interface. Regarding these definitions, the permafrost problem

involves weak discontinuity; thus, the appropriate enrichment function is the Signed Dis-

tance Function, which creates a jump in the temperature gradient field as would exist at

the ice-water interface. The XFEM approximation of the temperature field can be written
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J
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where N and M are the standard and enrichment sets, respectively. The std subscript

denotes an association with standard degrees of freedom, and enr subscript denotes values

associated with the enriched degrees of freedom. The XFEM setup of a medium with a

material interface is shown in Figure A.1, in which the enriched and blending elements are

defined. An element is called enriched if it contains a discontinuity, and, consequently, all

of its nodes are enriched; however, blending elements refer to the ones that contains no

discontinuity, but they are adjacent to an enriched element. These elements cause stability

problems, since the partition of unity would not be satisfied due to that they are partially
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enriched. One may implement some techniques to attenuate the blending element issues.

The Signed Distance Function is expressed as

ϕ(x) = min‖x− x̃‖ sign((x− x̃)·nth) , (A.2)

in which x̃ is a point located on the interface having the minimum distance from the point

x, ‖ ‖ expresses the positive distance of point x from the interface, Figure A.2.

A.1.1 Weak form and discretization of the equations

In the present work, the finite element and finite difference methods (backward Euler) are

employed for the space and time domain discretization, respectively. The weak formula-

tion of the problem is calculated by multiplying the strong form of the problem’s PDE,

Equation 3.3, by an appropriate trial function δT , which could also be chosen arbitrarily,

and integrating it over the problem’s domain (Ω).

Π =
∂

∂t
(ρcT )−∇·

(
K∇T

)
− hb,

δΠ =

∫
Ω

δT ·
[
∂

∂t
(ρcT )−∇·

(
K∇T

)
− hb

]
dΩ = 0.

(A.3)

After implementing Gauss-Green theorem, the weak form of the problem is calculated

as ∫
Ω

δT ·
[
∂

∂t
(ρcT )

]
dΩ +

∫
Ω

∇ (δT )·K∇TdΩ−
∫

Γ

δT ·
(
K∇T ·n

)
dΓN

+

∫
Ω

δT · hbdΩ = 0,

(A.4)

let K∇T ·n = −q̃, δT = NδT, T = NT, ∇N = B, and

δT
T

[∫
Ω

(
Nt
)
T

[(
ρcNT

)t − (ρcNT
)t−1

∆t

]
dΩ +

(∫
Ω

(
Bt
)
TK

t
BtdΩ

)
T

+

∫
Γ

(
Nt
)
Tq̃tdΓ−

∫
Ω

(
Nt
)
ThtbdΩ

]
= 0,

(A.5)

in which N is the shape function, which contains the enriched shape functions of fully or
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partially enriched elements. Finally, the discretized equation is obtained as

CtT
t − C̃t−1T

t−1

∆t
+ KtT

t − f t = 0, (A.6)

where

Ct =

∫
Ω

(
Nt
)
T(ρc)tNtdΩ,

C̃t =

∫
Ω

(
Nt
)
T(ρc)t−1Nt−1dΩ,

Kt =

∫
Ω

(
Bt
)
TK

t
BtdΩ,

f t =

∫
Ω

(
Nt
)
ThtbdΩ−

∫
Γ

(
Nt
)
Tq̃tdΓ.

(A.7)

A.1.2 Conditions on the interface

In this method, a Dirichlet boundary condition must be satisfied at the fully frozen and

fully thawed soil interface, in which the temperature should be equal to the soil freezing

point temperature (Tf).

Tint = Tf on Γint. (A.8)

Equation A.8 denotes that the temperature field is continuous; however, its gradients

normal to the surface are discontinuous due to different thermal conductivities, heat capac-

ities, and densities at the two sides of the interface (x = x−int and x = x+
int). This condition

may be applied using various methods, such as, Penalty, Lagrange multipliers, augmented

Lagrange multipliers, or Nitsche methods. Here, the Lagrange multipliers method has been

implemented.

Lagrange multipliers method

In this method, the interface condition is exactly applied by introducing new degrees of

freedom called the Lagrange multipliers. In order to apply this method to the XFEM

formulation, the problem is posed as a potential energy minimization problem, where the

total potential energy is given by Π. In this manner, the interface condition is defined as
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)
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(A.9)

Since the interface is a line, a one-dimensional shape function (N) is required to estimate

the temperature at any point on the interface using the nodal values of the interface (λI

and λJ in Figure A.3).

To determine the system’s potential energy due to the interface constraint, a constraint

functional is defined as

Πint =

∫
Γint

λintgint

(
T
t
)
dΓ, (A.10)

where λint is the Lagrange multiplier at the interface calculated based on the Lagrange

degrees of freedom. By adding the constraint functional to the potential energy of the

system, the system’s total potential energy would become

Π = Π + Πint ≡ Π +

∫
Γint

λintgint

(
T
t
)
dΓ. (A.11)

Equations A.6 and A.7 represent the fully discrete formulation of a conductive heat
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transfer problem. The phase-interface condition, Equation A.8, must be expressed in a

discrete form as well. To achieve this, Π must be minimized, which can be done by taking

the variation from Equation A.11. This leads to

Π = δΠ +

∫
Γint

δλintgintdΓ +

∫
Γint

λintδgintdΓ

= δΠ + δλ
T
∫

Γint

(
Nt
)
T
(

N
t
T
t − Tf

)
dΓ + δT

T
∫

Γint

(
N
t
)

TNtλ
t
dΓ = 0.

(A.12)

Combining Equation A.12 with Equation A.6 gives the final linear system of equations

as follows:  K
t

(Kt
int)

T

Kt
int 0




T
t

λ
t

 =


F
t

Ft
f

 , (A.13)

where

K
t

= Kt +
1

∆t
Ct, (A.14)

F
t

= f t +
1

∆t
C̃tT

t−1
, (A.15)

Kt
int =

∫
Γint

(
Nt
)
TN

t
dΓ, (A.16)

Ft
f =

∫
Γint

(
Nt
)
TTfdΓ. (A.17)

This results in a solution which is constrained such that the condition gint

(
T
t
)

= 0 is

always met.

A.1.3 Level set method

To capture the evolution of the interface, the level set method is used. The idea behind this

method in a bi-material case is to apply the Signed Distance Function to the space where

the material interface exists. At the end of each timestep, the level set will be updated to

determine the new interface location (Khoei, 2015). This method is schematically shown

in Figure A.4. To calculate the new location of the interface, an appropriate algorithm is

needed to update the level set function. This is done by setting the material derivative of
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Figure A.4 Overview of the level set method

the level set function ϕ(x) equal to zero, which is expressed as

Dϕ

Dt
= 0,

∂ϕ

∂t
+ v·∇ϕ = 0,

(A.18)

where v is the generalized interface velocity that advects the interface, which, in phase

change problems, is the phase-interface. While the generalized interface velocity is mean-

ingful at the interface only, it can be defined for the entirety of an artificial domain which

contains the interface. Since Vϕ = n·v = ∇ϕ
|∇ϕ| ·v, Equation A.18 can be expressed in terms

of the normal velocity:

∂ϕ

∂t
+ Vϕ |∇ϕ| = 0. (A.19)

Normal speed field Vϕ

Calculation of the normal speed field Vϕ is based on the conventional assumption that

the gradients Vϕ and ϕ are orthogonal (Sethian, 1999; Adalsteinsson and Sethian, 1999).

Hence, Vϕ can be defined as the following PDE:

sign(ϕ)∇Vϕ ·∇ϕ = 0. (A.20)
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Equation A.20 is solvable with the following boundary condition

Vϕ(xint, t) = v on Γint, (A.21)

in which v is the interface velocity. An energy balance equation (the Stefan condition)

is required to allocate the interface position and control its speed. The Stefan condition

is applied on Γint and is defined such that the jump in conductive heat flow across the

interface is equal to the latent heat consumed with progression of that interface, i.e.,

ρLfv = −JqK

= −JK∇T K

= (Kth∇Tth −Kfr∇Tfr) · nfr,

(A.22)

where ρ is the water density, Lf is the latent heat of fusion, v is the speed of the interface

progression. The subscripts th and fr denotes values at the fully thawed and fully frozen

side of the interface, respectively. The unit vector outwardly perpendicular to the frozen

phase is denoted by nfr.

A.2 The enthalpy model

Enthalpy is a thermodynamic quantity which represents the total heat energy of a system.

In this method, the phase-interface is calculated as a part of solution; thus, explicit tracking

of the interface is not needed. It is historically interesting that, this method was not

originally introduced for simulating phase change; however, it was introduced by Eyres

et al. (1946) as an alternative formulation for heat conduction problems with varying

thermal conductivity.

The energy conservation equation expressed in enthalpy formulation may be written as

∂H

∂t
+∇·(ṽH) = −∇·q̃ + hb, (A.23)

q̃ = −K∇T, (A.24)

in which the enthalpy (H) of the system is defined as

H(T ) =

∫ T

T0

ρc(T )TdT . (A.25)
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Figure A.5 Soil freezing functions: (a) Freezing functions, (b) Derivatives of the functions

In Equations A.23 and A.25, ρc and K are functions of temperature and, in an arith-

metic averaging scheme, are expressed as

ρc(T ) = n(Sw(T ) ρwcw + Si(T ) ρici) + (1− n)ρscs + nρiLf
dSw

dT
(A.26)

, K(T ) = n(Sw(T ) kw + Si(T ) ki) + (1− n)ks, (A.27)

where, n, S, ρ, c, and k are the porosity, saturation, density, bulk heat capacity, and

thermal conductivity, respectively. The w, i, and s subscripts denote the parameters of

water, ice, and soil phases. Note the last term in Equation A.26, which regards the latent

heat capacity in the phase change process.

The relation between water saturation and temperature is defined by the soil freezing

function, Sw (T ), which defines a relationship between water saturation and temperature.

The two non-hysteretic commonly used freezing functions (Figure A.5) are: linear and

Gaussian functions (McKenzie et al., 2007). The linear freezing function, which denotes

the simplest criteria of soil freezing, can be defined as follows:

Sw(T ) =


bT + 1 T > Tres

Sres
w T 6 Tres

, (A.28)

where b is the slope of the linear function, Sres
w is the residual water saturation, and Tres is

the temperature at which the water saturation reaches its residual value. Accordingly, the
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derivative of this linear function follows

dSw

dT
(T ) =


b T > Tres

0 T 6 Tres

. (A.29)

The Gaussian freezing function, which is a smooth differentiable function, and its deriva-

tive with respect to temperature are defined as

Sw(T ) = (1− Sres
w ) exp

[
−
(
T − Tf

β

)2
]

+ Sres, (A.30)

dSw

dT
(T ) = −2 (1− Sres

w )
T − Tf

β2
exp

[
−
(
T − Tf

β

)2
]
, (A.31)

where Tf is the porewater freezing point, and β is a fitting parameter that defines the

temperature range of slushy zone.

To avoid numerical issues, it is better to use a smooth and differentiable freezing func-

tion. Since the linear freezing function contains a non-differentiable point (at T = Tres),

the exponential form of the freezing function is often preferable. In chapter 3, a theoretical

justification for the fitting parameter of the Gaussian freezing function is provided.

139



Appendix B

Generating heterogeneous field

realization using GSLIB

Geostatistical software library (GSLIB) is an open source computer program written in

FORTRAN. One can use this program to quantify spatial variability of existing fields

using Geostatistics or generate random fields with specified Geostatistical properties. The

list of the subroutines used in the process of generating a spatially correlated field is listed

in Table B.1

For the ease of the reader, the descriptions of the subroutines and required parameters

are simply copied here from the help page of GSLIB’s official website (GSLIB Help Page:

Programs - http://www.gslib.com/gslib help/programs.html, n.d.).

Table B.1 The name and version number of the GSLIB subroutines deployed in this research

Subroutine name Version number

SGSIM 3.001

VMODEL 2.905

GAM 2.905

ADDCOORD 2.905

VARGPLT 2.906
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GSLIB Help Page: SGSIM

 Description:

Sequential Gaussian simulation program

 Parameters:

datafl: the input data in a simplified Geo-EAS formatted file. If this file does not exist then
an unconditional simulation will be generated.
icolx, icoly, icolvr, icolwt and icolsec: the column numbers for the x,y and z coordinates, the
variable to be simulated, the declustering weight, and the secondary variable (e.g., for
external drift if used). One or two of the coordinate column numbers can be set to zero which
indicates that the simulation is 2-D or 1-D. For equal weighting, set icolwt to zero.
tmin and tmax: all values strictly less than tmin and strictly greater than tmax are ignored.
itrans: if set to 0 then no transformation will be performed; the variable is assumed already
standard normal (the simulation results will also be left unchanged). If itrans=1,
transformations are performed.
transfl: output file for the transformation table if transformation is required (igauss=0).
ismooth: if set to 0, then the data histogram, possibly with declustering weights is used for
transformation, if set to 1, then the data are transformed according to the values in another file
(perhaps from histogram smoothing).
smthfl: file with the values to use for transformation to normal scores (if ismooth is set to 0).
icolvr and icolwt: columns in smthfl for the variable and the declustering weight (set to 1 and
2 if smthfl is the output from histsmth).
zmin and zmax the minimum and maximum allowable data values. These are used in the
back transformation procedure.
ltail and ltpar specify the back transformation implementation in the lower tail of the
distribution: ltail=1 implements linear interpolation to the lower limit zmin, and ltail=2
implements power model interpolation, with w=ltpar, to the lower limit zmin.
The middle class interpolation is linear.
utail and utpar specify the back transformation implementation in the upper tail of the
distribution: utail=1 implements linear interpolation to the upper limit zmax, utail=2
implements power model interpolation, with w=utpar, to the upper limit zmax, and utail=4
implements hyperbolic model extrapolation with w=utpar. The hyperbolic tail extrapolation
is limited by zmax.
idbg: an integer debugging level between 0 and 3. The larger the debugging level the more
information written out.
dbgfl: the file for the debugging output.
outfl: the output grid is written to this file. The output file will contain the results, cycling
fastest on x then y then z then simulation by simulation.
nsim: the number of simulations to generate.
nx, xmn, xsiz: definition of the grid system (x axis).
ny, ymn, ysiz: definition of the grid system (y axis).
nz, zmn, zsiz: definition of the grid system (z axis).
seed: random number seed (a large odd integer).
ndmin and ndmax: the minimum and maximum number of original data that should be used
to simulate a grid node. If there are fewer than ndmin data points the node is not simulated.
ncnode: the maximum number of previously simulated nodes to use for the simulation of
another node.



sstrat: if set to 0, the data and previously simulated grid nodes are searched separately: the
data are searched with a super block search and the previously simulated nodes are searched
with a spiral search (see section II.4). If set to 1, the data are relocated to grid nodes and a
spiral search is used and the parameters ndmin and ndmax are not considered.
multgrid: a multiple grid simulation will be performed if this is set to 1 (otherwise a standard
spiral search for previously simulated nodes is considered).
nmult: the number of multiple grid refinements to consider (used only if multgrid is set to
1).
noct: the number of original data to use per octant. If this parameter is set less than or equal
to 0, then it is not used; otherwise, it overrides the ndmax parameter and the data is
partitioned into octants and the closest noct data in each octant is retained for the simulation
of a grid node.
radius_hmax, radius_hmin and radius_vert: the search radii in the maximum horizontal
direction, minimum horizontal direction, and vertical direction (see angles below).
sang1, sang2 and sang3: the angle parameters that describe the orientation of the search
ellipsoid. See the discussion on anisotropy specification associated with Figure II.4.
ktype: the kriging type (0 = simple kriging, 1 = ordinary kriging, 2 = simple kriging with a
locally varying mean, 3 = kriging with an external drift, or 4 = collocated cokriging with one
secondary variable) used throughout the loop over all nodes. SK is required by theory; only in
cases where the number of original data found in the neighborhood is large enough can OK be
used without the risk of spreading data values beyond their range of influence
rho: correlation coefficient to use for collocated cokriging (used only if ktype = 4).
secfl: the file for the locally varying mean, the external drift variable, or the secondary
variable for collocated cokriging (the secondary variable must be gridded at the same
resolution as the model being constructed by sgsim).
nst and c0: the number of semivariogram structures and the isotropic nugget constant.
For each of the nst nested structures one must define it, the type of structure; cc, the c
parameter; ang1,ang2,ang3, the angles defining the geometric anisotropy; aa_hmax, the
maximum horizontal range; aa_hmin, the minimum horizontal range; and aa_vert, the
vertical range.

 Application notes:

This program requires standard normal data and writes standard normal simulated values.
Normal score transform and back transform are to be performed outside of this program
Recall that the power model is not a legitimate model for a multiGaussian phenomenon and it
is not allowed in sgsim
The semivariogram model is that of the normal scores. The kriging variance is directly
interpreted as the variance of the conditional distribution; consequently, the nugget constant
c0 and c (sill) parameters should add to 1.0.



B.1 SGSIM parameter file

START OF PARAMETERS

nodata

1 2 0 3 5 0 −columns f o r X,Y, Z , vr , wt , s e c . var .

−1E+21 1E+21

0 −trans form the data (0=no , 1=yes )

sgsim . trn

0 −con s id e r r e f . d i s t (0=no , 1=yes )

vmodel . var

1 2 −columns f o r vr and wt

0 15 −zmin , zmax ( t a i l e x t r a p o l a t i o n )

1 0 −lower t a i l opt ion

1 15 −upper t a i l opt ion

0 −debug l e v e l (0−3)

GSLIB/ outputs /R1 BCSGSIM nodata . dbg

GSLIB/ outputs /R1 BCSGSIM output . out

1 −number o f r e a l i z a t i o n s to generate

2001 0 2.500000 e−02 −nx , xmin , x s i z e

1 0 0.000000 e+00 −ny , ymin , y s i z e

1 0 1 −nz , zmin , z s i z e

443562 −random number seed

0 8 −Min and max o r i g i n a l data f o r sim

12 −number o f s imulated nodes to use

1 −a s s i g n data to nodes (0=no , 1=yes )

1 3 −mul t ip l e g r id search (0=no , 1=yes ) , num

0 −maximum data per octant (0=not used )

10 10 10 −maximum search r a d i i (hmax , hmin , ve r t )

0 0 0 −ang l e s f o r search e l l i p s o i d

51 51 11 −s i z e o f covar iance lookup t a b l e

0 0 1 −kType : 0=SK,1=OK,2=LVM,3=EXDR,4=COLC

nodata

4 −column

1 0 −nst , nugget NOFILE

2 1 0 0 0 −i t , cc , ang1 , ang2 , ang3

3.000000 e+00 3.000000 e+00 0 −a hmax , a hmin , a v e r t
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GSLIB Help Page: VMODEL

 Description:

This program will take the semivariogram model and write out a file with the same format as
the gam program so that it can be plotted with vargplt The primary uses of vmodel are to
overlay a model on experimental points and also to provide a utility to check the definition of
the semivariogram model.

 Parameters:

outfl: the output file that will contain the semivariogram values.
ndir and nlag: the number of directions and the number of lags to be considered.
azm, dip and lag: for each of the ndir directions a direction must be specified by azm and
dip and a unit lag offset must be specified (lag).
nst and c0: the number of structures and the nugget effect.
For each of the nst nested structures one must define it, the type of structure; cc, the c
parameter; ang1,ang2,ang3, the angles defining the geometric anisotropy; aa_hmax, the
maximum horizontal range; aa_hmin, the minimum horizontal range; and aa_vert, the
vertical range.



B.2 VMODEL parameter file

START OF PARAMETERS:

GSLIB/ save /vmodel . var

2 100 −Nb st ruc ture , Number o f l a g s

90 0 0 .25

0 0 0 .25

1 0 −nst , nugget NOFILE

2 1 0 0 0 −i t , cc , ang1 , ang2 , ang3

2 12 1 −a hmax , a hmin , a v e r t
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GSLIB Help Page: GAM

 Description:

Variogram calculation of gridded data

 Parameters:

datafl: the input data in a simplified Geo-EAS formatted file. The data are ordered rowwise (x cycles fastest,
then y, then z).
nvar and ivar(1) ... ivar(nvar): the number of variables and their columns in the data file.
tmin and tmax: all values, regardless of which variable, strictly less than tmin and greater than or equal to tmax
are ignored.
outfl: the output variograms are written to a single output file named outfl The output file contains the
variograms ordered by direction and then variogram type specified in the parameter file (the directions cycle
fastest then the variogram number). For each variogram there is a one-line description and then nlag lines each
with the following:

lag number (increasing from 1 to nlag
average separation distance for the lag.
the {\em semivariogram value (whatever type was specified).
number of pairs for the lag.
mean of the data contributing to the tail.
mean of the data contributing to the head.
the tail and head variances (for the correlogram).

The {\tt vargplt program documented in section VI.1.8 may be used to create PostScript displays of multiple
variograms.
igrid: the grid or realization number. Recall that realizations or grids are written one after another; therefore, if
igrid=2 the input file must contain at least 2 x nx x ny x nz values and the second set of nx x ny x nz values will
be taken as the second grid.
nx, xmn, xsiz: definition of the grid system (x axis).
ny, ymn, ysiz: definition of the grid system (y axis).
nz, zmn, zsiz: definition of the grid system (z axis). One or two dimensional data may be considered by setting
the number of nodes in some directions to 1. Often, gam is used to check the variogram reproduction of
realizations from a simulation program.
ndir and nlag: the number of directions and lags to consider. The same number of lags are considered for all
directions and all directions are considered for all of the nvarg variograms specified below.



ixd, iyd and izd: these three arrays specify the unit offsets that define each of the ndir directions

standardize: if set to 1, the semivariogram values will be divided by the variance
nvarg: the number of variograms to compute.
The "variogram type" is specified by an integer code
ivtail, ivhead and ivtype: for each of the nvarg variograms one must specify which variables should be used for
the tail and head and which type of variogram is to be computed. For direct variograms the ivtail array is
identical to the ivhead array. Cross variograms are computed by having the tail variable different from the head
variable, e.g., if ivtail(i) is set to 1, ivhead(i) is set to 2, and ivtype(i) is set to 2, then distance measure i will be
a cross semivariogram between variable 1 and variable 2. Note that ivtype(i) should be set to something that
makes sense (e.g., types 1,2, or 3); a cross relative variogram would be difficult to interpret. Further, note that for
the cross semivariogram (ivtype=2) the two variables ivtail and ivhead are used at both the tail and head
locations. The ivtype variable corresponds to the integer code in the list given in section III.1.
cut: whenever the ivtype is set to 9 or 10, i.e., asking for an indicator variogram, then a cutoff must be specified
immediately after the ivtype parameter on the same line in the input file. Note that if an indicator variogram is
being computed then the cutoff/category applies to variable ivtail(i) in the input file (although the ivhead(i)
variable is not used it must be present in the file to maintain consistency with the other variogram types).

 Application notes:

Regularly spaced data in 1-D can be handled by setting ny, nz to one and iyd, izd to zero.



B.3 GAM parameter file

START OF PARAMETERS:

GSLIB/ save /R1 SGSIM output . out

1 1

−1E+21 1E+21 −trimming l i m i t s

GSLIB/ save /GR R1 SGSIM output . out

1 −g r id or r e a l i z a t i o n number

201 0 0 .25 −nx , xmin , x s i z e

201 0 0 .25 −ny , ymin , y s i z e

1 0 1 −nz , zmin , z s i z e

2 100 −number o f d i r e c t i o n s , number o f l a g s

1 0 0 −ixd ( i ) , iyd ( i ) , i zd ( i )

0 1 0 −ixd ( i ) , iyd ( i ) , i zd ( i )

1 −s tandard i z e S i l l ? (0=no , 1=yes )

1 −number o f var iograms

1 1 1 −Tai l var , head var , va r i o type
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GSLIB Help Page: ADDCOORD

 Description:

This program adds 3-D coordinates to gridded points in an ordered GSLIB output file (as
from kriging or simulation).

 Parameters:

datafl: the input gridded data file.
outfl: file for output with X, Y and Z coordinates.
ireal: the grid or realization number to consider.
nx, xmn, and xsiz: the number of nodes in the x direction, the origin, and the grid node
separation.
ny, ymn, and ysiz: the number of nodes in the y direction, the origin, and the grid node
separation.
nz, zmn, and zsiz: the number of nodes in the z direction, the origin, and the grid node
separation.



B.4 ADDCOORD parameter file

Parameters f o r SGSIM

START OF PARAMETERS

GSLIB/ outputs /R1 SGSIM output . out

GSLIB/ outputs /R1 ADDCOOR output . out

1 −r e a l i z a t i o n number to add coord inate

201 0 2.500000 e−01 −nx , xmin , x s i z e

21 0 2.500000 e−01 −ny , ymin , y s i z e

1 0 1 −nz , zmin , z s i z e
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GSLIB Help Page: VARGPLT

 Description:

The program vargplt takes the special output format used by the variogram programs and
creates graphical displays for PostScript display devices. This program is a straightforward
display program and does not provide any facility for variogram calculation or model fitting.
Good interactive variogram fitting programs are available in the public domain



B.5 VARGPLT parameter file

START OF PARAMETERS:

GSLIB/ save /VP. ps

4 −number o f var iograms

1 0 −d i s t anc e l i m i t s ( from Data i f max<min )

1 0 −var ioance l i m i t s ( from Data i f max<min )

1 1 −Plot s i l l (0=no ,1= yes ) , s i l l va lue )

Variogram p lo t

GSLIB/ save /GR R1 SGSIM output . out

1 0 1 0 1 − Variogram #, dash #, pts ? , l i n e ? , c o l o r

GSLIB/ save /GR R1 SGSIM output . out

2 0 1 0 7 − Variogram #, dash #, pts ? , l i n e ? , c o l o r

GSLIB/ save /vmodel . var

1 0 0 1 1 − Variogram #, dash #, pts ? , l i n e ? , c o l o r

GSLIB/ save /vmodel . var

2 0 0 1 7 − Variogram #, dash #, pts ? , l i n e ? , c o l o r
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Glossary

active layer the soil that is regularly exposed to freezing and thawing conditions on an annual basis 2, 9

pedotransfer functions empirical functions linking soil properties to some basic shared characteristics

84

permafrost ground remaining frozen for at least two consecutive years iv, v, xiii, 2, 3, 5, 8–10, 15, 18–20,

22, 24, 74, 88

talik perennially thawed soil between the active layer and permafrost v, xiii, 2, 3, 9, 10, 75, 89, 108

thermokarst lake lake formed due to permafrost thaw and the depression of surface ground 2, 74

zero-curtain effect due to this effect, soil’s temperature stays close to the freezing point of water due

to the effect of latent heat of fusion 79
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