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Abstract 

 

Dbf4-dependent kinase (DDK) is a complex composed of the Cdc7 kinase and 

its regulatory subunit, Dbf4. Initiation of eukaryotic DNA replication requires phosphorylation 

of Mcm2-7 helicase by DDK. Due to its essential role in replication, DDK is also an S phase 

checkpoint response target of Rad53 kinase. Dbf4 is conserved among eukaryotes and interacts 

with its ligands to regulate DNA replication initiation. In the studies detailed in this thesis, I 

characterized the molecular details of Dbf4 binding with its targets and their in vivo 

significance in the budding yeast Saccharomyces cerevisiae. 

Previous structural studies revealed that Dbf4 HBRCT directly binds to the Rad53 

FHA1 domain in a non-canonical way as part of the DNA damage checkpoint response. This 

interaction is phosphorylation independent, which is novel and distinctive since both BRCT 

and FHA are known as a phospoepitope recognition module. Work included in this thesis 

presents the crystal structures of Rad53 FHA1 bound to Dbf4, in the presence of a 

phosphorylated Cdc7 peptide. FHA1 was shown to interact with both subunits of DDK by 

using the canonical binding mode to recognize the Cdc7 phosphopeptide and a non-canonical 

surface to interact with Dbf4. Two interfaces that mediate the Dbf4-Rad53 interaction were 

also identified and revealed that HBRCT and FHA1 do not contribute equally in this binding. 

To prevent precocious DDK activation in G1 phase, Rif1 targets Glc7 phosphatase to 

origins of DNA replication where it dephosphorylates Mcm2-7. As cells approach S phase, 

both DDK and cyclin dependent kinase (CDK) phosphorylate the Glc7 binding region of Rif1, 

inhibiting the Rif1-Glc7 association. A previous study showed that the Dbf4 N-terminus 

interacts with the Rif1 C-terminus to mediate DDK phosphorylation. This Dbf4 region 

includes a HBRCT domain that binds to Rad53 during checkpoint conditions. Two-hybrid 
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analysis revealed the Dbf4 HBRCT domain mediates interaction with Rif1 in a fashion distinct 

from the way it promotes the Dbf4-Rad53 association. The Rif1 C-terminus is also known to 

bind the telomere-associated ligand Rap1. A combination of bioinformatics and two-hybrid 

analysis uncovered a proline-rich (PPDSPP) C-terminal Rif1 motif that is required for Dbf4 

binding, but not Rap1. Combining a deletion of this motif (∆PPDSPP) with mutation of RIF1 

CDK target sites, (5A), resulted in a slow growth phenotype and hypersensitivity to bleocin and 

phleomycin, suggesting impaired function in DNA double-strand break repair. rif1 

5A∆PPDSPP was further combined with mutations affecting either non-homologous end-

joining (NHEJ) or homologous recombination (HR) and revealed that HR disruption causes 

increased rif1 5A∆PPDSPP sensitivity to a range of genotoxic agents while NHEJ disruption 

resulted in a striking rescue of this strain. Therefore, Rif1, besides being modulated by DDK 

and CDK in DNA replication initiation, appears to be regulated by the same kinases during 

cellular recovery from genotoxic stress. 

Recent reports on Mrc1/Claspin suggest a novel checkpoint-independent function in 

DNA replication initiation in fission yeast and humans. This role involves the Mrc1/Claspin 

interaction with DDK through its Cdc7 subunit. As part of the investigations conducted for this 

thesis, two-hybrid assays were carried out and demonstrated that budding yeast Mrc1 

associates with DDK via Dbf4, not Cdc7. Moreover, preliminary in vivo data revealed that 

deletion of budding yeast MRC1 exacerbated cell growth when DDK activity was 

compromised, which is different from what was previously seen in fission yeast. Therefore, our 

initial findings indicate that Mrc1 may function differently in budding and fission yeast DNA 

replication.  
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Chapter 1 

Literature Review and Project Goals 

 

1.1 Budding yeast 

1.1.1 Budding yeast as a research model 

Cells are marvellous entities. Many fundamental discoveries of cell biology have been made, 

and translated into medical science applications. However, cells are still a big puzzle; there is 

so much that we do not know, and the curiosity about them unites scientists to unlock their 

mysteries.    

The cell was first discovered by Robert Hooke in 1665 when he observed a honeycomb 

structure of the cork cell wall. He then drew and published it in his book Micrographia. The 

honeycomb structure also reminded him of a chamber, which he then called a cell. Almost a 

decade later, in 1674, Antonie van Leeuwenhoek observed protozoa and bacteria under a 

microscope for the first time. These findings not only shaped the initial theory of cell biology 

but gave insights to other scientists for the use of microscopes that led to later discoveries in 

biology (reviewed in Gest, 2004; Lawson, 2016). 

Since their discovery, scientists have been formulating theories and performing 

research on how cells work, how they communicate with each other to make up an organism, 

and what happens if they become dysfunctional. Model organisms have been the powerhouse 

to address these biological questions. The budding yeast, Saccharomyces cerevisiae, serves as 

an excellent research model. This organism is also popular as the baker’s yeast and brewer’s 

yeast. It got these names due to its ability to break down sugar and convert it into ethanol, a 

feature that has been appreciated greatly in human civilization from ancient times.  
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Yeast research was pioneered by Øjvind Winge, who introduced the concept of yeast 

mating type in the 1940s (reviewed in Szybalski, 2001), and Carl Lindegreen, who published a 

book “The Yeast Cell: Its Genetics and Cytology” in 1949 (Pomper, 1950). A couple of 

decades later, the yeast researchers adopted and domesticated a yeast strain s288c for 

laboratory use. They selected the cells to be a non-clumpy suspension in liquid culture that can 

grow in medium with minimum supplements (sugar, biotin, a nitrogen source, and various salts 

and trace elements) (Mortimer & Johnston, 1986). This strain has been utilized until now, but it 

has also given rise to several other strains that are widely used in yeast research (reviewed in 

Louis, 2016). Yeast is a single-celled eukaryote that belongs to the Ascomycete (fungi that can 

generate spores inside asci) division. These cells can be grown easily in a laboratory setting 

with relatively inexpensive maintenance. The “wild type” laboratory strain has a doubling time 

of approximately 90 minutes in YPD media (1% yeast extract, 2% peptone, and 2% 

dextrose/glucose) at a temperature of 30°C. The daughter cell grows by pinching off from its 

mother cell. Thus it is called budding yeast (Burgess et al., 2017; Duina et al., 2014). Its 

relative, fission yeast (Schizosaccharomyces pombe) has also gained popularity as a eukaryotic 

research model. 

 

1.1.2  Budding yeast genetics 

Besides being the first domesticated yeast lab strain, s288c is also the first eukaryotic organism 

whose whole genome was sequenced (Goffeau et al., 1996) and this was catalogued 

comprehensively in the Saccharomyces Genome Database (SGD). The budding yeast genome 

consists of 16 chromosomes that with a total size of 12,068 kilobases (Goffeau et al., 1996) 

that designate 5885 open reading frames (ORFs). When this sequencing project came to an 
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end, scientists stepped forward to understand gene function through the Saccharomyces 

Genome Deletion Project (reviewed in Giaever & Nislow, 2014). This loss-of-function based 

approach was facilitated by PCR-based gene deletion (Baudin et al., 1993). Budding yeast is 

also the first eukaryote that was transformed by plasmid for research purposes (Hinnen et al., 

1978). At the gene level, budding yeast shares a high degree of gene function conservation 

with humans, with 47% of its 414 essential genes being replaceable with their human orthologs 

(Kachroo et al., 2015). 

Yeasts facilitate not only cell biology research, but also molecular biology and genetics 

experiments. The ease of its genetic manipulation is most likely the basis of why budding yeast 

has been a preferred model organism. Thanks to its high rate of homologous recombination 

(Baudin et al., 1993; Manivasakam et al., 1995), precise modifications can be integrated 

efficiently into its genome. A promoter modification to modify gene expression, gene deletion 

and epitope tagging can be done in a one-step gene manipulation method (Longtine et al., 

1998). Seamless gene modification that does not leave any scar or foreign DNA sequence in 

the genome can be done with several techniques, including the classic methods pop-in/pop-out 

(Guthrie & Fink, 2004) and delitto perfetto (Storici et al., 2001). Additionally, the yeast 

research community has also been enjoying the effectiveness of CRISPR/Cas9 which provides 

a highly efficient new method to mutate essential genes (Akhmetov et al., 2018). Therefore, 

this microorganism has earned a good reputation, “the APOYG” (the awesome power of yeast 

genetics).  

Budding yeast can live stably as a haploid or diploid organism. The haploid state is 

excellent for studying recessive mutations, and their phenotypes are generally easy to observe. 

Since a loss-of-function mutation of an essential gene is lethal for haploid yeast, this organism 
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accommodates conditional mutations that disrupt but do not eliminate the gene function 

completely. For example, this condition can be achieved by changing the temperature for 

thermo- (ts) and cold-sensitive (cs) mutant strains (Hartwell et al., 1974). 

In addition to vegetative reproduction by budding, S. cerevisiae also produce offspring 

by sexual mating. Haploid budding yeast has a mating-type, either “a” or “α”. The MAT locus 

on chromosome III determines the mating type by expressing either the MATa or MATα allele. 

Budding yeasts that are capable of switching their sex type (homothallic) have their MAT 

locus flanked by both Hidden MAT Left (HMLα) and Hidden MAT Right (HMRa), the 

precursors of MATα and MATa respectively, and express HO endonuclease that produces a 

double-stranded DNA break at the MAT locus. This leads to recombination and gene 

conversion to either MATα or MATa. For haploid budding yeast, which requires a partner with 

the opposite mating type (heterothallic) to mate, the mating between a and α results in diploid 

yeast. When budding yeast cells sense that cells with a different mating type are around, they 

initiate mating by producing pheromone (a-factor for a cells and α-factor for α cells) and both 

change their cell morphology from spherical into a pear-shape cell (This look is called 

“shmoo” due its resemblance to the fictional Al Capp 1948 Li’l Abner character) to form the 

mating projection. From the cell cycle perspective, they also arrest themselves in G1 phase to 

maintain the haploid number of chromosomes before mating. Once formed, diploid cells 

continue onto vegetative reproduction to generate daughter cells. Budding yeast in its diploid 

state is utilized to study meiosis and recombination. This requires forcing diploid cells back 

into a haploid state through sporulation. Under nutrient starvation conditions, diploid cells 

undergo sporulation to generate four progeny haploid cells (tetrad) in an ascus (a sac-like cell). 

The tetrad can be separated into four individual spores by ascus digestion and manual 
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dissection using a micromanipulator. The spores are then grown in the appropriate media for  

subsequent investigation (Bardwell, 2005; Ni et al., 2011; Steensels et al., 2014). 

Based on the characteristics mentioned above, yeast cells have proven themselves to be 

a fantastic eukaryotic research model. For example, yeast has accelerated the understanding of 

biology by facilitating gene discovery and the investigation of gene function. Numerous Nobel 

Prizes have been awarded for fundamental yeast discoveries. Leland Hartwell who worked 

with S. cerevisiae, Paul Nurse with S. pombe and Timothy Hunt with sea urchin eggs shared a 

Nobel Prize in 2001 for their discoveries of the regulators of the cell cycle. This was then 

followed by several other Nobel Prizes for yeast research, including those for Jack Szostak 

with S. cerevisiae, Elizabeth Blackburn and Carol Greider who worked with Tetrahymena 

thermophila in 2009 for their discovery of telomere function in protecting the chromosome 

ends and telomerase that extends telomere length, and most recently, Yoshinori Ohsumi for his 

discoveries of mechanisms for autophagy in S. cerevisiae in 2016 (reviewed in Hohmann, 

2016). So far, yeast research does not seem to be slowing down, and it will be exciting to see 

what more it uncovers in the future.  

 

1.2 Overview of the cell cycle 

Organisms proliferate and grow by increasing their cell numbers. For budding yeast, cell 

proliferation accommodates asexual reproduction. To accomplish this, a parental cell divides to 

make two new daughter cells through the cell cycle. This consists of two main events: 

interphase, where a cell grows and duplicates its genome, and M phase, where the replicated 

chromosomes separate, the nucleus splits and a cell divides to give rise to two identical 

daughter cells. Interphase facilitates cellular growth in G1 (gap 1) and G2 (gap 2) phases and 
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replicates the cell’s DNA content in S (synthesis) phase in between. The duplicated 

chromosomes are connected as sister chromatids during interphase, which are then separated 

after the break down of nuclear envelope during mitosis in metazoan. In budding yeast,  

nuclear envelope remains intact but expands to accommodate the chromosome segregation; 

hence it is called as closed mitosis (Arnone et al., 2013; De Magistris & Antonin, 2018; Souza 

& Osmani, 2007). The chromosomes are moved to opposite poles of the cell during mitosis, 

followed by cell division (cytokinesis) (reviewed in Alberts et al., 2002). Cytokinesis in 

budding yeast is asymmetrical, where the initial size of the daughter cell (bud) is much smaller 

than the mother. The process takes place at the narrow neck (bud-neck) between the mother 

and the bud. The budding emergence leaves a chitin-rich ring that remains on the mother cell 

wall, termed the bud scar, which determines the reproductive age of budding yeast and can be 

stained with Calcofluor (Pringle, 1991). After cytokinesis, the duplicated cell organelles are 

distributed equally between the two cells. An overview of the cell cycle is presented below, 

with the focus on S phase in budding yeast (Figure 1.1). However, the processes and the factors 

involved in it are mostly conserved among eukaryotes. 
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Figure 1.1. The budding yeast cell cycle. The stages of the yeast cell cycle including the 

formation of the bud/daughter cells: the first growth phase (G1), the DNA synthesis phase (S), 

the second growth phase (G2), mitosis (M). The cells that are not dividing stay in the quiescent 

phase (G0). START represents the checkpoint between G1/S phase transition. In budding 

yeast, the bud emerges at the onset of S phase and eventually pinches off from the mother cell 

during cell division.  

 

1.3 DNA Replication 

During S phase, DNA is duplicated in a semi-conservative way in which each parental strand 

serves as a template for nascent strand synthesis. Two kinases govern this stage, cyclin-

dependent kinase (CDK) and Dbf4-dependent kinase (DDK), with their regulatory subunits, S 

phase cyclins (Clb5 and-6), and Dbf4, respectively. DNA duplication starts when the 

replication machinery finds eligible positions on the chromosome and unwinds them. The 
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machinery then elongates the newly synthesized DNA until every single base of DNA is 

replicated. Finally, DNA synthesis is terminated by removing the machinery from the 

chromosomes. The accuracy of DNA replication is robustly maintained to preserve the correct 

genetic information passed on to the newly formed cells.  

 

1.3.1 DNA replication initiation 

DNA replication is facilitated by the assembly of replication factors onto specific locations in 

the genome of budding yeast, termed origins of DNA replication. The loading of these factors 

takes place in late M and G1 phases and marks all the eligible origins that may be activated in 

S phase, this process is therefore called origin licensing. In budding yeast, origins are also 

called Autonomously Replicating Sequences (ARSs) due to their ability to drive the replication 

of episomal plasmids (Stinchcomb et al., 1979). The length of an ARS is generally 100-200 bp 

and contains 11 bp of T-rich ARS consensus sequence (ACS) (domain A) and an adjacent 

domain B both of which are essential for loading the replication factors (Theis & Newlon, 

1997). The ACS element is recognized and bound by the initiator of the loading process, a six 

subunit origin recognition complex (ORC; Orc1-6), in an ATP-dependent manner (Bell & 

Stillman, 1992). ORC then recruits another loading factor, Cdc6, which also requires the 

presence of ATP (Speck et al., 2005). Orc1-5, but not Orc6, and Cdc6 belong to the AAA 

(ATPases associated with diverse cellular activities) ATPase family, in which the ATPase 

activity stabilizes the binding of ORC and Cdc6 (Speck & Stillman, 2007). ORC-Cdc6 then 

recruits the main motor of the replicative helicase, Mcm2-7, in complex with Cdt1. The Mcm3 

subunit mediates  Mcm-Cdt1 loading via its C-terminus and Cdt1 stabilizes this association 

(Frigola et al., 2013). Since DNA unwinding requires two helicase hexamers that move 
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bidirectionally, the first helicase loading is then followed by a second one in the opposite 

orientation. Single-molecule studies performed by Ticau et al. (2015) proposed that each 

hexamer is loaded individually by a different mechanism to achieve this particular 

configuration. The first hexamer is loaded by the ORC-hexamer interaction, whereas the 

second is facilitated by its interaction with the first hexamer (Ticau et al., 2015). The final 

result of this loading is double Mcm2-7 hexamers facing each other in an N-terminal head to 

head configuration to complete the pre-replicative complex (pre-RC) (Figure 1.2). Pre-RCs are 

then bound by the Sld3-Sld7-Cdc45 complex in a DDK-dependent manner (Kamimura et al., 

2001; Tanaka et al., 2011; Yabuuchi et al., 2006). Cdc45 is essential in activating the helicase 

(Owens et al., 1997; Rios-Morales et al., 2019; Zou et al., 1997) and translocates along the 

DNA with the helicase. Sld3 loads Cdc45 onto origins, while Sld7 weakens the binding 

between Sld3 and Cdc45 to help Sld3 dissociate from Cdc45 prior to elongation (Tanaka et al., 

2011).  

Licensed origins are activated in S phase through a series of phosphorylation events 

performed by DDK and CDK (Figure 1.2). The resulting event is termed origin firing. At the 

onset of S phase, there is a spike of expression of the regulatory subunits of the kinases, Dbf4 

(Jackson et al., 1993; Nougarède et al., 2000; Oshiro et al., 1999; Pasero et al., 1999) and S-

phase cyclins, Clb5 and Clb6 (Schwob & Nasmyth, 1993). DDK phosphorylates Mcm4 (Randell 

et al., 2010; Sheu & Stillman, 2006) on its N-terminus relieving its inhibitory effect on helicase 

activity (Sheu & Stillman, 2010). CDK phosphorylates Sld3 and Sld2 thereby promoting their 

interaction with the scaffold protein Dpb11 (Muramatsu et al., 2010; Tanaka et al., 2007; 

Zegerman & Diffley, 2007), followed by the formation of a pre-Loading complex (pre-LC) 

between Sld2, Dpb11, GINS (go-ichi-ni-san), and DNA polymerase ε (Muramatsu et al., 2010). 
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The result of phosphorylation by DDK and CDK is an active helicase in the form of Cdc45-

Mcm2-7-GINS (CMG), that moves along the DNA template bi-directionally, associated with 

DNA polymerase ε, ensuring that DNA unwinding activity by the helicase is always followed 

by DNA synthesis. 
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Figure 1.2. Model of DNA replication initiation. DNA replication is initiated by the loading 

of pre-Replicative complex (pre-RC), which also licenses the eligible origin of replication in G1 

phase (origin licensing). This loading is then followed by origin activation (origin firing) by a 

series of phosphorylations events by Dbf4-dependent kinase (DDK) and S-phase Cyclin-

dependent Kinase (CDK). DDK precocious phosphorylation to Mcm2-7 subunits is prevented 

by Rif1-Protein Phosphatase 1 (Glc7 in budding yeast) complex in G1 phase. Under DNA 

replication stress or depletion of dNTP, Rad53 checkpoint kinase inhibits subsequent origin 

firing by phosphorylating Dbf4 and Sld3 to target direct DDK and indirect CDK deactivation, 

respectively (reproduced with permission from Larasati & Duncker, 2016). 

 

 

Since phosphorylation of CMG helicase components is integral for origin firing, the 

timing of phosphorylation is robustly regulated. DDK activity coincides with the rise of Dbf4 

expression level in late G1/early S phase (Jackson et al., 1993; Nougarède et al., 2000; Oshiro et 

al., 1999; Pasero et al., 1999). Thus, DDK activity is low through most of G1 phase and peaks 

during S phase. However, the basal DDK activity in early G1 phase may phosphorylate Mcm2-

7 subunits prematurely. Cells counteract this by recruiting Rif1 (Rap1-interacting factor 1) to 

origins, which in turn targets Protein Phosphatase-1 (PP1; Glc7 in budding yeast) to reverse 

precocious Mcm2-7 phosphorylation. Indeed, cells with deletion of RIF1 or expressing a Rif1 

mutant that is defective in Glc7 binding exhibit Mcm4 hyperphosphorylation in G1 phase (Davé 

et al., 2014; Hiraga et al., 2014; Mattarocci et al., 2014). Interestingly, Rif1, which acts in 

opposition to DDK in G1 phase, is also a DDK phosphorylation substrate in S phase. DDK 

phosphorylates Rif1 at sites adjacent to its Glc7 binding region, consequently breaking the 

association between Rif1 and Glc7. Rif1 then no longer promotes Mcm2-7 dephosphorylation. 

DDK phosphorylation of Rif1 is mediated by an interaction between Dbf4 and Rif1 (Hiraga et 

al., 2014) (Figure 1.3).  
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Figure 1.3. The proposed model of Rif1 as a replication timing regulator. In G1 phase when 

DDK activity is low, Rif1 recruits Glc7 to dephosphorylate Mcm4 and prevent premature 

helicase activation. In S phase when DDK activity is high, DDK deactivates Rif1-Glc7 activity 

by binding and phosphorylating Rif1 to disrupt the Rif1-Glc7 association (adapted from Hiraga 

et al., 2014). 

 

On top of Rif1-Glc7 dephosphorylation activity, cells have another safeguard mechanism 

to keep Mcm2-7 subunits inactive prior to origin firing. After MCM loading to form the pre-RC, 

Mcm2-6 subunits undergo SUMOylation, peaking in G1 phase, and diminishing in S phase. This 

MCM SUMOylation stabilizes the association between MCM subunits and Glc7, and cells 

expressing a mutant form of Mcm6 that maintain stable SUMOylation throughout the cell cycle 

are defective in initiating DNA replication. Interestingly, the declining level of MCM 

SUMOylation coincides with the rise of MCM phosphorylation, consistent with SUMOylation 

and phosphorylation of MCM proteins being incompatible during S phase (Wei & Zhao, 2016). 
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1.3.1.1 Origin Firing Timing 

Eukaryotes have a larger genome size compared to prokaryotes. To accomplish genome 

duplication efficiently, eukaryotes have many replication origins distributed throughout the 

genome. Therefore, the length of S phase is not proportional to genome size. In G1 phase, all 

the potential origins are licensed by pre-RC formation. However, only a subset of them will be 

activated each S phase in a given cell. Among those origins that are activated, each must fire 

no more than once during S phase to avoid overreplication of the genome. Moreover, these 

origins do not fire simultaneously during S phase, but are rather activated sequentially. This 

pattern raises the question of whether origin replication timing follows a predetermined or 

stochastic rule. The favoured notion is that mammalian cells mainly activate origins randomly  

(Löb et al., 2016; White et al., 2004; Demczuk et al., 2012). However, they set up replication 

timing immediately after pre-RC formation in G1 phase, termed as timing decision point 

(TDP) (Dimitrova & Gilbert, 1999; Rhind & Gilbert, 2013). TDP is defined in a spatial and 

temporal manner which depends on several elements including the access of limiting firing 

factors (Collart et al., 2013; Mantiero et al., 2011; Tanaka et al., 2011; Wong et al., 2011), 

histone modifications (Bar-Ziv et al., 2016; Unnikrishnan et al., 2010), local chromatin status 

(Hoggard et al., 2018; Méchali et al., 2013), and transcription sites (MacAlpine et al., 2004). 

Furthermore, TDP is not a fixed pattern. In multicellular eukaryotes, TDP can change based on 

cellular cues during cell development and differentiation  (Dixon et al., 2015; Nordman & Orr-

Weaver, 2012; Pope et al., 2010). 

In contrast to mammals, budding yeast replication initiation sites are well-defined 

(Newlon & Theis, 1993). Among budding yeast active origins, some of them fire at the 

beginning of S phase and others fire later (Figure 1.4) (Fangman et al., 1983; Raghuraman et 
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al., 2001). In general, early-firing origins are the ones that have enriched association with  

limiting firing factors at the onset of S phase, such as Dbf4, Sld3, Sld2, Dpb11, and Cdc45 

(Köhler et al., 2016; Mantiero et al., 2011; Osborn & Elledge, 2003; Tanaka et al., 2011). 

Several early-firing origin clusters also have enhanced Mrc1 association in fission yeast. In 

budding yeast, Mrc1 is shown to associate with early origin ARS 305 (discussed further below) 

(Hayano et al., 2011; Matsumoto et al., 2017; Osborn & Elledge, 2003). In contrast, late 

origins associate with proteins that prevent firing in early S phase, such as Rif1 (Hafner et al., 

2018; Hayano et al., 2012; Peace et al., 2014; Yamazaki et al., 2012) and Rpd3 deacetylase 

(Aparicio et al., 2004). In mid/late S phase, late-firing origins eventually recruit the limiting 

factors to initiate DNA replication. Since some limiting firing factors are also part of the 

replisome, for example Cdc45, they are thought to be recycled from the completed forks that 

emanated from early origins to new forks from late origins (Aparicio, 2013; Tanaka et al., 

2011). 

Origins that are licensed in G1 phase but are inactive in S phase serve as ‘back-up’ 

dormant origins (Figure 1.4). During elongation, the active forks may encounter DNA damage 

or replicative stress that stall their progression. In case the forks stall irreversibly or collapse 

(disassembly of replisome components) and cannot resume DNA replication when the problem 

is fixed, DNA replication initiation from dormant origins can compensate (Alver et al., 2014; 

McIntosh & Blow, 2012). Similar to late origins, dormant origins in eukaryotes  also have 

enriched  Rif1 association which helps to ensure they are not activated prematurely (Hayano et 

al., 2012; Moiseeva et al., 2019; Peace et al., 2014). 
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Figure 1.4. Replication firing timing in eukaryotes. In general, the origins of replication can 

be divided into three groups based on their firing timing during S phase: early, late, and 

dormant. Origin bubble represents when the origin DNA template is unwound by the helicase. 

It gets bigger as the helicase progresses during S phase (replication forks). Under normal 

conditions when dormant origin firing is not needed, they are passively replicated by forks 

emanating from neighbouring origins. When there is replication stress, forks that stall and then 

collapse are no longer able to resume DNA replication during recovery. This can be 

compensated for through DNA synthesis initiating from normally dormant origins.  

 

 

1.3.2 DNA replication elongation 

DNA is synthesized in a 5’ to 3’ orientation, meaning that the nascent DNA chains generated 

using Watson (top/left-hand) and Crick (bottom/right-hand) strands grow in opposite 

directions. More importantly, the elongation of both strands occurs differently, with one strand 

growing continuously (leading strand) and the other discontinuously (lagging strand). The 

products of  lagging strand synthesis are called Okazaki fragments, named after one of the 
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Japanese scientists who discovered them in 1968 (Okazaki et al., 1968a, 1968b). Due to the 

complexity of DNA replication, the CMG helicase and DNA polymerase require accessory 

factors, which together make a multiproteins complex called the replisome (Figure 1.5). 

 

Figure 1.5. Model of the eukaryotic replication fork and the replisome. The CMG helicase 

unzips the double-stranded duplex into single-stranded DNA (ssDNA) templates. Replication 

Protein A (RPA) stabilizes and prevents ssDNA from re-annealing. Replication Factor C 

(RFC) and PCNA tether and promote the polymerase processivity. Nascent DNA is 

synthesized bi-directionally, with pol ε acting as the leading strand polymerase, and pol δ 

generating the Okazaki fragments of the lagging strand. Fork protection complex (FPC) 

maintains the stable association of the helicase and polymerase as a replisome. For simplicity, 

the RNA primer and the primase-pol α complex are not shown in this diagram. 

  

Budding yeast has 3 DNA polymerases (pol α, pol ε, and pol δ). Their DNA synthesis 

task follows the unwinding activity of the CMG helicase that converts duplex DNA into single-

stranded template. The ssDNA is kept separated by binding of Replication Protein A (RPA) to 

allow DNA duplication. However, the polymerase does not immediately generate nascent 

DNA from the template. DNA polymerase works by adding new nucleotides to a preexisting 

strand (primer). The primer consists of a short RNA fragment with 8-10 nucleotides in length 

synthesized by primase. Pol α extends the primer length by adding 10-15 nucleotides (reviewed 
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in Pellegrini, 2012). This polymerase is linked to the helicase by Ctf4 (Zhu et al., 2007). Pol α 

is then replaced by pol ε and pol δ, for the leading and lagging strands, respectively. The 

reason why pol α does not function as the main polymerase is that it has a high error rate 

(Kunkel, 2004) and a lack of proofreading activity (Pavlov et al., 2006). Pol ε is readily 

available replisome as it is loaded during DNA replication initiation. Its synthesis activity is 

stimulated by Proliferating Cell Nuclear Antigen (PCNA) sliding clamp, the recruitment of 

which to DNA requires the clamp loader Replication Factor C (RFC) (Georgescu et al., 2014; 

Langston et al., 2014). RFC also aids the recruitment of pol δ to the lagging strand and tethers 

it to PCNA. This sliding clamp also functions as a processivity factor for pol δ (Hedglin et al., 

2016; Mondol et al., 2019; Schauer & O’Donnell, 2017). 

Pol ε reads the template in a 3’ to 5’ direction and generates the leading strand in a 5’ to 

3’ direction without any interruption. Pol δ also synthesizes the lagging strand in a 5’ to 3’ 

orientation, but it works discontinuously as it generates approximately 100-200 nucleotides per 

Okazaki fragment. Thus, in contrast with pol ε, pol δ requires multiple RNA primase-pol α-

generated primers to replicate the whole template. Moreover, when pol δ elongates an Okazaki 

fragment, it will finally reach the 5’ end of the RNA primer of the neighbouring Okazaki 

fragment. Pol δ, instead of stopping the DNA extension, continues to elongate the DNA until it 

displaces the RNA primer of the adjacent fragment, which creates a flap (Garg et al., 2004). 

This flap is removed during Okazaki fragment maturation by Rad27/Fen1 flap endonuclease 

(Tishkoff et al., 1997). Next, the short Okazaki fragments are joined into one complete DNA 

strand by DNA ligase I (Waga & Stillman, 1994). 
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1.3.2.1 The telomere replication problem 

DNA polymerase cannot replicate the template without the presence of primers that provide 3’ 

OH ends. Due to this, the ends of linear DNA chromosomes (telomeres) pose a DNA 

replication problem. After primer removal, the lagging strand duplicated from the very end of 

the 3’ template will be shorter than its template during every successive round of DNA 

replication. A reverse transcriptase, telomerase, solves this problem by extending the length of 

the 3’ telomere end so that the precise copy and length of the telomere sequence can be passed 

on to the newly synthesized DNA (reviewed in Maestroni et al., 2017).  

However, the telomere replication problem does not stop just by extending the telomere 

length. The 3’ end of telomeres consists of conserved G-rich repeats (TTAGGG)n in mammals 

or (TG)n in yeast that have the potential to form a secondary structure G-quadruplex (stacked 

guanine-tetrad conformation) (reviewed in Víglaský et al., 2010). Moreover, telomeres also 

recruit a telomere specific protein complex called the telosome (shelterin in mammals). This 

complex protects the telomere ends from being recognized as DNA double-strand breaks and 

prevents end-to-end fusion (dicentric chromosome). The G-rich repeats and the telomeric 

proteins pose a replication barrier during S phase since they may impede the progression of  

active forks (Makovets et al., 2004; Masuda-Sasa et al., 2008). The Pif1 and Rrm3 helicase 

family can relieve this threat by disrupting the G-quadruplex motif and clearing out the barriers 

ahead of the forks (Anand et al., 2012; Geronimo & Zakian, 2016; Maestroni et al., 2017; 

Paeschke et al., 2011). 

The relationship between telomere length and its elongation by telomerase is tightly 

regulated. If the telomeric single-stranded end is too long, a checkpoint will be activated and 

halt cell cycle progression. Besides capping the telomere ends, the telosome also prevents 
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telomerase from accessing them (de Lange, 2018; de Lange, 2005). In budding yeast, the 

telosome consists of Rap1, Rif1, and Rif2 (Hardy et al., 1992). The loss of telomerase 

regulation has been associated with cancer as several types of cancer cells upregulate 

telomerase expression by mutating the human TERT gene that encodes telomerase (Jafri et al., 

2016). 

 

1.3.2.2 Natural barriers of DNA replication elongation 

During elongation, the replisome faces natural impediments that can stall active forks from 

replicating the DNA template. When this happens, it is crucial to stabilize the fork components 

to stay together so that the forks can restart when the problem has been fixed. Failure to do this 

leads to the decoupling of the helicase and the polymerase that results in excessive unwinding 

or the disassembly of the fork components (fork collapse). A complex that stabilizes forks is 

called the fork protection complex (FPC), which is also an integral part of the replisome. FPC 

consists of four conserved proteins Tof1, Csm3, Mrc1, and Ctf4 (human Timeless, Tipin, 

Claspin, and And1) (Bando et al., 2009; Uzunova et al., 2014).  

The progression of DNA replication poses a hurdle to itself as it creates a DNA 

topology problem. As the active forks grow, there is more conversion of dsDNA into relaxed 

ssDNA conformation. This puts torsional stress on the unreplicated region in front of the forks, 

which, in turn, stimulates the formation of positive supercoiling. The accumulation of this 

DNA overtwisting impedes fork progression. Topoisomerase II, in an ATP-dependent manner, 

relieves this formation by generating a transient DNA double-strand break (DSB) at the tangled 

DNA, allowing strand passing , and re-ligation of the DSB ends (Devbhandari et al., 2017; 

Mariezcurrena & Uhlmann, 2017; Wang, 1998). Topoisomerase II forms a reversible complex 
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with DSB ends so that the broken ends are not recognized as DNA damage (Furniss et al., 

2013). Alternatively, the positive supercoils ahead of the fork can also be relieved by fork 

rotation at the replication branching point. This comes with a cost of nascent DNA intertwining 

behind the forks, which is termed precatenate (precursor of catenates) (Postow et al., 2001). 

Due to their position relative to the moving forks, precatenates may not interfere with fork 

progression. However, unresolved catenates during DNA replication termination generate a 

stable joining of sister chromatids that interrupts their segregation during mitosis. Fortunately, 

topoisomerase II can also remove precatenates from the replicated DNA  (Bermejo et al., 2007; 

Schalbetter et al., 2015). 

Furthermore, replication forks can face a topological conflict when they encounter 

transcription machinery. Transcription, similar to DNA replication, involves unwinding 

dsDNA to allow access to the template strand. RNA polymerase II can translocate along the 

DNA in two different orientations relative to the replication forks: the same orientation (co-

directional) or opposite direction (head-on fashion). The head-on conflict is considered more 

detrimental. Similar to replication, transcription generates positive supercoils in front of RNA 

polymerase (Liu & Wang, 1987). As the replication and transcription machineries approach 

each other, the positive supercoil in between becomes more twisted and its removal requires 

topoisomerase activity. The head-on traffic increases the occurrence of R-loops (the hybrid of 

DNA template and nascent RNA product) behind RNA polymerase (Hamperl et al., 2017), 

which can be resolved by RNase-H. More importantly, the collision between replication and 

transcription can harm both machineries and lead to genome instability (Pomerantz & 

O’Donnell, 2010).  Co-directional translocation can also be dangerous when the replication and 

transcription machineries do not move at the same speed. 
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DNA secondary structure itself can pose another topological challenge. With the help 

of Raymond Gosling and Rosalind Franklin’s X-ray photograph “Photo 51” (Franklin & 

Gosling, 1953), James Watson and Francis Crick elucidated the conformation of DNA. It is a 

three-dimensional right-handed double helix (Watson & Crick, 1953). Aside from this 

canonical structure, DNA can adopt several other configurations such as Z-form (left-handed 

helix) (Wang et al., 1979), triplex (dsDNA hybrid with ssDNA) (Morgan & Wells, 1968), 

inverted repeat-induced cruciform (Lilley, 1980), and G-quadruplex (Gellert et al., 1962). 

These various structures can be resolved by a RecQ helicase family that has flexibility in 

recognizing a broad array of DNA substrates (Manthei et al., 2015). Mutation of the genes 

encoding these helicases has been associated with Bloom (Ellis et al., 1995) and Werner 

syndromes (Prince et al., 2001). Yeast has one known homolog of RecQ helicase, Sgs1, that is 

capable of resolving DNA secondary structures (Cejka & Kowalczykowski, 2010; Gangloff et 

al., 1994). 

Among all these natural impediments, there are cases where the slowing down of the 

replication machinery is desirable. In eukaryotes, such a slowing zone is called a replication 

fork barrier (RFB). The highly transcribed ribosomal DNA (rDNA) locus located on 

chromosome XII of budding yeast is an excellent RFB example. This locus contains 

approximately 150 tandem repeats each comprised of 35S and 5S transcription units and two 

non-transcribed spacers. This repeat is followed immediately by an ARS, which creates the 

possibility of fork collapse if the replication machinery clashes with RNA polymerase. Thus, 

the replication fork must be temporarily paused to let RNA polymerase pass through the 

replisome. This pausing event is DNA sequence-independent and relies on a barrier protein 

called Fob1 that binds to the non-transcribed region. DNA replication at the Fob1-binding site 
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requires an additional helicase (Rrm3 or Pif1) to displace the barrier from DNA (Ivessa et al., 

2000). Cells can also prevent collision of replication and transcription machineries by 

employing Rif1. This protein has been shown to control the replication of rDNA origins 

(Shyian et al., 2016). Besides the rDNA locus, Rif1 is also enriched at highly-transcribed loci 

during S phase (Hiraga et al., 2018).  

 

1.3.3 DNA replication termination 

In contrast to both DNA replication initiation and elongation that have been extensively 

studied, termination is less well understood. In prokaryotes, termination happens at a sequence-

specific region called the Ter site (Hidaka et al., 1988; Hill et al., 1988). However, termination 

in eukaryotes seems to be sequence-independent, occurring when two emanating replisomes 

from neighbouring origins on the same template meet, which likely takes place in the midpoint 

between two origins, or at the end of telomeres. Converging replisomes result in their physical 

displacement from DNA. At the chromosome ends, the replication machinery seems to slide 

off since the DNA substrate is no longer available. Following this model, termination timing is 

predicted to agree with origin firing patterns, with replisomes from early origins terminating 

earlier than those from late origins (Graham et al., 2017; Hawkins et al., 2013; McGuffee et al., 

2013).  

Identical to DNA replication initiation, termination must not occur prematurely since 

the helicase loading will not take place again until the next round of G1 phase. However, when 

DNA replication has terminated, all replisomes must be removed to ensure that they do not 

unnecessarily unwind already replicated DNA. When two active forks meet, they create a 

head-to-head collision that leads to replisome disassembly. This dissociation is also aided by F-
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box protein Dia2-dependent Mcm7 ubiquitination. Cdc48 segregase/protein remodeler then 

destabilizes CMG helicase from DNA binding, and consequently, its interaction with nascent 

DNA is terminated (Maric et al., 2014). Additionally, when two forks converge, they do not 

reduce the elongation speed (Dewar et al., 2015). This increases the torsional force on DNA in 

front of them. As the forks get closer to each other, the tension in front of the forks is 

transmitted to the region behind the forks, which generates catenates. Similar to topoisomerase 

II activity on precatenates during elongation, it also relieves the catenation when DNA 

synthesis terminates (Ziraldo et al., 2019). 

 

1.3.4  DNA Damage and Replication Checkpoint 

During elongation, the replisomes may encounter exogenous and endogenous obstacles that 

halt DNA replication. The source of the replication barriers can be external (for example, UV 

light or hydroxyurea-dependent dNTP pool depletion) or internal factors (for example, DNA 

topology problems or DNA-binding proteins). However, how cells respond to natural 

impediments may be different than with those caused by external factors. The natural barriers 

of replication are discussed above. This chapter focuses on the cell's response to external 

obstacles. 

In the presence of DNA damage or replication stress, cells have a surveillance 

mechanism (checkpoint) to detect fork stalling and carry out the appropriate response 

depending on the kind of obstacle. This relies on signalling cascades and the checkpoint 

protein network. The main function of the checkpoint is to ensure that the cells do not proceed 

to the next phase of cell cycle before the problem is solved.  
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The checkpoint factors include the sensors that recognize damaged DNA and activate the  

regulators of the checkpoint pathway, transducers that mediate the signal cascade from the 

upstream to the downstream targets, and effectors that target and regulate the response the cells  

execute, which include cell cycle arrest, DNA repair, transcriptional up- or downregulation of 

specific genes, and apoptosis. In budding yeast, the set of sensor proteins includes Rad24, 

Ddc1, Rad17, and Mec3. Rad24 associates with Replication Factor C (RFC) subunits and acts 

as a chaperone-like clamp loader that binds to ssDNA or ss-dsDNA junctions. Rad17, Ddc1, 

and Mec3 (analogous to human Rad9/Rad1/Hus1) form a checkpoint clamp and accumulate at 

the DNA damage site through the Rad-RFC complex. RFC mediates the activation of the 

upstream regulator of the checkpoint response, Tel1 or Mec1 in budding yeast (Ataxia 

telangiectasia-mutated (ATM) or Ataxia-telangiectasia and Rad3-related (ATR) proteins in 

mammals, respectively) (Peng et al., 2019). 

  ATM/Tel1 responds predominantly to DNA-double strand breaks (DSBs; discussed 

further in the DNA repair section) while ATR/Mec1 recognizes ssDNA generated by various 

types of DNA damage and replication blockage. Single-stranded DNA is immediately coated 

by replication protein A (RPA) upon its formation (Zou & Elledge, 2003). ATR/Mec1 binds to 

ATR-interacting protein (ATRIP)/Ddc2. This complex then associates with RPA-bound 

ssDNA and co-localizes with the Rad17/Ddc1/Mec3 clamp, thereby promoting Mec1 

phosphorylation of  downstream targets (Majka et al., 2006) (Figure 1.6). 
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Figure 1.6. A schematic illustration of the Mec1-dependent replication checkpoint. When 

replication forks stall due to the presence of DNA lesions in front of them (red star), the single-

stranded DNA (ssDNA) behind the forks causes the activation of the replication checkpoint. 

Replication Protein A (RPA) coats ssDNA and facilitates the recruitment of the Ddc2-Mec1 

complex. Mec1 phosphorylates Mrc1, which in turn promotes the recruitment and activation of 

Rad53. Rad53 then executes the checkpoint response by phosphorylating its downstream 

targets.  

 

A checkpoint mediator group transduces the signal cascade to the effector kinases, 

Chk1 and Rad53 (Chk2 in mammals). This group includes Mrc1 and Rad9 in budding yeast 

and Claspin, Mdc1, BRCA1 and 53BP1 in mammals. Mrc1 and Rad9 have a redundant role in 

transmitting the signal from Mec1, but Mec1 phosphorylates Mrc1 predominantly when the 

replication fork stalls during S phase (Osborn & Elledge, 2003), and Rad9 when DNA damage 

is detected throughout cell cycle (Pardo et al., 2017; Vialard et al., 1998). Mrc1/Rad9 then 
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scaffolds Rad53 and enables Rad53 phosphorylation by Mec1 (Chen & Zhou, 2009; Sweeney 

et al., 2005). Activated Rad53 executes checkpoint responses by promoting transient cell cycle 

arrest, preventing the progression of DNA replication, and protecting stalled forks (Figure 1.6). 

 

1.3.4.1 Rad53 as a checkpoint effector in budding yeast 

Genomic integrity needs to be maintained at every step of DNA replication. This includes 

when the forks encounter DNA damage and replication stress. Under these conditions Rad53 

blocks the progression of DNA replication by stabilizing stalled forks (Gan et al., 2017), 

preventing late origin firing (Lopez-Mosqueda et al., 2010; Zegerman & Diffley, 2010), and 

boosting the production of dNTP (Zhao et al., 1998) (Figure 1.6).  

Rad53 targets the kinase activity of both CDK and DDK to prevent late origin firing. 

To block the CDK pathway, Rad53 phosphorylates Sld3, which then impedes the loading of 

replication factors, Dpb11 and Cdc45 (Lopez-Mosqueda et al., 2010; Zegerman & Diffley, 

2010). Rad53 does not target CDK directly since CDK is required for other functions during 

DNA replication, such as preventing DNA re-replication and controlling the DNA repair 

pathway choice (Huertas et al., 2008). In contrast, Rad53 targets DDK directly. Rad53 binds 

and phosphorylates the regulatory subunit of DDK, Dbf4, thus promoting DDK removal from 

chromatin (Duch et al., 2011; Duncker et al., 2002; Lopez-Mosqueda et al., 2010; Pasero et al., 

1999; Zegerman & Diffley, 2010).  

  Stalled forks must be stabilized to allow resumption of DNA synthesis later when the 

checkpoint is no longer active. Rad53 plays a role in stabilizing stalled replisomes and, indeed, 

cells lacking functional Rad53 cannot restart forks (Tercero et al., 2003). A downstream target 

of this function seems to be the Exo1, a nuclease that can degrade DNA at the stall sites, which 
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consequently, destabilizes the forks. Cdc45, an integral replisome component, also mediates 

Rad53 recruitment to stalled forks (Can et al., 2019). 

Rad53 also promotes fork restart by boosting the production of dNTP during stress 

recovery through phosphorylation of another checkpoint kinase, Dun1 (Chen et al., 2007; Zhou 

& Elledge, 1993). To produce dNTP, ribonucleotide reductase (RNR) catalyzes the reduction 

of nucleoside diphosphates (NDP). The active form of RNR requires the assembly of its 

subunits Rnr1, Rnr2, and Rnr4 in the cytoplasm (Yao et al., 2003). Another RNR subunit, 

Rnr3, is not required under normal conditions and its expression increases during replication 

stress conditions (Chabes et al., 2003; Elledge & Davis, 1990). Active Dun1 phosphorylates 

and promotes degradation of its downstream targets including Sml1, an allosteric inhibitor of 

Rnr1 (Zhao & Rothstein, 2002); Wtm1, a factor that tethers Rnr2 and Rnr4 to stay inside the 

nucleus (Lee et al., 2008b); Dif1, a nuclear importer for Rnr2 (Lee et al., 2008b); and Crt1, a 

transcription repressor for RNR2, RNR3, and RNR4 (Huang et al., 1998). 

 

1.3.5  DNA double strand break repair pathways 

Chromosomal DSBs occur when the phosphate backbones of both strands of the DNA duplex 

break at the same time. DSBs can lead to genome rearrangements, such as deletions, insertions, 

and translocations. Thus, a DSB is considered the most lethal form of DNA lesion. Two 

distinct pathways mainly repair DSBs, classical non-homologous end joining (NHEJ) and 

homologous recombination (HR), the choice of which depends on the activity of CDK and the 

presence of a homologous template (Figure 1.7). 

In mammals, the broken ends are rapidly recognized by Poly (ADP-ribose) polymerase 

1 (PARP-1) (Haince et al., 2008). However, this function seems to be absent in yeasts as they 
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do not have any known PARP-1 homolog. Another factor that recognizes DSBs immediately is 

the complex of Mre1-Rad50-Xrs2 (yeast)/ Nbs1 (mammals) (MRX/N). At the initial repair 

stage, MRX plays a structural role by tethering the DNA ends together through a transient 

dimerization between two Mre11 and two Rad50 proteins in an ATP-dependent manner (de 

Jager et al., 2001; Deshpande et al., 2014; Lammens et al., 2011). Ku70-Ku80 heterodimers 

also associate with the broken ends to protect against DNA degradation (Walker et al., 2001). 

Additionally, Ku70 inhibits DNA translocations (Weinstock et al., 2007), which depend on the 

Ku70-Ku80 ability to limit  DNA end mobility (Soutoglou et al., 2007). The next important 

step is the cell decision on which pathway to carry out. Since NHEJ and HR are mutually 

exclusive, the chosen pathway automatically makes the other route ineligible. The choice is 

settled by keeping the broken dsDNA intact as the substrate for NHEJ, or converting double-

stranded into single-stranded DNA for homologous recombination (Figure 1.7). 
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Figure 1.7. Yeast DNA double strand break repair pathways. When cells sense that DNA 

double-strand breaks are present, the broken ends are immediately recognized and protected by 

the Mre11-Rad50-Xrs2 complex (MRX) and yeast Ku70/80 ring heterodimers. If the cells 

decide to do NHEJ, Nej1 is recruited to the broken sites, which in turn, loads the Dnl4-Lif1 

ligase complex to perform end-joining. If HR is the repair choice, MRX recruits CDK-

phosphorylated Sae2 to start the short endonucleolytic activity, which is then continued by 

Exo1 or Sgs1-Dna2 to generate the single-stranded DNA (ssDNA) overhangs. The ssDNA 

stretches find the homologous region on the sister chromatid and use it as the repair template. 
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NHEJ can take place at any stage of the cell cycle, but it predominantly occurs in G1 

phase (Mao et al., 2008). In this pathway, Ku-protected DNA ends recruit Nej1 (XLF in 

mammals), which functions by stabilizing the accumulation of Ku proteins at the DSB sites 

and promoting  end-joining by the Dnl4-Lif1 ligase complex (mammalian DNA ligase IV-

XRCC) (Chen & Tomkinson, 2011). Nej1 also inhibits long nuclease activity by HR factors, 

Sgs1 and Dna2  (Sorenson et al., 2017). Ku80 loads Dnl4  and concomitantly, Xrs2 recruits 

Lif1 (Palmbos et al., 2008). The Dnl4-Lif1 complex then joins the broken ends through direct 

ligation (Zhang et al., 2007) 

Cells commit to HR if they detect DSBs in S or G2 phase. This pathway requires a 

nucleolytic resection on both 5’ DNA ends to create 3’ ssDNA overhangs to initiate pairing 

between homologous strands. Thus, the presence of the homologous template, either sister 

chromatid or homologous chromosome, is a prerequisite for the recombination. However, even 

in diploid organisms, sister chromatid is the favoured template (Kadyk & Hartwell, 1992) since 

crossing over between homologous chromosomes may lead to loss of heterozygosity. HR starts 

when the MRX complex recruits Sae2 (CtIP in mammals). CDK phosphorylates Sae2/CtIP to 

promote the 3’ to 5’ endonucleolytic activity of MRX (Huertas et al., 2008; Huertas & Jackson, 

2009). Additionally, Tel1/ATM, which is recruited to DSB sites through direct binding to 

Xrs2/Nbs1 (Nakada et al., 2003), also phosphorylates Sae2/CtIP  to support resection (Baroni 

et al., 2004; Wang et al., 2013). The range of resection at this stage is relatively short (around 

300 base pairs) (Garcia et al., 2011) but sufficient to remove the Ku barrier from DNA ends 

(Chanut et al., 2016). This initial DNA degradation is then followed by long resection (up to 

thousands of base pairs) by the 5’ end exonuclease Exo1 or helicase/nuclease Sgs1/Dna2. Exo1 

and Sgs1/Dna2 serve a redundant role in providing long stretches of 3’ end ssDNA overhangs. 
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However, their substrate preference is different. Exo1 targets dsDNA, whereas Dna2 chooses 

ssDNA. Hence, Dna2 nucleolytic activity couples with Sgs1 helicase. The ssDNA tail is then 

stabilized by RPA coating. When this tail is ready to invade the homologous template, the 

recombinase factor Rad51 subsequently replaces RPA for DNA binding. Following the 

invasion, a Holliday Junction is formed and cleaved by resolvase. Subsequently, DSBs are 

repaired (Figure 1.7). 

Over the last couple of years, mammalian Rif1 has emerged as a repair factor that 

promotes NHEJ. In contrast with yeast, mammalian DNA repair choice is initiated by the 

competition between 53BP1 and BRCA1. ATM phosphorylated-53BP1 forms a complex with 

Rif1 at DSB sites to repair them in G1 phase and limit resection (Feng et al., 2013, 2015). 

Recently, the detailed mechanism of 53BP1-Rif1 has come to light. Rif1 recruits a protein 

complex called shieldin, which in turn promotes the recruitment of the primase-pol α complex 

to fill the gap at the DSB site (Ghezraoui et al., 2018; Mirman et al., 2018; Noordermeer et al., 

2018), Rif1 also controls the CDK phosphorylation level of WRN helicase (mammalian Sgs1) 

(Garzón et al., 2019) and Dna2 nuclease (Mukherjee et al., 2019) which has direct implications 

for the  nuclease’s resection rate. In S phase where HR is more dominant, BRCA1 negates 

these functions by promoting 53BP1 dephosphorylation, and thereby Rif1 decumulation from 

DSB sites (Chapman et al., 2013; Escribano-Díaz et al., 2013). Even though the 53BP1-

BRCA1 antagonistic relationship is not observed in yeasts due to lack of protein conservation, 

Rif1 function to support NHEJ is retained (Fontana et al., 2019; Mattarocci et al., 2017). Thus, 

the precise mechanism of how yeast Rif1 leads the repair choice to NHEJ requires further 

investigation.  
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1.3.6  DNA damage tolerance mechanisms 

If DNA damage is irreparable, cells may escape from persistent cell cycle arrest through DNA 

damage tolerance mechanisms. In some cases, bypassing the DNA lesion is still better for cell 

survival than accumulating ssDNA, which can generate more stalled forks. The tolerance 

mechanism can be divided into two main mechanisms: polymerase-switching (translesion 

synthesis) and template-switching.  

Error-prone translesion DNA synthesis (TLS) switches DNA polymerase from high-

fidelity (pol ε or pol δ) to low-fidelity ones (Rev3, Rev1, pol η). These polymerases can 

traverse the damaged template and bypass the lesion (Shcherbakova & Fijalkowska, 2006). 

Due to the lack of proofreading activity, these polymerases may incorporate some wrong 

dNTPs that do not complement the template (Tissier et al., 2000). The second possibility is the 

error-free template switching pathway (Nikolaishvili-Feinberg & Cordeiro-Stone, 2000), which 

is similar to DNA repair via homologous recombination. In this pathway, the stalled nascent 

strand temporarily invades undamaged sister chromatid DNA and uses this strand as the 

template for DNA replication at the lesion area (Branzei & Szakal, 2016). Cells decide the 

suitable pathway for damage adaptation through Rad18-Rad6-dependent PCNA ubiquitination 

(Hoege et al., 2002; Kannouche et al., 2004; Stelter & Ulrich, 2003). PCNA promotes TLS 

when it is monoubiquitinated, and leads to the template-switching route when it is 

polyubiquitinated. Modified PCNA then recruits the downstream adaptation factors to execute 

the appropriate pathway (Gallo et al., 2019). 
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1.4 DDK interaction in cell cycle signalling 

1.4.1  Dbf4 

Dbf4 (ASK in mammals, Dfp1/Him1 in fission yeast) is the regulatory subunit of DDK. This 

protein has three conserved motifs: N, M and C, which denote their relative positions (Masai & 

Arai, 2000) (Figure 1.8). Each of these motifs mediates Dbf4 interaction with specific ligands, 

and their biological implications have been extensively studied (Matthews & Guarne, 2013).   

 

Figure 1.8. A schematic map of Dbf4. Three Dbf4 conserved motifs (Masai & Arai, 2000) 

along with their corresponding amino acid positions and known binding ligands. 

 

Dbf4  motif N (residues 135-179 (Masai & Arai, 2000)), is necessary for association 

with Orc2, Rad53 (Duncker et al., 2002) and Rif1 (Hiraga et al., 2014). Cells expressing a 

Dbf4 mutant lacking motif N (dbf4∆N ) are viable, but they grow slowly under normal 

conditions (Varrin et al., 2005). Motif N itself does not form a specific configuration, but is 

part of larger BRCT fold (Gabrielse et al., 2006; Matthews et al., 2009). with an additional N-

terminal alpha-helix. This whole unit is therefore termed HBRCT (Helix α0-BRCT), which is 

both required and sufficient to bind Rad53 (Matthews et al., 2012). 

Dbf4 motif M is essential for cell viability and is necessary for Mcm2 binding (Varrin 

et al., 2005). In fission yeast and humans, both motif M and C mediate binding to Cdc7 (Ogino 

et al., 2001; Sato et al., 2003).  

Dbf4 motif C contains a CCHH zinc finger  that is essential for Cdc7 activation in 

fission yeast (Ogino et al., 2001), budding yeast (Jones et al., 2010) and humans (Hughes et al., 
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2012). Histidine mutation to alanine (CCAA) in this motif impairs Dbf4 binding to Mcm2 and 

origin of replication ARS1. The dbf4 CCAA mutant strain also shows a reduction of Mcm2 

phosphorylation and a slow-growth phenotype (Jones et al., 2010). This phenotype indicates 

that similar to motif M, motif C is also required for viability.  

 

1.4.2  Rad53 

As a checkpoint effector protein, Rad53 phosphorylates and interacts with several targets to 

arrest the cell cycle, and it also helps with cell recovery after the checkpoint is lifted. Rad53 

contains two FHA (forkhead-associated) domains and a kinase module in between. The Rad53 

FHA1 domain binds to Dbf4 (Duncker et al., 2002; Matthews et al., 2012) as well as variety of 

other targets, including the checkpoint adaptors Rad9 and Mrc1 (Sun et al., 1998), Protein 

Phosphatase 2C Ptc2 and Ptc3 (Leroy et al., 2003), and a cytosolic protein Cdc11 (Smolka et 

al., 2006). Rad53 association with Rad9 is also facilitated by the second FHA domain, FHA2 

(Sun et al., 1998). FHA domains are made of an 11 β-sheet sandwich. Their canonical binding 

mode relies on recognizing phosphothreonine/serine (pT/S) containing motifs on the targets 

(Durocher et al., 1999). When a pT/S motif is present, Arg70 of the Rad53 FHA1 domain 

engages with the oxygen group of the pT/S to create a hydrogen bond. This binding is 

stabilized by the presence of aspartic acid in the three residues position immediately after the 

phosphorylated residue (Durocher & Jackson, 2002; Durocher et al., 2000). A further Rad53 

FHA1 characterization study has revealed a novel binding mode of this domain to Dbf4. 

Instead of using its phosphopeptide recognition motif, FHA1 engages Dbf4 via its lateral β-

sandwich surface (Matthews et al., 2014). Multiple mutations on this surface disrupt binding to 

Dbf4 and make the cells hypersensitive to genotoxic stress. Furthermore, the FHA1 R70A 
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mutant is capable of maintaining intact binding to Dbf4, indicating the existence of a non-

canonical Rad53-Dbf4 association (Matthews et al., 2014).  

 

1.4.3  Rif1 

Rif1 is a conserved protein that was originally identified as part of the telosome in budding 

yeast. It is recruited to telomeres by binding to the Rap1 C-terminus (Hardy et al., 1992). 

Budding yeast Rif1 consists of 1916 amino acids and has distinct features at its N and C-

termini. The N-terminus has been crystallized and  contains two Protein Phosphatase-1 (PP1; 

Glc7 in budding yeast) binding motifs,  RVxF (residues 115-118) and SILK (residues 146-

149), both of which are required for Rif1 function in preventing precocious origin firing by 

promoting Mcm4 dephosphorylation in G1 phase (Davé et al., 2014; Hiraga et al., 2014; 

Mattarocci et al., 2017, 2014; Sreesankar et al., 2012). This is different from mammalian Rif1 

which harbors both PP1 interaction motifs on its C-terminus (Sukackaite et al., 2017). The N-

terminal part of Rif1 also includes  an NTD (N-terminal domain, residues 177-1283), that 

binds to DNA in a direct and sequence-independent manner, which is associated with Rif1 

function in promoting DNA repair through NHEJ (Mattarocci et al., 2017). Additionally, the 

Rif1 NTD region undergoes acylation (cysteine 466 and 473) that increases Rif1 

hydrophobicity and, in turn, aids in anchoring Rif1 to the inner nuclear membrane. This 

posttranslational modification also facilitates Rif1 repair of chromosomal DSBs at the nuclear 

periphery (Fontana et al., 2019). The C-terminal region of Rif1 can be subdivided into three 

parts: the linear Rap1-binding module (residues 1752-1772) (Shi et al., 2013), Dbf4-binding 

region (residues 1790-1916) (Hiraga et al., 2014); and tetramerization module (residues 1857-

1916) (Shi et al., 2013). Interaction between the Rif1 C-terminus and Dbf4 brings DDK and 
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the Rif1 N-terminus into close proximity. DDK phosphorylates an area near the Glc7-binding 

motifs on the Rif1 N-terminus to abolish Glc7 binding to Rif1. Certain DDK phosphorylation 

sites on Rif1 are CDK-primed while others are CDK-independent. Rif1 without binding Glc7 

can no longer promote Mcm4 dephosphorylation, and subsequently, permits S-phase 

progression (Hiraga et al., 2014). 

 

1.4.4 Mrc1 

Budding yeast Mrc1 is conserved among eukaryotes and is comprised of 1096 amino acids. It 

has multiple roles during the cell cycle. During  normal conditions, Mrc1 maintains the 

replisome progression rate during elongation, shown by the slow S-phase progression in cells 

with a deletion of MRC1 (Szyjka et al., 2005). In agreement with this, an in vitro DNA 

replication assay using purified proteins demonstrated that Mrc1 is required for the maximum 

DNA synthesis rate on the leading strand (Yeeles et al., 2017), which likely relies on its 

function to stimulate the enzymatic activity of the leading strand polymerase, pol ε (Zhang et 

al., 2018). Mrc1, through its residues 312-655, is tethered to the replisome by direct binding to 

Mcm6 (Komata et al., 2009). Furthermore, it forms the fork protection complex (FPC) with 

other proteins, Ctf4, Tof1 and Csm1. FPC travels along with the replisome during elongation 

and stabilizes the replisome by keeping the helicase and polymerase  together during DNA 

synthesis (Katou et al., 2003; Noguchi et al., 2003)  FPC co-precipitates with both normal and 

stalled replisomes (Nedelcheva et al., 2005), indicating that it associates with the forks stably 

under various conditions. When replisomes stall, Mrc1 has an additional role in bridging Mec1 

phosphorylation to Rad53 (Alcasabas et al., 2001; Chen & Zhou, 2009; Tanaka & Russell, 
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2001).  Beyond DNA replication, FPC aids sister chromatid cohesion during mitosis, and the 

deletion of MRC1, in particular, increases the loss of sister cohesion events (Xu et al., 2004). 

 Mrc1 has been shown to associate with early origins in S phase and regulate their firing 

in fission yeast (Hayano et al., 2011). In budding yeast, Mrc1 interacts with early and late 

origins in a timely manner (Osborn & Elledge, 2003). The association of Mrc1 with ARS305, a 

representative early origin, is DDK-dependent, as Mrc1 binding to the origin diminishes when 

DDK activity is compromised (Osborn & Elledge, 2003).  

In fission yeast, knockout of MRC1 rescues the growth of the temperature-sensitive 

strain hsk1-89 at the semi-restrictive temperature of 30°C, indicating that ∆mrc1 cells allows 

origin firing when there is less Hsk1-Dfp1(budding yeast ortholog of Cdc7-Dbf4) activity 

(Matsumoto et al., 2011). Some details of how Mrc1 regulates origin firing in fission yeast 

have come to the light. Mrc1 acts as a ‘built-in’ brake for DNA replication. It exhibits 

intramolecular binding when it binds to DNA origins and this conformation prevents origins 

from firing. In early S phase, Hsk1-Dfp1 binds to and phosphorylates Mrc1 to disrupt the 

intramolecular binding. Next, Mrc1 in open conformation allows Hsk1-Dfp1 to activate the 

origins. The possible explanation for why ∆mrc1/hsk1-89 cells are viable at 30°C is that there 

is no Mrc1 ‘brake’ so even the low activity of hsk1-89  suffices to maintain cell growth 

(Matsumoto et al., 2017). 

 

1.5  Project goals 

Dbf4 is required to activate DDK and initiate DNA replication. During S phase, it interacts 

with several other replication factors. The dynamics of its interactions change with different 

stages and circumstances in the cell cycle. Despite the importance of its binding with its 
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ligands, many of the details are still unclear. In this thesis, I aimed to pursue the following 

objectives. 

1. To characterize how Dbf4 binds to Rif1 to inactivate the dephosphorylation activity of 

the Rif1-Glc7 complex.   

2. To further investigate the association between Rad53 and Dbf4.   

3. To characterize DDK binding to and regulation of Mrc1 in budding yeast.  

 

1.6 Research significance 

Various cancer types have been shown to overexpress DDK to support cell proliferation. This 

phenomenon has been studied in both cancer cell lines and primary tissue samples (Bonte et 

al., 2008; Cheng et al., 2013; Zhuang et al., 2018). DDK overexpression is associated with p53 

inactivation (Bonte et al., 2008) and resistance to radio- and chemotherapy (Gad et al., 2019; Li 

et al., 2018). Furthermore, the depletion of Cdc7 in HeLa cells can inhibit DNA replication 

(Jiang et al., 1999) and lead to apoptotic death (Montagnoli et al., 2004). The knockdown of 

DDK also helps to limit metastasis by preventing esophageal squamous cell carcinoma (ESCC) 

cell invasion and sensitize them to the chemotherapy agents, Cisplatin and 5-Fluorourea (Cao 

& Lu, 2019). As a result of these findings, targeting DDK seems promising as one of the 

strategies for cancer therapy. At the moment this thesis is being written, the ATP-competitive 

DDK inhibitor, TAK-931, is undergoing two clinical trials (Iwai et al., 2019). Their trial 

identifiers are NCT02699749 (phase 1 in participants with advanced nonhematologic tumor) 

and NCT03261947 (phase 2 in participants with metastatic pancreatic cancer, metastatic 

colorectal cancer, and other advanced solid tumors). Both trials are expected to be completed 

in 2020. Moreover, protein-protein interaction-based therapy has been getting attention as a 
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novel approach for chemotherapy drugs (Gupta et al., 2019). Therefore, understanding the 

mechanistic details of DDK roles and interactions during the cell cycle can contribute to setting 

the future direction of DDK-targeted cancer therapy. 
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Chapter 2 

Material and Methods 
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2.1 Construction of yeast strains and plasmids 

Yeast strains and plasmids used in this study are listed in Tables 1 and 2, respectively. DY-1 was 

used for all yeast two-hybrid experiments. DY-30 was used to generate RIF1 MYC (DY-361), 

∆rif1 (DY-362), rif1 ∆PPDSPP MYC (DY-363), and ∆mre11 (DY-364) strains using a one-step 

genome modification method (Longtine et al., 1998). To create DY-363, the last 534 bp of RIF1 

(encoding amino acids 1739-1916 without stop codon) was amplified from pJG4-6 Rif11739-

1916 ∆PPDSPP (see below) and cloned into pFA6A-13Myc-HIS3MX6 (Longtine et al., 1998) 

using HindIII and PacI sites incorporated into the forward and reverse primers, respectively. 

From this construct, the Rif1 1739-1916 ∆PPDSPP-13Myc-HIS3MX6 cassette was amplified, 

transformed into yeast cells using standard procedures (Gietz et al., 1992) and then plated onto 

synthetic complete medium lacking histidine (SC-His). To identify correct integration, genomic 

DNA was extracted from single colonies and used as template for PCR using primers with DNA 

sequences reflecting the genomic sequence flanking the desired site of integration of the 

replacement cassette. The identity of DY-363 was further confirmed via DNA sequencing of the 

PCR product obtained (SickKids, Toronto, Ontario, Canada). 

 To generate rif1 5A MYC (DY-379) and rif1 5A∆PPDSPP MYC (DY-380) strains, from 

DY-361 and DY-363, respectively, we employed a seamless gene modification method inspired 

by the delitto perfetto approach (Storici et al., 2001) with modification. A URA3 cassette was 

amplified from pRS406 (Sikorski & Hieter, 1989) and integrated at the RIF1 locus to replace 

216 bp of RIF1 containing CDK target sites (nucleotides 328-543) (Hiraga et al., 2014). The 

modified strain was then grown on synthetic complete medium lacking uracil. The replacement 

cassette bearing the 5A point mutations (S110A, S125A, S134A, S138A, and S181A) and having 

end homology to RIF1 regions up- and downstream of the integrated URA3 cassette was 
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generated through site-directed mutagenesis (Agilent). Cells were transformed with this second 

cassette and plated onto YPD. Integrants were selected through replica plating on synthetic 

complete medium supplemented with 5-Fluoroorotic acid (BioShop #FOA555). Strain 

modifications were confirmed through PCR and DNA sequencing (SickKids, Toronto, Ontario, 

Canada), and Western blotting (described below). 

 We used DY-361 and DY-380 to generate ∆nej1 (DY-381), ∆nej1/rif1 5A∆PPDSPP 

MYC (DY-382), ∆sae2 (DY-383), ∆sae2/rif1 5A∆PPDSPP MYC (DY-384), ∆exo1 (DY-385),  

∆exo1/rif1 5A∆PPDSPP MYC (DY-386), ∆yku70 (DY-387) and  ∆yku70/rif1 5A∆PPDSPP 

MYC (DY-388) using a one-step genome modification method (Longtine et al., 1998). A URA3 

cassette was amplified from pRS406 (Sikorski & Hieter, 1989)  and integrated at the gene of 

interest locus. The modified strain was then grown on synthetic complete medium lacking uracil. 

Strain modifications were confirmed through PCR analysis as described above. 

To generate ∆mrc1 dna52-1, a URA3 cassette was amplified from pRS406 (Sikorski & 

Hieter, 1989) and integrated at the MRC1 locus to replace the whole coding sequence in a dna52-

1 strain (DY-2). The modified strain was then grown on synthetic complete medium lacking 

uracil. Strain modification was confirmed through PCR analysis. 
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Table 2.1 Yeast strains used in this study. 

 

 

Strain Genotype Source 

DY-1  MATa, ade2-1, can1-100, trp1-1, his3-11, his3-15, 

ura3-1, leu2-3, leu2-112, pep4::LEU2 

R. Rothstein (W303-1a) 

DY-2 MATa, can1-11, ura3-52, dna52-1 (Solomon et al., 1992) 

DY-30  MATa, his∆1, leu2∆0, met15∆0, ura3∆0 (Brachmann et al., 1998) 

DY-26 MATa, his3∆200, leu2∆0, met15∆0, trp1∆63, 

ura3∆0 

(Brachmann et al., 1998) 

DY-361 MATa, his∆1, leu2∆0, met15∆0, ura3∆0, RIF1 

MYC::HIS3MX6 

This study 

DY-362 MATa, his∆1, leu2∆0, met15∆0, ura3∆0, 

∆rif1::HIS3MX6 

This study 

DY-363 MATa, his∆1, leu2∆0, met15∆0, ura3∆0, rif1 

∆PPDSPP MYC::HIS3MX6 

This study 

DY-364 MATa, his∆1, leu2∆0, met15∆0, ura3∆0, 

∆mre11::URA3 

This study 

DY-374 MATa, can1-11, ura3-52, dna52-1 ∆mrc1::URA3 This study 

DY-379 MATa, his∆1, leu2∆0, met15∆0, ura3∆0, rif1 5A 

MYC::HIS3MX6 

This study 

DY-380 MATa, his∆1, leu2∆0, met15∆0, ura3∆0, rif1 

5A∆PPDSPP MYC::HIS3MX6 

This study 

DY-381 MATa, his∆1, leu2∆0, met15∆0, ura3∆0, RIF1 

MYC::HIS3MX6 ∆nej1::URA3 

This study 

DY-382 MATa, his∆1, leu2∆0, met15∆0, ura3∆0, rif1 

5A∆PPDSPP MYC::HIS3MX6 ∆nej1::URA3 

This study 

DY-383 MATa, his∆1, leu2∆0, met15∆0, ura3∆0, RIF1 

MYC::HIS3MX6 ∆sae2::URA3 

This study 

DY-384 MATa, his∆1, leu2∆0, met15∆0, ura3∆0, rif1 

5A∆PPDSPP MYC::HIS3MX6 ∆sae2::URA3 

This study 

DY-385 MATa, his∆1, leu2∆0, met15∆0, ura3∆0, RIF1 

MYC::HIS3MX6 ∆exo1::URA3 

This study 

DY-386 MATa, his∆1, leu2∆0, met15∆0, ura3∆0, rif1 

5A∆PPDSPP MYC::HIS3MX6 ∆exo1::URA3 

This study 

DY-387 MATa, his∆1, leu2∆0, met15∆0, ura3∆0, RIF1 

MYC::HIS3MX6 ∆yku70::URA3 

This study 

DY-388 MATa, his∆1, leu2∆0, met15∆0, ura3∆0, rif1 

5A∆PPDSPP MYC::HIS3MX6 ∆yku70::URA3 

This study 
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Plasmid construction was carried out using standard cloning techniques. For yeast two-

hybrid constructs, DBF4 (full-length without start codon or nucleotides 313-663 encoding amino 

acids 105-221) was amplified from DY-1 genomic DNA, digested with EcoRI and NcoI, and 

cloned into EcoRI-NcoI linearized pEG202 as an in frame fusion with sequence encoding the N-

terminal epitope tag (LexA for pEG202 and HA for pJG4-6). Using the same technique, ApaI-

XhoI digested RIF1 fragments (nucleotides 5368-5751 encoding amino acids 1790-1916 or 

nucleotides 5215-5751 encoding amino acid 1739-1916) were cloned into ApaI-XhoI linearized 

pJG4-6. EcoRI-XhoI digested RAP1 fragment (nucleotides 1957-2484 encoding amino acids 

653-827) was cloned into EcoRI-XhoI linearized pEG202. Plasmids bearing point mutant alleles 

were created by site-directed mutagenesis (Agilent). pCM190 Rif1-Myc ura3::LEU2 was 

constructed step-wise. LEU2 was amplified from pRS405, digested with SmaI and cloned into 

EcoRV linearized pCM190 Myc to disrupt URA3 locus. EcoRV was chosen as it cuts pCM190 

Myc backbone once in the middle of URA3 locus. The construct was confirmed by transforming 

it into DY-26 and growing the transformant on synthetic complete medium lacking uracil (SC-

ura) and synthetic complete medium lacking leucine (SC-leu). The transformant grew on SC-

leu, but not on SC-ura. RIF1 (full-length without stop codon) was amplified from DY-1 genomic 

DNA, digested with BamHI and NotI, and cloned into BamHI-NotI linearized pCM190 Myc 

ura3::LEU2. pEG202 Mrc1 was created by amplifying MRC1 (full-length) from DY-1 genomic 

DNA, digested with Nco1I and XhoI, and cloned into NcoI-XhoI linearized pEG202. pEG Mrc1 

1-684 was created by amplifying MRC1 nucleotides 4-2052, digested with BamHI and EcoRI, 

and cloned into BamHI-EcoRI linearized pEG202. pEG Mrc1 679-1096 was created by 

amplifying MRC1 nucleotides 2035-3291, digested with BamHI and XhoI, and cloned into 



 
 

 

46 
 
 

BamHI-XhoI linearized pEG202. pJG4-6 Dbf4 variants were created by amplifying DBF4 from 

either pEG202 Dbf4 L109A/W112S, pEG202 Dbf4 ∆M (Varrin et al., 2005) or pEG202 Dbf4 

CCAA (Jones et al., 2010), digested with NcoI and EcoRI, and cloned into NcoI-EcoRI 

linearized pJG4-6. Clones were confirmed through DNA sequencing (SickKids, Toronto, 

Ontario, Canada).  

Point mutations within Rad53 FHA1 (F146A and N112A/F146A) were generated by 

site-directed mutagenesis using pJG4-6 FHA1 (including residues 1–165 of Rad53) as the 

template. Single point mutations on Dbf4 (Y198A and K200A) were generated from the 

pEG202-Dbf4 full-length template. These constructs were verified by DNA sequencing 

(MOBIX, McMaster University).  
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Table 2.2 Plasmids used in this study. 

 

Plasmid Reference 

pEG202 (Ausubel et al., 1994) 

pEG202 Dbf4 FL WT (Duncker et al., 2002) 

pEG202 Dbf4 105-221 (Dbf4 HBRCT) (Matthews et al., 2012) 

pEG202 Dbf4 FL L109A/W112S This study 

pEG202 Dbf4 FL K121D/R122E (Matthews et al., 2012) 

pEG202 Dbf4 FL E111R/K118D (Matthews et al., 2012) 

pEG202 Dbf4 FL W116D/M120A (Matthews et al., 2012) 

pEG202 Dbf4 FL K200A This study  

pEG202 Dbf4 FL Y198A This study 

pEG202 Rap1 653-827 This study 

pJG4-6 (Gyuris et al., 1993; Varrin et al., 2005) 

pJG4-6 Rif1 1790-1916 This study 

pJG4-6 Rif1 1790-1916 R1895A This study 

pJG4-6 Rif1 1790-1916 L1905R This study 

pJG4-6 Rif1 1739-1916 This study 

pJG4-6 Rif1 1739-1916 E1839K This study 

pJG4-6 Rif1 1739-1916 N1847A This study 

pJG4-6 Rif1 1739-1916 ∆PPDSPP This study 

pJG4-6 Rad53 1-165 (Rad53 FHA1) This study 

pJG4-6 Rad53 FHA1 F146A This study 

pJG4-6 Rad53 FHA1 N112A/F146A This study 

pSH18-34 (Ausubel et al., 1994) 

YCplac111 (Gietz & Sugino, 1988) 

pRS406 (Sikorski & Hieter, 1989) 

pRS405 (Sikorski & Hieter, 1989) 

pCM190 Myc ura3::LEU2 This study 

pCM190 Rif1-Myc ura3::LEU2 This study 

pEG202 Mrc1 FL WT This study 

pEG202 Mrc1 1-684 This study 

pEG202 Mrc1 679-1096 This study 

pJG4-6 Dbf4 FL L109A/W112S This study 

pJG4-6 Dbf4 ∆M This study, (Varrin et al., 2005) 

pJG4-6 Dbf4 CCAA This study, (Jones et al., 2010) 

 

2.2  Yeast two-hybrid analysis 

Yeast two-hybrid analysis was performed as described previously (Varrin et al., 2005). pEG202-

derived bait, pJG4-6-derived prey and pSH18-34 reporter plasmids (Ausubel et al., 1994; Gyuris 
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et al., 1993; Varrin et al., 2005) were transformed into 100 µl of DY-1 culture with a density of 

1x107 cells/ml. Triple transformants were selected on solid medium lacking histidine, tryptophan 

and uracil (SC-His/Trp/Ura) then individual colonies were used to inoculate 10 mL of SC-

His/Trp/Ura and grown to a concentration of 1x107 cells/ml. 1x108 cells were then washed and 

induced in 20 ml 2% Galactose-1% Raffinose lacking uracil, histidine, and tryptophan for 6 

hours to promote the expression of the prey protein. The cell density was measured at 600 nm 

(A600) and cell number was counted using a hemocytometer. 5x106 cells were harvested and 

subjected to a quantitative β-galactosidase assay. The cells were resuspended in 500 μl Z buffer 

pH 7 (60 mM Na2HPO4, 40 mM NaH2PO4, 10 mM KCl, and 1 mM MgSO4) and permeabilized 

with one drop of 0.1% SDS and two drops of chloroform. The reaction was immediately started 

upon addition of 100 μl 4 mg/ml o-nitrophenyl-β-galactoside (ONPG) at 28ºC and stopped with 

250 μl 1M Na2CO3 when a faint yellow color was apparent. The supernatant was separated from 

the pellet via centrifugation at 16,000 g for 10 minutes and the intensity of yellow color was 

measured at 420 nm (A420). The quantification of β-Galactosidase activity was determined as 

β-Galactosidase unit = 1,000 × A420/(t × V × A600), where t = time of reaction (in minute) 

and V = volume (in ml).  

 

2.3  Western blotting  

20 ml yeast cultures (1x107 cells/ml) were centrifuged at 4,000 rpm for 5 minutes and the pellets 

were resuspended in 300 μl ice-cold lysis buffer (50 mM HEPES-KOH pH 7.5, 140 mM NaCl, 

1 mM EDTA, 1% Triton X-100, 0.1% (w/v) Na-deoxycholate, 1% (v/v) protease inhibitor 

cocktail (Fisher), and 1mM PMSF (BioShop)). Following addition of 0.5 g glass beads, the 
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cells were lysed at 4oC with a bead beater (BioSpec Products, Inc.) for 30 seconds, eight times, 

with rests in ice for 30 seconds in between pulses. Cell lysates were centrifuged at  16,000g 

for 1 minute to obtain the supernatant. Protein concentration was measured using the Bradford 

assay (Bio-Rad) and 100 μl of the supernatant was mixed with 50 μl sample buffer (41.5 mM 

Tris pH 6.8, 10% glycerol, 3.75% SDS, 0.01% bromophenol blue, 100 mM DTT). The protein 

samples were denatured at 95ºC for 10 minutes and 80 μg of each sample was used for Western 

blots. SDS-PAGE was performed using a 10% acrylamide separating gel and the proteins 

were transferred onto a BioTrace nitrocellulose membrane (Pall #66485) overnight. Proteins 

tagged with LexA, HA and Myc were detected with rabbit polyclonal anti-LexA (Pierce 

#PA1-4966), mouse monoclonal anti-HA (Sigma #H9658) and mouse monoclonal anti-Myc 

(Sigma #M5546) primary antibodies, respectively. Alexa Fluor 647 goat-anti rabbit IgG 

(Invitrogen #A-21244) and Alexa Fluor 488 goat anti-mouse IgG (Invitrogen #A-11001) were 

used as the secondary antibodies. All detections were performed using a PharosFX Imager 

(Bio-Rad). 

 

2.4  Bioinformatics analysis 

A multiple sequence alignment of RIF1 homologs was generated using MUSCLE (Edgar, 2004) 

and visualized within Jalview (Waterhouse et al., 2009).  Structure-prediction was performed 

using Phyre2 (Kelley et al., 2015) and I-TASSER (Zhang, 2008). Secondary structure prediction 

was performed using Jpred3 (Cole et al., 2008a). Phosphorylation sites were identified based on 

information retrieved from the UniProt database record (accession # P29539). Protein binding 

sites were predicted using the BSPred algorithm (Mukherjee & Zhang, 2011). 
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2.5  Plasmid stability assay 

Plasmid stability assays (Kapoor et al., 2001) were carried out with modification. DY-361, DY-

362, and DY-363 were transformed with low copy number plasmid YCplac111 (Gietz & Sugino, 

1988) and grown on synthetic complete plates lacking leucine (SC-Leu). A single colony from 

each strain was picked and grown in 10 ml SC-Leu liquid medium until the cells reached 

stationary phase. 2x103 cells from this initial culture were then used to inoculate 10 ml synthetic 

complete (including leucine) liquid medium and grown until they reached stationary phase. The 

cells were diluted, concentration determined using a hemocytometer, and a total number of 400 

were plated onto each SC-Leu (selective) and YPD (non-selective) plate. The rate of plasmid 

loss per generation was calculated as the percentage of plasmid loss = (1-(colony number on SC-

Leu/colony number on YPD))/number of cell divisions. The total number of replicates was ten 

sets for each strain. 

 

2.6 Yeast spot plate assay 

Yeast strains were grown in liquid media overnight, serially diluted ten-fold each time, and 

spotted onto YPD plates with or without added compounds. Plates were incubated for 2 days at 

30°C. The compounds added were hydroxyurea (BioShop #HYD023), methyl methanesulfonate 

(Millipore Sigma #129925); bleocin (Millipore Sigma #203408-M); phleomycin (Millipore 

Sigma #P9654); camptothecin (Millipore Sigma #C9911); and caffeine (BioShop #CAF114). 
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2.7 β-galactosidase-based competition assay 

pEG202-derived bait, pJG4-6-derived prey, pSH18-34 reporter plasmids (Ausubel et al., 1994; 

Gyuris et al., 1993; Varrin et al., 2005) and pCM190 Myc ura3::LEU2-derived competitor were 

transformed into 100 µl of DY-26 culture with a density of 1x107 cells/ml. Quadruple 

transformants were selected on solid medium lacking histidine, tryptophan, uracil and leucine 

(SC-His/Trp/Ura/Leu) then individual colonies were used to inoculate 10 mL of SC-

His/Trp/Ura/Leu and grown to a concentration of 1x107 cells/ml. 1x108 cells were then washed 

and induced in 20 ml 2% Galactose-1% Raffinose lacking uracil, histidine, leucine and 

tryptophan for 6 hours to promote the expression of the prey protein. The cell density was 

measured at 600 nm (A600) and cell number was counted using a hemocytometer. 5x106 cells 

were harvested and subjected to a quantitative β-galactosidase assay, as previously mentioned in 

yeast two-hybrid experiment. 

 

2.8  Mcm4 phosphorylation detection 

10 ml yeast cultures (1x107 cells/ml) were centrifuged at 4,000 rpm for 5 minutes. The 

supernatant was discarded and the pellet was washed with 20 ml sterile water. The suspension 

was spun down again, and the pellet was resuspended in fresh YPD supplemented with 50 

µg/ml α-factor. The cell culture was shaken at 200 rpm and incubated at 30°C for 3 hours. 

After incubation, approximately 2.5 × 107 cells were harvested at 1000 g and spheroplasted as 

performed previously (Semple et al., 2006) with modifications. Cells were washed with sterile 

water and incubated at 30°C for 10 minutes with gentle mixing in 10 ml/g pre-spheroplasting 

buffer (100 mM EDTA-KOH (pH 8), 10 mM DTT), followed by incubation in 10 mL/g 
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spheroplasting buffer (0.5X YPD, 1.1 M sorbitol) containing 0.5 mg/mL Zymolyase 20T 

(Seikagaku Corp., Japan) at 30°C for 10–15 minutes with gentle mixing. Cells were washed 

once with 20 ml spheroplasting buffer containing 0.5 mM PMSF (BioShop), 2 mM NaF 

(Sigma #201154) and 1mM Na3VO4 (Sigma #450243), followed by resuspension in 1 ml ice-

cold wash buffer (5 mM Tris–HCl (pH 7.4), 20 mM KCl, 2 mM EDTA-KOH (pH 7.4), 1 M 

sorbitol, 1% thiodiglycol, 125 μM spermidine, 50 μM spermine) and protease and phosphatase 

inhibitors (1% (v/v) protease inhibitor cocktail (Fisher), 0.5 mM PMSF, 2 mM NaF and 1mM 

Na3VO4). Cells were pelleted at 400 g for 2 minutes in a microcentrifuge at 4°C, washed twice 

with 1 mL ice-cold wash buffer, and resuspended in 0.4 mL ice-cold breakage buffer (5 mM 

Tris–HCl (pH 7.4), 20 mM KCl, 2 mM EDTA-KOH (pH 7.4), 0.4 M sorbitol, 1% thiodiglycol, 

125 μM spermidine, 50 μM spermine) and protease and phosphatase inhibitors as above. Cells 

were lysed with 0.5 ml ice-cold breakage buffer containing 2% Triton X-100 and incubated on 

ice for 5 minutes with occasional mixing. The lysed cells were spun at 16,000 g for 5 minutes 

in a microcentrifuge at 4°C. The supernatant (SUP) was separated from the pellet (PEL), and 

the protein concentration was measured using the Bradford assay (Bio-Rad). The pellet and 

100 μL of the supernatant were prepared as the protein sample, as previously described in 

Section 2.3. SDS-PAGE was performed using 6% acrylamide separating gels and the 

proteins were transferred to a PVDF membrane (Millipore # IPVH00010) overnight at 30V. 

Mcm4 was detected with goat polyclonal Mcm4 primary antibody (Santa Cruz #sc-6685) 

and donkey anti-goat IgG HRP-conjugated secondary antibody (Promega #V8051). The 

detections were performed using the Bio-Rad Clarity ECL substrate (Bio-Rad #1705060) 

and a Bio-Rad ChemiDoc. 
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2.9  Flow cytometry/fluorescence-activated cell sorting (FACS) analysis 

10 ml yeast cultures (1x107 cells/ml) were centrifuged at 4,000 rpm for 5 minutes. The 

supernatant was discarded and the pellet was washed with 20 ml sterile water. The suspension 

was spun down again, and the pellet was resuspended in fresh YPD supplemented with 30-50 

µg/ml α-factor. The cell culture was shaken at 200 rpm and incubated at 30°C for 2.5 hours. 

After α-factor arrest, the shmoo (the pear-shape morphology that orients the mating position) 

appearance was checked under microscope. The cells were washed with sterile water and spun 

down 4,000 rpm for 5 minutes for four times. The cell pellet was resuspended in fresh YPD 

supplemented with 50 µg/mL Pronase E to degrade any residual α-factor (Sigma #P6911) and 

incubated at 30°C. The samples for FACS were taken at several time points during incubation. 

Approximately 1×107 cells were harvested at 16,000 g for 1 minute. The pellet was resuspended 

in 1 mL 70% EtOH. Next, 500 µl of this suspension was transferred to a new tube, spun down 

at 16,000 g for 1 minute, and the pellet was washed using 500 µL sterile water. The suspension 

was spun down again and the pellet was resuspended in 500 µL of 50 mM Tris-HCl pH 8. 

RNaseA (BioShop #RNA675.250) was added to a concentration of 0.2 mg/ml, and the 

suspension was incubated at 37°C for 3 hours. The suspension was spun down, and the pellet 

was resuspended in 500 µL of 50 mM Tris-HCl pH 7.5 containing 2 mg/ml Proteinase K (Sigma 

#P2308) and incubated at 50°C for 1 hour. The suspension was again spun down, and the pellet 

was resuspended in 100 µL of FACS buffer (200 mM Tris-HCl pH 7.5, 200 mM NaCl, 78 mM 

MgCl2) and transferred to a new tube containing 750 µL Sytox solution (50 mM Tris-HCl pH7.5 

and 1:5000 diluted 5 mM Sytox in DMSO (Molecular Probes #S7020). Prior to FACS reading, 
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the suspension was sonicated at low-intensity for 5 seconds. FACS was performed using Amnis 

ImageStream Flow Cytometry.  

 

2.10 Cloning and expression of Dbf4-Rad53 chimeras 

Dbf4-Rad53 chimeras were created by subcloning a codon-optimized fragment of Dbf4 

encompassing amino acids 105–220 (Matthews et al., 2014) followed by the FHA1 domain of 

Rad53 (amino acids 22–162) into a modified pET15b vector including His6-SUMO tag with a 

TEV protease cleavage site (pAG8586). The two protein fragments were connected directly 

(Dbf4(0)Rad53) or separated by a five-residue linker (Dbf4-SGASG-Rad53, herein referred to 

as Dbf4(5)Rad53). Clones were confirmed by DNA sequencing (MOBIX, McMaster 

University). Plasmids encoding the Dbf4(0)Rad53 (pAG8801) and Dbf4(5)Rad53 (pAG8805) 

chimeras were transformed in BL21(DE3) cells containing a plasmid encoding rare tRNAs. 

Cultures were grown to A600 = 0.7, induced by addition of 1 mM isopropyl β-D-1-

thiogalactopyranoside, and incubated overnight at 16 °C with orbital agitation. 

 

2.11 Protein purification 

Cell pellets were resuspended in buffer A (20 mM TRIS-HCl pH 8.0, 500 mM NaCl, 1.4 mM 

2-mercaptoethanol, 5% glycerol) and lysed by sonication. Lysates were cleared by 

centrifugation at 39,000 g, and the supernatants were loaded onto a HiTrap nickel-chelating HP 

column (GE Healthcare) equilibrated with buffer A. The His6-SUMO-tagged chimeras were 

eluted with a linear gradient to 300 mM imidazole. The fractions containing the chimera were 

pooled and injected onto a HiPrep 26/10 desalting column (GE Healthcare) equilibrated with 
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buffer B (20 mM TRIS-HCl pH 8.0, 150 mM NaCl, 1.4 2-mercaptoethanol, 5% glycerol). The 

His6-SUMO tag was removed with tobacco etch virus (TEV) protease, and the tagless 

chimeras further purified by affinity (HiTrap nickel-chelating HP column, GE Healthcare) and 

size-exclusion chromatography (Superdex 75 (10/300) GL column, GE Healthcare). The 

purified proteins were concentrated to 9–12 mg/mL and stored in buffer B. Protein 

concentrations were determined using the Beer-Lambert equation with an extinction coefficient 

of 36,440 M−1 cm−1. 

 

2.12 Analytical ultracentrifugation 

Sedimentation velocity experiments were conducted at 50,000 rpm and 20°C on a Beckman 

Coulter ProteomeLab XLI analytical ultracentrifuge following standard protocols (Zhao et al., 

2013).  Samples of the Dbf4(5)Rad53 chimera were studied at various loading concentrations 

ranging from 2 to 310 μM in 0.2 M NaCl, 0.02 M TRIS-HCl pH 8.0, 1.4 mM 2-

mercaptoethanol and 5% v/v glycerol. Samples were loaded in 2-channel centerpiece cells and 

data were collected using both the absorbance (280 nm) and Rayleigh interference (655 nm) 

optical detection systems when possible. Standard 12 mm centerpieces were used, whereas 

shorter 3 mm centerpieces were used for the higher concentration protein samples (>70 μM). 

Sedimentation data were time-corrected (Ghirlando et al., 2013) and analyzed in SEDFIT 

15.01b (Schuck, 2000)  in terms of a continuous c(s) distribution of sedimenting species with a 

resolution of 0.05 S and a maximum entropy regularization confidence level of 0.68. The 

solution density, solution viscosity and protein partial specific volume were calculated in 

SEDNTERP (Cole et al., 2008b) (http://sednterp.unh.edu/), and sedimentation 

http://sednterp.unh.edu/
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coefficients s were corrected to standard conditions s20,w. Weighted-average sedimentation 

coefficients obtained by integration of the c(s) distributions were used to create an isotherm 

that was analyzed in SEDPHAT 13.0a in terms of a reversible monomer-dimer equilibrium. 

The protein extinction coefficient at 280 nm and the interference signal increment were 

calculated based on the amino acid composition in SEDFIT 15.01b (Zhao et al., 2011). 

 

2.13 Crystallization, structure determination and refinement 

Crystals of the Dbf4(5)Rad53 grew in 50 mM sodium cacodylate pH 6.5, 12% PEG 4000 (v/v), 

and 250 mM MgCl2 and cryo-protected by addition of 10% ethylene glycol. A complete data 

set was collected at the X29 beamline of NSLS-I (Brookhaven National Laboratory). Data was 

processed and scaled in HKL2000 (see Table 2.3) (Otwinowski & Minor, 1997). A 

phosphorylated peptide (pPEP) derived from Cdc7 (480DGESpTDEDDVVS491) was 

purchased from GenScript and resuspended in buffer B. The Dbf4(0)Rad53 chimera was mixed 

with the phosphorylated peptide at a 10-fold molar excess and incubated at 4°C for one hour 

prior to crystallization trials. Crystals of the Dbf4(0)Rad53-pPEP complex were grown in 

100 mM TRIS pH 8.5, and 12.5% PEG 3350 (v/v) and cryo-protected by addition of 15% 

glycerol. A complete data set was collected at the O8B1-1 beamline of the Canadian Light 

Source and processed using XDS (see Table 2.3) (Kabsch, 2010). 
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Table 2.3 Data collection and refinement statistics. 

 

 

 

Both structures were determined by molecular replacement using the FHA1 domain of Rad53 

(PDB 1G6G) and the HBRCT domain of Dbf4 (PDB 3QBZ) as search models. The initial 

models were refined by iterative cycles of manual model building in Coot and refinement in 
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PHENIX (Adams et al., 2010). The refined models have 98% (Dbf4(5)Rad53) and 98.4% 

(Dbf4(0)Rad53-pPEP) of the residues in the most favored regions of the Ramachandran plot 

and none in the disallowed regions. Quantitative analysis of the Dbf4(L)Rad53 (±pPEP) 

interfaces was done using the online Protein Interfaces Structures and Assemblies (PISA) 

server (Krissinel & Henrick, 2007). Figures showing molecular structures were generated using 

PyMOL(Matthews et al., 2014) (DeLano, 2002). 

 

2.14 Analysis of the NMR data 

Gradient and sensitivity enhanced [1H-15N] heteronuclear single quantum coherence (HSQC) 

spectra were acquired at 306 K using a Bruker AV-700 MHz spectrometer equipped with a 

5 mm TCI cryoprobe. Samples were prepared as described by (Matthews et al., 2014) with an 

equimolar concentration of FHA1 and HBRCT in either the absence or presence of 200 μM 

phosphorylated Cdc7 peptide (pPEP, 480DGESpTDEDDVVS491). Spectra were processed 

using NMRPipe (Delaglio et al., 1995) and analyzed in Sparky. 

 

 

 

 

 

 

 

 



 
 

 

59 
 
 

Chapter 3 

’AND’ logic gates at work: Crystal structure of Rad53 bound to Dbf4 and Cdc7 
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3.1  Introduction 

Stress generated during DNA replication is one of the biggest hurdles proliferating cells face to 

preserve genome integrity. Therefore, eukaryotic cells have conserved surveillance 

mechanisms, known as cell cycle checkpoints, to detect and repair damage generated during 

DNA replication (Branzei & Foiani, 2005; Putnam et al., 2009; Segurado & Tercero, 2009; 

Zegerman & Diffley, 2009). Rad53, and its mammalian ortholog the checkpoint kinase 2 

(Chk2), are key effector kinases of the DNA replication checkpoint (Bartek & Lukas, 2003; 

Rouse & Jackson, 2002). Loss-of-function mutations in RAD53 cause loss of viability due to 

an essential function in maintaining dNTP levels during DNA replication, while hypomorphic 

RAD53 mutations result in DNA damage sensitivity and deficits in checkpoint responses 

(Allen et al., 1994; Fay et al., 1997; Moore, 1978; Paulovich & Hartwell, 1995). Similarly, 

loss-of-function mutations in Chk2 lead to a defective checkpoint response (Hirao et al., 2000; 

Matsuoka et al., 1998). 

Rad53 contains two forkhead-associated (FHA) domains, as well as two SQ/TQ cluster 

domains (SCD), flanking its kinase domain. FHA domains are commonly found in DNA 

damage response proteins and mediate protein-protein interactions by recognizing 

phosphorylated epitopes on their binding partners (Durocher et al., 2000). During the 

replication checkpoint, phosphorylation-dependent interactions mediated by the FHA domains 

of Rad53 trigger hyperphosphorylation of the N-terminal SCD domain and lead to the full 

activation of Rad53 (Pellicioli & Foiani, 2005). It was generally believed that FHA domains 

recognize unstructured sequences containing a phosphorylated amino acid –often a threonine. 

Recent studies, however, have shown that FHA domains can also use alternate surfaces for 
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protein oligomerization and to mediate protein-protein interactions (Luo et al., 2015; Matthews 

et al., 2014; Nott et al., 2009; Raasch et al., 2014; Weng et al., 2015). The Dbf4-dependent 

kinase (DDK) and Rad9 are two binding partners of Rad53 during the replication checkpoint 

response. Dbf4 preferentially interacts with the N-terminal FHA domain (FHA1) of Rad53 

(Duncker et al., 2002), whereas Rad9 binds the C-terminal FHA domain (FHA2) (Sun et al., 

1998), reinforcing the idea that the two FHA domains recognize distinct features on their 

binding partners. DDK, a heterodimer the Ser/Thr kinase Cdc7 and its regulatory subunit Dbf4, 

is one of the kinases known to hyperphosphorylate Rad53 (Ogi et al., 2008). Reciprocally, 

Rad53 phosphorylates DDK to inhibit its activity, thereby preventing the firing of late 

replication origins (Zegerman & Diffley, 2010). This is crucial as it inhibits S-phase 

progression and allows cells to recover from replication stress.  

The interaction between Rad53 and DDK is of special interest because it involves 

multiple interfaces of the FHA1 domain. The phosphoepitope-binding site recognizes an 

epitope present in DDK (Aucher et al., 2010), whereas one of the lateral surfaces of FHA1 

interacts with the modified BRCT domain of Dbf4 (Matthews et al., 2014), herein referred to 

as HBRCT domain due to the presence of an additional a-helix at the N-terminus of the 

domain. However, like many other relevant signaling interactions, the Rad53 and Dbf4 

association is weak and presumably transient. The latter are especially difficult to study for 

effector proteins like Rad53, because they often interact with multiple partners using a 

common interface. To understand how Rad53 manages its multiple interactions during the 

steps leading to Cdc7 inhibition, we stabilized the Rad53:Dbf4 complex using glycine-rich 

linkers. We generated chimeras expressing the BRCT (Dbf4) and FHA1 (Rad53) domains in 
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tandem and solved the crystal structures of these chimeras in the absence and presence of a 

phosphorylated epitope derived from Cdc7. These are the first structures of an FHA domain 

bound to a binding partner through a non-canonical interface and they reveal a unique bipartite 

interface between Rad53 and Dbf4 that provides exquisite specificity despite the minimal 

interaction surface.  

 

3.2  Results 

3.2.1 The Dbf4(L)Rad53 chimeras have a weak self-association 

We have previously shown that the HBRCT domain of Dbf4, consisting of a BRCT fold 

immediately preceded by a helix, is necessary and sufficient for the interaction with the FHA1 

domain of Rad53 (Matthews et al., 2012). The interaction with this domain of Dbf4 is 

mediated by one of the lateral surfaces of the FHA1 domain rather than its phosphopeptide-

binding pocket (Matthews et al., 2012). However, the instability of the HBRCT domain at high 

concentrations prevented the characterization of the reciprocal surface in Dbf4. Based on our 

biochemical, genetic and structural data, we generated a preliminary model of the Dbf4-Rad53 

complex using the Rosetta software. In this model, the lateral surface of the FHA1 domain 

interacted with the concave surface of the HBRCT domain of Dbf4 leaving the termini of both 

domains in close proximity. Therefore, we anticipated that we could stabilize the interaction by 

producing the two domains as a single polypeptide chain. We fused the FHA1 domain of 

Rad53 at the C-terminus of the HBRCT domain of Dbf4 directly, or using a five-residue 

glycine/serine-rich linkers (Dbf4(0)Rad53 and Dbf4(5)Rad53; Figure 3.1A). The resulting 

chimeras were monodisperse and behaved as monomers in solution as judged by dynamic light 
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scattering and size exclusion chromatography. Despite being predominantly monomeric, the 

elution times from an analytical size exclusion chromatography varied in a concentration-

dependent manner suggesting a weak intermolecular association (Figure 3.1B and Appendix A 

Figure 1).  

 

Figure 3.1. The Rad53(5)Dbf4 chimera exists in a monomer-dimer equilibrium. (A) 

Cartoon depicting how the Rad53(L)Dbf4 chimeras were generated. (B) Size exclusion 

chromatography profiles of Dbf4(5)Rad53 at increasing protein concentrations. Elution 

volumes for a ideal Dbf4(5)Rad53 monomer and dimer are indicated as dashed lines. (C) 

Normalized interference c(s) profiles for Dbf4(5)Rad53 at 2 μM (red) and 310 μM (blue) 

supporting a reversible monomer-dimer equilibrium. (D) Dependence of the weighted-

average s20,w on the loading concentration for absorbance (blue) and interference (red) 

sedimentation velocity data, along with the global best-fit monomer-dimer isotherm (green). 

 

We carried out a series of sedimentation velocity experiments on the Dbf4(5)Rad53 

chimera at increasing loading concentrations. The sedimentation experiments demonstrated the 

absence of very large species and yielded c(s) profiles that supported a reversible monomer-
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dimer equilibrium (Figure 3.1C). Dimerization of chimeric proteins is not uncommon and it 

indicates that the two components of the chimera associate intermolecularly (Foss et al., 2005; 

Wang et al., 2008; Williams et al., 2014). A weighted-average sedimentation coefficient 

isotherm was constructed and analyzed in terms of reversible monomer-dimer equilibrium 

(Figure 3.1D), to obtain a dissociation constant Kd of 130 µM. As the isotherm does not 

adequately cover the high concentration region there may be significant errors in this value. 

Based on the reduced chi-squared, using the method of F-statistics (Johnson, 1992), we 

estimate 68% and 95% confidence limits of the Kd to be 70–260 µM and 50–400 µM. These 

values indicate the order of magnitude of the interaction and confirm that the HBRCT domain 

of Dbf4 and the FHA1 domain of Rad53 associate weakly.  

 

3.2.2  The Dbf4(L)Rad53 chimeras recreate the Dbf4:Rad53 interaction  

To avoid constraints imposed by the presence of the linker joining the two proteins, we set 

crystallization trials of two chimeras: Dbf4(0)Rad53 and Dbf4(5)Rad53. The chimera 

containing a five-residue linker readily yielded diffraction-quality crystals (See Table 2.3). The 

asymmetric unit contained four copies of the Dbf4(5)Rad53 chimera arranged to form four 

Dbf4:Rad53 complexes. The C-terminal end of Dbf4 (residues 216-220) and the N-terminal 

end of Rad53 (residues 22-29), as well as the five amino acid linker, were disordered in the 

structure (Appendix A Figure 2). This results in almost twenty amino acids missing in each 

polypeptide chain. The distance between the last ordered residue of the HBRCT domain of 

Dbf4 and the first ordered residue in the closest FHA1 neighbors, the crystal packing contacts 

and the behavior in solution of the chimeras, confirms that the Dbf4:Rad53 complex forms 
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inter-molecularly. Importantly, the four complexes in the asymmetric unit had identical 

interfaces, indicating that the linkers did not constrain complex formation.  

The FHA1 and HBRCT domains have identical architectures in the complex as in their 

unbound structures (Figure 3.2A). However, the helix α0 of the HBRCT domain swivels about 

twenty degrees upon complex formation (Figure 3.2A). In good agreement with our previous 

results showing that the pThr-binding pocket of the FHA1 domain does not mediate the 

interaction with Dbf4 (Matthews et al., 2014), the complex forms through the lateral surface of 

the FHA1 domain defined by the β2-β1-β11-β10-β7-β8 strands and the concave surface of the 

HBRCT domain (Figure 3.2B). This interface, however, is quite limited because Dbf4 only 

contacts two small regions on each side of the lateral surface of Rad53. On one side of the 

interface, the side chains of residues Arg35 (β1), Ile37 (β1), Val144 (β11) and Phe146 (β11) of 

Rad53 are cradled by the α0 helix of the HBRCT domain, specifically by residues Glu111, 

Trp112, Asn115 and Trp116, defining interface I (Figure 3.2C). On the other side, the loop 

containing residues Tyr198 and Lys200 of Dbf4 wraps around the β7/β8 loop of the FHA1 

domain enabling the interaction between the amine group of Lys200 and Asn112 (β7) in Rad53 

defining interface II (Figure 3.2D). Globally the two interfaces bury a mere 10% of the total 

accessible surface area of the FHA1 (755 out of 6,664 Å2) and the HBRCT (801 out of 7,799 

Å2) domains, a value that is below the cutoff for specific interactions as judged using the PISA 

server (Krissinel & Henrick, 2007). This is not surprising in light of the dissociation constant 

estimated from the sedimentation velocity and NMR analysis (Figure 3.1 and (Matthews et al., 

2014)). 
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Figure 3.2. Structure of the Rad53(5)Dbf4 chimera. (A) Comparison of the structures of the 

FHA1 domain of Rad53 and the HBRCT domain of Dbf4 when crystallized on their own (PDB 

ID: 1G6G and 3QBZ) or forming a complex. The FHA1 domain is shown in green (1G6G) or 

gold (complex) and the HBRCT domain is shown in lilac (3QBZ) or purple (complex) with 

secondary structure elements labeled for clarity. (B) Ribbon diagram of the crystal structure of 

the Rad53:Dbf4 complex with Rad53 colored gold and Dbf4 colored purple. The interfaces 

mediating the complex, as well as the pThr-binding groove, are labeled. Detailed views of the 

interactions defining interface I (C) and interface II (D). Rad53 and Dbf4 residues are shown as 

sticks colored as in (B) and labeled. Refined 2Fo-Fc electron density maps are shown as a grey 

mesh contoured at σ = 1.2. Hydrogen bonds are shown as dashed lines. 

 

3.2.3 Rad53 and Dbf4 contribute asymmetrically to the interface of the complex 

The residues of the FHA1 domain mediating the interaction with Dbf4 in the crystal structure 

of the Dbf4(5)Rad53 chimera are the same as those previously identified using NMR 
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(Matthews et al., 2014). Our previous work, however, could not explain why multiple point 

mutations on the FHA1 surface were required to abrogate complex formation (Matthews et al., 

2014). These results were intriguing because Rad53 and Dbf4 interact with low affinity and, 

hence, we had not anticipated the need of multiple mutations to abrogate the interaction. Since 

the point mutations in Rad53 were designed based on sequence conservation, we had a better 

sampling of interface I than interface II (Figure 3.2). Therefore, we decided to dissect the 

contributions of both interfaces to the complex formation. 

 We generated single point mutations in the FHA1 domain affecting either interface I 

(Phe146Ala) or interface II (Asn112Ala), as well as a double point mutation affecting both 

interfaces (Asn112Ala/Phe146Ala). We then measured the ability of these variants to interact 

with full-length Dbf4 using a yeast two-hybrid assay. As we expected from our previous work, 

the FHA1-Asn112Ala had a mild, yet significant, binding defect (Figure 3.3A and Appendix A 

Figure 3A). Conversely, the FHA1-Phe146Ala variant interacted with Dbf4 better than wild 

type FHA1 suggesting that a smaller side chain at this position may help accommodate helix 

α0 of the HBRCT. The combination of both changes had a stronger defect than the FHA1-

Asn112Ala variant, but retained about half of the residual binding to Dbf4 (Figure 3.3A). 

When we conducted the reciprocal experiment, the results were more drastic. The Dbf4-

Leu109Ala/Trp112Asp variant (affecting interface I) completely abrogated the interaction with 

the FHA1 domain, whereas variants affecting interface II had wide-ranging effects (Figure 

3.3B). On our structure, the loop containing residues Tyr198 and Lys200 of Dbf4 wraps 

around the β7/β8 loop of the FHA1 domain enabling the interaction with Asn112 (β7) in 

Rad53 (Figure 3.2D). Mutation of Tyr198Ala did not affect the interaction with the FHA1 
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domain, whereas mutation of Lys200Ala disrupted binding to the FHA1 domain (Figure 3.3B). 

Collectively these data suggest that hydrophobic contacts and the relative rigid body movement 

of helix α0 drive the interaction at interface I, whereas polar interactions determine interface II. 

Furthermore, they confirm that Dbf4 and Rad53 do not contribute equally to each interface, but 

both contact points are important for complex formation. 

 

 

Figure 3.3. Two discrete interfaces contribute to the Rad53:Dbf4 interaction. (A) Yeast 

two-hybrid analysis using wild type Dbf4 as the bait and variants of the FHA1 domain of 

Rad53 as the preys. (B) Yeast two-hybrid analysis using variants of Dbf4 as the baits and the 

wild type FHA1 domain of Rad53 as the prey. In each case, the interaction is shown as a 

percentage of β-galactosidase activity for the interaction between wild-type proteins and 

represents the mean of three independent measurements (error bars represent S.D). Bait and 

prey expression levels were analyzed by the representative Western blotting (of three 

independent experiments performed) and relative protein loading assessed by Ponceau S 

staining. See Appendix A Figure 3 for original gels/blots. 

 

 

https://www.nature.com/articles/srep34237#MOESM66
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3.2.4 Rad53 interacts simultaneously with Dbf4 and a phosphorylated peptide 

The combination of hydrophobic and polar interactions segregated in two different contact 

areas could provide the means to regulate complex formation upon binding of additional 

partners. Since a phosphorylated binding epitope is necessary for the interaction of Rad53 with 

DDK, we sought to determine the structure of the Dbf4(L)Rad53 chimera bound to a 

phosphorylated peptide (Table 2.3).  

 

 

Figure 3.4. Rad53 recognizes a phosphorylated epitope in the Cdc7 subunit of the DDK 

complex. (A) Yeast two-hybrid analysis using either wild type or a T484A variant of Cdc7 as 

the baits and wild type FHA1 domain of Rad53 as the prey. (B) Yeast two-hybrid analysis 

using wild type Cdc7 as the bait and variants of the FHA1 domain of Rad53 as the prey. Bait 

and prey expression levels were analyzed by the representative Western blotting (of three 

independent experiments performed) and relative protein loading assessed by Ponceau S 

staining. See Appendix A Figure 4 for original gels/blots. 

 

https://www.nature.com/articles/srep34237#MOESM66
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The fragment of Cdc7 encompassing residues 294-493 interacts reproducibly with the 

FHA1 domain of Rad53 (Aucher et al., 2010). This region only contains one TXXD motif 

(484TDED487) that is conserved and has high phosphorylation probability (Aucher et al., 2010). 

In good agreement, a Cdc7 variant encompassing a Thr484Ala point mutation reduces the 

interaction of Cdc7 with the FHA1 domain of Rad53 to 50% of wild type (Figure 3.4A and 

Appendix A Figure 4). Reciprocally, a variant of Rad53-FHA1 unable to bind phosphorylated 

targets (FHA1-Arg70Ala) abrogates the interaction with Cdc7 (Figure 3.4B). The differences 

between the Cdc7-Thr484Ala and Rad53-Arg70Ala variants suggest that Rad53 may be able to 

bind other epitopes in Cdc7 in the absence of Thr484.  

Conversely, variants disrupting the Rad53:Dbf4 interface do not affect binding to Cdc7 

(Figure 3.4B and (Matthews et al., 2014)). Since we have previously shown that a peptide 

derived from this motif of Cdc7 (pPEP, 480DGESpTDEDDVVS491) binds to the FHA1 domain 

of Rad53 in a phosphorylation-dependent manner in vitro, we used this peptide for subsequent 

crystallographic studies. Crystals of the ternary Rad53-Dbf4-Cdc7 complex grew in the P21 

space group and diffracted X-rays beyond 2.3 Å resolution. We determined the structure by 

molecular replacement using the structures of the individual FHA1 and HBRCT domains as 

search models. The molecular replacement solution showed well-defined electron density for 

the two domains, as well as the main chain and most side chains of the phosphorylated peptide 

(Figure 3.5A-B). Similar to other structures of FHA1 domains bound to phosphorylated 

peptides, pPEP is bound at one end of the FHA1 domain and interacts with residues in the 

β3/β4, β4/β5 and β6/β7 loops (Durocher et al., 2000). The phosphate moiety of pThr484 is held 

in place through hydrogen bonds with Arg70, Ser85, Asn86 and Thr106 (Figure 3.5C); the 
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pT+3 aspartate residue (Asp487) is anchored through a salt bridge with Arg83; and the main 

chain of the intervening residues is further stabilized through hydrogen-bonds with the main 

chain carbonyl of Ser82 and the side chain of Asn107 (Figure 3.5D).  

 

 

Figure 3.5. Structure of Rad53:Dbf4:Cdc7 ternary complex. (A) Ribbon representation of 

the ternary complex on a similar view as in Figure 3.2. Rad53 (orange) and Dbf4 (green) are 

shown as ribbons. The Cdc7-derived peptide (pPEP) is shown as colored coded sticks. (B) 

Detail of the electron density map around the phosphorylated peptide shown as a grey mesh 

contoured at σ = 1.0. (C) Detail of the hydrogen-bond network stabilizing pThr484. (D) Detail 

of the hydrogen bond interactions defining the specificity at the pT + 3 position of the peptide, 

as well as additional hydrogen bonds stabilizing the main chain of the peptide. Hydrogen 

bonds are shown as green dashed lines. 
 

https://www.nature.com/articles/srep34237#Fig2
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The Dbf4:Rad53 interface is similar, but not identical, to the binary complex. 

Superimposition of the FHA1 domains in the binary and ternary complexes revealed that the 

β1 strand and the β1/β2 loop were virtually invariant (r.m.s.d. < 0.1 Å2). Therefore, we used 

this region of the FHA1 to superimpose and compare the two complexes. As expected, the 

loops defining the pThr-binding groove of the FHA1 domain had larger deviations (0.34 < 

r.m.s.d. < 0.63), caused by the binding of the phosphopeptide. Conversely, the residues in 

FHA1 mediating the interaction with Dbf4 were barely affected by phosphopeptide binding 

(0.15 < r.m.s.d. < 0.35).  

Binding of the phosphopeptide, however, induces a small rigid body movement of Dbf4 

around the two interfaces holding the complex (Figure 3.6A). The HBRCT domain seesaws 

pushing helix α1 away from the FHA1 domain while pulling the α0/β1 loop towards the FHA1 

domain. This rotation is identical for both complexes in the asymmetric unit and, though 

subtle, the movement is enough to reorganize some of the residues at both interfaces. Upon 

binding to pPEP, the side-chain of Lys118 (interface I in Dbf4) comes close to the side-chains 

of Asp123 (Dbf4) and Asp149 (Rad53) stabilizing the interaction of the C-terminus of helix α0 

in Dbf4 with Rad53 (Figure 3.6B). On the ternary complex, Lys200 (interface II in Dbf4) is not 

hydrogen-bonded to Asn112. Binding to pPEP pushes the α3/β4 loop of Dbf4 closer to the β10 

strand where the new conformation of Lys200 is stabilized through hydrogen bonds with 

Gln126 and Asp128 (Figure 3.6C).  
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Figure 3.6. Peptide-binding induces a rigid body movement of Dbf4. (A) Opposite views of 

the Rad53:Dbf4:Cdc7 complex (gold-green) superimposed onto the Rad53:Dbf4 complex 

(gold-purple). (B) Detail of the different interactions of Lys118 (Dbf4) in in the binary (left) 

and ternary (right) complexes. (C) Detail of the conformational change imposed onto the side 

chain of Lys200 (Dbf4) upon binding of the phosphorylated peptide. In the binary complex 

(left-side panel) Lys200 interacts with Asn112 (Rad53), whereas in the ternary complex (right-

side panel) interacts with Gly127 and Asp128 (Rad53). 

 

 
3.2.5 Phosphopeptide binding modulates the Rad53:Dbf4 interaction  

Given the subtle movement of the HBRCT domain, the analysis of the two interfaces did not 

show significant differences in the extension of the interface or solvation energy (Table 3.1). 

Dbf4 had a minimal gain in solvation energy suggesting the HBRCT domain has more surface 

exposed residues in the ternary than the binary complexes (Table 3.1). The differences between 

the Dbf4:Rad53 interface in the binary and ternary complexes could indicate that binding of 

the phosphopeptide allosterically regulates the interaction. However, these differences could 

also be due to crystal packing environment or the different linker length of the fusions.  
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Table 3.1. PISA analysis of the Dbf4:Rad53 and Dbf4:Rad53:Cdc7 complexes 

 

  

 

The asymmetric unit of the binary complex included four Dbf4(5)Rad53 molecules 

defining four Dbf4:Rad53 interfaces, whereas that of the ternary complex included two 

Dbf4(0)Rad53 molecules defining two Dbf4:Rad53 interfaces. Superimposition of each ternary 

complex onto any of the binary complexes revealed that the peptide moiety could only be 

accommodated in half of the complexes, explaining why crystals of the ternary complex grew 

in different conditions.  However, no other crystal contacts mediated by the FHA1 or HBRCT 

domains enhanced or prevented the movement in Dbf4. Therefore, phosphopeptide binding 

rather than crystal packing is the likely driving force of the movement.  

We have previously shown that losses of cross-peak intensity in the HSQC spectrum of 

15N-labeled Rad53 upon binding Dbf4 serve as sensitive reporters to map the interface of the 

complex (Matthews et al., 2014). If phosphopeptide binding to the FHA1 domain weakened 

the interaction, we would expect an enhancement of cross-peak intensities for the Rad53 

residues at the interface with Dbf4. Despite maintaining similar conformations in the binary 

and ternary crystal structures, two residues on interface I (Ile37 and Phe146) showed increased 

cross-peak intensities in the ternary complex (Appendix A Figure 5). These observations are 
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consistent with the idea that phosphopeptide binding to the FHA1 domain weakens the 

Rad53:Dbf4 interaction. However, some surface residues beyond the complex interface also 

show variations of cross-peak intensities between the two complexes (Appendix A Figure 5).  

Interestingly, a number of residues within the hydrophobic core of Rad53 display decreased 

cross-peak intensities upon phosphopeptide binding (Appendix A Figure 5). These residues 

form a continuous network from the β3/β4 loop (Phe68-Gly69) to the β9/β10 loop (Leu124-

Ser125) that propagates across the β-sheet defined by strands β4-β3-β5-β6-β9.  Such intensity 

losses typically reflect changes in internal dynamics and could possibly reveal an allosteric 

network to report the presence of the phosphorylated peptide to the Rad53:Dbf4 interface. 

While these changes could explain how the two inputs of the logic gate sense each other to 

elicit a single output, the idea awaits further validation. 

 

3.3  Discussion 

Yeast genetics has delineated the factors and hierarchy of interactions involved in the DNA 

damage response, but the molecular detail has remained elusive because most of the 

interactions driving the checkpoint response are transient. This problem is aggravated for 

‘AND’ logic gates because they recognize two or more inputs to produce a single signal (Hasty 

et al., 2002; Lee et al., 2008a; Zhang & Durocher, 2008), but disruption of any of the inputs 

disrupts the output leading to technically biased interpretations. We have found that the FHA1 

domain of Rad53 functions as a ‘AND’ logic gate for its interaction with DDK, thereby 

explaining more than a decade of partly conflicting results (Chen et al., 2013; Duncker et al., 

2002; Matthews et al., 2012, 2014; Matthews & Guarne, 2013). The crystal structures of the 
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FHA1 domain of Rad53 bound to one (HBRCT) or both (HBRCT and phosphoepitope) 

partners in the DDK complex presented here unveil how this logic gate simultaneously 

recognizes two inputs and provide the first image of an FHA domain recognizing a binding 

partner through a non-canonical interface. 

The interaction of Rad53 with the DDK complex is reminiscent of the interaction 

between Chk2 (the human ortholog of Rad53) and BRCA1, where the tandem BRCT repeat of 

BRCA1 simultaneously recognizes two distal surfaces in the FHA domain of Chk2 (Li et al., 

2002). In the BRCA1:Chk2 complex, the interaction involves the pThr-binding site and a 

conserved hydrophobic patch on one of the lateral surfaces of the FHA domain. Disruption of 

either contact point prevents the interaction, and mutation of the hydrophobic patch has been 

linked to Li-Fraumeni syndrome (Li et al., 2002). However, Dbf4 and BRCA1 do not interact 

with the same lateral surface of the FHA domains of Rad53 and Chk2, exposing the extreme 

plasticity of FHA domains to enhance binding specificity.  

Both Rad53 and Chk2 dimerize in solution and this is important to promote kinase 

activation by trans-autophosphorylation (Cai et al., 2009; Wybenga-Groot et al., 2014). 

Dimerization is triggered by damage-induced phosphorylation of a threonine within the SCD 

of the kinase. The dimers associate in a face-to-face configuration that promotes the swap of 

the activation loops for phosphorylation in trans (Cai et al., 2009; Schwarz et al., 2003). In the 

crystal structure of Chk2, one of the lateral surfaces of the FHA domain also contributes to the 

dimerization interface and, in fact, the requirement of a phosphorylated threonine residue is 

bypassed by protein overexpression indicating that the kinase and FHA mediated interactions 

suffice to stabilize the dimer (Cai et al., 2009). The surface of the FHA domain involved in the 
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dimerization interface is the same as that of Rad53 mediating the interaction with Dbf4 

(Appendix A Figure 6). However, the two kinases transition to monomers to phosphorylate 

downstream targets (Ahn & Prives, 2002; Ahn et al., 2002; Cai et al., 2009), implying that 

dimer formation and subsequent dissociation may determine the hierarchy of checkpoint 

events.  

In contrast to the Chk2 dimer, where the entire lateral face of the FHA domain 

contributes to dimer formation, Dbf4 only contacts two points on the lateral face of the FHA1 

domain. Interestingly, mutations on the two surfaces are not reciprocal indicating that each 

partner contributes asymmetrically to the two small interfaces mediating the interaction with 

Dbf4, thereby suggesting a sophisticated way to gain binding-specificity without strengthening 

the interaction. To our knowledge, this is the first crystal structure of an FHA domain bound to 

a binding partner through a non-canonical interface and lays the foundation to study how FHA 

domains can exploit canonical and non-canonical interactions to increase binding specificity of 

low-affinity interactions and, in turn, extend the functional repertoire of this phosphoepitope 

binding module. 
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Chapter 4 

A proline-rich Rif1 motif mediates interaction with Dbf4, promoting DNA replication 

and resistance to genotoxic stress  

 

 

 

 

 

 

 

 

Figure 4.4A. Analysis was conducted by Dr. Andrew Doxey. 

 

Figure 4.6B. Experiments were performed by Matthew J. Schmitz. 

 

Figure 4.7. Larasati performed experimental design, yeast strain construction, data interpretation 

and analysis. Matthew J. Schmitz assisted in yeast strain construction and optimizing the spotting 

conditions. Larasati and Matthew J. Schmitz performed independent replicates for Figure 4.7A. 

Matthew J. Schmitz performed independent replicates for Figure 4.7B.   

 

Appendix 4 Figure 1. Larasati performed experimental design, yeast transformation, data 

interpretation and analysis. Larasati and Matthew J. Schmitz performed independent replicates 

of the competitive yeast two-hybrid assays. 
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4.1 Introduction 

Faithful DNA replication is fundamental to the proliferation of every living organism. Its 

mechanisms and levels of regulation have been studied extensively to understand the processes 

that drive the cell cycle, maintain genomic integrity and, eventually, translate these findings 

into clinical applications. Eukaryotes normally duplicate their entire genomes once per cell 

cycle. To maintain the correct ploidy, re-activation of origins of DNA replication during the 

same cell cycle is strictly inhibited. This is achieved, in part, by temporally separating the 

assembly of the replicative helicase at origins (origin licensing) and its activation (origin firing) 

into different stages of the cell cycle (Bell & Labib, 2016). 

Origin firing in S phase is triggered by a series of phosphorylation events, involving 

Dbf4-dependent kinase (DDK) and cyclin-dependent kinase (CDK). As cells progress from G1 

to S phase, there are spikes in the expression levels of Dbf4, the regulatory subunit of DDK 

(Nougarède et al., 2000; Oshiro et al., 1999; Pasero et al., 1999) and the budding yeast S-phase 

cyclins Clb5 and Clb6 (Schwob & Nasmyth, 1993). DDK phosphorylates the helicase core 

Mcm2-7, targeting Mcm4 and relieving its inhibitory effect on helicase activity (Sheu & 

Stillman, 2010). CDK phosphorylates Sld3 and Sld2 and drives their interaction with Dpb11, 

which promotes the recruitment of the accessory factors of the helicase, Cdc45 and GINS, 

respectively (Tanaka et al., 2007; Zegerman & Diffley, 2007). CDK phosphorylation also 

allows the formation of a complex between Sld2, Dpb11, GINS, and DNA polymerase ε 

(Muramatsu et al., 2010). This ensures that DNA unwinding activity by the helicase is always 

followed by DNA synthesis. The result of DDK and CDK phosphorylation is the active 

helicase in the form of Cdc45-Mcm2-7-GINS (CMG).  
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To avoid any origin firing outside of S phase, the cells restrict DDK and S-phase CDK 

activities temporally. Dbf4 is degraded by the anaphase-promoting complex/cyclosome 

(APC/C) during mitosis and its expression level only increases again in late G1/early S phase 

(Cheng et al., 1999; Ferreira et al., 2000). However, basal levels of Dbf4 escape this process, 

potentially resulting in residual DDK activity and, consequently, premature phosphorylation of 

Mcm4 in G1 phase. Indeed, Mcm4 is phosphorylated in a DDK-dependent manner in G1 phase 

when one of the DNA replication timing regulators, Rap1-interacting factor 1 (Rif1), is 

removed (discussed further below) (Davé et al., 2014; Hiraga et al., 2014; Mattarocci et al., 

2014). Cells are equipped with a safeguard mechanism to counteract this that employs Protein 

Phosphatase-1 (PP1). This enzyme has been shown to have a broad range of substrates, thus its 

specificity is determined by the ligand that targets it to the substrates (Virshup & Shenolikar, 

2009). Rif1 is an evolutionarily conserved protein that has been characterized as the PP1 

regulatory factor that performs this task of preventing precocious DNA replication (Davé et al., 

2014; Hiraga et al., 2014; Mattarocci et al., 2014). 

Rif1 was originally identified as a telomeric protein in budding yeast (Hardy et al., 

1992) and has more recently been implicated as a regulator of DNA replication timing in 

fission yeast (Hayano et al., 2012), mouse cells (Cornacchia et al., 2012), human cells 

(Yamazaki et al., 2012), and budding yeast (Davé et al., 2014; Hiraga et al., 2014; Mattarocci 

et al., 2014). Rif1 recruits PP1 (Glc7 in budding yeast) to dephosphorylate Mcm4 in G1 phase, 

and deletion of Rif1 allows stable phosphorylation of this helicase subunit (Davé et al., 2014; 

Hiraga et al., 2014; Mattarocci et al., 2014). As the cells enter S phase, the phosphorylation of 

the helicase must be maintained and this is achieved, in part, by blocking Rif1-Glc7 
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dephosphorylation activity. Rif1 has two PP1 binding motifs (Sreesankar et al., 2012) that 

mediate its association with Glc7, and phosphorylation near these motifs abolishes this 

interaction (Davé et al., 2014; Hiraga et al., 2014; Mattarocci et al., 2014). These 

phosphorylations are carried out by both DDK and CDK, and corresponding phosphomimetic 

mutants have been shown to suppress the sensitivity of a cdc7-1 strain at semi-permissive 

temperature (Davé et al., 2014; Hiraga et al., 2014). In addition, the Rif1-Glc7 interaction 

contributes to telomere length maintenance. Interestingly, the extension of telomeres in ∆rif1 

cells is not due to any effect on origin regulation as this still occurs in this strain background 

when the telomere proximal origins are deleted (Kedziora et al., 2018). 

Since Rif1 is found at telomeres, an intriguing question is whether it affects replication 

timing locally or globally. Deletion of  RIF1 rescues the lethality of Δhsk1 in fission yeast 

(Hayano et al., 2012) and suppresses the growth defect of budding yeast strains cdc7-1 and 

cdc7-4 at semi-permissive temperature (Davé et al., 2014; Hiraga et al., 2014; Mattarocci et al., 

2014). ∆rif1 exhibits late origin firing in the presence of hydroxyurea (Peace et al., 2014), 

earlier activation of the origins adjacent to telomeres (Davé et al., 2014; Hiraga et al., 2014; 

Lian et al., 2011; Mattarocci et al., 2014), and early firing of a cluster of origins at the rDNA 

locus (Shyian et al., 2016) that are normally silenced by Sir2 histone deacetylase (Pasero et al., 

2002). Deregulation of origin firing timing through deletion of RIF1 can result in a more 

pronounced checkpoint response when the cells are challenged by genotoxic stress (Shyian et 

al., 2016). Moreover, recent findings revealed that Rif1 binds to the origins it regulates, and a 

strong preference for telomere-proximal regions is mediated by Rap1 (Hafner et al., 2018). 
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Rif1 also associates with both early and late non-telomeric origins (Hiraga et al., 2018). These 

findings support the idea that Rif1 regulates replication timing genome-wide.  

Other Rif1 activities besides controlling origin firing timing have also been 

investigated. Human Rif1 (hRif1) is not recruited to normal telomeres (Silverman et al., 2004; 

Xu & Blackburn, 2004), which leads to the notion that the telomere length regulation of Rif1 is 

specific to yeasts (Hardy et al., 1992; Kanoh & Ishikawa, 2001; Sreesankar et al., 2012). hRif1 

associates with unprotected telomeres, which resemble double strand DNA breaks (DSBs), and 

colocalizes with stress-induced DSB foci in an ATM (ataxia telangiectasia mutated) kinase-

dependent manner (Silverman et al., 2004; Xu & Blackburn, 2004). Several groups have also 

shown that mammalian Rif1 belongs to a protein network that promotes non-homologous end 

joining (NHEJ) (Chapman et al., 2013; Escribano-Díaz et al., 2013; Feng et al., 2013; Virgilio 

et al., 2013; Zimmermann et al., 2013), while budding yeast studies have indicated that Rif1 is 

similarly involved in the response to DSBs (Martina et al., 2014; Mattarocci et al., 2017). 

Despite the importance of DDK phosphorylating Rif1 for cell cycle progression, the 

precise way the proteins associate has not been investigated. In the present study, the key 

determinants of the Dbf4-Rif1 interaction were identified. Furthermore, the abrogation of the 

Dbf4-Rif1 interaction inhibits DNA replication and, when combined with impairment in CDK 

phosphorylation of Rif1, results in hypersensitivity to genotoxic stress. This hypersensitivity is 

further exacerbated or rescued by disrupting the homologous recombination (HR) or NHEJ 

pathway, respectively, indicating that Rif1 functionality in both DNA replication and DNA 

damage responses is regulated by DDK and CDK. 
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4.2 Results  

4.2.1  The HBRCT domain of Dbf4 is sufficient for interaction with the Rif1 C-terminus 

It was previously reported that Dbf4 interacts with a minimal Rif1 C-terminal region consisting 

of amino acid residues 1790-1916. A truncated version of Dbf4, lacking its first 221 amino 

acids, failed to bind Rif1, indicating that this region is necessary to mediate the Rif1-Dbf4 

association (Hiraga et al., 2014). Dbf4 residues 105-221 was previously shown to fold as a 

BRCT domain with an additional N-terminal helix (α0), hence it is termed the HBRCT 

domain. The HBRCT was further demonstrated to be both required and sufficient to mediate 

Dbf4 binding to the FHA1 domain of the checkpoint kinase Rad53 (Matthews et al., 2012). 

Under conditions of DNA damage or replicative stress, Rad53 phosphorylates Dbf4, and 

displaces DDK from chromatin, thus preventing subsequent origin firing (Pasero et al., 1999). 

It was interesting to know whether the HBRCT domain also mediates Dbf4 binding to the Rif1 

C-terminus. Using yeast two-hybrid analysis, the HBRCT showed a more robust interaction 

with Rif1 C-terminus relative to that observed for untruncated Dbf4 (Figure 4.1). This may be 

due, in part, to the higher expression level of the HBRCT domain, relative to full-length Dbf4, 

in combination with the Rif1 C-terminus, which was consistently observed for different 

transformants in independent trials. Alternatively, expressing Dbf4 HBRCT on its own may 

better expose Rif1-binding residues than in the context of full-length Dbf4. In any case, it is 

concluded that the Dbf4 HBRCT domain is sufficient to interact with Rif1.  



 
 

 

84 
 
 

 

Figure 4.1. Dbf4 HBRCT is sufficient for Rif1 binding. The interaction of the Dbf4 HBRCT 

domain (amino acids 105-221) and Rif1 amino acids 1790-1916 was assessed through yeast 

two-hybrid assays. The two-hybrid interaction values are presented as a percentage of the 

interaction of Dbf4 FL (full-length) and Rif1 1790-1916. Three independent replicates were 

performed, and error bars represent standard deviation. Representative Western blots (of three 

independent experiments performed) indicate protein expression levels and Ponceau S staining 

shows equal protein loading. Bait and prey proteins were detected with anti-LexA (Dbf4) and 

anti-HA (Rif1) antibodies, respectively. 

 

 

4.2.2  Dbf4 HBRCT mutations disrupting the helix α0 hydrophobic interaction with the 

BRCT core abrogate Rif1 C-terminus binding 

The observation that HBRCT mediates the interaction of Dbf4 with two key ligands, Rad53 

and Rif1, raised the question of whether this domain binds to them in a similar fashion. This is 

particularly intriguing given these associations promote opposing outcomes, with Rif1-Dbf4 

favouring DNA replication and Rad53-Dbf4 opposing it. The Dbf4 HBRCT helix α0 has two 
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faces, a hydrophobic one that interacts with the hydrophobic core of the BRCT domain, as well 

as a polar one (Figure 4.2A). Mutations of the non-polar residues on the hydrophobic face 

disrupt the interaction with the Rad53 FHA1 domain, whereas mutations on the polar face do 

not (Matthews et al., 2012). Thus, I asked if maintaining the hydrophobic environment of helix 

α0 and the BRCT core is required for Rif1 interaction. Two-hybrid results demonstrated that 

double mutations L109A/W112S and W116D/M120A on the hydrophobic face resulted in a 

dramatic reduction of Dbf4 binding to Rif1 (Figure 4.2B), as previously observed with Rad53 

(Matthews et al., 2012). In contrast, double mutations on the polar face, K121D/R122E and 

E111R/K118D, did not weaken the interaction, suggesting that the maintenance of Rif1 

binding is specific to the hydrophobic face of helix α0. These results indicate that the 

hydrophobic interaction between helix α0 and the BRCT core must be intact for Rif1 binding.  

To further investigate whether Dbf4 binds to Rif1 in a similar fashion to Rad53, two-

hybrid analysis was performed using an additional Dbf4 mutant. Dbf4 has two contact points 

with Rad53 (Chapter 3 Figure 3.2 and (Almawi et al., 2016)). The hydrophobic region of Dbf4 

HBRCT is pivotal for contact with β-sheets 1 and 11 of Rad53 FHA1 domain. As described 

above, simultaneous mutation of Leu109 and Trp112 from this HBRCT region severely 

impaired binding to Rif1, as was the case for Rad53. The polar association of Dbf4 Lys200 and 

Rad53 FHA1 Asn112 determines the second contact point (Chapter 3 Figure 3.2 and (Almawi 

et al., 2016)). In contrast to what was seen with Rad53, Dbf4 K200A mutant maintained its 

interaction with Rif1 (Figure 4.2C). Thus, it is concluded that Dbf4 interacts with both Rad53 

and Rif1 via its HBRCT domain, but through a different mechanism.  
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Figure 4.2. Mutations of hydrophobic residues on HBRCT helix α0 disrupt Dbf4 

interaction with Rif1. (A) Illustration of the Dbf4 HBRCT domain (PDB 3QBZ; adapted from 

(Matthews et al., 2012)). (B, C) Yeast two-hybrid analysis of Dbf4 mutant interaction with 

Rif11790-1916. The values are presented as a percentage of the Dbf4 WT (wild type) and Rif1 

1790-1916 interaction and the experiments were performed as in Figure 4.1. Four (B) and three 

(C) independent replicates were performed, and error bars represent standard deviation. 

Representative Western blots (of four (B) or three (C) independent experiments performed) 

indicate protein expression levels and Ponceau S staining shows equal protein loading. Bait 

and prey proteins were detected with anti-LexA (Dbf4) and anti-HA (Rif1) antibodies, 

respectively. 

 

 

 

Since the HBRCT domain also mediates Dbf4 interaction with the checkpoint protein 

Rad53 (Matthews et al., 2012), an intriguing possibility is that Rif1 and Rad53 can displace 

each other in terms of Dbf4 binding during specific cell cycle stages and growth conditions, 

with one interaction promoting the initiation of DNA replication and the other one blocking it. 

Thus, Rad53 may physically displace Rif1 from binding Dbf4 as one of the ways it 

downregulates DDK activity under checkpoint conditions. If Dbf4 is inhibited from binding 

Rif1, DDK will no longer phosphorylate the Rif1 PP1-association motifs, thereby promoting 

Rif1 and Glc7 association, leading to dephosphorylation of Mcm2-7. To investigate the 

differential affinity between Rad53 and Rif1 in Dbf4 binding, we performed a competitive 

yeast-two hybrid assay where Rif1 was co-expressed with Dbf4 and Rad53 simultaneously. 

Rif1’s ability to titrate Dbf4 from Rad53 binding was judged by comparing the Dbf4-Rad53 

binding intensity to that when Rif1 was absent (Appendix B Figure 1). Rif1 did not disrupt the 

binding, which supports the idea that Rif1 and Rad53 engage with Dbf4 in a differential 

mechanism. 
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4.2.3  Mutation of the Rif1 tetramerization module impairs binding to Dbf4.  

Next, I aimed to determine which Rif1 residues are responsible for the Dbf4-Rif1 interaction. 

The S. cerevisiae Rif1 C-terminus interacts with both Rap1 (Hardy et al., 1992) and Dbf4 

(Hiraga et al., 2014; Mattarocci et al., 2014). A previous crystallographic study showed that 

Rif1 residues 1857-1916 form a tetramer, disruption of which abolishes interaction with Rap1 

(Shi et al., 2013). I therefore investigated whether Rif1 tetramer formation is also required for 

association with Dbf4. The dimeric interaction is facilitated by salt bridges and a hydrophobic 

interaction of the non-polar residues. Mutation of one of the hydrophobic residues, Leu1905 to 

Arg, severely impaired the interaction with Dbf4 (Figure 4.3), as was the case for Rap1. The 

two dimers form a tetramer through the aid of salt bridges between Arg1895 and Glu1906, and 

mutation of Arg1895 into Glu similarly disrupts the interaction of Rap1 and Rif1 (Shi et al., 

2013). The result showed that the Rif1 R1895E mutation also had a negative effect on 

interaction with Dbf4, reducing its strength by more than half (Figure 4.3). The tetramerization 

domain does not likely directly mediate any interactions with other ligands, but is required to 

support the structural stability of this region (Shi et al., 2013). These findings demonstrate that 

the tetramerization of the Rif1 C-terminus is required for robust Dbf4 binding, with disruption 

of either intra- or interdimer contacts having detrimental effects. 
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Figure 4.3. The tetramerization module of Rif1 is required for Dbf4 binding. The two-

hybrid interaction values of Dbf4 and Rif1 1790-1916 mutants are presented as a percentage of 

the Dbf4 and Rif1 1790-1916 (WT) interaction. Three independent replicates were performed, 

and error bars represent standard deviation. Representative Western blots (of three independent 

experiments performed) indicate protein expression levels and Ponceau S staining shows equal 

protein loading. Bait and prey proteins were detected with anti-LexA (Dbf4) and anti-HA 

(Rif1) antibodies, respectively. 

 

4.2.4  The Rif1 C-terminus binds to Rap1 and Dbf4 in a differential manner 

The Rif1 fragment (residues 1790-1916) that interacts with Dbf4 is encompassed by the region 

(residues 1739-1916) that suffices to bind Rap1 (Hiraga et al., 2014). To dissect the in vivo 

significance of the Dbf4-Rif1 interaction, I asked if a separation-of-function mutation that 

maintains Rif1 binding to Rap1, but not to Dbf4, could be found. To identify potential motifs 

responsible for the Rif1-Dbf4 interaction, the region 1790 to 1857 in budding yeast Rif1, 

which lies outside of the tetramerization module described above, was analyzed. Analysis 

based on multiple sequence alignment indicated poor conservation within this region. 

However, across orthologous Rif1 regions from diverse species, an abundance of proline-rich 
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segments (data not shown) was observed, indicating possible conservation of short linear 

interaction motifs (SLIMs) within an unstructured linker (Kay et al., 2000; Neduva & Russell, 

2005). Therefore, the region 1790 to 1857 was further assessed based on four criteria: 1) 

predicted secondary structure (Cole et al., 2008a), since interaction motifs often occur in 

disordered/unstructured regions (Mészáros et al., 2009; Neduva & Russell, 2005); 2) proline 

composition, because proline residues are overrepresented in interaction motifs (Kay et al., 

2000); 3) phosphorylated serine or threonine residues (as determined from the UniProt 

database), since cell cycle protein-protein interactions are often mediated by phosphopeptides; 

and 4) predicted protein binding sites using a sequence-based machine-learning algorithm 

(Mukherjee & Zhang, 2011) (Figure 4.4A). 

 This analysis identified one amino acid segment in particular (1792-PPDSPP-1797) as 

matching all four criteria, whereas the next highest candidate region (1812-DTVPK-1816) 

matched only one criterion. The PPDSPP motif is proline-rich, occurs in an unstructured loop 

segment as judged by Jpred3/JNETJURY analysis (Cole et al., 2008a) and confirmed through 

both I-TASSER (Zhang, 2008) (Appendix B Figure 2) and  Phyre2 (Kelley et al., 2015) (data 

not shown) structure predictions, contains a phosphoserine residue previously identified based 

on a proteomic screen (Holt et al., 2009), and includes three putative interface residues 

predicted by the BSPred algorithm (Mukherjee & Zhang, 2011). 

 Two-hybrid analysis was performed and Rif1 1739-1916 lacking the PPDSPP stretch 

maintained the interaction with Rap1 653-827, the binding domain for Rif1 (Hardy et al., 1992) 

(Figure 4.4B). This is consistent with previous work indicating that Rif1 requires residues 

1752-1772  to interact with Rap1 (Shi et al., 2013). In contrast, Rif1 1739-1916 ∆PPDSPP had 
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severely impaired Dbf4 binding (Figure 4.4C). When two conserved sites distal to the PPDSPP 

motif were mutated (E1839K and N1847A), neither had a significant effect on either Rap1 or 

Dbf4 binding. Therefore, these data demonstrate that Rif1 binding to Dbf4 and Rap1 is 

mediated by distinct regions within the Rif1 C-terminus. 
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Figure 4.4. The Rif1 PPDSPP motif mediates interaction with Dbf4, but not with Rap1. (A) 

Assessment of Rif1 1790-1857 characteristics to identify potential binding motifs for Rif1 and 

Dbf4 interaction. RVxF and SILK are Glc7-binding motifs (Hiraga et al., 2014; Mattarocci et 

al., 2014; Sreesankar et al., 2012), NTD is N-terminal domain and RBM is Rap1-binding module 

(Shi et al., 2013). We evaluated the Dbf4-binding region based on these criteria: 

Jpred3/JNETJURY secondary structure prediction which indicates helices as red ovals and 

sheets as green arrows (Cole et al., 2008a), proline content, BSPred protein binding site 

prediction (Mukherjee & Zhang, 2011) and phosphorylated serine or threonine residues (UniProt 

database). (B and C) Yeast two-hybrid analysis of Rif1 1739-1916 (WT and mutants, as 

indicated) binding to Rap1 653-827 (B) and Dbf4 (C). Three independent replicates were 

performed, and error bars represent standard deviation. Representative Western blots (of three 

independent experiments performed) indicate protein expression levels and Ponceau S staining 

shows equal protein loading. Bait and prey proteins were detected with anti-LexA (Dbf4 and 

Rap1) and anti-HA (Rif1) antibodies, respectively.  

 

 

4.2.5  Disruption of the Rif1-Dbf4 association does not have a major effect on cell growth 

and DNA replication 

I next made a genomic rif1 ΔPPDSPP mutant strain and predicted that it would display a defect 

in cell cycle progression, since the failure of Rif1 to be bound by Dbf4 would impede its 

phosphorylation by DDK, perpetuating the Rif1-Glc7 complex and consequentially Mcm4 

dephosphorylation, delaying DNA replication. Yeast growth in liquid cultures was measured 

(Figure 4.5A). In contrast with my prediction, rif1 PPDSPP did not have a strikingly reduced 

growth rate compared to isogenic wild type cells, and neither did the rif1 cells.  
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Figure 4.5. Removal of the Rif1 PPDSPP motif does not dramatically disrupt cell 

proliferation and DNA replication. (A) Yeast cultures at exponential phase were diluted to 

1x105 cells per milliliter and grown in YPD at 30°C. The cell concentrations were counted at the 

indicated time points. Three independent growth measurements were performed, and error bars 

represent standard deviation. (B) Plasmid stability assay (Kapoor et al., 2001) with modification 

was performed by transforming the cells with YCplac111 (Gietz & Sugino, 1988). The 

transformants were grown in non-selective liquid medium to allow plasmid loss prior to plating 

on both selective and non-selective medium to assess plasmid stability. Four hundred cells were 

plated on synthetic complete medium lacking leucine and YPD medium for two days at 30°C. 

The plasmid loss per generation rate was determined as the percentage of plasmid loss = (1-

(colony number on SC-Leu/colony number on YPD))/number of cell divisions. The total number 

of replicates was ten sets for each strain.  

 

Since Mcm4 phosphorylation is associated with origin activation, its phosphorylation 

level in the rif1 cells in G1 phase was checked. Indeed, deletion of RIF1 resulted in the 

increased phosphorylation level of chromatin-bound Mcm4 in G1 phase (Appendix B Figure 3). 

However, since rif1 cells did not show a notable growth defect, there are probably other cell 

cycle regulations that can restrict origin firing events in G1 phase.  

To investigate whether a defect in DNA replication was contributing to the minor reduced 

growth rate observed for rif1 and rif1 PPDSPP strains, a plasmid stability assay was 

performed (Kapoor et al., 2001) (Figure 4.5B). Each yeast strain was transformed with 
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YCpLac111, a CEN vector that contains an ARS1 origin (Gietz & Sugino, 1988). The 

transformants were grown in non-selective liquid medium to allow plasmid loss prior to plating 

on both selective and non-selective medium to assess the plasmid stability. Both the rif1 (mean 

1.82%) and rif1 PPDSPP (mean 1.81%) strains resulted in a higher rate of plasmid loss per 

generation than observed for isogenic wild-type cells (mean 1.10%). However, these plasmid 

loss values are not remarkable since the loss rate of CEN/ARS plasmid is generally 1-3% per 

generation (Fitzgerald-Hayes et al., 1982; Hieter et al., 1985). 

To further confirm the growth phenotype of rif1 PPDSPP cells, FACS analysis was 

performed and the growth defect of rif1 PPDSPP strain was minor compared to the wild type 

in a single cell cycle (Appendix B Figure 4). Both wild type and rif1 PPDSPP cells were 

efficiently arrested in G1 phase. However, in contrast to wild type, rif1 PPDSPP experienced 

delayed S phase entry, indicated by a more prominent G1 peak at the 15 minutes time point after 

release, which explains the minimal growth rate reduction of rif1 PPDSPP. 

 

4.2.6 Combining rif1 PPDSPP and CDK phosphorylation site mutations results in 

hypersensitivity to genotoxic stress 

The disruption of Dbf4 and Rif1 association likely results in less efficient origin firing due to 

greater MCM dephosphorylation activity of a stabilized Rif1-Glc7 complex. During recovery 

from genotoxic stress, this effect could have both beneficial and detrimental consequences. On 

the one hand, a greater number of origins not firing before checkpoint arrest could increase 

opportunities for new initiation events, which are of particular importance in the case of 

collapsed or compromised replication forks. On the other hand, initiation from these same 
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unfired origins during recovery could be compromised by enhanced Rif1-Glc7 

dephosphorylation activity. To examine whether removal of the Rif1 PPDSPP motif has a net 

positive or negative effect on resistance to genotoxic stress, the cell spotting assays were 

performed on solid growth media supplemented with hydroxyurea (HU), methyl 

methanesulfonate (MMS), phleomycin (Phleo), bleocin (Bleo), camptothecin (CPT) or caffeine 

(Figure 4.6A). 
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Figure 4.6. rif1 5AΔPPDSPP cells demonstrate impaired growth in normal conditions and 

hypersensitivity to genotoxic stress. (A) Cells from liquid cultures of the indicated yeast strains 

were serially diluted ten-fold and spotted onto YPD plates with or without genotoxic compounds 

hydroxyurea (HU), methyl methanesulfonate (MMS), phleomycin (Phleo), bleocin (Bleo), 

camptothecin (CPT) or caffeine. Pictures were taken after incubation for two days at 30°C. Three 

independent spotting experiments were performed. The mre11 strain was used as a control that 

has been shown to be sensitive to genotoxic stress (Ajimura et al., 1993). (B) Yeast cultures at 

exponential phase were diluted to 5x105 cells per milliliter and grown in YPD at 30°C. Cell 

concentrations were counted at the indicated time points. Three independent growth 

measurements were performed, and error bars represent standard deviation. 

 

 

The rif1 PPDSPP strain did not show a change in sensitivity towards any of the 

genotoxic agents used, indicating that disrupting DDK interaction with Rif1 by itself is not 

sufficient to alter resistance to these compounds. Rif1 has 9 and 5 potential phosphorylation sites 

for DDK and CDK, respectively, which are located near the PP1-binding motifs (Davé et al., 

2014; Hiraga et al., 2014). Three of these CDK sites prime DDK phosphorylation (Hiraga et al., 

2014). Thus, it was interesting to see whether CDK phosphorylation of Rif1 also plays a role 

during stress recovery. All the CDK phosphorylation sites on Rif1 were mutated into alanine 

(rif1 5A) and combined with the PPDSPP deletion. Under normal conditions, the rif1 5A cells 

grew as well as wild type and rif1 PPDSPP cells on solid media (Figure 4.6A). When subjected 

to a wide range of genotoxic stress, rif1 5A did not show any change in sensitivity relative to 

wildtype. However, the combination of the 5A and PPDSPP mutations had a dramatically 

different effect (Figure 4.6A). Even under normal conditions, fewer colonies of the rif1 

5APPDSPP strain were observed, reflecting slower growth and consistent with continuous 

MCM helicase dephosphorylation facilitated by Rif1. Through cell counts at numerous time 

intervals in liquid medium, it was confirmed that rif1 5APPDSPP indeed grows poorly relative 
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to the 5A and PPDSPP strains (Figure 4.6B). Under genotoxic stress conditions, rif1 

5APPDSPP cells demonstrated hypersensitivity, the most pronounced effects coming from 

exposure to bleocin and phleomycin (Figure 4.6A). This finding suggests that DDK and CDK 

phosphorylation of Rif1 are largely redundant with respect to imparting resistance to genotoxic 

stress. 

 

4.2.7 rif1 5A∆PPDSPP hypersensitivity to double-strand breaks is enhanced or rescued by 

compromising HR or NHEJ, respectively  

The hypersensitivity of rif1 5A∆PPDSPP cells to DSB-inducing agents, bleocin and phleomycin, 

prompted us to speculate that robust dephosphorylation activity of the Rif1-Glc7 complex may 

impede the DNA repair process. There are two main pathways that deal with correcting DSBs, 

HR and NHEJ. In yeasts, HR repairs DSBs more efficiently than NHEJ (Chen & Tomkinson, 

2011; Clikeman et al., 2001; Zhang et al., 2007). Thus, to examine which pathway is affected by 

the dephosphorylation activity of Rif1-Glc7, the rif1 5A∆PPDSPP mutation was combined with 

gene deletions impairing HR (∆sae2, ∆exo1) or NHEJ (∆nej1). A spotting assay was then 

performed and the ∆sae2/rif1 5A∆PPDSPP strain was more sensitive compared to ∆sae2 or rif1 

5A∆PPDSPP strains to an array of genotoxic stressors, with the exception of caffeine (Figure 

4.7A). ∆exo1/rif1 5A∆PPDSPP cells did not phenocopy ∆sae2/rif1 5A∆PPDSPP, showing no 

enhancement of sensitivity when compared to rif1 5A∆PPDSPP, except upon exposure to MMS.  

To confirm that the disruption of NHEJ suppresses the genotoxic hypersensitivity of the rif1 

5A∆PPDSPP strain, this mutant was combined with deletion of YKU70, a component of the 

yKu70/80 ring heterodimer that protects broken DNA ends from HR initiation (Bonetti et al., 
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2010; Mimitou & Symington, 2010; Shim et al., 2010). As anticipated, ∆yku70 rescued the 

hypersensitivity of rif1 5A∆PPDSPP cells to a degree that was similar to ∆nej1 (Figure 4.7B).  

For the spotting experiments in Figure 4.7, the genotoxic compound concentrations, except for 

camptothecin, were lower than that used in Figure 4.6 to accommodate the growth of the most 

sensitive strain ∆sae2/rif1 5A∆PPDSPP. 

Sae2 lies upstream of Exo1 in the HR response and, when phosphorylated by CDK, is 

responsible for stimulating the initial endonuclease activity of MRX (Mre11-Rad50-Xrs1) 

complex (Cannavo & Cejka, 2014; Huertas et al., 2008). This short nucleolytic resection is then 

followed by long-range resection by  Exo1 or Dna2 in complex with Sgs1 helicase (Gnügge & 

Symington, 2017; Huertas, 2010; Longhese et al., 2010; Symington, 2016). The redundancy 

between Exo1 and Dna2 is likely the reason for the mild ∆exo1/rif1 5A∆PPDSPP phenotype. 

Moreover, the contrast in sensitivity between ∆sae2/rif1 5A∆PPDSPP and ∆exo1/rif1 

5A∆PPDSPP suggests that the detrimental effect of rif1 5A∆PPDSPP is more harmful toward 

the initial step of resection. Strikingly, the deletion of NEJ1 or YKU70 rescued the sensitivity of 

rif1 5A∆PPDSPP cells for all compounds tested with the most dramatic results observed for 

exposure to bleocin or phleomycin, indicating that the hypersensitivity of rif1 5A∆PPDSPP cells 

might stem from lack of DNA end resection. yKu70 prevents the resection initiation by inhibiting 

DSB access to nucleases (Mimitou & Symington, 2010; Shim et al., 2010) and recruits the 

loading of others NHEJ factors to DNA ends, including Nej1 (Chen & Tomkinson, 2011; Zhang 

et al., 2007). Nej1 also blocks resection by stabilizing the recruitment of yKu to DSB sites (Chen 

& Tomkinson, 2011), inhibiting Dna2-Sgs1 activity (Mojumdar et al., 2019; Sorenson et al., 

2017), and stimulating ligation by Dnl4/Lif1 (Chen & Tomkinson, 2011). Thus, the rescue 
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observed through yKu70 or Nej1 deletion is consistent with relief of a resection defect. Taken 

together, these results suggest a deleterious effect of constitutive Rif1-Glc7 activity in the context 

of HR is alleviated when the NHEJ pathway is compromised and cells are shifted towards HR. 
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Figure 4.7. Deletion of SAE2 exacerbates the genotoxic sensitivity of rif1 5AΔPPDSPP cells, 

while deletion of NEJ1 or YKU70 rescues it. Cells from liquid cultures of the indicated yeast 

strains were serially diluted ten-fold and spotted onto YPD plates with or without genotoxic 

compounds, as indicated previously in Figure 4.6. Two different sets of spotting results that 

include ∆exo1 or ∆yku70 variants are shown on panel (A) and (B), respectively. Pictures were 

taken after incubation for two days at 30°C. Three independent spotting experiments for each of 

the strain combinations shown in panels A and B were performed.  

 

4.3 Discussion  

In the present study, I characterize the way in which Rif1 and Dbf4 interact and demonstrate that 

this association is important for cell cycle progression under both unperturbed conditions and 

following exposure to genotoxic stress. I found that DDK association with Rif1 is mediated by 

the Dbf4 HBRCT domain, which is sufficient for Rif1 binding on its own. This binding mode 

differs from that of the HBRCT-Rad53 interaction. Additionally, a proline-rich PPDSPP 

fragment was also found on the Rif1 C-terminus that distinguishes its binding to Rap1 and Dbf4.  

 The rif1 ΔPPDSPP mutation by itself did not result in a remarkable growth defect or 

any sensitivity to genotoxic stress (Figure 4.6A). In order to further examine the in vivo effect 

of Rif1 ΔPPDSPP, this mutant was combined with mutation of its five CDK target sites, thus 

disrupting phosphorylation by both DDK and CDK. rif1 5AΔPPDSPP cells show slower 

growth under unperturbed and increased sensitivity under perturbed conditions, with the most 

apparent effect was observed during DSBs condition (Figure 4.6A). This implies that Rif1 is 

not only a DDK/CDK phosphorylation target during DNA replication initiation, but also a 

target during cell recovery from genotoxic stress exposure. It has been reported that Rif1 is 

recruited to stalled forks under HU treatment and protects nascent DNA from degradation, but 

removal of 594 amino acids at its C terminus (which includes the PPDSPP stretch) weakens 

this protection (Hiraga et al., 2018). This indicates that the C-terminal region of Rif1 is 
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required for a robust response to DNA replication stress, even though the precise mechanism 

remains unclear. HU sensitivity was not observed with the rif1 ∆PPDSPP mutant, arguing that 

interaction with Dbf4 is not required for RIF1’s role in nascent DNA protection.  

 Yeast Rif1, like its mammalian counterpart, has been implicated in promoting NHEJ to 

repair DSBs (Fontana et al., 2019; Mattarocci et al., 2017). In the present report, it is shown 

that attenuation of the NHEJ pathway rescues the genotoxic sensitivity of rif1 5AΔPPDSPP 

cells, suggesting that constitutively active Rif1-Glc7 has a detrimental effect by shifting cells 

too much towards reliance on NHEJ as a response to DNA damage while HR is the preferred 

means to deal with genotoxic stress in budding yeast (Chen & Tomkinson, 2011; Clikeman et 

al., 2001; Zhang et al., 2007). Consistent with this model, combination of rif1 5A∆PPDSPP 

with ∆sae2 results in greater sensitivity than for either mutant alone, suggesting severe 

impairment of DNA resection (Figure 4.7). Interestingly, RIF1 deletion also exacerbates the 

effects of ∆sae2 in both unperturbed and perturbed conditions (Martina et al., 2014). Taken 

together, these findings suggest that productive Rif1 involvement in DNA repair requires its 

wild type activity level.  

 Since Rif1 roles in DNA replication and telomere maintenance require its binding to 

Glc7, it is tempting to postulate that its DNA repair function also involves its ability to target 

Glc7 dephosphorylation activity. CDK phosphorylation controls DNA repair pathway choice 

by directing HR to take place in S and G2 phases (Ferretti et al., 2013; Longhese et al., 2010). 

CDK phosphorylation of CtIP, the human homolog of Sae2, stimulates resection and also 

prevents hRif1 accumulation at DSBs (Escribano-Díaz et al., 2013; Huertas & Jackson, 2009). 

Thus, an appealing notion is that the complete absence of Sae2 in the ∆sae2/rif1 5A∆PPDSPP 
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strain allows high levels of Rif1 to associate with DSBs and promote NHEJ over the more 

favourable HR pathway (Chen & Tomkinson, 2011; Clikeman et al., 2001; Zhang et al., 2007). 

Interestingly, CDK also phosphorylates Exo1 in human cells thereby promoting HR 

(Tomimatsu et al., 2014). Thus, Exo1 is another potential candidate for Rif1-mediated 

dephosphorylation by Glc7 at DSBs in budding yeast. Moreover, DDK has been reported to 

phosphorylate human Exo1 in vitro (Sasi et al., 2018), thus Exo1 may be analagous to Mcm4 

as a factor that DDK both phosphorylates directly and whose dephosphorylation is prevented 

through DDK inhibition of Rif1-Glc7 activity. Along similar lines, recent reports show that 

hRif1, through PP1 binding, prevents nascent DNA degradation by over-resection during HU 

exposure and controls the phosphorylation level of Dna2 (Mukherjee et al., 2019) and WRN 

helicase, one of the human homologs of Sgs1 (Garzón et al., 2019). Future investigation, 

combining the Rif1 RVxF/SILK mutations, which abrogate its association with Glc7 (Hiraga et 

al., 2014; Mattarocci et al., 2014; Sreesankar et al., 2012) and 5A∆PPDSPP will confirm 

whether the repair defect in rif1 5A∆PPDSPP is due to Rif1 gain-of function in stably tethering 

Glc7 or not. Another mechanism whereby mammalian Rif1 inhibits resection is via its 

interaction with 53BP1 and the shieldin complex, limiting access to resection nucleases at 

DSBs, as well as mediating the co-localization of the CST (CTC1-STN1-TEN1) complex and 

DNA polymerase-α to DSBs resulting in CST-polα dependent fill-in activity (Ghezraoui et al., 

2018; Mirman et al., 2018; Noordermeer et al., 2018). It will be interesting to determine if 

similar mechanisms exist in other eukaryotes, and, if so, whether the Rif1-Dbf4 interaction 

plays a role.  
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 With the present report, I demonstrate that the Dbf4-Rif1 interaction is important for 

cell cycle progression under both unperturbed and perturbed conditions. Impairment of this 

association through deletion of the Rif1 C-terminal PPDSPP motif and mutation of Rif1 CDK 

phosphorylation sites renders cells acutely sensitive to DSBs. The identification of key Glc7 

targets that are hypophosphorylated as a consequence of the disrupted Rif1-Dbf4 interaction 

will be an important step in better understanding of cellular responses to genotoxic stress.  
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Chapter 5 

Characterization of a novel mode of DDK-Mrc1 association in Saccharomyces cerevisiae  

 

 

 

 

 

 

 

Figure 5.1. Larasati performed experimental design, data interpretation and analysis. 

Celine Aziz carried out plasmid construction and performed yeast-two hybrid experiments and 

analysis. 

 

 

Figure 5.2 and 5.3. Larasati carried out experimental design, data interpretation and analysis. 

Zohaib Merali carried out plasmid construction and performed yeast-two hybrid analysis.  

 

 

Figure 5.4. Larasati generated the yeast strain and carried out experimental design, data 

interpretation and analysis. Zohaib Merali carried out yeast strain confirmation and performed 

the spotting assay.  

 

 

Appendix C Figure 1. Larasati and Zohaib Merali carried out Mrc1 multiple sequence 

alignment.  
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5.1 Introduction 

Eukaryotes initiate DNA replication from multiple loci, ranging from around 400 origins in 

budding yeast to 50,000 in humans (Cvetic & Walter, 2005; Diffley, 2011; Méchali, 2010). 

Each origin must fire no more than once per cell cycle. Any origin that does not follow this 

rule is a threat to genomic integrity, since over-replication can result in a change of ploidy level 

and DNA damage (Muñoz et al., 2017; Neelsen et al., 2013). Budding yeast origins follow a 

temporal order of activation during S-phase. Similarly, fission yeast origins have been shown 

to fire sequentially, where origins near to centromeres fire early and origins adjacent to 

telomeres fire later in S phase (Hayano et al., 2012; Kim & Huberman, 2001; Tazumi et al., 

2012). This has raised long-standing questions: why are there early and late origins and what 

differentiates them? 

All origins do not fire simultaneously due to the limited abundance of certain firing 

(Mantiero et al., 2011; Tanaka et al., 2011) and elongation factors (Poli et al., 2012), local 

transcription activity (Fraser, 2013), and chromatin status (Bellush & Whitehouse, 2017). The 

loading of the pre-Replicative complex (pre-RC) at origins in budding yeast marks them as 

eligible candidates of DNA replication start sites in G1 phase. Therefore, the sequential timing 

pattern of origin firing is established after pre-RC formation. It has been shown that limiting 

firing factors, such as Dbf4, are enriched at early origins at the beginning of S phase, whereas 

inhibitory factors that delay origin firing, such as Rif1, accumulate at the late origins (reviewed 

in Boos & Ferreira, 2019; Yamazaki et al., 2013). 

A checkpoint protein, Mrc1, has been shown to associate with a subset of early origins 

during early S phase in fission yeast (Hayano et al., 2011). Budding yeast Mrc1 has also been 
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reported to accumulate at early (ARS 305) and late (ARS 603) origins in a sequential fashion 

(Osborn & Elledge, 2003). These findings indicate that Mrc1 recruitment to origins may 

coincide with or precede their activations. Consistently, its human ortholog Claspin is loaded 

onto origins in a Cdc45-dependent but RPA-independent manner, demonstrating that its 

loading occurs before origin unwinding (Lee et al., 2005, 2003). In budding yeast, Mrc1 

engages with the pre-RC components, Cdc45 (Gambus et al., 2006), Mcm6 (Komata et al., 

2009) and pol2 (a subunit of pol ε) (Lou et al., 2008). While this binding is considered as one 

of the Mrc1 mechanisms in guarding replisome stability (Bando et al., 2009; Nedelcheva et al., 

2005), this also indicates that Mrc1 may be involved in origin firing regulation. 

Evidence of a Claspin/Mrc1 role in replication timing regulation has come from 

experiments in higher eukaryotes and fission yeast. The depletion of Claspin reduces the rate of 

fork progression in Xenopus oocyte extracts (Lee et al., 2003), HeLa cells (Scorah & 

McGowan, 2009), and murine cells (Yang et al., 2016). However, the slower DNA synthesis 

rate in HeLa cells treated with Claspin siRNA is accompanied by a higher level of origin firing 

(Scorah & McGowan, 2009). The deletion of MRC1 in fission yeast advances early origin 

firing, which results in a slightly accelerated speed of S-phase progression (Hayano et al., 

2011). In contrast with the observation in HeLa cells (Scorah & McGowan, 2009), ∆mrc1 

fission yeast cells do not have significantly altered fork rates in, suggesting the modestly 

escalated speed of S-phase is due to more efficient origin firing. Indeed, ∆mrc1 cells exhibit 

earlier loading of Cdc45 onto a subset of early origins (Hayano et al., 2011). Additionally, 

∆mrc1 rescues the temperature-sensitive mutation hsk1-89 (fission yeast ortholog of Cdc7) at a 

semi-restrictive temperature of 30°C (Matsumoto et al., 2011). 
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It has been proposed that Claspin/Mrc1 directs origin firing through its recruitment of 

DDK (Hsk1-Dfp1 in fission yeast or Cdc7-ASK in mammals) (reviewed in Masai et al., 2017). 

Both Claspin and fission yeast Mrc1 have been reported to interact with Cdc7/Hsk1 

(Shimmoto et al., 2009; Yang et al., 2016). Moreover, Mrc1 forms an intramolecular 

interaction, where its C-terminal interacts with a region in the middle of the protein. The C-

terminal portion is called the Hsk1-bypass segment (HBS) due to corresponding mutant fission 

yeast cells' ability to bypass the need for Hsk1 in supporting growth. The middle region is 

termed the N-terminal target of HBS (NTHBS). Both NTHBS and HBS are required for Hsk1 

binding, whereas neither of them efficiently mediates the Hsk1 interaction on its own. This 

indicates that this Mrc1 intramolecular interaction facilitates Hsk1 recruitment (Matsumoto et 

al., 2017). Additionally, the NTHBS-HBS interaction has been postulated to control the 

functionality of fission yeast Mrc1. As previously mentioned, deletion of the HBS portion on 

Mrc1 can rescue the temperature sensitivity of hsk1-89 (hsk1-89 mrc1∆HBS strain) at 30°C. 

An increased level of early origin firing in this mutant strain and the loss of NTHBS-HBS 

binding are considered as the basis of the rescue phenotype. When the HBS polypeptide is 

expressed ectopically to restore this binding in the hsk1-89 mrc1∆HBS strain, the rescue 

phenotype at 30°C is suppressed. Therefore, this intramolecular NTHBS-HBS interaction is 

proposed to act as a ‘built-in’ brake for DNA replication as it possesses an inhibitory property 

for origin firing (Matsumoto et al., 2017). Consistently, the N-terminal segment of Claspin also 

interacts with an acidic patch located on its C-terminus in human 293T cells. This binding is 

reported to reduce Claspin association with DNA and PCNA (Yang et al., 2016). These 

findings demonstrate that Mrc1 loading at a subset of early origins in fission yeast not only 
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differentiates these origins from others in early S phase, but also acts as a replication constraint 

to prevent their precocious firing. Thus, Mrc1 loading at origins adds another layer of control 

for replication timing in fission yeast and possibly in humans too.  

Claspin/Mrc1 is phosphorylated by DDK (Kim et al., 2008; Matsumoto et al., 2010). 

The association between Claspin/Mrc1 and Cdc7/Hsk1 is postulated to enable DDK 

phosphorylation of this protein (reviewed in Masai et al., 2017). Furthermore, DDK 

phosphorylation of Mrc1/Claspin disrupts its intramolecular binding, and in turn, promotes 

DNA replication in fission yeast (Matsumoto et al., 2017) and its DNA and PCNA binding in 

human cells (Yang et al., 2016). Given that Mrc1 and Claspin associate with DDK through 

Hsk1 and Cdc7 in fission yeast and human cells, respectively, we aimed to assess whether this 

binding is conserved in budding yeast. Such confirmation would then lead to further 

characterization of how these factors interact and the significance for dictating DNA 

replication timing. 

 

5.2 Results 

5.2.1 Budding yeast Mrc1 engages with DDK by binding Dbf4, not Cdc7 

To examine the association between Mrc1 and budding yeast DDK, yeast-two hybrid analysis 

of Mrc1 binding to each subunit of DDK, Dbf4 and Cdc7 was performed. In contrast to what 

had previously been seen in fission yeast and human cells, Mrc1 was found to interact with 

Dbf4 and not Cdc7. The intensity of Mrc1-Cdc7 binding was insignificant, as it was similar to 

the negative controls (Figure 5.1). The Western-blot result confirmed that the absence of 

interaction between Cdc7 and Mrc1 is not due to a lack of protein expression. Furthermore, the 
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protein expression level of the Dbf4 bait seemed to be weaker than was the case for the Cdc7 

bait, yet it still demonstrated stronger binding to Mrc1 (Figure 5.1). 

 

 

Figure 5.1. Budding yeast Mrc1 interacts with Dbf4, not Cdc7. The interaction of the DDK 

subunits and Mrc1 was assessed through yeast two-hybrid assays. The two-hybrid interaction 

values are presented as a percentage of the interaction of Dbf4 and Mrc1. Three independent 

replicates were performed, and error bars represent standard deviation. Representative Western 

blots (of three independent experiments performed) indicate protein expression levels and 

Ponceau S staining shows equal protein loading. Bait and prey proteins were detected with 

anti-LexA (Mrc1) and anti-HA (Dbf4 or Cdc7) antibodies, respectively.  

 

5.2.2 Dbf4 HBRCT domain and motif C are required for Mrc1 binding 

Dbf4 has three conserved motifs, N, M and C, that all mediate protein-protein interactions. 

They are named based on their relative amino acid positions (Chapter 1 Figure 1.8) (Masai & 

Arai, 2000). To determine which of the motifs may facilitate Mrc1 binding, yeast-two hybrid 

experiments of Mrc1 and Dbf4 variants, either with point mutations or full deletions of the 

aforementioned motifs were conducted. Dbf4 motif N is part of the HBRCT domain (residues 

105-221); thus, the Dbf4 mutant L109A/W112S that disrupts the structural stability of this 
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domain (Matthews et al., 2012) was used. Dbf4 ∆M has its motif M removed (Varrin et al., 

2005). To examine Dbf4 motif C investigation, the Dbf4 CCAA mutant that disrupts this zinc 

finger motif by altering two conserved histidines 674 and 680 into alanines (Jones et al., 2010) 

was used. The result shows that the Dbf4 L109A/W112S and Dbf4 CCAA mutations abrogated 

Mrc1 binding by more than 60% and 40%, respectively (Figure 5.2), indicating that both 

HBRCT domain and motif C contribute to the interaction. In contrast to the two other 

conserved Dbf4 regions, motif M is not required to mediate Mrc1 binding.  

 

Figure 5.2. Dbf4 binds to Mrc1 through its HBRCT domain and motif C. Yeast two-

hybrid assay of Mrc1 with Dbf4 L109A/W112S that represents motif N/HBRCT domain 

disruption (Matthews et al., 2012), Dbf4 with full deletion of motif M (∆M) (Varrin et al., 

2005), and Dbf4 CCAA that disrupts the zinc finger of motif C (Jones et al., 2010). The two-

hybrid interaction values are presented as a percentage of the interaction of wild-type Dbf4 and 

Mrc1. Three independent replicates were performed, and error bars represent standard 

deviation. Representative Western blots (of three independent experiments performed) indicate 

protein expression levels and Ponceau S staining shows equal protein loading. Bait and prey 

proteins were detected with anti-LexA (Mrc1) and anti-HA (Dbf4) antibodies, respectively.  
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5.2.3 The Mrc1 N-terminal region, not its C-terminus, mediates binding to Dbf4 

Next, attention was turned to Mrc1. To examine the conservation of this protein, multiple 

sequence alignment of Mrc1 orthologs from yeast species was performed (Appendix C Figure 

1). Fission yeast central NTHBS and C-terminal HBS motifs do not seem to be highly 

conserved among fungi. However, it was noticed that the budding yeast Mrc1 C-terminus has 

three acidic patches: 720 EMEAEESEDE 729, 808 DDDEDD 813 and 986 EDEDEVE 992. 

One is located in the HBS equivalent region of budding yeast Mrc1. Acidic patches are known 

to mediate charge-based protein-protein interactions (Mersman et al., 2012). Therefore, 

budding yeast Mrc1was truncated to produce two regions with a small overlap: N (residues 1-

684) and C (residues 679-1096), and these variants were used for yeast two-hybrid experiments 

with Dbf4 (Figure 5.3). 

The results demonstrated that the Mrc1 N-region, not its C-region, interacts with Dbf4. 

Interestingly, the Mrc1 N-region consistently showed a stronger binding intensity for Dbf4 

than the full-length version. The higher expression level of the Mrc1 N-region compared to 

other versions may have contributed to this stronger signal. However, since the Mrc1 C-region 

fails to interact with Dbf4 on its own while its expression level looked similar to Mrc1 full-

length, it was concluded that Mrc1 binding to Dbf4 requires its N-terminal region. 
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Figure 5.3. Mrc1 engages with Dbf4 via its N-terminal region. Yeast two-hybrid assays 

with truncated versions of Mrc1 and full-length Dbf4 were performed. Mrc1 is divided into 

two parts: N-region (residues 1-684) and C-region (residues 679-1096). The two-hybrid 

interaction values are presented as a percentage of the interaction of Dbf4 and full-length 

Mrc1. Three independent replicates were performed, and error bars represent standard 

deviation. Representative Western blots indicate (of three independent experiments performed) 

protein expression levels and Ponceau S staining shows equal protein loading. Bait and prey 

proteins were detected with anti-LexA (Mrc1) and anti-HA (Dbf4) antibodies, respectively.  

 

5.2.4 Deletion of MRC1 exacerbates the dna52-1 growth defect at 30°C 

Knockout of fission yeast MRC1 rescues the temperature sensitivity of a DDK mutant strain, 

hsk1-89, at non-permissive temperature 30°C. (Matsumoto et al., 2011). To evaluate whether 

budding yeast Mrc1 behaves the same way as its fission yeast ortholog with respect to its 

interaction with DDK, MRC1 was deleted in a budding yeast DDK temperature sensitive strain, 

dna52-1. The dna52-1 strain expresses a Dbf4 P227L mutant with impaired binding to Mcm2 

and Cdc7 at the semi-restrictive temperature of 30°C (Varrin et al., 2005). The P227L mutation 

is located within motif M. Since this motif is not required for Mrc1 binding (Figure 5.2), it can 
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be assumed that the temperature sensitivity of dna52-1 is not due to any defect in Mrc1 

association with Dbf4. 

 dna52-1 and ∆mrc1 dna52-1 cells were spotted on solid media and incubated in 

parallel at permissive (22°C), semi-restrictive (30°C) and restrictive (37°C) temperatures 

(Figure 5.4). To our surprise, ∆mrc1 worsened the growth of dna52-1 at 30°C. While our data 

is still preliminary and requires more validation in different strain backgrounds, this spotting 

result indicates that ∆mrc1 behaves in a different manner in supporting growth of fission and 

budding yeast DDK temperature-sensitive strains. 

 

Figure 5.4. Deletion of MRC1 exacerbates the temperature sensitivity of a dna52-1 strain. 

Cells from liquid cultures of the indicated yeast strains were serially diluted ten-fold and spotted 

onto YPD plates. Pictures were taken after incubation for two days at 22°C, 30°C or 37°C. Three 

independent replicates were performed, with high reproducibility. A representative image of one 

trial is shown.  

 

5.3 Discussion 

Eukaryotes not only maintain the accuracy of DNA replication to preserve genomic integrity, 

but they also robustly control when DNA replication can take place. The limiting abundance of 

certain firing factors greatly contributes to replication timing regulation. Despite the vast 

progression in the study of eukaryotic DNA replication timing since the findings of its 

sequential pattern a couple of decades ago (Fangman et al., 1983; McCarroll & Fangman, 

1988; Raghuraman et al., 2001; Reynolds et al., 1989), the precise mechanisms whereby the 
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limiting factors distinguish which the origins to associate with remain to be characterized. 

Here, we began to investigate whether budding yeast Mrc1 has a checkpoint-independent role 

in origin firing, as previously demonstrated in fission yeast (Hayano et al., 2011; Matsumoto et 

al., 2011, 2017) and human cells (Yang et al., 2016). 

In fission yeast, Mrc1 is known to be enriched at a cluster of early origins and prevents 

their premature firing by adopting the ‘brake-on’ intramolecular binding. DDK then carries out 

a dual role in initiating DNA replication: phosphorylating Mrc1 to break its intramolecular 

binding and activating the MCM helicase (Hayano et al., 2011; Matsumoto et al., 2011, 2017). 

Similarly, human DDK targets Claspin to prevent its self-interaction and, additionally, 

stimulates Claspin binding to DNA and PCNA (Yang et al., 2016). Inspired by the binding of 

Mrc1-Hsk1 and Claspin-Cdc7 in mediating DDK phosphorylation, it was decided to 

investigate whether this is also true in budding yeast. However, it was found that the DDK-

interacting subunit for Mrc1 is Dbf4, not Cdc7 (Figure 5.1). Living yeast cells were used in our 

two-hybrid experiments. Thus, the possibility that another protein may bridge the Dbf4-Mrc1 

association cannot be eliminated. An in vitro pull-down assay using purified recombinant 

proteins can validate whether Dbf4 interaction with Mrc1 is mediated by their direct binding or 

not. This Dbf4-Mrc1 association is also unique since it depends on the Dbf4 HBRCT domain 

and motif C (Figure 5.2). To the best of my knowledge, this is the first binding mode of Dbf4 

that requires both regions. The data in this chapter also provides another example of HBRCT 

and motif C versatility in mediating protein-protein interactions. Since Dbf4 HBRCT is known 

to bind Rad53 during checkpoint conditions (Matthews et al., 2012), it will be interesting to see 
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if Mrc1 binding to Dbf4 is maintained during replication stress and whether Rad53 displaces it 

or not. 

It was further shown that Mrc1 does not need its C-region to engage with Dbf4 (Figure 

5.3). This result argues against the idea that budding yeast Mrc1 must carry out intramolecular 

binding to recruit DDK, as shown in fission yeast. To evaluate the importance of the Mrc1 N-

region, further truncation can be done to find the minimum sufficient binding area, through 

yeast two-hybrid and/or co-immunoprecipitation experiments. For example, since Mrc1 

contains 17 Mec1-dependent checkpoint phosphorylation sites (S/T-Q) (Osborn & Elledge, 

2003) and 12 of them reside in the N-terminal region (residues 89-273), the Mrc1 truncation 

that separates the checkpoint target sites may help to distinguish whether Mrc1-Dbf4 binding is 

checkpoint-dependent or independent. After the minimum sufficient Dbf4-binding area is 

obtained, bioinformatic analysis can be conducted on this truncated Mrc1 to find a domain or 

motif candidate that mediates protein-protein interaction. Mrc1 point mutations of the putative 

key residues on the domain/motif candidate can be generated through site-directed mutagenesis 

and its interaction strength can be evaluated as described above. The significance of the Mrc1-

Dbf4 interaction can be tested by introducing into the genome a mutant version of MRC1, 

whose product specifically does not bind to Dbf4, as the sole copy of the gene, and the growth 

phenotype of cells expressing  this mutant can be judged by culture cell counts at regular time 

intervals and FACS analysis. 

The Mrc1 N-region, besides being the portion that interacts with Dbf4, is also enriched 

for serines followed by negatively charged residues (S-E/D), which are the consensus 

phosphorylation sites of DDK (Randell et al., 2010). Similarly, in fission yeast DDK 
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phosphorylates an S/T-E rich region that is located immediately N-terminal to the NTHBS 

region of Mrc1 (Matsumoto et al., 2017). Since the association between a kinase and its 

substrate generally facilitates phosphorylation, a study to test whether budding yeast Mrc1 is 

phosphorylated by DDK can be conducted by performing an in vitro kinase assay using 

purified Mrc1, Dbf4, Cdc7 and [γ32P] ATP. As a negative control, the kinase-deficient Cdc7 

that bears mutation on ATP-binding site can be used (Ohtoshi et al., 1997). 

In fission yeast, DDK interaction with and phosphorylation of Mrc1 has implications 

for DNA replication timing. Mrc1 adopts the “brake-on” intramolecular binding and marks a 

subset of early origins in the beginning of S phase. This Mrc1 “brake-on” is converted to 

“brake-off” conformation by DDK phosphorylation (Matsumoto et al., 2017). Fission yeast 

Mrc1 loading at early origins is DDK-independent, indicating that Mrc1 association with the 

origins may precede DDK recruitment at these sites (Hayano et al., 2011). In budding yeast, 

Mrc1 loading at the early origin ARS305 is dependent on DDK function where Mrc1 is 

recruited less efficiently when DDK activity is compromised (Osborn & Elledge, 2003). To 

obtain more precise data on how DDK regulates Mrc1 loading at origins, further Mrc1 

chromatin immunoprecipitation can be carried out with more examples of early origins in 

budding yeast. Further investigation of Mrc1 as an early origin determinant can be 

accomplished by observing the genome-wide origin firing pattern in budding yeast wild type 

and ∆mrc1 strains, as judged by BrdU (5-bromo-2’-deoxyuridine) incorporation as previously 

described in (Viggiani et al., 2010). Cells are arrested in G1 phase and released into S phase in 

the presence of BrdU. After this thymidine analog incorporation in the synchronous cell 

culture, the genomic DNA is extracted at specific time points (early and late S phases), 
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sonicated, denatured, and the BrdU-labeled DNA is immunoprecipitated using anti-BrdU 

antibody. The immunoprecipitated DNA is then purified, amplified using PCR, labelled with 

fluorophore and subjected onto DNA microarrays (BrdU-IP-chip). Unbound genomic DNA 

fraction is used as a control and labelled with a different fluorophore. BrdU peak heights of 

known origins are quantified and compared with the peak heights at different genomic 

locations. Early origins incorporate a higher level of BrdU than late origins in early S phase. If 

Mrc1 contributes in controlling the replication timing, then the deletion of MRC1 would result 

in the failure to differentiate between early and late origins. Consequently, ∆mrc1 cells may 

allow normally late origins to access the limiting firing factor(s), such as Dbf4, and their BrdU 

peaks could appear at the beginning of S phase. Dbf4, as an essential limiting firing factor and 

activator of DDK, seems to be enriched at different groups of early origins in different ways. A 

kinetochore protein, Ctf19, recruits Dbf4 to centromeric origins in G1 phase to facilitate their 

early DNA replication (Natsume et al., 2013). Additionally, Dbf4 localization to the non-

centromeric early origins is facilitated by its interaction with the transcription factor Fkh1/2 

(Fang et al., 2017; Knott et al., 2012; Lõoke et al., 2013; Ostrow et al., 2014). Recruitment of 

Dbf4 is then followed by the loading of another limiting factor, Sld3 (Deegan et al., 2016). If 

Mrc1 is indeed a determinant of origin activation in budding yeast, then it is analogous to 

Ctf19 or Fkh1/2 in marking early origins and promoting DDK loading onto these sites. 

Our preliminary in vivo analysis showed that budding yeast Mrc1 does not act the same 

way as its fission yeast ortholog (Figure 5.4). Knockout of MRC1 supports the cell growth of 

fission yeast when DDK activity is compromised. In contrast in budding yeast, ∆mrc1 

suppresses it. To follow-up on this initial result, ∆mrc1 can be combined with other non-DDK 
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temperature sensitive mutants that reduce origin firing efficiency under restrictive temperature, 

such as orc2-1 (Fox et al., 1995). Moreover, our preliminary spotting assay requires additional 

controls, wild type and ∆mrc1, which can indicate whether the deletion of MRC1 is also 

detrimental or not in a non-temperature sensitive strain background.  

At this point, we have observed two novel results that may differentiate Mrc1 in 

budding and fission yeasts: Mrc1 binding to Dbf4 and the slow growth phenotype of ∆mrc1 

dna52-1 at the semi-permissive temperature of 30°C. While it is still interesting to investigate 

whether budding yeast Mrc1 contributes in origin firing timing by marking early origins, these 

results also lead us to new questions in investigating the non-checkpoint role of Mrc1 in DNA 

replication of budding yeast. What is the in vivo significance of Dbf4-Mrc1 binding? What is 

the basis of the growth defect in ∆mrc1 dna52-1 cells? Are our new findings related to other 

known Mrc1 functions in budding yeast, such as maintaining the stability of pol ε binding (Lou 

et al., 2008) or sustaining the DNA replication speed (Szyjka et al., 2005)? Further studies will 

be required to elucidate precisely the function of Mrc1 in DNA replication. 
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Chapter 6 

General Discussion and Further Directions 

 

Proteins can dictate the phenotypic traits of an organism. However, they never act alone. 

Instead, they belong to networks where they can interact with other proteins, DNA and RNA. 

Thus, characterizing protein interactions provides mechanistic details on how proteins 

determine the biological processes in cells. Here I summarize the key findings of Dbf4 

interactions with its ligands in this thesis and discuss possible future directions in the field. 

 

6.1 The dissection of the novel binding mode between Dbf4 and Rad53 

Dbf4 interacts with Rad53 through the phospho-independent binding of HBRCT and FHA1 

domains (Matthews et al., 2012, 2014). This interaction is extraordinary since both BRCT and 

FHA normally function as a phospho-recognition module (Durocher et al., 1999; Manke et al., 

2003; Rodriguez et al., 2003; Yu et al., 2003). This non-canonical binding is essential for 

Rad53 in targeting Dbf4 during checkpoint conditions, and disruption of it results in genotoxic 

hypersensitivity (Matthews et al., 2014). We further characterized the binding interface and 

found that HBRCT binds to FHA1 through two contact points. Both domains do not contribute 

equally to the association with HBRCT is being the dominant partner. Single or dual point 

mutations on the HBRCT interface result in a more severe binding defect than that on the 

FHA1 domain (Chapter 3 Figure 3.3). Additionally, quadruple mutations on FHA1 are 

required to show the same effect (Matthews et al., 2014).   
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 Asymmetrical dimerization, where one subunit acts as a donor and the other as an 

acceptor, has also been shown in cyclin A-CDK2 interaction. Binding of CDK2 to cyclin A 

induces a conformational change in this kinase, repositions its ATP-binding site, and exposes 

its Thr160 for subsequent phosphorylation (Jeffrey et al., 1995) by CDK-activating kinase 

(CAK) (Gu et al., 1992). Interestingly, cyclin A does not show any structural change upon 

binding to CDK2 (Brown et al., 1995). Another asymmetrical dimer is represented by the 

HER2-HER3 pair where their dimer acts as a potent oncoprotein (Amin et al., 2010). In this 

case, HER2 behaves as the acceptor and HER3 as the donor (Collier et al., 2013). Thus, HER2 

dimerization has been a chemotherapy target (Capelan et al., 2013; Wehrman et al., 2006). 

Unexpectedly, a HER2 inhibitor lapatinib can promote this dimerization in a non-canonical 

way that is distinct from the native HER2-HER3 dimer (Claus et al., 2018). This may explain a 

possible resistance mechanism of HER2+ patients to lapatinib, and as Claus et al. (2018) 

speculated, the failure of lapatinib in increasing the efficacy of trastuzumab in HER2+ breast 

cancer clinical trials (Piccart-Gebhart et al., 2015).  

A second example of a protein with a HBRCT domain has been recently found in yeast, 

Sir4 (Deshpande et al., 2019). When the HBRCT domains from Sir4 and Dbf4 are 

superimposed, the structures are similar except for the conformation of the connecting loops 

between β-strands or β-strand and α-helix. Interestingly, Sir4 HBRCT does not bind to Rad53 

(Deshpande et al., 2019). Dbf4 HBRCT interacts with Rad53 FHA1 through two interfaces 

(Chapter 3 Figure 3.2). The Dbf4 interface I in engaging with Rad53 FHA1 is partially 

conserved in Sir4 HBRCT, however, the interface II (Dbf4 Lys200) is not. The structural 

equivalent of this Lys200 residue is Sir4 Arg1066, showing that the positive charge is retained 
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at that position. However, this site on Sir4 is preceded by a seven residue insert that make it a 

longer loop than that of  Dbf4  (Deshpande et al., 2019). Thus, this research and the Rif1 data 

(Chapter 4 Figure 4.2C) strongly suggest that Dbf4 Lys200 is specific for Rad53 binding. 

Even though Rad53 FHA1 appears to engage with Dbf4 HBRCT in a phospho-

independent fashion, it is still competent to act as phospho-recognition module to bind other 

ligands. We showed that Rad53 FHA1 also interacts with a Cdc7 phospho-peptide (Chapter 3 

Figure 3.4) which demonstrates that Rad53 can associate with both DDK subunits 

simultaneously (Chapter 3 Figure 3.5). Dbf4 HBRCT can also recognize proline-rich 

phosphopeptide ligands (Esc1 and Ubp10) that are shown to interact with Sir4 HBRCT. These 

peptide bindings to Dbf4 are phosphorylation specific since the unphosphorylated counterparts 

do not engage with Dbf4 (Deshpande et al., 2019). 

Taken together, additional details of the novel non-canonical Dbf4-Rad53 interaction 

are presented in this thesis. It will be interesting to explore whether this mode of binding is 

found in other proteins containing FHA or BRCT domains. 

 

6.2  The characterization of Dbf4 and Rif1 interaction 

The Dbf4 HBRCT domain and Rif1 short linear PPDSPP fragment facilitate Dbf4-Rif1 

binding. In general, protein-protein associations are mediated by domain-domain interactions 

(DDIs) or domain-motif interactions (DMIs). DDIs exist as the interface between globular 

domains, and DMIs occur between globular domains and 3-10 residue Short Linear Motifs 

(SLIMs). DMIs are thought to require a smaller interface and lower affinity than DDIs do. 

Thus, they are less stable and linked to transient signalling pathways (Davey et al., 2011; 
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Mosca et al., 2014; Scott & Pawson, 2009; Stein & Aloy, 2010). Consistent with this, Dbf4-

Rif1 binding may reflect a temporary protein-protein interaction that acts as a molecular switch 

for DNA replication.  

 A proline-rich fragment, PPDSPP, on the Rif1 C-terminus seems to fit as a SLIM. 

Proline by itself is already unique because the side chain forms a pyrrolidine ring. Therefore, 

the occurrence of repetitive prolines in a motif makes it an exceptionally distinct protein 

recognition face. Proline’s side chain possesses a rotational constraint; thus this amino acid is 

normally located at disordered regions (Imai & Mitaku, 2005). Proline-rich segments tend to 

occupy the protein’s surface instead of being buried in the interior (Holt & Koffer, 2001). Due 

to these properties, the proline residues on the PPDSPP motif may also help to expose the 

residues between them to the surface, which can facilitate a unique interface recognition. These 

characteristics seem to support the Rif1 C-terminus I-TASSER structural prediction (Appendix 

B Figure 1). Moreover, proline-rich regions are highly represented among eukaryotes 

proteomes (Rubin et al., 2000) and known to interact with proline-recognition domains (PRDs) 

such as Src homology-3 (SH3), WW (named after a conserved Trp-Trp motif) and 

Enabled/VASP homology (EVH1) domains (Li, 2005; Zarrinpar et al., 2003).  

While the exploration of Dbf4 HBRCT recognizing a Rif1 proline-rich motif was being 

conducted, another study was published revealing that, similar to Dbf4, a budding yeast 

silencing protein Sir4 HBRCT domain interacts with proline-rich phosphopeptides in a nuclear 

periphery protein Esc1 and a ubiquitin-specific protease Ubp10 in a nanomolar, and a Ty5 

retrotransposon integrase in a micromolar range (Deshpande et al., 2019). Therefore, it would 

be interesting to co-crystalize the PPDSPP-containing Rif1 C-terminal peptide and HBRCT 
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domain. However, since Dbf4-Rif1 binding is postulated to be cell-cycle dependent, I expect 

that this interaction is weak and transient. Thus, the detailed interface of this binding can be 

mapped using Nuclear Magnetic Resonance (NMR) spectroscopy which can capture weak 

protein-protein interactions that are difficult to crystallize (Qin & Gronenborn, 2014; 

Vinogradova & Qin, 2012). Moreover, a study to investigate whether a post-translational 

modification, such as phosphorylation, is required or not for Dbf4-Rif1 binding can be 

conducted, as in the case of Sir4 HBRCT with its aforementioned targets (Deshpande et al., 

2019). The serine residue on the PPDSPP motif follows the CDK consensus phosphorylation 

target rule (Ser/Thr-Pro). Therefore, mutation of the serine or the following proline to alanine 

may abolish the Dbf4-Rif1 interaction. In contrast, phosphomimetic mutations changing the 

targeted serine into glutamic or aspartic acid may stabilize this binding. These results will 

provide a better insight into how the HBRCT domain engages with its targets in a phospho-

dependent or -independent manner. 

 Protein-protein interactions have gained attention as drug discovery targets with the 

development of small molecules that act as binding inhibitors. These molecules are said to be 

peptidomimetics and can occupy the binding site of a protein so that its natural ligand cannot 

bind to it. However, any comprehensive characterization of the binding interface does not 

guarantee successful drug development. The proteins that are considered to be undruggable (or 

not yet druggable) usually have flat and large binding interfaces on both sides (about 1,000-

2,000 Å2) (Hwang et al., 2010). In contrast, the druggable targets must have an obvious 

catalytic site (Sperandio et al., 2008) and a binding cleft/pocket, with the size around 300-500 

Å2  (Fuller et al., 2009) where the small molecule can attack. Many examples of the druggable 
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proteins have been collected in a public repository “Druggable Cavity Directory” (DCD) 

(http://fpocket.sourceforge.net/dcd/) (Schmidtke & Barril, 2010). A good example of a 

druggable DMI-based protein-protein interaction is the binding of tumor suppressor p53 and 

E3-ubiquitin ligase Mdm2. p53 interacts with Mdm2 via a hydrophobic motif on its C-terminus 

that fits in a small pocket of Mdm2 (Blommers et al., 1997; Kussie et al., 1996). This binding 

results in the loss of p53 transcriptional activity in promoting the expression of anti-oncogenic 

proteins, such as p21 and Bax (Clegg et al., 2012; Momand et al., 1992; Oliner et al., 1993). 

Therefore, inhibiting Mdm2-p53 interaction is promising for cancer therapy, and indeed, 

several corresponding small molecule inhibitors have been tested in clinical trials (Kocik et al., 

2019; Tisato et al., 2017). DDK itself has been proposed as a promising target candidate for 

cancer chemotherapy. Its selective inhibitor, TAK-931, is undergoing two clinical trials at this 

moment (Iwai et al., 2019). Additionally, since Dbf4-Rif1 acts as a molecular switch for DNA 

replication, further structural investigation of the Dbf4-Rif1 interaction will shed light on 

whether this binding has potential as a target in DDK-based cancer drug development. 

 Proline-rich motifs have been shown to be useful in the development of proline-rich 

antimicrobial peptides (Graf et al., 2017). Additionally, proline-rich polypeptides possess a 

positive immunomodulatory property in human studies of patients with Alzheimer’s disease 

(Janusz & Zabłocka, 2010; Sochocka et al., 2019). These suggest that proline-rich motifs can 

be used as a platform for polyproline peptidomimetic drug discovery, where the peptides can 

block proline-specific protein-protein interactions.  

In the context of this thesis and its connection to cancer-related research, inhibition of 

Rif1 and Dbf4 interaction via disruption of the Rif1 proline-rich segment may help to 

http://fpocket.sourceforge.net/dcd/
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deactivate the helicase which, in turn, could reduce DNA replication initiation and cell 

proliferation levels. The combination of Rif1 CDK and DDK phosphorylation defects on rif1 

5A∆PPDSPP results in dramatic growth inhibition (Chapter 4 Figure 4.6). In human cells, 

CDK phosphorylation of Rif1 disrupts Rif1-PP1’s ability to repress dormant origin firing 

(Moiseeva et al., 2019). Thus, it is interesting to study how human DDK regulates Rif1 in 

normal conditions and whether there is an overlap between the two kinases.  

The parallel inhibitions of CDK and DDK targeting Rif1 also impair cell resistance to 

genotoxic stress, with the most notable lethality shown under DNA double-strand break 

conditions (bleocin and phleomycin). Since these kinases’ phosphorylation of Rif1 breaks its 

binding to Glc7 (Davé et al., 2014; Hiraga et al., 2014), the in vivo results indicate that Rif1 

gain-of-function in maintaining a stable Glc7 interaction is detrimental for the cells when 

dealing with genotoxic insults. In contrast, the rif1 mutant strain that is defective in Glc7 

binding (rif1 RVxF/SILK) does not show a sickness under phleomycin treatment when 

compared to wild type (Shyian et al., 2016). The genotoxic hypersensitivity of rif1 

5A∆PPDSPP may stem from the failure to activate dormant origins, incompetency in DNA 

damage repair, or both. The fact that rif1 5A∆PPDSPP genotoxic sensitivity is worsened when 

homologous recombination (HR) is compromised (∆sae2/rif1 5A∆PPDSPP), but not in NHEJ 

disruption (∆nej1/rif1 5A∆PPDSPP and ∆yku70/ rif1 5A∆PPDSPP) (Chapter 4 Figure 4.7), is 

consistent with the continuous Rif1-Glc7 dephosphorylation activity being detrimental to the 

HR pathway. Further investigations combining rif1 RVxF/SILK with ∆sae2 and ∆sae2/rif1 

5A∆PPDSPP can be conducted to pinpoint whether Glc7 is indeed the Rif1 downstream target 

in threatening homologous recombination. 
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The increased sensitivity of ∆sae2/rif1 5A∆PPDSPP to genotoxic stress, when 

compared to the individual mutant strains, aligns well with the concept of synthetic toxicity 

(conditional synthetic lethality) (O’Neil et al., 2017). The term synthetic lethality in cancer 

studies conveys the idea of killing cancer cells by inhibiting a DNA repair pathway while 

another pathway is already blocked by mutations accumulated in the cells (reviewed in Lord et 

al., 2015; O’Neil et al., 2017). Since the basis of this strategy is using the deficiency that the 

cancer cells already bear, synthetic lethality can increase the selectivity of cancer therapy. 

Conventional chemotherapy drugs, such as doxorubicin and cisplatin, are cytotoxic to not only 

cancer but to healthy cells as well (Buzdar et al., 1985; Safirstein et al., 1986). A major leap of 

synthetic lethality-based therapy was the discovery and usage of olaparib, a PARP-1 inhibitor, 

in treating cancer with BRCA1/2 mutations (Farmer et al., 2005; Helleday et al., 2005). 

Conditional synthetic lethality adds another twist by sensitizing the mutant cells to specific 

circumstances. An example of this strategy is combining a PARP inhibitor with lapatinib 

(epidermal growth factor receptor/EGFR and HER2 inhibitor) in treating triple negative breast 

cancer (negative to estrogen receptor, progesterone receptor, and excess of HER2) (Nowsheen 

et al., 2012). An example in budding yeast research is the combination of a checkpoint mutant 

strain ∆tel1 and flap endonuclease mutant ∆rad27 that is lethal under camptothecin treatment 

(Li et al., 2014). In the research reported in my thesis, another example of synthetic 

cytotoxicity was identified. The ∆sae2/rif1 5A∆PPDSPP strain is sick/lethal when being 

challenged by genotoxic stress, with the most noteworthy result obtained from treatment of the 

alkylating agent MMS, while the single mutants showed reduced viability. More importantly, 

we were able to lower the concentrations of the genotoxic compounds in our experiments, 
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except for camptothecin, to see the cytotoxic effect in ∆sae2/rif1 5A∆PPDSPP (Chapter 4 

Figure 4.7) compared to that for rif1 5A∆PPDSPP (Chapter 4 Figure 4.6). In cancer therapy, 

lower doses of anticancer drugs are linked to less severe side effects. Thus, the concept of 

synthetic toxicity can broaden the scope of the therapeutic targets which, optimistically, may 

attack the cancerous cells more effectively than standard chemotherapy without increasing the 

risks of their side effects. 

In contrast to the results discussed above, a rescue from genotoxic stress was observed 

when the NHEJ pathway was disrupted (∆nej1 or ∆yku70) in the rif1 5A∆PPDSPP strain. 

Since NHEJ and HR are incompatible, the possible explanation for this phenotype is ∆nej1 or 

∆yku70 can reverse the resection defect in rif1 5A∆PPDSPP. This hypothesis could be 

confirmed through a sequential dual pulse-labelling DNA fibre assay (IdU-CldU) followed by 

genotoxic stress exposure. In this experiment, cells (∆sae2/rif1 5A∆PPDSPP, ∆nej1/rif1 

5A∆PPDSPP and ∆yku70/rif1 5A∆PPDSPP) are arrested in G1 phase and released into S 

phase. The nascent DNA from the synchronized cell culture before genotoxic stress can be 

sequentially labelled by incorporation of the thymidine analogs, IdU (5-iodo-2’-deoxyuridine) 

and CldU (5-chloro-2’-deoxyuridine) for 20 minutes each followed by genotoxic compound 

treatment for 3-4 hours. Cells are harvested and individual DNA fibres are spread on a slide 

and incubated with fluorophore-tagged antibodies directed against IdU and CldU, each with 

specific fluorophore. The signals are visualized by fluorescence microscopy. The first (IdU) 

and second (CldU) labelled tracks indicate the initial position and polarity of replication, 

respectively. The shortening of the second labelled-track represents the rate of DNA resection 

(Higgs et al., 2015). Moreover, the synthetic rescue that was obtained in this research 
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emphasizes the importance of genetic background when revealing a new phenotype. This is 

true especially in cancer where each type has specific gene mutations, meaning that a “one size 

fits all” chemotherapy approach is not always the best strategy. Additionally, synthetic rescue 

can arise when cancer cells develop mutation-based drug resistance. For instance, loss of 

53BP1 results in resistance to PARP inhibitor in BRCA1-deficient mammary tumors, which is 

aided by the re-establishment of homologous recombination (Jaspers et al., 2013).  

Collectively, the results presented in Chapter 4 further the understanding of protein-

protein binding based on domain-motif interaction, and the employment of in vivo synthetic 

cytotoxicity/rescue approaches. 

 

6.3  Initial investigation of Dbf4 and Mrc1 association in budding yeast 

In this study, we explored the possibility that Mrc1 associates with DDK in budding yeast, as 

previously reported in fission yeast and humans (Hayano et al., 2011; Kim et al., 2008; 

Matsumoto et al., 2011; Yang et al., 2016). To facilitate DDK phosphorylation, fission yeast 

Mrc1 and its human orthologs Claspin interact with DDK subunit, Cdc7 (Kim et al., 2008; 

Matsumoto et al., 2017; Shimmoto et al., 2009; Yang et al., 2016). However, our work showed 

that Dbf4, not Cdc7, is the subunit that engages with Mrc1 in budding yeast (Chapter 5 Figure 

5.1). More importantly, deletion of MRC1 exacerbated the growth defect of a temperature-

sensitive DDK strain at a semi-permissive temperature (Chapter 5 Figure 5.4), instead of 

rescuing it as in fission yeast (Matsumoto et al., 2011, 2017). Even though our preliminary data 

still requires more validation of how DDK regulates Mrc1, as I proposed in Chapter 5, they 

indicate that budding and fission yeast Mrc1 may act differently in DNA replication initiation. 
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Additionally, the efficient loading of budding yeast Mrc1 onto the early origin ARS305 

requires DDK activity (Osborn & Elledge, 2003). In contrast, fission yeast Mrc1 enrichment at 

early origins is not affected by DDK (Hayano et al., 2011). This discrepancy suggests that 

DDK may modulate a different role of budding yeast Mrc1. 

 In budding yeast, Mrc1 is not included in the minimum set of the initiation factors to 

reconstitute DNA replication in vitro (Yeeles et al., 2015). However, Mrc1 increases the DNA 

replication speed, and combining it with Csm3/Tof1 promotes the maximum replication rate 

(Yeeles et al., 2017). Fission yeast Mrc1 exhibits another difference by not significantly 

controlling the replication rate (Hayano et al., 2011). Thus, if future investigations do not 

support Mrc1 as a marker of early origins in budding yeast, it is interesting to see whether 

DDK-Mrc1 binding can control other known Mrc1 functions, such as the maintenance of DNA 

replication speed. 

 In summary, we show here that Mrc1 interacts with the Dbf4 subunit of DDK and is 

required to support cell growth when DDK activity is compromised. The in vivo significance 

of the DDK-Mrc1 association awaits furthers exploration.  

 

6.4  Final thoughts 

Over many years, yeast-based assays have been developed to study fundamental questions in 

cell cycle and cancer biology-related research. The major contribution of this thesis is to 

advance our understanding of how Dbf4 interactions with various ligands regulate DNA 

replication and safeguard its integrity in budding yeast. While the escalation of our findings to 

cancer research will require rigorous exploration and validation, they provide an insight on 
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how Dbf4 association with other proteins can have critical consequences in the cell cycle. 

More importantly, understanding basic science is undoubtedly essential in the development of 

better and more effective cancer treatments. We cannot offer solutions to problems that we do 

not fully understand. 
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Appendix A Figure 1. The Dbf4(0)Rad53 chimera exist in a monomer:dimer equilibrium. 

Size exclusion chromatography profiles of Dbf4(L0)Rad53 at increasing concentrations. 
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Appendix A Figure 2. Crystal packing of the binary complex. The four molecules in the 

asymmetric unit are shown color-coded with the N- and C-termini of the HBRCT and FHA1 

domains labeled. The bottom panel shows the approximate distances between the C-terminus 

of the HBRCT and the N-terminus of its closest FHA1 neighbors. 
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Appendix A Figure 3. Original gels and blots for Figure 3.3. To control for the two-hybrid 

bait and prey expression levels in Figure 3, whole cell extracts were prepared from 

transformants following prey induction and analyzed by Western blotting (of three independent 

experiments performed) using rabbit anti-LexA antibody (bait) and mouse anti-HA monoclonal 

antibody (prey), along with Alexa Fluor 647-conjugated goat anti-rabbit and Alexa Fluor 488-

conjugated goat anti-mouse secondary antibodies, respectively. Prior to detection, the 

membrane was stained with Ponceau S to assess relative protein loading. Yeast two-hybrid 

analysis using variants of Rad53 FHA1 as the preys (A) or variants of Dbf4 (B) as the baits. 
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Appendix A Figure 4. Original gels and blots for Figure 3.4. To control for the two-hybrid 

bait and prey expression levels in Figure 4, whole cell extracts were prepared from 

transformants following prey induction and analyzed by Western blotting (of three independent 

experiments performed) using rabbit anti-LexA antibody (bait) and mouse anti-HA monoclonal 

antibody (prey), along with Alexa Fluor 647-conjugated goat anti-rabbit and Alexa Fluor 488-

conjugated goat anti-mouse secondary antibodies, respectively. Prior to detection, the 

membrane was stained with Ponceau S to assess relative protein loading. 
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Appendix A Figure 5. 15N-HSQC intensity changes confirm weakening of the Rad53:Dbf4 

complex caused by binding of the phosphopeptide to Rad53. (A) Plot of residue specific 

ratios between cross-peak intensities in the 15N-HSQC spectra of the binary (Rad53:Dbf4) and 

ternary (Rad53:Dbf4:Cdc7) complexes. The solid and dashed horizontal lines represent the 

average intensity ratio +/- one standard deviation. (B) Residues with values either greater or 

lower than the average +/- one standard deviation were plotted onto the X-ray structure of the 

ternary complex as brown or blue spheres, respectively.  
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Appendix A Figure 6. Interaction surfaces mediating dimerization of Chk2 and the 

Rad53:Dbf4 complex. Ribbon diagram of the Chk2 crystal structure (left) showing with the 

two protomers of the dimer shown in steel blue and tan. The lateral surface of the FHA domain 

interacts with the FHA domain and the N-terminal lobe of the kinase domain on the second 

protomer. Comparison with the crystal structure of the Rad53:Dbf4 complex shows that the 

FHA1 domain of Rad53 (light orange) uses the equivalent lateral surface to interact with the 

BRCT domain of Dbf4 (purple).  
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Appendix B Figure 1. Rif1 does not disrupt Rad53 binding to Dbf4. The interaction of 

Dbf4 and Rad53, with or without overexpression of Rif1, was assessed through yeast two-

hybrid assays. The two-hybrid interaction values are presented as a percentage of the 

interaction of Dbf4 and Rad53 in the absence of Rif1 overexpression. Four independent 

replicates were performed, and error bars represent standard deviation. Representative Western 

blots (of four independent experiments performed) indicate protein expression levels and 

Ponceau S staining shows equal protein loading. Bait, prey and competitor proteins were 

detected with anti-LexA (Dbf4), anti-HA (Rad53) and anti-Myc (Rif1), antibodies, 

respectively.  
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Appendix B Figure 2. I-TASSER structure prediction of Rif1 1739-1916. The 

tetramerization module is depicted in purple, PPDSPP region in red, and Rap1-binding module 

in blue. 
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Appendix B Figure 3. Deletion of RIF1 results in Mcm4 hyperphosphorylation in G1 phase. 

Both wild type and ∆rif1 cells were arrested in G1 phase via incubation in YPD supplemented 

with 50 µg/ml α-factor for 3 hours. The cells were then harvested and spheroplasted. The protein 

extracts from both supernatant (SUP) and pellet (PEL) fractions were subjected to SDS-PAGE 

and transferred to a PVDF membrane for Mcm4 detection Expression and phosphorylation of 

Mcm4 were detected using an anti-Mcm4 antibody. FACS analysis was performed to confirm 

the efficiency of the G1 phase arrest. 
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Appendix B Figure 4. rif1 ∆PPDSPP shows a minor defect in cell cycle progression. All 

strains were arrested in G1 via incubation in YPD supplemented with 30 µg/ml α-factor for 2.5 

hours, harvested, washed, and then released to S phase with addition of  50 µg/ml Pronase E. 

rif1 ∆PPDSPP shows a delay in S phase entry at time point 15 minute after release.  
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Appendix C Figure 1. Mrc1 multiple sequence alignment for different fungal species. 

Full-length Mrc1 sequences are from Saccharomyces cerevisiae (accession NP_009871), 

Phaeoacremonium minimum (accession XP_007917014), Marssonina brunnea (accession 

EKD12953), Colletotrichum orchidophilum (accession XP_022476293), 

Colletotrichum graminicola (accession EFQ28182), Colletotrichum higginsianum (accession 

XP_018156174), Beauveria bassiana (accession PMB72403), and Schizosaccharomyces 

pombe (accession NP_594486). The fission yeast Mrc1 NTHBS and HBS regions are indicated 

by red and blue lines, respectively.  

 

 


