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The number of valid factorizations of Fibonacci prefixes
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Abstract

We establish several recurrence relations and an explicit formula for V (n), the

number of factorizations of the length-n prefix of the Fibonacci word into a

(not necessarily strictly) decreasing sequence of standard Fibonacci words. In

particular, we show that the sequence V (n) is the shuffle of the ceilings of two

linear functions of n.

Keywords: numeration systems, Fibonacci numeration system, Fibonacci

word
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1. Introduction1

In the classical Fibonacci, or Zeckendorf, numeration system [6, 11], a posi-

tive integer is represented as a sum of Fibonacci numbers:

n = Fmk
+ Fmk−1

+ · · ·+ Fm0
,

where mk > mk−1 > · · · > m0 ≥ 2 and, as usual, F0 = 0, F1 = 1, and Fm+2 =2

Fm+1 + Fm for all m ≥ 0. For example, 16 = 13 + 3 = F7 + F4 = [100100]F ,3

where a digit in brackets is 1 if the respective Fibonacci number appears in the4

sum, and 0 otherwise. Here a representation ends by the digits corresponding5

to F4 = 3, F3 = 2 and F2 = 1.6
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Under the condition that mi and mi+1 are never consecutive, that is, mi+1−7

mi ≥ 2, or, equivalently, that the Fibonacci numbers Fi are chosen greedily,8

such a canonical representation is unique, and the language LV of all canonical9

representations is given by the regular expression ε + 1(0 + 01)∗, where the10

empty word ε is the representation of 0. At the same time, if consecutive11

Fibonacci numbers are allowed, but at most once each, the number of such legal12

representations of n is the well-known integer sequence A000119 from the Online13

Encyclopedia of Integer Sequences (OEIS) [8]. Its values oscillate between 1 (on14

numbers of the form Fi − 1) and
√
n+ 1 (on numbers of the form n = F 2

i − 1)15

[10].16

For example, since

16 = 13 + 3 = 8 + 5 + 3 = 8 + 5 + 2 + 1 = 13 + 2 + 1

= [100100]F = [11100]F = [11011]F = [100011]F ,

the number of legal representations of 16 is 4. Each legal representation of n

can be obtained from a canonical one by a series of replacements

· · · 100 · · · ←→ · · · 011 · · · ,

corresponding to the replacement of a Fibonacci number Fm+2 by Fm+1 + Fm.17

In this paper, we allow even more freedom in Fibonacci representations of

n, allowing the transformations

· · · k0l · · · ←→ · · · (k − 1) 1(l + 1) · · · (1)

for all k > 0, l ≥ 0. Note that the introduced transformation corresponds to18

passing from a sum of the form kFm+1+ lFm−1 to the sum (k−1)Fm+1+Fm+19

(l + 1)Fm−1, and, in particular, does not change the represented number.20

The representations that can be obtained from the canonical one by a series

of transformations as in (1) are called valid, and were introduced in [4] in a more

general setting because of their link to the Fibonacci word and factorizations of

its prefixes, as explained below. Clearly, each legal representation is valid, but
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Figure 1: First 100 values of V (n)

the opposite is not true. For example, starting from the legal representation

16 = [11011]F , we can find two more valid representations

16 = [10121]F = [1221]F ,

and starting from the legal representation 16 = [11100]F , we find a new repre-

sentation

16 = [20000]F ,

so that the total number of valid representations of 16 is 7.21

Let V (n) denote the number of valid representations of n. The goal of this22

paper is to prove a precise formula for V (n), given below in Theorem 1. Our23

formula demonstrates that the values of V (n) are determined by the shuffle of24

two straight lines of irrational slope; see Fig. 1.25

2. Notation and Sturmian representations26

We use notation common in combinatorics on words; the reader is referred,27

for example, to [3] for an introduction. Given a finite word u, we denote its28

length by |u|. The power uk just means the concatenation uk = u · · ·u︸ ︷︷ ︸
k

. The i’th29

symbol of a finite or infinite word u is denoted by u[i], so that u = u[1]u[2] · · · . A30

factor w[i+1]w[i+2] · · ·w[j] of a finite or infinite word w, or, more precisely, its31

occurrence starting from position i+1 of w, is denoted by w(i..j]. In particular,32

for j ≥ 0, the word w(0..j] is the prefix of w of length j.33
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The standard Fibonacci sequence (fn) of words over the binary alphabet

{a, b} is defined as follows:

f−1 = b, f0 = a, fn+1 = fnfn−1 for all n ≥ 0. (2)

The word fn is called also the standard word of order n. In particular, f1 = ab,34

f2 = aba, f3 = abaab, f4 = abaababa, and so on. From the definition, we easily35

see that the length of fn is the Fibonacci number Fn+2.36

The infinite word

f = lim
n→∞ fn = abaababaabaababaababa · · ·

is called the Fibonacci infinite word. Here we index it starting with f [1] = a.37

In the Fibonacci, or Zeckendorf numeration system, a non-negative integer

N < Fn+3 is represented as a sum of Fibonacci numbers

N =
∑

0≤i≤n

kiFi+2, (3)

where ki ∈ {0, 1} for i ≥ 0. In the canonical version of the definition, the

following condition holds:

for i ≥ 1, if ki = 1, then ki−1 = 0. (4)

Under this nonadjacency condition, the representation of N is unique up to38

leading zeros. However, by removing the nonadjacency condition, we can get39

multiple representations: for example, 14 = F7 + F2 = F6 + F5 + F2 = F6 +40

F4 + F3 + F2. We call such representations legal and denote a representation41

N =
∑

0≤i≤n kiFi+2 by N = [kn · · · k0]F . If the condition (4) holds, we call the42

representation canonical.43

Let L(n) denote the number of legal representations of n. The sequence44

(L(n)) is well-studied (see, e.g., [2]) and listed in the OEIS as sequence A000119.45

In particular, 1 ≤ L(n) ≤ √
n+ 1, and both bounds are precise [10].46

The following lemma is a particular case of [4, Prop. 2].47

Lemma 1. For all k0, . . . , kn such that ki ∈ {0, 1}, the word fkn
n f

kn−1

n−1 · · · fk0
048

is a prefix of the Fibonacci word f .49
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So L(n) is also the number of ways to factor the prefix f(0..n] of the Fibonacci50

word as a sequence of standard words in strictly decreasing order.51

To expand this definition, in this note we consider all factorizations of Fi-52

bonacci prefixes f(0..n] as a concatenation of standard words in (non-strictly)53

decreasing order. We write N = [kn · · · k0]F and call this representation of N54

valid if ki ≥ 0 for all i and f(0..N ] = fkn
n f

kn−1

n−1 · · · fk0
0 . Note that according55

to the previous lemma, every legal representation is valid, but not the other56

way around. For example, f(0..14] = (abaab)(aba)(aba)(aba), making the rep-57

resentation 14 = [1300]F valid. Theorem 1 of [4] says, in particular, that valid58

representations are exactly those that can be obtained from the canonical one59

by a series of transformations (1).60

Note that a digit of a valid representation cannot exceed 3 since the Fibonacci61

word does not contain a factor of the form u4 for any non-empty word u [5].62

The number of valid representations of N is denoted by V (N), and this note63

is devoted to the study of the sequence (V (n)), recently listed in the OEIS as64

sequence A300066. Clearly, V (n) ≥ L(n), and moreover, we prove an explicit65

formula for V (n) that implies its linear growth.66

3. Result67

As is well-known, the Fibonacci infinite word

f = abaababa · · ·

is the fixed point of the Fibonacci morphism μ : a → ab, b → a; moreover, for

each n ≥ 1, we have fn = μ(fn−1). Consequently, if N = [kn · · · k0]F , then
Lemma 1 implies that

μ(f(0..N ]) = μ(f(0..[kn · · · k0]F ]) = μ(fkn
n · · · fk0

0 ) = fkn
n+1 · · · fk0

1 = f(0..[kn · · · k00]F ].

Let ϕ denote the golden ratio: ϕ = 1+
√
5

2 . It is important that the Fibonacci

word is a Sturmian word of slope 1/(ϕ + 1) = 1/ϕ2 and zero intercept (see
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Example 2.1.24 of [3]), that is, for all n, we have

f [n] =

⎧⎪⎨
⎪⎩
a, if {n/ϕ2} < 1− 1/ϕ2;

b, otherwise.

(5)

Here {x} = x− �x	 denotes the fractional part of x.68

Proposition 1. If f [n] = a, all valid representations of n end with an even69

number of 0s. If f [n] = b, all of them end with an odd number of 0s.70

Proof. It suffices to consult the definition of a valid representation and notice71

that fi ends with a if and only if i is even.72

We now state our main result.73

Theorem 1. If f [n] = a, then V (n) = 
n/ϕ2�, or, equivalently, V (n) is equal74

to the number of occurrences of b in f(0..n], plus one. If f [n] = b, then V (n) =75


n/ϕ3�, or, equivalently, V (n) is equal to the number of occurrences of aa in76

f(0..n], plus one.77

To prove the theorem, we will need several more propositions.78

Proposition 2.79

(a) V ([r0]F ) ≥ V ([r]F ) for all r ∈ {0, 1}∗.80

(b) For all k ≥ 0 and all r′ ∈ {0, 1}∗, we have V ([r′102k+1]F ) = V ([r′102k]F ).81

Proof. (a): Consider a factorization f(0..[r]F ] = fkn
n f

kn−1

n−1 · · · fk0
0 . Applying82

the Fibonacci morphism μ to both sides, we get the factorization f(0..[r0]F ] =83

fkn
n+1f

kn−1
n · · · fk0

1 . So the number of factorizations of f(0..[r0]F ] (which is equal84

to V ([r0]F )) is at least as large as the number of factorizations of f(0..[r]F ]85

(which is equal to V ([r]F )).86

(b) If, in addition r = r′102k for some k ≥ 0, we see that f(0..[r]F ] ends with87

f2k and f(0..[r0]F ] ends with f2k+1, which in turn ends with b. From Proposition88

1, no factorization of f(0..[r0]F ] ends with f0; that is, such a factorization must89

be of the form f(0..[r0]F ] = fkn
n+1f

kn−1
n · · · fk0

1 . Taking the μ-preimage, we get90
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the factorization f(0..[r]F ] = fkn
n f

kn−1

n−1 · · · fk0
0 , thus establishing a bijection and91

the equality V ([r′102k+1]F ) = V ([r′102k]F ).92

Proposition 3. We have

V ([z102k]F ) = V ([z102k−2]F ) + V ([z(01)k]F ).

for all z ∈ {0, 1}∗ and all k ≥ 1.93

Proof. Proposition 1 tells us that f [[z102k]F ] = a, and moreover, since k > 0,94

the prefix of length [z102k]F of f ends with aba, which is a suffix of f2k. Consider95

a valid factorization f(0..[z102k]F ] = fkn
n f

kn−1

n−1 · · · fk0
0 . If k0 = 0, then k1 = 096

since f1 ends with b, so the factorization is of the form fkn
n f

kn−1

n−1 · · · fk2
2 . Taking97

the μ2-preimage, we get a factorization fkn
n−2f

kn−1

n−3 · · · fk2
0 of f(0..[z102k−2]F ].98

Moreover, μ2 is a bijection between all the factorizations of f(0..[z102k−2]F ] and99

the factorizations of f(0..[z102k]F ] with k0 = k1 = 0.100

On the other hand, if k0 �= 0, then k0 = 1 since the word that we factor101

ends with aba. Removing this last occurrence of f0 = a, we get the prefix of f102

of length [z102k]F − 1 = [z(01)k0]F . From Proposition 2, the number of valid103

factorizations of f(0..[z(01)k0]F ] is equal to that of f(0..[z(01)k]F ]. Combining104

the two possibilities, we get the statement of the proposition.105

Proposition 4. For all z ∈ {0, 1}∗ and for all k ≥ 1, we have

V ([z10k1]F ) =

⎧⎪⎨
⎪⎩
V ([z10k+1]F ), if k is odd;

V ([z10k]F ) + V ([z(01)k/2]F ), if k is even.

Proof. If k is odd, then [z10k1]F = [z10k+1]F +1, and the prefix f(0..[z10k+1]F ]106

was considered in the previous proposition. It ends with aba, and the symbol107

added to get f(0..[z10k1]F ] is also a. So f(0..[z10k1]F ] ends with abaa, and all108

valid factorizations end with f0. This means that the number of valid factoriza-109

tions of f(0..[z10k1]F ] is equal to that of f [0..[z10k+1]F ]; that is, V ([z10k1]F ) =110

V ([z10k+1]F ).111

If k is even, k > 0, then f(0..[z10k1]F ] ends with f3f0 = abaaba. In partic-

ular, the last factor of any valid factorization of f(0..[z10k1]F ] is either f0 = a,

7



or f2 = aba. Indeed, f4 = abaababa and thus for all l > 2 the f2l do not have

a common suffix with f(0..[z10k1]F ]. So, letting V2(n) denote the number of

factorizations of f(0..n] of the form fkn
n f

kn−1

n−1 · · · fk2
2 , we get

V ([z10k1]F ) = V ([z10k1]F − 1) + V2([z10
k1]F − 3)

= V ([z10k+1]F ) + V2([z(01)
k/200]F )

= V ([z10k]F ) + V ([z(01)k/2]F ).

Here the last equality follows from Proposition 2 (for the first addend) and by112

taking μ−2 of each factorization (for the second one).113

Propositions 2 to 4 give a full list of recurrence relations sufficient to compute114

V (n) for every n > 1, starting from V (1) = 1. Before using them to prove the115

main theorem, we consider two particular cases.116

Corollary 1. For all k ≥ 1 we have

V (F2k+1 − 1) = V (F2k+1 − 2) = F2k−1

and

V (F2k+2 − 2) = F2k

Proof. For k = 1, the equalities can be easily checked: V (F3 − 1) = V (1) =

V (F3 − 2) = V (0) = 1 = F1, and V (F4 − 2) = V (1) = 1 = F2. We also

observe that F2k+1 − 1 = [(10)k−11]F , F2k+1 − 2 = [(10)k−10]F , and F2k+2 −
2 = [(10)k−101]F . Now we assume that the equalities hold for k, and use

Propositions 3 and 4 to prove they hold for k + 1:

V (F2k+3 − 2) = V ([(10)k0]F ) = V ([(10)k−11]F ) + V ([(10)k−101]F )

= V (F2k+1 − 1) + V (F2k+2 − 2) = F2k−1 + F2k = F2k+1,

V (F2k+3 − 1) = V ([(10)k1]F ) = V ([(10)k0]F ) = V (F2k+3 − 2) = F2k+1,

V (F2k+4 − 2) = V ([(10)k01]F ) = V ([(10)k0]F ) + V ([(10)k−101]F )

= V (F2k+3 − 2) + V (F2k+2 − 2) = F2k+1 + F2k = F2k+2.

117

8



Corollary 2. For all k ≥ 1, we have

V (F2k) = V (F2k+1) = F2k−2 + 1.

Proof. For k = 1, the equalities can be easily checked: V (F2) = V (1) = V (F3) =

V (2) = 1 = F0 + 1. Suppose the equalities hold for k; let us prove them for

k + 1. With Proposition 3, we have

V (F2k+2) = V ([102k]F ) = V ([102k−2]F )+V ([(10)k−11]F ) = F2k−2+1+F2k−1 = F2k+1,

and with Proposition 2, we have

V (F2k+3) = V ([102k+1]F ) = V ([102k]F ) = V (F2k+2) = F2k + 1.

118

Proposition 5. Let n = [z]F and n′ = [z0]F be such that f [n] = a. Then119


n/ϕ2� = 
n′/ϕ3�.120

Proof. Let us write the canonical Fibonacci representation of n as
∑

1≤i≤l Fmi
,121

where 2 ≤ m1 < m2 < · · · < ml. Since f [n] = a, from Proposition 1 we get that122

m1 is even.123

Now Fk = 1√
5
(ϕk − ψk), where ψ = 1−√5

2 , −1 < ψ < 0. So

n =
∑

1≤i≤l

Fmi
=

1√
5

⎛
⎝ ∑

1≤i≤l

ϕmi −
∑

1≤i≤l

ψmi

⎞
⎠

and

n′ =
∑

1≤i≤l

Fmi+1 =
1√
5

⎛
⎝ ∑

1≤i≤l

ϕmi+1 −
∑

1≤i≤l

ψmi+1

⎞
⎠ ,

implying that

n′

ϕ
=

1√
5

⎛
⎝ ∑

1≤i≤l

ϕmi − 1

ϕ

∑
1≤i≤l

ψmi+1

⎞
⎠ .

The difference between the two values is

n′

ϕ
− n =

1√
5

(
1− ψ

ϕ

)
S,

9



where

S =
∑

1≤i≤l

ψmi = ψm1

∑
1≤i≤l

ψmi−m1 .

Let us estimate S. Since m1 ≥ 2, m1 is even and 0 < ψm1 < ψ2, an upper

bound for S is

S < ψm1

∞∑
k=0

ψ2k =
ψm1

1− ψ2
≤ ψ2

1− ψ2
,

whereas a lower bound is

S > ψm1

(
1 +

∞∑
k=1

ψ2k+1

)
> ψm1

(
1 +

∞∑
k=0

ψ2k+1

)
= ψm1

(
1 +

ψ

1− ψ2

)
= 0.

So

0 <
n′

ϕ
− n <

ψ2

√
5

(
1− ψ

ϕ

)
1

1− ψ2
=

1

ϕ2
.

Dividing by ϕ2, we get

0 <
n′

ϕ3
− n

ϕ2
<

1

ϕ4
<

1

ϕ2
.

Together with (5), meaning that {n/ϕ2} < 1− 1/ϕ2, the last inequality implies124

the statement of the Proposition.125

Proof of Theorem 1. Let us start with the case of f [n] = a and proceed by126

induction starting with V (1) = 1. For n > 1, there are three subcases:127

(a) n = [z102k]F , k > 0;128

(b) n = [z10k1]F , k odd;129

(c) n = [z10k1]F , k even.130

From now on we suppose that the statement of the theorem holds for all n′, n′′ <131

n.132

(a) Since n = [z102k]F and k > 0, Proposition 3 gives V (n) = V ([z102k]F ) =133

V ([z102k−2]F )+V ([z(01)k]F ). Write [z102k−2]F = n′ and [z(01)k]F = n′′. Note134

that Proposition 1 gives f [n′] = f [n′′] = a. At the same time, n′′+1 = [z102k−1]F135

and thus f [n′′ + 1] = b. Now (5) implies that {n′/ϕ2} ∈ (0, 1 − 1/ϕ2) and136

{(n′′ + 1)/ϕ2} ∈ (1 − 1/ϕ2, 1). Also, the Fibonacci representation of n′ is137

10



obtained from that of n′′ +1 by a one-symbol shift to the left. So, summing up138

n′ and n′′+1, due to the Fibonacci recurrence relation, we get the number with139

the same representation but shifted to the left yet another position, meaning140

that n′ + n′′ + 1 = n.141

Let us consider the sum t = {n′/ϕ2}+ {(n′′ + 1)/ϕ2}. From the inclusions

above, we see that t belongs to the interval (1 − 1/ϕ2, 2 − 1/ϕ2). But we also

know that {n/ϕ2} = {(n′ + n′′ + 1)/ϕ2} ∈ (0, 1− 1/ϕ2), since f [n] = a. So

{n/ϕ2} = {n′/ϕ2}+ {(n′′ + 1)/ϕ2} − 1,

which is equivalent to �n/ϕ2	 = �n′/ϕ2	+ �(n′′ + 1)/ϕ2	+ 1 and to �n/ϕ2	 =
�n′/ϕ2	+ �n′′/ϕ2	+ 1 (since �n′′/ϕ2	 = �(n′′ + 1)/ϕ2	). Since all the numbers

under consideration are irrational, and thus every ceiling is just the floor plus

1, we get


n/ϕ2� = 
n′/ϕ2�+ 
n′′/ϕ2�.

To establish the statement of the theorem for this subcase, it is sufficient to142

use Proposition 3 and the induction hypothesis: V (n′) = 
n′/ϕ2� and V (n′′) =143


n′′/ϕ2�.144

(b): Here n = [z102k−11]F and k > 0. It suffices to refer to the previous145

subcase and to Proposition 4: V (n) = V (n− 1) = V ([z102k]F ) = 
(n− 1)/ϕ2�.146

It remains to notice that 
(n− 1)/ϕ2� = 
n/ϕ2�, since f [n− 1] = a.147

(c): Here n = [z102k1]F and k > 0. We use Proposition 4: V ([z102k1]F ) =148

V ([z102k]F ) + V ([z(01)k]F ). As above, write n′ = [z102k]F and n′′ = [z(01)k]F ;149

then n = n′ + n′′ + 2, whereas V (n) = V (n′) + V (n′′). By the induction150

hypothesis, V (n′) = 
n′/ϕ2� and V (n′′) = 
n′′/ϕ2�.151

We have f [n] = a and f [n − 1] = b, implying from (5) that {(n − 1)/ϕ2} ∈
(1− 1/ϕ2, 1) and thus {n/ϕ2} ∈ (0, 1/ϕ2). At the same time, f [n′] = f [n′′] = a

implies {n′/ϕ2}, {n′′/ϕ2} ∈ (0, 1− 1/ϕ2) and thus

{n′/ϕ2}+ {n′′/ϕ2}+ {2/ϕ2} ∈ (2/ϕ2, 2).

11



Comparing it to {n/ϕ2} = {(n′ + n′′ + 2)/ϕ2} ∈ (0, 1/ϕ2), we see that

{n/ϕ2} = {n′/ϕ2}+ {n′′/ϕ2}+ {2/ϕ2} − 1.

But since n = n′ + n′′ + 2 and x = �x	+ {x} for every x, this also means that

�n/ϕ2	 = �n′/ϕ2	+ �n′′/ϕ2	+ 1.

Finally, since k/ϕ2 is not an integer for any integer k > 0, we have 
k/ϕ2� =

�k/ϕ2	+ 1, so that


n/ϕ2� = 
n′/ϕ2�+ 
n′′/ϕ2�.

It remains to use the induction hypothesis to establish

V (n) = V (n′) + V (n′′) = 
n′/ϕ2�+ 
n′′/ϕ2� = 
n/ϕ2�,

which was to be proved.152

To complete the part of the proof concerning f [n] = a, it remains to notice153

that 
n/ϕ2� is equal to the number of bs in f(0..n] plus one, due to (5).154

Now for f [n] = b, it is sufficient to combine Propositions 1, 2 and 5: if

f [n] = b, then n = [r0]F , where m = [r]F and f [m] = a. Then

V (n) = V (m) = 
m/ϕ2� = 
n/ϕ3�.

Here f(0..n] = μ(f(0..m]), and so the occurrences of aa in f(0..n] correspond155

exactly to occurrences of b in μ(f(0..m]). The theorem is proved.156

The theorem ensures that the sequence (V (n)) grows as depicted in Fig. 1.157

The two visible straight lines correspond to the symbols of the Fibonacci word158

equal to a (the upper line) or b (the lower line).159

4. Fibonacci-regular representation160

A sequence (s(n))n≥0 is said to be Fibonacci-regular if there exist an integer

k, a row vector v of dimension k, a column vector w of dimension k, and a k×k

matrix-valued morphism ρ on {0, 1}∗ such that

s([z]F ) = vρ(z)w
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for all canonical Fibonacci representations z ∈ LV . The triple (v, ρ, w) is called161

a linear representation; see, for example, [7].162

Berstel [2] gave the following linear representation for the function L(n) we

mentioned previously in Section 2:

v = [1 0 0 0], ρ(0) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 0 1 0

1 1 0 0

1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦ , ρ(1) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 1

0 0 0 0

0 1 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦ , w =

⎡
⎢⎢⎢⎢⎢⎢⎣

1

0

0

1

⎤
⎥⎥⎥⎥⎥⎥⎦ .

Hence L(n) is Fibonacci-regular.163

We can find a similar representation for the function V (n). For technical164

reasons it is easier to deal with the reversed Fibonacci representation; one can165

then obtain the ordinary linear representation by interchanging the roles of the166

vectors and taking the transposes of the matrices.167

Theorem 2. V (n) has the reversed linear representation (t, γ, u), where

t = [1 0 0 0 0 0 0 0], u = [1 1 1 1 1 2 1 4]T

γ(0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0

−1 1 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

−1 0 0 2 1 0 0 0

1 −1 0 −3 3 0 1 0

−1 −1 0 2 3 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, γ(1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Proof. Define g(x) = V ([x]F ) if x is a valid canonical representation (that is,

containing no leading zeroes, and no two consecutive 1’s), and 0 otherwise. It
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suffices to show, for all x ∈ {0, 1}∗ and i ∈ {0, 1}, that⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g(xi)

g(xi0)

g(xi1)

g(xi00)

g(xi000)

g(xi100)

g(xi0000)

g(xi10000)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= γ(i)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g(x)

g(x0)

g(x1)

g(x00)

g(x000)

g(x100)

g(x0000)

g(x10000)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6)

Once we prove this, it is then easy to see (using induction on |z|) that, if z is the168

Fibonacci representation of n, then tγ(zR)u = V (n), where zR is the reversal169

of z.170

Thus it suffices to verify Eq. (6). This is equivalent to proving the following

identities for x.

g(x01) = −g(x) + g(x0) + g(x00) (7)

g(x10) = g(x1) (8)

g(x0100) = −g(x) + 2g(x00) + g(x000) (9)

g(x1000) = g(x100) (10)

g(x010000) = −g(x)− g(x0) + 2g(x00) + 3g(x000) + g(x0000) (11)

g(x00000) = g(x)− g(x0)− 3g(x00) + 3g(x000) + g(x0000). (12)

Identities (8) and (10) are particular cases of Proposition 2 (b).171

To prove (7), consider separately two cases: if x ends with an even number

of zeros, then g(x) = g(x0) due to Proposition 2 (b) and g(x00) = g(x01) due

to Proposition 4, so the identity holds. If x ends with an odd number of zeros,

x = z102k+1, k ≥ 0, then due to Proposition 4,

g(x01) = g(z102k+21) = g(z102k+2) + g(z(01)k+1) = g(x0) + g(z(01)k+1).

On the other hand, due to Propositions 2 and 3,

g(x00) = g(x0) = g(z102k+2) = g(z102k) + g(z(01)k+1) = g(x) + g(z(01)k+1).
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Comparing these equalities, we get (7).172

To prove (9), it is sufficient to use Proposition 3 to get

g(x0100) = g(x01) + g(x001),

and then to use (7) twice, for g(x01) and for g(x001).173

To prove (11), it is sufficient to use Propositions 3 and 2 to get

g(x010000) = g(x0100) + g(x00101) = g(x0100) + g(x00100).

Now (11) is obtained immediately by summing up (9) applied to x and to x0.174

Finally, to prove (12), we again have to consider two cases. If x = z102k,

k ≥ 0, then due to Proposition 2, g(x05) = g(x0000), g(x000) = g(x00), g(x0) =

g(x), and the equality holds. If now x = z102k+1, k ≥ 0, then (12) immediately

simplifies with Proposition 2 as

g(z102k+6)−g(z102k+4) = 3[g(z102k+4)−g(z102k+2)]− [g(z102k+2)−g(z102k)].

Applying Proposition 3, we reduce it to

g(z(01)k+3) = 3g(z(01)k+2)− g(z(01)k+1),

or, writing y = z(01)k+1 and applying Proposition 4 again,

g(y0100) = 3g(y00)− g(y).

But this is exactly (9) since g(y00) = g(y000).175

176
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