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Abstract

In many settings, an effective way of evaluating objects of interest is to collect evaluations from dispersed

individuals and to aggregate these evaluations together. Some examples are categorizing online content and

evaluating student assignments via peer grading. For this data science problem, one challenge is to motivate

participants to conduct such evaluations carefully and to report them honestly, particularly when doing so is

costly. Existing approaches, notably peer-prediction mechanisms, can incentivize truth telling in equilibrium.

However, they also give rise to equilibria in which agents do not pay the costs required to evaluate accurately,

and hence fail to elicit useful information. We show that this problem is unavoidable whenever agents are

able to coordinate using low-cost signals about the items being evaluated (e.g., text labels or pictures). We

then consider ways of circumventing this problem by comparing agents’ reports to ground truth, which is

available in practice when there exist trusted evaluators—such as teaching assistants in the peer grading

scenario—who can perform a limited number of unbiased (but noisy) evaluations. Of course, when such

ground truth is available, a simpler approach is also possible: rewarding each agent based on agreement with

ground truth with some probability, and unconditionally rewarding the agent otherwise. Surprisingly, we

show that the simpler mechanism achieves stronger incentive guarantees given less access to ground truth

than a large set of peer-prediction mechanisms.

Keywords: peer prediction, peer grading, incentivize effort, incentivize truthful reporting, information

elicitation, game theory, crowdsourcing.
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1. Introduction

In many practical settings, an effective way of evaluating objects of interest is to collect evaluations from

a large, dispersed group of agents. These evaluations can then be aggregated together and provided as a

service, as in online forums such as Rotten Tomatoes, Yelp, and TripAdvisor, which obtain feedback from

millions of users about movies, restaurants, and travel destinations. Alternatively, the aggregated evaluations

can be used directly. For example, crowdsourcing platforms are increasingly used to collect semantic labels

of images and online content for use in training machine learning algorithms.

However, these agents may not be motivated to invest costly effort to obtain accurate evaluations. There-

fore, an important problem in artificial intelligence is to design incentives to motivate large groups of agents

to obtain and to reveal accurate information (e.g., Prelec, 2004; Miller et al., 2005; Zohar & Rosenschein,

2006, 2008; Jurca & Faltings, 2009; Papakonstantinou et al., 2008, 2010, 2011; Faltings et al., 2012; Witkowski

& Parkes, 2012; Witkowski et al., 2013; Dasgupta & Ghosh, 2013; Witkowski & Parkes, 2013; Radanovic &

Faltings, 2013; Shah et al., 2013; Radanovic & Faltings, 2014; Radanovic et al., 2016; Riley, 2014; Zhang

& Chen, 2014; Waggoner & Chen, 2014; Kamble et al., 2015; Caragiannis et al., 2015; Kong et al., 2016;

Shnayder et al., 2016).

We are particularly motivated by the peer grading problem, which we will use as a running example.

Students benefit from open-ended assignments such as essays or proofs. However, such assignments are used

relatively sparingly, particularly in large classes, because they require considerable time and effort to grade

properly. An efficient and scalable alternative is having students grade each other (and, in the process, learn

from each other’s work). Many peer grading systems have been proposed and evaluated in both the artificial

intelligence and education literatures (Hamer et al., 2005; Cho & Schunn, 2007; Paré & Joordens, 2008; Shah

et al., 2013; de Alfaro & Shavlovsky, 2014; Kulkarni et al., 2014; Raman & Joachims, 2014; Wright et al.,

2015; Caragiannis et al., 2015; de Alfaro et al., 2015), albeit with a focus on evaluating the accuracy of grades

collected under the assumption of full cooperation by students.

However, no experienced teacher would expect all students to behave nonstrategically when asked to

invest effort in a time-consuming task. An effective peer grading system must therefore provide motivation

for students to formulate evaluations carefully and to report them honestly. Many approaches have been

developed to provide such motivation. One notable category is peer-prediction methods (Prelec, 2004; Miller

et al., 2005; Jurca & Faltings, 2009; Faltings et al., 2012; Witkowski & Parkes, 2012; Witkowski et al.,

2013; Dasgupta & Ghosh, 2013; Witkowski & Parkes, 2013; Radanovic & Faltings, 2013, 2014; Radanovic

et al., 2016; Riley, 2014; Zhang & Chen, 2014; Waggoner & Chen, 2014; Kamble et al., 2015; Kong et al.,

2016; Shnayder et al., 2016). In order to motivate each agent to reveal his private, informative signal, peer-

prediction methods offer a reward based on how each agent’s reports compare with those of his peers. Such

rewards are designed to induce truth telling in equilibrium—that is, they create a situation in which each
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agent has an interest in investing effort and revealing his private and informative signal truthfully, as long

as he believes that all other agents will do the same.

Even if they do offer a truthful equilibrium, peer-prediction methods also always induce other uninfor-

mative equilibria, the existence of which is inevitable (Jurca & Faltings, 2009; Waggoner & Chen, 2014).

Intuitively, if no other agent follows a strategy that depends on her private information, there is no reason

for a given agent to deviate in a way that does so either: agents can only be rewarded for coordination,

not for accuracy. When private information is costly to obtain, uninformative equilibria are typically less

demanding for agents to play. This raises significant doubt about whether peer-prediction methods can moti-

vate truthful reporting in practice. Experimental evaluations of peer-prediction methods have mixed results.

Some studies showed that agents reported truthfully (Shaw et al., 2011; John et al., 2012; Faltings et al.,

2014; Radanovic et al., 2016); another study found that agents colluded on uninformative equilibria (Gao

et al., 2014).

Recent progress on peer-prediction mechanisms has focused on making the truthful equilibrium Pareto

dominant, i.e., (weakly) more rewarding to every agent than any other equilibrium (Dasgupta & Ghosh,

2013; Witkowski & Parkes, 2013; Kamble et al., 2015; Radanovic & Faltings, 2015; Shnayder et al., 2016).

This can be achieved by rewarding agents based on the distributions of their reports for multiple objects.

However, we show in this paper that such arguments rely critically on the assumption that every agent

has access to only one private signal per object. This is often untrue in practice; e.g., in peer grading,

by taking a quick glance at an essay a student can observe characteristics such as length, formatting and

the prevalence of grammatical errors. These characteristics require hardly any effort to observe, can be

arbitrarily uninformative about true quality, and are of no interest to the mechanism. Yet their existence

provides a means for the agents to coordinate. We build on this intuition to prove that no mechanism can

guarantee that an equilibrium in which all agents truthfully report their informative signals is always Pareto

dominant in every setting.

Motivated by these negative results, we move on to consider a setting in which the operator of the

mechanism has access to trusted evaluators (e.g., teaching assistants) who can reliably provide noisy but

informative signals of the object’s true quality. This allows for a hybrid mechanism that blends peer-

prediction with comparison to trusted reports. With a fixed probability, the mechanism obtains a trusted

report and rewards the agent based on the agreement between the agent’s report and the trusted report

(Jurca & Faltings, 2005). Otherwise, the mechanism rewards the agent using a peer-prediction mechanism.

Such hybrid mechanisms can yield stronger incentive guarantees than other peer-prediction mechanisms,

such as achieving truthful reporting of informative signals in Pareto-dominant equilibrium (see, e.g., Jurca &

Faltings, 2005; Dasgupta & Ghosh, 2013). Intuitively, if an agent seeks to be consistently close to a trusted

report, then his best strategy is to reveal his informative signal truthfully.
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In fact, the availability of trusted reports is so powerful that it gives us the option of dispensing with peer-

prediction altogether. Specifically, we can reward students based on agreement with the trusted report when

the latter is available, but simply give students a constant reward otherwise, in an approach we dub the peer-

insensitive mechanism. Indeed, in Wright et al. (2015) we introduced such a peer grading system and showed

that it worked effectively in practice, based on a study across three years of a large class. This mechanism

has even stronger incentive properties than the hybrid mechanism—because it induces a single-agent game,

it can give rise to dominant-strategy truthfulness.

Our paper’s main focus is on comparing these two approaches in terms of the number of trusted reports

that they require. One might expect that the hybrid approach would have the edge, both because it relies

on a weaker solution concept and because it leverages a second source of information reported by other

agents. Surprisingly, we prove that this intuition is backwards. We identify a simple sufficient condition,

which, if satisfied, guarantees that the peer-insensitive mechanism offers the dominant strategy of truthful

reporting of informative signals while querying trusted reports with a lower probability than is required for

a peer-prediction mechanism to motivate truthful reporting in Pareto-dominant equilibrium. We then show

that all applicable peer-prediction mechanisms of which we are aware satisfy this sufficient condition.

2. Peer-Prediction Mechanisms and Other Related Work

We formally define the game theoretic setting in which we will study the elicitation problem. A mechanism

designer wishes to elicit information about the quality of a set O of objects. Each object j has a latent quality

qj ∈ Q, where Q is a finite set. There are n rational and risk-neutral agents. Each agent i evaluates a set of

objects Ji, which is a subset of O.

Agents have access to private information about the qualities of the objects of interest, and our goal is

to motivate the agents to reveal their private information. To do this, we build upon several peer prediction

mechanisms proposed in the literature.

In the peer prediction literature, it is standard to assume that each agent receives a single, private

signal, which represents the only information that agent has about the object of interest. We argue that, in

reality, every agent can obtain multiple pieces of information about the object’s quality by investing different

amounts of efforts. To capture this, we consider a simplified scenario by assuming that, for each object j,

agent i has access to two pieces of private information: a high-quality signal sh ∈ Q and a low-quality signal

sl.

The high-quality signal refers to a useful piece of information that the mechanism designer wishes to

elicit. It is drawn from a distribution conditional on the object’s quality qj and the identity of the agents

evaluating the object. The joint distributions of the high-quality signals are common knowledge among the

agents. The high-quality signals can be arbitrarily correlated with one another. In particular, we do not
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assume that the high-quality signals are independent conditional on the object’s quality and the identity

of the agents. Agent i can form a probabilistic belief about the high-quality signal of another agent i′ by

performing a Bayesian update based on his own high-quality signal.

The low-quality signal represents information about superficial qualities of the object — it is correlated

with the quality of the object, but not sufficiently so. The mechanism designer prefers to get the high-

quality signals rather than the low-quality signals because the high-quality signals are more correlated with

the quality of the object than the low-quality signals. However, the low-quality signals are easier to obtain

than the high-quality signals because the low-quality signals of different agents are more correlated with each

other than the high-quality signals of these agents. As a result, the low-quality signals provide an easier way

for agents to coordinate their reports compared to investing costly effort to acquire the high-quality signal.

The low-quality signal is a collection of properties of the object that an agent can observe with negligible

effort. For example, by glancing at an essay and skimming several sentences, an agent can observe several

superficial attributes of the essay, such as the length of the essay, whether the author provided references

or not, the number of spelling and grammatical mistakes, the sentence structure, the vocabulary, and the

complexity of the language being used1. Similarly, one could base a review on the decor without eating in a

restaurant; evaluate a movie by watching its trailer; etc.

In practice, it is often costly to perform careful evaluations by obtaining the high-quality signals. We

capture this by assuming that obtaining the high-quality signal requires a constant effort cE > 0 whereas

obtaining the low-quality signal requires no effort. Our results can be straightforwardly extended to cases

where the difference between the cost of obtaining the two signals is cE .

We consider mechanisms that may ask each agent to report up to two pieces of information. For each

object j evaluated, agent i makes a signal report rij ∈ Q and a belief report bij ∈ Δ(Q) to the mechanism,

where Δ(Q) is the set of all distributions over Q. The mechanism gives agent i a reward zij(r,b) based on

the vector of all the signal reports r and belief reports b for object j.

Agents may strategize over both whether to incur the cost of effort to observe the high-quality signal and

which signal and belief reports to make. The goal of the mechanism designer is to incentivize each agent

i to incur the cost of effort to obtain the high-quality signal shij , to report the high-quality signal as his

signal report, and to report his posterior belief conditional on the high-quality signal as his belief report. A

mechanism has a truthful equilibrium when it is a Bayesian Nash equilibrium equilibrium for every agent to

use this strategy.

We say that a peer-prediction mechanism is universal if it can be applied without prior knowledge of the

1In a large class, it is unlikely that all the students could agree on which superficial attribute of an essay they should

coordinate on. However, by combining multiple superficial attributes together, the students could arrive at similar estimates of

the essay, which is the low-quality signal.
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distribution from which signals are elicited, and for any number of agents greater than or equal to 3:

Definition 1 (Universal peer-prediction mechanism). A peer-prediction mechanism is universal if it can

be operated without knowledge of the joint distribution of the high-quality signals shij (i.e., it is “detail free”

(Wilson, 1987)) and guarantees the existence of the truthful equilibrium for any number of agents n ≥ 3 and

any number of tasks.

We focus on universal peer-prediction mechanisms for two reasons. First, in practice, it is not always

possible for a mechanism designer to have detailed knowledge of the joint signal distribution, so this allows

us to focus on mechanisms that are more likely to be used in practice. Second, it is relatively unrestrictive,

as many peer-prediction mechanisms in the literature satisfy universality.

Below, we give a high-level description of universal and non-universal peer-prediction mechanisms as well

as other related work. We first introduce universal peer-prediction mechanisms, which can be divided into

three categories: output agreement mechanisms, multi-object mechanisms, and belief based mechanisms.

Output-Agreement Mechanisms Output agreement mechanisms were first introduced by Von Ahn &

Dabbish (2008) and later studied by Faltings et al. (2012); Witkowski et al. (2013); Waggoner & Chen (2014).

Output agreement mechanisms only collect signal reports from agents and reward an agent i for evaluating

object j based on agents’ signal reports for the object (Faltings et al., 2012; Witkowski et al., 2013; Waggoner

& Chen, 2014).

The standard output agreement mechanism studied by Waggoner & Chen (2014) and Witkowski et al.

(2013) gives an agent i a constant reward exactly when agent i’s signal report matches the signal report of

another random agent i′ evaluating the same object. The Faltings et al. (2012) mechanism also rewards the

agents for agreement, but the amount of the reward is scaled by the empirical frequency of the signal report

agreed upon. The more frequently the report appears, the smaller the reward.

Multi-Object Mechanisms Multi-object mechanisms reward each agent based on his reports for multiple

objects (Dasgupta & Ghosh, 2013; Radanovic & Faltings, 2015; Kamble et al., 2015; Shnayder et al., 2016).

The multi-signal Dasgupta-Ghosh mechanism (Dasgupta & Ghosh, 2013; Shnayder et al., 2016) and

the Kamble et al. (2015) mechanism extend the output agreement mechanisms by adding additional scal-

ing terms to the reward. The Shnayder et al. (2016) mechanism adds an additive scaling term, whereas

the Kamble et al. (2015) mechanism adds a multiplicative scaling term. These scaling terms are intended

to exploit correlations between multiple tasks to make the truthful equilibrium dominate a particular kind

of uninformative equilibria, by reducing the reward to agents who agree to a report that is “unsurprising”

given their reports on other objects.

The Radanovic & Faltings (2015) mechanism rewards the agents for report agreement using a reward

function inspired by the quadratic scoring rule. A quadratic scoring rule is a proper scoring rule, which
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is designed to incentivize an agent to report his belief about the likelihoods of the outcomes of an event

truthfully.

Belief Based Mechanisms Belief based mechanisms collect both signal and belief reports from agents

and reward each agent based on all agents’ signal and belief reports for each object (Witkowski & Parkes,

2012, 2013; Radanovic & Faltings, 2013, 2014; Riley, 2014). These mechanisms make use of proper scoring

rules, which are designed to incentivize an agent to report his belief truthfully.

The robust Bayesian Truth Serum (BTS) (Witkowski & Parkes, 2012, 2013) rewards agent i for evaluating

object j by how well his belief report bij and shadowed belief report bsij predict the signal reports of another

random agent i′′. Agent i’s shadowed belief report bsij is the result of modifying another agent i′’s belief

report based on agent i’s signal report.

The multi-valued robust BTS (Radanovic & Faltings, 2013) rewards agent i if his signal report matches

that of another random agent i′ and his belief report accurately predicts agent i′’s signal report.

The divergence-based BTS (Radanovic & Faltings, 2014) rewards agent i for evaluating object j if his

belief report accurately predicts another random agent’s signal report. Moreover, it penalizes agent i if his

signal report matches the signal report of another agent i′ but his belief report is sufficiently different from

the belief report of agent i′.

The Riley (2014) mechanism rewards agent i for evaluating object j by how well his belief report predicts

other agents’ signal reports. Moreover, agent i’s reward is bounded above by the score for the average belief

report of other agents who made the same signal report.

Non-Universal Peer-Prediction Mechanisms We do not consider several peer-prediction mechanisms

because they are not universal according to Definition 1. The Miller et al. (2005); Zhang & Chen (2014)

and Kong et al. (2016) mechanisms require the mechanism operator to derive the agents’ posterior beliefs

based on their signal reports (hence requiring knowledge of the distribution from which signals are drawn);

they all then reward the agents based on how well the derived posterior belief predicts other agents’ signal

reports using proper scoring rules. The Jurca & Faltings (2009) mechanism requires the joint distribution of

the signals to construct rewards that either penalize or eliminate symmetric, uninformative equilibria. The

Correlated Agreement mechanism (Shnayder et al., 2016) requires the joint distribution of the signals to

determine the rewards. The Correlated Agreement Detail-Free mechanism (Shnayder et al., 2016) requires a

large number of tasks to guarantee that the truthful equilibrium exists and yields higher expected payment

than any other strategy profile. The Bayesian Truth Serum (BTS) mechanism (Prelec, 2004) requires an

infinite number of agents to guarantee the existence of the truthful equilibrium. We note that Prelec (2004)

pioneered the idea of eliciting both signal and belief reports from agents. Much subsequent work leveraged

this key idea to sustain the truthful equilibrium while not requiring knowledge of the prior distributions of

the signals to operate the mechanism (Witkowski & Parkes, 2012, 2013; Radanovic & Faltings, 2013, 2014;
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Riley, 2014).

In a follow-up work, Liu & Chen (2018) proposed a peer prediction mechanism called Dominant Truth

Serum (DTS). We characterize DTS as a non-universal mechanism for the following reasons. In a setting with

multiple agents and multiple tasks, DTS guarantees the existence of a truthful equilibrium if the mechanism

knows the average error rates in the agents’ truthful reports. The mechanism can obtain such knowledge

either by knowing part of the joint distribution of the agents’ signals or by estimating the error rates from

data. In the latter case, the estimates are accurate only if the number of agents and the number of tasks per

agent are large enough.

Hierarchical Mechanism (de Alfaro et al., 2015) Independent to our work, de Alfaro et al. (2015)

also proposed the idea of using peer prediction mechanisms in conjunction with limited access to trusted

reports. In their hierarchical mechanism, students are placed into a tree structure. Students in the top layer

of the tree are incentivized through trusted reports whereas students in the layers below are incentivized

via a peer prediction mechanism. By an inductive argument, the truthful equilibrium exists and is unique,

so long as the top-layer students are sufficiently incentivized. This mechanism is detail free with respect to

the distribution of signals, and is thus universal. However, the existence of the truthful equilibrium requires

every student to know which layer of the tree structure they occupy; that is, different students are treated

differently ex-ante. In this work, the anonymity assumption is violated, and this violation turns out to have

major implications for the properties of the mechanism.

In future work we intend to further explore relaxations of the single-signal assumption and anonymity,

and connections between them.

Other Related Work Other work in the broader artificial intelligence literature also considers eliciting

truthful reports from self-interested agents. However, this work assumes that the information will eventually

be costlessly revealed to the center, unlike our setting where every observation of ground truth is costly.

Papakonstantinou et al. (2008, 2010, 2011) study the problem of eliciting costly probabilistic estimates,

with a specified minimum precision, from one or more agents. However, they assume that the center has no

knowledge of agents’ costs of acquiring their estimates, whereas in our work we assume that agents’ costs are

known by the center. They propose a two-stage mechanism, which elicits agents’ true costs and incentivizes

agents to truthfully report their estimates.

Zohar & Rosenschein (2006, 2008) study the problem of eliciting private information from agents when

agents have different beliefs about the underlying probability of events, either due to differing priors, or due

to the agents’ being able to observe a costless signal before deciding whether to observe their costly signal.

Unlike our setting, the center eventually receives a noisy signal of ground truth without cost. They propose

efficient algorithms to construct mechanisms that are robust to small differences between the agents’ beliefs

and the center’s. When the agents are not willing to share certain information they possess, however, they
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show that designing an optimal mechanism becomes computationally hard. They also propose mechanisms

that elicit agents’ confidence about their information in addition to the information itself.

3. Impossibility of Pareto-Dominant, Truthful Elicitation

In this section, we show that when agents have access to multiple signals about an object, Pareto-dominant

truthful elicitation is impossible for any universal mechanism that computes agent rewards solely based on

agents’ reports without any access to ground truth. Intuitively, without knowledge of the distributions from

which the signals are drawn, the mechanism cannot distinguish the signal that it hopes to elicit from other,

irrelevant signals.

We consider universal mechanisms that compute agent rewards solely based on agents’ reports. We define

a multi-signal environment formally below.

Definition 2. A multi-signal environment is a setting in which agents have access to at least two signals,

the high quality signal and a low-quality signal.

Recall that the obtaining the high-quality signal requires a constant amount of effort cE > 0, whereas

obtaining the low-quality signal requires no effort. Let πs
i denote agent i’s ex-ante expected reward at an

equilibrium of the mechanism at which every agent reports the s signal truthfully. Let the truthful equilibrium

refer to the equilibrium in which each agent reports their high-quality signal truthfully.

We care about developing mechanisms for which the truthful equilibrium is Pareto dominant. We define

Pareto dominance below.

Definition 3. The e1 equilibrium Pareto dominates the e2 equilibrium if and only if every agent’s expected

utility at e1 is greater than or equal to his expected utility at e2 and there is at least one agent whose expected

utility at e1 is greater than his expected utility at e2.

The e1 equilibrium is Pareto dominant if it Pareto dominates every other equilibrium of the mechanism.

Theorem 1. For any universal mechanism, if obtaining the high-quality signals requires an additional cost

of effort of c > 0 compared to obtaining any low-quality signal, then there exists a multi-signal environment

in which the truthful equilibrium is not Pareto dominant.

Proof. Consider a universal mechanism. For any signal s, let the s equilibrium be the equilibrium in which

all agents report the signal s truthfully.

Based on Definition 2, consider a multi-signal environment in which agents have access to two signals s

and s′. Assume that there is an equilibrium of the mechanism at which all agents truthfully report the s

signal and that there is another equilibrium at which every agent reports the s′ signal truthfully. If one of
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these equilibria does not exist, then the theorem is trivially true for the case where the corresponding signal

is the high-quality signal. Consider three cases.

Case 1: s is the high-quality signal and the s equilibrium Pareto dominates the s′ equilibrium. This

means that πs
i − c > πs′

i for some agent i and πs
j − c ≥ πs′

j for all agents j �= i. In this case, consider another

multi-signal environment with signals s and s′, with identical joint distribution as s and s′ in the original

environment, but in which s′ is the high-quality signal and s is the low-quality signal. The theorem holds in

this environment because the truthful (s′) equilibrium is Pareto dominated by the s equilibrium.

Case 2: s′ is the high-quality signal and the s′ equilibrium Pareto dominates the s equilibrium. Using

a similar argument as in case 1, we can construct a multi-signal environment in which s is the high-quality

signal and s′ is the low-quality signal. This theorem holds in this environment.

Case 3: Neither of the first two cases is true. Let s be the high-quality signal. Since case 1 is not satisfied,

the truthful (s) equilibrium does not Pareto dominate the s′ equilibrium. Therefore, the theorem holds in

this environment.

Any universal mechanism does not have access to the joint distributions of the signal. Therefore, with

multiple signals, there is no way for a universal mechanism to ensure that the truthful equilibrium yields

the highest utility for the agents. The truthful equilibrium is Pareto dominant only if the high-quality

signal happens to be drawn from a distribution yielding sufficiently higher reward than every other signal to

compensate for the cost of effort.

One way for the mechanism designer to ensure that agents are reporting the high-quality signal is to

stochastically compare agents’ reports to ground truth. In the next section, we introduce a class of mecha-

nisms that takes this approach.

4. Combining Elicitation with Limited Access to Ground Truth

Elicitation mechanisms are designed for situations where it is infeasible for the mechanism designer

to evaluate each object herself. However, in practice, it is virtually always possible, albeit costly, to obtain

trusted reports, i.e., unbiased evaluations of a subset of the objects. In the peer grading setting, the instructor

and teaching assistants can always mark some of the assignments. Similarly, review sites could in principle

hire an expert to evaluate restaurants or hotels that its users have reviewed; and so on.

In this section, we define a class of mechanisms that take advantage of this limited access to ground

truth to circumvent the result from Section 3. The mechanism performs a spot check on each object with

some probability. When a spot check is performed, the mechanism obtains a trusted report stj , which is an

unbiased estimator of the object’s quality, and rewards each agent by comparing the agent’s signal and belief
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reports with the trusted report 2. We define such a spot-checking mechanism as follows.

Definition 4 (spot-checking mechanism). A spot-checking mechanism is a tuple M = (p, yij , zij), where p

is the spot-check probability; yij(rij , s
t
j) is a checked payment rule; and zij(r, b) is an unchecked payment

rule. With probability p, the mechanism rewards the agent based on his signal report rij and the trusted

report stj according to the spot-check mechanism yij. With probability 1−p, the mechanism rewards the agent

according to the unchecked payment rule zij.

Formally, agent i’s reward for evaluating object j is given by

πij =

⎧⎪⎨
⎪⎩
yij(rij , s

t
j) if object j is spot checked,

zij(r, b) otherwise.

(1)

In this work we compare two approaches to using limited access to ground truth for elicitation. The first

approach is to augment an existing peer-prediction mechanism with spot-checking:

Definition 5 (spot-checking peer-prediction mechanism). A spot-checking peer prediction mechanism is a

spot-checking mechanism (p, yij , zij) in which the unchecked payment rule zij is a peer prediction mechanism.

The second approach is to rely exclusively on ground truth access to incentivize truthful reporting:

Definition 6 (peer-insensitive mechanism). A peer-insensitive mechanism is a spot-checking mechanism

(p, yij , zij) in which the unchecked payment rule is a constant function. That is, zij(r, b) = W for some

constant W > 0.

We assume that the mechanism designer has no value for the reward given to the agents. Instead, we

seek only to minimize the spot-check probability required to make the truthful equilibrium either unique

or Pareto dominant, since access to trusted reports is assumed to be costly.3 This models situations where

agents are rewarded by grades (as in peer grading), virtual points or badges (as in online reviews), or other

artificial currencies.

We fix the checked payment rule as defined in Equation (2), using a form inspired by the multi-signal

Dasgupta-Ghosh mechanism (Dasgupta & Ghosh, 2013; Shnayder et al., 2016). Let J t be the set of

objects that was spot-checked. Let object j be evaluated by agent i and be spot checked. Let j′ ∈ Ji be an

object evaluated by agent i, chosen uniformly at random among all the objects evaluated by agent i. Let

j′′ ∈ J t\Ji be an object that was spot checked, also chosen uniformly at random among all the objects spot

2For each object being evaluated, the mechanism needs to obtain at most one trusted report. In the peer grading setting,

students evaluate multiple submissions. Therefore, the mechanism may need to obtain multiple trusted reports overall.
3If access to trusted reports were not costly, then querying strategic agents rather than trusted reports on all the objects

would be pointless.
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checked.4 Then agent i’s reward for object j is

yij(r, s
t) = 1rij=stj

− 1rij′=st
j′′
. (2)

Agents may strategically choose whether or not to incur the cost of observing the high-quality signal,

and having chosen which signal to observe, may report any function of either signal. Formally, let Gh
i be the

set of all full-effort pure strategies, where an agent observes the high-quality signal—incurring observation

cost cE—and then reports a function g(shij) of the observed value. Let Gl
i be the set of all no-effort pure

strategies, where an agent observes the low-quality signal—incurring no observation cost—and then reports

a function g(slij) of the observed value. The set of pure strategies available to an agent is thus Gh
i ∪Gl

i. We

assume that agents apply the same strategy to every object that they evaluate; however, we allow agents to

play a mixed strategy by choosing the mapping stochastically.

We define the gl strategy to be an agent’s best no-effort strategy when a spot check is performed. What

is special about this strategy is that, if an agent chooses to invest no effort, then this is his best strategy

for any spot-check probability p ∈ [0, 1]. Thus, the gl equilibrium is the best equilibrium for all agents

conditional on investing no effort.

Definition 7. Let gl = argmaxg∈GlE[y(g(sl), st)] be an agent’s best no-effort strategy when a spot check

is performed. Let the gl equilibrium be the equilibrium where every agent uses the gl strategy if such an

equilibrium exists.

We assume that the high-quality and the low-quality signals are both categorical with respect to the

trusted report. A signal is categorical if, when an agent observes a realization of the signal, all other

realizations of the trusted report become less likely than their prior probabilities. Formally,

Definition 8 (categorical signals). The low-quality signal sl is categorical if and only if Pr(st = s′|sl =
s) < Pr(st = s′), for all s, s′ ∈ Q and s �= s′. The high-quality signal sh is categorical if and only if

Pr(st = s′|sh = s) < Pr(st = s′), for all s, s′ ∈ Q and s �= s′.

The categorical assumption implies that each type of signal is positively correlated with the trusted report.

This assumption is important to ensure that comparing with a trusted report is sufficient to incentivize an

agent to obtain the high-quality or the low-quality signal given that the agents invests full or no effort. With

categorical signals, we can show that, if an agent invests full effort, then he maximizes his spot-check reward

by obtaining the high-quality signal and reporting it truthfully. Similarly, if an agent invests no effort, he

maximizes his spot-check reward by obtaining the low-quality signal and reporting it truthfully.

4Note that in Dasgupta & Ghosh (2013), it is important for strategic reasons that object j′ has not been evaluated by the

opposing agent; this is not important in our setting, since the trusted reports are assumed to be nonstrategic.
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We assume that each type of signal satisfies the assumptions to ensure the existence of the truthful equi-

librium when the spot-check probability is 0 for every peer prediction mechanism we consider in Corollaries 1

and 2. Note that the categorical assumption is sufficient to ensure the existence of the truthful equilibrium

for output-agreement peer prediction mechanisms.

In practice, it is reasonable to assume that coordinating on the low-quality signal yields more payoff than

coordinating on the high-quality signal even when no spot check is performed and the high-quality signal

requires no effort to obtain. We capture this by making additional assumptions about the low-quality signal.

First, we assume that the low-quality signal is perfectly correlated across agents. Since the high-quality

signal is noisy, this assumption implies that the sl equilibrium Pareto dominates the truthful equilibrium

when cE = 0 and p = 0 for every universal peer prediction mechanism that we consider.

Assumption 1. The low-quality signal is perfectly correlated across all the agents.

We also assume that the low-quality signal sl is drawn from a uniform distribution over Q; this is essen-

tially without loss of generality, since in any setting where the agents see a description of the object as well as

their evaluation, a uniform distribution can be obtained by, e.g., hashing the description. More realistically,

objects may have names or lengths that are approximately uniformly distributed. This assumption ensures

that the sl equilibrium Pareto dominates the truthful equilibrium when cE = 0 and p = 0 for the multi-signal

Dasgupta-Ghosh mechanism (Dasgupta & Ghosh, 2013; Shnayder et al., 2016) and the Kamble et al. (2015)

mechanism.5

Assumption 2. For any agent and any object, the low-quality signal is drawn from a uniform distribution

over the set of qualities Q.

We assume that the correlation between the high-quality signal and the object’s quality is sufficiently high

to compensate for the cost of effort, even though agents have the option of getting the low-quality signals

at no cost. In other words, when the object is spot checked, paying the cost of observing the high-quality

signal is worthwhile. Formally,

Assumption 3. E
[
yij(s

h, st)− cE
]
> E

[
yij(g

l(sl), st)
]
for any agent i and object j.

This assumption implies that, when the object is spot checked, an agent prefers to pay the cost to

observe and report the high-quality signal rather than playing the best strategy conditional on observing the

low-quality signal for free. As an extreme example, if the low-quality signal were perfectly correlated with

the quality, then no amount of spot-checking would induce an agent to observe the high-quality signal (nor,

indeed, would a mechanism designer want them to).

5We could also derive a weaker assumption for each individual peer prediction mechanism that implies the above property.
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One consequence of Assumption 3 is that scaling the rewards would not be sufficient to incentivize the

agents to obtain the high-quality signals. With scaling, the reward for obtaining the high-quality and the

low-quality signals would both increase. Agents would still prefer to obtain the low-quality signals if they

are not spot-checked.

5. When Does Peer Prediction Help?

We compare the peer-insensitive mechanism with all universal spot-checking peer-prediction mechanisms.

Theorem 2 states that, if a simple sufficient condition is satisfied, then compared to all universal spot-

checking peer-prediction mechanisms, the peer-insensitive mechanism can achieve stronger incentive prop-

erties (dominant-strategy truthfulness versus Pareto dominance of truthful equilibrium) while requiring a

smaller spot-check probability.

In Lemma 1, we derive an expression for the minimum spot-check probability pds at which the truthful

strategy is a dominant strategy for the peer-insensitive mechanism. When the spot-check probability is pds,

any agent is indifferent between playing the gl strategy and investing effort and reporting truthfully. Recall

that the gl strategy is an agent’s best strategy conditional on investing no effort when the object is spot

checked.

Lemma 1. The minimum spot-check probability pds at which the truthful strategy is dominant for the peer-

insensitive mechanism satisfies the following equation.

pds E[y(s
h, st)]− cE = pds E[y(g

l(sl), st)]. (3)

Proof. Please see Appendix A.

Next, we consider any spot-checking peer-prediction mechanism. Our goal is to derive a lower bound for

pPareto, the minimum spot-check probability at which the truthful equilibrium is Pareto dominant.

For the truthful equilibrium to be Pareto dominant, it is necessary that the truthful equilibrium Pareto

dominates the gl equilibrium. There are two ways to make the truthful equilibrium Pareto dominate the gl

equilibrium. If we increase the spot-check probability until the gl equilibrium is eliminated, then the truthful

equilibrium trivially Pareto dominates the gl equilibrium. Let pel denote the minimum spot-check probability

at which the gl equilibrium is eliminated. Otherwise, we can increase the spot-check probability to a value

at which the truthful equilibrium Pareto dominates the gl equilibrium assuming that the gl equilibrium

exists at this spot-check probability. Let pex denote the minimum spot-check probability at which an agent

receives higher expected utility at the truthful equilibrium than at the gl equilibrium, assuming that the

gl equilibrium exists when the spot-check probability is pex. The minimum of pel and pex is the minimum

spot-check probability at which the truthful equilibrium Pareto dominates the gl equilibrium, and it is also

a lower bound for pPareto.

14



In Lemma 2, we characterize the minimum spot-check probability pel at which the gl equilibrium is

eliminated, and we show that pel is greater than the minimum spot-check probability pds to motivate a

single agent to report truthfully, under certain assumptions. To eliminate the gl equilibrium, we need to

increase the spot-check probability enough such that an agent prefers to play his best strategy with full effort

rather than playing the gl strategy while all other agents follow the gl equilibrium. Persuading an agent to

deviate from the gl equilibrium is difficult for two reasons. First, an agent incurs a cost by deviating from

the gl equilibrium when all other agents follow it. Second, the agent’s best strategy with full effort gives him

no greater spot-check reward than the truthful strategy. The combined effect means that we need a higher

spot-check probability to persuade an agent to deviate from the gl equilibrium than to motivate a single

agent to report truthfully.

The sufficient conditions characterized in Lemma 2, Lemma 3 and Theorem 2 hold whenever cE = 0.

Moreover, we will show that all universal peer-prediction mechanisms in the literature satisfy these sufficient

conditions for all cE ≥ 0.

Lemma 2 states that pel is greater than or equal to pds under certain assumptions. Intuitively, this means

that, we need a higher spot-check probability to make the eliminate the gl equilibrium than to motivate a

single agent to report truthfully. When the gl equilibrium is eliminated, the truthful equilibrium trivially

Pareto dominates the gl equilibrium.

Lemma 2. For any spot-checking peer-prediction mechanism, if the gl equilibrium exists when cE = 0 and

p = 0, then pel ≥ pds for all cE ≥ 0.

Proof. Please see Appendix B.

Lemma 3 states that pex is greater than or equal to pds under certain assumptions. The intuition

is that, when no spot check is performed, the gl equilibrium Pareto dominates the truthful equilibrium.

Thus, assuming that the gl equilibrium exists, we need a higher spot-check probability to make the truthful

equilibrium Pareto dominate the gl equilibrium than to motivate a single agent to report truthfully.

Lemma 3. For any spot-checking peer-prediction mechanism, if the gl equilibrium exists and Pareto domi-

nates the truthful equilibrium when cE = 0 and p = 0, then pex ≥ pds for all cE ≥ 0.

Proof. Please see Appendix C.

If the conditions in Lemmas 2 and 3 hold, then the minimum of pel and pex is greater than or equal

to pds. Since the minimum of pel and pex is a lower bound of pPareto, it must be that pPareto ≥ pds. In

Theorem 2, we prove that the conditions in Lemmas 2 and 3 are sufficient conditions for pPareto ≥ pds —

the minimum spot-check probability to make the truthful equilibrium Pareto dominant for a spot-checking

peer-prediction mechanism is higher than the spot-check probability to make the truthful strategy dominant

for the peer-insensitive mechanism.
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Theorem 2 (Sufficient condition for Pareto comparison). For any spot-checking peer-prediction mechanism,

if the gl equilibrium exists and Pareto dominates the truthful equilibrium when cE = 0 and p = 0, then

pPareto ≥ pds for all cE ≥ 0.

Proof. Please see Appendix D.

We now show that, under very natural conditions, every universal peer-prediction mechanism of which

we are aware in the literature satisfies the conditions of Theorem 2; hence, in this setting, the peer-insensitive

spot-checking mechanism requires less ground truth access than any spot-checking peer-prediction mecha-

nism.

Corollary 1. For spot-checking peer-prediction mechanisms based on Faltings et al. (2012); Witkowski et al.

(2013); Dasgupta & Ghosh (2013); Waggoner & Chen (2014); Kamble et al. (2015); Radanovic & Faltings

(2015) and Shnayder et al. (2016), the minimum spot-check probability pPareto for the Pareto dominance

of the truthful equilibrium is greater than or equal to the minimum spot-check probability pds at which the

truthful strategy is a dominant strategy for the peer-insensitive mechanism.

Proof. Please see Appendix F.

Corollary 2. For spot-checking peer-prediction mechanisms based on Witkowski & Parkes (2012, 2013);

Radanovic & Faltings (2013, 2014) and Riley (2014), if the peer-prediction mechanism uses a symmetric

proper scoring rule, then the minimum spot-check probability pPareto for the Pareto dominance of the truthful

equilibrium is greater than or equal to the minimum spot-check probability pds at which the truthful strategy

is a dominant strategy for the peer-insensitive mechanism.

Proof. Please see Appendix G.

To prove Corollaries 1 and 2, it suffices to show that every mechanism in the corollaries satisfies the

sufficient conditions in Theorem 2. To do this, we first need to determine what the gl strategy is. In

other words, what is an agent’s best strategy conditional on being spot checked and investing no effort?

In Appendix F, we prove in Lemma 4 that the gl strategy is to report the low-quality signal sl truthfully.

Given Lemma 4, in the proofs of the two corollaries, we show that, for every mechanism considered, the sl

equilibrium exists and Pareto dominates the truthful equilibrium when the cost of effort and the spot-check

probability are both zero.

In proving Corollary 1, we made use of two key insights. First, the mechanisms reward agents for agreeing

on their reports. Thus, coordinating on reporting the low-quality signal sl is an equilibrium. Second, the

low-quality signal sl is noiseless whereas the high-quality signal sh is noisy. As a result, playing the sl

equilibrium yields a higher degree of agreement and higher expected utilities for the agents than playing the

sh equilibrium.
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In Corollary 2, we consider spot-checking peer-prediction mechanisms which ask agents to provide belief

reports in additional to signal reports. For such mechanisms, in addition to the ideas used to prove Corol-

lary 1, we need an additional assumption that the proper scoring rule used by the mechanism is symmetric.

For a symmetric scoring rule, the expected score for reporting a signal s and reporting a belief bs which

predicts that the signal s is observed with probability 1 is the same for every signal s ∈ Q. As a result, an

agent can maximize his expected score by reporting s and bs for any signal s ∈ Q. This insight is crucial for

showing that the sl equilibrium Pareto dominates the truthful equilibrium for every belief-based mechanism

in Corollary 2.

6. Conclusions and Future Work

We consider the problem of using limited access to noisy but unbiased ground truth to incentivize agents

to invest costly effort in evaluating and truthfully reporting the quality of some object of interest. Absent

such spot-checking, peer-prediction mechanisms already guarantee the existence of a truthful equilibrium that

induces both effort and honesty from the agents. However, this truthful equilibrium may be less attractive

to the agents than other, uninformative equilibria.

Some mechanisms in the literature have been carefully designed to ensure that the truthful equilibrium

is the most attractive equilibrium to the agents (i.e., Pareto dominates all other equilibria). However, these

mechanisms rely crucially on the unrealistic assumption that agents’ only means of correlating are via the

signals that the mechanism aims to elicit. We show that under the more realistic assumption that agents

have access to more than one signal, no universal peer-prediction mechanism has a Pareto-dominant truthful

equilibrium in all settings.

In contrast, we present a simpler peer-insensitive mechanism that provides incentives for effort and

honesty only by checking the agents’ reports against ground truth. While one might have expected that

peer-prediction would require less frequent access to ground truth to achieve stronger incentive properties

than the peer-insensitive mechanism, we proved the opposite for all universal spot-checking peer-prediction

mechanisms.

This surprising finding is intuitive in retrospect. Peer-prediction mechanisms can only motivate agents

to behave in a certain way as a group. An agent has a strong incentive to be truthful if all other agents are

truthful; conversely, when all other agents coordinate on investing no effort, the agent again has a strong

incentive to coordinate with the group. Peer-prediction mechanisms thus need to provide a strong enough

incentive for agents to deviate from the most attractive uninformative equilibrium in the worst case, whereas

the peer-insensitive mechanism only needs to motivate effort and honesty in an effectively single-agent setting.

Many exciting future directions remain to be explored. For example, we assumed that the principal does

not care about the total amount of the artificial currency rewarded to the agents. One possible direction
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would consider a setting in which the principal seeks to minimize both spot checks and the agents’ rewards.

Also, in our analysis, we assumed that the spot-check probability does not depend on the agents’ reports.

Conditioning the spot-check probability on the agents’ reports might allow the mechanism to more efficiently

detect and punish uninformative equilibria. We are particularly excited about designing more sophisticated

spot check mechanisms where the spot-check probability is a function of the set of reports for a particular

submission. In addition, we are interested in exploring the scenario in which some agents are altruistic and

always invest the effort to obtain the high-quality signal.
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Appendix A. Proof of Lemma 1

Lemma 1. The minimum spot-check probability pds at which the truthful strategy is dominant for the peer-

insensitive mechanism satisfies the following equation.

pds E[y(s
h, st)]− cE = pds E[y(g

l(sl), st)]. (A.1)

Proof. Consider the peer-insensitive mechanism with a fixed spot-check probability p ≥ 0. When an agent

uses the truthful strategy, his expected utility is

ut = pE[y(sh, st)] + (1− p)W − cE . (A.2)

When an agent invests no effort, his best strategy is gl. His expected utility from playing the gl strategy is

ul = pE[y(gl(sl), st)] + (1− p)W. (A.3)

All of E[y(sh, st)], W , cE , and E[y(gl(sl), st)] are constants. Therefore, ut and ul are both linear functions

of p. When p = 0, ut = W − cE and ul = W . Since cE > 0, ut < ul when p = 0. When the spot-check

probability is 0, the agent prefers playing the best strategy conditional on investing no effort to playing the

truthful strategy. When p = 1, ut = E[y(sh, st)] − cE , and ul = E[y(gl(sl), st)]). By our assumption (3),

ut > ul. When the spot-check probability is 1, the agent prefers playing the truthful strategy to playing the

best strategy conditional on investing no effort.

Since ut and ul are linear functions of p, there is a unique value of p in [0, 1] such that ut = ul. Denote

this p value by pds. For any p < pds, ul > ut and an agent’s expected utility for playing the best strategy

conditional on investing no effort is higher than that of playing the truthful strategy. For any p > pds,

ul < ut and an agent’s expected utility for playing the truthful strategy is higher than that of playing the

best strategy conditional on investing no effort.

When p = pds, an agent’s expected utilities by using the two strategies are the same. Thus, we solve for

pds as follows.

pds E[y(s
h, st)] + (1− pds)W − cE = pds E[y(g

l(sl), st)] + (1− pds)W

pds E[y(s
h, st)]− cE = pds E[y(g

l(sl), st)].

Appendix B. Proof of Lemma 2

Lemma 2. For any spot-checking peer-prediction mechanism, if the gl equilibrium exists when cE = 0 and

p = 0, then pel ≥ pds for all cE ≥ 0.
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Proof. Consider a spot-checking peer prediction mechanism. Assume that, for this mechanism, the gl equi-

librium exists when cE = 0 and p = 0.

First, we prove that pel exists and is well defined. Recall that pel is the minimum spot-check

probability at which the gl equilibrium is eliminated. We need to show that there is a unique spot-check

probability pel in [0, 1] such that for all spot check probabilities less than or equal to pel, the gl equilibrium

exists and for all spot check probabilities greater than pel, the gl equilibrium does not exist.

It suffices to focus on strategies conditional on investing full effort. By definition, the gl strategy is the

best strategy conditional on investing no effort. For any spot-check probability, a strategy conditional on

investing no effort can never become a beneficial deviation to the gl equilibrium.

First, we will show that, when p = 0, the gl equilibrium exists for any cE ≥ 0. Let the spot-check

probability be zero and consider any cE ≥ 0. Suppose that all agents except agent i play the gl strategy.

Agent i’s expected utility for playing the gl strategy is

E[z(gl(sl), gl(sl))].

Agent i’s expected utility for playing any strategy g conditional on full effort is:

E[z(g(sh), gl(sl))]− cE .

We need to show that the first expression is greater than or equal to the second expression. By our assump-

tions, the following inequality is true.

E[z(gl(sl), gl(sl))] ≥ E[z(g(sh), gl(sl))] ≥ E[z(g(sh), gl(sl))]− cE ,

where the first inequality was due to the fact that the gl equilibrium exists when cE = 0, and the second

inequality was true because cE ≥ 0. Thus, when p = 0, an agent prefers to follow the gl equilibrium than

deviating to any other strategy.

Next, we show that, when p = 1, the gl equilibrium does not exist. Let the spot-check probability be 1

and assume that all agents except agent i play the gl strategy. Agent i’s expected utility for playing the gl

strategy is

E[y(gl(sl), st)].

Agent i’s expected utility for playing the truthful strategy is

E[y(sh, st)]− cE .

By assumption (3), the following inequality is true.

E[y(sh, st)]− cE > E[y(gl(sl), st)].
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Therefore, when p = 1, the truthful strategy is a strictly beneficial deviation and the gl equilibrium does not

exist.

Next, we show that, pel is a well defined threshold value. That is, for any spot-check probability less than

or equal to pel, the g
l equilibrium exists and for any spot-check probability greater than pel the g

l equilibrium

does not exist. Starting with a spot-check probability of zero, we increase the spot-check probability until

there is a weakly beneficial deviation to the gl equilibrium. We denote this spot-check probability by pel and

we call this weakly beneficial deviation gbr(sh). We will show that for any spot-check probability strictly

greater than pel, g
br(sh) is still a beneficial deviation to the gl equilibrium.

Consider an arbitrary spot-check probability p. Suppose that all agents except agent i play the gl strategy.

If agent i plays the gl strategy, his expected utility is

pE[y(gl(sl), st)] + (1− p)E[z(gl(sl), gl(sl))]. (B.1)

If agent i plays the gbr strategy, his expected utility is

pE[y(gbr(sh), st)] + (1− p)E[z(gbr(sh), gl(sl))]− cE . (B.2)

pel is the smallest spot-check probability at which there is a beneficial deviation to the gl equilibrium.

The two expressions above must be equal when the spot-check probability is pel. Thus pel must satisfy the

following equation.

pel E[y(gbr(sh), st)] + (1− pel)E[z(gbr(sh), gl(sl))]− cE = pel E[y(gl(sl), st)] + (1− pel)E[z(gl(sl), gl(sl))], (B.3)

pel
(
E[y(gbr(sh), st)]−E[y(gl(sl), st)]

)
+ (1− pel)

(
E[z(gbr(sh), gl(sl))−E[z(gl(sl), gl(sl))]]

)
− cE = 0.

Rewriting −cE to be −pelc
E − (1− pel)c

E , the equation becomes:

pel
(
E[y(gbr(sh), st)]− cE − E[y(gl(sl), st)]

)
+ (1− pel)

(
E[z(gbr(sh), gl(sl))− cE − E[z(gl(sl), gl(sl))]]

)
= 0. (B.4)

By our assumption, the gl equilibrium exists when p = 0. Therefore, an agent’s expected utility for

deviating to gbr(sh) must be worse than following the gl equilibrium, that is,

E[z(gbr(sh), gl(sl))]− cE ≤ E[z(gl(sl), gl(sl))],

E[z(gbr(sh), gl(sl))]− cE − E[z(gl(sl), gl(sl))] ≤ 0.

Thus, for equation (B.4) to hold, its first term must be non-negative. That is,

E[y(gbr(sh), st)]− cE − E[y(gl(sl), st)] ≥ 0.

We want to show that for any spot-check probability strictly greater than pel, the gbr(sh) strategy is a

beneficial deviation to the gl equilibrium.
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Consider a spot-check probability p that is strictly greater than pel. Assume that all agents except agent

i play the gl strategy. Agent i’s expected utility for playing the gbr strategy minus agent i’s expected utility

for playing the gl strategy is

p (E[y(gbr(sh), st)]− cE) + (1− p) (E[z(gbr(sh), gl(sl))]− cE)

− (
pE[y(gl(sl), st)] + (1− p)E[z(gl(sl), gl(sl))]

)
= p (E[y(gbr(sh), st)]− cE − E[y(gl(sl), st)]) + (1− p) (E[z(gbr(sh), gl(sl))]− cE − E[z(gl(sl), gl(sl))]).

Note that

p (E[y(gbr(sh), st)]− cE − E[y(gl(sl), st)]) > pel (E[y(g
br(sh), st)]− cE − E[y(gl(sl), st)])

because E[y(gbr(sh), st)]− cE − E[y(gl(sl), st)] is greater than or equal to zero and p > pel.

Similarly, note that

(1−p) (E[z(gbr(sh), gl(sl))]−cE−E[z(gl(sl), gl(sl))]) > (1−pel) (E[z(g
br(sh), gl(sl))]−cE−E[z(gl(sl), gl(sl))])

because E[z(gbr(sh), gl(sl))] − cE − E[z(gl(sl), gl(sl))] is less than or equal to zero and 1 − p < 1 − pel.

Therefore,

p (E[y(gbr(sh), st)]− cE − E[y(gl(sl), st)]) + (1− p) (E[z(gbr(sh), gl(sl))]− cE − E[z(gl(sl), gl(sl))])

> pel (E[y(g
br(sh), st)]− cE − E[y(gl(sl), st)]) + (1− pel) (E[z(g

br(sh), gl(sl))]− cE − E[z(gl(sl), gl(sl))])

= 0.

Rewriting the inequality, we have that

p (E[y(gbr(sh), st)]− cE − E[y(gl(sl), st)]) + (1− p) (E[z(gbr(sh), gl(sl))]− cE − E[z(gl(sl), gl(sl))]) > 0,

pE[y(gbr(sh), st)] + (1− p)E[z(gbr(sh), gl(sl))]− cE > pE[y(gl(sl), st)] + (1− p)E[z(gl(sl), gl(sl))]. (B.5)

Therefore, for any spot-check probability p > pel, the gbr(sh) strategy is a beneficial deviation to the gl

equilibrium. So the gl equilibrium does not exist for any spot-check probability greater than pel.

Next, we will show that pel ≥ pds.

Since the gl equilibrium exists when cE = 0 and p = 0, it follows from the definition of equilibrium that

E[z(gbr(sh), gl(sl))] ≤ E[z(gl(sl), gl(sl))]. (B.6)

Consider any cE ≥ 0. Taking pel and substituting into the LHS of the definition of pds in equation (3),
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we can see that the LHS of the resulting equation (3) is greater than the RHS, as shown below.

pel E[y(s
h, st)]− cE

≥ pel E[y(s
h, st)] + (1− pel) (E[z(g

br(sh), gl(sl))]− E[z(gl(sl), gl(sl))])− cE (B.7)

> pel E[y(g
br(sh), st)] + (1− pel) (E[z(g

br(sh), gl(sl))]− E[z(gl(sl), gl(sl))])− cE (B.8)

= pel E[y(g
l(sl), st)]. (B.9)

Inequality (B.7) holds due to Equation (B.6). Inequality (B.8) holds because reporting the high-quality

signal maximizes the spot-check reward. Equation (B.9) follows from Equation (B.3).

By definition of pds, it is the minimum spot-check probability for which the LHS of (3) is greater than

or equal to its RHS. Thus, it must be that pel ≥ pds.

Appendix C. Proof of Lemma 3

Lemma 3. For any spot-checking peer-prediction mechanism, if the gl equilibrium exists and Pareto domi-

nates the truthful equilibrium when cE = 0 and p = 0, then pex ≥ pds for all cE ≥ 0.

Proof. Recall that pex is the minimum spot-check probability at which the gl equilibrium Pareto dominates

the truthful equilibrium while the gl equilibrium exists at p = pex.

First, we prove that pex exists and is well defined, and we derive an expression for pex.

Consider a spot-checking peer prediction mechanism. For this mechanism, assume that the gl equilibrium

exists and Pareto dominates the truthful equilibrium when cE = 0 and p = 0.

Consider a fixed spot-check probability p ≥ 0. Assume that the gl equilibrium exists at this spot-check

probability. At the truthful equilibrium, an agent’s expected utility is

ut = pE[y(sh, st)] + (1− p)E[z(sh, sh)]− cE . (C.1)

At the gl equilibrium, an agent’s expected utility is

ul = pE[y(gl(sl), st)] + (1− p)E[z(gl(sl), gl(sl))]. (C.2)

All of E[y(sh, st)], E[z(sh, sh)], cE , E[y(gl(sl), st)], and E[z(gl(sl), gl(sl))] are constants. Thus, ut and ul

are both linear functions of p.

When the spot-check probability is 0, an agent’s expected utilities at the truthful and the gl equilibria

are ut = E[z(sh, sh)]− cE and ul = E[z(gl(sl), gl(sl))] respectively. Thus, we have that

E[z(gl(sl), gl(sl))] ≥ E[z(sh, sh)] ≥ E[z(sh, sh)]− cE .,

where the first inequality was due to our assumption that the gl equilibrium Pareto dominates the truthful

equilibrium when cE = 0 and p = 0, and the second inequality was due to cE ≥ 0. Therefore, when the
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spot-check probability is 0, an agent’s expected utility at the gl equilibrium is higher than his expected

utility at the truthful equilibrium for any cE ≥ 0.

When the spot-check probability is 1, an agent’s expected utilities at the truthful and the gl equilibria

are ut = E[y(sh, st)] − cE and ul = E[y(gl(sl), st)]. We know that E[y(sh, st)] − cE > E[y(gl(sl), st)] by

by assumption (3). Thus, when the spot-check probability is 1, an agent’s expected utility at the truthful

equilibrium is higher than his expected utility at the gl equilibrium.

Since ut and ul are linear functions of p, there is a unique value of p in [0, 1] such that an agent’s expected

utilities at the two equilibria are the same. We denote this p value by pex. When p < pex, the agent’s expected

utility in the gl equilibrium is higher. When p > pex, the agent’s expected utility in the truthful equilibrium

is higher. When p = pex, an agent has the same expected utility in both equilibria. Thus pex must satisfy

pex E[y(s
h, st)] + (1− pex)E[z(s

h, sh)]− cE

= pex E[y(g
l(sl), st)] + (1− pex)E[z(g

l(sl), gl(sl))]

pex E[y(s
h, st)] + (1− pex)

(
E[z(sh, sh)]− E[z(gl(sl), gl(sl))]

)− cE

= pex E[y(g
l(sl), st)]. (C.3)

Next, we would like to show that pex ≥ pds.

Since the gl equilibrium exists and Pareto dominates the truthful equilibrium for cE = 0 and p = 0, it

follows from the definition of Pareto dominance that

E[z(sh, sh)] ≤ E[z(gl(sl), gl(sl))]. (C.4)

Taking pex and substituting it into the LHS of Equation (3) (definition of pds), in a setting with arbitrary

positive cE ≥ 0, we have

pex E[y(s
h, st)]− cE

≥ pex E[y(s
h, st)] + (1− pex)

(
E[z(sh, sh)]− E[z(gl(sl), gl(sl))]

)− cE (C.5)

= pex E[y(g
l(sl), st)] (C.6)

Equation (C.5) follows from Equation (C.4). Equation (C.6) follows from Equation (C.3).

Thus, if we substitute pex into Equation (3), then the resulting LHS is weakly greater than the RHS. By

definition of pds, it is the minimum spot-check probability for which the LHS of (3) is greater than its RHS.

Thus, it must be that pex ≥ pds.

Appendix D. Proof of Theorem 2

Theorem 2 (Sufficient condition for Pareto comparison). For any spot-checking peer-prediction mechanism,

if the gl equilibrium exists and Pareto dominates the truthful equilibrium when cE = 0 and p = 0, then

pPareto ≥ pds for all cE ≥ 0.
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Proof. Consider any spot-checking peer prediction mechanism.

For the truthful equilibrium to be Pareto dominant, it is necessary that either the gl equilibrium is

eliminated or the truthful equilibrium Pareto dominates the gl equilibrium while the gl equilibrium exists.

pel is the minimum spot-check probability at which the gl equilibrium is eliminated. pex is the minimum

spot-check probability at which the truthful equilibrium Pareto dominates the gl equilibrium while the gl

equilibrium exists at p = pex. Thus, the minimum of pel and pex is a lower bound of pPareto. Formally

pPareto ≥ min(pel, pex). (D.1)

By assumption, the gl equilibrium exists when p = 0. By Lemma 2, we have

pel ≥ pds. (D.2)

By assumption, the gl equilibrium exists and Pareto dominates the truthful equilibrium when p = 0. By

Lemma 3, we have

pex ≥ pds. (D.3)

By Equations (D.1), (D.2) and (D.3), we have

pPareto ≥ min(pel, pex)

≥ min(pds, pex)

≥ min(pds, pds)

= pds.

Appendix E. Peer Prediction Mechanisms

Output-Agreement Mechanisms Output agreement mechanisms only collect signal reports from agents

and reward an agent i for evaluating object j based on agents’ signal reports for the object (Faltings et al.,

2012; Witkowski et al., 2013; Waggoner & Chen, 2014).

The standard output agreement mechanism studied by Waggoner & Chen (2014) and Witkowski et al.

(2013) gives agent i a constant reward exactly when agent i’s signal report matches the signal report of

another random agent i′ evaluating the same object. Agent i’s reward is

zij(r,b) = 1rij=ri′j

where 1 is the indicator function.

28



The Faltings et al. (2012) mechanism also rewards the agents for agreement, but the amount of the

reward is scaled by the empirical frequency of the signal report agreed upon. Agent i’s reward is

zij(r,b) = α+ β
1rij=ri′j

F (rij)

where α > 0 and β > 0 are constants and F (r) is the empirical frequency of report r.

Multi-Object Mechanisms Multi-object mechanisms reward each agent based on agents’ reports for

multiple objects (Dasgupta & Ghosh, 2013; Radanovic & Faltings, 2015; Kamble et al., 2015; Shnayder

et al., 2016).

The multi-signal Dasgupta-Ghosh mechanism (Dasgupta & Ghosh, 2013; Shnayder et al., 2016) and

the Kamble et al. (2015) mechanism extend the output agreement mechanisms by adding additional scaling

terms to the reward. These scaling terms are intended to exploit correlations between multiple tasks to make

the truthful equilibrium Pareto dominate the uninformative equilibria, by reducing the reward to agents who

agree to a report that is “unsurprising” given their reports on other objects.

The Kamble et al. (2015) mechanism adds a multiplicative scaling term to the reward for agreement,

computed as follows. Choose two agents i′ and i′′ uniformly at random. For each signal s ∈ Q, let f j(s) =

1ri′j=s1ri′′j=s. Define f̂(s) =

√
1

N

∑
j∈O

f j(s). Agent i’s reward is

zij(r,b) =

⎧⎪⎪⎨
⎪⎪⎩
0, if f̂(s) ∈ {0, 1}
K

f̂(rij)
1rij=ri′j , otherwise

where K is a positive constant.

The multi-signal Dasgupta-Ghosh mechanism (Dasgupta & Ghosh, 2013; Shnayder et al., 2016) adds an

additive scaling term to the reward for agreement, computed as follows. Suppose that agent i and i′ both

evaluate task j. Randomly choose two tasks j′ and j′′ such that agent i evaluated task j′ but not task j′′ and

agent i′ evaluated task j′′ but not task j′. It is important that agents do not know which tasks are chosen

to be j′ and j′′. Agent i is rewarded if his report matches that of agent i′ on task j, and he is penalized if

his report on object j′ matches agent i′ report on object j′′. Formally, agent i’s reward is

zij(r,b) = 1rij=ri′j − 1rij′=rij′′ .

The Radanovic & Faltings (2015) mechanism rewards the agents for report agreement using a reward

function inspired by the quadratic scoring rule. The quadratic scoring rule is a proper scoring rule, which

is designed to incentivize an agent to report his belief about the likelihoods of the outcomes of an event

truthfully.

We can construct the Radanovic & Faltings (2015) mechanism’s reward function as follows. Suppose that

agent i evaluated object j. Choose another random agent i′ who also evaluated object j. Construct a sample
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Σi of reports which contains one report for every object that is not evaluated by agent i. The sample Σi is

double-mixed if it contains all possible signal realizations at least twice. If Σi is not double-mixed, agent i’s

reward is 0. Otherwise, if Σi is double-mixed, the mechanism chooses two objects j′ and j′′ (j′ �= j, j′′ �= j

and j′ �= j′′) such that the reports for objects j′ and j′′ in the sample are the same as agent i’s report for

j, i.e. Σi(j
′) = Σi(j

′′) = rij . For each of the objects j′ and j′′, randomly select two reports ri′′j′ and ri′′′j′′ .

Agent i’s reward is

zij(r,b) =
1

2
+ 1ri′′j′=ri′j −

1

2

∑
s∈Q

1ri′′j′=s1ri′′′j′′=s.

Belief Based Mechanisms Belief based mechanisms collect both signal and belief reports from agents

and reward each agent based on all agents’ signal and belief reports for each object (Witkowski & Parkes,

2012, 2013; Radanovic & Faltings, 2013, 2014; Riley, 2014).

These mechanisms make use of proper scoring rules, which are designed to incentivize an agent to report

his belief truthfully. Formally, a scoring rule is a function R : Δ(Q)×Q → R, which computes a real valued

score based on a reported belief over the likelihoods of all possible signals and a realized signal. The scoring

rule is proper if an agent’s expected score is maximized when he reports his belief truthfully.

The robust Bayesian Truth Serum (BTS) (Witkowski & Parkes, 2012, 2013) rewards agent i for evaluating

object j by how well his belief report bij and shadowed belief report bsij predict the signal reports of another

random agent i′′. Agent i’s shadowed belief report bsij is the result of modifying another agent i′’s belief

report based on agent i’s signal report. To calculate agent i’s reward, randomly choose two other agents i′

and i′′ who evaluated object j. Agent i’s shadowed belief report bsij is calculated as follows. bsij = bi′j + δ if

rij = 1 and bsij = bi′j − δ if rij = 0 where δ = min(bi′j , 1− bi′j). Agent i’s reward is

zij(r,b) = R(bsij , ri′′j) +R(bij , ri′′j).

The multi-valued robust BTS (Radanovic & Faltings, 2013) rewards agent i if his signal report matches

the signal report of another random agent i′ and his belief report accurately predicts agent i′’s signal report.

Formally, agent i’s reward is

zij(r,b) =
1

bi′j(rij)
1rij=ri′j +R(bij , ri′j).

The divergence-based BTS (Radanovic & Faltings, 2014) rewards agent i for evaluating object j if his

belief report accurately predicts another random agent’s signal report. Moreover, it penalizes agent i if his

signal report matches the signal report of another agent i′ but his belief report is sufficiently different from

the belief report of agent i′. Formally, agent i’s reward is

zij(r,b) = −1rij=ri′j ||D(bij ,bi′j)>θ +R(bij , ri′j)

where D(||) is the divergence associated with the strictly proper scoring rule R, and θ is a parameter of the

mechanism.
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The Riley (2014) mechanism rewards agent i for evaluating object j by how well his belief report predicts

other agents’ signal reports. Moreover, agent i’s reward is bounded above by the score for the average belief

report of other agents who made the same signal report. Formally, let δi = min
s∈Q

|{ri′ = s|i′ �= i}| be the

minimum number of other agents who have reported any given signal. Let qi(rij) to be the average belief

report for all other agents who made the same signal report as agent i. Agent i’s reward is

zij(r,b) =

⎧⎪⎨
⎪⎩
R(bij , r−ij), if δi = 0

min{R(bij , r−ij), R(qi(rij), r−ij)}, if δi ≥ 1.

Appendix F. Proof of Corollary 1

We begin with the following lemma.

Lemma 4. For the spot-check mechanism in Equation (2), conditional on investing no effort, an agent

maximizes his spot-check reward by reporting the low-quality signal sl truthfully.

Proof. Consider the spot-check reward mechanism in equation (2).

If an agent invests no effort, he could either use a strategy that is independent of the low-quality signal

or use a strategy that depends on the low-quality signal.

Case 1: Suppose that the agent uses a strategy that is independent of the low-quality signal. Assume

that the agent uses a mixed strategy in which he reports r with probability pr where
∑
r∈Q

pr = 1. Then the

agent’s expected utility is always zero, as shown below.∑
r∈Q

prPr(s
t = r)−

∑
r∈Q

prPr(s
t = r) = 0.

Case 2: Suppose that the agent uses a strategy where his report is a function of the low-quality signal.

Assume that the agent uses a mixed strategy in which he reports r with probability psr when the realized

low-quality signal is s. Then the agent’s expected utility is shown below.

∑
s∈Q

Pr(sl = s)

⎛
⎝∑

r∈Q

psrPr(s
t = r|sl = s)

⎞
⎠−

∑
s∈Q

Pr(sl = s)

⎛
⎝∑

r∈Q

psrPr(s
t = r)

⎞
⎠ (F.1)

=
∑

s,r∈Q

(
Pr(sl = s, st = r)− Pr(sl = s)Pr(st = r)

)
(F.2)

Recall that the low-quality signal sl is categorical with respect to the trusted report st. Thus, for any

two realized signal r, s ∈ Q where �= r, we have that

Pr(st = r|sl = s) < Pr(st = r) (F.3)

Pr(st = r|sl = s)− Pr(st = r) < 0 (F.4)

Pr(st = r, sl = s)− Pr(st = r)Pr(sl = s) < 0. (F.5)
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Note that
∑

r∈Q

(
Pr(st = r, sl = s)− Pr(st = r)Pr(sl = s)

)
= Pr(sl = s) − Pr(sl = s) = 0. Thus,

observing a realized signal must increase the probability that the trusted report is the same signal, i.e.

Pr(st = s, sl = s)− Pr(st = s)Pr(sl = s), (F.6)

for any realized signal s ∈ Q. In equation (F.2), any term with s = r is positive and every other term

is negative. Therefore, the agent’s expected utility is maximized when pss = 1, ∀s ∈ Q, that is, the agent

reports the low-quality signal truthfully.

We can now prove Corollary 1:

Corollary 1. For spot-checking peer-prediction mechanisms based on Faltings et al. (2012); Witkowski et al.

(2013); Dasgupta & Ghosh (2013); Waggoner & Chen (2014); Kamble et al. (2015); Radanovic & Faltings

(2015) and Shnayder et al. (2016), the minimum spot-check probability pPareto for the Pareto dominance

of the truthful equilibrium is greater than or equal to the minimum spot-check probability pds at which the

truthful strategy is a dominant strategy for the peer-insensitive mechanism.

Proof. By Lemma 4, for any spot-checking peer prediction mechanism, the gl strategy is to always report

the low-quality signal sl.

To verify that the conditions of Theorem 2 are satisfied, it suffices to verify that when p = 0, the sl

equilibrium of the peer prediction mechanism exists and Pareto dominates the truthful equilibrium. We

verify these two conditions for all of the listed peer prediction mechanisms below.

We first consider output agreement peer prediction mechanisms.

The Standard Output Agreement Mechanism (Witkowski et al., 2013; Waggoner & Chen, 2014)

When cE = 0 and p = 0, the sl equilibrium exists. (If all other agents except i report sl, then agent i’s best

response is to also report sl in order to perfectly agree with other reports.)

When cE = 0 and p = 0, at the sl equilibrium, an agent’s expected utility is

∑
sl∈Q

Pr(sl)Pr(sl|sl) =
∑
sl∈Q

Pr(sl) = 1,

where the equality is due to the fact that the low-quality signals are noiseless (Pr(sl|sl) = 1).

When cE = 0 and p = 0, at the truthful equilibrium, an agent’s expected utility is

∑
sh∈Q

Pr(sh)Pr(sh|sh) <
∑
sh∈Q

Pr(sh) = 1,

where the inequality is due to the fact that the high-quality signals are noisy. That is, for every realization

sh of the high-quality signal, Pr(sh|sh) ≤ 1 and there exists one realization sh of the high-quality signal such

that Pr(sh|sh) < 1. Thus, the sl equilibrium Pareto dominates the truthful equilibrium when cE = 0 and

p = 0. The conditions of Theorem 2 are satisfied.
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Peer Truth Serum (Faltings et al., 2012) When cE = 0 and p = 0, the sl equilibrium exists. (If all

other agents except i report sl, then agent i’s best response is to also report sl.)

When cE = 0 and p = 0, at the sl equilibrium, everyone reports sl and the empirical frequency of sl

reports is 1 (F (sl) = 1). Thus, every agent’s expected utility is

α+ β
1

F (sl)
= α+ β.

When cE = 0 and p = 0, at the truthful equilibrium, if agent receives the high-quality signal sh for an object,

then he expects the empirical frequency of this signal to be Pr(sh|sh). Thus, at this equilibrium, an agent’s

expected utility is

α+ β
∑
sh∈Q

Pr(sh)Pr(sh|sh) 1

Pr(sh|sh) = α+ β.

Thus, the sl equilibrium (weakly) Pareto dominates the truthful equilibrium when cE = 0 and p = 0. The

conditions of Theorem 2 are satisfied.

Next, we consider multi-object peer prediction mechanisms.

The Multi-Signal Dasgupta-Ghosh Mechanism (Dasgupta & Ghosh, 2013; Shnayder et al.,

2016) When cE = 0 and p = 0, the sl equilibrium exists. (If all other agents always report the low-quality

signal sl for every object, then agent i’s best response is also to report sl in order to maximize the probability

of his report agreeing with other agents’ reports for the same object.)

When p = 0, at the sl equilibrium, an agent’s expected utility is

∑
sl∈Q

Pr(sl)Pr(sl|sl)−
∑
sl∈Q

Pr(sl)Pr(sl) =
∑
sl∈Q

Pr(sl)−
∑
sl∈Q

Pr(sl)Pr(sl)

= 1−
∑
sl∈Q

Pr(sl)2 = 1−
∑
sl∈Q

1

|Q|2 = 1− 1

|Q| ,

where the first equality was due to the fact that the low-quality signal sl is noiseless (Pr(sl|sl) = 1) and the

second equality was due to the fact that sl is drawn from a uniform distribution (Pr(sl) = 1
|Q| ).

When cE = 0 and p = 0, at the truthful equilibrium, an agent’s expected utility is

∑
sh∈Q

Pr(sh)Pr(sh|sh)−
∑
sh∈Q

Pr(sh)Pr(sh) <
∑
sh∈Q

Pr(sh)−
∑
sh∈Q

Pr(sh)2

= 1−
∑
sh∈Q

Pr(sh)2 ≤ 1− 1

|Q| ,

where the first inequality was due to the fact that the high-quality signal is noisy. That is, for every realization

sh of the high-quality signal, Pr(sh|sh) ≤ 1 and there exists one realization sh of the high-quality signal such

that Pr(sh|sh) < 1. Thus, the sl equilibrium Pareto dominates the truthful equilibrium when cE = 0 and

p = 0. The conditions of Theorem 2 are satisfied.
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Kamble et al. (2015) When cE = 0 and p = 0, the sl equilibrium exists. (If all other agents always

report sl, an agent’s best response is also to report sl because doing so maximizes the probability of his

report agreeing with other agents’ reports for the same object.)

When cE = 0 and p = 0, at the sl equilibrium, an agent’s expected utility is

∑
sl∈Q

Pr(sl)Pr(sl|sl) lim
N→∞

r(sl) =
∑
sl∈Q

Pr(sl)
K√

Pr(sl, sl)
= K

∑
sl∈Q

Pr(sl)√
Pr(sl)

= K
∑
sl∈Q

√
Pr(sl) = K

∑
sl∈Q

√
1

|Q| ,

where the first two equalities were due to the fact that the low-quality signal sl is noiseless (Pr(sl|sl) = Pr(sl)),

and the final equality was due to the fact that the low-quality signal sl is drawn from a uniform distribution.

When cE = 0 and p = 0, at the truthful equilibrium, an agent’s expected utility is

∑
sh∈Q

Pr(sh)Pr(sh|sh) lim
N→∞

r(sh) =
∑
sh∈Q

Pr(sh, sh)
K√

Pr(sh, sh)

= K
∑
sh∈Q

√
Pr(sh, sh) < K

∑
sh∈Q

√
Pr(sh) ≤ K

∑
sh∈Q

√
1

|Q| ,

where the first inequality was due to the fact that the high-quality signal sh is noisy. That is, for every

realization sh of the high-quality signal, Pr(sh|sh) ≤ 1 and there exists one realization sh of the high-quality

signal such that Pr(sh|sh) < 1. Thus, the sl equilibrium Pareto dominates the truthful equilibrium when

cE = 0 and p = 0. The conditions of Theorem 2 are satisfied.

Radanovic & Faltings (2015) When cE = 0 and p = 0, the sl equilibrium exists. (If all other agents

always report sl for every object, then any sample taken will not be “double mixed”.6 Thus, an agent’s

expected utility is zero regardless of his strategy. In particular also reporting sl for every object is a best

response.)

When cE = 0 and p = 0, at the sl equilibrium, it must be that ri′′j′ = ri′j and ri′′j′ = ri′′′j′′ = rij . An

agent’s expected utility at the sl equilibrium is:

1

2
+ 1ri′′j′=ri′j −

1

2

∑
s∈Q

1ri′′j′=s1ri′′′j′′=s =
1

2
+ 1− 1

2
∗ 1 = 1.

Let π(Σ) be the probability that the sample Σ is double mixed. When cE = 0 and p = 0, at the truthful

6A sample is double mixed if every possible value appears at least twice. This mechanism behaves differently depending on

whether or not it collects a double mixed sample of reports from the agents.
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equilibrium, an agent’s expected utility is:

π(Σ)

⎛
⎝1

2
+ Pr(ri′′j′ |rij)− 1

2

∑
s∈Q

Pr(s|rij)2
⎞
⎠ ≤ 1

2
+ Pr(ri′′j′ |rij)− 1

2

∑
s∈Q

Pr(s|rij)2

≤ 1

2
+ 1− 1

2
∗ 1 = 1,

where the first inequality is due to the fact that π(Σ) ≤ 1 and the second inequality was due to the fact that

the agent’s expected utility is maximized when Pr(ri′′j′ |rij) = 1. Thus, the sl equilibrium Pareto dominates

the truthful equilibrium when cE = 0 and p = 0. The conditions of Theorem 2 are satisfied.

Appendix G. Proof of Corollary 2

Corollary 2. For spot-checking peer-prediction mechanisms based on Witkowski & Parkes (2012, 2013);

Radanovic & Faltings (2013, 2014) and Riley (2014), if the peer-prediction mechanism uses a symmetric

proper scoring rule, then the minimum spot-check probability pPareto for the Pareto dominance of the truthful

equilibrium is greater than or equal to the minimum spot-check probability pds at which the truthful strategy

is a dominant strategy for the peer-insensitive mechanism.

Proof. By Lemma 4, for any spot-checking peer prediction mechanism, the gl strategy is to always report

the low-quality signal sl.

To verify that the conditions of Theorem 2 are satisfied, it suffices to verify that when p = 0, the sl

equilibrium of the peer prediction mechanism exists and Pareto dominates the truthful equilibrium. We

verify these two conditions for all of the listed peer prediction mechanisms below.

Let bs denote a belief report which predicts that signal s is observed with probability 1, i.e. Pr(s) = 1

and Pr(s′) = 0, ∀s′ ∈ Q, s′ �= s. Let the sl equilibrium denote the equilibrium where every agent’s signal

report is sl and belief report is bsl .

For mathematical convenience, we assume that the scoring rule is symmetric (Gneiting & Raftery, 2007).

That is, the reward for reporting a signal that is predicted with probability 1 is the same regardless of the

signal’s identity:

R(bs, s) = R(bs′ , s
′), ∀s �= s′.

This is a very mild condition that is satisfied by all standard scoring rules that compute rewards based purely

on the predicted probabilities and the outcome, including the quadratic scoring rule and the log scoring rule.

For symmetric scoring rules, when p = 0, an agent’s expected score is maximized by predicting bs when

s is observed for any signal s ∈ Q.
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Binary Robust BTS (Witkowski & Parkes, 2012, 2013) When cE = 0 and p = 0, the sl equilibrium

exists. (If all other agents report sl and bsl , then the best belief report for agent i is bsl . Moreover the best

signal report for agent i is sl which leads to a shadowed belief report of bsl .)

When cE = 0 and p = 0, at the sl equilibrium, an agent’s expected utility is R(bsl , s
l) + R(ssl , s

l).

This is the maximum possible expected utility that an agent can achieve because the proper scoring rule

R is symmetric. Therefore, it must be greater than or equal to the agent’s expected utility at the truthful

equilibrium when cE = 0 and p = 0.

Multi-valued Robust BTS (Radanovic & Faltings, 2013) When cE = 0 and p = 0, the sl equilibrium

exists. (If all other agents report sl and bsl , then the best belief report for agent i is bsl . Moreover, the best

signal report for agent i is sl which maximizes the probability of his signal report agreeing with other agents’

signal reports.)

When cE = 0 and p = 0, at the sl equilibrium, an agent’s expected utility is

∑
sl

Pr(sl)Pr(sl|sl) +R(bsl , s
l) =

∑
sl

Pr(sl) +R(bsl , s
l) = 1 +R(bsl , s

l),

where the first equality was due to the fact that the low-quality signal sl is noiseless (Pr(sl|sl) = 1).

When cE = 0 and p = 0, at the truthful equilibrium, an agent’s expected utility is

∑
sh∈Q

Pr(sh)Pr(sh|sh) 1

Pr(sh|sh) + E[R(Pr(rj |sh), rj)]

=
∑
sh∈Q

Pr(sh) + E[R(Pr(rj |sh), rj)] = 1 + E[R(Pr(rj |sh), rj)] ≤ 1 +R(bsl , s
l),

where the inequality was due to the fact that the proper scoring rule R is symmetric. Thus, the sl equilibrium

Pareto dominates the truthful equilibrium when cE = 0 and p = 0. The conditions of Theorem 2 are therefore

satisfied, and hence pPareto ≥ pds for all settings with positive effort cost cE ≥ 0.

Divergence-Based BTS (Radanovic & Faltings, 2014) When cE = 0 and p = 0, the sl equilibrium

exists. (If all other agents report sl and bsl , then the best belief report for agent i is bsl . Moreover, the best

signal report for agent i is sl, which means that the penalty is 0 because the agent’s signal reports agree and

their belief reports also agree.)

When cE = 0 and p = 0, at the sl equilibrium, an agent’s expected utility is

−1sl=sl||D(b
sl
,b

sl
)>θ +R(bsl , s

l) = R(bsl , s
l).

At the truthful equilibrium, an agent’s expected utility is

− 1sh
i′j=sh

i′j ||D(Pr(r|shij),Pr(r|sh
i′j))>θ +R(Pr(r|sh), sh) < R(Pr(r|sh), sh) < R(bsl , s

l),
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where the first inequality was due to the fact that the high-quality signal sl is noisy. That is, for every

realization sh of the high-quality signal, Pr(sh|sh) ≤ 1 and there exists one realization sh of the high-quality

signal such that Pr(sh|sh) < 1. The second inequality was due to the fact that the proper scoring rule R

is symmetric. Thus, the sl equilibrium Pareto dominates the truthful equilibrium when cE = 0 and p = 0.

The conditions of Theorem 2 are therefore satisfied, and hence pPareto ≥ pds for all settings with positive

effort cost cE ≥ 0.

Riley (2014) When cE = 0 and p = 0, the sl equilibrium exists. (When all other agents always report sl,

for agent i, δi = 0 because for any signal other than sl, the number of other agents who reported the signal

is 0. Thus, agent i’s reward is R(bi, s
l). Since agent i’s signal report does not affect his reward, reporting sl

is as good as reporting any other value. Moreover, since all other agents report sl, the best belief report for

agent i is to report bsl .)

When cE = 0 and p = 0, at the sl equilibrium, δi = 0 because for any signal other than sl, the number

of other agents who reported the signal is 0. Thus, an agent’s expected utility is R(bsl , s
l). By the definition

of the mechanism, an agent’s reward is at most R(bi, r−i), which is less than or equal to R(bsl , s
l) because

R is a symmetric proper scoring rule. Therefore, an agent achieves the maximum expected utility at the sl

equilibrium, which is greater than or equal to the agent’s expected utility at the truthful equilibrium when

cE = 0 and p = 0.
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