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Abstract 

Whiplash associated disorders (WAD) represent one of the most frequent injuries following a motor 

vehicle collision, with a significant economic cost of upwards of $29 billion in the United States and €10 

billion in Europe. Although high severity neck injuries associated with high velocity impacts can be fatal, 

WADs can occur from low speed impact scenarios that can result in acute soft tissue injury, but can 

transition into chronic symptoms that can be detrimental to the quality of life for the victim. In addition, the 

female population has been identified to be twice as vulnerable to sustain WADs with twice the risk to 

develop chronic symptoms, compared to the male population. WADs originate from tissue lesions due to 

non-physiological motion or excess motion past the physiologic loading range of the cervical spine. 

Epidemiological data has associated WADs with frontal, rear, lateral impact scenarios, with the rear impact 

configuration having the largest injury risk. However, the total absolute incidence of WADs from frontal 

and lateral impacts are equal to or exceed those from rear impacts. Anatomical sites that are susceptible to 

injury and pain response include the cervical facet joint, spinal ligaments, intervertebral disc, nerve roots 

and dorsal root ganglia, muscles and vertebral arteries. Injuries that originate from these anatomical sites 

are difficult to diagnose due to challenges in identifying non-observable macroscopic tissue damage and 

limitations in current medical imaging techniques. Current methods to investigate WAD include volunteer, 

post mortem human subject (PHMS), anthropometric test device (ATD), and animal experiments; however, 

these methods do not include the combination of active muscles, tissue level injury and pain response that 

are applicable to a human. Detailed finite element (FE) human body models (HBMs) were developed to 

address some of these limitations, particularly incorporating the effect of active musculature and the ability 

to predict crash induced injuries (CIIs) at the local tissue level for multidirectional impacts. The objective 

of the study was to investigate the injury risk at the tissue level following frontal, rear and lateral impact 

conditions using two HBMs that represent a 50th percentile male and 5th percentile female. In addition, a 

new muscle activation scheme was developed and applied to the HBMs and the sensitivity of active muscle 

parameters was investigated for each impact scenario.  

The head and neck models of the Global Human Body Models Consortium (GHBMC) 50th percentile 

male (M50-O v.4-5) and 5th percentile female (F05-O v.3-1) were used to investigate the kinematic and 

tissue level response in 8g frontal, 7g rear and 7g lateral impact conditions. A new open-loop muscle 

activation scheme was proposed to improve the reflex muscle activation response of both models under all 

loading conditions. The new activation scheme was applied to an upper and lower bound assessment of 

muscle activation, based on varying physiologic cross-sectional area (PCSA) and muscle activation onset 

time from reported literature values, and assessed using head kinematics. Lastly, the male and female 
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models were compared for the various impact conditions (frontal, rear, lateral), based on kinematic 

response, tissue level response, and the potential for injury risk at the tissue level.  

The proposed open-loop muscle activation scheme improved the head kinematics outcome, compared 

to human volunteer tests relative to the baseline muscle activation, for both the M50 and F05 models for all 

impact directions. The effect of varying PCSA and muscle activation onset time on head kinematics was 

largest for the lateral impact, compared to frontal and rear impact conditions. The muscle activation strategy 

affected the neck position in the sagittal plane during the impact, which was sensitive to lateral impacts 

because increased neck flexion enabled increased lateral bending coupled with increased axial rotation. The 

kinematic and predicted tissue-level injury risk were similar between the M50 and F05 models for the 

frontal and rear impact directions, attributed to the confounding effects of both stature and local tissue 

dimensions. The lateral impact direction predicted the highest injury risk for the capsular ligament, and 

compression of the nerve root and dorsal root ganglia at the lower cervical vertebral levels for both the M50 

and F05 models. No injury risk was predicted by both models in the rear impact condition, although the 

impact scenario considered was in the transitional region from non-injured to injured as reported in the 

literature. The low injury risk in rear impact was attributed to the non-physiological facet joint gap and the 

numerical implementation of the capsular ligament. In addition, the F05 model demonstrated consistently 

lower head rotational displacement compared to the M50, attributed to the non-physiological planar facet 

joint profile, which restricted axial rotation of the vertebrae.  

An average stature male and a small stature female HBM were enhanced with a new open-loop muscle 

activation strategy resulting in improved head kinematics for frontal, lateral and rear impact scenarios. 

Assessment at the tissue level demonstrated the highest injury risk in the lateral impact condition for both 

M50 and F05 models. In general, the injury risk between the M50 and F05 models were similar in the 

frontal and rear impact conditions due to confounding effects of stature and local neck tissue dimensions, 

while the lateral impact condition resulted in different capsular ligament post-traumatic injury locations 

because of the reduced vertebral motion from the non-physiological facet joint cartilage of the F05 model. 

Application of the upper and lower bound activation scheme demonstrated the highest sensitivity in model 

response to the lateral impact condition, while the rear impact condition demonstrated the lowest sensitivity. 

Future research should investigate a range of impact severities to determine the injury tolerance for each 

impact direction.  
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CHAPTER 1:  INTRODUCTION 

Whiplash associated disorders (WAD) (commonly known as neck sprains and strains) are the most 

frequent injuries observed following a motor vehicle collision, accounting for 27.8% of all injuries treated 

in US hospital emergency departments (Quinlan et al., 2004; Gustafsson et al., 2015; Kullgren et al., 2013). 

The total annual cost as a consequence of whiplash is significant at an estimated $3.9 to $29 billion in the 

United States and €10 billion in Europe, representing a great social economic burden to society, and 

personal burden to the affected individuals (Lord et al., 1996; Freeman et al., 1999; Ritcher et al., 2000). It 

is estimated that the incidence of WAD has increased two to ten times over the past three decades, with a 

predicted incidence rate in North America and Europe of approximately 300 per 100,000 inhabitants 

(Versteegon et al., 1998; Ritcher et al., 2000; Holm et al., 2008). The occurrence of fatal and severe injuries 

that result from motor vehicle collisions have reduced due to advancements in vehicle safety, while the 

incidence of low severity soft tissue injuries and the risk of disability resulting from these low severity 

injuries have both increased since the early 1980s (Kullgren et al., 2002). Although high severity neck 

injuries can be life threatening or even fatal, low severity soft tissue neck injuries can be disabling and 

develop into chronic symptoms that can be detrimental to the quality of life for the injured victim (Cronin, 

2014). This is problematic because soft tissue injury in the neck is the highest occurring injury in terms of 

frequency with an estimated half of all WAD victims still reporting symptoms one year after the initial 

incident (Carroll et al., 2008). Furthermore, the female population have exhibited twice the susceptibility 

to WAD compared to the male population. In addition, females are reported to have twice the risk for 

development of chronic symptoms (Carlsson et al., 2012; Carstensen et al., 2012). Epidemiological studies 

have identified that WAD can occur from frontal, rear, and side impacts, where the rear impact condition 

represented the highest risk of sustaining WAD (Kullgren et al., 2013; Watanabe et al., 2000; Hell et al., 

2003; Martin et al., 2008; Cassidy et al., 2000; Berglund et al., 2002; Morris and Thomas, 1996; Kullgreen 

et al., 2000; Jakobsson et al., 2000). Despite rear end impacts having the highest injury risk, the absolute 

number of WAD incidents that result from frontal and side impact are often equal to or exceed the total 

number of occurrences from rear impact events, which signifies the importance of WAD that develops from 

frontal and side impacts (Berglund et al., 2003, Kullgren et al., 2013; Martin et al., 2008, Morris and 

Thomas, 1996).  

WADs are thought to originate from tissue lesions due to non-physiological motions of the cervical 

spine segments or excess motion past the physiologic range (Curatolo et al., 2011). Several anatomical sites 



2 

 

with the potential for tissue injury and pain response have been proposed in the literature including the 

cervical facet joint, spinal ligaments, intervertebral disc, nerve root and ganglia, muscles, and vertebral 

arteries, with the cervical facet joint being the most developed in terms of research with the most evidence 

as the leading source of neck pain (Siegmund et al., 2009; Curatolo et al., 2011; Bogduk, 2011; Cronin, 

2014). Furthermore, the cervical facet joint has been confirmed to contain nociceptors, which indicate the 

potential for pain development with further supporting evidence from animal models of pain from 

nociceptor signalling and behavioural sensitivity studies (Siegmund et al., 2009; Lu et al., 2005; Lee et al., 

2004; Lee et al., 2008, Bogduk, 2002). A challenging aspect of WAD is the difficult diagnosis of the 

anatomical sources of pain for patients because the injured soft tissues do not undergo catastrophic failure 

that cause complete rupture, but are rather distracted beyond the physiologic loading range that can cause 

micro lesions to form (Yoganandan et al., 1988), where damage cannot be observed macroscopically 

(Nordin and Frankel, 2001). This presents challenges in the process of clinical diagnosis as these types of 

lesions are undetectable using current medical imaging techniques (Yoganandan et al., 2001, Dullerud et 

al., 2010; Vetti et al., 2011; Li et al., 2013). In addition to challenges in the diagnosis process, it is difficult 

to quantify the pain response with respect to the mechanical loading of a tissue due to ethical restrictions 

for in-vivo human testing. Several methods are currently used to investigate the injury mechanisms of WAD 

including anthropometric test devices (ATD), post mortem human subjects (PHMS), in-vivo volunteer 

testing, animal models, and finite element (FE) modelling approaches. ATDs such as the BioRID are 

mechanical human surrogates that are currently used to assess the safety of modern production vehicles but 

have low levels of biofidelity, are not frangible, can only predict injury for a global body region, and are 

limited to a single impact direction. Experiments that utilize PHMS provide increased biofidelity and allow 

the investigation of injury in high severity events, but lack muscle tone, cannot assess physiologic or pain 

response, and are often more representative of the aged population. Human volunteer testing is ideal as it 

offers the highest level of biofidelity that includes muscle tone and active musculature, but exposures to 

human volunteers are limited to non-injurious inputs due to strict ethical regulations. Animal models can 

provide insight on nociceptor activation and chronic pain development, but limitations in animal models 

include distinct biological and anatomical differences compared to a human (Winkelstein et al., 2011). 

Human body models (HBM) have been developed to address some of these limitations and are useful tools 

that incorporate the response of passive and active muscles that allow predictions of kinematic and kinetic 

response, which can be related to injury. One of the most valuable benefit of utilizing a HBM is the ability 

to predict local injury for any body region at the tissue level (Cronin, 2014; Yang et al., 2018; Schmitt et 

al., 2019). This is crucial in discerning detailed injury locations to understand complex injury mechanisms 

such as whiplash injury for a given impact scenario. Furthermore, HBM can be used to conduct detailed 

sensitivity analysis of input parameters and have the added benefit of removing the effects of subject and 
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biological variability by incorporating deterministic mechanical and failure tissue properties that result in 

a single answer for a given load case (Cronin, 2014). The objective of this study was to utilize two HBMs 

(Global Human Body Model Consortium, 50th percentile male and 5th percentile female) to investigate the 

response of soft tissue neck injury in frontal, rear, and lateral impact loading conditions through 

quantification of local tissue strains. Furthermore, the effect of active muscle parameters on global 

kinematics and injury potential and the development of an improved muscle activation strategy was 

implemented. 

This thesis is organized in five chapters. Background information that is crucial for understanding the 

content of this thesis is provided in Chapter 2. Chapter 3 builds upon the knowledge described in Chapter 

2 to highlight the methodology used to conduct the investigation. Chapter 4 presents the result of the study, 

and Chapter 5 provides discussion about the results in relation to the current literature, in addition to 

highlighting limitations of the study.  
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CHAPTER 2:  BACKGROUND 

2.1 Anatomy 

2.1.1 Anatomic Planes and Directions 

The anatomic position describes an individual in a baseline configuration that is standing upright with 

the head, feet and palms facing forward (Figure 2-1) (Standring, 2008). This baseline configuration is 

critical because it standardizes a consistent method to describe human anatomy regardless of the 

instantaneous position of the individual. These planes and directions allow the description of body parts 

relative to the body at a global scale, or at a local scale when describing one part relative to another.  

Three imaginary orthogonal planes intersect the body in the anatomical position: frontal (coronal), 

transverse (axial), and sagittal (median) plane, and are primarily used to describe sections in the body 

(Figure 2-1) (Standring, 2008). The frontal plane is oriented vertically and divides the body into front and 

back sections. The median plane is oriented vertically and bisects the body into symmetric left and right 

halves. The transverse plane is oriented horizontally and divides the body into top and bottom parts. These 

planes are often used in conjunction with a reference point or landmark on the body to identify where the 

plane is situated.  

The superior (above) direction points upwards towards the head while the inferior (below) direction 

points downward towards the feet (e.g. eyes are located superior to the nose while the mouth is located 

inferior to the nose). The posterior direction is directed rearward toward the back, while the anterior 

direction is directed toward the front of the body (belly). The medial direction defines parts that are close 

to the median plane (e.g. center of the body) while the lateral direction defines parts that are away from the 

median plane in the left or right direction. Ipsilateral can be defined as a part or occurrence that is located 

on the same side of the body, relative to a reference structure. Contralateral is defined as a part or occurrence 

that is located on the opposite side of the body, with respect to the reference structure. Superficial define 

structures that lie toward the outer surface of a body region and deep define structures that lie away from 

the surface of a body region (e.g. skin is superficial to muscle). Proximal describes structures that are 

situated towards the attachment or center of the body, while distal define structures that are situated away 

from the attachment or the center of the body (e.g. hands are distal relative to the elbow). 
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FIGURE 2-1: ANATOMICAL PLANES AND DIRECTIONS 
[Adapted from “Anatomical Planes” by CFCF (CC BY-SA 3.0) https://commons.wikimedia.org/wiki/File:Anatomical_Planes.svg] 

2.1.2 Neck Motion Terminology 

The basic movement of the head-neck complex can be divided into four primary motions: flexion, 

extension, lateral bending, and axial rotation (Figure 2-2) (Standring, 2008). Flexion refers to anterior 

bending of the neck (e.g. looking down at the ground) and is the neck motion experienced during a frontal 

crash. Conversely, extension refers to posterior bending of the neck (e.g. looking up at the sky) and is the 

primary neck motion during a rear end impact. Lateral flexion or lateral bending refers to the motion of the 

head when tilted towards either side of the shoulder. Axial rotation refers to rotation of the head-neck 

complex along the longitudinal direction of the vertebrae alignment (e.g. looking left and right at a road 

intersection). Due to the high number of sensory systems located on the head (visual, auditory, olfactory, 

gustatory), the neck structure must have enough flexibility to enable large ranges of motion to provide 

interactions with the surrounding environment.  
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FIGURE 2-2: PRIMARY NECK MOTIONS 

The vertebral column is composed of individual bones called vertebrae and are connected as a 

continuous column. It is a vital structural component in the human body as it forms a connection from the 

head, leading to the thoracic region and down to the sacrum. It is not only a load bearing structure that must 

support external forces but must contain and protect the central nervous system (i.e. spinal cord) and delicate 

vascular structures. Furthermore, it provides important musculature attachment points along the entire 

column to facilitate movement from the head, down to the lower back. In addition to providing these 

structural functions, the vertebral column must be flexible enough to accommodate normal day-to-day 

movements within physiologic ranges of motion.  

The vertebral column can be broken down into five distinct sections: the cervical (C) spine, thoracic 

(T) spine, the lumbar (L) spine, the sacrum, and the coccyx (Figure 2-3) (Standring, 2008). The cervical, 

thoracic, and lumbar sections are where motion occurs. The cervical spine is composed of seven vertebrae, 

the thoracic spine is composed of twelve vertebrae, and the lumbar spine, five vertebrae. The cervical spine 

has the unique functionality to provide the largest range of motions in all directions while forming a 

connection between the head to the neck (Figure 2-4).  
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FIGURE 2-3: HUMAN VERTEBRAL COLUMN ILLUSTRATING DIFFERENT SECTIONS AND SPINAL 

CURVATURES (Adapted from Gray, 1918) 
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FIGURE 2-4: LATERAL RADIOGRAPHY OF THE CERVICAL SPINE 
[Adapted from “Lateral neck X-ray of whiplash” by Jmarchn (CC BY-SA 3.0) https://commons.wikimedia.org/wiki/File:Lateral_neck_X-

ray_of_whiplash.jpg] 

The thoracic spine contains unique joints to allow attachment of individual ribs and connects the 

cervical spine to the lumbar spine. The lumbar spine connects the thoracic spine and the sacrum while 

featuring the largest vertebrae in the column to bear the weight of the head-neck complex and torso. When 

referring to a specific vertebra, the common terminology is to designate the spinal level followed by a 

number. Each section of the vertebral column is numbered starting from one, in descending order from the 

superior to inferior direction. For example, the seventh cervical vertebra can be denoted as “C7”. A spinal 

segment or motion segment is a functional unit consisting of a pair of adjacent vertebrae and intermediate 

connective tissues and are denoted as the spinal level followed by the number of the superior vertebra, 

followed by the number of the inferior vertebra. For example, the motion segment that consists of the fourth 

and fifth cervical vertebra can be denoted as “C45”.  

Each vertebra exhibit common features and interconnectivity such as containing two synovial joints 

and a fibrocartilaginous intervertebral disc, with the exception of the first and second cervical vertebrae 

(Standring, 2008). The size of the vertebra increases in the inferior direction, with the lumbar spine 

containing the largest vertebrae. When viewed from the lateral aspect, the spinal column is not straight but 

exhibits a natural anatomic curvature in each spinal section (Figure 2-3). Lordotic curvature or lordosis is 

referred to as posterior concavity while kyphotic curvature or kyphosis is referred to as anterior concavity. 

Both the cervical and lumbar spine exhibits lordotic curvature, while the thoracic spine exhibits kyphotic 

curvature. The curvatures at each spinal section are often different between individuals and will change 

through life. 
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2.1.3 Cervical Spine Structures 

Cervical Vertebrae 

There are many structural similarities between vertebrae in the different regions of the cervical spine. 

The third to seventh cervical vertebra have very similar anatomic features and characteristics and are 

referred to as the lower cervical spine (LCS). There is a trend for the vertebrae to increase in dimension in 

the inferior direction due to the progressive addition of body weight from subsequent posterior structures 

(Standring, 2008). Each motion segment in the neck allow a limited quantity of movement, however when 

the summation of all motion segments are considered, it provides the greatest range of motion in the 

vertebral column (Standring, 2008). The cervical spine contains the smallest vertebrae and is unique with 

a transverse foramen in the transverse process through which the vertebral artery passes. 

The first and second cervical vertebrae (upper cervical spine) contain unique anatomic features that 

are separate from the lower cervical spine vertebrae. This is the only vertebral segment in the neck that is 

not connected by an intervertebral disc and are held together only by a complex arrangement of ligaments 

and two facet joints (Standring, 2008).  

The vertebrae are comprised of four main structures: the vertebral body, two articular pillars, and the 

spinous process (Standring, 2008). These structures are connected by the vertebral arch, which contains the 

pedicle and lamina. The vertebral body, pedicle and lamina form a triangular void in the center called the 

vertebral foramen, through which the spinal cord passes. There are seven processes in the cervical vertebra: 

two transverse processes, four articular processes, and one spinous process. Each process may contain a 

small protrusion of bone called a tubercle, which serves as additional attachment points for ligament and 

muscle. The vertebral body is located anteriorly, with a superior surface that is saddle-shaped and an inferior 

surface that is concave. This unique geometry limits anteroposterior and lateral movement between adjacent 

vertebrae in the neck. The transverse process and the lamina protrude bilaterally from the vertebral body 

and forms a circular opening called the transverse foramen, through which the vertebral artery passes into 

the brain (Figure 2-5).  
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FIGURE 2-5: VERTEBRAL ARTERIES PASSING THROUGH THE VERTEBRAL FORAMEN (Adapted from Gray, 

1918) 

The two articular pillars feature both a superior and inferior oval surface called the articular facet 

surface and are located anterolateral to the vertebral body. The superior articular facet surface is directed in 

the posterosuperior direction while the inferior articular facet surface is facing the anteroinferior direction. 

The two lamina sections travel posteromedially and meet at a junction to form the spinous process. The 

spinous process is the primary component in the lower cervical spine that can be felt through palpation on 

the posterior surface of the neck. Indentations on both the superior and inferior surface of the pedicles form 

the superior and inferior vertebral notches. The vertebral notch from adjacent vertebrae creates a 

passageway called the intervertebral foramen, through which the spinal nerve root exits the spinal cord 

(Figure 2-6). 
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FIGURE 2-6: LOWER CERVICAL VERTEBRA (Adapted from Gray, 1918) 

Bone tissues are complex biological materials possessing anisotropic, asymmetric (different tensile 

and compressive properties), viscoelasticity, and strain rate dependent material properties. The vertebra is 

constructed of two types of bone tissue called cortical and trabecular bone (Figure 2-7). Cortical (compact) 

bone surrounds the exterior walls of the vertebra with characteristics of high density and strength to 

withstand large compressive forces. Trabecular (spongy) bone is located within the outer cortical shell with 

characteristics of lower density (porous) and has a unique anisotropic lattice structure. The lattice structures 

of the bone tissue are called trabeculae and are oriented along the principal axis of stress to provide strength 

to the vertebra. Together, cortical and trabecular bone create a strong, lightweight structure to ensure each 

vertebra can endure the forces experienced during everyday life.  
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FIGURE 2-7: VERTEBRA BONE COMPOSITION (Adapted from Gray, 1918) 

The first cervical vertebra (C1), also known as the atlas, is ring-shaped and responsible for supporting 

the base of the skull (Figure 2-8). There are no intervertebral discs between the skull and the atlas or with 

the second cervical vertebra (axis) due to the absence of a vertebral body. The main structure of the atlas is 

composed of two articular pillars connected by the anterior arch and the posterior arch. These two structures 

create a void in the center of the atlas that can be divided into two compartments. The first compartment 

occupies approximately one third of the anterior portion of the opening and encloses the odontoid process 

of the axis (Standring, 2008). The remaining portion (approximately two thirds) is occupied by the spinal 

cord. The transverse process extends bilaterally from the articular pillars and houses the transverse foramen. 

The superior articular facet surface is “kidney” shaped and acts as the base to accept the pair of occipital 

condyles on the skull (Standring, 2008). The atlas has a long transverse process, which provides large 

moment arms to help muscles make small adjustments to stabilize the head.  

 

FIGURE 2-8: POSTERIOR VIEW OF THE ATLAS (Adapted from Gray, 1918) 
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The second cervical vertebra, commonly referred to as the axis, provides an axel to which the atlas 

and skull can rotate about (Figure 2-9). The most prominent feature of the axis is the odontoid process or 

dens, which protrudes superiorly from the vertebral body (Standring, 2008). The dens are positioned 

anterior to the spinal cord and held in position by the anterior arch and transverse ligament in the atlas. The 

transverse process is notably smaller, and the spinous process is thicker and stronger when compared to the 

inferior vertebrae (Standring, 2008). The two articular facet surface provides a platform to which the atlas 

and skull rotate. 

 

FIGURE 2-9: C2 VERTEBRA (AXIS) LATERAL AND SUPERIOR-OBLIQUE VIEW (Adapted from Gray, 1918) 

Ligaments 

Ligaments are the fibrous connective tissue that provides a connection between adjacent vertebrae to 

ensure stability and limit neck motions to within physiological limits. Ligaments are primarily composed 

of a compact collection of proteins called collagen and elastin (Standring, 2008). Collagen proteins are 

wrapped and linked together to create fibres that form the structural integrity of most tissues in the human 

body. Collagen is viscoelastic and responsible for the tensile strength of the ligament, while elastin is highly 

stretchable and exhibits a hyperelastic response. In general, these two proteins enable flexibility but provide 

substantial tensile strength when stretched. The ratio of collagen and elastin determine the mechanical 

response of the ligament (Yoganandan et al., 2001). Due to this composition, ligaments are tensile resistant 

structures with a negligible compression response. Like other biological tissues, ligaments are strain rate 

dependent, nonlinear viscoelastic materials that exhibit four distinct tensile loading regions: toe, linear, 

traumatic, post-traumatic, and rupture region (Mattucci and Cronin, 2015). When a ligament is distracted, 

there is an initial nonlinear region called the toe region, where collagen fibres begin to straighten from the 
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initial relaxed crimped state. The fibres transition into the linear response region (constant stiffness) when 

all collagen fibres have straightened and are fully engaged in resisting the tensile load. As distraction 

continues, microlesions may form in the ligament and stiffness will begin to decrease when stretched 

beyond the physiological limit as the ligament response enters the traumatic region (Yoganandan et al., 

2001; Yoganandan et al., 1988). In this phase of loading, the ligament remains intact while damage cannot 

be observed macroscopically (Nordin and Frankel, 2001) and the ligament stiffness will continually 

decrease as microlesions increase, until macroscopic failure occurs at the ultimate load where the stiffness 

drops momentarily to zero and will enter the post-traumatic region. At this state, bundles of collagen fibres 

have ruptured, causing a steep decrease in the force response. In the post-traumatic region, the force 

response will continue to drop as bundles of collagen fibres progressively fail until the ligament is fully 

ruptured (i.e. no force response) (Dewit and Cronin, 2012).  

Two bands of strong ligaments run longitudinally along the vertebral bodies and travel from the axis 

down to the sacrum (Standring, 2008). These ligaments are composed of individual fibres that are layered 

on top of each other and run continuously, spanning up to four vertebrae. The anterior longitudinal ligament 

(ALL) is located along the anterior surface of the vertebral bodies and travels from the skull down to the 

sacrum (Figure 2-10). The primary function of the ALL is to resist neck extension and provide stability to 

the cervical column. 

 

FIGURE 2-10: LOWER CERVICAL SPINE LIGAMENTS (SAGITTAL SECTION VIEW) (Adapted from Gray, 1918) 
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The posterior longitudinal ligament (PLL) is located along the posterior surface of the vertebral bodies, 

which is also the anterior surface of the spinal canal (Figure 2-10). The primary function of the PLL is to 

resist neck flexion and provide stability to the cervical spine. These two ligaments not only adhere to the 

anterior and posterior surface of the vertebral bodies but also to the surface of the intervertebral disc. 

The capsular ligament (CL) surrounds the periphery of each articular process to form an enclosure for 

the facet joint (Figure 2-10). The two pairs of CL are located on every segment level in the cervical spine 

including the atlanto-axial and atlanto-occipital joints.  

The ligamentum flavum (LF) runs through the posterior surface of the vertebral canal, connecting the 

laminae of adjacent vertebrae (Figure 2-10). Unlike the longitudinal ligaments, the LF is not continuous, 

but connect the inferior surface of the superior laminae to the superior surface of the inferior laminae. The 

LF resist neck flexion by reducing motion between adjacent laminae.  

The interspinous ligaments (ISL) run vertically and connect adjacent spinous processes (Figure 2-10). 

This ligament covers the entire length of the spinous process and primarily limit neck flexion during 

movement.  

The upper cervical spine (UCS) is connected by a complex arrangement of ligaments due to the 

absence of an intervertebral disc (Figure 2-11, Figure 2-12). The anterior atlanto-occipital membrane 

(AAOM) connects the superior surface of the anterior atlantal arch to the anterior margin of the foramen 

magnum (Standring, 2008). Running continuous from the AAOM, the anterior atlanto-axial membrane 

(AAAM) attaches onto the anterior surface of the C2 vertebral body. The AAAM is continuous with the 

ALL in the lower cervical segment levels. The posterior atlanto-occipital membrane (PAOM) connects the 

posterior atlantal arch to the posterior margin of the foramen magnum. The posterior atlantal-axial 

membrane (PAAM) is located directly below the PAOM and attach onto the posterior surface of the C2 

vertebral body. The PAAM is a continuation of the LF in the lower cervical segment levels.   
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FIGURE 2-11: LEFT SAGITTAL SECTIONAL VIEW OF THE UCS (Adapted from Gray, 1918) 

The tectorial membrane is a band of tissue that runs from the posterior surface of the C2 vertebral body 

and attach onto the basilar occipital bone. This ligament is continuous with the PLL from the lower segment 

levels.  

The transverse ligament runs laterally from the lateral mass of the atlas and confines the odontoid 

process of the axis onto the anterior atlantal arch (Standring, 2008). The transverse ligament is located 

anterior to the tectorial membrane. From the medial aspect of the transverse ligament, additional fibers run 

longitudinally to connect the transverse ligament to the posterior surface of the C2 vertebral body (inferior 

cruciate ligament) and the occipital bone (superior cruciate ligament). Together, these three ligaments form 

the cruciate ligament of the atlas. The apical ligament run longitudinally from the apex of the odontoid 

process to connect onto the anterior margin of the foramen magnum and is located anterior to the superior 

cruciate ligament. The alar ligament consists of two bands of tissue that extends bilaterally from the 
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odontoid process and attach onto the lateral margins of the foramen magnum near the medial aspect of the 

occipital condyles.  

 

FIGURE 2-12: POSTERIOR VIEW OF UCS LIGAMENTS (Adapted from Gray, 1918) 

Intervertebral Disc 

The intervertebral disc is a fibrocartilaginous connection situated between each adjacent vertebral body 

in the cervical spine, with the exception of the atlantoaxial joint (C1-C2). The disc forms an amphiarthrodial 

(slightly movable) joint between adjacent vertebral bodies, reinforced by the anterior and posterior 

longitudinal ligaments (Standring, 2008). In the cervical vertebrae, the anterior region of the disc has a 

greater thickness when compared to the posterior region and is attributed to the lordotic curvature of the 

cervical spine (Standring, 2008). The inferior and superior ends of the disc adhere to the vertebral endplate 

that is consisted of a layer of cartilage found at the superior and inferior surface of the vertebral body. In 

addition, the anterior and posterior regions of the disc are adhered to the anterior and posterior longitudinal 

ligaments.  

The disc has two primary components: a tough outer annulus fibrosus and the internal nucleus pulposus 

(Figure 2-13) (Standring, 2008). The annulus fibrosus is a composite structure that constitutes layers of 
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anisotropic lamellae arranged concentrically around each disc. Each lamella layer has collagen fibres that 

are arranged parallel to each other at an angle of approximately ±25 degrees to ±45 degrees from the 

transverse plane (Cassidy et al., 1989) and are surrounded by a matrix of water and proteoglycans called 

the ground substance. The angles of the collagen fibres alternate between each successive lamella layer to 

provide stability during any neck motion (particularly axial rotation).   

 

FIGURE 2-13: IVD ANNULUS FIBROSUS COLLAGEN FIBER ANGLE (Adapted from Cassidy et al., 1989) 

The nucleus pulposus is an incompressible fluid-like gelatinous material located within the annulus 

fibrosus with the primary purpose of resisting and distributing compressive loads to the vertebral endplates. 

Together, this unique composition of the intervertebral disc allow for flexibility between vertebrae and 

provide shock absorption by deforming amid neck movements. During compression, the nuclear material 

expands outwards, causing radial expansion and increased bulging of the annulus fibrosus, loading the 

collagen fibres in tension (Figure 2-14). For example, during anterior bending, the posterior region of the 

disc is loaded in tension while the anterior region is in compression (Figure 2-14). This mechanism of 

loading can be applied for all other bending directions during neck movement.    
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FIGURE 2-14: IVD RESPONSE:  A) COMPRESSION, B) BENDING 

Facet Joint 

The facet (zygapophysial) joints are bilateral synovial joints, located at the posterolateral aspect of a 

motion segment, formed by the inferior articular surface of the superior vertebra, and the superior articular 

surface of the inferior vertebra (Standring, 2008). This joint is classified as a diarthrodial (freely movable) 

joint (Standring, 2008). The articular surface of the articular process is covered in a layer of articular 

cartilage, which has characteristically low friction and enables the contacting surfaces of the bone to glide 

smoothly to prevent damage to the subchondral bone (bone underneath the cartilage). The exterior of the 

facet joint is surrounded circumferentially by the articular capsule (capsular ligament), while the interior 

contains a separate lining called the synovial membrane. This membrane secretes synovial fluid to help 

lubricate and reduce friction between the cartilage surfaces during traction. The synovial fluid fills the joint 

cavity created between the two articular cartilage surfaces and surrounding membrane. Located subjacent 

to the synovial membrane exists intra-articular structures called the synovial fold (meniscoids), particularly 

in the anterior and posterior regions of the facet joint. The synovial fold surrounds the periphery of the joint 

and consists of adipose and fibrous connective tissues and functionally, have been hypothesized to help 

distribute compressive forces across the contacting joint surface (Jaumard et al., 2011).   

The main function of the facet joint is to guide and limit movement between adjacent vertebrae, prevent 

potential damage to surrounding soft tissues, and transfer compressive forces throughout the cervical 

column. Therefore, the general movement of the neck is largely dictated by the shape and orientation of the 

facet joint. The surface of the joint is inclined at an angle of approximately 45° within the sagittal plane 

with the superior face of the articular process facing towards the posteromedial direction (Panjabi et al., 

1993). This orientation limits mobility for adjacent cervical motion segments (excluding atlas and axis) in 

axial rotation, lateral bending, and lateral/anteroposterior translations, but allows for extensive ranges of 
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motion in flexion and extension. Additionally, the facet geometry results in axial and lateral motion of the 

cervical vertebra to be coupled, meaning during lateral bending, axial rotation will also occur, and vice 

versa (Bogduk and Mercer, 2001). Although motions such as axial rotation and lateral bending are limited, 

the summation of movements between all cervical segments is still substantial and enables a high degree 

of neck mobility.  

Nerve Roots 

The nerve roots and spinal nerves located within the vertebral column are part of the nervous system, 

which is considered to be the most complex system in the human body. The nervous system can be divided 

into two networks: the central nervous system and the peripheral nervous system (Standring, 2008). The 

central nervous system (CNS) consists of the brain and spinal cord, while the peripheral nervous system 

(PNS) refers to cranial and spinal nerves and associated branching nerve structures located throughout the 

body. Communication between the CNS and the body occurs via the PNS nerve fibres through the afferent 

(sensory) fibres and efferent (motor) fibres (Figure 2-15) (Standring, 2008). This network can be perceived 

as an input-output system where afferent fibres transmit information into the CNS via sensory receptors in 

the periphery, and efferent fibres relay information from the CNS to peripheral systems (e.g. skeletal muscle 

for contraction). These long nerve fibres that travel throughout the body are called axons and are extensions 

of nerve cells (neurones), which function to encode, relay and transmit information via nerve impulses 

(Standring, 2008).  

 

FIGURE 2-15: NERVE ROOTS, SPINAL NERVE, AND SPINAL CORD: LEFT LATERAL VIEW AND 

SUPERIOR VIEW (Adapted from Gray, 1918) 
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The spinal nerves and nerve roots form the transitional structures between the CNS and PNS 

(Standring, 2008). There are eight pairs of spinal nerves in the cervical spine (C1-C8), and are composed 

of both motor and sensory fibres. The nerve roots are designated by the vertebra inferior to the root (e.g. 

C3 spinal nerve is located between C2 and C3 and C8 is located between C7 and T1). Two pairs of spinal 

nerves exit bilaterally from the vertebral canal and run anterolaterally between adjacent vertebrae through 

the intervertebral foramen (Figure 2-16). Each pair of spinal nerves are formed from the union of the dorsal 

(sensory) and ventral (motor) root, while each dorsal and ventral root are comprised of multiple adjacent 

dorsal and ventral rootlets originating from the spinal cord (Standring, 2008). The dorsal root contains 

afferent nerve fibres and ventral roots contain efferent fibres. Along the dorsal root between the spinal cord 

and the spinal nerve constitutes a distinct section called the dorsal root ganglion (Standring, 2008). The 

ganglion contains a cluster of afferent neuronal cell bodies and is physically prominent by the enlarged 

diameter of the dorsal root, just before the junction that forms the spinal nerve.  

 

FIGURE 2-16: A) LATERAL VIEW OF THE CERVICAL SPINE, IVF MARKED BY ASTERISK (C23 

FORAMEN OUTLINED), B) SPINAL NERVES EXITING IVF, SUPERIOR VIEW  
[Adapted from “Projectional radiograph of cervical foraminal stenosis” by Mikael Häggström (CC0 1.0) 

https://commons.wikimedia.org/wiki/File:Projectional_radiograph_of_cervical_foraminal_stenosis.jpg; “Human cervical vertebra” by Eric 

Bauer (CC BY 4.0) https://commons.wikimedia.org/wiki/File:Human_cervical_vertebra.stl] 
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Muscles  

The human body is comprised of three different types of muscle tissue: skeletal, cardiac, and smooth. 

Skeletal muscles are voluntary, reflexive, striated and are responsible for voluntary control to facilitate the 

movement of the body. Cardiac muscles are involuntary and striated and are only located in the walls of 

the heart and surrounding vascular structures. Smooth muscles are non-striated, involuntary and constitute 

the lining of vessels of the circulatory system and hollow organs (e.g. stomach, intestines, bladder, etc.). 

Skeletal muscles are composed of hierarchical tissues ranging from the muscle as a whole, down to 

the individual contractile units of a single muscle cell (Figure 2-17) (Standring, 2008). A muscle is 

composed of bundles of fascicles, and each fascicle contains bundles of muscle fibres. Each muscle fibre 

is constructed from bundles of myofibrils that are composed of longitudinally aligned contractile units 

called a sarcomere (basic contractile units). Each hierarchical component of a muscle are enclosed by 

collagenous sheathes known as the epimysium (whole muscle), perimysium (fascicles), and endomysium 

(muscle fibres) (Standring, 2008). Within each muscle fibre, individual myofibrils are surrounded by a 

cellular membrane structure called the sarcoplasmic reticulum. This membrane carries calcium ions, which 

are critical in the role of initiating and terminating muscle contraction. Each sarcomere unit measures 

approximately 2.6 µm in length in a human skeletal muscle at a resting state (Kamibayashi and Richmond, 

1998). The sarcomere is composed of actin (thin) and myosin (thick) filaments. The current understanding 

of skeletal muscle contractions is based on the sliding filament theory, and is briefly described at a high 

level below. 
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FIGURE 2-17: HIERARCHICAL STRUCTURE OF SKELETAL MUSCLE AND CONNECTIVE TISSUES 
[Adapted from “10.2 Skeletal Muscle, Figure 1” by Rice University (CC BY 4.0) https://opentextbc.ca/anatomyandphysiology/chapter/10-2-

skeletal-muscle/] 

Stimulation from motor neurons causes an action potential that travels to the muscle fibre and arrives 

at the neuromuscular junction. This action potential causes depolarization of the sarcoplasmic reticulum 

and initiates a release of calcium ions into the muscle fibres through a series of electrochemical events. 

Actin-binding sites exist on the thin filament (actin) for the myosin heads to attach onto (Figure 2-18). 

These binding sites are covered by two regulatory proteins called tropomyosin and troponin. Calcium ions 

released by the sarcoplasmic reticulum bind with troponin and induce a modification in the shape of both 

proteins, which reveal the binding sites (Standring, 2008). The myosin heads can proceed to attach onto the 

active binding sites to form cross-bridges and pull the actin inward that result in contraction (Figure 2-19). 

Each stroke of the myosin head cause movement of 1 nm to 5 nm (Standring, 2008), with average total 

shortening of 1 µm for each sarcomere.  

Muscle relaxation occurs in the opposite manner and begins when the nerve impulse from the motor 

neurons stops firing. The release of calcium ions into the muscle fibres is reversed and travel back into the 

sarcoplasmic reticulum as repolarization of the membrane occurs (Standring, 2008). This causes the 
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troponin to cover the actin-binding sites, preventing cross bridge formation, which results in the actin to 

slide outward. As the cross bridges decrease, muscle tension falls until the muscle fibres reaches a relaxed 

state.  

 

FIGURE 2-18: SLIDING FILAMENT MODEL OF MUSCLE CONTRACTION 
[Adapted from “10.3 Muscle Fiber Contraction and Relaxation, Figure 1” by Rice University (CC BY 4.0) 

https://opentextbc.ca/anatomyandphysiology/chapter/10-3-muscle-fiber-contraction-and-relaxation/] 

The force that a muscle can generate is a summation of the forces produced at each cross bridge at the 

molecular level (Standring, 2008). Therefore, the force produced by each skeletal muscle is directly 

proportional to the number of muscle fibres, hence is proportional to the cross-sectional area, known as the 

PCSA.  
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FIGURE 2-19: DEPICTION OF A SARCOMERE UNDERGOING CONTRACTION 

There are three types of muscle contraction that a skeletal muscle can produce: concentric, eccentric 

and isometric contraction. Concentric contraction occurs when muscles are being contracted while 

shortening in length (e.g. bicep curl). Eccentric contraction is the opposite of concentric contraction where 

a muscle is activated but increasing in length (e.g. quadriceps when walking downhill). Isometric 

contraction refers to muscles that are activated but maintained at a static length during activation (e.g. plank 

exercise).  

Skeletal muscles are attached to hard tissues by tendons to allow movement by transmitting tensile 

forces produced by the muscle fibres during contraction. To create movement, one end of the muscles must 

be stationary (origin) and the other end movable (insertion) (Standring, 2008). The insertion and origin 

positions are used to define the landmark of each muscle. The cervical musculature is composed of a 

complex arrangement of layered skeletal muscles that work in conjunction with each other to produce 

movement of the head. In addition, they provide stability in the cervical column, and help maintain posture. 

Muscles in the neck are arranged in symmetric pairs about the mid-sagittal plane and can be activated 

bilaterally to produce flexion and extension, or can be activated unilaterally to produce lateral bending 

and/or axial rotation. These muscles are primarily divided into the anterior and posterior groups by the 

location and type of movement they produce when activated bilaterally (flexion and extension) (Standring, 

2008).   

The sternocleidomastoid is a superficial muscle that wraps around the anterior and posterior aspect of 

the neck (Figure 2-20) (Standring, 2008). This muscle originates from the sternum and clavicle and runs 

posterolaterally to the mastoid process on the skull. Flexion and anterior head translation are produced when 
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activated bilaterally. Ipsilateral lateral bending and contralateral axial rotation result from unilateral 

activation.  

The infrahyoid muscles are attached and located inferior to the hyoid bone: sternohyoid, sternothyroid, 

and omohyoid (Figure 2-20) (Standring, 2008). These muscles produce principal actions that contribute to 

the movement of the hyoid bone and thyroid cartilage to facilitate speech and swallowing, with the potential 

to act synergistically with other muscle to produce flexion. The sternohyoid and sternothyroid originate 

from the clavicle and sternum respectively and insert onto the hyoid bone. The omohyoid is separated into 

two bellies, linked together by an intermediate tendon. It originates from the upper border of the scapula 

and attaches onto the hyoid bone.  

 

FIGURE 2-20: ANTERIOR NECK MUSCLES AND TRAPEZIUS (Adapted from Gray, 1918) 

The prevertebral muscle group consists of the remaining anterior muscles: suboccipital (rectus capitis 

anterior and rectus capitis lateralis), deep anterior (longus capitis and longus colli), and lateral vertebral 

(scalenus anterior, scalenus medius, scalenus posterior) muscles (Figure 2-21) (Standring, 2008). The 

anterior suboccipital muscles both originate from the transverse process of the atlas and insert onto the 

occipital bone of the skull, with the rectus capitis anterior running superomedially and the rectus capitis 

lateralis running superiorly. The rectus capitis is responsible for atlanto-occipital anterior flexion, while the 

rectus capitis lateralis performs ipsilateral lateral head flexion. The longus capitis and longus colli are long 

narrow muscles that run superiorly adjacent to the anterior surface of the vertebral bodies of the cervical 

column. The longus capitis produce head flexion and originate from the transverse process of C3-C6 with 

attachment to the occipital bone. The longus colli arises from the transverse process of C3-T3 and attaches 
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onto the anterior surface of the C2-C6 vertebral bodies. Neck flexion is produced when activated bilaterally, 

while ipsilateral neck flexion and contralateral axial rotation during unilateral activation. Lastly, the lateral 

vertebral muscles are split into the scalenus anterior, medius and posterior muscles, all of which runs 

obliquely from the vertebral column to the first and second rib. The scalenus anterior originate from the 

transverse process of C3-C6 with attachment onto the first rib and produces neck ipsilateral anterolateral 

flexion and contralateral rotation of the neck. The scalenus medius arises from the transverse process of 

C1-C2 and insert onto the first rib, and produces ipsilateral anterolateral flexion of the neck. The scalenus 

posterior initiates ipsilateral flexion and arise from the transverse process of C4-C6 and attach onto the 

second rib.  

 

FIGURE 2-21: ANTERIOR NECK MUSCLES (Adapted from Gray, 1918) 
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The trapezius is the most superficial muscle located on the posterior neck region and along with the 

rhomboideus minor and levator scapulae, form the scapular group (Figure 2-22) (Standring, 2008). The 

trapezius originates from the external occipital protuberance of the skull, the ligamentum nuchae, and the 

spinous process of C7-T10 and inserts onto the clavicle and scapula in the anterior and posterior aspect 

respectively. The primary function is to elevate and retract the scapula, but can also aid in head extension 

when the shoulders are fixed. The rhomboideus minor initiates from the spinous process of C7-T1 and 

attaches onto the medial end of the scapula, with a primary function of scapula retraction. Lastly, the levator 

scapulae arise at the spinous process of C1-C4 and attach onto the superior medial end of the scapula, with 

the purpose of scapula elevation.  

 

FIGURE 2-22: POSTERIOR BACK MUSCLES (Adapted from Gray, 1918) 

The splenius capitis and cervicis are posterior muscles, which are located subjacent to the trapezius 

(Figure 2-22) (Standring, 2008). The splenius capitis begins at the ligamentum nuchae and the spinous 

process of C7-T4 and runs superolaterally to towards the mastoid process of the skull. Bilateral activation 

produces head extension, while unilateral activation with the contralateral sternocleidomastoid yields 

ipsilateral head axial rotation. The splenius cervicis is a continuation of the splenius capitis, which arise 

from the spinous process of T3-T6 and attaches onto the transverse process of C1-C3. Principle actions for 
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bilateral and unilateral activation include upper cervical spine extension and ipsilateral axial rotation 

respectively.   

 

FIGURE 2-23: POSTERIOR NECK MUSCLES (Adapted from Gray, 1918) 

The cervical erector spinae muscle group aids in cervical column extension and includes the 

longissimus capitis, longissimus cervicis, and iliocostalis (Figure 2-23) (Standring, 2008). The longissimus 

capitis originates from the transverse and articular process of T1-T5 and C4-C7 respectively and is affixed 

onto the mastoid process of the skull. Neck extension and ipsilateral axial rotation during bilateral and 

unilateral activation respectively. The longissimus cervicis initiate from the transverse process of T1-T5 

and insert onto the transverse process of C2-C6. The iliocostalis arises from the third to sixth rib and inserts 

onto the transverse process of C4-C6. Both of these muscles produce neck extension during bilateral 

activation and ipsilateral lateral flexion when activated unilaterally.  
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The spinotranverse group consists of the multifidus, semispinalis capitis, and semispinalis cervicis 

(Figure 2-23) (Standring, 2008). The multifidus originates from the articular process of C4 to the sacrum 

and inserts superomedially onto superior vertebrae’s spinous process (C2 – sacrum). This muscle’s primary 

action includes extension and stabilization of the neck. The semispinalis capitis initiates at the transverse 

and articular process of C7-T7 and C4-C6 respectively and attaches onto the occipital bone. This muscle 

produces head extension during bilateral activation and ipsilateral head rotation during unilateral activation. 

The semispinalis cervicis arise from the transverse process of T1-T6 and attach onto the spinous process of 

C2-C5. Neck extension and ipsilateral rotation occur during bilateral and unilateral activation respectively.  

The last group of the posterior neck muscles is the suboccipital group, which includes the rectus capitis 

minor, rectus capitis major, obliquus capitis superior and obliquus capitis inferior (Figure 2-23) (Standring, 

2008). The rectus capitis minor produce head extension, and originate from the posterior arch of the atlas, 

inserting onto the occipital bone. The rectus capitis major arises from the spinous process of the axis, and 

attach onto the occipital bone. This muscle is responsible for head extension, and ipsilateral lateral flexion 

and rotation during bilateral and unilateral activation respectively. The obliquus capitis superior begins at 

the transverse process of the atlas and ends at the occipital bone. Head extension and lateral flexion are 

produced during bilateral and unilateral activation respectively. Lastly, the obliquus capitis inferior is 

initiated from the spinous process of the axis that insert onto the transverse process of the axis, and is 

responsible for the axial rotation of the atlas.  

  



 

31 

 

TABLE 2-1: NECK MUSCLE GROUPS (Standring, 2008) 
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2.2 Whiplash Associated Disorders 

In 1928, (Crowe, 1928) first defined the term whiplash to describe neck injuries that occurred from 

acceleration-deceleration events. In 1995, the Quebec Task Force has adopted the term whiplash-associated 

disorders (WAD) as: “Whiplash is an acceleration-deceleration mechanism of energy transfer to the neck. 

It may result from rearend or side-impact motor vehicle collisions, but can also occur during diving or other 

mishaps. The impact may result in bony or soft-tissue injuries (whiplash injury), which in turn may lead to 

a variety of clinical manifestations” (Spitzer et al., 1995). Symptoms include: neck pain, neck stiffness, 

headache, shoulder pain, arm pain and arm numbness, paresthesia, weakness, dysphagia, visual and 

auditory disturbances and dizziness (Norris and Watt 1983; Barnsley et al., 1994; Spitzer et al., 1995). 

These symptoms are hypothesised to arise from an organic basis that involve tissue lesion in the cervical 

spine, when stretched beyond their physiologic range of motion or non-physiologic motions of cervical 

spinal segments (Curatolo et al., 2011). Injuries that result from whiplash are typically classified as AIS 1 

(minor) and sometimes AIS 2 (moderate) in terms of severity. The abbreviated injury scale (AIS) is a global 

rating system used to classify the severity of injury for different anatomical regions (Table 2-2), developed 

by the Association for the Advancement of Automotive Medicine (AAAM).  

TABLE 2-2: AIS RATING SYSTEM AND EXEMPLAR INJURIES FOR THE CERVICAL SPINE (AAAM, 2005) 

AIS Rating Injury Examples 

1 (Minor) Spinous ligament injury, acute strain with no fracture or dislocation 

2 (Moderate) Disc injury, dislocation (no cord involvement), fracture of the spinous process, 

transverse process, facet, lamina, pedicle (no cord involvement), nerve root contusion 

or laceration 

3 (Serious) Cord contusion, odontoid fracture, bilateral facet dislocation, vertebral body burst 

fracture (>20% loss of anterior height) 

4 (Severe) Incomplete cord syndrome 

5 (Critical) Complete cord syndrome (C4 or below), cord laceration (C4 or below) 

6 (Fatal) Complete cord syndrome (C3 or above), cord laceration (C3 or above) 

 

A different clinical grading system (Quebec Classification of Whiplash-Associated Disorders) 

designed specifically for WADs was initiated by the Quebec Task Force (Spitzer et al., 1995) that includes 

five grades of severity (Table 2-3).  
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TABLE 2-3: WAD CLINICAL GRADING SYSTEM (Spitzer et al., 1995)  

Grade Clinical Presentation 

0 No pain and physical signs 

I Neck pain, stiffness or tenderness. No physical signs 

II Neck complaint and musculoskeletal signs (decreased 

range of motion, tenderness) 

III Neck complaint and neurological signs 

IV Neck complaint and bone fracture or dislocation 

 

WADs can have symptoms that are either acute (short term) or chronic (long term) which is defined 

as pain lasting more than 3-6 months by the European Foundation of International Association for the Study 

of Pain (Niv and Devor, 2007). The development of chronic symptoms from these minor injuries are related 

to alterations of pain processing in the central nervous systems, and could be influenced by multiple factors 

such as gender, impact direction, vehicle interaction etc. The most common variables that suggest slow 

recovery or development of chronic symptoms includes a high level of initial pain, high number of 

symptoms, and the female gender (Sterner and Gerdle, 2003; Schofferman et al., 2007; Carrol et al., 2008). 

It is estimated that half of all WAD victims continue to report symptoms one year after the initial incident 

(Carroll et al., 2008). The cervical spine has the highest vulnerability for AIS1 injuries to occur, in addition 

to the highest frequency to develop permanent medical impairment from these AIS1 injuries, and is ranked 

third in terms of body region for the highest risk of developing chronic symptoms from injuries in motor 

vehicle collisions (Gustafsson et al., 2015). Over the past four decades, advancements in vehicle safety have 

reduced the occurrence of AIS3+ injuries that result from motor vehicle collisions by 80%, in addition to a 

decrease of 76% of the disability risk that result from AIS 2+ injuries (Kullgren et al., 2002). In contrast, 

the disability risk from AIS1 injuries increased by 18%, and the neck was the only body region that 

demonstrated an increase in disability risk (14%) whereas other body region had on average a 90% 

reduction (Kullgreen et al., 2002).   

Females have approximately double the risk in both the development of WAD and the transition to 

chronic symptoms when compared to males (Carlsson et al., 2010; Carstensen et al., 2012). Some difference 

between the male and female gender include neck circumference, neck muscle moment arms, and vertebra 

dimensions in size matched individuals. When compared to females, males have a greater increase in neck 

circumference with body weight, and have a larger neck circumference when compared to female 

volunteers with the same body weight (Vasavada et al., 2008). Males also have greater muscle moment 

arms when compare to size matched females because the neck muscles are situated further away from the 

cervical spine, which indicate that the neck musculature in males have greater moment generating 
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capabilities (Stemper et al., 2008). Females typically have a smaller cervical vertebra (vertebral width and 

disc-facet depth) and vertebral body dimension (vertebral body depth and width) when compared to male 

vertebrae, which suggests that the female vertebra would experience higher stresses (Stemper et al., 2009). 

The current literature has suggested that the increased risk of injury from WAD may be more dependent on 

morphologic differences of the cervical spine and head, rather than differences in gender (Stemper and 

Corner, 2016). These factors indicated that the same morphological differences that are more commonly 

present in females, such as neck slenderness and smaller neck circumference will also influence injury risk 

in the male population that posses these same morphologic factors (Stemper and Corner, 2016).  

Epidemiological data has suggested that AIS1 soft tissue injury can occur in the neck after exposure 

to frontal, rear and lateral impact configurations, with rear impacts have the highest risk of sustaining 

whiplash injury followed by frontal impacts and side impacts (Kullgren et al., 2013; Watanabe et al., 2000; 

Hell et al., 2003; Martin et al., 2008; Cassidy et al., 2000; Berglund et al., 2002; Morris and Thomas 1996; 

Kullgreen et al., 2000; Jakobsson et al., 2000; Kraftt, 1998). Although rear impacts have the highest risk to 

sustain WAD, the total number of occurrences of injury from frontal and side impacts are often equal to or 

exceed the occurrence from rear impact (Table 2-4) (Berglund et al., 2003, Kullgren et al., 2013; Martin et 

al., 2008, Morris and Thomas, 1996; Krafft 1998, Hell et al., 2003; Otte et al., 1997; Temming and Zobel, 

1998). This signifies the importance of investigating whiplash injury that involve frontal and side impacts 

in addition to rear impacts.  

TABLE 2-4: WAD FREQUENCY IN FRONTAL, REAR, AND LATERAL IMPACT DIRECTIONS 

Study Frontal Rear Lateral 

Martin et al., 2008 43.9% 37.7% 18.4% 

Berglund et al., 2003 22.6% 38.4% 11.5% 

Morris and Thomas, 1996 55% 12.6% 24.8% 

Krafft, 1998 33.2% 47.9% 9.6% 

Hell et al., 2003 44% 32.6% 23.4% 

Otte et al., 1997 34.6% 21.2% 12.2% 

Temming and Zobel, 1998 38% 16% 11.8% 

Kullgren et al., 2013 37% 43% 20% 

Richter et al., 2000 36% 16% 12% 

 

Whiplash tolerance is difficult to quantify due to many crash factors (e.g. vehicle crash performance, 

seat and headrest design, impact severity and orientation, etc.) as well as individual differences (e.g. age, 

stature, etc.) that may account for the outcome of the injury. These factors are further limited by the 

relatively low number of cases used to generate injury tolerance curves for different crash scenarios, and 
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may not be fully representative of the entire population. Despite these shortcomings, the current injury 

tolerance data in the literature are still useful and contribute to our understanding of the human tolerance to 

WADs.  

In frontal impact, the risk for sustaining WAD for Volvo vehicles in Sweden in the year of 1997 to 

1998 was 18% for velocity changes of 0 km/h to 8 km/h, 25% for 9 km/h to 16 km/h and 30% for 17 km/h 

to 24 km/h (Jakobsson et al., 2000). A study on Volvo vehicles that included 24 occupants in 16 frontal 

impacts that suffered WAD found that most symptoms developed in crash severities >5 km/h, with higher 

symptom intensity arising from >10 km/h (Jakobsson et al., 2003). In the German population, Ritcher et 

al., 2000 identified that 10% of occupants developed WAD for crash velocities <10km/h, and 28% for crash 

velocities 11 km/h to 20 km/h. Cappon et al., 2004 analyzed four European databases for WAD and found 

a 20% risk to develop symptoms from a mean acceleration of 5 g (velocity change <20 km/h), in addition 

to development of WAD II (QTF) symptoms in the range of 18 km/h to 25 km/h. 

Ritcher et al., (2000) identified that 42% of all WAD from rear impacts were from crash velocities of 

<10 km/h. Krafft et al., (2002) showed that rear impacts above 7g mean vehicle acceleration had almost 

100% risk for sustaining both short term and long term WAD, while the risk was significantly lower for 

mean vehicle accelerations below 3g. For short term symptoms (<1 month), the injury risk was 20% for 2g 

mean acceleration (velocity change of 5 km/h) and 35% for 2g to 3g mean acceleration (velocity change of 

5 km/h to 10 km/h), and a injury risk of >60% for 3g to 4g mean acceleration (10 km/h to 15 km/h). A 

separate study based on 79 real life rear end crashes where the vehicle was installed with a crash recorder 

demonstrated that for all vehicles, the average change of velocity was 10 km/h with an average mean 

acceleration of 3.5g (Kullgren et al., 2003). Additionally, the injury risk for initial symptoms was estimated 

to be approximately 20% for a mean acceleration of 2.5g (velocity change of 5 km/h) and 40% for 4g mean 

acceleration (velocity change of 10 km/h). Symptoms that persist for greater than one month had a risk of 

20% for mean acceleration of 5g (velocity change of 15 km/h) and 60% for mean acceleration of 5.5g 

(velocity change of 17.5 km/h). 

Due to a lack of data in the epidemiological literature for side impacts, estimated tolerance for WAD 

are currently not available. Other studies have however indicated that WAD from side impacts can develop 

from velocity changes of less than 10 km/h (Ritcher et al., 2000). In addition, the risk for developing WAD 

was approximately 20% for all side impact conditions of varying severities and doubled when the vehicle 

compartment intrusion exceeded 15 cm, and increased by 2.8 times when the head had impacted the interior 

of the vehicle (Jakobsson et al., 2000).  
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2.2.1 Pain Sources 

There are two types of pain experienced after sustaining WAD: radicular pain and somatic pain. 

Radicular pain refers to pain and neurological symptoms that typically persist in the upper extremities, 

which arise from injury to the cervical nerve roots and dorsal root ganglia. Radicular pain is described as a 

sharp shooting pain that travels towards the affected upper limb and is commonly related to symptoms of 

paresthesia (Bogduk, 2003). Somatic pain is perceived at the source of injury when a tissue is loaded 

mechanically past a critical threshold, which cause high threshold (nociceptor) nerve endings to transmit 

pain signals along afferent fibres to the spinal cord and brain. Mechanoreceptors are low threshold afferent 

fibres that activate when the tissues are deformed by non-noxious stimuli for the purpose of providing 

proprioception. The mechanism of pain is an important physiologic response to noxious stimuli in living 

organisms to alert and prevent damage to tissues or to prevent further damage to already injured tissues 

(Costigan et al., 2009). Peripheral sensitization refers to a temporary state of lowered threshold and 

increased firing frequency of pain signals, which leads to a state of heightened sensitivity and decreased 

activation thresholds (Winkelstein 2004; Latremoliere and Woolf, 2009). This is a normal reaction due to 

the inflammatory response of the body that follows tissue injury to promote healing (Winkelstein, 2004). 

Chronic pain develops through changes to nociceptive processing in the central nervous system through a 

process called central sensitization that can result in permanent pain hypersensitivity or sensitization 

(Winkelstein, 2004; Latremoliere and Woolf, 2009; Winkelstein 2011). This can lead to a continued pain 

response long after the initial injury site has completely healed. For this reason, chronic pain is considered 

to be pathologic, as it no longer functions as a physiologic response to protect organisms against potential 

tissue damage (Basbaum et al., 2009; Ita et al., 2017).  

Several anatomical sites in the neck have been identified as potential pain sources during whiplash 

injury: facet joint, spinal ligaments, intervertebral discs, nerve root, muscles, and vertebral artery 

(Siegmund et al., 2009). Each anatomical site have been investigated in varying levels of details, with the 

facet joint being the most investigated to date (Table 2-5). 
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TABLE 2-5: SUMMARY OF WHIPLASH INJURY LOCATIONS AND STATE OF DEVELOPMENT (Adapted from 

Curatolo et al., 2011) 

Development 
Facet 

Joint 
Ligaments Disc 

Nerve 

Root 
Muscle 

Vertebral 

Artery 

Theoretical model Yes Yes Yes Yes Yes Yes 

Cadaver or volunteer 
      

Injury demonstrated Yes Yes Yes - Yes Yes 

Animal model       

Injury produced Yes - - Yes Yes - 

Nociception produced Yes - - - Yes - 

Patient       

Valid diagnosis Yes - - - - - 

Effective treatment Yes - - - - - 

Facet Joint 

The cervical facet joint is a highly innervated structure that has been identified as the most common 

anatomical location for neck pain (Barnsley et al., 1995; Siegmund et al., 2009). Clinical studies have 

demonstrated that 60% of patients with chronic neck pain experienced pain relief after double-blinded 

anesthetic blocks to the cervical medial branch, which indicated that the pain originated from the facet joint. 

Further studies also provided histologic evidence that both mechanoreceptors and nociceptors exist in the 

facet joint capsule (Inami et al., 2001; Ohtori et al., 2004; Kallakuri et al., 2003). Two mechanism of injury 

has been proposed: synovial fold (meniscus) pinching during rear impact and excessive stretching of the 

capsular ligament. The first mechanism was first proposed by (Ono et al., 1997; Kaneoka et al., 1997), 

where in a rear impact; thoracic ramping caused by seatback interactions resulted in compression of lower 

cervical spine. It was identified through radiographic imaging that the compressive force caused the 

instantaneous center of rotation of the lower cervical segment to shift upwards. This resulted in a non-

physiologic motion of the lower cervical spine segment, which caused the inferior facet of superior vertebra 

to impact the superior facet of the inferior vertebra, and therefore hypothesized to pinch and impinge on the 

synovial fold. Evidence of nerve endings in the synovial fold have been discovered but the mechanism and 

tolerance to activate the nociceptors from compression remains unknown. This mechanism of facet joint 

synovial fold impingement has not been further explored by biomechanical or animal models and therefore, 

remains to be a speculation (Siegmund et al., 2009). The second mechanism of excessive facet joint 

stretching was first proposed by (Yang et al., 1997) as the shear hypothesis theory, which indicated that 

shear forces in the cervical spine could cause soft tissue injury. This led to a series of full body PMHS rear 

impact tests to examine the local facet kinematics and engineering strains of the facet joints (22% to 60% 
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strain) (Deng et al., 2000). Other rear impact PHMS experiments have identified excessive strains in the 

facet joint (28% to 40%) when compared to physiologic strains (6% to 21%), with maximum strains 

occurring in the lower cervical spine segments (Panjabi et al., 1998; Pearson et al., 2004). Furthermore, 

isolated testing of PHMS cervical spine segments has identified sub-failure strain thresholds of the capsular 

ligament to be between 35% to 65% (Winkelstein et al., 2000; Siegmund et al., 2001), which indicated that 

rear impacts may cause sub-failure of the capsular ligament. When the facet joint is distracted within the 

sub-failure region, micro lesions form in the CL and exhibits increased ligament laxity that can lead to acute 

or chronic cervical spine instability (Tominaga et al., 2006; Ivancic et al., 2008). Ligament laxity in the 

lower cervical spine can exhibit cervical instabilities that can cause chronic pain and has been associated 

with clinical symptoms of painful muscle spasms and paresthesia (Panjabi, 2006; Steilen et al., 2014). In-

vivo animal models of pain has provided confirmation of nociceptive responses from excessive stretching 

of the facet joint (~48% strain for nociceptor activation), through nociceptor signalling and behavioural 

sensitivity studies (Lu et al., 2005; Lee et al., 2004; Lee et al., 2008). Interestingly, it was discovered that 

rodents exposed to in-vivo sub-failure loading of the CL produced behavioural sensitivity with increased 

duration when compared to loading that caused catastrophic failure (Lee et al., 2008). This was 

hypothesized to occur due to nociceptor termination from the CL rupture and suggest that an increase in 

pain response and pain duration may result from sub-failure injury to the CL.    

To date, cervical facet joint pain is the most investigated source of WAD (Curatolo et al., 2011). The 

facet joint has been identified as a highly innervated structure, with histologic evidence of afferent fibres 

that contain mechanoreceptors and nociceptors. The facet joint shear hypothesis and excessive stretching 

has been successfully demonstrated in PHMS experiments but also reproduced in animal models of pain 

through evidence of nociceptor signalling, and behavioural sensitivity studies. Furthermore, they are the 

only anatomical source of neck pain that can be clinically diagnosed through anesthetic nerve blocks with 

an available treatment option that involves radiofrequency neurotomy of the nerve endings (Bogduk 2011; 

Curatolo et al., 2011).  

Ligaments 

The ligaments in the cervical spine may sustain acute injury in automotive impact events through either 

non-physiological motion of the cervical segments, or motion that exceeds physiologic limits. Minor sprains 

and strains are difficult to detect through current medical imaging techniques that result in challenges in 

clinical diagnosis. Injured ligaments may cause a pain response, lead to a potential increase in ligament 

laxity and can lead to chronic cervical spine instability (Siegmund et al., 2009). In addition, instability may 
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cause modified muscle activation response that may further lead to decreased range of motion and 

proprioception (Panjabi, 2006; Siegmund et al., 2009). The cervical spine ligaments have not been studied 

for nociceptors, however, studies in the lumbar spine have identified nociceptors, which may imply that 

they exist for the cervical spine ligaments, and may exhibit a pain response when injured. Injury of the 

cervical vertebrae ligaments is well documented in the experimental literature, and has been shown to 

exceeded physiological ranges of motion and physiological strains in rear, side and frontal impacts (Ito et 

al., 2004; Maak et al., 2007; Ivancic et al., 2005; Ivancic et al., 2004; Panjabi et al., 2004). In frontal impacts, 

isolated PHMS neck specimens indicated a significant increase in ligament strains when compared to 

physiologic strains for the interspinous and supraspinous ligament (C23, C34, C67), and ligamentum 

flavum (C67) at an impact severity of 4g (Panjabi et al., 2004). In addition, a significant increase in range 

of motion and neutral zone was observed in isolated neck specimens when subjected to 8g frontal impacts 

(Ivancic et al., 2005). In the rear impact condition, isolated PHMS neck specimens also indicated a 

significant increase in ligament strain in the anterior longitudinal ligament at the C45 segment at 3.5g 

impact severity (Ivancic et al., 2004). Furthermore, isolated neck specimens subjected to 5g rear impacts 

demonstrated a significant increase in range of motion and neutral zone for the lower cervical spine 

segments. For side impacts, a 6.5g impact severity demonstrated a significant increase in neutral zone and 

range of motion in flexion, axial rotation, and lateral bending for the lower cervical spine segments. These 

PHMS experiments provide evidence that the ligaments and soft tissues in the cervical spine can be injured 

and cause a significant increase in range of motion and laxity. The upper cervical spine contain a complex 

arrangement of ligaments due to the lack of an intervertebral disc between the atlas and axis. Attempts have 

been made to identify possible lesions in the upper cervical spine complex using MRI signal intensity 

changes (Kaale et al., 2005; Krakenes and Kaale, 2006), but the validity of these results remain controversial 

(Dullerud et al., 2010; Li et al., 2013; Vetti et al., 2010; Vetti et al., 2011). In addition, PHMS experiments 

in head turned rear impacts and side impacts (up to 8g severity) demonstrated injury to the lower cervical 

spine ligaments but not in the upper cervical spine ligaments. These studies suggest that the upper cervical 

spine ligamentous complex remain challenging to diagnose, and that symptoms of pain from whiplash 

patients may not occur in the upper cervical spine for low severity impacts, and may be the result of injury 

in other anatomical sites (Siegmund et al., 2009).  

Intervertebral Disc 

 The intervertebral disc in the cervical spine is an innervated structure that has the potential to 

generate pain and symptoms related to WAD (Bogduk 2002). Injury to the disc may result in herniation 

that can cause irritation to the surrounding neural structures that can cause radicular symptoms and pain. 
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Disc herniation has been shown to occur in the lower cervical spine but occur more commonly in the lumbar 

spine (Mall et al., 2012). Several studies used MRI and observed cervical disc herniation on patients that 

have sustained a whiplash trauma, with herniation occurring most frequently in the lower cervical spine 

(Davis et al., 1991; Jonsson et al., 1994; Pettersson et al., 1997). Minor disc lesions such as annulus fibrosus 

tears, disc rim lesions, and endplate avulsions have been documented from post-mortem examination of 

motor vehicle crash victims (Taylor and Twomey, 1993; Jonsson et al., 1994). In addition, rear impact full 

body PHMS sled experiments (4.5g) revealed disc rim lesions (avulsion) among other ligamentous injury 

in all specimens using computed tomography scans and cryomicrotomy (Yoganandan et al., 2001). PHMS 

experiments on isolated head neck specimens identified non-physiological disc strains initiating at 

maximum accelerations of 6g and 3.5g for frontal and rear impacts respectively (Ito et al., 2005; Panjabi et 

al., 2004). Like other soft tissues in the neck, minor lesions and acute tissue strains remains challenging to 

diagnose due to difficulties in detecting these injuries using medical imaging techniques. There are currently 

no animal models of pain that have been used to investigate potential nociceptive signalling or behaviour 

sensitivity for intervertebral disc injuries. The literature suggests that the cervical intervertebral disc can be 

potentially injured during whiplash loading conditions, but whether or not excessive stretching or sub-

failure of the annular fibres can cause a pain response remains inconclusive (Siegmund et al., 2009).  

Nerve Root 

The cervical nerve root and dorsal root ganglia may be susceptible to injury from a motor vehicle crash 

event that may result in radicular pain and other neurological symptoms (weakness and numbness) due to 

impaired local sensory processing (Siegmund et al., 2009). Two mechanism of injury have been proposed 

for the cervical nerve root and dorsal root ganglion: the pressure gradient theory and direct impingement. 

Rapid movement of the head was hypothesized to generate transient pressure gradients in the spinal canal 

that may cause injury to the nerve root and ganglion (Aldman, 1986). Histopathological examination on in-

vivo porcine subjects that were exposed to rapid head perturbations provided evidence of cellular injury to 

the ganglia nerve cells (Svensson et al., 2000). Rapid motion of the neck may cause transverse compression 

of the cervical nerve root and ganglion from narrowing of the intervertebral foramen space and may be an 

injury mechanism that produces pain. Due to challenges in monitoring the impingement of the nerve root 

experimentally, changes in foraminal dimensions were measured as an alternative method to quantify the 

risk for impingement (Curatolo et al., 2011). PHMS experiments that utilized isolated head neck specimens 

have identified a reduction in forminal area and extensive narrowing from extension and lateral bending 

that suggest potential impingement of the nerve roots and dorsal root ganglia may occur from rear or side 

impacts (Nuckley et al., 2004; Panjabi et al., 2006; Tominaga et al., 2006; Ivancic et al., 2012). Additionally, 
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individuals with symptoms of spinal degeneration such as cervical stenosis and spondylosis may have an 

increased risk of nerve root impingement due to the narrowing of the intervertebral foramina space (Panjabi 

et al., 2006; Tominaga et al., 2006; Ivancic et al., 2012). Furthermore, in-vivo rodent experiments that 

applied mechanical loads on the cervical nerve roots demonstrated an increase in pain response, which 

provided evidence that direct impingement may be associated to pain (Rothman et al., 2005; Hubbard and 

Winkelstein, 2005; Hubbard et al., 2008). In contact sports, radicular symptoms known as burners or 

stingers can occur from both nerve root impingement and an alternate mechanism that involves stretching 

or traction of the nerve roots and brachial plexus (Levitz et al., 1997). This injury mechanism could possibly 

occur from vehicle side impacts loading conditions where the head is accelerated rapidly towards the 

shoulder, but to date has not been studied outside the context of sport injuries.  

Muscles 

Myofascial pain in the neck occur frequently in WAD patients (Evans, 1992). The primary mechanism 

of injury for the neck muscles occur after eccentric contraction during an impact event. Volunteers subjected 

to low speed rear impacts demonstrated in-vivo muscle strains of the sternocleidomastoid and semispinalis 

capitis muscles that exceeded the predicted threshold for muscle injury (Brault et al., 2000; Vasavada et al., 

2007; Mcpherson et al., 1996; McCully and Faulkner, 1985). A rise in serum creatine kinase has been 

associated with damaged induced muscle soreness (Evans et al., 1986). A clinical study of WAD patients 

has identified increased levels of serum creatine kinase within 24 hours after the initial injury, but returned 

to baseline levels within 48 hours, while patients with persistent neck pain for more than three months 

demonstrated normal levels of serum creatine kinase (Scott and Sanderson, 2002). Therefore, clinical 

evidence has suggested that muscle injury from whiplash exposure may be associated with acute pain but 

the development of chronic pain from injury to the neck muscles remains inconclusive. Muscles in the 

cervical spine may also cause pain and other symptoms through interactions with other anatomical sites in 

the neck. Anatomical dissection studies have identified that the cervical multifidus muscle is directly 

inserted onto the facet capsule (Winkelstein et al., 2000; Anderson et al., 2005). It was hypothesised that 

the sudden reflex activation of these muscles may exacerbate capsular ligament stretching during rear 

impact events (Siegmund et al., 2008). Further biomechanical studies are required to investigate the 

involvement of neck muscles in both acute and chronic neck pain following impacts that results in WADs.  
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Vertebral Arteries 

The vertebral arteries arise bilaterally from the subclavian arteries and travel superiorly along the 

transverse foramen starting from the C6 to C1 vertebrae before entering the foramen magnum. The vertebral 

artery can become elongated during an impact event and cause narrowing in the vasculature diameter due 

to Poisson’s ratio (Nibu et al., 1997; Siegmund et al., 2009). This can induce vertebral artery lesion and 

cause altered blood flow patterns that are hypothesized to be associated with WAD symptoms (Seric et al., 

2000; Reddy et al., 2002). PMHS testing have indicated that the vertebral artery strain exceeded the 

physiological elongation in side impacts, and head turned rear impacts, but not for frontal and rear impacts 

(Ivancic et al., 2006; Carlson et al., 2007). Although PHMS studies have identified the vertebral artery to 

be a potential injury location due to excessive elongation, there is insufficient evidence of acute or chronic 

pain development. Furthermore, there are currently no valid diagnostic test that can determine whether or 

not the vertebral artery is damaged after an impact event. 

2.3 Experimental Studies for Boundary Conditions and Response Kinematics 

2.3.1 Frontal Impact 

The Naval Biodynamics Laboratory (NBDL) performed 39 in-vivo sled test on eight human male 

volunteers that ranged from maximum accelerations of 2g to 15g (Thunnissen et al., 1995). All potential 

volunteers underwent a rigorous screening process and were selected based on physical fitness. A rigid seat 

was fixed onto a HYGE acceleration sled and volunteers were secured with a five-point restraint system. 

The seat was accelerated backwards from rest to various closing velocities to simulate different frontal 

impact conditions. Volunteers had accelerometers and motion trackers attached to a mouthpiece, head, and 

T1 spinous process that were active during the perturbation event. High-speed video was also used in 

conjunction with the instrumentation to collect data on the volunteers (Figure 2-24). Together, detailed 

information such as velocity, acceleration and displacement of the head center of gravity and T1 were 

collected for each test run for all volunteers. To date, this is the most complete dataset of volunteer neck 

and head kinematics in the frontal impact configuration, which also covers the largest range of severity; 

most of which are not allowed today due to ethical regulations. The T1 kinematics are therefore an ideal 

candidate to be used to investigate potential soft tissue injury in frontal impacts.  
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FIGURE 2-24: NBDL VOLUNTEER KINEMATICS IN A FRONTAL IMPACT (Adapted from Muzzy and Lustick, 1976) 

A series of low speed frontal impact experiments were performed by (Beeman et al., 2011) on five 

human male volunteers with anthropometrics similar to the 50th percentile male. In total, 20 tests were 

conducted: 10 tests with maximum acceleration severity of 2.5g (change in velocity of 4.8 km/h) and 10 

tests with maximum acceleration severity of 5g (change in velocity of 9.7 km/h) utilizing a custom sled 

setup with a rigid seat and mounted footrest and steering column. Subjects were secured to the seat by a 

standard three-point seatbelt, and instructed to place their feet on the footrest and hands on the steering 

wheel. Markers were attached to the head and body of the volunteers to capture accelerations of the head 

CG and C7 vertebra during the perturbation. Although this series of experiments provided information on 

occupant kinematics, the acceleration severity was not high enough to cause potential tissue damage in the 

volunteers.   

2.3.2 Rear Impact 

The Japan Automobile Research Institute (JARI) conducted a series of volunteer tests to simulate rear 

impact loading condition (Ono et al., 1997). Twelve male volunteers were subjected to speed change of 4 

km/h, 6 km/h, and 8 km/h using an inclined sled without a head restraint. The 8 km/h sled condition 

produced a maximum sled acceleration of 4g. T1 and head center of gravity accelerations were collected 

using accelerometers during the perturbation. A second set of experiments were conducted by JARI to 

simulate a rear impact loading condition (Ono et al., 2006). Six volunteers were subjected to a maximum 

impact speed of 6 km/h (4g maximum acceleration) using a horizontal sled with a rigid seat without a 

headrest. Two accelerometers were used to measure the accelerations of the T1 and head center of gravity 

during the impact event. A series of 28 rear impact sled test were performed by (Davidsson et al., 1998) on 

thirteen human volunteers. A bullet sled was used to strike a target sled to subject the volunteers to a velocity 

change of 5 km/h (3g) and 7 km/h (3.8g). A standard Volvo seat and a custom laboratory seat was mounted 

on the target sled. Accelerometers were mounted onto the volunteers to capture the kinematics of the head 
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center of gravity and the T1 vertebra. Although all three of the above-mentioned experiments provided the 

necessary T1 kinematics as input boundary conditions to simulate a rear impact, the maximum sled 

acceleration was 4g and less than 10 km/h, which is considered to be a non-injurious input.  

A series of 26 rear impact test were performed by (Deng et al., 2000) using six whole body PHMS. A 

rigid seat that was attached onto a HYGE mini-sled was used to simulate rear impacts with velocity changes 

that ranged from 5 km/h to 15.5 km/h (5g to 10g maximum sled acceleration). Markers and accelerometers 

that were attached onto the cadaver subjects were used to track motion of the cervical spine and to measure 

the kinematics of the T1 and head center of gravity. This set of experiments was performed above the 

injurious threshold of 4g max acceleration of human volunteers to provide the necessary T1 input boundary 

conditions to simulate a rear impact that is severe enough to cause soft tissue injury. In addition, this 

boundary condition has the benefit of already being validated with the GHBMC 50th percentile male and 

5th percentile female neck model.    

2.3.3 Lateral Impact 

The Naval Biodynamics Laboratory (NBDL) performed series of in-vivo sled test on nine human 

volunteers that ranged from maximum accelerations of 4g to 7g (Wismans et al., 1986). All potential 

volunteers underwent a rigorous screening process and was selected based on physical fitness. A rigid seat 

was fixed onto a HYGE acceleration sled and volunteers were secured with a five-point restraint system. 

The sled setup was similar to the series of frontal impact tests except the seat was rotated 90 degrees to 

allow lateral acceleration from rest, to a closing velocity of 25 km/h with different durations to simulate 

different lateral impact conditions (Figure 2-25). Volunteers had accelerometers and motion trackers 

attached to a mouthpiece, head, and T1 spinous process that were active during the perturbation event. 

High-speed video was also used in conjunction with the instrumentations to collect data on the volunteers 

(Figure 2-25). Together, detailed information such as velocity, acceleration and displacement of the head 

center of gravity and T1 were collected for each test run for all volunteers. To date, this is the only dataset 

of volunteer sled experiment in the lateral impact configuration that provide kinematics of both the T1 and 

head center of gravity in acceleration severities of 4g and higher. Therefore, the T1 inputs from this set of 

experiments are ideal boundary condition inputs to simulate soft tissue injury in a lateral impact scenario.  



 

45 

 

 

FIGURE 2-25: NBDL VOLUNTEER KINEMATICS IN A LATERAL IMPACT (Adapted from Ewing et al., 1977) 

A series of simulated lateral impacts were conducted by the Japan Automobile Research Institute 

(JARI) on eight human volunteers to understand the neck response and cervical vertebral motions in the 

lateral direction (Ono et al., 2005). An inertia impactor was used to strike the volunteer’s shoulder (400 N 

to 600 N) to apply loading on to the body to simulate an automobile lateral collision. Accelerometers 

attached to a mouthpiece and T1 were used to monitor the kinematics of the T1 and head center of gravity. 

The 600 N impactor resulted in a maximum torso acceleration of approximately 6g. Although this series of 

experiments provided experimental corridors of T1 and head center of gravity from the shoulder impactor, 

the impact severity was not high enough to cause injury in the volunteers. In addition, it was unknown what 

the equivalent resultant acceleration of the vehicle when using the shoulder impactor.  

Another series of low speed lateral impact experiments were conducted by JARI on three human 

volunteers using a sled with a mounted rigid seat (Ejima et al., 2012). The sled was accelerated laterally 

from a standstill to two severities of 0.4g and 0.6g. Volunteers were secured to the rigid seat with a lap belt 

during the perturbation. Several instrumentations on the torso and mouthpiece was used to measure the 

acceleration response of the T1 and head center of gravity. The purpose of this experiment was to recreate 

an aggressive lane change maneuver to mimic swerving for obstacle avoidance. Therefore, the severity 

applied to the volunteers is very low and would not cause injury to the volunteer.  

2.4 Human Body Models 

Human body models (HBMs) are useful tools that allow researchers and engineers to investigate and 

understand mechanisms of injury in complex loading events. The ultimate goal for the development of 

HBMs is to design countermeasures to better protect and reduce the frequency of injury in vehicle occupants 

and pedestrians during a collision (Yang et al., 2018). Anthropometric test devices (ATDs) are physical 



 

46 

 

human surrogates that are designed to have similar geometric and mass properties that reflect a range of 

statures (Schneider et al., 1983) to represent the general adult population (e.g. 95th percentile male or large 

male, 50th percentile male or average male and 5th percentile female or small female). ATDs have been 

employed since the 1970s by the automotive industry to assess protection and safety for both occupants and 

pedestrians. Although ATDs can be instrumented with load cells and accelerometers, the assessment of 

injury can only be accomplished for global body regions due to the absence of detailed anatomical structures 

such as internal organs and hard tissues (Yang et al., 2018). One of the most valuable benefits of utilizing 

a HBM when compared to an ATD is the ability to predict local injury for any body region at the tissue 

level. This is crucial in discerning detailed injury locations to understand complex injury mechanisms for a 

given impact scenario. Furthermore, ATDs are only optimized for uni-directional loading (e.g. Hybrid III 

for frontal impact, BioRID II for rear impact and WorldSID for side impact); while a HBM can be used to 

investigate multi-directional loadings. Examples of current state-of-the art HBMs include the Global 

Human Body Model Consortium (GHBMC) model (Schwartz et al., 2015; Davis et al., 2016), Total HUman 

Model for Safety (THUMS) (Kato et al., 2018), and the Virtual Vehicle-safety Assessment (ViVA) model 

(Östh et al., 2017).  

In order to utilize HBMs to assess injury, there are three major inputs that are required: boundary 

conditions to load the model, material properties with the correct constitutive law, and geometric parameters 

such as accurate anatomical and anthropometric detail (Figure 2-26). These three inputs will yield model 

response parameters such as kinematic and kinematic response that can be used to compare with injury 

metrics for injury prediction.  

 

FIGURE 2-26: HBM INPUTS AND OUTPUT FOR INJURY PREDICTION (Adapted from Cronin, 2014) 
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2.4.1 Computational Human Neck Models  

Numerous computational models of the cervical spine have been created by researchers since the 1970s 

(Yang et al., 2018). Simple spring-mass systems were used to create multi-body models of the cervical 

spine to allow for kinematic analysis of spinal motions. However, these multi-body models are limited in 

their ability to evaluate stresses and strains of neck tissues, which is critical in predicting injury at the tissue 

level. To address this issue, finite element models of varying levels of details have been created by various 

researchers globally. Early finite element models of the neck had simplified geometric details and often 

represented the vertebrae as simple rigid bodies, and lacked active and passive musculature due to 

limitations of computational resources (Kleinberger, 1993). As computational resources became more 

accessible, neck models included detailed geometries obtained from computed tomography (CT) and 

magnetic resonance imaging (MRI) scans of human subjects, along with deformable models of the 

vertebrae. In addition, the neck musculature was included, along with the function of muscle activation for 

increased biofidelity. 

One of the first finite element neck models that was developed using anatomical data from MRI scans 

of a young 50th percentile male volunteer was the Wayne State University Neck model (Yang et al., 1998). 

The model consisted of the C1 to T1 vertebrae and included soft tissues such as the ligaments, intervertebral 

disc, and muscles. The vertebrae were modelled using solid elements with a linear elastic-plastic 

formulation and the IVD was modelled using a linear viscoelastic material model. The ligaments were 

represented using tension only 1-D spring elements as well as 2-D membrane elements. The modelled 

contained only passive musculature and was modelled using 60 tension only spring elements. 

Deng et al., 1999 developed a finite element model of the ligamentous cervical spine using 3-D 

anatomical data. Vertebrae, IVDs had solid elements, with the hard tissues modelled as non-deformable 

rigid bodies. The cervical spine ligaments were modelled using 2-D membrane elements with a linear 

viscoelastic formulation. The model also contained 15 pairs of active musculature, represented using 

contractile beam elements using the Hill muscle model. 

The KTH model was developed by KTH Royal Institute of Technology, and was developed based on 

computed tomography scans of a 27 year old male that was scaled to represent a 50th percentile male (Brolin 

et al., 2006). The model was composed of a rigid skull, with deformable and rigid cervical vertebrae that 

were separated into cortical and trabecular bone using 4-node shell and 8-node solid elements respectively. 

The spinal ligaments were modelled with 2-node tension only spring elements, and 4-node membrane 

elements and the facet cartilage were modeled using 8-node solid elements. The intervertebral discs were 
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composed of the annulus fibrosus (4-node membrane elements), annulus matrix (8-node solid elements), 

and the nucleus pulposus (8-node solid elements). The model contained 24 pairs of cervical musculature 

that was represented using 3-D non-linear viscoelastic elements for the passive behaviour, and embedded 

1-D Hill-Type beam elements to model the active behaviour of the muscle. The model has been used to 

optimize muscle activation to fit experimental corridors, study muscle load distribution, and is also one of 

the first models that incorporate 3-D passive elements in a neck model (Brolin et al., 2006; Hedenstierna et 

al., 2008).  

The Total HUman Model for Safety (THUMS) was created by Toyota Motor Corporation and Toyota 

Central R&D Labs., Inc. to investigate injuries to the human body in real-world traffic accidents and is 

commercially available for use. The THUMS model is representative of a 50th percentile male and a 5th 

percentile female model was later created. The cervical spine contained deformable vertebra with cortical 

bone modelled as 2-D shell elements, and trabecular bone modelled as 3-D solid elements. The ligaments 

were modelled using 2-D shell elements and the intervertebral discs were modelled using 3-D solid 

elements with distinct annulus fibrosus and nucleus pulpous. In addition, the spinal cord was also included, 

with the white matter, gray matter, and cerebral spinal fluid modelled as 3-D hexahedral solid elements, 

and the pia mater, dura mater and denticulate ligament modelled using 2-D shell elements (Kimpara et al., 

2006). The neck muscles were represented using a hybrid muscle model that contained 3-D solid elements 

for the passive muscle and Hill-Type 1-D beam elements for the active muscle (Iwamoto et al., 2009). The 

THUMS model has received multiple enhancements over the years, with the latest version being THUMS 

version 6 (Kato et al., 2018). The THUMS model has been utilized to study the effects of full body bracing 

during an impact event, effect of gender and spinal alignments (Iwamoto et al., 2015; Kitagawa et al., 2015; 

Sato et al., 2016). 

The University of Waterloo (UW) neck model (Panzer et al., 2011) was created based on the geometry 

of the neck model by (Deng et al., 1999). The model contained the skull in addition to the cervical spine 

and T1 vertebrae, which were modelled as deformable bodies. The cortical bone was represented using 2-

D quadrilateral shell elements with elastic-plastic formulation, and the trabecular bone was modelled using 

3-D hexahedral elements with an elastic-plastic formulation. The intervertebral discs composition included 

the nucleus pulposus and ground substance, which were represented using 3-D solid elements, while the 

annulus fibrosus was modelled using 2-D membrane elements. Ligaments were modelled using non-linear 

tension only beam elements with rate effects. Both the passive and active musculature were modelled using 

1-D Hill-Type beam elements with 87 symmetrical pairs to represent the neck musculature. The UW model 

has been utilized to study kinematics and neck tissue response in frontal impacts of varying severities 
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(Panzer et al., 2011), rear impacts examining tissue response of potential pain sources (Fice et al., 2011, 

Cronin, 2014), in addition to rear impact in rotated head postures (Shateri and Cronin, 2014). 

The VIVA mid-size female human body model was created using CT scans of a 26 year old female 

(height: 167cm, weight: 59kg) (Östh et al., 2016). The vertebrae were modelled using triangular shell 

elements for the cortical bone and tetrahedral elements for the trabecular bone, both with elastic-plastic 

formulations. All ligaments were represented with 2-D orthotropic quadrilateral membrane elements. The 

intervertebral disc was modelled using 3-D hexahedral elements for the nucleus pulposus, while the annulus 

fibrosus was modelled using 2-D quadrilateral membrane elements with orthotropic nonlinear elastic 

material property. Additionally, the facet joints were modelled using contacts with no friction between the 

articular cartilages. Both active and passive muscles were represented using 1-D Hill-type beam elements. 

The Viva model has been validated for physiological loading conditions and full body rear impacts utilizing 

volunteer data (Östh et al., 2016; Östh et al., 2017). 

The GHBMC neck models (50th percentile male and 5th percentile female) were developed by the 

University of Waterloo, which incorporated improved modelling techniques and material properties that 

were used in the development of the UW neck model. Detailed comparisons of both neck response and 

tissue level injury in frontal, rear, and lateral impacts, for both the 50th percentile male and 5th percentile 

female comparison have not been studied to date. A detailed description of the GHBMC neck models will 

be provided in section 2.6.  

2.5 Active Muscles 

2.5.1 Numerical Implementation 

Fundamentally, finite element neck models currently use the active muscle implementation based on 

the phenomenological Hill-Type muscle model, with differences in the implementation of the active 

elements in conjunction with the passive musculature and the activation strategy. In this section, the Hill-

Type muscle model as implemented in the LS-DYNA finite element software will be described along with 

a brief description of the integration of active musculature in current neck models.  

The Hill-Type muscle model is composed of a contractile element (CE) and a passive element (PE) 

that work collectively to represent a human skeletal muscle (Figure 2-27) (Zajac, 1989; Winters, 1995) . 

The CE is representative of the active contractile behaviour of the muscle, while the PE represents the 

passive tensile lengthening response, with the summation of the forces in these two elements that produce 
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the total force of the muscle. In modern HBMs, the passive behaviour of the muscles are usually represented 

with 3-D elements because they provide a better anatomical representation of a muscle by occupying 

volume in the human body. Hence, the focus of this section will be on the CE portion of the Hill-Type 

muscle model.  

 

FIGURE 2-27: HILL-TYPE MUSCLE MODEL SCHEMATIC 

There are two general parameters (maximum isometric stress and PCSA) and three non-linear input 

functions for the contractile element (activation state dynamics, force-length, force-velocity) that describe 

the instantaneous force generated by a muscle during contraction at any given time step.  

𝐹 = (𝜎𝑚𝑎𝑥) ∙ (𝑃𝐶𝑆𝐴) ∙ 𝐴(𝑡) ∙ 𝑓 (
𝑙

𝑙𝑜𝑟𝑖𝑔
) ∙ 𝑔(𝜀̅̇) 

The maximum isometric stress represents the maximum force per unit area that a human skeletal 

muscle can generate. The PCSA is a physical quantity that is used to normalize the cross-sectional area of 

any skeletal muscle to that of an idealized muscle, such that all muscle fibres are oriented along the principal 

line of action. The PCSA is therefore a function of the muscle pennation angle, muscle volume, and muscle 

fibre length.  

The normalized force-length relationship (Figure 2-28) corresponds to a force-scaling factor based on 

the current length of the muscle (<1= concentric contraction, 1= default resting length, >1= eccentric 

lengthening) (Figure 2-28). The maximum force occurs at an optimized length (Lopt = 1.05), which is the 

length that allows for the maximum number of cross-bridge formation in a muscle (Winters, 1995).  
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The normalized force-velocity relationship (Figure 2-28) describes a force-scaling factor based on the 

velocity of the muscle during contraction (negative velocity represent concentric contraction, zero velocity 

represent isometric contraction, and positive velocity represent eccentric contraction) (Hill, 1938). The 

physiologic basis for this phenomenon is related to the kinetics of cross-bridge formation (Seow, 2013). As 

contraction velocity increases during concentric contraction (negative velocity), the amount of time for 

cross-bridge formation decrease, until a maximum velocity is reached where no cross-bridges can be 

formed. Conversely, as contraction velocity decreases and approach isometric contraction (zero velocity) 

and transition into eccentric contraction (positive velocity), there will be more cross-bridge formation, 

hence higher force. 

 

FIGURE 2-28: A) NORMALIZED FORCE-LENGTH, B) NORMALIZED FORCE-VELOCITY 

The muscle activation state dynamics a(t) describe the muscle activation with respect to time and 

ranges from zero to one (0= not activated, 1= fully activated). There are two different methods to implement 

activation dynamics into a Hill-Type muscle model: pre-determined activation dynamics or closed-loop 

feedback control. One example of a pre-determined activation dynamics include direct input of volunteer 

EMG data to represent a(t) to mimic the in-vivo activation of volunteers (Iwamoto et al., 2012). A(t) can 

also be determined mathematically by equations of active and de-active state dynamics that describe the 

bio-molecular mechanism of muscle activation from neural inputs to cross-bridge kinetics and force 

generation (Happee et al., 1994; Winters 1995; Panzer et al., 2011) (Figure 2-29). An initial delay is 

introduced before the activation to represent the activation delay onset (reflex time from external stimuli to 

muscle activation), and the muscle remained activated for 100 ms to achieve a maximum activation of 87% 

(Panzer et al., 2011). The positive slope of the activation represents the active dynamics (muscle activation), 

and the negative slope represents the de-active dynamics (muscle deactivation). As mentioned previously, 
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calcium ions bond onto regulatory proteins on the thick filament (myosin) that allow for cross-bridge 

formation to occur. When activation begins, the process occurs quickly, but as activation continues, the 

dynamic process decelerates due to delayed diffusion and slower calcium ion release from the sarcoplasmic 

reticulum into the muscle fibre (Winters 1995). Conversely, when a muscle starts to deactivate, the rate of 

deactivation is decelerated as calcium ions are transferred back into the sarcoplasmic reticulum, which 

causes less efficient ion transfer (Winters 1995). These two phenomena describe the gradual decrease in 

the muscle activation and deactivation rate in the activation curve (Figure 2-29). 

 

FIGURE 2-29: EXEMPLAR ACTIVATION CURVE  

A(t) can be replaced with a closed loop feedback muscle controller that uses proportional-integral-

derivative (PID) control to modulate the activation of the muscle based on external targets such as joint 

angle and reaction force (Östh et al., 2012; Kato et al., 2017). 

Different muscle implementation strategies have been developed in HBMs. Although the Hill-Type 

muscle model can account for passive resistance, many modern HBMs represent the passive portion of the 

musculature as 3-D solid elements to improve the biofidelity of the model. Hybrid approaches that integrate 

1-D Hill-Type muscle elements into the 3-D passive are present in the KTH model, THUMS model and 

GHBMC model. The KTH (Hedenstierna et al., 2008) and THUMS (Iwamoto et al., 2009) model follow a 

similar approach where the 1-D Hill-Type beam elements are integrated into the mesh of the 3-D passive 

muscles in the muscle fibre direction (Figure 2-30). The GHBMC model contains 1-D Hill-Type beam 

elements that are segregated into multiple segments and divided into parallel pairs. These elements are 

integrated into the 3-D passive muscles, where the nodes of the 1-D Hill-Type muscles are coincident with 



 

53 

 

the mesh of the 3-D passive muscles. Details of the GHBMC hybrid muscle model are covered in section 

2.6.4 

 

FIGURE 2-30: HYBRID MUSCLE MODELS (Adapted from Hedenstierna et al., 2008; Yang et al., 2018)  

2.5.2 Activation Onset Time 

During a motor vehicle collision, occupants experience rapid acceleration-deceleration events with 

typical durations of less than 300 ms. In that time frame, the effect of muscle contraction may be an 

important contributor to the response of the body, particularly in low severity impact scenarios. There are 

two typical scenarios, one where the occupant or diver is unaware of the impending impact and one where 

the occupant is aware of the oncoming impact. If the occupant is aware of the oncoming impact, they can 

pre-brace by tensing all of the neck muscles before the onset of the impact, thereby stiffening the neck and 

reduce head kinematics. When an occupant is unaware of the oncoming impact, the motor vehicle collision 

will evoke a multitude of stimulus onto the individual that will trigger the onset of muscle activity by a 

startle response, which is regarded as a protective response triggered by the autonomic nervous system. 

This delay between the external stimuli and the onset of muscle activity is called the activation onset time 

and is an important measure that can determine whether or not the neck muscles play a role in short duration 

impact events (Siegmund et al., 2002). 

The muscle activation onset time is comprised of two components: the reflex delay (time for the 

nervous system to process the external stimuli (acoustic, tactile, etc.) to activate the motor neurons, and the 

electromechanical delay (time from motor neuron stimulation to the initiation of the muscle contraction for 

force production). These two components are measured as a combined quantity at the onset of the sled/seat 

perturbation during human volunteer experiments.  

The muscle activation onset times are measured using electromyography (EMG) testing, which allows 

direct monitoring and collection of data regarding muscle activation time, and activation magnitude by 
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tracking the electrical impulse signal from the activation of the muscle. Two variations of this technique 

are used: surface EMG, or electrode (indwelling wire) EMG. Surface EMG involves attaching the 

electrodes directly onto the surface of the skin to track the EMG signals of the muscles subcutaneous to the 

skin. This method is widely used but is limited to tracking superficial muscles. Indwelling electrode EMG 

allows tracking of both superficial and deep muscles by inserting the electrodes directly into the belly of 

the muscle. Before the testing can begin, the volunteers are asked to fully activate their muscles at maximum 

effort, and the EMG signals are recorded. This quantity is called the maximal voluntary contraction (MVC) 

and is used to normalize all subsequent electrical signals that are collected during testing.   

Muscle activation onset times are well documented in the experimental literature (Foust et al., 1973; 

Snyder et al., 1975; Szabo and Welcher, 1996; Ono et al., 1997; Magnusson et al., 1999; Brault et al., 2000; 

Wittek et al., 2001; Siegmund et al., 2001; Siegmund et al., 2003; Kumar et al., 2002; Blouin et al., 2003; 

Kumar et al., 2003; Kumar et al., 2004a; Kumar et al., 2004b; Hernandez et al., 2005). These studies 

reported the activation onset time from one or multiple cervical muscles as the summation of the reflex time 

and the electromechanical delay. Perturbation was applied to the volunteers either to the head by an applied 

jerk, to the torso by the means of a sled or a test vehicle, or by a loud auditory stimulus, while muscle 

activity was monitored using EMG. 

Foust et al., (1973) performed dynamic anterior and posterior head jerks on 180 volunteers by using 

an electromagnet to drop a 455 g weight. Surface EMG was used to measure muscle activity on the 

sternocleidomastoid (flexors) in addition to the splenius capitis and semispinalis capitis (extensors). The 

onset time was defined as the onset of muscle activity and the beginning of head acceleration. The average 

onset time for the cervical extensors and flexors were 65 ms. Snyder et al., 1975 followed the same 

methodology as Foust et al., 1973 and measured the EMG signals of the same muscles. The average onset 

time for the cervical extensors and flexors were 66 ms and 77 ms respectively.  

Szabo and Welcher (1996) conducted full-scale vehicle testing (change in speed of 10 km/h) with five 

volunteers. To make sure all occupants were unaware of the time of impact, auditory and visual cues were 

removed. Bilateral surface EMG was used to measure the muscle activity of the sternocleidomastoid, 

cervical extensors, and trapezius. The onset time was defined as the start of muscle activity with respect to 

bumper contact. The average activation onset time ranged from 110 ms to 125 ms, with minimal difference 

between left and right muscles.   
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Ono et al., (1997) subjected three male volunteers to simulated rear impacts of 6 km/h with a custom 

sled apparatus. Subjects were asked to be relaxed, while surface EMG was used to measure the activity of 

the sternocleidomastoid. Onset time ranged from 76 ms to 93 ms with an average of 79 ms.  

Magnusson et al., (1999) performed rear impact tests on eight male volunteers using a car seat mounted 

on a sled. Electrode EMG was used to measure the activity of the levator scapulae, splenius capitis and 

semispinalis capitis, and surface EMG for the sternocleidomastoid and trapezius. Auditory and visual 

signals were removed from the volunteers to simulate an unaware impact. Activation onset time was 

measured from the sled movement onset to muscle activity. The average activation onset time for the 

sternocleidomastoid, levator scapulae, trapezius, splenius capitis and semispinalis capitis was 72.2 ms, 80.8 

ms, 75.4 ms 148.5 ms and 160.6 ms respectively.  

Brault et al., (2000) conducted low-speed rear impacts on 42 volunteers using full-scale vehicle testing 

for striking velocities of 4 km/h and 8km/h. Surface EMG was used to monitor the sternocleidomastoid and 

the cervical paraspinal muscles. Auditory and visual cues were eliminated to conduct an unexpected impact. 

Activation onset time was lower for the 8 km/h impact, with average times of 81 ms and 83.5 ms for the 

sternocleidomastoid and cervical paraspinal muscles respectively.  

Wittek et al., (200l) utilized the same sled apparatus as Ono et al., 1997 to subject four male volunteers 

to rear impact tests of 6 km/h. Both surface and electrode EMG was used to measure the muscle activity of 

the sternocleidomastoid. The average onset time was 79 ms and 81 ms for the electrode and surface EMG 

respectively.  

Siegmund et al., (2001) used a loud auditory stimulus (124 dB) to evoke a startle response on 20 

volunteers. Surface EMG was used to measure the bilateral activity of the sternocleidomastoid and cervical 

paraspinal muscles. Average onset times were 52 ms and 59.5 ms for the sternocleidomastoid and cervical 

paraspinal muscles respectively. 

Siegmund et al., (2003) performed rear impact tests (max acceleration of 1.5 g) on 44 volunteers using 

a car seat mounted on a custom linear sled setup. Half of the subjects were aware of the oncoming impact, 

and the other half were unaware. Surface EMG was used to measure the bilateral activity of the 

sternocleidomastoid and paraspinal muscles. Activation onset time differences for aware and unaware 

subjects were not statistically significant. The activation onset time of the sternocleidomastoid and 

paraspinal muscles were 71 ms and 79.5 ms respectively. 
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Blouin et al., (2003) subjected nine volunteers to simulated unaware rear impacts (max acceleration of 

1.1g) using a car seat mounted on a custom linear sled setup. Surface EMG was used to monitor the activity 

of the scalenus, sternocleidomastoid, paraspinal, and trapezius muscles. The average activation onset time 

was 59 ms, 55 ms, 65 ms, and 72 ms for the scalenus, sternocleidomastoid, paraspinal, and trapezius 

muscles respectively. 

Kumar et al., (2002) used a test sled to subjected seven volunteers to simulated rear impacts of varying 

severities (0.5g, 0.9g, 1.1g, 1.4g). Bilateral surface EMG was used to measure the muscle activity of the 

sternocleidomastoid, trapezius, and the splenius capitis muscles. Auditory and visual cues were removed 

from the volunteers to simulate an unexpected impact. Muscle onset time was defined at the onset of the 

sled. The activation onset time for the sternocleidomastoid ranged from 83 ms to 116 ms, while the splenius 

capitis ranged from 78 ms to 104.5 ms, and the trapezius had activation onset time in the range of 237 ms 

to 879 ms. 

Kumar et al., (2003) used the same test setup as Kumar et al., (2002), and subjected 10 volunteers to 

simulated frontal impacts of varying severities (0.5g, 0.9g, 1.1g, 1.4g). Test procedure and muscles 

monitored were the same as Kumar et al., (2002). The activation onset time for the sternocleidomastoid 

ranged from 303.5 ms to 1535.5 ms, while the splenius capitis ranged from 188 ms to 321 ms, and the 

trapezius ranged from 83 ms to 98 ms. 

Kumar et al., (2004a) and Kumar et al., (2004b) subjected unaware volunteers to right lateral and left 

lateral perturbations with a test sled following the same procedure and severity as (Kumar et al., 2002), 

while bilateral EMG activity was monitored. For both test cases, the splenius capitis muscle displayed 

activation asymmetry. The splenius capitis muscle contralateral to head movement reached >80% of its 

MVC, while the ipsilateral side reached <40% MVC. The authors suggested that cervical muscle response 

may be triggered by muscle stretch. Activation onset times for muscles contralateral to the side of the head 

movement were less than the ipsilateral side. For the right lateral impact, the contralateral 

sternocleidomastoid had activation onset time in the range of 110.7 ms to 251.3 ms, while the contralateral 

splenius capitis was in the range of 76.7 ms to 207.3 ms, and the contralateral trapezius was in the range of 

109.7 ms to 315.3 ms. For the left lateral impact, the contralateral sternocleidomastoid had activation onset 

time in the range of 65.3 ms to 217 ms, while the contralateral splenius capitis was in the range of 43.3 ms 

to 160 ms, and the contralateral trapezius was in the range of 67.3 ms to 588 ms. 

Hernandez et al., (2005) conducted simulated rear impacts (average acceleration of 0.46 g and 1.03g) 

on 29 volunteers using a car seat mounted to a pneumatic sled. Surface EMG was used to measure the 
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muscle activity of the sternocleidomastoid muscle. Onset time was defined as the start of sled acceleration. 

The average activation onset time was 130.7 ms for the slower sled pulse, and 99.1 ms for the faster sled 

pulse.  

2.5.3 Physiological Cross Sectional Area 

There are limited complete sets of data on cervical muscle PCSA available in the existing literature. 

PSCA values in HBMs are often calculated with a combination of different sets of data in the literature (e.g. 

muscle volumes from the visible human project used with published dissection data on muscle fibre length).  

Three notable literature sources present cervical spine PCSA data on multiple muscles. Kamibayashi 

and Richmond (1998) reported PCSA values for 18 pairs of cervical muscles through a cadaver dissection 

method. Muscle mass, pennation angle and fascicle lengths were measured from 10 human cadavers (3F, 

7M, age: 66-92) from which muscle PCSA was calculated. A normalization technique on fascicle lengths 

was used to correct the non-physiological shortening that occurs during rigour mortis to that of in-vivo 

humans. In general, the PCSA was smaller for the female PMHS than the male counterparts. A few 

limitations existed for the study: anthropometries of the subjects were not reported and possible errors from 

utilizing elderly donors due to muscle atrophy may not be representative of the young population. Borst et 

al., 2011 reported PCSA values for 34 neck muscles through unilateral (left side) dissection of a PHMS 

subject with similar anthropometry as a 50th percentile male (age: 86, height 1.71m, weight: 75kg). Muscle 

mass, pennation angle and fibre length data were collected and used to calculate PCSA values. This is the 

most complete set of neck PCSA data that is available in the literature. However, the same limitation exists 

where muscle atrophy due to old age may not be representative of the young population. Knaub et al., 1998 

presented cervical PCSA muscle volume geometry for 24 pairs of cervical muscle utilizing a hybrid 

approach, where MRI was used to obtain muscle volumes from human volunteers and pennation angle and 

fascicle lengths were obtained from cadaveric dissections (4 males, 2 females, age: 71-83, weight: 50-

68 kg, height: 5’1” - 5’11”). Volunteers were recruited based on anthropometric requirements and included 

six 50th percentile males, one 95th percentile male, and two 5th percentile females. This hybrid approach was 

utilized because large differences in muscle volumes were found between the young volunteers and the 

elderly PHBMS subjects. This is the only study that reported the neck muscle PCSA based on the 50th 

percentile male, 95th percentile male, and 5th percentile female statures, which provided differences on 

anthropometric muscle volumes. 
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2.6 GHBMC Human Body Models 

The GHBMC M50 HBM was developed from the geometry of a male subject (age: 26 years, height: 

174.9 cm, mass: 78.6 kg, body mass index (BMI): 25.7) from computed tomography and magnetic 

resonance imaging techniques (Davis et al., 2016), and the GHBMC F05 human body model was developed 

from geometries of a 5th percentile female volunteer (age: 24 years, height: 149.9 cm, mass: 48.1 kg, BMI: 

21.4) using computed tomography and magnetic resonance imaging techniques (Schwartz et al., 2015) 

(Figure 2-31). The development of the HBM was divided into body region models (BRM) including (head, 

neck, upper extremities, thorax, abdomen, lower extremities) as a collaborative effort between institutions 

around the world. Each body region was separately developed and validated before consolidated into the 

full body model. The neck BRM was developed by the Neck Center of Expertise (Neck COE) at the 

University of Waterloo.  

 The neck model contained detailed structures consisted of key anatomical components such as the 

ligaments, cartilage, tendon, intervertebral disc, passive and active muscles, cortical and trabecular bone 

(Figure 2-32). The model was assessed for biofidelity by performing extensive verification and validation 

cases, ranging from a single element to full neck validation against experimental human volunteer and 

cadaver test data. Appropriate material constitutive models were selected for each tissue in the model and 

validated against material data from the literature. Each tissue was integrated into a motion segment to form 

the LCS (six total, C23 to C7T1) which included all connective tissues (ligaments, intervertebral disc, and 

cartilage) and was individually validated against experimental data for flexion, extension, lateral bending, 

shear (anterior, posterior, lateral), axial rotation, tension and compression type loading for quasi-static and 

dynamic loading conditions until failure (Barker et al., 2017). The upper cervical spine (skull, C1-C2) was 

validated separately against flexion, extension, axial rotation and tension data from the experimental 

literature (Laswell et al., 2017). The following step included assembling the head with the validated lower 

and upper cervical spine segment (ligament, intervertebral disc, and cartilage) into the ligamentous spine 

and validating against axial tension, axial rotation. Furthermore, the ligamentous spine was validated 

against experimental frontal and rear impacts with T1 motion boundary condition, and tissue strains were 

compared with the experiments. The final step required the integration of all tissues into the full neck 

(ligamentous spine, skin, flesh, passive muscles, active muscles) and was fully validated against human 

volunteer experiments in frontal and lateral impacts, in addition to rear impacts (full body cadaver). The 

boundary condition was applied to the T1, and head kinematics was used as the metric for evaluation. A 

cross-correlation method was used to generate a rating that ranged from zero to one (zero being a low 

correlation, and one being high correlation) to assess the biofidelity of the model. The kinematic response 

of the model was compared to the average kinematic response of the volunteers with an objective rating 
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program called CORA. Three assessments (shape, size, and phase shift), in addition to a corridor rating, 

was used to determine a final weighted average score to rate the performance of the model (Table 2-6 and 

Table 2-7).  

TABLE 2-6: M50 CORA SCORES 

CORA 8gFRT 15gFRT 7gLAT 7gREAR 

Corridor 0.478 0.498 0.656 0.822 

Shape 0.918 0.954 0.885 0.730 

Size 0.632 0.704 0.611 0.672 

Phase 0.462 0.886 0.412 0.667 

Average 0.575 0.673 0.646 0.756 

 

TABLE 2-7: F05 CORA SCORES 

CORA 8gFRT 15gFRT 7gLAT 7gREAR 

Corridor 0.507 0.405 0.649 0.803 

Shape 0.859 0.904 0.788 0.832 

Size 0.767 0.773 0.631 0.699 

Average 0.660 0.621 0.679 0.785 
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FIGURE 2-31: 50TH PERCENTILE MALE AND 5TH PERCENTILE FEMALE HBM AND EXTRACTED NECK 

MODEL (RELATIVE SIZE NOT-TO-SCALE) 
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FIGURE 2-32: GHBMC M50 AND F05 NECK MODEL DETAILS 
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2.6.1 Hard Tissues 

Hard tissues were modelled using an isotropic elastic-plastic formulation with a separate elastic and 

plastic bilinear response, where the end of the elastic region is defined as the yield stress of the bone (Table 

2-8). Bone failure is represented by element erosion based on an ultimate plastic strain failure criterion. 

Cortical bone was modelled using 2-D quadrilateral shell elements, while the trabecular bone used 3-D 

solid hexahedral elements (Figure 2-33).  

 

FIGURE 2-33: HARD TISSUE COMPOSITION: WHITE (CORTICAL BONE), YELLOW (TRABECULAR 

BONE) 

The cortical bone is modelled using (*MAT_PLASTIC_KINEMATIC) isotropic elastic-plastic 

material model with a failure strain of 1.78% to initiate element erosion based on a plastic strain failure 

criterion. The trabecular bone was modelled using (*MAT_ISOTROPIC_ELASTIC_PLASTIC) solid 

elements with a failure strain of 9.5%. 

TABLE 2-8: HARD TISSUE MATERIAL PROPERTIES 

Property Cortical Trabecular 

Density (kg/mm3) 2.00 E-6 1.10 E-6 

Elastic modulus (GPa) 18.439 0.442 

Poisson’s ratio 0.28 0.30 

Yield stress (GPa) 0.1898 0.00283 

Plastic modulus (GPa) 1.2489 0.0301 

Failure strain 0.0178 0.095 
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2.6.2 Intervertebral Disc 

The intervertebral disc is comprised of three components, the annulus lamellae, ground substance, and 

the nucleus pulposus (Figure 2-34). The assembly of the disc parts are attached to the cartilaginous 

endplates on the vertebral bodies through a tiebreak contact interface.  

The annulus fibrosus was modelled as a composite material, with the fibre portion containing the 

annular lamellae and the matrix portion containing the ground substance. The lamellae were modelled using 

a non-linear anisotropic elastic material model (*MAT_FABRIC) with ten layers of concentric four node 

quadrilateral shell elements, with material properties from tensile testing of annulus fibres (Holzapfel et al., 

2005, Ebara et al., 1996, Skaggs et al., 1994). The ten layers were divided into five pairs of lamellae and 

were used to represent the collagen fibre orientation from the outer layer (25º) to the inner layer (45º) in 5º 

increments (Figure 2-34) (Cassidy et al., 1989), with each pair having opposite fibre angles (Figure 2-34). 

The ground substance was represented with a compressible foam model (*MAT_HILL_FOAM) with 8-

node solid hexahedral elements and shared nodes with the annulus lamellae. The tensile and compressive 

material behaviour was modelled from experimental data of radial properties of annulus fibrosus specimens 

(Fujita et al., 1997, Iatridis et al., 1998). The material response from the experiment was fitted onto an 

isotropic strain-energy function (Hill, 1979, Storakers, 1986) (Table 2-9), using the equation below. 

𝑊 =  ∑
𝐶𝑗

𝑏𝑗
[𝜆1

𝑏𝑗 
+ 𝜆2

𝑏𝑗 + 𝜆3

𝑏𝑗 − 3 +
1

𝑛
(𝐽−𝑛𝑏𝑗 − 1)]𝑚

𝑗=1 , 𝑛 = 2, 𝑚 = 3 

TABLE 2-9: GROUND SUBSTANCE MATERIAL CONSTANTS 

j C b 

1 -0.895 -2 

2 2.101 -1 

3 0.115 4 

 

The nucleus pulposus was modelled using an elastic fluid material model (*MAT_ELASTIC_FLUID) 

with 8-node solid hexahedral elements and situated within the ground substance and annulus lamellae. The 

bulk modulus was 1720 MPa (Yang and Kish, 1988). 

A normal stress failure criterion of 10 MPa was integrated into the tie-break interface between the disc 

ground substance and vertebral endplate to model the injury mechanism of disc avulsion (DeWit and 

Cronin, 2012; Kasra et al., 2004). 
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FIGURE 2-34: INTERVERTEBRAL DISC COMPOSITION 

2.6.3 Ligaments 

Ligaments were modelled using 1-D, two-node tension only discrete beam elements using 

(*MAT_ELASTIC_SPRING_DISCRETE_BEAM). The response of the ligaments was dictated by a non-

linear force vs. displacement response in addition to strain rate effect scaling factors obtained from 

experimental testing of young cervical spine ligament specimens (Mattucci et al., 2012; Mattucci et al., 

2013; Mattucci and Cronin, 2015). The ligaments are directly attached to the hard tissue and are spaced 

approximately 1 mm apart. In addition, progressive ligament failure was implemented to model bundles of 

collagen fibres in the post-traumatic region (Figure 2-35). The element would erode in a progressive manner 

when they reached a critical distraction value (DeWit and Cronin, 2012). The tension-only force response 

of the ligament was represented using the governing equation below. 

𝐹 = 𝐹𝑜 + 𝐾𝑓(∆𝐿) + 𝑔(∆𝐿) ∗ ℎ(∆𝐿̇) 

𝐹𝑜 defined the ligament pretension force (not used), 𝐾𝑓(∆𝐿) represent the quasi-static force vs 

displacement response curve, and 𝑔(∆𝐿) and ℎ(∆𝐿̇) function was responsible for ligament strain rate effects 

of up to 300 s-1.  
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FIGURE 2-35: LIGAMENT PROGRESSIVE FAILURE, A) ALL TENSILE FAILURE, B) ISL FLEXION 

FAILURE  

2.6.4 Musculature  

The neck muscles utilized a hybrid modelling approach that involved 1-D active muscles that share 

nodes and are embedded in the 3-D passive muscles (Figure 2-38). The active portion of the musculature 

was represented with the phenomenological Hill-Type muscle model (*MAT_MUSCLE) that used 2-node 

contractile beam elements with no tension response. The passive portion of the musculature was represented 

with a viscoelastic Ogden model (*MAT_OGDEN_RUBBER) using 3-D solid hexahedral elements 

(Hedenstierna et al., 2008), that utilized the governing equation below. To account for strain rate effects, 

additional material constants were required (Table 2-10).  

𝑊 =  ∑ ∑
𝜇𝑗

𝛼𝑗

(𝜆𝛼𝑗 − 1) + 𝐾(𝐽 − 1 − 𝑙𝑛𝐽)

𝑛

𝑗=1

3

𝑖=1

 

𝑗 = 1, 𝜇 = 1.33 𝑘𝑃𝑎, 𝛼 = 14.5 

TABLE 2-10: PASSIVE MUSCLE STRAIN RATE MATERIAL CONSTANTS 

m G β 

1 522 kPa 1.02 s-1 

2 211 kPa 0.40 s-1 

3 375 kPa 0.65 E-01 s-1 

4 290 kPa 0.30 E-01 s-1 

5 80 kPa 1.00 E-04 s-1 
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The contraction response of the Hill-Type muscle model is dependent on the parallel elastic (PE), the 

contractile element (CE) and the series elastic elements (SE). The model in the GHBMC has the CE and 

SE elements disabled because the passive response of the muscle and tendons are represented by the 3-D 

hexahedral solid elements.  

Each muscle was segregated into multiple segments to represent the correct loading path of the muscle, 

and in some cases, the muscles were further divided into multiple parallel groups (Figure 2-36). The force 

that is generated in a muscle is dependent on several factors that include the max isometric stress (0.5 MPa), 

muscle PCSA, normalized force-length response, normalized force-velocity response, and the activation 

state of the muscle (Figure 2-37).  

 

FIGURE 2-36: 1-D HILL TYPE MUSCLE ELEMENT SEGMENTATION (BLACK) IN 3-D MUSCLES (RED) 

FOR THE STERNOCLEIDOMASTOID  
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FIGURE 2-37: A) MUSCLE ACTIVATION CURVE, B) MUSCLE FORCE-LENGTH FUNCTION, C) MUSCLE 

FORCE-VELOCITY FUNCTION (Panzer et al., 2011; Fice et al., 2011) 

 

 

FIGURE 2-38: MUSCULATURE IMPLEMENTATION: A) 3-D PASSIVE MUSCLES, B) 2-D ACTIVE 

MUSCLES, C) 2-D ACTIVE MUSCLES EMBEDDED IN 3-D PASSIVE MUSCLES 
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In total, the neck region of the HBM contained 27 pairs of muscles. The muscles in the HBM are 

divided into two groups: flexors, containing all anterior cervical muscles, and extensors, containing all 

posterior cervical muscles (Table 2-11). Muscle activation in the baseline model is operated under the 

assumption that each pair of muscles in each flexor and extensor group activate synergistically with bilateral 

symmetry. 

TABLE 2-11: MUSCLE GROUPS IN NECK REGION 

Muscle  Group M50 PCSA (mm2) F05 PCSA (mm2) 

Oblique Capitus Inferior Extensor 195.0 127.9 

Oblique Capitus Superior Extensor 88.0 57.7 

Iliocostalis Cervicis Extensor 104.1 68.3 

Longissimus Capitis Extensor 98.0 64.3 

Longissimus Cervicis Extensor 148.8 97.6 

Multifidus Extensor 280.0 183.7 

Semisplenius Capitus Extensor 551.7 362.0 

Semisplenius Cervicis Extensor 306.0 200.8 

Splenius Capitis Extensor 309.2 202.9 

Splenius Cervicis Extensor 143.1 93.9 

Levator Scapula Extensor 312.0 204.7 

Minor Rhomboid Extensor 102.0 66.9 

Trapezius Extensor 1373.4 577.6 

Rectus Capitus Major Flexor 168.0 110.2 

Rectus Capitus Minor Flexor 92.0 60.4 

Longus Capitis Flexor 137.2 90.0 

Longus Colli Superior Flexor 69.0 45.3 

Longus Colli Inferior Flexor 69.0 45.3 

Longus Colli Vertical Flexor 137.1 90.0 

Rectus Capitis Anterior Flexor 80.0 52.5 

Rectus Capitis Lateral Flexor 90.0 59.0 

Scalenus Anterior Flexor 188.0 123.3 

Scalenus Medius Flexor 160.2 105.1 

Scalenus Posterior Flexor 105.0 68.9 

Sternocleidomastoid Flexor 492.0 322.8 

Omohyoid Flexor 75.0 49.2 

Sternohyoid Flexor 123.0 80.7 

 

In addition, discrete beam elements were used to support and constrain each node of the active and 

passive muscles elements to the closest vertebra, and was necessary to allow the muscles to activate along 

the correct line of action during different modes of cervical spine movement. Without these support 
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elements, the muscles would form a straight loading path during contraction and intersect into the hard 

tissues, which is non-physiological.  

 

FIGURE 2-39: SUPPORT ELEMENT (ORANGE) CONNECTION TO 1-D ACTIVE MUSCLES (RED) (3-D 

PASSIVE MUSCLES REMOVED FOR CLARITY) 

2.6.5 Scaling Factors between Male and Female 

The F05 was developed after the development of the M50 HBM utilizing the same methodology. Apart 

from the subject-specific geometric difference from stature and gender, much of the same material 

properties from the M50 was used to represent the F05 HBM. Scaling was necessary to define certain 

material response and material parameters due to limited data for a female that exist in the current literature. 

Neck regional level anthropometric scaling factors were used to scale the ligament response and PCSA of 

the M50 HBM to represent the F05 HBM (Singh and Cronin 2017).  

TABLE 2-12: NECK REGIONAL LEVEL SCALING FACTORS (Shams et al., 2003) 

Neck Regional Level  Scale Factors 

λx 0.81 

λy 0.81 

λz 0.87 

λF (force) 0.6561 

λd (displacement) 0.87 
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TABLE 2-13: EXTERIOR NECK DIMENSIONS FOR THE GHBMC 50TH PERCENTILE MALE AND 5TH 

PERCENTILE FEMALE HBM (Singh and Cronin, 2017) 

Dimensions (cm) 
50th Percentile 

Male 

5th Percentile 

Female 

Neck Length 8.98 8.75 

Neck Depth mid 13.93 10.48 

Neck Breadth mid 11.68 11.68 

Neck Circumference mid 41.85 35.94 

 

The ligament force-displacement response curves and failure response were scaled with respect to the 

factors. The muscle PCSA for the F05 model was also scaled down from the M50 model using the force-

scaling factor to take into account area.  
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CHAPTER 3:  METHODS 

The objective of this study was to assess the kinematic and tissue-level response to impacts using 

detailed HBMs by subjecting the GHBMC 50th percentile male and GHBMC 5th percentile female HBMs 

to whiplash perturbations. An analysis of each loading case was first performed, utilizing the HBMs with 

the default parameters, that were used to establish a baseline to which other cases could be benchmarked. 

Next, different muscle activation strategies were investigated to observe the changes in both kinematics and 

tissue level responses. Lastly, an investigation on gender effects on the kinematics, tissue level response 

and effect of active musculature was compared between the male and female HBMs.   

Two previously developed and validated finite element models from the GHBMC were used to 

simulate response to impact and assess the potential for injury risk: average stature male (M50 v4-5, 

GHBMC, Elemance, USA) and small stature female (F05 v3-1, GHBMC, Elemance, USA), representing a 

50th percentile male and 5th percentile female respectively. Analysis of both models was performed using a 

commercial explicit finite element solver (LSTC, LS-DYNA, version R7.1.2).  

Whiplash associated disorders have been primarily associated with rear impacts, but epidemiological 

data have suggested that acute soft tissue injury can also occur during frontal and side impacts. Therefore, 

three boundary conditions (frontal, rear, lateral) were identified for analysis to represent the three common 

modalities of neck loading during a whiplash event: flexion, extension, and lateral bending with coupled 

axial rotation. Analysis of the male occupant HBM was completed first to establish the methodology before 

analysis was performed on the female occupant HBM. 

In summary, the study plan would consist of applying different muscle activation strategies to the 50th 

percentile male and 5th percentile female HBMs for frontal, rear, and lateral impact loading. Head 

kinematics and the assessment for the potential of soft tissue injury were compared between impact 

directions and gender (Figure 3-1). A detailed test matrix will be presented later in the chapter (Table 3-7). 
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FIGURE 3-1: OVERVIEW OF MODEL BOUNDARY CONDITIONS AND LOAD CASES 
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3.1 FE Model Boundary Conditions for Impact Scenarios 

To reproduce vehicle impact scenarios on the neck model, motion boundary conditions were 

prescribed to the T1 vertebra to simulate inertial loading to the head and neck complex (Figure 3-2). The 

sled/crash pulse could not be used directly for the T1 input due to the sequence of the events during a crash, 

where the seat begins to move first, followed by the T1 and finally the head (Figure 3-3). Instead, 

experimental data that reported T1 kinematics in addition to sled pulse and head kinematics were used. The 

boundary condition was applied to the T1 vertebra, which accelerated the model from a standstill to simulate 

a frontal, rear and lateral impact. Previous studies utilized the same methodology of applying boundary 

conditions to the T1 to investigate the response of the neck (Panzer et al., 2011; Fice et al., 2011; Cronin, 

2014; Östh et al., 2017).  

 

FIGURE 3-2: COORDINATE SYSTEM OF MODEL, T1 HIGHLIGHTED IN RED 
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FIGURE 3-3: EXEMPLAR SEQUENCE OF EVENTS FOR AN 8G FRONTAL IMPACT (X-VELOCITY): SLED, 

T1 VERTEBRA AND HEAD 

3.1.1 8g Frontal Impact Boundary Condition 

The reported T1 kinematics from frontal impact (8g maximum acceleration, NBLD) volunteer tests 

(Thunnissen et al., 1995) were used as boundary conditions for the frontal impact analysis. The boundary 

condition inputs were selected based on multiple tests of similar maximum sled acceleration pulse of 

approximately 8g (Table 3-1) and had an average maximum sled velocity of 44.7 km/h. The T1 kinematics 

from each test was used to create an average response curve that was used as the prescribed boundary 

condition.  

TABLE 3-1: NBDL FRONTAL IMPACT TESTS 

Test No. Max Sled G's 

1587 8.1 

1588 8.2 

1590 8.2 

1592 8.2 

1593 8.2 

1594 8.3 

1595 8.2 

1596 8.3 

1597 7.9 

1649 8.1 
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The T1 was constrained from movement in the Y-axis and Z-axis, and rotation about the X-axis and 

Z-axis. The T1 boundary condition included a horizontal and a sagittal rotation component. A velocity pulse 

was applied to the T1 in the posterior (–X direction) along with a rotational velocity about the –Y-axis to 

simulate the frontal impact (Figure 3-4). The total simulation time was 250 ms.  

 

FIGURE 3-4: T1 INPUT BOUNDARY CONDITION FOR THE 8G FRONTAL IMPACT CONDITION 

3.1.2 7g Rear Impact Boundary Condition 

The rear impact (7g max acceleration) boundary conditions from a set of PMHS test data (Deng, 1999) 

were used to perform the rear impact analysis, following the methodology of Fice et al., (2011). In addition, 

the kinematics of the T1 and head center of gravity were reported. Medium severity impacts (~7g maximum 

acceleration) were considered, to apply sufficient loading in the neck to observe acute soft tissue injury. 

This set of PHMS data were used because lower acceleration pulses such as those used in human volunteer 

testing would not be severe enough to generate soft tissue injury. Conversely, PHMS tests with a higher 

severity acceleration pulse may cause catastrophic failure of the hard and soft tissues in the neck and 

therefore were not considered. The boundary condition inputs had a maximum sled acceleration pulse of 

approximately 7g and a peak velocity of 13 km/h. 

The T1 was constrained from movement in the Y-axis, and rotation about the X-axis and Z-axis. The 

T1 boundary condition included a horizontal and vertical component in addition to the sagittal rotation 

component. An acceleration was applied in both the anterior (X direction) and superior (–Z direction), along 

with a rotational acceleration about the Y-axis to simulate the rear impact (Figure 3-5). The total simulation 

time was 235 ms.  
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FIGURE 3-5: T1 INPUT BOUNDARY CONDITION FOR THE 7G REAR IMPACT CONDITION 

3.1.3 7g Lateral Impact Boundary Condition 

The lateral (7g maximum acceleration) pulses from the NBDL volunteer tests (Wisman et al., 1986) 

were used as boundary conditions for the lateral impact analysis. The kinematics of the sled, T1, and the 

head center of gravity was recorded in multiple axes for each test run to capture the complex motion during 

a lateral impact. The boundary condition inputs were also selected based on multiple tests of similar 

maximum sled acceleration pulse of approximately 7g (Table 3-2) and had an average maximum sled 

velocity of 23.2 km/h. The T1 kinematics from each test was used to create an average response curve and 

was used as the prescribed boundary condition.  

TABLE 3-2: NBDL LATERAL IMPACT TESTS 

Test No. Max Sled G's 

1451 7.0 

1452 7.0 

1453 7.0 

1454 7.0 

1474 7.2 

1475 7.0 

1478 7.2 

1699 7.2 

1700 7.2 

1701 7.2 

1702 7.1 

1703 7.1 

1705 7.1 

1706 7.2 

1707 7.2 

1708 7.0 

1709 7.1 

1722 7.1 
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The T1 was constrained from movement in the Y-axis and Z-axis, and rotation about the X-axis and 

Z-axis. The T1 boundary condition included a lateral and a frontal plane rotational component. A velocity 

pulse was applied to the T1 in the lateral (–Y direction) along with a rotational velocity about the X-axis to 

simulate the lateral impact (Figure 3-6). The total simulation time was 250 ms.  

 

FIGURE 3-6: T1 INPUT BOUNDARY CONDITION FOR THE 7G LATERAL IMPACT CONDITION 

3.2 Active Muscle Parameters 

3.2.1 Default Parameters  

The neck model for both the 50th percentile male and 5th percentile female contained 27 pairs of 

muscles. The active behaviour of the musculature was modelled with Hill-Type one-dimensional beam 

elements, while the passive behaviour of the musculature was modelled using three-dimensional 

viscoelastic elements. The force generated by the phenomenological Hill-Type muscle model is dependent 

on the peak isometric stress of the muscle, muscle PCSA, force-velocity response, force-length response, 

and the activation dynamics. For the purpose of this thesis, the effects of activation dynamics of the muscle 

and the muscle PCSA on head kinematics and potential for injury were investigated.  

The activation dynamics of the Hill-Type muscle elements in the model are described by an activation 

curve based on active state dynamics and neural excitation (Happee et al., 1994, Panzer et al., 2011). The 

activation curve is a normalized mathematical representation of the muscle activation state (0= not 

activated, 1= fully activated) that is described with respect to time. The default curve can be decomposed 

into three time-sequenced regions: activation delay, activation phase, and deactivation phase (Figure 3-7).  
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FIGURE 3-7: MUSCLE ACTIVATION CURVE (STARTLE RESPONSE) | DEMONSTRATING ACTIVATION 

SCALING (100%, 70%, 20%) AND THREE REGIONS (ACTIVATION DELAY, ACTIVATION PHASE, AND 

DEACTIVATION PHASE) 

The first region represents the activation delay, which results from the muscle activation onset time 

for a startle reflex (delay in time between sensory inputs from external stimuli and muscle activation). The 

second region accounts for the dynamic bio molecular mechanisms of muscle activation, where the muscle 

reaches a state of peak activation. The third region represents the deactivation phase, where the muscle 

transitions from a state of maximum activation to a state of no activation. Different levels of the muscle 

activation state can be achieved by scaling the magnitude of the activation curve, where the maximum value 

(100% activation) is defined at 0.871. In addition, the phase of the activation curve can be shifted forward 

or backward in time to reflect different reflex delays.  

The PCSA is an effective area that is directly proportional to the maximum force a single muscle can 

generate (Table 2-11). Individual neck muscles in HBMs have defined PCSA values from the literature 

(Knaub et al., 1998).  

The muscles in the HBM are divided into two groups: flexors, containing all anterior cervical muscles, 

and extensors, containing all posterior cervical muscles. The flexor and extensor groups were identified as 

a limitation of the model when investigating lateral impact conditions because independent activation of 

left and right muscle groups was not possible, and was addressed in section 3.2.2 below. The baseline 

muscle activation is operated under the assumption that all muscles are activated synergistically, but the 

flexors and extensors groups can be activated at different levels by scaling the activation curve (Panzer et 

al., 2011; Fice et al., 2012). In the baseline model, the activation onset time and PCSA do not change, while 
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the activation level for flexors and extensors groups are scaled to different ratios to simulate a startle 

response for different impact directions (Table 3-3). 

TABLE 3-3: BASELINE MUSCLE ACTIVATION SCHEMES (Panzer et al., 2011; Fice et al., 2011) 

Impact Direction Activation Onset Flexor Activation Extensor Activation PCSA 

Frontal 74 ms 100% 100% default 

Lateral 74 ms 100% 100% default 

Rear 74 ms 100% 70% default 

 

To investigate the effects of active musculature on injury prediction, three areas of focus were 

identified: muscle activation scheme, cervical muscle activation onset time, and muscle PCSA. These 

parameters were recognized as major contributors to the global and local kinematic of the head and neck in 

addition to the tissue-level response. A literature review of neck muscle PCSA and activation onset time 

was first conducted to understand the range of values that are viable to use in the muscle model. Next, due 

to the wide spectrum of available data found in the literature, an upper and lower bound value for both 

parameters were identified. A combination of these three parameters was used to create activation schemes 

to investigate the influence of neck muscle activation on head kinematics and tissue level response during 

dynamic neck loading.  

3.2.2 Quadrant Activation Implementation 

The default activation strategy in the neck models contained two groups of muscles: extensors and 

flexors and assumed each group activated synergistically with bilateral symmetry. A quadrant-based 

activation strategy (four groups of muscles) was proposed to allow independent unilateral activation of 

flexors and extensors muscles (Figure 3-8), which was identified as a need for lateral impact and omni-

directional loading. The implementation involved a separate definition for the left and right cervical muscle 

in addition to flexors and extensors. The quadrant strategy could be used for future studies such as frontal, 

rear, and lateral oblique impacts or parametric studies for an optimized model response to match volunteer 

kinematic corridors. 
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FIGURE 3-8: VISUAL REPRESENTATION OF THE QUADRANT MUSCLE GROUPS 

3.2.3 Neutral Position Activation Strategy 

Panzer et al., (2011) and Fice et al., (2011) previously developed the baseline activation strategy for 

frontal (extensor: 100%, flexor: 100%) and rear impacts (extensors: 100%, flexor: 70%) using normalized 

EMG data from volunteers (Siegmund et al., 2003). This activation strategy was designed to represent an 

unaware occupant undergoing involuntary reflex activation of their neck muscle. However, this baseline 

activation strategy resulted in the head undergoing considerable extension motion during activation. To 

address this issue, a new activation strategy was developed based on the human startle reflex response to 

minimize head motion during startle activation. 

When the neck muscles were activated in absence of any T1 motion boundary conditions, the 

compressive forces generated in the cervical column rotated the head posteriorly into extension, which 

indicated an extensor bias. This resulted in 31 degrees of extension, and 64.9 mm posterior translation of 

the head for baseline frontal and lateral activation strategy and 23 degrees of extension and 50 mm posterior 

translation of the head for the rear activation strategy. Physiologically, humans have more posterior muscles 

than anterior muscles in the neck, allowing greater force generation for extension motion. Muscle force 
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generation is proportional to the PCSAs in the neck, with the current model having a distribution of 70% 

extensors and 30% flexors. Several experimental studies have identified that the maximum force and 

moment generation capability of cervical extensors is greater than that of flexor muscles (Vasavada et al., 

2001; Lavallee et al., 2013; Fice et al., 2014).  

The human startle response is an involuntary reflex that can occur when a sudden and/or intense, 

acoustic, visual or tactile stimuli is elicited onto an individual., This protective reflex evokes a rapid motor 

response to the body and is primarily a flexion response, to tense and position the body into the “ready 

position”, in anticipation for a fight or flight event. (Koch, 1998; Yeomans et al., 2002). To address this 

issue, a new activation scheme was developed based on the human startle response. 

A parametric study was conducted on both the 50th percentile male and 5th percentile female HBM to 

find an activation scheme that reduced global head rotation with the goal of minimized head movement to 

mimic an in-vivo startle response. To perform the parametric study, the flexors were also maintained at 

100% activation while the extensor activation was varied (Figure 3-9). 

 

FIGURE 3-9: A) 50TH PERCENTILE MALE, B) 5TH PERCENTILE FEMALE | RESULTS FROM PARAMETRIC 

STUDY, POSITIVE ROTATION IS EXTENSION, POSITIVE TRANSLATION IS ANTERIOR DISPLACEMENT 

The optimization target to minimize head movement and maintain a neutral head posture, resulted in 

an activation ratio for extensors and flexors of approximately 1:5 (extensors: 20%, flexors: 100%) for the 

50th percentile male and 1:4 (extensors: 25%, flexors: 100%) for the 5th percentile female. For the 50th 

percentile male, the neutral activation strategy reduced the head CG Y-rotation extension angle to 5.7 

degrees, and X-translation to 2.6 mm. The 5th percentile female with the optimized activation ratio reduced 

the head CG Y-rotation angle to 3.2 degrees, and X-translation to 2 mm (FIGURE 3-10). The neutral 
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activation strategy with the default activation onset time and PCSA was evaluated with both the M50 and 

F05 HBM to compare kinematics and injury response to the previously defined activation strategy. 

 

FIGURE 3-10: A) 50TH PERCENTILE MALE, B) 5TH PERCENTILE FEMALE, ILLUSTRATING BASELINE 

ACTIVATION AND NEUTRAL ACTIVATION 
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3.2.4 Lateral Impact Activation Sensitivity Study 

The literature has reported that the muscle contralateral to the head movement undergoes eccentric 

contraction (i.e. lengthening) during a side impact while demonstrating increased activation (Kumar et al., 

2004a, Kumar et al., 2004b). This was a preliminary study to identify strategies for lateral muscle activation. 

A parametric test was performed using both 50th percentile male and 5th percentile female models on the 7g 

lateral impact case to study the sensitivity of head kinematics and tissue level response due to flexor and 

extensor bilateral asymmetry. Flexors and extensors contralateral to the direction of head movement were 

maintained at 100% activation while the flexors and extensors ipsilateral to the direction of impact was 

decreased from 100% to 25% in 25% decrements (Table 3-4). The initial activation strategy used for this 

study was based on the neutral strategy, where the extensor to flexor activation ratio was kept constant at 

1:5 for the M50 and 1:4 for the F05 model. 

TABLE 3-4: 7G LATERAL QUADRANT SENSITIVITY STUDY PLAN 

Case Ipsilateral Activation (%) Contralateral Activation (%) 

1 100 100 

2 75 100 

3 50 100 

4 25 100 

3.2.5 Activation Onset Time 

To determine an upper and lower range of activation onset times that are reported in the literature, an 

average value and standard deviation were calculated from the fastest onset time that was measured in the 

experiment, by either muscle group, velocity change, or acceleration. An average activation time of 78 ms 

with 15.8 ms standard deviation was calculated from 15 literature sources (Table 3-5). The average value 

of 78 ms was in good agreement with the default activation time of 74 ms in the GHBMC model. The 

standard deviation of 15.8 ms was approximately ±20% of the average time with a lower bound of 62.2 ms 

and upper bound of 93.8 ms. Therefore, an activation onset time of 60 ms and 90 ms was selected to 

represent the upper and lower bound to create the muscle activation strategies.  
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TABLE 3-5: SUMMARY OF NECK MUSCLE ACTIVATION ONSET TIME (STARTLE / UNAWARE ONLY) 

Literature Muscle Onset Time (ms) Perturbation Type 

Foust et al., 1973 Neck Flexors 64.9 Rear head jerk 

Snyder et al., 1975 Neck Extensors 66.0 Frontal head jerk 

Szabo and Welcher, 1996 Sternocleidomastoid 110.0 Rear impact 

Ono et al., 1997 Sternocleidomastoid 79.0 Rear impact 

Magnusson et al., 1999 Sternocleidomastoid 72.2 Rear impact 

Brault et al., 2000 Sternocleidomastoid 81.0 Rear impact 

Wittek et al., 2001 Sternocleidomastoid 79.0 Rear impact 

Siegmund et al., 2001 Sternocleidomastoid 52.0 Acoustic startle 

Siegmund et al., 2003 Sternocleidomastoid 72.0 Rear impact 

Kumar et al., 2002 Sternocleidomastoid 83.3 Rear impact 

Blouin et al., 2003 Sternocleidomastoid 55.0 Rear impact 

Kumar et al., 2003 Trapezius 82.9 Frontal impact 

Kumar et al., 2004a Splenius Capitis L 76.7 Right Lateral impact 

Kumar et al., 2004b Splenius Capitis R 97.5 Left Lateral impact 

Hernandez et al., 2005 Sternocleidomastoid 99.1 Rear impact 

Average (sd) 
 

78 (15.8) 
 

3.2.6 Muscle PCSA 

Knaub et al., (1998) observed that the muscle volumes in the neck of 50th percentile male volunteers 

were on average 64% greater than volumes obtained from cadaveric dissections, with differences as large 

as 128%. Furthermore, it was found that the 95th percentile male subject had on average 72% greater muscle 

volume when compared to the 50th percentile male subject, while the 5th percentile female subjects had 

muscle volumes that were on average 77% smaller than the 50th percentile male subjects. The mathematical 

formula to calculate PCSA is presented below: 

𝑃𝐶𝑆𝐴 =  
𝑀𝑢𝑠𝑐𝑙𝑒 𝑉𝑜𝑙𝑢𝑚𝑒 ∗ cos( 𝑃𝑒𝑛𝑛𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑔𝑙𝑒 (𝜃))

𝐹𝑖𝑏𝑒𝑟 𝑙𝑒𝑛𝑔𝑡ℎ
 

Since the fibre length and pennation angles used to calculate the respective PCSAs were reported as 

average values from all cadaver subjects, with the assumption that the fibre length and pennation angle is 

representative of in vivo humans, an increase or decrease to muscle volume is directly proportional to the 

resultant PCSA.  

 The upper and lower bound values for the PCSA that were used to create the muscle activation 

strategies were based on the muscle volume quantitative data presented by Knaub et al., (1998). The upper 

and lower boundaries of ±30% of the baseline PCSA in the GHBMC model was selected to be a reasonable 



 

85 

 

representation for 50th percentile male subjects that does not exceed the 95th percentile male or underscore 

the muscle volumes of the 5th percentile female subjects. Only the PCSA of the active muscles elements 

were scaled, while the volume of the 3-D passive tissues remained unchanged. Although scaling all the 

cervical musculature by the same percentage may not be physiological, this was a first estimation to study 

the effects of muscle forces on dynamic neck response.  

3.3 Active Muscle Study Plan  

3.3.1 Muscle Activation Schemes 

Activation schemes were formed by a combination of the activation strategy, muscle activation onset 

time and muscle PCSA. Activation strategy refers to the grouping of the muscles in the neck (e.g. baseline 

scheme: 2 groups – extensors, flexors), and activation ratio (e.g. 100% flexor and 100% extensor activation) 

(Table 3-6). The first activation scheme was the baseline configuration of the model with the baseline active 

muscle parameters and baseline muscle activation strategy. The second scheme was the upper bound 

configuration and utilized the neutral activation strategy with a combination of the lower bound onset time 

and upper bound PCSA. The third scheme was the neutral configuration and utilized the neutral activation 

scheme with the baseline activation onset time and baseline muscle PCSA. The fourth scheme was the 

lower bound configuration and utilized the neutral activation scheme with a combination of the upper bound 

onset time and lower bound muscle PCSA. The fifth scheme was the activation off scheme with the active 

muscles turned off (i.e. passive muscles only). The baseline and activation off scheme was important 

because they establish a baseline configuration of the model, as well as a boundary where no muscle 

activation was present; with the latter representing a cadaveric response. The neutral activation scheme was 

important to evaluate the effect of the neutral activation strategy based on a startle response. The upper 

bound and lower bound activation schemes defined a state of high and low activation to represent the range 

of muscle activation effectiveness in the HBMs. 

TABLE 3-6: SUMMARY OF ACTIVATION SCHEMES 

Scheme Strategy Onset Time PCSA 

1. Baseline Baseline 74 ms Baseline 

2. Upper Bound Neutral 60 ms Upper (+30%) 

3. Neutral Neutral 74 ms Baseline 

4. Lower Bound Neutral 90 ms Lower (-30%) 

5. Activation Off - - - 
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3.3.2 Simulation Matrix for Impact Studies 

The proposed activation schemes will be applied to the HBM muscle model for each impact case (8g 

frontal, 7g rear, and 7g lateral). In addition, the quadrant sensitivity study will be applied to the HBM only 

for the 7g lateral impact condition (Table 3-4). The study will be conducted on both the 50th percentile male 

and 5th percentile female HBM for a total of 38 simulation runs (Table 3-7). 

TABLE 3-7: TEST MATRIX FOR 50TH PERCENTILE MALE AND 5TH PERCENTILE FEMALE HBMS 

  
Scheme 

Onset Time (ms) PCSA Activation Strategy 

60 74 90 -30% ±0% +30% Off Baseline Neutral Quad 

8g FRT 1   ✓     ✓     ✓     

 2     ✓ ✓         ✓   

 3   ✓     ✓       ✓   

 4 ✓         ✓     ✓   

 5   -     -   ✓       

7g REAR 1   ✓     ✓     ✓     

 2     ✓ ✓         ✓   

 3   ✓     ✓       ✓   

 4 ✓         ✓     ✓   

 5   -     -   ✓       

7g LAT 1   ✓     ✓     ✓     

 2     ✓ ✓         ✓   

 3   ✓     ✓       ✓   

 4 ✓         ✓     ✓   

 5   -     -   ✓       

 Quad (x4)   ✓     ✓       ✓ ✓ 

 

3.4 Head Kinematics 

Head kinematics were used as metrics to compare the effect of the different activation schemes and 

were evaluated at the head center of gravity following the SAE coordinate system (Figure 3-11). The 

kinematic responses from the model were compared to corridors created from the volunteer and cadaver 

experiments that were used as the input boundary condition to evaluate the neutral activation scheme. The 
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head kinematics included X-acceleration (AX), Y-acceleration (AY), Z-acceleration (AZ), X-rotational 

acceleration (RAX), Y-rotational acceleration (RAY), Z-rotational acceleration (RAZ), X-rotational 

displacement (RDX), Y-rotational displacement (RDY), and Z-rotational displacement (RDZ) (Table 3-8). 

For the frontal and rear impact scenarios, AX, AZ, RAY, and RDY were the primary metrics used to 

compare head kinematics. For impacts where the head does not remain in the sagittal plane such as the 

lateral impact scenario, AX, AY, AZ, RAX, RAY, RAZ, RDX, and RDY were used to compare the head 

kinematics. All accelerations were filtered with an SAE 180 Hz filter. To evaluate the differences in the 

muscle activation schemes within an impact direction, the timing and magnitude of the key kinematics 

metrics will be evaluated and compared. 

 

FIGURE 3-11: HEAD KINEMATICS COORDINATE SYSTEM  

TABLE 3-8: HEAD KINEMATICS ABBREVIATION 

Head CG Kinematics X Y Z 

Linear Acceleration AX AY AZ 

Rotational Acceleration RAX RAY RAZ 

Rotational Displacement RDX RDY RDZ 
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3.5 Soft Tissue Injury Assessment in HBM 

The tissues in the neck that are associated with soft tissue injury during MVC were assessed for the 

potential of injury risk. The tissues that were investigated included the lower cervical spine ligaments, 

transverse compression of the nerve roots, and disc avulsion. Spinal cord injuries were not considered due 

to the lack of a spinal cord model in the HBM. In addition, hard tissue failure was not expected for the 

range of impact severities and loading condition, therefore eliminating the risk of spinal cord injuries 

resulting from hard tissue interactions. Injury to the neck muscles was not quantified because the threshold 

for muscle injury from stretching or excessive activation is lacking in the literature. The potential for disc 

injury is assessed through the avulsion criterion that is implemented in the model. Disc annular failure was 

not investigated because the literature suggests that annular damage is less common than avulsion failures, 

in addition to a lack of data on annular fibres in the literature. 

3.5.1 Ligament Distraction   

Injury risk to the lower cervical spine ligaments was quantified by tracking the change in distance of 

origin and insertion points of the beam elements that represented the ligaments in the model (Figure 3-12).  

 

  FIGURE 3-12: LOWER CERVICAL SPINE LIGAMENTS 

Strains were calculated by dividing the ligament distraction value by the corresponding neutral lengths 

reported in the literature (Panjabi et al., 2004; Winkelstein et al., 2000).  
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𝑆𝑡𝑟𝑎𝑖𝑛 (%) =  
∆𝐿

𝐿𝑛𝑒𝑢𝑡𝑟𝑎𝑙
× 100 

This was necessary because the initial length of the ligament in the HBM was not modelled to be 

representative of the human body due to nodal and positioning constraints. Ligaments in the cervical spine 

are composed of different layers and insert over an area on the hard tissue. Therefore, it was important to 

utilize neutral lengths reported in the literature to compare the predicted ligament response with previous 

reported strains values. Each ligament had an implemented displacement-based failure criterion to predict 

ligament rupture during neck loading (Mattucci et al., 2012). Unfortunately, catastrophic failure of the 

ligament does not always occur during whiplash injury, but rather, the ligaments are distracted beyond the 

physiological range of motion, within the traumatic region. When ligaments are loaded to this region, small 

bundles of collagen fibres begin to stretch and fail and may induce pain, decrease ligament stiffness and 

introducing excess ligament laxity. Increased laxity and decreased stiffness may cause an increased range 

of motion in the neck and lead to cervical spine instabilities.  

In order to predict the potential for injury, it was necessary to define the threshold for the different 

ligament response regions. Ligament data from Mattucci et al., (2012) was used to define a threshold for 

the linear region, traumatic region, post-traumatic region, and rupture (Figure 3-13). These values were 

used as metrics to quantify ligament distractions and relate them to the potential for injury during impact 

scenarios (Table 3-9, Table 3-10).  

 

FIGURE 3-13: EXEMPLAR FORCE VS. DISPLACEMENT CURVE FOR A LIGAMENT, ILLUSTRATING THE 

DIFFERENT RESPONSE REGIONS 
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TABLE 3-9: M50 LIGAMENT DEFINITIONS (mm) 

Ligament Distance C23 C34 C45 C56 C67 

ALL Failure length 3.9 3.9 3.4 3.4 4.4 

 Subfailure length 2.7 2.7 2.4 2.4 3.0 

 Linear length 1.5 1.5 1.4 1.4 1.8 

 Neutral length 13.3 14.5 13.5 11.6 13.5 

PLL Failure length 3.2 3.2 2.7 2.7 2.7 

 Subfailure length 1.8 1.8 1.5 1.5 1.5 

 Linear length 1.1 1.1 0.8 0.8 1.0 

 Neutral length 12.2 12.1 11.9 11.4 11.6 

CL Failure length 3.9 3.9 4.8 4.8 5.0 

 Subfailure length 2.1 2.1 2.6 2.6 2.7 

 Linear length 1.2 1.2 1.4 1.4 1.6 

 Neutral length 5.3 5.3 5.3 5.3 5.3 

LF Failure length 4.4 4.4 5.4 5.4 7.3 

 Subfailure length 3.7 3.7 4.5 4.5 6.2 

 Linear length 2.9 2.9 3.4 3.4 5.8 

 Neutral length 7.6 6.4 7.2 7.1 7.1 

ISL Failure length 6.1 6.1 6.6 6.6 7.3 

 Subfailure length 3.8 3.8 4.1 4.1 4.6 

 Linear length 2.6 2.6 2.3 2.3 3.8 

 Neutral length 13.2 10.4 11.4 13.7 11.3 

 

TABLE 3-10: F05 LIGAMENT DEFINITIONS (mm) 

Ligament Distance C23 C34 C45 C56 C67 

ALL Failure length 3.4 3.4 3.0 3.0 3.8 

 Subfailure length 2.4 2.4 2.1 2.1 2.6 

 Linear length 1.3 1.3 1.2 1.2 1.6 

 Neutral length 11.6 12.6 11.7 10.1 11.7 

PLL Failure length 2.8 2.8 2.3 2.3 2.3 

 Subfailure length 1.5 1.5 1.3 1.3 1.3 

 Linear length 1.0 1.0 0.7 0.7 0.9 

 Neutral length 10.6 10.5 10.4 9.9 10.1 

CL Failure length 3.4 3.4 4.1 4.1 4.3 

 Subfailure length 1.9 1.9 2.3 2.3 2.4 

 Linear length 1.0 1.0 1.2 1.2 1.4 

 Neutral length 4.6 4.6 4.6 4.6 4.6 

LF Failure length 3.8 3.8 4.7 4.7 6.4 

 Subfailure length 3.2 3.2 3.9 3.9 5.4 

 Linear length 2.5 2.5 3.0 3.0 5.0 

 Neutral length 6.6 5.6 6.3 6.2 6.2 

ISL Failure length 5.3 5.3 5.7 5.7 7.3 

 Subfailure length 3.3 3.3 3.6 3.6 4.6 

 Linear length 2.3 2.3 2.0 2.0 3.8 

 Neutral length 11.5 9.0 9.9 11.9 11.3 
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3.5.2 Transverse Nerve Root Complex Compression 

To predict the potential for transverse compression of the nerve roots, the intervertebral foramen space 

(IVF) height and width reduction were tracked during impact, following the methodology of Panjabi et al., 

(2006) (Figure 3-14). The height was measured from the middle medial zone of the IVF between adjacent 

vertebrae, and width was measured from the anterior medial zone of the superior vertebra to the posterior 

medial zone of the inferior vertebra. A threshold value (Table 3-11) was calculated by subtracting the IVF 

neutral height and width of the HBMs from measured experimental width and height of the nerve root 

(Table 3-12) of the dorsal root ganglion and ventral root complex (Alleyne et al., 1998). These threshold 

values were then used to evaluate whether or not the nerve root were at risk of transverse compression 

during neck loading in different impact directions. 

 

FIGURE 3-14: INTERVERTEBRAL FORAMEN SPACE HEIGHT AND WIDTH DEFINITION  

TABLE 3-11: EXPERIMENTAL NERVE ROOT DIMENSIONS (mm) 

Cervical 

Level 

Root 

Height 

Root 

Width 

C23 5.3 3.8 

C34 5.1 3.4 

C45 5.8 3.8 

C56 6.6 4.4 

C67 7.3 5.7 
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TABLE 3-12: IVF HEIGHT AND WIDTH REDUCTION THRESHOLD (mm) 

Cervical 

Level 

Male 

Height 

Male 

Width 

Female 

Height 

Female 

Width 

C23 7.7 5.0 3.0 3.2 

C34 5.3 5.0 2.3 4.1 

C45 5.7 5.8 2.7 3.6 

C56 4.8 4.3 2.2 3.5 

C67 2.5 1.1 2.1 1.9 
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CHAPTER 4:  RESULTS 

4.1 Average Stature Male (M50) Neck Model Results  

4.1.1 8g Frontal Impact Head Kinematics and Neck Tissue Response 

In a frontal impact with the neutral activation scheme, the neck underwent shear deformation, 

corresponding to head x-translation (50 ms), followed by flexion (100 ms). The flexion response resulted 

in forward rotation of the head until the maximum flexion angle was reached (190 ms), before returning to 

the initial position (Figure 4-1).  

 

FIGURE 4-1: M50 8G FRONTAL IMPACT KINEMATIC SEQUENCE (NEUTRAL ACTIVATION SCHEME) 

 In a frontal impact, the head motion occurred within the sagittal plane and the primary head CG 

kinematic metrics were the X-acceleration Y-rotation flexion angle. When the head reached maximum 

flexion, the baseline activation scheme yielded 24.5˚, while the neutral and activation-off schemes yielded 

64.6˚ and 78.6˚ respectively. The baseline activation scheme had a lower flexion response when compared 

to the average NBDL volunteer response corridors (68˚), and was outside the experimental response 
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corridor (Figure 4-2). The baseline activation scheme reached maximum flexion approximately 50 ms 

sooner when compared to the average volunteer response. The model with the neutral activation scheme 

resulted in a flexion response with a similar magnitude when compared to the volunteer response. In 

addition, the flexion response curve was within the experimental corridor during the flexion phase.  

 

FIGURE 4-2: M50 8G FRONTAL IMPACT HEAD CG: X-ACCELERATION AND Y-ROTATION FLEXION 

ANGLE VS. NBDL CORRIDORS 

When compared to the baseline activation scheme, the neutral activation scheme resulted in a 

maximum flexion angle increase of 163% while the activation-off scheme increased by 221% (Figure 4-3). 

The lower bound activation scheme yielded 71.7˚ (+11%), and upper bound 58.6˚ (-9%) when compared to 

the neutral activation scheme. Head x-acceleration generally occurred earlier with higher levels of muscle 

activation compared to the activation off scheme. Peak head rotation for the baseline activation scheme was 

reached at approximately 150 ms, while the other schemes occurred later at approximately 200 ms. 
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FIGURE 4-3: M50 8G FRONTAL IMPACT HEAD CG: X-ACCELERATION, Y-ROTATION FLEXION 

ANGLE, MAXIMUM Y-ROTATION ANGLE 

During a frontal impact, the ligaments along the posterior aspect of the neck are responsible for limiting 

flexion and had the highest predicted injury risk based on ligament distraction (Figure 4-4). The CL and 

ISL are the ligaments with the greatest predicted injury risk for a frontal impact. In general, tissue strains 

increased with decreased muscle activation levels. Strains increased from the upper levels (C23) towards 

the lower levels (C67) for all ligaments except the CL, which peaked at the mid-cervical spine level (C45). 

None of the ligaments was fully ruptured from the 8g frontal impact (Figure 4-6).  
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FIGURE 4-4: POSTERIOR LIGAMENTS LOADED IN TENSION 

The CL did not enter the post-traumatic region regardless of the activation strategy (Figure 4-5). The 

C45 level had the largest CL strains, with all activation schemes within the traumatic region except the 

baseline activation scheme. The CL demonstrated strains in the traumatic region for the neutral and lower 

level activation schemes at the C56 level. The neutral activation scheme prevented the ligament distraction 

from exceeding the linear region at the C34 level.   

 

FIGURE 4-5: M50 8G FRONTAL IMPACT CL STRAIN 

The PLL and LF strains were within the linear and toe regions for all activation schemes. The only 

exception was the PLL, which entered the traumatic region for the activation-off scheme at the C67 level. 

Both the PLL and LF had higher strains toward the lower cervical spine segments and with lower activation 

levels.  
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The ISL was the only ligament that had distractions in the post-traumatic region during an 8g frontal 

impact (Figure 4-7). The ISL demonstrated general trends of increased strain with both decreasing segment 

levels and decreased activation level. Ligament strains entered the post-traumatic region at the C67 level 

for all activation levels lower than the neutral activation scheme. The C45 and C56 levels had had ISL 

distractions within the traumatic region for all activation schemes except for the baseline activation scheme. 

The neutral and upper bound activation scheme prevented the ISL from entering the traumatic region at the 

C23 and C34 levels respectively. 

 

FIGURE 4-6: M50 8G FRONTAL IMPACT LIGAMENT INJURY RISK SUMMARY 
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FIGURE 4-7: M50 8G FRONTAL IMPACT ISL STRAIN 

The IVF height and width reduction did not reach the impingement threshold for all activation schemes 

and levels (Figure 4-8). IVF height reduction was generally below 1 mm for all segments, with the strongest 

activation scheme yielding the largest height reduction. IVF width reduction for all segment levels was 

negligible with the exception of the C23 segment, which had a reduction of approximately 2 mm.  

 

FIGURE 4-8: M50 8G FRONTAL IMPACT IVF HEIGHT AND WIDTH REDUCTION 
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4.1.2 7g Rear Impact Head Kinematics and Neck Tissue Response 

In the rear impact condition with the neutral activation scheme, the neck underwent flexion in the 

upper cervical spine and extension in the lower cervical spine (30 ms) which corresponded to head retraction 

before eventually reaching full extension motion (60 ms). The extension response resulted in a rearward 

rotation of the head until maximum head extension (170 ms) before returning forward to the initial position 

(Figure 4-9). 

 

FIGURE 4-9: M50 7G REAR IMPACT KINEMATIC SEQUENCE (NEUTRAL ACTIVATION SCHEME) 

The head motion in a rear impact occurred within the sagittal plane and the primary head CG kinematic 

metrics were the X-acceleration and Y-rotation extension angle. When the head reached maximum 

extension, the baseline activation scheme yielded 56.8˚, while the neutral and activation-off schemes 

yielded 50.7˚ and 52.2˚ respectively. The baseline activation scheme increased the extension response of 

the neck when compared to the activation-off scheme but was within the lower bounds of the experimental 

PMHS corridor (Figure 4-10).  
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FIGURE 4-10: M50 7G REAR IMPACT HEAD CG Y-ROTATION EXTENSION ANGLE VS. DENG 1999 

When compared to the baseline activation scheme, the neutral activation scheme resulted in a 

maximum head extension decrease of 12% while the activation-off scheme was decreased by 8%. The 

neutral activation scheme reduced the maximum head extension angle when compared to the activation-off 

scheme (-3%) (Figure 4-11). The lower bound activation scheme yielded 52.2˚ (+3%), and upper bound 

49.3˚ (-3%) when compared to the neutral activation scheme. Peak head rotation was reached at 

approximately 180 ms for the baseline activation scheme and was reduced with higher levels of muscle 

activation (170 ms for the lower bound activation scheme). 
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FIGURE 4-11: M50 7G REAR IMPACT HEAD CG: X-ACCELERATION, Y-ROTATION EXTENSION 

ANGLE, MAXIMUM Y-ROTATIONAL ANGLE 

In a rear impact, the ligaments around the facet joint and anterior aspect of the neck are responsible 

for limiting the extension motion of the neck and had the highest predicted injury risk based on ligament 

distraction (Figure 4-12). The ALL and CL demonstrated the greatest strains during a rear impact. Overall, 

tissue strains decreased with higher levels of muscle activation, with the peak strains occurring in the upper 

segments (C23 and C34) for both the ALL and the CL.  
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FIGURE 4-12: ANTERIOR LIGAMENTS LOADED IN TENSION 

In general, the model predicted a low potential for ligament injury during a 7g rear impact scheme 

(Figure 4-14), although the ALL and CL had higher distractions compared to the remaining posterior 

ligaments (ISL, LF, PLL). Ligament distractions were in the toe region for all activation schemes and 

segment levels. The CL demonstrated the largest strain in the C23 segment (Figure 4-13). The model 

predicted that all lower cervical spine ligaments were not at risk of injury after subjected to the applied 7g 

rear impact pulse. 

 

FIGURE 4-13: M50 7G REAR IMPACT CL STRAIN 
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FIGURE 4-14: M50 7G REAR IMPACT LIGAMENT INJURY RISK SUMMARY 

 The IVF height and width reduction did not reach the impingement threshold for all activation 

schemes and levels (Figure 4-15). IVF height reduction was generally below 2 mm with general trends of 

decreased height reduction towards the lower segments and increased height reduction with higher level 

activation schemes. The IVF width reduction for all segment levels was below 1 mm with the exception of 

the C34 level, which had a reduction of approximately 2 mm. The C67 segment was at the highest risk of 

impingement due to the reduced threshold at that level.  
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FIGURE 4-15: M50 7G REAR IMPACT IVF HEIGHT AND WIDTH REDUCTION 
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4.1.3 7g Lateral Impact Head Kinematics and Neck Tissue Response 

In lateral impact, the neck underwent a coupled motion of lateral flexion and axial rotation along with 

extension or flexion, depending on the muscle activation strategy. The neutral activation scheme resulted 

in a combination of lateral flexion and axial rotation response (60 ms) with combined neck flexion (100 

ms) before reaching maximum head lateral and axial angle (170 ms) and returning in the contralateral 

direction toward the initial position (Figure 4-16).  

 

FIGURE 4-16: M50 7G LATERAL IMPACT KINEMATIC SEQUENCE (NEUTRAL ACTIVATION SCHEME) 

Due to the complex motion of the neck and head complex in a lateral impact, the head CG kinematic 

metrics such as Y-acceleration and angle (X-rotation lateral flexion, Y-rotation sagittal angle, Z-rotation 

axial rotation) were investigated. When the head reached maximum lateral flexion, the baseline activation 

scheme yielded 33.8˚, while the neutral and activation-off schemes yielded 45.5˚ and 58.6˚ respectively. 

The baseline activation scheme had a lower maximum lateral flexion response when compared to the NBDL 

volunteer response corridors, with the loading phase of the curve demonstrating a lower magnitude (Figure 

4-17). The neutral activation scheme improved the response of the model to match closely with the average 

volunteer response magnitude. In addition, the flexion response of the neutral activation scheme was within 

the experimental corridor, throughout the entire loading phase of the impact. The maximum head lateral 

flexion angle with the neutral activation scheme compared favourably to the average experimental 
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maximum head lateral flexion angle of 48˚. The sagittal head motion for both the baseline activation scheme 

and the neutral activation scheme had opposite directions and were mostly outside the experimental 

corridor. Both the neutral activation scheme and volunteer response resulted in head flexion while the 

baseline activation scheme resulted in head extension. The average volunteer axial rotation was above 50˚, 

while the model with the default and neutral had a stiffer response and yielded below 20˚. The model with 

the neutral activation scheme produced head rotational displacements that were closer to the average 

volunteer response in all three directions.  

 

FIGURE 4-17: M50 7G LATERAL IMPACT HEAD CG: Y-ACCELERATION, X-ROTATION LATERAL 

FLEXION, Y-ROTATION SAGITTAL ANGLE, Z-ROTATION AXIAL ROTATION VS. NBDL RESPONSE  

When compared to the baseline activation scheme, the neutral activation scheme resulted in a 

maximum lateral flexion increase of 26% while the activation-off scheme had an increase of 73%. The 

upper bound activation scheme yielded 37.5˚ (-18%), and lower bound 52.2˚ (+15%) when compared to the 

neutral activation scheme. The onset of head y-acceleration occurred earlier and had a larger magnitude 

with increased levels of activation. In general, peak head rotation (sagittal, axial, and lateral) increased and 
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occurred later with decreased muscle activation level. All schemes resulted in head flexion except the 

baseline activation scheme, which resulted in head extension (Figure 4-18). In general, activation schemes 

were more sensitive to head lateral flexion than head flexion and axial rotation. 

 

FIGURE 4-18: M50 7G LATERAL IMPACT HEAD CG: Y-ACCELERATION, X-ROTATION LATERAL 

FLEXION, Y-ROTATION SAGITTAL ANGLE AND Z-ROTATION AXIAL ROTATION. MAXIMUM X-

ANGLE 
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During a side impact, the ligaments located along the lateral aspect of the cervical spine are responsible 

for limiting lateral flexion of the neck. The ligaments that are located contralateral to the direction of the 

impact are in tension and had the highest predicted injury risk based on ligament distraction, while the 

ligaments located on the ipsilateral side was in compression (Figure 4-19). A very small amount of bone 

failure was predicted based on hard tissue plastic strain, at the C6 and C7 vertebrae ipsilateral facet surface. 

In general, tissue strains increased with a decrease to the muscle activation level, with the C34 and C45 

levels demonstrating the largest strains (Figure 4-21). All other spinal ligaments are located along the 

neutral axis of bending during lateral flexion of the neck and demonstrated low distractions that were within 

the linear and toe regions.  

 

FIGURE 4-19: CONTRALATERAL LIGAMENTS LOADED IN TENSION 

The CL has the highest risk of injury (Figure 4-20) during a lateral crash with a general trend of 

increased distraction with lower activation level. The CL did not rupture but demonstrated distractions in 

the post-traumatic region for different segments, which depended on the muscle activation strategy.  
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FIGURE 4-20: M50 7G LATERAL IMPACT CL STRAIN 

The CL distraction was in the post-traumatic region of the ligament force-displacement curves at the 

C34 and C45 segments for the neutral and lower activation schemes. The CL in the remaining segments 

were distracted into the sub-traumatic region in all schemes. Higher activation schemes relative to the 

neutral activation scheme demonstrated distractions within the sub-traumatic and linear regions. The lower 

bound activation scheme resulted in CL distractions in the post-traumatic region for the C67, in addition to 

the C34 and C45. The activation-off scheme had distractions within the post-traumatic region for all 

cervical levels except for the C23, which was within the sub-traumatic region. The upper bound activation 

scheme prevented the CL distractions at the C34 and C45 from entering the post-traumatic region. The 

baseline activation scheme produced the stiffest response of the neck and resulted in only the C34 level to 

enter the sub-traumatic region, with the remaining levels within the toe and linear region. The middle 

cervical spine levels displayed the highest risk in sustaining distractions within the post-traumatic region 

during a lateral impact.  

The PLL had distractions, which entered the linear region for the act off scheme at the C23, C45 and 

C56 segment levels. All other levels and activation schemes were within the toe region. Similarly, the ISL 

entered the linear region at the C45 segment level starting from the neutral activation scheme. All other ISL 

at all segments and activation schemes were within the toe region. The LF and ALL were all within the toe 

region for all activation schemes and segment. 
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FIGURE 4-21: M50 7G LATERAL IMPACT LIGAMENT INJURY RISK SUMMARY 

The IVF located on the ipsilateral side of impact had the greatest risk for nerve impingement due to 

reductions in IVF height and width. In contrast, the contralateral side demonstrated an increase in IVF 

height and width, therefore was not at risk for nerve impingement. The C67 level reached the height 

reduction threshold of impingement for all activation schemes. The IVF had a general trend of lowered 

height reduction with decreased activation levels (Figure 4-22). The maximum height reduction was within 

three millimetres for all segments regardless of the activation scheme. Reduction in IVF width did not 

exceed the threshold at any segment level or activation scheme (Figure 4-22). The C34 level had the greatest 

reduction in width when compared to the other levels that generally remained below 2 mm. The width 

reduction for all segments generally increased with lower muscle activation levels. For a 7g lateral impact, 
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the C67 level demonstrated the highest risk for nerve root impingement due to the IVF height reduction, 

while the C34 level demonstrated the largest reduction in IVF width. 

 

 

FIGURE 4-22: M50 7G REAR IMPACT IVF HEIGHT AND WIDTH REDUCTION 

Quadrant Muscle Activation Investigation for Lateral Impact  

The effect of muscle activation on the ipsilateral neck muscles for a 7g lateral impact was investigated. 

The neutral activation scheme was used as the baseline, where the extensors and flexors were activated at 

a ratio of 1:5, respectively. The activation levels of the muscles on the contralateral side remained constant 

while the activation levels on the ipsilateral side were varied by 25% decrements while the 1:5 extensors to 

flexors activation ratio was maintained.  

The lateral acceleration of the head was insensitive to lowered levels of muscle activation on the 

ipsilateral side of impact (Figure 4-23). Overall, a decrease of activation on the ipsilateral side resulted in 

a decrease of lateral flexion, an increase in head forward flexion, and an increase in axial rotation (Figure 

4-23).  
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FIGURE 4-23: M50 7G LATERAL IMPACT QUADRANT SCHEME HEAD CG: Y-ACCELERATION, X-

ROTATION LATERAL FLEXION, Y-ROTATION SAGITTAL ANGLE AND Z-ROTATION AXIAL ROTATION 

In general, the ligament strains increased when the ipsilateral activation level was decreased but did 

not change the injury potential (Figure 4-24). Both the IVF height and width were reduced with decreasing 

ipsilateral activation, with the maximum reduction at the C23 segment (Figure 4-25). The lowered 

activation level of the ipsilateral muscles did not affect the potential for nerve root compression.  
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FIGURE 4-24: CL STRAIN QUADRANT SCHEME STUDY 

 

 

FIGURE 4-25: IVF HEIGHT AND WIDTH REDUCTION, QUADRANT SCHEME STUDY 
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4.2 Small Stature Female (F05) Neck Model Results 

4.2.1 8g Frontal Head Kinematics and Neck Tissue Response 

In a frontal impact with the neutral activation scheme, the neck underwent shear deformation, 

corresponding to head x-translation (40 ms), followed by flexion (90 ms). The flexion response resulted in 

forward rotation of the head until the maximum flexion angle was reached (175 ms), before returning to the 

initial position (Figure 4-26).  

 

 

FIGURE 4-26: F05 8G FRONTAL IMPACT KINEMATIC SEQUENCE (NEUTRAL ACTIVATION SCHEME) 

The primary neck motion during a frontal impact occurred within the sagittal plane and the primary 

head CG kinematic metrics included the X-acceleration and Y-rotation flexion angle were investigated. The 

maximum head flexion angle for the baseline activation scheme resulted in 45.4˚ of rotation, while the 

neutral and activation-off scheme demonstrated 64.4˚ and 70˚ of head flexion respectively. The baseline 

activation scheme demonstrated a stiffer flexion response when compared to the NBDL volunteer response 
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corridors, with most of the curve outside the corridor. In addition, both magnitude and onset were lower 

when compared to the NBDL response corridors. The neutral activation scheme resulted in a flexion 

response that matched closer to the volunteer response with most of the curve within the experimental 

corridor (Figure 4-27). The NBDL response corridors were not scaled to be stature-matched to the 5th 

percentile female.  

 

FIGURE 4-27: F05 8G FRONTAL IMPACT HEAD CG: X-ACCELERATION AND Y-ROTATION FLEXION 

ANGLE 

The peak head flexion angle increased with lower activation schemes. Accelerations traces were 

similar, with higher muscle activation demonstrating lower peaks and earlier occurrence in time. When 

compared to the baseline activation scheme, the neutral activation scheme resulted in a maximum head 

rotation increase of 42% while the activation-off scheme increased by 54%. Maximum head flexion angle 

for the upper bound activation scheme yielded 60.9˚ (-5.5%), and lower bound 67.2˚ (+4.4%) when 

compared to the neutral activation scheme (Figure 4-28).  
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FIGURE 4-28: F05 8G FRONTAL IMPACT HEAD CG: X-ACCELERATION AND Y-ROTATION FLEXION 

ANGLE, MAXIMUM Y-ROTATION ANGLE 

The posterior ligaments in the neck were loaded in tension during a frontal impact in the neck have 

the highest predicted injury risk based on ligament distraction because they are loaded in tension during a 

frontal impact. The ISL was the only ligament that entered the post-traumatic region in the C67 segment 

for all activation schemes. Ligaments that sustained sub-traumatic damage include the PLL, CL, and the 

LF. In general, ligament strain increased with a lower muscle activation level, and strains increased towards 

the lower cervical spine segments (Figure 4-30).  

The CL at the C23, C34 and C45 segment levels had strains that were in the linear region of the 

ligament response curve (Figure 4-29). Stronger activation schemes reduced the strains to within the toe 

region. In the C56 and C67 segments, the CL was distracted past the linear region and entered the traumatic 

region. For the C56 segment, failure occurred only with the activation-off scheme. The C67 segment was 

within the traumatic region, for all the activation schemes.  



 

117 

 

 

FIGURE 4-29: F05 8G FRONTAL IMPACT CL STRAIN 

The PLL sustained sub-traumatic damage starting at the lower bound activation scheme at the C67 

level, and for the activation-off scheme in the C56 segment. The neutral activation scheme had the C23, 

C56 and C67 segments that were in the linear region of the ligament load curve. In general, the lower 

cervical segments sustained higher strains when compared to the upper segments. The LF followed the 

same trend as the PLL, with increased strains towards the lower cervical segments, and increasing strain 

with decreased activation level. The LF was in the traumatic region for the activation-off scheme for both 

the C56 and C67 segment levels. The ISL was in the traumatic region for the activation-off scheme at the 

C45 segment, and for lower activation schemes relative to the upper bound activation scheme for the C56 

segment. The C67 segment had ligament failure for all muscle activations schemes. 
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FIGURE 4-30: F05 8G FRONTAL IMPACT LIGAMENT INJURY RISK SUMMARY 

The IVF height and width reduction did not reach the impingement threshold for any activation 

schemes and for any segment levels (Figure 4-31). The IVF had a height reduction that was below 1.2 mm 

for all segments, with a general trend of increased height reduction with the highest level of muscle 

activation. The IVF width had negligible reductions for all segment levels for the 8g frontal impact. 
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FIGURE 4-31: F05 8G FRONTAL IMPACT IVF HEIGHT AND WIDTH REDUCTION 
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4.2.2 7g Rear Impact Head Kinematics and Neck Tissue Response 

In the rear impact condition with the neutral activation scheme, the neck underwent flexion in the 

upper cervical spine and extension in the lower cervical spine (30 ms) which corresponded to head retraction 

before eventually reaching full extension motion (55 ms). The extension response resulted in a rearward 

rotation of the head until maximum head extension (170 ms) before returning forward to the initial position 

(Figure 4-32). 

 

 

FIGURE 4-32: F05 7G REAR IMPACT KINEMATIC SEQUENCE (NEUTRAL ACTIVATION SCHEME) 

The primary neck motion in a rear impact occurred within the sagittal plane, and therefore the primary 

head CG kinematic metrics include the X-acceleration and Y-rotation extension angle was investigated. 

The F05 model reached a maximum extension angle of 55.7˚ for the baseline activation scheme, while the 

neutral and activation-off scheme reached 52.2˚ and 55.1˚ respectively. The neutral activation scheme 

decreased head extension angle by 6.3% while the activation-off scheme decreased head extension angle 
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by 1.2%. The baseline activation scheme exacerbated the extension response of the neck when compared 

to the activation-off scheme but was within the PHMS experimental corridor (Figure 4-33). The neutral 

activation scheme was able to reduce head extension by reducing the extensor bias that existed in the 

baseline activation scheme.  

 

FIGURE 4-33: F05 7G REAR IMPACT HEAD CG Y-ROTATION EXTENSION RESPONSE VS. DENG 1999 

The head X-acceleration trace for all schemes was similar. The activation schemes with lower levels 

of activation had a positive phase shift in time and greater peaks due to the reduced stiffness of the neck 

musculature. In general, higher levels of muscle activation reduced head extension angle and the resulting 

maximum extension occurred earlier in time. When compared to the neutral activation scheme, the lower 

bound activation scheme yielded a head extension angle of 53.9˚ (+3.2%), while the upper bound activation 

scheme yielded 50.6˚ (-3.1%) (Figure 4-34). 
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FIGURE 4-34: F05 7G REAR IMPACT HEAD CG: X-ACCELERATION AND Y-ROTATION EXTENSION 

ANGLE. MAXIMUM Y-ROTATION ANGLE 

In a rear impact, the ligaments in the anterior region of the neck are loaded in tension to resist extension 

and had the highest predicted injury risk based on ligament distraction. Tissue level strains generally 

increased with a decrease in the muscle activation level and reached peak strains at the lower cervical levels 

(Figure 4-36). All ligaments in the model were within the toe region of the ligament response curves except 

for the activation-off scheme where the CL entered the linear region (Figure 4-35).   
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FIGURE 4-35: F05 7G IMPACT CL STRAINS 
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FIGURE 4-36: F05 7G REAR IMPACT LIGAMENT INJURY RISK SUMMARY 

Reduction in the IVF height and width did not exceed the threshold for any activation schemes at all 

segment levels (Figure 4-37). The IVF height reduction decreased with lower levels of activation levels. 

The IVF width reduction decreased at the C23 and C34 levels but height reduction increased for the C45 

and lower levels. In general, the height and width reduction were below two millimetres for activations 

schemes and levels. 
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FIGURE 4-37: F05 7G REAR IMPACT IVF HEIGHT AND WIDTH REDUCTION 
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4.2.3 7g Lateral Impact Head Kinematics and Neck Tissue Response 

The lateral impact with the neutral activation scheme resulted in a combination of neck lateral flexion 

and axial rotation response (65 ms) with combined neck flexion (100 ms) before reaching maximum head 

lateral and axial angle (155 ms) and returning in the contralateral direction toward the initial position (Figure 

4-38).  

 

FIGURE 4-38: F05 7G LATERAL IMPACT KINEMATIC SEQUENCE (NEUTRAL ACTIVATION SCHEME) 

The neck response to a side impact is complex and occurs in multiple planes of motion. The F05 head 

returned past the initial neutral position in the contralateral direction of impact at the end of the simulation 

(Figure 4-38). Head CG kinematic metrics such as Y-acceleration and angle (X-rotation lateral flexion, Y-

rotation sagittal angle, and Z-rotation axial rotation) was investigated.  

Head acceleration of the baseline and neutral activation scheme were similar in shape. The baseline 

activation scheme displayed an earlier onset of head y-acceleration when compared to the neutral activation 

scheme. The baseline activation scheme had a maximum lateral flexion angle of 29.8˚, while the neutral 

and act off scheme reached 36.4˚ and 44.9˚ respectively. Both the baseline and neutral activation scheme 

demonstrated lower head lateral flexion angle than the NBDL volunteer response corridors (Figure 4-39). 

The neutral activation scheme resulted in head flexion, while the baseline activation scheme resulted in 
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head extension. The model demonstrated lower axial rotation when compared to the NBDL response. The 

F05 model was not within the volunteer corridors for all three axes of rotation.  

 

FIGURE 4-39: F05 7G LATERAL IMPACT HEAD CG: Y-ACCELERATION, X-ROTATION LATERAL 

FLEXION, Y-ROTATION SAGITTAL ANGLE AND Z-ROTATION AXIAL ROTATION VS NBDL RESPONSE 

In general, the peak head rotation (lateral, sagittal, and axial) increased and occurred later with lower 

muscle activation levels (Figure 4-40). The head y-acceleration shape and magnitude were similar between 

activation schemes. The higher activation schemes resulted in an earlier occurrence of head movement than 

lower activation schemes. The upper bound activation scheme resulted in a maximum head lateral flexion 

angle of 31.7˚ (-13%) while the lower bound activation scheme resulted in 40.8˚ (+12.1%) when compared 

to the neutral activation scheme. All activation schemes resulted in head flexion except the baseline 

activation scheme. In general, activation schemes were more sensitive to head lateral flexion than head 

flexion and axial rotation.  
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FIGURE 4-40: F05 7G LATERAL IMPACT HEAD CG: Y-ACCELERATION, X-ROTATION LATERAL 

FLEXION, Y-ROTATION SAGITTAL ANGLE, Z-ROTATION AXIAL ROTATION, MAXIMUM X-ROTATION 

ANGLE 

Ligaments along the lateral aspect of the neck had the highest predicted injury risk based on ligament 

distraction. All ligaments except for the contralateral CL demonstrated low distractions that were within 

the toe region (Figure 4-42). A very small amount of bone failure was predicted based on hard tissue plastic 
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strain, at the C6 and C7 vertebrae ipsilateral facet surface. The tissues strains had a general trend to increase 

with lower activation levels, with lower cervical segment levels demonstrating larger strains.  

The CL had the highest risk of injury during a lateral crash with a general trend of increased distraction 

with lower activations schemes and lower segment levels (Figure 4-41). The CL distractions entered the 

post-traumatic region at the C56 for the lower bound and act off schemes and the C67 levels for the neutral 

and lower activations schemes. The CL distraction entered the traumatic region at the C34 and C45 levels 

starting from the neutral and lower activation schemes. Both the C56 and C67 levels had CL distractions 

that were in the traumatic region regardless of the activation scheme. The upper bound activation scheme 

prevented the CL distraction from entering the traumatic region at the C34 and C45 levels.  

 

FIGURE 4-41: F05 7G LATERAL IMPACT CL STRAINS 
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FIGURE 4-42: F05 7G LATERAL IMPACT LIGAMENT INJURY RISK SUMMARY 

The IVF located on the ipsilateral side of impact had the greatest risk for nerve impingement due to 

reductions in IVF height and width (Figure 4-43). In contrast, the contralateral side demonstrated an 

increase in IVF height and width, therefore was not at risk for nerve impingement. The C67 reached the 

impingement threshold for all activation schemes when considering the height reduction. The IVF width 

reduction reached the threshold for the lower bound and activation-off scheme. In general, height reduction 

was below 2.5 mm and varied among segment levels but had an overall trend of decreasing with lower 

activation schemes. The IVF width reduction was decreased at the C23 and C34 levels with lower activation 

schemes but increased starting at the C45 and lower levels with lower activation schemes. Width reductions 

were generally consistent and were below 2.5 mm of reduction.  
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FIGURE 4-43: F05 7G LATERAL IMPACT IVF HEIGHT AND WIDTH REDUCTION 

Quadrant Muscle Activation Investigation for Lateral Impact  

The lateral acceleration, lateral flexion angle and axial rotation of the head were insensitive to lower 

ipsilateral muscle activation levels (Figure 4-44). The greatest effect was observed on the head sagittal 

angle, which increased with lowered ipsilateral muscle activation.  
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FIGURE 4-44: F05 7G LATERAL IMPACT QUAD SCHEME HEAD CG Y-ACCELERATION, X-ROTATION 

LATERAL FLEXION, Y-ROTATION SAGITTAL ANGLE AND Z-ROTATION AXIAL ROTATION  

In general, ligaments strains increased with decreased ipsilateral activation in all segment levels except 

the C67 level (Figure 4-45). The activation level on the ipsilateral side did not affect the potential for injury 

for all ligaments. Both the IVF height and width reduction were reduced with decreased ipsilateral 

activation (Figure 4-46). The C67 level remained above the impingement threshold regardless of the 

ipsilateral activation level.  
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FIGURE 4-45: F05 7G LATERAL IMPACT QUADRANT SCHEME CL STRAIN 

 

 

FIGURE 4-46: F05 7G LATERAL IMPACT QUADRANT SCHEME IVF HEIGHT AND WIDTH REDUCTION 
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CHAPTER 5:  DISCUSSION 

5.1 Open-Loop Neutral Muscle Activation Scheme Assessed using the M50 Neck 

Model 

An improved open-loop muscle activation scheme was proposed in this study to provide a single 

activation strategy for the impact cases investigated. Open-loop control utilizes a pre-determined muscle 

activation curve with a specific activation onset time, maximum activation, and activation shape. The shape 

of the activation curve was preserved from previous studies (Panzer et al., 2011; Fice et al., 2011), while 

the onset time and activation levels were varied. Previously, the muscles of the neck were classified as 

flexors or extensors, and all muscles in each group received the same activation strategy. This was 

acknowledged to be an oversimplification for the complex muscle activation in the neck (Panzer et al., 

2011; Fice et al., 2011), but provided a starting point for introducing muscle activation applied to frontal 

and rear impact. In the current study, the muscle groups were further discretized into quadrants to enable 

varying left-right activation levels for lateral impacts. The quadrant scheme was not used in the frontal or 

rear impact condition because motion occurred within the sagittal plane; however, the quadrant scheme was 

used to investigate unilateral muscle activation schemes for the lateral impact condition. The current model 

has four groups of muscles (flexor left, flexor right, extensor left, extensor right) that are activated 

synergistically at the start of an impact. Although the activation scheme is a simplification of muscle 

activation in-vivo, this approach can allow HBMs to estimate the muscle activation without the use of a 

closed-loop muscle activation scheme. The muscle activation scheme in an early version of the M50 model, 

described as the baseline muscle activation scheme, was applied for both frontal impacts (extensors: 100%, 

flexors: 100%, activation onset time: 74ms) (Panzer et al., 2011), and rear impacts (extensors: 70%, flexors: 

100%, activation onset time: 74ms) (Fice et al., 2011) with the activation curve defined in Panzer et al., 

(2011). The baseline activation scheme was identified as a limitation due to the higher PCSA in the 

extensors when compared to the flexors, which caused the head to move into extension when the muscles 

were activated with no external load was present. It should be noted that all muscle activation schemes are 

somewhat model specific, owing to the stiffness of the surrounding tissues, cervical spine, and numerical 

aspects such finite element mesh size.  

A closed-loop muscle activation scheme utilizes PID controllers to modulate muscle activation using 

external targets such as global head angle and joint reaction force. The activation of each muscle or muscle 

groups can therefore be individually varied and adjusted during the crash scenario with the feedback from 
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the external targets, and can potentially provide a more biofidelic representation of the neuromuscular 

response when compared to open-loop muscle control. Closed-loop muscle control has been implemented 

into HBMs (Östh et al., 2012; Kato et al., 2017), however there is currently no general consensus regarding 

the controller parameter values that are used in the implementation. The open loop control scheme was 

therefore pursued in the current study to investigate the fundamental effects of muscle activation on impact 

response and can serve as a baseline for future studies that will include a closed loop control scheme.  

A new muscle activation scheme was developed for the current study, described as the neutral 

activation scheme that achieved two goals: addressing the extensor bias of the baseline activation scheme 

in the model, and providing one simple activation scheme that could be applied to all impact scenarios. The 

neutral activation scheme was developed with the target of minimizing head movement in flexion or 

extension, to maintain the head in a neutral posture when the muscles were activated with no externally 

applied loads (i.e. the T1 was held stationary). Previous studies have proposed 100% activation for the 

flexors (Panzer et al., 2011) because flexor activation was not sensitive to head forward rotation, while in 

a rear impact condition, the flexors were maintained at 100% due to the large contribution in constraining 

neck extension (Fice et al., 2011). The contribution of flexors and extensors in the lateral loading conditions 

are currently unclear, therefore future studies should investigate different activation ratios of the extensors 

and flexor muscles in response to rear and lateral impact conditions. In the current study, the flexors were 

assumed to activate at 100% while the activation level of the extensor was varied to achieve the optimization 

target of minimizing changes in both the Frankfort plane angle (i.e. line of sight) and head x-translational 

displacement from the initial head neutral position. The optimized result indicated an extensor to flexor 

ratio of 1:5 (extensors: 20%, flexors: 100%) was required to meet the optimization target. When the muscles 

were activated using the neutral activation scheme, the neck shortened due to the compressive force of the 

active muscles, and caused an increase in cervical lordosis but the head rotation and x-displacement was 

minimized. The M50 model includes a PCSA distribution of 70% extensors and 30% flexors, that would 

suggest an activation ratio of extensors to flexors of approximately 1:2.3, which was different from the 1:5 

ratio from the optimization study. The large difference in the activation ratio was due to variations in muscle 

moment arms between the extensor and flexor muscles in the M50 model. EMG studies have demonstrated 

that the flexor and extensor muscle in the neck are co-contracted in unaware subjects that were subjected 

to low speed rear impact perturbations, and was hypothesized that this co-activation served to increase neck 

stiffness, therefore protecting the neck (Siegmund et al., 2003). It should be noted that the proposed neutral 

activation scheme was developed independent of the impact cases, hence the activation parameters were 

not tuned to fit the experimental responses. When applied to various impact conditions, the overall 

performance of the neutral activation scheme showed positive improvements to the head kinematic response 
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for all three impact directions compared to the baseline activation scheme, for both the M50 and F05 

models.  

In the 8g frontal impact condition, the baseline activation scheme over-constrained the neck flexion of 

the M50 model due to over-activation of the extensors (100% activation), which resulted in lowered head 

forward rotational displacement when compared to the average volunteer response (64% lower). The 

reduction of the extensor activation from 100% to 20% in the neutral activation scheme demonstrated a 

large improvement in the head forward rotation response of the model when compared to the average 

volunteer response (5.4% lower). The lower level of extensor activation reduced the neck flexion constraint 

of the baseline activation scheme and allowed for increased forward head rotation. The neutral activation 

scheme was considered to be more biofidelic due to the improvement in model response, compared to the 

volunteer response.  

The neutral activation scheme was challenging to assess in the 7g rear impact condition because there 

was no volunteer response for high severity rear impact in the literature. Volunteer response data only exist 

for rear impacts with a severity limit of 4g maximum acceleration, which was found to not be relevant to 

injury risk for humans (Davidsson et al., 1996; Ono et al 1997; Ono et al 2006). Considering the model 

response in the current study, the 7g rear impact condition with the baseline activation scheme resulted in 

greater head rotational displacement when compared to the activation off scheme, which may be considered 

an unphysical response of the model when considering the muscles were activated. The increase in 

extension angle with the baseline activation scheme should not be expected when compared to the activation 

off scheme with the M50 model, and was due to the fully activated extensor muscles that exacerbated the 

head rearward rotation. The increase in head rotation angle with the baseline activation scheme was contrary 

to previous results (Fice et al., 2011), where the global head rotation angle was reduced with muscle 

activation when compared to muscle activation, and can be attributed to differences in the muscle origin 

and attachment points between the two different models. The neutral activation scheme reduced the head 

rotational displacement when compared to the activation off scheme which resulted in a better physical 

response compared to the baseline activation scheme. Although the head response of the M50 model was 

within the experimental corridor from Deng et al., (2000), these were PHMS responses and therefore did 

not enable a direct comparison with the current study, which included muscle activation. Future studies 

should investigate low severity rear impacts in order to directly compare the effect of muscle activation of 

the HBMs with the volunteer head kinematic response.  

The 7g lateral impact condition with the baseline activation scheme demonstrated lower head lateral 

rotational displacement when compared to the average volunteer response (30% lower), and was attributed 
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to the neck moving into extension which correspondingly limits lateral flexion and axial rotation of the 

neck (facet joint contact in neck extension limits axial rotation); whereas neck flexion would increase lateral 

flexion and axial rotation. The average volunteer sagittal neck response was in flexion which indicated that 

the baseline activation scheme over-activated the extensor muscles in the M50 model. The neutral activation 

scheme addressed the over-activated extensor muscles, which resulted in neck flexion in the M50 model 

and correspondingly, increased the head lateral rotational displacement when compared to the baseline 

activation scheme. Therefore, the neutral scheme demonstrated positive improvements to the head lateral 

rotational displacement of the M50 model when compared to the average volunteer response (5.8% lower).  

A parametric study was performed on both M50 and F05 models with the intention of improving the 

neck response of the models with the neutral activation scheme as a starting point. The activation level of 

the flexor and extensor muscles on the ipsilateral side was decreased in 25% decrements, which resulted in 

greater activation in the contralateral flexor and extensor groups, as evident in the experimental literature 

(Kumar et al., 2004a; Kumar et al., 2004b). The results of this study did not demonstrate a high sensitivity 

to improving the model response when comparing the neutral activation scheme to the reduced ipsilateral 

scheme (ipsilateral extensor: 5% activation, ipsilateral flexor: 25% activation,) for head lateral rotation 

(both model: 2% lower) and head axial rotation (M50: 6.3% higher, F05: 4.3% higher) because the 

activation of the contralateral muscles was maintained at 100% and was responsible for restricting lateral 

motion of the head to the ipsilateral side. The largest effect of decreasing the activation on the ipsilateral 

side was the increased head forward rotation angle for both models (M50: 33.8% higher, F05: 30.8% 

higher), which was attributed to the overall reduction of the extensor muscle activation on the ipsilateral 

side (from 20% to 5% activation). Future studies should be conducted on lower severity side impact 

scenarios to investigate the sensitivity of head lateral flexion response to decreased ipsilateral neck muscle 

activation.  

The default activation onset time for both the M50 and F05 models was set at 74 ms, as proposed by 

Panzer et al., (2011) and Fice et al., (2011), and was in good agreement with the literature (Table 3-5), as 

74 ms was within the reported literature range of 55 ms to 110 ms, and was comparable to the calculated 

average of the experimental literature of 78 ms. The upper and lower bound values for the activation onset 

time were based on the calculated standard deviation of the onset times in the literature, which was 

approximately ±20% of the average time. The upper and lower bounds used in this study were 90 ms and 

60 ms respectively, which was a reasonable assumption because it was both within the range of onset times 

reported in the literature and was scaled to approximately represent one standard deviation of the baseline 

activation onset time of 74 ms, as calculated from the activation onset time range found in the literature.  
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The baseline neck PCSA in the M50 model was based on experimental measurements on 50th 

percentile male volunteers presented by Knaub et al., (1998), while the F05 PCSA values were scaled down 

from the M50 PCSA using neck regional dimension scaling factors (Shams et al., 2003). The upper and 

lower bound values of the PCSA (±30%) were used to represent the variation of muscle PCSA in the 

population and was calculated based on the muscle volume differences between the 50th percentile male, 

5th percentile female and 95th percentile male volunteers. The 95th percentile male had on average 72% 

greater muscle volume than a 50th percentile male, while the 5th percentile female had on average 77% 

smaller muscle volume than the 50th percentile male subjects. The upper and lower bound scaling value of 

±30% was selected to be within the volumetric difference between the 5th percentile female and 95th 

percentile male. The same PCSA scaling factor of (±30%) was applied to the F05 model, and was a 

reasonable assumption to ensure that the upper bound PCSA would not exceed the volumetric difference 

between the 5th percentile female and 50th percentile male volunteers.  

The upper bound and lower bound activation scheme was created based on the neutral activation 

scheme to represent the upper and lower bound of PCSA and activation onset time to reflect the variation 

in the population. The lower bound activation scheme combined the low PCSA (-30%) and high activation 

onset time (90 ms) to represent the lower bracket of the population with lower and slower muscle activation. 

Conversely, the upper bound activation scheme combined the high PCSA (+30%) and low activation onset 

time (60 ms) to represent the upper bracket of the population with higher and faster muscle activation levels. 

Overall, both M50 and F05 models demonstrated low variations in head rotational displacement (<20%) 

when compared to the default PCSA and activation onset time. The M50 model demonstrated the lowest 

sensitivity to the variation of PCSA and activation onset time for the 7g rear impact condition (lower bound: 

+3%, upper bound: -3%), which indicated that variations in muscle activation force and activation onset 

time would result in the least difference for the head kinematic response. The flexors are the dominant 

muscles that restrict neck extension when activated, and the initially lower PCSA of the flexors received 

less scaling when compared to the extensors and hence, the head rotation response would be less sensitive. 

Conversely, the 7g lateral impact condition demonstrated the largest change in head lateral rotational 

displacement (lower bound: +15%, upper bound: -18%), which would indicate that variations in the 

population will more likely affect the head kinematics in a lateral impact scenario. The high sensitivity can 

be explained by the scaling of the extensor, which affected the sagittal plane motion of the model, hence 

higher neck flexion resulted in higher lateral neck flexion and the opposite for neck extension. The 8g 

frontal impact condition had head forward rotational displacement sensitivity between the 7g rear and 7g 

lateral impact condition (lower bound: +11%, upper bound: -9%). The frontal impact was more sensitive 

than the rear impact condition because scaling the extensors had a larger effect on the kinematic outcome 
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because of the higher PCSA magnitude of the extensors when compared to the flexor, and thus was more 

effective at limiting neck flexion. Another interesting finding was that although the extensor and flexor 

PCSAs were scaled equally, the resultant moment produced by the extensors and flexors did not scale 

linearly, due to differences in muscle moment arms, which could explain the higher sensitivity in the frontal 

and lateral impact case; both of which are extensor dependent. The F05 model demonstrated the same trends 

as the M50 model, however the sensitivity was generally the same or lower for all impact directions, 

attributed to the initially lower baseline muscle PCSA, which could suggest that smaller statures have lower 

sensitivity to musculature assessed by variations in kinematics response. 

5.2 Evaluation of Soft Tissue Injury Risk 

The potential for injury risk of the ligaments in the cervical spine was evaluated by quantifying the 

maximum ligament distraction and converting to strain for each ligament during the impact. The maximum 

distraction of each ligament was then compared to experimental ligament force-displacement curves, which 

were taken from a study by Mattucci et al., (2012). The ligament force-displacement curve has a 

characteristic sigmoidal shape (Mattucci and Cronin 2015) that was divided into five distinct response 

regions: toe region, linear region, traumatic region, post-traumatic region, rupture region (Figure 3-13). 

Ligament distractions from the model and transitional displacements in the ligament force-displacement 

curve were converted to strains using the neutral lengths of the ligament from the literature (Table 3-9, 

Table 3-10). The transitional strain between each region were used as thresholds to determine the injury 

risk of the ligament. If the ligament strain was within the toe region or linear region, the ligament was 

determined to be within the physiological loading range, where there was a low risk of injury. A high risk 

of injury was therefore categorized if the predicted ligament strain exceeded the linear region threshold, 

therefore moving beyond the physiological range. At the end of the linear region, the ligament stiffness 

transition from constant stiffness to a state of decreasing stiffness and is referred to as the traumatic region. 

The traumatic region represents the accumulation of damage within the ligament (Yoganandan et al., 2001; 

Yoganandan et al., 1988), where microdamage at the ligament fiber level may occur, while damage cannot 

be observed macroscopically (Nordin and Frankel, 2001). Within the traumatic region, a pain response is 

likely to be present, along with potential joint instability due to decreased ligament stiffness, although the 

ligament remains grossly intact (Cronin, 2014). Past the traumatic region is the post-traumatic region, where 

bundles of collagen fibers begin to rupture in a progressive manner, until the ligament is fully transected 

and can no longer support any load (DeWit and Cronin, 2012). There are currently no directly measured 

pain thresholds available for cervical spine ligaments in humans. It is therefore challenging to predict a pain 

response using FE models because there is no quantifiable injury metric such as strain, in relation to 
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potential pain response for humans. The association of ligament distraction and pain has been explored in 

the context of sub-traumatic injuries in the CL using animal models (Lu et al., 2005; Lee et al 2004; Lee et 

al 2008), specifically the study conducted by Lu et al., (2005), which monitored afferent nerve signals 

during CL ligament elongation. In-vivo caprine models demonstrated a low firing threshold beginning at 

10% strain, that reached saturation at 38.8% strain, and a high strain threshold at 46% strain. The low strain 

threshold (10% to 38.8%) was hypothesized to be the activation of mechanoreceptors, while the high strain 

threshold beginning at 46% was hypothesized to be the threshold for nociceptor activation. A direct 

comparison of the caprine strain threshold for mechanoreceptor and nociceptor activation was made with 

the CL force-displacement response curve in the M50 model (Figure 5-1). It was acknowledged that distinct 

biological and anatomical differences exist between humans and animals, however the relationship of pain 

thresholds and ligament strain in this context can be used to provide an estimated interpretation on otherwise 

non-obtainable thresholds for in-vivo humans. The low threshold strain threshold (10% to 38.8%) 

corresponded to the toe and linear response region of the ligament, which indicate that mechanoreceptors 

are active within the physiological range of motion for the CL. The nociceptor activation threshold of 46% 

strain corresponded to the end of the linear region, before the transition into the traumatic region. Pain is a 

physiologic response that activates to protect the body from injury or to prevent further injury. The pain 

threshold at the end of the linear region is a reasonable assumption because nociceptors activate before 

injury occurs (Costigan et al., 2009). The end of the linear response region may therefore be attributed to 

the pain threshold by utilizing the ligament response curve. Therefore, the current method of quantifying 

the injury risk based on the traumatic region of the ligament force-displacement curve is a reasonable 

assumption for the onset of injury and pain response.  

 

FIGURE 5-1: ESTIMATED CL PAIN THRESHOLD USING CAPRINE MODEL OF PAIN (LU ET AL., 2005) 
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The injury risk for transverse compression of the nerve root and ganglia was quantified by monitoring 

the maximum reduction of the IVF height and width at the foraminal medial zone. The IVF height and 

width dimension that was monitored in the M50 and F05 models for each cervical vertebral level was based 

on the methodology used in PHMS experiments that investigated spinal nerve injury through hard tissue 

compression (Panjabi et al., 2006; Tominaga et al., 2006; Ivancic et al., 2012). The method used in the 

current study and previous PHMS experiments only accounted for nerve root compression based on hard 

tissue relative motion and did not include potential interactions with the soft tissues found within the IVF. 

In the current study, an injury threshold was calculated for each spinal nerve (C3 to C7) that corresponded 

to the IVF from the C23 to C67 vertebral segment by subtracting the IVF height and width of the M50 and 

F05 models (in the neutral posture) to the height and width of the dorsal root ganglion and ventral root 

complex, as measured in the experimental literature (Alleyne et al., 1996). If the maximum IVF height or 

width reduction in the M50 or F05 model exceeded the threshold, a risk of spinal nerve injury was possible 

(Panjabi et al., 2006; Tominaga et al., 2006; Ivancic et al., 2012). The injury threshold for impingement is 

therefore sensitive to the IVF height and width of the cervical spine in the neutral position. In the above-

mentioned PHMS studies, the neutral IVF height and width measurements were based on experimental 

averages from other sources of literature (Table 5-1). In general, the neutral IVF height and width 

dimensions used in the experimental studies were lower when compared to the neutral IVF height and width 

that was measured in the M50 and F05 models. The resulting thresholds that were calculated based on the 

IVF morphology of the M50 and F05 models were greater than the thresholds proposed in the literature 

(Table 5-2). At this time, there are no available data on the dorsal root ganglion and ventral root complex 

dimensions with respect to stature or gender. Therefore, for the current study, the M50 model had higher 

calculated threshold values when compared the F05 model due to the reduced neutral IVF height and width 

dimensions, due to the smaller stature of the F05 model.  

TABLE 5-1: IVF HEIGHT AND WIDTH DIMENSIONS OF THE M50 AND F05 MODELS COMPARED WITH 

THE EXPERIMENTAL LITERATURE 

Dimension (mm) C23 C34 C45 C56 C67 

IVF Height      

Literature 9.1 8.3 8.8 9.0 9.1 

M50 13.0 10.4 11.5 11.4 9.8 

F05 8.28 7.39 8.47 8.77 9.4 

IVF Width      
Literature 6.2 5.5 5.8 5.9 6.0 

M50 8.8 8.4 9.6 8.7 6.8 

F05 7.0 7.5 7.4 7.9 7.6 
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TABLE 5-2: IVF HEIGHT AND WIDTH THRESHOLD BASED ON THE M50 AND F05 MODEL, COMPARED 

WITH THE EXPERIMENTAL LITERATURE 

Threshold (mm) C23 C34 C45 C56 C67 

IVF Height      

Literature 3.8 3.2 3.0 2.4 1.8 

M50 7.7 5.3 5.7 4.8 2.5 

F05 3.0 2.3 2.7 2.2 2.1 

IVF Width      
Literature 2.4 2.1 2.0 1.5 0.3 

M50 5.0 5.0 5.8 4.3 1.1 

F05 3.2 4.1 3.6 3.5 1.9 

 

5.3 Frontal Impact Response and Potential for Injury Risk 

5.3.1 M50 Injury Risk 

In the 8g frontal impact condition with the neutral muscle activation scheme, hard tissue failure and 

disc avulsion injuries were not predicted by the model, in agreement with the NBDL test data where no 

such injuries were reported. The intervertebral foramen height and width reduction were negligible and 

therefore a low injury risk to the nerve roots was predicted, and was similar to experimental measurements 

of IVF dimensions, where flexion caused the foraminal area to increase (Muhle et al., 2001; Kitagawa et 

al., 2004). The model predicted larger strains for ligaments that were located along the posterior region of 

the neck (PLL, LF, ISL) and lower strains for the ALL, as expected. The model predicted the highest 

potential injury risk to the ISL, where post-traumatic failure was predicted at the C67 level. The anterior 

portion of the CL demonstrated high strains in the C45 and C56 levels, where the ligament distractions 

were in the traumatic region of the ligament response curve. These CL strains were much higher when 

compared to PHMS experiments (although the highest strain was located at the posterior aspect of the facet 

joint) was not observed in the experimental literature where linear strains of the CL were measured (Panjabi 

et al., 2004). One reason for the observed high strains in the CL during the frontal impact condition can be 

due to the non-physiologic gap that is between the facet cartilages of the model. During neck flexion, the 

gap between the facet cartilage surfaces would first need to close before contact occurs. The additional 

relative motion of the superior vertebra to the inferior vertebra (increased anterior shear), in order to close 

the gap resulted in the increased strain in the posterior region of the CL, compared to the experimental 

literature (Figure 5-2). 
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FIGURE 5-2: FACET JOINT GAP CAUSING INCREASED CL STRAIN IN FLEXION 

5.3.2 F05 Injury Risk 

The F05 model did not predict disc avulsion failure or hard tissue fracture for the 8g frontal impact 

condition with the neutral activation scheme, in agreement with the NBDL test data where no such injuries 

were reported. The intervertebral height and width reduction were minimal and therefore, a low risk of 

impingement of the spinal nerve was predicted. The ligaments that are located in the posterior region of the 

neck sustained the highest strains when compared to the anterior ligaments because the posterior ligaments 

such as the ISL are primarily responsible for restricting the flexion motion of the neck. Thus, the ISL 

sustained the largest strain during the frontal impact, with the C56 and C67 vertebral levels being the most 

likely to be injured due to strains entering the traumatic and post-traumatic regions of the ligament response 

curve. The post-traumatic response of the C67 ISL may be due to the boundary condition that is applied 

directly to the T1, causing higher strains in tissues in the vicinity of the applied boundary condition. The 

effect of the boundary conditions could be investigated in the future using a full HBM integrated with a 

restraint system and sled environment. The CL sustained the largest strains in the posterior region of the 

facet joint. Although no failure (post-traumatic) occurred, traumatic failure of the CL was predicted for the 

C67 vertebral levels. The high strains observed in the CL may be attributed to the gap between the cartilage 

in the facet joints, for the same reasons in the M50 model. Another contributing factor to the high strains 

could be due to the boundary condition that was applied directly to the T1, causing stress concentrations in 

the connective tissue in the lower vertebral levels.  
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5.3.3 Comparison of Injury Risk between M50 and F05 

In general, both the M50 and F05 models demonstrated similar kinematic responses that were 

comparable to the volunteer experiment, in addition to similar tissue-level responses. Although the literature 

has suggested that females are more susceptible to injury than males, the differences in injury risk observed 

for the frontal impact condition was minimal. One distinct difference was the faster initiation of the F05 

head forward rotation and acceleration, which could be due to the smaller stature of the female (shorter 

neck and smaller head mass). A shorter neck would cause the head to move sooner, and a lower head mass 

would result in an earlier onset of movement for the same T1 acceleration profile. The total head rotation 

between the M50 and F05 model was roughly the same (<0.5% difference), which indicated that the smaller 

stature of the F05 model and the reduced ligament properties and PCSA resulted in a similar kinematic 

outcome. Both the M50 and F05 models predicted the ISL to have the greatest injury risk in the frontal 

impact condition. Traumatic failure was predicted in the ISL for the C34 or lower vertebral levels in the 

M50 model, while the F05 model predicted traumatic failure starting at the C56 and lower levels. The 

increase in injury severity for the M50 model at the C34 and C45 ISL resulted from greater flexion in those 

vertebral levels and could be due to a combination of the increased head mass and the greater neck length 

of the M50 The IVF height and width reductions were negligible in both M50 and F05 model which 

indicated that nerve root and ganglion injuries from transverse compression are unlikely to occur from a 

frontal impact condition and an overall low risk for injury from an 8g frontal impact was observed. This 

was reasonable as the publications of the NBDL experiments did not document any volunteers that 

experienced injuries or symptoms of pain despite being subjected to a frontal impact of up to 15g maximum 

acceleration. 

5.4 Rear Impact Response and Potential for Injury Risk 

5.4.1 M50 Injury Risk 

The M50 model with the neutral activation scheme in the 7g rear impact loading condition did not 

predict bone failure or disc avulsion injuries. The IVF height and width reductions were greater than the 

frontal impact condition but did not reach the impingement threshold. PHMS experiments that investigated 

the potential for nerve compression for a rear impact indicated that the C56 and C67 vertebral levels were 

at the greatest risk for impingement from the IVF width reduction (Panjabi et al., 2006). The maximum 

width reduction of the M50 model (C56: 0.4 mm, C67: 0.65mm) was lower than the measured PHMS width 

reductions from Panjabi et al., (2006) (C56: 1.7 mm, C67: 1.2mm). The higher impingement values 
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observed from the PHMS experiment were attributed to the lack of muscle activation, and reduced passive 

stiffness from using an osteoligamentous whole cervical spine, instead of a whole cadaveric neck. The ALL 

and CL are the primary ligaments that limit the extension and shear motion in the neck (Yoganandan et al., 

2001; Ivancic et al., 2004; Pearson et al., 2004). The model predicted the largest strains in the ALL and CL 

but did not indicate potential for injury since the strains were all within the toe region of the ligament 

response curve. In the experimental literature, the ALL and CL are commonly associated with damage 

through strain measurements during PHMS whiplash experiments (Deng 2000; Ivancic 2004; Pearson et al 

2004). Simulated rear impacts were undertaken with PMHS using similar maximum accelerations as used 

in the current study and indicated that the CL was at risk for injury due to large strains of 20% to 60%, 

which is in the range of sub-catastrophic failure (traumatic region) (Winkelstein et al., 2000; Siegmund et 

al., 2001). For the M50 model in the current study, the CL strain was within the toe-region of the ligament 

response curve at all vertebral levels, which was much lower than the strain calculated from the rear impact 

PHMS experiments. There are two possible reasons for the low CL strain in the model, the facet joint gap 

and the numerical ligament implementation. The facet joint gap that is present between each facet joint was 

larger than reported in the literature (Womack et al., 2008) and was attributed to differences in cartilage 

thickness and shape. The larger facet joint gap could reduce the observed ligament strains because the joint 

gap first decreases in rear impact loading, effectively shortening the ligament, and relative sliding to 

increase ligament distraction only occurs after the facet joint gap is closed. Modeling the correct facet joint 

gap is an important consideration in rear impacts because both extension and posterior shear will occur and 

can influence the CL strain. If the facet joint gap was smaller, the cartilage would contact sooner and initiate 

sliding sooner, which would increase the CL strain in rear impact scenarios. The low CL strains can also 

be attributed to the 1-D tension only element ligament implementation in the model. The 1-D elements are 

unable to capture transverse shear, as the elements are free to rotate about the nodal connections. One 

example where the strains are under-predicted is during sliding of the facet joint, where the joint is sliding 

but strains are not captured because the 1-D elements will simply pivot about their respective nodal 

connections, without any increase in linear strain. This concept was demonstrated experimentally when 

linear strain measurement resulted in three times less strain when compared to using a 3-D strain field 

measurement of a ligament under distraction (Holsgrove et al., 2016). Another disadvantage of using 1-D 

tension only elements is the inability to model contacts and interactions with the surrounding hard tissues. 

The 1-D tension only elements will always form a straight path between the nodal connections and do not 

wrap around the surface of the hard tissue during joint distraction, which can lead to an under-prediction of 

ligament strains. These two factors are known limitations that exist in the M50 neck model and therefore, 

the prediction of the CL strains are likely to be underestimated.  
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5.4.2 F05 Injury Risk 

Hard tissue failure and disc avulsion failure did not occur for the F05 model in the 7g rear impact 

condition with the neutral activation scheme. In general, the IVF height and width reduction increased 

towards the lower vertebral levels, although the impingement threshold was not exceeded. On the contrary, 

the C56 and C67 vertebral levels were identified to have the highest risk for impingement (Panjabi et al., 

2006). When comparing the F05 IVF width reduction to PHMS experiments, the F05 model (C56: 0.67 

mm, C67: 0.8 mm) was lower than the measured PHMS width reductions from Panjabi et al., (2006) (C56: 

1.7 mm, C67: 1.2mm), and can be attributed to lowered tissue stiffness from using an osteoligamentous 

cervical spine specimen and a lack of muscle activation. The ALL and CL experienced the largest strains 

when compared to the other ligaments. However, the predicted strains were all within the toe region of the 

ligament response curve, which indicated that no injury would occur from a 7g rear impact. As mentioned 

above, this result must be taken with caution because the current implementation of the CL and simplified 

facet cartilage may cause under prediction of the CL strains. One important difference between the F05 and 

M50 model was the planar facet cartilage profile of the F05 model (Figure 5-3), compared to the curved 

facet cartilage of the M50, which implicated a larger facet joint gap in the F05 model (Table 5-3).  

 

FIGURE 5-3: FACET JOINT CARTILAGE PROFILE FOR M50 (CURVED) AND F05 (PLANAR) MODEL 

TABLE 5-3: FACET JOINT GAP (mm) FOR THE M50 AND F05 MODEL 

Model C23 C34 C45 C56 C67 

M50 1.1 0.8 0.9 0.9 0.8 

F05 1.0 1.3 1.1 1.3 1.0 
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5.4.3 Comparison of Injury Risk between M50 and F05 

In general, the F05 model had higher levels and quicker onset of head acceleration, and greater head 

rotation when compared to the M50 model in a 7g rear impact, which is consistent with the experimental 

literature in rear impacts (Sato et al., 2014; Carlsson et al., 2008; Carlsson et al., 2012). In contrast to the 

epidemiological literature, which indicated females having a greater risk of injury, the F05 model predicted 

similar tissue-level response to the M50 model and did not predict injury risk based on the ligament 

distractions and IVF space reduction. Both M50 and F05 model predicted ALL distractions that were within 

the toe region, which did not indicate a high risk of injury. Rear impact PHMS experiments observed 

damage to the ALL following maximum accelerations (4.5 g to 8g), with large strains of up to 29% in the 

lower vertebral levels, compared to the low strains (<10%) predicted by both the M50 and F05 models. The 

difference in the predicted injury risk between the current study and the PHMS experiment can be attributed 

to the lack of active musculature and lowered passive tissue stiffness from using an osteoligamentous 

specimen. For the reasons mentioned above, the findings from this study suggest that, in the rear impact 

condition, the current ligament implementation using 1-D tension only element was not able to accurately 

predict the CL strains and therefore the potential for injury risk. An alternative method where injury risk 

could be inferred from facet joint kinematics (shear and compression of the superior facet with respect to 

the bottom facet using a local coordinate system (Figure 5-4) was used to compare the M50 and F05 models, 

following the methodology of Ivancic et al., (2004).  

 

FIGURE 5-4: LOCAL COORDINATE SYSTEM ON THE INFERIOR FACET 
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The local facet kinematics of the mid and lower cervical vertebral levels demonstrated greater facet 

joint shear in the F05 model when compared to the M50 model, while the opposite was true when comparing 

facet joint compression (Figure 5-5). The present results indicated a negative correlation between the facet 

joint shear and facet joint compression. The opposite correlation between facet posterior shear and facet 

compression was however observed in the PHMS experiments performed by Ivancic et al., (2004), which 

could be due to differences in facet joint gap morphology between the M50 and F05 models with the PHMS 

specimens, and the lack of active musculature. The initial observation of increased facet joint shear with 

decreased facet joint compression may be related to the cartilage gap, which suggest that lower facet joint 

compression may result in higher posterior shear displacement in the facet joint in dynamic events. If the 

facet joint gaps were decreased, the facet contact would initiate sooner and result in increased posterior 

translation, hence the greater facet joint shear. In general, the facet joint shear for both the M50 and F05 

model was within the lower range of maximum distraction measured in the rear impact PMHS experiments 

(Ivancic et al., 2004) (2.3 mm to 5.4 mm) with a maximum acceleration of 6.5g and 8g.  

 

FIGURE 5-5: FACET JOINT LOCAL KINEMATICS: POSTERIOR SHEAR AND COMPRESSION FOR REAR 

IMPACT LOADING (DISPLACEMENT OF TOP FACET WITH RESPECT TO THE FIXED LOCAL COORDINATE 

SYSTEM ATTACHED TO THE BOTTOM FACET) 

 PHMS experiments have indicated a high risk of ganglia impingement in the lower cervical spine 

from rear impacts (Panjabi et al., 2006; Tominaga et al., 2006; Ivancic et al 2011). The M50 and F05 

models; however, did not exceed the impingement threshold in the rear impact case considered, but had 

higher distractions compared to the frontal impact condition. It should be noted that the risk of impingement 

is highly dependent on the height and width of the intervertebral foramen when the neck is in the neutral 

position. The values that were used in the above-mentioned studies used IVF dimensions that were obtained 

from averages of multiple literature sources, which was less when compared to the IVF dimensions used in 

the current study that were based on the IVF height and width of the M50 and F05 model in the neutral 
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position. The smaller IVF dimensions used in the experiments would therefore predict a higher likelihood 

of injury due to the smaller thresholds.  

Epidemiological data has suggested that rear impacts in the range of 6g to 7g mean acceleration (12g 

to 14g maximum acceleration) will result in acute WAD symptoms, and have a high risk of >80% to develop 

long term symptoms (Krafft et al., 2002). The 7g maximum acceleration used in this study, which 

corresponds to approximately 3.5g mean acceleration suggests a 40% risk to develop acute WAD 

symptoms, and a low <10% to develop chronic symptoms (Krafft et al., 2002). Volunteer rear impact 

experiments have been performed up to 4g maximum acceleration (2g mean acceleration) (Krafft et al., 

2002) without any reports of injuries from the volunteers (Davidsson et al., 1996; Ono et al 1997; Ono et 

al 2006). The injury risk from the above epidemiological study suggests that the 7g maximum acceleration 

pulse used in this study is located in the transitional zone of an injury risk curve between no WAD injury 

and WAD injury certainty. Future work should investigate a spectrum of severities ranging from low to 

high in order to determine tissue level injury thresholds in more detail. 

5.5 Lateral Impact Response and Potential for Injury Risk 

5.5.1 M50 Injury Risk 

The M50 model did not predict disc avulsion injuries but did predict high stresses in the hard tissues 

in the 7g lateral impact condition with the neutral activation scheme. A very small amount (<1% by volume) 

of bone failure was predicted to occur at the vertebrae C6 and C7 vertebrae on the ipsilateral facet surface. 

Although the hard tissue strain exceeded the threshold strain for fracture, the areas of failure were very 

localized due to bone to bone contact and variations in the vertebral geometry and was not attributed to a 

large-scale fracture. All ligaments in the lower cervical spine except the CL demonstrated low strains and 

a low injury risk was predicted because the other cervical spine ligaments are anatomically oriented along 

the neutral axis of the cervical spine during the lateral bending motion. The CL had the highest lateral 

eccentricity because it is situated furthest away from the neutral axis of bending, which will cause it to have 

the highest strains. The ipsilateral facet joint underwent compression while the contralateral facet separated 

during lateral bending and resulted in high strains in the CL. All vertebral levels had CL distractions in the 

traumatic region except for the C34 and C45 vertebral level, which were in the post-traumatic region. This 

indicates that all vertebral levels in the cervical spine are at risk for contralateral CL injury especially the 

C34 and C45 levels. The facet joint gap in the M50 model may attribute to increased ipsilateral facet 

compression, which would increase the facet joint separation on the contralateral side. If the facet joint gap 
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was decreased, then the model would predict lower CL strains due to the lowered contralateral facet 

separation, and would imply that the current model may be over-predicting the injury on the contralateral 

CLs. Future studies should investigate the effect of the facet joint gap on the risk of contralateral CL injury. 

Transverse compression of the nerve root and ganglion were highest in the lateral loading condition relative 

to frontal and rear impact, with the ipsilateral IVF demonstrating the largest reductions in foraminal height 

and width. The IVF height reduction was consistently greater than 2 mm, which was larger when compared 

to extension motion of the neck (Panjabi et al., 2006). Nerve root impingement was predicted to occur at 

the C67 level as the IVF height reduction exceeded the proposed impingement threshold. Injury to the nerve 

roots and ganglion through transverse compression are commonly present in contact sport athletes after 

exposure to lateral neck flexion, or combine lateral flexion with neck extension (Levitz et al., 1997), which 

imply that pure lateral loading or sagittal loading with a lateral component can greatly increase the risk for 

nerve root and ganglion injury.  

5.5.2 F05 Injury Risk 

The F05 model did not predict disc avulsion injuries but did predict high stress in the hard tissue at the 

C6 and C7 vertebrae for the 7g lateral impact condition with the neutral activation scheme. A very small 

amount (<1% by volume) of bone failure was predicted on the ipsilateral facets surface of the C6 and C7 

vertebrae (Figure). Although the hard tissue strain exceeded the threshold strain for fracture, the areas of 

failure was very localized due to bone to bone contact and variations in the vertebral geometry and was not 

attributed to a large-scale fracture. Bone failure in the F05 model is predicted which may not be attributed 

to a real fracture. The predicted bone failures were due to high contact forces between the ipsilateral 

articular processes during lateral bending of the neck. The CL is most likely to sustain damage in a lateral 

impact condition, due to the lateral positioning with respect to the neutral axis of lateral bending. The 

contralateral CL had the highest strains due to facet separation, while the ipsilateral facet experienced facet 

compression. In general, CL strains increased towards the lower cervical spine vertebral levels. The model 

demonstrated strains that were in the traumatic region for the C34 to C56 vertebral level, while the C67 

was in the post-traumatic region. Therefore, the risk for CL injury increased towards the lower vertebral 

levels. The risk of nerve impingement by transverse compression was greatest in the lateral loading 

condition when compared to the frontal or rear condition. The IVF height and width reduction exceeded 2 

mm in some vertebral levels, with the lower levels having the highest risk for impingement. The IVF height 

reduction at the C67 exceeded the estimated impingement threshold, while the IVF width reduction was 

approaching the impingement threshold. These IVF reductions were greater than reported reduction values 

for PHMS experiments in rear impacts, which suggest the risk for impingement increases when lateral 
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bending or axial rotation of the neck is present during an impact. Therefore, the predicted high strains in 

the CL and large reduction in the IVF height indicate that for a lateral impact condition, a high risk for 

ligamentous and nerve root injury in the neck will occur, especially in the lower vertebral levels.  

5.5.3 Comparison of Injury Risk between M50 and F05 

The F05 model demonstrated a faster onset and higher head CG acceleration and rotational 

displacement when compared to the M50 model. Although higher accelerations were observed in the F05 

model, the rotational displacements (lateral flexion, flexion, axial rotation) were consistently less in the F05 

compared to the M50 model because the facet surface on the F05 model was planar, while the M50 facet 

surface had a curved profile (Figure 5-3). The planar surface of the facet-contacting surface was not 

physiological and limited the axial rotation between each vertebra, which translated to less lateral neck 

flexion in the F05 model (Figure 5-6). Another contributor to the lower head rotational displacements in 

the F05 model could be due to the shorter neck length and smaller head mass of the F05 model. Both M50 

and F05 models predicted a high injury risk potential for the CL. The F05 had a general trend of increasing 

CL strains towards the lower vertebral levels with predicted post-traumatic failure at C67, while the M50 

model post-traumatic failure in the C34 and C45 vertebral levels. This reason for the difference in the CL 

injury location was attributed to the different facet surface profile, initial position, and geometric differences 

that ultimately caused higher axial rotation in the mid vertebral levels in M50 compared to the F05 model. 

Both the CL injury and injury location observed in both models were in good agreement with PHMS 

experiments, where an increase in the range of motion and the neutral zone was observed from the C45 to 

C67, which indicating damage to the lower vertebral levels starting at a 6.5g maximum acceleration side 

impact (Maak et al 2007). Furthermore, lateral impact PHMS experiments documented partial or complete 

rupture of the contralateral CL in the lower vertebral levels after the specimens were subjected to maximum 

accelerations of 2g to 8g (Hartwig et al., 2004; Panjabi et al., 2005). Both models predicted higher 

reductions in IVF height and width reductions when compared to the frontal and rear-loading conditions, 

and predicted a high risk of impingement of the nerve roots at the C67 level, as the impingement threshold 

was exceeded. These results indicate that ligamentous and nerve root injury risk are higher for the 7g 

maximum acceleration side impact case considered in this study, relative to similar severity in frontal and 

rear impact. The results of this study indicated a high risk for injury in the CL and nerve root structures in 

the lower vertebral levels, however the NBDL experiment did not report any injuries to the volunteers for 

the 7g maximum acceleration scenario. The current available NBDL human response data for lateral 

impacts exist for a range of severities (4g to 7g maximum accelerations), which could indicate that 7g 

maximum acceleration is the tolerance for injury in humans subjected to lateral impact scenarios. Future 
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studies should investigate a range of lateral impact severity to explore the injury tolerance for this loading 

scenario. 

 

FIGURE 5-6: COMPARISON OF THE MAXIMUM AXIAL ROTATION IN THE C34 SEGMENT (SUPERIOR 

VIEW): A) M50 MODEL, B) F05 MODEL 

5.6 Discussion & Limitations 

Muscle activation is a complex phenomenon that is an important consideration when modeling impact 

events using HBMs, and can be dependent on the activation onset time and the PCSA of individuals. In the 

current study, the upper and lower bounds for activation onset time and muscle PCSA were identified 

through the literature and combined into two activation schemes, which served to bracket the upper the 

lower bounds to represent the variability in muscle PCSA and muscle activation onset time that may exist 

in the population. A high PCSA and faster onset time was used to represent the upper bound of muscle 

activation in the population, while a low PCSA and slower onset time was used to represent the lower 

bound. These changes were applied to the neutral activation scheme as a starting point to investigate 

whether or not these two parameters can alter the kinematic and tissue level response of the models. Overall, 

the upper bound activation scheme demonstrated a faster onset and lower magnitude of head displacement, 

while the lower bound activation scheme demonstrated a slower onset and higher magnitude of the head 
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displacement. A similar trend was observed in the tissue level response when compared to the neutral 

activation scheme, where the upper bound activation scheme resulted in lower injury risk and the lower 

bound activation scheme demonstrated higher injury risk. The lateral impact condition was the most 

sensitive to changes in head lateral rotation with the upper and lower bound activation schemes, compared 

to the frontal and rear impact, which indicated that changes to the sagittal position of the neck (induced by 

the active muscles) had a high sensitivity to alter the lateral neck flexion outcome. The head rotational 

response in the sagittal plane (frontal and rear impact condition) had sensitivities that were directly related 

to magnitude of the extensor and flexor PCSA, in addition to non-linear scaling of extension and flexion 

muscle moments in the M50 and F05 models. 

A few limitations existed for the 5th percentile female model. The NBDL response corridors from the 

frontal and lateral impact were created only from male volunteers with larger statures when compared to a 

small sized female. In the current study, the volunteer T1 input boundary condition, which was measured 

from the larger stature male volunteers was not scaled to account for the smaller stature of the F05 model. 

There are several reasons why the T1 input conditions were not scaled. Firstly, the sled perturbation would 

not change regardless of the volunteer or PHMS used in respective study. For the rear impact PHMS 

experiment, a rigid seat was used and thus would eliminate or minimize any torso interaction in the anterior-

posterior direction due to the absence of seat back deformation in a standard foam seat. Both the frontal and 

lateral impact experiments performed by the NBDL had the volunteers tightly secured onto the rigid seat 

with a five-point harness to prevent movement of the torso during the sled acceleration. Therefore, due to 

the motion of the torso being limited by both the rigid seats and the use of a five-point harness, the 

experimental T1 inputs were not scaled down to match the F05 stature. Another limitation of this study is 

the simplified muscle activation in the model. The muscles in the current model all activate at the same 

time using a predetermined activation curve. An open loop control strategy may not fully represent the 

neuromuscular activation of the neck muscle in real-life scenarios, but provided acceptable results in this 

study. 

The current study utilized two neck models representing an average stature male and small stature 

female. The same boundary condition for each impact direction was applied directly to the T1 vertebra, 

therefore subjecting both models to the same perturbation, and eliminating all external interactions such as 

seat back interactions. In general, the F05 model had an earlier onset of head kinematics when compared to 

the M50 model for all impact directions, although the difference in head rotational displacements in the 

frontal and rear loading conditions were similar. In the frontal impact condition, the maximum head rotation 

angle of the F05 was similar to the M50 (<0.5% difference) whereas in the rear impact condition, the F05 
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had 2% increased head rotation angle when compared to the M50 model. The similarities in head rotational 

displacement were attributed to the shorter neck length, lower head mass and reduced neck circumference 

of the F05, offsetting the reduced PCSA of the F05 model and generally smaller dimensions compared to 

the M50. When compared to the M50, a shorter neck and smaller head mass would theoretically decrease 

the head rotational displacement, when the applied boundary condition was the same. A smaller neck 

circumference is generally associated with a lower neck stiffness, and lower muscle PCSA, which would 

reduce both bending stiffness and muscle force generation, resulting in greater head rotational 

displacements. Therefore, the decrease of head rotational displacement from the shorter neck and lower 

head mass of the F05 would be offset by the increase in head rotational due to the smaller circumference of 

the F05 neck. The F05 model was not a scaled down version of the M50 model, but was based on the 

geometry of a 5th percentile female volunteer. Thus, the F05 model was not only smaller than the M50 

model but had different dimensions such as smaller neck length and circumference (Schneider et al., 1983), 

and different vertebral geometry (Klinich et al., 2004; Singh and Cronin, 2017).The similarities in head 

kinematics response between the M50 and F05 models indicate that the effect of stature and local neck 

tissue dimensions are confounding factors in the current study for the frontal and rear impact direction. In 

addition, it was acknowledged that pain and injury tolerances between genders may be different and this 

was not considered because the differences in injury and pain threshold between male and female are not 

currently understood. 

The lateral impact condition demonstrated large difference in the F05 head rotational displacement 

(the lateral flexion angle, axial rotation angle, and forward flexion angle were 20%, 49%, and 38% lower), 

respectively, compared to the M50 model. The large difference in head rotation was due in part to the planar 

surface of the facet cartilage surface on the F05 model that limited the axial rotation range of motion in 

lateral bending. Although the F05 model had lower head displacements than the M50 model in the lateral 

loading condition, traumatic CL injury was still predicted for the C34 to C67 vertebral level, while the M50 

model sustained traumatic injury to all vertebral levels (C23 to C67). The epidemiological literature has 

indicated that females have approximately twice the risk to sustain whiplash injuries when compared to 

males (Carlsson et al., 2010; Carstensen et al., 2012). In the frontal and rear impact directions, there were 

no observed differences in injury risk based on ligament distractions and transverse compression of the 

nerve roots. For the rear impact condition, both models did not predict injury at the tissue level using both 

distractions and changes in neural foraminal dimensions, which was likely due to the current 

implementation of the CL, and the larger facet joint gap that resulted in the under-prediction of CL injury. 

Interestingly, when the local facet kinematics are compared between the M50 and F05 models, the F05 

model demonstrated larger facet joint shear distraction, which can potentially translate to a higher injury 
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risk. The opposite was true when comparing the local facet joint compression, which may indicate that 

lower values of facet joint compression may result in higher facet joint shear in the models, and highlights 

the importance of implementing the correct facet cartilage geometry to accurately predict tissue level injury. 

Previous studies had investigated the risk of injury to the upper cervical spine ligaments (Fice and Cronin, 

2012) and indicated a high injury risk in frontal and rear impacts starting at approximately 12g and 15g 

maximum acceleration respectively. The impact severities considered in this current study were well below 

the reported injury threshold for the upper cervical spine ligaments, and therefore was not investigated.  

The current M50 and F05 models do not include the spinal cord and nerve roots structures, hence the 

deformation of the nerve roots cannot be monitored directly. An alternative method that quantifies the 

change in dimension (height and width) of the intervertebral foramen space, following the same 

methodology as previous experiments was used in this study. The prediction of transverse compression of 

the nerve roots is conservative in the model due to a lack of anatomical detail of the nerve roots and 

associated structures within the intervertebral foramen space. The nerve roots are surrounded by various 

tissues such as epidural fat, and foraminal ligaments (Daniels et al., 1986; Kraan et al., 2011; Shi et al., 

2015; Lohman et al., 2015). These structures which were not accounted for in the current study can cause 

the impingement of the nerve roots to occur at a lower threshold when accounting for these tissues and 

therefore, difficult to comment on whether or not injury will occur. The results from the model, however, 

do indicate a larger decrease in foraminal dimensions for the lateral loading condition, compared to the 

frontal and rear loading where the head moves within the sagittal plane. PHMS and in-vivo studies 

demonstrated neural foraminal area reductions during neck extension, axial rotation, ipsilateral bending, 

and ipsilateral bending with combined extension (Nuckley et al., 2002; Muhle et al., 2001). This may infer 

that impacts such as head turned or oblique impacts may be associated with a higher risk of injury to the 

nerve roots due to the combine axial rotation and lateral bending of the cervical vertebrae. Conversely, neck 

flexion was the only loading path that resulted in an increase of the neural foraminal area, which indicated 

a low risk for sustaining nerve root compression in a frontal impact. Future studies should compare the 

foraminal dimensional changes in oblique and lateral impacts, as well as include the nerve root structures 

in the model to accurately assess injury in the nerve roots and associated structures.  

5.7 Recommendations & Future Work 

The muscle activation strategies investigated in this study were simplified representations of 

neuromuscular activation in humans. Specifically, the muscle activation was based on an open-loop control 

strategy, where the muscle activation dynamics are pre-determined for each muscle, prior to the impact. 
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However, the proposed neutral activation scheme provided kinematics comparable to human volunteer tests 

in frontal and lateral impact cases. Future studies should investigate the effect of muscle activation based 

on closed-loop feedback control on kinematics and tissue level injury. The facet joints in both the M50 and 

F05 neck models had a larger gap than what has been reported in the literature (Womack et al., 2008). The 

resulting gap between the facet surfaces led to abnormal CL strains in the frontal and rear impact cases. 

Future work should accurately model the correct thickness and surface profile of the facet cartilage, as this 

could greatly affect the tissue level response of the model, but not necessarily the global kinematic response. 

The current ligament implementation in both models utilized a tension only 1-D element approach, which 

cannot accurately represent transverse shear of the ligament and does not account for strains due to hard 

tissue contacts during motion (i.e. anatomically, a ligament will deform around the hard tissue instead of 

forming a straight path). Therefore, the 1-D element approach of modelling ligaments can lead to under-

prediction of ligament strains during impact scenarios. Future improvements should explore the 

implementation of solid or membrane type elements to represent the cervical spine ligaments for increased 

biofidelity. The boundary conditions used in the current study are applied directly to the T1 vertebra which 

does not consider torso interactions with the seatback. Seatback interaction is important in rear impacts and 

should be addressed in future studies using full body simulations. The neural structures such as the spinal 

cord and nerve roots and ganglia are not present in the model. Therefore, the current study used changes in 

the IVF height and width dimensions as surrogate measurements to infer neural impingement. These 

structures are an important consideration when investigating neural injuries for complex scenarios such as 

oblique or head turned impacts, and should be implemented in future versions of the GHBMC HBMs. 

Lastly, the current study was focused on a single impact severity for each impact direction. Future work 

should investigate a range of impact severities that range from low to high severities, in order to determine 

tissue level injury thresholds in each direction of loading.  
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CHAPTER 6:  CONCLUSION  

The neutral activation scheme was developed for the M50 model (extensor: 20% activation, flexor: 

100% activation) and F05 model (extensor: 25% activation, flexor: 100% activation) that demonstrated 

positive improvements to the head kinematics of the models for the frontal, rear and lateral impact scenarios, 

compared to the baseline activation scheme. The activation of the extensor and flexor muscles were not 

tuned to fit the experimental response, but were developed independent of each impact cases to minimize 

changes in the head line of sight and anterior-posterior translation without a T1 boundary condition. 

The variations in PCSA and activation onset time had the highest sensitivity to the head rotational 

displacements in the lateral impact direction. Increased neck flexion caused by decreased extensor 

activation resulted in higher axial rotation between all vertebral levels and was attributed to increased lateral 

neck flexion.  

The 8g frontal impact condition demonstrated the highest injury risk to the ISL and CL for both M50 

and F05 models. The high CL strains were attributed to the facet joint gap, which increased the predicted 

strains in the model through coupled shear and tension distractions, and led to an overestimation of the 

predicted CL injury risk.  

Both M50 and F05 models did not predict injury for the 7g rear impact condition, although this impact 

severity is associated with the onset of injury. The low injury risk prediction by the model was attributed 

to the large facet joint gap, relative to reported values, and the numerical implementation of the CL, which 

under-predicted ligament distraction. The F05 model demonstrated larger facet joint shear distraction 

compared to the M50 model, inferring a greater injury risk. Conversely, the F05 model demonstrated lower 

facet joint compression compared to the M50 model, which indicated that the local facet joint shear and 

compression were negatively correlated and highlighted the need for implementing an anatomically 

accurate facet joint gap.  

The F05 had a general trend of faster onset of head acceleration and rotation compared to the M50 for 

all impact directions. The head kinematic and tissue level injury responses were similar between the M50 

and F05 models, attributed to confounding factors between stature and local neck tissue dimensions. The 

effect of a decreased neck length and head mass of the F05 model was offset with the lower passive tissue 

stiffness and muscle contraction force.  



 

158 

 

A low risk of transverse compression of the nerve root and ganglia was predicted for both M50 and 

F05 models in the frontal and rear impact conditions, but was high for the lateral impact condition due to 

higher IVF width and height reductions. The model results suggest that impacts with a lateral bending or 

axial rotation component will likely result in a greater risk of nerve root impingement compared to sagittal 

plane impacts.  

The 7g lateral impact condition resulted in lower head rotational displacement of the F05 compared to 

the M50 model, which was attributed to the non-physiological planar facet profile of the F05 vertebrae. A 

planar facet profile demonstrated decreased range of motion in axial rotation that correspondingly limited 

lateral bending. In addition, the CL was most vulnerable to injury in the lateral impact condition for both 

models. The male model demonstrated post-traumatic failure at the mid vertebral levels (C34 and C45) 

while the F05 demonstrated post-traumatic failure in the lower vertebral level (C67), due to the reduced 

axial rotation at all vertebral levels. 
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