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Abstract 

The mechanical properties of soft materials are used in a wide range of fields and applications 

including biomedical engineering, sports, and automobile industry, in addition to medical 

applications. Therefore, several methods have been used to measure these properties including 

tension, compression, and indentation. 

This study focuses on the application of multiaxial loading using cavitation mechanics to measure 

nonlinear mechanical properties of soft materials. It was found that applying controlled cavitation 

within the internal structure of soft materials provided enough information to characterize their 

mechanical behavior. This is done by inserting a needle-balloon tool inside the tested material 

while being attached to a system that allows for injections of an incompressible fluid (water) into 

the balloon.  

To establish this methodology as a robust characterization technique of the mechanics of soft 

materials, it was used in a four-stages investigation: developing an analytical framework to 

characterize the non-linear elastic behavior of rubber-like materials (elastomeric gels), measuring 

the hyperelastic properties of soft biological tissues (porcine liver), comparing the cavity 

expansion test with a conventional uniaxial tensile testing, and establishing an analytical 

framework to characterize the time-dependent behavior of viscoelastic materials.  

In the first stage, a solution that relates the applied radial loads and tangential deformation is 

introduced. This solution allows the calibration of hyperelastic strain energy functions (SEF), 

which were Yeoh, Arruda-Boyce and Ogden (used in all stages). Finite element simulations were 

used to validate the material parameters of the three hyperelastic models. Computed tomography 

(CT) imaging was used to validate the spherical configuration assumption of the inflated balloon 

inside the sample. The validation process considered the two types of stresses generated during 

the test, radial and hoop stresses. It was observed that the radial stresses were insignificant 

compared to the hoop stresses. 

In the second stage, a smaller balloon was used to test porcine liver tissues; however, the protocol 

of this stage was similar to the first stage. Few changes were introduced to the definition of the 

deformation term, as a result, the measured deformations in the cavity test coincided with the 

deformation levels reported in literature. In addition, the three hyperelastic models predicted initial 
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shear moduli that agreed with their counterparts reported in literature using conventional testing 

techniques. 

To understand the similarities and differences between the cavity expansion test and conventional 

axial loading, the third stage addressed the comparison between the cavitation and uniaxial tension 

characterization. The comparison focused on the stress levels, range of strains as well as the initial 

shear moduli. It was found that the strain levels in the hydrogels were similar up to the failure 

point. In addition, the hoop stresses generated due to cavity loads were similar to the tensile stresses 

generated in uniaxial tension up to a strain level of 45%. Afterward, hoop stresses increased 

exponentially reaching a peak magnitude that was twice that observed in the uniaxial tension. Since 

the radial stresses were insignificant, the previous two observations provided an indication to the 

equi-biaxial nature of the cavity expansion test. 

The final stage of this study addressed the characterization of the viscoelastic properties of rubber-

like materials. In this stage, linear viscoelastic theory was used. The cavitation rheology is used to 

measure the non-linear elastic response of the hydrogels at three different strain rates. The simple 

shear relaxation test was used to measure the viscous response of the hydrogels. While the elastic 

material parameters were calibrated using the same method used in previous stages, the viscous 

coefficients of the Prony series were determined using Abaqus’ calibration tool. Afterward, the 

elastic parameters and viscous coefficients were used to reproduce the experimental data 

numerically using FE simulations, and analytically using Matlab code. The agreement between 

experimental data, FE simulations and the analytical code showed that the cavity expansion test 

was capable of measuring the time-dependent response of rubber-like materials. 
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Chapter 1 

Introduction 

 Mechanical characteristics of soft materials such as biological tissues and elastomers play a 

significant role in numerous medical applications. For example, elastomers such as Polyvinyl 

alcohol (PVA) hydrogels are synthesized to match the mechanics of biological tissues such as 

articular cartilage and nuclus pulposus, and thus be suitable alternatives to damaged tissues (Joshi 

et al., 2006a; Ma et al., 2009). Understanding the mechanics of soft matter is also important to 

improve existing solutions. For instance, biomechanical-based deformable image registration 

(DIR) is used to improve the quality of image guided radiotherapy (Zhong et al., 2012) and surgery 

(Lim et al., 2009).  

The mechanical behavior of soft materials is commonly measured using various techniques based 

on the applications of the tested materials. In the biomedical field, the mechanics of biological 

tissues is commonly measured using axial tension (uniaxial, planar and biaxial) (Fehervary et al., 

2016; Jacobs et al., 2013a; Rashid et al., 2014a) , compression (Morriss et al., 2008), indentation 

( Li et al., 2019), and inflation (Kang, 2008). In most cases, the tissues are excised from their 

biological environment. It is not always possible to test the fresh tissues immediately after 

excision. Most of these tissues are preserved using different techniques such as fixation, 

refrigeration and freezing, and dehydration. These techniques were reported to have tangible 

effects on the mechanical properties of the preserved tissues (Betsch & Baer, 1980; Ling et al., 

2016; Y.-C. Lu & Untaroiu, 2012a; Nicolle & Palierne, 2010). In addition, there are further 

challenges that normally arise in ex-vivo testing such as slippage and friction that might occur 

during uniaxial tension and compression tests, respectively. Therefore, this thesis focuses on the 

application of  a new technique developed at the University of Waterloo (Al-Mayah, 2011) that 

have the potential to eliminate the challenges normally arise during the use of conventional 

techniques, and due to the storage process.  

The proposed technique has the capacity to measure the mechanics of the materials’ inner structure 

with minimal intervention. This can be achieved by inducing controlled volumes to apply spherical 

deformations while observing the consequent loads. The materials’ behavior can then be 

characterized by analyzing the loads and deformations using different constitutive models. In this 

thesis, the capability of the proposed technique to measure the materials’ mechanics readily is 
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demonstrated in the coming chapters, in which the mechanics of PVA hydrogels and porcine liver 

tissues were investigated. 

1.1. Aims and Scope 

The aims of this thesis are (1) establishing the use of a  geometry-controlled cavitation as a valid 

method to measure the hyperelastic properties of soft materials; (2) measuring the nonlinear elastic 

properties of biological tissues such as porcine liver tissues and compare it to properties reported 

in literature using conventional techniques; (3) providing clear perspectives on the mechanism of 

the cavity expansion in terms of stresses, strains, and elastic moduli compared to a simple axial 

loading methodology; and (4) establishing the cavity expansion technique as a valid method to 

measure the rate-dependent response of isotropic viscoelastic soft materials.  

The thesis presents experimental and analytical investigation of the nonlinear mechanical 

properties of soft materials. The experimental work includes tension, cavity expansion, simple 

shear relaxation, and compressibility tests. On the other hand, the analytical work includes the use 

of hyperelastic strain energy functions (SEFs) and Prony series for nonlinear elastic and viscos 

behaviors characterization, respectively. The thesis uses analytical tools that are available in most 

FE solvers. In addition to their availability in Abaqus, hyperelastic models such as Yeoh, Arruda-

Boyce, and Ogden are used due to their efficiency in capturing the nonlinear elastic response of 

soft materials in different types of loading as will be shown in the coming chapters. The 

viscoelastic solution uses the linear viscoelastic material representation due to its applicability to 

the viscoelastic response of PVA hydrogels. All the analytical works are based on assuming the 

tested materials are isotropic. The least squares method is used to calibrate the hyperelastic models, 

and Abaqus’ calibration tool is used to calibrate the coefficients of Prony series.  

1.2. Thesis Contribution  

The thesis’ main contributions focus on using multiaxial loading conditions as a characterization 

technique of soft materials. The main three contributions are 

1. Applying multiaxial loading methodology that allows for measuring the mechanics of soft 

materials. The proposed method is capable of eliminating the challenges that normally accompany 

conventional characterization techniques. The loading mechanism is based on applying pressure 
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in one direction, and tension in two orthogonal directions, a unique feature does not exist in 

traditional axial and local loading techniques. 

2. Implementing a new calibration framework, which is capable of characterizing the non-linear 

elastic and time-dependent behaviors of soft materials. The calibration process is based on relating 

compressive loads to tension deformations to calibrate the material parameters of the chosen 

constitutive models. This process is achieved by using an algorithm that is based on the least 

squares method.  

3. Clarifying the mechanism of the cavity expansion test; due to the multi-axial nature of the used 

technique, this thesis demonstrates the mechanism of cavity loads and how they differ from loads 

applied in a conventional tension test.  

These three contributions are validated using three investigation methodologies, (i) experiments: 

cavity expansion test, uniaxial tension test, compressibility test, and simple shear test. These tests 

are used to obtain data necessary to calibrate the parameters of the chosen models; (ii) FE 

simulations: used to validate the calibrated parameters by reproducing the experimental data 

numerically; (iii) CT imaging: used to confirm the resemblance between the geometric 

configuration of the applied cavitation and the analytical solution. 

1.3. Overview of the Thesis 

This thesis is divided into seven chapters including the current one. In chapter 2, an introduction 

about the materials used in this thesis, experimental methods, and constitutive models are 

introduced. Chapter 3 presents the measurement of hyperelastic properties of PVA hydrogels using 

cavity expansion method. The purpose of this study is to introduce multi-axial experimental and 

analytical procedures to characterize the nonlinear elastic properties of rubber-like materials by 

controlled cavitation. 

Due to the importance of hyperelastic properties of abdominal organs, particularly liver, in various 

medical and industrial applications, the multiaxial loading is used to measure the mechanical 

properties of porcine liver tissues as presented in chapter 4.  

To further understand the mechanism of the cavity expansion testing, it was compared with one of 

the common characterization techniques, uniaxial tension test. In chapter 5, stress levels, range of 
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strains and initial shear moduli are compared to understand the differences between the two 

loading regimes. 

Most rubber-like materials are commonly known of their viscoelastic properties. Thus, chapter 6 

introduces analytical and experimental procedures to measure the viscoelastic properties of PVA 

hydrogels. In this study, hyperelastic models in addition to Prony series are used to describe the 

viscoelastic properties of the gels. 

Chapter 7 presents conclusions and recommendations for future works. 
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Chapter 2 

Background 

2.1. Introduction  

This chapter presents the background information for the materials, and experimental and 

analytical concepts used in this study. Section 2.2 introduces the two types of soft materials used 

in this study; PVA hydrogels and porcine liver. Section 2.3 discusses experimental techniques used 

to characterize the mechanical behavior of these materials. The non-linear elastic (hyperelastic) 

response of the investigated materials will be discussed in detail in section 2.4 including 

mathematical fundamentals, common models and implementation. Soft materials are also known 

by their viscoelasticity, therefore, the linear viscoelastic description to their behavior is introduced 

in section 2.5. 

2.2. Soft Materials 

The term “soft materials” refers to any material that deforms easily under externally applied loads. 

Soft materials include foams, gels, polymers, colloids and soft biological materials. In this study, 

the term is used to describe polymeric gels, particularly PVA hydrogels, and soft biological 

materials such as porcine liver tissues. While the PVA hydrogels are used more frequently in this 

thesis due to their availability and simple synthesis, the liver tissues are used as an application to 

investigate the potential of the proposed technique to measure the non-linear properties of 

biological tissues as will be shown in chapter 4. 

2.2.1. PVA Hydrogels 

PVA hydrogels are very popular in the biomedical field due to their physiochemical and bio-

tribological properties ( Pan et al., 2007; Suciu et al., 2004). This type of gels is considered a 

prospect replacement of damaged or diseased cartilaginous tissues. Under loading, PVA hydrogels 

mimic the mechanical response of articular cartilage. For example, PVA hydrogels exhibit 

exponential stress-strain response under compression, similar to that of articular cartilage. This is 

mainly due to the friction generated by free water flow in both materials ( Li et al., 2016; Maiolo 

et al., 2012; Pan & Xiong, 2009). However, these hydrogels are not fully ready to replace articular 

cartilage due to lack of strength and toughness. Therefore, several investigations were performed 

to improve the gels’ mechanical properties (Kokabi et al., 2007; Xu et al., 2018). In addition to 
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articular cartilage, PVA hydrogels proved to be able to mimic the mechanical properties of porcine 

aortic root and nucleus pulposus by controlling the preparation conditions of the hydrogels (Joshi 

et al., 2006b; Wan et al., 2002).  

PVA hydrogels are a class of general category of gels known as polymeric gels. In general, this 

type of gels contains a polymer and a solvent forming a three dimensional network by physical or 

chemical bonds connecting macromolecular chains (Millon et al., 2006; Park & Park, 1996). These 

chains can be permanent when chemical crosslinkers are used, or reversible when physical 

crosslinking is performed (Lozinsky et al., 2001; Ottenbrite et al., 2010). 

PVA is obtained by polymerization of vinyl acetate to poly (vinyl acetate) (PVAc), followed by 

hydrolysis of PVAc. The higher the hydrolysis degree, the lower solubility of the PVA. Thus, for 

PVA of more than 95 % hydrolysis degree, temperature greater than 70 oC  is introduced to dissolve 

the PVA in water (Chang, 2000; Millon et al., 2006). To form hydrogels, PVA can be crosslinked 

physically or chemically. The latter can be performed by adding chemical materials such as 

formaldhyde, glutaraldhyde, acetaldehyde and other monoaldehydes (Chang, 2000; Drury & 

Mooney, 2003; Lozinsky et al., 2001; Millon et al., 2006) to the PVA solution. The physical 

crosslinking is done by subjecting PVA solutions to cycles of freezing and thawing. This process 

was adopted to synthesize PVA hydrogels in this study.  

Producing PVA hydrogels by physical crosslinking was first reported in 1975 by Peppas (Peppas, 

1975). Since then, numerous studies have investigated the effect of PVA content and processing 

parameters (the number of freeze-thaw cycles)  on the hydrogels’ mechanical performance, 

(Kobayashi & Hyu, 2010; Wan et al., 2002). 

The mechanism of physical crosslinking of PVA hydrogels is based on phase separation, i.e. 

separating the solution into a PVA-rich phase and a water-rich phase. This process is crucial during 

the hydrogel gelation. When the PVA solution is exposed to sub-zero degrees (oC), the water 

freezes, detaching PVA and creating zones of high PVA concentration. As the PVA chains come 

into close proximity with each other, hydrogen bonding and crystalline formation occur, which 

remain intact after thawing. As a result, a three dimensional network is created (Hassan & Peppas, 

2000; Hatakeyema et al., 2005; Ricciardi et al., 2004), see Figure 2.1. 
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Figure 2. 1. Mechanism of physical crosslinking: One freeze-thaw cycle.  

2.2.2. Liver Tissues 

Understanding the mechanical behavior of liver tissues is fundamental in the biomedical field. 

These properties are indicative to the pathogenic condition of diseased tissues. In addition, these 

properties are essential for treatment applications such as computer-aided surgeries (surgical 

navigation) and radiotherapy ( Al-Mayah et al., 2011; Chabanas et al., 2003; Eom et al., 2009a; 

Luboz et al., 2005) , which are developed and improved  by using Finite Element (FE) models. In 

automobile accidents, liver is the most frequent abdominal organ to be injured due to its soft 

material properties (Feliciano, 1989), thus assessing liver damage during car accidents has been 

investigated in several studies (Chien et al., 2013; Holbrook et al., 2007; Slotta et al., 2014). In 

addition, numerous works developed biofidelic computational models to obtain infallible injury 

assessment of abdominal organs during traumatic events (Deng et al., 1999; Haug, 1997; Shao et 

al., 2013). The computational models used for surgical navigation and injury assessment of the 

liver require the knowledge of the organ’s mechanical properties. 

The biological structure of liver tissues is similar to other abdominal organs, in which it consists 

of parenchyma and capsule. The first carries out all biological functions of the organ, while the 

capsule is a dense fibrous tissue that covers the parenchyma. The combined mechanical behavior 

of the capsule and parenchyma was reported by Brunon et al., 2010, see Figure 2.2. In uniaxial 

tension, the mechanical response exhibits nonlinearity of the force-displacement relationship due 

to the rearrangement of randomly distributed collagen fibers. When they are fully extended, the 

tissues (parenchyma and capsule) show linear hardening until the capsule fails under loading. 

Afterward, all the loads transfer to the parenchyma which eventually ruptures releasing all the 

stored energy during the loading process ( Nafo & Al-Mayah, 2018). 
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Figure 2. 2. Tensile load-displacement of liver tissues. Liver parenchyma is encapsulated inside the liver 

capsule. (Reprinted from Brunon, A.K. et al., J. Biomech., 43, 2221–2227, 2010. With permission.). 

Overall, the parenchyma is softer than the capsule, as shown in literature using stress-strain 

relationship. It was reported that, at failure, the parenchyma showed ultimate stress and strain of 

61 kPa and 24 %, respectively (Kemper et al., 2010), while the capsule showed ultimate stress and 

strain of 9.2 MPa and 35.6 %, respectively (Hollenstein et al., 2006). 

Liver tissues are also known to be viscoelastic. Kemper et al 2010 used uniaxial tension to test 51 

liver samples extracted from 7 humans using four different rates (0.01 s-1, 0.1 s-1, 1 s -1 and 10 s-1) 

(Kemper et al., 2010). It was shown that as the rate of loading increased, the ultimate stress of the 

tissues increased, while the ultimate strain decreased, see table 1.1. 

Table 1. 1. Rate-dependence response of liver parenchyma in uniaxial tension (Kemper et al., 2010).  

 Liver 

Strain rate (s-1) Ultimate stress (kPa) Ultimate strain (%) 

0.01 40.21 34 

0.1 46.79 32 

1 52.61 30 

10 61.02 24 
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2.3. Experimental Characterization Techniques 

The experimental testing of soft materials is performed for various purposes, which include 

investigating a material’s mechanical behavior, calibrating material models, studying materials’ 

failure modes and testing for quality control. A number of testing techniques have been reported 

in the literature to fulfill these purposes; in this section, the focus is on the mechanical tests that 

were adopted in this study: uniaxial tensile test, simple shear test, volumetric test and cavity 

expansion test. In addition, a non-destructive x-ray micro-computed tomography (CT) scanning 

test will be addressed in this section.  

2.3.1. Uniaxial Tensile Test 

This test is very common in characterizing the mechanical response of soft materials due to its 

procedural simplicity and relatively direct data analysis (Jacobs et al., 2013b). In this test, a sample 

with a gauge length of “L” and a cross-sectional area (A) is gripped from both ends and stretched 

by the applied load (F) at a certain loading rate. The resulting load-displacement data can be 

normalized to obtain stress-strain (σ-ε) or stress-stretch (σ-λ) data essential to calibrate material 

models. 

Some modifications were made to the tensile test to overcome some of the challenges associated 

with the loading grips, such as stress concentrations at the gripping region. To overcome this issue, 

specimens are normally cut into a dog-bone shape to ensure uniform deformation and stress 

distribution along the gauge length, see Figure 2.3 (a). Alternatively, the gripping force can be 

reduced while maintaining sufficient gripping stress to prevent slippage by using sand paper (Nafo 

& Al Mayah, 2018), see Figure 2.3 (b). 
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Figure 2. 3. a) FE simulation of dog-bone shaped specimen and the uniform distribution of stresses along 

the gauge length. b) Using sand paper to prevent the slippage of the aqueous PVA hydrogel strip at the 

gripping region.  

2.3.2. Simple Shear Test 

In characterizing the mechanical response of soft materials, many finite strain models decompose 

the material mechanical response into shear and volumetric behaviors (Bergstrom, 2015). Thus, it 

is sometimes required to evaluate the shear behavior of a material, including the long-term 

response (relaxation/creep) as demonstrated in FE solvers such as Abaqus ® (ABAQUS/CAE, 

2013). This technique is commonly implemented in two configurations: single-lap or double-lap 

shear setup, see Figure 2.4. 

Although both setups follow the same concept, the single-lap setup is more difficult to implement, 

as it is not self-aligned and errors due to rotation might occur if no attention was paid to the 



11 
 

gripping mechanism. These challenges are normally eliminated in the double-lap setup due to its 

symmetry. 

Both setups are carried out using common uniaxial loading machines. The raw data obtained from 

this test is in the form of force-displacement, which can be converted into stress-strain form. Due 

to the plane state of the test, no change occurs to the area of the out-of-plane surfaces (Destrade et 

al., 2015). However, a numerical investigation showed that the specimen’s height to width ratio 

should remain under 0.5. Higher ratios resulted into errors up to 17 % in predicting the 

experimental data (Bergstrom, 2015).  

 

Figure 2. 4. Schematic figures of the both setups of the simple shear test. The regions represent the test 

samples.  

2.3.3. Cavity Expansion Test  

In a previous study (Nafo, 2016), an earlier prototype was used to measure the linear elastic 

stiffness of two types of PVA hydrogels and bovine liver tissues. In the current study, the 

experimental protocol as well as the analytical framework were developed. This enabled the 

technique to accurately characterize the hyperelastic and viscoelastic properties of the tested soft 

materials. 

The analytical framework was developed to account for the mechanical nonlinearity of the soft 

materials in chapter 3, the same framework also used in the following chapters for calibrating the 
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hyperelastic models. Further development to the framework is presented in chapter 6 to consider 

the viscoelastic response of PVA hydrogels.  

2.3.4. Compressibility Tests 

The compressibility of a material is a measure of its volume change when subjected to external 

loads. Two common coefficients that determine the compressibility of a material are the bulk 

modulus (K) and the Poisson’s ratio (ν). The liver tissues are normally considered incompressible 

(ν = 0.49999) (Glozman & Azhari, 2010). On the other hand, PVA hydrogels tend to exhibit very 

low compressibility (ν= 0.45 – 0.48) ( Lee et al., 2013; Urayama et al., 1993). However, in FE 

applications, the compressibility (K and/or ν) of such materials have limited influence on the 

materials’ mechanical behavior in different loading modes as demonstrated in (Bergstrom, 2015) 

as well as in chapter 3. 

There are several techniques to measure the compressibility of soft materials. For example,  Digital 

Image Correlation (DIC) systems (Chen et al., 2013) was used to measure axial and lateral strains 

during uniaxial loading. The strain data can be used to calculate the Poisson’s ratio and then the 

bulk modulus (in case the elastic moduli are known). 

Another technique to measure the compressibility of soft materials is known as fully confined 

compression test or volumetric test. In this approach, a cylindrical sample confined inside a rigid-

walled cylinder, and then loaded with a punch that has the same diameter as the inner diameter of 

the containing cylinder, as shown in Figure 2.5. The force-displacement data obtained from this 

test can be converted into pressure-volumetric strain data by using the specimen geometry. The 

bulk modulus can then be calculated as the slope of this data. This test is demonstrated in chapter 

3, where the compressibility of PVA hydrogels was measured. 
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Figure 2. 5. Schematic figure of the fully confined compression fixture.  

2.3.5. Other Common Mechanical Testing Methods  

There are several other modes of loading, such as biaxial tension, torsion, split-Hopkinson pressure 

bar and compression tests. These modes are used to measure the mechanical behavior of the soft 

materials based on their applications, see Figure 2.6. 

 
Figure 2. 6. Different loading modes to measure the mechanical behavior of soft materials.  

The required accuracy of the used material model also defines the types of tests that need to be 

used. For example, to characterize the comprehensive behavior of an incompressible isotropic soft 
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material in tension using phenomenological models, it is recommended to test the material in both 

uniaxial and biaxial tension. On the other hand, more advanced micro-mechanical models are 

capable of predicting the comprehensive tensile behavior  only by using the data from one test 

(uniaxial or biaxial tension) (Arruda & Boyce, 1993). However, this type of models still needs 

more experimental data in cases of predicting rate-dependence or temperature effect.  

2.3.6. Computed Tomography (CT) Scans 

Computed tomography scanning is based on taking two dimensional (2D) x-ray images at various 

angles from the scanned object. These images are then digitally reconstructed to create a three 

dimensional (3D) rendered volume. The components of any CT instruments are an x-ray source 

that emits penetrating radiation, a platform on which objects are positioned, and a detector (Duliu, 

1999), see Figure 2.7. Overall, this technology is used for industrial and medical applications. 

Industrial CT is different from the medical CT in three aspects: (i) the detector and the x-ray source 

are stationary around a moving platform on which specimens are placed, (ii) industrial CT allow 

higher range of voltage and current that suit wide range of materials including dense materials, 

(iii) industrial CT have higher resolution, i.e., voxel size of 5 μm in micro-CT systems and 0.5 μm 

in nano-CT systems, while medical CT have a resolution of 70 μm at best (du Plessis et al., 2017). 

The production of x-rays takes place inside the x-ray source (vacuumed tube) by heating a cathode 

(tungsten filament). The heating process generates a beam of electrons that travel in a vacuumed 

space (Pressure = 10-06 mmHg) to hit an anode (metal of high atomic weight). Electrons produce 

energy in the form of heat and x-rays. Since heat occurs on the surface of the anode, most CT 

instruments have a rotating anode to avoid local overheating of its surface. The x-rays are utilized 

by directing them towards any targeted object and then collected by a 2D detector.  

After the detector collects the attenuated radiation, it converts the x-rays into 2D digital images 

commonly known as “projections” or “radiographs”. After all the projections are collected, a 3D 

volume can be reconstructed using appropriate algorithms (e.g. Feldkamp filtered back-projection 

algorithm (Feldkamp et al., 1984). A software package that is based on similar algorithms is 

Volume Graphics (Volumegraphics.com). Examples of this process will be shown in chapters 3 

and 4, in which the x-rays are used to investigate the cavity deformation inside PVA hydrogels 

and porcine liver tissues. 
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Figure 2. 7. Schematic diagram of x-ray tomography scan process.  

2.4. Hyperelasticity 

Hyperelasticity is a class of constitutive models that is used to characterize non-linear elastic 

materials. This type of models is relatively easy to calibrate and it can provide sufficient 

predictions of the mechanical behavior of soft materials. Hyperelastic models are suitable for large 

strain predictions and simple in representing materials’ response that, in some cases, is related to 

the micromechanics of the soft materials’ deformation behavior. This chapter addresses the stress 

expressions in terms of the elastic term of Helmholtz free energy in different loading conditions, 

hyperelastic models, and the viscoelastic response of the soft materials. 

2.4.1. Continuum Mechanics of Hyperelasticity 

In general, the expression of stresses in hyperelastic models is based on strain energy functions 

(the elastic term of Helmholtz free energy, W) (Lemaître, 2001). The general Cauchy stress is 

given by 

                                                    σ(𝐅) =  
1

J

∂W(𝐅)

∂𝐅
 𝐅T                                                                 (2.1) 

Where F is the deformation gradient, and J is the Jacobian determinant (J = det F). 

To satisfy material frame indifference, the energy and the stress terms have to have the following 

forms 

                                        σ(F) = R σ(U) RT = R σ(C) RT                                                                  (2.2) 
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Where R is the rotational tensor, U is the right stretch tensor and C is Cauchy-Green tensor. 

                                              W(F) = W(U) = W(C)                                                                (2.3) 

By substituting equations 2.2 and 2.3 into 2.1 gives 

                                               𝛔(𝐔) = 𝐑(
1

J

∂W(𝐔)

∂𝐔
𝐔T)𝐑T                                                           (2.4) 

The partial derivative of the energy term with respect of the right stretch tensor can transform 

into a partial derivative with respect of the right Cauchy-Green tensor, see derivation in 

Appendix A: 

                                                       
∂W(𝐔)

∂𝐔
= 2𝐔 

∂W(𝐂)

∂𝐂
                                                                (2.5) 

Substituting 2.5 into 2.4 gives the expression of the Cauchy stress that satisfy material frame 

indifference: 

                                                      𝛔(𝐂) =
2

J
𝐅

∂W(𝐂)

∂𝐂
𝐅T                                                             (2.6) 

In this study, the tested materials are considered isotropic, thus, it is convenient to express the 

energy term as a function of the invariants of the right Cauchy-Green tensor I1(C), I2(C) and 

I3(C) where 

                                                        I1 = λ1
2 + λ2

2 + λ3
2                                                              (2.7) 

                                                I2 = λ1
2 λ2

2 + λ2
2 λ3

2 + λ3
2 λ1

2                                                      (2.8) 

                                                           I3 = λ1
2 λ2

2 λ3
2                                                                  (2.9) 

By expressing the energy term as a function of the strain invariants, equation 2.6 becomes 

                                   𝛔(I1,I2,I3) =  
2

J
𝐅[

∂W

∂I1

∂I1

∂𝐂
+

∂W

∂I2

∂I2

∂𝐂
+

∂W

∂I3

∂I3

∂𝐂
]𝐅T                                      (2.10) 

Where 

                                                             
∂I1

∂𝐂
=  

∂tr𝐂

∂𝐂
= 𝐈                                                              (2.11) 

                                           
𝛛𝐈𝟐

𝛛𝐂
=  

𝟏

𝟐
(2tr𝐂 𝐈 − 

𝛛𝐭𝐫(𝐂𝟐)

𝛛𝐂
) =  I1𝐈 − 𝐂                                          (2.12) 

                                                              
∂I3

∂𝐂
= I3𝐂−1                                                                (2.13) 
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C = F FT, and the left Cauchy-Green tensor B = FT F. For isotropic materials F = FT, thus, by 

inserting 2.11, 2.12 and 2.13 into 2.10 gives: 

                                   𝛔(I1,I2,I3) =  
2

J
(

∂W

∂I1
+ I1

∂W

∂I2
) 𝐁 −

2

J

∂W

∂I2
𝐁2 +

2

J
I3

∂W

∂I3
 𝐈                          (2.14) 

I3(F) Often expressed as J (Holzapfel, 2000), as will be demonstrated in chapter 3, thus equation 

2.15 can be written as  

                                  𝛔(I1,I2,J) =  
2

J
(

∂W

∂I1
+ I1

∂W

∂I2
) 𝐁 −

2

J

∂W

∂I2
𝐁2 +

∂W

∂J
 𝐈                                   (2.15) 

Most hyperelastic models are based on the decomposition of the deformation gradient into 

deviatoric ( . ̅) and volumetric components: 

                                                                F = J1/3 𝐅 ̅                                                                  (2.16) 

                                                               C = J2/3 𝐂 ̅                                                                  (2.17) 

Similarly, 

                                                                I1 = J2/3
 I1̅                                                                                                   (2.18) 

                                                                 I2 = J4/3
 I2̅

                                                                  (2.19)  

Using the energy term as a function of the deviatoric invariants transfer equation 2.15 into 

     𝛔(I1̅, I2̅, J) =  
2

J
(

∂W

∂I̅1

∂I̅1

∂I1
+ J2/3I1̅

∂W

∂I̅2

∂I̅2

∂I2
) 𝐁 −

2

J

∂W

𝜕I̅2

∂I̅2

∂I2
𝐁2 + (

∂W

∂I̅1

∂I̅1

∂J
+

∂W

∂I̅2

∂I̅2

∂J
+

∂W

∂J
) 𝐈          (2.20) 

Inserting equations 2.18 and 2.19 into 2.20 gives 

                  𝛔 =  
2

J
(

∂W

∂I̅1
+ I1̅

∂W

∂I̅2
) 𝐁 −

2

J

∂W

∂I̅2
𝐁2 + (

∂W

∂J
−

2I̅1

3J

∂W

∂I̅1
−

4I̅2

3J

∂W

∂I̅2
) 𝐈                                (2.21) 

For an incompressible isotropic material, equation 2.21 reduces to  

                                   𝛔 =  2 (
∂W

∂I̅1
+ I1̅

∂W

∂I̅2
) 𝐁 −

2

J

∂W

∂I̅2
𝐁2 + p 𝐈                                                (2.22) 

Some hyperelastic models are based on the principal stretches (λ1, λ2, λ3), thus, it is convenient to 

express the energy term as a function of these stretches W(λ1, λ2, λ3). In this case, the Cauchy 

stress can be given as  
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                                   σ𝑖(λ1, λ2, λ3) =  ∑
2

J
λi

2 ∂W

∂λj

∂λj

∂Cii

3
j=1                                                           (2.23) 

Since 
∂λj

∂Cii
=  

∂W

2λi
, equation 2.23 becomes 

                                                 σi(λ1, λ2, λ3) =  
λi

J

∂W

∂λi
                                                              (2.24) 

The complete form of Cauchy stress can be expressed as  

                                     𝛔 =  ∑
λi

J

∂W(λ1,λ2,λ3)

∂λi

3
i=1  𝐧̂i⨂ 𝐧̂i                                                          (2.25) 

Where 𝐧̂i are the principal directions of the left Cauchy-Green tensor B 

2.4.2 Hyperelastic models 

In literature, there are numerous hyperelastic models proposed to characterize the hyperelastic 

response of soft materials. In this study, three well known models are implemented: Yeoh model, 

Arruda-Boyce model and Ogden model. The choice of these particular models was based on 

several parameters that are common in most hyperelastic models: (i) phenomenological nature 

(Yeoh and Ogden), (ii) micromechanical nature (Arruda-Boyce), (iii) dependency on strain 

invariants (Yeoh and Arruda-Boyce), (iv) dependency on principal stretches (Ogden), (v) 

availability in most FE solvers, and (vi) ability to capture non-linear response of soft materials in 

different loading conditions (uniaxial stretch, biaxial stretch, and pure shear). 

• Yeoh model 

The Yeoh model (Yeoh, 1993) is based on the first strain invariant (I1). For a compressible 

material, the model is expressed as  

            W(C10, C20, C30, K) = C10(I1̅ – 3) + C20 (I1̅ – 3 )2 + C30(I1̅ – 3)3 + 
K

2
 (J-1)2                   (2.26) 

While C10, C20 and C30 are the material parameters of the deviatoric term, K is the bulk modulus 

of the material. It is also worth mentioning that the volumetric deformation is sometimes 

represented by higher order terms as demonstrated in chapter 3.   

Due to the weak dependency of the Helmholtz free energy on the second strain invariant (I2) for 

most elastomers (Bergstrom, 2015; Kaliske & Rothert, 1997; Kawabata et al., 1995; Yeoh, 1993), 

in addition to the difficulty of measuring this dependency experimentally, Yeoh, 1993 suggested 
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to ignore the I2 in his model. For an incompressible material, the Cauchy stress for uniaxial, biaxial, 

and planar deformations can be given as  

                            σuni= 2 [ C10 + 2C20(I1̅ – 3) + 3C30(I1̅ – 3)2] ( λ2 – λ-1)                                 (2.27) 

                            σbi= 2 [ C10 + 2C20(I1̅ – 3) + 3C30(I1̅ – 3)2] (λ2 -  λ-4)                                   (2.28) 

                            σpl= 2 [ C10 + 2C20(I1̅ – 3) + 3C30(I1̅ – 3)2] (λ2 -  λ-2)                                   (2.29) 

The accuracy of the Yeoh model in characterizing the material behavior is demonstrated in Figure 

2.8 The model is used to predict Treloar data (Treloar, 1944, 2005). The model showed excellent 

potential in predicting the rubber mechanical behavior in different loading modes with R2 > 0.995 

for all three scenarios of loadings.  

 
Figure 2. 8. Comparison between Treloar data and the prediction of incompressible Yeoh model.  

• Arruda-Boyce model 

This model is also known as the eight-chain model (Arruda & Boyce, 1993). The model describes 

the micromechanical behavior of materials. It is based on a cell unit that has eight diagonal 

molecular chains. The cell unit is located in a principal stretch space as demonstrated in Figure 

2.9. 
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Figure 2. 9. Arruda-Boyce model: undeformed and deformed configurations. 

The initial chain length is given as r0 = √𝑁l (Arruda & Boyce, 1993; Flory & Volkenstein, 1969). 

For a fully extended chain length, rl= Nl, where N is the number of the rigid links of the unit cell 

that has an equal length (l), and thus, the locking stretch (extensibility limiter) becomes  

                                                        λm = 
rl

r0
 √N                                                                        (2.30) 

The general form of Arruda-Boyce model of an incompressible material can be expressed as  

        W = μ[
I̅1−3

2
+

I̅1
̅ 2

− 9

20N
+

11(I̅1
̅ 3

−27)

1050N2 +
19(I̅1

̅ 4
−81)

7000N3 +
519(I̅1

̅ 5
−243)

673750N4 ] +
K

2
(

J2−1

2
− lnJ)                 (2.31) 

Where μ represents the initial shear modulus. 

For an incompressible material, the Cauchy stress for uniaxial, biaxial and planar deformations is 

given as  

                          σuni = 2μ[
1

2
+

2I̅1

20N
+

33I̅1
̅ 2

1050N2
+

76I̅1
̅ 3

7000N3
+

2595I̅1
̅ 4

673750N4
] ( λ2 -  λ-1)                           (2.32) 

                         σbi = 2μ[
1

2
+

2I̅1

20N
+

33I̅1
̅ 2

1050N2 +
76I̅1

̅ 3

7000N3 +
2595I̅1

̅ 4

673750N4] ( λ2 -  λ-4)                             (2.33) 

                          σpl = 2μ[
1

2
+

2I̅1

20N
+

33I̅1
̅ 2

1050N2 +
76I̅1

̅ 3

7000N3 +
2595I̅1

̅ 4

673750N4] ( λ2 -  λ-2)                            (2.34) 

The accuracy of Arruda-Boyce model in predicting material non-linear elastic behavior is shown 

in Figure 2.10. 
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Figure 2. 10. Comparison between Treloar data and the prediction of incompressible Arruda-Boyce model.  

The model showed very good potential in predicting the rubber mechanical behavior in different 

loading modes with R2 >0.97 for all three scenarios of loadings.  

• Ogden model 

The Ogden model (Ogden, 1997) is a general hyperelastic model that is expressed in terms of the 

principal stretches. The model can be expressed in several formats; one popular format in literature 

is given as  

                 W(λ̅1, λ̅2, λ̅3) = ∑
2μi

αi
2

n=3
i=1 (λ̅1

αi + λ̅2
αi + λ̅3

αi − 3) + ∑
K

2

n=3
i=1 (J − 1)2i                    (2.35) 

Although this format is potent, it makes the selection of material parameters for stable prediction 

a complex process (Bergstrom, 2015). The general forms of Cauchy stress in the three loading 

scenarios for an incompressible material are expressed as  

                                        σuni = ∑
2μi

αi
(𝑛=3

𝑖=1 𝜆αi − 𝜆−0.5αi)                                                        (2.36) 

                                         σbi = ∑
2μi

αi
(𝑛=3

𝑖=1 𝜆αi − 𝜆−2αi)                                                          (2.37) 

                                          σpl = ∑
2μi

αi
(𝑛=3

𝑖=1 𝜆αi − 𝜆−αi)                                                           (2.38) 
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The accuracy of the Ogden model in predicting material non-linear elastic behavior is shown in 

Figure 2.11. 

 
Figure 2. 11. Comparison between Treloar data and the prediction of incompressible Ogden model.  

The model showed excellent potential in predicting the rubber mechanical behavior in different 

loading modes with R2 >0.998 for all three scenarios of loadings.  

2.5. Viscoelasticity 

Polymeric gels and biological tissues are known for their viscoelastic behavior. This behavior is a 

combination of the elastic and viscous natures of these materials. The simplest method to model 

this combination is by using linear viscoelasticity theory. This modelling framework has been 

extensively studied for many years (Christensen, 2014; Ogden, 1997; Shaw, 2018).  

Linear viscoelasticity is based on Boltzmann’s super position principal, which is used to form an 

integral equation. The general form of an isotropic linear viscoelastic material can be expressed as 

                                               σ(t) = ∫ ER(t − τ)
dε(τ)

d(τ)
d(τ)

𝑡

−∞
                                                  (2.39) 

By using integration by parts, equation 2.39 becomes 

                                      σ(t) = E0ε(t) − ∫ ġR(t − τ) E0ε(τ)d(τ)
t

0
                                           (2.40) 

Where gR is the normalized relaxation modulus and expressed as  
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                                                               gR=
ER(t)

E0
                                                                    (2.41)  

The first term of equation 2.40 represents the material’s elastic response, and the second term 

represents its viscous response. 

In this study, the linear viscoelasticity is used to model large deformations, which are an inherent 

mechanical feature of rubber-like materials; therefore, hyperelastic stress function can be used 

instead of the linear elastic term in equation 2.40: 

                                  σ(t) = σh.el(ε(t)) − ∫ ġR(t − τ) σh.el(ε(τ))d(τ)
t

0
                                 (2.42) 

In cases where conventional techniques such as those used to obtain Treloar data, the material’s 

non-linear elastic response can be characterized by fitting equations 2.27 – 2.29, 2.32 – 2.34 and 

2.36 – 2.38 for Yeoh, Arruda-Boyce and Ogden hyperelastic models, respectively. In this study 

however, the hyperelastic response of the materials under cavity loads will be characterized in the 

polar coordinate system using a different analytical framework that will be introduced in chapter 

3. The viscous response of equation 2.42 is expressed as Prony series and can be estimated by 

fitting to traditional relaxation data as will be demonstrated in chapter 6. 

The viscous term of equation 2.42 can be implemented numerically as follows: 

1. For simplicity, consider a conventional loading scenario of an incompressible material 

2. At time (t), equation 2.42 represents the stress status. At time (t+Δt) 

              σ(t+ Δt) = σh.el(ε(t + Δt)) − ∫ ġR(t + ∆t − τ) σh.el(ε(τ))d(τ)
t+∆t

0
                                (2.43) 

       σ(t+ Δt) = σh.el(ε(t + Δt)) −  ∑ σv
i (t + Δt)N

i=1                                                              (2.44) 

where σv is viscos stress of Prony series term “i” 

3. Expanding the viscos stress gives 

  σv
i (t + Δt) =  ∫

d((1−gi)+gie
−

t+∆t−τ
τ̂i )

dτ
 σh.el(τ)dτ +

t

0
∫

d((1−gi)+gie
−

t+∆t−τ
τ̂i )

dτ
 σh.el(τ)dτ 

t+∆t

t
        (2.45) 

                                   σv
i (t + Δt) =  σv1 +  σv2                                                     (2.46) 

Where gi are dimensionless shear moduli at different relaxation times (Mills, 2007). 
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4. σv1 can also be expressed as  

            σv1 =  ∫
gi

τ̂i

t

0
(e

−
t

τ̂i  . e
−

∆t

τ̂i . e
τ

τ̂i) σh.el(τ)dτ                                                         (2.47) 

                          =                e
−

∆t

τ̂i  σv
i (t)                                                                         (2.48) 

5. Assuming linear relationship between σh.el(τ) and 𝛕 gives: 

                               σh.el(τ) =  σh.el(t) +  ∆σh.el  
τ−t

∆t
                                                   (2.49) 

Where 

                           ∆σh.el =  σh.el (ε(t + ∆t)) −  σh.el(ε(t))                                          (2.50) 

Thus, a closed form solution for σv2 can be given as   

                     σv2 =  giσh.el(t)(1 − e−∆t/τ̂𝑖) + gi
∆σh.el

∆t
((∆t −  τ̂𝑖) + τ̂𝑖e

−∆t/τ̂i)                     (2.51) 

Substituting 2.47 and 2.51 into 2.46 gives 

   σv
i (t + Δt) =  e

−
∆t

τ̂i  σv
i (t) +  giσh.el(t)(1 − e−∆t/τ̂𝑖) + gi

∆σh.el

∆t
((∆t −  τ̂𝑖) + τ̂𝑖e

−∆t/τ̂i)      (2.52) 

Equation 2.52 can be substituted into equation 2.44 to simulate the total response of the linear 

viscoelastic materials with large deformations. A demonstration of this analytical solution is 

presented by using Matlab code in Appendix C. 

This chapter introduced the experimental and analytical fundamentals that are going to be used in 

the following chapters. The cavity expansion test is going to be used in chapters 3, 4, 5, and 6. The 

compressibility test is going to be used in chapter 3 to measure the compressibility of PVA 

hydrogels. The uniaxial tension test will be used to measure the mechanical properties of PVA 

hydrogels in axial loading in chapter 5. The simple shear test will be used in chapter 6 to measure 

the viscous response of PVA hydrogels. The CT imaging is going to be used in chapters 3 and 4 

to characterize the cavity configuration visually. 
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Chapter 3 

Measuring Hyperelastic Properties of Hydrogels Using Cavity Expansion 

Method 

Abstract 

Numerous methods have been proposed to measure the mechanical properties of hyperelastic 

materials such as hydrogels. Common techniques, such as tension, compression, and indentation 

tests, experience various challenges due to material structure and surface conditions. These 

challenges affect the measured mechanical properties of the tested material. Therefore, a new 

technique is proposed to measure the hyperelastic mechanical properties of hydrogels by 

introducing cavity deformations to the internal solid structure of hydrogels. The data obtained from 

the cavity test were analyzed mathematically by using three strain energy functions and then were 

validated numerically through FE simulations. Computed Tomography (CT) imaging was 

implemented to investigate the shape of the cavities, which showed that the proposed technique is 

capable of applying controlled spherical deformations. The stresses in the cavity test were 

generated in the radial and hoop directions; therefore, the validation process took into 

consideration both types of stresses. The numerical simulations considered the two common views 

about hyperelastic materials: slightly compressible and incompressible. A comparison between 

experimental results and FE simulations of the cavity test has shown a good agreement in pressure-

deformation data. 

3.1 . Introduction 

Hydrogels  have been used in a wide range of biomedical applications including catheter coating 

(Yang et al., 2007), contact lenses (Hu et al., 2011), wound dressing (Corkhill et al., 1989), and 

drug delivery (Lin & Anseth, 2009). Their popularity in the medical field is related to the 

biocompatible nature of hydrogels  due to their high water content (Oyen, 2014). They respond 

elastically to very large deformations (up to 700% strain), and they exhibit a non-linear stress-

strain relationship. The broad range of applications of hydrogels and other similar materials 

rationalize the extensive research conducted to study their mechanical behavior using experiments, 

and to characterize their response through the development of a number of constitutive models. 
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Numerous techniques have been implemented to investigate the mechanical response of rubber-

like materials; perhaps the most common are compression, tension, and indentation. These 

techniques are based on measuring deformations while monitoring the corresponding loads to 

measure the mechanical properties of materials, or vice versa. The analysis in tension and 

compression is based on the assumption of uniformly distributed stresses on a volume equivalent 

to the product of the gage length and the cross-sectional area. However, in the indention test, the 

load is more localized, and the mechanical response of the materials depends fundamentally on the 

geometry of the indenter (Oyen, 2011). 

Tension can be applied in many states. A uniaxial state to measure the mechanics of isotropic 

materials; plane state to investigate the materials’ behavior in pure shear; and multi-axial state 

(equi-biaxial) to investigate the behavior of anisotropic materials (Jacobs et al., 2013b; Mitchell et 

al., 2007). In compression, the state of loading is uniaxial; however, the material state can be 

unconfined or confined. In the former, the material is compressed between two non-porous platens 

(Roberts et al., 2011); while in the latter, the sample is compressed in a confined container with 

porous platens (Gu et al., 2003). In indentation, the state of loads can be perceived as a “local 

version” of compression test (Oyen, 2014). Indentation is becoming more popular in testing 

hydrogels because samples require minimal preparations for testing compared to relatively 

complex cutting/machining into specific shapes (dumbbell/dog-bone) used in tension. In addition, 

it is very easy to keep the sample moist throughout the test. 

Although compression, tension and indentation tests are effective in studying material behavior, 

complications might arise during the loading process. For example, in tensile testing, the gripping 

strategies are prone to daunting challenges such as slippage and stress concentrations. The effect 

of the slipping and related gripping problems lies in its potential to significantly affect material 

behavior represented by the force vs displacement  (Soden & Kershaw, 1974). Similarly, in 

compression tests, friction between the surface of the sample and the testing rig can cause non-

uniform stress distribution along the gauge length of the material (Blake, 1985). On the other hand, 

indentation eliminates these challenges, and can be more suitable for testing rubber-like material 

properties, especially in cases where local heterogeneities are the focus of investigation (Oyen, 

2011). However, numerous challenges arise when applying indentation to measure the mechanics 

of a material, which include, dependence on the substrate’s stiffness in the case of thin samples 
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(Doerner & Nix, 1986; Nix, 1989); indentation size effect (Burnett & Rickerby, 1987; Farges & 

Degout, 1989); surface roughness (Menčík & Swain, 1995); and piling up of the tested material 

around the indenter (Stone et al., 1988). 

The main goal of this work is to measure the mechanical response of hydrogels by applying internal 

deformations in a form of spherical cavity to eliminate complications and challenges that normally 

accompany conventional techniques. The material used in this work is PVA hydrogels; these 

hydrogels are known for their nonlinear elastic response under loading (tension (Wan et al., 2002), 

compression (Li et al., 2016), and indentation (Lin et al., 2009), in addition to their slight 

compressibility (Chen et al., 2013). The types of stresses generated in expanding cavities are radial 

and hoop stresses. Accordingly, cavity expansion technique can provide a perspective about the 

material response to pressure and stretching simultaneously. The analytical work in this paper is 

based on spherical internal cavity assumption, which is verified using Computed Tomography 

(CT) imaging.  

The paper presents the method of analysis and material models. Material processing conditions, 

details of the mechanical tests, and CT imaging are also described, in addition to numerical 

simulations generated by Abaqu𝑠® based on the material parameters evaluated using experimental 

tests for each of the material models.  

3.2. Basic Equations 

3.2.1. Preliminaries 

Here the Lagrangian frame of reference to describe deformations is considered. A position vector 

X is defined for a material point in a reference configuration β𝑜. When loads are applied, the 

position vector of the material point changes to indicate a new position x= f(X) in the deformed 

configuration β. In this state, the deformation gradient tensor can be defined as  

                                                           F =  Gradx                                                                   (3.1) 

Where Grad is the gradient with respect to X, i.e,  

                                                          Fij =  
∂xi

∂Xj
                                                                       (3.2) 

Where xi 
and Xj are x and X components, respectively, and i and j ∈ {1, 2, 3}. The deformation 

gradient F is diagonal and associated with the principal stretches 𝜆1, 𝜆2, and 𝜆3. 

By using polar decomposition, F can be decomposed into  
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                                                       F = R U = V R                                                                  (3.3) 

Where U and V are the right and left stretch tensors, respectively. They are symmetric and positive 

definite. R is an orthogonal tensor. Also, 

                                             𝐔2 = 𝐂 =  𝐅T𝐅, and  𝐕2 = 𝐁 =  𝐅𝐅T                                      (3.4) 

Where C and B are the left and right Cauchy-Green deformation tensors. 

The characterization of isotropic hyperelastic materials is done through strain-energy density 

function W. The energy function W is normally defined by two principal strain invariants I1, and 

I2, i.e., W= W(I1, I2).  

According to Ogden, 1997, the strain invariants I1, I2, and I3 are defined as  

                                                I1 =  trC =  λ1
2 + λ2

2 + λ3
2                                                          (3.5) 

                             I2 =  
1

2
[(trC)2 − tr(C2)] =  λ1

2λ2
2+λ2

2λ3
2 + λ3

2λ1
2                                          (3.6) 

                                                 I3 = detC = λ1
2λ2

2λ3
2 = 1                                                           (3.7) 

The Cauchy stress as a function of the deformation gradient takes the form 

                                                            𝛔 = 𝐅 
∂W

∂F
− p𝐈                                                               (3.8) 

Where σ is the deviatoric stress, the first term represents the stress, the right term represents the 

hydrostatic stress, and I is the identity tensor. By deriving the strain invariants with respect to F 

(see appendix A), equation 3.8 becomes   

                                        𝛔 = 2(W1 + I1W2)𝐁 − 2W2𝐁2 − p𝐈                                                 (3.9) 

Where W1 and W2 are the derivatives with respect to I1 and I2, respectively. 

3.2.2. Cavity Expansion 

Theoretical considerations of the  existing void growth expansion in rubber-like materials can be 

found in (deBotton et al., 2013; Faye et al., 2017; Fond, 2001; Lev & Volokh, 2016; J. Li et al., 

2007). Below, we follow the work of (deBotton et al., 2013). To describe the kinematics of 

spherical cavity expansion in isotropic hyperelastic materials, consider a thick-walled sphere with 

inner and outer radii of ri and ro, respectively, subjected to an external pressure (P0 ) and an internal 

pressure (Pi). It is more convenient to use the polar coordinate system (R, Θ, Φ) in the reference 

configuration β𝑜, where  

                                    ri ≤ R ≤ ro, 0 ≤ Θ ≤ Π, 0 ≤ Φ ≤ 2Π                                                   (3.10) 

When pressure Pi is applied on the inner surface, R = ri, an expansion occurs and denoted in the 

current configuration as 
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                                  a  r  b,  0    ,  0                                               (3.11) 

Where (r, , ) are the polar coordinates in the deformed configuration; a and b are the inner and 

outer radii of the deformed geometry. 

The principal stretches in the polar coordinates are defined as  

                                       λ1 =
dr

dR
= λ−2, λ2 = λ3 =  

r

R
=  λ ≥ 1                                            (3.12) 

By combining equation 3.12 into 3.5 and 3.6 

                                           I1 = 2λ2 + λ−4,  I2 = 2λ−2 + λ4                                                  (3.13) 

The components of the stress can be defined by using equation 3.9 

                                              σr = 2[W1λ−4 + 2W2λ−2] − p                                                  (3.14) 

                                             σθ = 2[W1λ2 + W2(𝜆4 + λ−2)] − p                                           (3.15) 

Where σr and σθ are the stresses in the radial and tangential directions.  

 The equilibrium equation of the cavity expansion in terms of these stresses is (deBotton et al., 

2013) 

                                                        r 
dσr

dr
  + 2(σr − σθ) = 0                                                  (3.16) 

Since W1 and W2 are defined in terms of I1, and I2, respectively, and the strain invariants are 

defined in terms of  λ , it is convenient to define in terms of λ.  

                            Ŵ = 
dW(I1,I2)

dλ
 =  4W1(λ − λ−5) + 4W2(λ3 − λ−3)                                     (3.17) 

By combining equations 3.14, 3.15, 3.16, and 3.17 we can define a relationship between the 

applied pressure and the resulted deformation in a hyperelastic material as  

                                                          Pi =  ∫
Ŵdλ

(λ3−1)

λ𝑎

λ𝑏
                                                                   (3.18) 

Equation 3.18 defines the internal pressure at the cavity wall in terms of the stretch at a (λ𝑎) or 

equivalently at b (λ𝑏). This equation will be adopted to enable the strain energy functions listed 

below to capture the hyperelastic mechanical behavior of PVA hydrogels based on the pressure 

readings. The derivation of equation 3.18 considers the material as incompressible; therefore, it is 

worth mentioning that the stretch term (λ) in this equation is equivalent to the incompressible 

stretch term (λ̅) in the next section. 

3.2.3. Strain Energy Functions 

An efficient hyperelastic model should be able to represent material behavior independently of 

deformation mode. In this work, three SEFs (Ogden, Yeoh, and Arruda-Boyce) are used based on 

   θ  π  φ  2π

θ φ

W

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their efficiency of representing the behavior of hyperelastic materials in uniaxial, biaxial, and bulge 

stretching deformations (Sasso et al., 2008a; Shahzad et al., 2015). 

• Ogden model 

A phenomenological model proposed by Ogden, 1972. This model has been implemented to 

capture the deformation of rubbers (Sasso et al., 2008b), and biological tissues (Gao et al., 2010a).  

                  W =  ∑
2μi

αi
2

N=3
i=1  (λ̅1

αi + λ̅2
αi + λ̅3

αi − 3) +  ∑
1

Di

N=3
i=1   (J − 1)2i                                  (3.19) 

Where  λ̅i are the deviatoric principal stretches; μ𝑖 and αi are material constants; Di are material 

constants define the bulk compressibility; J is a volume ratio. 

• Yeoh model 

This model is also phenomenological proposed by Yeoh, 1993, and it is based only on the first 

invariant I1.  

                                 W =  ∑ Ci0(I1̅ − 3)i +  ∑
1

Di
(J − 1)2iN=3

i=1
N=3
i=1                                              (3.20) 

 Ci0 are material constants. 

• Arruda-Boyce model 

This model is structural with parameters that have a physical link to the chain orientation involved 

in the network deformation of rubber (Hackett, 2016). It was proposed by Arruda and Boyce 

(Arruda & Boyce, 1993). 

                                        W =  μ ∑
Ci

λm
2i−2 (I1̅

i − 3i)5
i=1 + 

1

D
[

J2−1

2
ln(J)]                                                   (3.21) 

Where Ci are material constants; λm is the stretch at which the polymer chain network becomes 

locked; μ is the shear modulus. 

3.3. Materials, Methods, and Imaging  

3.3.1. Sample Preparation  

To prepare PVA solutions, 99+% hydrolyzed PVA with a molecular weight (Mw) of 146000 -

186000 g⦁mol-1 was used. An 8% w/w PVA solution was prepared by heating and mixing with the 

use of standard flask/column combination. The solution was poured into cylindrical molds (50 mm 

in height and 36 mm in diameter) made of brass. The PVA solution in the molds was processed 

through Freeze-Thaw Cycles (FTC) between -20 oC and 20 oC by using ESPEC environmental 

chamber. A total of ten samples were created. The samples were divided into two batches (five in 

each batch) based on the number of freeze-thaw cycles. Each cycle represents freezing from 20 oC 
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to -20 oC at a rate of 0.2 oC/min, holding for 6 hours, then thawing to 20 oC at a rate of 0.2 oC/min, 

and holding for 6 hours. The crosslinking regime is summarized in table 3.1. 

Table 3. 1. Crosslinking regime 

 No. of 

cycles 

Freezing 

rate  

(oC/min) 

Thawing 

rate  

(oC/min) 

Holding time 

(h) at -20 oC 

Holding time 

at 20 oC 

Batch 1 2 0.2 0.2 6 6 

Batch 2 3 0.2 0.2 6 6 

1 cycle = freeze from 20 oC temperature to -20 oC, hold for 6 hours, thaw to 20 oC, and then hold 

for 6 hours. 

3.3.2. Mechanical Testing 

This section describes the standard tests performed to measure the data required to evaluate the 

material constants for the strain energy functions.  

• Cavity Test 

The system consists of pressure gauge, pump, syringe, and balloon-on-needle components 

connected with a Y-shaped tube.  A low durometer urethane balloon was used with a radius of 5 

mm (Vention Medical Inc, USA), medical needle (0.7 mm x 40 mm), and a digital pressure gauge 

(model DG 25, Ashcroft Inc., USA). The end opening of the needle was sealed using epoxy to 

restrict water flow to the balloon through needle’s side openings. Effort was made to ensure that 

there were no air bubbles trapped in the system; the tube, needle, and the pressure gauge inlet were 

injected individually with water accompanied by gentle tapping to ensure air is expelled out, then 

they were carefully connected together to ensure no air exists in the system. The test is based on 

inserting the needle inside the samples, then using the syringe pump to control the volume rate of 

injected water. Volume rate of 33 μl/sec was used. As the injected water volume increases, the 

observed pressure increases. The effect of needle insertion was neglected due to the low stresses 

and strains applied by the needle in addition to the soft nature of the hydrogel, this will be discussed 

in more details in section 6. The test was conducted at ambient conditions. At the early stage of 

the investigation, the gel samples were placed between two rigs to assure stability of the samples 

when water was injected. However, after further investigation, it was concluded that this step was 

not required because the effect of deformation did not reach the boundaries of the sample as it was 

absorbed within small thickness (2-4 mm) around the cavity. The test configuration is illustrated 

in Figure 3.1.  
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Figure 3. 1. Cavity test system. 

• Volumetric Test 

To investigate the compressibility of the gels, the samples were compressed in a confined 

configuration, as shown in Figure 3.2. The compression fixture used in this test consists of a special 

cylindrical mold, machined with an internal diameter that fits the samples and a thickness of 4 mm 

to provide rigid confinement, and a non-porous metal punch. A 10 mm gap is provided at the top 

of the fixture to guide the punch. The punch was machined to fit within the diameter of the mold 

and with similar diameter to that of the gel samples. Instron loading machine (model 4465; Canton, 

MA, USA) equipped with 5 kN load cell was used to compress the samples. The hydrostatic term 

in the equations 3.19, 3.20, and 3.21 was derived with respect to “J”, and the outcome was fitted 

to the experimental data using least squares method.  

 
Figure 3. 2. Volumetric test fixture. 
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• Sample Imaging  

The micro-focus CT-scans were performed with x-ray inspection system, Phoenix v|tome|x s 

(General Electeric Sensing and Inspection Technologies, Germany) equipped with a 240 kV 

micro-focus x-ray tube and a 2048 x 2048 pixels flat panel detector.  

The imaging work was performed on the stiffer batch of samples, i.e., 3 FTC. Three samples were 

scanned, and they were injected with different volumes of 150 μl, 300 μl, and 450 μl. The process 

was based on inserting the needle-balloon tool from the top of each sample; for convenience, the 

geometric center of the top surface area was chosen to insert the needle-balloon tool. The balloon 

was assumed to behave in a similar manner at different locations in the samples due to the isotropy 

of PVA hydrogels. Then, the balloon was filled with an iodine-based contrast agent made by 

dissolving Sodium Iodide (NaI) into distilled water at room temperature with a concentration of 

0.5 g/ml. The scan parameters applied to all specimens can be found in table 3.2.  

Table 3. 2. CT scan parameters.  

Acceleration 

voltage (kV) 

Beam 

Current 

(μA) 

Exposure 

Time 

(ms) 

Number 

of projections 

Voxel 

Size 

(μm)3 

Scan time 

(min) 

Cu pre-filter 

(mm) 

150 150 333 1000 74.06 22 0.1 

3.4. Experimental Results and Analysis  

3.4.1. Experimental Data & Calibration of Constitutive Models 

Given the spherical shape of the balloon, the deformation was evaluated from the radius of the 

injected volumes. This assumption was adopted because the bulk modulus of water (2.15 GPa) is 

orders of magnitude higher than that of PVA hydrogels (shown in equation 3.23). This assumption 

was verified by the CT imaging as will be shown later. Three strain energy functions were used-

equations 3.19, 3.20, and 3.21; their material constants were evaluated by the data fitting exercise 

in which the least squares method was implemented. Before performing the fitting process, 

equation 3.18 was derived using Leibniz’s rule, and then the tangential outcome was used to fit 

the models with the experimental data. Figure 3 shows the fitted models. The stretch term λ was 

defined based on equation 3.12 in which R was defined as 0.45 mm (the radius of the needle, 0.35 

mm, in addition to thickness of the balloon, 0.1 mm), and r was evaluated as follows: 

                                               + 0.45                                                               (3.22) 3

π4

V3
r =
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Where V is the injected volume of water. 

The data fitting process is also used to evaluate the compressibility constants in each of the SEFs 

as shown in Figure 3.4. The material parameters from the cavity and volumetric tests are 

summarized in tables 3.3 to 3.6 using different energy functions. 

 
Figure 3. 3. Fitting of different hyperelastic models with cavity data using a) 2FTC and b) 3FTC hydrogels.  

 
Figure 3. 4. Fitting of the volumetric test data. a) Ogden and Yeoh strain energy functions, b) Arruda-Boyce 

strain energy function.  
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Table 3. 3. Coefficients of Ogden, N=3, material model. μi are in MPa. 

                 2FTC    3FTC 

μi αi μi αi 

1.02622e-02 3.551 1.0098e-02 3.552 

-1.02051e-02 3.5622 -1.00831e-02 3.5572 

3.7312e-05 4.7096 3.1383e-05 4.7042 

 
 

Table 3. 4. Coefficients of Yeoh, material model. Ci0 are in MPa 

2FTC 3FTC 

C10 C20 C30 C10 C20 C30 

8.658e-05 3.1556e-06 7.168e-09 1.127e-04 3.41e-06 7.65e-09 

 are in MPa. 

Table 3. 5. Compressibility constants in Ogden and Yeoh strain energy functions. Di are in MPa-1 

2FTC 3FTC 

D1 D2 D3 D1 D2 D3 

2.818 5.27e-03 -1.785e-04 3.35 3.192e-03 -1.056e-04 

 

Table 3. 6. Coefficients of Arruda-Boyce material model. μ is in MPa. 

2FTC  3FTC  

μ 𝜆𝑚 μ0 D μ 𝜆𝑚 μ0 D 

8.53e-04 7.3107 8.62e-04 0.523 1.254e-03 8.09048 1.2658e-03 0.3487 

 

The volumetric functions implemented in Yeoh and Ogden provided better fit to the volumetric 

test data than the function implemented in Arruda-Boyce because they use three terms, similar to 

the number of terms used in the hyperelastic functions, while in Arruda-Boyce, only one 

volumetric term was used. In general, the evaluation of the bulk modulus K is based on the 

following: 

                                                                                                                              (3.23) 

Based on equation 3.23, K can be calculated as 3.82 MPa and 5.74 MPa for 2 FTC and 3 FTC gels, 

respectively. These values are orders of magnitude less than the bulk modulus of water (2.15 GPa), 

i0C

D

2
K =
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and thus the injected water is assumed to cause spherical deformation pattern with a radial 

displacement equivalent to  

                                                                                                                          (3.24) 

3.4.2. Image Reconstruction 

After all two dimensional (2D) image projections were obtained, a three dimensional (3D) volume 

was constructed by using Volume Graphics (Volumegraphics.com). The 3D image visualizations 

of the hydrogel and the needle-balloon tool are shown in Figure 3.5 (a & b). A simple threshold 

function based on a gray value threshold allows for visualization of the balloon inside the 

specimens because the atoms of the contrast agent’s chemical elements have a significantly higher 

atomic number than that of PVA.  

 
Figure 3. 5. Three-dimensional reconstruction of a hydrogel specimen injected with 450 μl of contrast agent. 

a) Hydrogel specimen; b) Inflated balloon.  

Volume Graphics uses different algorithms to run inclusion analysis. As it can be observed from 

Figure 3.6, the overall shape of the filled balloon inside the hydrogels is spherical, and the 

calculated volumes by the algorithm match the injected ones. Figure 3.7c shows comparisons 

between the injected volumes (actual) and the calculated volumes. The “actual radius” showed in 

Figure 3.7b was based on calculating the average of the diameters measured by the “Distance” 

tool. Overall, the average difference between the actual radius and the nominal radius for all 

3

π4

V3
u =
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injected volumes is 5%. At lower volumes, the balloon tends to deform in irregular spherical shape; 

however, as the volumes increase, the shape of deformations follows a uniform spherical 

configuration. The results presented by Volume Graphics offer a substantial validation to the 

assumption of spherical configuration of the internal deformations. 

 
Figure 3. 6. Calculating the volume of the inflated balloon inside the hydrogel specimens. a) 150 μl; b) 300 

μl; c) 450 μl.  
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Figure 3. 7. a) Measuring the actual diameter (image based) in 2D scene; b) comparison between the actual 

radius measured by the “Distance” tool in Volume Graphics and the nominal radius at each applied volume, 

distances 1 and 2 represent the vertical and horizontal dimensions of the expanded cavity, respectively; and 

c) comparison between injected volumes and the volumes calculated by the “Only threshold” algorithm. 

3.5. Numerical Model  

To validate the material constants evaluated from the data fitting, the cavity expansion test was 

simulated using Abaqus® (ABAQUS/CAE, 2013). An axisymmetric, quadrilateral, and hybrid 

elements (CAX4H, in Abaqus notation) are used in the numerical simulation. The mesh was 

created in a radial direction as shown in Figure 3.8. The model was structured to be axisymmetric, 

and half of the specimen was analyzed.  A convergence study has been performed in which stress 
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outputs, namely the radial stress and hoop stress, at the cavity wall (nodes) were compared against 

the mesh density until the stress values satisfactorily converged. The elements’ size is constant 

along the circumference and decreases in the radial direction towards the cavity wall. The size of 

the elements at the circumference is 97 μm x 55 μm, and 2 μm x 55 μm at the cavity wall. The 

magnitude order of the elements’ size is similar to a numerical investigation of spherical cavity 

expansion in rubber-like materials reported in (Faye et al., 2017). The numerical model dimensions 

are 40 mm in height and 18 mm in width. These dimensions represent the height and the radius of 

the PVA hydrogels, respectively. The radial displacement obtained from the cavity test, which 

matched the nominal displacement according to the CT-imaging investigation, was applied from 

an initial cavity of 0.45 mm in radius. The boundary conditions (BCs) applied in the simulation 

resemble those in the cavity test; during the test, the samples were confined at the top and bottom 

to avoid any movement that could occur during balloon inflation as shown in Figure 3.9a; 

therefore, a pin constraint was applied on the top and on the bottom of the FE model. In addition, 

the hydrogel was constrained from moving horizontally along the symmetry axis. The 

circumference of the model was left with no constraint, as the samples were not confined laterally 

during the test. BCs are presented in Figure 3.9b.  

3.6. FE Simulation Results and Discussion 

Before considering the material parameters obtained from the test data as valid representatives of 

hydrogels behavior, it is necessary to further validate those parameters; one of the common 

techniques for validation is by modelling the material parameters in different FE solvers. This 

technique provides a numerical application of the calibrated models. Agreement between the 

numerical simulation and the experimental data indicates the validity of the material models used 

in this work (Yeoh, Arruda-Boyce, and Ogden), thus confirms the capability of the cavity 

expansion test to measure the mechanical behavior of PVA hydrogels. This process has been 

adopted for tensile (uniaxial and biaxial), and bulge tests (Charlton et al., 1994; Mohan et al., 2011; 

Sasso et al., 2008a). The general theme of the validation process is based on applying the radial 

displacement into the FE model, then observing the simulated stresses on the cavity wall of the 

model. In the hyperelastic solution, the radial displacement is extracted from the injected volumes 

of water. Equation 3.18 relates the applied pressure to deformation (λ) which enables SEFs to 

capture the behavior of the hydrogels based on the data obtained from the cavity test. 
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Figure 3. 8. Axisymmetric finite element model developed to analyze spherical cavity expansion. 

 
Figure 3. 9. a) Configuration of the cavity test. b) Boundary conditions in the FE model (symmetric plane 

boundary conditions are applied at left vertical side of the model which include restrictions to horizontal 

translation and rotations.  
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The data fitting was conducted using equation 3.18 to evaluate the material constants of the 

implemented SEFs. Afterwards, material constants were used in the numerical model. A 

comparison of experimental results with FE simulations of cavity test has shown a good agreement 

for pressure-deformation data as shown in Figure 3.10. The average root square error (RMS error) 

was calculated, as per equation 3.25, to measure the difference between the experimental data and 

the FE simulations; table 3.7 summarizes the difference between the experiment data and FE 

simulations for both batches of hydrogels. Overall, the three SEFs provided a good agreement with 

the experimental data. It is interesting to note that the experimental findings are slightly higher 

than the FE simulations’ results.  

               RMS Error= 
1

N
 √∑ (

Pexp−PFE

Pexp

N
i=1 )                                                         (3.25) 

Table 3. 7. Average RMS error for 2FTC & 3FTC hydrogel. Experimental data vs FE simulation.  

2FTC 3FTC 

Ogden Yeoh Arruda-Boyce Ogden Yeoh Arruda-Boyce 

7.5% 7.73% 8.01% 6.75% 7.58% 7.65% 

 

 
Figure 3. 10. A comparison of FE prediction and experimental data for cavity test. a) 2FTC; b) 3FTC.  

To further validate the parameters obtained from the data fitting process, the hoop stresses 

generated in the cavity test are also compared against the numerical simulation. Equation 3.18 

describes the material as incompressible; which is a common assumption for rubber-like materials 

(Agoras et al., 2009; Elshazly, 2004). PVA hydrogels was also considered as slightly compressible 
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elastomers with Poisson’s ratio that ranges between 0.44 and 0.48 (Urayama et al., 1993) ( Lee et 

al., 2013). Therefore, the mathematical solution was compared against both incompressible and 

compressible numerical simulations, as illustrated in Figures 3.11 and 3.12. The compressible 

simulation was conducted by considering D values obtained from the volumetric test in the 

numerical model. The incompressible simulation was conducted by considering very small D 

values [D1 and D (Arruda-Boyce) = 1e-05, D2= 0, and D3= 0] to provide very high bulk modulus. 

In strain energy functions defined based on the strain invariants (Yeoh and Arruda-Boyce), the 

Cauchy hoop stress is defined mathematically by equation 3.15. On the other hand, Ogden strain 

function is defined based on the principal stretches, thus equation 3.8 was used to evaluate the 

Cauchy hoop stress. Equation 3.25 was also used to compare the difference between the 

mathematical analysis and FE simulation of the hoop stress. The analysis outcomes are 

summarized in table 3.8. Based on the comparison with the experimental data, in addition to the 

predictions of hoop stresses, it can be concluded that the material parameters of the adopted SEFs 

sufficiently represent the hydrogel response to the cavity deformations, and thus prove their 

capability to represent the hydrogel response under cavity deformations. 

Table 3. 8. RMS error for 2FTC & 3FTC hydrogel. Hoop stress mathematical vs FE simulation. 

2FTC Incompressible 

simulation 

Compressible 

simulation Ogden 4.57% 6.92% 

Yeoh 6.1% 8.84% 

Arruda-Boyce 5.78% 8.67% 

3FTC Incompressible 

simulation 

Compressible 

simulation Ogden 4.73% 6.46% 

Yeoh 5.98% 8.75% 

Arruda-Boyce 5.63% 8.71% 

In this study, it is assumed that any residual stresses due to needle insertion have been dissipated; 

this assumption was adopted mainly due to low stresses applied by the needle during the insertion 

process compared to the applied pressure as a result of the soft nature of the hydrogel in addition 

to the relatively small size of the needle. Similar outcomes were observed by Leibinger et al., 2016 

who reported that the peak effective strain resulted on the gel material surrounding the needle was 

in the range of 10 % - 14 %. This is relatively very low strain when it is compared with the applied 

strains presented in this study, in which, the peak effective strains due to the cavity expansion were 
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470% and 486% for 2 FTC and 3 FTC hydrogels, respectively. Therefore, the needle effect was 

considered insignificant and was neglected in the numerical simulations. 

 
Figure 3. 11. A comparison of incompressible FE prediction with the mathematical prediction of the strain 

energy functions for a) 2FTC and b) 3FTC gels.  

 
Figure 3. 12. A comparison of compressible FE prediction with the mathematical prediction of the strain 

energy functions for a) 2FTC and b) 3FTC gels.  

Furthermore, similar investigations were performed on other types of soft materials, such as 

agarose gels (Urrea et al., 2016), and brain tissues (Casanova et al., 2014). These studies reported 

peak radial stresses of 0.6 kPa - 1.2 kPa, and 0.1 kPa - 0.3 kPa for agarose gels and brain tissues, 

respectively. The reported stresses are significantly lower than the radial stresses reported in this 

study due to cavity expansion; in the cavity test, the maximum pressures applied radially on the 

cavity wall were 55 kPa, and 75 kPa in 2 FTC and 3 FTC hydrogels, respectively. Therefore, these 

relatively very low strains and stresses generated due to needle insertion are significantly smaller 

than the ones generated during the cavity test and can be ignored.  
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The CT imaging indicated that the balloon usually expands in a regular spherical shape in most of 

the injected volumes except at low volumes, where the shape of the balloon deviates slightly from 

the regular spherical shape. However, it is still valid to consider the applied volume to be perfectly 

spherical, including at low volumes, as it does not influence the accuracy of determining the 

hyperelastic material parameters. To verify the accuracy of the obtained material parameters, a 

numerical simulation for an irregular cavity that had a starting shape of a square with circular edges 

was performed. The outcome of this simulation indicated that the behavior remains similar to the 

original spherical cavity, as shown in Figure 3.13. The results indicate that knowing the total 

volume of the cavity is sufficient to perform the fitting process. 

Incompressibility of hydrogels is attributed to their high water content (Elshazly, 2004), but there 

is no experimental evidence that supports considering these materials as perfectly incompressible. 

Several methods have been proposed to consider the low compressibility of these materials, most 

prominently, the decomposition of the strain energy function into deviatoric and hydrostatic terms, 

which was implemented in this work. Although the decomposition is not physically realistic (Ní 

Annaidh et al., 2013), it works well with isotropic materials and mathematically convenient 

(Gilchrist et al., 2014) (Weiss et al., 1996), which makes the decomposition method an ideal 

analytical option. The incompressible simulation provided a very good agreement with the 

mathematical solution. In addition, the compressible simulation provided, to some extent, good 

agreement as well, which indicates that the small differences between the mathematical solution 

and numerical simulation are due to the slight compressibility of the hydrogels. Overall, both of 

compressible and incompressible simulations of PVA hydrogels provided relatively similar 

behavior. Based on the comparison outcomes, obtaining material parameters from the cavity 

expansion experiment can be considered valid for compressible and incompressible hyperelastic 

media. 
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Figure 3. 13. A plot of Hoop stress versus the radial displacement. The radial displacements in this plot are 

obtained from injected volumes up to 150 μl.  

3.7. Conclusion 

In this work, experimental data obtained from a new technique that is based on expanding cavity 

deformations. The data was used to calibrate material constants of three SEFs (Yeoh, Ogden, and 

Arruda-Boyce). The material constants were input into Abaqus® to simulate the cavity test. Based 

on the RMS Error analysis, the SEFs provided an excellent prediction of the material response to 

cavity deformations. A direct comparison between the FE simulations and the experimental data 

have shown that the cavity expansion technique is a valid approach to measure the mechanical 

response of rubber-like materials such as PVA hydrogels. In addition, CT imaging was 

implemented to observe the deformations applied through the needle-balloon tool. The spherical 

shape of the internal deformations has shown the potential of using the needle-balloon tool to 

control the applied deformations. The balloon configuration at low volumes tend to deviate from 

a perfect spherical configuration; however, FE simulation of irregular cavity showed that the 

overall volume of the cavity is sufficient to evaluate the material parameters of the hyperelastic 

SEFs. In conclusion, considering the gels’ response to balloon inflation is sufficient to study their 

mechanics under cavity deformations. Overall, the technique provided excellent means to measure 

the mechanics of hyperelastic materials without experiencing the conventional challenges that 

accompany common techniques. 
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Chapter 4 

Measuring the Hyperelastic Response of Porcine Liver Tissues In-Vitro 

Using Controlled Cavitation Rheology 

Abstract  

Measuring the mechanical properties of biological tissues in-vitro by using conventional methods 

is prone to external testing and sample preparation factors. For example, sample slippage affects 

the measurement accuracy of mechanical properties of biological tissues. In addition, samples have 

to go through a complex cutting process to be prepared in specific shapes, which increases the 

post-mortem time spent before testing. The purpose of this study is to investigate the capability of 

a new technique to measure the mechanics of biological tissues without experiencing the 

conventional challenges. It measures the mechanical behavior of soft materials by introducing and 

expanding cavity deformations within materials’ internal structure while generating two stresses 

simultaneously, radial and hoop stresses. In this study, two porcine livers were tested; the 

experimental data were used to calibrate the material parameters of three hyperelastic models, 

namely: Yeoh, Arruda-Boyce, and Ogden. Numerical simulations were performed to validate the 

material parameters; the outcome of these simulations showed that hyperelastic models were able 

to predict the material response to cavity loading. The technique assumes spherical configuration 

of the applied deformations. This assumption was verified via Computed Tomography (CT) 

imaging technology. From the experimental results, numerical simulations and the CT imaging, it 

can be concluded that the cavity expansion test is capable of measuring the mechanics of biological 

tissues without experiencing the difficulties encountered in conventional techniques. 

4.1. Introduction 

The experimental investigation of biological tissues’ mechanics is significantly important in 

several branches of the medical and biomedical engineering fields, such as diagnostic and 

therapeutic applications, tissue engineering, and clinical simulations for surgical training. The 

mechanical response of tissues is an indicator of their biological condition as the mechanical 

behavior translates the state of their inner (macroscopic and microscopic) structures. Changes in 

structure could indicate the onset of pathological conditions such as breast cancer (Krouskop et 

al., 1998; Paszek et al., 2005; Samani & Plewes, 2007), fibrosis (Yeh et al., 2002), and glaucoma 
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(Last et al., 2011). Also, mechanical properties of tissues have been presented as an excellent 

solution to challenges associated with image-guided therapeutic applications such as localization 

of tumors during respiratory motion (Al-Mayah et al., 2008; Eom et al., 2009b), deformable image 

registration of head-and neck (Al-Mayah et al., 2015), brain shift (Wittek et al., 2007), and image-

guided liver surgery and therapy (Al-Mayah et al., 2009; Cash et al., 2007). Therefore, acquiring 

accurate quantitative information about the behavior of tissues plays a significant role in 

developing solutions to tackle these challenges.  

Currently, indentation is a very reliable technique to quantify material properties of biological 

tissues as it has the potential to be applied in-vivo; however, it is commonly implemented during 

surgical works (Carter et al., 2001), or it requires surgical interventions (Tay et al., 2006). 

Alternatives to in-vivo indentation are the soundwave based techniques such as ultrasound 

indentation; nonetheless, challenges related to its clinical applications are arising due to wide 

variety of parameters and techniques proposed by manufacturers (Franchi-Abella et al., 2013), in 

addition to the complexity of transforming the local strains into local moduli (Varghese et al., 

2001). 

The majority of the mechanical information are quantified from ex-vivo techniques such as tension 

and compression tests. Generally, these techniques are effective in measuring material properties; 

however, the investigated tissues using these techniques are extracted from their biological 

environment and preserved for a considerable amount of time before testing. The common 

preservation techniques such as freezing and refrigeration were reported to change the mechanical 

properties of biological tissues (Nguyễn et al., 2012; Dương et al., 2015; Lu & Untaroiu, 2012b; 

Brands et al., 2000); in addition, complex cutting processes adopted to prepare the samples into 

specific shapes (dumbbell/dog-bone) increase the postmortem time spent before testing. Some of 

these techniques require gripping the sample while loading. However, the aqueous nature of 

biological tissues is commonly the cause of slippage (Ng et al., 2005). To overcome this issue, 

several techniques based on roughened grip surfaces have been developed to overcome slippage 

such as pneumatic clamps (Matthews et al., 1996), serrated jaws (Herzog & Gal, 1999), and sand 

paper ( Nafo & Al-Mayah, 2018). Nonetheless, for the roughened surfaces to be effective, pressure 

has to be applied by the clamps, which may develop stress concentrations at the clamping region, 

affecting the stress distribution through the gauge length significantly. Gluing the samples to the 



48 
 

gripping surfaces attenuates the stress concentrations problem, however, this is only effective 

when the samples are thin; thicker samples will experience shear that causes complex strain 

distribution at the gripping region, where the sample core experiences less deformation compared 

to the interface between the sample surface and the gripping surface (Riemersa & Schamhardt, 

1982; Soden & Kershaw, 1974). The gravity of the slipping problem is represented in its potential 

to significantly affect the test data such as the force vs displacement data (Soden & Kershaw, 

1974). In compression tests, friction can be a daunting challenge, in particular, between the surface 

of the sample and the testing rig, which affects the stress distribution along the gauge length of the 

specimens (Bergstrom, 2015). 

This study aims to examine a testing technique that has the potential to eliminate the 

aforementioned difficulties that accompany testing tissues in ex-vivo conditions. In addition, it has 

the potential to be implemented in-vivo with minimal intervention and feasibility in terms of 

measuring the mechanics of the tested tissues, which will be addressed in a different study. In this 

study, two porcine livers will be tested ex-vivo by applying deformations in the form of spherical 

cavitation. The tissues are assumed to be isotropic and characterized as hyperelastic materials. 

Three Strain Energy Functions (SEFs) will be used to capture the tissues behavior, namely: Yeoh, 

Arruda-Boyce, and Ogden. The material parameters of the SEFs will then be validated via FE 

simulations by using Abaqus®. The test generates two types of stresses, namely, radial and hoop 

(circumference) stresses simultaneously, which will be analyzed analytically and numerically. The 

validation of this technique is based on reaching a robust agreement between the experimental and 

numerical stresses (pressure readings), in addition to stresses predicted analytically and 

numerically. The analysis in this work is based on the assumption of spherical configuration of the 

applied deformations. This assumption will be verified using Computed Tomography (CT) 

imaging. 

4.2. Materials and Methods 

4.2.1. Specimen Preparations 

Two fresh porcine livers from two 24 weeks old pigs, weighing about 60 kg were used. The livers 

were collected within 4 hours postmortem from a local slaughterhouse. 
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They were preserved and transported to the laboratory in an icebox at 4oC-5oC. During the test, 

the livers were placed on an aluminum tray, as shown in Figure 4.1, on which they maintained 

their natural shape.  

 
Figure 4. 1. Porcine liver and its main lobes. 

4.2.2. Experimental Setup 

The cavity expansion tests were conducted by using a system of five components (Figure 4.2). It 

comprises of a needle-balloon tool, pressure sensor (Model PRESS-S-000, PENDOTECH, USA), 

pressure reader (Model PMAT-S, PENDO TECH, USA), and a syringe pump (Model 75900-00, 

Cole-Parmer Instrument CO, USA), in addition to a personal computer to record the pressure-time 

data acquired from the tests. Y-shaped tube was used to connect the syringe, the pressure sensor, 

and the needle-balloon tool. No air was entrapped in the system; the design of the pressure sensor 

allows bleeding the air out of the system readily.  

The concept of the test is based on injecting a controlled and continuous stream of water into the 

balloon to generate an expanding cavity within the structure of the specimen. The experiments 

were performed by inserting the needle–balloon tool into the liver samples. To collect data from 

various regions of the liver samples, the tool was inserted at six different locations in each of the 

samples: two locations in the median lobe (ML), and one location in each of the right lateral (RL), 

right median (RM), left median (LM), and left lateral (LL) lobes. A minimum distance of 3 cm in 

the x and y directions was kept between needle insertions. The tests were conducted at room 

temperature ~ 21 oC. All tests were conducted at a fluid injection rate of 5μl s-1. 
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Also, the balloon response was investigated by using the loading system; the pressure was 

observed by inflating the balloon with water while the balloon is free from constraints (no 

boundary conditions were applied). The balloon showed no tangible resistance within the range of 

injected volumes in which the liver tissues ruptured. A further verification to this observation was 

conducted by using a more sensitive load cell (MDB-75, Transducer Techniques, USA) and Intron 

loading frame. A schematic diagram of the investigation apparatus is shown in Figure 4.3 where 

the collective response of syringe, needle and balloon assembly was investigated. 

 
Figure 4. 2. Experimental set up; the system is comprised of a syringe to inject incompressible fluid (water) 

to the pressure sensor to measure the pressure in the pressurized fluid, and to the needle balloon tool to 

inflate the balloon. The dimensions of the balloon region before inflation are 5.0 mm in length and 0.85mm 

in diameter.  
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Figure 4. 3. Schematic diagram of the apparatus used to measure the balloon inflation pressure.  

4.3.1. Samples Imaging 

To observe the configuration of the applied deformations, a micro-focus CT-imaging was 

performed with x-ray inspection system, Phoenix v|tome|x s (General Electric, Germany) equipped 

with a 240 kV micro-focus x-ray tube and a 2048×2048 pixels flat panel detector. 

Two samples were scanned; the investigation used two different injection volumes, 50 μl, and 100 

μl. An iodine-based contrast agent was used in this study, produced by dissolving Sodium Iodide 

(Nal) into distilled water at room temperature. Each sample was injected with an individual volume 

and then scanned. The scan parameters applied to all specimens are shown in table 4.1. 

 Table 4. 1. CT scan parameters.  

Acceleration 

voltage (kV) 

Beam 

Current 

(μA) 

Exposure 

Time 

(ms) 

Number 

of 

projections 

Voxel 

Size 

(μm)  

Scan 

time 

(min) 

Cu pre-filter 

(mm) 

130 130 333 1000 142 22 0.1 

 

4.3. Constitutive Models 

Three hyperelastic models are used in this investigation, namely Yeoh (Yeoh, 1993), Arruda-

Boyce (Arruda & Boyce, 1993), and Ogden (Ogden, 1972). 
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• Yeoh model is a phenomenological model based on the first strain invariant I1. The 

incompressible version of Yeoh model is written as 

                                                           W= ∑ Ci0(I1 − 3)iN=3
i=                                                      (4.1) 

Where Ci0 are the material constants. 

• Ogden model is also a phenomenological model. It has been used to capture the mechanical 

behavior of rubber-like materials, including rubbers and biological tissues (Rashid et al., 2014b; 

Shahzad et al., 2015). 

                                        W =  ∑
2μi

αi
2

N=3
i=1  (λ1

αi + λ2
αi + λ3

αi − 3)                                            (4.2) 

Where μ𝑖 and αi are material constants.   

• Arruda-Boyce model is a mechanistic model. It captures the behavior of rubber-like materials 

precisely by using two material constants, initial shear modulus and extensibility limiter. The 

model is based on I1 and defined as  

                                                   W =  μ ∑
Ci

λm
2i−2 (I1

i − 3i)5
i=1                                               (4.3) 

Where Ci are model constants; λm is the extensibility limiter; and μ is the shear modulus. 

These hyperelastic models can be calibrated using  

                                                               
dσr

dλ
=  

Ŵ 

(λ3−1)
                                                             (4.4) 

Equation 4.4 is derived by combining equations 3.13, 3.15, 3.16, and 3.17.  

4.4. Results and Discussion 

The tests were conducted by introducing cavitation within the structure of the liver. Cavities were 

induced by injecting controlled volumes of water, and the pressure readings due to expanding 

cavities were collected simultaneously. Overall, twelve cavity expansion tests were performed on 

various regions of the two livers to investigate the tissues’ behavior at the applied volumes. The 

data obtained from each lobe of both livers are shown in Figure 4.4. These data represent the range 

of pressure readings to the maximum pressure before a drop was observed signaling tissues 

rupture. The average pressure-volume curve is shown in Figure 4.5. The average data curve was 

evaluated until a volume (V) of 65μl, at which the majority of the tested samples failed or showed 

signs of failure. The reported pressure readings are the ones observed during the experiment.  
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Figure 4. 4. Pressure – Volume data for each lobe in both of the liver samples. The numbers in front of each 

test represents its order.  

 
Figure 4. 5. Average mechanical response and the variation corridor (standard deviation) of the liver tissues 

subjected to cavity deformation. Pressure-Volume data were labeled based on the liver sample (L1 or L2), 

and based on the region or lobe, for example, L1_ML represents the median lobe of liver sample No.1. Two 

experiments were performed in the median lobes of both samples, and one experiment was performed in 

each of the other lobes. 
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The data showed an expanding standard deviation corridor (±1.08e-03 MPa at V= 5μl, up to 

±1.05e-02 MPa at V= 65 μl) as shown in Fig. 5. The pressure-volume data showed a spectrum of 

behaviors that range from linear response, similar to that observed in other soft  materials 

(Zimberlin et al., 2007, 2010), to non-linear response. 

For full evaluation of the system including syringe and balloon, the effects of the syringe-needle-

balloon components were investigated separately before needle insertion in tissue using force-

displacement frame shown in Figure 4.3. The selection of the force-displacement method for 

syringe behavior was to provide a common ground for comparison with previously reported works 

that were based on force-displacement theme (Brostow et al., 2007; De Bardi et al., 2018; Kasem 

et al., 2019; Zhang et al., 2018). Initially, an instant increase in force data occurred due to the 

friction (static) of the rubber stopper on the barrel’s inner wall followed by a constant friction 

response as the stopper broke loose, and the injection entered the dynamic phase. During this 

process, the balloon showed no response, nevertheless, it started to show tangible stiffening after 

the stopper moved for 2.25 mm representing a balloon inflation volume of 116 μl (180% of the 

volume at which the tissues showed signs of failure). The balloon force-displacement data was 

converted into pressure-volume form by using the barrel’s inner radius (4.05mm), see Figure 4.6. 

The region highlighted in green shows the amount of volume corresponding to the averaged 

experimental pressure. The segment marked in red represents a stiffening of the balloon as it starts 

to resist inflation. It is worth mentioning that the syringe effect (static and dynamic frictions) does 

not affect the sensor’s pressure readings in the original technology as shown in Figure 4.7, where 

a pilot study was conducted on L2_RM liver sample. The pressure sensor and the load cell 

collected data sets simultaneously. Both sets showed similar rate of change and pressure range as 

a result of tissue resistance to cavity expansion. 

For convenience, the deformation term in Figure 4.5 was converted into the stretch term λ. The 

definition of λ is presented as r/R in which R was set to be 1.42 mm (See Appendix B), while r 

was evaluated as  

                                                                r = √
3(Vi+Vapp)

4π

3
                                                                 (4.5) 

Where Vi is the initial volume which includes the volume of the balloon region before inflation, 

and the water volume introduced into the balloon before the tissues start to resist balloon inflation. 
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Vapp is the injected volume of water introduced into the balloon when tissues start to resist balloon 

inflation.  

 

 
Figure 4. 6. Balloon response. The overall response is similar to a typical force mechanism of syringes 146; 

it starts with a static (breakaway) friction force followed by dynamic (gliding) friction force. a) The force-

displacement data; b) the pressure-volume data. 

 

 

 
Figure 4. 7. Data sets obtained by the pressure sensor and the load cell.  

The instantaneous rate of change of the P-λ data was calculated at numerous data points to allow 

the calibration process through equation 4.4. The material constants of the models were calibrated 

by the least squares method. 
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A good agreement between the experimental data and the calibrated models can be observed in 

Figure 4.8. The material constants of the three models are summarized in tables 4.2. The quality 

of fit is represented by R2 shown in Figure 4.8, which represented as R2 = 
Tt−Tr

Tt
 , where Tt is the 

total summation of the squared residuals of the mean and data points; Tr is the summation of 

squared residuals around the regression line.  

Table 4. 2. Materials constants of the Yeoh, Ogden and Arruda-Boyce models.  

Material coefficient 

Yeoh Model 

C10 (MPa) 2.1e-03 

C20 (MPa) 4.18e-03 

C30 (MPa) -5.83e-05 

Ogden Model (N=3) 

μ1 1.61e-02 

α1 -2.128 

μ2 1.225e-01 

α2 -1.521 

μ 3 -1.345e-01 

α3 -1.36 

Arruda-Boyce model 

μ 4.06e-03 

λm 1.081 

 

 

 
Figure 4. 8. Calibration of the hyperelastic models. 
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All three models provided an excellent fit to the averaged experimental data. The material 

parameters from the calibration process will be used in FE simulations.  

Once the micro-CT data (2D projections) were collected, Volume Graphics (VG) 

(Volumegraphics.com), an image analysis software was used to visualize the data by volume 

rendering, as shown in Figure 4.9. VG offers two tools that were adopted in this work to verify the 

configuration of the injected volumes, “Inclusion Analysis” and “Distance Tool”. The verification 

process is based on comparing the calculated volumes with the injected ones, in addition to 

comparing the measured radii with the nominal ones. 

 
Figure 4. 9. a) A photograph of the micro-CT scanner used during the study, including the x-ray tube (A), 

the sample (B), and the detector (C). b) The configurations of spherical cavities within the liver tissues’ 

internal structural. The higher volume (100 µl) imposes higher pressure on the liver tissues. 
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The outcome of the analysis indicated that the calculated volumes match the injected volumes 

inside the balloon, as illustrated in Figure 4.10 (a, b). The analytical radii (from VG) were 

calculated by taking the average of the balloon radii in x-axis and z-axis. Overall, the actual radii 

matched the nominal ones, as shown in Figure 4.10 (c). The verification process conducted by VG 

offers a strong validation to the assumption of spherical configuration of the applied cavities.  

 
Figure 4. 10. a) Image-based diameters and volume measurements in two different volume injection values. 

The term “Distance 1” represents the diameter in the z-direction, and the term “Distance 2” represents the 

diameter in the x-direction. b) Match between the injected volumes and the volumes calculated by VG. c) 

Comparison between actual and nominal radii. 

The calibrated hyperelastic models are implemented in numerical simulations. These simulations 

are carried out using Abaqus® (ABAQUS/CAE, 2013). During the experiments, the cavity expands 

in a medium that has no external restraining boundary conditions. The tissue volume around the 

tool is significantly large relative to the balloon size thereby a thick sphere scenario was adopted 

to simulate the cavity expansion inside the liver tissues where a large outer radius bo was selected 

to be a hundred times the inner radius ao (bo=100 ao), see Figure 4.11 (a and b); this reflects the 

fact that stresses induced by the cavity are distributed within close proximity to its wall. The 
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numerical model was created by 4-node axisymmetric quadrilateral elements with hybrid 

formulation (CAX4H). The mesh configuration is based on distributing the elements radially with 

gradual change of dimensions; the elements’ size is 1 μm × 50 μm at the cavity wall and 100 μm 

× 50 μm at the circumference. 

These dimensions were determined based on a convergence study, in which, the radial and hoop 

stresses converged satisfactorily. The loading process was based on applying the pressure observed 

during the experiments at the cavity wall, see Figure 4.11 (a). Due to the local nature of the cavity 

test, the stresses from the numerical model at the cavity wall were compared against the 

experimental data and the analytical solution (equation 3.15). 

A good agreement between the average experimental pressure and the numerically predicted radial 

stress was achieved; see Figure 4.11 (c). Moreover, the material parameters of the three energy 

functions, which were used to predict the hoop stress analytically, were further validated against a 

corresponding stress predicted numerically; a good agreement between analytical hoop (equation 

3.15) stresses and numerical hoop stresses was achieved, see Figure 4.11 (d). 

 

Figure 4. 11. a) An axisymmetric finite element model to analyze spherical cavity expansion in hyperelastic 

medium; b) Radial deformation applied at the cavity wall; c) Experimental and numerical pressure results; 

d) Analytical and numerical hoop stress results.  
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During the expansion of the balloon within the tissues’ structure, radial and hoop stresses were 

generated simultaneously. These stresses were analyzed statistically by one-way ANOVA test. 

While Arruda-Boyce strain energy function (SEF) was the least accurate, yet sufficient, in 

predicting the experimental pressure, Yeoh and Ogden showed no significant difference between 

the experimental pressure and the numerically predicted pressures: p=0.8235, p=0.9877, 

p=0.9428, respectively, as shown in Figure 4.12 (a). Similarly, the three models successfully 

predicted the hoop stresses; there was no significant difference between the hoop stresses predicted 

analytically by equation 3.15 and the numerical hoop stresses: p= 0.9705, p= 0.8124, and p=0.9513 

when Yeoh, Arruda-Boyce, and Ogden strain energy functions were used, respectively, as shown 

in Figure 4.12 (b). In addition, the three SEFs measured similar initial shear moduli of the liver 

tissues: μY= 4.2 kPa, μAB= 4.06 kPa, and μOG = 4.17 kPa, for Yeoh, Arruda-Boyce, and Ogden 

models, respectively. The shear moduli measured by the three SEFs fall within the range of moduli 

of porcine liver (3 kPa – 5 kPa) reported in (Samur et al., 2007). The deformation level at which 

the liver tissues showed signs of failure λult was 1.85, this magnitude also agrees with deformation 

levels reported in literature due to stretching (1.3 – 1.86) (Dương et al., 2015; Gao et al., 2010b). 

The reported magnitude of the ultimate hoop stress (≈0.25 MPa) is also acceptable. Although no 

data are reported for liver tissues tested under bi-axial tensile or tri-axial loading, fresh porcine 

liver tissues were reported to experience an ultimate tensile stress (Cauchy stress) magnitude of 

0.182 MPa in uniaxial stretching (Dương et al., 2015), which makes the results in this work 

reasonable as the ultimate stresses in biaxial-loading are normally higher than in one-directional 

loading. The good agreement between the experimental, analytical, and numerical results indicates 

that the implemented SEFs (Yeoh, Arruda-Boyce, and Ogden) are capable of capturing the 

mechanical behavior of the liver tissues. Furthermore, the technique is efficient to characterize the 

hyperelastic behavior of soft biological tissues.  

The findings from this study strongly indicate to the capability of the cavity technique to measure 

the mechanical behavior of the biological tissues. The pressure generated in this test was measured 

experimentally, and the stresses were efficiently predicted by numerical and analytical means. 

The CT images showed that the balloon expands spherically when inflated within the liver tissues 

by a relatively incompressible fluid (water). This was proved by analyzing a subset of the injected 

volumes (50 μl and 100 μl). The VG analysis results showed that calculated volumes are similar 
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to those injected (nominal volumes). In addition, radii measured by VG were similar to the nominal 

radii of the injected volumes. The spherical configuration of the deformations validates the use of 

equation 13 to calibrate the material parameters for each of the SEFs. 

 

 
Figure 4. 12. Excellent agreement between the experimental, analytical, and numerical results based on 

one-way ANOVA tests.  

The effect of the needle insertion into the liver tissues was neglected in this study as the stresses 

and strains generated during the insertion process are significantly smaller than the stresses and 

strains generated during the cavity expansion test (Nafo & Al-Mayah, 2019).  

The statistical analysis showed that the parameters obtained from calibrating the SEFs provided a 

response that is similar to the one observed during the experiments. The FEM results presented in 

this work addressed the stresses at the cavity wall; beyond it, they immediately decline in a sharp 

manner. This is obvious when the stresses were numerically calculated at various locations beyond 

the cavity wall when a pressure corresponding to a volume of 65 µl was applied, which indicates 

to the local nature of the cavity expansion technique, see Figure 4.13.    

A limitation in this study is the material parameters of the SEFs were estimated based on an 

average experimental data. The variations of the experimental data might be due to the random 

distribution of arteries, veins, and ducts within the tissues, which was not considered in this study. 

Nonetheless, the material parameters are still useful to model an approximate behavior to that of 

liver tissues subjected to cavitation rheology. Average experimental data were used to define the 

mechanical properties of several biological tissues (Dương et al., 2015; Kemper et al., 2010; Miller 

& Chinzei, 1997; Rashid et al., 2014b) thus it was adopted in this study. 
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Figure 4. 13. The local nature of the cavity expansion test: Significant drop in the stresses magnitudes 

beyond the cavity wall: a) radial stresses, b) hoop stresses. The three-hyperelastic models predicted that the 

radial and the hoop stresses sharply diminished at 450 μm beyond the cavity wall. 

The cavity expansion technique proved to be efficient in predicting the initial shear modulus of 

the liver tissues. It also reported a stretch magnitude that agrees with the stretch levels reported in 

literature. In addition, the cavity expansion technique successfully predicted the ultimate tensile 

stresses at which the tissues ruptured.  

4.5. Conclusions 

This study presented twelve cavity expansion tests performed on two porcine livers. The 

following results can be concluded from this study: 

(i) Yeoh, Arruda-Boyce, and Ogden models provided excellent fitting to the experimental data 

(0.8235 ≤ R2 ≤ 0.9877). 

(ii) The CT investigation results indicated that using a spherical balloon to apply cavity 

deformations results in deforming the tissues around the balloon spherically. 

(iii) Excellent agreement between the experimental and numerical results at the cavity wall, in 

addition to the agreement between hoop stresses predicted analytically and numerically 

indicate that the three SEFs are capable to characterize the behavior of liver tissues subjected 

to cavitation rheology. 

Based on these results, the cavity expansion test is capable of measuring the mechanical behavior 

of liver tissues without experiencing the difficulties that normally accompany conventional 

techniques. 
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Chapter 5 

Characterization of PVA Hydrogels’ Hyperelastic Properties by Uniaxial 

Tension and Cavity Expansion Tests  

 

Abstract 

The mechanical behavior of rubber-like materials is dominantly non-linear elastic. Their 

mechanical response is measured by numerous conventional techniques including the universal 

loading machines (tension and compression) and indentation. Recently, an unconventional 

technique based on cavitation rheology has been implemented to measure the mechanics of these 

materials. The loading mechanism of this technique is different from the axial force-displacement 

mechanism observed in the other techniques thus the aim of this study is to investigate the 

difference between the cavity expansion technique and one of the conventional techniques, 

uniaxial stretching, to understand the difference in material responses under each loading 

mechanism. PVA hydrogel was used as a representative of hyperelastic materials. The gels were 

loaded by both techniques, and hyperelastic models (Yeoh, Ogden, and Arruda-Boyce) were used 

to model their behavior. FE simulations were performed to reproduce the experimental data. It was 

observed that the tension stresses generated during the cavity expansion test were similar to those 

generated in the uniaxial tension to a strain level of 45%, afterward, the cavity tension stresses 

increased exponentially exceeding those generated in the uniaxial tension. When the von Mises 

stresses, from both tests, were compared against the major tension stress data, it was observed that 

the cavity test imposed tension stresses that were twice of those generated during the uniaxial 

tensile test. In addition, the hoop stresses were significantly larger than the applied pressure. These 

observations indicate to the equi-biaxial nature of the cavity expansion test. 

5.1. Introduction 

Numerous techniques have been developed to investigate the mechanics of rubber-like materials 

such as polymers, gels, and soft biological tissues. These techniques include stretching (uniaxial 

and biaxial) (Rashid et al., 2014b; Shahzad et al., 2015),  compression (confined and unconfined) 

(Buschmann et al., 1997; Cornelius O. Horgan & Murphy, 2009; Nafo, 2016), and indentation 

(Ashrafi & Tönük, 2014; Giannakopoulos & Triantafyllou, 2007; Nafo & Al-Mayah, 2018). 
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Cavity expansion associated mechanics have attracted a significant research effort in the past 

decades. In late 1950s, Gent and Lindley applied cavity expansion mechanics to investigate the 

elastic modulus measurement of rubber (Gent & Lindley, 1959). Over the past decade, a number 

of studies exploited the concept of cavitation rheology to measure the mechanics of soft materials, 

in which cavities were introduced into different materials by compressing a compressible fluid 

(air) while it was in direct contact with the material (Kundu & Crosby, 2009; Poulain et al., 2017; 

Zimberlin et al., 2007; Zimberlin & Crosby, 2010), and an incompressible fluid (water) (Zimberlin 

& Crosby, 2010) into the tested medium. The induced cavity was created using arbitrarily 

nucleated open-cavity that was monitored using imaging to measure the volume. An enclosure to 

the injected fluids was used to apply pre-determined volumes and a geometric configuration to 

isolate the fluids from the tested medium (Nafo & Al-Mayah, 2019).  

The cavity expansion technique combines two unique features of the conventional tensile and 

indentation tests. While the tension test examines the material mechanics by stretching, indentation 

provides a local perspective about the material response to deformations; the cavity expansion 

technique stretches the material structure within a controlled region which allows measuring its 

mechanics locally (Nafo & Al-Mayah, 2019). The stresses generated by the spherical cavity 

expansion technique are radial and hoop stresses. The radial stresses are generated in the form of 

pressure orthogonal to the cavity wall, and the circumferential hoop stresses are generated 

tangential to the cavity wall in the form of tensile stresses due to resisting expansion. Hoop stresses 

are larger than the radial stresses in soft materials (Nafo & Al-Mayah, 2019). Most of the previous 

work on mechanical characterization of materials using cavitation rheology considered the 

mechanical response of the rubber-like materials as linear elastic, and only addressed the radial 

stresses as an indicator to material behavior. Nafo & Al-Mayah, 2019 considered the rubber-like 

materials as hyperelastic and implemented three strain energy functions (SEFs) to characterize the 

mechanics of this type of materials, in addition, they analytically quantified the hoop stresses 

generated during the cavity expansion process. However, the relationship between stresses 

generated due to expanding cavities and conventional tensile tests is not fully established. 

Therefore, in this study, the performance of the cavity expansion test is compared with that of the 

conventional uniaxial tensile test to investigate the stretching mechanics induced during the cavity 

expansion test. 
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The analysis of rubber-like materials is based on calibrating hyperelastic models to reproduce the 

experimental data. The SEFs are calibrated based on the experimental data from both tests (cavity 

expansion and tension). An FE solver, Abaqus®, is used to simulate the non-linear behavior of 

rubber-like materials. Among various SEF models are Yeoh, Ogden, and Arruda-Boyce models 

that proved to be efficient in fitting the experimental data in uniaxial and biaxial stretching (Sasso 

et al., 2008a; Shahzad et al., 2015), therefore, they are used in this study. 

PVA hydrogel is used in this study. This type of hydrogels is known for its isotropic nature and 

low compressibility. Urayama et al 1993 (Urayama et al., 1993) reported Poisson’s ratio 

magnitudes in the range of 0.45-0.48 for PVA hydrogel. In addition, Nafo & Al-Mayah, 2019 

reported that there is no significant difference in the material’s mechanical behavior between 

incompressible and compressible assumptions. Therefore, an incompressible assumption is 

considered in this work. 

In this study, cylindrical and sheet specimens of PVA hydrogels were prepared and tested by the 

cavity expansion and uniaxial tensile tests, respectively. Moreover, the experimental data were 

used to calibrate the material constants of Yeoh, Ogden, and Arruda-Boyce models. Lastly, FE 

simulations were performed to reproduce the experimental data and to investigate the material 

response under the two types of loading. 

5.2. Materials and Methods 

5.2.1. Preparations of PVA hydrogels 

A 10% w/w PVA solution was made by mixing 99+ % hydrolyzed PVA (molecular weight of 

160000 – 186000 g.mol-1) with deionized water. The mixing process was performed at 90 oC by 

the use of standard flask/column combination. The solution was poured into cylindrical molds (40 

mm in height and 36 mm in diameter), and prism molds (150 mm x 150 mm x 2 mm) to create 

cylindrical and sheet specimens of PVA hydrogels. The solution was frozen at -20 oC for 6 h, and 

then thawed at room temperature ~21 oC for 6 h. This freeze-thaw cycle (FTC) was repeated two 

times. Subsequently, the samples were taken out of the molds and rinsed with deionized water. 

The cylindrical samples (five samples) were directly tested by the cavity technique. The gel sheet 

was cut into specific shapes (to make five samples) and then tested by a uniaxial tensile machine. 

Figure 5.1 shows the preparation of the PVA hydrogel samples.  
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Figure 5. 1. Schematic diagram for the preparation process of PVA hydrogel.  

 

5.2.2. Uniaxial Tensile Test 

A standard uniaxial tensile test was performed on PVA hydrogel sheet specimens. The gauge zone 

of the specimens was 30 mm in length, 15 mm in width, and 2 mm in thickness. The gauge length  

was defined by two black markers spaced at 15 mm apart. A Nikon D90 high resolution CCD 

camera was used to record sample deformation during the loading process. The deformation 

(displacement) was measured by tracking the markers using Tracker software (Tracker Video 

Analysis and Modeling Tool for Physics Education). The test was performed using Instron loading 

machine (model 4465; Canton, MA, USA) equipped with 5 kN load cell. The deformation was 

applied at a strain rate of 0.1s-1. Sand paper was used at the clamping regions to prevent potential 

slippage due to the aqueous nature of the PVA hydrogels. Moderate clamping pressure was applied 

during the fixation of the sample to avoid complex stress distributions at the clamping regions and 

to ensure the failure occurs within the gauge length; the experiment set up is shown in Figure 5.2.  

 

 



67 
 

 

Figure 5. 2. Illustration of the tensile test performed on a PVA hydrogel specimen; A) screws used to apply 

moderate pressure at the clamping region; B) Sand paper glued to the metal clamp; C) black markers to 

allow tracking deformations; D) the onset of failure within the gauge length. 

 

5.2.3. Cavity Expansion Test 

The test was performed using a system that consisted of a custom-made frame to hold a 3 ml 

syringe during the loading process, silicon tubes connected the syringe with a needle-balloon tool, 

pressure sensor (Model PRESS-S-000, PENDOTECH, USA); and pressure reader (Model PMAT-

S, PENDO TECH, USA). The water was injected by the Instron machine through the tubes into 

the tool at a rate of 5 μls-1 to apply internal cavity deformations to the structure of the hydrogels. 

The applied pressure on the syringe was measured using the pressure sensor that is directly 

attached to the needle tube. In addition, the pressing force on the syringe was measured using a 

load cell. This is mainly motivated by capturing all elements associated with the cavity test system 

including friction inside the syringe. An effort was made to ensure no air was trapped inside the 

tool by submerging it into a 250 ml glass breaker filled with water until the tool sank, then it was 

connected to the tube while submerged under the water. A schematic diagram of the system is 

shown in Figure 5.3.  
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Figure 5. 3. The loading setup: the system utilizes the Instron machine to inject water into the needle-

balloon tool, and it utilizes the pressure sensor to measure the pressure in the system.  

5.2.4. Hyperelastic Constitutive Models 

Hydrogel materials are known for their “hyperelastic” behavior; they exhibit very large 

deformation and non-linear stress-strain relationship. In order to numerically reproduce the 

mechanical response of the hyperelastic materials, data obtained from the experimental work are 

used to calibrate the hyperelastic constitutive models. Numerous hyperelastic models are proposed 

in the literature; this work focuses on two types of models: strain invariant-based (Yeoh and 

Arruda-Boyce) and stretch-based (Ogden) models. 

Yeoh model has been used in characterizing the behavior of several hyperelastic materials such as 

reinforced natural rubber (Shahzad et al., 2015), hydrogels (Nafo & Al-Mayah, 2019), and 

biological tissues (Safshekan et al., 2016). The Yeoh model for incompressible rubber-like 

materials is expressed as  

                                           W =  ∑ Ci0 ( I1 − 3 )i3
i=1                                                      (5.1) 

Where I1 is the first strain invariant, Ci0 are the material parameters. 

Ogden model is a principal stretch based model and commonly used to characterized the 

hyperelastic properties of rubber-like materials that exhibit large deformations (ε=600%) (Ogden 
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et al., 2004). In addition, this model is used to define the nonlinear elastic response of biological 

tissues (Rashid et al., 2014b). The Ogden model is expressed as  

                                      W =  ∑
2μi

αi
2

N=3
i=1  (λ1

αi + λ2
αi + λ3

αi − 3)                                            (5.2) 

Where μi and αi  are the material parameters. λ is a stretch term. 

Arruda-Boyce model is a molecular chain network-based model. It was proposed by Arruda and 

Boyce (Arruda & Boyce, 1993), and it is commonly used to characterize rubber like materials 

(Nafo & Al-Mayah, 2019; Sasso et al., 2008; Shahzad et al., 2015). This model is expressed as  

                                                   W =  μ ∑
Ci

λm
2i−2 (I1̅

i − 3i)5
i=1                                                      (5.3) 

Where μ is the initial shear modulus, λm is extensibility limiter and Ci are material constants 

demonstrated in equation 5.6. 

The calibration process was based on fitting the Cauchy stress of the three models to the true 

stresses obtained from the experimental work (σTrue= σEngineering [1+ εEngineering]). The uniaxial 

cauchy stresses of the three models are expressed as 

                                 σYeoh = (C10 + 2C20 ( I1 – 3)2 + 3C30 (I1 - 3 )3) (2λ2 - 2λ-1)                         (5.4) 

            σArruda-Boyce = μ ( 
1

2
+

I1

10λm
+

33I1
2

1050λm
4 +

76I1
3

7050λm
6 +

519I1
4

134750λm
8 ) (2λ2 – 2λ-1)                         (5.5)  

                                          σOgden = ∑
2μi

αi

3
i=1  ( λαi −  λ−

αi
2  )                                                        (5.6) 

The mechanism of cavity expansion test is different from conventional stretching techniques. It is 

based on stretching the cavity wall on the circumferential direction while a compressive pressure 

is applied in the radial direction from the same wall. A relation that relates the applied pressure 

(P), which is equivalent to σr at the cavity wall, and the tangential deformation term (λ) can be 

defined as 

                                                         
dσr

dλ
=  

2(σθ−σr) 

(λ4−λ)
                                                               (5.7) 

σr and σθ are evaluated from equations 3.14 and 3.15. The stretch (λ) in the cavity test is defined 

as the ratio between the current radius and the original radius of the cavity (r/R). R was set to be 

1.393 mm (see Appendix B), and r was evaluated as  
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                                                    r =  √
3(Vi+ Vapp)

4π

3
                                                                  (5.8) 

Where Vi is the initial volume which considers the volume of the balloon region before inflation 

in addition to the water volume that is introduced into the balloon before the hydrogel starts to 

resist inflation as will be discussed in the discussion section. Vapp is the injected volume of water 

during the injection process.  

5.3. Results 

5.3.1. Experimental Results 

This section presents the experimental results obtained from the uniaxial tension and the cavity 

expansion tests. Five specimens were tested in both tests. Due to the isotropy of the PVA 

hydrogels, the specimens showed relatively similar response with low standard deviation, thus 

only the averaged experimental data from both tests were reported in this section. In both tests, 

the material parameters of the SEFs were evaluated using the least squares method. 

In the tensile test, the data obtained from the experiment was in force-displacement form; this 

data was converted into true stress (σ) - stretch (λ). The PVA hydrogel showed an ultimate stress 

(σult) of 0.6 MPa at an ultimate deformation (λult) of 2.1. The stress-stretch data was then used as 

a reference for calibrating equations 5.4, 5.5, and 5.6, see Figure 5.4 (a and c).  

The data obtained from the pressure sensor (Pressure vs time) was used as a representative of 

the gel response. The data was collected until a drop in the pressure readings was observed at an 

injected volume (≈105 μl) far higher than the balloon’s designed volume (64 μl), which indicated 

the rupture of the cavity wall at an ultimate pressure (Pult) of 0.098 MPa. The P-V data was 

converted into P-λ by using equation 5.8 and λ= 
r

R
, Figure 5.4 b. The initial radius “R” was 

calculated as the radius of an initial volume that combines the volume of water introduced into 

the balloon before the gel starts to resist inflation, which was 8.502 μl, in addition to the volume 

of the balloon region as will be discussed in the discussion section. Lastly, a range of tangent 

moduli were calculated along the P-λ data to allow calibrating the hyperelastic models through 

equation 5.7, see Figure 5.4 d. The material parameters of the SEFs from both tests are 

summarized in table 5.1.  
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Table 5. 1. Coefficients of the three SEF in uniaxial tension and cavity expansion tests.  

Material coefficient Uniaxial test Cavity test 

     Yeoh Model 

C10 (MPa) 1e-02 1.075-02 

C20 (MPa) 2.456e-02 3.916e-03 

C30 (MPa) -3.332e-03 7.234e-04 

  Ogden Model (N=3) 

μ1 -2.434 0.345 

α1 0.422 3.312 

μ2 1.413 4.63e-04 

α2 1.237 10.768 

μ 3 1.042 -0.319 

α3 -0.313 2.368 

   Arruda-Boyce model 

μ 2.2e-02 1.36e-02 

λm 1.124 1.21 

 

  
Figure 5. 4. Calibrating the hyperelastic models. a) Uniaxial tensile test. b) Cavity expansion test. c) 

Calibrating the three SEFs based on the uniaxial tension test data. d) Calibrating the three SEFs based on 

the cavity expansion test data.  
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5.3.2. Numerical simulations  

Finite Element Method (FEM) is commonly used to provide an application to the calibrated 

hyperelastic models. In this section, two simulations are described. Abaqus® was used to reproduce 

the experimental results obtained from uniaxial tension and cavity expansion. The material 

parameters of Yeoh, Ogden, and Arruda-Boyce models were calibrated and then input into Abaqus 

FEM models. 

In uniaxial tension simulations, three dimensional standard 8-node linear brick elements (C3D8 in 

Abaqus notations) were used to model the hydrogel specimens. A fixed displacement was applied 

to the nodes located at the top clamping region while the bottom-clamping region was fixed by 

ENCASTRE constraint. The load corresponding to the imposed deformation was obtained by 

summation of reaction forces at nodes located in the lower gripping region. The comparison 

between the numerical and experimental data is shown in Figure 5.5.  

 

Figure 5. 5. a) FEM simulation of the uniaxial stretching. b) A comparison between experimental and 

numerical data.  
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In the cavity expansion test simulation, the hydrogel was modeled using axisymmetric 

quadrilateral elements with hybrid formulation (CAX4H). The model dimensions were 40 mm by 

18 mm representing the height and radius of the actual specimens. The model had an initial cavity 

on which the pressure observed during the experiment was applied. The bottom surface of the 

model was constrained by using pin constraint. Along the symmetry axis, the hydrogel was 

prevented from moving horizontally. In addition, the lateral circumference was not constrained as 

no confinement was applied to the specimens during the test. Experimental and numerical results 

were compared based on P-λ and σθ-εθ data, where εθ is the hoop logarithmic strain (ln λ). See 

Figure 5.6.  

 

Figure 5. 6. a) FEM simulation of the cavity expansion. b) A comparison between experimental, analytical 

and numerical data.  



74 
 

In both of the investigated deformation states, the fitted models gave a numerical description that 

was in a robust agreement with the experimental data and the analytical solution described in 

section 4. 

5.4. Discussion  

In this work, PVA hydrogels were tested using two techniques, cavity expansion method and 

standard uniaxial tensile test. The experimental data were used to calibrate three SEFs. To validate 

the material parameters of the SEFs, FE simulations were performed to reproduce the experimental 

results numerically. The three models predicted consistent initial shear moduli (20 kPa – 26 kPa) 

in both tests. However, Arruda-Boyce model predicted an initial shear modulus from the cavity 

test that was less than that predicted by the other models, see table 5.2. Comparison of the tension 

stresses observed in both techniques shows that PVA hydrogels experienced the same level of 

stresses up to a strain level of 45 %. At this level of deformation, the gels showed similar response 

in both of the loading mechanisms. As the strain level increased, the gels subjected to expanding 

cavities experienced an exponential increase in hoop stresses, as shown in Figure 5.7 a using Yeoh 

model. Similar response was observed in other rubber-like elastomers when tested by uniaxial and 

equi-biaxial tensile tests (Alexander, 1968; Mansouri & Darijani, 2014); during the expansion of 

the cavity, the cavity wall creates a confinement equivalent to that in the equi-biaxial stretching 

which results in large stresses in two directions along the circumference of the cavity wall. 

Table 5. 2. Values of initial shear modulus predicted by SEFs from Uniaxial tension, and cavity based 

biaxial tension.  

 Initial shear modulus, μ (kPa) 

Uniaxial tension (kPa) Biaxial tension (kPa) 

Ogden model 21 26.5 

Yeoh model 20 21.5 

Arruda-Boyce model 22 13.6 
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Figure 5. 7. a) Cauchy stress vs Logarithmic strain using Yeoh model. b) Stretching stresses generated in 

the uniaxial tensile test and the cavity expansion test. The term major refers to the tension stresses in both 

tests. Von Mises was used as an equivalent stress in both techniques. 

The maximum stretching deformation was over 200% (λ≈ 2.1) in both tests. This magnitude 

agrees with the range reported in (Afghan, 2016) (λ= 1.8 – 2.8) for 10% w/w PVA hydrogels. The 

maximum stretching stress in the cavity expansion test was found to be twice the maximum 

stretching stress in the uniaxial tensile test, a common behavior of isotropic rubber-like elastomers 

when loaded in uniaxial and biaxial (equal) directions (Kim et al., 2010; Song et al., 2004; Szabó 

& Váradi, 2018; Uddin & Ju, 2016). This can be observed by comparing the equivalent (von Mises) 

stress against the major stress of both tests, see (Figure 5.7 b). This ratio indicates that the cavity 

expansion test is capable of measuring the stretching mechanics of the PVA hydrogels by 

stretching its material into two orthogonal directions simultaneously at the cavity wall. The three-

hyperelastic models predicted the maximum hoop stress to be significantly larger than the 

maximum observed pressure. Thus, the effect of the pressure is insignificant in determining the 

equivalent stress, which indicates that the cavity expands by stretching the material structure 

leading to a tension-controlled rupture on the cavity wall.  

For a comprehensive evaluation of all components including syringe, balloon and needle used in 

the cavity expansion test, force-displacement data was also collected using the Instron machine to 

compress the syringe plunger while monitoring its movement using the machine built-in LVDT. 

As shown in Figure 5.8 a. The friction response of the rubber stopper on the syringe’s barrel started 

with a typical break loose (static friction) force followed by the gliding force (dynamic friction), 
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similar to the syringe force mechanism reported in (Chan et al., 2012). A stiffening was observed 

at the tail of the gliding force (t = 26 sec) due to the resistance of the balloon material to expansion 

at a volume of 120 μl representing ≈180% the design spherical volume of the balloon. It is also 

worth mentioning that, the stiffening occurred at a volume beyond that at which the gels’ cavity 

walls have ruptured, which indicates that the balloon material had no effect on the data observed 

during the cavity expansion test. 

The pressure observed from the load cell and the pressure sensor showed similar behavior, as 

shown in Figure 5.8 b. The analysis of the obtained data was based on the range of data at which 

the observed pressure started to increase until an ultimate magnitude where failure occurred.  

The definition of the stretch term (λ) was based on the magnitude of the initial radius (R = 1.393 

mm). This magnitude was found to be dependent on an initial volume, which consists of the 

volume of water that was introduced into the balloon until the gel started to resist balloon inflation 

(Vp = 8.502 μl), in addition to the volume of the balloon region (Vn-b = 2.837 mm3). No pressure 

loads were observed by the pressure sensor as Vp was introduced into the balloon. This could be 

due to the displacement of the channel walls created by the needle shaft along the balloon region, 

which initially relieves the restriction imposed by the gel structure on the balloon. Thus, it 

encounters no resistance during initial inflation. At this low volume, the balloon is still, 

predominantly, in its cylindrical form, however, as the injected volume increased, the balloon 

started to take on its spherical shape imposing spherical cavity deformations on the hydrogel’s 

structure. This hypothesis can be verified by observing the balloon expansion inside a transparent 

polymer using an optical microscope (e.g. Keyence Model VHX 5000), which will be addressed 

in a future study.  
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Figure 5. 8. a) The balloon response during the inflation process. b) Comparison between the data obtained 

from the pressure sensor and the Instron machine’s load cell. The observed pressure: 
∆P1

∆t
 represents the rate 

of change of the pressure calculated from the force data, the barrel’s inner radius was used to convert the 

force data into pressure; 
∆P2

∆t
 represents the rate of change of the pressure observed by the pressure sensor; 

the time (t’) at which the gel started to resist the balloon inflation was 1.7 sec. 

 

5.5. Conclusions 

The mechanical properties of PVA hydrogels were characterized by uniaxial tension and cavity 

expansion tests. The purpose of implementing these two techniques was to understand the 

mechanism of the cavity expansion technique by comparing it to a reference conventional method 

(uniaxial tensile test). The experimental data from both tests were used to calibrate Yeoh, Ogden, 

and Arruda-Boyce models. The parameters of these models were used in FE simulations and 

reproduced the experimental data numerically. In addition, the material parameters were used to 

predict the hoop stresses analytically and numerically to compare the behaviour of the PVA 

hydrogels under two different types of loading. It was found that the cavity expansion test 

generated similar initial shear moduli to those generated in the uniaxial tensile test. In addition, 

maximum hoop stresses generated in the cavity expansion test were twice those generated during 

the uniaxial tensile test. Moreover, the observed pressure was insignificant compared to the hoop 

stresses, thus, the cavity expansion test can be considered as an equi-biaxial tensile test.  
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Chapter 6 

Mechanical Characterization of PVA Hydrogels’ Rate-Dependent Response 

Using Multi-Axial Loading 

Abstract 

The time-dependent properties of rubber-like synthesized and biological materials are crucial for 

their applications. These properties determine the efficiency of their performance and function. 

Currently, this behavior is mainly measured using axial tension and compression loading, or 

indentation. Limited studies addressed multi-axial loading (loads applied in more than two 

directions) to measure time-dependent material behavior exist in the literature. Therefore, the aim 

of this study is to investigate the viscoelastic response of rubber-like materials under multi-axial 

loading using cavity expansion and relaxation tests. The tests were conducted using PVA hydrogel 

specimens. Three hyperelastic models and one term Prony series were used to characterize the 

viscoelastic response of the hydrogels. FE simulations were performed to verify the validity of the 

calibrated material coefficients by reproducing the experimental results. The excellent agreement 

between the experimental, analytical and numerical data proves the capability of the cavity 

expansion technique to measure the time-dependent behavior of viscoelastic materials. 

6.1. Introduction 

Rubber-like materials are known for their viscoelastic behavior. Elaborate characterization of this 

behavior is crucial to numerous applications in a variety of engineering fields and industries. The 

time-dependent properties of these materials control their mechanical response, not only under 

thermal conditions (Kiss et al., 2009; Lu & Shinozaki, 2010), but also when large deformations 

are applied at different rates (Rashid et al., 2014b; Siviour, 2017). Thus, these properties have been 

the focus of numerous studies that utilized different mechanical characterization techniques. 

In the biomedical field, studying the viscoelastic properties of biological tissues indicated that their 

mechanical properties change based on their pathological conditions. For instance, fibrosis was 

reported to change the viscoelastic behavior of liver tissues (Deffieux et al., 2015). This change 

occurs at early stages of fibrosis mainly due to degeneration of fatty tissues (Salameh et al., 2009). 

The mechanical quantification of such diseases at early stages is very critical for remedy processes. 

Currently, the measurement of the mechanical properties of diseased and healthy tissues in-vivo is 
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commonly achieved using transient elastography (TE) (Kennedy et al., 2018; Zhao et al., 2017). 

Although this technique is capable of measuring the mechanics of the tissues, it is only capable of 

quantifying their Young’s modulus. While this physical property is meaningful in small 

deformations, it does not fully represent the non-linear elastic response of the biological tissues. 

On the other hand, TE proved to be efficient in measuring the viscous (relaxation) response of 

these tissues in-vivo (Chatelin et al., 2011).  

In general, numerous theories have been developed to describe the time-dependent response of 

different materials. Those theories describe materials as linear viscoelastic (LVE) (Ian Macmillan 

Ward, 1983), quasi-linear viscoelastic (QVL) (Fung, 1993), and non-linear viscoelastic (NVE) 

(Findley et al., 1976; Yannas, 1974). The LVE description is the most common due to its simplicity 

in addition to the validity of the superposition principal it utilizes. Moreover it has been thoroughly 

examined mathematically (Christensen, 2012), and experimentally ( Ward & Sweeney, 2004). It 

is also available in all commercial FE packages. Therefore, it is the focus in this study.  

The implementation of the LVE theory is based on combining the instantaneous elastic response 

of a given material with its viscous behavior. This behavior is commonly measured by the creep 

test (Leng et al., 2019), or the relaxation test (Dong et al., 2017), including in-vivo characterization 

in cases of biological tissues (Chatelin et al., 2011). The elastic behavior is measured commonly 

by using axial loading  and indentation (Kendall & Siviour, 2015; Nafo & Al-Mayah, 2018; Zhai 

& McKenna, 2014). These conventional techniques are used to measure the material response 

under different deformation rates. Although uniaxial loading is very common when studying the 

mechanics of viscoelastic materials, little attention, to our knowledge, has been paid to 

viscoelasticity characterization using multi axial loading. Thus, in this work, we aim to investigate 

the viscoelastic properties of a rubber-like material under different rates by using cavity-based 

multi-axial loading (pressure + equi-biaxial tension). This technique is based on inducing an 

expanding cavity within the structure of soft materials by using a balloon and an incompressible 

fluid. This technique was found to be efficient in measuring the hyperelastic properties of rubber-

like materials and biological tissues (Nafo & Al-Mayah, 2019; Nafo, 2016). Therefore, it 

represents a good option to investigate the rate-dependent behavior of such materials under the 

effect of multi-axial loading. 
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A hyperelastic material that exhibits the LVE behavior is PVA hydrogel as will be demonstrated 

in this study. These hydrogels are considered excellent candidates to be alternatives to  biological 

tissues due to their high hydrophobicity ( Lee et al., 2005; Stammen et al., 2001), biocompatibility 

(Shi & Xiong, 2013), mechanical strength (S.-Y. Lee et al., 2009; D. Zhang et al., 2012), physical 

integrity under large deformation (Nafo & Al-Mayah, 2019; Wan et al., 2002), viscoelastic 

properties (Ahsanizadeh & Li, 2015; Hernández et al., 2004), thermal stability and non-toxicity 

(Liu et al., 2012). Thus, they are the most suitable material for this study. Cavity expansion tests 

and simple shear relaxation tests are conducted to measure the instantaneous and long term 

behaviors of PVA hydrogels, respectively. The data obtained from these tests will be used to 

calibrate the material constants of hyperelastic models (Yeoh, Arruda-Boyce and Ogden), and the 

Prony series viscoelastic model coefficients. Finally, FE simulations are going to be performed to 

reproduce the time dependent behavior of PVA hydrogels. 

6.2. Material and Methods 

6.2.1. Samples Preparations 

This study is based on using the cavity expansion and the relaxation tests to measure the 

instantaneous and time-dependent behaviors of the PVA hydrogels, respectively; thus, twelve 

cylindrical (40mm in height and 36 mm in diameter). The synthesis process was based on 

physically crosslinking a PVA solution. The solution was made by mixing 99+% hydrolyzed PVA 

(molecular weight of 146000-186000 g.mol-1 with deionized water (10% w/w ratio) at 90 oC by 

using standard flask/column combination. Thereafter, the solution was poured into cylindrical 

molds. The hydrogels were formed by freezing the solution at -20 oC for 3 hours and then thawing 

at room temperature ~ 21 oC for 3 hours. This freeze-thaw cycle (FTC) was repeated two times. 

Thereafter, three gel cylinders were cut into smaller cylinders (5mm in height) then punched in the 

middle to create rectangular cuboid samples with dimensions of 20 mm in length, 10 mm in width 

and 5 mm in thickness. Figure 6.1 shows the samples’ geometry for both cavity expansion and 

shear tests.  
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Figure 6. 1. PVA hydrogels samples’ geometry. The cylindrical samples will be used in the cavity test, and 

the cuboid samples will be used in simple shear relaxation tests.  

6.2.2. Experimental Setup 

• Cavity Expansion Test 

The procedure followed in (Nafo & Al-Mayah, 2019) was adopted to perform the cavity test. 

However, few changes were made to the system that was used: pressure sensor (Model PRESS-S-

000, PENDOTECH, USA) and pressure reader (Model PMAT-S, PENDOTECH, USA) were used 

to observe the pressure due to the pressurized incompressible fluid (water). In addition, an Instron 

machine (Model 4465; Canton, MA, USA) was used to introduce the water into the needle-balloon 

tool. A new design needle-balloon tool was used in this study, the balloon is silicon based with 

smaller dimensions and has softer mechanical behavior than the one used in chapter 3. To ensure 

no air was entrapped inside the system, its elements (syringe, needle-balloon tool and Y-shaped 

tubes) were filled with water and submerged under water until they sank and assembled together. 

Afterwards, the tubes were connected to the pressure sensor with a water inlet and outlet, which 

allows depleting any remaining air in the system. Nine hydrogels were investigated by this test at 

three different deformation rates: 5 μl/s, 20 μl/s and 50 μl/s. A schematic diagram for the system 

is shown in Figure 6.2. In addition, the balloon response was evaluated separately using the Instron 

machine.  
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Figure 6. 2. The loading set up of the cavity expansion test. 

• Relaxation Test 

This test was performed on the gel cuboids; they were subjected to simple shear relaxation test. 

Acrylic platens (50 mm x 20 mm x 2.5 mm) were machined with spacers glued to the platens to 

ensure a good alignment as well as to avoid overstressing of the gel specimens. The top and the 

bottom surfaces of the cuboid specimens were placed and glued between the platens with a thin 

layer of a fast-acting adhesive. The assembly was then mounted on the Instron machine and loaded 

at a rate of 0.1 s-1. The relaxation test was performed at various shear strains: 10 %, 20 %, 30 %, 

40 %, 50 %, 60 %, 70 % and 80 % to investigate the behavior of the hydrogels in a step-like strain 

at various magnitudes. Figure 6.3 shows the loading configuration for the simple shear relaxation 

test. 

 
Figure 6. 3. The loading configuration for the shear relaxation tests: the cuboid was subjected to 50 % shear 

strain and left to relax for 300 seconds.  
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6.3. Analytical Framework 

 In this work, the time-dependency of the PVA hydrogel behavior is modelled as LVE. This 

description is considered accurate for the tested gels as will be shown in section 6.4. A general 

description of the LVE material stress in large deformations at time (t) can be given as (Bergstrom, 

2015)  

                                              σ(t) =   σ0 (ε(t))  −  ∫ ġ(t − 𝛕) 
t

0
σ0(ε(t))d𝛕                                                (6.1) 

The first term represents the hyperelastic stress function (σh.el). The second term represents Prony 

series expression of stress relaxation function (σv.el).                                         

At time t+Δt, and by using “N” number of terms in the Prony series, equation 6.1 can be expressed 

as  

                                                          σ(t + ∆t) = σh.el(t+Δt) - ∑ σv.el
iN

i=1 (t+Δt)                                                 (6.2) 

σh.el(t+Δt) can be evaluated by using material parameters of a calibrated strain energy function 

(SEF),  

And, σv.el
i (t+Δt) can be expressed as  

   σv.el
i (t+Δt) = e

−
∆t

τi  . σv.el
i  (t) + gi . σh.el(t) [ 1 −  e

−
∆t

τi  ] +  gi  
∆σh.el

∆t
 [ (∆t −  τi) +  τi e

−
∆t

τi ]     (6.3) 

Where gi and 𝛕i are the relaxation parameters. See (Bergstrom, 2015) for full derivation. 

A number of strain energy functions (SEFs) are reported in literature. In this work, we focus only 

on three SEFs, namely: Yeoh, Ogden and Arruda-Boyce. These models are available in most of 

commercial FE software packages; in addition, they proved to be efficient in capturing the non-

linear elastic response of rubber-like materials subjected to uniaxial loading, biaxial loading 

(Shahzad et al., 2015), and cavitation (Nafo & Al-Mayah, 2019). Yeoh, Ogden, and Arruda-Boyce 

models are expressed, respectively, as  

                                                  W = ∑ Ci0(I1 − 3)iN=3
i=                                                                     (6.4) 

                                           W = ∑
2μi

αi
2

N=3
i=1  (λ1

αi + λ2
αi + λ3

αi − 3)                                                      (6.5) 

                                                  W = μ ∑
Ci

λm
2i−2 (I1

i − 3i)5
i=1                                                                  (6.6) 

Where μ𝑖, αi, Ci0 and Ci are material constants; λm is the extensibility limiter. 
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In the cavity expansion test, the pressure applied on the cavity wall generates an equivalent radial 

stress normal to the wall and hoop circumferential stresses along the wall. These stresses can be 

expressed in Cauchy hyperelastic from as  

                                                  σr = 2[W1λ
-4 + 2W2λ

-2]                                                                   (6.7) 

                                             σθ = σφ = 2[W1λ
2 + W2(λ

4 + λ-2)]                                                          (6.8) 

Where W1 and W2 are the SEF derivatives with respect to I1 and I2, respectively. Equation 6.8 can 

be used to calculate σh.el(t+Δt). 

For material calibration of equation 6.4, 6.5 and 6.6 in the cavity loading, we can use a tangential 

relationship that relates the radial stress (σr) and the hoop deformation (λ), see (deBotton et al., 

2013; Nafo & Al-Mayah, 2019) for derivation 

                                                                    
dσr

dλ
=  

Ŵ

λ3−1
                                                                         (6.9) 

Where Ŵ is the derivative of W with respect of λ. Inputting the derivatives of equations 6.4, 6.5 

and 6.6 into equation 6.9 will allow calibrating the hyperelastic term of equation 6.2. 

6.4. Results  

6.4.1. Cavity Expansion Experiments  

The cavity tests were performed on cylindrical specimens at each injection rate of 5 μl/s, 20 μl/s 

and 50 μl/s up to a volume of 110 μl in order to investigate the behavior of the gel at particular 

loading rates as shown in Figure 6.4. The pressure (MPa) and time (s) data were measured directly 

by the system. The volume data shown in Figure 6.4 was calculated through multiplying the time 

data by each of the injection rates. It was observed that at the initial stage of the balloon inflation, 

the gels did not show any resistance for 1.96 s, 0.45 s and 0.16 s at injection rates of 5 μl/s, 20 μl/s 

and 50 μl/s, respectively. Multiplying these short periods of times by their corresponding volume 

rates will result in initial volumes (Vi) of 8.635 μl, 8.23 μl and 8.24 μl, respectively. The lack of 

resistance to these volumes can be due to the displacement of the channel wall created by the 

needle during the insertion process, which relieves any constraints against balloon inflation at early 

stages. Afterwards, the gel starts to resist deformation as the balloon starts to inflate spherically. 

During the test, the hydrogels were internally deformed to a volume of 110 μl. At this volume, the 

balloon material started to participate in resisting the inflation. Thus, to avoid the effect of the 

balloon’s silicon material, all tests stopped at 110 μl. The syringe and needle-balloon tool 

responses were investigated separately at the lowest rate (5 μl/s) by the Instron machine, using the 
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built-in linear variable differential transformer (LVDT) and the load cell, see Figure 6.5. At this 

rate, the balloon material showed no contribution in resisting the inflation. However, at a volume 

of 110 μl, the force data showed hardening due to balloon material participation in resisting 

inflation. The effect of the friction between the rubber-stopper and the syringe plunger was also 

investigated, see Figure 6.6. It can be noticed that at the slow rate (5 μl/s), the dynamic friction is 

overall steady. However, when the injection velocity is increased, the friction between the rubber-

stopped and the inner wall of the plunger makes the data more volatile. 

6.4.2. Relaxation Test 

The cuboid specimens were loaded at various shear strain levels (10 % - 80 %) and held for 300 

second to record the relaxation force. The force data was then converted into stress form using the 

cuboid dimensions, as shown is Figure 6.7 a. The long-term shear stresses and their correspondent 

strains were plotted and it was found that the gel exhibited a linear long-term behavior, see Figure 

6.7 b, which indicates to the validity of the LVE assumption. It is worth mentioning that stress-

strain data in the simple shear test represents plane stress-plane strain behavior, i.e., the initial area 

(20mm x 10mm) that was used to calculate the shear test from the force data remains unchanged 

after loading the specimens.  

 
Figure 6. 4. Cavity tests performed on PVA hydrogel specimens up to 110 μl injection volume at loading 

velocities of 5 μl/s, 20 μl/s and 50 μl/s.  
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Figure 6. 5. a) Acrylic frame used in the cavity expansion test, and the balloon configuration during the 

inflation process. b) Balloon response.  

 

 
Figure 6. 6. The friction response under the three volume rates used in the cavity expansion test: the overall 

response starts with instantaneous increase in the friction resistance (static friction), followed by a drop and 

continuous resistance (dynamic friction). The dynamic friction response at the lowest rate is steady, and 

volatile at higher injection velocities. 
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Figure 6. 7. a) Long-term shear stress at various strain magnitudes; b) the long-term shear stress-strain 

relationship. The high value of R2 (0.9893) indicates to the validity of considering the material as linear 

viscoelastic.  

6.4.3. Calibration of SEFs and Prony Series 

The experimental data obtained from the cavity expansion tests were in pressure (P) – volume (V). 

The deformation term (V) was converted into a hoop stretch term (λ), which was calculated as 
r

R
. 

“R” values were found to be 1.399 mm, 1.382 mm and 1.383 mm at injection rates of 5 μl/s, 20 

μl/s and 50 μl/s, respectively. These magnitudes were calculated using the concept of Equivalent 

Volume Diameter (EVD) (DeCarlo et al., 2004)  as follows:  

                                                             R =  
√

6 Vi
π

3

2
                                                                                (6.10) 

Vi can be evaluated as  

                                                               Vi = Vn-b + Vp                                                                          (6.11) 

Where Vn-b is cylindrical volume (5 mm in length and 0.85 mm in diameter) of the balloon region 

before inflation; Vp are the volumes of water introduced into the balloon, 8.635 μl, 8.23 μl and 

8.24 μl (calculated in section 4.4), before the hydrogel started to resist balloon inflation at each of 

injection rates, 5 μl/s, 20 μl/s, 50 μl/s, respectively.  

The magnitude of “r” was calculated as  

                                                           r =  √
3(Vi+ Vapp)

4π

3
                                                                         (6.12) 
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Where Vapp is the injected volumes of water during the cavity expansion test.  

Figure 6.8 a. shows the experimental data in the form of P – λ of the three injection rates. The 

instantaneous rate of change of the three curves was calculated. Before the commencement of the 

calibration process, it is worth mentioning that due the local nature of the cavity expansion test, 

equation 6.9 can be expressed as  

                                                                  
dP

dλ
=  

Ŵ

λ3−1
                                                                             (6.13) 

Which indicates that the radial stress at the cavity wall, where the material parameters are 

calculated, is equivalent to the applied pressure. 

 The resulting theoretical curves exhibited strong agreement with experimental data. Arruda-

Boyce model showed the least fit, yet it is still valid, Figure 6.8 (b, c and d). The material 

parameters are summarized in tables 6.1, 6.2 & 6.3.  

Table 6. 1. Material parameters of Yeoh model (Ci are in MPa).  

 

 

 

 

 

Table 6. 2. Material parameters of Arruda-Boyce model (µ is in MPa) 

 

 

 

 

 

 

 

 

 
Yeoh model 

μl/s C10 C20 C30 

5 1.3e-03 1.798e-03 1.594e-04 

20 2.75e-03 2.57e-03 2.35e-04 

50 3.5e-03 2.9e-03 3e-04 

 
Arruda-Boyce model 

μl/s μ λm 

5 2.5e-03 1.127 

20 5.7e-03 1.203 

2.35e-04 50 7.1e-03 1.215 
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Table 6. 2. Material parameters of Arruda-Boyce model (μi is in MPa).  

 

The initial shear moduli of the PVA hydrogels can also be estimated from the calibrated material 

parameters at each deformation rate. These moduli are summarized in Table 6.3. 

Table 6. 3. Initial shear moduli estimated by the SEFs at the three deformation rates.  

μl/s μYeoh = 2C10 (MPa) 
μ Arruda-Boyce = μ 

(MPa) 

μ Ogden = ∑ 𝛍𝒊 

(MPa) 

5 2.6e-03 2.5e-03 2.46e-03 

20 5.5e-03 5.7e-03 5.4e-03 

50 7e-03 7.1e-03 7.2e-03 

 

In this work, Abaqus® software package was used to evaluate the Prony series coefficient using its 

built-in calibration tool. The long-term shear stress data, shown in Figure 6.7, was converted into 

shear moduli data, and then normalized and input in Abaqus® to run the calibration process. One 

term Prony series achieved an excellent fit to the relaxation response of the hydrogel, see Figure 

6.9. The Prony series coefficients were g = 7.837e-02 and 𝛕 = 47.845 s.  

 Ogden model 

μl/s μ1 μ2 μ3 α1 α2 α3 

5 5.14e-02 1.106e-02 -6e-02 0.0378 6.126 0.679 

20 1.6e-02 4.09e-02 -5.15e-02 6.24e-02 5.147 2.833 

50 3.39e-02 3.83e-02 -6.5e-02 0.5402 5.317 2.059 
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Figure 6. 8. a) Experimental data (P – λ). Segments b, c and d show the agreement between the SEFs and 

the instantaneous rate of change derived from the experimental data at injection rates of 5 μl/s, 20 μl/s and 

50 μl/s, respectively.  

 
Figure 6. 9. Comparison between the relaxation test data and the Prony series function.  
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6.5. Finite Element Analysis  

Most of the reported work on the viscoelasticity of PVA hydrogels was describing the material as 

QLV (Karimi et al., 2014; Li et al., 2018). Thus, it was necessary to validate the predictable 

behavior of the LVE description adopted in this study (using the material parameters of the SEFs 

and the coefficients of Prony series) using numerical simulations, an analytical solution and 

measured experimental data. 

In order to reproduce the experimental results, FE simulations were performed using Abaqus® by 

implementing the model described in (Nafo & Al-Mayah, 2019), and the  material parameters 

obtained in section 6.4. A mass density of 1030 kg/m3 (± 65 kg/m3) was used for the model’s 

elements (CAX4H). This magnitude was estimated by using Archimedes principal. The observed 

pressure during the experiments was applied in the FE simulations.  

The numerical results showed an excellent agreement with the experimental data. In addition, they 

predicted numerical hoop stresses that are in robust agreement with the analytical hoop stresses, 

see Figure 6.10. Analytical hoop stresses were calculated using equation 6.2 which was 

implemented using Matlab®, see Appendix C for an example solution using Yeoh model for 50 

μl/s data. The two agreements at each of the deformation rates indicate to the strong validity of the 

calibrated material parameters of the implemented SEFs. 

The data obtained from the cavity tests were experimental P-λ. The SEFs’ parameters, used to fit 

experimental data as well as to predict the σθ - εθ  data analytically, were verified by using FE. The 

root mean square (RMS) error was calculated to evaluate the difference between the realistic data 

(experimental and analytical) and the reproduced data (numerical). The error values are 

summarized in table 6.4. 

                          RMS error = 
1

N
√∑

Loadexperimental or analtical− loadFE

Loadexp

N
i=1                                                 (6.14) 

Table 6. 4. RMS error values for each of the SEFs. 

μl/s Yeoh model Arruda-Boyce model Ogden model 

 Pressure 

data 

Hoop 

stress data 

Pressure 

data 

Hoop 

stress data 

Pressure 

data 

Hoop 

stress data 

5 3.1 % 4.1 % 7.7 % 9.5 % 3.5 % 2.4 % 

20 1.9 % 3.8 % 9.8 % 8.6 % 2.4 % 3.6 % 

50 2 % 4.1 % 9.1 % 9 % 3.4 % 3.4 % 
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Figure 6. 10. The numerical results compared against the experimental pressure and the analytical hoop 

stress at each deformation rate.  
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6.6. Discussion 

The characterization of PVA hydrogel using cavity expansion at different deformation rates allows 

measuring the rate-dependent response of rubber-like materials in multi-axial loading. In this 

research, the properties of PVA hydrogels subjected to cavitation have been characterized up to 

80 % hoop logarithmic strain at deformation rates of 5 μl/s, 20 μl/s and 50 μl/s. Force relaxation 

experiments in simple shear were also performed at various strain magnitudes (10 % - 80 %). 

The parameters of the three SEFs were calibrated through equation 6.9, while the time-dependent 

Prony coefficients were calibrated using Abaqus’ calibration tool. Overall, the good agreement 

between the numerical, experimental and analytical results indicates that the three SEFs are 

suitable to model the viscoelastic behavior of the PVA hydrogels up to 80 % strain. 

The initial shear moduli of the PVA hydrogels were estimated by the SEFs to be ≈ 2.5 kPa, 5.5 

kPa and 7 kPa at deformation rates of 5 μl/s, 20 μl/s and 50 μl/s, respectively. While the three 

models predicted similar initial shear moduli at each deformation rate, the overall performance of 

Arruda-Boyce model in data fitting was the least sufficient. This is due to the limited number of 

parameters unlike the other two phenomenological models. However, Arruda-Boyce model has 

the capacity to predict the material response in other forms of loading using the same material 

parameters due to its micromechanical nature (use of eight Langevin chains network) (Arruda & 

Boyce, 1993; Steinmann et al., 2012), an advantage that does not exist in other empirical models 

such as Yeoh and Ogden. 

In this study, the PVA hydrogels were considered incompressible. This assumption was based on 

the very low compressibility nature of this type of gels.  Nafo & Al-Mayah, 2019 reported that 

there is no significant difference between the compressible and incompressible assumptions in 

simulating the behavior of PVA hydrogels subjected to cavity loads. In addition, Chen et al., 2013 

reported a relatively high Poisson’s ratio for this type of hydrogels (≈ 0.5); thus, we considered 

the gels as incompressible materials in this study. It is also worth mentioning that the volumetric 

behavior of most rubber-like materials has very little or no time-dependency (Dalrymple et al., 

2007). Therefore, only the relaxation parameters (gi and 𝛕) were calibrated and considered for the 

viscous response of the hydrogels.  
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The friction force between the rubber-stopper and the inner wall of plunger increased when the 

injection velocity was increased as shown in Figure 6.6. Overall, the friction response is divided 

into two stages, static and dynamic. The dynamic stage seems very steady when the injection 

velocity was low. However, when the injection velocity was increased, the force data exhibited 

relatively volatile behavior. The two friction phases observed by the LVDT makes it difficult to 

estimate Vp, particularly, at high velocities, which may lead to fallible calculation of “λ” and 

inaccurate characterization of material properties. Therefore, observing the pressure from an 

independent source (pressurized water that flows into the system) will result in measurements that 

are more accurate. There is no published data, to author’s knowledge, exists on testing the 

viscoelastic response of PVA hydrogels in multi-axial loading; however, the test proved to be 

capable of measuring the rate-dependent response of the hydrogels. Due to the technique’s multi-

axial nature and simplicity, it has the potential to provide enough information about in-vivo 

viscoelastic behavior of biological tissues in different loading axes, which will be addressed in a 

different study.  

6.7. Conclusions  

Measuring the rate-dependent response of rubber-like materials commonly performed using 

uniaxial loading. This investigation introduced an alternative that allows for multi-axial 

measurement to the viscoelastic properties of these materials. The following results can be 

concluded from this study: 

• The hydrogel specimens were loaded up to 80% hoop strain, and the corresponding hoop stresses 

were 0.44 MPa, 0.7 MPa and 0.82 MPa at strain rates of 5 μl/s, 20 μl/s and 50 μl/s, respectively. 

At the same rates, the observed pressure magnitudes were 0.035 MPa, 0.044MPa and 0.052 

MPa, respectively. 

• Yeoh and Ogden models provided good fit to the experimental data, R2 (0.97-0.99), while 

Arruda-Boyce model provided the least fit to the experimental data, R2 (0.8-0.86). However, 

the three models provided similar initial shear moduli in all deformation rates. 

• The agreement between the experimental, analytical and numerical data indicates that the cavity 

expansion test is capable of measuring the rate-dependent response of rubber-like materials.  
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• The relaxation coefficients of Prony series can be used with the material parameters of the three 

SEFs to perform linear viscoelastic analysis for PVA hydrogels subjected to multi-axial loading 

at different deformation rates using FE solvers such as Abaqus®. 

• The cavity expansion technique proved to be capable of measuring the rate-dependent properties 

of rubber-like materials. Thus, it has the potential to measure the viscoelastic properties of 

biological tissues under multi-axial loading conditions, in addition to the hyperplastic 

properties, .  
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Chapter 7 

Conclusions and Future Work 

This thesis presented the application of a multiaxial loading protocol that harnesses the cavitation 

phenomenon to measure the mechanical properties of soft materials. The focus was on materials 

that are commonly characterized for different applications in the biomedical field, PVA hydrogels 

and Porcine liver tissues. This was performed on four stages presented as independent chapters 

(Ch3 – Ch6). In this chapter, results from these chapters are summarized, and future research 

directions are proposed. 

7.1. Summary of results and contributions 

Chapter 3 presented the measurement of PVA hydrogels’ mechanical response to cavity 

deformations. In this study, three experiments were performed: cavity expansion test, 

compressibility test, and CT imaging. The objectives of this study are: (i) introducing a framework 

that allows for calibrating SEFs in the polar coordinate system, (ii) calculating the stresses 

generated due to cavity deformations in both of compressible and incompressible material 

assumptions, and (iii) verifying the geometric configuration of the cavity defamations. This study 

concluded the following: 

• The analytical framework used for the calibration process is sufficient to calibrate the 

hyperelastic models. This is evident in the FE simulation results, which were able to reproduce 

the experimental data. 

• The needle has a negligible effect on the material properties measured by the cavity test. This is 

mainly due to the insignificance of the stresses and strains generated during the needle insertion 

in comparison with their counterparts generated due to the cavity expansion. 

• The needle-balloon tool is capable of limiting the cavity deformations to a spherical 

configuration, which agrees with the analytical hypothesis adopted for the calibration process. 

Although at low volume levels the deformations were not perfectly spherical, FE simulations 

of irregular cavities showed that the overall volume of the cavity is sufficient to calibrate the 

hyperelastic material models. 
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In chapter 4, the mechanical properties of porcine liver were measured. The measurement process 

was performed on two porcine livers few hours post-mortem. In addition, the liver tissues were 

tested without the need to perform any preparation procedures, such as cutting into specific shapes, 

that are usually needed in other conventional testing methodologies. In this study, new needle-

balloon tool and new pressure sensor were used to obtain more accurate experimental data. The 

following conclusions are drawn from this study: 

• The cavity expansion technique successfully predicted the initial shear moduli of porcine liver 

tissues (≈ 4 kPa). This magnitude agrees with the range of moduli reported in literature using 

different approaches (3 kPa – 5 kPa). 

• The cavity expansion test generates hoop Cauchy stresses, particularly at the peak loading point, 

higher than the magnitudes reported in literature using uniaxial tension.  

• The cavity expansion method is capable of obtaining robust experimental data due to logistically 

very short time needed to test the livers after excision. In addition, the technique is capable to 

measure the tissues mechanics, which is evident in the agreement between the experimental 

data, FE simulations, and the results from CT imaging. 

Chapter 5 provided an explanation of the cavity expansion method by comparing it to a reference 

method, uniaxial tension. The 10% w/w PVA hydrogels were used as a representative of rubber-

like materials in this study. The comparison addressed the tension stress levels, range of strains, 

and the initial shear moduli. The following conclusions are drawn: 

• The data from both techniques show that the PVA hydrogels specimens failed at the same strain 

level (ε = 75%). This magnitude agrees with the range of ultimate strains reported in literature 

for 10% w/w PVA hydrogels.  

• Both techniques show similar tension stress levels up to 45 % strain. Afterward, the hoop stresses 

generated due to cavitation increased exponentially. In addition, the maximum stresses in the 

cavity expansion method are twice the stresses generated during the uniaxial tension.  

• Both techniques predicted similar initial shear moduli (≈ 22 kPa).  

• The observed pressure data was insignificant in comparison with the hoop stresses data. 

Although the cavity test is a multi-axial loading technique, the significance of the hoop stresses 

shows that the material failure is controlled by equi-biaxial tension. 
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Chapter 6 presented a study in which the viscoelastic response of soft materials was measured 

using the cavity expansion method. This type of behaviors is usually investigated using uniaxial 

and biaxial loading techniques. In this study, the cavity expansion method provided a new option 

that allows for multi-axial loading to measure the time-dependent response of soft materials such 

as PVA hydrogels. The study concluded the following: 

• Using the linear viscoelastic framework is sufficient to describe the mechanical viscoelasticity 

of PVA hydrogels subjected to cavity loads. 

• The implemented phenomenological and micromechanical models were successful in capturing 

the instantaneous nonlinear elastic response of the hydrogels at different deformation rates with 

R2 larger than 0.97 and 0.8, respectively.  

• The cavity expansion technique is capable of measuring the mechanical time-dependence of 

PVA hydrogels. This is evident in the agreement between the experimental data, analytical 

solution, and FE simulations. 

7.2. Recommendations and future research directions 

The analytical framework provided a mathematical tool that allowed the SEFs to capture the 

nonlinear elastic response of soft materials. In chapter 6, the same analytical tool was used to 

obtain material parameters for the linear viscoelastic solution. However, biological tissues tend to 

have nonlinear history-dependent viscoelastic properties. This behavior is commonly described 

using Fung’s quasilinear viscoelastic theory. Alternatively, more complex nonlinear viscoelastic 

solutions can be used to describe the viscoelasticity of biological tissues. Both solutions can be 

used with the cavity expansion method. They can be used with the cavity expansion method as 

follows: 

• The current calibration procedure is still sufficient to obtain the parameters necessary for the 

QLV solution, however, QLV is not available in most of FE solvers, and thus, a subroutine is 

needed in order to implement QLV solution numerically.  

• For nonlinear viscoelastic solutions, most FE solvers provide a Parallel Rheological Framework 

(PRF) to simulate this behavior. The current analytical framework is not able to evaluate the 

parameters of PRF, thus a new analytical framework needs to be developed to calibrate the PRF 

parameters in polar coordinates to utilize the data obtained from the cavity expansion test.  
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This thesis provided different applications for the cavity expansion test. In these applications, the 

materials under investigation were considered isotropic. To enable the cavity expansion method to 

characterize the mechanical properties of transversely isotropic materials, a new framework needs 

to be developed. Analysis of cavitation growth in anisotropic rubber-like materials while being 

loaded axially was addressed in several studies (Antman & Negron-Marrero, 1987; C. O. Horgan 

& Pence, 1989; Polignone & Horgan, 1993), which can be used in the derivation of a new solution. 

In chapters 4, 5, and 6, the definition of the deformation term (λ) was based on an initial volume 

of the incompressible fluid introduced into the balloon. This volume was calculated from the time 

data collected during the experiments. Although this volume commenced the cavitation process, it 

encountered no tangible resistance by the gels and liver tissues. It is hypothesized that the lack of 

resistance is because of the displacement of the channel wall created by the needle shaft along the 

balloon region, which relieves the restrictions imposed by the material structure. Further 

investigation is needed to verify this phenomenon. Using transparent gels and an optical 

microscope (e.g. Keyence Model VHX 5000) will provide a visual characterization to the initial 

stage of the cavity expansion.  
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Appendix A 

Part A: 

                                                     
∂W(𝐔)

∂𝐔
= 2𝐔

∂W(𝐂)

∂𝐂
                                                         (A.1) 

To solve this equation, it is convenient to use Einstein notations  

                                                      (
∂W

∂𝐔
)ij =  

∂W

∂Uij
                                                             (A.2) 

                                               =
∂W

∂Ckl

∂Ckl

∂𝐔ij
                                                         (A.3) 

                                           =
∂W

∂Ckl

∂(Ukm Uml)

∂Uij
                                                   (A.4) 

By expanding terms and taking the partial derivative, equation A.4 becomes: 

                                                (
∂W

∂U
)ij = 2Uik

∂U

∂Ckj
                                                    (A.5) 

                                               = (2𝐔
∂W(𝐂)

∂C
)ij                                                    (A.6) 

Part B: 

If a strain function W is a function of strain invariants, W( ), then Piola Kirchoff stress 

tensor (T) and Cauchy stress tensor (σ) can be given as                                                  

                                     𝐓 =  
∂W

∂𝐅
=  

∂W

∂I1

∂I1

∂𝐅
+

∂W

∂I2

∂I2

∂𝐅
+

∂W

∂J

∂J

∂𝐅
                                           (A.7) 

                                     𝛔 =  
1

J
𝐓𝐅T =

1

J
(

∂W

∂I1

∂I1

∂𝐅
+

∂W

∂I2

∂I2

∂𝐅
+

∂W

∂J

∂J

∂𝐅
)𝐅T                                       (A.8)                                                   

The derivation of the strain invariants with respect to the deformation tensor can be defined as  

                                                            
∂I1

∂𝐅
= 2𝐅                                                                       (A.9) 

                                                   
∂I2

∂𝐅
= 2I1𝐅 − 2𝐅𝐅T𝐅                                                        (A.10)

   

                                                             
∂J

∂𝐅
= J𝐅−T                                                                 (A.11)                                                                                                              

Equations A.4 and A.5 become 

                                     𝐓 =  
∂W

∂I2
2𝐅 +  

∂W

∂I2
(2I2𝐅 − 2𝐅𝐅T𝐅) +  

∂W

∂J
∂𝐅−T                                (A.12)      

                                    𝛔 =  
2

J
(

∂W

∂I1
+  I1

∂W

∂I2
) 𝐅𝐅T −

2

J

∂W

∂I2
(𝐅𝐅T𝐅𝐅T) +  

∂W

∂J
I                           (A.13)                                                                      

Equation A.13 is equivalent to equation 3.9. 
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Appendix B 

The definition of the stretch term (λ) was based on the initial radius “R” which was equal to 1.42 

mm and 1.393 mm in chapters 4 & 5, respectively. These magnitudes were calculated from the 

initial volume, which was estimated as  

                                                             Vi = Vn-b + Vp
                                                                                               (B.1) 

Where Vn-b is the cylindrical volume of the balloon region, and Vp is the volume at which the 

material starts to resist balloon inflation. This volume was calculated from the time data of the 

cavity expansion test. VP is found to be 9.177 mm3 and 8.502 mm3 in liver tissues (chapter 4) and 

PVA hydrogels (chapter 5), respectively. The definition of λ is based on the assumption that the 

cavity expands spherically with a spherical volume. The cavity starts from a cylindrical volume 

(Vn-b) that is 5 mm in length and 0.85 mm in diameter, in addition to Vp. It was demonstrated that 

the initial cavity geometry from which the expansion occurs does not affect the assumption of 

perfect spherical expansion as long as the volume of this initial cavity is known (Nafo & Al-

Mayah, 2019). Therefore, for consistency, the initial volume (Vi ) was converted into an equivalent 

spherical volume by using the concept of Equivalent-Volume Diameter (EVD) (DeCarlo et al., 

2004), to define the initial value of R. Thus, we can still base the calibration process on equation 

10. The equivalent diameter is calculated as 

                                                              De =  √
6Vi

𝜋

3

                                                                                                      (B.2) 

R was then calculated as 
De

2
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Appendix C 

Matlab File Name: LVE_Large_deformation_Yeoh_model  

 

 


