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Abstract. Let Mn be the algebra of all n × n complex matrices, 1 ≤ k ≤ n − 1 be an integer,

and ϕ : Mn −→ Mn be a linear operator. In this paper, it is shown that ϕ preserves the polynomial

numerical hull of order k if and only if there exists a unitary matrix U ∈ Mn such that either

ϕ(A) = U∗AU for all A ∈Mn, or ϕ(A) = U∗AtU for all A ∈Mn.
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1. Introduction and preliminaries

Let Mn be the algebra of all n × n complex matrices, and A ∈ Mn. The numerical range, or the

field of values, of A is defined as W (A) = {x∗Ax : x ∈ Cn, x∗x = 1}. This is useful in studying

and understanding both complex matrices and Hilbert space operators, and has many applications in

numerical analysis, differential equations, systems theory, etc; (e.g. see [4, 8] and their references). It

has been shown (see [1, Lemma 6.22.1]) that

(1) W (A) = {λ ∈ C : |λ− µ| ≤ ‖A− µI‖, ∀µ ∈ C},

where ‖.‖ is the usual operator norm on Mn (i.e., the norm on Mn obtained through its action on

Cn, where Cn carries the usual Euclidean norm), and I is the n × n identity matrix. Now, let k be

a positive integer and denote by Pk the set of all scalar polynomials of degree k or less. Using the

formulation of W (A) given in (1), the concept of numerical range of A has been generalized to that

of the polynomial numerical hull of order k of A, which is defined and denoted (e.g., see [12]) by

V k(A) = {λ ∈ C : |p(λ)| ≤ ‖p(A)‖ for all p ∈ Pk}.

This is a set designed to give more information than the spectrum and numerical range alone can

provide about the behaviour of the matrix A under the action of polynomials and other functions
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of A, and has many applications in the study of convergence of iterative methods in solving linear

systems. For more information, we refer the reader to [6] and [7] and their references (see also [12]).

In the following proposition, we state some properties of polynomial numerical hulls of matrices

which will be useful in our discussion. For proofs of these and a number of other properties, we suggest

[3] and [6].

Proposition 1.1. Let A ∈Mn. Then the following assertions are true:

(i) V k(A) is a compact set in C;

(ii) σ(A) = V m(A) ⊆ · · · ⊆ V k+1(A) ⊆ V k(A) ⊆ · · · ⊆ V 1(A) = W (A), where m ≥ n;

(iii) V k(αA+ βI) = αV k(A) + β, where α, β ∈ C;

(iv) V k(U∗AU) = V k(A), where U ∈Mn is unitary;

(v) V k(AT ) = V k(A) and V k(A) = V k(A) := {λ : λ ∈ V k(A)}. Consequently, V k(A∗) = V k(A);

(vi) V k(A) = {λ ∈ C : (λ, λ2, ..., λk) ∈ conv(W (A,A2, ..., Ak))}, where conv(·) denotes the convex

hull, and W (A1, A2, ..., Ak) := {(x∗A1x, x
∗A2x, ..., x

∗Akx) : x ∈ Cn, x∗x = 1} is the joint

numerical range of (A1, A2, ..., Ak) ∈Mk
n;

(vii) If A is Hermitian, then V k(A) =

conv(σ(A)) for k = 1,

σ(A) for k ≥ 2.

Regarding the polynomial numerical hulls of Jordan blocks, we have the following result which can

be found in [5, Section 2].

Proposition 1.2. Let J be an n×n Jordan block with eigenvalue 0. If k = 1, 2, . . . , n−1, then V k(J)

is a circular disk about the origin of radius 0 < rk < 1, and for k ≥ n, V k(J) = {0}.

An active and popular research area in matrix and operator theory is the study of linear preserver

problems. Typically, one attempts to classify those linear maps ϕ : Mn → Mn which preserve some

property of matrices (such as the rank, or the spectrum, etc.). Examples of such problems can be

found in [10]. The purpose of this paper is to characterize linear operators preserving the polynomial

numerical hull of order k of matrices. Let k ≥ n, and ϕ : Mn −→ Mn be a linear operator satisfying

V k(ϕ(A)) = V k(A) for all A ∈ Mn. In this case, for every A ∈ Mn, V k(A) reduces to σ(A), and

then, by [11, Theorem 3], there exists a nonsingular matrix S ∈ Mn such that either ϕ(A) = S−1AS

for all A ∈ Mn, or ϕ(A) = S−1AtS for all A ∈ Mn. This reduces our problem to the case where

1 ≤ k ≤ n − 1, and we characterize linear preservers of V k(·) on Mn in Section 2 of this paper (see

Theorem 2.5 below).
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2. Main results

Let k ∈ N. A linear operator ϕ : Mn −→ Mn is called a linear preserver of the polynomial

numerical hull of order k if V k(ϕ(A)) = V k(A) for all A ∈Mn. Our first goal is to show that ϕ is

a unital bijective map. For this, we require the following lemma.

Lemma 2.1. Let A ∈Mn, α ∈ C, and k ∈ N. Then

V k(A+X) = V k(X) + α for all X ∈Mn ⇐⇒ A = αI.

Proof. In view of Proposition 1.1(iii), without loss of generality, we assume that α = 0.

Now, suppose that V k(A + X) = V k(X) for all X ∈ Mn. We will show that A = 0. By setting

X = 0, we see that σ(A) ⊆ V k(A) = {0}. Moreover, σ(A + A∗) ⊆ V k(A + A∗) = V k(A∗) = {0} (by

Proposition 1.1 above). Since A+ A∗ is hermitian, we conclude that A = −A∗, so that A is normal.

But A normal and σ(A) = {0} implies that A = 0, as required.

The converse is a trivial consequence of Proposition 1.1(iii). This completes the proof. �

Lemma 2.2. Let k ∈ N, and ϕ : Mn −→Mn be a linear operator preserving the polynomial numerical

hull of order k. Then ϕ is bijective and ϕ(I) = I.

Proof. To prove that ϕ is bijective, we suppose, for A ∈ Mn, that ϕ(A) = 0, and we will show that

A = 0. In view of Lemma 2.1, it is enough to show that for every X ∈Mn, V k(A+X) = V k(X).

Let X ∈Mn be given. Then, by our assumption, we have that

V k(A+X) = V k(ϕ(A+X)) = V k(ϕ(A) + ϕ(X)) = V k(ϕ(X)) = V k(X).

To prove the second assertion, we show that ϕ(I) − I = 0. Again, using Lemma 2.1, it suffices to

show that given X ∈Mn arbitrary, we have V k((ϕ(I)− I) +X) = V k(X). Since ϕ is surjective, there

exists C ∈Mn such that ϕ(C) = X. Now, by Proposition 1.1(iii), we have

V k((ϕ(I)− I) +X) = V k(ϕ(I) +X)− 1 = V k(ϕ(I + C))− 1 = V k(C) = V k(ϕ(C)) = V k(X).

This completes the proof. �

We shall require the following notation. We denote by Un := {U ∈ Mn : U∗U = I} the group

of all n × n unitary matrices, by GLn(C) := {A ∈ Mn : det(A) 6= 0} the general linear group

of n × n nonsingular complex matrices, and by C∗ the set of all non-zero complex numbers. Given

γ ∈ C∗, we denote by γ̂ the vector (1, γ, γ2, . . . , γn−1) ∈ (C∗)n. We also write Sn to denote the

symmetric group of all permutations of {1, 2, . . . , n}. Given a vector d = (d1, d2, . . . , dn) ∈ Cn, we
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write Dd = diag(d1, d2, . . . , dn), and given σ ∈ Sn, we shall denote by Dσ
d the diagonal matrix

Dσ
d = diag(dσ(1), dσ(2), . . . , dσ(n)). Finally, let us also introduce the sets:

(2) Gk := {X ∈ GLn(C) : V k(X−1AX) = V k(A) for all A ∈Mn},

where k ∈ N, and

(3) C∗Un := {αU : α ∈ C∗, U ∈ Un}.

It is easy to see that Gk and C∗Un are subgroups of GLn(C), and by Proposition 1.1(iv), C∗Un ⊆ Gk.

In fact, we have the following result.

Lemma 2.3. Let n, k be two positive integers such that n ≥ 2 and k ≤ n − 1. Moreover, let Gk and

C∗Un be the groups defined as in (2) and (3), respectively. Then Gk = C∗Un.

Proof. It is enough to show that Gk ⊆ C∗Un. Suppose that S ∈ Gk, and that S 6∈ C∗Un. Let S = U |S|

be the polar decomposition of S. Note that U ∈ Un and |S| = (S∗S)
1
2 . Since Un ⊆ Gk, |S| = U∗S, and

Gk is a group, |S| ∈ Gk, and without loss of generality, we may assume that |S| = diag(s1, s2, . . . , sn),

where 0 < s1 ≤ s2 ≤ · · · ≤ sn. Moreover, since S 6∈ C∗Un, it follows that |S| 6= αI for all α ∈ C∗, and

thus sn > s1. Furthermore, since s−1
1 I ∈ Gk and the latter is a group, it follows that D := s−1

1 |S| ∈ Gk.

Let ri = s−1
1 si for i = 2, 3, . . . , n, r = (1, r2, r3, . . . , rn), so that Dr = diag(1, r2, r3, . . . , rn). Consider

the permutation σ ∈ Sn defined by:

σ(i) =


1 if i = 1

i+ 1 if 2 ≤ i < n

2 if i = n

.

Then Dσj

r is unitarily equivalent to D. Since D ∈ Gk and Gk is a group containing all unitary matrices,

it follows that Dσj

r ∈ Gk for all j ≥ 1, and also

M := D ·Dσ
r ·Dσ2

r · · ·Dσn−1

r ∈ Gk.

Observe that

M = diag(1, α, α, . . . , α) ∈Mn,

where α = r2r3 · · · rn > 1. Again, the fact that Gk is a group containing C∗I implies that

P := αM−1 = diag(α, 1, 1, . . . , 1) ∈ Gk.
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By setting Pj := diag(1, 1, . . . , 1, α, 1, 1, . . . , 1) ∈ Gk, where j = 2, 3, . . . , n − 1, and the unique α

appears in the jth coordinate, we see that Pj is unitarily equivalent to P , and so Pj ∈ Gk. Also,

observe that again, as Gk is a group, we have

Dα̂ = P2P
2
3P

3
4 · · ·Pn−1

n ∈ Gk.

This implies that

(4) V k(D−1
α̂ JDα̂) = V k(J),

where J is the n × n Jordan block with eigenvalue 0. By Proposition 1.2 and the fact that k < n,

there exists ρ > 0 such that V k(J) = {z ∈ C : |z| ≤ ρ}. Observe that D−1
α̂ JDα̂ = αJ , and so, by

Proposition 1.1(iii),

V k(αJ) = αV k(J) = {z ∈ C : |z| ≤ αρ},

which contradicts (4) because α > 1. Thus Gk ⊆ C∗Un, and so the proof is complete. �

To reach our goal, we also need the following lemma.

Lemma 2.4. Let 2 ≤ k ∈ N, and ϕ : Mn −→ Mn be a linear operator preserving the polynomial

numerical hull of order k. Then tr(ϕ(H)) = tr(H) for all Hermitian matrices H ∈Mn.

Proof. Consider the following two steps:

Step 1 : Let P and Q be two nonzero rank-one orthogonal projections in Mn such that PQ = QP =

0. Then tr(ϕ(P )) = tr(ϕ(Q)).

To see this, observe that by our assumptions on P and Q, we have σ(P ) = σ(Q) = {0, 1}, and

clearly there exists a unitary matrix U ∈ Mn such that U∗PU = Q. Since Un is a connected set in

Mn, there exists a continuous path {Ut : 0 ≤ t ≤ 1} of unitary matrices in Mn such that U0 = I and

U1 = U . Since k ≥ 2, Proposition 1.1((ii) and (vii)) and our assumption on ϕ show that for every

0 ≤ t ≤ 1, σ(ϕ(Pt)) ⊆ V k(ϕ(Pt)) = V k(Pt) = σ(Pt) = {0, 1}, where Pt = U∗
t PUt. By the continuity

of ϕ, we find that σ(ϕ(Pt)) = σ(ϕ(P0)), counting multiplicities, for all 0 ≤ t ≤ 1. Consequently,

σ(ϕ(P )) = σ(ϕ(Q)), counting multiplicities, and hence, tr(ϕ(P )) = tr(ϕ(Q)).

Step 2 : Let P be a nonzero rank-one orthogonal projection in Mn. Then tr(ϕ(P )) = 1.

To prove the assertion in Step 2, let {x1, x2, . . . , xn} be an orthonormal basis for Cn such that P =

x∗1x1. By setting P1 = P = x∗1x1, P2 = x∗2x2, . . . , Pn = x∗nxn, we see that P1, P2, . . . , Pn are nonzero

rank-one orthogonal projections such that PiPj = PjPi = 0 for every i 6= j, and P1+P2+ · · ·+Pn = I.
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Now by Lemma 2.2 and Step 1, we have

n = tr(I) = tr(ϕ(I)) = tr(ϕ(

n∑
i=1

Pi)) =

n∑
i=1

tr(ϕ(Pi)) = n tr(ϕ(P )).

This shows that tr(ϕ(P )) = 1.

Next, let H ∈Mn be a Hermitian matrix. Then there exist real numbers d1, d2, . . . , dn and nonzero

rank-one orthogonal projections P1, P2, . . . , Pn such that H =
∑n
i=1 diPi. By Step 2, we have

tr(ϕ(H)) =

n∑
i=1

di tr(ϕ(Pi)) =

n∑
i=1

di = tr(H).

This completes the proof. �

We are now ready to characterize the linear preservers of polynomial numerical hulls of matrices.

Theorem 2.5. Let n, k be two positive integers, n ≥ 2 and k ≤ n− 1. Moreover, let ϕ : Mn −→Mn

be a linear operator. Then V k(ϕ(A)) = V k(A) for all A ∈ Mn if and only if there exists a unitary

matrix U ∈Mn such that either ϕ(A) = U∗AU for all A ∈Mn, or ϕ(A) = U∗AtU for all A ∈Mn.

Proof. The assertion for the cases where k = 1 or n = 2 follow from [9, Theorem 3] and the fact that

V 1(·) coincides with the numerical range. As such, we may assume that n ≥ 3 and 2 ≤ k ≤ n− 1.

Let H ∈ Mn be an arbitrary Hermitian matrix. By Proposition 1.1((ii) and (vii)) and our hy-

potheses, we have

σ(ϕ(H)) ⊆ V k(ϕ(H)) = V k(H) = σ(H).

Using Lemma 2.4, we may argue in the same manner as in the proof of Lemma 3 of [2, p. 2677] to

deduce that σ(ϕ(H)) = σ(H) for any arbitrary Hermitian matrix H ∈ Mn. So, by [11, Theorem 3],

there exists a nonsingular matrix S ∈ GLn(C) such that either ϕ(A) = S−1AS for all A ∈ Mn, or

ϕ(A) = S−1AtS for all A ∈Mn.

Suppose, as a first case, that ϕ(A) = S−1AS for all A ∈ Mn. Since V k(ϕ(A)) = V k(A) for all

A ∈ Mn, S ∈ Gk, where Gk is the group defined in (2) above. Since k < n, Lemma 2.3 implies that

S ∈ C∗Un, where C∗Un is the group as in (3), and so, there exist α ∈ C∗ and a unitary matrix U ∈ Un
such that S = αU . Therefore, for every A ∈Mn, ϕ(A) = S−1AS = U∗AU , and so the result holds.

The result in the second case, i.e., ϕ(A) = S−1AtS for all A ∈Mn, follows from Proposition 1.1(v)

and an argument similar to that used in the proof of the first case above.

Finally, the converse of the assertion follows easily from Proposition 1.1((iv) and (v)), completing

the proof. �
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