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ABSTRACT. Let ϕ be a linear functional of rank one acting on an irreducible semigroup S of
operators on a finite- or infinite-dimensional Hilbert space. It is a well-known and simple
fact that the range of ϕ cannot be a singleton. We start a study of possible finite ranges for
such functionals. In particular, we prove that in certain cases, the existence of a single such
functional ϕ with a two-element range yields valuable information on the structure of S .

1. INTRODUCTION

1.1. In the last decade or so there has been increasing interest in questions dealing with
the so-called “local-to-global” properties of matrix semigroups: let S be a (multiplicative)
semigroup of matrices in Mn(C), and assume further that S is irreducible, i.e. the members
of S have no common invariant subspaces other than the trivial ones {0} and Cn. Vaguely
speaking, we know that some property, say some “smallness” property such as finiteness
or boundedness holds locally, and we are asking whether it holds globally. One specific
kind of problem with which we are dealing in this paper is the following. Assume that ϕ
is a non-zero linear functional acting on Mn(C). Does mere knowledge about the set

ϕ(S) := {ϕ(S) : S ∈ S}

yield any knowledge about S itself? Or, raising hopes even further, does enough knowl-
edge about ϕ(S) characterize S?

In [4] it was shown that if ϕ(S) is finite, then so is S . (An upper bound on the size of
S was also given: |S| 6 |ϕ(S)|n2

.) The same statement was shown to be true also when
“bounded” replaced “finite”.

We start by recalling that ϕ(S) cannot be a singleton for an irreducible semigroup S .
This is a special case of the result that when ϕ is permutable on S , i.e. if ϕ(S1S2S3) =
ϕ(S2S1S3) for every S1, S2, S3 ∈ S , then S is reducible. (E.g. see [3], Lemma 2.1.4.)
It follows that the first interesting case for consideration for an irreducible semigroup
S ⊆ Mn(C) is the existence of a linear functional ϕ on Mn(C) for which ϕ(S) consists
of precisely two elements.

We shall consider a linear functional of rank one, and concentrate on the particular case
where ϕ is given in the inner-product form

ϕ(T) = 〈Tξ, η〉, T ∈Mn(C),

where ξ and η are vectors with 〈ξ, η〉 = 1. Particular attention will be paid to the case
where ξ = η, i.e., where ϕ is a state on Mn(C). One of our definitive results is obtained
when S consists of unitary matrices, and ϕ is a state for which ϕ(S) is a two-element set.
As we have seen, this forces S to be finite, and hence a group. Hence ϕ(S) = {1, ω2}
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for some 1 6= ω2 ∈ C. In this case, we show that ω2 = − 1
n and S is contained, up to

simultaneous unitary similarity, in the well-known irreducible group

Pn+1|1⊥ ,

where Pk denotes the group of all permutation matrices in Mk(C), and where
1 = (1, 1, . . . , 1)t is the common fixed column vector for all such permutations (so that
S is the restriction of Pn+1 to the common n-dimensional invariant subspace orthogonal
to the span of 1).

Self-adjoint semigroups, i.e., those S satisfying

S∗ := {S∗ : S ∈ S} = S ,

are easier to handle, but we also obtain results about which two-elements sets are possible
in the general case and, in particular, in the case of semigroups consisting of matrices of
rank at most one.

The questions raised in this paper make sense of course in the infinite-dimensional set-
ting of operators on a Hilbert space. Some examples are mentioned in this connection.

1.2. Throughout this paper, we shall use H to denote a complex, separable Hilbert space
and B(H) to denote the algebra of bounded linear operators acting onH. If dim H = n <
∞, we identify H with Cn and B(H) with the algebra Mn(C) of complex n× n matrices.
The standard basis for Cn is denoted by {ei : 1 6 i 6 n}, and we fix an orthonormal basis
{ei : i > 1} forH when dim H = ∞.

1.3. Definition. A semigroup S of bounded linear operators acting on a complex Hilbert spaceH
is said to be irreducible if for each 0 6= x ∈ H, span {Sx : S ∈ S} is norm-dense inH.

Of course, when dim H < ∞, this just says that for all 0 6= x ∈ H, span {Sx : S ∈ S} =
H, or equivalently (thanks to Burnside’s Theorem) that spanS = Mn(C).

1.4. Notation. IfA ⊆Mn(C) is a non-empty subset and ϕ ∈Mn(C)∗ is a linear functional
on Mn(C), we write ϕ(A) to denote the set {ϕ(A) : A ∈ A}.

Given 1 6 k 6 n, we write rankA 6 k as shorthand for the statement that rank (A) 6 k
for all A ∈ A, and similarly rankA = k to mean that rank (A) = k for all A ∈ A.

If 0 6= x, y ∈ H, we denote by x⊗ y∗ the rank-one operator x⊗ y∗(z) = 〈z, y〉 x, for all
z ∈ H.

We shall also have occasion to deal with the constant vector in Cn, which we shall denote
by 1 = (1, 1, . . . , 1)∗. The length of the vector should be clear from the context, but we shall
also use the notation 1n should the need arise.

Given n > 2, we denote by Pn ⊆ Mn(C) the unitary group of permutation matrices:
that is, relative to the standard orthonormal basis {ek}n

k=1 for Cn, P ∈ Pn(C) implies that
there exists a permutation σ of {1, 2, . . . , n} so that Pek = eσ(k) for all 1 6 k 6 n. Since
1 is a fixed point for each element of Pn, it is clear that C1 is a non-trivial invariant (in
fact, orthogonally reducing) subspace for Pn, and so the latter is reducible. It trivially
follows thatN := 1⊥ ⊆ Cn is orthogonally reducing for Pn and as we shall see, Pn|N is an
irreducible group of unitary operators.

We begin with a few standard results to which we shall repeatedly refer throughout
the paper. In the next result and throughout the paper, the cardinality of a set X will be
denoted by |X|.
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1.5. Lemma. Let n > 2 be an integer.
(a) If S is an irreducible semigroup and 0 6= ϕ ∈ Mn(C)∗ is a non-zero linear functional,

then
|ϕ(S)| > 2.

Moreover, |ϕ(S)| 6 ∞ if and only if |S| < ∞.
(b) If S ⊆Mn(C) is an irreducible semigroup and A, B are two non-zero elements of Mn(C),

then BSA 6= {0}.
(c) If S ⊆Mn(C) is an irreducible semigroup which does not contain any non-zero nilpotents,

then S \ {0} is again an irreducible semigroup.
Proof.

(a) The first assertion is a simple reformulation of Corollary 2.1.6 of [3]. As for the
second, note that if |S| < ∞, then trivially |ϕ(S)| < ∞. The converse is Theorem 1
of [4].

(b) Choose x ∈ Cn so that Ax 6= 0. Then spanS(Ax) = Cn. Thus B 6= 0 implies that
BSAx 6= 0, i.e. BSA 6= 0.

(c) Suppose that R, T are two non-zero elements of S for which RT = 0. By part (b),
TSR 6= 0, and so we can find S ∈ S so that TSR 6= 0. Since (TSR)2 = 0, S admits
a non-zero nilpotent element, a contradiction.

Thus 0 6= A, B ∈ S implies that AB 6= 0; i.e. S \ {0} is a semigroup.
2

2. NOTATION AND PRELIMINARY RESULTS

2.1. Definition. Let S ⊆ B(H) be a non-empty semigroup of operators acting on a complex
Hilbert spaceH. We say that Ω ⊆ C is an admissible set for S if there exists a unit vector ξ ∈ H
so that

Ω = {〈Sξ, ξ〉 : S ∈ S}.
That is to say, Ω is the image of S under the vector state ηξ ∈ B(H)∗ defined by ηξ(T) = 〈Tξ, ξ〉.

We refer to ξ as an admissible vector corresponding to Ω.
Alternatively, with S as above, given a norm-one vector ξ ∈ H, we define the corresponding

admissible set Ωξ := {〈Sξ, ξ〉 : S ∈ S}.

2.2. If ξ ∈ H is a norm-one vector, then we can always extend {ξ} to an orthonormal basis
- say {ξ, e2, e3, . . . , } for H. Writing the matrix T = [ti,j] with respect to this ordered basis
(having ξ as the first basis vector), we see that Ωξ = {t1,1 : T = [ti,j] ∈ S}.

It follows easily from Lemma 1.5 (a) that if S is an irreducible semigroup of operators
on H, then any admissible set Ω of S must contain at least two elements. Our goal is to
obtain as much information about the sets Ω = {ω1, ω2} ⊆ C of cardinality two which
can occur as an admissible set for an irreducible semigroup S ⊆ B(Cn) 'Mn(C) of linear
maps acting on Cn, where n > 2 is an integer. It is again an immediate consequence of
Lemma 1.5 (a) that if an irreducible semigroup S ⊆Mn(C) possesses an admissible set Ω
with finitely many elements, then S is itself a finite set. For this reason, we shall restrict
our attention to these.

It is worth pointing out that the existence of an admissible set of cardinality two for an
irreducible semigroup of operators is a geometric, as opposed to an algebraic property. By
this we mean that if S is an irreducible semigroup of operators for which there exists an
admissible set Ω of cardinality two, and if T is unitarily equivalent to S , then Ω is again
admissible for T (albeit with a potentially different admissible vector), whereas if T is only
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similar to S , then T need not possess an admissible set of cardinality two at all. That this
is the case is made clear by the following example.

2.3. Example. Let S = {Ei,j : 1 6 i, j 6 2} ∪ {0}, where Ei,j denotes the (i, j) matrix unit.
Clearly S is an irreducible semigroup in M2(C). In particular, setting ξ = e1, the first
standard orthonormal basis vector, shows that Ω = {0, 1} is an admissible set for S .

Let P =

[
1
√

2
0 1

]
, so that P is invertible. Then

T := P−1SP = {P−1SP : S ∈ S}

is again an irreducible semigroup of operators of rank at most one.
Now

T =

{[
1
√

2
0 0

]
,
[

0 1
0 0

]
,
[
−
√

2 −2
1

√
2

]
,
[

0 −
√

2
0 1

]
,
[

0 0
0 0

]}
.

We shall show that if ξ =

[
ξ1
ξ2

]
∈ C2 is an arbitrary unit vector, then Ωξ has at least three

elements. Indeed, a simple but tedious calculation shows that Ωξ = {β1, β2, β3, β4, β5},
where

β1 = |ξ1|2 +
√

2 ξ1ξ2

β2 = ξ1ξ2

β3 = −
√

2|ξ1|2 − 2ξ1ξ2 + ξ1ξ2 +
√

2|ξ2|2

β4 = −
√

2 ξ1ξ2 + |ξ2|2

β5 = 0.

CASE ONE: ξ1 = 0. In this case, |ξ2| = 1. Then β3 =
√

2, β4 = 1, and β1 = β2 = β5 = 0, so
|Ωξ | = 3.

CASE TWO: ξ2 = 0. In this case, |ξ1| = 1. Then β2 = β4 = β5 = 0, β1 = 1 and β3 = −
√

2,
so |Ωξ | = 3.

CASE THREE: ξ1 6= 0 6= ξ2. Then β2 = ξ1ξ2 6= 0, and moreover, 0 < |β2| < 1. Also, β5 = 0.
Suppose that |Ωξ | = 2. Then β1 ∈ {0, β2}.
• If β1 = 0, then ξ1ξ2 = − 1√

2
|ξ1|2. From this it follows that β4 = |ξ1|2 + |ξ2|2 = 1, so

|Ωξ | > |{0, β2, β4}| = 3.
• If β1 = β2, then ξ1ξ2 = 1

1−
√

2
|ξ1|2, and so ξ2 = 1

1−
√

2
ξ1. But then β1 = β2 =

1
1−
√

2
|ξ1|2, while β3 = β4 = 3−

√
2

(1−
√

2)2 |ξ1|2 and β5 = 0, so that |Ωξ | = 3.

3. SEMIGROUPS OF SMALL RANK

3.1. In this section we shall prove the existence and examine the possible values of ad-
missible sets of cardinality two for semigroups S of operators in Mn(C) of rank at most
one.

We begin with a simple existence result whose converse we shall soon establish.
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3.2. Lemma. Let n > 2 and R = [ri,j] ∈ Mn(C) be invertible. Suppose that ri,j ∈ {0, 1} for all
1 6 i, j 6 n, and set

S := {Ei,jR : 1 6 i, j 6 n} ∪ {0}.
Then S is an irreducible semigroup in Mn(C).
Proof. Clearly Ei,jREk,l R = rj,kEi,l R ∈ S for all 1 6 i, j, k, l 6 n, so that S is a semigroup.
Moreover, S is irreducible since it is clear that S \ {0} ⊆ Mn(C) is linearly independent,
and contains n2 elements.

2

We remark that if T, R ∈Mn(C) are invertible, then clearly T = T−1ST := {T−1Ei,jRT :
1 6 i, j 6 n} ∪ {0} is an irreducible semigroup in Mn(C), with rank T 6 1.

Let us first state a part of Lemma 4.2.4 of [3]:

3.3. Lemma. Let S be an irreducible semigroup of Mn(C) whose members have rank no greater
than 1. Then there exist two bases {ui} and {vj} of column vectors for Cn such that the basis

{ui ⊗ v∗j ; i, j = 1, 2, . . . , n}

of Mn(C) is contained in S .

3.4. Notation. Let n > 1 and let S ⊆Mn(C) be an irreducible semigroup. We shall denote
by Γ(= ΓS ) the set of all γ ∈ C for which there exist 0 6= S ∈ S with S, γ S ∈ S .

3.5. Proposition. Let n > 2 be an integer and S ⊆Mn(C) be an irreducible semigroup satisfying
rankS 6 1. Then:

(a) There exist invertible matrices R and T such that

B = {T−1EijRT ; i, j = 1, 2, . . . , n},

where Eij = ei ⊗ e∗j , 1 6 i, j 6 n are the standard matrix units, forms a basis of Mn(C)

contained in S .
(b) The entries of the matrix R relative to the standard basis belong to Γ.
(c) Γ is a semigroup and its nonzero elements form a group.
(d) If Γ is finite, then it consists of ρ, ρ2, . . . , ρk−1, 1 for some k > 1, where ρ is a primitive k-th

root of 1, and possibly zero.
Proof.

(a) Let {ui}i and {vj}j be the bases for Cn for which ui ⊗ v∗j ∈ S for all 1 6 i, j 6 n, as
provided by Lemma 3.3. Choose invertible matrices T and then R ∈Mn(C) so that

(i) Tui = ei, 1 6 i 6 n, and
(ii) R∗ej = (T∗)−1vj, 1 6 j 6 n.

For all 1 6 i, j 6 n we then have

T−1Ei,jRT = T−1(ei ⊗ e∗j )RT = (T−1ei)⊗ ((RT)∗ej)
∗ = ui ⊗ v∗j ∈ S .

(b) Writing Bij = T−1EijRT ∈ S for all 1 6 i, j 6 n, we get

rjkBil = (T−1EijRT) (T−1Ekl RT) = BijBkl ∈ S ,

for all i, j, k, l ∈ {1, 2, . . . , n}. As Bil ∈ S , it follows that rjk ∈ Γ.
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(c) If γ, γ′ ∈ Γ, there exist S1, S2, S′1, S′2 ∈ S such that S1 = γS2 and S′1 = γ′S′2. This
implies that S1S′1 = γγ′S2S′2, so that γγ′ ∈ S . Now if 0 6= γ ∈ Γ and S1, S2 ∈ S are
such that S1 = γS2, then S2 = γ−1S1.

(d) The form of finite complex groups is well-known.
2

We have seen that an admissible set for an irreducible semigroup cannot be a singleton
set. On the other hand, we will show that when n > 2, there are irreducible semigroups
S ⊆ Mn(C) with rank at most one which possess admissible sets of cardinality two. In
view of Proposition 3.5(e), it is clear that we have to consider two substantially different
cases depending upon whether or not the admissible set contains zero. We begin with the
case where 0 does not lie in our admissible set.

3.6. Proposition. Suppose that n > 2 is an integer and that S ⊆ Mn(C) is an irreducible
semigroup satisfying rankS 6 1. Suppose also that Ω is an admissible set for S consisting of two
elements. If 0 6∈ Ω, then our coefficient set Γ = {−1, 1} and

(a) there exist an invertible matrix R whose entries belong to Γ and vectors f and g in Cn such
that 〈 f , g〉 = 1 and 〈EijR f , g〉 ∈ Ω for all 1 6 i, j 6 n. It follows that Ω = {−ω, ω} =
ωΓ for some ω ∈ C.

(b) The condition that 〈EijR f , g〉 ∈ Ω for all i, j can be replaced by 〈REij f , g〉 ∈ Ω for all i, j
to get an equivalent statement.

(c) All admissible sets of cardinality 2 not containing zero can be obtained in this way, that
is: suppose that 0 6= ω ∈ C and that Ω = {−ω, ω} (from part (a), this is the only
possible form of an admissible set of cardinality two not containing zero). If there exist
f , g ∈ Cn with 〈 f , g〉 = 1 and R an invertible matrix with entries in Γ = {−1, 1}
satisfying 〈EijR f , g〉 ∈ Ω for all 1 6 i, j 6 n, then there exists an irreducible semigroup
S for which Ω is an admissible set.

Proof.
(a) Let Ω be admissible and satisfy the assumptions of the proposition. Let Γ, R and T

be defined as in Proposition 3.5. Denote by ξ a corresponding norm-one admissible
vector for S .

We first claim that Γ ⊆ {−1, 1}. Indeed, suppose that γ ∈ Γ but that γ 6∈ {−1, 1}.
Since 0 6∈ Ω by hypothesis, S can not contain any nilpotents (0 or otherwise).

Thus every element of S is a non-zero multiple of an idempotent. Fix S ∈ S so that
S, γS ∈ S (such an S exists by definition of Γ). Fix β ∈ C \ {0} and E = E2 ∈Mn(C)
so that S = βE.

Denoting Ω by {ω1, ω2}, we may assume without loss of generality that ω1 =
〈Sξ, ξ〉. Now γS ∈ S and γ 6= 1 implies that

γω1 = 〈γSξ, ξ〉 ∈ Ω,

whence ω2 = γ ω1.
Note that S2 = β2E2 = β2E = βS, and more generally, Sk = βk−1S ∈ S for all

k > 2. Similarly, (γS)k = γkβk−1S ∈ S for all k > 1. It easily follows from this that

ω1, βk−1ω1, γkβk−1ω1 ∈ Ω for all k > 1.

In particular,

ω1, β ω1, γ2β ω1 ∈ Ω.
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If β = 1, then ω1, γω1, γ2ω are three distinct elements of Ω, a contradiction of
our hypotheses.

Thus β 6= 1, so that ω2 = β ω1 = γ ω1. But ω1 6= 0 implies that γ = β. But
then β = γ 6∈ {−1, 1} and ω1, β ω1, β2 ω1 ∈ Ω implies that |Ω| > 3, again a
contradiction.

Since Γ ⊆ {−1, 1} is a group, there are only two possibilities, namely: Γ = {1}
and Γ = {−1, 1}. By Proposition 3.5 (b) the first possibility is ruled out by the fact
that R is invertible, and so Γ = {−1, 1}. Define f and g by

f = Tξ and g = (T−1)∗ξ (1)

to get the desired result.
Note that Γ = {−1, 1} implies that there exists an element S ∈ S so that −S ∈ S ,

and hence 〈Sξ, ξ〉, 〈−Sξ, ξ〉 ∈ Ω. Since Ω has two elements and 0 6∈ Ω by hypothe-
sis, Ω = {−ω, ω} for some ω ∈ C.

(b) This follows by considering the irreducible semigroup S∗ := {S∗ : S ∈ S} ⊆
Mn(C), and applying part (a) of the proposition.

(c) Let us write R = [rij] and note that rij ∈ {−1, 1} for all 1 ≤ i, j ≤ n. It is a simple
exercise in linear algebra to observe that for any two vectors f and g satisfying
〈 f , g〉 = 1 there exist a unit vector η ∈ Cn and an invertible matrix T such that the
relations

f = Tη and g = (T−1)∗η

are satisfied. Let S = {±T−1EijRT | 1 6 i, j 6 n}. Clearly S contains a linearly
independent set of cardinality n2 (namely {T−1EijRT : 1 ≤ i, j ≤ n}), and thus
spanS = Mn(C). Moreover, for 1 ≤ i, j, k, l ≤ n,

T−1EijRT T−1Ekl RT = rjkT−1Eil RT.

But rjk ∈ {−1, 1} and thus S is an irreducible semigroup in Mn(C). For all S =

±T−1EijRT ∈ S , we have

〈Sη, η〉 = 〈±T−1EijRTη, η〉 = ±〈EijR f , g〉 ∈ Ω.

It is clear that indeed {〈Sη, η〉 : S ∈ S} = Ω.
2

3.7. Theorem. Suppose that 0 6∈ Ω ⊆ C, |Ω| = 2 and Γ = {−1, 1}. Then the following are
equivalent:

(a) Ω is an admissible set.
(b) There exists an invertible matrix W with entries from Γ such that 〈W−11, 1〉 = ω−1 and

Ω = ωΓ.
Proof.

(a) implies (b).
Assume that Ω is an admissible set and let R, f and g be defined as in Propo-

sition 3.6 (b). Denote by rj the jth column of R, so that R = [r1, r2, . . . , rn]; apply
Proposition 3.6 (b) to get {〈REij f , g〉 : 1 6 i, j 6 n} ⊆ Ω. Note, however, that for
each 1 6 i, j 6 n we get 〈REij f , g〉 = f j〈ri, g〉. We may assume with no loss of gener-
ality that one of the entries of f equals 1 (after multiplying f by a nonzero constant
and dividing g by the same constant). Since 〈ri, g〉 6= 0 (otherwise 0 ∈ Ω), it then
follows from Proposition 3.6 that { f j}n

j=1 ⊆ Γ = {−1, 1} and that {〈ri, g〉}n
i=1 ⊆ Ω.
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We can choose ω ∈ Ω, and then multiply the columns of R by appropriate members
of Γ if necessary to obtain a new matrix T with entries in Γ so that 〈ti, g〉 = ω for all
i = 1, 2, . . . , n (where ti denotes the ith column of T). Note that T is still invertible
since it is simply R multiplied by a diagonal matrix with entries in Γ = {−1, 1}.

Consequently, we have g∗T = ω1∗, so that g∗ = ω1∗T−1 and recalling that
〈 f , g〉 = 1, we get that

1 = 〈 f , g〉 = ω〈 f , (T−1)∗1〉 = ω〈T−1 f , 1〉.
Finally, the vector f has entries in {−1, 1} and so we can multiply it by a diagonal

matrix D with entries in {−1, 1} = Γ so that D f = 1. Then

1 = ω〈T−1D−11, 1〉.
Let W = DT. The entries of W are still in Γ and W is invertible since each of D and
T are.

This completes the proof.
(b) implies (a). To get the converse we use Proposition 3.6 (c), namely: set f = W−11,

g = ω1 and observe that 〈 f , g〉 = 1, while 〈EijW f , g〉 = ω ∈ Ω for all 1 6 i, j 6 n.
2

Having dealt with the case where our admissible set does not contain zero, we now turn
our attention to the case where it does.

3.8. Theorem. Let n > 2 and S ⊆ Mn(C) be an irreducible semigroup for which rankS 6 1.
Suppose that Ω = {ω1, ω2} is an admissible set of cardinality two with corresponding admissible
vector ξ. As always, we may assume without loss of generality that ω2 6= 0. Then either

(a) there does not exist a non-zero nilpotent element in S , in which case

tr (S) := {tr(T) : T ∈ S} = {−1, 1}
and ω1 = −ω2; or

(b) there exists a non-zero nilpotent element in S in which case 0 ∈ Ω and tr (S) = {0, 1}.
Proof. Let us begin with some general comments. Since S is irreducible, it can not consist
solely of nilpotent matrices, by Levitzki’s Theorem (see, e.g. Theorem 2.1.7 of [3]).

Let B = x⊗ y∗ ∈ S be any element which is not nilpotent. Since rank B = 1, it follows
that tr(B) = 〈x, y〉 6= 0. Also, for all k > 1, 0 6= Bk = 〈x, y〉k−1x⊗ y∗ = 〈x, y〉k−1B ∈ S .

Next, observe that T := SBS = {RBT : R, T ∈ S} is a semigroup ideal in the irre-
ducible semigroup S , and therefore is itself irreducible, by Lemma 2.1.10 of [3]. As such,
by Lemma 1.5, there exist R0, T0 ∈ S so that

〈R0BT0ξ, ξ〉 = ω2.

But then for all k > 1, R0BkT0 = 〈x, y〉k−1R0BT0 ∈ S , so that

tr(B)k−1ω2 = 〈x, y〉k−1ω2 = 〈R0BkT0ξ, ξ〉 ∈ Ω.

Since ω2 6= 0 and 〈x, y〉 6= 0, it follows from the fact that |Ω| = 2 that tr(B) = 〈x, y〉 ∈
{−1, 1}. Moreover, if tr(B) = −1, then from above

tr(B)ω2 = −ω2 ∈ Ω.

That is, ω1 = −ω2.
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(a) Suppose that S does not contain a non-zero nilpotent element. Then S \ {0} is
an irreducible semigroup of rank at most one, and from above, tr(S \ {0}) ⊆
{−1, 1}. Since |tr(S \ {0})| > 2 by Lemma 1.5, it follows that tr(S \ {0}) = {−1, 1}.
Hence there exists B ∈ S with tr(B) = −1, and so from the above argument
Ω = {−ω2, ω2}.

Note that this implies that 0 6∈ S , for otherwise 0 = 〈0ξ, ξ〉 ∈ Ω, implying that
|Ω| > 3, a contradiction.

(b) Now suppose that S admits a non-zero nilpotent element N. Then Nn = 0 ∈ S ,
and thus 0 = 〈0ξ, ξ〉 ∈ Ω; i.e. ω1 = 0. Furthermore, tr (N) = 0 as N is nilpotent.

From above, if B ∈ S is not nilpotent, then 0 6= tr(B)k−1ω2 ∈ Ω for all k > 1.
Since |Ω| = 2, and 0 ∈ Ω, we conclude that tr(B) = 1.

2

3.9. Remark. If, in the above result, the admissible set Ω is only assumed to be finite (as
opposed to having cardinality two), the a similar proof can be used to show that either S
does not admit a non-zero nilpotent, in which case tr(S) ∈ Ωk, or there exists a non-zero
nilpotent in S , in which case tr(S) ∈ {0} ∪Ωk, where k ≤ |Ω| and Ωk stands for the set of
the kth roots of unity.

3.10. There remains the question of which subsets Ω = {ω1, ω2} ⊆ C actually occur as the
admissible set of cardinality two for an irreducible semigroup of rank less than or equal to
one. This is the question we now address.

3.11. Corollary. Let n > 2 be an integer, and let S ⊆ Mn(C) be an irreducible semigroup with
rankS 6 1. Suppose that there exists an admissible set Ω = {0, ω2} for S , where ω2 6= 0.

If Γ,B are defined as in paragraph 3.4 and Proposition 3.5, then Γ ⊆ {0, 1} and S0 := B ∪ {0}
is a minimal irreducible subsemigroup which also has Ω as an admissible set.
Proof. We argue by contradiction. Choose an admissible, norm-one vector ξ ∈ Cn corre-
sponding to Ω = {0, ω2}. Suppose that γ ∈ Γ and that γ 6∈ {0, 1}. Fix 0 6= S ∈ S so that
S, γ S ∈ S . Since S acts irreducibly on Cn and ξ 6= 0, there exists T1 ∈ S so that ST1ξ 6= 0.

Since ST1ξ 6= 0 and S acts irreducibly on Cn, there exists T2 ∈ S so that

〈T2ST1ξ, ξ〉 6= 0.

Thus 〈T2ST1ξ, ξ〉 = ω2. But γ S ∈ S and so

〈T2(γ S)T1ξ, ξ〉 = γ〈T2ST1ξ, ξ〉 = γ ω2 ∈ Ω = {0, ω2}.
But γ 6∈ {0, 1}, and ω2 6= 0, providing the desired contradiction.

Finally, the fact that S0 is an irreducible semigroup in Mn(C) stems from Lemma 3.3,
and the minimality of S0 is a consequence of the fact that any irreducible semigroup in
Mn(C) must contain at least n2 non-zero elements, since it must span Mn(C).

2

3.12. Theorem. Let S ⊆ Mn(C) be an irreducible semigroup and suppose that there exists
S0 ∈ S with rank S0 = 1. If Ω = {ω1, ω2} is an admissible set of cardinality two for S , then
Ω ⊆ Q.
Proof. As always, we denote by ξ the norm-one admissible vector corresponding to Ω. We
note that by passing to the irreducible semigroup ideal generated by S0, we may assume
without loss of generality that rankS 6 1. We continue under this assumption.
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It follows from Theorem 3.8 above that tr (S) ∈ Q (whether or not S contains a non-zero
nilpotent).

Since rank (S) 6 1, we can use Theorem 2.6 of [5] to conclude that there exists an in-
vertible matrix W ∈Mn(C) so that for all S ∈ S ,

W−1SW ∈Mn(Q).

Next, by the second remark after the above cited theorem, we see that there exist
r1, r2, . . . , rk ∈ Q and S1, S2, . . . , Sk ∈ S so that

I = r1 W−1S1W + r2 W−1S2W + · · ·+ rk W−1SkW.

But then I = ∑k
i=1 ri Si.

Recall from Theorem 3.8 that there exist two cases, namely:

(a) ω1 = 0, i.e. Ω = {0, ω2}, or
(b) ω1 = −ω2, i.e. Ω = {−ω2, ω2}.

In either case, the equation

1 = 〈Iξ, ξ〉 = 〈
k

∑
i=1

ri Siξ, ξ〉 =
k

∑
i=1

ri 〈Siξ, ξ〉,

with ri ∈ Q and 〈Siξ, ξ〉 ∈ {0,−ω2, ω2} for all 1 6 i 6 k, implies that 1 = rω2 for some
r ∈ Q, whence ω2 ∈ Q, and therefore Ω ⊆ Q.

2

3.13. Remark. We point out that irreducibility of the semigroup S is crucial to the above

result. For example, if λ ∈ C, then with E =

[
λ 1

λ− λ2 1− λ

]
∈ M2(C), E := {E, 0} is a

(reducible) semigroup with rank E 6 1, and setting ξ = e1 yields Ωξ = {0, λ}.
Having established that a two-element admissible set for an irreducible semigroup of

rank at most one in Mn(C) must consist of rational numbers, we now seek to identify
which pairs of rational numbers can appear as such admissible sets.

3.14. Lemma. Let A ∈Mn(C) be invertible and x, y ∈ Cn. Let B =

[
A x
y∗ 0

]
∈Mn+1(C). The

following are equivalent:
(a) B is invertible in Mn+1(C).
(b) y∗A−1x 6= 0.

Proof. It is easy to see that the matrices V =

[
In 0
−y∗ 1

]
and W =

[
A−1 0

0 1

]
are invertible

and that

VWB =

[
In A−1x
0 −y∗A−1x

]
.

But B is invertible if and only if det B 6= 0 if and only if det VWB 6= 0, which clearly
happens if and only if y∗A−1x 6= 0.

2
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3.15. Lemma. For each n > 3 and for each integer 1 6 m 6 n − 2, there exists R = [ri,j] ∈
Mn(C) so that

(a) ri,j ∈ {0, 1} for all 1 6 i, j 6 n;
(b) R is invertible; and
(c) for all 1 6 i 6 n, ∑n

j=1 ri,j = m.

In other words, R is an invertible matrix with {0, 1} entries, each of whose rows contains
exactly m non-zero entries, each equal to 1.
Proof. The proof is by induction on n.

For n = 3, we must have m = 1, and hence it suffices to consider R = I3, the identity
matrix in M3(C).

Now suppose that the result holds for n = 3, 4, 5, . . . , n0 and for all 1 6 m 6 n− 2. We
shall prove that it holds for n = n0 + 1 and all 1 6 m 6 n0 − 1.

Again, if m = 1, it suffices to consider the identity matrix R = In0+1. Suppose therefore
that m > 2.

Now 2 6 m 6 n0 implies that 1 6 m− 1 6 n0 − 1, and so by our induction hypothesis,
there exists R0 = [ri,j] ∈ Mn0(C) invertible, so that ri,j ∈ {0, 1} for all 1 6 i, j 6 n0 and
∑n0

j=1 ri,j = m− 1 for all 1 6 i 6 n0.
Let 1 = (1, 1, . . . , 1)t ∈ Cn0 . We shall prove the existence of a vector y = (y1, y2, . . . , yn0)

∗ ∈
Cn0 so that

(i) yi ∈ {0, 1} for all 1 6 i 6 n0,
(ii) ∑n0

i=1 yi = m, and

(iii) R :=
[

R0 1

y∗ 0

]
∈Mn0+1(C) is invertible.

This will complete the induction step, thereby proving the Lemma.

By the above Lemma, R will be invertible if and only if y∗R−1
0 1 6= 0. Suppose to the

contrary that y∗R−1
0 1 = 0 for all choices of y with exactly m non-zero entries, all of these

equal to 1. If we denote the vector R−1
0 1 by (z1, z2, . . . , zn0)

t, then it follows that for each
1 6 k 6 m,

0 = z1 + z2 + · · ·+ zm

0 = z1 + z2 + · · ·+ zk−1 + zk+1 + · · ·+ zm+1

from which we deduce that zm+1 − zk = 0, i.e. z1 = z2 = · · · = zm+1, and for all m + 1 6
k 6 n0,

0 = z1 + z2 + · · ·+ zm

0 = z2 + z3 + · · ·+ zm + zk

from which we deduce that z1 − zk = 0, i.e. z1 = z2 = · · · = zn0 . In other words, z = z11.
But then 0 = z1 + z2 + · · ·+ zm implies that 0 = mz1 and hence that z = 0. But z = R−1

0 1.
Since R0 is invertible and 1 6= 0, this is a contradiction.

This proves the existence of such a vector y as we have described, which completes the
proof.

2
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3.16. Proposition. Let n > 3, and let p, q be integers satisfying 1 6 p 6 q− 2 6 n− 2. Then
there exists an irreducible semigroup S ⊆ Mn(C) with rankS 6 1 and a unit vector ξ ∈ Cn so
that

Ωξ = {0,
p
q
}.

Proof. By Lemma 3.15, there exists an invertible matrix R0 = [ri,j] ∈ Mq(C) so that ri,j ∈
{0, 1} for all 1 6 i, j 6 q and ∑

q
j=1 ri,j = p, 1 6 i 6 q. Let R = R0 ⊕ In−q ∈ Mn(C) and

observe that R is still invertible, and all of its entries are either 0 or 1.
By Lemma 3.2, the semigroup S = {Ei,jR : 1 6 i, j 6 n} ∪ {0} is irreducible.

Let ξ = 1√
q (1, 1, . . . , 1, 0, 0, . . . , 0)t, where the entry 1 occurs exactly q times.

Obviously 〈0ξ, ξ〉 = 0 ∈ {0, p
q }, while for 0 6= S ∈ S ,

〈Sξ, ξ〉 = 〈Ei,jRξ, ξ〉
= 〈Rξ, Ej,iξ〉

= 〈pξ, Ej,iξ〉 ∈ {0,
p
q
}.

2

3.17. Example. Let n > 2. For each 1 6 k 6 n− 1, there exists an irreducible semigroup
S ⊆Mn(C) so that rankS 6 1 and S possesses an admissible set of the form Ω = {0,−k}.

Indeed, as always, we denote the standard orthonormal basis for Cn by {ej : 1 6 j 6 n}.
Let X = {x1, e2, e3, . . . , en} and Y = {y1, e2, e3, . . . , en}, where

x1 = −ke1 + e2 + e3 + · · ·+ ek+1 and
y1 = e1 + e2 + · · ·+ ek+1.

Observe that for all x ∈ X and y ∈ Y we have that 〈x, y〉 ∈ {0, 1} and so

S := {x⊗ y∗ : x ∈ X , y ∈ Y} ∪ {0}
is a semigroup with rankS 6 1. Since X and Y each form bases for Cn, it follows that S is
irreducible.

Letting ξ := e1 shows that ξ is an admissible vector for S with Ωξ = {0,−k}.

Of particular interest to us is the fact that by setting n = 2 and k = 1, we deduce

that S−1 := {
[
−1 −1
1 1

]
,
[

0 0
1 1

]
,
[

0 −1
0 1

]
,
[

0 0
0 1

]
} ∪ {0} is an irreducible semigroup in

M2(C) consisting of operators of rank at most one for which ξ = e1 is an admissible vector
with Ωξ = {0,−1}.

3.18. Proposition. For each 0 6= q ∈ Q, there exist n > 2 an integer and S ⊆ Mn(C) an
irreducible semigroup satisfying rankS 6 1 such that S possesses an admissible set of the form
Ω = {0, q}.
Proof. Suppose first that q < 0, and write q = − a

b , where a, b ∈ N. Choose a positive
integer k so that 0 < q

−k = a
bk < 1

3 . It follows from Proposition 3.16 that there exists an
irreducible semigroup S1 ⊆Mbk(C) with rankS1 6 1 and an admissible vector - say ξ1 for
S1 - so that Ωξ1 = {0, a

bk} = {0,− q
k}. (Note: the fact that a

bk < 1
3 forces a 6 (bk)− 2.)
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As we saw in Example 3.17, there exists an irreducible semigroup S2 ⊆ Mk+1(C) with
rankS2 6 1 and an admissible vector - say ξ2 for S2 - so that Ωξ2 = {0,−k}.

It is a standard fact and routine to verify that the tensor product of two irreducible
semigroups of matrices is again an irreducible semigroup, and the fact that rankSi 6 1,
i = 1, 2 implies that S := S1 ⊗ S2 ⊆ Mbk(C) ⊗Mk+1(C) ' Mbk(k+1)(C) satisfies
rankS 6 1.

Finally, letting ξ := ξ1 ⊗ ξ2 shows that ξ is an admissible vector for S and Ωξ =
{0, (−k) q

−k} = {0, q}. Let us denote this semigroup by Sq.

If q > 0, then let T = S−1 ⊗ S be the irreducible semigroup of operators of rank at
most one obtained by tensoring the semigroup S−1 constructed at the end of Example 3.17
whose admissible set relative to e1 is {0,−1} with the example Sq ⊆ Mbk(k+1)(C) con-
structed immediately above and whose admissible set is {0,−q}. Again, the tensor prod-
uct of irreducible semigroups is irreducible, the tensor product of two semigroups of op-
erators of rank at most one still consists of operators of rank at most one, and the vector
η := e1 ⊗ ξ is easily seen to be an admissible vector for T with Ωη = {0, q}.

2

3.19. Next we turn our attention to the case of admissible sets of irreducible semigroups
of rank-one operators. Note that such semigroups cannot contain any nilpotents, for
otherwise they would contain 0, which is clearly not of rank one. We have seen that if
Ω = {ω1, ω2} is such a set, then ω1 = −ω2 ∈ Q.

3.20. Example. For each n > 2, there exists an irreducible semigroup S ⊆ Mn(C) of
rank-one operators for which Ω = {−1, 1} is an admissible set.
Proof. For each 1 6 i 6 n, set xi = e1 + e2 + · · ·+ ei. For each 1 6 j 6 n, set yj = −e1 + 2ej.
Then X = {xi : 1 6 i 6 n} and Y = {yj : 1 6 j 6 n} are easily seen to be bases for Cn,
and 〈xi, yj〉 ∈ {−1, 1} for all 1 6 i, j 6 n, from which we deduce that S = {± xi ⊗ y∗j : 1 6
i, j 6 n} is an irreducible semigroup in Mn(C).

Let ξ := e1. Clearly 〈Sξ, ξ〉 = ± 〈xi, e1〉 〈e1, yj〉 ∈ {−1, 1} for all S ∈ S , i.e. Ωξ = {−1, 1}.
2

3.21. We will now give an inductive construction of admissible sets of cardinality 2. Let
W be as in Theorem 3.7, i.e. an invertible square matrix of order n, whose entries belong
to Γ = {−1, 1}. From that Theorem, we see that if ω = 〈W−11, 1〉−1, then there exists an
irreducible semigroup S of rank-one operators in Mn(C) for which Ω = {−ω, ω} is an
admissible set for S .

Let γ ∈ Cn be a column whose entries belong to Γ as well. We will write γ ∈ Γn and
denote by Dγ the diagonal matrix whose diagonal entries are precisely those of γ (as an
ordered set). Note that DγW is again an invertible matrix whose entries belong to Γ, so
that for ω−1

γ := 〈(DγW)−11, 1〉, we have that again Ωγ = {−ωγ, ωγ} is admissible for
some irreducible semigroup Sγ of rank-one operators. Since Dγ = D−1

γ = D∗γ, we have
〈(DγW)−11, 1〉 = 〈W−11, (D−1

γ )∗1〉 = 〈W−11, γ〉 . Similar conclusions are valid if we
multiply W on either the right or on both the left and the right by a diagonal matrix with
diagonal entries from {−1, 1}.

We introduce some notation. It turns out that we need to introduce four types of ad-
missible points. However, to simplify the notation, we will introduce the inverses of these
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points. For columns γ, δ ∈ Γn we define the neutral, respectively the left, respectively the
right, respectively the two-sided inverse-admissible point:

ω(W) = 〈W−11, 1〉,
ω(γ, W) = 〈W−1γ, 1〉,
ω(W, δ) = 〈W−11, δ〉,

ω(γ, W, δ) = 〈W−1γ, δ〉.
Note that there is only a formal distinction between different inverse-admissible points.
Namely, if we let Ŵ = DγWDδ, then ω(Ŵ) = ω(γ, W, δ). Next, write the matrix W in the
block partition with respect to the first n− 1 rows, respectively columns, and the last row,
respectively column, as

W =

(
S γ
δ∗ κ

)
. (2)

Using standard linear algebra computations we see that

W−1 =

(
S−1 + (κ −ω(γ, S, δ))−1S−1γδ∗S−1 −(κ −ω(γ, S, δ))−1S−1γ

−(κ −ω(γ, S, δ))−1δ∗S−1 (κ −ω(γ, S, δ))−1

)
, (3)

provided that S is invertible. Observe that this assumption may be fulfilled in the follow-
ing way. Since W is invertible, its submatrix made of the first n− 1 columns is of full rank.
Consequently, there are n− 1 rows of W such that the corresponding submatrix is of full
rank. Now we can apply a permutation matrix on W from the left-hand side to get S in
partition (2) invertible. Note that it is also possible to make S invertible by applying a per-
mutation matrix on W from the right-hand side. In either case the neutral admissible point
ω(W) does not change, while for the other points we have to apply the same permutation
on the corresponding diagonal.

Choose now η, ζ ∈ Γn−1 and define for r, t ∈ Γ the n-tuples η̂r = (η, r) ∈ Γn and
ζ̂t = (ζ, t) ∈ Γn. From Formula (3) we get easily:

ω(W) = ω(S) + (κ −ω(γ, S, δ))−1(ω(γ, S)− 1)(ω(S, δ)− 1),

ω(η̂r, W) = ω(η, S) + (κ −ω(γ, S, δ))−1(ω(γ, S)− 1)(ω(η, S, δ)− r),

ω(W, ζ̂t) = ω(S, ζ) + (κ −ω(γ, S, δ))−1(ω(γ, S, ζ)− t)(ω(S, δ)− 1), (4)

ω(η̂r, W, ζ̂t) = ω(η, S, ζ) + (κ −ω(γ, S, δ))−1(ω(γ, S, ζ)− t)(ω(η, S, δ)− rt).

3.22. Proposition. Equations (4) give recursive formulas for obtaining inverses of admissible
points dimension by dimension and all the admissible points can be obtained in this way.
Proof. Clear.

2

3.23. If we limit ourselves to more concrete cases of matrices W, we can get even better
insight into what admissible points may be at the expense of generality of the result. In the
following proposition we consider matrices W to be of a special kind that is called in the
literature circulant.

Let C be the basic circulant matrix sending standard basis vectors ei to ei−1 for i =
2, 3, . . . , n and e1 to en. For any polynomial φ(x) ∈ C[x] we can define Vφ = φ(C). The
matrices so obtained are called circulant matrices. Since Cn = I we may view these polyno-
mials as members of C[x]/(xn− 1). Note that the entries of R = Vφ belong to Γ = {−1, 1} if
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and only if the polynomial φ (which we may assume, without loss of generality, to be of de-
gree no more than n− 1) has coefficients from Γ. The question of whether W is invertible is
clearly equivalent to the question of whether φ is invertible in the ring C[x]/(xn− 1). Now,
using elementary ring theory we know that this is equivalent to the question of whether
or not φ is coprime to xn − 1. If this is so, the inverse of W is obtained as Vψ, where ψ is the
unique element of the quotient C[x]/(xn − 1) such that ψ(x)φ(x) ≡ 1 (xn − 1).

3.24. Proposition. For any integers j, k such that 0 6 j < n
2 and 0 < k < n

2 is coprime to n, it
holds that

Ω = {±n− 2k
n− 2j

}

is an admissible set for some semigroup S of rank-one operators in Mn(C).
Proof. Let j, k be as above and define

φ(x) = −(1 + x + · · ·+ xk−1) + xk(1 + x + · · ·+ xn−k−1).

We want to show that φ is coprime to xn − 1. Now, φ(1) = n− 2k 6= 0 so that it suffices
to show that φ is coprime to θ0(x) = 1 + x + · · · + xn−1. Assume not. Then, they have
a nontrivial common factor with their sum and consequently a nontrivial common factor
with θ1(x) = 1 + x + · · ·+ xn−k−1. So, this factor divides the polynomial θ2(x) = 1 + x +
· · ·+ xk−1 as well. Let ρ be a zero of this factor. It is clear that it is both a kth root of unity
and an nth root of unity. So, its nontrivial order divides both k and n contradicting the
assumption that they are coprime. These considerations imply that no nth root of unity is a
zero of φ, so that there exists a ψ in C[x]/(xn − 1) such that ψ(x)φ(x) ≡ 1 (xn − 1). Finally,
W−1 = Vψ and a short computation reveals that

〈W−11, 1〉 = nψ(1) = nφ(1)−1 =
n

n− 2k
.

Here we used the fact that the leftmost expression above equals the sum of all entries of
W−1. We can compute this sum cycle by cycle, each of them being equal to n times the
corresponding coefficient of the polynomial ψ and the desired result follows. Now, if we
replace one of the two columns 1 with a column γ containing j entries equal to −1 and
n− j entries equal to 1, we get n in this formula replaced by n− 2j, as was to be shown.

2

3.25. Example.
(a) For each of the sets Ω1 = {−3, 3}, Ω2 = {−1, 1}, Ω3 = {− 3

5 , 3
5}, Ω4 = {− 1

3 , 1
3} and

Ω5 = {− 1
5 , 1

5}, there exists an irreducible semigroup Sk of rank-one operators in
M5(C) for which Ωk is an admissible set, 1 6 k 6 5.

(b) With Ωk as above, 1 6 k 6 5, set Ω6 = {−2, 2}, Ω7 = {− 2
3 , 2

3}. Then for each
1 6 k 6 7, there exists an irreducible semigroup Tk ⊆M6(C) of rank-one operators
for which Ωk is an admissible set.

Proof.
(a) This follows directly from Proposition 3.24 by letting n = 5, k = 1, 2 and j = 0, 1, 2.
(b) In the case where the dimension of the underlying space is 6, the index k = 2 of

Proposition 3.24 is not coprime to n = 6. So, while we can get Ω6, Ω2 and Ω7 in
this way, the sets {− 2

6 , 2
6}, {−

2
4 , 2

4}, and {− 2
2 , 2

2} cannot be obtained via circulant
matrices. Indeed, the circulant matrix containing 4 consecutive cycles of 1’s and 2
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cycles of −1’s has zero determinant because −1 is a zero of the polynomial φ(x) =
1 + x + x2 + x3 − x4 − x5. So, we apply Proposition 3.22 instead.

Let Sk denote the circulant matrix corresponding to the polynomial φ as in the
proof of Proposition 3.24, for k = 1, 2, and let γj be the 5-tuple made of j entries
equal to −1 and 5− j entries equal to 1 for j = 0, 1, 2. Define W using Formula (2)
with S = γjSk, γ = Dγj γk, δ = 1 (for k = 1, 2 and j = 0, 1, 2) and let κ ∈ Γ be
chosen to be different from ω(γ, S, δ) so that W is invertible. Using the first one of
the Formulas (4) we get that all points of item (a) are admissible in dimension n = 6
as well.

2

3.26. Theorem. For each 0 6= q ∈ Q there exists n ∈ N and an irreducible semigroup S ⊆
Mn(C) of rank-one operators for which Ω = {−q, q} is an admissible set.
Proof.

• First let m1 > 1 be an integer and set n1 = 2(m1 + 1). Let k1 = 1 (clearly gcd(k1, n1) =
1) and j1 = m1, so that 0 6 j1 6 n1

2 . Observe that

n1 − 2k1

n1 − 2j1
= m1.

By Proposition 3.24, there exists an irreducible semigroup S1 ⊆ Mn1(C) of rank-
one operators for which Ω1 = {−m1, m1} is an admissible set. Let ξ1 ∈ Cn1 be a
corresponding admissible unit vector.
• Let m2 ∈ N be an even integer and n2 = 2m2. Set k2 = m2 − 1 and j2 = 0. Observe

that gcd(k2, n2) = gcd(m2 − 1, 2m2) = 1, and that

n2 − 2k2

n2 − 2j2
=

1
m2

,

so that we may once again apply Proposition 3.24 to conclude that there exists
an irreducible semigroup S2 ⊆ Mn2(C) of rank-one operators for which Ω2 =
{− 1

m2
, 1

m2
} is an admissible set. Let ξ2 ∈ Cn2 be a corresponding admissible vector.

Consider S = {S1 ⊗ S2 : S1 ∈ S1, S2 ∈ S2}, so that S is an irreducible semigroup of
rank-one operators acting on H := Cn1 ⊗Cn2 . Let ξ = ξ1 ⊗ ξ2, so that ξ is a unit vector in
H. It is routine to verify that for each S1 ⊗ S2 ∈ S we have

〈(S1 ⊗ S2)(ξ1 ⊗ ξ2), (ξ1 ⊗ ξ2)〉 = 〈S1ξ1, ξ1〉 〈S2ξ2, ξ2〉 ∈ {−
m1

m2
,

m1

m2
}.

Hence Ω = {−m1
m2

, m1
m2
} is an admissible set for S .

Finally, given any 0 < q ∈ Q, it is clear that we may write q = m1
m2

for some m1 > 1 and
m2 > 1 with m2 even, which completes the proof.

2

3.27. Remark. We remark that some results in this section remain valid for sets Ω of car-
dinality p, where p is a prime number. The proofs of Proposition 3.6, Theorem 3.7, re-
mark 3.21 and Proposition 3.22 work, with little change, in this more general context. The
set Γ in these statements becomes {α, α2, α3, . . . , αp = 1}, where α is a primitive p-th root
of unity, and the set Ω is still of the form ωΓ, for some ω ∈ C.
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Proposition 3.24 is stated slightly differently for an admissible set Ω of cardinality p.
The polynomial φ in the proof of Proposition 3.24 can be replaced with the polynomial

ϕ(x) = α(1 + x + · · ·+ xk−1) + xk(1 + x + · · ·+ xn−k−1),

which produces the admissible set Ω = ωΓ, where Γ = {α, α2, α3, . . . , αp = 1} and ω =
n+k(α−1)
n+j(α−1) .

The analogue of Theorem 3.12 is no longer true if |Ω| > 2. This follows from the gener-
alized Proposition 3.24: one can produce n, k, j in the proposition such that ω = n+k(α−1)

n+j(α−1) is
not rational.

4. SEMIGROUPS OF INVERTIBLE OPERATORS

4.1. In this section, we look at irreducible semigroups of n× n matrices which consist of
invertible operators. Since our interest lies in irreducible semigroups S which possess an
admissible semigroup of cardinality two, it follows from Lemma 1.5 (a) that such an S
must be finite. But a finite semigroup consisting of invertible operators is easily seen to be
a group. Indeed, if S ∈ S and the latter is finite, then there exist k1 < k2 so that Sk1 = Sk2 .
But then Sk1(Sk2−k1 − I) = 0, and since Sk1 is invertible, we have that Sk2−k1 = I ∈ S .
Furthermore, S−1 = Sk2−k1−1 ∈ S .

It is well-known that every finite group of invertible matrices in Mn(C) is simultane-
ously similar to a group of unitaries. We shall begin our analysis of groups of invertible
matrices possessing two-element admissible sets by considering groups of unitaries.

4.2. By an open half-space of C we shall mean a set of the form Hα = {z ∈ C : Re (αz) >
0}, where 0 6= α ∈ C is a constant. Recall that every locally compact group G admits
a (positive, left-translation invariant) Haar measure, which we shall denote by ν. This
measure is unique up to scaling by a positive real number.

Note that if n > 2 is an integer and G ⊆ Mn(C) is a finite irreducible group, then
∑G∈G G = 0. Indeed, if T = ∑G∈G G 6= 0, then by choosing x ∈ Cn so that Tx 6= 0, we
see that GT = T and hence GTx = Tx for all G ∈ G, implying that C(Tx) is a non-trivial
invariant subspace for G, a contradiction.

4.3. Proposition. Let S ⊆ Mn(C) be a compact group of unitary matrices, and let Ω be an
admissible set for S with a corresponding admissible norm-one vector ξ. If there exists an open
half-space H ⊆ C so that Ω ⊆ H ∪ {0}, then S is reducible.
Proof. Let ν denote normalized Haar measure on S , (which is positive and whose support
is S), and let

T :=
∫
S

Sdν.

We claim that T 6= 0. Indeed, suppose otherwise and consider the non-zero linear func-
tional ϕ : Mn(C)→ C defined by ϕ(X) = 〈Xξ, ξ〉. Then

0 = ϕ(T)

= 〈Tξ, ξ〉

=
∫
S
〈Sξ, ξ〉dν.

Fix 0 6= α ∈ C so that H = Hα = {z ∈ C : Re αz > 0}. Now 〈Sξ, ξ〉 ∈ H ∪ {0} for all S ∈ S ,
and so Re αϕ(S) = Re α〈Sξ, ξ〉 > 0 for all S ∈ S . In particular, I ∈ S (as S is a group), and
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thus 1 = ϕ(In) = 〈Inξ, ξ〉 ∈ Ω ⊆ H; i.e. Re α > 0. Since ϕ is continuous, there exists an
open subset T ⊆ S so that I ∈ T and Re αϕ(S) > 1

2 Re α for all S ∈ T . But then ν(T ) > 0
and so

Re α〈Tξ, ξ〉 = Re α〈
(∫
S

Sdν

)
ξ, ξ〉 =

∫
S

Re α〈Sξ, ξ〉dν > 0,

contradicting the fact that T = 0.
Hence T 6= 0. Choose x ∈ Cn so that Tx 6= 0. Observe that by left-invariance of Haar

measure, ST = T for all S ∈ S , and thus STx = Tx 6= 0 is a fixed point of S . In particular,
Cx is an invariant subspace for S , and so S is reducible.

2

The above Proposition admits the following simple Corollary. We shall improve upon
it below. Note that for any group G ⊆Mn(C) and for any admissible set Ω for G, the fact
that In ∈ G implies that 1 ∈ Ω. Also, a closed subset Ω ⊆ C is an admissible set for G if
and only if Ω is an admissible set for G.

4.4. Corollary. Let n > 1 be an integer, and let G ⊆Mn(C) be an irreducible group of unitaries.
If Ω = {1, ω2} is an admissible set for G, then ω2 < 0.
Proof. Since G is an irreducible group of unitaries, it follows from Proposition 4.3 that Ω -
being an admissible set for G - can not be contained in H ∪ {0} for any open half-space H.
Given that Ω = {1, ω2}, the only way to avoid this is if ω2 < 0.

2

We will now demonstrate that for each integer n > 2, there exists an irreducible group
G ⊆Mn(C) of unitary matrices which possesses an admissible set Ω of cardinality two. As
we shall see, this condition is rather rigid, and to a large extent it determines the structure
of the group G.

If n ≥ 2 and A ⊆Mn(C), we denote by 〈A〉 the group generated by A.

4.5. Example. Let n = 2 and consider the group

E2 = 〈
[

0 1
1 0

]
,
[

ρ 0
0 ρ2

]
〉 ⊆M2(C),

where ρ = e
2πi

3 is the cube root of unity in C. Then

E2 = {
[

0 1
1 0

]
,
[

1 0
0 1

]
,
[

ρ 0
0 ρ2

]
,
[

ρ2 0
0 ρ

]
,
[

0 ρ
ρ2 0

]
,
[

0 ρ2

ρ 0

]
}.

Then relative to the distinguished vector z =

[
1√
2

1√
2

]
, we find that

{〈Gz, z〉 : G ∈ E2} = {−
1
2

, 1}.

This can be seen by expressing each element of the group with respect to the orthonor-

mal basis {
[

1√
2

1√
2

]
,

[
1√
2

− 1√
2

]
}, with respect to which we find that

E2 = {
[

1 0
0 −1

]
,
[

1 0
0 1

]
,

[
− 1

2

√
3

2√
3

2
1
2

]
,

[
− 1

2

√
3

2
−
√

3
2 − 1

2

]
,

[
− 1

2 −
√

3
2√

3
2 − 1

2

]
,

[
− 1

2 −
√

3
2

−
√

3
2

1
2

]
}.
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4.6. Example. Let n = 2, and recall that for k > 2 we use Pk to denote the permutation

unitary matrices in Mk(C). Then the matrix C3 :=

0 0 1
1 0 0
0 1 0

 lies in P3, and C3 is a normal

matrix with eigenvalues {1, ρ, ρ2}, where ρ is the third root of unity, e
2πi

3 .
The norm-one eigenvector corresponding to the eigenvalue 1 (for every permutation

matrix P ∈ P3 is y = 1√
3
13. Let x1 = 1√

3
(1, ρ2, ρ)t and x2 = 1√

3
(1, ρ, ρ2)t, so that x1

and x2 are two norm-one eigenvectors for C3 corresponding to the eigenvalues ρ and ρ2

respectively.
Relative to the orthonormal basis {13, x1, x2}, we see that C3 = diag(1, ρ, ρ2) and that

every P ∈ P3 may be written as

P =

1 0 0
0 p22 p23
0 p32 p33

 .

Next, observe that if Q =

1 0 0
0 0 1
0 1 0

, then Q ∈ P3, and Qx1 = x2, Qx2 = x1, from which

we find that relative to the orthonormal basis {y, x1, x2}, we still have

Q =

1 0 0
0 0 1
0 1 0

 .

For each P ∈ P3, let GP denote the compression of P to 1⊥. Thus G2 = {GP : P ∈ P3}

contains
[

ρ 0
0 ρ2

]
as well as

[
0 1
1 0

]
. Since G2 is a group, we see that it must contain the

group E2 defined in Example 4.5 above. But |G2| = |P3| = 3! = 6 = |E2|, whence G2 = E2.
This proves that there exists a unique irreducible group of unitary matrices in M2(C)

which possesses an admissible set of cardinality two. This is not entirely surprising. There
are only two groups of order 6, and one of them is abelian. Since an abelian group in
Mn(C) is never irreducible, it is clear that if we can find an irreducible subgroup of M2(C)
of order 6, it must be isomorphic to any other such group, and so G2 and E2 are isomorphic.

4.7. Example.

(a) Let n = 3 and

E0
3 = 〈

−1
−1

1

 ,P3〉,

where P3 denotes the set of all 3× 3 permutation matrices. Then E0
3 consists of all

weighted permutations, where the weights lie in {−1, 1}, and for which there is an
even number of −1’s. Of these there are |P3| = 6 where all of the weights are 1,
and also |P3| = 6 weighted permutations where two of the three weights are −1
and the other is 1. Thus |E0

3 | = 12.
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Let ξ = 1√
3

1
1
1

 be our distinguished unit vector. Then

{〈Gξ, ξ〉 : G ∈ E0
3} = {−

1
3

, 1}.

(b) Let n = 3. Let P4 ⊆ M4(C) denote the group of permutation matrices described
in the introduction. Recall that N := 1⊥ ⊆ C4 is an orthogonally reducing sub-
space for P4. Let E3 := P4|N . Since each element P ∈ P4 admits the matrix de-

composition
[

1 0
0 PN

]
relative to the decomposition C4 = C1⊕N , it follows that

E3 := {PN : P ∈ P4} is a group of unitary matrices.
It is a routine exercise to check that E3 ⊆ B(N ) ' M3(C) is irreducible. Let

ξ := 1√
12


−3
1
1
1

. For P ∈ P4,

Pξ ∈ { 1√
12


−3
1
1
1

 ,
1√
12


1
−3
1
1

 ,
1√
12


1
1
−3
1

 ,
1√
12


1
1
1
−3

}.
Hence 〈Pξ, ξ〉 ∈ Ω := {1,− 1

3}.

It follows that there are at least two non-isomorphic, irreducible groups E0
3 and E3 of

unitary matrices in M3(C) for which Ω = {1,− 1
3} is an admissible set.

The group E3 constructed above is actually prototypical of a class of groups of unitaries
which possess an admissible set of cardinality two, as we now demonstrate.

4.8. Proposition. Let n > 1 and consider the inner product space (Kn, 〈·, ·〉), where K = R or
C. Let u1, u2, . . . , um ∈ Kn be distinct norm-one vectors, and suppose that there exists r ∈ K so
that

〈ui, uj〉 = r for all 1 6 i 6= j 6 m.

Then m 6 n + 1 and if m = n + 1, then r = − 1
n .

Proof. First note that since the norm of each uk is one, and since the vectors are distinct,
we have that r 6= 1 unless m = 1, a trivial case. For the rest of the argument, therefore, we
shall assume that m > 2 and hence r 6= 1.

Fix s > 1, and suppose that α1, α2, . . . , αs ∈ K are chosen so that α1u1 + α2u2 + · · · +
αsus = 0. Then for each 1 6 k 6 s, we have

0 = 〈0, uk〉 = 〈α1u1 + α2u2 + · · ·+ αsus, uk〉,
which gives rise to a system of s equations, expressed as the single matrix equation

1 r r · · · r
r 1 r · · · r
...

... · · ·
...

r r · · · r 1




α1
α2
...

αs

 =


0
0
...
0

 .
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Let Rs denote the s× s matrix on the left-hand side of the equation, and observe that

det Rs = (1− r)s−1(1 + (s− 1)r).

Now suppose that m > n. By applying the above analysis with s = m, we see that the
set {u1, u2, . . . , um} is obviously linearly dependent in the n-dimensional space Kn, and
thus there must exist a non-zero solution to the equation

Rm


α1
α2
...

αm

 =


0
0
...
0

 .

This in turn implies that det Rm = 0, which, when coupled with the fact that r 6= 1 from
above, implies that 1 + (m− 1)r = 0, i.e. r = − 1

m−1 . Since m > n, we have that r 6= − 1
n−1 .

From this it follows that {u1, u2, . . . , un} is linearly independent in Kn, because

det Rn = (1− r)n−1(1 + (n− 1)r) 6= 0,

by virtue of the fact that r 6∈ {− 1
n−1 , 1}.

Next suppose that n < t 6 m and note that 〈uk, ut〉 = r for all 1 6 k 6 n. Since
{u1, u2, . . . , un} is a basis for Kn, we may choose β1, β2, . . . , βn+1 ∈ K not all equal to zero
so that

β1u1 + β2u2 + · · ·+ βnun + βn+1ut = 0.

Arguing as before, by considering the inner product of this with each vector uk, 1 6 k 6
n and then with ut, we obtain a system of n + 1 equations which we express as a single
matrix equation:

Rn+1


β1
β2
...

βn+1

 =


0
0
...
0

 .

If we subtract the first equation from the kth equation, 2 6 k 6 n + 1, we get an equation
of the form:

(r− 1)β1 + 0β2 + · · ·+ 0βk−1 + (1− r)βk + 0βk+1 + · · ·+ 0βn+1 = 0,

from which we deduce (recall that r 6= 1) that βk = β1. Note that β1 6= 0, since otherwise
βk = 0 for all 1 6 k 6 n + 1, contradicting our choice of βk’s.

This implies that ut = −∑n
k=1 uk is uniquely determined; i.e. un+1 = un+2 = · · · = um.

Since we originally specified that all vectors uk, 1 6 k 6 m were distinct, this can only
happen if m = n + 1 in which case r = − 1

m−1 = − 1
n .

2
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4.9. Proposition. Let n > 2 be an integer, and 1 = 1n+1 ∈ Cn+1. Then Rn := Pn+1|1⊥ is an
irreducible group of unitaries in B(1⊥) 'Mn(C) for which Ω = {1,− 1

n} is an admissible set.
Proof. Let {ek}n+1

k=1 denote the standard orthonormal basis for Cn+1. It is clear that P1 = 1

for all P ∈ Pn+1, and hence the fact that Pn+1 is self-adjoint shows that C1 is an orthogo-
nally reducing subspace for Pn+1. Indeed, relative to the decomposition Cn+1 = C1⊕ 1⊥,
P ∈ Pn+1 implies that P has the form

P =

[
1 0
0 RP

]
.

By definition, we have setRn = {RP : P ∈ Pn+1} ⊆ B(1⊥) 'Mn(C).
Since Pn+1 and henceRn is self-adjoint, any invariant subspace ofRn must be orthogo-

nally reducing, and if Q0 is an orthogonal projection in B(1⊥) which commutes with every
element ofRn, then

Q :=
[

0 0
0 Q0

]
is an orthogonal projection which commutes with every element of Pn+1. Proving thatRn
is irreducible is equivalent to proving that Q0 ∈ {0, I} ⊆ B(1⊥).

Let Z ∈ Mn+1(C) be an orthogonal projection which commutes with every element of
Pn+1, and for 1 6 i 6= j 6 n+ 1, let Pi,j denote the permutation matrix in Mn+1(C) induced
by the transposition of ei and ej. The computation ZPi,j = Pi,jZ for all 1 6 i 6= j 6 n + 1
implies that

Z = αIn+1 + βZ1,

where Z1 is the rank-one projection all of whose entries are equal. Note that the range of
Z1 is therefore C1, and hence, relative to the decomposition Cn+1 = C1⊕ 1⊥, Z is given
by the diagonal matrix Z = diag(α + β, αI). Since Z = Z2, we either have α = 0 and
β ∈ {0, 1}, or α = 1 and β ∈ {0,−1}.

Either way, for Q as above, we see that this implies that Q0 ∈ {0, I}, completing the
proof thatRn is irreducible.

Next, let ξ = 1√
n2+n

(−n, 1, 1, ..., 1)∗ ∈ Cn+1. Note that ξ ∈ 1⊥ and ‖ξ‖ = 1. Furthermore,

thinking of RP ∈ B(1⊥), the action of RP upon ξ ∈ 1⊥ is just the action of P on ξ ∈ Cn+1.
Thus

〈RPξ, ξ〉 = 〈Pξ, ξ〉 ∈ {1,− 1
n
}

for all P ∈ Pn+1, proving that Ω = {1,− 1
n} is an admissible set forRn.

2

It is clear that if G ⊆ Rn is an irreducible group, then Ω = {1,− 1
n} is also admissible for

G. Our present goal is to prove a converse to this statement. (Note that I ∈ G implies that
1 ∈ Ω whenever Ω is admissible for G.)

4.10. Theorem. Let n > 2 be an integer. Suppose that G ⊆ Mn(C) is an irreducible group of
unitary matrices and that Ω = {1, ω2} is an admissible set of cardinality two for G. It follows that
ω2 = − 1

n , and that G is unitarily equivalent to a subgroup of the group Rn = Pn+1|1⊥ defined in
Proposition 4.9.

In particular, G has at most (n + 1)! elements.
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Proof. We may assume with no loss of generality that G is maximal with respect to the
condition that it be an irreducible group and that it possess an admissible set Ω = {1, ω2}
of cardinality two. From Corollary 4.4, we see that ω2 < 0.

Recall from Lemma 1.5 (a) that G must be finite, say G = {Gk}m
k=1. Let ξ be a unit vector

for G corresponding to Ω, and for 1 6 k 6 m, set uk = Gkξ. Note that ‖uk‖ = 1 for all 1 6
k 6 m. (At this stage it is very possible that ui = uj even if i 6= j.) Clearly {u1, u2, . . . , um}
is nothing more than the orbit of ξ under G. Since G is irreducible, span {u1, u2, . . . , um} =
Cn. In particular, m > n, and {u1, u2, . . . , um} contains a basis for Cn. By reindexing if
necessary, we may assume that {u1, u2, . . . , un} is such a basis.

We claim that there exists n < k 6 m so that uk 6∈ {u1, u2, . . . , un}. For suppose other-
wise; i.e., suppose that Gkξ ∈ {u1, u2, ..., un} for all 1 6 k 6 m. From paragraph 4.2, we
know that ∑m

k=1 Gk = 0, and thus

0 =

(
m

∑
k=1

Gk

)
ξ =

m

∑
k=1

Gkξ =
m

∑
k=1

uk.

For each 1 6 i 6 n, let δi = |{j : 1 6 j 6 m and Gjξ = ui}|. Then 1 6 δi is an integer for
all i and

0 =
m

∑
k=1

uk =
n

∑
i=1

δiui,

contradicting the linear independence of {u1, u2, . . . , un}. Thus {u1, u2, . . . , um} contains at
least n + 1 distinct vectors.

However, ui 6= uj implies that

〈ui, uj〉 = 〈Giξ, Gjξ〉 = 〈G∗j Giξ, ξ〉 ∈ Ω = {1, ω2}.

But ‖uk‖ = 1 for all k > 1, and so ui 6= uj implies that 〈ui, uj〉 = ω2. By Proposition 4.8
above, there can be at most n + 1 distinct vectors in Cn with the property that the angle
between any two of them is a single fixed value – in our case, ω2. Hence {u1, u2, . . . , um}
chains at most (and therefore exactly) n+ 1 distinct vectors. After reindexing (if necessary)
we may assume that {u1, u2, . . . , um} = {u1, u2, . . . , un+1}, and from Proposition 4.8, we
also know that ω2 = − 1

n .
Next, identify Cn with an n-dimensional subspace of Cn+1, and let u0 ∈ Cn be a norm-

one vector perpendicular to OrbG . Define

zk = (1 + 1/n)−
1
2

(
uk +

1√
n

u0

)
, for k = 1, 2, . . . , n + 1.

Note that if 1 6 i 6= j 6 n + 1, then

〈zi, zj〉 = (1 + 1/n)
(
〈ui, uj〉+

1
n
〈u0, u0〉

)
= 0,

while

‖zi‖2 =

(
1 +

1
n

)(
‖ui‖2 +

1
n
‖u0‖2

)
= 1.

We have shown that B := {z1, z2, . . . , zn+1} is an orthonormal basis for Cn+1.
Consider the group P̂n+1 of permutation matrices relative to the orthonormal basis B:

that is, an operator P̂ ∈ Mn+1(C) lies in P̂n+1 if and only if there exists a permutation σ

of the set {1, 2, . . . , n + 1} so that P̂(zk) = zσ(k) for all 1 6 k 6 n + 1. Obviously P̂n+1
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is unitarily equivalent to Pn+1 via a unitary that takes the standard orthonormal basis for
Cn+1 to B.

Let η = ∑n+1
k=1 zk, so that η plays the same role relative to the basis B that the vector 1

plays relative to the standard orthonormal basis for Cn+1. Then P̂η = η for all P̂ ∈ P̂n+1

and C η ⊆ Cn+1 is the unique one-dimensional reducing subspace for P̂n+1. But an easy
calculation shows that

η =
n+1

∑
k=1

zk

=

(
1 +

1
n

)− 1
2
(

n+1

∑
k=1

(uk +
1√
n

u0)

)

=

(
1 +

1
n

)− 1
2
(

0 +
n + 1√

n
u0

)
=
√

n + 1u0.

Thus P̂ ∈ P̂n+1 implies that P̂u0 = u0, and hence if σ is a permutation of {1, 2, . . . , n+ 1}
so that P̂zk = zσ(k) for all 1 6 k 6 n + 1, then P̂uk = uσ(k) for all 1 6 k 6 n + 1. Moreover,
there exists such an operator P̂ ∈ P̂n+1 for each such permutation σ.

Since span{u1, u2, . . . , un+1} = u⊥0 ⊆ Cn+1, we see that P̂n+1|u⊥0 consists of all possible
operators on span{u1, u2, . . . , un+1} which permute the uk’s. Since each G ∈ G permutes
the uk’s, 1 6 k 6 n + 1 and is totally determined by its action on this set, G ⊆ P̂n+1|u⊥0 '
Pn+1|1⊥ .

By Proposition 4.9, Ω is an admissible set for P̂n+1|u⊥0 . By the maximality of G, we

conclude that G = P̂n+1|u⊥0 .
The final statement is simply the observation that Pn+1 has (n + 1)! elements.

2

4.11. Proposition. Let n > 2 be an integer and 1 = 1n+1 ∈ Cn+1. LetRn := Pn+1|1⊥ . ThenRn
contains a unitarily equivalent copy of Pn. That is, there exists a unitary operator V : Cn → 1⊥

so that VPnV∗ ⊆ Rn.
Proof. Fix n > 2 as above. Let T = {P ∈ Pn+1 : Pe1 = e1}, so that

(i) T is isomorphic to Pn as a group, and in fact
(ii) T |e⊥1 := {P|e⊥1 : P ∈ T } is unitarily equivalent to Pn.

LetM := span {e1, 1}, and extend {e1} to an orthonormal basis {e1, f } forM. Relative to
the decomposition Cn+1 = Ce1 ⊕C f ⊕M⊥, P ∈ T is of the form

P =

1 0 0
0 1 0
0 0 TP

 ,

where TP = P|M⊥ . In particular, P|e⊥1 =

[
1 0
0 TP

]
. Hence

Pn ' T |e⊥1 ' {
[

1 0
0 TP

]
: P ∈ Pn+1},



25

with TP = P|M⊥ .
Now extend {1} to an orthonormal basis {1, g} forM. Relative to the decomposition

Cn+1 = C1⊕Cg⊕M⊥, P ∈ T admits the same matrix form

P =

1 0 0
0 1 0
0 0 TP

 ,

where TP = P|M⊥ .
Clearly P ∈ T implies that

P|1⊥ '
[

1 0
0 TP

]
' P|e⊥1 .

Hence the map W : span { f ,M⊥} → span {g,M⊥} determined by W f = g and Wx =
x for all x ∈ M⊥ is unitary and

W∗P|1⊥W = P|e⊥1 for all P ∈ T ,

proving that WT |e⊥1 W∗ ⊆ Rn is a unitarily equivalent copy of Pn inRn.
2

Before turning our attention to irreducible, finite groups of invertible matrices which
do not necessarily consist of unitary operators (but which are necessarily simultaneously
similar to a group of unitaries), we make the following simple observation.

4.12. Remark. Let n > 2. We remark that no subset Λ ⊆ T := {z ∈ C : |z| = 1} can serve
as an admissible set for an irreducible group G ⊆Mn(C) of unitary matrices.

Indeed, suppose otherwise. Let G be such a group and let ξ be a corresponding admissi-
ble vector. Let G ∈ G and note that ‖G‖ = 1. Then 〈Gξ, ξ〉 ∈ Λ implies that |〈Gξ, ξ〉| = 1,
and hence (by the Cauchy-Schwarz inequality), Gξ ∈ Tξ. It follows that Cξ is a non-trivial
invariant subspace for G, contradicting the irreducibility of G.

4.13. Lemma. Let n > 1 be an integer and f , g ∈ Cn. Suppose that 〈 f , g〉 = 1. Then there exists
an invertible, positive definite operator T ∈Mn(C) so that T∗g = Tg = T−1 f , and ‖T∗g‖ = 1.
Proof. First observe that it suffices to prove this in the case where ‖g‖ = 1, otherwise we
can scale g by r := 1

‖g‖ and f by ‖g‖.
Under the assumption that ‖g‖ = 1, letM = span{ f , g} and consider an orthonormal

basis {g, h} forM, which we may extend to an orthonormal basis {g, h, h3, . . . , hn} for Cn.
Writing f = α1g + α2h and noting that 〈 f , g〉 = 1 implies that α1 = 1, define

K =

[
1 α2
α2 β

]
⊕ In−2 ∈Mn(C),

where β > 0 is chosen so that β > |α2|2. It follows that K is positive definite and invertible,
and that Kg = f .

Since K > 0, we can find a positive square root T for K, and clearly with respect to the
above decomposition Cn =M⊕M⊥, we obtain

T =

[
t1 t2
t2 t4

]
⊕ In−2.

Then T2 = T∗T = K implies that |t1|2 + |t2|2 = 1 and T2g = Kg = f .
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But then
T∗g = Tg = T−1 f ,

and ‖T∗g‖ = ‖Tg‖ =
√
|t1|2 + |t2|2 = 1.

2

4.14. Example. Let n > 1 and set N = 1⊥ ⊆ Cn+1. Then there exists an irreducible group
G ⊆ B(N ) ' Mn(C) and a unit vector ξ ∈ N so that Ω := {〈Uξ, ξ〉 : U ∈ G} = {1,−n}.
In particular, there exists an admissible set of cardinality two for G.

Now N = 1⊥ = {y = (yk)
n+1
k=1 ∈ Cn+1 : ∑n+1

k=1 yk = 0}. Consider G0 = Pn+1|N . Set

f =

√
n√

n + 1
(−n, 1, 1, . . . , 1)t,

g =
1√

n2 + n
(−1, n,−1,−1, . . . ,−1)t,

so that f , g ∈ N , ‖g‖ = 1 and 〈 f , g〉 = 1.
By Lemma 4.13, we can find a positive invertible matrix T ∈ B(N ) ' Mn(C) so that

T∗g = Tg = T−1 f and ‖T∗g‖ = 1. Let ξ = T∗g = T−1 f .
Set G = T−1G0T. Then with U ∈ G, say U = T−1PT, where P ∈ G0, we find that

〈Uξ, ξ〉 = 〈PTξ, (T−1)∗ξ〉 = 〈P f , g〉.
Finally, an easy computation shows that for any permutation matrix P ∈ Pn+1,

〈P f , g〉 ∈
√

n√
n + 1

1√
n2 + n

{2n− (n− 1),−n2 − n} = {1,−n}.

The irreducibility of G0 implies that the non-zero functional P 7→ 〈P f , g〉 takes on at
least two values (see Lemma 1.5 (a)), so that

Ω = {〈Uξ, ξ〉 : U ∈ G} = {1,−n}.

4.15. Lemma. Let f = (α1, α2, α3)t and g = (β1, β2, β3)t ∈ C3 and suppose that

Λ := {〈P f , g〉 ∈ Ω for all P ∈ P3}
has cardinality at most 2. If |{α1, α2, α3}| > 2 and |{β1, β2, β3}| > 2, then

|{α1, α2, α3}| = 2 = |{β1, β2, β3}|.

Proof. By symmetry, it suffices to prove that |{α1, α2, α3}| = 2. Assume to the country that
all of the αi’s are distinct.

Denote the elements of P3 by I, S, S2, J1, J2 and J3, where

S =

0 0 1
1 0 0
0 1 0

 , J1 =

1 0 0
0 0 1
0 1 0

 , J2 =

0 0 1
0 1 0
1 0 0

 , and J3 =

0 1 0
1 0 0
0 0 1

 .

We can assume without loss of generality that β1 6= β2 6= β3 (which leaves room for the
possibility that β1 = β3).

Set λ1 := 〈 f , g〉 ∈ Λ. Then

〈(I − J3) f , g〉 = (α1 − α2)(β1 − β2) 6= 0,
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and thus λ2 := 〈J3 f , g〉 6= λ1, implying that |Λ| = 2. Similarly,

〈(I − J1) f , g〉 = (α1 − α2)(β2 − β3) 6= 0

and
〈(S2 − J3) f , g〉 = −(α1 − α3)(β2 − β3) 6= 0,

implying that 〈J1 f , g〉 = λ2 and 〈S2 f , g〉 = λ1. Finally,

〈(S2 − J2) f , g〉 = (α2 − α3)(β1 − β2) 6= 0

and
〈(S− J1) f , g〉 = (α3 − α1)(β1 − β2) 6= 0,

which allows us to complete the list, namely:

〈I f , g〉 = 〈S f , g〉 = 〈S2 f , g〉 = λ1

〈J1 f , g〉 = 〈J2 f , g〉 = 〈J3 f , g〉 = λ2.

From these six equations we obtain

(α2 + α3 − 2α1)(β2 − β1) = 〈(I − S + J1 − J3) f , g〉 = 0,

and
(α1 + α2 − 2α3)(β2 − β1) = 〈(S− S2 + J2 − J1) f , g〉 = 0.

Hence
α2 + α3 − 2α1 = 0 = α1 + α2 − 2α3,

which implies that α1 = α3, a contradiction.
2

4.16. Lemma. Let 0 6= f , g ∈ Cn+1 and suppose that
(a) f , g ∈ 1⊥ (where 1 = 1n+1 ∈ Cn+1); and
(b) |{〈P f , g〉 : P ∈ Pn+1}| = 2.

Writing f = (α1, α2, . . . , αn+1)
t and g = (β1, β2, . . . , βn+1)

t, we have that

|{αk}n+1
k=1 | = 2 = |{βk}n+1

k=1 |.

Proof. Since f , g ∈ 1⊥ in turn implies that ∑n+1
k=1 αk = 0 = ∑n+1

k=1 βk, it then follows that
|{αk}n+1

k=1 | > 2, and similarly, |{βk}n+1
k=1 | > 2.

It suffices to prove that for any integers 1 6 p1 < p2 < p3 6 n + 1 and 1 6 q1 < q2 <
q3 6 n + 1, considering the vectors ϕ = (αp1 , αp2 , αp3)

t and ψ = (βq1 , βq2 , βq3)
t satisfying

|{αp1 , αp2 , αp3}| > 2 and |{βq1 , βq2 , βq3}| > 2, we necessarily have

|{αp1 , αp2 , αp3}| = 2 = |{βq1 , βq2 , βq3}|.
After applying fixed permutations P0 to f and Q0 to g we may assume that pi = qi = i,

1 6 i 6 3.
Let P̂3 be the set of all permutation unitary matrices which fix all basis vectors ej with

j > 3. Also, let f0 = (α1, α2, α3)t and g0 = (β1, β2, β3)t. Then for all P ∈ P3, we get

〈P f0, g0〉 = 〈P̂ f , g〉 − κ,

where κ = ∑n+1
i=4 αiβi is constant and where P̂ ∈ P̂3 is the permutation unitary matrix

which acts like P on span {e1, e2, e3} and which fixes ek, 4 6 k 6 n.
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If follows from the hypotheses that

|{〈P f0, g0〉 : P ∈ P3}| = 2.

The proof now follows by applying the preceding lemma.
2

4.17. Proposition. Let n > 4, f , g ∈ Cn+1 and suppose that
(a) f , g ∈ 1⊥, where 1 = 1n+1 ∈ Cn+1;
(b) 〈 f , g〉 = 1; and
(c) |{〈P f , g〉 : P ∈ Pn+1}| = 2.

Write f = (α1, α2, . . . , αn+1)
t and g = (β1, β2, . . . , βn+1)

t. Then either exactly n of the αi’s are
the same, or exactly n of the βi’s are the same.
Proof. It follows from Lemma 4.16 that

|{αk}n+1
k=1 | = 2 = |{βk}n+1

k=1 |.
We argue by contradiction. Condition (c) above then implies that we may reindex the
sequences {αk}n+1

k=1 and {βk}n+1
k=1 so that α2 = α1, α3 = α4 6= α1, β2 = β1, β3 = β4 6= β1.

Write Ω = {〈P f , g〉 : P ∈ Pn+1} = {〈 f , Pg〉 : P ∈ Sn+1}. Consider the permutations
corresponding to σ1 = (1), σ2 = (23) and σ3 = (13)(24), and let γ = ∑n+1

k=5 αkβk. Then with

δ1 := α1β1 + α1β1 + α3β3 + α3β3 (5)

δ2 := α1β1 + α3β1 + α1β3 + α3β3 (6)

δ3 := α3β1 + α3β1 + α1β3 + α1β3, (7)

we get that {δ1 + γ, δ2 + γ, δ3 + γ} ⊆ Ω. Since |Ω| = 2, it follows that δi = δj for some
1 6 i 6= j 6 3.

If δ1 = δ2, then considering Eqn(5) - Eqn(6) implies

(α1 − α3)(β1 − β3) = 0,

which in turn implies that β1 = β3, a contradiction. Thus δ1 6= δ2.
Similarly, by considering Eqn(6) - Eqn(7), we obtain that δ2 6= δ3 and by Eqn(5) - Eqn(7),

we obtain that δ1 6= δ3 . But this contradicts the fact that δi = δj for some 1 6 i 6= j 6 3.
This completes the proof.

2

4.18. Proposition. Let n > 4, f , g ∈ Cn+1 and suppose that
(a) f , g ∈ 1⊥, where 1 = 1n+1 ∈ Cn+1;
(b) 〈 f , g〉 = 1; and
(c) |{〈P f , g〉 : P ∈ Pn+1}| = 2.

Then Ω(= Ω(n, f , g)) := {〈P f , g〉 : P ∈ Pn+1} = {〈 f , Pg〉 : P ∈ Pn+1} = {1, ω2}, where

ω2 ∈
{

−r
n + 1− r

: 1 6 r 6 n
}

.

Also, for each value of ω2 ∈
{ −r

n+1−r : 1 6 r 6 n
}

, there exist f and g satisfying conditions (a), (b)
and (c) so that Ω(n, f , g) = {1, ω2}.

Thus,
∪∞

n=4Ω(n, f , g) = {1} ∪ {−m
n

: 1 6 m, n} = {1} ∪ (Q∩ (−∞, 0)).



29

Proof. We saw in Proposition 4.17 that if we write f = (α1, α2, . . . , αn+1)
t and

g = (β1, β2, . . . , βn+1)
t, then either exactly n of the αi’s are the same or exactly n of the

βi’s are the same.
Since condition (c) effectively allows us to permute the entries of f and g as we wish,

and since moving P ∈ Pn+1 from the left to the right of the inner product means that
the situation is symmetric in f and g, we may assume without loss of generality that the
second condition holds, in which case - by further stipulating that ‖g‖ = 1 and keeping in
mind that g ∈ 1⊥ - we may also assume that

g =
1√

n2 + n
(−n, 1, 1, . . . , 1)t,

and for some choice of 1 6 r 6 n,

f = κ (−(n + 1− r),−(n + 1− r), . . . ,−(n + 1− r), r, r, . . . , r)t,

where κ is chosen to ensure that 〈 f , g〉 = 1, as required in (b). (That is, the fact that f ∈ 1⊥

forces this ratio on α1 vs α2.)
Solving for κ, we have that

1 = 〈 f , g〉

=
κ√

n2 + n
[n(n + 1− r)− (r− 1)(n + 1− r) + (n + 1− r)r]

= κ

√
n + 1√

n
(n + 1− r).

Hence κ =
√

n√
n+1

1
n+1−r .

For this choice of r, Ω = {1, ω2}, where

ω2 =
κ√

n2 + n
[−nr + r(−(n + 1− r)) + (n− r)r]

=
−κr√
n2 + n

(n + 1)

=
−r

n + 1− r
.

From this, we see that Ω(n, f , g) = {1, ω2} with ω2 ∈ { −r
n+1−r : 1 6 r 6 n}. The last

statement is a simple verification.
2

4.19. Theorem. Let n > 4, N = 1⊥ ⊆ Cn+1 and suppose that G0 = Pn+1|N . If T ∈ B(N ) '
Mn(C) is invertible and G = TG0T−1 admits a distinguished unit vector ξ ∈ N so that Ω :=
{〈Gξ, ξ〉 : G ∈ G} has cardinality two, then Ω = {1, ω2}, where ω2 ∈ { −r

n+1−r : 1 6 r 6 n}.
Furthermore, any Ω of this form is possible.
Proof. Set f = T−1ξ and g = T∗ξ. It is clear that 〈 f , g〉 = ‖ξ‖2 = 1, and that f , g ∈ N since
ξ ∈ N and T ∈ B(N ). Furthermore,

Ω = {〈TUT−1ξ, ξ〉 : U ∈ G0} = {〈P f , g〉 : P ∈ Pn+1}.
By Proposition 4.18, Ω is of the stated form.

2
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5. SEMIGROUPS OF INTERMEDIATE RANK

5.1. Our goal in this section is to show that for each n > 4 and each 1 < k < n, there exists
an irreducible semigroup S ⊆Mn(C) so that

(a) S ∈ S implies that rank S = k; and
(b) S has an admissible set of cardinality two.

It will follow from Theorem 6.3 below that such a semigroup cannot be selfadjoint.

5.2. Example. Fix n > 4 and 1 < k < n. Let 1 = 1k+1 ∈ Ck+1. Recall from Proposition 4.9
that Rk = Pk+1|1⊥ is an irreducible group of unitary operators in B(1⊥) ' Mk(C), and
that Ω = {1,− 1

k} is admissible forRk.
By Proposition 4.11, Rk ⊆ Mk(C) contains a subsemigroup unitarily equivalent to Pk;

that is, there exists an orthonormal basis B = { f1, f2, ..., fk} of 1⊥ ' Ck so that if P̃k denotes
the group of permutation unitaries in B(1⊥) ' Mk(C) which permute the elements of B,
then P̃k ⊆ Rk.

Let G ∈ P̃k be the transposition unitary determined by: G f1 = f2, G f2 = f1 and G f j = f j
for 3 6 j 6 k. A routine calculation shows that G is unitarily equivalent to the matrix
−1⊕ Ik−1, and as such G is a rank-one perturbation of the identity I ∈ P̃k ⊆ Rk.

Let x0, y0 ∈ 1⊥ ' Ck be chosen so that ‖x0‖ = 1 and G = I + x0 ⊗ y∗0 ; that is, x0 ⊗ y∗0 =
G− I ' −2⊕ 0k−1. (It follows that y0 = −2x0.)

For each 1 6 j 6 n− k, define Xj ∈Mk×(n−k)(C) to be the matrix all of whose columns
are zero except for the jth column, which is the vector x0. Thus

Xj =
[
0 0 · · · 0 x0 0 · · · 0

]
.

Similarly, let Yj ∈ Mk×(n−k)(C) to be the matrix all of whose columns are zero except for
the jth column, which is the vector y0. Thus

Yj =
[
0 0 · · · 0 y0 0 · · · 0

]
.

Set X = {X0 = 0, X1, X2, . . . , Xn−k} and Y = {Y0 = 0, Y1, Y2, . . . , Yn−k}. We define

S =

{[
U UX

Y∗U Y∗UX

]
: U ∈ Rk, X ∈ X , Y ∈ Y

}
.

If S1 =

[
U1 U1Xj

Y∗r U1 Y∗r U1Xj

]
and S2 =

[
U2 U2Xt

Y∗s U2 Y∗s U2Xt

]
belong to S , then a routine calcu-

lation shows that

S1S2 =

[
V VXt

Y∗r V Y∗r VXt

]
,

where V = U1U2 + U1XjY∗x U2 = U1(I + XjY∗s )U2.
But XjY∗s = 0 if j 6= s, if Xj = 0 or Yj = 0; otherwise XjY∗s = x0 ⊗ y∗0 . Thus (I + XjY∗s ) =

G ∈ Rk, and so V ∈ Rk.
This shows that S is a semigroup. Next, we verify that S is irreducible.

(i) By choosing X = 0 = Y, we see that S =

[
U 0
0 0

]
∈ S for all U ∈ Rk. Thus

spanS ⊇Mk(C)⊕ 0.
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(ii) Let 1 6 j 6 n− k, X = Xj and Y = 0. Then for any U ∈ Rk, S1 =

[
U 0
0 0

]
∈ S and

S2 =

[
I Xj
0 0

]
∈ S , so that S1S2 =

[
U UXj
0 0

]
∈ S . Combining this with the result

from (i) shows that [
0 UXj
0 0

]
∈ spanS

for all 1 6 j 6 n− k.
But Rk acts irreducibly on Ck, and x0 6= 0, so that span {UXj : U ∈ Rk} =[

0 0 · · · 0 Ck 0 · · · 0
]
.

Hence spanS ⊇
[

0 Mk×(n−k)(C)
0 0

]
.

(iii) A similar argument applied to the (2, 1) corner of S shows that

spanS ⊇
[

0 0
M(n−k)×k(C) 0

]
.

But spanS is an algebra which contains{[
A B
C∗ 0

]
: A ∈Mk(C), B, C ∈Mk×(n−k)(C)

}
,

and thus spanS = Mn(C), proving that S is irreducible.

Note also that S =

[
U UX

Y∗U Y∗UX

]
∈ S implies that

k = rank U > rank
[

I
Y∗

]
U
[
I X

]
= rank S > rank U = k,

so that rank S = k.

Finally, let ξ0 ∈ Ck be a norm-one vector corresponding to the admissible set Ω =

{1,− 1
k} forRk. Set ξ =

[
ξ0
0

]
∈ Cn. For S =

[
U UX

Y∗U Y∗UX

]
∈ S , we have

〈Sξ, ξ〉 = 〈Uξ0, ξ0〉 ∈ Ω.

Hence Ω = {1,− 1
k} is admissible for S .

5.3. Remark. We do not know at this time precisely which subsets Ω ⊆ C of cardinality
two can appear as the admissible set of an irreducible semigroup S ⊆ Mn(C) of rank
k, where 1 < k < n. Nevertheless, we are in a position to make a couple of interesting
observations.

5.4. Let n > 2 be an integer and S ⊆Mn(C) be an irreducible group of invertible matrices.
Suppose that Ω = {ω1, ω2} is a two-element admissible set for S with corresponding
norm-one admissible vector ξ. Note that 1 ∈ Ω, say ω1 = 1, since I ∈ S .

Recall that the finiteness of Ω implies that of S , and so we may write S = {Si}m
i=1.

By reindexing if necessary, we may fix 1 6 k 6 m so that 〈Siξ, ξ〉 = 1, 1 6 i 6 k and
〈Siξ, ξ〉 = ω2, k + 1 6 i 6 m.
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Recall also from Section 4.2 that ∑m
i=1 Si = 0. It follows that

0 = 〈(
m

∑
i=1

Si)ξ, ξ〉

=
k

∑
i=1
〈Siξ, ξ〉+

m

∑
i=k+1

〈Siξ, xi〉

= k + (m− k)ω2,

and thus ω2 = − k
m−k is rational. That is, Ω ⊆ Q.

More generally we have:

5.5. Theorem. Let S ⊆ Mn(C) be an irreducible semigroup and Ω = {ω1, ω2} an admissible
set for S . If the minimal nonzero rank present in S is r > 1, then Ω is linearly dependent over N,
i.e., there are k1, k2 ∈N such that k1ω1 + k2ω2 = 0, and hence 0 /∈ Ω. In particular, 0 /∈ S .
Proof. Let ξ ∈ Cn be a distinguished unit vector for Ω. Note first that the subset of the
irreducible semigroup S ∪ {0} consisting of all matrices of rank r or zero is a nonzero
semigroup ideal of S ∪ {0}, and hence is irreducible. Thus, we may choose a P ∈ S
with rank(P) = r such that Pξ 6= 0. Now, note that G := PS|PCn \ {0} is an irreducible
semigroup of invertible linear operators and moreover

〈PSPξ, ξ〉 ∈ Ω,

for all S ∈ S . Define the linear functional φ : B(PCn) → C by φ(A) = 〈APξ, ξ〉. It follows
that φ is nonzero and that φ(G) = Ω because G is irreducible. By the second paragraph
of Section 4.2, we have ∑G∈G G = 0 because G is a finite semigroup, and hence a finite
group, of invertible operators. This shows that Ω is linearly dependent over N because
∑G∈G φ(G) = 0 and φ(G) = Ω. That 0 /∈ Ω immediately follows from linear dependence
of Ω over N. It is now clear that 0 /∈ S , for otherwise 0 ∈ Ω, which is impossible.

2

5.6. Remark.
(a) Indeed, a proof almost identical to that of this theorem proves the following.

Let S ⊆ Mn(C) be an irreducible semigroup and Ω an admissible set for S . If the
minimal nonzero rank present in S is r > 1 and either S or Ω is finite, then Ω \ {0} is
linearly dependent over N, i.e., there are m ∈ N, k1, . . . , km ∈ N, and ω1, . . . , ωm ∈
Ω \ {0} such that k1ω1 + · · ·+ kmωm = 0.

(b) If the minimal nonzero rank present in S is 1 with Ω = {ω1, ω2}, then, by Theo-
rem 3.12, Ω \ {0} is linearly dependent over Q as opposed to being linearly depen-
dent over N.

5.7. Corollary. Let S ⊆ Mn(C) be an irreducible semigroup and Ω = {ω1, ω2} an admissible
set for S . If the minimal nonzero rank present in S is r > 1, then Ω = ω1{1, q}, where q ∈ Q and
q < 0.

5.8. Corollary. Let S ⊆ Mn(C) be an irreducible semigroup of invertible matrices and Ω =
{ω1, ω2} an admissible set for S . Then Ω = {1, q}, where q ∈ Q and q < 0.

Corollary 5.8 immediately follows from Corollary 5.7 because in Corollary 5.8, we have
that 1 ∈ Ω.)
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5.9. Proposition. Let S ⊆Mn(C) be an irreducible semigroup and Ω = {ω1, ω2} an admissible
set for S with the distinguished unit vector ξ ∈ Cn. If there is a P ∈ S with minimal nonzero
rank(P) > 1 such that Pξ 6= 0 and P∗ = Pk for some k ∈N, then Ω ⊆ ||Pξ||2Q.
Proof. Note first that PS|PCn \ {0} is an irreducible semigroup of invertible linear operators
and moreover

〈PSPξ, Pξ〉 = 〈Pk+1SPξ, ξ〉 ∈ Ω,

for all S ∈ S . It is now plain that ||Pξ||−2 Ω is an admissible set of cardinality two for
PS|PCn \ {0}with corresponding admissible vector ||Pξ||−1 Pξ. It thus follows from above
that Ω ⊂ ||Pξ||2Q.

2

6. SELFADJOINT SEMIGROUPS

6.1. In this section we examine irreducible selfadjoint semigroups of operators which pos-
sess an admissible set consisting of two elements. Our first result does not depend upon
the ambient Hilbert space being finite-dimensional.

6.2. Lemma. A finite, selfadjoint semigroup of bounded linear operators acting on a Hilbert space
H consists of partial isometries.
Proof. Let S ⊆ B(H) be a finite, selfadjoint semigroup, and fix T ∈ S . Then S := T∗T ∈ S
is a positive operator. Since S is finite, there exist 1 6 i < j so that Si = Sj. That is,
Si(I − Sj−i) = 0. It follows from the polynomial functional calculus that if α ∈ σ(S), then
αi(1− αj−i) = 0, so that α = 0 or αj−i = 1. But S > 0 implies that α > 0, so this in turn
implies that α ∈ {0, 1}.

That is, σ(S) ⊆ {0, 1}. Since S > 0, this implies that S is an orthogonal projection, and
hence that T is a partial isometry.

2

6.3. Theorem. Let S ⊆Mn(C) be a minimal selfadjoint, irreducible semigroup . Suppose that S
has an admissible set Ω = {ω1, ω2} consisting of two elements. Either

(a) each element of S is invertible, S is a group, and Ω = {1,− 1
n}, or

(b) S ' {Ei,j : 1 6 i, j 6 n} ∪ {0}, and there exists an integer 1 6 p 6 n so that Ω =

{0, 1√
p}.

Proof.
First note that as always, the fact that there exists a finite admissible set for S implies

that S itself is finite.

Let k = min{rank S : 0 6= S ∈ S}.
If k = n, then every non-zero element of S is invertible. By minimality of S , 0 6∈ S and

thus every element of S is invertible. By Lemma 6.2, each element of S is a partial isometry
and thus by virtue of being invertible, it is a unitary operator. Since S is finite, it is a group.

Finally, we may appeal to an earlier result, Theorem 4.10, to conclude that ΩS = {1,− 1
n}.

If k < n, then K := {S ∈ S : rank S 6 k} is a semigroup ideal of S which is selfadjoint
and irreducible. By minimality of S , we find that K = S , and hence S ∈ S implies that
S = 0 or rank S = k. We may now apply the structure Theorem 3.11 of [2], (also [1]) to
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conclude that (again, by minimality of S), k divides n and there exists an irreducible group
U ⊆Mk(C) of unitary matrices so that

S ' {Ei,j ⊗U : 1 6 i, j 6
n
k

, U ∈ U} ∪ {0}.

(Here ' denotes simultaneous unitary equivalence.)
Since 0 ∈ S , it immediately follows that 0 ∈ Ω, say ω1 = 0 and Ω = {0, ω2}. Denote

by ξ a distinguished norm-one vector for S corresponding to Ω. Let IU denote the identity
element of U , and observe that Fi := Ei,i ⊗ IU ∈ S for all 1 6 i 6 n

k . Since Fi is positive for
all i and since I = ∑n/k

i=1 Fi, it follows that there exists 1 6 i0 6 n
k so that 〈Fi0 ξ, ξ〉 6= 0, and

thus
〈Fi0 ξ, ξ〉 = ω2.

Next, observe that for all U ∈ U ,

〈(Ei0,i0 ⊗U)ξ, ξ〉 ∈ {0, ω2}.
If we set ζ = Fi0 ξ and think of this as lying in the subspace Fi0Cn, then U ∈ U is an
irreducible group acting on Fi0Cn, and

〈Uζ, ζ〉 = 〈(Ei0,i0 ⊗U)ξ, ξ〉 ∈ {0, ω2}.
In other words, {0, ω2} is a two-element admissible set for U , which contradicts Theo-
rem 4.10, unless k = 1 and U = {1}.

We conclude that S ' {Ei,j : 1 6 i, j 6 n} ∪ {0}.
Writing ξ = (ξ1, ξ2, . . . , ξn)t, we see that 〈Ei,jξ, ξ〉 = ξ jξi ∈ {0, ω2} for all i, j. From our

choice of i0 above, we know that ξi0 6= 0. If 1 6 j 6 n and ξ j 6= 0, then

ω2 = ξ jξi0 = 〈Ei0,jξ, ξ〉 = 〈Ei0,i0 ξ, ξ〉 = ξi0 ξi0 ,

from which we conclude that ξ j = ξi0 . That is, there exists a subset A ⊆ {1, 2, . . . , n} so
that ξ j = ξi0 if j ∈ A and ξ j = 0 if j 6∈ A.

It is now easy to compute that ω2 = 1
p , where p =

√
|A|.

2

7. INFINITE-DIMENSIONAL RESULTS

7.1. Many of the problems that we have formulated and answered above can also be asked
in the infinite-dimensional setting. We finish the paper by describing a couple of simple
situations where the answers are clear.

If H is an infinite-dimensional, separable Hilbert space and {en}∞
n=1 is an orthonormal

basis for H, it is easy to see that S := {Eij := ej ⊗ e∗i : 1 ≤ i, j < ∞} ∪ {0} is an irreducible
semigroup of operators of rank at most one for which Ω = {0, 1} is an admissible set with
two elements; indeed, one may take ξ = e1 as the corresponding admissible unit vector.
It is unclear at this time which two-elements sets Ω can serve as an admissible set for an
irreducible semigroup of rank-one operators onH.

7.2. In Section 4 of the paper, we observed that if G ⊆ Mn(C) is an irreducible group of
unitaries, and if Ω = {ω1, ω2} is an admissible set for G, then Ω = {1,− 1

n}.
Our last example is that of an irreducible group P of unitary operators acting on the

infinite-dimensional, separable Hilbert space `2, for which Ω = {0, 1} is an admissible set.
We do not know whether or not this is the only possible admissible set of cardinality two
for an irreducible group of unitaries in B(`2).
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7.3. Example. Let {ek}∞
k=1 denote the standard orthonormal basis for `2, and let P denote

the set of all permutation unitaries in B(`2) relative to this basis, that is: P ∈ P if and only
if there exists a bijection σ : N→N so that Pek = eσ(k) for all k > 1.

If ξ = e1, then it is obvious that 〈Pξ, ξ〉 ∈ {0, 1} for all P ∈ P , and that both 0 and 1 can
occur. Hence Ω = {0, 1} is admissible for P .

There remains only to show that P is irreducible. Note that P is selfadjoint, so that
any invariant subspace is in fact orthogonally reducing. Hence it suffices to show that any
orthogonal projection Q commuting with every element of P is trivial - i.e. Q ∈ {0, I}.

For 1 6 i 6= j, let Pi,j denote the permutation unitary given by Pi,jei = ej, Pi,jej = ei and
Pi,jek = ek if k 6∈ {i, j}.

Let Q = [qk,l ]. Observe that QPi,j interchanges the ith and jth columns of Q, while Pi,jQ
interchanges the ith and jth rows of Q. The equation QPi,j = Pi,jQ therefore implies that
qi,k = qj,k if k 6∈ {i, j}.)

From this we get that infinitely many entries in the kth column of Q are identical. Given
that the norm of Q is at most one, this can only happen if all of those entries are equal to
zero. This shows that the off-diagonal entries of Q are all equal to zero, i.e. Q is diagonal.

We also see from this equation that qi,i = qj,j, so that Q is scalar.
The only scalar projections are 0 and I, completing the proof that P is irreducible.
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