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ABSTRACT. Let S be a multiplicative semigroup of bounded linear operators on a complex
Hilbert space H, and let Ω be the range of a vector state on S so that Ω = {〈Sξ, ξ〉 : S ∈ S}
for some fixed unit vector ξ ∈ H. We study the structure of sets Ω of cardinality two coming
from irreducible semigroups S . This leads us to sufficient conditions for reducibility and,
in some cases, for the existence of common fixed points for S . This is made possible by a
thorough investigation of the structure of maximal families F of unit vectors in H with the
property that there exists a fixed constant ρ ∈ C for which 〈x, y〉 = ρ for all distinct pairs x
and y in F .

1. INTRODUCTION

1.1. LetH be a complex Hilbert space of dimension at least two, and by B(H) let us denote
the algebra of all bounded (i.e. continuous) linear operators on H. A unit vector ξ ∈ H
defines a vector state ϕξ : B(H)→ C via ϕξ(T) = 〈Tξ, ξ〉 for all T ∈ B(H).

Let S ⊆ B(H) be a non-empty multiplicative semigroup. In the case where S is ir-
reducible (that is, where S admits no non-trivial closed invariant subspaces), it is well
known and simple to show (see Lemma 3.2 below) that Ωξ := {〈Sξ, ξ〉 : S ∈ S} must
contain at least two elements. We refer to Ωξ as an admissible set for S , and to ξ as an
admissible vector corresponding to Ωξ . It can happen, however, that Ωξ will consist of
precisely two elements, and in [3], in conjunction with M. Omladič and A.I. Popov, the
authors investigated some of the consequences of the existence of admissible sets of car-
dinality two for an irreducible semigroup S upon the structure of the semigroup (and the
nature of Ωξ itself). Almost all of the analysis conducted in that paper was concentrated
upon the case where the Hilbert spaceH was finite-dimensional. Amongst other things, it
was shown in [3] that if dim H = n ≥ 2, and if S = S∗ ⊆ B(H) 'Mn(C) is a selfadjoint,
irreducible semigroup with admissible set Ω = {ω1, ω2}, then either every element of S
is invertible and S is a group, in which case Ω = {1,− 1

n}, or S is unitarily equivalent to
{Eij : 1 ≤ i, j ≤ n} ∪ {0} and Ω = {0, 1

p} for some integer 1 ≤ p ≤ n. Here, Ei,j = ei ⊗ e∗j
refers to the standard (i, j)-matrix unit in Mn(C) relative to the standard orthonormal basis
for Cn.

1.2. In this paper we consider semigroups of operators on a complex Hilbert space of ar-
bitrary dimension. For selfadjoint semigroups, and in particular for groups of unitary
operators, we find all possible sets Ω of cardinality two that can occur as an admissible
set for irreducible such semigroups. Viewed contrapositively, our results give sufficient
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conditions for reducibility in terms of the existence of two-element admissible sets Ω. In
some cases we are able to prove the existence of a common fixed point for any semigroup
that has Ω as the range of a vector state which acts upon it.

1.3. There is an interesting connection between the question of identifying those irre-
ducible semigroups for which an admissible set of cardinality two exists, and the question
of determining families Θ of unit vectors in H which have a common inner product: that
is, families Θ for which {〈x, y〉 : x 6= y ∈ Θ} consists of a singleton set.

Indeed, suppose that S = S∗ ⊆ B(H) is a unital semigroup, i.e. that I ∈ B(H) lies in
the semigroup S , and that Ω = {ρ, 1} is an admissible set with corresponding admissible
vector ξ. Extend {ξ} to an orthonormal basis {ξ, eλ : λ ∈ Λ} for H, and let Θ = Sξ :=
{Sξ : S ∈ S}. If we further suppose that S ∈ S implies that ‖S‖ ≤ 1 (as we shall see below
– see Proposition 3.3 – this assumption is in fact superfluous), then for S1, S2 ∈ S we have

〈S1ξ, S2ξ〉 = 〈S∗2S1ξ, ξ〉 ∈ Ω,

and the fact that ‖S1ξ‖, ‖S2ξ‖ ≤ 1 shows that 〈S1ξ, S2ξ〉 = 1 implies that S1ξ = S2ξ. That
is, if S1ξ 6= S2ξ ∈ Θ, then

〈S1ξ, S2ξ〉 = ρ

is constant.
In Section 2 below, we provide descriptions of those ρ ∈ C and of those maximal families

Θ ⊆ H of unit vectors for which x 6= y ∈ Θ implies 〈x, y〉 = ρ. In particular, we shall see
that any 0 < ρ < 1 gives rise to infinite sets Θ with this property, while ρ < 0 implies that
the family Θ must be finite.

1.4. This second problem is related to a famous conjecture known as Zauner’s conjec-
ture [5], that for every n ≥ 2, there exist a collection of n2 equiangluar lines, or equivalently,
that there exist vectors {v1, v2, . . . , vn2} ∈ Cn such that

|〈vi, vj〉| =
{

1 if i = j
1√
n+1

if i 6= j
.

For recent results and references, we refer the reader to [2].
The obvious difference between the two investigations is that in our consideration of

inner products, we do not allow for absolute values, in which case it can be shown that the
maximum size of a set Θ ⊆ Cn of unit vectors with the property that x 6= y ∈ Θ implies
〈x, y〉 = ρ is n + 1, and this occurs precisely when ρ = − 1

n .

2. FAMILIES OF UNIT VECTORS WITH CONSTANT INNER PRODUCT

2.1. We begin our investigations by determining the structure of maximal subsets of a
Hilbert space H for which the inner product of any two distinct members is a fixed con-
stant. We remark that the results of this section hold for real Hilbert spaces (and even
quaternionic Hilbert spaces), though we shall focus our attention on the complex case.

2.2. Definition. Let H be a non-zero, complex Hilbert space, and let ρ ∈ C. A non-empty family
Θ ⊆ H of unit vectors is said to have the common inner product of ρ property (the CIP-ρ
property) if for all x 6= y ∈ Θ, we have

〈x, y〉 = ρ.
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2.3. A few simple remarks are in order:
• The condition is vacuous in the case where Θ has only one vector; that is, for any

unit vector x ∈ H, the set Θ := {x} has the CIP-ρ property. For this reason, hence-
forth, we shall only consider the case where |Θ| ≥ 2.
• Since vectors in Θ are assumed to have norm one, it is a trivial consequence of the

Cauchy-Schwarz Inequality that Θ is empty unless |ρ| ≤ 1.
• With |Θ| ≥ 2, the case ρ = 1 is impossible. If x 6= y ∈ Θ have norm one and
〈x, y〉 = 1, then x = y by the Cauchy-Schwarz Inequality. This is a contradiction.
• If x 6= y ∈ Θ, then ρ = 〈y, x〉 = 〈x, y〉 = ρ, whence ρ ∈ R. That is, −1 ≤ ρ < 1.

Let us dispense with the degenerate cases, namely ρ = 0 and ρ = −1.
(a) The case where ρ = 0 simply means that Θ is an orthonormal set in H. Such sets

always exist.
(c) Suppose that ρ = −1 and fix a vector x0 ∈ Θ. If y 6= x0 ∈ Θ, then ‖x0‖ =

1 = ‖y‖ and 〈x0, y〉 = −1 implies that y = −x0. In particular, this shows that
Θ = {x0,−x0}. Conversely, if x0 ∈ H is any unit vector, then Θ := {x0,−x0} is a
maximal family of unit vectors with the CIP-(−1) property.

2.4. We are left with two cases to consider, namely: 0 < ρ < 1, and −1 < ρ < 0. We
shall see that these cases behave somewhat differently. More precisely, we will see that,
given 0 < ρ < 1, maximal families of unit vectors with the CIP-ρ property can always
be constructed with the same cardinality as the dimension of the underlying Hilbert space
whereas, when−1 < ρ < 0, maximal families of unit vectors with the CIP-ρ are necessarily
finite with at most b−1

ρ c+ 1 elements where, for x ∈ R, bxc = max{n ∈ Z : n ≤ x}.

CASE ONE: 0 < ρ < 1.

2.5. Given 0 < ρ < 1, we define sequences (rn)∞
n=1 and (sn)∞

n=1, which we call the standard
weight sequences associated to ρ, as follows

rn =
ρ

1 + (n− 1)ρ
, sn =

√
1− r2

n, (n ∈N).

It is easily checked that r1 = ρ, limn rn = 0, rn+1 =
rn

1 + rn
, (1 + rn)(1− rn+1) = 1, and that

s2
1 · · · s2

n = (1− r1)(1 + rn) for all n ∈N.
Suppose that N ≥ 2 is an integer and that EN := {e1, e2, . . . , eN} is an orthonormal

family of vectors inH.
Define the vectors xn(:= xn[ρ]), 1 ≤ n ≤ N as follows:

x1 = e1,
x2 = r1e1 + s1e2,

...
xn = r1e1 + s1r2e2 + s1s2r3e3 + · · ·+ s1s2s3 · · · sn−2rn−1en−1 + s1s2s3 · · · sn−1en.

We then set Γ(EN , ρ) = {xn}N
n=1.

If E∞ = {en}∞
n=1 is a denumerably infinite orthonormal family of vectors in H, then xn

is defined for all n ≥ 1, and we set Γ(E∞, ρ) = {xn}∞
n=1.

We refer to Γ(EN , ρ) (resp. Γ(E∞, ρ)) as the standard vector sequences (the value of ρ is
understood to be fixed) associated to EN (resp. E∞).
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Our first lemma establishes the basic properties of the standard vector sequence associ-
ated to E and ρ, where E is a given family of orthonormal vectors inH.

2.6. Lemma. LetH be a Hilbert space and 0 < ρ < 1.
(a) Suppose that N ≥ 1 is an integer and that EN = (en)N

n=1 a finite orthonormal sequence
of vectors in H. If Γ(EN , ρ) = (xn)N

n=1 is the standard vector sequence associated to EN ,
then 〈xi, xj〉 = ρ + δi,j(1− ρ) for all 1 ≤ i, j ≤ N, where δi,j denotes the Kronecker delta
function.

(b) If E∞ = {en}∞
n=1 an orthonormal sequence of vectors in H and Γ(E∞, ρ) = (xn)∞

n=1 is the
standard vector sequence associated to E∞, then 〈xi, xj〉 = ρ + δi,j(1− ρ) for all i, j ∈N.

That is to say, both Γ(EN , ρ) and Γ(E∞, ρ) have the CIP−ρ property.
Proof. Clearly, it suffices to prove (a). It is easily verified that

〈x1, x1〉 = 1,

〈x2, x2〉 = r2
1 + s2

1 = 1,
...

〈xn, xn〉 = r2
1 + s2

1r2
2 + · · ·+ s2

1s2
2 · · · s2

n−1 = 1,

where 3 ≤ n ≤ N. Also, for i, j ∈N with 1 ≤ i < j ≤ N, we have

〈xi, xj〉 = 〈xi, xi+1〉,
= r2

1 + s2
1r2

2 + · · ·+ s2
1 · · · s2

i−2r2
i−1 + s2

1 · · · s2
i−1ri,

= r2
1 + s2

1r2
2 + · · ·+ s2

1 · · · s2
i−2(1− s2

i−1) + s2
1 · · · s2

i−1ri,

= (r2
1 + s2

1r2
2 + · · ·+ s2

1 · · · s2
i−3r2

i−2 + s2
1 · · · s2

i−2)− s2
1 · · · s2

i−1(1− ri),

= 1− (1− r1)(1 + ri−1)(1− ri),

= 1− (1− r1)

= r1 = ρ.

2

2.7. Remark. It is worth noting that the Gram-Schmidt process applied to the sequence
Γ(EN , ρ) = {xn}N

n=1 above yields the orthonormal sequence EN = (en)N
n=1, and hence

Γ(EN , ρ) is linearly independent and span Γ(EN , ρ) = span E . In view of the equations
defining “xi”s in term of “ei”s (1 ≤ i ≤ N), the proof is a matter of straightforward calcu-
lations (using induction), which is omitted for the sake of brevity.

Similarly, the Gram-Schmidt process applied to the sequence Γ(E∞, ρ) = (xn)∞
n=1 returns

the orthonormal sequence E∞ = {en}∞
n=1, and hence Γ(E∞, ρ) is linearly independent and

spanΓ(E∞, ρ) = span E .

2.8. Lemma. LetH be a Hilbert space, and y ∈ H be a unit vector.
(a) Let N ≥ 1 be an integer and suppose that EN = {en}N

n=1 is an orthonormal subset ofH. Let
Γ(EN , ρ) = (xn)N

n=1 be the standard vector sequence associated to EN . Then 〈y, xn〉 = ρ
for all 1 ≤ n ≤ N if and only if 〈y, e1〉 = r1 = ρ and 〈y, en〉 = s1 · · · sn−1rn for all
1 < n ≤ N. Moreover, if we let yN = ∑N

n=1〈y, en〉en, then ‖yN‖2 = 1− s2
1 · · · s2

N =
1− (1− r1)(1 + rN).
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(b) Suppose that E∞ = {en}∞
n=1 is an orthonormal subset of H. If Γ(E∞, ρ) = (xn)∞

n=1, then
〈y, xn〉 = ρ for all n ≥ 1 if and only if 〈y, e1〉 = r1 = ρ and 〈y, en〉 = s1 · · · sn−1rn for all
n > 1. Moreover, if we let y∞ = ∑∞

n=1〈y, en〉en, then ‖y∞‖2 = limN ‖yN‖2 = r1 = ρ.

Proof. We prove (a). Our proof can be adjusted to easily establish (b). The assertion is
easily checked for N = 1. Fix 2 ≤ N ∈ N. We prove the assertion by induction on n ≤ N.
To prove the “only if” implication, suppose we have 〈y, xn〉 = ρ for all 1 ≤ n ≤ N. We
need to show that 〈y, e1〉 = r1 and 〈y, en〉 = s1 · · · sn−1rn for all 1 < n ≤ N. The assertion
trivially holds for n = 1. Suppose the assertion holds for n < N. We prove the assertion
for n + 1 ≤ N. Write y = ∑N

i=1 ciei + y⊥, where y⊥ ∈ H 	 span EN . By the induction
hypothesis, c1 = 〈y, e1〉 = r1 and ci = 〈y, ei〉 = s1 · · · si−1ri for 2 ≤ i ≤ n. We need to show
that cn+1 = 〈y, en+1〉 = s1 · · · snrn+1. To this end, we can write

r1 = 〈y, xn+1〉 = r2
1 + s2

1r2
2 + · · ·+ s2

1s2
2 · · · s2

n−1r2
n + s1s2 · · · sncn+1,

= r2
1 + s2

1r2
2 + · · ·+ s2

1s2
2 · · · s2

n−1(1− s2
n) + s1s2 · · · sncn+1,

= (r2
1 + s2

1r2
2 + · · ·+ s2

1s2
2 · · · s2

n−1)− s2
1s2

2 · · · s2
n−1s2

n + s1s2 · · · sncn+1,
= 1− (1− r1)(1 + rn) + s1s2 · · · sncn+1.

This yields

cn+1 =
1− r1

s1s2 · · · sn
rn,

=
1− r1

s2
1s2

2 · · · s2
n

s1s2 · · · snrn,

=
1− r1

(1− r1)(1 + rn)
s1s2 · · · snrn,

= s1s2 · · · sn
rn

1 + rn
,

= s1s2 · · · snrn+1,

as desired.

Next, to prove the “if” implication, suppose 〈y, e1〉 = r1 and 〈y, en〉 = s1 · · · sn−1rn for all
1 < n ≤ N. We need to show that 〈y, xn〉 = ρ for all 1 ≤ n ≤ N. Again this trivially holds
for n = 1. Assuming that the assertion holds for n < N, we prove it for n + 1 ≤ N. We can
write

〈y, xn+1〉 = r2
1 + s2

1r2
2 + · · ·+ s2

1 · · · s2
n−2r2

n−1 + s2
1 · · · s2

n−1rn,

= r2
1 + s2

1r2
2 + · · ·+ s2

1 · · · s2
n−2(1− s2

n−1) + s2
1 · · · s2

n−1rn,

= (r2
1 + s2

1r2
2 + · · ·+ s2

1 · · · s2
n−3r2

n−2 + s2
1 · · · s2

n−2)− s2
1 · · · s2

n−1(1− rn),
= 1− (1− r1)(1 + rn−1)(1− rn),
= 1− (1− r1)× 1,
= r1 = ρ,
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proving the assertion. Finally, we have that

〈yN , yN〉 = r2
1 + s2

1r2
2 + · · ·+ s2

1 · · · s2
N−2r2

N−1 + s2
1 + · · · s2

N−1r2
N ,

= r2
1 + s2

1r2
2 + · · ·+ s2

1 · · · s2
N−2(1− s2

N−1) + s2
1 + · · · s2

N−1r2
N ,

=
(

r2
1 + s2

1r2
2 + · · ·+ s2

1 · · · s2
N−2

)
− s2

1 · · · s2
N−1 + s2

1 · · · s2
N−1r2

N ,

= 1− s2
1 · · · s2

N−1(1− r2
N),

= 1− s2
1 · · · s2

N−1s2
N ,

= 1− (1− r1)(1 + rN).

This completes the proof.

2

It is worth noting that the boundedness of the sequence (xn)∞
n=1 combined with the

fact that the kth-coordinate of xn converges to the kth-coordinate of y∞ implies that y∞ is a
weak-limit of the sequence (xn)∞

n=1.

2.9. Proposition. LetH be a Hilbert space.

(a) If 1 < dim H = N < ∞ and EN = {en}N
n=1 is an orthonormal basis forH, then Γ(EN , ρ)

is a maximal family of unit vectors with the CIP−ρ property.
(b) If dim H = ℵ0, and if E∞ = {en}∞

n=1 is an orthonormal basis for H, then Γ(E∞, ρ) is a
maximal family of unit vectors inH with the CIP−ρ property.

Proof.

(a) We proceed by contradiction. Suppose that y ∈ H is a unit vector and that 〈y, xn〉 =
ρ for all 1 ≤ n ≤ N. It thus follows from Lemma 2.8(a) that 〈y, e1〉 = r1 and
〈y, en〉 = s1 · · · sn−1rn for all 1 < n ≤ N. Thus we can write

1 = 〈y, y〉 = r2
1 + s2

1r2
2 + · · ·+ s2

1 · · · s2
N−2r2

N−1 + s2
1 + · · · s2

N−1r2
N ,

= r2
1 + s2

1r2
2 + · · ·+ s2

1 · · · s2
N−2(1− s2

N−1) + s2
1 + · · · s2

N−1r2
N ,

= (r2
1 + s2

1r2
2 + · · ·+ s2

1 · · · s2
N−2)− s2

1 · · · s2
N−1 + s2

1 · · · s2
N−1r2

N ,

= 1− s2
1 · · · s2

N−1(1− r2
N),

= 1− s2
1 · · · s2

N−1s2
N ,

= 1− (1− r1)(1 + rN),

implying that (1− r1)(1+ rN) = 0, which is clearly false. This proves the assertion.
(b) Suppose by contradiction that y ∈ H is a unit vector and 〈y, xn〉 = ρ for all n ≥ 1.

It then follows from Lemma 2.8(b) that 〈y, e1〉 = r1 and 〈y, en〉 = s1 · · · sn−1rn for all
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n > 1. This leads to a contradiction, for we will then obtain

1 = 〈y, y〉 = lim
n
(r2

1 + s2
1r2

2 + · · ·+ s2
1 · · · s2

n−2r2
n−1 + s2

1 + · · · s2
n−1r2

n),

= lim
n

(
r2

1 + s2
1r2

2 + · · ·+ s2
1 · · · s2

n−2(1− s2
n−1) + s2

1 + · · · s2
n−1r2

n

)
,

= lim
n

(
(r2

1 + s2
1r2

2 + · · ·+ s2
1 · · · s2

n−2)− s2
1 · · · s2

n−1 + s2
1 · · · s2

n−1r2
n

)
,

= lim
n

(
1− s2

1 · · · s2
n−1(1− r2

n)
)

,

= lim
n

(
1− s2

1 · · · s2
n−1s2

n

)
,

= lim
n

(
1− (1− r1)(1 + rn)

)
,

= r1 = ρ,

a contradiction. This completes the proof.
2

2.10. We are left to consider the case where the underlying Hilbert space H is not separa-
ble.

In this case, suppose that E∞ is a countable orthonormal set, and extend E∞ to an or-
thonormal basis G = E∞ ∪ F forH. Write F = { fλ}λ∈Λ.

Let Γ(E∞, ρ) be the standard vector sequence associated to E∞ (and ρ), and set y =
∑∞

n=1 cnen, where c1 = r1, and cj = s1s2 · · · sj−1rj, j ≥ 2. Finally, for each λ ∈ Λ, set

gλ = y +
√

1− ρ fλ.

2.11. Proposition. With the above notation, Γ(E∞,F , ρ) := Γ(E∞, ρ) ∪ {gλ}λ∈Λ is a maximal
family of unit vectors in H with the CIP−ρ property. Furthermore, Γ(E∞,F , ρ) is a linearly
independent set whose closed span isH.
Proof. From the proof of Lemma 2.8(b), we see that if y = ∑∞

n=1 cnen, then ‖y‖2 = ρ, and
thus y 6∈ Γ(E∞, ρ). Moreover, 〈y, x〉 = ρ for all x ∈ Γ(E∞, ρ). Note further that

〈x, y +
√

1− ρ fλ〉 = 〈x, y〉+
√

1− ρ〈x, fλ〉,
= ρ +

√
1− ρ(0),

= ρ,

〈y +
√

1− ρ fλ, y +
√

1− ρ fλ〉 = 〈y, y〉+
√

1− ρ
(
〈y, fλ〉+ 〈 fλ, y〉

)
+ (1− ρ)〈 fλ, fλ〉,

= ρ +
√

1− ρ(0) + (1− ρ)(1),
= 1,

and

〈y +
√

1− ρ fλ1 , y +
√

1− ρ fλ2〉 = 〈y, y〉+
√

1− ρ
(
〈y, fλ2〉+ 〈 fλ1 , y〉

)
+ (1− ρ)〈 fλ1 , fλ2〉,

= ρ +
√

1− ρ(0) + (1− ρ)(0),
= ρ,



8

for all x ∈ Γ(E∞, ρ) and λ, λ1, λ2 ∈ Λ with λ1 6= λ2. This shows that Γ(E∞,F , ρ) is a family
of unit vectors in N for which any two distinct elements have a common inner product of
ρ.

To show that Γ(E∞,F , ρ) is maximal, suppose z ∈ H is a unit vector such that 〈z, x〉 = ρ
for all x ∈ Γ(E∞,F , ρ) \ {z}. We need to show that z ∈ Γ(E∞,F , ρ). Suppose by contradic-
tion that z /∈ Γ(E∞,F , ρ). In particular, z /∈ Γ(E∞, ρ) but 〈z, x〉 = ρ for all x ∈ Γ(E∞, ρ) \ {z}.
It thus follows from Lemma 2.8 that 〈z, e1〉 = r1 and 〈z, en〉 = s1 · · · sn−1rn for all n > 1.
So we can write z = y + t, where t ∈ H 	M. Then again 〈y + t, y +

√
1− ρ fλ〉 = ρ for

all λ ∈ Λ, which easily implies 〈t, fλ〉 = 0 for all λ ∈ Λ. This means t = 0, and hence
z = y. But once again as we saw in the proof of part (b) of the preceding proposition
1 = 〈z, z〉 = 〈y, y〉 = ρ, a contradiction, proving the assertion.

Finally, by Remark 2.7, en ∈ span Γ(E∞, ρ) for all n ∈ N and so y = ∑∞
n=1 cnen ∈

spanΓ(E∞, ρ) = M. In view of the fact that gλ = y +
√

1− r fλ, this yields that fλ ∈
span Γ(E∞,F , ρ) for all λ ∈ Λ. Consequently, span Γ(E∞,F , ρ) = H because
span Γ(E∞,F , ρ) contains the orthonormal basis E ∪ F forH. This completes the proof.

2

It is worth noting that the fact that 1 6= ρ = ‖y‖2 clearly implies that y 6∈ Γ(E∞,F , ρ).
Having produced examples of maximal families of vectors with the CIP−ρ property for

0 < ρ < 1, we now prove that any such family is of one of the types exhibited above.

2.12. Theorem. Let H be a Hilbert space and suppose that 0 < ρ < 1. Suppose also that Θ ⊆ H
is a family of unit vectors such that x 6= y ∈ Θ implies that 〈x, y〉 = ρ. Then Θ is linearly
independent, and moreover

(a) IfM := span Θ is separable, then there exists an orthonormal basis E = {en}N
n=1 forM

– (here N ∈N∪ {∞}) – such that Θ = Γ(E , ρ).
(b) If N := span Θ is not separable and Θ0 is a countable subset of Θ, then there exist

orthonormal bases E∞ = (en)∞
n=1 for M := span Θ0, and F = { fλ}λ∈Λ for N 	M

such that G = E∞ ∪ F is an orthonormal basis for N and Θ = Γ(E∞,F , ρ).
(c) The family Θ is maximal if and only if span Θ = H. Moreover, if Θ is maximal, then

Θ = Γ(E , ρ), (N ∈N∪ {∞} ) or Θ = Γ(E∞,F , ρ) depending on whetherH is separable
or not, where E or E∞ ∪F are suitable orthonormal bases forH as described in (a) and (b).

Proof. To see that Θ is linearly independent, suppose that we are given n > 1, {x1, . . . , xn} ⊆
Θ, and scalars c1, c2, . . . , cn ∈ C so that c1x1 + c2x2 + · · · + cnxn = 0. Then for each
1 ≤ k ≤ n, we have

0 = 〈0, xk〉 = 〈c1x1 + c2x2 + · · ·+ cnxn, xk〉,
which gives rise to a homogeneous system of n linear equations in c1, . . . , cn whose coeffi-
cient matrix is

Rn :=


1 ρ ρ · · · ρ
ρ 1 ρ · · · ρ
...

... · · ·
...

ρ ρ · · · ρ 1

 ∈ Mn(R).

Since det Rn = (1 − ρ)n−1(1 + (n − 1)ρ) 6= 0 for all n ∈ N, we see that ci = 0 for all
1 ≤ i ≤ n. Thus {x1, . . . , xn} is linearly independent, proving the assertion.

(a) IfM = span Θ is separable, then observe that Θ is at most countable, since x 6= y ∈ Θ
implies that ‖x − y‖2 = ‖x‖2 + ‖y‖2 − 〈x, y〉 − 〈y, x〉 = 2 − 2ρ > 0. It is an easy and
standard exercise to show that a separable Banach space (in this caseM) can not contain
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an uncountable collection of vectors, each of which is a fixed positive distance away from
any other vector in the collection). Hence Θ = (xn)N

n=1 for some N ∈ N ∪ {∞}, and
〈x, y〉 = ρ for all x, y ∈ Θ with x 6= y. We prove the assertion for the case N = ∞.
The assertion for the case N ∈ N can be proved in a similar fashion. So let N = ∞ and
apply the Gram-Schmidt process to Θ = (xn)∞

n=1, which is linearly independent, to obtain
an orthonormal basis E∞ = (en)∞

n=1 for the Hilbert space M = span Θ. We claim that
Θ = Γ(E∞, ρ). We need to show that xn = xn[ρ] for all n ∈N. Here

x1[ρ] = e1,

x2[ρ] = r1e1 + s1e2,
...

xn[ρ] = r1e1 + s1r2e2 + s1s2r3e3 + · · ·+ s1s2s3 · · · sn−2rn−1en−1 + s1s2s3 · · · sn−1en,

where n ≥ 3. We prove this by induction on n. That x1 = x1[ρ] = e1 and x2 = x2[ρ] =
r1e1 + s1e2 are relatively straightforward. Assuming that xi = xi[ρ] for all 1 ≤ i ≤ n,
we prove that xn+1 = xn+1[ρ]. Write xn+1 = c1e1 + · · · + cnen + cn+1en+1. We prove by
induction on 1 ≤ i ≤ n that 〈xn+1, xi〉 = ρ implies that c1 = r1 and cj = s1 · · · sj−1rj
whenever 1 < j ≤ i. As soon as we establish this, from 〈xn+1, xn〉 = ρ and 〈xn+1, xn+1〉 = 1
and the fact that cn+1 > 0 (a consequence of the Gram-Schmidt process), we obtain c1 =
r1, ci = s1s2s3 · · · si−1ri (1 < i ≤ n), and cn+1 = s1s2s3 · · · sn, and thus we will see that
xn+1 = xn+1[ρ], as desired. Now, if i = 1 and 〈xn+1, x1〉 = ρ, as x1 = e1, we see that c1 = r1.
Suppose 1 ≤ i < n and 〈xn+1, xi〉 = ρ implies c1 = r1 and cj = s1 · · · sj−1rj whenever
1 < j ≤ i. Suppose i + 1 ≤ n and 〈xn+1, xi+1〉 = ρ. By the induction hypothesis c1 = r1
and cj = s1 · · · sj−1rj whenever 1 < j ≤ i because 〈xn+1, xi〉 = ρ. But xi+1 = xi+1[ρ]. Thus
we can write

r1 = 〈xn+1, xi+1〉 = r2
1 + s2

1r2
2 + · · ·+ s2

1s2
2 · · · s2

i−1r2
i + s1s2 · · · sici+1,

= r2
1 + s2

1r2
2 + · · ·+ s2

1s2
2 · · · s2

i−1(1− s2
i ) + s1s2 · · · sici+1,

= (r2
1 + s2

1r2
2 + · · ·+ s2

1s2
2 · · · s2

i−1)− s2
1s2

2 · · · s2
i−1s2

i + s1s2 · · · sici+1,
= 1− (1− r1)(1 + ri) + s1s2 · · · sici+1.

This yields

ci+1 =
1− r1

s1s2 · · · si
ri,

=
1− r1

s2
1s2

2 · · · s2
i

s1s2 · · · siri,

=
1− r1

(1− r1)(1 + ri)
s1s2 · · · siri,

= s1s2 · · · si
ri

1 + ri
,

= s1s2 · · · siri+1,

which is what we want, proving the assertion.
(b) Note first that Θ, and hence Θ0, is linearly independent. Let Θ0 = (xn)∞

n=1 and
M = spanΘ0. Let E∞ = (en)∞

n=1 be the orthonormal basis obtained for the Hilbert space
M = spanΘ0 by applying the Gram-Schmidt process to Θ0 = (xn)∞

n=1. As we saw in the
above Θ0 = Γ(E∞, ρ). We claim that (Θ \Θ0)∩M = ∅. Suppose to the contrary that there
exists a y ∈ (Θ \ Θ0) ∩M. As y ∈ M, we have 〈y, fλ〉 = 0 for all λ ∈ Λ. On the other
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hand, from Lemma 2.8(ii), we get that c1 := 〈y, e1〉 = r1 and cn := 〈y, en〉 = s1 · · · sn−1rn
for all n > 1. Consequently, y = ∑∞

n=1 cnen. But then again as we saw in the proof of
Lemma 2.8(b), this yields 1 = 〈y, y〉 = ρ, which is impossible. Therefore, (Θ \ Θ0) ∩
M = ∅. Set Θ \ Θ0 = (zλ)λ∈Λ. Clearly, given an arbitrary zλ ∈ Θ \ Θ0 with λ ∈ Λ,
in view of Lemma 2.8(b), there is an fλ ∈ N 	M such that zλ = y +

√
1− ρ fλ. Since

Θ \Θ0 = (zλ)λ∈Λ consists of unit vectors and has the common inner product property for
ρ, we see that ( fλ)λ∈Λ is an orthonormal system of vectors in N 	M. But if f ∈ N 	M
and 〈 f , fλ〉 = 0 for all λ ∈ Λ, then 〈 f , x〉 = 0 for all x ∈ Θ, implying that f = 0 because
N = spanΘ. This shows that F := ( fλ)λ∈Λ is an orthonormal basis forN 	M. Summing
up, we conclude that G = E ∪F is an orthonormal basis forN and Θ = Γ(E∞,F , ρ), which
is what we want.

(c) The “if” implication is a consequence of (a), (b), and Proposition 2.11. The “only if”
implication follows from (a) and (b). To see this, suppose Θ is maximal but span Θ 6= H.
First, if span Θ is separable, we see from (a) that there exists an orthonormal basis E =
{en}N

n=1 with N ∈N∪ {∞} for span Θ so that Θ = Γ(E , ρ) and span Θ = span E .
Let Γ(E , ρ) = (xn)N

n=1 and let y = ∑N
n=1 cnen be defined as in paragraph 2.10, so that

c1 = r1 and cj = s1s2 · · · sj−1rj for j ≥ 2. Choose f0 ∈ E⊥, and define

g0 = y +
√

1− ρ f0.

A simple calculation, identical to that found in Proposition 2.11, shows that ‖g0‖ = 1 and
that 〈g0, xn〉 = ρ for all 1 ≤ ρ ≤ N, contradicting the maximality of Θ. The rest of the
assertion evidently follows from (a) and (b). This completes the proof.

2

CASE TWO: −1 < ρ < 0.

2.13. We now turn our attention to the case where −1 < ρ < 0, an assumption which we
shall maintain for the remainder of this section. As previously mentioned, we shall see
that, independent of the dimension of the underlying Hilbert space, any family Θ with the
CIP−ρ property must be finite and have at most b− 1

ρc+ 1 elements.
As we did in the case where 0 < ρ < 1, we can define the standard weight sequences

(ri)
∞
i=1 and (si)

∞
i=1, and we can use these to define the coordinates of a standard vector

sequence corresponding to ρ and to a fixed (countable) orthonormal set E .
The problem that occurs when ρ < 0 is that only finitely many of the standard vectors

defined in this manner have norm equal to 1, which is one of the defining conditions for a
set with the CIP−ρ property.

More specifically: for i ≥ 1 one can define the weights

ri =
ρ

1 + (i− 1)ρ
, si =

√
1− r2

i .

Having defined the vectors xk = xk[ρ] as in Section 2.5, we see that there is a maximal
value of N for which {x1, x2, . . . , xN} all have norm equal to one, while ‖xN+1‖ > 1. Such
a unique N is said to be admitted by ρ or ρ-admissible and we write N = ad(ρ). We observe
that 2 ≤ N = ad(ρ) if and only if −1

N−1 ≤ ρ < −1
N , and that this happens if and only if

N = b−1
ρ c+ 1. In other words, N = ad(ρ) = b−1

ρ c+ 1. Also note that if N = ad(ρ), then

ad(ri) = b−1
ρ c + (2− i) where 1 ≤ i ≤ N − 1, and hence ad(ri+1) = ad(ri) − 1 for all
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1 ≤ i ≤ N− 2. As ri =
ρ

1 + (i− 1)ρ
, it is clear that the sequence (ri)

ad(ρ)−1
i=1 is decreasing on

its domain, i.e., ri+1 < ri whenever i + 1 ≤ ad(ρ)− 1. We leave it to the interested reader
to check that if ad(ρ) = N, then

−1
N − 1

≤ r1 <
−1
N

,
−1

N − 2
≤ r2 <

−1
N − 1

, . . . , −1 ≤ rN−1 <
−1
2

.

and in particular rN := rN−1
1+rN−1

= ρ
1+(N−1)ρ < −1 if ρ 6= −1

N−1 or equivalently, if rN−1 6= −1.
But |rN | > 1 implies that ‖xN‖ > 1, which precludes xN from belonging to a set with the
CIP−ρ property.

2.14. Lemma. Let H be a Hilbert space and EN = (en)N
n=1 a finite orthonormal sequence of

vectors in H, where N ≤ ad(ρ) if −1 < ρ < 0 but ρ 6= −1
N−1 and N < ad(ρ) if ρ = −1

N−1 . If
Γ(EN , r) = (xn)N

n=1, then 〈xi, xj〉 = ρ + δi,j(1− ρ) for all 1 ≤ i, j ≤ N, where δi,j denotes the
Kronecker delta. Moreover, Γ(EN , ρ) is linearly independent and span Γ(EN , ρ) = span EN .
Proof. The proof of this result is identical to that of Lemma 2.6 (a).

2

As before, we observe that the Gram-Schmidt process applied to the sequence Γ(EN , ρ) =
(xn)N

n=1 returns the orthonormal sequence E = (en)N
i=1.

The following result is the analogue of Lemma 2.8 (and the proof of that result applies
equally well to this case) for the case where −1 < ρ < 0. The only difference between the
two results is that we require N < ad(ρ) in order to ensure that the norm of the vectors we
consider is one.

2.15. Lemma. LetH be a Hilbert space and EN = {en}N
n=1 be an orthonormal subset ofH, where

N < ad(ρ). If Γ(EN , ρ) = (xn)N
n=1, then 〈y, xn〉 = ρ for all 1 ≤ n ≤ N if and only if 〈y, e1〉 = r1

and 〈y, en〉 = s1 · · · sn−1rn for all 1 < n ≤ N. Moreover, if we let yN = ∑N
n=1〈y, en〉en, then

〈yN , yN〉 = 1− s2
1 · · · s2

N = 1− (1− r1)(1 + rN).

2.16. Proposition. LetH be a Hilbert space and −1 < ρ < 0.

(a) Let N ∈ N with N = ad(ρ) but ρ 6= −1
N−1 , and let EN = {ei}N

i=1 be an orthonormal
subset of H. Then Γ(EN , ρ) = (xi)

N
i=1 is a maximal family of unit vectors in H for which

any two distinct vectors have constant inner product ρ.
(b) Let ρ = −1

N−1 , where N ∈N so that ad(ρ) = N, EN = {ei}N
i=1 be an orthonormal subset of

H, and Γ(EN , ρ) = (xi)
N
i=1. Then xN = −(x1 + · · ·+ xN−1) and Γ(EN , ρ) is a maximal

family of unit vectors in H for which any two distinct vectors have constant inner product
ρ.

Proof.
(a) Suppose by contradiction that y ∈ H is a unit vector and 〈y, xi〉 = ρ for all 1 ≤ i ≤

N. Note that N− 1 < N = ad(ρ). It thus follows from Lemma 2.15 that 〈y, e1〉 = r1
and 〈y, ei〉 = s1 · · · si−1ri for all 1 < i ≤ N − 1. Since −1 < rN−1 < −1

2 (because
ρ 6= −1

N−1 ), we can actually define rN := rN−1
1+rN−1

and see that rN < −1. It now
follows from the proof of Lemma 2.15 that 〈y, eN〉 = s1 · · · sN−1rN . Thus we can
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write y = ∑N
i=1〈y, ei〉ei + y⊥, where y⊥ ∈ H	 span E . This leads to a contradiction,

for we will then obtain

1 = 〈y, y〉

=
(

r2
1 + s2

1r2
2 + · · ·+ s2

1 · · · s2
N−2r2

N−1 + s2
1 + · · · s2

N−1r2
N

)
+ ||y⊥||2,

=
(

r2
1 + s2

1r2
2 + · · ·+ s2

1 · · · s2
N−2(1− s2

N−1) + s2
1 + · · · s2

N−1r2
N

)
+ ||y⊥||2,

=
(
(r2

1 + s2
1r2

2 + · · ·+ s2
1 · · · s2

N−2)− s2
1 · · · s2

N−1 + s2
1 · · · s2

N−1r2
N

)
+ ||y⊥||2,

=
(

1− s2
1 · · · s2

N−1(1− r2
N)
)
+ ||y⊥||2,

=
(

1− s2
1 · · · s2

N−1(1− r2
N)
)
+ ||y⊥||2,

=
(

1− (1− r1)(1 + rN)
)
+ ||y⊥||2,

implying that

||y⊥||2 = (1− r1)(1 + rN),

which yields ||y⊥|| < 0 because 1+ rN < 0, which is impossible. This contradiction
proves the assertion.

(b) Suppose that y ∈ H is a unit vector and 〈y, xi〉 = ρ for all 1 ≤ i ≤ N− 1. We need to
show that y = xN = −(x1 + · · ·+ xN−1). To this end, as N− 1 < N = ad(ρ), we see
from Lemma 2.6 (a) that 〈y, e1〉 = r1 and 〈y, ei〉 = s1 · · · si−1ri for all 1 < i ≤ N − 1.
Note that rN−1 = −1, and hence sN−1 = 0, because ρ = −1

N−1 . Thus we can write
y = ∑N−1

i=1 〈y, ei〉ei + y⊥, where y⊥ ∈ H	 span {ei}N−1
i=1 . Thus

1 = 〈y, y〉

=
(

r2
1 + s2

1r2
2 + · · ·+ s2

1 · · · s2
N−3r2

N−2 + s2
1 + · · · s2

N−2r2
N−1

)
+ ||y⊥||2,

=
(

r2
1 + s2

1r2
2 + · · ·+ s2

1 · · · s2
N−3(1− s2

N−2) + s2
1 + · · · s2

N−2r2
N−1

)
+ ||y⊥||2,

=
(
(r2

1 + s2
1r2

2 + · · ·+ s2
1 · · · s2

N−3)− s2
1 · · · s2

N−2 + s2
1 · · · s2

N−2r2
N−1

)
+ ||y⊥||2,

=
(

1− s2
1 · · · s2

N−2(1− r2
N−1)

)
+ ||y⊥||2,

=
(

1− 0
)
+ ||y⊥||2,

implying that

||y⊥||2 = 0,

which in turn yields y⊥ = 0. Therefore, y = ∑N−1
i=1 〈y, ei〉ei. This together with

〈y, e1〉 = r1 and 〈y, ei〉 = s1 · · · si−1ri for all 1 < i ≤ N − 1 and the fact that

xN = r1e1 + s1r2e2 + s1s2r3e3 + · · ·+ s1s2s3 · · · sN−2rN−1eN−1 + s1s2s3 · · · sN−1eN

shows that y = xN . Clearly, xN = c1x1 + · · ·+ cN−1xN−1 for some ci ∈ C (1 ≤ i ≤
N − 1). Then for each 1 ≤ i ≤ N, we have

〈xN , xi〉 = 〈c1x1 + c2x2 + · · ·+ cN−1xN−1, xi〉.
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This clearly gives rise to

1 = c1r + c2r + · · ·+ cN−1ρ,

r = ci +
N−1

∑
i 6=k=1

ckρ, (1 ≤ i ≤ N − 1)

from which we easily see that ci = −1 for all 1 ≤ i ≤ N − 1. In other words,
y = xN = −(x1 + · · ·+ xN−1), as desired. This proves the assertion.

2

We are now in a position to establish the converse to Proposition 2.16.

2.17. Theorem. Let−1 < ρ < 0 and suppose thatH is a Hilbert space. Suppose also that Θ ⊆ H
is a set of unit vectors such that x 6= y ∈ Θ implies that 〈x, y〉 = ρ.

(a) The set Θ is finite and |Θ| ≤ ad(ρ).
(b) The set Θ is linearly dependent if and only if ρ = −1

|Θ|−1 , in which case ∑x∈Θ x = 0,
dim span Θ = |Θ| − 1, and for any x ∈ Θ, Θ \ {x} = Γ(Ex, ρ), where Ex is an orthonor-
mal basis for span Θ obtained by applying the Gram-Schmidt process to Θ \ {x}.

(c) If Θ is linearly independent, equivalently, ρ 6= −1
|Θ|−1 , then Θ = Γ(E , ρ), where E =

{en}|Θ|n=1 is an orthonormal basis for span Θ obtained by applying the Gram-Schmidt pro-
cess to Θ.

(d) The set Θ is maximal if and only if either |Θ| = ad(ρ) or dimH = |Θ| < ad(ρ).
Proof.

(a) We argue by contradiction. Suppose, to the contrary, that |Θ| > ad(ρ) and choose a
subset {xi}M

i=1 of Θ, where M = ad(ρ) + 1. Clearly, 1+ (M− 1)ρ 6= 0, for otherwise
ad(ρ) = M, which is impossible. This implies that

det RM = (1− ρ)M−1(1 + (M− 1)ρ) 6= 0,

where RM ∈ MM(R) is as in the proof of Theorem 2.12. Consequently, we see
that {xi}M

i=1 is linearly independent. Apply the Gram-Schmidt process to {xi}M
i=1 to

obtain the orthonormal subset E = {ei}M
i=1 ofH. Again, just as we saw in the proof

of part (a) of Theorem 2.12, we get that {xi}M
i=1 = Γ(E , ρ). From this it follows that

M = ad(ρ) + 1 ≤ ad(ρ), which is a contradiction. Thus |Θ| ≤ ad(ρ), as desired.
(b) Suppose that Θ is linearly dependent. Let N := |Θ| ≤ ad(ρ) and Θ = {xi}N

i=1. Once
again, with RN as in the proof of Theorem 2.12, we see that det RN = (1− ρ)N−1(1+
(N − 1)ρ) = 0, which yields ρ = −1

N−1 = −1
|Θ|−1 , proving the “only if” implication.

As for the “if” implication, if ρ = −1
|Θ|−1 , setting N := |Θ| with RN as in the above,

we see that det RN = 0, which in turn, in view of the proof of Theorem 2.12, implies
that Θ = {xi}N

i=1 is linearly dependent, which is what we want. Now since Θ =
{xi}N

i=1 is linearly dependent, if necessary by renaming xi’s (1 ≤ i ≤ N), we may
choose the scalars c1, c2, . . . , cN−1 ∈ C such that xN = c1x1 + c2x2 + · · ·+ cN−1xN−1.
But, just as we saw in the proof of Proposition 2.16, this yields ci = −1 for all
1 ≤ i ≤ N − 1. That is, ∑N

i=1 xi = ∑x∈Θ x = 0. Finally, the set {xi}N−1
i=1 is linearly

independent because det RN−1 6= 0. Therefore, dim span Θ = |Θ| − 1. Choosing
any x ∈ Θ, it is plain that Θ \ {x} is a basis for span Θ. Thus we have Θ \ {x} =
Γ(Ex, ρ), where Ex is an orthonormal basis for span Θ obtained by applying the
Gram-Schmidt process to Θ \ {x}. This proves the assertion.
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(c) If Θ is linearly independent, apply the Gram-Schmidt process to {xi}N
i=1 to obtain

an orthonormal basis E = {ei}N
i=1 for span Θ. Once again just as we saw in the

proof of part (a) of Theorem 2.12, we conclude that {xi}N
i=1 = Γ(E , ρ), as desired.

(d) Suppose first that Θ is maximal but |Θ| 6= ad(ρ) so that |Θ| < ad(ρ). We need
to show that dimH = |Θ|. Note that ρ 6= −1

|Θ|−1 because |Θ| 6= ad(ρ). Thus, Θ
is linearly independent, and hence |Θ| ≤ dimH. We extract a contradiction from
dimH > |Θ|. As Θ is linearly independent, by what we saw in the preceding
paragraph Θ = Γ(E , ρ), where E is an orthonormal basis for span Θ obtained by
applying the Gram-Schmidt process to Θ. But dimH > dim span Θ = |Θ| = |E |
and |Θ| < ad(ρ). So we may choose a unit vector e ∈ H such that E0 = E ∪ {e}
is orthonormal. Since |Θ| < ad(ρ), we see that Θ = Γ(E , ρ) ( Γ(E0, ρ), contradict-
ing the maximality of Θ. This proves the “only if” implication. To prove the “if”
implication assume first that |Θ| = ad(ρ). If ρ 6= −1

|Θ|−1 , then Θ is linearly indepen-
dent and again as we saw in the preceding paragraph, Θ = Γ(E , ρ), where E is an
orthonormal basis for spanΘ obtained by applying the Gram-Schmidt process to
Θ. It now follows from Proposition 2.16 that Θ is maximal. If ρ = −1

|Θ|−1 , then, by
what we just showed in the above, Θ is linearly dependent but Θ \ {x} is linearly
independent for any x ∈ Θ. Fix x ∈ Θ and write Θ \ {x} = Γ(E , ρ), where E is an
orthonormal basis for span Θ obtained by applying the Gram-Schmidt process to
Θ \ {x}. It now follows from the proof of Proposition 2.16 that Θ is maximal. Lastly,
if dimH = |Θ| < ad(ρ), again Θ is linearly independent, and hence Θ = Γ(E , ρ),
where E is an orthonormal basis for span Θ = H obtained by applying the Gram-
Schmidt process to Θ. Now the maximality of Θ follows from Proposition 2.16(a).
This completes the proof.

2

3. IRREDUCIBLE, SELFADJOINT SEMIGROUPS

3.1. We next turn our attention to a somewhat different problem. Our present goal is
to characterize those two-element sets Ω ⊆ C which can appear as the admissible set
of a selfadjoint, irreducible semigroup S of operators. Our main result is Theorem 3.9
below, which shows that when the underlying Hilbert space is infinite-dimensional and
separable, Ω must be of the form Ω = {0, 1

p} for some positive integer p. We shall arrive
at that result through a series of intermediate results.

The following result is stated explicitly as Corollary 2.1.6 in [4] for semigroups acting on
finite-dimensional Hilbert spaces.

3.2. Lemma. Let H be a complex Hilbert space of dimension at least two, S ⊆ B(H) be an
irreducible semigroup, and x, y ∈ H be fixed, non-zero vectors. Suppose that ϕ : B(H) → C is
the vector functional defined by ϕ(T) = 〈Tx, y〉 for all T ∈ B(H).

Then ϕ(S) := {ϕ(S) : S ∈ S} has at least two elements.
Proof. Suppose that ϕ(S) = {α}. The irreducibility of S implies that of S∗, since M ∈
LatS∗ implies thatM⊥ ∈ LatS . Thus, we can find T1, T2 ∈ S such that

T∗1 y 6= T∗2 y.

Consider next α = ϕ(T1S) = ϕ(T2S) for all S ∈ S , so that

〈Sx, (T1 − T2)
∗y〉 = 0 for all S ∈ S .
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But then Sx is perpendicular to (T1 − T2)∗y 6= 0, contradicting the irreducibility of S .
2

3.3. Proposition. Let H be a complex Hilbert space and S ⊆ B(H) be a selfadjoint, irreducible
semigroup of operators onH. Suppose furthermore that Ω is a bounded, admissible set for S . Then
S is bounded; in fact, S ∈ S implies that ‖S‖ ≤ 1.

It follows that if S is a group with these properties, then S consists of unitary operators.
Proof. In the case where dim H = 1, this is straightforward. Suppose therefore that
dim H ≥ 2, and let ξ ∈ H denote a norm-one admissible vector corresponding to the
bounded admissible set Ω.

Suppose that 0 ≤ T ∈ S with ‖T‖ > 1. Denoting by ET(·) the spectral projection
function for T, we see that there must exist δ > 0 so that Q := ET([1 + δ, ‖T‖]) 6= 0. By the
functional calculus for normal operators, we also have that for all k ≥ 1,

Tk ≥ QTk ≥ (1 + δ)kQ.

The irreducibility of S , combined with the fact that Q 6= 0 implies that there exists S ∈ S
such that QSξ 6= 0.

Observe next that 0 ≤ S∗TkS ∈ S and so 0 ≤ 〈S∗TkSξ, ξ〉 ∈ Ω for all k ≥ 1. But then for
each k ≥ 1,

〈S∗TkSξ, ξ〉 = 〈TkSξ, Sξ〉
≥ 〈(QTk)Sξ, Sξ〉
≥ 〈((1 + δ)kQ)Sξ, Sξ〉
= (1 + δ)k〈QSξ, QSξ〉
= (1 + δ)k‖QSξ‖2.

Since limk→∞(1 + δ)k‖QSξ‖2 = ∞, this contradicts the boundedness of Ω.
Thus, 0 ≤ T ∈ S implies that ‖T‖ ≤ 1. But if R ∈ S and ‖R‖ > 1, then 0 < R∗R ∈ S

and ‖R∗R‖ = ‖R‖2 > 1, a contradiction. This completes the proof.
2

We observe that the same result fails if we simply drop the condition that S be selfad-
joint.

3.4. Example. For each N ≥ 1, let B1(C
N) = {T ∈ MN(C) : ‖T‖ ≤ 1}. Let us identify H

with `2(N) and consider

B1(H) := ∪∞
N=1{B⊕ 0(∞) : B ∈ B1(C

N)} ⊆ B(H).

Define K = diag( 1
n )

∞
n=1 and L = diag(n)∞

n=1. It is understood that L 6∈ B(H). For N ≥ 1,
let KN = diagN

n=1(
1
n ) ∈MN(C).

Let

S = {KTL : T ∈ B1(H)}
= ∪∞

N=1{KN BK−1
N ⊕ 0(∞) : B ∈ B1(C

N)}.

It is readily verified that S is an irreducible semigroup in B(H) (in fact, span(S) is
weak-operator topology dense in B(H), by virtue of containing each matrix unit Ei,j).

Moreover,
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(a) For each m ≥ 1, {〈Sem, em〉 : S ∈ S} = D := {z ∈ C : |z| ≤ 1}. In particular, the
admissible set corresponding to em is bounded.

(b) For each 1 ≤ i, j ≤ N and for each S ∈ S ,

|〈Sei, ej〉 = |〈KN BK−1
N ei, ej〉| for some B ∈ B1(C

N)

= |〈B(K−1
N ei, (K∗Nej)〉|

≤ ‖B‖ ‖K−1
N ei‖ ‖K∗Nej‖

≤ N.

(c) For each N ≥ 1, NE1,N ∈ S , and so S is not bounded, though for each 1 ≤ i, j, the
set {〈Sei, ej〉 : S ∈ S} is bounded, with the bound depending upon max(i, j).

We can even do a bit better. Let E = {Ei,j : 1 ≤ i, j} ∪ {0}, so that E is an irreducible
semigroup in B(H). Again, let F := {KEL : E ∈ E}. Then F is an irreducible semigroup
in B(H), F is unbounded (nE1,n ∈ F for all n ≥ 1), and for any m ≥ 1, the basis vector em
is an admissible vector corresponding to the admissible set {0, 1} for F . In other words,
F is an unbounded, irreducible semigroup which admits a two-element admissible set
Ω = {0, 1}.

3.5. Example 3.4 may suggest that an irreducible semigroup S on which a linear functional
has bounded values may at least be unboundedly similar to a bounded semigroup; i.e. that
there exists an injective linear transformation T with an appropriate dense domain D such
that TD is also dense inH, and the semigroup TST−1 (defined on TD) is bounded.

The following example shows that such an unbounded similarity need not exist even in
the case where S consists of rank-one operators and admits many states τ for which the
corresponding admissible sets τ(S) have cardinality two.

3.6. Example. Let {ei} be an orthonormal basis for H. Let {Ei,j} be the set of basic op-
erators and define S to be the semigroup consisting of 0, and rank-one operators of the
form

∑
i∈F

Ei,j, j ∈N,

where F is a finite set.
Note that for any fixed i, j ≥ 1, 〈Sei, ej〉 ∈ {0, 1}, so that S has many 2-element admissi-

ble sets, and S is, of course, irreducible. We claim that no injective linear transformation T
exists such that the semigroup ϕ(S) defined by

ϕ(S)T = TS for S ∈ S
is bounded.

The domain D of T contains the (non-closed) linear spanM of the ranges of the Ei,j, i.e.
M = span{ei : i ∈ N}, so that we can assume with no loss of generality that D =M. Let
fi = Tei and let ϕ(Ei,j) = Fi,j. It follows from the equations

Ei,jek = δj,kei

for all i, j, k ≥ 1 that
Fi,j fk = δj,k fi.

Now Fi,j f j = fi yields

‖Fi,j‖ ≥
‖ fi‖
‖ f j‖

.
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If supk ‖ fk‖ = ∞, or if infk ‖ fk‖ = 0, this inequality implies the unboundedness of ϕ(S),
and we are done. So to prove the claim we will assume the existence of strictly positive
scalars m and M such that for all k ≥ 1,

m ≤ ‖ fk‖ ≤ M.

Thus { fk}k has a weakly convergent subsequence { fkn}n with weak limit g. We next dis-
tinguish two cases:

• CASE ONE. Suppose that g 6= 0. Then

lim
n
〈 fkn , g〉 = ‖g‖2.

Choose a subsequence of { fkn}n (which we still denote by { fkn}n), with∣∣〈 fkn , g〉 − ‖g‖2∣∣ < 1
2n ,

for all n ≥ 1.
This implies that ∣∣∣∣∣ N

∑
n=1
〈 fkn , g〉

∣∣∣∣∣ ≥ N‖g2‖ − 1

for every integer N. Now ∑N
n=1 fkn,1 ∈ ϕ(S) and

‖
N

∑
n=1

Fkn,1‖ ≥

∣∣∣〈∑N
n=1 Fkn,1 f1, g〉

∣∣∣
‖ f1‖ ‖g‖

≥

∣∣∣〈∑N
n=1 fkn , g〉

∣∣∣
M‖g‖

≥ N‖g‖2 − 1
M‖g‖ .

Since N can be chosen arbitrarily large, we see that ϕ(S) is unbounded.
• CASE TWO. Suppose that g = 0.

In this case we pick a subsequence of fkn inductively as follows.
Let h1 = fk1 . Having chosen h1, h2, . . . , hj from { fkn}n, we may find hj+1 in { fkn}n

such that ∣∣〈hj+1, hi〉
∣∣ < 1

j · 2j

for i = 1, 2, . . . , j. (This is possible since limn〈 fkn , hi〉 = 0 for each i.)
By construction, there is a member of ϕ(S) with

ϕ(S) f1 =
N

∑
j=1

hj,

so that

‖ϕ(S)‖ ≥
‖∑N

j=1 hj‖
M

for every integer N.
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But

‖
N

∑
j=1

hj‖2 =
N

∑
j=1

N

∑
i=1
〈hi, hj〉

=

∣∣∣∣∣ N

∑
i=1
‖hi‖2 + ∑

1≤i 6=j≤N
〈hi, hj〉

∣∣∣∣∣
≥ MN − 2

N

∑
j=2

j−1

∑
i=1

∣∣〈hi, hj〉
∣∣

≥ MN − 2
N

∑
j=2

j−1

∑
i=1

1
j · 2j

= MN − 2.

Once again, the fact that N may be chosen arbitrarily large implies that ϕ(S) is
unbounded.

3.7. Proposition. Let H be an infinite-dimensional, complex Hilbert space, S ⊆ B(H) be an
irreducible, selfadjoint semigroup of operators, and suppose that Ω ⊆ C is a two-element admissible
set for S . Then Ω ⊆ [0, 1].
Proof. Let ξ be a norm-one admissible vector corresponding to Ω. First observe that by
Proposition 3.3 above, S is bounded in norm by 1; that is, if S ∈ S , then ‖S‖ ≤ 1. As such,

|〈Sξ, ξ〉| ≤ ‖S‖ ‖ξ‖2 ≤ 1

for all S ∈ S ; i.e. Ω ⊆ D = {z ∈ C : |z| ≤ 1}.
Next, if ω ∈ Ω, then ω = 〈S0ξ, ξ〉 for some S0 ∈ S (by the irreducibility of S), which

implies that ω = 〈S∗0ξ, ξ〉 ∈ Ω.
Moreover, given S ∈ S , we have that S∗ ∈ S and so

‖Sξ‖2 = 〈S∗Sξ, ξ〉 ∈ Ω.

Note that we can not have ‖Sξ‖ = 0 for all S ∈ S , for otherwise Cξ would be a non-trivial
invariant subspace for S .

Fix T0 ∈ S so that T0ξ 6= 0, and let 0 < β := ‖T0ξ‖2 ∈ Ω. Let {α} = Ω \ {β}, so that
Ω = {α, β}.

Since α ∈ Ω implies that α ∈ Ω from above, and since α 6= β implies that α 6= β = β,
we see that in order to maintain the condition that |Ω| = 2, we must have α = α, and thus
−1 ≤ α ≤ 1.

Next, suppose that α < 0. Since 0 < ‖Sξ‖2 ∈ Ω for all S ∈ S , we conclude that
‖Sξ‖2 = β for all S ∈ S .

Set C = { 1√
β

Sξ : S ∈ S}. Then, by the irreducibility of S we see that span C = H, and

clearly x ∈ C implies that ‖x‖ = 1. In particular, C is infinite.
Moreover, if S1, S2 ∈ S and S1ξ 6= S2ξ, then

〈 S1ξ√
β

,
S2ξ√

β
〉 6= 1,

i.e., 〈S1ξ, S2ξ〉 6= β.
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But then 〈S1ξ, S2ξ〉 = 〈S∗2S1ξ, ξ〉 ∈ Ω, so that 〈S1ξ, S2ξ〉 = α. That is,

〈 S1ξ√
β

,
S2ξ√

β
〉 = α

β
< 0

for all S1, S2 ∈ S . By the results of Section 2, there can not exists infinitely many distinct
unit vectors with the CIP−α property for α < 0. This contradiction shows that α ≥ 0. That
is, Ω ⊆ [0, 1].

2

3.8. Proposition. Let H be a complex, infinite-dimensional, separable Hilbert space, S = S∗ ⊆
B(H) be an irreducible semigroup, and suppose that Ω = {α, β} is a two-element admissible set
for S . Then 0 ∈ Ω, so that Ω = {0, β} for some 0 < β ≤ 1.
Proof. By Proposition 3.3 above, we know that S is bounded (in fact, S ∈ S implies that
‖S‖ ≤ 1), and by Proposition 3.7, we know that Ω ⊆ [0, 1]. Let ξ be an admissible unit
vector corresponding to Ω. After relabelling α and β if necessary, we may assume without
loss of generality that 0 ≤ α < β ≤ 1.

We argue by contradiction. To that end, suppose that α > 0.
We first prove that for all S ∈ S , ‖Sξ‖2 = β. Indeed, suppose that there exists Sα ∈ S

with ‖Sαξ‖2 = α. Consider the continuous linear functional

ϕ : B(H) → C

T 7→ 〈Tξ, Sαξ〉.
Clearly, ϕ 6= 0. Nevertheless, for any S ∈ S , ϕ(S) = 〈S∗αSξ, ξ〉 ∈ Ω, and thus

α ≤ ϕ(S) ≤ ‖Sξ‖ ‖Sαξ‖ ≤
√

β
√

α < β,

from which we deduce that ϕ(S) = α. By Lemma 3.2, we conclude that S is reducible,
which is obviously false.

Hence S ∈ S implies that ‖Sξ‖2 = β.
Next, observe that if S1, S2 ∈ S , then 〈S1ξ, S2ξ〉 = 〈S∗2S1ξ, ξ〉 ∈ Ω, and either S1ξ = S2ξ,

or 〈S1ξ, S2ξ〉 < ‖S1ξ‖ ‖S2ξ‖ = β, from which we conclude that 〈S1ξ, S2ξ〉 = α.

It follows that C := { Sξ√
β

: S ∈ S} is a collection of unit vectors in H with the CIP−α

β
property, and furthermore the irreducibility of S implies that this collection densely spans
H.

Note that if
Sξ√

β
∈ C and T ∈ S , then TS ∈ S , and so T

Sξ√
β

=
TSξ√

β
∈ C. Now H is

infinite-dimensional, and ρ :=
α

β
> 0, so by Theorem 2.12, there exists an orthonormal

basis E∞ for H such that C = Γ(E∞, ρ) = (xn)∞
n=1, where the xn’s are defined as in para-

graph 2.5. Let y∞ be the vector defined in Lemma 2.8 (b), such that ‖y∞‖2 = ρ < 1, and
〈y∞, xn〉 = ρ for all n ≥ 1. As remarked at the end of the proof of that result, y∞ is a
weak-limit of the sequence (xn)∞

n=1.
Thus if A ∈ B(H), then Ay∞ is the weak-limit of (Axn)∞

n=1. From this we obtain that for
all S ∈ S :

〈Sy∞, xm〉 = lim
n
〈Sxn, xm〉 = lim

n
〈xn, Sxm〉 = ρ,

as Sxm ∈ C implies that Sxm = xk for some 1 ≤ k. By Proposition 2.9 (b), we may conclude
that Sy∞ ∈ C ∪ {y∞}. On the other hand, ‖y∞‖ < 1, and by Proposition 3.3, S ∈ S implies
that ‖S‖ ≤ 1. Hence ‖Sy∞‖ < 1, which forces Sy∞ = y∞. That is to say, y∞ is a fixed point
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of S , and thus Cy∞ is a non-trivial invariant subspace for S , contradicting the irreducibility
of S .

This contradiction implies that α = 0; i.e Ω = {0, β} for some 0 < β ≤ 1.
2

3.9. Theorem. Let H be a complex, separable, infinite-dimensional Hilbert space and S be an
irreducible, selfadjoint semigroup in B(H). Suppose that S admits a two-element admissible set

Ω. Then there exists an integer p ≥ 1 so that β =
1
p
∈ Ω. Hence Ω = {0, 1

p}.

Proof. By Proposition 3.8, we know that Ω is of the form {0, β} for some 0 < β ≤ 1. Let
ξ be an admissible unit vector corresponding to Ω. Then for any S ∈ S , we know that

‖Sξ‖2 ∈ Ω, and that { Sξ√
β

: S ∈ S , Sξ 6= 0} is an orthonormal basis forH.

Let us denote this basis by E∞ = (en)∞
n=1. Let us also write ξ = ∑∞

n=1 ξnen, where ξn :=
〈ξ, en〉 for all n ≥ 1.

Set ∆ = {n ∈ N : ξn 6= 0}. Note that S ∈ S implies that
Sξ√

β
∈ E∞ ∪ {0}. Also,

〈Sξ, ξ〉 ∈ Ω = {0, β}. Combining these two observations with the fact for each n ∈ ∆,

there exists Rn ∈ S so that en =
Rnξ√

β
, we see that

〈Rnξ, ξ〉 = 〈
√

βen, ξ〉 =
√

β ξn ∈ Ω.

But n ∈ ∆ implies that ξn 6= 0, and thus n ∈ ∆ implies that ξn =
√

β. Since ‖ξ‖2 = 1 =

∑n∈∆ |ξn|2 = ∑n∈∆ β, we see that 1 = |∆|β, or equivalently, that β =
1
p

, where p := |∆| is

an integer.
2

3.10. Example. Having seen that the only possible two-element admissible sets for irre-
ducible, selfadjoint semigroups of operators on an infinite-dimensional, separable Hilbert
space are of the form Ω = {0, 1

p} for some integer p ≥ 1, let us now show that any choice
of p is permitted.

Let H be an infinite-dimensional, separable, complex Hilbert space with orthonormal
basis {en}∞

n=1. Let E = {Ei,j : 1 ≤ i, j < ∞} ∪ {0}, where Ei,j = ei ⊗ e∗j is the (i, j)-matrix
unit relative to this basis. It was seen in Section 7 of [3] that E is an irreducible, selfadjoint
semigroup of operators and that ξ = e1 serves as an admissible vector for the admissible
set Ω = {0, 1} for E . In particular, this shows that an example exists when p = 1.

In fact, suppose that p ≥ 2 is an integer and set ξp =
1
√

p
(e1 + e2 + · · · + ep). An

easy calculation then shows that E also serves as an example of an irreducible, selfadjoint
semigroup for which Ωp := {0, 1

p} is an admissible set corresponding to the admissible
vector ξp. We remark that this example is a simple extension of the example derived in
Theorem 6.3 of [3].
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3.11. Corollary. Let H be a complex, separable, infinite-dimensional Hilbert space and U be an
irreducible group of unitary operators in B(H). If Ω is an admissible set for U with cardinality
two, then Ω = {0, 1}.
Proof. The fact that U is a group implies that it is unital, and hence 1 ∈ Ω. The result now
follows from Theorem 3.9.

2

In the proof of Theorem 4.1 below, we shall see that such a group is unitarily equivalent
to a group of permutations.

4. FIXED POINTS AND STRUCTURE RESULTS

Corollary 3.11 above tells us that if U is a group of unitary operators in B(H), and if
Ω = {ρ, 1} is an admissible set for U with ρ 6= 0, then U admits a non-trivial invariant
subspace. In fact, more is true. In this section, we demonstrate that in many cases, we
can conclude the existence of fixed vectors for – and derive detailed information about the
structure of – these groups simply from the value of ρ.

4.1. Theorem. Let H be a complex Hilbert space and U ⊆ B(H) be a group of unitary operators
on H. Suppose furthermore that Ω = {ρ, 1} is an admissible set for U , and that ξ ∈ H is a
corresponding admissible vector.

If H0 = span{Uξ : U ∈ U}, then there exists a non-zero vector z ∈ H0 such that Uz = z for
all U ∈ U (i.e. z is a fixed point for U ) unless either

(a) H0 is infinite-dimensional and ρ = 0, or
(b) H0 has finite dimension m ≥ 1 and ρ = − 1

m .
Proof. Observe thatH0 is a reducing subspace for U .
• Consider first the case where ρ = 1, so that Ω = {1}. It follows immediately from

Lemma 3.2 that U is reducible.
In fact, in this case, U ∈ U implies that 〈Uξ, ξ〉 = 1 = ‖ξ‖2, and since ‖U‖ = 1, we must

have that Uξ = ξ, implying that ξ is a fixed point for U , and that dim H0 = 1.
• Next, suppose that ρ = 0. We claim that U|H0 is unitarily equivalent to a group of

permutations.
Indeed, given any U, V ∈ U , we have that 〈Uξ, Vξ〉 = 〈V∗Uξ, ξ〉 ∈ Ω = {0, 1}, so that

E := {Uξ : U ∈ U} forms an orthonormal basis for H0. Let us denote this orthonormal
basis by E = {ξ} ∪ {eλ : λ ∈ Λ}, where dim H0 = 1 + |Λ|.

For each α ∈ Λ, fix Uα ∈ U so that Uαξ = eα. Let V ∈ U be arbitrary. Then Veα = VUαξ ∈
E by the definition of E . Since V|H0 is unitary and therefore surjective (as a map onto H0),
we see that V must permute the elements of E ; i.e., that U|H0 is a group of permutation
unitaries (relative to the orthonormal basis E ).

Suppose that z ∈ H0 is a fixed point for U . Then U∗α z = z for all α ∈ Λ, and thus

〈z, ξ〉 = 〈U∗α z, ξ〉 = 〈z, Uαξ〉 = 〈z, eα〉
for all α ∈ Λ.

If H0 has finite dimension m ≥ 1, we then see that the vector z = z0(ξ + ∑λ∈Λ eλ) is a
fixed point for U , for any choice of z0 ∈ C. (This represents the vector with constant entries
equal to z0.) If H0 has infinite dimension, then the above condition for 〈z, eα〉, combined
with the fact that z must be a vector of finite length implies that z = 0. In other words,
U|H0 does not admit a non-zero fixed vector in this case.
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• We now assume that ρ 6∈ {0, 1}.

In particular, we begin with the case where dim H0 = m < ∞ and ρ = − 1
m .

It was shown in [3] (see Proposition 4.9 and Theorem 4.10) that if Pm+1 ⊆ Mm+1(C) is
the group of permutation matrices and 1 = (1, 1, . . . , 1)t ∈ Cm+1, then G := Pm+1|1⊥ is
an irreducible group for which Ω = {1,− 1

m} is an admissible set. Of course, for such an
irreducible group, no (non-zero) fixed vector can exist.

Having said this, the proof of Theorem 4.10 of [3] shows that there exist an admissible
vector ξ corresponding to Ω and a basis {u1, u2, . . . , um} for 1⊥ ⊆ Cm+1 so that

(i) with um+1 = −∑m
j=1 uj, we have that

{u1, u2, . . . , um+1}

has the CIP−ρ property for ρ = − 1
m ;

(ii) Guk = {u1, u2, . . . , um+1} for any 1 ≤ k ≤ m. We may assume without loss of
generality that u1 = ξ.

Clearly every U ∈ G permutes the elements of Gξ. Let

U = {V ∈ G : Vum+1 = um+1}.
By construction, um+1 is a fixed vector for U . Moreover, I ∈ U implies that 1 ∈ {〈Vξ, ξ〉 :
V ∈ U}, while the existence of W ∈ U so that Wξ = u2 implies that 〈Wξ, ξ〉 = ρ = − 1

m .
These two constructions show that in the case where dim H0 = m < ∞ and ρ = − 1

m ,
fixed vectors may or may not exist.
• So we have reduced the problem to the case where ρ 6∈ {0, 1} and either

(i) dim H0 = m and ρ 6= − 1
m ; or

(ii) dim H0 = ∞.
Suppose that (i) holds and choose U1, U2, . . . , Um ∈ U so that C := {Uiξ : 1 ≤ i ≤ m} is

a basis forH0. In particular, these vectors are linearly independent and hence distinct.
Note that if V ∈ U , then

〈Uiξ, Vξ〉 = 〈V∗Uiξ, ξ〉 ∈ Ω.

If Vξ 6∈ {Uiξ : 1 ≤ i ≤ m}, then this forces

〈Uiξ, Vξ〉 = ρ, 1 ≤ i ≤ m.

Similarly, the fact that the vectors Uiξ, 1 ≤ i ≤ m are distinct implies that

〈Uiξ, Ujξ〉 = ρ, 1 ≤ i 6= j ≤ m.

But ρ 6= − 1
m , and so the results of Section 2 imply that there can be at most m vectors inH0

with the CIP−ρ property, a contradiction. This shows that Vξ ∈ {Uiξ : 1 ≤ i ≤ m} for all
V ∈ U .

Let
z = U1ξ + U2ξ + · · ·+ Umξ.

We claim that z is a fixed point for U . Note that for every V ∈ U , the vectors {VUiξ : 1 ≤
i ≤ n}must be distinct and thus give a re-ordering of {Uiξ : 1 ≤ i ≤ n}. So

Vz =
n

∑
i=1

VUiξ =
n

∑
i=1

Uiξ = z.
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Next, assume that H0 is infinite-dimensional. Then ρ must be positive. An argument
similar to that above shows that the set Uξ := {Uξ : U ∈ U} forms a maximal set with the
CIP−ρ property, and so by Theorem 2.12, it must be of the form Γ(E∞, ρ) or Γ(E∞,F , ρ).
Let us allow for the case where F = ∅, and adopt the notation Γ(E∞,F , ρ) to handle both
of these situations simultaneously.

Let y be the vector constructed in Section 2.10 (where the set

Γ(E∞,F , ρ) = Γ(E∞, ρ) ∪ {gλ := y +
√

1− ρ fλ}λ∈Λ

is the maximal family inH0 with the CIP−ρ property as shown in Proposition 2.11). Recall
that 〈y, Wξ〉 = ρ for all W ∈ U .

We claim that setting z = y yields the desired fixed vector for U . To show this, first note
that for every V ∈ U , we have that V permutes the elements of Uξ = Γ(E∞,F , ρ), by virtue
of the fact that it is bijective.

But then
〈y, Vξ〉 = 〈y, xn〉 = ρ

for some n ≥ 1, where Γ(E∞, ρ) = {xn}∞
n=1, or (recalling that fλ is orthogonal to y) there

exists λ ∈ Λ such that
〈y, Vξ〉 = 〈y, y +

√
1− ρ fλ〉 = ρ.

Thus for every U ∈ U ,

〈Uy− y, Vξ〉 = 〈y, U∗Vξ〉 − 〈y, Vξ〉 = ρ− ρ = 0

for all V ∈ U . Since {Vξ : V ∈ U} densely spansH0, we find that Uy− y = 0.
2

In both cases (a) and (b) of the proposition above, the restriction of U to H0 can be
irreducible, as we have seen before.

4.2. Proposition. Let H be a complex Hilbert space and U ⊆ B(H) be a group of unitary oper-
ators on H. Suppose furthermore that Ω = {ρ, 1} is a two-element admissible set for U , that
ξ ∈ H is a corresponding admissible vector, and that ρ = 〈Wξ, xi〉 for some W ∈ U . Set
H0 = span{Uξ : U ∈ U}.

(a) If dim H0 =: m < ∞, then either
(i) ρ ∈ {− 1

m ,− 1
m−1}, or

(ii) U|H0 is unitarily similar to a group of permutation matrices.
(b) If dim H0 = ∞, then there exists a subspaceM0 ⊆ H0 of codimension at most one such

that U|M0 is unitarily similar to a group of permutation unitaries
Proof. It is clear that V ∈ U implies that ‖V‖ ≤ 1, and thus |ρ| ≤ 1. Furthermore,
ρ = 〈Wξ, ξ〉 implies that ρ = 〈W∗ξ, ξ〉 ∈ Ω, forcing ρ ∈ R. Since |Ω| = 2, this implies that
−1 ≤ ρ < 1.

(a) Suppose that dim H0 =: m < ∞, and that ρ 6∈ {− 1
m ,− 1

m−1}.
By Theorem 4.1 and its proof, we see that there exist U1, U2, . . . , Um ∈ U such

that
(I) H0 = span{U1ξ, U2ξ, . . . , Umξ},

(II) 0 6= z := U1ξ + U2ξ + · · ·+ Umξ satisfies Uz = z for all U ∈ U , and
(III) Vξ ∈ {U1ξ, U2ξ, . . . , Umξ} for all V ∈ U .
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Note that
〈z, Ujξ〉 = 1 + (m− 1)ρ

for al 1 ≤ j ≤ m, and that

‖z‖2 = m[1 + (m− 1)ρ] ≥ 0.

(This last estimate shows that [1 + (m− 1)ρ] ≥ 0, which we shall use below.)
For λ ∈ R \ {0}, and 1 ≤ i ≤ m, consider

ξλ,i := λUiξ − z ∈ H0.

Observe that for 1 ≤ i 6= j ≤ m,

〈ξλ,i, ξλ,j〉 = ρλ2 − 2[1 + (m− 1)ρ]λ + m[1 + (m− 1)ρ].

The polynomial p(λ) = ρλ2 − 2[1 + (m − 1)ρ]λ + m[1 + (m − 1)ρ] always has a
real root, by virtue of the fact that its discriminant, namely 2(1− ρ)[1 + (m− 1)ρ],
is always non-negative. (Indeed, −1 ≤ ρ < 1 and [1 + (m − 1)ρ] ≥ 0, as noted
above.) Furthermore, that root can not be 0, as ρ 6= − 1

m−1 .
Let λ0 denote such a real root for the polynomial p. Then {ξλ,i : 1 ≤ i ≤ m} is an

orthogonal set in the m-dimensional spaceH0, and so

B0 := { ξλ0,i

‖ξλ0,i‖
: 1 ≤ i ≤ m}

is an orthonormal basis forH0. It is then a simple consequence of (II) and (III) above
that Vξλ0,i ∈ B0 for all V ∈ U . The fact that each V ∈ U is bijective then shows that
U acts as a group of permutation matrices on H0 relative to the orthonormal basis
H0.

(b) Now suppose that dimH0 = ∞.
In Theorem 4.1, we saw that if ρ = 0, then U|H0 is unitarily similar to a group of

permutation unitaries.
Suppose therefore that ρ 6= 0.
Again, by Theorem 4.1, there exists a non-zero vector z ∈ H0 satisfying

(IV) Vz = z for all V ∈ U ,
(V) ‖z‖2 = ρ, and

(VI) 〈z, Vξ〉 = ρ for all V ∈ U .
For each U ∈ U , set ξU = Uξ − z 6= 0. If U, V ∈ U and Uξ 6= Vξ, then a

quick computation shows that 〈ξU , ξV〉 = 0, and thus B := { ξU
‖ξU‖ : U ∈ U} is an

orthonormal set.
LetM0 := spanB ⊆ H0. It is clear that span{B, z} = H0, so that dim (H0/M0) ≤

1.
Furthermore, each V ∈ U is unitary, hence bijective, and clearly V acts as a

permutation on the spaceM0 relative to the orthonormal basis B0.
2

5. NONSELFADJOINT SEMIGROUPS OF OPERATORS

5.1. In the previous section we completely characterized those two-element subsets Ω ⊆ C

which can occur as admissible sets for selfadjoint, irreducible semigroups S of operators
acting on an infinite-dimensional, separable Hilbert space.
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If one removes the condition that the semigroup S be selfadjoint, the problem becomes
significantly more complicated. In this section we pursue two separate lines of investiga-
tion. Firstly, for irreducible, unital semigroups of unitary operators, we obtain constraints
on the nature of the possible two-element admissible sets, by showing that for any such
admissible set Ω = {ρ, 1}, we must have that −1 ≤ ρ < 1. Secondly, we show that any
two-element subset Ω = {ρ, 1} of C can appear as an admissible set of some unital semi-
group of operators, although that semigroup may be reducible.

In fact, depending upon the choice of ρ, we can infer the existence of fixed points for G
(see Proposition 5.6).

5.2. Proposition. Suppose that H is an n-dimensional Hilbert space and that S ⊆ B(H) is
an irreducible semigroup of unitary operators. If Ω is a two-element admissible set for S , then
Ω = {− 1

n , 1}. Furthermore, for any n ≥ 2, there exists an irreducible group G ⊆ B(Cn) for
which {− 1

n , 1} is an admissible set.
Proof. Let U ∈ S be a unitary operator. Since dim H = n < ∞, U is diagonalizable. It is an
easy exercise to check that U∗ lies in the norm-closure S of S , and that Ω is an admissible
set for S . Thus

• U∗U = I ∈ S , implying that 1 ∈ Ω; and
• S is (easily seen to be) a group, which is irreducible since S was assumed to be

irreducible.
The result now follows from Proposition 4.9 and Theorem 4.10 of [3].

2

5.3. Proposition. Let H be an infinite-dimensional, separable Hilbert space. Let I ∈ S ⊆ B(H)
be an irreducible, unital semigroup of unitary operators, and let ξ be a unit vector in H. Suppose
that Ω := {〈Uξ, ξ〉 : U ∈ S} ⊆ C is an admissible subset for S , with |Ω| = 2. Then Ω = {ρ, 1}
for some real number −1 < ρ < 1.
Proof. Since I ∈ S , it is clear that Ω = {ρ, 1} for some 1 6= ρ ∈ C. Furthermore, S ∈ S
implies that ‖S‖ = 1, whence |ρ| ≤ 1. If |ρ| = 1, then the fact that every element of S is
unitary forces Cξ to be an invariant subspace for S , contradicting the irreducibility of S .
Hence |ρ| < 1.

We argue by contradiction. Suppose that ρ 6∈ R. We claim that K := {S ∈ S : 〈Sξ, ξ〉 =
ρ} is a semigroup ideal of S .

Let ϕξ denote the state ϕξ(T) = 〈Tξ, ξ〉, T ∈ B(H). Since S is an irreducible semigroup
of B(H), we know that the restriction of ϕξ to S can not be constant. Thus K is not empty.
Fix S ∈ K, and extend the linearly independent set {ξ} in H to an orthonormal basis so
that the matrix for S with respect to that basis is of the form:

[S] =


ρ s12 s13 · · ·

(1− |ρ|2) 1
2 s22 s23 · · ·

0 s32 s33 · · ·
...

 .

If T ∈ S , then with respect to this basis, either

[T] =

1 0 0 · · ·
0 t22 t23 t24
0 t32 t33 t34 · · ·

 ,
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or

[T] =


ρ t12 t13 · · ·

t21 t22 t23 · · ·
t31 t32 t33 · · ·
...

 .

In the first case, it is easy to check that 〈TSξ, ξ〉 = 〈Sξ, ξ〉 = ρ = 〈STξ, ξ〉, so that
TS, ST ∈ K. In the second case, we find from the equation 〈TSξ, ξ〉 ∈ Ω that
ρ2 + t12

√
1− |ρ|2 ∈ {1, ρ}. Suppose that 〈TSξ, ξ〉 = 1; i.e., that ρ2 + t12

√
1− |ρ|2 = 1.

Then

t12 =
1− ρ2√
1− |ρ|2

,

and so |t12| ≥
√

1− |ρ|2. But the first row of T has norm at most 1, from which we see that
|t12| ≤

√
1− |ρ|2. In other words, |t12| =

√
1− |ρ|2. But then |1− ρ2| = |1− |ρ|2|, from

which it follows that ρ ∈ R, contradicting our assumption. Thus 〈TSξ, ξ〉 = 1; i.e. TS ∈ K.
Next, suppose that 〈STξ, ξ〉 = 1. Then 〈Tξ, S∗ξ〉 = 1; but Tξ is the first column of T,

while S∗ξ is the adjoint of the first row of S. Since each of these has norm at most one, the
only way that their inner product can be 1 is if the first column of T equals the adjoint of
the first row of S. But then this forces ρ = ρ, which in turn forces ρ ∈ R, contradicting our
hypothesis. Thus ST ∈ K as well.

Finally, K is a semigroup ideal. Since S is irreducible, so is K. However, Lemma 3.2
shows that ϕξ(K) can not be constant, contradicting the definition ofK. This contradiction
shows that ρ ∈ R.

2

Next, we turn our attention to the question of which two-element subsets Ω of C appear
as an admissible set for some unital semigroup of operators. We emphasize that we no
longer require that the semigroup be irreducible. The existence of the identity operator in
our semigroup obviously requires that 1 belong to Ω.

5.4. Proposition. Let H be an infinite-dimensional, separable Hilbert space and ρ ∈ C \ {1}.
Then there exists a group G ∈ B(H) for which Ω = {ρ, 1} is an admissible set.
Proof. The case ρ = 0 is easily handled by selecting an orthonormal basis {en}∞

n=1 for H
and considering the group G of all permutation unitary operators relative to this basis.
(That is, G ∈ G if and only if there exists a permutation ϕ : N → N such that Gen = eϕ(n)
for all n ≥ 1. In this case, for any n ≥ 1, the vector ξ = en is an admissible vector
corresponding to the admissible set Ω = {0, 1}.

If ρ = − 1
n for some n ≥ 1, then by Proposition 4.9 of [3], there exists an (irreducible)

groupRn ⊆Mn(C) for which Ω = {− 1
n , 1} is an admissible set. If we then identify Mn(C)

with PnB(H)Pn for some fixed projection Pn of rank n, then we may set G = {G⊕ (I− Pn) :
G ∈ Rn} to obtain the desired group.

Next, suppose that ρ ∈ C, but ρ 6∈ {0, 1} ∪ {− 1
n}∞

n=1.

For each n ≥ 1, let Ln =

[
αn βn
βn −αn

]
, where αn := ρ

1+(n−1)ρ , and where βn ∈ C is chosen

so that α2
n + β2

n = 1. (There are two choices for each βn; either one will do for our purposes.)
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Fix an orthonormal basis {en}∞
n=1 forH, and define the operators Jn ∈ B(H) relative to this

basis so that

Jn = In−1 ⊕ Ln ⊕ I.

Observe that J2
n = I, n ≥ 1, and let G = 〈Jn : n ≥ 1〉 be the group generated by the set

{Jn}∞
n=1.

Clearly G ∈ G implies that G = I + F for some finite-rank operator F, as this is true for
all Jn. Define x1 = e1 and, for n ≥ 2, set

xn =
n−1

∑
i=1

γi ei + (β1β2 · · · βn−1)en,

where γi = β1β2 · · · βi−1αi for all i ≥ 1.

CLAIM. For any G ∈ G, Ge1 ∈ {xj}∞
j=1.

A moment’s reflection should suffice to convince the reader that it suffices to prove that
Jkxm ∈ {xj}∞

j=1 for all k, m ≥ 1. We verify this by considering four separate cases.

• CASE 1. Suppose k ≥ m + 1.
Since xm is supported on {e1, e2, . . . , em} and k ≥ m + 1, it is easy to verify that

Jkxm = xm ∈ {xj}∞
j=1.

• CASE 2. Suppose k = m.
Then Jkxm = Jmxm = ∑m

i=1 yiei, where

yi = γi, 1 ≤ i ≤ m− 1
ym = αmβ1β2 · · · βm−1

ym+1 = βmβ1β2 · · · βm−1.

Thus Jmxm = xm+1 ∈ {xj}∞
j=1.

• CASE 3. Suppose k = m− 1.
Then Jkxm = Jm−1xm = ∑m

i=1 yiei, where

yi = γi, 1 ≤ i ≤ m− 2

ym−1 = αm−1(αm−1β1β2 · · · βm−2) + βm−1(β1β2 · · · βm−1)

= (β1β2 · · · βm−2)(α
2
m−1 + β2

m−1)

= β1β2 · · · βm−2

ym = βm−1(αm−1β1β2 · · · βm−2) + (−αm−1)(β1β2 · · · βm−1)

= 0.

Thus Jm−1xm = xm−1 ∈ {xj}∞
j=1.
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• CASE 4. Suppose k < m− 1. Using the fact that αk+1 =
αk

1 + αk
, k ≥ 1, we find that

Jkxm = ∑m
i=1 yiei, where

yi = γi, 1 ≤ i ≤ m, i 6∈ {k, k + 1}
yk = αk(β1β2 · · · βk−1αk) + βk(β1β2 · · · βkαk+1)

= (β1β2 · · · βk−1)(α
2
k + αk+1β2

k)

= (β1β2 · · · βk−1)(α
2
k +

αk

1 + αk
(1− α2

k))

= β1β2 · · · βk−1αk

yk+1 = βk(αkβ1β2 · · · βk−1) + (−αk)(β1β2 · · · βkαk+1)

= (β1β2 · · · βk)(αk − αkαk+1)

= (β1β2 · · · βk)(αk+1),

so that Jkxm = xm ∈ {xj}∞
j=1.

This proves the claim.

Letting ξ = x1 = e1 shows that 〈Gξ, ξ〉 ∈ {1, α1} = {1, ρ} for all G ∈ G, completing the
proof.

2

5.5. Remark.

1. We claim that x∞ := ∑∞
n=1 γn en ∈ H; i.e., that (γn)∞

n=1 ∈ `2.

To see this, note that for n ≥ 1, αn =
ρ

1 + (n− 1)ρ
, from which it easily follows

that (αn)∞
n=1 ∈ `2. It suffices, therefore, to show that the sequence (β1β2 · · · βn−1)

∞
n=1

is bounded. But, for n ≥ 1,

(β1β2 · · · βn−1)
2 = (1− α2

1)(1− α2
2) · · · (1− α2

n−1)

= (1− α1)[(1 + α1)(1− α2)] · · · [(1 + αn−2)(1− αn−1)](1 + αn−1)

= (1− α1)(1 + αn−1),

as (1 + αk)(1− αk+1) = (1 + αk)(1−
αk

1 + αk
) = 1, 1 ≤ k ≤ n− 2.

Since limn→∞ αn−1 = 0, we clearly see that supn≥1 |β1β2 · · · βn−1| < ∞, as re-
quired.

2. The computation from Case 3 of the previous Proposition now shows that Jkx∞ =
x∞ for all k ≥ 1, so that x∞ is a fixed point for G.

The existence of a fixed point for the group G from Proposition 5.4 above is not purely
coincidental, as we now demonstrate.
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5.6. Proposition. Suppose that H is a complex, separable Hilbert space and that G ⊆ B(H) is a
bounded group. Suppose furthermore that ρ ∈ C, but ρ 6∈ (−∞, 0] ∪ {1}. If Ω = {ρ, 1} is an
admissible set for G, then G has a fixed point. That is, there exists w ∈ H such that Gw = w for
all G ∈ G.
Proof. Let ξ be a norm-one admissible vector corresponding to Ω, and consider the
(bounded) set C := {Gξ : G ∈ G}. The boundedness of C implies that the weak clo-
sure Cw

of C is compact. If x is any element of the Cw
in H, then the fact that 〈Gξ, ξ〉 ∈ Ω

for all G ∈ G implies that 〈x, ξ〉 ∈ Ω, and thus x 6= 0.
Next, let K = co(Cw

), so that K is a weakly compact, convex subset of H. It is relatively
straightforward to check that z ∈ K implies that 〈z, ξ〉 ∈ co({ρ, 1}), the line segment from
ρ to 1. The condition we have imposed upon ρ ensures that 0 6∈ co({ρ, 1}), and hence that
z ∈ K implies that z 6= 0.

Also, the fact that G is a semigroup ensures that GK ⊆ K for all G ∈ G, and the fact that
G is a bounded set of linear operators implies that G acts equicontinuously upon K. By
Kakutani’s Fixed Point Theorem (see [1], p. 457), there exists w ∈ K such that Gw = w for
all G ∈ G.

2
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