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Abstract 

 Hemophilia is a congenital bleeding disorder caused by a deficiency of clotting factor 

VIII (FVIII; hemophilia A) or IX (FIX; hemophilia B). Severe hemophilia patients have less than 

1% (or 1 IU dL-1) of normal factor activity, and often experience spontaneous bleeding episodes. 

These frequently occur in the joints, causing debilitating arthropathy later in life. The only 

proven method for preventing joint damage is the prophylactic administration of the appropriate 

clotting factor from a young age. However, prophylaxis with both FVIII and FIX is complicated 

by considerable between-subject variability in pharmacokinetic (PK) response. While a 

traditional PK study can be difficult to implement in routine care, a population pharmacokinetic 

(PopPK) approach – which reduces sampling burden and allows patients to forego a washout 

period – represents a more feasible method of dose tailoring for both patients and treatment 

providers. Nonetheless, PopPK can be challenging to implement due to a significant data 

requirement and a complicated process for model development and evaluation. 

 To overcome these barriers, the Web Accessible Population Pharmacokinetic Service for 

Hemophilia (WAPPS-Hemo) was launched in 2015. This service provides individual estimates 

of clinically relevant PK parameters (e.g. half-life, time to 1%, factor level at 72 hours post-

infusion) from sparse patient samples and demographic data using Bayesian forecasting, with 

PopPK models serving as prior information. In order to meet its goals, the WAPPS-Hemo project 

requires PopPK models that are valid for Bayesian estimation for as many of the currently 

available factor concentrates as possible. In order to standardize the model building process, a 

data analysis protocol, outlining the steps of model development and evaluation and the criteria 

for decision-making, was established. This protocol was put into practice in the development of 

generic models for two classes of factor concentrate (standard half-life FVIII and standard half-
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life recombinant FIX). To date, the models described in this dissertation have been used to 

process over 2,000 PK requests on the WAPPS-Hemo platform. 

 In addition to developing models for use on the WAPPS-Hemo platform, the clinical 

factors impacting model performance were investigated. Since Bayesian forecasting relies on 

only a few samples from the individual patient, the timing of these samples is of considerable 

importance. Limited sampling analyses were conducted to confirm that accurate estimates of 

relevant PK parameters can be obtained from a variety of limited sampling schemes. When 

sampling is extremely limited (e.g. collected during a single clinic visit), estimation can be 

improved by incorporating knowledge of prior doses, and by conducting the PK study when 

samples are likely to be within assay quantification limits. Model performance is also dependent 

on the patient’s endogenous (baseline) factor production. In severe hemophilia patients, baseline 

factor activity may range from truly zero up to 1 IU dL-1; however, baseline is often unknown as 

1 IU dL-1 is typically the lower limit of quantification for both the one-stage clotting and 

chromogenic assays, forcing an assumption to be made. The consequences of these assumptions 

are highly variable; while baseline has little influence on the estimation of half-life, it makes a 

substantial difference when estimating time to 1% activity.  

 The models developed for this project have the potential for high impact with respect to 

the patient, who benefits from an individualized dosing regimen rather than a trial and error 

approach, resulting in fewer adverse events and, in many cases, more cost-effective use of factor 

concentrates. The work presented in this dissertation also explores a variety of factors that 

impact model performance; this knowledge can be used by treatment providers to ensure they 

receive the most accurate estimates possible when utilizing the service.   
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Chapter 1: Background 
 

The Clotting Cascade 

When the body suffers an injury to the vascular system, the physiological response is to 

minimize blood loss at the site of damage and restore hemostasis. The coagulation cascade is one 

of the mechanisms triggered by vascular trauma, and the end product of this pathway is a cross-

linked fibrin scaffolding for aggregated platelets to form a clot. The components of the cascade 

are inactive enzyme precursors, or zymogens, known as coagulation factors. The coagulation 

cascade consists of two distinct pathways, each of which is prompted by a different event and 

plays a unique role in achieving hemostasis. 

 The extrinsic pathway is initiated when damaged endothelial cells release tissue factor, 

which binds and activates coagulation factor VII [1]. The resulting complex activates factor X, 

which joins with factor V to form the prothrombinase complex. Prothrombinase activates 

prothrombin to thrombin, which not only converts inactive fibrinogen into clot-forming fibrin, 

but also activates several components of the intrinsic pathway of the coagulation cascade 

including factors XIII, V and VIII [2]. The main function of the extrinsic pathway is to generate 

an initial burst of thrombin; it is quickly inhibited by tissue factor pathway inhibitor, at which 

point the more kinetically efficient intrinsic pathway takes responsibility for the growth and 

maintenance of the fibrin clot [3]. The intrinsic pathway begins by activation of clotting factor 

XII upon binding to collagen. Factor XII proteolytically cleaves factor XI, which then activates 

factor IX (FIX). Finally, FIX joins with co-factor VIII (FVIII) to form a complex that also 

activates factor X. The rate of factor X activation by this intrinsic tenase complex is estimated to 

be at least 50-fold higher than the extrinsic counterpart; as a result, the vast majority (95%) of 
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thrombin is produced by this pathway [4,5]. Without sufficient production of the intrinsic tenase 

complex, an inadequate amount of activated Factor X is generated and the propagation phase of 

vascular repair is ineffective. 

 

Hemophilia A and B 

Hemophilia is an inherited bleeding disorder caused by a deficiency in one of the clotting 

factors that forms the intrinsic tenase complex (hemophilia A: FVIII; hemophilia B: FIX). This 

results in bleeding episodes, often in the joints, and eventual arthropathy. In the most severe 

hemophilia patients (those with less than 1 IU dL-1 [i.e. 1% of normal] of the respective clotting 

factor activity), these bleeds may occur spontaneously. A recent study estimates the prevalence 

of hemophilia A and B to be roughly 17 and 4 cases per 100,000 males, respectively, of which 

roughly 30% are the severe form. This amounts to an expected 1,125,000 hemophilia patients 

worldwide [6].  

 

Current Hemophilia Therapy 

Although strides are being made in the development of alternative therapies (e.g. 

monoclonal antibodies, gene therapy), the mainstay of hemophilia treatment is prophylactic 

intravenous administration of the deficient clotting factor. Prophylactic treatment aims to convert 

severe hemophilia patients to a moderate phenotype by regularly administering clotting factor 

concentrates, and the strategy is based on several clinical observations. The first is a 1965 study, 

which found that the joint scores of moderate hemophilia A patients (i.e. those with FVIII levels 

between 1 and 3 IU dL-1) were markedly improved compared to severe patients [7]. The second, 

described by Nilsson and colleagues, is the observation that patients on prophylaxis who spent 

more time per week with FVIII levels above 1 IU dL-1 had improved joint function [8]. A 2007 
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study by Manco-Johnson et al demonstrated reduced incidence of joint bleeds, life-threatening 

bleeds, and lowered risk of joint damage following prophylaxis in young hemophilia A patients 

[9]. Finally, Collins et al observed an association between time spent below 1 IU dL-1 per week 

and occurrence of bleeding events [10].   

Despite global consensus regarding the initiation of prophylaxis at a young age [11–13], 

the implementation of this approach is highly variable [14]. While part of this variation may be 

attributed to the cost or availability of factor concentrates [15], the considerable between-subject 

variability in the pharmacokinetic (PK) handling of both FVIII and FIX is the major obstacle to 

the determination of an effective ‘one-size-fits-all’ dosing regimen.   

 

Pharmacokinetics of Clotting Factor Concentrates  

The pharmacokinetics of FVIII are well characterized, and are discussed in detail in 

Chapter 2, which contains a comprehensive review of FVIII PK studies conducted in recent 

years with a focus on variability and the sources thereof.  

The pharmacokinetics of FIX, on the other hand, are not as well understood. A 

comprehensive review, analogous to the one presented in Chapter 2 for FVIII, was performed to 

identify original PK studies for factor IX products in hemophilia B patients; the details and 

results from the 34 eligible studies are presented in Table 1. 
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Table 1. Studies on the pharmacokinetics of plasma-derived and recombinant FIX. PK parameters are presented as mean ± SD (%CV) 

unless otherwise noted; n. g. denotes values that were not reported in the studies. 

Study Product 𝒏 
Patient Age 

(years) 
Sampling 

Time 
Number of 

Samples 
Terminal Half-

Life (h) 
Clearance                    

(mL h-1 kg-1) 

Volume of 
Distribution                    

(mL kg-1) 
Analysis Method 

[16] 
Nanotiv® or 
Immunine®  

8 19-65 74 h 11 
29.7 ± 4.3  

(14%)       
4.25 ± 0.64 

(15%) 
n. g. n. g. 

[17] 
pdFIX-SD 

11 12-60 72 h 12 

34.2 ± 3.5  
(10%) 

7.4 ± 0.8 
(11%) 

162.9 ± 47.8 
(29%) 

n. g. 

pdFIX-SD-15 
33.3 ± 3.8  

(11%) 
6.9 ± 1.2 

(17%) 
155.4 ± 46.4 

(30%) 

[18] BeneFIX® 

11 4-9 

72 h 12 

20 ± 4.3  
(21%) 

10.4 ± 2.2 
(22%) 

270 ± 7 
 (3%) 

n. g. 

10 10-19 
20 ± 4.1  
(21%) 

8.3 ± 2.3 
(28%) 

210 ± 7 
(3%) 

12 20-29 
19 ± 4.9  
(26%) 

8.5 ± 1.2 
(14%) 

220 ± 6  
(3%) 

12 30-39 
20 ± 6.5  
(33%) 

7.2 ± 1.4 
(19%) 

190 ± 4 
 (2%) 

7 40-49 
19 ± 4.2  
(22%) 

7.6 ± 1.7 
(22%) 

200 ± 5 
(3%) 

3 50-56 
17 ± 7.1  
(42%) 

7.5 ± 0.3  
(3%) 

180 ± 8  
(4%) 

[19] rFIX 

19 <15  
                          

15-40   
                                                

>40 

72 h 12 

20.2 h ± 4.0 
(20%) 

n.g. n.g. 

compartmental 
and non-

compartmental 
methods 

28 
19.4 h ± 5.5 

(28%) 

9 
17.2 h ± 4.8 

(28%) 

[20]a 

Mononine 

38 7-75 48 h 7 

14.9 h  
(7.2-33.7) 

n.g. n.g. NCA 

BeneFIX® 
16.8 

 (10.8-26.1) 
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Study Product 𝒏 
Patient Age 

(years) 
Sampling 

Time 
Number of 

Samples 
Terminal Half-

Life (h) 
Clearance                    

(mL h-1 kg-1) 

Volume of 
Distribution                    

(mL kg-1) 
Analysis Method 

[21] Mononine 12 7-85 76 h 10 
16.7  

(8.7-36.6) 
4.5 

 (2.4-9.6) 
119.9  

(77-233.2) 
n. g. 

[22] 
Mononine 

15 ≥12 48 h 7 
12.9 4.2 61 Nonlinear 

regression BeneFIX® 13.7 7.1 118 

[23]a unspecified 13 13-70 
retrospective analysis; 

details not provided 
32  

(26-49)                     
3.9  

(2.9-4.5)  
140  

(80-200)  

compartmental 
modelling 

(NONMEM) 

[24] Aimafix DI 

12 

12-36 50 h 12 

23.5 h ± 12.3 
(52%)      

6.5 ± 1.4 
(22%) 

197.5 ± 72.5 
(37%) 

NCA 
5 

17.6 h ± 3.5 
(20%) 

5.3 ± 1.6 
(30%) 

131.1 ± 25.6 
(20%) 

[25] BeneFIX® 10 24.7 (8.6) 72 h 11 
24.4 ± 6.4  

(26%) 
4.84 ± 1.03 

(21%) 
144.3 ± 41.8 

(29%) 

model-
independent 

method 

[26] BeneFIX® 24 12-61 72 h 12 
22.4 ± 6.4  

(26%) 
n.g. n.g. n. g. 

[27] Octanine F 24 0.5-5 n.g. sparse n.g. n.g. n.g. n.g. 

[28] 

Factor IX 
Grifols®  

25 23.1 (8.83)   74 h 11 

26.7 ± 3.8  
(14%) 

3.8 ± 0.9 
(24%) 

n. g. 
model-

independent 
method Control 

(Immunine® or 
Octanine®) 

26.8 ± 3.7 
 (14%) 

4.1 ± 1.2 
(29%) 

[29] BeneFIX® 20 0.6-4 24h 4 
10.9 ± 2.3 

 (21%) 
13.6 ± 3.4 

(25%) 
n.g. 

WinNonLin and 
NLME 

[30] AlphaNine® 25 25.8 (8.68)  74 h 10 to 12 
34.5 ± 6.2  

(18%) 
n.g. n.g. 

model-
independent 

method 
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Study Product 𝒏 
Patient Age 

(years) 
Sampling 

Time 
Number of 

Samples 
Terminal Half-

Life (h) 
Clearance                    

(mL h-1 kg-1) 

Volume of 
Distribution                    

(mL kg-1) 
Analysis Method 

[31] Nonafact®  13 19-58 48 h 10 
18.7 ± 2.0  

(11%) 
n. g. n. g. 

model-
independent 

method 

[32] 

  N9-GP  
  

5 

21-55 

168 h 13 

82.94 ± 18.15 
(22%) 

0.76 ± 0.08 
(10%) 

90.13 ± 13.24 
(15%) 

NCA   

5 
96.25 ± 41.85 

(43%) 
0.74 ± 0.21 

(28%) 
99.50 ± 47.42 

(48%) 

5 
110.45 ± 17.48 

(16%) 
0.65 ± 0.13 

(20%) 
101.96 ± 

12.00 (12%) 

rFIX 7 
48 h 9 

19.34 6.99 194.98 

pdFIX 8 17.79 5.48 140.58 

[33] 
IB1001 

32 15-64 72 h 12 

29.7 h ± 18.2 
(61%)  

5.0 ± 2.0 
(40%) 

160 ± 40 
(25%)  

compartmental 
and non-

compartmental 
methods 

nonacog alfa 
33.4 h ± 21.2 

(63%)  
5.0 ± 1.0 

(20%)  
180 ± 70 

(39%) 

[34] 

rIX-FP (albumin) 13 

15-58 

336 h 11 
91.57 ± 20.74 

(23%) 
0.75 ± 0.19 

(25%) 
95.0 ± 20.3 

(21%) 

NCA using 
WinNonLin 

pdFIX 4 

32-48 h 6 

14.59 ± 1.73 
(12%) 

4.76 ± 1.08 
(23%) 

98.7 ± 14.9 
(15%) 

rFIX 8 
17.23 ± 2.28 

(13%) 
5.24 ± 0.85 

(16%) 
130.6 ± 29.9 

(23%) 

[35] Haemonine® 13 13-45 72 h 12 
27.6 ± 4.5  

(16%) 
205.4 n. g. PCModfit 

[36] rFIXFc 11 18-76 240 h 14 
56.7 ± 10.4 

(18%)   
3.18 ± 0.745 

(23%) 
227 ± 57.1 

(25%) 
WinNonLin 

(2comp) 

[37] 

AlphaNine® 25 

27.0 (9.7)   74 h 11 

32.7 ± 7.4  
(23%)                 

4.2 ± 1.0 
(24%) 

134 ± 42 
(31%) 

model-
independent 

method BeneFIX® 22 
36.0 ± 12.8 

(36%) 
4.6 ± 1.0 

(22%) 
175 ± 52 

(30%) 

[38] 
rFIXFc 

22 12-71 
240 h 

n. g. 
82.1 

n. g. n. g. n. g. 
BeneFIX® 96 h 33.8 
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Study Product 𝒏 
Patient Age 

(years) 
Sampling 

Time 
Number of 

Samples 
Terminal Half-

Life (h) 
Clearance                    

(mL h-1 kg-1) 

Volume of 
Distribution                    

(mL kg-1) 
Analysis Method 

[39]b 

AlphaNine® 

9 15-73 48 h 10 

16.6  
(13.2-20.9) 

n. g. n. g. n. g. 

BeneFIX® 
17.5  

(14.8-25.6)                    

[40] BAX326 25 12-65 72 h 12 
25.4 ± 6.9 

 (27%) 
6.0 ± 1.5 

(24%) 
179 ± 45 

(25%) 
  

[41] rIX-FP (albumin) 15 13-36 336 h 10 94.8 h n. g. n. g. 
NCA (using 

Phoenix 
WinNonLin) 

[42] BeneFIX® 7 n.g. 48-72 h 5-9 
36 ± 8.3  
(23%)   

3.8 ±  0.4 
(10%)        

n .g. 
Non-

compartmental 

[43] N9-GP 
12 1-6 

168 h 6 
69.6 0.758 76.1 non-

compartmental 
method 13 7-12 76.3 0.65 71.5 

[44] 

rIX-FP (albumin) 

12 <6 

n.g. n.g. 

89.6  
(12%)     

1.184  
(28%) 

142.5  
(24%) 

NCA (using 
Phoenix 

WinNonLin) 

15 6-11 
92.8 

 (20%) 
1.059 
 (28%) 

131.6  
(20%) 

FIX  
(21 rFIX, 6 

pdFIX) 

12 <6 
19.9  

(40.3%) 
7.158 

 (39.0%) 
167.5 

(24.8%) 

15 6-11 
17.7  

(25.6%) 
5.812  

(23.7%) 
143.1  

(20.5%) 

[45] BeneFIX® 17 12-59 72 h 12 23.7 ± 5.6 (24%)   
7.5 ± 1.8 

(24%) 
216 ± 66 

(30%) 
SAS 

[46] rIX-FP (albumin) n. g. 12-61 n. g. n. g. 101.7 0.769 n. g. 
NCA using 
Phoenix 

WinNonLin 
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Study Product 𝒏 
Patient Age 

(years) 
Sampling 

Time 
Number of 

Samples 
Terminal Half-

Life (h) 
Clearance                    

(mL h-1 kg-1) 

Volume of 
Distribution                    

(mL kg-1) 
Analysis Method 

[47]c 

rFIXFc 

11 <6 

168 h 8 

66.5  
(55.9-79.1) 

4.4  
(3.9-4.9) 

365.1  
(316.2-421.6) 

NCA 
13 6-11 

70.3  
(61.0-81.2) 

3.5  
(3.0-4.1) 

289.0  
(236.7-352.9) 

rFIX 
11 <6 

48 h 6 
18.2 (15.5-21.3) n. g. n. g. 

9 6-11 19.2 (17.6-20.9) n. g. n. g. 

[48] 
N9-GP (nonacog 

beta pegol) 

25 1-12 

168 h 7 

73.0  
(22%)            

0.7  
(20%) 

70.2 
 (19%) 

NCA 9 18-54 
85.1  

(22%) 
0.4  

(20%) 
50.6  

(17%) 

9 18-54 
110.8 
 (12%) 

0.4  
(12%) 

64.0  
(19%) 

[49] 

trenonacog alfa 

32 14.8-64.5 72 12 

24.2 ± 6.9  
(28%)                                       

5.1 ± 1.3 
(25%) 

175 ± 57 
(32%) 

n. g. 

nonacog alfa 
26.4 ± 13.6 

(52%) 
5.0 ± 1.2 

(24%) 
181 ± 57 

(31%) 
aResults presented as median (range)  
bResults presented as mean (range) 
cResults presented as median (IQR)
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Relative to FVIII, standard half-life FIX has a larger volume of distribution, higher 

clearance, and longer half-life; typical values for these parameters are roughly 150 mL kg-1, 4.0 

mL h-1 kg-1, and 30 h, respectively [50], compared to 48 mL kg-1, 3.0 mL h-1 kg-1, and 14 h for 

FVIII [51]. The increased volume of distribution of FIX is attributed to its smaller size (57 kDa, 

compared to 300 kDa for FVIII) which allows for extensive distribution into the extravascular 

space. The inter-individual variation in FIX PK parameters is high, with a three to fourfold range 

between the most extreme values, though the PK within an individual is quite stable over time 

[52]. Few covariates have been found to explain this variability. Clearance and volume of 

distribution are correlated to body weight, but increasing age (beyond adolescence, when body 

weight is no longer changing appreciably) has no noticeable effect on PK parameters. 

Considerable differences have been observed between plasma-derived and recombinant FIX, 

although the terminal half-life was found to be similar in comparison studies [20,53,54]. 

In recent years, considerable success has been found in the extension of FIX half-life 

through a variety of techniques. Three new concentrates are currently available; one pegylated 

product and two rFIX fusion proteins (albumin, and the Fc fragment of IgG1). All three products 

achieve significant extensions of half-life (80–100 h), allowing for less frequent infusions, 

reduced weekly FIX consumption, and lower bleed rates [55].    
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Role of Pharmacokinetics in Hemophilia Treatment 

Hemophilia patients are typically dosed by total body weight, but evidence suggests that 

this approach is suboptimal, resulting in either overdosing (and excessive use of expensive 

clotting factor concentrate) or underdosing (and ineffective or unsafe treatment). To improve 

both patient outcomes and cost-effectiveness, PK-based individualization of dosing regimens has 

been proposed [51,56]. However, a classic PK study for FVIII or FIX requires rigorous sampling 

(ten samples over the course of two to three days, as recommended by the International Society 

on Thrombosis and Haemostasis). Furthermore, this type of study requires the patient to undergo 

a potentially hazardous washout period. For these reasons, the classical PK approach can be 

difficult to apply in clinical settings. 

Population Pharmacokinetics 

The population PK (PopPK) approach can be used to address some of these hurdles. The 

primary advantage of PopPK is a significantly reduced sampling burden; accurate PK parameter 

estimates can be obtained from as few as two to three well-timed samples [57]. This is achieved 

by leveraging information from a large patient population in the form of a PopPK model, which 

is in turn comprised of three sub-models: a structural model (defining the shape of the factor 

activity vs. time profile), a covariate model (describing the relationships between PK parameters 

and patient characteristics), and a statistical model (describing the variability). The total 

variability around a given parameter may be partitioned into predictable variability, which can be 

attributed to demographic, environmental, or genetic covariates, and unpredictable variability. 

The unpredictable component of the variability may be further divided into between-subject 

variability (BSV, 𝜂) and within-subject variability (WSV, 𝜌; also referred to as inter-occasion 

variability [IOV]). Finally, the remaining discrepancy between predicted and observed factor 

activities is deemed residual unexplained variability (RUV, 𝜀). A simple example, consisting of a 
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1-compartment model (parameterized by clearance [CL] and volume [V]), with BSV on CL, a 

body weight effect on V, and an additive error model, is shown below: 

�̂�𝑗(𝑡) =
𝐷𝑜𝑠𝑒

𝑉𝑗
∙ 𝑒

−
𝐶𝐿𝑗
𝑉𝑗
∙𝑡

 

𝐶𝐿𝑗 = 𝜃𝐶𝐿 ∙ 𝑒
𝜂𝑗 

𝑉𝑗 = 𝜃𝑉 ∙ (
𝐵𝑊𝑗

𝐵𝑊𝑚𝑒𝑑
)
𝜃𝐵𝑊−𝑉

 

𝐶𝑖𝑗 = �̂�𝑖𝑗 + 𝜀𝑖𝑗 

The parameters denoted with 𝜃 are known as fixed effects, which are constant across 

individuals; these include the typical values of PK parameters within the population as well as 

the covariate effects on those parameters. Random effects (𝜂, 𝜀, and, if applicable, 𝜌) describe 

the unpredictable variability, and are specific to the individual. Further details regarding PopPK 

model development and evaluation can be found in Chapter 3. 
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Figure 1. Partitioning of variability in pharmacokinetic response 

 

 The magnitude of these different variabilities plays a role in determining the appropriate 

dosing strategy for a therapy [58]. If a drug has low BSV and low WSV, along with a relatively 

wide therapeutic window, a generic population dose will maintain safe and effective 

concentrations in most patients. Conversely, when a drug that displays WSV that is wider than 

the therapeutic window, it becomes impossible to identify a safe and effective dose for a patient. 

In the case of clotting factor concentrates, BSV is quite high, but WSV is relatively low; that is, 

patients vary considerably from one another, but each patient’s individual PK is reasonably 

stable over time. In this scenario, an individualized approach to dosing, which takes the patient’s 

unique PK profile into account, should be implemented.  

 

  

Total 
variability

Predictable 
Variability

Explanatory 
covariates

Unpredictable 
Variability

BSV WSV RUV
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The WAPPS-Hemo Project 

Despite its many advantages, PopPK is not without its own challenges. The development 

of a PopPK model requires a significant amount of data (a considerable obstacle in a rare disease 

setting), as well as proficiency in model building and evaluation. In the hemophilia community, a 

lack of confidence in model performance, as well as skepticism surrounding specific therapeutic 

targets (especially in the case of FIX), have also traditionally hampered the uptake of the PopPK 

approach. To facilitate its incorporation into routine care, a number of tools have been 

developed. Björkman evaluated the free Bayesian computer program TCIWorks for estimation of 

individual FVIII PK [59] but found that its efficient use required a level of expertise beyond that 

of the typical target user. myPKFiT, an industry-sponsored, brand-specific PopPK calculator 

recently received class II medical device approval from the US Food and Drug Administration. 

However, its application is currently limited in the United States to the on-label use of a single 

FVIII product (Advate), leaving a substantial portion of the hemophilia population unserved 

[60].  

The Web Accessible Population Pharmacokinetic Service – Hemophilia (WAPPS-Hemo, 

Figure 2) program is an online service developed at McMaster University that is designed to help 

clinicians overcome the barriers typically associated with PK-tailoring of clotting factor 

regimens. Hemophilia treatment providers submit patient demographic information (e.g. age, 

weight, height) and 2–4 blood samples on the WAPPS-Hemo website (www.wapps-hemo.org). 

Using Bayesian forecasting, estimates of individual PK parameters are obtained and validated 

before being returned to the clinician. The patient report includes a graphical representation of 

the predicted concentration-time profile (with observed factor levels overlaid), as well as 

estimates of terminal half-life, times to critical factor activity levels (e.g. 5, 2, and 1 IU dL-1), and 
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expected factor activity at key post-infusion times (e.g. 24, 48, and 72 hours) along with 

confidence intervals.  

After the PK request has been completed, clinicians can enter the clinical calculator 

module, which allows for the exploration of alternative dosing regimens. There are three 

foundational components to a hemophilia regimen: dose, frequency of administration, and the 

target trough factor activity level. The user defines two of these three variables and the third is 

calculated using the patient’s individual PK. Finally, the clinician can activate myWAPPS, a 

patient-facing app that allows patients to record their infusions and see predicted current or 

future factor activity levels. 
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Figure 2. Schematic of the WAPPS-Hemo service, including PK estimation, clinical calculator 

module, and patient app 

 

First launched in 2015, the WAPPS-Hemo network has been enthusiastically welcomed by the 

community as a useful tool in support of individualized dosing, and has grown rapidly in the last 

several years, as detailed in Chapter 7. At the time of writing, the network currently boasts over 

400 centres in more than 50 countries, representing a truly global effort to provide hemophilia 

patients with truly individualized care.     
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Figure 3. The global WAPPS-Hemo network, where the colour of each country indicates the 

number of registered centres (obtained from www.wapps-hemo.org, December 1, 2019).  

 

  

http://www.wapps-hemo.org/


 

17 
 

Overarching Thesis Objective 

To develop clotting factor PopPK models that are fit for the purpose of Bayesian forecasting for 

use in dosing regimen design in hemophilia A and B 

Objectives & Hypotheses 

1. Propose a data analysis protocol for the development and evaluation of PopPK models 

for all brands of clotting factors VIII and IX for use on the WAPPS-Hemo platform 

Hypothesis: A systematic approach to model development and evaluation will result in 

robust models that are fit for Bayesian forecasting 

 

2. Apply the data analysis protocol to develop and evaluate generic models for brands of 

factor concentrate lacking brand-specific models on WAPPS-Hemo service 

Hypothesis: Factor VIII products are pharmacokinetically similar enough to that data 

from multiple brands can be combined to build a generic PopPK model to handle PK 

requests on WAPPS-Hemo for brands lacking a dedicated model; the same hypothesis 

applies to recombinant factor IX products 

 

 

3. Develop an understanding of clinical factors that influence model performance and 

identify conditions that improve PK parameter estimation   

Hypothesis: Clinical factors such as timing of samples, information relating to prior 

doses, and knowledge of endogenous factor production level affect estimates of relevant 

PK parameters obtained through Bayesian forecasting  
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Chapter 2: The use of pharmacokinetics in dose individualization of factor 

VIII in the treatment of hemophilia A 
 

Portions of this chapter are reflective of an original manuscript published by the Ph.D. candidate 

(Alanna McEneny-King) in Expert Opinion on Drug Metabolism & Toxicology. All pertinent 

dialogue in this chapter was written by the Ph.D. candidate. 

 

This is the authors accepted manuscript of an article published as the version of record in Expert 

Opinion on Drug Metabolism & Toxicology © 2016, republished by permission of Informa UK 

Limited, trading as Taylor & Francis Group, available 

online https://doi.org/10.1080/17425255.2016.1214711 

 

McEneny-King A, Iorio A, Foster G, Edginton AN. The use of pharmacokinetics in dose 

individualization of factor VIII in the treatment of hemophilia A. Expert Opin Drug Metab 

Toxicol. 2016; 12(11):1313-1321. DOI: 10.1080/17425255.2016.1214711. 

 

Introduction 

Hemophilia A is an inherited bleeding disorder caused by a deficiency in clotting factor 

VIII (FVIII) and resulting in spontaneous, often recurring, joint bleeds and eventual arthropathy. 

As an X-linked condition, hemophilia A affects approximately 1 in 5,000 males [61] but reported 

prevalence varies considerably between countries, with many cases going undiagnosed in lower 

income countries [62].  Although evidence of hemophilia can be found in ancient Egyptian and 

Hebrew texts, modern replacement therapy did not begin until the 1960s [63,64]. With the 

introduction of plasma-derived clotting factor concentrates, hemophilia became a manageable 

https://doi.org/10.1080/17425255.2016.1214711
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disorder rather than a catastrophic diagnosis. While a gene therapy cure remains elusive, 

considerable progress in the treatment of hemophilia patients has been made. When it was 

discovered that viruses such as hepatitis B, hepatitis C and HIV could be transmitted through 

these products, more rigorous safety measures were introduced, including stricter donor 

screening and the implementation of viral inactivation processes [65]. Advances in DNA 

technologies and lingering concerns about the safety of plasma-derived concentrates propelled 

the development of recombinant coagulation factors in the early 1990s [66,67].  

  Two main treatment strategies exist for the management of hemophilia A: on-demand, or 

episodic, and prophylactic. The concept of prophylaxis, initiated by Nilsson and colleagues in the 

1970s [7,68], is derived from the clinical observation that patients with moderate hemophilia 

(those whose factor levels are >1% of normal) are less prone to the arthropathy and spontaneous 

bleeds seen in those with severe hemophilia [69]. Today, there is global unanimity that 

prophylaxis should be initiated in young children before joint disease is apparent [11–13], but the 

implementation of this approach varies widely between countries [14]. The cost and availability 

of factor concentrates are major barriers to its widespread adoption, as is the challenge of patient 

compliance [15]. Prophylaxis is the only known method for preventing joint damage in 

hemophilia patients, as episodic treatment has been shown to be ineffective for the prevention of 

arthropathy [9,12]. However, an optimal dosing strategy has yet to be determined; instead, 

evidence suggests that treatment with FVIII should be individualized for best results, both from a 

therapeutic and economic perspective [51,56]. Typically, patients are dosed by weight but a 

tailored treatment plan must take into account individual variation in pharmacokinetic (PK) 

parameters, beyond what can be predicted by age and weight [70,71]. [17]  However, a classical 

PK study for FVIII requires 11 samples – four in the distribution phase (0–1 h) and seven in the 
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elimination phase (3–48 h) – as outlined by recommendations from the International Society on 

Thrombosis and Haemostasis [72], making it a difficult approach to apply in a clinical setting.  

For this reason, population pharmacokinetic (PopPK) models are desirable. In addition to 

the rich sampling schedules, classical PK studies are also typically carried out in a homogeneous 

group of subjects, usually healthy, young males. PopPK studies, on the other hand, use sparse 

sampling in a more heterogeneous group of subjects to gain understanding of variability. Since 

fewer samples are required, populations that are unable to undergo the rigid sampling of classical 

PK studies (e.g. paediatrics, elderly, critical care patients) can be included [73]. Often, subjects 

that appear similar exhibit different PK behaviour due to unpredictable variability. For example, 

Collins et al. examined the variability in time to reach 1 IU dL-1 and found significant variation 

not only between children and adults, but within each group as well, with times ranging from 44 

to 78 h in children and 46 to 103 h in adults [74]. Total variability in population parameter values 

can be split into predictable and unpredictable variability. Predictable variability can be ascribed 

to covariates that influence PK. These covariates may be demographic (body weight, age), 

behavioural (smoking status, diet), genetic (phenotypes affecting drug clearance), or physiologic 

(pregnancy, disease state) in nature, and the identification of meaningful covariates can help 

recognise subpopulations that are at risk of over- or under-dosing if the standard weight-based 

strategy is employed [75].  

Unpredictable variability may be between patients or within a patient, and a main goal of 

PopPK is to estimate the magnitude of this unexplained variability. When unexplained variability 

is high, the chances of reaching drug concentrations outside the target range increase and issues 

of safety and efficacy can occur [76]. The target concentration window of the drug can be used to 

define an upper limit on the unpredictable variability, below which the drug is considered to be 
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safe and effective. By comparing each element of variability to this threshold, a suitable dosing 

regimen can be chosen. If the therapeutic window is large, variability is not an issue and a 

generic population dose is acceptable; if the within subject variability is greater than the 

permissible variability, it is not possible to define a safe and effective dose for an individual. 

However, if the variability threshold lies between the total unpredictable variability and the 

unpredictable within subject variability, individualized dosing is beneficial [58]. Since within 

subject variability is small relative to intersubject variability in the case of FVIII PK parameters 

[70], individualizing dose by incorporating subject-specific PK behaviour is the appropriate 

method.   

This approach is used in the therapeutic monitoring of several other conditions [77–79], 

and a 2010 study by Björkman et al. indicated that a limited sampling strategy could be as useful 

for prediction as a full study [57]. However, adoption of this approach has been hampered 

recently due to the complexity of the models involved and a relative shortage of PK data due to 

the rarity of the disease. To contribute overcoming these barriers, we have reviewed the available 

pharmacokinetic data for FVIII in the treatment of hemophilia patients with the aim of 

facilitating their uptake and use in the development of PopPK models for dose individualization.  

 

Pharmacokinetics of FVIII 

 Studies on the PK of plasma-derived factor VIII were reviewed comprehensively by 

Björkman and Carlsson in 1997 [50]. A similar review in conducted here for studies published in 

the years 1998 through 2015 for both plasma-derived and recombinant products. Mean values of 

the PK parameters and associated variabilities were assessed across included studies. In the 

absence of a specific research question, this review is considered comprehensive as opposed to 
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systematic. The search was completed using PubMed with the following search criteria: 

(‘hemophilia’ [all fields] or ‘hemophilia a’ [MeSH terms] or ‘hemophilia a’ [all fields] or 

‘haemophilia’ [all fields]) and (‘pharmacokinetics’ [subheading] or ‘pharmacokinetics’ [all 

fields] or ‘pharmacokinetics’ [MeSH terms]). Further selection was made for only those original 

studies presenting new PK data in hemophilia A patients.   

An issue faced at the time of the Björkman review was inadequate sampling time (<48 h), 

resulting in an underestimated half-life and overestimated clearance. Since highlighting the effect 

of inadequate sampling on estimation of PK parameters, studies have generally extended 

sampling time to at least 48 h, hopefully eliminating one source of variability in estimated PK. 

On the other hand, the recent introduction of concentrates with extended half-life (EHL) has 

made the optimal length of sampling time a new matter of discussion, which in general needs to 

be reconciled with the general PK recommendation that sampling time should cover at least five 

half-lives [80]. The study details and calculated PK parameters for each reference is presented in 

Table 2. Patients included in each of the studies were in stable condition (i.e. not presenting any 

recent bleed) and in absence of any inhibitors.  

 The pharmacokinetics of FVIII are generally well characterised, with the exception of 

EHL products. Typical values for clearance (0.3 dL h-1 kg-1), volume of distribution at steady 

state (Vss, 48 mL kg-1, or slightly larger than plasma volume) and half-life (14 h) are known [51], 

and the average parameter values for the studies in Table 2 are quite similar (12.94 h, 0.32 dL h-1 

kg-1, and 56 mL kg-1, respectively). The half-lives for the EHL products ranged from 18.2 to 

19.04 h and this extension is due to reduced clearance (0.3 vs. 0.18 dL h-1 kg-1) rather than more 

extensive distribution, since Vss is unchanged. As seen in Table 2, the PK parameters obtained 

from the 23 studies are quite varied. For example, half-life varies between 9.42 ± 3.80 and 17.37 
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± 12.94 h in adult patients. Furthermore, the variability within each study is considerable as well; 

many studies report a coefficient of variation greater than 30% for estimates of half-life, 

clearance and Vss. Though this may encompass both patient-related variability and experimental 

error, it reinforces the idea that individual dose adjustments would be of great clinical benefit, to 

limit both overdosing (associated with wastage of resources) and underdosing (associated with 

ineffective and unsafe treatment) [30].  
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Table 2. Studies on the pharmacokinetics of plasma-derived and recombinant FVIII. PK parameters are presented as mean ± SD 

(%CV); n. g. denotes values that were not reported in the studies. 

Study Product(s) Assay* 

Number 

of 

Patients 

Patient 

Age 

(years) 

Sampling 

Time 

Number 

of 

Samples 

t1/2                                  

(h) 

CL                              

(mL h-1 kg) 

Vss                           

(mL kg-1) 

Analysis 

Methodc 

[81] 
Monoclonate-P® 

 Bioclate® 
OS 10 27-41 48 h 14 

15.5 ± 2.8 (18%)          

14.9 ± 2.9 (19%) 

2.76 ± 0.61 (21%)             

4.02 ± 0.044 (10%) 

77.1 ± 13.9 (18%)         

95.0 ± 21.9 (23%) 
NCA 

[82] Recombinate®  
OS 

CH 
30 ≥12 24 h 8 

13.1 ± 2.4 (18%) 

13.1 ± 1.9 (14%) 

1.9 ± 0.3 (16%) 

1.52 ± 0.21 (14%) 

60.3 ± 5.8 (10%) 

49.1 ± 6.9 (14%) 
NCA 

[83] Emoclot® OS 14 18-44 36 h 12 12.51 ± 0.54 (4%) 5.06 ± 3.167 (63%) n. g. n. g. 

[84] KOGENATE®  OS 20 12-60 48 h 11 

13.8 ± 2.2 (16%) 

14.6 ± 3.1 (21%) 

12.6 ± 0.1 (8%) 

n. g. n. g. n. g. 

[85] 
Koate®-DVI 

Koate®-HP  
OS 18 14-46 48 h n. g. 

16 ± 3 (19%) 

16 ± 5 (31%) 
n. g. n. g. NCA 

[86] BDDrFVIII CH 113 ≥7 24 h n. g. 10.5 ± 2.6 (25%) n. g. n. g. n. g. 

[87] BDDrFVIII CH 39 0-5 n. g. n. g. 7.5 ± 2.7 (36%) n. g. n. g. n. g. 

[88] KOGENATE®  OS 15 12-59 48 h 11 14.4 ± 2.7 (19%) n. g. n. g. n. g. 

[89] ReFacto® CH 18 n. g. n. g. n. g. 14.5 ± 5.3 (37%) n. g. n. g. n. g. 

[90] ReFacto® 
OS 

CH 
18 ≥12 48 h 9 

17.37 ± 12.94 (74%) 

11.69 ± 5.21 (44%) 

3.80 ± 1.32 (35%) 

3.83 ± 1.22 (32%) 

78.50 ± 25.60 (33%) 

58.13 ± 17.11 (29%) 
n. g. 

[91] Advate® n.s. 53 <6 48 h 5 9.88 ± 1.89 (19%) 4.43 ± 1.40 (32%) 51.4 ± 12.3 (24%) 

Two-phase 

linear 

regression 
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Study Product(s) Assay* 

Number 

of 

Patients 

Patient 

Age 

(years) 

Sampling 

Time 

Number 

of 

Samples 

t1/2                                  

(h) 

CL                              

(mL h-1 kg) 

Vss                           

(mL kg-1) 

Analysis 

Methodc 

[92] 
Recombinate® 

rAHF-PFM 
OS 30 10-65 48 h 11 

11.2 ± 2.5 (22%) 

12.0 ± 4.3 (36%) 

3.0 ± 1.0 (33%) 

3.0 ± 1.0 (33%) 

46 ± 10 (22%) 

47 ± 10 (21%) 

Two-phase 

linear 

regression 

[93] Haemoctin® SDH n. g. 13 11-16 30 h 12 11.8 ± 4.2 (36%) 1.52 ± 0.5 (33%) n. g. NCA 

[94] 

BDDrFVIII-A 

BDDrFVIII-B           

Hemofil®  

CH 18 18-44 48 h 12 

15.4 ± 5.4 (35%) 

14.8 ± 5.6 (38%)     

13.7 ± 3.7 (27%) 

n. g. n. g. 
Log-linear 

regression 

[95] 
ReFacto®       

Advate® 
CH 17 19-72 48 h 11 

13.0 ± 3.1 (24%)       

13.6 ± 3.8 (28%) 

3.85 ± 1.36 (35%)   

3.97 ± 1.40 (35%) 

58.6 ± 13.7 (23%)          

61.7 ± 18.6 (30%) 
NCA 

[96] 
BAY 79-4980  

 Recombinate® 
OS+CH 24 12-60 168 h 13 

11.4 ± 2.49 (22%)     

11.6 ± 2.55 (22%) 

3.13 ± 0.81 (26%)   

3.07 ± 0.72 (23%) 

50.0 ± 9.5 (19%)           

49.4 ± 9.6 (19%) 
NCA 

[97] Moroctocog Alfa OS 30 12-60 48 h 11 11.2 ± 5.0 (45%) 4.51 ± 2.23 (49%) n. g. n. g. 

[98] ReFacto® 
OS 

CH 
13 21-69 32 h 9 

12.95 ± 4.73 (36%) 

7.70 ± 4.26 (55%) 

3.5 ± 0.7 (20%) 

4.2 ± 1.4 (33%) 

46.6 ± 12.1 (26%) 

36.2 ± 7.5 (21%) 
NCA 

[99] Octivate® OS 13 12-65 n. g. n. g. 12.4 ± 2.86 (23%)  3.1 ± 0.79 (25%) 53.4 ± 14.1 (26%) NCA 

[100] 

Solvent/detergent-

filtered 

cryoprecipitate 

OS 11 n. g. 36 h 7 14.2 2.6 n. g. 
Log-linear 

regression 

[101] 
N8                   

   Advate® 
OS 20 13-54 48 h 9 

10.83 ± 4.95 (46%)     

11.19 ± 3.51 (31%) 

4.11 ± 1.06 (26%)       

4.17 ± 1.20 (29%) 

59.8 ± 11.7 (20%)        

61.3 ± 7.9 (13%) 
NCA 

[102] Advate® n. g. 71 7-59 48 h 10 13.95 ± 5.30 (38%) 3.91 ± 1.18 (30%) n. g. n. g. 

[103] NovoEight® OS 

14                                

14                               

48 

0-5                       

6-11                  

≥12 

48 h 14 

7.7 ± 1.8 (23%)        

8.0 ± 1.9 (24%)          

11.2 ± 4.2 (38%) 

6.2 ± 3.7 (60%)   5.0 

± 1.7 (34%)   3.5 ± 

1.1 (29%) 

56.7 ± 26.4 (47%)      

46.8 ± 10.6 (23%)       

46.7 ± 9.6 (21%) 

NCA 
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Study Product(s) Assay* 

Number 

of 

Patients 

Patient 

Age 

(years) 

Sampling 

Time 

Number 

of 

Samples 

t1/2                                  

(h) 

CL                              

(mL h-1 kg) 

Vss                           

(mL kg-1) 

Analysis 

Methodc 

[104] Nuwiq®  

OS 
13 

13 

2-5 

6-12 
48 h n. g. 

11.91 ± 5.36 (45%) 

13.08 ± 2.59 (20%) 

5.41 ± 2.32 (43%) 

4.05 ± 0.92 (23%) 

68.29 ± 10.42(15%) 

66.07 ± 15.99 (24%) 
NCA 

CH 
13 

13 

2-5 

6-12 

9.49 ± 3.32 (35%) 

9.99 ± 1.88 (19%) 

5.40 ± 2.37 (44%) 

4.33 ± 1.21 (28%) 

55.32 ± 7.09 (13%) 

54.45 ± 14.80 (27%) 

[105] 

BAY 81-8973 
OS 

CH 
26 

12-61 48 h 10 

13.8 ± 3.5 (25%) 

14.3 ± 3.8 (26%) 

3.8 ± 1.4 (37%) 

2.8 ± 1.0 (36%) 

67 ± 16 (24%) 

54 ± 20 (37%) 
n. g. 

rFVIII-FS 
OS 

CH 
26 

12.6 ± 3.0 (24%) 

12.4 ± 3.2 (26%) 

4.6 ± 1.7 (37%) 

3.4 ± 1.3 (38%) 

71 ± 21 (30%) 

55 ± 23 (42%) 
NCA 

Extended Half-Life Products 

[106] 
Advate® 

rFVIIIFc 
OS 15 ≥12 

72 h 

168 h 
n. g. 

12.2 2.49 43.9 1-compartment 

model 18.8 1.68 45.4 

[107] 
rFVIII-FS  

BAY-949027 
CH 7 18-65 168 h 13 

12.9 ± 6.95 (54%) 

18.2 ± 9.72 (53%) 

2.3 ± 2.1 (92%) 

1.6 ± 0.74 (46%) 

42 ± 24 (57%) 

43 ± 10 (23%) 
NCA 

[108] 
Efraloctocog Alfa  

Advate®  
OS 28 ≥12 120 h 6 

19.0 2.0 ± 0.67 (34%) 
n. g. 

Compartmental 

analysis 12.4 3.0 ± 0.94 (31%) 

[109] N8-GP  CH 26 2-60 168 h 14 19.04 ± 5.53 (29%) 1.79 ± 0.92 (51%) 45.3 ± 17.8 (39%) NCA 

[110] rFVIIIFc  OS 
23 

31 

<6 

6-11 

48 h 

72 h 
n. g. 

12.67 ± 3.52 (28%) 

14.88 ± 8.22 (55%) 

3.60 ± 1.15 (32%) 

2.78 ± 0.98 (35%) 

58.58 ± 9.02 (15%) 

52.13 ± 19.54 (37%) 
n. g. 

*OS = one-stage assay; CH = chromogenic assay.  
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Covariates Affecting Pharmacokinetic Parameters 

 The process of model selection for a PopPK model includes both definition of the 

structural model as well as incorporation of possible covariates. Covariate modelling helps to 

describe the variability in PK response by establishing relationships between patient 

characteristics and model parameters. To facilitate the development of PopPK models for FVIII, 

any covariates that have been already shown to affect FVIII PK were identified. 

 A 2010 study by Björkman et al [111] gathered PK data from children (aged 1-6 years) 

and adolescents/adults (aged 10-65 years). Between these two groups, children exhibited lower 

in vivo recovery (1.84 vs 2.42 IU dL-1/IU kg-1), higher weight-adjusted clearance (4.34 vs. 3.26 

mL h-1 kg) and a shorter half-life (9.4 vs 11.2 h); weight-adjusted Vss was not different between 

groups. Within patient variance was also great among children, though still considerably less 

significant than between patient variance. Within the paediatric group, half-life increased with 

age. Within the adult group, weight-adjusted clearance and weight-adjusted Vss decreased with 

both age and weight (expressed as a ratio of actual weight to ideal body weight); no effect was 

observed for half-life. However, it is important to note that the r2 values for these predictors are 

quite low for both the paediatric (<0.31) and adult (<0.13) models, suggesting that the within 

patient variability cannot be adequately described by these factors. A more recent study 

conducted by Jiménez-Yuste [103] comparing three age groups (0-5, 6-11 and ≥12 years) found 

similar trends for half-life, clearance, Vss and IVR (Table 1).  

 Another characteristic that has been investigated in association with FVIII PK is blood 

type. Several studies have found that the half-life of FVIII is considerably shorter among patients 

with O-type blood compared to other blood types [112–115], likely due to the lower plasma 

levels of von Willebrand factor (vWF) observed in patients with O-type blood. Levels of von 
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Willebrand factor (vWF) have been shown to be positively correlated with half-life 

[114,116,117] as binding to vWF serves to stabilize the FVIII molecule and prevent degradation 

[118]. These levels tend to increase with age [119,120], and may help to explain the shorter 

FVIII half-life observed in children compared to adults.  

 As mentioned previously, typical dosing for hemophilia treatment is adjusted according 

to body weight. However, ideal body weight should be used in place of actual body weight or 

body mass index when calculating dose for under- or overweight patients. This is because the 

body proportion of fat does not affect the distribution and elimination of coagulation factors 

[121]. As mentioned, the typical Vss for FVIII is approximately plasma volume. Since the 

fraction vascular of fat is low (0.005 to 0.010 [122]), a surplus (or scarcity) of fat does not 

significantly affect the volume of distribution. In summary, including appropriate weight-based 

metric and/or other intrinsic or extrinsic covariates may improve dosing in sub-populations. 

 An additional source of variability inherent in the study of the PK of clotting factors is 

associated with the measurement of plasma levels themselves. The different ways of measuring 

FVIII activity can lead to a significant discrepancy in results. Assay results depend not only on 

the assay method used (one-stage vs. chromogenic), but also on the reagents and calibrants used 

[123]. The disagreement between assays was thought to be greater among B-domain deleted 

rFVIII (BDDrFVIII) [124], but more recent and specific studies have shown that the discrepancy 

is similar to that observed for wild-type recombinant concentrates [123]. Despite the high 

variability observed with different analytical methods, no definitive recommendations have been 

made for clinical practice, and attempts to model data obtained from different assays may prove 

challenging. 
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A Pharmacokinetic Comparison of Recombinant and Plasma-Derived Products 

 As mentioned, the transmission of several blood-borne viruses in the 1970s and 1980s 

emphasized the need for safer treatments and ultimately led to the development of recombinant 

factor concentrates [65]. The majority of comparison studies for recombinant and plasma-derived 

FVIII focus on safety, particularly on the risk of developing inhibitors [125–127]. Some early 

studies comparing the PK of recombinant and plasma-derived products found significant 

differences in some parameters, but sampling was only performed for 24 hours rather than the 

suggested 48 hours [67,128]. A more recent study used patients (≥14 years) that were switching 

from plasma-derived to recombinant FVIII as an opportunity to compare their PK [129]. 

Differences at early timepoints following infusion precluded proper assessment of 

bioequivalence, but the half-lives for both groups were similar. There is currently insufficient 

paediatric data to accurately compare plasma-derived and recombinant products in children 

[130].  

In the study by Deitcher et al. shown in Table 1 [81], changes in FVIII PK characteristics 

with concomitant use of desmospressin acetate (DDAVP) were investigated for both plasma-

derived and recombinant products. DDAVP causes a rapid release of vWF and FVIII from 

storage sites and is used in the treatment of mild hemophilia; it is assumed to be ineffective for 

patients with severe hemophilia, since these stores of FVIII do not exist. However, typical 

replacement theory combined with DDAVP administration was hypothesized to extend half-life 

of FVIII by fostering the formation of the more stable FVIII-vWF complex. At baseline, 

clearance was higher for the recombinant group, but no significant differences were observed for 

other PK parameters. The combined therapy with desmopressin resulted in a significantly larger 

Vss and mean residence time in the plasma-derived group, but not in half-life, suggesting that 

neither group would necessarily benefit from this concomitant treatment approach.  
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Finally, a 2005 study compared the PK of plasma-derived and B-domain deleted 

recombinant FVIII (BDDrFVIII) [94]. This modification increases the product yield, but is not 

meant to alter the in vivo functionality of the molecule and this study confirmed bioequivalence 

between two different preparations of BDDrFVIII and a plasma-derived concentrate.  In 

summary, no differences in PK were observed between plasma-derived and recombinant FVIII 

products and source of factor is not likely an important covariate to include in PopPK modelling.   

  

Development of Extended Half-Life Products  

 Since the half-life of FVIII is relatively short, prophylactic therapy requires frequent 

infusion in order to be effective. For this reason, products with longer half-lives are desirable. 

The first EHL drug for the treatment of hemophilia A to achieve approval from the FDA was 

efraloctocog alfa, or Eloctate® in June 2014 [131]. Its half-life is approximately 50% longer than 

traditional recombinant products, allowing for infusion every four days rather than every other 

day, hopefully improving patient adherence [106]. Several other products are in the pipeline, and 

the most common strategy involves fusing the FVIII molecule to another large molecule such as 

polyethylene glycol [132], human immunoglobulin fragments [133,134]  and vWF [135]. 

Another technique involves the manipulation of the FVIII molecular structure. The native 

structure of FVIII consists of two chains held together by a metal-ion bridge, rendering the 

molecule rather unstable. By adding a covalent bond between the two chains, a more stable 

single-chain structure can be formed. The single-chain rFVIII also has greater affinity for vWF. 

Since the half-life of vWF is approximately 50% longer than that of FVIII, this may translate 

into a longer-lasting product [136]. A recent study in mice, rabbits and cynomolgus monkeys 

found a 1.7, 2.1 and 1.6-fold increase in terminal half-life, respectively, for single-chain rFVIII 
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as compared to its full-length counterpart. The importance of vWF was also confirmed in this 

study using vWF knockout mice; terminal half-life decreased by a factor of 30 compared to the 

hemophilia A mice [137].  

 Since EHL products are relatively new, few PK studies have been conducted in humans. 

As a result, the covariates affecting their PK parameters remain largely unknown. One study 

used data from a phase 3 clinical trial to investigate potential covariate effects using PopPK 

analysis [138]. Their final model included vWF level as a major covariate on clearance and 

hematocrit as a weak covariate on volume of the central compartment. Thus, the PK parameters 

of EHL products may be influenced by different covariates than their predecessors and further 

investigation is required to ensure accurate individualized dosing for these products. 

 Long-lasting products are not only possibly beneficial from a patient adherence 

perspective; they could also deliver a major economic advantage, depending of course on costs 

per unit of factor concentrate. Factor concentrates are expensive (approximately US$1 per unit), 

and prophylaxis for a 50 kg child can cost up to $300,000 per year [139–141]. As calculated by 

Björkman [57],  an increase in half-life from 8.1 to 10.8 h means that the dose given at each 

infusion can be reduced by more than half, from 29.7 to 10.7 IU/kg; this translates to a yearly 

savings of 56,000 IU.  

 While they may appear to be the first major improvement to hemophilia care since the 

development of recombinant products, the role of EHL products is still very much unknown and 

the anticipated advantages may not come to fruition. For example, a simulation exercise 

performed by Gringeri et al suggests that the longer dosing interval proposed for EHL products 

results in patients spending a greater amount of time with factor levels below 3%, potentially 
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increasing the risk of bleeding events [142]. If this is the case, then EHL products may function 

better by using a similar dosing schedule as current FVIII products and maintaining a higher 

trough level. Since clinical trials with these products have found no significant change in 

annualized bleeding rate when adopting a once or twice weekly dosing schedule [143], the role 

these products will play in the hemophilia community is still largely undefined. 

 

Conclusions 

 In summary, PK investigations offer valuable information that can subsequently be used 

in the optimization of hemophilia treatment. From these studies, one can gain a true 

understanding of the importance of between patient variability in estimation of PK parameters 

for FVIII. PK studies also afford the opportunity to identify patient characteristics that may help 

in the parameterization of PopPK models; in the case of FVIII, age, ideal body weight, and blood 

type should be considered where possible, and levels of von Willebrand factor bear potential but 

are still in need of confirmation. However, individual PK still varies considerably beyond what is 

captured by these covariates, and a heterogeneous study population is necessary to capture this 

variability. Furthermore, intermittent sampling and subsequent model updating may be required 

to account for variations in individual PK and ensure models remain effective.  
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Addendum 

A substantial number of studies investigating the pharmacokinetics of FVIII products 

have been conducted in the years since this review was first completed. Using the same search 

strategy as previously, an additional 19 eligible studies were found for the period following the 

original review (2016-2019), the details of which can be found in Table 3. Many studies, most of 

them crossover designs, focused on new EHL products that have entered the market in recent 

years, and whose potential and role in hemophilia treatment were not well understood at the time 

of the initial review.  

Although the PK profile of these products is somewhat improved, there does appear to be 

a limit to the degree of half-life extension achievable for FVIII concentrates. Certain EHL FIX 

products have half-lives of 100 hours or more (a roughly 4-fold increase), allowing for dosing on 

a weekly or bi-weekly basis; half-lives of EHL FVIII products peak at 20 hours or less (1.5-fold 

increase), typically extending the dosing interval by just one day [144]. This limited half-life 

prolongation has been attributed to the complexation of FVIII and vWF. The overwhelming 

majority of FVIII is present in a complex with vWF, which stabilizes the structure of the FVIII 

molecule, protects FVIII from proteolytic degradation, and prevents cellular uptake [145]. FVIII 

is also largely cleared in the FVIII-vWF complex form [146]. As a result, half-life of vWF 

(approximately 15 h, with considerable BSV [145]) limits the potential for FVIII half-life 

extension, a hurdle that the currently utilized technologies (protein fusion, PEGylation, and 

protein sequence modification) have been unable to overcome. 
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Table 3. Studies on the pharmacokinetics of plasma-derived and recombinant FVIII identified in the 2019 update. n. g. denotes values 

that were not reported in the studies.  

Study Product(s) Assay 

Number 

of 

Patients 

Patient 

Age 

(years) 

Sampling 

Time 

Number 

of 

Samples 

t1/2                                  

(h) 

CL                               

(mL h-1 kg) 

Vss                           

(mL kg-1) 

Analysis 

Methodc 

[147] 
rFVIII-SingleChain 

octocog alfa 
CH 27 18-65 72 h 10 

14.0 ± 3.4 (24%) 

11.6 ± 3.6 (31%) 

2.69 ± 0.81 (30%) 

3.91 ± 1.38 (35%) 

49.6 ± 7.5 (15%) 

55.8 ± 11.8 (21%) 
NCA 

[148] 

BAX 855 

OS 
14 

17 

<6 

6 to <12 

48-96 h 4 

12.7 

13.9 

3.07 

2.71 
n. g. 

2-

compartment 

model 

CH 
14 

17 

<6 

6 to <12 

13.9 

13.8 

3.00 

2.42 
n. g. 

Advate 

OS 
14 

17 

<6  

6 to <12 

8.78 

9.44 

4.22 

5.55 
n. g. 

CH 
14 

17 

<6 

6 to <12 

9.17 

9.52 

4.94 

5.00 
n. g. 

[149] rFVIII-SingleChain CH 
20 

19 

<6 

6 to <12 
48 h 6 

10.4 (28.7%) 

10.2 (19.4%) 

5.07 (29.6%) 

4.63 (29.5%) 

71.0 (11.8%) 

67.1 (22.3%) 
NCA 

[150] 

BAX 855 

OS 

26 

22 
12-58 n. g. n. g. 

14.3 (3.84) 

16.0 (4.92) 

2.76 (2.03) 

2.47 (0.82) 
n. g. n. g. 

Advate 26 10.4 (2.24) 4.55 (2.17) 

[151] Moroctocog alfa OS 
3 

10 

6 to <12 

≥12 
72 h 12 

7.2 ± 1.8 (25%) 

13.8 ± 3.8 (28%) 

6.65 (30%) 

2.67 (38%) 

67.18 (10%) 

50.53 (30%) 
NCA 

[152] N8-GP 

n. g. 

15 

12 

0-5 

6-11 
96 h Up to 7 

13.2 

14.3 
n. g. n. g. NLME 

 
Previous FVIII 

product 

15 

12 

0-5 

6-11 
30 h Up to 5 

7.2 

7.6 
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Study Product(s) Assay 

Number 

of 

Patients 

Patient 

Age 

(years) 

Sampling 

Time 

Number 

of 

Samples 

t1/2                                  

(h) 

CL                               

(mL h-1 kg) 

Vss                           

(mL kg-1) 

Analysis 

Methodc 

[10] 
Various  FVIII 

products 
n. g. 

11 

7 

6 

4 to <7 

7 to <12 

≥12 

48 h 5 

8.80 ± 2.45 (28%) 

10.15 ± 2.48 (24%) 

12.82 ± 2.38 (18%) 

n. g. n. g. WinNonLin 

[153] 

Moroctocog alfa 

Moroctocog alfa AF-

CC 

CH 25 12-70 48 h 11 
10.9 ± 4.5 (41%) 

9.9 ± 3.2 (32%) 

3.69 ± 1.48 (40%) 

3.84 ± 1.69 (44%) 

51.1 ± 8.5 (17%) 

49.9 ± 9.1 (18%) 
NCA 

[154] 
Moroctocog alfa AF-

CC 
CH 14 6 to <12 48 h 10 9.12 ± 1.94 (21%) 4.496 (30%) 56.42 (15%) NCA 

[155] 
pdFVIII 

rFVIII 
OS 

15 

21 
4.0-16.7 48 h 4 

11.16 ± 0.78 (7%) 

10.87 ± 0.65 (6%) 

3.81 ± 0.36 (9%) 

4.69 ± 0.29 (6%) 

37.22 ± 2.52 (7%) 

42.77 ± 2.04 (5%) 
NCA 

[156] BAY 94-9027 CH 

14 

13 

3 

19 

<6 

6 to <12 

12 to 

<18 

≥18 

72 h 

72 h 

96 h 

96-168 h 

6 

6 

11 

11-13 

15.0 ± 4.1 (27%) 

16.0 ± 3.5 (22%) 

17.9 ± 1.7 (9%) 

17.6 ± 4.6 (26%) 

3.14 ± 1.41 (45%) 

2.14 ± 0.41 (19%) 

1.57 ± 0.40 (25%) 

1.70 ± 0.58 (34%) 

59.5 ± 16.4 (28%) 

50.1 ± 9.5 (19%) 

39.9 ± 10.7 (27%) 

39.6 ± 5.8 (15%) 

NCA 

[157] 

BAY 81-8973 
OS 

CH 
18 18-65 48 h  10 

14.5 (25.7%) 

13.9 (25.1%) 

2.7 (34.3%) 

2.1 (28.5%) 

53 (19.4%) 

39 (19.1%) 
NCA 

rAHF-PFM 
OS 

CH 

11.7 (27.3%) 

12.0 (23.3%) 

3.6 (32.4%) 

3.0 (31.0%) 

56 (17.3%) 

46 (16.7%) 

[158] 
Xyntha (rest) 

Xyntha (exercise) 
OS 21 18-36 24 h 7 

10.55 ± 2.87 (27%) 

10.45 ± 2.55 (24%) 

2.76 ± 0.76 (28%) 

2.89 ± 0.71 (24%) 
n. g. NCA 

[159] Advate OS 21 14-68 24-32 h 2 14.0 ± 2.7 (19%) 3.0 ± 0.7 (23%) 52.1 ± 7.1 (14%) 

Bayesian 

estimation 

(myPKFiT) 

[160] Unspecified n. g. 10 22-49 4 h 4 13.4  1.92 38.2 
Bayesian 

estimation 
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Study Product(s) Assay 

Number 

of 

Patients 

Patient 

Age 

(years) 

Sampling 

Time 

Number 

of 

Samples 

t1/2                                  

(h) 

CL                               

(mL h-1 kg) 

Vss                           

(mL kg-1) 

Analysis 

Methodc 

[161] 
rFVIII-FS 

BAY 81-8973 
OS 14 10-50 44-52 h 2-3 

15.4 [12.0-16.8] 

16.9 [15.3-19.1] 
n. g. n. g. 

Bayesian 

estimation  

(WAPPS-

Hemo) 

[162] pdFVIII CH 4 24-46 48 h 10 14.3 [11.4-16.0] 3.4 ± 0.2 59 ± 6 NCA 

[163] 
BAY 94-9027 

rFVIIIFc 
OS 17 22-65 120 h 12 

16.3 (34%) 

15.2 (33%) 

2.0 (38%) 

2.5 (32%) 

46.2 (15%) 

49.7 (22%) 
NCA 

[164] N8-GP CH 

13 

11 

3 

42 

0-5 

6-11 

12-17 

≥18 

96 h 

96 h 

96 h 

96-168 h 

7 

7 

7 

9-14 

13.6 (20%) 

14.2 (26%) 

15.8 (43%) 

19.9 (34%) 

2.6 (45%) 

2.4 (40%) 

1.5 (43%) 

1.4 (32%) 

n. g. NCA 

*OS = one-stage assay; CH = chromogenic assay.  
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Chapter 3: Data analysis protocol for the development and evaluation of 

population pharmacokinetic models for incorporation into the Web Accessible 

Population Pharmacokinetic Service – Hemophilia (WAPPS-Hemo) 
 

This chapter is reflective of an original manuscript prepared by the Ph.D. candidate (Alanna 

McEneny-King) for submission to JMIR Research Protocols. All pertinent dialogue in this 

chapter was written by the Ph.D. candidate. 

 

Introduction 

Hemophilia is a congenital bleeding disorder caused by a deficiency in clotting factor 

VIII (FVIII, hemophilia A) or IX (FIX, hemophilia B), resulting in bleeding episodes, often in 

the joints. Hemophilia A is considerably more common than hemophilia B, with reported 

prevalences of 8.0 and 2.4 per 100,000 males, respectively [62,165]. In more severe hemophilia 

patients (i.e. those with endogenous factor levels below 10 IU L-1), bleeds may occur 

spontaneously and can lead to irreversible damage in target joints. Treatment options include 

replacement with exogenous clotting factor concentrates, which may be administered on-demand 

when bleeds occur, or prophylactically on a regular schedule.  

Prophylactic treatment has been repeatedly shown to improve joint outcomes [9,166], but 

can be somewhat challenging to implement due to wide interpatient variability in 

pharmacokinetics (PK) handling of factor concentrates [167,168]. Evidence suggests that an 

individualized approach is optimal, from both a therapeutic and economic perspective. 

Previously, PK-based dose tailoring was hampered by the high sampling burden required to 

perform classical PK estimation. However, the International Society of Thrombosis and 

Haemostasis (ISTH) Scientific and Standardization Committee recently recommended the use of 
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the population pharmacokinetic (PopPK) approach to improve the feasibility of PK-tailored 

dosing in routine care [169]. While this approach does reduce the number of samples needed, the 

development and evaluation of PopPK models requires specialized software, expertise, and a 

considerable amount of data. In recent years, web-based PK software such as the Web 

Accessible Population Pharmacokinetics Service – Hemophilia (WAPPS-Hemo, www.wapps-

hemo.org) have emerged to tackle this obstacle and encourage the use of the PopPK approach in 

hemophilia treatment. Housed at McMaster University in Canada, the service was launched in 

2015 and has grown into the largest repository of hemophilia PK data worldwide. Users provide 

patient demographic data and a minimal number of blood samples, and receive a report 

containing the patient’s predicted PK profile and individual estimates of PK outputs such as half-

life, time to critical factor levels (50, 20, and 10 IU L-1), and factor levels at key post-infusion 

times (24, 48, 72, and 96 hours, as appropriate).         

Population pharmacokinetic modelling uses nonlinear mixed effects modelling 

techniques with the primary goal of partitioning, quantifying, and identifying sources of 

variability in PK response. Total variability can be divided into predictable and unpredictable 

variability, where predictable variability is attributed to covariates (e.g. body weight, age, blood 

type) that are known to influence a patient’s PK; the identification of important covariates can 

also help to detect at-risk subpopulations. Unpredictable variability may occur between separate 

patients (BSV) or within a single subject on different occasions (BOV). The magnitude of these 

unpredictable variabilities determines which dosing strategy (e.g. generic population dose vs. 

individualized dose) is appropriate. PopPK models typically consist of three sub-models: (1) 

structural model, which defines curve shape (e.g. two-compartment); (2) covariate models, to 

describe relationships between known patient characteristics and PK parameters (e.g. age effect 
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on clearance [CL]); and (3) statistical model, which describes residual variance between and 

within individuals (e.g. 30% BSV on central volume [V1]). The PopPK model parameters (i.e. 

typical values and variances) act as informative priors and, combined with sparse blood samples 

from the patient, are used to estimate individual PK parameters through Bayesian forecasting.  

In this update to our previously published protocol [170], we present the model 

development and evaluation strategy currently being used to produce PopPK models for use in 

Bayesian forecasting on the WAPPS-Hemo platform. 

 

Methods 

Data Sources 

To date, PK data from a total of 26 brands of clotting factor concentrate have been used 

for development of both brand-specific and generic PopPK models on WAPPS-Hemo; these 

include standard and extended half-life products for both factor VIII and IX. Thus far, most 

models have been built on data measured by one-stage clotting assay; however, seven products 

also have models that are valid for chromogenic assay. While the majority of the data used for 

model development originates from industry-sponsored and investigator-driven studies, some 

model derivation datasets have also been supplemented with data collected through routine usage 

of the WAPPS-Hemo service, especially when pediatric patients were not included; in certain 

cases, models have been built entirely from WAPPS-Hemo data [171,172]. 
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Table 4. Description of the components for a typical NONMEM dataset 

 

Variable Description Units 

CID Patient identification number Positive integer 

IID Infusion identification number Positive integer 

OCC Dose occasion Positive integer 

TIME Time of each concentration 
measurement; TIME = 0 when 
predose measurement occurs 

Hours  

TAD Time of each concentration 
measurement; TIME = 0 at start 
of infusion 

Hours 

AMT Total Dose   International unit (IU) 

RATE Rate of infusion; AMT/TIME IU/h 

DV Plasma concentration of valid 
observation 

IU/L 
DV = 0  

AGE Age  Years 

HT Height  Centimetres 

BW Weight  Kilograms 

FFM Fat-free mass, calculated from 
AGE, HT and BW 

Kilograms 

EVID Event identification variable  0 = valid observation  
1 = dose event 
3 = reset event 
4 = reset and dose event 

DOSE AMT/BW  IU/kg 

PREDOSE Plasma concentration at time of 
start of bolus  

IU/L if measured; 
-1 if not measured 

MDV Missing dependent variable  0 = valid observation 
1 = dose observation   

LLOQ Lower limit of quantification of 
the assay used 

IU/L;  
assumed 10 IU/L if not provided 

BLQ Below limit of quantification -1 for non-BLQ measurements; 
LLOQ for BLQ measurements 

BASELINE Endogenous plasma 
concentration  

IU/L if measured; 
assumed LLOQ/2 if not provided 

Optional covariates: 

VWF von Willebrand Factor Percentage  

BRAND Brand of factor concentrate 
product 

Categorical 

RACE Race  Categorical  

BTYPE Blood type  0 = non-O blood type 
1 = O blood type 
-1 = unknown 

HCT Hematocrit Percentage 
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Software and Handling of BLQs 

Population pharmacokinetic modelling and Bayesian post hoc estimation are both 

performed in NONMEM using PDx-Pop (v7.3/7.4 and v5.2, respectively; ICON Development 

Systems, Ellicott City, MD, USA). When available, the modelling dataset will consist of the 

variables outlined in Table 4. Estimation is performed using the first order conditional estimation 

with interaction (FOCEI) with the LAPLACIAN option; the ADVAN and TRANS subroutines 

for each compartmental model are shown in Table 5. Graphical analysis and streamlining of 

evaluation steps are conducted in MATLAB (R2017b, Mathworks, Natick, MA, USA). As 

mentioned above, severe hemophilia patients have an endogenous factor activity level below 10 

IU L-1. As 10 IU L-1 is also the most cited lower limit of quantification (LLOQ) for coagulation 

activity assays [refs for assay LLOQ], measurements that are below the limit of quantification 

(BLQ) are common. To handle these measurements, we employ the M3 method proposed by 

Beal [173]. In brief, this method involves using maximum likelihood estimation to fit the PK 

model to all observations (where the likelihoods for BLQ observations are the likelihoods that 

these measurements are truly BLQ). Handling BLQ observations in this manner is less biased 

than ignoring or imputing the data.  

Table 5. NONMEM subroutines used to implement kinetic equations for linear models 

following intravenous administration  

 

 

 

 

  

Model ADVAN Subroutine TRANS Subroutine 

1-compartment ADVAN1      TRANS2: CL, V 

2-compartment ADVAN3      TRANS4: CL, V1, Q, V2  

3-compartment ADVAN11      TRANS4: CL, V1, Q2, V2, Q3, V3 
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Base Model Development 

The development of the base model consists of defining the structural model (i.e. number 

of compartments) and the statistical models (i.e. BSV, BOV [if applicable], and residual 

unexplained variability [RUV]). In the case of hemophilia, where factor activity measurements 

comprise both endogenous factor and repeatedly administered exogenous factor, measured factor 

activity is the result of three distinct contributors: 

𝐶 = 𝐶𝑒𝑥𝑜𝑔𝑒𝑛𝑜𝑢𝑠 + 𝐶𝑒𝑛𝑑𝑜𝑔𝑒𝑛𝑜𝑢𝑠 

𝐶 = 𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑑𝑜𝑠𝑒 + 𝐶𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 + 𝐶𝑒𝑛𝑑𝑜𝑔𝑒𝑛𝑜𝑢𝑠 

For the example of a two-compartment model, 

𝐶(𝑡) = 𝑓(𝜃, 𝑡) + (𝐶𝑝𝑟𝑒𝑑𝑜𝑠𝑒 − 𝐶𝑒𝑛𝑑𝑜𝑔𝑒𝑛𝑜𝑢𝑠)𝑒
−𝛽𝑡 + 𝐶𝑒𝑛𝑑𝑜𝑔𝑒𝑛𝑜𝑢𝑠 

where 𝑓(𝜃, 𝑡) is function relating factor activity to the individual’s parameters (𝜃), such as PK 

parameters and covariate effects, and time (𝑡); the precise form of 𝑓 depends on the number of 

compartments and the administration route. Residual exogenous FVIII from unaccounted doses  

(𝐶𝑝𝑟𝑒𝑑𝑜𝑠𝑒 − 𝐶𝑒𝑛𝑑𝑜𝑔𝑒𝑛𝑜𝑢𝑠) decays according to the terminal rate constant (𝛼 for a one-

compartment model; 𝛾 for a three-compartment model); if no predose level was measured, it is 

assumed that there was no exogenous FVIII remaining at the time of dose administration. The 

endogenous FVIII component (𝐶𝑒𝑛𝑑𝑜𝑔𝑒𝑛𝑜𝑢𝑠) is assumed to be constant and, when unknown or 

unmeasurable, is considered to be half of the lower limit of quantification (LLOQ) of the assay. 

The selection of the structural model (i.e. 1-, 2-, or 3-compartment) is driven by the 

objective function value (OFV), a numerical measure of goodness-of-fit, and graphical 

evaluations. Since the likelihood ratio test is not reliable for this comparison due to boundary 
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issues, the Akaike Information Criterion (AIC) and Bayesian Information Criterion are also used 

to determine the most favourable model. 

𝐴𝐼𝐶 = 𝑂𝐹𝑉 + 2 ∙ 𝑛𝑝 

𝐵𝐼𝐶 = 𝑂𝐹𝑉 + 𝑛𝑝 ∙ ln (𝑁) 

where 𝑛𝑝 is the number of parameters in the model and 𝑁 is number of observations in the 

dataset; a decrease in AIC or BIC of at least 2 is considered positive evidence in favour of the 

model [174]. In addition to these goodness-of-fit measures, the plausibility of the parameter 

estimates and graphical techniques (described in the Model Evaluation section) are also 

considered in decision-making. Furthermore, plots of the PK curves generated from estimated 

population parameters can also be helpful to assess whether meaningful differences exist 

between structural models. 

 

Residual Unexplained Variability 

Residual unexplained variability (RUV) is the unexplained variability after accounting 

for all other sources of variability, and may arise from assay error, imprecise recording of sample 

time, model misspecification, or natural variation [174]. Commonly used functions to describe 

RUV include:  

𝐶𝑖𝑗 = �̂�𝑖𝑗 + 𝜀𝑖𝑗 

𝐶𝑖𝑗 = �̂�𝑖𝑗  ∙ (1 + 𝜀𝑖𝑗) 

𝐶𝑖𝑗 = �̂�𝑖𝑗 ∙ (1 + 𝜀𝑖𝑗1) + 𝜀𝑖𝑗2 



 

44 
 

where 𝐶𝑖𝑗 is the 𝑖th observation for the 𝑗th individual, �̂�𝑖𝑗 is the model prediction for the 𝑖th 

observation for the 𝑗th individual. In each case, the 𝜀-values are assumed to be independent and 

follow a normal distribution with a mean of zero and variance 𝜎2 (𝜀1~𝑁(0, 𝜎1
2), 𝜀2~𝑁(0, 𝜎2

2)). 

 

Between Subject Variability 

Between-subject variability (BSV) is modelled according to the following equation: 

𝑃𝑗 = 𝑇𝑉(𝑃) ∙ 𝑒𝜂𝑃−𝑗  

where 𝑃𝑗 is the individual value of PK parameter 𝑃 for the 𝑗th individual, 𝑇𝑉(𝑃) is the typical 

value of parameter 𝑃. 𝜂𝑃−𝑗 describes individual 𝑗’s deviation from the typical parameter value, 

and  𝜂𝑃~𝑁(0,𝜔𝑃
2) such that 𝑃 is log-normally distributed and physiologic PK parameter values 

remain positive. The decision to include BSV on a given PK parameter is largely driven by 𝜂-

shrinkage values, defined as: 

𝑠ℎ𝑟𝜂 = 1 −
𝑆𝐷(𝜂)

𝜔
 

where 𝜔 is the estimate of the standard deviation of 𝜂 from the population model, and 𝑆𝐷(𝜂) is 

the standard deviation of 𝜂 calculated over the population. Typically, 𝜂-shrinkage takes a value 

between 0% and 100%, with higher values indicating that individual parameter estimates are 

“shrinking” towards the population value due to a lack of informative data for that particular 

parameter (Figure 4). This lack of information results in an uncertain estimate of BSV which, 

when used in Bayesian estimation, leads to uncertainty around the individual estimates and 

inappropriate outcomes (e.g. implausible half-lives, extremely wide confidence intervals, etc.). In 

addition to the problems it creates in Bayesian forecasting, elevated 𝜂-shrinkage can also 
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interfere with later steps of model development as many diagnostic plots, particularly those used 

to assess covariate relationships, become misleading when 𝜂-shrinkage is in to 20-30% range 

[175]. For this reason, BSV is typically removed from parameters with high 𝜂-shrinkage (we use 

35% as a cut-off value) and the model is re-assessed.   

 

Figure 4. 𝜼-distribution of a structural model parameter (e.g. CL) with low (left) and high (right) 

shrinkage. The red line indicates the expected distribution from the model assumptions, while the 

blue line shows the actual distribution of individual 𝜼-values. 

 

Considering the end use of the model, the magnitude of the BSV term was also taken into 

account, as high BSV may introduce too much flexibility into the model. The inclusion of off-

diagonal elements in the omega matrix is only tested after selection of the covariate model, so as 

𝑠ℎ𝑟𝜂 = 1.5% 𝑠ℎ𝑟𝜂 = 30.3% 

η
P
 η

P
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not to obscure covariates effects by prematurely allowing for correlation between 𝜂-terms that 

share a common covariate. 

Between-occasion variability (BOV) is modelled similarly, when sufficient data is 

available: 

𝑃𝑗𝑘 = 𝑃𝑗 ∙ 𝑒
𝜌𝑃𝑘 

where 𝜌𝑃𝑘 is normally distributed (𝜌𝑃~𝑁(0, 𝜋𝑃
2)) and described the deviation on occasion 𝑘 for 

individual 𝑗. To diagnose the inclusion of BOV terms, BSV estimates are compared from two 

different treatments of the modelling dataset. In the first run, each new occasion is treated as a 

new subject; in the second, occasions are attributed to the original subject, but BOV is not 

explicitly modelled. Parameters with significant decreases in BSV in the second run are then 

formally assessed for BOV. 

 

Covariate Model Selection 

Possible covariate relationships are first explored by examining plots of 𝜂-values against 

each covariate (either as a scatter plot for continuous covariates or boxplot for categorical 

covariates). Next, covariates are formally tested in the model using the likelihood ratio test, 

which assumes that the difference in OFV between two nested models follows a chi-squared 

distribution with 𝑃2 − 𝑃1 degrees of freedom, where 𝑃2 and 𝑃1 are the numbers of parameters in 

the larger and smaller models, respectively. Thus, if a 5% significance level is employed, the 

addition of one parameter (i.e. one degree of freedom) must decrease the OFV by at least 3.84 

units; when adding two parameters, the decrease must be 6 units or more.  
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Covariates are added to the model in a stepwise manner, and are kept based on OFV 

decrease, reduction of unexplained BSV, and physiological/clinical relevance of the estimated 

covariate effect. If several covariates are highly correlated (e.g. body weight, height, and fat-free 

mass), only one is included in the final model to avoid collinearity. Typical functional forms 

used include: 

𝑇𝑉𝑃𝑖 = 𝑇𝑉(𝑃) ∙ (
𝑐𝑜𝑣𝑖
𝑐𝑜𝑣𝑚𝑒𝑑

)
𝜃𝑐𝑜𝑣−𝑃

 

𝑇𝑉𝑃𝑖 = 𝑇𝑉(𝑃) ∙ (1 + 𝜃𝑐𝑜𝑣−𝑃 ∙ (𝑐𝑜𝑣𝑖 − 𝑐𝑜𝑣𝑚𝑒𝑑)) 

𝑇𝑉𝑃𝑖 = 𝑇𝑉(𝑃) ∙ (1 + 𝜃𝑐𝑜𝑣−𝑃 ∙ max (0,
𝑐𝑜𝑣𝑖 − 𝑐𝑜𝑣𝑚𝑒𝑑

𝑐𝑜𝑣𝑚𝑒𝑑
)) 

𝑇𝑉𝑃𝑖 = 𝑇𝑉(𝑃) ∙ (1 + 𝜃𝑐𝑜𝑣−𝑃 ∙ 𝐶𝐴𝑇)       𝐶𝐴𝑇 = {0,1} 

where 𝑇𝑉𝑃𝑖 is the PK parameter predicted by the model for the 𝑖th individual with covariate 

value 𝑐𝑜𝑣𝑖, 𝑐𝑜𝑣𝑚𝑒𝑑 is the median value of the covariate, and 𝜃𝑐𝑜𝑣−𝑃 is the effect of the covariate 

on parameter 𝑃. 𝐶𝐴𝑇 represents a dichotomous categorical covariate (e.g. blood group). 

Morphometric variables (e.g. body weight, fat-free mass) are modelled using the power function, 

while age, when significant, tends to follow a linear or piecewise linear relationship depending 

on the covariate space of the dataset. Graphical representations of these functional forms, with 

varying values of 𝜃, are presented in Figure 5. 
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Figure 5. Illustration of different functional forms (left to right: power, linear, piecewise linear, 

and categorical) for covariate relationships, with varying effect sizes 

 

 In light of the final use of these models, multiple covariate models are occasionally 

required for a single clotting factor concentrate. For example, von Willebrand factor (vWF) level 

is an excellent predictor of FVIII clearance, as this protein acts as a chaperone for FVIII and 

protects it from degradation. However, vWF levels are not available for all patients. In these 

cases, an alternative model containing only basic covariates (e.g. age, body weight) is 

simultaneously developed. 

Model Evaluation 

Model evaluation consists of both basic and advanced internal methods that are selected 

based on the model’s intended purpose of Bayesian forecasting. First, models are evaluated using 
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graphical techniques to assess goodness-of-fit, ensure all underlying assumptions are met, and to 

identify any model misspecification. Diagnostic plots include: 

 Population/individual predicted values vs. observed values 

 Conditional weighted residuals (CWRES) vs. predicted values 

 CWRES vs. time 

 Observed/predicted values vs. time 

 Normal QQ plots 

 CWRES histograms 

 Population covariate plots 

 𝜂 histograms 

In addition to graphical assessment, 𝜂-distributions were also numerically evaluated using 𝜂-

shrinkage.. As previously alluded to, high 𝜂-shrinkage increases uncertainty around estimates 

obtained from Bayesian forecasting and also interferes with commonly used diagnostic plots; 

preliminary covariate analysis is particularly sensitive to 𝜂-shrinkage, as both hidden and 

induced relationships have been observed at 20-30% 𝜂-shrinkage [175]. As a result, we remove 

BSV from parameters when shrinkage is in excess of 35% and the model is re-assessed When 𝜂-

shrinkage is above 20%, all covariate relationships are formally explored as the graphical 

analysis can be misleading.. 𝜀-shrinkage, defined below, is also monitored: 

𝑠ℎ𝑟𝜀 = 1 − 𝑆𝐷(𝐼𝑊𝑅𝐸𝑆) 

where 𝑆𝐷(𝐼𝑊𝑅𝐸𝑆) is the standard deviation of the individual weighted residuals (𝐼𝑊𝑅𝐸𝑆 =

𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛−𝐼𝑃𝑅𝐸𝐷

𝜎
).  
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Thus, high 𝜀-shrinkage is indicative of overfitting. Similar to 𝜂-shrinkage, 𝜀-shrinkage 

can also reduce the power of diagnostic plots (e.g. IPRED vs. observed) to detect model 

misspecifications [176] and so this value was also considered before consulting graphical 

diagnostics. While model evaluation is typically thought of as occurring once the final model has 

been decided upon, these graphical techniques and monitoring of shrinkage are used throughout 

model development to assist in decision-making.  

 Next, bootstrap analysis is performed as a non-parametric way of assessing uncertainty in 

parameter estimates by calculating the standard errors and confidence intervals around model 

parameters. The modelling dataset is randomly sampled 1000 times with replacement (stratified 

by covariates as needed) to generate 1000 new datasets of the same size as the original. 

Parameters are estimated for each prepared dataset, with the median values corresponding to 

parameter estimates and the 2.5th and 97.5th percentiles forming the 95% confidence interval. 

Bootstrap standard errors are calculated using the following equation: 

𝑆𝐸(𝜃) = √
1

𝐵 − 1
∑ (𝜃𝑏 − �̅�)

2𝐵

𝑏=1
 

where 𝐵 is the number of re-sampled datasets, 𝜃𝑏 is the estimate of 𝜃 from run 𝑏, and �̅� is the 

mean estimate of 𝜃 from the 𝐵 datasets. 

 A prediction-corrected visual predictive check (pcVPC) is then used to assess a model’s 

predictive capacity. Traditional VPCs can be used to assess whether simulations produced by a 

candidate model are able to recreate both the central tendency and the variability of the observed 

data. A large number of simulations are performed, and the corresponding percentiles of the 

simulated and observed data are compared visually. However, model diagnosis by VPC can be 
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hampered by large variations in independent variables such as dose. To tackle this shortcoming, 

the observed and simulated factor activity levels in each bin are normalized by the typical 

population prediction, as shown by Bergstrand et al [177]. The pcVPC is performed with 500 

simulations, and an example of a typical pcVPC generated during model evaluation is shown in 

Figure 6. 

 

Figure 6. Example of prediction-corrected visual predictive check (pcVPC) for a SHL FVIII 

model shown on linear (top) and log (bottom) scales. Dashed red lines denote median, 5th and 

95th percentiles of observed data. Solid lines denoted the same percentiles in the simulated data, 

with shaded regions representing the 90% prediction regions for the simulated percentiles.  
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 As the ultimate use of the models is in Bayesian forecasting, internal and external 

evaluation techniques are used to evaluate them specifically for this purpose. First, cross-

validation (typically 10-fold) is performed to assess the model’s ability to predict PK parameters 

for individuals outside of the original modelling dataset. The original dataset is split into a 

learning subset and a validation subset; in the case of a 10-fold cross-validation, the learning 

subset comprises 90% of the data while the remaining 10% is used for evaluation. Bayesian 

forecasting is performed on the validation subset using population estimates obtained from the 

learning subset. Individual estimates of key PK parameters (e.g. half-life, clearance, central 

volume, time to 1% factor activity) are then compared to those obtained using the entire 

modelling dataset by calculating relative error: 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐸𝑟𝑟𝑜𝑟 =
�̂�𝑖 − 𝜑𝑖
𝜑𝑖

 

where �̂�𝑖 is the estimate from the cross-validation and 𝜑𝑖 is the estimate when the full dataset is 

used for model development. This process is repeated 100 times, to prevent the bias that may 

occur from a single random split of the dataset; typical results are presented in Figure 7. 

 

Figure 7. Sample results from cross-validation, presented as histograms of relative errors on key 

PK parameters 
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 Next, a limited sampling analysis is performed to ensure that the models can estimate 

individual PK parameters accurately from only a few patient samples. In addition to assessing 

the performance of the model, this analysis can also identify which sampling times are most 

informative for estimation of a given parameter using Bayesian forecasting.  Based on the 

method describe by Brekkan et al [178], a population of 1000 individuals is generated using the 

covariate and PK parameter distributions of the initial dataset. An appropriate treatment strategy 

is simulated for each subject, depending upon the clotting factor product being modelled (Table 

6).  

Table 6. Simulation details for limited sampling analysis by product type 

Product Type Dosing Regimen 
Steady State 

Simulation Length 
Reference Sampling Design 

SHL FVIII 25 IU/kg, 3 times per week 4 weeks Predose, 1, 3, 6, 12, 24, 48, 72 h 

EHL FVIII 40 IU/kg, 2 times per week 4 weeks Predose, 1, 3, 6, 24, 48, 72, 96 h 

SHL FIX 40 IU/kg, 2 times per week 4 weeks Predose, 1, 3, 6, 24, 48, 72, 96 h 

EHL FIX 40 IU/kg, one per week 4 weeks 
Predose, 1, 24, 48, 72, 96, 120, 

168, 240, 336 h 

 

Limited sampling strategies are created from 2- or 3-sample subsets of the rich design (8+ 

samples) at clinically convenient times. Individual PK parameters are obtained through Bayesian 

forecasting from each of the designs, and estimates of relevant PK parameters from the limited 

sampling strategies are compared to those obtained from the rich sampling strategy using relative 

error, both numerically and graphically (Figure 8). 
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Figure 8. Example of results from limited sampling analysis for a SHL FVIII model, depicting 

the error on estimates of half-life and time to 2% factor activity for two-sample designs  
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 Finally, data collected through the WAPPS-Hemo network is used to externally evaluate 

the model, provided the WAPPS data has not already been used to supplement the original 

modelling dataset. First, histograms of age and body weight for the WAPPS data and the 

modelling dataset are compared to determine if the WAPPS data is similar to the covariate space 

on which the model was built (Figure 9A). Next, the model was used to perform Bayesian 

forecasting, and the results were evaluated using goodness-of-fit plots, histograms of individual 

estimates of PK parameters (e.g. half-life, clearance, central volume, time to 1% factor activity) 

and overlaid observed data with the activity-time profile predicted by the model for each 

individual (Figure 9B-D). Due to the sparse nature of the PK data collected through WAPPS-

Hemo, a formal evaluation comparing estimates to some ‘true’ value is not feasible; rather, this 

method ensures that the model produces reasonable results in the conditions in which it is 

intended to perform. 
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Figure 9. Process of external validation using WAPPS-Hemo data.  (A) Comparison of covariate 

spaces of modelling (grey) and WAPPS-Hemo (blue) data (B) Goodness-of-fit plots (log scale) 

(C) Comparison of individual PK estimates for patients from modelling and WAPPS-Hemo 

datasets (D) Predicted individual activity-time profiles with 95% confidence intervals (shaded 

region) and observed data overlaid (×). 

 

 

Results 

As of this update, 33 models for 26 clotting factor concentrates have been developed 

according to this protocol. In addition, a generic standard half-life FVIII model was developed to 

handle requests for products without a brand-specific model. To date, over 9,000 unique PK 

profiles from nearly 6,000 patients; roughly one third of these infusions correspond to pediatric 

(<12 years old) patients. The clinical module described in the original WAPPS-Hemo data 

analysis protocol was implemented in 2017, and has since been used over 1,300 times for dosing 

regimen design.  

 With regards to reporting, a recent paper by Hajducek provides a summary of the 

modelling datasets and evaluation results (pcVPC, cross-validation, and LSA) for all models 

A B 

C D 
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currently implemented on the WAPPS-Hemo platform. In brief, the models used on the WAPPS-

Hemo platform demonstrate good performance in the context of Bayesian forecasting. Cross-

validation reveals low bias and relative error on estimates of relevant PK parameters such as 

half-life and TAT2%. Results from LSA also showed acceptable bias and error, while also 

confirming the ability of the models to produce accurate estimates from a number of different 

sampling schemes; this flexibility in sampling times is an important feature that makes the 

Bayesian approach more feasible in a real world setting. Furthermore, the development and 

evaluation of three models (standard half-life FVIII, Fanhdi/Alphanate and Adynovate) are fully 

detailed in McEneny-King et al [179] and Chelle et al [171,172].   

 

Discussion 

We would first like to emphasize that the model development and evaluation strategies 

described in this report are highly influenced by its end purpose of Bayesian forecasting; models 

intended for other purposes may employ different decision-making criteria or evaluation 

techniques. Furthermore, this revised data analysis protocol follows from our collective 

experience developing over 25 models for clotting factor concentrates for use in Bayesian 

forecasting; we have observed, through the regular use of the WAPPS-Hemo service, which 

types of models perform well for this purpose and have incorporated this knowledge into the 

updated protocol. 

Since the publication of the original data analysis protocol for WAPPS-Hemo models in 

2016, the uptake of the PopPK approach in the hemophilia community has risen dramatically 

[180].  The WAPPS-Hemo network, currently with over 400 centres worldwide, boasts the 

largest global repository of hemophilia PK data, which continues to grow in number, covariate 
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space, and quality. As we continue to collect data, we aim to standardize our approach to 

updating models with data submitted to WAPPS-Hemo. This exercise poses an interesting 

question about which type of model is best suited to Bayesian forecasting: a model using data 

collected during clinical trials, or model created by merging industry and routine clinical data? 

The clean, richly sampled data from clinical trials typically enables clearer decisions regarding 

the structural model and inclusion of BSV or BOV; however, the number of patients may be low 

and the covariate space may be narrow, and especially lacking in pediatric patients. On the 

contrary, the WAPPS-Hemo data consists of over 9,000 unique PK profiles (including over 

3,000 in children under 12 years of age), but this data is not necessarily clean. To ensure that the 

inclusion of WAPPS-Hemo data improves rather than pollutes the model of interest, strict data 

cleaning procedures will be necessary for model updating. Furthermore, it may be prudent to 

restrict model updating to the re-assessment of covariate effects rather than re-selecting the 

structural model.  

Finally, a limitation – though also a strength of the project – is our constant evolution, 

necessitating regular updates to our methods, such as this report, so that the hemophilia 

community is informed of our current practices. For instance, the modelling of BOV is a more 

recent addition to our model development strategy, as more multi-occasion data became 

available; its incorporation in some models prompts further research questions regarding the 

validation of the clinical calculator module. 

 

  



 

59 
 

Conclusions 

In summary, the WAPPS-Hemo service is centred on validated PopPK models for 

clotting factor concentrates. This protocol describes the process of model development and 

evaluation that has been refined during the last three years, since the original publication of the 

data analysis plan. The WAPPS-Hemo network continues to grow, contributing to the largest 

repository of hemophilia PK data.  
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Chapter 4: Development and evaluation of a generic population 

pharmacokinetic model for standard half-life factor VIII for use in dose 

individualization  

 

This chapter is reflective of an original manuscript published by the Ph.D. candidate (Alanna 

McEneny-King) in Journal of Pharmacokinetics and Pharmacodynamics. All pertinent dialogue 

in this chapter was written by the Ph.D. candidate. 

 

McEneny-King A, Chelle P, Foster G, Keepanasseril A, Iorio A, Edginton AN. Development 

and evaluation of a generic population pharmacokinetic model for standard half-life factor VIII 

for use in dose individualization. J Pharmacokinet Pharmacodyn. 2019; 46(5):411-426. DOI: 

10.1007/s10928-019-09634-7. 

 

Introduction 

Hemophilia A is a genetic bleeding disorder caused by a deficiency of functional clotting 

factor VIII (FVIII), affecting 1 in 6,500 male births [62]. As a result, hemophilia patients are 

unable to form clots in response to vascular injury and are thus prone to bleeding episodes. 

Among the most severe patients (i.e. those with less than 1% of normal FVIII activity), bleeds 

may occur spontaneously, particularly in joints, resulting in debilitating arthropathy. Current 

hemophilia therapy consists of regular intravenous infusions of exogenous FVIII to maintain 

FVIII levels above a certain trough at all times. Often, the selected trough is 1% (or 10 IU L-1), 

based on the observation that the rate of increase in joint score of moderate patients with 

endogenous FVIII activity between 1% and 3% was halved compared with those with 
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endogenous levels below 1% [7]. Furthermore, a correlation between time spent below the 1% 

threshold and the occurrences of bleeds and hemarthroses has been demonstrated [10].  

Today, there is global consensus that prophylaxis should be initiated at a young age, 

before joint disease is apparent [11–13]. However, no optimal regimen has been determined due 

to a highly variable pharmacokinetic (PK) response between patients. High between subject 

variability (BSV) and relatively low interoccasion variability (IOV) suggests that FVIII dosing 

regimens ought to be tailored to the individual to ensure both the safety of the patient and the 

responsible use of expensive clotting factor concentrates [70,167]. The classic approach to PK-

based dose tailoring has been difficult to apply in a clinical setting, especially when trying to 

apply the approach recommended by the International Society of Thrombosis and Haemostasis 

(ISTH) for bioequivalence studies with new concentrates, which requires more than 10 samples 

taken over the course of 48 hours. More recent ISTH-issued guidelines detail the value of a 

population pharmacokinetic (PopPK) approach to PK studies oriented to dose individualization 

[169,181]. A PopPK model, which provides typical values of PK parameters (clearance [CL], 

central volume [V1]) and quantifies the variability within the population based on patient 

covariates, can act as informative prior knowledge for the Bayesian estimation of individual PK 

parameters including half-life and time to target trough. 
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Table 7. Published PopPK models for standard half-life FVIII products 

Reference Product Description 

Abrantes [182] ReFacto AF/Xyntha 

2-compartment; combined RUV model; BSV on CL, F and 

baseline; IOV on CL and V2; body weight on V1 and V2; 

age, inhibitor status, and study effect on CL; race on V2; 

assay on F and RUV 

Björkman [183] Advate 
2-compartment; additive RUV model; BSV on CL and V1; 

body weight on CL, V1, and V2; age on CL 

Nestorov [184] Advate 
2-compartment; combined RUV model; BSV on CL and 

V1; body weight on V1; study on RUV and V2 

Garmann [185] Kovaltry 
2-compartment; combined RUV model; BSV on CL and 

V1; lean body weight on CL and V1 

Jimenez-Yuste 

[103] 
NovoEight 

1-compartment; combined RUV model; BSV on CL and V; 

body weight on CL and V; age on CL 

Bolon-Larger [186] 
Various recombinant and 

plasma-derived products  

2-compartment; proportional RUV model; BSV on CL, V1 

and V2; HIV status on V1 

*model for continuous infusion 

Karafoulidou [187] ReFacto 
1-compartment; proportional RUV; BSV on CL and V; 

body weight on CL and V; HIV status on V 

Hazendonk [188] 
Various recombinant and 

plasma-derived products 

2-compartment; combined RUV; BSV on CL and V1; age 

on CL and V1; blood group and major surgical procedure 

on CL; product type on F 

*some continuous infusion patients included 

 

Several PopPK models for standard half-life (SHL) FVIII products have been published 

in the literature, and are summarized in Table 7. Each of the cited models is dedicated to one 

specific brand of FVIII, and FVIII products do vary in ways that may be clinically relevant. One 

such characteristic is the source of the FVIII concentrate, which may be plasma-derived 

(pdFVIII) or recombinant. Plasma-derived concentrates can be further categorized based on their 
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von Willebrand factor (vWF) content: intermediate purity (vWF:FVIII > 1), high purity 

(vWF:FVIII = 0.2–0.4), or immunopurified (vWF:FVIII < 0.1) [189]. The presence of a native 

FVIII-vWF complex in pdFVIII has been shown to impact the early phase of the PK profile, but 

does not appear to affect half-life [129]. Recombinant FVIII products can be classified according 

to their structure. In 2000, the first B-domain deleted recombinant FVIII product (BDDrFVIII) 

was released, followed by a B-domain truncated product in 2013 [190]. The purpose of this 

deletion was to improve production efficiency, with no changes to immunogenicity or 

pharmacokinetic profile. While some studies have found BDDrFVIII products to be 

bioequivalent to their full-length counterparts [94,95,97], others have found that half-lives are 

shorter after this modification [191,192]. This may be due to disrupted intermolecular 

interactions that impact the life span of FVIII [193]. Despite these differences in source and 

structure, variability seems to be greater across patients than across brands [167]. Thus, a generic 

PopPK model for SHL FVIII products can be a valuable tool, especially if one considers that 

hemophilia is a rare disorder with an abundance of similar products, all of which benefit from 

PK-tailored dosing regimens. 

 



 

64 
 

   

Figure 10. Sources and structures of the brands of SHL FVIII included in the modelling dataset 

 

The aim of this study was to develop and evaluate a generic PopPK model for SHL FVIII 

products, both plasma-derived and recombinant, using data acquired through the Web Accessible 

Population Pharmacokinetic Service – Hemophilia (WAPPS-Hemo) project. The development of 

such a model will help to determine if there are distinct PK differences between FVIII brands 

and the clinical relevance of these differences. Further, the model will be incorporated into the 

WAPPS-Hemo platform, which tackles the issue of high BSV by using PopPK models for 

Bayesian forecasting to obtain individual PK estimates from relatively few patient samples. 

Clinicians provide 2-4 factor levels, along with demographic information, and are provided with 

individual estimates of relevant PK parameters (such as half-life, time to 1% FVIII activity, or 

FVIII activity at 72 hours). Furthermore, the wide covariate space of the generic model may 

SHL FVIII

Plasma-Derived

Intermediate Purity Fanhdi/Alphanate

High Purity
Emoclot                   
Octanate

Immuno-purified

Recombinant

Full Length
Advate                    

Kogenate/Kogenate FS                        
Kovaltry

B-Domain Deleted
NovoEight                          

ReFacto AF/Xyntha
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permit its use for patients on brands of SHL FVIII that are not included in the modelling dataset, 

making it particularly useful in cases where a dedicated, brand-specific PopPK model is lacking. 

 

Methods 

Patient Data 

Data for recombinant and plasma-derived SHL FVIII was collected from multiple 

industry sources through the WAPPS-Hemo project. The model was developed using FVIII 

activity measurements from 310 densely sampled patients (one infusion per patient), consisting 

of between 4 and 12 factor levels (median: 10). All samples were measured using the one-stage 

clotting assay. All patients had either severe or moderate hemophilia (<1% or 1-5% of normal 

FVIII activity, respectively) and did not present detectable inhibitors at the time of PK analysis. 

The lower limit of quantification (LLOQ) varied among studies, ranging between 4 and 12.5 IU 

L-1 (median = 10 IU L-1) and samples that were below limit of quantification (BLQ) comprised 

6.9% of the dataset. Demographic details of the modelling dataset can be found in Table 8.  

  



 

66 
 

Table 8. Demographics of the patient population used to develop the generic SHL FVIIII model 

Sampling Information 

Total Number 
of Patients 

Total Number of 
Samples 

Number of BLQ 
Samples (%) 

Number of Samples 
per Patient 

Duration of Sampling 
(h) 

310 2760 191 (6.9%) 10 (4 – 12) 48.0 (3.25 – 96.25) 

Patient Demographics 

Brand 𝑛 Age (years) Body Weight (kg) Fat-Free Mass (kg) 

Advate 79 20 (1.1 – 62) 66.9 (10.6 – 132.5) 53.5 (8.1 – 82.7) 
Emoclot 14 33 (14 – 55) 70 (40 – 93) 55 (35 – 66.9) 

Kogenate 64 19 (5 – 54) 69.15 (16.6 – 124.2) 55.4 (14.2 – 84.3) 
Kovaltry 31 31 (12 – 61) 70 (46 – 124.2) 53.2 (39.2 – 76.5) 

NovoEight 55 11 (1 – 54) 42.7 (11.7 – 107) 35.9 (10 – 71.4) 
Octanate 35 18 (3 – 54) 53 (18.5 – 89) 45.8 (14 – 67.1) 

ReFacto AF 32 24 (14 – 57) 78.5 (50.7 – 117.2) 59.35 (43.9 – 75.2) 
TOTAL 310 21 (1 – 62) 66.0 (10.6 – 132.5) 53.0 (8.1 – 84.3) 

 

Population Modelling 

PopPK model building was performed using non-linear mixed effects modelling 

techniques implemented in NONMEM and PDxPop (v7.3 and v5.2, respectively; ICON 

Development Solutions, Ellicott City, MD, USA). Graphical analysis was conducted in 

MATLAB (R2017b, Mathworks, Natick, MA, USA). Samples that were BLQ were handled 

using the M3 method [173]. 

First, the structural component of the model was developed. The model describes not 

only the exogenous dose administered, but also endogenous FVIII production and any residual 

FVIII from prior doses as trials did not necessarily include a washout period.  

𝐶(𝑡) = 𝐴𝑒−𝛼𝑡 + 𝐵𝑒−𝛽𝑡 + 𝑒𝑛𝑑𝑜𝑔𝑒𝑛𝑜𝑢𝑠 𝐹𝑉𝐼𝐼𝐼 + (𝑝𝑟𝑒𝑑𝑜𝑠𝑒 − 𝑒𝑛𝑑𝑜𝑔𝑒𝑛𝑜𝑢𝑠)𝑒−𝛽𝑡 

The endogenous FVIII component was considered to be constant; when the endogenous level 

was unknown or unmeasurable, it was assumed to be half of the LLOQ. Residual exogenous 

FVIII decayed according to the terminal rate constant; if no predose measurement was taken, it 
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was assumed that there was no exogenous FVIII remaining when the dose was administered. The 

standard 1- and 2-compartment models were tested. For each, three different residual error 

models were explored: additive, proportional, and combined additive/proportional. 

Following this step, between subject variability (BSV) terms were added to PK parameters using 

an exponential form. For example: 

𝐶𝐿𝑖 = 𝐶𝐿𝑝𝑜𝑝 ∙ 𝑒
𝜂𝑗 

where 𝐶𝐿𝑖 is an individual’s clearance, 𝐶𝐿𝑝𝑜𝑝 is the population value for clearance, and 𝜂𝑗 is the 

individual’s deviation from population value. The 𝜂 values follow a normal distribution with a 

mean of zero, such that the PK parameters are log-normally distributed. Decision-making during 

these steps was driven by changes in the objective function value (ΔOFV) and shrinkage of the 

random effects.  

The inclusion of explanatory covariates helps to minimize unpredictable BSV. Only 

covariates that were consistently available for all data sources were investigated; these included 

body weight, fat-free mass (calculated from body weight, age, and height using the maturation 

model defined by Al-Sallami et al [194]), age, and brand. Preliminary covariate analysis 

consisted of examining plots of 𝜂-values versus each covariate. Covariates were then added to 

the model in a stepwise manner, and either kept or removed based on their effect on OFV, BSV, 

and parameter estimates. Body weight, fat-free mass, and age were incorporated prior to brand so 

that demographic differences between datasets were not falsely attributed to brand. Body size 

metrics were modelled using allometric functions; a variety of functions were considered to 

model the age effect. Power, linear, and piecewise linear relationships are shown below: 
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𝐶𝐿𝑖 = 𝐶𝐿𝑝𝑜𝑝 ∙ (
𝑐𝑜𝑣𝑖
𝑐𝑜𝑣𝑚𝑒𝑑

)
𝜃𝑐𝑜𝑣−𝐶𝐿

∙ 𝑒𝜂𝑖 

𝐶𝐿𝑖 = 𝐶𝐿𝑝𝑜𝑝 ∙ (1 + 𝜃𝑐𝑜𝑣−𝐶𝐿 ∙
𝑐𝑜𝑣𝑖 − 𝑐𝑜𝑣𝑚𝑒𝑑

𝑐𝑜𝑣𝑚𝑒𝑑
) ∙ 𝑒𝜂𝑖 

𝐶𝐿𝑖 = 𝐶𝐿𝑝𝑜𝑝 ∙ (1 + 𝜃𝑐𝑜𝑣−𝐶𝐿 ∙ 𝑚𝑎𝑥 (0,
𝑐𝑜𝑣𝑖 − 𝑐𝑜𝑣𝑚𝑒𝑑

𝑐𝑜𝑣𝑚𝑒𝑑
)) ∙ 𝑒𝜂𝑖 

where 𝑐𝑜𝑣𝑖 is the individual’s value for the covariate, 𝑐𝑜𝑣𝑚𝑒𝑑 is the median value for the 

covariate, and 𝜃𝑐𝑜𝑣−𝐶𝐿 is the estimated effect of the covariate on CL. 

After taking body size and age effects into account, the effect of brand was explored. Initially, 

each brand was modelled with its own covariate effect either on CL and V1.  

𝐶𝐿𝑖 = 𝐶𝐿𝑝𝑜𝑝 ∙ (1 + 𝜃𝐵𝑟𝑎𝑛𝑑1−𝐶𝐿 ∙ 𝐵𝑟𝑎𝑛𝑑1) ∙ (1 + 𝜃𝐵𝑟𝑎𝑛𝑑2−𝐶𝐿 ∙ 𝐵𝑟𝑎𝑛𝑑2)⋯

∙ (1 + 𝜃𝐵𝑟𝑎𝑛𝑑7−𝐶𝐿 ∙ 𝐵𝑟𝑎𝑛𝑑7) ∙ 𝑒
𝜂𝑖 

where 𝐵𝑟𝑎𝑛𝑑𝑖 = 1 if the individual was dosed with Brand 𝑖; otherwise, 𝐵𝑟𝑎𝑛𝑑𝑖 = 0. 

Subsequently, brands were grouped together according to results of the previous runs, or based 

on their source (e.g. plasma-derived, recombinant) and structure (e.g. full-length, B-domain 

deleted) in an effort to reduce the number of model parameters.  Grouping schemes are 

delineated in Table 9. 
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Table 9. Modelling of brand as a covariate 

Scheme Rationale 
OFV 

(∆OFV) 
Reference 

Group 
Group Details 

1 
Individual effect 
for each brand 

25321  
(-89) 

Advate Each brand as its own group 

2 
Based on results 

of Scheme 1 
25325  
(-85) 

Advate 
Effect of Kovaltry removed from CL 
Effect of Kogenate, NovoEight, and 
Octanate removed from V1 

3 Source 
25389  
(-21) 

Advate 
Kogenate 
Kovaltry 

NovoEight 
ReFacto AF 

 
(Recombinant) 

Octanate 
Emoclot 

 
 
 
 

(Plasma-derived) 

 

4 
Source and 
structure 

25357  
(-53) 

Advate 
Kogenate 
Kovaltry 

 
(Full-length 

recombinant) 

NovoEight 
ReFacto AF 

 
 
 

(BDD recombinant) 

Emoclot 
Octanate 

 
 

 
(Plasma-derived) 

OFV: objective function value; ∆OFV: change in OFV compared to model with FFM and AGE. 

 

 

Model Evaluation 

The final SHL FVIII model was evaluated in several steps. First, graphical techniques 

were employed to assess the model’s goodness-of-fit and to assure that all model assumptions 

were met. Bootstrap analysis was also performed to assess estimated parameters and their 

associated confidence intervals. One thousand datasets consisting of 400 individuals were 

generated by randomly sampling the original dataset with replacement; to ensure all groups were 

represented in the bootstrap datasets, the original dataset was stratified according to age and 

brand. Parameter estimation was performed for each dataset and the median parameter estimates 

and corresponding 95% confidence intervals were calculated. 
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To evaluate the model for use in Bayesian forecasting, internal cross validation and 

limited sampling analysis were performed. A 5-fold cross validation was performed, meaning the 

dataset was randomly split into 2 subsets, one containing 80% of the data (the learning subset) 

and the other the remaining 20% (the validation subset). Relative error on individual PK 

parameters was calculated using the following equation: 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐸𝑟𝑟𝑜𝑟 =
𝑃𝐶𝑉 − 𝑃𝑓𝑢𝑙𝑙

𝑃𝑓𝑢𝑙𝑙
 

where 𝑃𝐶𝑉 is the individual parameter estimate (CL, V1, half-life) obtained during the cross 

validation using Bayesian forecasting and 𝑃𝑓𝑢𝑙𝑙 is the “true” value estimated from the initial 

dataset. 

Limited sampling analysis can be used to determine how well the model can predict 

individual PK parameters from sparse samples. Using a method similar to that described by 

Brekkan [178], a population of 1000 virtual subjects was generated from the final SHL FVIII 

model using covariate distributions from the original dataset. For each virtual subject, a 

treatment regimen corresponding to 50 IU kg-1 on a Monday-Wednesday-Friday schedule was 

simulated for 4 weeks, with the last Friday dose being used for analysis. Different limited 

sampling schemes consisting of convenient sampling times (e.g. predose, peak, 24 hours post-

infusion) are described in detail in Table S5; a total of 34 designs were tested. Each design was 

used to obtain estimates of individual PK parameters using Bayesian forecasting, and estimates 

from the limited sampling strategies were compared to those obtained from the full sampling 

design using the following equation: 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐸𝑟𝑟𝑜𝑟 =
𝑃𝐿𝑆𝑆 − 𝑃𝑓𝑢𝑙𝑙

𝑃𝑓𝑢𝑙𝑙
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where 𝑃𝐿𝑆𝑆 is the parameter estimate from the limited sampling strategy and 𝑃𝑓𝑢𝑙𝑙 is the 

parameter estimate from the rich sampling design. 

  External evaluation was performed using data extracted from the WAPPS-Hemo 

database. Using Bayesian forecasting, PK outcomes including clearance, central volume, half-

life, and time with FVIII activity above 2% (TAT2%) were estimated using both the generic 

SHL FVIII model and a brand-specific model. The evaluation dataset was extracted on 

September 14, 2018 and contained PK for 394 patients on three brands of factor product: 

Kovaltry (full-length rFVIII), ReFacto AF (BDDrFVIII), and Fanhdi/Alphanate (intermediate 

purity pdFVIII, not included in the modelling dataset). PK data for Xyntha, a BDDrFVIII 

products produced using the same manufacturing process as ReFacto AF but calibrated using a 

different assay, was also included in the evaluation; Xyntha doses were scaled by a factor of 1.38 

to account for the difference in calibration, as done in Abrantes et al [182]. Patients ranged 

between <1 and 78 years of age and weighed between 10.6 and 138.8 kg.  

 

Results 

An abridged log of model building steps is found in Table S3. A 2-compartment structure 

with a combined residual error model and random effects on clearance (CL) and central volume 

(V1) was found to be the superior base model; random effects were not included on 

intercompartmental clearance (Q) or peripheral volume (V2) due to high shrinkage (>40%). Of 

the two body size metrics available, fat-free mass had the strongest correlation with 𝜂𝐶𝐿 and 

𝜂𝑉1(0.558 and 0.808, respectively) and provided the greatest improvement to the model in terms 

of both OFV (ΔOFV = -485) and unexplained BSV on CL (ΔωCL = -10.5%) and V1 (ΔωV1 = -
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28.1%). The addition of a fat-free mass effect on V2 further reduced the OFV by 116. Based on 

covariate plots (shown in Figure S1), the effect of age on CL was explored. Power, linear, and 

piecewise linear functions for the age effect were investigated. Ultimately, a piecewise linear 

function with no age effect below the median age was selected.  

 

Figure 11. Boxplots of 𝜼-values for clearance (left) and central volume (right) across brands 

before (top) and after (bottom) inclusion of brand as a covariate. 

 

  



 

73 
 

After accounting for body size and age, there still appeared to be significant differences across 

brands as shown in Figure 11. Initially, a unique effect for CL and V1 was estimated for each 

brand. In an effort to reduce the number of model parameters, brands were grouped in a number 

of ways. We began by estimating an individual effect on CL and V1 for each of the brands 

included in the dataset, using Advate as the reference brand (Table 9, Scheme 1). Based on the 

results of this run, effects were either removed (when effect sizes were below 10%) or combined 

(when effect sizes were within 10% of one another). The brand-specific effects of Kovaltry on 

CL and of Kogenate and Octanate on V1 were removed (Table 9, Scheme 2). We also explored a 

grouping scheme based on the source and structure (Table 9, Schemes 3 and 4, respectively) of 

the factor products. While grouping scheme 2 produced the lowest OFV (25325), grouping 

scheme 4 was ultimately selected for the final model. This decision was driven by the objective 

of building a model that can be used for all SHL FVIII products. Since grouping scheme 4 is 

based on the source and structure of the product, choosing a group for a product not included in 

the model dataset is intuitive. Although OFV is somewhat increased for this scheme (ΔOFV = 

+64), parameter estimates (including BSV) were relatively unchanged. The final model is 

summarized by the following expression: 

{
 
 
 

 
 
 𝐶𝐿 = 𝐶𝐿𝑝𝑜𝑝 ∙ (

𝐹𝐹𝑀

53.0
)
𝜃𝐹𝐹𝑀−𝐶𝐿

∙ (1 + 𝜃𝐴𝐺𝐸−𝐶𝐿 ∙ 𝑚𝑎𝑥 (0,
𝐴𝐺𝐸 − 21.0

21.0
)) ∙ (1 + 𝜃𝑃𝐷−𝐶𝐿 ∙ 𝑃𝐷) ∙ (1 + 𝜃𝐵𝐷𝐷−𝐶𝐿 ∙ 𝐵𝐷𝐷) ∙ 𝑒

𝜂𝐶𝐿

𝑉1 = 𝑉1 𝑝𝑜𝑝 ∙ (
𝐹𝐹𝑀

53.0
)
𝜃𝐹𝐹𝑀−𝑉1

∙ (1 + 𝜃𝑃𝐷−𝑉1 ∙ 𝑃𝐷) ∙ (1 + 𝜃𝐵𝐷𝐷−𝑉1 ∙ 𝐵𝐷𝐷) ∙ 𝑒
𝜂𝑉1

𝑄 = 𝑄𝑝𝑜𝑝

𝑉2 = 𝑉2 𝑝𝑜𝑝 ∙ (
𝐹𝐹𝑀

53.0
)
𝜃𝐹𝐹𝑀−𝑉2

}
 
 
 

 
 
 

 

where 𝑃𝐷 = 1 for plasma-derived products and 𝐵𝐷𝐷 = 1 for B-domain deleted products. Final 

model parameter estimates are shown in Table 10. 
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Table 10. Parameter estimates for the final SHL FVIII model 

Parameter Estimate %RSE 
95% Confidence 

Interval 

Clearance, CL (L h-1) 0.238 3.6% (0.221, 0.254) 
   FFM effect on CL (𝜃𝐹𝐹𝑀−𝐶𝐿) 0.794 6.1% (0.699, 0.883) 
   Age effect on CL (𝜃𝐴𝐺𝐸−𝐶𝐿) -0.205 14.5% (-0.259, -0.145) 

Central volume, V1 (L) 3.01 2.5% (2.85, 3.14) 
   FFM effect on V1 (𝜃𝐹𝐹𝑀−𝑉1) 1.02 4.2% (0.940, 1.11) 

Intercompartmental clearance, Q (L h-1) 0.142 14.4% (0.107, 0.186) 

Peripheral volume, V2 (L) 0.525 7.0% (0.457, 0.600) 
   FFM effect on V2 (𝜃𝐹𝐹𝑀−𝑉2) 0.787 16.5% (0.557, 1.07) 

Plasma-derived on CL (𝜃𝑃𝐷−𝐶𝐿) -0.126 54.0% (-0.232, 0.023) 
Plasma-derived on V1 (𝜃𝑃𝐷−𝑉1) -0.104 52.2% (-0.195, 0.017) 

BDD on CL (𝜃𝐵𝐷𝐷−𝐶𝐿) 0.309 23.3% (0.175, 0.461) 
BDD on V1 (𝜃𝐵𝐷𝐷−𝑉1) 0.159 32.4% (0.060, 0.262) 

BSV on CL (%) 41.1% 4.9% (37.3%, 44.9%) 
BSV on V1 (%) 32.4% 7.0% (28.3%, 37.2%) 
CL-V1 Correlation 0.703 5.2% (0.624, 0.765) 

Proportional error (%) 17.4% 4.8% (16.0%, 19.3%) 

 

Goodness-of-fit plots indicate that the model described the data well, with R2 values of 

0.748 and 0.945 for the population and individual predictions, respectively (Figure 12).  Plots of 

the residual errors suggest that all assumptions of normality are followed, and the pcVPC 

demonstrates an adequate description of both median values and variability across all time points 

(Figure 13). Bootstrap analysis demonstrated the model’s stability; RSE% was ≤35% for all 

parameters except those associated with the PD brand group (RSE% ≈50%; Table 10, Figure S2, 

Figure S3) and the additive error component (≥90%), which was subsequently removed. Internal 

cross-validation was performed to evaluate the model’s utility for Bayesian forecasting. The 

results summarized in Table S4 and Figure S4 show low errors (95th percentile of error <2%) on 

all parameters of interest (CL, V1, half-life, and TAT2%). Optimal sampling analysis further 

evaluated the model’s ability to accurately estimate PK parameters from sparsely sampled data. 

Estimates of half-life and time to 2% (TAT2%) from sampling designs containing as few as two 

levels were generally within 25% of those obtained from the rich sampling design (Figure 14). 
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Errors appear to be largest in sampling schemes that contain only a 72h point in tail of the curve, 

as this sample is likely to be BLQ for a significant proportion of the virtual population. The full 

results of the optimal sampling analysis can be found in Table S5.  

 

 

 

Figure 12. Individual predicted values from the final SHL FVIIII model versus observed values 

by brand group on linear (left) and log (right) scale. Samples that were BLQ are not depicted. 
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Figure 13. Prediction-corrected visual predictive check (pcVPC) for the final SHL FVIII model 

shown on linear (top) and log (bottom) scales. Shaded regions are the 90% confidence intervals 

for the simulated percentiles. 
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Figure 14. Errors on estimates of half-life (top) and time to 2% activity (TAT2%, bottom) from 

limited sampling strategies consisting of 2 post-infusion samples 
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Using data from the 394 patients collected through the WAPPS-Hemo network, we 

compared the performance of the generic SHL FVIII model to brand-specific models for brands 

of FVIII products in each of the brand groups of the final model: Kovaltry (full-length rFVIII), 

ReFacto AF/Xyntha (BDDrFVIII), and Fanhdi/Alphanate (pdFVIII). In each case, Bayesian 

forecasting produced similar estimates of clearance, central volume, half-life, and TAT2% 

(Figure 15) from both models (Kovaltry: 𝑅2 = 0.94 – 0.97; ReFacto AF/Xyntha: 𝑅2 = 0.86 – 

0.94; Fanhdi/Alphanate: 𝑅2 = 0.94 – 0.99); the correlation is slightly poorer in the ReFacto AF 

comparison as the comparator model has a one-compartment structure.  
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Figure 15. Comparison of PK parameter estimates generated from the SHL FVIII model and 

brand specific models for Kovaltry (blue, 𝒏 = 213), ReFacto AF/Xyntha (purple, 𝒏 = 132), and 

Fanhdi/Alphanate (orange, 𝒏 = 49). 
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Discussion 

This study describes the development and evaluation of a generic PopPK model for SHL 

FVIII products, built on a dataset containing data measured using the one-stage assay for seven 

different brands of SHL FVIII. The estimates of population PK parameters were similar to those 

reported in published brand-specific models despite differences in modelling data, approach, and 

objective (Table 11).  

Table 11. Summary of parameter estimates from published PopPK models for SHL FVIII 

Reference Product 
Parameter Estimates 

BSV 
CL (L h-1) V1 (L) Q (L h-1) V2 (L) 

Generic SHL 
FVIII model 

All SHL FVIII 
products 

rFVIII: 0.237 
BDDrFVIII: 0.324 

pdFVIII: 0.210 

rFVIII: 3.00 
BDDrFVIII: 4.10  
pdFVIII:  2.72 

0.143 0.522  
 41.1% [CL] 
 32.4% [V1] 

Abrantes 
[182] 

ReFacto AF/ 
Xyntha 

0.276  2.45  2.51  0.923  
30.5% [CL] 

13% [F] 

Bjorkman 
[183] 

Advate 0.193  2.22  0.147  0.73  
30% [CL] 
21% [V1] 

Nestorov 
[184] 

Advate 0.253 3.46 0.055 0.494 
30.4% [CL] 
16.2% [V1] 

Garmann 
[185] 

Kovaltry 0.188  3.00  0.190  0.637  
37.0% [CL] 
11.2% [V1] 

Jimenez-Yuste 
[103] 

NovoEight 0.302  3.46  --- --- --- 

Karafoulidou 
[187] 

ReFacto 0.393  4.86  --- --- 
38.9% [CL] 
13.0% [V1] 

 

Fat-free mass explained a significant portion of the BSV on CL and V1 and was likely 

superior to total body weight due to its better correlation to plasma volume. Age was also found 

to be a significant covariate for CL, possibly acting as a surrogate for changes in levels of vWF 

[119], an important predictor of FVIII clearance [145]. It has been shown that vWF levels 

increase with age in hemophilia A patients [120], resulting in lower clearance and longer half-
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lives among these patients. The choice of a piecewise linear function to describe this age effect 

was primarily due to high correlation between FFM and age in children and teenagers. Including 

both covariates for patients in this age range produces a falsely high estimate of the FFM effect 

on CL, which in turn results in half-life estimates decreasing when FFM increases. As in the 

brand-specific models developed for WAPPS-Hemo, the median age (21 years) was selected as 

the cut-off for the age effect; this value is physiologically plausible, as vWF levels are fairly 

stable up to this age [120] and the correlation between age and FFM is much weaker after 

puberty (Figure S5). Unfortunately, vWF could not be directly included in the model because 

patient vWF levels were not available for all brands in the modelling dataset; blood group (which 

can also act as a surrogate for vWF) was also not available consistently and therefore could not 

be included. However, published models for FVIII that include vWF or blood group as 

covariates on CL had similar unexplained BSV on CL; moreover, unexplained BSV on CL only 

decreased by 5-8% after adding vWF or blood group compared to the base or structural model 

[184,188]. For the final SHL FVIII model described here, unexplained BSV on CL and V1 

remained high (42% and 31%, respectively) in the final SHL FVIII, even after incorporation of 

explanatory covariates; one possible explanation for this observation is inter-laboratory 

variability, as the modelling dataset was compiled from numerous sources. For the one-stage 

assay, this variability has been estimated to be around 10% for peak levels, but closer to 35% at 

levels below 50 IU L-1 [195–198]. 

This model was developed with two purposes in mind. First, the model is intended for 

use in Bayesian analysis to produce accurate estimations of relevant PK parameters from sparse 

patient data. To evaluate the model for this purpose, 5-fold cross-validation and optimal 

sampling analysis were performed, the results of which indicate the model is well-suited for this 
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purpose. Secondly, it was hoped that by combining data from a variety of SHL FVIII products, 

we could develop a model that performs Bayesian estimation accurately for all brands of SHL 

FVIII, including those not included in the modelling dataset. To assess this capability, we 

compared the estimates of PK parameters for 49 patients on Fanhdi/Alphanate (a plasma-derived 

SHL FVIII) produced by the generic SHL FVIII model and a dedicated Fanhdi/Alphanate model. 

Agreement between the estimates from each model was good (R2 ≥ 0.94 for 𝑦 = 𝑥 regression for 

all parameters), suggesting that the models produce similar predictions of the parameters of 

interest. Based on these results, the model seems capable of predicting PK for brands outside the 

original covariate space, and may prove to be especially valuable for brands for which there is no 

dedicated PopPK model. An additional strength of the model is the ability to leverage pediatric 

data from other products when brand-specific pediatric data is unavailable.  

 Although it performed well in all evaluations, the model does have some limitations and 

there may be some instances in which a brand-specific model is more appropriate. For example, 

the covariate model of the SHL FVIII model was limited to values that were available across all 

seven brands. It is well known that additional covariates such as vWF, blood group, and 

hematocrit can be useful for predicting the PK of FVIII; a brand-specific model may allow for 

the incorporation of these covariates, resulting in lower unexplained BSV. Additionally, the 

modelling dataset does not contain pediatric PK data for all of the included brands; NovoEight 

alone represents over 60% of the data for children under the age of 5. If estimating PK in young 

patients, a brand-specific model may be preferable, provided that the model is built on enough 

patients, with an adequate proportion of the data coming from children. On the contrary, the SHL 

FVIII model allows for the leveraging of pooled pediatric data and may prove extremely useful 

in cases where data in young patients is lacking.   
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Conclusions 

In summary, we have developed a generic PopPK model for plasma-derived and 

recombinant SHL FVIII products measured using the one-stage assay. Fat-free mass, age, and 

brand of factor product were found to significantly influence PK parameters. All evaluation steps 

suggest that the model is fit for Bayesian forecasting and capable of accurately predicting 

individual PK for SHL FVIII, including brands outside the original covariate space. 
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Chapter 5: Development of a population pharmacokinetic model for 

recombinant factor IX and its use in evaluating limited sampling strategies for 

pediatric patients 
 

This chapter is reflective of an original manuscript prepared by the Ph.D. candidate (Alanna 

McEneny-King) for submission to Journal of Thrombosis and Haemostasis. All pertinent 

dialogue in this chapter was written by the Ph.D. candidate. 

 

Introduction 

 

Hemophilia B is an inherited bleeding disorder resulting from a deficiency of functional 

clotting factor IX (FIX). Consequently, hemophilia B patients have a lowered clotting ability and 

are thus prone to bleeding episodes, which may occur spontaneously among the most severe 

patients (i.e. those with <1 IU dL-1 or 1% of normal FIX activity). Joints are particularly prone to 

such bleeding events and irreversible joint damage can occur, severely impacting physical 

activity and quality of life. Although recent evidence suggests that hemophilia B may not be as 

severe as hemophilia A [199], several studies have demonstrated the dramatic reduction in 

overall, spontaneous, and joint bleeds achieved with prophylaxis as compared with on-demand 

treatment [49,200,201].  Thus, regular prophylaxis is considered to be the optimal approach for 

preventing bleeds and preserving joint function in hemophilia B patients. 

A common goal of hemophilia therapy is to maintain clotting factor levels above 1 IU dL-

1 throughout the week, thereby converting the patient from a severe to moderate phenotype. 

Though this target is largely based on observations in hemophilia A patients [7,10,68], there was 

no difference found in bleeding phenotype between young hemophilia A and B patients to 

suggest an alternative approach to prophylaxis is warranted [202]. Despite the unanimous 
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recommendation that prophylaxis be initiated at a young age [11,203–207], a ‘one size fits all’ 

dosing regimen is difficult to define due to wide inter-patient variability in pharmacokinetics 

(PK) and, particularly in the case of hemophilia B, a lack of evidence in support of a specific 

therapeutic target [208]. 

The high between subject variability (BSV) and relatively low inter-occasion variability 

(IOV) observed for FIX [18,209,210] suggests that FIX dosing regimens should be tailored to the 

individual for reasons of both safety and cost-effectiveness [211]. While the classic approach to 

PK-tailoring has been hampered by intense sampling requirements, recent guidance from the 

International Society of Thrombosis and Haemostasis advocates for a population PK (PopPK) 

approach to dose individualization [169]. The PopPK technique uses Bayesian methods to 

estimate individual PK parameters, with a PopPK model providing informative prior knowledge 

of typical values of PK parameters, estimates of variability, and influential covariates.   

The first recombinant FIX (rFIX) product (nonacog alfa, BeneFIX®) was approved by 

the US Food and Drug Administration in 1997; two other standard half-life (SHL) recombinant 

products (nonacog gamma [RIXUBIS®] and trenonacog alfa [IXINITY®]) followed in 2013 and 

2015, respectively. While all three rFIX products are similar to plasma-derived FIX, small 

differences exist between the brands. IXINITY corresponds to the Thr-148 polymorph of 

plasma-derived FIX, while BeneFIX and Rixubis contain the less common Ala-148 variant 

[212]. Also, the amount of activated factor IX was found to be significantly lower for Rixubis as 

compared to BeneFIX [213]. Despite these differences, pharmacokinetic studies have 

demonstrated that both new rFIX products are bioequivalent (RIXUBIS) or non-inferior 

(IXINITY) to BeneFIX [33,40]. However, there appears to be a clear difference between plasma-
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derived and recombinant FIX products, particularly with regards to clearance [214], suggested to 

arise from biochemical variations (e.g. under-carboxylation).  

For these reasons, we aimed to develop and evaluate a generic PopPK model for SHL 

rFIX products, using data collected through the Web Accessible Population Pharmacokinetic 

Service – Hemophilia (WAPPS-Hemo) project. A second aim of the study was to use the model 

to perform a limited sampling analysis, the results of which are applicable to an ongoing phase 

3/4 study (NCT03855280) to evaluate IXINITY PK in pediatric (<12 years old) patients, as 

pediatric sample volume limitations may prevent centres from collecting all intended blood 

samples.  

  

Methods 

Patient data 

Pharmacokinetic data for SHL rFIX was collected from both industry sources and routine 

hemophilia care through the WAPPS-Hemo project. The model was developed using FIX 

activity levels from 99 patients, measured using the one-stage assay. The median number of 

samples per infusion was 9 (range: 1 – 13). Samples that were below the limit of quantification 

(BLQ) comprised 1.5% of the dataset. A summary of the sampling characteristics and patient 

demographics of the full modelling dataset can be found in Table 12. 
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Table 12. Demographics of the patient population used to develop the generic SHL rFIX model. 

Data are presented as median (range) where appropriate. 

Sampling Information 

Total number of 
patients 

Total number of 
samples 

Number of BLQ 
samples 

Number of 
samples per 

patient 

Duration of 
sampling (h) 

99 840 13 (1.5%) 9 (1 – 13) 72.4 (23.8 – 188.1) 

Patient Demographics 

Brand 
𝒏 

(% from WAPPS) 
Age  

(years) 
Body weight 

(kg) 
Fat-free mass 

(kg) 
Dose  

(IU/kg) 

BeneFIX 48 (52%) 
28.3  

(3.8 – 68.7) 
71  

(18.5 – 187) 
54.6  

(14.3 – 99.6) 
49.8  

(21.7 – 120) 

IXINITY 37 (0%) 
23.7  

(4 – 64.5) 
78  

(14 – 145) 
59.5  

(11.5 – 85.6) 
75.1  

(52.3 – 83.4) 

Rixubis 14 (100%) 
39.1  

(6.3 – 72.2) 
69  

(31 – 85) 
53.6  

(24.8 – 59.8) 
44.0  

(22.0 – 130.1) 

TOTAL 99 (39%) 
28.2  

(3.8 – 72.2) 
72  

(14 – 187) 
54.8  

(11.5 – 99.6) 
51.4  

(21.7 – 130.1) 

 

 

Population modelling 

PopPK model building, employing non-linear mixed effects modelling techniques, was 

implemented in NONMEM and PDxPop (v7.3 and v5.2, respectively; ICON Development 

Solutions, Ellicott City, MD, USA). Data and graphical analyses were conducted in MATLAB 

(R2017b, Mathworks, Natick, MA, USA). Samples that were BLQ were handled using the M3 

method [173]. 

The structural component of the model was developed first, and describes not only the 

exogenous dose, but also endogenous FIX production and residual FIX from prior doses.  

𝐶(𝑡) = 𝐴 ∙ 𝑒−𝛼𝑡 +𝐵 ∙ 𝑒−𝛽𝑡 + 𝑒𝑛𝑑𝑜𝑔𝑒𝑛𝑜𝑢𝑠 𝐹𝐼𝑋 + (𝑝𝑟𝑒𝑑𝑜𝑠𝑒 𝐹𝐼𝑋 − 𝑒𝑛𝑑𝑜𝑔𝑒𝑛𝑜𝑢𝑠 𝑟𝐹𝐼𝑋) ∙ 𝑒−𝛽𝑡  

The endogenous FIX component was assumed to be constant. When the endogenous level was 

unknown or BLQ, it was assumed to be half of the LLOQ, or 0.5 IU dL-1. Residual exogenous 
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FIX (i.e. greater than baseline FIX activity measured immediately before dose) decayed 

according to the terminal rate constant (β); if no predose measurement was available, it was 

assumed that only endogenous FIX remained at the time of dosing. The standard 1-, 2-, and 3-

compartment models were tested, with three different residual error (RUV) models (additive, 

proportional and combined) explored for each. Between subject variability (BSV) terms were 

added to PK parameters using an exponential form as follows: 

𝐶𝐿𝑖 = 𝐶𝐿𝑝𝑜𝑝 ∙ 𝑒
𝜂𝑖 

where 𝐶𝐿𝑖 is the clearance value for patient 𝑖,  𝐶𝐿𝑝𝑜𝑝 is the typical value of clearance for the 

population, and 𝜂𝑖 represents the individual’s deviation from the population value. The 𝜂-values 

for each parameter are normally distributed with a mean of zero, such that the PK parameters 

follow a log-normal distribution. Selection of the structural, BSV and RUV models was driven 

by changes in goodness-of-fit metrics (objective function value [OFV], Akaike information 

criterion [AIC], or Bayesian information criterion [BIC]), diagnostic plots, plausibility of 

parameter estimates, and shrinkage of random effects. 

 To minimize unpredictable BSV, explanatory covariates were incorporated into the 

model. All data sources provided total body weight, height, age, and brand; fat-free mass (FFM) 

was calculated from body weight, age, and height using the maturation model defined by Al-

Sallami et al [194]. Plots of 𝜂-values versus each covariate were used for preliminary analysis. 

Covariates were then added in a stepwise manner, and kept based on their effect on OFV, BSV, 

and parameter estimates. Body size metrics were modelled using power functions; age effect was 

explored using both power and linear functions. 
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Model evaluation 

The final SHL rFIX model was evaluated using a variety of techniques. First, diagnostic 

plots were used to assess the model’s goodness-of-fit and to ensure that that all model 

assumptions were met. A prediction-corrected visual predictive check (pcVPC) was generated to 

evaluate the model’s predictive potential. Next, bootstrap analysis was performed with 

replacement to evaluate model stability and estimate confidence intervals around PK parameters. 

Internal cross-validation and limited sampling analysis (LSA) were used to evaluate the model 

for use in Bayesian forecasting. In more detail, a 10-fold cross-validation was performed; 90% of 

the data was used to build the model (learning subset) and the remaining 10% was used for 

evaluation (validation subset). Relative error on individual PK parameters was calculated using 

the following equation: 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐸𝑟𝑟𝑜𝑟 =
𝜑𝐶𝑉 − 𝜑𝑓𝑢𝑙𝑙

𝜑𝑓𝑢𝑙𝑙
 

where 𝜑𝐶𝑉 is the parameter estimate obtained from the cross-validation and 𝜑𝑓𝑢𝑙𝑙 is the “true” 

value estimated from the complete modelling dataset. This process was repeated with 100 

random splits of the data to avoid any biases.  

Finally, LSA was used to determine which samples are most critical for the estimation of 

various parameters by Bayesian forecasting. A population of 1000 virtual individuals was 

simulated, with the same demographic and PK parameter distributions as the original modelling 

dataset. The simulated dosing regimen consisted of a 5-minute infusion of 50 IU kg-1 (rounded to 

the nearest 250 IU to account for available vial sizes) every Monday and Thursday. The regimen 

was simulated for 4 weeks to ensure steady state was reached, and the final Thursday dose was 

used for analysis. A full sampling scheme containing 11 sampling times (Predose and 0.5, 1, 3, 6, 
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12, 24, 36, 48, 72, and 96 h post-infusion) was used as the reference case. A total of 31 limited 

sampling designs containing 2-3 samples each were tested. Estimates of individual PK 

parameters from the limited sampling strategies were compared to those from the full sampling 

design as follows: 

𝐸𝑟𝑟𝑜𝑟 =
𝜑𝐿𝑆𝑆 − 𝜑𝑓𝑢𝑙𝑙

𝜑𝑓𝑢𝑙𝑙
× 100% 

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟 = |𝐸𝑟𝑟𝑜𝑟| 

 

where 𝜑𝑓𝑢𝑙𝑙 and 𝜑𝐿𝑆𝑆 represent the estimates of PK parameter 𝜑 estimated by the rich and 

limited sampling strategies, respectively. 

 

Limited sampling analysis for pediatric clinical trial 

 A second LSA was performed to determine if any of the planned sampling times for the 

IXINITY pediatric trial could be omitted without compromising the accuracy of the parameter 

estimates. To do so, three populations (𝑛 = 1000 each) were simulated, representing 2-, 5-, and 

11-year-old boys. Body weight and height distributions were taken from the NHANES database 

for calculation of fat-free mass [215].  The intended sampling schedule is based on guidance 

from the European Medicines Agency (EMA), and contains samples at predose, 0.25–0.5 h, 4–6 

h, 24–26 h, and 46–50 h; limited sampling designs were created by systematically removing 

these timepoints (the full set of designs is described in Table S6). Pharmacokinetic outcomes of 

interest for the trial include area under the plasma concentration-time curve (AUC), terminal 

half-life, maximum post-infusion plasma concentration (Cmax), incremental recovery (IVR), 

clearance, and volume of distribution at steady-state (Vss); estimates of trough levels (C72, C96) 
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and time to 2% and 1% factor IX activity (TAT2% and TAT1%) were also assessed. Strategies 

were evaluated using error and absolute error. 

As model-independent methods are more commonly used for PK analysis in clinical trials 

than the PopPK approach [216], we explored how noncompartmental methods would fare in the 

same limited sampling conditions. Noncompartmental analysis (NCA) was performed using the 

SimBiology® app in MATLAB. To calculate the terminal rate constant (𝜆𝑧), a minimum of 3 

observations in the terminal phase spanning at least 2 half-lives is recommended [217]. Based on 

these guidelines, only the intended EMA-based sampling strategy and the five 4-sample subsets 

thereof were assessed using NCA. Estimates of half-life, clearance, Vss, and AUC were evaluated 

against the same rich 11-sample scheme as in the Bayesian method as the reference value. 

 

Results 

 

Model development and evaluation 

The final base model consisted of a 2-compartment structure with proportional RUV and random 

effects on clearance and central volume (V1). Of the body weight metrics available, fat-free mass 

had the strongest correlation with both 𝜂𝐶𝐿 and 𝜂𝑉1 (0.3415 and 0.5941, respectively) and its 

inclusion in the model significantly decreased both OFV (ΔOFV = –193) and BSV on CL (ΔωCL 

= –16%) and V1 (ΔωV1 = –23%). Addition of fat-free mass terms on Q and V2 resulted in further 

decrease of the OFV (ΔOFV = –133).The estimate of fat-free mass effect on V2 had high 

standard error but, due its physiologic relevance, was kept in the model with a fixed exponent of 

1.0, without significantly increasing OFV. Age and brand were not found to be significant 
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covariates. The final model is summarized by the following equation, with parameter estimates 

presented in Table 13: 

 

{
 
 
 
 

 
 
 
 𝐶𝐿 = 𝐶𝐿𝑝𝑜𝑝 ∙ (

𝐹𝐹𝑀

54.8
)
𝜃𝐹𝐹𝑀−𝐶𝐿

∙ 𝑒𝜂𝐶𝐿

𝑉1 = 𝑉1 𝑝𝑜𝑝 ∙ (
𝐹𝐹𝑀

54.8
)
𝜃𝐹𝐹𝑀−𝑉1

∙ 𝑒𝜂𝑉1

𝑄 = 𝑄𝑝𝑜𝑝 ∙ (
𝐹𝐹𝑀

54.8
)
𝜃𝐹𝐹𝑀−𝑄

𝑉2 = 𝑉2 𝑝𝑜𝑝 ∙ (
𝐹𝐹𝑀

54.8
)
𝜃𝐹𝐹𝑀−𝑉2

}
 
 
 
 

 
 
 
 

 

 

Table 13. Parameter estimates for the final SHL rFIX model 

Parameter (unit) Estimate % RSE 95% Confidence Intervala 

Structural Model 

CLpop (dL h-1) 3.36 3.4% (0.314, 0.360) 

V1 pop (dL) 78.4 2.5% (7.46, 8.24) 

Qpop (dL h-1) 3.01 8.1% (0.261, 0.358) 

V2 pop (dL) 61.6 8.2% (5.36, 7.34) 

Covariate Effects 

FFM effect on CL 0.765 10.5% (0.594, 0.922) 

FFM effect on V1 0.893 8.7% (0.762, 1.06) 

FFM effect on Q 0.688 26.4% (0.303, 1.00) 

FFM effect on V2 1.00 (FIXED) 

Between Subject Variability 

𝜔𝐶𝐿 30.3% 8.5% (25.1%, 34.9%) 

𝐶𝑜𝑟𝑟𝐶𝐿−𝑉1 0.696 11.3% (0.522, 0.819) 

𝜔𝑉1 25.1% 12.2% (19.0%, 30.5%) 

Residual Unexplained Variability 

CV of proportional RUV 14.7% 9.1% (12.1%, 17.3%) 
aFrom 1000 bootstrap runs 
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Goodness-of-fit plots demonstrate that the model describes the data well, with 𝑅2 values of 0.904 

and 0.975 for the population and individual predictions, respectively (Figure 16), and residual 

plots confirm that all assumptions of normality are followed. The pcVPC suggests that the model 

is able to adequately describe the central tendency and the variability of the data across all time 

points (Figure 17).  

 

 

Figure 16. Goodness-of-fit plots on linear (left) and log (right) scales. 
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Figure 17. Population prediction-corrected visual predictive check (pcVPC) for the final SHL 

rFIX model. Shaded regions are the 90% confidence regions for the simulated percentiles. 

 

Bootstrap analysis showed estimates of all model parameters are stable; RSE% was below 15% 

for all parameters except the FFM effect on Q (Table 13). The model’s utility in Bayesian 

forecasting was evaluated using cross-validation, which resulted in low errors (median <1.5%; 

95th quantile <5.0% [Figure 18]) on all parameters explored (CL, V1, half-life, and TAT2%). Its 

ability to provide accurate estimates from sparsely sampled data was assessed using optimal 

sampling analysis, which revealed that key PK outcomes such as half-life and TAT2% can be 

well estimated when sample times are chosen appropriately. 
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Figure 18. Histograms of prediction errors on half-life, TAT2%, CL, and V1 estimates 

 

 

Limited sampling analysis for pediatric clinical trial 

 Results of the limited sampling analysis were very similar for all simulated ages; for this 

reason, only the results from the 2-year-old population are shown Table 14, Table 15, Figure 19 

and Figure 21. Full results for all nine PK outcomes from all 26 limited sampling designs can be 

found in Table S6. Compared to the 11-sample reference sampling scheme, the median [95th 

quantile (Q95)] absolute error on PK parameters estimated by the 5-sample EMA-based 

sampling scheme was below 6% [<16%], with the highest error being on trough levels and 

central volume.  
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Omitting a single sample from EMA-based sampling 

 When only one sample is eliminated from the sampling design, the estimates for most PK 

parameters are largely unchanged compared to the reference EMA-based design (Table 14, 

Figure 19 [top]). The most crucial times to include are the predose sample (which greatly affects 

estimates of clearance, trough levels, and to a lesser degree, half-life) and the peak sample 

(which impacts central volume and, by consequence, Cmax) Omitting any one of the 6-, 24-, or 

48-hour samples results in low errors (median [Q95] absolute error <8% [<23%]) for all 

outcomes.  
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Table 14. Error (presented as mean (range) in percent) and absolute error (presented as median 

[Q95] in percent) relative to the 10-sample design using Bayesian estimation 

Error Parameters 

Sampling Design Half-Life Clearance Vss AUC 

EMA-Based -0.2 (-15.7, 11.9) 0.1 (-10.8, 18.1) -0.4 (-14.1, 17.3) 0.2 (-15.3, 12.1) 

Pre-0.5-6-24 0.5 (-17.4, 13.8) -0.7 (-15.3, 20.5) -0.4 (-14.2, 17.2) 1.1 (-17.0, 18.0) 

Pre-0.5-6-48 0.04 (-17.1, 15.1) -0.3 (-13.7, 20.7) -0.5 (-14.6, 16.1) 0.6 (-17.2, 15.9) 

Pre-0.5-24-48 -0.3 (-15.4, 12.3) -0.1 (-15.6, 16.9) -0.7 (-20.4, 21.0) 0.4 (-14.5, 18.5) 

Pre-6-24-48 -0.4 (-18.1, 14.0) 0.1 (-14.5, 21.8) -0.3 (-24.3, 37.1) 0.3 (-17.9, 17.0) 

0.5-6-24-48 -3.4 (-22.9, 13.7) 3.9 (-12.7, 33.3) -0.8 (-14.8, 17.2) -3.3 (-25.0, 14.5) 

Pre-0.5-6 1.1 (-20.3, 18.6) -1.5 (-19.2, 29.7) -0.6 (-14.8, 16.1) 2.0 (-22.9, 23.8) 

Pre-0.5-24 0.4 (-17.4, 14.0) -1.0 (-17.1, 22.8) -0.8 (-20.5, 20.0) 1.4 (-18.6, 20.7) 

Pre-0.5-48 -0.03 (-16.8, 14.6) -0.6 (-16.4, 22.7) -0.9 (-21.2, 21.7) 0.9 (-18.5, 19.6) 

Pre-6-24  0.3 (-19.5, 15.9) -0.7 (-18.6, 31.2) -0.4 (-24.1, 36.9) 1.2 (-23.8, 22.8) 

Pre-6-48 -0.2 (-19.1, 15.7) -0.4 (-17.6, 23.2) -0.6 (-26.1, 32.4) 0.9 (-18.9, 21.3) 

Pre-24-48 -0.9 (-17.9. 11.8) -0.8 (-24.1, 28.4) -2.0 (-33.0, 29.6) 1.4 (-22.1, 31.7) 

0.5-6-24 -4.4 (-33.0 16.9) 5.7 (-18.6, 66.2) -0.9 (-15.3, 16.2) -4.4 (-39.8, 22.9) 

0.5-6-48 -3.8 (-27.8, 14.3) 4.7 (-16.5, 44.7) -0.7 (-14.9, 15.9) -3.8 (-30.9, 19.8) 

0.5-24-48 -3.4 (-23.1, 13.8) 3.9 (-13.7, 33.6) -0.8 (-20.7, 19.6) -3.3 (-25.1, 15.9) 

6-24-48 -3.5 (-23.4, 12.7) 3.9 (-14.0, 40.8) -0.7 (-24.0, 34.9) -3.2 (-29.0, 16.3) 

  

Absolute Error Parameters 

Sampling Half-Life Clearance Vss AUC 

EMA-Based 2.8 [7.8] 3.1 [9.5] 3.1 [9.5] 3.2 [9.3] 

Pre-0.5-6-24 3.4 [9.9] 4.2 [11.5] 3.1 [9.7] 4.3 [11.8] 

Pre-0.5-6-48 3.0 [8.5] 3.7 [10.0] 3.2 [9.7] 3.6 [10.5] 

Pre-0.5-24-48 2.8 [8.1] 3.5 [9.8] 3.7 [11.0] 3.5 [10.0] 

Pre-6-24-48 3.1 [8.7] 4.1 [12.5] 5.8 [17.3] 4.1 [12.0] 

0.5-6-24-48 4.2 [13.0] 4.8 [16.1] 3.1 [9.4] 4.7 [13.9] 

Pre-0.5-6 4.1 [11.4] 5.3 [13.7] 3.2 [9.7] 5.4 [14.8] 

Pre-0.5-24 3.4 [10.1] 4.6 [12.7] 3.7 [11.1] 4.7 [13.3] 

Pre-0.5-48 3.0 [8.7] 4.1 [11.3] 3.8 [11.3] 4.1 [12.0] 

Pre-6-24  3.6 [10.8] 5.0 [14.1] 5.8 [17.5] 5.0 [14.1] 

Pre-6-48 3.2 [9.0] 4.7 [13.3] 5.8 [17.7] 4.7 [13.2] 

Pre-24-48 3.3 [9.5] 5.3 [14.7] 7.7 [22.0] 5.4 [14.7] 

0.5-6-24 6.3 [17.9] 6.9 [24.4] 3.2 [9.6] 6.8 [19.8] 

0.5-6-48 4.6 [15.1] 5.7 [20.0] 3.2 [9.6] 5.6 [16.8] 

0.5-24-48 4.2 [12.9] 5.1 [16.7] 3.7 [11.1] 5.0 [14.5] 

6-24-48 4.3 [13.3] 5.4 [18.0] 5.9 [17.3] 5.3 [15.4] 

 

 

  



 

98 
 

Omitting multiple samples from EMA-based sampling 

 Several 3-sample designs perform well, particularly for the estimation of half-life (Figure 

19 [middle]) and AUC (median [Q95] absolute error ≤7% [<20%] for all 3-sample designs). The 

Predose-0.5h-48h strategy resulted in the lowest absolute errors across all outcomes of interest 

(median [Q95] <6.5% [<19%]), with the Predose-0.5-24h design producing similar results (Table 

14). Estimates of central volume, peak and trough levels, and times to critical factor levels were 

the most sensitive to sample timing, with the 95th percentile of error greater than 30% for some 

sampling schemes (Table S6). 

 A number of 2-sample strategies also produce reasonably accurate estimates of most PK 

parameters. In particular, half-life is still well-estimated (median absolute error <7%) for all 

strategies except for 0.5h-6h (Figure 19 [bottom]). Of particular note, the Pre-0.5h strategy 

produces PK parameter estimates that are similarly accurate to the optimal 3-sample design 

(median <7%; Q95 ≤20% - Table S6); however, errors on trough levels are slightly elevated (9% 

[25%] at 72 hours; 9% [27%] at 96 hours).     
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Figure 19. Half-life error relative to the rich 10-sample design for 4- (top), 3- (middle), and 2- 

(bottom) sample designs. 



 

100 
 

Noncompartmental analysis 

 Results from the noncompartmental analysis are shown in Table 15. Relative to the rich 

11-sample design, estimates of CL, Vss, and AUC0-inf obtained from the EMA-based sampling 

design are fairly precise (median [Q95] absolute error <6% [≈20%]). However, half-life 

estimates are significantly under-predicted using this sampling strategy (mean error: –24.6%).   

 Omitting the 48-hour sample has the greatest impact on PK parameter estimates. With the 

exception of Vss, which was relatively unchanged, all other outcomes had substantially higher 

errors. Without this late sample, AUC is considerably underestimated (mean error: –44%), 

resulting in an overestimation of clearance (mean error: +27%); half-life was also severely 

underestimated, with mean error of –48%. Omission of the predose sample – which resulted in 

the largest error on most PK parameters when Bayesian methods were used – produced almost 

identical estimates to the full EMA-based sampling scheme when NCA was used. This is due to 

a difference in how the predose sample is used between the two methods. For NCA, the predose 

simply acts as a starting point (C0) while in Bayesian estimation, predose acts as a late time point 

(72–96 hours, depending on the day of the PK study) when knowledge of the previous dose is 

available, as was assumed in this study. Of the post-infusion samples, exclusion of the 6-hour 

point produced the most accurate estimate of clearance and AUC0-inf; half-life was best predicted 

from the strategy omitting the 24-hour sample, while the steady state volume of distribution was 

well estimated when the 48-hour sample was removed.  

  



 

101 
 

Table 15. Error (presented as mean (range) in percent) and absolute error (presented as median 

[Q95] in percent) relative to the 10-sample design using noncompartmental analysis 

Error Parameter 

Sampling Design Half-Life Clearance Vss AUC 

EMA-Based Sampling -24.6 (-73.3, 65.2) 4.0 (-19.2, 61.8) -3.7 (-23.9, 27.0) -3.0 (-38.2, 23.7) 

Pre-0.5-6-24 -48.3 (-80.7, 37.6) 26.7 (-22.5, 161.7) 7.5 (-18.6, 91.8) -19.4 (-61.8, 29.1) 

Pre-0.5-6-48 -29.9 (-75.2, 35.3) -8.1 (-38.5, 67.5) -19.8 (-44.1, 23.1) 10.8 (-40.3, 62.6) 

Pre-0.5-24-48 -33.2 (-76.4, 83.8) -5.2 (-40.9, 58.6) -16.5 (-47.8, 15.7) 7.2 (-36.9, 69.2) 

Pre-6-24-48 -20.7 (-73.3, 65.2) 19.6 (-9.0, 83.8) 16.1 (-6.7, 51.0) -15.6 (-45.6, 9.9) 

0.5-6-24-48 -24.6 (-73.3, 65.2) 4.0 (-19.2, 62.1) -3.6 (-23.8, 27.1) -3.1 (-38.3, 23.7) 

  

Absolute Error Parameter 

Sampling Design Half-Life Clearance Vss AUC 

EMA-Based Sampling 27.2 [56.4] 6.1 [20.5] 5.4 [14.6] 6.2 [17.3] 

Pre-0.5-6-24 49.9 [69.0] 24.4 [58.0] 7.4 [25.5] 19.6 [36.7] 

Pre-0.5-6-48 30.3 [56.6] 11.1 [27.3] 20.2 [34.1] 12.1 [35.8] 

Pre-0.5-24-48 34.0 [58.5] 9.3 [24.0] 16.7 [32.9] 9.6 [30.5] 

Pre-6-24-48 24.0 [54.4] 18.9 [38.3] 15.3 [32.5] 15.9 [27.7] 

0.5-6-24-48 27.2 [56.4] 6.2 [20.6] 5.3 [14.6] 6.2 [17.4] 

 

 

 Due to the significant bias observed in half-life estimates for all sampling strategies, we 

investigated the impact of including a later time point. If the EMA-based sampling design is 

supplemented with a 72 h or 96 h sample, the mean error on half-life improves from –24.6% to –

2.5% and +2.0%, respectively, without significantly altering the estimates of other PK 

parameters of interest (Figure 20). If the addition of another sampling time is problematic, recall 

that the omission of predose has little impact on estimates obtained using NCA. Therefore, an 

alternative strategy consisting of samples at peak (0.5 h), 6 h, 24 h, 48 h, and either 72 or 96 

hours may be more appropriate to accurately estimate all relevant PK parameters when 

noncompartmental methods are employed. 
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Figure 20. Impact of inclusion of a late sampling tie (72 or 96 h) on PK parameter estimates 

compared to EMA-based sampling strategy when using NCA  

 

Discussion 

 We report the development and evaluation of a PopPK model for all currently available 

SHL rFIX products, built on data measured using the one-stage clotting assay and amassed from 

both industry trials and routine hemophilia care through the WAPPS-Hemo project. The 

structural and covariate models, and parameter estimates, are within the space of those reported 

in the literature [178,218–220], despite differences in both modelling objectives and approaches, 

and in the products included in the modelling datasets across the referenced studies. Inclusion of 

fat-free mass explained substantial portions of the BSV on both CL (ΔBSVCL = –16.1%) and V1 

(ΔBSVV1 = –23.0%), and resulted in a greater reduction in OFV compared to total body weight 

(ΔOFV = –193 for FFM; ΔOFV = –164 for BW). The objective function value was further 

decreased by addition of FFM terms on Q and V2 (ΔOFV = –121), but age was not found to be a 

significant covariate on CL or V1. The ability to assess brand differences was limited. Patients on 
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RIXUBIS comprised only 14% of the dataset, and all RIXUBIS data was very sparsely sampled 

(mean number of samples per infusion: RIXUBIS – 3.0; BeneFIX – 8.4; IXINITY – 11.1). When 

an effect for IXINITY was included on CL and V1, the OFV did not substantially decrease, the 

magnitude of the covariate effect was small (<10% difference from the reference group), and 

unexplained BSV on CL and V1 were effectively unchanged. For these reasons, no brand effect 

is included in the final model. This may change in future updates to the model, as the WAPPS-

Hemo project continues to collect data from all three products to facilitate this comparison. 

 This model was built to tackle two objectives. The first is development of a model for 

Bayesian forecasting for use on the WAPPS-Hemo platform; this requires a model that can 

produce accurate estimations of all relevant PK parameters from sparsely sampled patient data. 

To evaluate the model in this capacity, 10-fold cross-validation and limited sampling analysis 

were performed, and the results demonstrate that the model is well-suited to this purpose. The 

second aim of the study was to determine how omission of one or two of the intended samples 

would affect the estimation of key PK outcomes in a clinical trial investigating the PK of 

IXINITY in pediatric patients. When Bayesian forecasting is used to estimate the PK parameters, 

one sample can be removed without compromising the accuracy of the outcomes of interest. In 

fact, several 3-sample designs also maintain low errors (absolute error Q95 <15%). However, 

these results do not hold when noncompartmental methods are used. In fact, even the intended 

EMA-based sampling results in considerably underestimates half-life; an additional sample at 72 

or 96 h post-infusion is needed for its accurate estimation. This is not unexpected, as it has been 

noted that FIX requires relatively long sampling to obtain sufficient data to accurately estimate 

PK [221]; many studies sampling for 48 hours report a half-life of less than 20 hours, while 

analyses with later sampling times (72–96 hours) report longer half-life (25–35 hours) [26,38]. 
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Despite this shortcoming, AUC, clearance, and Vss were estimated quite accurately using the 

EMA-based sampling strategy for NCA (Table 15). This limited sampling analysis serves to 

highlight the robustness of the Bayesian approach, and its flexibility with respect to missing 

samples, in comparison to the traditionally used noncompartmental methods (Figure 21).
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Figure 21. Comparison of errors on estimates of half-life (blue), clearance (yellow), Vss (orange), and AUC (purple) from Bayesian estimation (left) 

and NCA (right) 
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Conclusions 

 

 We developed a PopPK model for rFIX and evaluated it for use in Bayesian forecasting 

on the WAPPS-Hemo platform. The model was built using data for three different brands of 

rFIX collected from both clinical trials and routine hemophilia care, and leveraged pooled 

pediatric PK data to address a practical problem when brand-specific pediatric data was 

unavailable. To this end, a limited sampling analysis was performed using the model to 

determine which sampling times can be omitted if pediatric sample volume limitations prevent 

participating centres from collecting samples at all the intended times.  When Bayesian 

forecasting is used, accurate estimates of all PK outcomes of interest can be obtained from as 

few as 3 samples; if NCA is used, there is little flexibility to omit samples while maintaining the 

accuracy of relevant PK parameters.  
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Chapter 6: Limited sampling strategies for accurate determination of 

extended half-life factor VIII pharmacokinetics in severe hemophilia A 

patients 

 

This chapter is reflective of an original manuscript prepared by the Ph.D. candidate (Alanna 

McEneny-King) for submission to Haemophilia. All pertinent dialogue in this chapter was 

written by the Ph.D. candidate. 

 

 

Introduction 

Hemophilia A is a rare and hereditary coagulation disorder characterized by a lack of 

functional coagulation factor VIII (FVIII). This lowered clotting ability can result in internal 

bleeding, often into the joints, resulting in debilitating arthropathy. In severe hemophilia A 

patients (i.e. those with less than 1 IU dL-1, or 1% of normal FVIII activity), these bleeds may 

occur spontaneously. It has long been noted that maintaining FVIII activity levels above 1 IU dL-

1, even modestly, can greatly improve patient outcomes. Ahlberg observed that the chronic joint 

damage observed in severe hemophilia patients was rare among those with factor activity above 

2–3  IU dL-1 [7]; Nilsson and colleagues later found that patients who spent more time with 

factor levels above 1 IU dL-1 had improved joint function [8]. More recently, bleeding rate has 

been shown to be correlated with time per week with FVIII < 1 IU dL-1 in both adults and 

children [10,222]. The concept of prophylactic factor replacement therapy is derived from these 

clinical observations, and is the only known method for the prevention of joint damage [9].  

Although the prophylactic use of clotting factor concentrates has greatly improved 

clinical outcomes among hemophilia patients, long-term prophylaxis is not without challenges. 
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The half-life of conventional FVIII products is relatively short (approximately 12 hours [167]), 

necessitating frequent injections in order to maintain FVIII activity levels above 1 IU dL-1. This 

demanding infusion schedule often results in the need for central venous lines in young children 

and reduced adherence among adolescents [223,224].  

In an attempt to alleviate this treatment burden, a number of strategies have been 

employed to improve the pharmacokinetic (PK) profile of recombinant FVIII (rFVIII). One 

approach is the fusion of rFVIII to the Fc domain of IgG1, taking advantage of the endogenous 

IgG recycling pathway [225]. The resulting product (rFVIII Fc fusion protein [rFVIIIFc], or 

efraloctacog alfa) demonstrates, on average, a 1.5-fold increase in half-life over standard half-life 

rFVIII products [108].  This more favourable PK profile allows for a dosing interval of 3–5 days, 

compared to the 2–3 day interval for rFVIII. 

Although rFVIIIFc demonstrates an extended PK profile compared to rFVIII, it also 

exhibits the wide and unpredictable variability in PK response observed in its standard half-life 

counterparts [226].  The mean (95% confidence interval) half-life of rFVIIIFc was reported to be 

18.8 (14.3–24.5) hours for adults [106], 14.9 (12.0 – 17.8) hours for children between the ages of 

6 and 11 [110], and 12.7 (11.2 – 14.1) hours for children from 2 to <6 years of age [110]. As a 

result, dosing regimens should be tailored to the individual patient. To obtain a tailored dose 

using a classical PK approach, the International Society of Thrombosis and Hemostasis 

recommends at least 10 post-infusion samples after a washout period; this method is both 

burdensome and risky for the patient, and impractical for routine use. The population PK 

(PopPK) approach allows for the determination of individual PK parameters from fewer samples 

than traditional methods. The combination of a Bayesian PK approach, which estimates 

individual PK parameters using prior knowledge in the form of a PopPK model of historical data, 
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and a limited sampling strategy (LSS) has been shown to produce accurate estimations of 

individual activity levels for conventional FVIII [57,227,228]. Optimal sampling windows have 

been suggested for both conventional and EHL clotting factor concentrates; current 

recommendations for EHL factors suggest using the guidelines for conventional FVIII (i.e. 4–8h, 

16–28 h, and 40–60 h) and adding a sample between 60 and 84 hours post-infusion [169]. 

However, formal investigations of LSSs for EHL FVIII products are lacking.   

The aim of this study was to identify LSSs for rFVIIIFc that allow for accurate 

determination of relevant PK parameters. Furthermore, the predictions generated from the LSS 

should result in consistent clinical decisions as compared with densely sampled PK study. 

 

 

Methods 

 

Software 

Factor activity profile simulation and statistical analyses were performed in Matlab (R2017b, 

Mathworks, Natick, MA, USA). Individual PK estimates of the simulated populations were 

obtained using Bayesian forecasting in NONMEM (v7.3, ICON Development Systems, Ellicott 

City, MD, USA).  

 

Population pharmacokinetic model 

The PopPK model used to generate estimates of individual PK parameters was developed 

by Nestorov et al [184] using data measured with the one-stage clotting assay. For this study, we 

used the parameters from the base model, as the final model included a von Willebrand factor 

effect on clearance and a hematocrit effect on central volume. The base model describes 

rFVIIIFc PK using a two-compartment structure and includes a body weight effect on central 
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volume. Further description of the model can be found in Table 16. This rFVIIIFc model was 

developed on richly sampled data from 180 previously treated severe hemophilia A patients 

between 12 and 65 years of age, weighing between 42.0 and 127.4 kg. The base model also 

included a study effect on the additive residual error component; since the population in the 

phase 3 study (𝑛 = 164) was considerably larger than the phase 1/2a study (𝑛 = 16), the additive 

error corresponding to the phase 3 study was used here.  

 

Table 16. Details of the base rFVIIIFc model developed by Nestorov et al [184] 

Parameter Estimate Covariate Effects BSV (%) IOV (%) 

Clearance, CL (dL h-1) 1.72  31.1 21.9 

Central volume, V1 (dL) 36.4 𝑇𝑉(𝑉1) ∙ (
𝐵𝑊

73
)
0.498

 13.8 10.5 

Intercompartmental 
clearance, Q (dL h-1) 

1.15 

 

Corr: 
0.461 

Corr: 
0.558 

Peripheral volume, V2 (dL) 5.79 

  Additive error (IU dL-1) 0.264 

Proportional error (%) 14.6 

 

 

 

Simulated populations and activity profiles 

An adult population of 1000 virtual 25-year-olds was generated, with PK parameter 

distributions taken from the published PopPK model described above [184]. Endogenous FVIII 

activity was assumed to be 0.25 IU dL-1 as all patients were reported to be severe and the assay’s 

lower limit of quantification (LLOQ) was reported to be 0.5 IU dL-1. For each individual, a 

treatment regimen of 50 IU kg-1 (rounded to the nearest 250 IU to account for available rFVIIIFc 

vial sizes) administered on Mondays and Thursdays was simulated, with infusion duration of 5 
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minutes. This regimen was simulated for four weeks to ensure steady state was reached, and the 

fourth Thursday dose or fifth Monday dose was used for analysis. Finally, the LLOQ for the 

simulations was defined as 1 IU dL-1 as this is the most common LLOQ in practice [229].      

Next, adolescent (12-year-olds) and pediatric (2-year-olds) populations were generated. 

Body weight distributions for each age were based on the empirical distributions found in the 

NHANES database [215], and PK parameters were simulated using the estimates from the 

Nestorov model. A description of the model derivation data and the populations simulated in this 

study can be found in Table 17. In the younger populations, where it was common for the 

Thursday or Monday predose to be below the limit of quantification (BLQ), an alternative dosing 

schedule was used, consisting of three weeks of Monday-Thursday dosing followed by doses on 

Monday and Wednesday in the fourth week, with the Wednesday dose being used for analysis; in 

this scenario, the predose sample is now 48 hours after the previous dose rather than 72 

(Thursday) or 96 hours (Monday).  
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Table 17. Demographic data of rFVIIIFc studies used for development of Nesterov model and of 

simulated populations.  

 
Study Populations Simulated Populations 

Phase 1/2a 
[106] 

Phase 3  
[108] 

Adults 
Young 

Adolescents 
Children 

n 16 164 1000 1000 1000 

Weight (kg) 
82.7  

(54–111) 
71.60  

(42.0–127.4) 
86.9 

(63.6–127.9) 
47.2 

(33.4–79.6) 
14.0 

(11.5–17.5) 

Age (years) 
34.6  

(23–61) 
30  

(12–65) 
25  12 2 

Doses (IU kg-1) 25 and 65 
25, 30, 35, 
40, 45, 50, 

60, 65 
50 

Number of 
Samples per 

Patient 
13–16  5–8  6 

Sampling 
Duration (h) 

168–240   96–120  96 

Phase 1/2a study data presented as mean (range). Phase 3 study data presented as median 

(range). Simulated population data presented as median (range).  

Age was not explicitly simulated as it is not a covariate in the model.  

 

Design of limited sampling strategies 

We began with a rich sampling scheme that included a predose measurement (-0.5 h) and 

samples at 1, 24, 48, 72, and 96 hours post-infusion. Limited sampling schedules were created by 

systematically excluding sample points from this rich sampling scheme. Overall, twenty-one 

sampling schemes were created. Each scheme had between 1 and 5 samples. The details of the 

sampling schemes are described in Table 18. 

In addition to the timing of post-infusion samples, we also investigated the importance of 

handling a predose measurement appropriately. We compared two methods of predose handling: 

in Method A, no knowledge of prior doses was used for the estimation; in Method B, information 

about the date and dose of the previous infusion was incorporated. Additionally, we looked at the 

timing of this predose sample relative to the prior dose. For example, if the patient is on a 

Monday-Thursday dosing schedule, a PK study performed on Monday will have a predose 
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sampled at 96 hours after the last dose while a PK study performed on Thursday will have a 

predose sampled at 72 hours after the last dose. For the two younger patient groups, the 

Wednesday PK study described above was also simulated.  With all combinations of predose 

handling and study day, a total of 126 sampling strategies were explored. Bayesian estimation 

was performed in NONMEM to obtain individual PK estimates from each sampling strategy, for 

each population.  
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Table 18. Details and nomenclature of tested limited sampling strategies. All doses were 50 IU 

kg-1 (rounded to the nearest 250 IU vial) unless otherwise indicated 

Timing of Samplesa 
(h) 

Handling of Predoseb 

Predose Method A Predose Method B 

Study Day c 

Thursday 
(72 h) 

Mondayd 

(96 h) 
Wednesday 

(48 h) 
Thursday 

(72 h) 
Mondayd 

(96 h) 
Wednesday 

(48 h) 

-0.5, 1, 24, 48, 72, 96 AT1  AW1 BT1  BW1 

-0.5, 1, 24, 48, 72 AT2 AM2 AW2 BT2 BM2 BW2 

-0.5, 1, 24, 48, 96 AT3  AW3 BT3  BW3 

-0.5, 1, 24, 72, 96 AT4 AW4 BT4 BW4 

-0.5, 1, 48, 72, 96 AT5 AW5 BT5 BW5 

-0.5, 1, 72, 96 AT6 AW6 BT6 BW6 

-0.5, 1, 48, 96 AT7 AW7 BT7 BW7 

-0.5, 1, 24, 96 AT8 AW8 BT8 BW8 

-0.5, 1, 48, 72 AT9 AM9 AW9 BT9 BM9 BW9 

-0.5, 1, 24, 72 AT10 AM10 AW10 BT10 BM10 BW10 

-0.5, 1, 24, 48 AT11 AM11 AW11 BT11 BM11 BW11 

-0.5, 1, 24 AT12 AM12 AW12 BT12 BM12 BW12 

-0.5, 1, 48 AT13 AM13 AW13 BT13 BM13 BW13 

-0.5, 1, 72 AT14 AM14 AW14 BT14 BM14 BW14 

-0.5, 1, 96 AT15  AW15 BT15  BW15 

-0.5, 1 AT16 AM16 AW16 BT16 BM16 BW16 

1, 24 AT17 AM17 AW17 BT17 BM17 BW17 

1, 48 AT18 AM18 AW18 BT18 BM18 BW18 

1, 72 AT19 AM19 AW19 BT19 BM19 BW19 

1, 96 AT20  AW20 BT20  BW20 

1 AT21 AM21 AW21 BT21 BM21 BW21 
a -0.5 h indicates a predose sample. b ’Handling of Predose’ refers to whether information about 

the previous dose was incorporated into the estimation. c ‘Study Day’ refers to the day the dose is 

given for the PK study; the length of time since the last dose is indicated in parentheses. d The 

reference sampling scheme for the AM and BM series does not contain the 96 h sample, since 

the next  dose would be given at 72 h post-infusion in this scenario. Consequently, LSSs with the 

96 h sample were not considered for this subset. 
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Evaluation of limited sampling strategies 

Each of the limited sampling strategies was evaluated by assessing the error and absolute 

error (AE) of the estimated PK parameters (clearance, central volume, half-life) and predicted 

activity at 72 and 96 hours post-infusion (C72 and C96 – troughs corresponding to a Monday-

Thursday dosing schedule), as defined in the equations below: 

𝐸𝑟𝑟𝑜𝑟𝑖 =
𝜑𝑖,𝐿𝑆𝑆 − 𝜑𝑖,𝑓𝑢𝑙𝑙

𝜑𝑖,𝑓𝑢𝑙𝑙
× 100% 

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟𝑖 = |𝐸𝑟𝑟𝑜𝑟𝑖| 

 

where 𝜑𝑖,𝑓𝑢𝑙𝑙 and 𝜑𝑖,𝐿𝑆𝑆 represent the estimates of PK parameter 𝜑 estimated by the rich and 

limited sampling strategies, respectively, for individual 𝑖. 

 

Trough levels at 72 and 96 hours guide clinical decision-making and drive dose 

adjustments, so accurate prediction of FVIII activity at these times is critical. In this study, we 

aimed to keep FVIII activity above 1 IU dL-1 at all times. If the predicted troughs (i.e. C72 and 

C96) were both above this value, the regimen was deemed appropriate; otherwise, the regimen 

required a dose adjustment. If the regimen decision was inconsistent between an LSS and the 

rich sampling strategy (i.e. if a trough predicted by an LSS was greater than 1 IU dL-1 but less 

than 1 IU dL-1 for the rich sampling strategy - or vice versa), it would result in an inappropriate 

dosing adjustment. This inappropriate dosing adjustment rate (IDAR72, IDAR96) was also used to 

evaluate the different strategies.   
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Results 

A complete listing of the AE on half-life and trough levels, as well as the IDARs, for all 

sampling strategies in all populations can be found in Supplementary Table S7, Table S8,  

Table S9 and Table S10. A summary of the simulated PK outcomes for each age group 

(including a comparison to previously reported values for half-life) is given in Table 19. 

 

Table 19. Pharmacokinetic outcomes for simulated populations from the rich sampling design. 

Results are presented as mean (standard deviation). Age is presented as median (range), except in 

the adult case where the median for the PK subgroup was unknown. Simulated values of PK 

parameters are presented as mean (SD); reported values of half-life are presented as mean (95% 

CI). 

 
Adults Adolescents Children 

Simulated Reported  Simulated Reported Simulated Reported 

Age 20 (12–65)  12 8.0 (6 – 11) 2 4.0 (1 – 5) 

PK Outcome 

Half-Life (h) 18.3 (4.8) 
19.0  

(17.0–21.1) 
[108] 

15.2 (4.0) 
14.88  

(11.98–17.77) 
[110] 

10.0 (2.3) 
12.67  

(11.23–14.11)  
[110] 

C72 (IU dL-1) 6.7 (5.1) 

 

3.1 (2.7) 

 

0.5 (0.3) 

 C96 (IU dL-1) 3.2 (3.0) 1.4 (1.4) 0.3 (0.1) 

TAT1% (h) 125.4 (33.3) 97.1 (27.8) 48.6 (14.2) 

 

Adult Population 

A summary of the results for the 2- and 3-sample schemes is shown in Table 20. If we 

first consider the AT series of sampling designs (i.e. those using Method A for predose handling, 

with the study taking place on Thursday), most strategies – including several 2-sample designs – 

perform well, with mean AE below 7% and 17% for PK parameters and trough levels, 

respectively (Figure 22). The IDARs were generally low (<8%) for most sampling schemes. Of 

particular note, designs AT9 (Pre-1-48-72h) and AT14 (Pre-1-72h) were the best 4- and 3-

sample designs, respectively; AT19 (1-72h) produced similar results to 3- and 4-sample designs 



 

117 
 

and performed the best of the 2-sample designs, emphasizing the importance of the 72-hour 

sample in this population. Additionally, central volume was well-estimated (mean AE <5%) for 

all designs as all sampling strategies included a peak level; future references to PK parameters 

refer to half-life and clearance only. 

 The exceptions to this largely good performance are designs AT16 (predose and peak) 

and AT21 (peak only). These designs performed equally poorly, with mean [95th percentile] AE 

greater than 20% [52%] on PK parameters and greater than 75% [290%] on trough levels. The 

IDAR, while still low at 72 hours, increased to more than 20% at 96 hours. Furthermore, all 

cases of inappropriate dose adjustment overpredicted the trough level, resulting in a failure to 

increase dose and time spent below 1 IU dL-1. Strategies where the latest sample was taken at 24 

hours post-infusion (AT12 and AT17) also performed poorer than most (mean AE ≈10% for PK 

parameters, ≈25% for trough levels; IDAR96 = 8%). Finally, strategies AT15 (Pre-1-96 h) and 

AT20 (1-96 h) performed well for PK parameter estimation but had slightly elevated IDAR96 

(7.5% for both).  
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Table 20. Comparison of predose methods A and B for 2- and 3-sample designs following 

Thursday sampling in adults. Absolute errors are presented as mean [95th percentile]. 

Method A PK Parameters Trough Levels IDAR 

Design Half-Life Clearance 
Central 
Volume 

C72 C96 72 h 96 h 

AT6 1.3 [3.7] 3.6 [9.4] 3.2 [7.9] 5.3 [15.3] 5.2 [14.9] 0.9% 0.9% 
AT7 2.2 [6.0] 3.3 [8.6] 2.7 [6.4] 6.2 [17.2] 7.1 [18.1] 0.2% 2.9% 
AT8 3.1 [9.0] 3.7 [10.2] 1.3 [3.2] 8.8 [25.9] 10.0 [28.1] 0.5% 3.4% 
AT9 2.7 [7.3] 3.0 [8.0] 2.9 [7.1] 6.2 [15.1] 7.6 [19.3] 0.0% 1.0% 

AT10 3.5 [9.5] 3.4 [9.2] 1.6 [4.2] 8.4 [20.8] 10.1 [24.9] 0.6% 1.6% 
AT11 5.8 [15.0] 4.4 [13.0] 2.1 [5.2] 12.6 [30.5] 15.8 [38.6] 0.1% 2.9% 

AT12 10.9 [26.8] 10.9 [31.5] 2.3 [5.7] 26.3 [64.2] 32.0 [77.3] 0.7% 6.6% 
AT13 6.1 [15.8] 6.1 [17.1] 3.0 [7.3] 14.2 [35.0] 17.3 [42.2] 0.2% 4.1% 
AT14 3.7 [10.3] 4.9 [13.1] 3.2 [8.0] 9.8 [24.1] 11.2 [28.2] 0.8% 1.6% 
AT15 3.8 [11.4] 5.6 [15.7] 3.3 [8.2] 12.8 [38.4] 13.1 [40.5] 1.5% 4.4% 

AT16 21.1 [52.6] 23.3 [60.7] 3.4 [8.8] 73.9 [279.6] 88.3 [339.2] 1.5% 13.1% 
AT17 10.7 [25.8] 9.9 [22.9] 4.7 [12.2] 26.2 [66.7] 32.6 [85.9] 0.5% 6.5% 
AT18 6.2 [15.8] 6.8 [16.6] 4.7 [12.0] 14.0 [35.3] 17.3 [43.5] 0.2% 4.0% 
AT19 4.4 [11.9] 6.6 [16.2] 4.7 [11.7] 9.9 [24.1] 11.3 [27.6] 0.8% 1.7% 
AT20 4.3 [11.4] 7.0 [17.1] 4.6 [11.3] 13.0 [38.3] 13.1 [40.6] 1.5% 4.4% 

 

Method B PK Parameters Trough Levels IDAR 

Design Half-Life Clearance 
Central 
Volume 

C72 C96 72 h 96 h 

BT6 0.9 [2.4] 2.9 [6.8] 3.0 [7.0] 3.8 [10.2] 3.6 [10.0] 0.7% 0.8% 
BT7 1.5 [3.9] 2.4 [6.0] 2.6 [6.4] 4.3 [10.8] 4.8 [11.8] 0.2% 1.5% 
BT8 1.9 [5.0] 2.3 [5.8] 1.1 [2.7] 5.5 [15.2] 6.2 [16.4] 0.2% 1.5% 
BT9 2.0 [5.3] 2.2 [5.5] 2.9 [7.1] 4.4 [10.2] 5.4 [13.1] 0.2% 0.6% 

BT10 2.4 [6.3] 2.1 [5.2] 1.6 [4.3] 5.8 [14.3] 7.0 [16.9] 0.6% 1.4% 
BT11 3.2 [8.6] 1.8 [5.0] 1.9 [5.2] 7.1 [18.0] 8.9 [23.5] 0.1% 2.3% 

BT12 4.2 [10.7] 3.4 [8.6] 2.0 [5.2] 10.1 [25.4] 12.2 [30.2] 0.3% 2.9% 
BT13 3.3 [8.8] 3.0 [7.7] 3.0 [7.3] 7.7 [19.3] 9.4 [23.5] 0.2% 2.5% 
BT14 2.5 [6.6] 3.3 [7.9]  3.1 [7.7] 6.6 [15.9] 7.5 [18.4] 0.7% 1.2% 
BT15 2.0 [5.7] 3.6 [8.7] 3.0 [7.2] 6.7 [19.1] 7.0 [19.2] 0.8% 2.6% 

BT16 4.4 [11.8] 4.8 [12.2] 3.1 [7.8] 11.6 [29.5] 13.4 [33.4] 0.9% 3.7% 
BT17 10.1 [23.9] 9.2 [25.6] 2.8 [6.7] 25.3 [60.7] 30.4 [72.2] 0.8% 6.3% 
BT18 6.0 [15.0] 5.7 [15.9] 3.1 [7.6] 14.5 [36.1] 17.4 [42.7] 0.1% 4.1% 
BT19 3.8 [10.1] 4.8 [13.1] 3.1 [8.0] 10.4 [26.8] 11.8 [29.3] 0.9% 2.2% 
BT20 4.1 [12.1] 5.7 [16.4] 3.1 [7.9] 13.8 [40.9] 14.4 [41.9] 1.6^ 4.5% 

 

 Results were fairly similar using both methods of predose handling for most designs 

(Table 20), except for the case of the predose-peak sampling strategy (AT16 vs. BT16). Briefly, 

mean AE on half-life and clearance decreases from greater than 20% to below 5%, mean [95th 

percentile] AEs on trough levels decrease from over 75% [≈300%] to less than 13% [≈30%]. 

IDAR96 also drops from over 20% using Method A to 3.3% for Method B (Figure 2). Though the 
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difference was less dramatic, strategies using Method B and lacking a 48- or 72-hour sample (i.e. 

BT8, BT12, and BT15) also had lower mean AE than their respective AT counterparts.    

 Due to the higher percentage of patients with BLQ factor levels at 96 hours compared to 

72 hours (21.2% vs. 2.6%; 𝑝 < 0.0001), we hypothesized that the sampling day would be 

influential when Method B was used to handle predose. For most sampling schemes, the AEs on 

PK parameters and troughs were quite similar for both sampling days.  However, major 

differences in these outcomes were observed for two designs: BM15 (predose, 1 h, 96 h) and 

BM16 (predose, 1 h); in these cases, errors were considerably higher when sampling on Monday 

as compared to Thursday (Figure 24). Furthermore, there were five designs that resulted in at 

least one IDAR that was significantly higher when sampling was done following a Monday dose 

rather than a Thursday dose: BM6 (IDAR72 1.6% vs. 0.5%, 𝑝 = 0.016), BM11 (IDAR96 3.1% vs. 

1.7%, 𝑝 = 0.041), BM14 (IDAR72 1.6% vs. 0.6%, 𝑝 = 0.032), BM15 (IDAR72 2.8% vs. 1.1%, 𝑝 = 

0.006), and BM16 (IDAR72 2.8% vs. 1.1%, 𝑝 = 0.006; IDAR96 5.7% vs. 3.3%, 𝑝 = 0.001). 
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Figure 22. Boxplot of relative error on half-life estimates from limited sampling strategies using 

(top) Method A and (bottom) Method B for predose handling in a simulated adult population. 

Error is calculated relative to design AT1 and BT1, respectively.  
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Pediatric and Adolescent Populations 

 Next, we explored whether different LSSs are required when dealing with a younger 

population. When comparing the AT-series designs for the 2-year-old group, a number of 

designs still perform quite well; AT10 (Pre-1-24-72), AT12 (Pre-1-24), and AT17 (1-24) were 

the best 4-, 3- and 2- sample designs, with mean AEs below 10% on all PK parameters and 

troughs, and IDARs below 3%. In fact, IDAR96 is below 1% for all designs in this series ( 

Table S9). However, this is due to the fact that most simulated 2-year-olds reach a factor activity 

level of 1 IU dL-1 well before 96 hours (mean ± SD time to 1 IU dL-1: 49 ± 14 h) while around 

80% of adults are still above this threshold at 96 hours (mean ± SD time to 1 IU dL-1: 125 ± 33 

h). Designs without a sample at 24 or 48 hours (i.e. AT6, AT14–AT16, and AT19–AT21) result 

in estimates with considerably higher mean [95th percentile] AEs for both PK parameters (≈15% 

[>38%]) and 72-hour trough level (≈25% [>65%]).    

 The incorporation of predose data did not result in the same degree of improvement in the 

pediatric population as in the adults. Means and 95th percentiles of AE were improved for the 

same sampling designs (i.e. BT8, BT12, BT15, and BT16), but with less dramatic results (Figure 

23). Taking the BT16-series designs as an example, mean AE was reduced from 21% to 4% for 

half-life and from 87% to 13% for C96 in adults when prior dose knowledge was included; the 

same change in simulated 2-year-olds reduced half-life mean AE from 17% to 14% and C96 

mean AE from 42% to 30%. We attributed this reduced impact to the higher proportion of BLQs 

at 72 hours (>90%) compared to adults (2.1%). 
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Figure 23. Effect of predose handling on estimates of PK parameters and IDAR for adults, 

adolescents, and children for the predose-peak sampling strategy  
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Due to an even higher proportion of BLQs than expected, additional simulations were 

performed for the pediatric population – one using a higher dose (80 IU kg-1, as recommended in 

product guidelines) with the same sampling strategies, and another using the 50 IU kg-1 dose but 

collecting a predose sample that is 48 hours after the last dose rather than 72 or 96 hours 

(equivalent to performing the study on Wednesday for a Monday-Thursday regimen). Increasing 

the dose to 80 IU kg-1 did not result in any reduction in error on PK estimates, likely because this 

dose adjustment did not significantly reduce the proportion of patients who were BLQ at 72 

(83.8%) or 96 (97.5%) hours. However, taking the predose sample at 48 hours (when less than 

half the population is BLQ) improved the error on half-life estimate considerably (Figure 23, 

Figure 24). For the predose-peak sampling strategy, mean [95th percentile] AE on half-life 

decreases from 14% [38%] when sampled after the Thursday dose to 7% [20%] when sampled 

after the Wednesday dose. Estimates of trough levels are similarly improved at both 72 hours 

(12% [29%] vs. 29% [70%]) and 96 hours (5% [18%] vs. 14% [51%]). However, the IDARs 

obtained from Wednesday sampling are slightly higher than those from Thursday sampling 

(IDAR72: 3.3% vs. 2.4%, 𝑝 = 0.23; IDAR96: 1.1% vs. 0.3%, 𝑝 = 0.032). 

 Since there were striking differences between the adult and pediatric populations, we 

decided to investigate an intermediate population of adolescents.  Similar to the adults, most 

sampling designs in the AT series estimate the PK parameters and troughs well (mean AE <10% 

for PK parameters and <15% for trough levels, Table S8), with strategies containing a 48- or 72-

hour sample (e.g. AT13 and AT14 for the 3-sample case) outperforming those relying on a 24- or 

96-hour sample (e.g. AT12 and AT15). As with both the adult and 2-year-old populations, AT16 

and AT21 showed much worse performance than other strategies, with mean AE ≈20% on half-

life and clearance and >60% for trough levels. While these errors were comparable to the adult 
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counterparts, the IDAR at both 72 and 96 hours was much higher for the adolescent group 

(16.1% and 34.5%, respectively) than for adults (1.5% and 13.1%; Figure 2, Figure 3). This can 

be attributed to the fact that the mean time to 1 IU dL-1 for the simulated 12-year-olds was 102 h 

(compared to 138 h for adults), so many patients will be very close to the target trough at 96 h 

post-infusion. 
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Figure 24. Influence of study day on PK parameters and IDAR for different simulated age 

groups. Predose is handled using Method B. 



126 

 

 When predose was handled using Method B, the adolescent group was similar to the 

adults and saw dramatic improvement in error on PK parameters and in IDAR (Figure 23). 

Compared to the 2-year-old group, the proportion of adolescent patients who are BLQ at 72 

hours is fairly low (≈15%). Consequently, performing the study on Wednesday or Thursday 

generally produces similar results (Figure 3). However, the IDAR72 was significantly reduced 

when the PK study was performed on Wednesday for the eight sampling designs that include a 

predose sample but not a 48-hour point (i.e. BW4, BW6, BW8, BW10, BW12, BW14, BW15 

and BW16) as compared to Thursday. 

 

 

Discussion 

 

The results of this study suggest that the pharmacokinetics of rFVIIIFc can be accurately 

estimated from as few as two samples using Bayesian forecasting.  Of the strategies containing 

two post-infusion samples, those with a sample at 48 or 72 hours perform better than those with 

24- or 96-hour samples in adult and adolescent populations. For these populations, a 24-hour 

point does not provide enough information about the late stages of the profile, resulting in greater 

error on clearance and slightly higher (albeit still quite low) IDARs. Conversely, choosing a 

point that is very late in the profile (i.e. 96 hours) increases the likelihood that the sample will be 

BLQ; while this has less impact on the estimation of clearance, it results in increased IDARs. 

However, the best strategies for young children were those containing the 24-hour sample as 

patients of this age reach FVIII levels that are BLQ much earlier. 

 We also sought to determine whether samples from a single clinic visit (i.e. 16-series 

designs, consisting of predose and peak measurements) can be used to accurately determine the 
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PK of rFVIIIFc, as this sampling strategy is not only more convenient for patients, but also 

reduces clinic resources compared to sampling at multiple visits over several days. The results of 

this sampling strategy are highly variable, and depend on two factors: (i) how the predose sample 

is handled, and (ii) the day in the regimen on which the PK study takes place. If the time and 

dose of the previous infusion are not taken into account (Method A), errors on half-life, 

clearance, and trough levels are high, as is the risk of overpredicting the 96-hour trough level and 

thereby failing to adjust the regimen. However, if prior dose information is available (Method 

B), errors on these parameters are greatly reduced and troughs are more accurately predicted, 

resulting in fewer instances of inappropriate dose adjustment. Handling predose in this way 

allows for the assessment of PK on two infusions per patient; when the time and amount of the 

previous dose are provided, the predose level serves as a trough for the prior dose, giving an 

additional late observation to assist with estimation. The benefit of handling predose in this 

manner was observed for all three of the investigated ages. Conversely, the ideal sampling day is 

more a function of half-life and thus depends on age, as children are known to have shorter 

rFVIIIFc half-lives than adults [230]. Since BLQ predose samples are less informative and all 

ages have a significant proportion of BLQs at 96 hours, performing the PK study around the 

Monday dose of a Monday-Thursday regimen is not ideal; it results in greater errors on all 

outcomes of interest and higher IDARs in almost all cases. Thursday sampling produces 

favourable results in the adult population, while Wednesday sampling is required to reduce the 

risk of a BLQ predose sample in the 2-year-old group. The results for the adolescent population 

are similar for both Wednesday and Thursday sampling, so it is likely not worth disrupting the 

patient’s regimen to sample on Wednesday.  
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 A major limitation of this exercise is the lack of a rFVIIIFc model that is validated for 

pediatric populations. As seen in Table 17, the youngest patients in the derivation dataset are 12 

years old and models of this type are not usually suitable for extrapolation. However, half-life 

estimates obtained from the Nestorov model for the pediatric population (mean [95% CI] 10.0 

[6.6 – 15.5] hours) are reasonable when compared with observed values for similarly aged 

children (Table 19).  

 

 

 

Conclusions 

 

In summary, we performed a limited sampling analysis using a published model for 

rFVIIIFc and found that PK parameters and key trough levels could be accurately predicted from 

as few as two sample points. For accurate estimation of all relevant PK parameters and trough 

levels, inclusion of a 72-hour, 48-hour, or 24-hour point is recommended for adult, adolescent, 

and pediatric patients, respectively. When trying to make the most of samples collected from a 

single clinic visit (i.e. predose and peak measurements), treatment providers should be conscious 

of the benefit of including knowledge of the timing and amount of the patient’s previous dose, 

and of the importance of scheduling the PK study such that the most informative predose sample 

is collected. 
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Chapter 7: Clinical application of Web Accessible Population 

Pharmacokinetic Service – Hemophilia (WAPPS-Hemo): Patterns of blood 

sampling and patient characteristics among clinician users 
 

This chapter is reflective of an original manuscript published by the Ph.D. candidate (Alanna 

McEneny-King) in Haemophilia. All pertinent dialogue in this chapter was written by the Ph.D. 

candidate. 

 

McEneny-King A, Yeung CHT, Edginton AN, Iorio I, and Croteau SE. Clinical application of 

Web Accessible Population Pharmacokinetic Service – Hemophilia (WAPPS-Hemo): Patterns of 

blood sampling and patient characteristics among clinician users. Haemophilia. 2020; 26(1):56-

63. DOI: 10.1111/hae.13882. 

 

Introduction  

 

While the success of prophylactic factor replacement for hemophilia A and B has been 

well established [9,166,231], the nuances of ‘optimal’ prophylaxis taking into account a patient’s 

historical bleeding phenotype, target joints, type and intensity of physical activity, venous access, 

and the availability of factor concentrate are less well-defined. The significant annual cost of 

hemophilia therapy coupled with the expanding availability of newly designed factor 

concentrates [232] has created an opportunity for pharmacokinetic (PK) data to contribute to 

prophylaxis regimen decision-making. The addition of PK-tailored dosing may facilitate a 

provider’s ability to individualize hemophilia prophylaxis [233–237], maximizing the 

musculoskeletal health of patients by increasing trough levels while minimizing factor 

concentrate consumption [169,234,238,239]. The well-described broad inter-patient variability in 
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the PK of both factor VIII (FVIII) and factor IX (FIX) clotting factor concentrates (CFCs) 

[167,168], suggests that empiric dosing regimens based on adult mean half-life and adjusted 

based on bleeding pattern or measured trough levels may be improved upon [181,240,241]. 

Within the hemophilia A population, an association has been demonstrated between an increased 

risk of musculoskeletal bleed events and duration of time (hours per week) an individual spends 

with FVIII activity levels below 1 IU/dL [10]. 

Implementation of population pharmacokinetics (PopPK) for hemophilia A and B has 

facilitated a practical approach to individualizing prophylactic factor replacement regimens 

informed by a patient’s PK profile. Use of PopPK eliminates the need for a washout period and 

dense blood sampling following CFC infusion when performing PK analysis [181,242,243]. 

Historically, incorporation of PK into routine clinical practice has been impeded by the rigorous 

sampling required for classical PK methodology [244,245], limited access to provider-friendly 

tools for PK analysis, and provider and patient uncertainty about the magnitude of improvement 

to be gained by adding PK information to decision-making. Increasingly, PopPK models and 

interfaces have become available to clinicians. The required timing for blood samples, CFC-

specific modelling, and regional availability of resources have impacted specific tool utilization 

by providers [170,234]. The Web Accessible Population Pharmacokinetic Service – Hemophilia 

(WAPPS-Hemo) is a globally available service with specific models for most commercially 

available FVIII and FIX CFCs. The WAPPS-Hemo network currently consists of over 400 

centres, and the service has received over 1,200 infusions in the first half of 2019. Clinicians are 

able to submit de-identified patient covariates, factor infusion details, and post-infusion factor 

activity levels, and then receive a validated, individual PK profile report for their patient. The 

FVIII and FIX subcommittee of the International Society on Thrombosis and Haemostasis 
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(ISTH) recently published guidance on the use of PopPK in hemophilia management, suggesting 

post-infusion blood sampling windows for both standard half-life (SHL) and extended half-life 

(EHL) FVIII and FIX CFCs [169,181,246].  

Success of PK-guided prophylaxis with respect to the potential for increased trough 

factor levels and reduction in factor concentrate utilization has been modeled and also 

demonstrated in small cohorts of primarily hemophilia A patients [234,237–239]. While the 

implementation of PK-tailored prophylaxis is increasingly featured at national and international 

congresses in both educational sessions and the scientific programs, utilization of PopPK profiles 

in clinical practice remains vague [245]. This retrospective study investigated the evolution of 

clinician use of WAPPS-Hemo for individual PK profile estimation by specifically examining 

the changes in laboratory data and patient characteristics submitted by all providers within the 

global WAPPS-Hemo Network. Secondarily, we assessed whether there was a difference in 

sampling strategies and patient characteristics for requested PK profiles between high-use 

centres (HUCs) and non-high use centres (non-HUCs). 

 

Methods 

 

Infusion data for pediatric and adult patients with hemophilia A or B, of all severities, 

submitted to WAPPS-Hemo from participating sites were extracted during two time periods: 

October 1, 2015 through September 30, 2016 (Period 1, early availability) and October 1, 2017 

through September 30, 2018 (Period 2, recent use). Infusions were excluded if they were 

identified to be duplicates (based on timestamps) or were for a patient marked as positive for 

history of inhibitors as this may have altered the provider’s decision-making for timing of post-
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infusion blood sampling. Furthermore, we excluded infusions that appeared to contain a single 

confirmatory point, as these samples were collected with the intention of confirming a current 

prophylaxis regimen rather than for PK parameter estimation. Confirmatory points were defined 

as infusions that contained only one sampling point and had a more detailed PK profile for the 

same product within six months prior. The final dataset included de-identified patient 

characteristics (age, weight) as well as infusion details (factor product, assay method, infusion 

time, and FVIII or FIX activity levels with post-infusion timestamp). Details of whether data 

submitted was at steady state or following a single dose were not collected in WAPPS-Hemo 

during the timeframes investigated. CFCs were dichotomized into SHL or EHL product groups 

for both FVIII and FIX CFCs. EHL CFCs were defined as those with a moiety added (Fc-fusion, 

pegylation, or albumin) with the intention of reducing exogenous factor clearance.  

Statistical analysis for continuous variables was performed using a T-test to describe 

differences between Period 1 and Period 2. Pearson’s chi-square tests were employed for 

analysis of categorical covariates. Graphical representations of covariate distributions and plots 

of sampling times were created in MatLab (R2017b). Timing of blood samples was evaluated 

using the windows suggested in the ISTH PopPK guidance [169]. 

We analyzed the association between centre submission volume for PopPK analysis and 

the characteristics of patients and the number and timing of post-infusion blood samples. A de-

identified list of centres participating in the WAPPS-Hemo Network and the cumulative number 

of infusions submitted since their initial participation were used to categorize centres according 

to the number of PK profiles requested. Only centres who had submitted at least one infusion 

were included in the analysis. HUCs were defined as the top 25th percentile of unique patients 
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submitted at the time of analysis. T-tests compared HUCs versus non-HUCs with respect to 

patient and infusion characteristics during Period 2.  

 

Results  

 

Of the 1,931 eligible infusions entered into WAPPS-Hemo during the timeframes 

investigated, 468 were entered during Period 1 and 1,463 were entered during Period 2 (Table 

21). There was a greater than 3-fold increase in the number of infusions entered during Period 2, 

driven by FVIII CFCs, particularly EHL FVIII. One-stage clotting assays for quantification of 

factor activity levels dominated during both periods. Infused doses (IU/kg) increased between 

Periods 1 and 2 (Figure 25) for both SHL FVIII (𝑝 = 0.0074) and EHL FIX CFC (𝑝 = 0.021). 

While PopPK was predominantly used in the adult population, patients entered were overall 

younger during Period 2 (Figure 26).  
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Table 21. Categorical covariate summary for final WAPPS-Hemo dataset for Period 1 and 2 

COVARIATE PERIOD 1 PERIOD 2 𝒑-VALUE 

Number of infusions 468 1,463  
Number of patients 413 1,286  
Number of centres 65 158  

Age (years), Mean (SD) 
     Median [Range] 

28.1 (17.8) 
26 [0.5 – 77] 

23.7 (17.0) 
18 [0.5 – 81] 

𝑝 < 0.001 

Body weight (kg), Mean (SD) 
     Median [Range] 

64.6 (26.0) 
68.3 [8.8 – 204] 

61.8 (28.2) 
65 [6.9 – 179] 

𝑝 = 0.042 

Hemophilia Type    
      Hemophilia A 405 (86.5%) 1,248 (85.3%) 

𝑝 = 0.508 
      Hemophilia B 63 (13.5%) 215 (14.7%) 

Product Type 
  

 
      SHL FVIII 336 (71.8%) 826 (56.5%) 𝑝 < 0.001 

      EHL FVIII 69 (14.7%) 422 (28.8%) 𝑝 < 0.001 
      SHL FIX 16 (3.4%) 79 (5.4%) 𝑝 = 0.085 
      EHL FIX 47 (10.0%) 136 (9.3%) 𝑝 = 0.631 

Assay Type 
  

 
      One-Stage 406 (86.8%) 1,326 (90.6%)  
      Chromogenic 57 (12.2%) 82 (5.6%)  
      Two-Stage 5 (1.1%) 11 (0.8%)  
      One-Stage & Chromogenic 0 (0.0%) 44 (3.0%)  
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Figure 25. Dosages (IU/kg) of FVIII (A: Period 1; B: Period 2) and FIX (C: Period 1; D: Period 

2) administered for infusions submitted for PK analysis  

 

Figure 26. Age (A: Period 1; B: Period 2) and body weight (C: Period 1; D: Period 2) 

distributions of patients submitted for PK analysis 



 

136 
 

The post-infusion blood sampling strategy used by providers for PopPK estimation varied 

considerably. The median number of factor activity samples obtained per infusion decreased in 

Period 2 for FIX products (though not significantly), and did not change for FVIII products 

(Table 22, Figure 27).  

 

Figure 27. Number of samples collected per infusion for each of the product types (A. SHL 

FVIII; B: EHL FVIII; C: SHL FIX; D: EHL FIX) during Period 1 (left) and Period 2 (right). 
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Table 22. Mean and median number of blood samples per patient per infusion for each group of 

factor products during Period 1 and 2 

 

Examination of the timing of blood samples for PK analysis demonstrated that peak 

levels continued to be frequently collected, despite ISTH recommendations; however, the timing 

of subsequent blood samples were consistent with suggested sampling windows based on CFC 

group (Figure 28). Of the non-peak samples submitted (𝑛 = 4,557), 71% were within 

recommended sampling windows for their respective product group. Among all of the 6,734 

factor activity levels submitted during the study periods, the proportion of post-infusion levels 

within the ISTH recommended sampling windows were greater for FVIII CFCs (49% for SHL 

and 54% for EHL) compared to those for FIX CFCs (31% for SHL and 34% for EHL). 

Additionally, 83% of samples (5,592/6,734) were considered ‘useful’ in PopPK analysis (i.e. 

non-peak and not below level of quantification). 

Factor Product Group Period 1 Period 2 𝒑-value 

SHL FVIII  
     Mean (SD)      
     Median [Range] 

 
3.5 (1.9) 
3 [1 – 12] 

 
3.3 (1.5) 

3 [1 – 10] 
𝑝 = 0.047 

EHL FVIII  
     Mean (SD)      
     Median [Range] 

 
3.7 (1.6) 
4 [1 – 8] 

 
3.6 (1.7) 

4 [1 – 10] 
𝑝 = 0.917 

SHL FIX  
     Mean (SD)      
     Median [Range] 

 
3.9 (2.0) 
5 [1 – 7] 

 
3.4 (1.7) 
3 [1 – 9] 

𝑝 = 0.336 

EHL FIX  
     Mean (SD)      
     Median [Range] 

 
3.8 (1.5) 
4 [1 – 8] 

 
3.9 (2.0) 

4 [1 – 11] 
𝑝 = 0.695 
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Figure 28. Post-infusion timing of factor activity levels for each of the product types (A. SHL 

FVIII, B. EHL FVIII, C. SHL FIX, and D. EHL FIX) collected during Period 1 (left) and Period 

2 (right). Shaded regions represent sampling windows recommended by ISTH subcommittee for 

the specific product type: SHL FVIII: 4 – 8 h, 16 – 28 h, and 40 – 60 h, EHL FVIII add 60 – 84 

h, SHL FIX: 24 – 36 h, and 48 – 60 h, EHL FIX: add 5 – 14 days. 
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Approximately 10% of infusions during the periods studied had only a single factor 

activity measurement submitted for PopPK analysis. The vast majority of these single factor 

level infusions were submitted in isolation, without evidence of another infusion with the same 

product and dosage within six months. The timing of the single post-infusion factor level varied 

by product group (Figure 29). The majority (70%) were obtained at least 24 hours post-infusion. 

The majority of single samples for SHL FVIII were obtained around 24 hours post-infusion, 

consistent with ISTH guidance, while single samples for EHL products tended to be taken at 

later timepoints. A minority of single samples (7.6%) were obtained less than 4 hours post-

infusion and were not adequate for reliable PopPK analysis.  

 

Figure 29. Factor activity levels for infusions containing a single sample, excluding 

confirmatory samples. SHL FVIII – blue circles, SHL FIX – red squares, EHL FVIII – green 

triangles, EHL FIX – yellow diamonds. 
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Across all WAPPS-Hemo sites (𝑛 = 204 at time of data extraction), the median number 

of individual patients with at least one infusion submitted was 8 [IQR 3–21]. The top 25th 

percentile was represented by 51 HUCs who submitted infusions for 22 patients or more. Of 

these 51 HUCs, 50 centres submitted infusions during at least one of the time periods studied and 

were included in the analysis. Of the 165 total centres who submitted infusion data during the 

time intervals studied, the median number of infusions entered per centre was 6 [IQR 3–13]. 

Across Period 1 and Period 2, the 50 HUCs contributed a total of 1,385 infusions (mean: 

27 infusions per centre) compared to the 567 infusions submitted by the remaining 115 non-

HUCs. Nearly 75% of the infusions submitted by HUCs during Period 1 were for SHL FVIII 

products, compared to about 60% of the submissions from non-HUCs during the same timeframe 

(𝑝 = 0.105). A full comparison of patient characteristics between HUCs and non-HUCs across 

both time periods can be found in Table S1.  

During Period 1, infusions submitted by non-HUCs typically included more samples than 

those from HUCs (mean 4.3 for non-HUCs and 3.5 for HUCs, 𝑝 = 0.009). Although this 

difference narrowed during Period 2, it continued to be statistically significant. Despite an 

overall trend toward fewer samples collected at HUCs, this was not consistently observed for 

different product types (Table S2). Although HUCs submitted fewer blood samples compared to 

non-HUCs for SHL products, the opposite trend was initially observed for EHL FVIII products. 

No differences were observed across time period or centre type for EHL FIX. Timing of post-

infusion blood samples from both groups aligned well with the ISTH recommended sampling 

windows; however, direct comparison of timing of samples between HUCs and non-HUCs was 

limited by the small sample size for the non-HUCs.  
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Discussion  

 

A wide range of sampling strategies was employed across providers for PK curve 

estimation, in terms of both number and timing of samples. It is reassuring to see a gradual 

decline in the average number of blood samples obtained. This may reflect increasing provider 

confidence with the reliability of fewer, well-timed samples for a PK estimation and also 

application of the international guidance supported by the ISTH subcommittee. The benefits of 

fewer sampling points for the patients are fewer venipunctures or accessing of a central line, and 

reduced time away from school or work for phlebotomy. Although the number of samples 

collected is decreasing, providers still tended obtain more than the minimum required sampling 

points and, in particular, continue to obtain peak levels. This may be due to interest in in vivo 

recovery or convenience if infusion occurred on site; however, this level is not included in the 

ISTH guidance for use of PopPK. It is important to note that all additional blood samples beyond 

the minimal proposed further improve accuracy of PK profile estimates for an individual patient 

but from a resource utilization perspective may not be necessary. Across both time periods, the 

timing of post-infusion factor activity measurements by clinicians was generally consistent with 

the timeframes recommended by the ISTH subcommittee. While the majority of post-infusion 

data points, excluding the peak values, fell into the windows first suggested by Björkman and 

others [57,178,243] and refined for EHL concentrates by the ISTH guidelines [169], it is 

important to note that blood samples were taken throughout those windows. This reinforces the 

value of flexibility in sampling timepoints in successful execution of PopPK in routine clinical 

practice.  

PopPK was applied across the full age spectrum of hemophilia patients, ranging from 

infants to octogenarians, highlighting the importance of having PopPK clinical tools that are 
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validated across the age and weight range of the patient population. There is a trend toward 

application of PK profiles in younger patients; the median age and proportion of patients greater 

than 18-years-old decreased over time. This may represent increased interest in understanding 

the potential impact of PK for prophylaxis regimen tailoring among pediatric (27% of Period 2 

infusions) and young adult (22% of Period 2 infusions) patients, or increased switching between 

SHL and EHL informed by PK occurring in younger age cohorts.  

Given the higher prevalence of hemophilia A, it is not surprising that the majority of 

infusions were submitted for FVIII CFCs; however, compared to the anticipated ratio of 

hemophilia A to B patients, PopPK may be underutilized for those using FIX CFCs. This 

discrepancy may be due to the longer half-life of FIX CFCs, as well as the reduced bleed 

frequency in patients with severe hemophilia B compared to severe hemophilia A [199]. These 

factors may prompt providers to continue to rely predominantly on measured troughs and clinical 

phenotype to tailor FIX prophylactic dosing rather than use of PopPK. Another possible 

explanation for slower uptake of PopPK in hemophilia B may be that evidence supporting a 

particular therapeutic target is less established as compared to hemophilia A. 

There are several limitations of our current study. Insight into a clinician’s motivation or 

rationale for the submitted samples was not available. There may be many reasons for submitting 

a single sample, including lack of PopPK knowledge, self-editing (e.g. not including trough 

levels that are below limit of quantification), or patient refusal to return for more than one blood 

draw. We analyzed two timeframes to assess changes in use of PopPK, but this field and clinical 

practice continue to evolve; perhaps brand-specific analysis may be of interest in the future as 

the newer EHL CFCs achieve more widespread use globally. Despite emergence of non-factor 

therapies for hemophilia A prophylaxis, PopPK continues to be of importance for clinical care 
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globally as FVIII CFCs predominate for prophylaxis. Other PopPK tools are available from both 

manufacturer and academic groups, developed with different model assumptions and different 

requirements for post-infusion sampling. The patterns of use observed with WAPPS-Hemo 

cannot be extrapolated to other tools. 

 

Conclusions 

 

 The use of PopPK in hemophilia treatment continues to expand with a greater than 

threefold increase in the number of infusions, patients and centres in the WAPPS-Hemo network 

between the timeframes queried. Infusions submitted during the recent use period contained 

fewer blood samples and younger patients than those from the early adoption phase. During both 

time periods, peak samples were frequently obtained but the remaining blood sample timepoints 

were well-aligned with the current guidance from ISTH.  
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Chapter 8: The effect of unmeasurable endogenous plasma factor activity 

levels on factor VIII dosing in patients with severe hemophilia A 

 

This chapter is reflective of an original manuscript published by the Ph.D. candidate (Alanna 

McEneny-King) in Thrombosis Research. All pertinent dialogue in this chapter was written by 

the Ph.D. candidate. 

 

McEneny-King A, Chelle P, Iorio A, Edginton AN. The effect of unmeasurable endogenous 

plasma factor activity levels on factor VIII dosing in patients with severe hemophilia A. Thromb 

Res. 2018; 170(2018):53-59. DOI: 10.1016/j.thromres.2018.08.004 

 

Introduction 

Hemophilia A is an X-linked bleeding disorder affecting 1 in 6,500 newborn males 

worldwide [62]. Genetic mutations responsible for hemophilia A number in the hundreds 

[247,248] but are all localized to the factor VIII (FVIII) gene (F8) and translate into lower than 

normal FVIII clotting activity. Manifestations of this lowered clotting ability include internal 

bleeding, particularly in joints, which, in more severe hemophilia A cases, is spontaneous (i.e. 

not caused by external trauma or injury). The severe hemophilia A phenotype is clinically 

assessed as <0.01 IU mL-1 FVIII activity level (<1% of normal) [69] and the prevalence of such 

severe cases in Canada is reported to be 31% of all hemophilia patients [62]. Treatment options 

include replacement of FVIII through intravenous injection, either on-demand or 

prophylactically on a regular schedule. Indeed, prophylactic treatment has been demonstrated to 

reduce the incidence of arthropathy in severe hemophilia A patients, a common and debilitating 

side effect of frequent joint bleeds [8,249].  
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The aim of the classical prophylactic treatment scheme is to maintain FVIII activity 

above 0.01 IU mL-1 through regular administration of FVIII. The choice of this pharmacokinetic 

biomarker is based on a 1965 study where the rate of increase in joint score (a positive measure 

of progressive arthropathy) was halved in patients with a baseline FVIII activity between 0.01 

and 0.03 IU mL-1 as compared to patients with endogenous activity below 0.01 IU mL-1 [7]. 

Building on the results of this study, Nilsson et al [8] observed that the longer patients remained 

over the 0.01 IU mL-1 threshold, the lower their joint score (indicating improved joint function). 

Accordingly, FVIII concentrates are still labelled to be dosed between 15-50 IU kg-1 of total 

body weight, to be administered at a frequency of 2-4 times per week. The goal of this 

population-based dosing method is to maintain most patients above the 0.01 IU mL-1 threshold. 

The need for such a wide range of doses has been traditionally attributed to high variability of 

the FVIII PK in the population, and has driven the quest for individualized dose titration 

[167,234,250]. 

Historically, PK-based individualization of treatment has been hampered by the 

impracticality of drawing 10 or more blood samples as recommended by the International 

Society of Thrombosis and Haemostasis (ISTH) Scientific and Standardization Committee 

[250,251], and little effort was devoted to systematically using individual PK information to 

generate individual dosing regimens. With the advent and diffusion of the population 

pharmacokinetic (PopPK) approach, including Bayesian post hoc estimation to obtain individual 

profiles as recently recommended by the ISTH [169], far fewer blood samples are required and 

many more empirical sets of post-infusion samples have been collected through web-based PK 

software like the Web-Accessible Population Pharmacokinetics Service – Hemophilia (WAPPS-

Hemo, www.wapps-hemo.ca) [170,252]. An excellent plain language description of this 

http://www.wapps-hemo.ca/
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individualized estimation technique from a PopPK model is presented in Bjorkman and Collins 

[243]. 

A system like WAPPS-Hemo offers a unique opportunity to explore the sources of 

variability of factor VIII (and IX) PK in the population. For example, analyzing the data 

collected via WAPPS-Hemo has prompted challenging the body weight metric currently used for 

dosing [253]. WAPPS-Hemo has an integrated clinical simulator module, which allows the 

clinician to predict the individual profile after any given combination of dose and infusion 

frequency, or to calculate the dose required to obtain a specific threshold after a given time. 

Implementing the algorithm used in the simulator has prompted the hypothesis that the amount 

of FVIII produced by individual patients in the range of 0 to 0.01 IU mL-1 is another determinant 

of the inter-individual PK variability.  

Indeed, for many patients, the baseline value is reported as <0.01 IU mL-1, either because 

the assay used to detect FVIII activity has a lower limit of quantification (LLOQ) of 0.01 IU mL-

1, or because the patient is phenotypically a severe hemophilia A patient (therefore defined as 

<0.01 IU mL-1 baseline), and the true baseline has not been measured or recorded. As a matter of 

fact, both the chromogenic and the one-stage clotting assays used to quantify FVIII activity 

typically had in the past a LLOQ of 0.01 IU mL-1, which is why this value was selected as the 

cut-off for severity. Modern assays can measure FVIII activity as low as 0.004 IU mL-1, which 

allows baseline values to be measured to lower values or defined as less than the LLOQ, for 

example <0.004 IU mL-1. 

The objective of the presented work was to assess the implications of imprecise 

knowledge of baseline to dosing regimen design in hemophilia. Towards this end, we used a 
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published PopPK model that describes FVIII PK to generate estimates of PK parameters (e.g. 

clearance, volume of distribution) for virtual patients. We then used these virtual patients to 

assess how different assumptions of their baseline value affect optimal dosing regimen design, 

both on a population level as well as during therapeutic drug monitoring and individual dose 

adjustment. We also used real patient data collected through the WAPPS-Hemo project to 

explore the sensitivity of PK outcomes (e.g. half-life, time to a specific FVIII level) to changes in 

the baseline assumption. 

 

Methods 

Matlab (R2017b) was used for re-creation of the PopPK model, population generation, 

simulations and graphical outputs. 

 

Population pharmacokinetic modeling 

The PopPK model used to generate individual estimates of PK parameters is a 2-

compartment structure as described by Garmann et al [185] for a conventional recombinant 

FVIII. This model was built on a total of 183 subjects with body mass index (BMI) ranging from 

13-38.3 kg m-2. Details of the model structure are presented in Table 23.  
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Table 23. Details of the model developed by Garmann et al [185] 

Parameter  Estimate Covariate Effectsc BSVd (%CV) 

Clearance (CL, dL h-1)  1.88 (
𝐿𝑒𝑎𝑛 𝐵𝑜𝑑𝑦 𝑊𝑒𝑖𝑔ℎ𝑡

51.1
)
0.610

 37.0 

Intercompartmental 

clearance (Q, dL h-1) 
 1.90   

Central volume (V1, dL)  30.0 (
𝐿𝑒𝑎𝑛 𝐵𝑜𝑑𝑦 𝑊𝑒𝑖𝑔ℎ𝑡

51.1
)
0.950

 11.2 

Peripheral volume (V2, dL)  6.37   

Proportional RUVa (%CVb)  26.7   

Additive RUV (IU dL-1)  1.10   

aResidual unexplained variability; bCoefficient of variation; c 𝜃𝑃represents the population mean 

for parameter 𝑃; dBetween subject variability 

 

Development of simulated populations 

Generated populations of 500 virtual individuals consisted of males with a uniform 

distribution of BMI in the range of 18-30 kg m-2. Heights were derived from the distribution 

provided by the NHANES database [215]. The distribution of BMI’s was simulated and the total 

body weights were calculated as the product of BMI and the square of height. Using these 

covariates, the PK parameters for each individual, as stated in Table 1, were generated from the 

model. 

Simulations 

The effect of the baseline assumption on optimal dose or frequency was assessed for 500 

populations each containing 500 individuals. For each individual, the PK parameters were 

generated and individual FVIII activity levels were simulated following various administrations 

according to the following equation: 
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𝐶(𝑡) =∑𝐷𝑖 (𝐴𝑒
−𝛼(𝑡−𝑡𝐷𝑖) + 𝐵𝑒−𝛽(𝑡−𝑡𝐷𝑖))

𝑛

𝑖=1

+ 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 

where 𝐷𝑖 is the dose administered, 𝐴, 𝐵, 𝛼 and 𝛽 are the macro-constants calculated from the 

parameters listed in Table 1, and 𝑡𝐷𝑖 is the time at which dose 𝐷𝑖  was given. The infusion time 

was assumed negligible (usually less than 5 minutes) and not included.  Four weeks of 

prophylactic treatment were simulated in order to reach steady state, and the fifth week was used 

for analysis. 

First, the doses required to maintain 95% of patients above troughs of 0.01 IU mL-1, 0.03 

IU mL-1 and 0.05 IU mL-1 at 48 hours post-administration (Q48h) were calculated. To do so, the 

dose was increased by increments of 1 IU kg-1 (to a maximum dose of 300 IU kg-1) until 95% of 

each population maintained FVIII activity above the desired trough at steady state. Frequency 

was determined in a similar manner where, starting with a 40 IU kg-1 dose administered weekly, 

the dosing interval was decreased by 1 hour (down to a minimum of 12 hours or twice daily 

dosing) until 95% of each population maintained the desired trough activity of 0.01 IU mL-1, 

0.03 IU mL-1 and 0.05 IU mL-1. To explore how the assumption of baseline affects both optimal 

dose and frequency, baseline was increased from 0 IU mL-1 to 0.01 IU mL-1 in steps of 0.001 IU 

mL-1.  

The effect of the baseline assumption on individual dose adjustments using trough levels 

was also performed. This scenario is akin to the common clinical situation of adjusting a 

therapeutic regimen, with a patient having a trough level taken after a given dose and the 

clinician adjusting the dose so as to achieve a different trough level. For this hypothetical 
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scenario, a dose of 2000 IU generated a trough of 0.01 or 0.02 IU mL-1 at a given time. The 

implication of the true baseline (and corresponding assumptions when the true baseline is 

unknown or unmeasurable) was assessed by scaling the exogenous trough level to achieve either 

double or half the observed trough (0.02 or 0.01 IU mL-1, respectively). The exogenous (i.e. 

scalable) trough is the observed trough for a given dose (DoseObserved) minus the baseline level. 

Three different baseline activities were explored for each scenario: 0, 0.005, 0.008 IU mL-1. A 

new dose (DoseNew) was then calculated as:  

𝐷𝑜𝑠𝑒𝑁𝑒𝑤 =
𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝑇𝑟𝑜𝑢𝑔ℎ − 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑇𝑟𝑜𝑢𝑔ℎ − 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒
∙ 𝐷𝑜𝑠𝑒𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 

This exercise was also conducted using higher observed and desired troughs to demonstrate the 

reduced impact of baseline assumptions at higher FVIII levels. 

 

Real patient data  

Using the WAPPS-Hemo platform, we used a Bayesian approach to estimate individual 

PK parameters for three real patients collected in the database, varying each patient’s baseline 

between 0 and 0.01 IU mL-1 by steps of 0.001 IU mL-1. The estimates of terminal half-life and 

times to specific trough levels were compared for the different baseline values to assess the 

sensitivity of these outcomes to the baseline assumption.  

 

Results 

Regardless of the targeted trough level, there is a 40 IU kg-1 dose requirement drop from 

an assumed baseline of 0 to close to 0.01 IU mL-1 (Figure 30).  For a targeted trough of 0.01 IU 
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mL-1, the baseline assumption between 0 and 0.01 IU mL-1 means the difference between dosing 

at 40 IU kg-1 and 0 IU kg-1, respectively. On a relative-to-dose basis, the importance of the 

baseline assumption is greatly reduced as the targeted trough increases. For example, when 

targeting 0.01 IU mL-1 and assuming a baseline of 0.005 IU mL-1 rather than 0 IU mL-1, the 

calculated dose required drops by 50%, from 40 to 20 IU kg-1. When targeting a 0.05 IU mL-1 

trough, the same change in the assumption about baseline leads to only a 10% decline in the 

required dose.   

 

Figure 30. The Q48h dose required to keep 95% of individuals above the trough as a function of 

baseline value. The shaded region is the 95% confidence interval of the mean of 500 populations 

each containing 500 individuals. 
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Baseline also greatly affects the optimal frequency of dosing. If targeting 0.01 IU mL-1, 

frequency is asymptotic as it approaches an assumed baseline of 0.01 IU mL-1; this is expected 

since no drug needs to be given if the target is the same as the baseline (Figure 2). As baseline 

decreases, dosing interval decreases, and the drug needs to be administered more often. On the 

contrary, baseline assumptions between 0.007 and <0.01 IU mL-1 would result in a longer 

interval between infusions.  Similar to dose, as the targeted trough increases, the baseline 

assumption has less and less influence on the frequency outcome. For dose optimization 

purposes on a population level, assuming a baseline of 0 IU mL-1 is the most conservative means 

for assessing optimal dose and/or frequency as it will always lead to the highest dose and the 

lowest frequency (Figure 30, Figure 31).  

 

Figure 31. Effect of baseline assumption on the infusion frequency needed to keep 95% of 

individuals above a desired trough with a dose of 40 IU kg-1 when frequency is considered as a 

continuous variable. The shaded region is the 95% confidence interval of the mean of 500 

populations each containing 500 individuals 
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For dose adjustment using an observed individual level, the importance of baseline is also 

evident. When a patient’s baseline is known, any measurement can be partitioned into residual 

FVIII for prior doses and endogenous production; this step is critical for accurate dose 

adjustment since only the residual exogenous component is proportional to dose. The 

consequences of being unable to partition a FVIII measurement in this way are highlighted in 

Table 24. In this example, we suppose a trough of 0.01 IU mL-1 is observed following a 2000 IU 

dose, and a trough of 0.02 IU mL-1 is desired. If true baseline is 0 IU mL-1, then the entirety of 

the observed trough is due to exogenous FVIII and dosing is linear; to double the trough, double 

the dose. However, if true baseline is 0.005 IU mL-1, only 0.005 IU mL-1 of the observed trough 

can be attributed to the exogenous factor concentrate and, in order to achieve a trough of 0.02 IU 

mL-1, we need to supplement the baseline activity by 0.015 IU mL-1 (i.e. triple the dose).  
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Table 24. The effect of baseline assumption on dose adjustments using a single observed level  

Scenario 
Baseline 
(IU mL-1) 

Dose  
(IU) 

Observed 
Trough (IU mL-1) 

Exogenous Portion 
of Trough (IU mL-1) 

Dose Required to Achieve a 
0.02 IU mL-1 Trough (IU) 

A 

0 2000 0.01 0.01 
0.02 − 0

0.01
∙ 2000 = 4000 

0.005 2000 0.01 0.005 
0.02 − 0.005

0.005
∙ 2000 = 6000 

0.008 2000 0.01 0.002 
0.02 − 0.008

0.002
∙ 2000 = 12000 

 
Dose Required to Achieve a 

0.01 IU mL-1 Trough (IU) 

B 

0 2000 0.02 0.02 
0.01 − 0

0.02
∙ 2000 = 1000 

0.005 2000 0.02 0.015 
0.01 − 0.005

0.015
∙ 2000 = 667 

0.008 2000 0.02 0.012 
0.01 − 0.008

0.012
∙ 2000 = 333 

   
Dose Required to Achieve a 

0.03 IU mL-1 Trough (IU) 

C 

0 2000 0.05 0.05 
0.03 − 0

0.05
∙ 2000 = 1200 

0.005 2000 0.05 0.045 
0.03 − 0.005

0.045
∙ 2000 = 1111 

0.008 2000 0.05 0.042 
0.03 − 0.008

0.042
∙ 2000 = 1048 

 

The counterintuitive result that the patient with higher baseline activity requires a higher 

dose arises from having observed the same trough for both patients after giving the same dose; 

this observation means that the patient with no endogenous FVIII has a higher amount of 

exogenous FVIII at that time due to a better PK response. If the patient has a higher true 

baseline, the contribution of the administered dose to the measured trough is reduced, which 

results in a more extreme scaling factor (Table 24). Furthermore, if we perform this exercise 

using slightly higher troughs (as in Scenario C of Table 24), the impact of the baseline 

assumption is lessened; in this case, the calculated doses varied by about 150 IU (~12% 

difference). 
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When estimating PK parameters using a Bayesian approach, not all parameters are 

sensitive to baseline FVIII activity. For example, half-life is relatively unchanged across baseline 

values between 0 and 0.01 IU mL-1 (Table 3). Conversely, the time at which a patient will reach 

a trough of 0.01 IU mL-1 is extremely sensitive to baseline. In all three patients, this time varied 

by over 20 hours as baseline increased from 0 to 0.009 IU mL-1 – an important observation given 

the demonstrated correlation between time below 0.01 IU mL-1 and occurrence of bleeds [10]. 

However, the times to reach slightly higher troughs (i.e. ≥0.02 IU mL-1) are much less affected 

(in most cases, varying by less than 3 hours).  

Table 25. The effect of baseline assumption on estimated PK outcomes using a Bayesian 

approach 

Observed 
Trough 

(IU mL-1) 

Dose            
(IU kg-1) 

Baseline   
(IU mL-1) 

Half-life               
(h) 

ΔHalf-life       
(%) 

Estimated Time (h) to Specified Trough (IU mL-1) 

0.01 0.02 0.03 0.04 0.05 

0.01 58.42 

0.000 10.18 --- 57.49 47.31 41.36 37.13 33.86 

0.002 10.01 1.7% 59.71 48.00 41.62 37.21 33.84 

0.005 9.81 3.6% 65.05 49.50 42.27 37.51 33.95 

0.008 9.64 5.3% 76.59 51.66 43.23 38.02 34.24 

0.010 9.55 6.2% n/a 53.62 44.06 38.48 34.51 

Range 0.63 --- 28.29 6.31 2.70 1.35 0.68 

0.015 46.15 

0.000 9.42 --- 56.09 46.66 41.15 37.24 34.21 

0.002 9.27 1.6% 58.14 47.29 41.38 37.29 34.17 

0.005 9.08 3.6% 63.03 48.63 41.94 37.53 34.24 

0.008 8.93 5.2% 73.67 50.60 42.79 37.97 34.47 

0.010 8.84 6.1% n/a 52.39 43.55 38.38 34.71 

Range 0.58 --- 26.07 5.73 2.40 1.14 0.54 

0.02 57.97 

0.000 8.47 --- 56.46 47.99 43.04 39.53 36.80 

0.002 8.27 2.3% 57.85 48.17 42.90 39.26 36.47 

0.005 8.00 5.6% 61.38 48.70 42.80 38.92 36.02 

0.008 7.75 8.5% 69.75 49.72 42.94 38.75 35.71 

0.010 7.61 10.1% n/a 50.82 43.21 38.76 35.60 

Range 0.86 --- 20.32 2.83 0.41 0.78 1.20 
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These trends are also demonstrated in Figure 32, which shows the estimated FVIII 

activity profiles for one of the patients for each assumed baseline. The curve is almost identical 

for all baselines up until a level of approximately 0.02 IU mL-1 (Figure 32, left). The profiles 

begin to diverge at this point, with the truly zero baseline continuing in a linear fashion while the 

curves representing non-zero baselines begin to plateau (Figure 32, right).   

 

Figure 32. Estimated FVIII activity profiles following a dose of ~60 IU kg-1, assuming different 

baseline levels (legend, IU mL-1). White circles denote observed data 
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Discussion  

The effect of imprecise knowledge about baseline on population level dose regimen 

design is increasingly pronounced as the target trough level approaches 0.01 IU mL-1. When a 

trough of 0.01 IU mL-1 is targeted, within the range of realistic baseline values for severe 

hemophilia patients (0 through <0.01 IU mL-1), the required dose changes from approximately 

40 IU kg-1 to a theoretically negligible dose (practically approaching 0 IU kg-1) Q48h  –  a drastic 

100% difference depending on the assumed baseline. If baseline could be measured accurately, it 

would provide the clinician with a better starting point within this range when designing a 

regimen; for a patient with a baseline of 0.006 IU mL-1, Figure 1 suggests a starting dose of 25 

IU kg-1 while a patient with a baseline of 0.002 IU mL-1 may require closer to 40 IU kg-1 to 

maintain a trough of 0.01 IU mL-1. When targeting a trough of 0.05 IU mL-1, the effect of the 

baseline assumption on dose or frequency determination is minimal (approximately 10%). When 

targeting a 0.15 IU mL-1 target trough [254], baseline is essentially irrelevant, although standard 

half-life FVIII usage would be exceptionally high. In clinical practice, a trough of 0.01 IU mL-1 

is often targeted using doses in the 15-40 IU kg-1 range and ignoring the true baseline value of 

the patient may well explain part of the variability in the dose response to FVIII and the need for 

such a wide range of doses. 

To reduce this variability, we might examine data from clinical studies to understand the 

association between the variation in dose requirements and the actual baseline values in 

individual patients. In a single-centre study where the individual PK of hemophilia A and B 

patients was simulated for each of six years based on their actual prophylactic treatment, both 

doses (11-67 IU kg-1) and trough levels were highly variable. With regards to troughs, the study 

showed that more than 80% of dosing schedules were at least as frequent as the recommendation 
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(3 times a week); however, 38% of the troughs were lower than 0.01 IU mL-1, 27% of the 

troughs were between 0.01-0.03 IU mL-1, and 35% of the troughs were higher than 0.03 IU mL-1 

[255].  This variability is partially a function of the variation in baseline values of severe 

hemophilia patients. 

When treating individual patients, the assumption of baseline affects dose adjustment. 

Björkman and Collins [243], on behalf of the Scientific and Standardization Committee of the 

ISTH, proposed that only those activities above 0.03 IU mL-1 be used in individual 

pharmacokinetic assessment as all values below are potentially inaccurate due to assay 

limitations and baseline.  This was demonstrated here where the assumption of a 0 IU mL-1 

baseline allows for linear kinetics to be used such that a doubling of a trough is precipitated by a 

doubling of the dose. As true endogenous baseline increases from 0 to 0.01 IU mL-1, the 

assumption of linearity is no longer valid. However, when performing dose adjustments, the 

more conservative, and therefore safer, approach is to assume a 0 IU mL-1 baseline when 

decreasing trough, and a non-zero baseline of at least 0.005 IU mL-1 when increasing trough.  

Replacement of an endogenous molecule that is missing or has limited endogenous 

production is not unique to hemophilia. Type 1 diabetes (insulin), Parkinson’s disease 

(dopamine) and hormone replacement therapy for Addison's disease (e.g. hydrocortisone), 

menopause (estrogen) or stunted growth (human growth hormone) are all examples of 

replacement therapies. However, none suffer from an assay sensitivity that hinders assessment of 

a pharmacokinetic or pharmacodynamic target as in hemophilia. In diabetes, glucose level drives 

insulin dose and the assay sensitivity range for glucose (≈2-33 mM) covers the relevant glucose 

target levels (≈ 4-7 mM). For Addison’s disease, while serum cortisol levels below the limit of 

detection of 20 nM strongly suggest adrenal insufficiency, replacement therapy aims to mimic 
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normal cortisol levels (55-690 nM depending on time of day), which are above the assay 

sensitivity limit [256]. The combination of a target trough that is the same or similar in value to 

the assay LLOQ makes dose individualization in hemophilia uniquely dependent on assay 

sensitivity. 

The effect of baseline is independent from the nature of the test one uses to measure 

plasma FVIII activity levels. Two clotting assays are primarily used to assess FVIII activity in 

plasma: the chromogenic assay and the one-stage assay. According to a report by Chandler et al, 

the intra-assay imprecision was similar for both methods (CV = 13%) while inter-assay 

imprecision was lower for the one-stage (17.5%) compared to the chromogenic (26.7%) at low 

FVIII levels [257]. In recent peer-reviewed literature, the LLOQ for the chromogenic assay was 

0.01 IU mL−1 (single-chain recombinant FVIII) [258], 0.01 IU mL−1 (B-domain deleted 

recombinant FVIII) [182], 0.015-0.03 IU mL−1 (full length recombinant FVIII) [185] and 0.004 

IU mL−1 (recombinant FVIII Fc fusion protein) [106]. For the one-stage assay, the LLOQ was 

0.005 IU mL−1 (recombinant FVIII Fc fusion protein) [106], 0.01 IU mL−1 (B-domain deleted 

recombinant FVIII) [182], 0.005 IU mL−1 (recombinant FVIII Fc fusion protein; lower limit of 

reportable range = 0.007 IU mL−1) [184] and 0.005 IU mL−1 (recombinant FVIII) [184]. While 

there are LLOQ values below 0.01 IU mL-1 in the above referenced studies, the majority of 

participating clinical sites in WAPPS-Hemo report baseline as <0.01 IU mL-1. This suggests that 

0.01 IU mL-1 is the most common LLOQ in practice.  

Shima et al [259,260] have been active in the area of FVIII activity assay sensitivity. 

Thirty-six hemophilia A patients defined as severe based on the above conventional assays 

(<0.01 IU mL−1) were re-assayed using a more sensitive technique called clot waveform analysis 

with a LLOQ of 0.002 IU mL−1. Of these patients, 23 (64%) had endogenous FVIII levels <0.002 
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IU mL−1 and 13 (36%) had levels between 0.002 and 0.01 IU mL−1 [260]. Another random 

sample of severe hemophilia A patients produced 12 (67%) patients with an endogenous FVIII 

level of <0.002 IU mL−1 and 6 (33%) with levels between 0.002 and 0.01 IU mL−1 [261]. 

Matsumoto went on to distinguish between those with a very low FVIII level (HA, <0.0025 

IU mL−1) and those patients with inhibitors (HA-ihb), who presumably have no FVIII activity. 

While there was some overlap between the maximum (HA-ihb) and minimum (HA) values of the 

two groups, for the most part, those patients with a <0.0025 IU mL−1 level had at least some 

FVIII activity, although it could not be directly quantified [262]. While different mutations have 

been correlated with the presence or absence of cross-reactive material (CRM) and thus 

immunologically measured amounts of FVIII with associated differential risk of inhibitor 

development [263], little is known about the clotting activity of those trace amounts. The 

potential for future studies correlating genotype with endogenous, not measurable, FVIII activity 

to translate clinical impact on dosing remains unknown. Furthermore, while F8 gene mutation is 

the largest determinant of baseline FVIII activity, other factors may contribute to baseline 

activity. In a study of mild/moderate hemophilia A patients, Loomans et al [264] found that 

patients with the same mutation had significantly different baseline activities (inter-individual 

variability = 45%). As a result, further development and implementation of assays that allow for 

detection at very low FVIII levels will be important to ensure both genotype/phenotype 

concordance for clinical purposes [259] as well as appropriate FVIII dosing.  

Researchers have attempted baseline estimation using a PopPK modeling approach. 

Brekkan et al [178] (plasma-derived FIX) estimated baseline with a typical value of 0.016 IU 

mL-1 in a cohort of severe and moderate patients. Abrantes et al [182] (B-domain deleted 

recombinant FVIII) estimated a baseline of 0.0047 IU mL-1 (%CV = 7) and 0.0159 IU mL-1 for 
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the severe and moderate cohort, respectively. In Stass [228], recombinant FVIII baseline for each 

individual was estimated to be less than 0.01 IU mL-1 and in-line with their severe status. While 

this may provide for a population level data description of baseline, baseline level is not 

estimated in the Bayesian post hoc estimation step with sparse data and thus this population 

estimation is irrelevant when it comes to individualized dosing.  

From a mathematical standpoint, it is interesting to contemplate an analytical solution to 

the quantification of an individual’s baseline that is below the LLOQ.  For this, one would 

require at least two FVIII levels at the same time point following different doses. With these two 

dose-level pairs, an analytical solution to baseline can be found by rearranging the equation used 

to scale dose based on an observed trough: 

𝐷𝑜𝑠𝑒2 =
𝐿𝑒𝑣𝑒𝑙2 − 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝐿𝑒𝑣𝑒𝑙1 − 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒
∙ 𝐷𝑜𝑠𝑒1 

↓ 

𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 =
𝐷𝑜𝑠𝑒1 ∙ 𝐿𝑒𝑣𝑒𝑙2 − 𝐷𝑜𝑠𝑒2 ∙ 𝐿𝑒𝑣𝑒𝑙1

𝐷𝑜𝑠𝑒1 − 𝐷𝑜𝑠𝑒2
 

Equivalently, one could plot these dose-level pairs and determine the intercept of the line drawn 

through them. For example, suppose a patient was given a dose of 1000 IU and a subsequent 

dose of 3000 IU. By comparing the 24-hour level following each dose, one could determine 

baseline. While this calculation appears simple, its application can be challenging as the slightest 

deviation from the expected activity level can have dramatic consequences for the baseline 

calculation. For example, inaccurate activities (even within 10% of the true value) can result in a 

negative value for baseline. Attempting this exercise using data from multiple doses in the same 
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real patients from the WAPPS-Hemo repository resulted in either negative values or impossibly 

high baseline activity (i.e. >20%) for severe hemophilia patients, suggesting that the imprecision 

of real data will not allow for an analytical solution to determining baseline. Based on available 

information, whether it be estimation of baseline from a PopPK modeling approach or a more 

direct assay approach, baseline in severe hemophilia patients is expected to be greater than zero. 

Assuming no endogenous production will therefore always overestimate dosing requirements on 

a population basis. 

There are some limitations to our study approach. The PopPK model that was used to 

create the populations assumed a baseline of 0 for all patients and was partially based on FVIII 

activities below the limit of quantification (BLQ). In fact, the manuscript describing the model 

explicitly assessed PK estimation in the presence and absence of the BLQ data [185]. While the 

assumption of baseline FVIII activity during PopPK assessment in severe hemophilia is unlikely 

to greatly alter model parameters, simulation from the model to determine generic population 

doses is dependent on the baseline assumption. We have conducted this study using a single 

FVIII model, although there is no reason to imagine that similar results couldn’t be replicated by 

using any other brand or model. Similarly, we anticipate that the uncertainty about the true 

baseline level of clotting factor will have the same consequences for factor IX, where the 

imprecision could be even larger, as the CRM positive cases are proportionally more. 

As to clinical implications, all the above considerations about baseline do not diminish 

the importance of PopPK modeling and Bayesian estimation in deriving individual regimens, but 

emphasizes that the method is not helpful for deriving individual baselines. For all patients with 

measurable baseline levels, individualized dosing methods are obviously not affected by this 

uncertainty.  
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Conclusions 

The dosing of factor concentrates in severe hemophilia is affected by the true 

unmeasurable level of endogenous FVIII activity. The sensitivities of FVIII activity assays are 

close to the commonly targeted trough level – a situation that is unique to hemophilia. On a 

population level, variation in baseline FVIII levels is a contributing factor to the overall 

variability in PK response to FVIII. On an individual basis, assumptions of baseline activity 

greatly impact the estimation of time to 0.01 IU mL-1 and the tailoring of a dosing regimen based 

on observed levels. Further reducing assay sensitivity below 0.005 IU mL-1 will decrease the 

proportion of patients for whom there is uncertainty with respect to baseline FVIII activity. 

Alternatively, clinicians may choose to target slightly higher troughs (0.02 IU mL-1 and above), 

as these are less sensitive to assumptions of baseline.    
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Chapter 9: Modeling of body weight metrics for effective and cost-efficient 

conventional factor VIII dosing in hemophilia A prophylaxis 
 

This chapter is reflective of an original manuscript published by the Ph.D. candidate (Alanna 

McEneny-King) in Pharmaceutics. All pertinent dialogue in this chapter was written by the 

Ph.D. candidate. 

 

McEneny-King A, Chelle P, Henrard S, Hermans C, Iorio A, Edginton AN. Modeling of body 

weight metrics for effective and cost-efficient conventional factor VIII dosing in hemophilia A 

prophylaxis. Pharmaceutics. 2017; 9(4):47. DOI: 10.3390/pharmaceutics9040047.  

 

Introduction 

Hemophilia A is an inherited bleeding disorder resulting from a deficiency in clotting factor 

VIII (FVIII), causing spontaneous and recurring joint bleeds, eventually leading to arthropathy 

and premature death if left untreated. The mainstay of severe hemophilia treatment is 

prophylactic replacement of the missing factor. The typical aim of prophylaxis is to maintain a 

clotting factor level of at least 1 IU dL−1, based on the observation that patients with moderate 

hemophilia (i.e., those with baseline factor levels >1 IU dL−1) are less prone to the spontaneous 

bleeds and subsequent arthropathy seen in more severe cases [69]. In a study of 65 boys with 

severe hemophilia A, only regular prophylactic infusions were shown to prevent joint damage as 

compared to on-demand treatment [9]. While there is global unanimity that prophylaxis should 

be initiated before joint disease is sustained [12,13], the implementation of this approach is quite 

variable [14]. No optimal dosing regimen has been identified; instead, an individualized 

approach that accounts for the patient’s physical activity, current (and accepted future) 

musculoskeletal condition, and the availability of resources has been suggested [70,265]. Ideally, 
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the patient’s pharmacokinetic (PK) profile is taken into account to define a truly individualized 

regimen that optimizes both safety and resource utilization [238]. To facilitate the adoption of 

PK-based dosing regimens, tools such as the Web Accessible Population Pharmacokinetics 

Service—Hemophilia (WAPPS-Hemo [170,252]) provide estimates of individual PK parameters 

from a minimal number of samples by leveraging population PK data. Despite the development 

of these platforms, the majority of hemophilia patients are still dosed according to total body 

weight, as initially proposed by Ingram in 1981 [266]. For instance, hemophilic children in 

Canada are started on a once-weekly regimen (50 IU kg−1), then step up to either twice weekly 

(30 IU kg−1) or every 48 h (25 IU kg−1) as required; prophylaxis regimens in the Netherlands 

(Utrecht protocol: 15–30 IU kg−1 three times per week) and Sweden (Malmö protocol: 25–40 IU 

kg−1 three times per week), though proposing different intensities and targeting different levels, 

are based on the same principle [267].  

The normalization of life expectancy of individuals with hemophilia brings new challenges 

to hemophilia care. Overweight and obesity rates amongst hemophiliacs now match the epidemic 

proportions that are seen in the general population [268]. A 2011 study conducted in Ontario 

found 28.8% of enrolled hemophiliacs were overweight or obese, compared to 26% of healthy 

controls [269]. Obesity also comes with a higher risk for hemophilic arthropathy; joint range of 

motion has been shown to negatively correlate with body mass index (BMI) [270]. Furthermore, 

the total body weight-based dosing regimen currently used in hemophilia treatment may not be 

appropriate for overweight and obese populations. Calculations for weight-adjusted dosing are 

based on the following formula: 

Dose (IU) = 
total body weight (kg) × desired increase in FVIII level (%)

IVR
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In vivo recovery (IVR) is a parameter used to describe clotting factor pharmacokinetics, and 

reflects the rise in factor activity (in this case, FVIII) after a dose is administered. Although it has 

been suggested that an individual IVR value be determined for each patient [271], typically an 

IVR of 2 IU dL−1/IU kg−1 is assumed. For example, a desired increase to normal FVIII levels 

(100%) would lead to a 50 IU kg−1 dose being administered. However, the assumption that IVR 

equals 2 for all is not always valid. A study by Henrard et al. found that overweight patients 

(BMI > 29.6 kg·m−2) had a median IVR of 2.70, while underweight patients (BMI < 20.3 

kg·m−2) had a median IVR of 1.60 [121]. 

The emerging proportion of overweight and obesity in the general population has prompted 

research efforts aimed at identifying pharmacokinetic differences (and the corresponding dose 

adjustments) in this population. The relationship between body size and clearance is well 

established; a 2012 systematic review of this topic found that more than half of all identified 

models for clearance included a covariate for body size, most commonly as a power function 

[272]. Obesity specifically influences several factors affecting drug disposition, including body 

composition, metabolism by CYP450 enzymes, and plasma protein levels [273]. The most 

striking differences are observed for highly lipophilic drugs, where volume of distribution 

changes dramatically in the obese population [274]. However, this is not the case for clotting 

factor concentrates. FVIII concentrates are typically confined to the vascular space, with 

volumes of distribution approximating plasma volume (48 mL·kg−1) [71]. Since vasculature 

represents a very small fraction (0.005–0.010) of adipose tissue volume [122], an excess (or 

scarcity) of fat does not significantly alter the volume of distribution of FVIII. As a result, 

overweight and obese patients are likely overdosed when dose is calculated using total body 

weight [275]. A similar issue has been noted for dosing of unfractionated heparin, another 
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compound whose volume of distribution is approximately equal to the plasma volume; obese 

children achieved comparable anticoagulation at a lower weight-based dose [276]. Hemophilia 

treatment is expensive, with annual costs in the hundreds of thousands for those on prophylaxis 

[9], and while prophylaxis does achieve better health outcomes, these come at a significant cost 

that is not automatically offset by prevention of other expenses [277]. As the clotting factor itself 

represents the majority of the cost of prophylaxis [141], overdosing can introduce a significant 

waste of resources [278]. This study will explore alternative dosing regimens that optimize both 

safety and resource utilization in overweight and obese hemophiliacs. 

 

Methods 

Population generation, simulation, and data analysis were all conducted in MatLab R2009. 

Population Generation 

The generated population of virtual individuals consists of two equal sized bins classified by 

BMI using the cut-offs defined by Henrard et al. [121] The first group consists of average weight 

subjects (BMI between 20.3 and 29.6 kg·m−2); the second group represents an overweight and 

obese population with BMI between 29.6 kg·m−2 and 40.0 kg·m−2. These cut-off values for BMI 

were found to be the strongest predictors of FVIII IVR. Each group contains 1000 simulated 

subjects with a uniform BMI distribution. Heights were derived from the distribution provided 

by the NHANES database [215]. A uniform distribution of BMI’s was simulated and the total 

body weights were calculated as the product of BMI and the square of height. 
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Definitions of Weight Metrics 

The following weight metrics were defined for each virtual patient from their simulated total 

body weight (TBW, kg), height (HT, cm) and BMI (kg·m−2): 

1. Lean body weight (LBW)  

LBW = 
9270 ∙ TBW

6680 + 216 ∙ BMI
 

(

2

) 

2. Ideal body weight (IBW—Lorentz formula) 

IBW = HT − 100− (
HT − 150

4
) 

(

3

) 

3. Adjusted body weight (ABW) 

ABW25 = IBW + 0.25 ∙ (TBW − BW) 

 

ABW40 = IBW + 0.40 ∙ (TBW − BW) 

(

4

) 

  

We used the semi-mechanistic model for LBW developed by Janmahasatian et al. [279] as it has 

been found to better describe the full range of adult heights and weights [274]. IBW was 

calculated using Lorentz’s formula, which takes into account the patient’s height and sex but not 

total body weight. ABW was the first weight metric intended for use in pharmacokinetic studies; 

it involves adding a proportion of the excess weight above IBW [280]. This proportion is 

variable, ranging from 25%–50%, with 40% being used most commonly; in this study, we 

examined both 25% (ABW25) and 40% (ABW40) correction factors. Correlation plots for all 
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body size metrics are presented in Supplementary Figure S6 and Figure S7 for normal and 

overweight/obese individuals, respectively. 

Population Pharmacokinetic Model 

Simulations were performed using the 2-compartment structure described by Garmann et al. 

[185] for BAY 81-8973 (Kovaltry®), built on 183 subjects. Of the 109 patients above 18 years of 

age, the BMI range was 15.0–38.3 kg∙m-2. The details of the model structure are presented in 

Table 26. For each simulated individual, PK parameters were calculated. Each virtual individual 

was then dosed based on various weight metrics and their PK was simulated. 

 

Table 26. Details of the model developed by Garmann et al [185] 

Parameter Estimate Covariate Effectsc BSVd (%CV) 

Clearance (CL, dL h-1) 1.88 (
𝐿𝑒𝑎𝑛 𝐵𝑜𝑑𝑦 𝑊𝑒𝑖𝑔ℎ𝑡

51.1
)
0.610

 37.0 

Intercompartmental 

clearance (Q, dL h-1) 
1.90   

Central volume (V1, dL) 30.0 (
𝐿𝑒𝑎𝑛 𝐵𝑜𝑑𝑦 𝑊𝑒𝑖𝑔ℎ𝑡

51.1
)
0.950

 11.2 

Peripheral volume (V2, dL) 6.37   

Proportional RUVa (%CVb) 26.7   

Additive RUV (IU dL-1) 1.10   
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Simulation and Assessment of Treatment Regimens 

For each virtual individual, FVIII levels and individual PK parameters were simulated 

assuming a baseline factor level of 0.5 IU dL-1. FVIII levels were simulated using time steps of 

0.2 h following dosing regimens for four weeks to ensure that steady state was reached, and 

results from the 5th week were used in subsequent analysis steps. In a first instance, we analyzed 

a typical dosing strategy (20 IU kg−1 TBW every 48 h) to evaluate its appropriateness.  

We then simulated various regimens wherein equal doses were given at regular intervals 

(i.e., 48 h). Each patient was dosed from 10 IU kg−1 for each weight metric (10 IU kg−1 of TBW, 

10 IU kg−1 of LBW, etc.) up to 210 IU kg−1. Initially, the dose step was 2 IU kg−1 for doses up to 

100 IU kg−1 and 10 IU kg−1 for doses between 100 and 210 IU kg−1. After reviewing the results, 

the dose step was reduced to 0.1 IU kg−1 between 20 and 30 IU kg−1, as this was the range of 

most interest. A regimen was considered to be safe for a BMI group if 95% of the simulated 

population within that group had factor levels above 1 IU dL−1 at all times (Cmin ≥ 1 IU dL−1). 

The lowest dose per weight metric that met this safety criterion was identified and considered to 

be the optimal regimen for that particular metric and BMI group. A secondary measure of safety 

was the 95th quantile for time spent below 1 IU dL−1; in other words, the amount of time per 

week spent below trough for the 5% of the population not meeting the safety criteria. To evaluate 

economic differences between regimens, we calculated the mean weekly consumption on each 

optimal regimen to determine which dosing regimen met safety requirements while minimizing 

resource expenditure. This process was then repeated for a Monday-Wednesday-Friday (M-W-F) 

dosing schedule. For these simulations, the optimal dose for each metric (determined in the 

previous simulations) was administered on Monday and Wednesday, and the Friday dose was 

increased until the safety criterion was reached. To evaluate the importance of the earlier 
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assumption of 0.5 IU dL−1 baseline, we repeated the above simulations assuming a baseline of 0 

IU dL−1 to observe if similar trends emerged.  

 

Results 

Simulations of the typical regimen of 20 IU kg−1 TBW every 48 h were completed and the 

results are summarized in Table 27. We then investigated the hypothesis that a TBW-based 

dosing regimen results in overdosing in overweight and obese patients by determining the TBW-

based dose required to meet the 1 IU dL−1 safety criterion in 95% of these patients. At a dose of 

20 IU kg−1 TBW, the median minimum concentration (Cmin) throughout the week for these 

patients was 5.4 IU dL−1; the average consumption associated with this dosing regimen was 7.25 

× 103 IU per person per week. However, this population requires only 14 IU kg−1 TBW to meet 

the 95% safety criterion, which corresponds to an average weekly consumption of 5.07 × 103 IU 

per person.  

 

Table 27. Comparison of the typical 20 IU kg−1 total body weight (TBW) dose and the lowest 

dose meeting the safety threshold (i.e., 14 IU kg−1 TBW) in overweight and obese patients. 

Results are presented as median (90% confidence interval). 

Criterion 
Regimen 

20 IU kg−1 TBW, Q48 h 14 IU kg−1 TBW, Q48 h 

Cmin (IU dL−1) 5.4 (1.2–17.3) 3.9 (1.0–12.3) 

Consumption (IU per person per week) 7260 (5730–8780) 5080 (4010–6140) 
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Following this initial investigation, we explored dosing regimens using alternative weight 

metrics. The correlation between each weight metric and BMI is shown in Figure 33. We began 

by administering a dose of 10 IU kg−1 of each weight metric on a Q48 h dosing schedule. Once 

steady state was reached, the percentage of patients with Cmin ≥ 1.0 IU dL−1 was calculated. If 

this percentage was below 95%, the dose was incrementally increased until this threshold was 

reached. We then calculated the mean weekly consumption associated with the minimum dose 

required to reach the safety criterion for each metric to assess cost-effectiveness. Since a 

Monday-Wednesday-Friday dosing schedule is commonly used in hemophilia A prophylaxis, we 

performed analogous simulations using this schedule instead of a regular 48 h interval. We used 

the optimal doses found in the previous study on Monday and Wednesday, and then increased 

the dose on Fridays to compensate for the longer interval until the safety criterion was met.  

 

Figure 33. Correlation of body weight metrics with body mass index (BMI) for each BMI 

subgroup (blue = normal weight, red = overweight and obese). TBW: total body weight; HT: 

height; LBW: lean body weight; IBW: ideal body weight; ABW: adjusted body weight.  
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Table 28 and Table 29 summarize the doses per kg of each weight metric required to 

reach the 95% safety criterion (when infused every 48 h or Monday-Wednesday-Friday, 

respectively) and the associated weekly consumption in each of the BMI categories and in the 

merged population, assuming a baseline factor level of 0.5 IU dL−1. The most appropriate 

regimen is the one that meets the safety requirements while consuming the least amount of factor 

concentrate. For patients within the normal BMI range, LBW produced the optimal regimen for 

both dosing schedules; for the overweight and obese cohort, an IBW-based dosing regimen was 

found to be most cost-effective. Furthermore, the range of mean weekly consumption across the 

various weight metrics was much tighter for the normal BMI subgroup (125 IU per person per 

week) as compared to the overweight/obese subgroup (483 IU per person per week). When the 

two subgroups were combined, ABW with a 25% correction factor proved to be ideal for the 

Q48 h regimen, with IBW a very close second with a difference of just 5 IU per person per week. 

Both ABW25 and IBW perform almost identically in terms of safety for both BMI subgroups for 

the Q48 h regimen (Figure 34). However, IBW performed better than all other weight metrics 

when a Monday-Wednesday-Friday schedule was adopted, with a difference in consumption of 

over 100 IU per person per week when compared to the next best metric (LBW). Nevertheless, 

the amount of time spent below 1 IU dL−1 is significantly greater when following a Monday-

Wednesday-Friday regimen as compared to the Q48 h dosing schedule (Figure 35b); 

additionally, an extremely high Friday dose (>125 IU kg−1 TBW) is required to meet the 95% 

safety requirement, whereas a dose of 18 IU kg−1 TBW is successful for the Q48 h regimen 

(Figure 35a).  
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Table 28. Summary of safety and economic evaluations of different weight metrics used in a Q48 h regimen across BMI subgroups, 

assuming a baseline factor level of 0.5 IU dL−1. Dose is the dose required to have 95% of patients with a steady state Cmin over 1 IU 

dL−1. Optimal regimens for each subgroup and the overall population are bolded.  

 Normal Overweight and Obese All BMI Categories 

Metric 
Dose  

(IU kg−1) 

Mean 
Consumption  
(IU Per Person 

Per Week) 

Dose  
(IU kg−1) 

Mean 
Consumption 
(IU Per Person 

Per Week) 

Dose  
(IU kg−1) 

Mean 
Consumption  
(IU Per Person 

Per Week) 

Difference in 
Consumption 

from TBW 

TBW 20.0 5202 14.0 5074 18.0 5603 - 

LBW 25.6 5114 21.3 5028 23.8 5186 −417 

IBW 22.2 5222 20.7 4828 22.1 5176 −427 

ABW25 21.7 5239 20.0 5311 20.4 5171 −432 

ABW40 21.1 5173 18.0 5129 20.0 5301 −302 

 

 

Table 29. Summary of safety and economic evaluations of different weight metrics used in a Monday-Wednesday-Friday regimen 

across BMI subgroups, assuming a baseline factor level of 0.5 IU dL−1. Dose is the Friday dose required to have 90% of patients with 

a weekly Cmin ≥1 IU dL−1. Optimal regimens for each subgroup and the overall population are bolded. 

 Normal Overweight and Obese All BMI Categories 

Metric Dose (IU kg−1) 

Mean 
Consumption 
(IU Per Person 

Per Week) 

Dose (IU kg−1) 

Mean 
Consumption 
(IU Per Person 

Per Week) 

Dose (IU kg−1) 

Mean 
Consumption 
(IU Per Person 

Per Week) 

Difference in 
Consumption 

from TBW 

TBW 74 8174 54 9320 62 8716 - 

LBW 94 8082 82 8740 88 8442 −274 

IBW 78 8213 84 8543 80 8312 −404 

ABW25 78 8195 72 8558 76 8459 −258 

ABW40 76 8126 68 8792 72 8481 −235 
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Figure 34. Percentage of patients with Cmin ≥ 1 IU dL−1 (safety) at increasing doses per kg of 

various weight metrics, stratified by BMI subgroup, administered at 48 h intervals. 

 

Figure 35. (a) Median and 90% confidence intervals for Cmin and (b) 95th quantile for time spent 

below 1 IU dL−1 (hours per week) for TBW-based dosing regimen administered at different 

intervals for the combined group (normal + overweight/obese) for both Q48 h (blue) and 

Monday-Wednesday-Friday (red) dosing schedules. For the Q48 h regimen, all doses are 

increasing along the X-axis; for the Monday-Wednesday-Friday schedule, only the Friday dose is 

changing (Monday and Wednesday doses are fixed at 20 IU per kg TBW) 
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Ideal body weight continued to perform well in simulations with an assumed baseline of 0 

IU dL−1. The safety ratio versus dose curves are once again nearly identical for both BMI 

subgroups (Figure 36), although consumption was approximately doubled as compared to the 

Q48 h regimen.  

 

Figure 36. Comparison of safety profiles for patients simulated with baseline (BL) 0.5 IU dL−1 

and 0 IU dL−1 for a Q48 h regimen. Safety (%) is the percentage of patients with Cmin ≥ 1 IU 

dL−1 at various doses per kg of IBW.  

 

Discussion 

We began by assessing the safety and cost-effectiveness of a typical 20 IU kg−1 TBW, Q48 h 

regimen in an overweight and obese patient population. For comparison, we determined the 

TBW-based dose required to meet the safety criterion. At a dose of 14 IU kg−1 TBW, 95% of 

patients had FVIII levels of at least 1 IU dL−1 at all times; the median Cmin was 3.9 IU dL−1 and 

the mean consumption was just over 5000 IU per person per week. By contrast, the 20 IU kg−1 

TBW regimen produced a median Cmin of 5.4 IU dL−1 with a mean consumption of 7250 IU per 

person per week. Hence, the standard TBW-based dosing protocol results in over 40% higher 



 

177 
 

consumption than required in the overweight and obese population; assuming a cost of $1 US per 

unit of concentrate, this amounts to over $100,000 US in excess spending per person annually. 

From this evaluation, it is clear that TBW does not represent the optimal body weight metric to 

guide FVIII dosing.  

Simulations using dosing regimens based on alternative weight metrics (LBW, IBW, 

ABW25, and ABW40) were carried out using the two most common dosing schedules in 

hemophilia A prophylaxis: a regular 48 h regimen and a Monday-Wednesday-Friday regimen. 

Adapting a Monday-Wednesday-Friday timetable made it extremely difficult to meet the safety 

requirement, regardless of which weight metric was used to define the dose. While patients are 

often advised to increase their FVIII dose on Friday, a simple doubling of the dose is not 

sufficient. A potentially harmful Friday dose of 140 IU kg−1 TBW was required for 95% of 

patients to have a Cmin ≥1 IU dL−1, compared to 18 IU kg−1 TBW to meet this safety minimum 

when infused every 48 h. Furthermore, the time spent below 1 IU dL−1 (and, consequently, the 

risk of bleeding events [10]) is significantly greater when following a Monday-Wednesday-

Friday regimen, even if the Friday dose is twice or three times greater than the Monday and 

Wednesday doses (Figure 3b). In fact, a 2010 study in which FVIII was administered three times 

per week found that over 80% of bleeds occurred 48–72 h post-infusion [281]. The Monday-

Wednesday-Friday treatment schedule, while more convenient, is no longer considered to be 

optimal therapy due to this increased vulnerability to bleeds during the weekend, with alternate 

day dosing representing the ideal regimen [205,233]. 

Due to analytical limitations, it can be difficult to obtain an exact measure of a patient’s 

baseline factor level. Many assays have a lower limit of quantification of 1 IU dL−1 [282,283], 

which is greater than endogenous levels for severe hemophilia patients. To balance both safety 
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and resource utilization, we ran initial simulations with an assumed baseline of 0.5 IU dL−1. 

However, it is known that many severe hemophilia patients possess a genetic mutation such that 

no functional FVIII is produced endogenously. For this reason, the simulations were performed 

again using a baseline of 0 IU dL−1 to ensure similar trends were observed within this sub-

population. Notably, a 95% safe ratio can be achieved in a population with no endogenous FVIII 

production at a reasonable dose (34 IU kg−1 TBW) if administered every 48 h. However, it is not 

possible to meet that safety threshold in this population if a Monday-Wednesday-Friday dosing 

schedule is employed. If the safety criteria is lowered to 90%, it can be met, but only with 

extremely high Friday doses (between 130 and 180 IU kg−1 for the various weight metrics) and 

associated weekly consumption (>16,000 IU per person per week); a study by Collins et al. 

found similarly high doses (>100 IU kg−1 for patients with average half-lives, and up to 400 IU 

kg−1 in extreme cases) were required to maintain FVIII levels above 1 IU dL−1 throughout the 

week when following this dosing schedule [74]. These results suggest that a regular dosing 

interval of 48 h offers significant advantages over the weekly Monday-Wednesday-Friday 

schedule in terms of both safety and cost-effectiveness.  

After exploring all combinations of dosing schedule and baseline factor level, we 

determined that IBW-based dosing provides a safe and cost-effective regimen in the majority of 

scenarios, with ABW25 producing fairly similar results. Ideal body weight performed almost 

exactly the same in terms of safety between the normal and overweight groups across all of the 

doses and regardless of baseline, as evidenced by the closeness of the curves shown in Figures 2 

and 4. Further, IBW was the most cost-effective in three out of four simulations; in the fourth, it 

differed by only 5 IU per person per week from the optimal regimen (ABW25). If we compare the 

optimal regimen for a Q48 h schedule with a baseline of 0.5 IU dL−1 (i.e., 20.7 IU kg−1 IBW) to a 
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20 IU kg−1 TBW, this alterative regimen offers a savings of over 2000 IU per person per week 

(or nearly $110,000 US annually) for overweight and obese patients. Thus, IBW-based dosing 

offers a similar safety profile to the currently used TBW strategy while moderating the economic 

burden of clotting factor prophylaxis.  

This exercise was limited by the constraints of the data. The model used herein was built on 

PK data from a specific brand of FVIII concentrate, although brand has not generally been found 

to significantly influence PK. A second limitation to the applicability of this approach is that the 

source data is largely from older (10+ years of age) patients, and the opinions on use of 

prophylaxis in adults are varied [284–286]. Obesity rates are also increasing rapidly amongst 

pediatric patients and similar dosing adjustments are likely appropriate in this population, but 

cannot be confirmed in this study. Further study of pediatric populations (and validated pediatric 

population PK models) is required in order to determine a dosing regimen that applies not only to 

all BMI’s but also to all ages. 

As the prevalence of obesity has risen in the general population, a number of studies have 

been conducted to investigate the frequency of overweight and obesity among hemophilia 

patients, complications such as co-morbidities and decreased quality of life, and 

recommendations for management strategies. Many pharmacokinetic studies exploring the 

relationship between excess body weight and plasma volume (and, by extension, in vivo 

recovery) have postulated that dosing according to body weight results in overdosing and an 

ineffective use of resources, suggesting instead that dosing be guided by LBW or IBW 

[121,273,287,288]. This study compared several weight metrics and confirmed that an IBW-

based regimen is both safe and cost-effective across a range of BMI’s. Ideal body weight 

produced slightly better results than other weight metrics because it is calculated based solely on 
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height; as shown in Figure 33, there is no correlation between IBW and BMI as observed with 

the other metrics investigated. 

Although we were able to identify a weight metric that is more suitable for a variable 

population, the high inter-individual variability in PK handling of factor concentrates precludes 

the definition of a single, “one dose fits all” strategy. In order to optimize prophylaxis, regimens 

should be tailored to the individual PK profile. This process has been facilitated by the 

development of the WAPPS-Hemo service (www.wapps-hemo.org), a Canadian-based user-

friendly and industry-independent platform that produces estimates of individual PK parameters 

through a Bayesian iterative approach. The WAPPS-Hemo service also includes a module for 

dosing regimen development, wherein clinicians can predict the effects of changing dose, 

frequency, or targeted trough for a specific patient before implementing these changes in 

practice. While PK-tailored dosing regimens may offer the best results, weight-based strategies 

are still the norm, but these can be optimized by adapting a different weight metric (i.e., IBW) to 

guide safe and cost-effective dosing at a population level.  

Conclusions 

In summary, we conducted simulations based on a previously published model of a 

conventional FVIII to explore the appropriateness of different weight metric-based dosing 

regimens for hemophilia A prophylaxis for overweight and obese patients. Regimens were 

required to produce a Cmin ≥1 IU dL−1 in 95% of the population, and then the average 

consumption for each regimen was calculated to evaluate resource-effectiveness. From this 

study, we conclude that ideal body weight performs the best, maintaining safety while tempering 

factor consumption for overweight and obese patients.  
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Chapter 10: Discussion, Conclusions, and Future Directions 
 

Discussion 

 

 The overarching objective of this thesis is to develop PopPK models for clotting factor 

concentrates that enable dosing regimen individualization for hemophilia patients, and to 

understand the clinical factors that influence the performance of such models.  

 The opening chapter of the thesis consists of a comprehensive review of recent 

pharmacokinetic studies of FVIII concentrates, including plasma-derived and recombinant, 

standard and extended half-life products. This exercise had two primary objectives: (i) to 

summarize the variability observed in FVIII concentrate PK, thereby confirming the 

appropriateness of a PK-tailored dosing regimen in hemophilia, and; (ii) to identify covariates 

that have been found to influence FVIII PK. The often noted high inter-patient variability 

(particularly on clearance and, consequently, half-life) was extremely apparent; not only was 

there considerable discrepancy between studies (SHL FVIII half-life ranged from 9.4 to 17.4 h), 

but within-study variability was also high (>30%) in many cases.   

Age, weight, vWF level, and blood group were identified as important determinants of 

FVIII PK. However, the effects of age and blood group are related to vWF. Lalezari and 

colleagues found that vWF levels increase with age [120], hence the reduced FVIII clearance and 

longer half-lives observed in older hemophilia A patients. ABO blood group has also been 

shown to correlate with vWF level in several studies with a variety of patient populations 

[117,289–291], with blood group O individuals typically having approximately 25% lower 

plasma levels of vWF [292]. Furthermore, a 2018 study found an interaction between age and 

blood group with respect to vWF level; the age-related increase in vWF was more pronounced in 
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the non-O group than in those with O-type blood, leading to larger discrepancies later in life 

[117]. This proposed interconnectedness is reinforced by two studies that observed minimal 

blood group-related differences in vWF levels in children [117,293,294]. The details of the 

mechanism through which blood group and vWF levels are related remains unclear; one 

hypothesis proposes that O-type blood increases vWF susceptibility to cleavage by the protease 

ADAMTS13 [295], while another suggests that variations in antigen expression across blood 

groups mediates this effect [296].  

Chapter 2 outlines a data analysis protocol for model development and evaluation that 

began the process of standardizing the model-building procedure for the WAPPS-Hemo project, 

which is predicated on models that can reliably produce individual PK estimates from sparse 

samples. This section builds on a previously published data analysis protocol [170], drawing on 

the WAPPS-Hemo modelling team’s unique experience with PopPK models for Bayesian 

forecasting of clotting factor concentrate PK. The protocol was subsequently applied to build the 

generic SHL FVIII model (Chapter 4). This unique model is built specifically to meet the needs 

of the WAPPS-Hemo project; not only is the model fit for Bayesian forecasting, it is also able to 

predict the PK of SHL FVIII products outside of the modelling dataset. This second capability is 

of considerable importance, as a plethora of such products exist, but not all meet the data 

requirement for a brand-specific model. Since its implementation on the WAPPS-Hemo 

platform, the generic SHL FVIII model has been used to process over 2,000 PK requests in more 

than 1,240 patients; of particular note, 511 of these requests were for brands outside of the 

original modelling dataset.  

The data analysis protocol was once again put into practice in the development of the 

generic SHL rFIX model described in Chapter 5. In addition to its use in the WAPPS-Hemo 
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project, this model was used to answer a research question stemming from an ongoing clinical 

trial investigating the PK of the rFIX product IXINITY in children (NCT03855280). Several PK 

outcomes are to be estimated following a sampling schedule based on recommendations from the 

European Medicines Agency [297]. However, concerns arose that participating centres may be 

averse or unable to collect all five of the intended samples from young patients due to pediatric 

sample volume limitations. To determine how omission of a sampling point would impact PK 

parameter estimates, a limited sampling analysis was performed using the generic SHL rFIX 

model, which leveraged adult and pediatric PK data from other rFIX products and adult data 

from IXINITY to develop a PopPK model that is valid for all ages and all available brands of 

rFIX. The results of this analysis highlight the robustness of Bayesian forecasting in limited 

sampling conditions, especially compared to the traditionally used noncompartmental methods. 

Further, it confirmed the sensitivity of half-life estimation to sampling duration when using 

NCA. The original EMA-based sampling strategy produced biased estimates of half-life (mean 

error: –24%) as its latest sampling time was 48 h; the addition of a 72 or 96 h sample quickly 

remedied this problem, without significantly altering estimates of other outcomes of interest. 

In addition to developing original PopPK models using the WAPPS-Hemo database, 

previously published models were also employed to answer specific questions relevant to 

hemophilia treatment. First, the Nestorov model for Eloctate (rFVIIIFc) was used in Chapter 6 to 

determined limited sampling strategies for this relatively new EHL FVIII product. Sampling 

designs consisting of two to three timepoints were assessed not only on the accuracy of the PK 

parameter estimates, but also on whether the same clinical decisions regarding dose adjustment 

would be made compared to a rich sampling design. Distinct LSSs were determined for adult, 

adolescent, and pediatric patients. This highlights a need to investigate limited sampling 
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strategies in children for other factor concentrate products, as current ISTH guidance provides 

one sampling strategy per product group, regardless of age [169].  

This study was undertaken while visiting St. Jude Children’s Research Hospital in 

Memphis, Tennessee. Since their hemophilia clinic runs on a weekly basis, the hematology team 

at St. Jude typically only obtains patient samples at predose and peak. For this reason, factors 

outside of sampling time were considered in order to optimize the results of this sampling 

strategy, such as predose handling and study day. Through this limited sampling analysis, it was 

determined that when prior dosing information is taken into account and the PK study is 

performed 48 hours after the last dose, reasonable estimates of troughs and PK parameters can be 

obtained (median AE <12%) and the rate of inappropriate dose adjustments is low (<4%) for 

pediatric patients. Clinicians at St. Jude identified that taking the typical 72-hour predose level 

often resulted in a BLQ sample, and altered their protocol to collect a 48-hour predose in its 

place; this simulation study provides justification for this modification and quantifies the 

improvement seen with this new strategy. In addition, the results of the investigation into predose 

handling have been incorporated into the WAPPS-Hemo platform, as a description of the 

patient’s regimen is now being collected.  

The Garmann model for Kovaltry, a full-length rFVIII product, was used to explore to 

consequence of unmeasurable endogenous FVIII activity. This project originated while 

designing the Clinical Calculator component of the WAPPS-Hemo service. In this module, 

clinicians enter two of the following parameters to calculate the third: dose, frequency, and target 

trough. This amounts to scaling the infusion that was submitted for PK estimation to the selected 

dosing scenario. However, only exogenous factor should be scaled, as the endogenous (or 

baseline) level remains constant. While this may sound like a straightforward correction, 
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endogenous FVIII levels are often unmeasurable in severe hemophilia A patients and although 

the range of possible baseline values may be narrow, the consequences of mishandling this 

assumption can be quite significant. In Chapter 8, it is illustrated how baseline assumptions can 

contribute to the variation in dosing requirement to maintain the target trough of 1 IU/dL. When 

estimating individual PK outcomes, some parameters are more robust than others. For example, 

half-life differs minimally (<1 h difference) when the full range of undetectable baseline values 

is explored while the estimated time to reach 1 IU/dL varies by almost a full day. Although no 

way of calculating baseline was determined in this study, the potential error that can arise from 

disregarding the importance of baseline was quantified.   

The final example of repurposing an existing PopPK model is in Chapter 9, where the 

Garmann model was again used to determine a superior body weight metric for FVIII dosing for 

settings in which PK-tailored dosing is difficult to implement. The suspicion that total body 

weight may result in suboptimal dosing regimens for some patients is based on the high in vivo 

recovery observed for overweight and obese patients. This arises from the fact that FVIII stays 

primarily within the plasma space and plasma volume does not necessarily increase with total 

body weight, leading to the hypothesis that alternative weight metrics such as lean body weight, 

ideal body weight, or adjusted body weight may curtail overdosing in high BMI patients while 

maintaining safety. While overdosing of factor products does not generally result in toxicity due 

to their rapid clearance, overdosing is still of concern as clotting factor concentrates are an 

extremely expensive therapy. When considering variable endogenous FVIII production (0.5% 

baseline FVIII vs. true zero) and multiple dosing schedules (Q48h vs. Monday-Wednesday-

Friday), ideal body weight was found to produce the most cost-effective regimen that kept FVIII 

levels above 1 IU/dL for 95% of patients of all BMIs. Switching an obese patient from the label 
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dose of 20 IU/kg of total body weight to 20 IU/kg of ideal body weight results in a 33% cost 

reduction, or over $125,000 saved per year.   

Finally, Chapter 7 chronicles the growth of the WAPPS-Hemo project in recent years, 

and demonstrates the clinical application of this particular tool for estimation of individual PK 

parameters to guide dosing decisions in hemophilia care. Although the potential benefits of 

individually tailored dosing regimens have been extolled since the early 1990s, uptake of PK-

tailored dosing has traditionally been hampered by rigorous sampling requirements, the need for 

a washout period, and limited availability of tools for PK analysis. By examining two distinct 

periods since WAPPS-Hemo was launched in 2015, trends regarding both patient characteristics 

and sampling patterns could be elucidated. The use of WAPPS-Hemo by hemophilia treatments 

providers increased by more than 3-fold between the two periods investigated. More than 1,900 

infusions were eligible for the analysis, with 85% corresponding to FVIII concentrates. 

Unsurprisingly, the usage of EHL FVIII products increased considerably during Period 2, nearly 

doubling from 15% to 29%. Patients also tended to be younger during the second timeframe, 

though still adult (median age 26 vs. 18). During both time periods, sampling times were well 

aligned with the windows recommended in recent ISTH guidance. However, providers continue 

to collect peak samples, despite no formal suggestion to do so. In terms of number of samples, 

there were minimal differences across the two time periods; while there was a trend towards 

fewer samples per infusion, a significant difference was only noted for SHL FVIII products. It 

was also hypothesized that increased familiarity with the PopPK approach might influence 

sampling strategy or patient selection. Lower use centres tended to submit infusions for younger 

patients, and sampled more heavily than high use centres; however, the differences between 

centre types narrowed in Period 2.  The analysis conducted in Chapter 7 serves to quantify the 
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recent uptake of the WAPPS-Hemo platform for implementation of PK-tailored dosing regimens 

in hemophilia. For the WAPPS-Hemo network, this provides an understanding of how the 

service is being utilized in practice, identifies key populations for consideration during model 

development, and, in light of the LSA results of Chapters 5 and 6, indicates potential 

opportunities for user education. Furthermore, this chapter highlights the timeliness of the 

research contained in this thesis, as the hemophilia community has clearly embraced the PopPK 

approach in recent years.  

 

Conclusions 

Although several novel therapies from monoclonal antibodies to gene therapy are being 

explored and incorporated into hemophilia care, prophylactic use of clotting factor concentrates 

still dominates globally. The use of PopPK to individualize the doses of these products is 

relatively new to the hemophilia community, but has grown rapidly in recent years. The first 

formal guidance on the utilization of PopPK for dose individualization was published in 2017. 

The WAPPS-Hemo network has expanded enormously over the course of this project, from 

fewer than 25 centres in 2015 to over 400 centres at the time of this thesis, and individual PK 

estimates have been generated for over 6,000 patients from more than 40 countries.  

The collective aim of this work is to improve the safety and efficiency of hemophilia 

treatment through pharmacokinetic modelling. The dissertation presents two original PopPK 

models, one for SHL FVIII products and one for SHL rFIX concentrates. Both models have been 

incorporated into the WAPPS-Hemo platform, and have been used in the estimation of over 

2,100 individual PK profiles to date. A number of simulation studies were also performed to 

determine how clinical factors impact model performance. Limited sampling analyses were used 
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to identify not only the optimal timing of samples for Bayesian forecasting, but also to explore 

the influence of predose handling and the choice of PK study day on PK estimates, and to 

compare the performance of Bayesian methods against traditional noncompartmental methods in 

limited sampling conditions.  Simulation studies were performed to demonstrate how uncertainty 

around endogenous factor production affects PK parameter estimation, and to propose alternative 

weight-based dosing strategies when PK-based tailoring is infeasible.  

 

Future Directions 

The WAPPS-Hemo project continues to grow, and recent focus has shifted from model 

development to tackling research questions that emerge in routine hemophilia care. The PK data 

repository assembled since the program was launched uniquely positions the WAPPS-Hemo 

team to answer questions in the hemophilia space, ranging from the practice-based (e.g. what is 

the prevalence of off-label dosing in hemophilia?) to the physiological (e.g. can we predict a 

patient’s vWF level from other characteristics such as age and blood group?). The newly 

launched patient app (myWAPPS) may allow for the study of patient adherence and the benefits 

of increased patient awareness and involvement in their treatment. 

As mentioned, the uptake of the PopPK approach in routine hemophilia care is ongoing. 

An important task will be the continued advocacy for this approach, and education to ensure the 

best possible results are obtained. Results from a pilot trial using WAPPS-Hemo published in 

2019 reported a significant reduction in annual joint bleed rate and increased quality of life when 

patients were switched to PK-tailored prophylaxis [237]; further additions to the evidence base in 

favour of PK-tailored dosing will build provider and patient confidence in PK-based dosing.  
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Despite the recent progress of PopPK in this area, some patient populations remain 

underserved, particularly patients with inhibitors. The development of neutralizing antibodies 

against the exogenous clotting factor presents a significant challenge in hemophilia A, as roughly 

one third of severe patients will present with inhibitors at some point during treatment. Inhibitors 

are typically eradicated using immune tolerance induction (ITI, regular infusion of large doses of 

FVIII) though the specifics of this method (e.g. factor product, dosing, and use of immune 

modulators) remain undefined. Provided longitudinal data is available, a PopPK model built on 

patients with inhibitors could provide insight into the terminal phase of ITI, during which 

patients’ half-lives begin to normalize. The time required for this half-life normalization can vary 

significantly between patients; a PopPK model could identify covariates responsible for this 

variability. The final criterion for successful ITI is a half-life of at least 6 hours; a limited 

sampling analysis could be used to determine the best sampling times to assess PK during ITI.   
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Supplemental Information 

 

Table S1. Categorical covariate summary among high-use centres (HUCs, top 25th percentile) 

and other centres (non-HUCs) for Period 1 and Period 2 

 PERIOD 1 PERIOD 2 

HUCs Non-HUCs HUCs Non-HUCs 

Number of infusions 405 63 961 502 

Number of patients 359 54 849 437 

Number of centres 37 28 48 110 

Age (years), Mean (SD) 
                Median [Range] 

28.5 (17.6) 
27 [0.5 – 77] 

26.0 (19.6) 
19 [0.5 – 68] 

24.6 (16.9) 
19 [0.5 – 79] 

22.0 (17.0) 
17 [0.5 – 81] 

Body weight (kg), Mean (SD) 
                Median [Range] 

65.9 (25.4) 
70 [11.5 – 204] 

56.1 (27.9) 
60 [8.8 – 114] 

62.9 (27.5) 
65 [10.63 – 176] 

59.6 (29.4) 
64 [6.9 – 179] 

Infusions by Hemophilia Type 

     Hemophilia A 87.8% 79.4% 84.5% 86.1% 

     Hemophilia B 12.2% 20.6% 15.5% 13.9% 

Infusions by Product Type 

      SHL FVIII 73.4% 63.5% 57.9% 53.4% 

      EHL FVIII 14.4% 15.9% 26.6% 32.7% 

      SHL FIX 2.7% 7.9% 5.3% 5.4% 

      EHL FIX 9.5% 12.7% 10.1% 8.5% 
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Table S2. Summary of number of samples per patient per infusion for each product type for 

Period 1 and Period 2 for high-use centres (HUCs) and other centres (non-HUCs). 

 

 

 

 

 

 

CENTRE AND FACTOR TYPE PERIOD 1 PERIOD 2 𝒑-VALUE 

HUCs 
  

 

SHL FVIII    
     Mean (SD) 3.4 (1.8) 3.3 (1.5) 𝑝 = 0.472 
     Median [Range] 3 [1–9] 3 [1–10]  
EHL FVIII      
     Mean (SD) 3.8 (1.6) 3.3 (1.6) 𝑝 = 0.050 
     Median [Range] 4 [1–8] 3 [1–7]  
SHL FIX    
     Mean (SD) 3.0 (1.7) 3.0 (1.4) 𝑝 = 0.972 
     Median [Range] 2 [1–5] 3 [1–7]  
EHL FIX      
     Mean (SD) 3.7 (1.6) 3.8 (2.1) 𝑝 = 0.724 
     Median [Range] 4 [1–8] 4 [1–8]  

Non-HUCs    

SHL FVIII    
     Mean (SD) 4.4 (2.6) 3.2 (1.6) 𝑝 = 0.007 
     Median [Range] 4.5 [1–12] 3 [1–10]  
EHL FVIII      
     Mean (SD) 3.0 (1.8) 4.1 (1.8) 𝑝 = 0.082 
     Median [Range] 2 [1–7] 4 [1–10]  
SHL FIX    
     Mean (SD) 5.8 (0.8) 4.0 (2.2) 𝑝 = 0.005 
     Median [Range] 5.5 [1–7] 4 [1–9]  
EHL FIX      
     Mean (SD) 4.3 (1.3) 4.1 (1.8) 𝑝 = 0.776 
     Median [Range] 4 [1–7] 4 [1–11]  



 

217 
 

Table S3. Model building log 

Structural Model 

Run Structure BSV Terms RUV Model OFV 

1 2-compartment None Additive 30015 

2 2-compartment None Proportional 35072 

3 2-compartment None Combined 32691 

4 2-compartment CL, V1, Q, V2 Additive 1E+07 

5 2-compartment CL, V1, Q, V2 Proportional 34480 

6 2-compartment CL, V1, Q, V2 Combined 27517 

7 2-compartment CL, V1 Additive 30015 

8 2-compartment CL, V1 Proportional 26044 

9 2-compartment CL, V1 Combined 26033 

Covariate Model 

Run Covariate Added Form 
BSVCL (Δ) 
BSVV1

 (Δ) OFV (Δ) 

10 
Body weight  
(CL and V1) 

Power 
44.6% (-10.4%) 
34.4% (-26.1%) 

25581 (-452) 

11 
Fat-free mass 

(CL and V1) 
Power 

44.5% (-10.5%) 
32.4% (-28.1%) 

25548 (-485) 

12 
Age 

(CL and V1) 
Power 

50.9% (-4.1%) 
59.6% (-0.5%) 

25832 (-201) 

13 
Age 

(CL and V1) 
Linear 

53.2% (-1.8%) 
46.7% (-13.8%) 

25846 (-187) 

14 
Fat-free mass 
(CL, V1 and V2) 

Power 
44.9% (+0.4%) 
33.3% (+0.9%) 

25432 (-116) 

15 
Fat-free mass 

Age (CL) 
Power 
Power 

43.1% (-1.8%) 
44.3% (-0.1%) 

25414 (-18) 

16 
Fat-free mass 

Age (CL) 
Power 
Linear 

43.5% (-1.4%) 
33.2% (-0.1%) 

25413 (-19) 

17 
Fat-free mass 

Age (CL) 
Power 

Piecewise linear 
43.2% (-1.7%) 
33.2% (-0.1%) 

25410 (-22) 

Brand Model 

Run 
Brand Grouping 

Scheme 
OFV AIC 

Number of 
Parameters 

18 Individual 25321 25369 24 

19 Based on Run 18 25325 25367 21 

20 Source  25417 25417 14 

21 Source and structure 25389 25389 16 
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Table S4. Results of 5-fold cross-validation of final SHL FVIII model 

Parameter Median Error 95th Percentile of Error 

Half-Life 0.42% 1.82% 

Time to 2% Activity 0.23% 1.19% 

CL 0.21% 0.96% 

V1 0.33% 1.60% 
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Table S5. Details of sampling schemes explored and results of limited sampling analysis 

Design 
Sampling 

Times (h) 

Half-Life Error (%) CL Error (%) V1 Error (%) TAT2% Error (%) 

Median 
90th 

Percentile 
Median 

90th 

Percentile 
Median 

90th 

Percentile 
Median 

90th 

Percentile 

Design 1 Pre-1-24 4.6% 17.6% 2.9% 11.7% 5.3% 15.9% 4.0% 15.5% 

Design 2 Pre-1-30 3.4% 13.9% 2.6% 9.0% 5.4% 16.0% 2.9% 11.9% 

Design 3 Pre-1-48 1.9% 8.1% 3.0% 9.7% 5.4% 16.0% 1.4% 6.0% 

Design 4 Pre-1-54 1.6% 7.2% 3.2% 10.5% 5.4% 16.0% 1.2% 5.2% 

Design 5 Pre-1-72 1.4% 16.8% 4.2% 18.0% 5.3% 15.7% 1.0% 18.7% 

Design 6 Pre-3-24 5.5% 19.6% 2.9% 11.3% 7.1% 20.5% 4.5% 16.8% 

Design 7 Pre-3-30 4.2% 15.5% 2.9% 9.6% 7.0% 20.1% 3.2% 13.0% 

Design 8 Pre-3-48 2.3% 9.0% 3.7% 10.9% 6.7% 19.4% 1.5% 6.5% 

Design 9 Pre-3-54 2.0% 7.8% 3.9% 11.7% 6.6% 19.2% 1.3% 5.5% 

Design 10 Pre-3-72 1.8% 16.7% 4.8% 17.4% 6.5% 18.9% 1.0% 17.7% 

Design 11 24-30-48 5.5% 16.3% 7.0% 19.7% 15.5% 40.2% 2.3% 10.0% 

Design 12 24-30-54 4.9% 14.0% 6.9% 19.2% 14.3% 37.9% 1.9% 7.9% 

Design 13 24-30-72 5.5% 13.9% 8.0% 20.3% 15.8% 36.2% 2.4% 7.0% 

Design 14 24-48-54 6.0% 17.5% 10.2% 24.4% 19.5% 42.3% 2.1% 10.1% 

Design 15 24-48-72 5.0% 12.9% 9.7% 23.5% 17.4% 38.1% 1.6% 5.9% 

Design 16 30-48-54 6.6% 18.7% 11.7% 27.3% 21.8% 45.9% 2.1% 10.6% 

Design 17 30-48-72 5.4% 14.0% 10.9% 26.2% 19.2% 41.4% 1.6% 6.2% 

Design 18 30-54-72 5.8% 15.7% 15.3% 35.4% 24.6% 52.3% 1.3% 6.8% 

Design 19 48-54-72 5.8% 15.5% 14.3% 33.2% 23.8% 49.7% 1.2% 6.7% 

Design 20 24-30 12.4% 31.4% 8.3% 21.9% 24.9% 49.3% 7.7% 24.0% 

Design 21 24-48 7.6% 21.0% 9.7% 23.8% 20.6% 43.7% 3.4% 13.8% 

Design 22 24-54 6.6% 18.4% 9.8% 23.8% 19.6% 42.1% 2.8% 11.2% 

Design 23 24-72 5.6% 14.9% 9.6% 23.6% 17.6% 39.7% 2.2% 7.5% 

Design 24 30-48 7.9% 21.8% 11.2% 27.1% 23.0% 47.5% 3.3% 14.1% 

Design 25 30-54 7.1% 19.4% 11.3% 27.0% 21.8% 45.6% 2.6% 11.5% 

Design 26 30-72 5.8% 15.0% 10.9% 26.5% 19.4% 42.6% 2.0% 6.8% 

Design 27 48-54 7.0% 19.8% 14.5% 33.6% 25.7% 53.1% 2.0% 10.7% 

Design 28 48-72 5.8% 15.5% 14.6% 33.6% 23.8% 50.2% 1.4% 6.6% 

Design 29 54-72 5.8% 15.7% 15.3% 35.4% 24.6% 52.35% 1.3% 6.8% 

Design 30 3-24 10.4% 28.7% 4.0% 15.2% 11.4% 27.3% 8.4% 25.6% 

Design 31 3-30 7.9% 23.8% 3.5% 11.5% 10.6% 26.5% 6.0% 20.1% 

Design 32 3-48 4.3% 13.9% 4.1% 11.6% 9.1% 24.0% 2.6% 10.5% 

Design 33 3-54 3.7% 12.2% 4.3% 12.4% 8.7% 23.3% 2.2% 9.1% 

Design 34 3-72 3.6% 15.7% 5.0% 14.8% 8.2% 21.8% 2.1% 14.6% 
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Table S6. Median [95th percentile] absolute error on PK outcomes for limited sampling designs 

for the 2-year-old population. 

 Design Half-Life CL V1 AUC C72 C96 Cmax TAT2% TAT1% 

4
-S

am
p

le
 D

e
si

gn
s 

EMA 
2.8 

[7.8] 
3.1 

[9.5] 
5.2 

[15.6] 
3.2 

[9.3] 
5.4 

[14.7] 
5.9 

[15.6] 
4.9 

[13.8] 
3.3 

[10.6] 
4.5 

[14.3] 

Pre-0.5-6-24 
3.4 

[9.9] 
4.2 

[11.5] 
5.3 

[15.4] 
4.3 

[11.8] 
7.0 

[19.8] 
7.7 

[22.2] 
4.9 

[13.7] 
4.3 

[13.8] 
5.8 

[18.5] 

Pre-0.5-6-48 
3.0 

[8.5] 
3.7 

[10.0] 
5.5 

[15.8] 
3.6 

[10.5] 
6.1 

[16.4] 
6.4 

[18.3] 
5.0 

[14.2] 
3.6 

[11.6] 
4.8 

[15.6] 

Pre-0.5-24-48 
2.8 

[8.1] 
3.5  

[9.8] 
6.2 

[17.8] 
3.5 

[10.0] 
5.5 

[14.8] 
5.9 

[16.0] 
5.7 

[16.5] 
3.3 

[10.4] 
4.5 

[14.1] 

Pre-6-24-48 
3.1 

[8.7] 
4.1 

[12.5] 
9.8 

[30.1] 
4.1 

[12.0] 
5.5 

[14.6] 
5.9 

[15.9] 
9.1 

[25.7] 
3.4 

[10.7] 
4.7 

[14.8] 

0.5-6-24-48 
4.2 

[13.0] 
4.8 

[16.1] 
5.3 

[15.7] 
4.7 

[13.9] 
8.1 

[23.5] 
8.7 

[25.7] 
4.9 

[13.8] 
5.0 

[18.4] 
6.8 

[24.8] 

3
-S

am
p

le
 D

e
si

gn
s 

Pre-0.5-6 
4.1 

[11.4] 
5.3 

[13.7] 
5.5 

[15.7] 
5.4 

[14.8] 
8.9 

[23.9] 
9.6 

[26.1] 
5.0 

[14.3] 
5.3 

[16.2] 
7.0 

[21.6] 

Pre-0.5-24 
3.4 

[10.1] 
4.6 

[12.7] 
6.4 

[17.9] 
4.7 

[13.3] 
7.3 

[20.4] 
7.8 

[22.1] 
5.9 

[16.7] 
4.3 

[13.8] 
5.9 

[18.6] 

Pre-0.5-48 
3.0 

[8.7] 
4.1 

[11.3] 
6.3 

[18.1] 
4.1 

[12.0] 
5.9 

[16.5] 
6.5 

[18.1] 
6.1 

[17.2] 
3.6 

[11.8] 
4.8 

[15.9] 

Pre-6-24 
3.6 

[10.8] 
5.0 

[14.1] 
9.8 

[29.5] 
5.0 

[14.1] 
7.0 

[19.8] 
7.6 

[22.0] 
9.1 

[25.6] 
4.3 

[13.6] 
5.7 

[18.7] 

Pre-6-48 
3.2 

[9.0] 
4.7 

[13.3] 
9.7 

[29.4] 
4.7 

[13.2] 
6.1 

[16.5] 
6.4 

[18.2] 
9.2 

[27.7] 
3.6 

[11.5] 
5.0 

[15.5] 

Pre-24-48 
3.3 

[9.5] 
5.3 

[14.7] 
12.8 

[35.3] 
5.4 

[14.7] 
5.6 

[14.9] 
6.0 

[16.1] 
12.1 

[38.8] 
3.4 

[10.7] 
4.6 

[15.0] 

0.5-6-24 
6.3 

[17.9] 
6.9 

[24.4] 
5.4 

[15.9] 
6.8 

[19.8] 
12.8 

[33.4] 
13.7 

[35.9] 
4.9 

[13.9] 
7.7 

[25.9] 
10.4 

[34.5] 

0.5-6-48 
4.6 

[15.1] 
5.7 

[20.0] 
5.5 

[15.6] 
5.6 

[16.8] 
9.6 

[28.0] 
10.4 

[30.4] 
5.1 

[14.1] 
5.8 

[22.7] 
7.6 

[30.6] 

0.5-24-48 
4.2 

[12.9] 
5.1 

[16.7] 
6.3 

[18.0] 
5.0 

[14.5] 
8.5 

[23.7] 
8.9 

[26.0] 
5.8 

[16.5] 
5.0 

[18.9] 
6.8 

[25.3] 

6-24-48 
4.3 

[13.3] 
5.4 

[18.0] 
9.7 

[29.7] 
5.3 

[15.4] 
8.2 

[23.3] 
8.6 

[25.9] 
9.1 

[25.4] 
4.9 

[18.7] 
6.7 

[25.8] 

2
-S

am
p

le
 D

e
si

gn
s 

Pre-0.5 
4.0 

[11.4] 
5.6 

[15.7] 
6.5 

[17.8] 
5.8 

[16.7] 
9.0 

[25.0] 
9.4 

[27.3] 
6.2 

[17.9] 
5.2 

[16.6] 
6.9 

[21.8] 

Pre-6 
4.1  

[12.0] 
6.4 

[16.2] 
9.7 

[29.7] 
6.5 

[17.4] 
8.9 

[24.0] 
9.4 

[26.0] 
9.3 

[27.9] 
5.1 

[16.5] 
6.7 

[21.8] 

Pre-24 
3.8 

[10.9] 
6.0 

[17.0] 
12.7 

[35.7] 
6.1 

[19.0] 
7.4 

[20.4] 
7.7 

[22.1] 
11.9 

[41.0] 
4.2 

[13.7] 
5.7 

[18.6] 

Pre-48 
3.4 

[9.4] 
5.9 

[15.9] 
12.8 

[37.2] 
6.0 

[17.6] 
6.1 

[16.9] 
6.4 

[18.2] 
11.9 

[42.7] 
3.7 

[11.3] 
5.0 

[15.5] 

0.5-6 
9.7 

[27.5] 
12.0 

[41.7] 
5.4 

[15.9] 
11.8 

[33.0] 
20.6 

[55.1] 
21.9 

[58.0] 
5.1 

[14.3] 
12.2 

[44.5] 
16.4 

[59.6] 

0.5-24 
6.2 

[18.6] 
7.5 

[26.6] 
6.4 

[17.8] 
7.4 

[21.2] 
13.1 

[34.8] 
14.1 

[37.1] 
5.9 

[16.5] 
7.9 

[27.2] 
10.6 

[37.0] 

0.5-48 
4.6 

[15.2] 
6.4 

[22.2] 
6.4 

[18.1] 
6.4 

[18.2] 
10.1 

[28.8] 
10.7 

[31.4] 
6.1 

[17.3] 
5.8 

[23.4] 
8.0 

[30.6] 

6-24 
6.4 

[18.4] 
7.3 

[27.2] 
9.8 

[29.6] 
7.2 

[21.5] 
12.9 

[33.5] 
14.0 

[35.7] 
9.0 

[25.4] 
7.7 

[26.4] 
10.3 

[35.3] 

6-48 
4.7 

[15.6] 
6.5 

[21.4] 
9.6 

[30.0] 
6.4 

[17.9] 
9.7 

[28.1] 
10.4 

[30.7] 
9.0 

[27.1] 
5.7 

[22.6] 
7.7 

[30.3] 

24-48 
4.5 

[14.1] 
6.3 

[19.8] 
13.1 

[35.6] 
6.2 

[17.2] 
8.6 

[23.9] 
9.0 

[26.2] 
12.2 

[37.3] 
5.0 

[19.1] 
6.7 

[26.2] 
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Table S7. Absolute error (%, as median [95th percentile]) on half-life estimates, for all 

permutations of study day and predose handling for each age group. To assist with interpretation, 

a gradient has been applied, with absolute error increasing from green (lowest) to red (highest). 

 
DESIGN 

HALF-LIFE 

TH M W 

A B A B A B 

A
D

U
LT

S 

2 Pre-1-24-48-72 2.7 [7.4] 2.0 [5.2] 2.8 [7.6] 1.8 [4.4] 
    

3 Pre-1-24-48-96 2.1 [5.3] 1.5 [3.6] 2.3 [5.7] 1.4 [3.7] 
    

4 Pre-1-24-72-96 1.2 [3.5] 0.8 [2.1] 1.1 [3.3] 0.7 [2.6] 
    

5 Pre-1-48-72-96 0.3 [1.0] 0.3 [1.1] 0.3 [1.0] 0.4 [1.1] 
    

6 Pre-1-72-96 1.3 [3.7] 0.9 [2.4] 1.3 [3.3] 0.9 [2.6] 
    

7 Pre-1-48-96 2.2 [6.0] 1.5 [3.9] 2.4 [5.9] 1.5 [3.9] 
    

8 Pre-1-24-96 3.1 [9.0] 1.9 [5.0] 3.3 [9.0] 2.1 [6.5] 
    

9 Pre-1-48-72 2.7 [7.3] 2.0 [5.3] 2.9 [7.6] 1.8 [4.5] 
    

10 Pre-1-24-72 3.5 [9.5] 2.4 [6.3] 3.8 [9.7] 2.3 [5.5] 
    

11 Pre-1-24-48 5.8 [15.0] 3.2 [8.6] 5.5 [14.9] 2.8 [6.7] 
    

12 Pre-1-24 10.9 [26.8] 4.2 [10.7] 10.1 [25.9] 3.9 [9.5] 
    

13 Pre-1-48 6.1 [15.8] 3.3 [8.8] 6.0 [15.5] 2.9 [6.7] 
    

14 Pre-1-72 3.7 [10.3] 2.5 [6.6] 4.0 [10.1] 2.4 [5.7] 
    

15 Pre-1-96 3.8 [11.4] 2.0 [5.7] 3.9 [10.9] 2.4 [7.2] 
    

16 Pre-1 21.1 [52.6] 4.4 [11.8] 21.4 [55.3] 4.5 [11.7] 
    

17 1-24 10.7 [25.8] 10.1 [23.9] 9.6 [23.9] 9.9 [25.9] 
    

18 1-48 6.2 [15.8] 6.0 [15.0] 5.9 [15.0] 6.4 [17.0] 
    

19 1-72 4.4 [11.9] 3.8 [10.1] 4.2 [10.6] 4.5 [11.4] 
    

20 1-96 4.3 [11.4] 4.1 [12.1] 4.1 [10.8] 4.8 [12.4] 
    

21 1 20.7 [52.3] 20.0 [52.1] 21.2 [54.8] 21.5 [55.8] 
    

A
D

O
LE

SC
EN

TS
 

2 Pre-1-24-48-72 1.6 [4.9] 1.2 [3.4] 1.6 [5.0] 1.2 [3.2] 1.8 [5.3] 1.4 [4.5] 

3 Pre-1-24-48-96 2.2 [5.4] 1.5 [3.7] 2.3 [5.8] 1.8 [4.6] 2.1 [5.9] 1.6 [4.3] 

4 Pre-1-24-72-96 2.1 [6.7] 1.5 [4.7] 2.2 [6.1] 1.8 [5.9] 2.0 [6.2] 1.3 [3.5] 

5 Pre-1-48-72-96 0.8 [3.2] 0.7 [2.5] 0.8 [2.9] 0.8 [2.9] 0.7 [3.2] 0.4 [1.8] 

6 Pre-1-72-96 3.3 [11.6] 2.3 [7.5] 3.4 [12.6] 3.0 [12.1] 3.2 [10.9] 1.6 [4.7] 

7 Pre-1-48-96 2.8 [7.3] 1.9 [4.8] 2.8 [7.0] 2.3 [6.3] 2.6 [6.8] 1.9 [4.6] 

8 Pre-1-24-96 4.4 [11.7] 2.6 [6.9] 4.5 [12.2] 3.4 [9.8] 4.1 [11.2] 2.6 [6.3] 

9 Pre-1-48-72 2.2 [5.9] 1.6 [4.4] 2.2 [5.8] 1.7 [4.2] 2.2 [6.2] 1.6 [4.8] 

10 Pre-1-24-72 3.4 [8.2] 2.3 [5.8] 3.3 [8.2] 2.6 [6.6] 3.4 [8.3] 2.3 [5.8] 

11 Pre-1-24-48 3.7 [10.6] 2.3 [5.8] 3.8 [10.8] 2.6 [6.8] 4.0 [11.3] 2.8 [7.9] 

12 Pre-1-24 7.9 [20.9] 3.6 [8.8] 7.9 [20.1] 4.6 [12.1] 8.7 [21.9] 4.2 [11.3] 

13 Pre-1-48 4.5 [12.1] 2.7 [7.0] 4.6 [12.4] 3.2 [8.0] 4.7 [12.7] 3.0 [8.5] 

14 Pre-1-72 4.8 [13.0] 3.1 [8.2] 4.7 [13.8] 3.8 [12.1] 4.6 [13.1] 2.6 [6.7] 

15 Pre-1-96 7.8 [26.2] 3.8 [11.5] 7.8 [25.3] 6.1 [21.7] 7.5 [25.7] 3.0 [7.6] 

16 Pre-1 19.4 [48.3] 5.1 [12.6] 19.1 [48.6] 8.2 [27.7] 20.8 [52.4] 4.9 [12.7] 

17 1-24 7.8 [20.5] 7.6 [20.0] 7.8 [19.7] 7.8 [19.6] 8.9 [23.8] 7.8 [19.8] 

18 1-48 4.6 [12.1] 4.6 [12.2] 4.6 [11.9] 4.7 [12.5] 5.2 [13.1] 4.5 [11.9] 

19 1-72 4.8 [12.6] 4.9 [12.8] 4.8 [13.8] 5.0 [13.8] 5.4 [13.5] 4.5 [13.1] 

20 1-96 8.0 [26.2] 7.9 [27.3] 7.8 [25.4] 8.0 [25.3] 8.4 [26.5] 7.1 [24.3] 

21 1 19.1 [47.5] 18.9 [45.7] 18.9 [48.1] 19.1 [47.7] 20.3 [52.5] 19.8 [49.4] 

C
H

IL
D

R
EN

 

2 Pre-1-24-48-72 0.3 [1.1] 0.2 [0.9] 0.3 [1.2] 0.3 [1.1] 0.3 [1.4] 0.2 [1.0] 

3 Pre-1-24-48-96 1.0 [3.1] 0.8 [2.6] 1.0 [3.2] 0.9 [2.9] 1.0 [3.7] 0.7 [2.4] 

4 Pre-1-24-72-96 3.0 [8.4] 2.7 [7.3] 3.1 [8.7] 3.1 [8.8] 3.0 [8.2] 2.0 [5.4] 

5 Pre-1-48-72-96 5.7 [18.2] 5.5 [17.3] 5.9 [18.2] 5.8 [18.2] 5.7 [18.0] 4.0 [13.8] 

6 Pre-1-72-96 13.0 [36.4] 11.3 [34.9] 13.0 [37.5] 12.8 [37.3] 12.7 [35.9] 6.1 [18.8] 

7 Pre-1-48-96 6.2 [18.3] 5.9 [18.0] 6.4 [18.6] 6.3 [18.4] 6.3 [18.1] 4.3 [14.1] 

8 Pre-1-24-96 3.6 [10.8] 3.1 [8.9] 3.6 [10.5] 3.5 [10.4] 3.8 [11.2] 2.4 [6.8] 

9 Pre-1-48-72 5.8 [18.3] 5.5 [17.4] 5.9 [18.1] 5.9 [18.3] 5.9 [18.0] 4.1 [13.8] 

10 Pre-1-24-72 3.1 [9.0] 2.7 [7.2] 3.2 [9.0] 3.1 [8.9] 3.1 [8.8] 2.1 [5.5] 

11 Pre-1-24-48 1.0 [3.5] 0.9 [2.8] 1.1 [3.5] 1.0 [3.1] 1.1 [4.3] 0.7 [2.6] 

12 Pre-1-24 3.8 [11.8] 3.2 [8.9] 3.8 [11.7] 3.7 [10.5] 4.1 [12.7] 2.4 [6.9] 

13 Pre-1-48 6.2 [18.2] 5.9 [17.9] 6.5 [18.6] 6.4 [18.5] 6.4 [18.1] 4.4 [14.2] 

14 Pre-1-72 13.2 [35.5] 11.5 [35.3] 13.1 [37.9] 12.9 [38.5] 13.0 [36.6] 6.2 [18.7] 

15 Pre-1-96 16.5 [42.1] 13.0 [37.5] 16.9 [42.3] 16.0 [41.2] 17.0 [43.3] 6.7 [18.2] 

16 Pre-1 16.9 [39.3] 13.1 [35.6] 16.8 [40.7] 16.3 [40.3] 17.9 [42.5] 6.8 [18.2] 

17 1-24 3.8 [10.8] 3.8 [11.7] 3.8 [11.3] 3.8 [11.4] 4.1 [11.8] 4.3 [12.8] 

18 1-48 6.3 [18.2] 6.3 [18.2] 6.5 [18.6] 6.5 [18.6] 6.4 [18.4] 6.5 [18.3] 

19 1-72 13.2 [35.7] 13.2 [35.4] 13.1 [37.9] 13.0 [37.8] 13.0 [36.7] 12.7 [35.8] 

20 1-96 16.5 [42.1] 16.3 [41.1] 16.9 [42.4] 16.9 [42.0] 16.8 [43.4] 16.5 [41.7] 

21 1 16.8 [39.0] 16.7 [38.9] 16.8 [40.6] 16.8 [40.8] 17.5 [41.1] 17.3 [40.8] 
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Table S8. Absolute error (%, as median [95th percentile]) on C72 estimates, for all permutations 

of study day and predose handling for each age group. To assist with interpretation, a gradient 

has been applied, with absolute error increasing from green (lowest) to red (highest). 

  
Design 

C72 

TH M W 

A B A B A B 

A
D

U
LT

S 

2 Pre-1-24-48-72 5.4 [14.3] 3.9 [9.6] 5.7 [14.2] 3.7 [8.6]         
3 Pre-1-24-48-96 5.4 [13.9] 3.7 [9.2] 5.7 [15.0] 4 [10.8]         
4 Pre-1-24-72-96 4 [12.0] 3 [8.4] 4 [11.3] 3.2 [9.5]         
5 Pre-1-48-72-96 1.9 [5.5] 1.5 [4.0] 1.9 [5.2] 1.7 [4.7]         
6 Pre-1-72-96 5.3 [15.3] 3.8 [10.2] 5 [13.6] 4.1 [10.8]         
7 Pre-1-48-96 6.2 [17.2] 4.3 [10.8] 6.6 [18.4] 4.8 [13.2]         
8 Pre-1-24-96 8.8 [25.9] 5.5 [15.2] 9.3 [26.5] 6.6 [21.3]         
9 Pre-1-48-72 6.2 [15.1] 4.4 [10.2] 6.5 [15.7] 4.4 [10.2]         

10 Pre-1-24-72  8.4 [20.8] 5.8 [14.3] 8.9 [21.9] 5.9 [14.8]         
11 Pre-1-24-48 12.6 [30.5] 7.1 [18.0] 11.9 [29.7] 6.5 [16.0]         
12 Pre-1-24 26.3 [64.2] 10.1 [25.4] 24.3 [59.5] 10.5 [29.1]         
13 Pre-1-48 14.2 [35.0] 7.7 [19.3] 14 [34.6] 7.4 [17.7]         
14 Pre-1-72  9.8 [24.1] 6.6 [15.9] 10.4 [25.3] 6.9 [17.0]         
15 Pre-1-96 12.8 [38.4] 6.7 [19.1] 13.3 [38.1] 8.9 [25.5]         
16 Pre-1 73.9 [279.6] 11.6 [29.5] 76.3 [276.1] 14.3 [41.1]         
17 1-24 26.2 [66.7] 25.3 [60.7] 23.9 [59.7] 23.9 [58.7]         
18 1-48 14 [35.3] 14.5 [36.1] 13.9 [34.2] 14.9 [37.5]         
19 1-72 9.9 [24.1] 10.4 [26.8] 10.4 [25.4] 11.5 [27.5]         
20 1-96 13 [38.3] 13.8 [40.9] 13.4 [38.3] 14.7 [39.0]         
21 1 73.8 [278.5] 71.3 [279.4] 76.5 [274.8] 76.1 [277.6]         

A
D

O
LE

SC
EN

TS
 

2 Pre-1-24-48-72 3.9 [10.8] 2.8 [7.7] 3.9 [10.9] 3 [7.8] 4.1 [11.9] 3.3 [9.8] 

3 Pre-1-24-48-96 6.2 [15.8] 4.3 [10.8] 6.3 [16.3] 5.2 [13.6] 5.9 [15.9] 4.4 [12.2] 

4 Pre-1-24-72-96 6.9 [21.5] 5 [15.8] 7 [20.1] 6.1 [18.7] 6.6 [19.5] 4.3 [11.8] 

5 Pre-1-48-72-96 3.5 [11.2] 2.8 [9.3] 3.5 [10.7] 3.2 [10.7] 3.4 [11.4] 2.4 [7.2] 

6 Pre-1-72-96 11.5 [40.1] 8.1 [26.8] 11.6 [40.9] 10.6 [38.4] 11.2 [38.5] 5.7 [16.0] 

7 Pre-1-48-96 8.2 [20.9] 5.8 [15.3] 8.4 [21.9] 7 [20.1] 8 [20.4] 5.7 [14.3] 

8 Pre-1-24-96 13.4 [36.3] 8.1 [21.9] 13.5 [37.3] 10.6 [31.2] 12.4 [36.3] 7.7 [19.3] 

9 Pre-1-48-72 6.2 [15.5] 4.6 [12.2] 6.1 [15.4] 5.1 [12.8] 6.1 [15.0] 4.5 [11.5] 

10 Pre-1-24-72  9.6 [24.2] 6.6 [17.3] 9.4 [24.1] 7.7 [20.9] 9.5 [24.2] 6.3 [15.6] 

11 Pre-1-24-48 9.4 [25.4] 5.9 [14.8] 9.8 [25.9] 7.2 [19.0] 10 [26.2] 6.9 [18.9] 

12 Pre-1-24 21.9 [53.9] 10.5 [25.1] 22 [55.4] 13.8 [37.6] 23.3 [55.7] 11.4 [28.7] 

13 Pre-1-48 12.3 [29.7] 7.7 [18.3] 12.6 [30.4] 9.2 [24.0] 12.5 [30.7] 8.2 [21.7] 

14 Pre-1-72  15 [41.5] 10 [28.1] 14.7 [42.6] 12.6 [39.7] 14.2 [41.6] 7.7 [19.1] 

15 Pre-1-96 29.1 [117.7] 12.7 [38.2] 28.6 [104.5] 22.6 [86.5] 28.2 [115.7] 9.5 [24.4] 

16 Pre-1 72.2 [242.9] 16.1 [43.6] 71 [242.3] 30.8 [118.4] 77.4 [279.1] 14 [34.5] 

17 1-24 22 [55.9] 21.6 [53.5] 21.9 [56.9] 21.9 [53.8] 23.7 [61.2] 22.1 [52.9] 

18 1-48 12.3 [29.8] 12.8 [30.5] 12.5 [30.5] 12.9 [31.4] 12.3 [30.7] 12.9 [32.0] 

19 1-72 15 [41.5] 15.6 [42.5] 14.7 [42.7] 15.2 [42.5] 14.2 [41.7] 14.8 [42.1] 

20 1-96 29.1 [117.4] 29.6 [118.8] 28.7 [104.5] 29.2 [105.2] 28.1 [115.8] 28 [103.8] 

21 1 72.2 [242.3] 71.9 [235.4] 71 [241.9] 71.4 [236.1] 77.2 [277.9] 76.5 [279.7] 

C
H

IL
D

R
EN

 

2 Pre-1-24-48-72 0.7 [2.9] 0.6 [2.4] 0.7 [3.1] 0.7 [3.0] 0.8 [3.8] 0.6 [2.5] 

3 Pre-1-24-48-96 2.3 [8.3] 2 [7.2] 2.3 [8.5] 2.2 [7.7] 2.5 [9.7] 1.7 [6.4] 

4 Pre-1-24-72-96 6.5 [20.3] 5.7 [17.3] 6.7 [21.8] 6.6 [21.5] 6.3 [19.9] 4.3 [13.4] 

5 Pre-1-48-72-96 9 [23.8] 8.6 [22.2] 9.3 [24.6] 9.3 [24.6] 9.1 [24.3] 6.3 [15.6] 

6 Pre-1-72-96 24.6 [69.6] 20.7 [60.9] 24.5 [69.2] 24.2 [69.1] 23.9 [67.4] 10.2 [26.9] 

7 Pre-1-48-96 10.1 [25.2] 9.4 [24.3] 10.7 [27.1] 10.5 [26.7] 10.3 [25.7] 6.9 [16.8] 

8 Pre-1-24-96 7.9 [27.7] 6.8 [21.7] 7.9 [26.8] 7.7 [25.8] 8.5 [27.6] 5.2 [17.7] 

9 Pre-1-48-72 9.2 [23.5] 8.7 [22.1] 9.5 [24.7] 9.4 [24.6] 9.3 [24.2] 6.4 [15.9] 

10 Pre-1-24-72  6.7 [21.6] 5.8 [17.8] 6.9 [21.9] 6.8 [21.4] 6.6 [20.8] 4.4 [13.8] 

11 Pre-1-24-48 2.4 [9.3] 2.1 [7.6] 2.5 [9.3] 2.4 [8.6] 2.6 [11.3] 1.8 [7.1] 

12 Pre-1-24 8.4 [29.1] 6.9 [21.7] 8.3 [28.2] 8 [26.8] 8.9 [30.8] 5.3 [17.2] 

13 Pre-1-48 10.3 [25.5] 9.6 [24.2] 10.9 [27.4] 10.7 [26.7] 10.5 [25.9] 7 [16.9] 

14 Pre-1-72  25.2 [70.1] 21.1 [58.7] 24.7 [70.1] 24.5 [67.8] 24.7 [73.8] 10.4 [27.2] 

15 Pre-1-96 33.2 [69.2] 24.9 [70.2] 34.2 [79.1] 32.2 [78.6] 34.5 [77.5] 11.6 [29.8] 

16 Pre-1 31 [69.1] 25.4 [67.8] 30.7 [69.7] 32.7 [73.3] 33.1 [74.3] 11.8 [30.7] 

17 1-24 8.3 [28.1] 8.5 [29.0] 8.3 [28.1] 8.3 [28.2] 9.1 [29.7] 9.6 [30.6] 

18 1-48 10.3 [25.4] 10.6 [26.0] 10.9 [27.4] 11 [27.7] 10.5 [26.0] 11.2 [28.8] 

19 1-72 25.2 [70.1] 25.3 [71.6] 24.7 [70.1] 24.6 [70.5] 24.7 [73.8] 24.8 [75.4] 

20 1-96 33.1 [69.2] 33.1 [69.8] 34.2 [79.1] 34.2 [79.3] 34.4 [77.3] 34.4 [81.7] 

21 1 31 [69.1] 31.1 [71.3] 30.7 [69.7] 30.8 [69.6] 33.1 [74.1] 33.3 [76.7] 
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Table S9. Absolute error (%, as median [95th percentile]) on C96 estimates, for all permutations 

of study day and predose handling for each age group. To assist with interpretation, a gradient 

has been applied, with absolute error from green (lowest) to red (highest). 

  

DESIGN 

C96 

TH M W 

A B A B A B 

A
D

U
LT

S 

2 Pre-1-24-48-72 7 [18.5] 5.1 [12.8] 7.3 [18.9] 4.7 [11.2]         3 Pre-1-24-48-96 6.4 [16.1] 4.4 [10.8] 6.8 [17.7] 4.6 [12.5]         
4 Pre-1-24-72-96 4.3 [12.3] 3.1 [8.4] 4.3 [11.7] 3.2 [8.7]         
5 Pre-1-48-72-96 1.6 [4.7] 1.1 [3.3] 1.6 [4.4] 1.3 [3.7]         
6 Pre-1-72-96 5.2 [14.9] 3.6 [10.0] 4.9 [13.5] 3.7 [10.7]         
7 Pre-1-48-96 7.1 [18.1] 4.8 [11.8] 7.5 [19.8] 5.2 [13.5]         
8 Pre-1-24-96 10 [28.1] 6.2 [16.4] 10.5 [28.4] 7.1 [20.7]         
9 Pre-1-48-72 7.6 [19.3] 5.4 [13.1] 8 [19.8] 5.1 [11.8]         

10 Pre-1-24-72  10.1 [24.9] 7 [16.9] 10.7 [26.4] 6.8 [16.4]         
11 Pre-1-24-48 15.8 [38.6] 8.9 [23.5] 14.9 [37.2] 8 [19.5]         
12 Pre-1-24 32 [77.3] 12.2 [30.2] 29.3 [69.6] 12.2 [30.8]         
13 Pre-1-48 17.3 [42.2] 9.4 [23.5] 17 [42.6] 8.7 [20.9]         
14 Pre-1-72  11.2 [28.2] 7.5 [18.4] 11.8 [28.4] 7.5 [18.4]         
15 Pre-1-96 13.1 [40.5] 7 [19.2] 13.6 [38.6] 8.7 [26.5]         
16 Pre-1 88.3 [339.2] 13.4 [33.4] 90.2 [366.0] 15 [41.9]         
17 1-24 32.6 [85.9] 30.4 [72.2] 28.9 [71.2] 28.6 [67.7]         
18 1-48 17.3 [43.5] 17.4 [42.7] 16.8 [42.7] 18 [45.1]         
19 1-72 11.3 [27.6] 11.8 [29.3] 11.8 [29.1] 13.2 [31.9]         
20 1-96 13.1 [40.6] 14.4 [41.9] 13.6 [38.6] 15.4 [40.0]         
21 1 88.1 [336.9] 84.8 [317.7] 90.2 [365.6] 89.7 [349.1]         

A
D

O
LE

SC
EN

TS
 

2 Pre-1-24-48-72 4.5 [13.8] 3.2 [9.8] 4.5 [13.8] 3.4 [9.4] 4.9 [15.0] 3.9 [12.4] 

3 Pre-1-24-48-96 6.4 [16.4] 4.4 [11.0] 6.6 [16.9] 5.2 [14.0] 6.1 [17.3] 4.7 [13.6] 

4 Pre-1-24-72-96 6.1 [16.1] 4.3 [12.0] 6.2 [16.0] 5.2 [14.6] 5.7 [15.6] 3.9 [9.8] 

5 Pre-1-48-72-96 2.6 [7.2] 1.9 [5.5] 2.6 [7.1] 2.3 [6.6] 2.5 [7.1] 1.8 [4.6] 

6 Pre-1-72-96 8.5 [25.5] 5.9 [16.5] 8.7 [25.5] 7.5 [23.8] 8.4 [24.5] 4.9 [12.7] 

7 Pre-1-48-96 7.7 [20.1] 5.2 [13.2] 8 [20.0] 6.4 [17.8] 7.6 [19.7] 5.6 [14.4] 

8 Pre-1-24-96 12.7 [35.1] 7.5 [19.1] 13 [34.9] 9.8 [27.0] 11.8 [33.0] 7.7 [19.9] 

9 Pre-1-48-72 6 [15.7] 4.3 [11.1] 6 [15.5] 4.7 [11.4] 6.1 [16.8] 4.6 [13.5] 

10 Pre-1-24-72  9.4 [23.7] 6.3 [15.6] 9.2 [23.2] 7.2 [18.2] 9.3 [22.8] 6.5 [17.1] 

11 Pre-1-24-48 10.4 [30.3] 6.5 [16.6] 10.7 [30.4] 7.6 [21.3] 11.2 [31.1] 7.9 [22.8] 

12 Pre-1-24 22.8 [58.8] 10.4 [25.9] 22.9 [61.3] 13.4 [36.5] 24.4 [64.7] 12.3 [34.1] 

13 Pre-1-48 12.7 [34.0] 7.6 [18.8] 13 [34.5] 9 [23.9] 13 [35.8] 8.7 [25.8] 

14 Pre-1-72  12.5 [30.0] 8.1 [19.5] 12.3 [30.4] 9.8 [25.9] 12 [30.2] 7.4 [18.9] 

15 Pre-1-96 22.2 [68.9] 10 [26.5] 22.1 [65.3] 16.4 [56.7] 21.7 [61.6] 9.1 [24.6] 

16 Pre-1 62.9 [180.0] 13.8 [32.8] 61.8 [175.4] 23.9 [71.4] 67.9 [197.4] 14.5 [38.5] 

17 1-24 23.2 [61.2] 22.3 [57.7] 22.9 [62.9] 22.7 [60.6] 26 [72.6] 22.9 [59.8] 

18 1-48 12.7 [33.6] 13.1 [34.9] 12.9 [34.9] 13.2 [35.1] 13.2 [35.7] 13 [34.6] 

19 1-72 12.5 [30.2] 13.1 [31.6] 12.3 [30.3] 13 [31.8] 12.1 [30.4] 12.5 [32.2] 

20 1-96 22.2 [69.0] 22.9 [68.0] 22.1 [65.3] 22.8 [67.4] 21.7 [61.8] 21.5 [59.0] 

21 1 62.9 [180.0] 63.3 [183.5] 61.8 [175.2] 62.7 [182.5] 67.9 [198.6] 68 [214.1] 

C
H

IL
D

R
EN

 

2 Pre-1-24-48-72 0.5 [2.4] 0.4 [2.0] 0.6 [2.7] 0.5 [2.7] 0.6 [3.4] 0.5 [2.3] 

3 Pre-1-24-48-96 1.5 [6.5] 1.2 [5.4] 1.5 [7.0] 1.4 [6.4] 1.7 [7.9] 1.1 [5.3] 

4 Pre-1-24-72-96 3.4 [12.6] 2.9 [10.2] 3.5 [13.9] 3.5 [13.2] 3.4 [12.2] 2.2 [8.2] 

5 Pre-1-48-72-96 3.4 [9.3] 3.2 [8.5] 3.5 [9.5] 3.5 [9.4] 3.5 [9.6] 2.4 [6.3] 

6 Pre-1-72-96 9.8 [28.7] 8 [23.1] 9.8 [28.1] 9.7 [27.3] 9.6 [29.4] 4.2 [12.8] 

7 Pre-1-48-96 4.2 [11.7] 3.8 [10.2] 4.5 [13.2] 4.3 [12.8] 4.3 [12.3] 2.8 [7.9] 

8 Pre-1-24-96 4.6 [19.9] 3.7 [14.5] 4.5 [18.7] 4.3 [16.7] 5.1 [22.1] 3 [11.8] 

9 Pre-1-48-72 3.6 [9.8] 3.3 [8.7] 3.7 [10.1] 3.6 [9.9] 3.7 [10.6] 2.5 [6.7] 

10 Pre-1-24-72  3.6 [14.6] 3 [10.9] 3.7 [14.4] 3.6 [14.4] 3.6 [14.2] 2.3 [9.1] 

11 Pre-1-24-48 1.6 [7.0] 1.3 [6.0] 1.7 [7.5] 1.5 [6.6] 1.9 [9.8] 1.3 [6.0] 

12 Pre-1-24 5 [23.2] 3.8 [14.8] 4.8 [21.6] 4.6 [18.4] 5.5 [24.5] 3.1 [12.2] 

13 Pre-1-48 4.4 [12.7] 3.9 [10.9] 4.7 [13.7] 4.5 [13.0] 4.6 [14.0] 3 [8.3] 

14 Pre-1-72  10.2 [30.0] 8.3 [23.7] 10 [29.7] 10 [28.6] 10.1 [30.6] 4.4 [13.7] 

15 Pre-1-96 14.7 [46.1] 10.3 [31.4] 15.4 [50.2] 13.9 [44.0] 15.5 [50.8] 5.2 [17.2] 

16 Pre-1 14.3 [49.1] 10.7 [31.9] 14.1 [50.1] 14.6 [44.6] 15.8 [55.0] 5.4 [17.5] 

17 1-24 4.9 [22.3] 5.1 [23.5] 4.8 [21.6] 4.8 [21.1] 5.7 [23.6] 5.7 [24.2] 

18 1-48 4.4 [12.6] 4.6 [14.4] 4.7 [13.8] 4.8 [14.5] 4.6 [13.9] 5 [15.6] 

19 1-72 10.2 [30.1] 10.3 [29.8] 10 [29.7] 10 [29.4] 10.1 [30.5] 10.3 [30.4] 

20 1-96 14.7 [45.9] 14.7 [44.8] 15.4 [50.2] 15.4 [50.5] 15.5 [50.6] 15.6 [50.8] 

21 1 14.3 [48.9] 14.4 [48.9] 14.1 [50.1] 14.2 [49.3] 15.7 [54.5] 15.9 [55.4] 
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Table S10. IDAR72 and IDAR96 for all permutations of study day and predose handling for each 

age group. To assist with interpretation, a gradient has been applied, with IDAR increasing from 

green (lowest) to red (highest). 

  
DESIGN 

IDAR72 IDAR96 

TH M W TH M W 

A B A B A B A B A B A B 

A
D

U
LT

S 

2 Pre-1-24-48-72 0.0% 0.1% 0.1% 0.0%     0.8% 0.5% 0.7% 0.9%     3 Pre-1-24-48-96 0.1% 0.0% 0.3% 0.3%     2.1% 1.6% 2.4% 1.7%     
4 Pre-1-24-72-96 0.4% 0.4% 0.3% 0.4%     1.0% 0.7% 1.6% 1.1%     
5 Pre-1-48-72-96 0.0% 0.2% 0.0% 0.3%     0.4% 0.2% 0.4% 0.4%     
6 Pre-1-72-96 0.9% 0.7% 0.3% 0.6%     0.9% 0.8% 1.8% 1.4%     
7 Pre-1-48-96 0.2% 0.2% 0.3% 0.4%     2.9% 1.5% 3.0% 2.4%     
8 Pre-1-24-96 0.5% 0.2% 0.7% 1.0%     3.4% 1.5% 3.7% 2.7%     
9 Pre-1-48-72 0.0% 0.2% 0.1% 0.4%     1.0% 0.6% 1.0% 1.3%     

10 Pre-1-24-72  0.6% 0.6% 0.4% 0.2%     1.6% 1.4% 2.6% 1.7%     
11 Pre-1-24-48 0.1% 0.1% 0.3% 0.3%     2.9% 2.3% 3.1% 2.1%     
12 Pre-1-24 0.7% 0.3% 1.2% 0.9%     6.6% 2.9% 7.2% 4.2%     
13 Pre-1-48 0.2% 0.2% 0.3% 0.6%     4.1% 2.5% 3.5% 2.7%     
14 Pre-1-72  0.8% 0.7% 0.7% 0.8%     1.6% 1.2% 3.1% 1.8%     
15 Pre-1-96 1.5% 0.8% 1.8% 1.9%     4.4% 2.6% 4.9% 3.9%     
16 Pre-1 1.5% 0.9% 1.8% 2.0%     13.1% 3.7% 13.8% 5.2%     
17 1-24 0.5% 0.8% 1.3% 1.1%     6.5% 6.3% 7.1% 7.0%     
18 1-48 0.2% 0.1% 0.4% 0.5%     4.0% 4.1% 3.4% 3.6%     
19 1-72 0.8% 0.9% 0.7% 0.8%     1.7% 2.2% 3.1% 3.3%     
20 1-96 1.5% 1.6% 1.8% 2.0%     4.4% 4.5% 4.9% 5.1%     
21 1 1.5% 1.6% 1.8% 2.0%     13.1% 13.1% 13.8% 13.6%     

A
D

O
LE

SC
EN

TS
 

2 Pre-1-24-48-72 0.3% 0.5% 0.2% 0.5% 0.7% 0.2% 2.1% 1.4% 1.8% 1.7% 2.1% 1.7% 

3 Pre-1-24-48-96 1.7% 1.5% 1.9% 1.9% 1.5% 0.7% 3.7% 3.1% 3.5% 2.9% 4.0% 3.1% 

4 Pre-1-24-72-96 3.8% 3.1% 1.9% 2.4% 2.3% 1.4% 3.3% 2.0% 2.4% 1.6% 2.3% 1.0% 

5 Pre-1-48-72-96 0.9% 1.1% 1.4% 1.4% 1.4% 0.8% 1.1% 1.2% 1.0% 0.8% 1.1% 0.6% 

6 Pre-1-72-96 5.5% 4.3% 4.8% 5.1% 4.7% 1.8% 3.7% 2.5% 2.5% 1.9% 2.8% 1.9% 

7 Pre-1-48-96 2.6% 1.9% 3.6% 3.1% 2.6% 1.3% 4.5% 3.5% 4.1% 3.3% 3.8% 4.0% 

8 Pre-1-24-96 5.9% 4.0% 4.6% 4.6% 4.3% 1.4% 7.5% 4.4% 8.0% 5.1% 5.5% 4.2% 

9 Pre-1-48-72 1.1% 1.0% 1.5% 1.3% 2.0% 0.7% 2.9% 2.2% 2.3% 1.9% 2.2% 2.0% 

10 Pre-1-24-72  4.6% 3.8% 2.4% 2.3% 2.5% 1.7% 5.0% 2.9% 3.3% 3.4% 3.5% 2.0% 

11 Pre-1-24-48 1.8% 1.4% 1.7% 1.8% 1.9% 0.8% 5.8% 3.6% 5.2% 4.5% 5.2% 4.4% 

12 Pre-1-24 6.8% 4.6% 4.9% 4.7% 5.4% 1.8% 14.2% 4.5% 13.6% 6.6% 13.0% 5.8% 

13 Pre-1-48 2.4% 1.8% 3.9% 2.6% 2.9% 1.6% 6.6% 4.6% 7.3% 6.0% 5.6% 4.2% 

14 Pre-1-72  6.7% 4.2% 4.7% 4.8% 5.5% 1.9% 6.1% 3.4% 4.7% 4.3% 3.6% 2.5% 

15 Pre-1-96 12.6% 6.0% 12.8% 11.8% 13.2% 2.4% 8.1% 4.8% 10.8% 6.2% 7.6% 4.3% 

16 Pre-1 16.1% 6.1% 15.1% 13.1% 16.1% 2.8% 34.5% 5.9% 34.8% 10.0% 34.0% 6.7% 

17 1-24 6.6% 6.3% 5.0% 5.4% 5.5% 5.0% 13.0% 13.4% 13.6% 13.9% 10.7% 11.6% 

18 1-48 2.6% 2.9% 3.9% 3.5% 2.9% 3.2% 6.8% 7.2% 7.2% 7.5% 5.5% 6.2% 

19 1-72 6.7% 6.8% 4.7% 4.7% 5.5% 5.6% 5.7% 6.4% 4.6% 4.8% 3.6% 4.3% 

20 1-96 12.6% 12.6% 12.8% 13.1% 13.2% 12.2% 8.2% 9.0% 10.8% 10.0% 7.6% 7.6% 

21 1 16.2% 16.2% 15.1% 15.3% 16.0% 15.1% 34.5% 34.3% 34.6% 34.3% 33.5% 33.0% 

C
H

IL
D

R
EN

 

2 Pre-1-24-48-72 0.4% 0.6% 0.5% 0.4% 0.5% 0.3% 0.1% 0.1% 0.1% 0.0% 0.6% 0.2% 

3 Pre-1-24-48-96 1.2% 0.8% 1.3% 1.2% 1.5% 1.2% 0.2% 0.2% 0.2% 0.3% 0.7% 0.6% 

4 Pre-1-24-72-96 2.2% 2.1% 2.6% 2.3% 2.1% 1.5% 0.0% 0.0% 0.3% 0.3% 0.4% 0.2% 

5 Pre-1-48-72-96 1.5% 0.8% 1.1% 0.8% 1.4% 1.0% 0.3% 0.1% 0.2% 0.1% 0.3% 0.3% 

6 Pre-1-72-96 3.4% 2.8% 3.7% 3.4% 3.5% 2.4% 0.3% 0.2% 0.3% 0.4% 0.5% 0.2% 

7 Pre-1-48-96 2.2% 1.5% 1.9% 1.6% 2.5% 2.0% 0.5% 0.3% 0.3% 0.2% 0.4% 0.6% 

8 Pre-1-24-96 3.6% 3.0% 4.0% 3.2% 3.4% 2.1% 0.4% 0.2% 0.4% 0.3% 0.9% 0.8% 

9 Pre-1-48-72 1.8% 1.1% 1.1% 0.8% 1.4% 1.2% 0.3% 0.1% 0.2% 0.1% 0.5% 0.5% 

10 Pre-1-24-72  2.4% 2.1% 2.9% 2.4% 2.0% 1.3% 0.2% 0.1% 0.3% 0.5% 0.5% 0.4% 

11 Pre-1-24-48 1.1% 1.0% 1.2% 1.1% 1.7% 1.3% 0.3% 0.2% 0.1% 0.3% 1.0% 0.7% 

12 Pre-1-24 4.4% 3.2% 4.0% 3.5% 4.1% 2.1% 0.6% 0.3% 0.7% 0.4% 1.5% 0.9% 

13 Pre-1-48 2.3% 1.5% 2.1% 1.7% 2.7% 1.7% 0.7% 0.3% 0.2% 0.2% 0.6% 1.0% 

14 Pre-1-72  3.8% 3.3% 4.2% 3.8% 4.7% 2.5% 0.4% 0.1% 0.4% 0.4% 0.7% 0.6% 

15 Pre-1-96 6.8% 3.8% 8.9% 6.5% 9.6% 3.7% 0.7% 0.3% 0.6% 0.3% 1.0% 1.1% 

16 Pre-1 9.2% 4.5% 9.3% 8.1% 12.1% 4.3% 0.9% 0.5% 0.7% 0.4% 1.7% 1.0% 

17 1-24 4.5% 5.0% 3.9% 4.3% 3.3% 3.3% 0.4% 0.6% 0.7% 0.9% 1.3% 1.7% 

18 1-48 2.4% 2.2% 2.0% 2.0% 2.4% 2.4% 0.5% 0.7% 0.2% 0.2% 0.9% 0.8% 

19 1-72 3.8% 4.2% 4.2% 4.1% 4.7% 5.3% 0.3% 0.3% 0.4% 0.2% 0.7% 0.7% 

20 1-96 6.8% 7.3% 8.9% 8.6% 9.6% 9.6% 0.7% 0.7% 0.6% 0.6% 1.0% 1.2% 

21 1 9.2% 9.1% 9.3% 9.2% 12.1% 11.9% 0.9% 0.9% 0.7% 0.7% 1.7% 1.9% 
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Figure S1. Scatter plots of η-values versus age following the inclusion of fat-free mass on CL, 

V1 and V2.   
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Figure S2. Histograms of parameters estimates for fixed effects from bootstrap analysis  
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Figure S3. Histograms of parameter estimates of variability from bootstrap analysis 

 

Figure S4. Histograms of prediction errors on half-life, time to 2% activity, clearance, and 

central volume from internal cross-validation 
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Figure S5. Correlation between FFM and age 
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Figure S6.  Correlation plots for all body size metrics used in simulations for the normal BMI 

subgroup. Diagonal elements contain histograms. 

 

 
Figure S7. Correlation plots for all body size metrics used in simulations for the 

overweight/obese subgroup. Diagonal elements contain histograms.  
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List of WAPPS-Hemo Centres 

Alberta Children's Hospital, Calgary, Canada 

Amrita Hospital, Kochi, India 

Antwerp University Hospital, Edegem, Belgium 

AOU Città della Salute e della Scienza di Torino, Turin, Italy 

Arthur Bloom Haemophilia centre, Cardiff, United Kingdom 

Azienda Ospedaliera Pugliese-Ciaccio, Catanzaro, Italy 

Azienda Ospedaliero Universitaria di Parma, Parma, Italy 

BC Children's Hospital, Vancouver, Canada 

Beijing Children's Hospital, Beijing, China 

Belarusian Centre for Paediatric Oncology and Haematology, Minsk, Belarus 

Bern University Hospital, Bern, Switzerland 

Bloodworks Northwest, Seattle, United States 

Calvary Mater Hospital/John Hunter Children's Hospital, Newcastle, Australia 

Center for Bleeding and Clotting, Minneapolis, United States 

Center for Hemorrhagic and Thrombotic Diseases, University Hospital of Udine, Udine, Italy 

Center for Inherited Blood Disorders, Orange County, United States 

Centre de traitement des Hémophiles Eaubonne-Montmorency, Montmorency, France 

Centre de traitement des Hémophiles Hôpital, Mignot, France 

Centre Hospitalier Le Mans, Le Mans, France 

Centro Asistencial Regional de Hemoterapia (CARDHE), Bahia Blanca, Argentina 

Centro de Hemoterapia e Hematologia do Espirito Santo, Victoria, Brazil 

Centro Emofilia di Padova, Padova, Italy 

Centro Emofilia e Trombosi, Bari, Italy 

Centro Hospitalar de Lisboa Central, Lisbon, Portugal 

Centro Médico Imbanaco, Cali, Colombia 

Centro. Nacional de Hemofilia, Caracas, Venezuela 

CHEO Research Institute, Ottawa , Canada 

Children's Hospital Colorado Anschutz Medical Campus, Aurora, United States 

Children's Hospital of Michigan, Detroit, United States 

Children's Hospital, Boston, United States 

Children's Hospital, Los Angeles, United States 

Children's Medical University Hospital, Riga, Latvia 

Children's of Minnesota, Minneapolis, United States 

CHR de la Citadelle, Liège, Belgium 

Christchurch Hemophilia Treatment Centre, Christchurch, New Zealand 

CHRU de Besançon, Besançon, France 

CHU Caen, Caen, France 

CHU de Rouen, Rouen, France 

CHU Sainte Justine, Montreal, Canada 

CHU, University Hospital of Nancy, Nancy, France 

Clinique Vasculaire et Coagulation, Angers, France 

Complejo Asistencial Dr. Sótero del Río, Santiago, Chile 



 

231 
 

Complejo Hospitalario de Navarra, Pamplona, Spain 

Congenital Coagulopathies Unit, Balearic Islands, Spain 

CTH-Cordoba, Cordoba, Argentina 

Dr. von Haunersches Kinderspital, Munich, Germany 

Ege University Hospital, Izmir, Turkey 

Emory University, Atlanta, United States 

Erasmus MC, Sophia Children's Hospital, Rotterdam, Netherlands 

Exeter and Barnstaple Haemophilia Centre, Barnstaple, United Kingdom 

Farwaniya General Hospital, Al Farwaniyah, Kuwait 

Fondazione IRCCS Policlinico San Matteo, Pavia, Italy 

Fondazione Policlinico universitario "Agostino Gemelli", Rome, Italy 

Foothills Medical Centre, Calgary, Canada 

Fundación de Hemofilia de Salta, Salta, Argentina 

Fundacion de la Hemofilia Rosario, Rosario, Argentina 

Fundacion de la Hemofilia, Buenos Aires, Argentina 

Gent University Hospital, Gent, Belgium 

Gulf States Hemophilia, Houston, United States 

Haematology and Haemophilia Centre Catelfranco Veneto, Catelfranco Veneto, Italy 

Haemophilia Centre Copenhagen, Copenhagen, Denmark 

Haemophilia Centre of Perugia, Perugia, Italy 

Haemophilia Comprehensive Care Ljubljana, Ljubljana, Slovenia 

Hamilton Health Sciences, Hamilton, Canada 

Hämophilie-Zentrum Rhein Main GmbH, Frankfurt, Germany 

Heim Pál Gyermekkórház, Budapest, Hungary 

Helsinki University Hospital, Helsinki, Finland 

Hematologia y oncologia del oriente SAS, Bogota, Colombia 

Hematology and Oncology Department, CHU Nord, St. Etienne, France 

Hemocentro Unicamp, São Paulo, Brazil 

Hemofiliecentrum, UZ Leuven, Leuven, Belgium 

Hemophilia Center of Western New York, Buffalo, United States 

Hemophilia Center of Western Pennsylvania, Pittsburgh, United States 

Hemophilia Comprehensive Care Team, Jakarta, Indonesia 

Hemophilia Treatment Center of Central PA, Hershey, United States 

Hemostasis and Thrombosis Center of Nevada, Las Vegas, United States 

Hemostasis and Thrombosis Center Rhode Island, Rhode Island, United States 

Hôpital de l'Enfant-Jésus, Quebec City, Canada 

Hôpital Trousseau, CHRU de Tours, Tours, France 

Hôpital Universitaire des Enfants Reine Fabiola, Huderf, Belgium 

Hôpitaux Universitaires de Genève, Geneva, Switzerland 

Hospital Alvaro Cunqueiro, Vigo, Spain 

Hospital Clinico Universitario de Santiago, Santiago, Spain 

Hospital de la Santa Creu i Sant Pau, Barcelona, Spain 

Hospital de Santa Maria, Lisbon, Portugal 
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Hospital General Universitario de Alicante, Alicante, Spain 

Hospital Humberto Notti, Mendoza, Argentina 

Hospital Miguel Servet, Zaragoza, Spain 

Hospital Posadas, Buenos Aires, Argentina 

Hospital Regional Universitario de Málaga, Málaga, Spain 

Hospital Roberto del Río, Santiago, Chile 

Hospital Sant Joan de Déu, Barcelona, Spain 

Hospital Teresa Herrera Materno Infantil, Coruna, Spain 

Hospital Universitario Dr José Eleuterio Gonzalez, Monterrey, Mexico 

Hospital Universitario La Paz, Madrid, Spain 

Hospital Universitario Virgen de la Arrixaca, Murcia, Spain 

Hospital University and Politechnic La Fe, Valencia, Spain 

Hospital Vall d'Hebron, Barcelona, Spain 

Hospital Virgen de las Nieves, Granada, Spain 

Hull and East Yorkshire Hospitals NHS Trust, Hull, United Kingdom 

Indiana Hemophilia and Thrombosis Center, Indianapolis, United States 

Institute of Hematology and Blood Diseases Hospital Chinese Academy of Medical Science, Tianjin,  

     China 

Instituto Guatemalteco de Seguridad Social, Guatemala City, Guatemala 

Intergral Solutions SD S.A.S, Bogota, Colombia 

IPS Especializada, Bogota, Colombia 

IWK Health Centre, Halifax, Canada 

Johns Hopkins All Children's Hospital, St. Petersburg, United States 

Kaohsiung Medical University Hospital, Kaohsiung, Taiwan 

King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia 

Kingston General Hospital, Kingston, Canada 

Klinik für Kinder- und JugendmedizinUniversitätsklinikum Jena, Jena, Germany 

Korea Hemophilia Foundation Seoul Clinic, Seoul, South Korea 

Kuopio University Hospital, Kuopio, Finland 

Kyung Hee University Hospital at Gangdong, Seoul, South Korea 

Laiko General Hospital of Athens, Athens, Greece 

L'hemostase de Strasbourg, Strasbourg, France 

London Health Sciences Center, London, Canada 

Luzerner Kantonsspital, Lucerne, Switzerland 

Manitoba Health Sciences Centre, Winnipeg, Canada 

Massachusetts General Hospital, Boston, United States 

Maxima Medisch Centrum, Veldhoven, Netherlands 

Mohács Hospital, Mohács, Hungary 

Montreal Children's Hospital, Montreal, Canada 

Nagoya University Hospital, Nagoya, Japan 

Nanfang Hospital, Guangzhou, China 

National Haemophilia Center Budapest, Budapest, Hungary 

Nationwide Children's Hospital, Columbus, United States 
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Nemours Children's Specialty Care, Jacksonville, United States 

North Dakota Hemostasis and Thrombosis Treatment Center, Fargo, United States 

North Estonia Medical Center, Tallinn, Estonia 

Northern Alberta Bleeding and Rare Blood Disorders Clinic - Kaye Edmonton Clinic, Edmonton, Canada 

Northwest Ohio Hemophilia Treatment Center, Toledo, United States 

Ogikubo Hospital, Tokyo, Japan 

Oklahoma Center for Bleeding and Clotting Disorders, Oklahoma City, United States 

ONCOORIENTE SAS, Villavicencio, Colombia 

Oregon Health and Science University, Portland, United States 

Orthopaedic Hemophilia Treatment Center, Los Angeles, United States 

Ospedale S. Bortolo, Vicenza, Italy 

Oulu University Hospital, Oulu, Finland 

Palmetto Health Richland, Columbia, United States 

Pediatric Hemophilia Center of Turin, Italy 

Peking Union Medical College Hospital, Beijing , China 

Phoenix Children's Hospital, Phoenix, Unites States 

Policlinico di Palermo, Palermo, Italy 

Policlinico Umberto I - "Sapienza" Università di Roma, Rome, Italy 

Pontificia Universidad Católica de Chile, Santiago, Chile 

Rady Children's Hospital, San Diego, United States 

Riley Children's Health, Indianapolis, United States 

Royal Adelaide Hospital, Adelaide, Australia 

Royal Brisbane and Women's Hospital, Brisbane, Australia 

Royal Free Hospital, London, United Kingdom 

Royal London, London, United Kingdom 

Ruan Rehacer IPS, Bogota, Colombia 

Rush University Medical Center, Chicago, United States 

Sahlgrenska University Hospital, Gothenburg, Sweden 

Saskatchewan Bleeding Disorders Program, Saskatoon, Canada 

Sheffield Children's Hospital, Sheffield, United Kingdom 

SickKids Hospital, Toronto, Canada 

Skåne University Hospital, Malmö, Sweden 

South Texas Hemophilia Treatment Center, San Antonio, United States 

St. George's University Hospital, London, United Kingdom 

St. Joseph's Hospital - Center for Bleeding and Clotting Disorders, Tampa, United States 

St. Jude Affiliate Clinic at NH Hemby Children's Hospital, Charlotte, United States 

St. Jude Children's Research Hospital, Memphis, United States 

St. Michael's Hospital, Toronto, Canada 

St. Paul's Hospital, Vancouver, Canada 

St-Luc University Hospital, Brussels, Belgium 

Stollery Children's Hospital, Edmonton, Canada 

Taichung Veterans General Hospital, Taichung, Taiwan 

Taipei Medical University Hospital Hemophilia Center, Taipei, Taiwan 
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Tampere University Hospital, Tampere, Finland 

The Alfred Hospital, Melbourne, Australia 

The Bleeding and Clotting Disorders Institute, Peoria, United States 

The Children's Hospital at Montefiore, New York, United States 

The Children's Hospital of Philadelphia, Philadelphia, United States 

The Children's Hospital, Zhengjiang University School of Medicine, Hangzhou, China 

The Maine Hemophilia and Thrombosis Center, Scarborough, United States 

The Royal Children's Hospital, Melbourne, Australia 

The Women's and Childrens Hospital, Adelaide, Australia 

Turku University Hospital, Turku, Finland 

U.O. Pediatria Generale e Specialistica "B. Trambusti", Bari, Italy 

UHHS Cleveland. University Hospitals Health System, Cleveland, United States 

Universitaets - Kinderklinik Wien, Vienna, Austria 

Universitätsklinikum Bonn, Bonn, Germany 

University Children's Hospital Berne, Berne, Switzerland 

University Children's Hospital Zurich, Zurich, Switzerland 

University Hospital Bristol, Bristol, United Kingdom 

University Hospital Brno, Brno, Czech Republic 

University Hospital Coventry and Warwickshire, Coventry, United Kingdom 

University Hospital Magdeburg, Magdeburg, Germany 

University Hospital Southampton, Southampton, United Kingdom 

University Hospitals of Leicester, Leicester, United Kingdom 

University Medical Center Utrecht, Utrecht, Netherlands 

University Medical Centre Ljubljana, Ljubljana, Slovenia 

University of California San Francisco Pediatric Hemophilia Treatment Center, San Francisco, United    

     States 

University of Debrecen, Debrecen, Hungary 

University of Florida Hemophilia Treatment Cente, Gainsville, United States 

University of Helsinki and Children's Hospital, Helsinki, Finland 

University of Iowa Children's Hospital, Iowa City, United States 

University of Kentucky Hemophilia Treatment Center, Lexington, United States 

University of Louisville, Louisville, United States 

University of Miami Hemophilia Treatment Center, Miami, United States 

University of North Carolina, Chapel Hill, United States 

University of Szeged, Szeged, Hungary 

University of Virginia Health System, Charlottesville, United States 

University of Wisconsin Comprehensive Program for Bleeding Disorders, Madison, United States 

Valley Children's Healthcare, Madera, United States 

Vanderbilt University Medical Center, Nashville, United States 

Vivantes Clinic in Friedrichshain, Berlin, Germany 

Wake Forest University, Winston-Salem, United States 

Weill Cornell Medical College, New York, United States 

  Zurich University Hospital, Zurich, Switzerland 


