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Abstract

In recent years, the amount of data being generated for consumption by enterprises has
increased exponentially. Enterprises typically work with structured data, but oftentimes
the data being generated is semi-structured or unstructured in nature. In particular, there
exists a wealth of unstructured text data (customer reviews, social media posts, news
articles, etc.) containing information that could provide value to an organization. As data
from different sources often reside in silos, a number of questions arise: How do we integrate
the structured and unstructured data? How can we curate and refine the data? Can we
do this at scale?

In this thesis, I present dstlr – a platform for scalable knowledge graph construction
from text collections. I show how assertions extracted from a collection of unstructured
text documents can be used to form a knowledge graph, enabling integration of structured
and unstructured data. Further, I show that linking to an existing knowledge graph enables
rule-based data curation using the additional external information. I demonstrate this on
a large collection of news articles, highlighting the horizontal scale-out of the system.
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Chapter 1

Introduction

The proliferation of the web in the past two decades has enabled the generation of large
volumes of data by its users. With half of the Earth’s population using the internet, it is
estimated that 2.5 quintillion bytes (2.1 exabytes) of data is generated each day.1 Social
media networks and news outlets account for a large part of this content, for example, with
around 473,000 tweets and 510,000 Facebook comments posted every minute.2

With all of this data available, it makes sense to explore how an enterprise could take
advantage to provide value for the business. Enterprises typically work with structured
data residing in relational databases. For example, a hotel chain may maintain records
for customer transactions containing location, number of nights stayed, amount spent,
and more. However, there exists large volumes of data that is “stranded” in unstruc-
tured text (e.g., in customer reviews on Google, TripAdvisor, etc.) that provide additional
insights that company generated structured data cannot provide. With access to this
unstructured knowledge, capabilities such as automatically identifying which competitors
customers write about in negative reviews could be possible.

Fortunately, there are a number of natural language processing tools that facilitate the
extraction of structured data from text. This data is typically represented as a knowledge
graph, a structured collection of linked data. However, the creation of knowledge graphs,
such as Wikidata, is not without problems. Knowledge graphs are generally handcrafted
through community or crowd-sourcing efforts and are expensive (in terms of time, money,
or both) to create. Further, maintaining provenance back to the source of information is

1https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-
mind-blowing-stats-everyone-should-read

2https://www.domo.com/learn/data-never-sleeps-6
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Figure 1.1: The dstlr architecture

crucial for verification of information and is generally lost in the knowledge graph con-
struction process. Although plenty of unstructured text for generating knowledge graphs
is available, extracting structured knowledge from the text is non-trivial and computa-
tionally expensive. Additional problems such as the quality of extracted information and
interacting with unstructured text from systems that typically work with structured data
exist as well.

This work introduces a platform to address these problems through the automation
of knowledge graph construction. The architecture for the platform, called dstlr, is
presented in Figure 1.1. dstlr takes a collection of unstructured text documents and
uses Anserini, our academic information retrieval (IR) toolkit, to index documents into
the distributed Solr search engine for scalable indexing, searching, and as a data source
for downstream processes [2, 10, 11]. The computations required to construct a knowledge
graph from the documents are horizontally scaled out and an inference layer is exposed for
data curation via graph queries enabled by storing information extracted from documents
(called assertions) in a graph store. Provenance is maintained back to the specific spans of
text in the source documents that information was extracted from to provide attribution.
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Mentions of entities in assertions are linked to an external knowledge graph and ground-
truth values for assertions (called facts) are stored in the graph store as well. The produced
knowledge graph supports the development of applications to support a number of use cases
such as finding supporting and inconsistent information between the text and existing
data sources, providing missing information to existing data sources, generating distantly
supervised training data for relational extractors to learn from, and more.

More concretely, given an input document collection D and a pre-existing, external
knowledge graph G, the task is to produce a knowledge graph K comprised of (source,
link, target) tuples extracted from text documents in D. Stanford’s CoreNLP toolkit
[7] is scaled out via the Apache Spark distributed analytics engine [12] to perform infor-
mation extraction on documents indexed into SolrCloud, a distributed Solr cluster, while
maintaining provenance back to the source document. Mentions of entities (i.e., source
nodes) were linked to Wikidata entities (the choice of external knowledge graph G) and
the fixed link types from CoreNLP were manually aligned with Wikidata properties such
that access was gained to existing information in the external knowledge graph, integrating
the unstructured text with existing structured data. The assertions from the documents
were augmented with facts from linked Wikidata entities and were loaded into the Neo4j
graph database, enabling exploration and manipulation via Neo4j’s native Cypher query
language. This, in turn, allows the formulation of Cypher queries for data curation sup-
porting the use cases described above. The platform is demonstrated on nearly 600K
Washington Post news articles, a proxy due to the lack of enterprise data access for this
thesis, and example applications are provided that demonstrate the use cases described
above.

1.1 Contributions

The contribution of this thesis is the dstlr architecture which is composed of:

• The integration of the Solr search engine and document store in Anserini to enable
scalable, distributed document indexing, retrieval, and as a data source for down-
stream analytics

• The design of a horizontally scalable architecture integrating Solr, Spark, CoreNLP,
Apache Jena, and Neo4j for knowledge graph construction from text documents, in-
cluding linking entities to an external, pre-existing knowledge graph and augmenting
extracted relations with external information
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• A rule-based data curation approach using Cypher graph database queries enabling
a number of applications such as: the discovery of supporting and inconsistent in-
formation between documents and the external knowledge graph (evidence for and
against an assertion), missing information in the knowledge graph that is present in
a document, and the generation of distantly supervised training data which could be
used to further train relational extractors

1.2 Thesis Organization

The thesis is organized as follows:

• Chapter 2 discusses indexing text documents into Solr via Anserini, the benefits this
provides, and a performance evaluation against Lucene. This corresponds to the
bottom-left section of Figure 1.1.

• Chapter 3 describes the architecture and implementation of the system for knowledge
graph construction, from querying text documents to loading data into the graph
store. This corresponds to the middle and bottom-right sections of Figure 1.1.

• Chapter 4 highlights some data curation applications enabled by the platform. This
corresponds to the top section of Figure 1.1.

4



Chapter 2

Indexing Documents via Solr

Large volumes of unstructured text is available from which a knowledge graph can be
constructed. These text documents could be collected and stored as text files in a file
system, however this does not facilitate easy access from network enabled applications
which may not reside on the same machine. Having documents available in a document
store, on the other hand, makes it less cumbersome to write applications which need access
to the documents. Solr is a distributed search engine which fills this need by providing
APIs and user interfaces for access to documents. Solr leverages an inverted index to
efficiently select document subsets of interest which is much faster than a brute-force scan
and filter approach [3] when building a knowledge graph over subsets of documents. Using
Solr as a document store provides a data source for downstream processes which construct
the knowledge graph.

This chapter covers the integration of Solr, a Lucene-based distributed search engine,
into our Anserini information retrieval toolkit. This is accompanied by a performance
analysis comparing indexing with Solr to indexing with Lucene directly, the default imple-
mentation provided by Anserini.

5



2.1 Background

2.1.1 Lucene

Lucene is an open-source, high-performance text indexing and search library for the JVM
maintained by the Apache Software Foundation.1 Lucene provides a number of components
(e.g., tokenizers, language-specific analyzers, indexers, searchers, etc.) that can be used
in conjunction to construct a document retrieval pipeline within an application. It is
important to note that Lucene itself is not a search engine, but merely a search library
that provides components that could be used to create a search engine. Lucene is commonly
used in industry to support both index- and search-heavy workloads. For example, it is
used as the basis for serving billions of queries per day for tweets at Twitter.2 Although
Lucene itself can facilitate indexing and retrieval, it lacks the built-in machinery to conduct
IR experiments.

2.1.2 Solr

Solr is an open-source, high-performance search platform based on Lucene also maintained
by the Apache Software Foundation.3 Although Lucene provides the individual compo-
nents to support document retrieval, it itself is not a search engine but instead a search
library containing a collection of components which could be used for the index and re-
trieval functionality required to build a search engine. Solr aims to operationalize Lucene
into a fully-fledged search platform supporting easy document indexing and retrieval by
various applications without needing to know the inner workings of retrieval as required
with Lucene. Unlike Lucene, Solr provides: single-node and multi-node operational modes,
distributed and fault-tolerant document indexing and retrieval capabilities, powerful man-
agement interfaces, and an easy-to-use REST API (which lowers the barrier of entry to
Lucene while also exposing low-level Lucene internals for more advanced users).

2.1.3 Anserini

Anserini is an open-source information retrieval toolkit based on Lucene that enables re-
searchers to perform replicable information retrieval experiments using technologies battle

1https://lucene.apache.org/
2https://lucidworks.com/post/how-twitter-uses-apache-lucene-for-real-time-search/
3https://lucene.apache.org/solr/
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tested in industry [2, 10, 11]. Lucene itself is able to index arbitrary text but lacks the abil-
ity to natively index document collections used in IR research which are often in formats
such as WARC, JSON, or HTML. Further, Lucene is not able to evaluate and compute
metrics (e.g., MAP, P@30, etc.) for retrieval results using tools such as trec eval which
are important for academic information retrieval.4 Anserini aims to streamline this process
for researchers by enabling an integrated environment to facilitate IR research. Anserini
provides high-performance, multi-threaded document parsing and indexing using Lucene
(scaling up to collections containing millions of documents), retrieval, and evaluation using
trec eval.

2.2 Solr Integration in Anserini

Anserini is currently built around Lucene and while this proves to be a great base for IR
research, there are two main drawbacks motivating the integration of Solr into Anserini.

First, Lucene indexes are monolithic in nature. When documents are indexed they are
written to disk on a single machine. When document collections are large, this bottleneck
means the indexing process takes a long time while also increasing search latencies. For
example, indexing ClueWeb12 produces an index that is up to 12TB large.5 Due to the
large index size, operating on such a document collection requires a machine with:

1. many CPU cores for indexing (a process which takes multiple days)

2. large volumes of SSD disk space to hold the index and improve search latencies

Second, in using Lucene directly there is a lack of search interfaces available in the
ecosystem to support IR research and interactive exploration of documents. With a Lucene
index on disk, exploring documents is not very user friendly and requires command line
tools or a Java program for searching through documents. Users of Anserini, who may
not be information retrieval researchers, might not have the skills required to write such a
program or use a more low-level index exploration tool such as luke.6

Motivated by these drawbacks, it makes sense to explore how Solr can be integrated
into Anserini.

4https://trec.nist.gov/trec eval/
5https://lemurproject.org/clueweb12/
6https://github.com/DmitryKey/luke
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2.2.1 Integration

In terms of integration effort, as both Solr and Anserini are based on Lucene, the integration
is fairly seamless and the existing Anserini machinery for document parsing and evaluation
could be used. However, new indexing and retrieval components needed to be integrated
into Anserini to support Solr. This work focuses on indexing and searching using the
Solr REST APIs for interactive retrieval rather than retrieval for IR experiments (which
is only briefly discussed as I did not implement such a feature). Whether a single-node or
multi-node Solr is used, Solr runs in “cloud” mode which means that a ZooKeeper instance
maintains state for each Solr node and holds the configuration for each Solr instance. Solr
running in this mode is called SolrCloud.

In order to use Solr instead of Lucene as a document store, some Anserini specific
configuration options for Solr with ZooKeeper to align metadata (e.g., field types) and a
single new class for indexing was required.

First, Anserini specific configuration options needed to be provided to ZooKeeper such
that when indexing a new collection in Solr, the schema that Anserini expects is present.
In Solr, a schema defines the names of fields, their type (string, text, numeric, etc.), the
analysis pipelines on a per-field basis, which similarity function to use for retrieval, and
more. A “collection” in Solr consists of a name along with a schema where documents
indexed to this collection should conform to the specified schema. At creation time, col-
lections have other parameters such as the number of shards to split the index into and
how many replicas of each shard to maintain across the cluster. In general, Anserini ex-
pects an id field (which is provided by default in the schema) along with either a raw or
contents field depending on the indexing mode in Anserini. This differs for Twitter and
WashingtonPost document collections as they have fields specific to their format. When
raw documents are indexed, the document body is placed in the raw field without any
additional parsing. For example, this could be the HTML source code of a webpage. On
the other hand, indexing transformed documents does additional parsing of the content
before indexing and is stored in the contents field. For example, this would be the HTML
body text from a webpage. Solr uses BM25 similarity for documents by default, which is
the default for Lucene, however the BM25 parameters needed to be adjusted to align with
values used in Anserini.

Second, a new indexer was implemented which is able to take advantage of the existing
document parsing capabilities of Anserini such that integration involved interfacing with
the Solr REST APIs. The new indexer batches documents to offset the overhead of HTTP
calls (see Section 2.3) and calls Solr REST APIs to index documents into a pre-created
collection using the Anserini schema. Of course, Solr acts as a proxy and indexes documents

8
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Figure 2.1: Architectures for Solr integration in Anserini. Left to Right: (a) the current
Anserini design using Lucene; (b) Anserini indexing into a single-node SolrCloud instance
(on the same machine); (c) Anserini indexing into a multi-node SolrCloud cluster.

to disk using Lucene.

In terms of retrieval, a searcher that interfaces with Solr REST APIs for document
querying and a translation layer for creating Lucene document objects from Solr document
objects was required. This translation layer allows the normal Anserini index–retrieval–
evaluation pipeline to be run without changes. This, however, deals with information
retrieval experiments rather than more traditional document search and as such is not
covered in detail. Searching without the IR machinery for evaluation, however, is supported
by the Solr REST APIs.

2.2.2 Multi-node Indexing and Retrieval

Solr provides operational modes for single-node and multi-node clusters. When running
Solr, there are two modes: standalone mode or cloud mode. If a single-node Solr setup is
desired, either standalone mode or cloud mode can be used. A multi-node setup, however,
requires cloud mode.

In standalone mode, Solr runs exactly as you would expect as a self-contained process
without any external dependencies. In cloud mode, Solr uses ZooKeeper for management
of cluster state and for centralized configuration management. ZooKeeper can be run
internally within one of the nodes or as an external process to facilitate high-availability
with a cluster of ZooKeeper nodes. Different architectures of Anserini in conjunction with
Lucene or Solr are shown in Figure 2.1. When using Solr, it is flexible where the Solr server

9



runs in relation to Anserini. Solr can run on the same machine or a different machine for
standalone mode and on a cluster of machines for cloud mode.

For integration with Anserini, it is assumed that Solr is running in cloud mode as
SolrCloud. Cloud mode provides a slightly richer management interface along with the
ability to add nodes to the cluster in the future. It also requires a different SolrClient in
the Java implementation for interfacing with the REST API for standalone vs. cloud mode
Solr. Thus, for code simplicity, cloud mode was deemed a better option as it supports both
single-node and multi-node setups.

The benefit of using cloud mode is that whether Solr is running a single-node cluster or
a multi-node cluster with 100 nodes, it is no different for Anserini. Indexing and retrieval
transparently works with either scenario. This addresses the first drawback of using Lucene,
namely the performance/cost limitations of a single machine for indexing and retrieval.

2.2.3 User Interfaces and Management Capabilities

Within the Solr ecosystem, and built into Solr itself, there are a number of tools that
facilitate interaction with documents. With a Lucene index sitting on disk there is a
limited number of low-level tools available (which are targeted at technical users) in order
to explore the index. Alternatively, the index can be interacted with via the Lucene API
using Java. However, this is not ideal for all users who may not be familiar with the
inner workings of Lucene (or retrieval in general) and simply want to index and search for
documents. Luckily, there are numerous search interfaces available for use within the Solr
ecosystem which are built around the more user friendly REST API that Solr provides.

Solr exposes an administration interface, shown in Figure 2.2, which affords users access
to a number of tools for interacting with documents. Interfaces for browsing and querying
documents are available with different parameters exposed for searching documents. Views
that expose the schema of a given collection along with the field data types are also
available, which is useful in cases where schema inference was used. When using Solr in
distributed mode, cluster health and management interfaces are also available along with
the ability to create collections (with options such as number of shards, number of replicas,
etc.).

In terms of customization for building your own search interface, to support human-in-
the-loop experiments for example, the open-source Ruby on Rails engine Project Blacklight
can be used by more technical users.7 Customization is fairly straightforward, even for non

7https://projectblacklight.org/
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Figure 2.2: The Solr admin interface
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Figure 2.3: Gooselight search interface rendering a tweet from Tweets2013.

Ruby developers, to facilitate the easy creation of custom search interfaces working off of
their base. Project Blacklight is often used in the library and archival space with wide
adoption by academic institutions all over the world. Figure 2.3 shows the Gooselight
search interface, built via Project Blacklight, rendering a rich tweet from the Tweets2013
corpus using the official Twitter API.

This addresses the second concern with using Lucene directly, namely the lack of search
interfaces available and the higher barrier of entry.

2.3 Performance Evaluation

In order to compare the overhead of indexing with Solr relative to the Lucene baseline,
the indexing throughput was tested under a number of different scenarios. Although bulk
indexing is usually a one-time process, at least in this use case, investigating what sort
of overhead the communication with Solr incurs is important to understand. Having a
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small overhead for the HTTP communication would be acceptable while larger increases
in end-to-end indexing time may not be.

The default indexing back-end for Anserini is Lucene. Obviously, writing an index to
disk directly using Lucene should be more efficient than indexing to a local single-node
Solr. Although Solr uses Lucene under the hood, it incurs the extra overhead of HTTP
requests. However, when a multi-node Solr cluster is used, the intuition is that the indexing
throughput should improve, despite the additional remote HTTP request overhead, as a
number of Solr servers are indexing in parallel.

In order to test the performance of Solr against Lucene, and quantify the benefits a
multi-node Solr cluster provides, 5 commonly used collections in the information retrieval
space were indexed, namely:

• The New York Times Annotated Corpus, a collection of 1.8 million news article8

• GOV2, a web crawl of 25.2 million .gov web pages from early 20049

• ClueWeb09b, a web crawl comprising 50.2 million webpages gathered by Carnegie
Mellon University in 200910

• ClueWeb12-B13, a web crawl comprising 52.3 million webpagesgathered by Carnegie
Mellon University in 201211

• Tweets2013, a collection of 243 million tweets gathered over February and March of
201312

In terms of hardware, two different servers were used. The “large server” has 2× Intel
E5-2699 v4 @ 2.20GHz (22 cores, 44 threads) processors, 1TB RAM, 26×6TB HDDs,
running Ubuntu 16.04 with Java 1.8. The “medium server” has 2× Intel E5-2670 @
2.60GHz (8 cores, 16 threads) processors, 256GB RAM, 6×600GB 10k RPM HDDs, 10GbE
networking, running Ubuntu 14.04 with Java 1.8.

A number of different scenarios were run when benchmarking Solr vs. Lucene perfor-
mance. First, Lucene and single-node Solr indexing tests were run on both the large and
medium servers. Second, the cluster of 10 medium servers was used to test the multi-node
performance of a distributed Solr cluster. One node was used as the experimental driver

8https://catalog.ldc.upenn.edu/LDC2008T19
9http://ir.dcs.gla.ac.uk/test collections/gov2-summary.htm

10https://lemurproject.org/clueweb09.php/
11https://lemurproject.org/clueweb12/
12https://github.com/castorini/Tweets2013-IA
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Collection # docs
Large Server Medium Server Cluster

Lucene Solr (single-node) Lucene Shard Lucene Solr (single-node) Solr (multi-node)

NYTimes 1.8M 4m14s ± 6s 2m53s ± 11s 3m12s ± 9s 4m17s ± 6s 5m16s ± 50s 3m25s ± 15s
Gov2 25.2M 1h1m ± 3m 1h52m ± 3m 18m6s ± 29s 1h14m ± 1m 2h13m ± 6m 50m30s ± 35s
ClueWeb09b 50.2M 2h40m ± 2m 4h49m ± 2m 44m33s ± 1m - - 2h15m ± 9m
ClueWeb12-B13 52.3M 3h9m ± 2m 6h6m ± 9m 46m52s ± 1m - - 2h4m ± 4m
Tweets2013 243M 3h44m ± 2m 3h13m ± 10m 2h58m ± 3m 4h53m ± 2m 5h29m ± 4m 3h55m ± 4m

Table 2.1: Total indexing time (mean ± std. dev.) for Lucene vs. Solr

(i.e., it ran Anserini) while the remaining 9 nodes each hosted a Solr shard. Finally, one ad-
ditional scenario was run where 1/9th of the document collection was indexed on a medium
server modeling the scenario where distinct partitions of the documents are indexed sepa-
rately and could be used within the same collection in the Solr cluster. Comparing different
combinations of scenarios on the same collection allowed us to see the performance gain
or overhead of Solr relative to Lucene. For all tests, the buffer size for documents before
flushing to disk (ramBufferSizeMB) for both Lucene and Solr was set to 2GB. The results
of the performance comparison are presented in Table 2.1. Note that due to the limited
disk space on the medium servers, the full ClueWeb collections were unable to be indexed
under single-node scenarios.

When comparing Lucene to single-node Solr performance, where Solr is a direct re-
placement for Lucene on the same machine, we see that, in general, there is significant
overhead. Solr pays a penalty of additional overhead for the communication via its HTTP
REST API and for some of the larger collections is almost twice as slow as indexing to
disk directly with Lucene.

When comparing Lucene to multi-node Solr performance on the medium servers, where
Solr is distributed across a number of machines, we see that indexing time is strictly less
than writing locally to disk with Lucene. The distributed indexing enabled by the Solr
cluster outweighs the overhead from external HTTP calls. However, a linear speed-up is
not achieved; in this case a 9× improvement would be expected in end-to-end runtime
rather than the 30% improvement that was observed. This is largely due to the fact that
document parsing within Anserini serves as a bottleneck in this case. Each document in
the collection needs to be read from disk and parsed (e.g., from XML, HTML, etc.) on a
single machine before being batch indexed into Solr.

Indexing 1/9th of the collection via Lucene does not achieve 1/9th of the end-to-end
runtime of indexing the full collection. This is due to the current implementation within
Anserini that requires reading of the entire document collection; documents that are in
the current shard being generated are indexed while those that will not be indexed are
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still read from disk and parsed as hashing occurs over document ids. In order to speed up
the end-to-end runtime, the shards could be generated in parallel on each of the medium
servers over distinct partitions of the documents for the sharded indexing method to be
viable.

For all experiments, reasonable efforts were made to tune parameters (thread counts,
buffer sizes, etc.) as a producer–consumer balance between Anserini threads and Solr in-
dexing threads needed to be discovered. This configuration represents a reasonable config-
uration rather than leaving default parameters which would impact performance.
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Chapter 3

Large-Scale Knowledge Graph
Construction

Enterprises have long worked with structured data, which can be easily manipulated via
traditional relational databases, however text data is unstructured in nature and requires
different techniques to work with. For example, how do we extract structure from text
in order to build applications that are able to take advantage of it? One such approach
is to use natural language processing tools to perform information extraction, extracting
the “facts” asserted in a document, which can be stored in a graph database due to its
(source, link, target) structure. This, in turn, enables applications to work with this
data and take advantage of the wealth of text available on the internet and allows for
integration with existing data sources.

This chapter presents the architecture, implementation, and evaluation of the knowl-
edge graph construction portion of the platform from querying for text documents through
to loading the data into a graph database for subsequent exploration.

3.1 Background

In order to construct a knowledge graph of relations present in unstructured text at scale,
a number of techniques and tools from different domains (namely NLP, distributed com-
puting, and databases) need to be used.
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3.1.1 Natural Language Processing

In order to construct a knowledge graph from text documents, natural language processing
(NLP) tools need to be used to extract structured information from the text. Information
extraction, also called relation extraction, is the technique used for this, although there
are a number of upstream NLP tasks that information extraction depend on.

Named Entity Recognition

Named entity recognition (NER) is the task of identifying mentions of entities (people,
organizations, dates, etc.) within a given sentence. NER is an important pre-requisite for
a number of downstream tasks, such as relation extraction, as relations naturally occur
between a source and target entity. Figure 3.1 highlights mentions of entities within the
sentence “Eric Clapton was born on March 30th, 1945 in England”.1

Figure 3.1: Named Entity Recognition visualization.

Coreference Resolution

Coreference resolution is the task of identifying references to the same entity mention within
a sentence. When a noun such as “John” is used in a sentence, it is often referred to later
using pronouns such as “he” or “him”. Downstream NLP tasks, such as relation extraction,
can take this into account so that relations discovered using pronouns are resolved to their
canonical mention. Figure 3.2 shows an example of coreference resolution.2

Figure 3.2: Coreference resolution visualization.

1https://explosion.ai/demos/displacy-ent
2https://huggingface.co/coref/
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Entity Linking

Entity Linking is the task of resolving a mention of an entity in a sentence to a distinct
real world referent. Intuitively, we know that “President Obama” and “Barack Obama”
refer to the same person (entity). As spans of text such as these are often used to refer
to the same entity, they need to be linked to the same entity in a knowledge graph. For
example, in Wikidata Barack Obama has the entity id of Q76 which “President Obama”
and “Barack Obama” should both be linked to. Figure 3.3 shows an example of entity
linking.3

Figure 3.3: Entity linking visualization.

Knowledge Graphs

Knowledge graphs are a structured collection of information about any number of topics.
For example, a knowledge graph may contain information ranging from the population
of a country to the name of a person’s spouse. This information is typically represented
as <subject, predicate, object> RDF triples, a W3C standard.4 For example, a
triple such as <barack obama, date of birth, 1961-08-04> would represent Barack
Obama being born on August 4th, 1961.

A number of large knowledge graphs are publicly available such as Wikidata and DB-
pedia. In this thesis Wikidata is used as an external data source, although any knowledge
graph could be used in principle. Wikidata contains structured information on over 56
million “items” which makes it ideal for our use case due to the volume of data available.
Figure 3.4 contains the Wikidata data model. Within the data model, there are a few
important fields of note:

3https://qr.ae/TWGvfk
4https://www.w3.org/TR/rdf-concepts/
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Figure 3.4: Wikidata data model

• Label - the name of the entity

• Item Identifier - the entity’s unique ID

• Property - the key for a specific piece of information for an entity

• Value - the value for a piece of information for a given key (property)

Information Extraction

Information Extraction (IE) is the task of extracting relations between mentions of entities
within a given sentence. Information Extraction techniques take a span of text as input
and produces a list of <subject, predicate, object> triples that are present in the
sentence.
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Method Output
OpenIE <Barack Obama, was born on, August 4th 1961>

KBP <Barack Obama, DATE OF BIRTH, 1961-08-04>

Table 3.1: Information Extraction output

Information Extraction techniques fall into two categories: Open Information Extrac-
tion and Knowledge Base Population. Open Information Extraction (OpenIE) techniques
extract open-class relations based on text present in the sentence using the syntactic de-
pendencies (i.e., nouns linked by verbs or prepositions) between them [1]. Knowledge Base
Population (KBP) extracts relations that correspond to a fixed vocabulary via slot-filling
[9]. This approach generally normalizes relation names, whereas OpenIE approaches do
not. As the task at hand requires matching extracted relations with those present in a
knowledge graph, Knowledge Base Population is used over OpenIE. Approaches outside
the scope of this thesis, such as clustering relation names produced by OpenIE to an on-
tology from a given knowledge graph, would also work. Table 3.1 shows an example of
OpenIE and KBP results on the sentence “Barack Obama was born on August 4th, 1961”.

3.1.2 Technologies

Stanford CoreNLP

The information extraction task described above, along with its prerequisite NLP tasks,
need to be grounded in an implementation and wrapped into a library. Stanford CoreNLP is
a popular NLP toolkit written in Java and distributed for use within JVM based languages
(e.g., Java, Scala, Kotlin, etc.) [7]. CoreNLP is widely used in production in industry and
offers good performance while also providing high-quality neural, statistical, and rule-based
models. Through a number of annotators (e.g., tokenization, named entity recognition,
coreference resolution, etc.) which are chained together into a pipeline, it provides support
for most common natural language analysis tasks.

Apache Spark

In the past decade or so, distributed computing tools have been widely used in order to
meet the computing requirements demanded by large datasets and the increasingly more
demanding computing needs of applications. Traditional systems such as MapReduce [4]
have now given way to newer, more specialized and easy-to-use systems such as Spark [12].
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Apache Spark is a “unified analytics engine for large-scale data processing” that is com-
monly used in industry and academia.5 Spark uses a lineage-based distributed Resilient
Distributed Dataset (RDD) as a primitive for performing transformations in parallel on
data across a cluster of machines. Spark transformations have roots in functional pro-
gramming, exposing functions such as map and filter, and are executed lazily such that
transformations are not computed until an action, like count or reduce, is performed.

Apache Jena

RDF triples are usually stored in specialized databases, called RDF stores, rather than tra-
ditional relational databases or graph databases (which are closely related). RDF stores
store <subject, predicate, object> triples which are retrieved via the SPARQL se-
mantic query language.

Apache Jena + Fuseki (Jena) is a popular platform for working with RDF data on
the JVM.6 Jena consists of a high performance storage engine, called TDB, for persisting
data to disk and a SPARQL endpoint, called Fuseki, that enables querying stored triples.
Previous work has shown that, for our use case, Jena is up to an order of magnitude faster
than alternatives such as Blazegraph.7 Jena is used to host a dump of Wikidata which can
be queried via the SPARQL endpoint.

Neo4j

Graph databases are specialized databases which store data as nodes in a graph with
semantic relationships to other nodes. For example, imagine a social network being stored
in a graph database with friend edges between person nodes.

Neo4j is a widely used graph database, following the property graph model, which
features the intuitive Cypher query language and a rich query visualization/exploration
interface.8 dstlr uses Neo4j to store relations, along with auxiliary information such as
entity type, which have been extracted from the source corpus.

5https://spark.apache.org/
6https://jena.apache.org/
7https://github.com/r-clancy/dstlr/issues/10#issuecomment-506975110
8https://neo4j.com/
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3.2 Data

The TREC Washington Post corpus is used as the source corpus from which the knowledge
graph is constructed.9 The corpus contains 595,037 news articles and blog posts published
between January 2012 to August 2017.

3.3 Architecture

The DSTLR architecture is comprised of three main components: the data layer, the execu-
tion layer, and the graph store. The platform was designed in a way such there are several
intermediate persistence points in order to improve modularity. The persistence points are
as follows:

• documents stored in the document store

• assertions extracted from documents

• facts from Wikidata

• assertions + facts loaded into graph store

With these persistence points, swapping one component for another is easy and the
entire pipeline does not need to be re-run. For example, changing the graph store to a
different database means that the processes run previous to loading assertions and facts into
the graph database (i.e., indexing documents into Solr and then performing information
extraction + enrichment) do not need to be re-run.

The architecture for dstlr is shown in Figure 1.1. The data layer consists of: the
raw documents in their native format, the Anserini toolkit for indexing documents, the
document store, and the external knowledge graph. In this thesis, the documents come
from the WashingtonPost corpus, Solr was used as the document store, and Wikidata
was used as the external knowledge graph. Anserini reads raw documents from disk and
indexes them into a distributed SolrCloud cluster to support efficient document retrieval
in down-stream processes. The external knowledge graph is available for consumption by
the enrichment process.

The execution layer consists of the Spark distributed analytics engine which the core
logic is implemented within. This enables transparent horizontal scalability, if required,

9https://trec.nist.gov/data/wapost/
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for the three Spark jobs form the base of our platform: extracting, enriching, and loading
tuples. For efficient execution, extraction should be parallelized with as many processes as
the available resources allow while enrichment and loading should have very few workers
in order to balance query latency and insertion rate, respectively.

The graph store contains the final knowledge graph which is available for consumption
by applications. Neo4j was chosen as a graph store as it is open-source and widely used.

The application layer consists of applications which can consume the knowledge graph.
Examples of such applications are provided in Section 4.

3.4 Implementation

Each component of the platform is implemented as a Spark program written in Scala.
Intermediate results are saved in Parquet files, a columnar file format, which Spark can
natively read from and write to. Implementing the platform as a series of Spark jobs
ensures that, for components which are able to be easily parallelized, the platform can
scale horizontally based on available hardware.

3.4.1 Extract

The first stage of the knowledge graph construction involves running the extract Spark
job which requires the following parameters:

• solr.uri - the URI of the Solr server containing the documents

• solr.index - the name of the index on the Solr server to read from

A number of auxiliary options are available such as the query to execute (default to all
documents), the number of partitions for the Spark RDD to generate, and more.

The job first starts by defining a CoreNLP pipeline with annotators enabled based on
the desired task. In this thesis, as information extraction and entity linking are being
performed, the kbp and entitylink annotators were enabled. These, however, have pre-
requisites as outlined in Section 3.1.1. As such, the annotators that kbp and entitylink

depend on needed to be enabled as well; these are outlined in Table 3.2.

Next, the job read batches of 10,000 documents at a time from Solr using the config-
ured query and a cursor to keep state. These documents were stored in a RDD such that

23



Annotator Description
tokenize tokenize the input document
ssplit split the input document into sentences
pos identify the part-of-speech of each token
lemma reduce tokens to their lemmas
parse constituency parsing on tokens
ner named entity recognition on tokens
coref co-reference resolution on tokens
kbp knowledge base population (information extract) on named entities
entitylink link mentions of named entities to their canonical Wikidata entity

Table 3.2: CoreNLP annotators for information extraction and entity linking

subsequent transformations to the documents (i.e., CoreNLP annotators) can be applied in
parallel across the cluster. Empty documents and documents with sentences longer than
256 characters were filtered out. These documents characterize web pages that contain
HTML tables where table cells were concatenated into very long “sentences” by the doc-
ument parser. These abnormally long sentences lead to greatly increased processing time
by CoreNLP, due to algorithms with super-linear complexity, which do not characterize
typical conditions.

For each document from Solr, a CoreNLP document was constructed which was run
through the annotation pipeline. The pipeline takes the document, applies each annotator
to it based on the topological sort of dependencies, and adds auxiliary information from
each annotator to fields in the original document. From this annotated document, two
different fields were populated by the annotator: the entityMentions and relations

fields.

The entityMentions field holds information about the entities extracted from the
document. First, for each entity mention a tuple of the form ([DOC], MENTIONS, [UUID])

was produced where DOC is the document ID, MENTIONS is a new link type defined for
indicating a mention, and UUID is a generated UUID for the mention. If the mention
text had not previously occurred in the document, a random UUID was generated and a
mapping from mention text to UUID was kept track of. If the mention text had previously
occurred (i.e., it’s in the UUID mapping for this document), the existing UUID was used.
For each mention, the class (person, organization, etc.), the mention text, the character
offsets of the mention text, and the normalized date (if the mention is a date) was added
to the tuple as metadata. Second, a tuple was produced for each entity mention containing
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its entity link to Wikidata. If the mention could be linked, a tuple of the form ([UUID],

LINKS TO, [URI]) was produced where UUID is the mention’s UUID, LINKS TO is the name
given this link, and URI is the URI of the Wikidata entity. If the mention could not be
linked, the same tuple with a NULL value for URI was produced.

The relations field holds information about the relations between mentions of entities
extracted from the document. For each relation, a tuple of the form ([SUB UUID], [REL],

[OBJ UUID]) was produced where SUB UUID is the source mention’s UUID, REL is the name
of the link, and OBJ UUID is the target mention’s UUID. Each tuple was also augmented
with metadata containing the confidence level of the relation.

After all documents had been processed, the results were written to disk such that they
could be further processed by subsequent Spark jobs.

3.4.2 Enrich

The Enrich Spark job takes the extracted assertions and produces new tuples containing
facts (ground-truth values) from Wikidata. In order to do this, SPARQL queries were
issued against a Jena instance storing a dump of Wikidata. This required a mapping from
CoreNLP relations to Wikidata property types which was produced with minimal manual
effort due to the limited number of relation classes in CoreNLP.

First, the mapping from CoreNLP relations to Wikidata properties was read from disk
and stored in a Spark broadcast variable which was used for quick look-ups by Spark
workers. Next, all LINKS TO links were inspected from the previous stage and the distinct,
non-null entities that were mentioned in the documents were kept; ground-truth values
only needed to be fetched once for each entity.

Finally, ground-truth values were fetched by issuing a number of queries against Jena.
A SPARQL query was issued using the Wikipedia URL of the entity as the subject with a
predicate of <http://schema.org/about> where the returned object is the Wikidata ID;
this is required as CoreNLP returns Wikipedia URIs rather than Wikidata URIs. Next, a
list of all properties that are available for the entity in Wikidata was fetched and compared
with the relations extracted from documents. For each of these properties, the property’s
value was fetched from Wikidata and a fact tuple of the form ([URI], [REL], [VALUE])

was produced where URI is the entity’s URI, REL is the name of the relation, and VALUE is
the ground-truth value. This final step corresponds to Figure 3.5.

After all entities were processed and ground-truth values had been fetched, the results
were written to disk such that they can be further processed to subsequent Spark jobs.
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Figure 3.5: Fetching ground-truth values from Jena

3.4.3 Load

The Load Spark job takes tuples that had been written to disk and inserts them into
Neo4j. The job is passed a directly containing tuples that had been saved to disk. Tuples
are batched and inserted into Neo4j using the MERGE directive in order to ensure that new
nodes were merged with existing nodes rather than creating new nodes each time. This is
important as the majority of the tuples contain mentions to existing nodes (e.g., documents
or entities).

3.5 Performance Evaluation

This section presents the results of the performance analysis of the Extract and Enrich
stages of the platform where the Load stage has been folded into each section.

In order to test the horizontal scale-out of the platform, the tests were run on a cluster
of 9 nodes. Each node has 2× Intel E5-2670 @ 2.60GHz (16 cores, 32 threads) CPUs,
256GB RAM, 6×600GB 10K RPM HDDs, 10GbE networking, and runs Ubuntu 14.04
with Java 9.0.4. One node hosts master services (YARN ResourceManager and HDFS
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NameNode) while the remaining nodes each host a HDFS DataNode, a Solr shard, and are
available for Spark worker allocation via YARN.

In terms of a graph database, the Community Edition of Neo4j was used. A single-node
Neo4j instance was run on the same node as the master services and a single Spark worker,
co-located on the same node, was used for loading tuples in the database. Neo4j also
supports a distributed setting via the Enterprise Edition, although a commercial license is
required.

3.5.1 Extract

In order to test the performance of extraction, the end-to-end runtime which includes fetch-
ing documents from Solr, performing information extraction using CoreNLP, and writing
the tuples to HDFS was measured. A Spark job was configured to run with 32 executors (4
per machine) with each executor allocated 8 CPU cores. Each executor was also allocated
48GB of memory to have sufficient overhead to store batches of documents from Solr and
the CoreNLP models in memory. Using this configuration, the resource usage across the
cluster was maximized.

After fetching documents from Solr, those with length greater than 10,000 tokens and
sentences longer than 256 tokens were discarded as mentioned previously. After filtering,
there remained approximately 580K documents.

97M tuples were extracted in 10.4 hours which amounts to a processing rate of 13K
tokens per second. The breakdown of the tuples is as follows:

• 46.1M - mentions of entities

• 46.1M - mention-to-entity links

• 4.8M - relations between mentions

Although there were 46.1M mention-to-entity links, 30.7M link to an actual Wikidata
entity while the remaining links were explicitly set to null which could signify the oppor-
tunity to add new entities to the external knowledge graph. The 30.7M mention-to-entity
links represent 324K distinct entities. Loading the 97M tuples into Neo4j took 7.8 hours
which amounts to an ingestion rate of 2.9K tuples/sec.
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3.5.2 Enrich

In order to test the performance of the enrichment phase, the time taken to query and
fetch ground-truth values from Jena was measured. A Spark job was configured to use a
single executor using a single CPU core and 8GB of memory as the enrichment process is
not compute or memory heavy but instead is bounded by the performance of Jena.

For each of the 324K distinct Wikidata entities extracted from the documents, ground-
truth values were fetched based on the CoreNLP relation to Wikidata property mapping.
This means that for each distinct entity, a query was performed for each of the available
relation types until a match is found as Wikidata entities of a certain type are not guaran-
teed to have certain properties. For example, for the city of headquarters relation,
one particular query would check if Wikidata contains property P15910 for a particular
entity and if so, fetch and store this fact in Neo4j.

Querying was done against a local installation of Jena co-located on the same node
as the Spark worker; 11.7K ground-truth values for the city of headquarters relation
were fetched in about 14 mins. These values were inserted into Neo4j in a matter of
seconds.

10https://www.wikidata.org/wiki/Property:P159
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Chapter 4

Rule-based Data Curation

Using dstlr to create a knowledge graph supports the development of a number of ap-
plications for data curation which previously would have required the end-user to develop
the text document to distilled knowledge graph pipeline themselves. With the knowledge
graph available in Neo4j, the user is able to focus on the development of applications to
solve a given task instead of focusing on the infrastructure and tools for creating the knowl-
edge graph in the first place. One of the main selling points of Neo4j is the intuitive and
powerful Cypher query language and this, in turn, was one of the driving factors behind
using Neo4j as a graph database for storing the knowledge graph.

4.1 Cypher Query Language

Cypher is a declarative query language originally built for the Neo4j graph database,
but has since been open-sourced as openCypher1. Currently a number of different graph
database systems, including Graphflow [6], utilize Cypher while it has also been voted for
inclusion into Apache Spark 3.0 as the graph query language. Cypher follows the property
graph model where the primitives are nodes and relationships which may optionally have
properties (key–value pairs) associated with them [8].

1https://www.opencypher.org/
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4.2 Data Curation Scenarios

In this section, I highlight a number of data curation scenarios focused around fact-checking
information extracted from text documents. Specifically, discussion on supporting infor-
mation, inconsistent information, and missing information is provided which can have a
number of different applications.

4.2.1 Supporting Information

Supporting information is defined as an agreement between values extracted from text
documents and the corresponding ground-truth values in the external knowledge graph.
More concretely, for an assertion of the form (source, link, target) where the source
mention has a linked Wikidata entity with a ground-truth value available that is aligned
with relation type in link, the value of the Wikidata property should match target.

MATCH (d:Document)-->(s:Mention)

MATCH (s)-->(r:Relation {type: "CITY OF HEADQUARTERS"})-->(t:Mention)
MATCH (s)-->(e:Entity)-->(f:Fact {relation: r.type})
WHERE t.span = f.value

RETURN d, s, r, t, e, f

Figure 4.1: Cypher query to find supporting facts.

In order to discover sub-graphs that match this pattern, the Cypher query in Figure
4.1 is issued against Neo4j. This query matches document nodes that contains a source
mention with a city of headquarters relation to a target mention node. The source
node should have a corresponding Wikidata entity that links to a fact of the same type
as the relation. The where clause ensures that the value from the document (the span of
text from the target) matches the value of the fact in Wikidata.

Figure 4.2 shows a concrete example of one such sub-graph. A document mentions enti-
ties Good Technology and Sunnyvale and states that former is headquartered in the latter.
The platform links Good Technology to its Wikidata entity, Good Technology2, which con-
tains a fact corresponding to CoreNLP’s city of headquarters relation. Note that the
right-most (value from the document) and left-most (value from Wikidata) node values are
in agreement.

2https://en.wikipedia.org/wiki/Good Technology
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Figure 4.2: Neo4j sub-graph for an example of a supporting fact.

This type of query provides bi-directional supporting evidence for information verifica-
tion for both the document and Wikidata. On one hand, it is known that this particular
piece of information present in the document is factual (at least, in accordance to our source
of ground-truth) as it matches the ground-truth value in the external knowledge graph.
On the other hand, this document provides supporting evidence for the fact in Wikidata
being accurate as the creation process of a knowledge graph often loses provenance to its
source. That is, the question of “Where did we get this fact from?” cannot be directly
answered from information within the knowledge graph. Using our platform, large volumes
of text can be processed in order to provide supporting evidence.

4.2.2 Inconsistent Information

Inconsistent information is defined as a disagreement between values extracted from text
documents and the ground-truth values in the external knowledge graph. For an extracted
tuple (source, link, target) where the source has a linked Wikidata entity with a
ground-truth value available that is aligned with the relation type in link, the value of
the Wikidata property would be different than target.

The Cypher query in Figure 4.3 can be run against Neo4j to find sub-graph instances
that match the definition of inconsistent information. The match directives in this query is
the same as for supporting information (Figure 4.1) however, the where clause is negated.

31



MATCH (d:Document)-->(s:Mention)

MATCH (s)-->(r:Relation {type: "CITY OF HEADQUARTERS"})-->(t:Mention)
MATCH (s)-->(e:Entity)-->(f:Fact {relation: r.type})
WHERE NOT(t.span = f.value)

RETURN d, s, r, t, e, f

Figure 4.3: Cypher query to find missing facts.

Figure 4.4 shows an instance of a sub-graph showing inconsistent information. A doc-
ument mentions the company Isetan and the city of Paris and the extractor believes there
is a city of headquarters relations between them. Iseten is linked to its Wikidata
entity3 which contains the ground-truth value of “Tokyo” for the relation. Note that the
right-most (value from the document) and left-most (value from Wikidata) node values are
different.
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Figure 4.4: Neo4j sub-graph for an example of an inconsistent fact.

This type of query has two different uses: it enables manual repairs and can automati-
cally generate labelled training data for training relational extractors. In terms of repair,
it identifies information in text documents that differ from the ground-truth values. As
provenance is retained back to the span of text in the source document, this enables the
manual repair of documents. In order to help alleviate the impact of inaccurate extractors,

3https://en.wikipedia.org/wiki/Isetan
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signals from multiple tuples that express the same relation (via having the same source
and relation in link) could be combined and potentially used for automatic repairs.

This use case also serves as a method of data augmentation – it can generate labelled
positive and negative examples that rid of the need for manual annotations by humans.
From manual inspection, the inconsistent fact from the query above was due to an error
in the extractor. Due to the provenance retained for the source and the known ground-
truth value, each inconsistent fact can produce a negative example (the tuple itself) and
a positive example (by substituting in the ground-truth value). Likewise, each supporting
fact from the previous section could be used as a positive example as well.

4.2.3 Missing Information

If no ground-truth value is present for a given relation, it cannot be determined whether
a tuple provides supporting or inconsistent information. It does, however, provide an
opportunity to add information to the external knowledge graph. Care has to be taken
to ensure that the information is accurate since extractors can be imperfect. Just like
with inconsistent information, signals from multiple tuples could be combined in order to
determine if a relation is worth adding to the knowledge graph.

The Cypher query in Figure 4.5 returns sub-graphs where there is no ground-truth
value. Following the same match semantics as before, this queries differs in that it does
an optional match on the fact (since it may not exist) and then only returns the
instances where the fact is actually null.

MATCH (d:Document)-->(s:Mention)

MATCH (s)-->(r:Relation {type: "CITY OF HEADQUARTERS"})-->(t:Mention)
MATCH (s)-->(e:Entity)

OPTIONAL MATCH (e)-->(f:Fact {relation: r.type})
WHERE f IS NULL

RETURN d, s, r, t, e, f

Figure 4.5: Cypher query to find inconsistent facts.

A concrete example of a sub-graph returned by this query is shown in Figure 4.6. Note
that there is no outgoing has value edges from the left-most node as in the previous
examples. This indicates a missing fact in Wikidata.
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Figure 4.6: Neo4j sub-graph for an example of a missing fact.

Although missing ground-truth values have been found, it cannot determined if there is
enough information in the document collection to say, with reasonable certainty, whether
the information is accurate. The query in Figure 4.7 finds the missing values as before
and groups by the entity and relation then returns a list of values (along with the
documents they appear in) to the user. The distribution could be analyzed and used to
determine how accurate the available information is before providing the new information
to the external knowledge graph. For example, for a given entity and relation a histogram
of possible values could be built and only the top element could be deemed as accurate.
Further rules, such as the values must come from a certain number of different documents,
could be in place as well.

MATCH (d:Document)-->(s:Mention)-->(r:Relation)-->(t:Mention)

MATCH (s)-->(e:Entity)

OPTIONAL MATCH (e)-->(f:Fact {relation: r.type})
WHERE f IS NULL

WITH e as ent, r.type as rel, collect(d.id) as docs, collect(t.span) as vals

RETURN ent, rel, docs, vals

Figure 4.7: Cypher query to find inconsistent facts.
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4.3 Other Use Cases

Outside of the examples outlined above, it is not hard to imagine other use cases that the
platform could support. For example, dstlr could form the basis of a question answering
service. Using a large language model such as BERT [5], the question could be mapped to
the closest relation available in the knowledge graph while further matching could reduce
the set of source and target nodes that are applicable to the question text.
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Chapter 5

Conclusion

In this thesis, I presented dstlr – a platform for constructing knowledge graphs from
large collections of text documents. First, I showed how text documents on disk can
be indexed into the distributed Solr search engine through Anserini. Second, I showed
how natural language processing tools can be horizontally scaled out via Apache Spark
in order to perform information extraction at scale using a cluster of machines. Third, I
showed how linking entities to an external knowledge graph and aligning relations from
CoreNLP to properties available in Wikidata can enrich the information extracted from
the documents. Finally, I demonstrated a number of data curation use cases on top of the
generated knowledge graph which motivated the creation of the platform.

Moving forward, there are several improvements to the platform that would improve its
capabilities. First, moving away from Knowledge Base Population methods of information
extraction towards Open Information Extraction approaches would improve the coverage of
relations that are able to be extracted. However, this leads to the creation of superfluous
relations while also introducing the problem that relations from the text can no longer
be aligned manually with those available in an external knowledge graph. Clustering of
relations using embedding models and matching to an external knowledge graph predicate
ontology may be a viable approach. Second, making the platform more modular within the
natural language processing tools would be beneficial. Currently, the platform is tightly
bound to CoreNLP as the inherit dependencies between NLP tasks is handled by the
library. Some form of intermediate persistence within the information extraction process
itself such that custom named entity extractors or entity linkers could be used would
improve the flexibility of the platform and make it a platform for continued NLP research.
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