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Abstract

Accurate prediction of streamflow—the amount of water flowing past a stream section at
a given time—is a long-standing challenge in hydrology. Not only do researchers strive to
understand the natural processes at play, the predictions are also vital for management of
floods, irrigation control, or hydro-electric power generation. Traditional, physically-based
models explicitly simulate the processes that drive streamflow, but their predictions are
often inaccurate, especially when predicting multiple watersheds with one model.

In this thesis, we study applications of machine learning to streamflow prediction:
We present two case studies where data-driven models outperform physically-based mod-
els. Although more accurate, these data-driven techniques lack interpretability compared
to physically-based models. Hence, we further explore first steps towards combining
physically-based and data-driven approaches into a single model that preserves each com-
ponent’s advantages. Lastly, we quantify the effects of limited training data on the quality
of data-driven predictions. We show that models benefit from additional data not only in
terms of longer time periods, but also in terms of additional basins. This is a promising
result towards transferring trained models to regions with limited or no training data.

As all of the above research directions hinge on the access to geospatial datasets, we
precede their examination with the development of the Cuizinart, a cloud-based platform
to disseminate and subset large environmental datasets.
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Chapter 1

Introduction

Streamflow prediction—predicting the amount of water that flows past a point in a stream
per time—is an important yet unsolved task in hydrology. Accurate streamflow predictions
are vital in preparation to floods, as they allow authorities to proactively direct help to
where it will be needed the most. With climate change, such extreme weather events
are becoming more frequent. Streamflow predictions, however, are not only important
in the event of flooding: During periods of drought, accurate predictions help planning
river traffic, and even in times of modest flows, streamflow predictions provide valuable
information to engineers managing hydroelectric facilities.

For decades, hydrologists have attempted to design physically-based models that pre-
dict streamflow based on meteorological and geophysical input data. In these models,
researchers explicitly simulate physical processes and laws that govern the formation of
streamflow, such as evaporation, percolation, or snow accumulation. In many cases, how-
ever, these models result in rather inaccurate predictions—especially when hydrologists
use a single model to predict streamflow at different spatial locations.

As in other physical sciences, recent data-driven techniques promise rapid advancement
in our prediction capabilities. From this viewpoint of data science, we face a time-series
regression problem with spatio-temporally distributed input and output data. In this the-
sis, we explore the potential of applying machine learning to streamflow prediction. We
substantiate our claim about the superior quality of data-driven predictions in two case
studies, where data-driven models outperform existing physically-based models. As algo-
rithms in machine learning often rely on large training datasets—which are not available
in all regions of the world—we evaluate the effects of limited amounts of training data
on prediction quality. In longer-term efforts, we see great potential in a confluence of
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physically-based and data-driven models, known as theory-guided machine learning. As
a first step towards such hybrid modeling, we demonstrate how data-driven models can
correct a physically-based model’s errors. The resulting joint model is more accurate than
both physically-based and data-driven models individually, yet it maintains a notion of
hydrologic interpretability.

The development of state-of-the-art hydrologic models as we design and employ in
this thesis, both data-driven and physically-based, greatly relies on researchers’ access to
a variety of environmental datasets. These datasets are often extremely large, although
individual researchers commonly require only a small subset of the whole data for their
specific purposes. This situation results in a waste of storage space, bandwidth, and labor,
as researchers have to download the whole dataset and manually crop it to their region
and time period of interest. To this end, we develop the Cuizinart as a web-based tool
that facilitates the access to custom subsets of environmental datasets.

1.1 Contributions

To summarize, this thesis makes the following main contributions:

� We present the Cuizinart, a cloud-based platform that allows users to request spatial
and temporal subsets of large environmental datasets through an interface similar to
Google Maps.

� We hypothesized that data-driven streamflow prediction models can outperform ex-
isting physically-based models. Our results confirm that this is the case, as we de-
sign data-driven models that yield more accurate predictions than a physically-based
model in a case study on the Lake Erie watershed.

� We then hypothesized that information from physically-based models can further
improve a data-driven model’s accuracy. We propose a hybrid architecture, where an
LSTM model obtains physically-based states as additional input. Our results show
that the joint model outperforms models of either individual paradigm in a case study
on the Great Lakes watersheds.

� As the data-driven models in our experiments appear sensitive to limited amounts
of training data, we finally aimed to quantify how different aspects of training set
size affect the quality of predictions. We show that model accuracy depends not only
on the training period length, but also on the number of basins that we use when
training on a benchmark dataset of the continental United States.

2



1.2 Thesis Organization

Following this introduction, Chapter 2 establishes important concepts and related work in
hydrology and machine learning. The subsequent chapters align with our contributions:

� Chapter 3 highlights our efforts in alleviating scientific data access and subsetting
through the Cuizinart.

� Chapter 4 describes our research around purely data-driven models for streamflow
prediction and their comparison to existing physically-based models.

� Chapter 5 reports on our efforts towards hybrid physically-based and data-driven
streamflow prediction models.

� Chapter 6 studies the effects that limited training data have on data-driven stream-
flow prediction.

Lastly, Chapter 7 concludes with final remarks and gives an outlook towards possible
directions of future research.

3



Chapter 2

Background and Related Work

2.1 Streamflow

Streamflow measures the amount of water flowing past a given point along a river or stream
per time. It is therefore measured as volume per time, usually in m3 s−1. Hydrologists
measure a river section’s actual streamflow at stream gauging stations. In many countries,
government agencies such as the United States Geological Survey (USGS) maintain these
sites and publish daily or even real-time measurements online.1

Given a point along a stream (whether gauged or not), we can delineate the correspond-
ing basin—also known as catchment or watershed—as the upstream area that contributes
to this location’s streamflow. The given point is called its outlet. It can be the point
where a river flows into a lake or the ocean, but it can also be an arbitrary point along the
stream. A basin’s area is largely defined by the surrounding topography: Intuitively, one
can think of it as the region where every drop of precipitation will eventually flow past the
outlet, either after running along the topographic slopes into the upstream river or after
percolating into the groundwater and draining into the stream from there. Hence, the
further upstream along a river we define an outlet, the smaller the corresponding basin.
In addition, rivers and lakes drain into each other. Consequently, basins contain nested
sub-basins (or sub-catchments or sub-watersheds). If there exists a gauging station that
captures a hydrograph—the time series of actual streamflow—at the outlet of a specific
catchment, we call the catchment a gauged basin, else, an ungauged basin. Hydrologists
know predictions in ungauged basins (PUB) to be particularly challenging, since there are
no immediate training data available for the evaluated basins [18].

1https://waterwatch.usgs.gov/
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2.2 Streamflow Prediction

To predict streamflow, hydrologists use two types of input data: meteorological time-series
data such as precipitation, temperature, or wind speed, and static basin attributes such
as slope, elevation, or land cover data. The former time-series data are also known as
forcings, as we use them to run, or force, a model. We can distinguish three broad types
of model architectures:

Lumped models make use of the fact that only precipitation within the boundaries of a
basin can affect its outlet’s streamflow. These models take as input basin-aggregated
forcings and basin characteristics. One example for a lumped model in operational
use is the Large Basin Runoff Model operated by the U.S. Army Corps of Engineers
to monitor streamflow in the Great Lakes region [9].

Distributed models operate on the level of grid cells. These models take as input forc-
ings and static attributes for cells on a spatial grid of h× w cells. An example for a
distributed model is the mesoscale Hydrologic Model (mHM) [39].

Semi-distributed models conceptually fall between lumped and fully-distributed mod-
els. They do not operate on uniform grid cells, but rather on modeling units of
arbitrary (usually polygonal) shapes. Within a modeling unit, we assume that the
geophysical characteristics are uniform, which can make computations faster than
in the fully-distributed case, where we process each cell individually—even if adja-
cent cells have identical properties. Examples for semi-distributed models are the
Variable Infiltration Capacity model (VIC) and its variant VIC-GRU, which uses
modeling units called Grouped Response Units [15, 26].

2.2.1 Nash–Sutcliffe-Efficiency

Hydrologists commonly measure the quality of a model’s streamflow predictions using a
metric called Nash–Sutcliffe Efficiency coefficient, or NSE. The NSE compares a time series
of predicted streamflow ŷt with the measured hydrograph of ground truth streamflow yt
for the time steps t = 1, . . . , T , and is defined as:

NSE = 1−

T∑
t=1

(ŷt − yt)2

T∑
t=1

(yt − ȳ)2
(2.1)
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where ȳ denotes the mean measured streamflow. NSE values range from −∞ to 1, with 1
being the optimal value. An NSE of zero corresponds to a model that constantly predicts
the mean streamflow ȳ.

As the numerator in Equation (2.1) measures the squared error and the denominator
measures the variance of streamflow observations, NSE is strongly correlated with the mean
squared error (MSE), as Equation (2.2) shows [13]:

NSE = 1− MSE

1
T

T∑
t=1

(yt − ȳ)2
(2.2)

To use NSE as the loss function of a neural network or gradient-boosted regression tree,
we extend its definition to a set B of basins:

NSE′ =
1

|B|
∑
b∈B

T b∑
t=1

(ŷbt − ybt )2
(σb + ε)2

(2.3)

where T b is the number of time steps for which we have data on basin b, ŷbt and ybt are
predicted and actual streamflow at basin b and time t, and σb is the standard deviation
of observed streamflow at basin b. The addition of ε > 0 ensures numeric stability, as it
prevents NSE′ from exploding for basins with near-constant flows.

2.3 Physically-Based Streamflow Prediction

Traditionally, hydrologists have been modeling streamflow using physically-based models.
In these models, researchers try to explicitly formulate physical processes that drive the
incurrence of streamflow, such as evaporation, transpiration, and percolation of water.

Many physically-based models operate on the basis of so-called states (or storages) that
work as “memory cells”. Each state has an initial value that the model equations update
depending on the input.

Figure 2.1 depicts a simple (educational) physically-based model, the abc-model, named
after its three parameters [10]: the fraction a of precipitation that percolates into the
groundwater storage, the fraction b of precipitation that evapotranspirates into the atmo-
sphere, and the fraction c of the groundwater storage that drains into the stream at each
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Groundwater Streamflow

Precipitation

Percolation, a

Evapotranspiration, b

1− a− b

Drainage, c

Figure 2.1: Schematic visualization of the abc-model as a simple, physically-based stream-
flow prediction model. At each time step, incoming precipitation either percolates into
the groundwater storage (a), evapotranspirates into the atmosphere (b), or directly runs
off into the stream (1 − a − b). A fraction of the groundwater storage (c) contributes to
streamflow as drainage.

time step. The schematic model illustration in Figure 2.1 therefore translates into the
following equations:

ŷt = (1− a− b)xt + cGt−1

Gt = (1− c)Gt−1 + axt
(2.4)

where xt represents the precipitation, Gt refers to the groundwater storage, and ŷt denotes
the predicted streamflow at time t.

In this thesis, we will make use of two more sophisticated physically-based models, the
lumped Large Basin Runoff Model (LBRM) [9] and the semi-distributed Variable Infiltra-
tion Capacity model based on Grouped Response Units (VIC-GRU) [15, 26]. The U.S. Army
Corps of Engineers maintains LBRM and uses it operationally for streamflow predictions
in the Great Lakes region. Figure 2.2 outlines the structure of LBRM.

To provide good predictions after training (hydrologists call this the calibration period),
it is key that we adjust the initial model states to the beginning of the test period. For
instance, an initial snow depth state of zero might not be suitable for a test period in
winter. Hydrologists ensure good initial states by prepending a warm-up phase before the
actual test (or validation) period. During warm-up, the model ingests input data and
updates its states based on the input, however, the generated output is not considered in
evaluation metrics.
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Insolation, precipitation, temperature

Snow pack, P

Upper soil
moisture, U

Lower soil
moisture, L

Groundwater
moisture, G

Surface storage, S

Streamflow

Evapotranspiration

Snow, rain

Melt, runoff

Percolation

Deep percolation

Surface runoff

Interflow

Ground water

Figure 2.2: Schematic illustration of the Large Basin Runoff Model (LBRM). (Illustration
derived from Croley [9])
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2.4 Data-Driven Streamflow Prediction

Since the overwhelming success of machine learning in domains such as image recognition,
machine translation, and recommender systems, recent years have shown increasing adop-
tion of techniques based on machine learning in the physical sciences. Examples for this
range from materials science, where researchers predict properties of material specimen or
chemical components of entirely new materials [27], to high-energy particle physics, where
researchers detect hypothesized particles through deep learning [5]. In many cases, these
machine-learned approaches to long-standing problems result in models that outperform
traditional solutions. In light of this situation, it seems natural to develop data-driven
models for streamflow prediction—and in fact, applications of neural networks to this or
related problems date back decades [4, 6, 14]. Until recently, however, such approaches
only had limited success in a few, individual basins. Newer algorithms, such as Long Short-
Term Memory networks, combined with today’s computational power, make it worthwhile
to revisit data-driven streamflow prediction. Indeed, recent studies have found machine
learning models to provide accurate predictions even when trained on multiple basins at
once—a task with which physically-based models commonly struggle [25].

2.4.1 Tree-Based Models

Tree-based models have proven successful in a variety of time-series prediction tasks—
although they are not explicitly designed for time-series input. For instance, practitioners
have used XGBoost, a framework for gradient-boosted regression trees (GBRT) [7], in nu-
merous Kaggle and KDD Cup challenges as part of the winning solutions [20, 21, 22, 28].
Regression tree algorithms learn a graphical tree structure, where every leaf node corre-
sponds to a prediction and every inner node represents a condition on an input feature. A
path from the root to a leaf consequently equates to a conjunction of features. Samples
whose features let the conjunction evaluate to True receive the leaf value as their predic-
tion. To avoid overfitting, regression trees commonly use regularization methods such as
limits on the maximum tree depth. GBRT extend this algorithm, as they sequentially train
multiple regression trees to predict the residual error of all previous trees’ predictions. The
overall prediction is therefore the sum of all trees’ predictions. Further, GBRT typically
employ regularization as part of the loss function they optimize during training.

9



2.4.2 Long Short-Term Memory Cell-Based Models

From the perspective of data science, streamflow prediction is a time-series regression
task. Hence, Long Short-Term Memory cell (LSTM)-based models are a natural choice for
this problem [17]. Figure 2.3A shows the schematic architecture of an LSTM cell, with
three major building blocks: the sigmoid-activated layer σf controls the forget gate, which
deletes parts of the previous step’s internal state information ct−1; an input gate (σi, tanhi)
controls how the input xt updates the internal state; finally, an output gate (σo, tanho)
determines how internal state and new input affect the cell output ht. In a recent study,
Kratzert et al. [25] introduce an Entity-Aware LSTM (EA-LSTM) architecture as shown
in Figure 2.3B, which they specifically design for streamflow prediction. Its cells take both
time-series forcings xdt and static catchment attributes xs as individual inputs, rather than
requiring to concatenate the static information to each forcing time step. Their study on
basins across the continental United States shows that LSTM-based models consistently
outperform physically-based models.

An extension that allows us to use LSTMs on not just temporally, but also spatially
distributed data are convolutional LSTMs (ConvLSTMs) [41]. While the principal idea
and structure remain identical to standard LSTMs, ConvLSTMs take as input a time series
of rectangular grids. The main difference to the standard LSTM in Figure 2.3A is that
the cell applies convolution operations over the input xt and previous step’s output ht−1.
Subsequently, the data that flows through the network maintains its grid-shape, which
results in gridded outputs.

10



×

+×

×

tanhi
σf

tanho

σi σo

ct−1 ct

ht−1 ht

xt

ht

(2.3A) LSTM cell.

×

+×

×

tanhi
σf

tanho

σi σo

ct−1 ct

ht−1 ht

xdt xs

ht

(2.3B) EA-LSTM cell.

Figure 2.3: Schematic architecture of LSTM and EA-LSTM cells. The rectangles σ∗ and
tanh∗ represent sigmoid- and tanh-activated neural layers; rounded shapes denote pointwise
multiplication (×), addition (+), and tanh operations. Unlike a vanilla LSTM, the EA-
LSTM takes dynamic time-series forcings xdt and static basin attributes xs as distinct input
vectors. (Illustrations derived from Olah [37] and Kratzert et al. [25])
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Chapter 3

The Cuizinart: Environmental Data
Subsetting

Both traditional and data-driven hydrologic modeling largely depend on the processing of
geospatial datasets—yet another example of data-intensive science emerging as the “fourth
paradigm” of research [16]. Often, these datasets are scattered across numerous websites,
use different formats, and contain larger temporal and spatial extents than an individual
researcher requires. Ultimately, this results in a waste of time, bandwidth, and labor, as
researchers have to individually download, normalize, and subset the datasets they need.

This chapter introduces our efforts towards facilitating these necessary steps of data
gathering and preprocessing. We develop the Cuizinart (http://cuizinart.io/) as a
web application with an interface similar to Google Maps, where researchers can request
arbitrary subsets of commonly used environmental datasets. Figure 3.1 shows a screenshot
of the Cuizinart web application. Users can choose from a list of data products and select
their date range and variables of interest. Table 3.1 describes the available data products
and their temporal and spatial extent. Upon selection of a data product, the map interface
shows the product’s geographic extent, and users can either draw their desired spatial
subset on the map or upload it as a shapefile or GeoJSON specification.

When the user sends the request to the Cuizinart back end, it subsets the data product
according to the specification and stores the results in NetCDF files.1 When this processing
completes, the user receives an email with a download link through the Globus large file
transfer service.2

1https://www.unidata.ucar.edu/software/netcdf/
2https://www.globus.org/
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Table 3.1: Description, spatial extent, size, and time range of the data products currently
available in the Cuizinart.

Product Explanation Spatial extent Size
Time range

from to

ERA5 climate reanalysis worldwide 615 GB 2002 2017
pgw-wrf-wca global warming climate

simulation

western Canada 1.6 TB 2000 2015

ctl-wrf-wca retrospective climate
simulation

western Canada 1.6 TB 2000 2015

pgw-wrf-conus global warming climate
simulation

continental U.S. 4.3 TB 2000 2013

ctl-wrf-conus retrospective climate
simulation

continental U.S. 4.4 TB 2000 2013

wfdei-gem-capa meteorological forcings ∼ North America 621 GB 1979 2017
canrcm4-wfdei-

gem-capa

meteorological forcings ∼ North America 16 TB 1951 2100

MODIS-lst-mod-

myd11 merged

meteorological forcings Great Lakes 65 GB 2002 2017

3.1 Architecture

The Cuizinart consists of two major components: a lightweight front end, implemented in
JavaScript (React) and Python (Flask) docker containers, and a back end, implemented
in Python. Figure 3.2 shows a schematic architecture diagram. The front end stores
available product names and properties in a PostgreSQL database. Whenever a user loads
the Cuizinart website, the Flask application reads the available product metadata from
the database and sends them to the React application for display.

Once a user sends a request for a product, the Flask application forwards it via scp

as a JSON file to the back end. We use scp rather than HTTP (which might seem like
a more natural fit for a web service), since we host the back end on Compute Canada’s
Graham high-performance computing infrastructure, where HTTP access to server nodes
is discouraged. The back end receives the request, schedules a job to subset the specified
product, and, once completed, notifies the user via email that the requested data is ready
to download through the Globus file transfer service.
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Figure 3.1: Screenshot of the Cuizinart web application. In this example, the user has
selected a product that covers the Great Lakes region and uploaded a shapefile for the
boundaries of the Great Lakes.

3.2 The Canadian Surface Prediction Archive

The Cuizinart’s modular, dockerized architecture allows us to reuse its codebase in other
applications. Most notably, we use the Cuizinart architecture in a separate project for the
Canadian Surface Prediction Archive (CaSPAr) front end. CaSPAr has a similar scope as
the Cuizinart, but it provides access to other types of environmental datasets—in this case,
Environment and Climate Change Canada’s numerical weather forecasts. In December
2019, CaSPAr held 318 TB of archived data, with 368 GB of newly generated predictions
added every night.

Previously, the CaSPAr front end used proprietary map software provided and man-
aged by esri. Consequently, each addition or update of a data product required error-prone
manual work by esri support staff. With our new front end, a REST API allows automatic
ingestion of additional products as well as incremental updates to these products. Each day,
the back end receives Environment and Climate Change Canada’s newly issued weather
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Figure 3.2: Schematic diagram of the Cuizinart architecture and control flow.

predictions as NetCDF files, analyzes their contents, and sends a POST request that de-
scribes the added data to the front end’s REST API. The front end updates its metadata
database and subsequently offers the updated products to end users.
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Chapter 4

Data-Driven vs. Physically-Based
Models for Streamflow Prediction

Given the wide range of existing streamflow prediction models, it is often unclear which
model is best under which conditions. Studies that examine individual models use different
basins, different time ranges, and different input datasets. The Great Lakes Intercompar-
ison Project (GRIP) is the largest Canadian effort yet to overcome these problems and
to evaluate the performance of different streamflow prediction models under identical con-
ditions [29, 30]. While most of the evaluated models are physically-based, we contribute
several data-driven models to the project. These data-driven models allow us to estimate
the amount of information we can extract purely from the available data, and as such act
as a benchmark to the physically-based approaches.

In the first phase, the intercomparison project focused on the Lake Erie watershed and
used a small dataset of only five years of forcings.

4.1 Data

The meteorological forcing dataset we use in this case study is the Regional Determin-
istic Reforecast System (RDRS) product, provided by Environment and Climate Change
Canada. It covers the Lake Erie region at a resolution of 15 km and provides information on
temperature, precipitation, radiation, pressure, and wind (see Table 4.1) for the years 2010
to 2014. Figure 4.1A shows an example snapshot of the air temperature in the dataset.
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Table 4.1: Meteorological forcing variables in the RDRS data product. Each variable covers
the entire Lake Erie watershed at a resolution of around 15 km for the years 2010 to 2014
at an hourly resolution. The variables are available at the indicated vertical levels.

Variable Explanation Level Unit

PR0 Quantity of precipitation surface m
TT Air temperature 40 m ◦C
FB Downward solar flux 40 m W m−2

FI Surface incoming infrared flux 40 m W m−2

P0 Surface pressure surface mbar
HU Specific humidity 40 m kg kg−1

UVC Wind speed 40 m kn

As streamflow ground truth, we use 46 gauged basins, which all eventually drain into
Lake Erie. Figure 4.1B shows the basin outlines with their associated gauging stations.
At the project outset, these basins were meant to be of low human impact, but over the
course of the study it became clear that several of the basins are intensely human-managed
and, for instance, located in highly urbanized areas.

4.2 Models

We compare VIC-GRU [15, 26], an existing semi-distributed physically-based model, with
three data-driven architectures: the tree-based XGBoost, a standard LSTM, and a convo-
lutional LSTM (ConvLSTM) network.

XGBoost. Since XGBoost does not directly consume time series, we flatten the data
to fixed-history windows of eight days’ forcings. Further, we aggregate the hourly
temperature and precipitation to daily values (minimum, maximum, sum) in order
to match the target streamflow data resolution. In preliminary experiments, the
remaining forcing variables did not improve prediction quality; we therefore excluded
them from the input. When we train one model to predict all basins combined, we
additionally provide the model with one-hot-encoded station identifiers. To obtain
suitable parameters, we perform a cross-validated random search.

LSTM. The standard LSTM has two layers of 128 hidden states. We feed the model the
previous five days of hourly precipitation and temperature, as well as one-hot-encoded
station and month identifiers. As loss function, we use 1− NSE.
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TT 40m: Air temperature [◦C]

(4.1A) Gridded forcing data for the Lake
Erie watershed (black outline). As an ex-
ample, we show the temperature of Jan 1,
2012 18:00 UTC (colored tiles). Each tile is
about 15× 15 km2 in size.
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44◦N

85◦W 80◦W

(4.1B) Geographical outlines of the 46 Lake
Erie sub-basins in our analysis, each drain-
ing towards a gauging station (black dots).

ConvLSTM. A convolutional LSTM (ConvLSTM) network can better incorporate spa-
tial input data, as its design allows it to ingest gridded data [41]. Our model consists
of four convolutional LSTM layers followed by four convolutional but non-recurrent
layers. To obtain predictions, we feed the history of the last eight days’ precipi-
tation, minimum and maximum temperature, combined with the one-hot-encoded
month representation as a gridded matrix into the convolutional LSTM layers. We
concatenate the last layer’s last output with the station identifiers and pass the re-
sulting tensor through the non-recurrent convolutions, using leaky rectified linear
unit (ReLU) activation functions. Finally, these layers output a prediction for each
grid cell. We select the cells that contain gauging stations and calculate the loss for
each station as 1− NSE.

As VIC-GRU and the ConvLSTM directly ingest grids of spatially-distributed data, we
train them on all stations combined. For XGBoost and LSTM, we once train one model
for each basin individually, and once one model on all basins’ data combined.
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Table 4.2: Minimum, median, and maximum of the NSE distributions for the physically-
based model VIC-GRU and the data-driven models (XGBoost, LSTM, and ConvLSTM,
either trained once for all stations or for each station individually). Best values are high-
lighted in bold.

VIC-GRU XGBoost LSTM ConvLSTM

Statistic all stations per-station all stations per-station all stations all stations

Min −6.30 −0.21 0.21 −0.68 −0.32 −0.20
Median 0.33 0.52 0.49 0.12 0.18 0.43
Max 0.60 0.67 0.66 0.40 0.31 0.60

4.3 Results

Table 4.2 shows the minimum, median, and maximum prediction accuracy for each model
in terms of NSE. The XGBoost model provides the best predictions. When we train
one XGBoost model per basin, the median and maximum NSE results improve further,
but the minimum NSE decreases. The LSTM and ConvLSTM show worse predictions
than XGBoost. Likely, this is the result of sparse training data, combined with the high
input dimensionality induced by the gridded input variables. Nevertheless, XGBoost and
ConvLSTM outperform the physically-based VIC-GRU. XGBoost shows higher minimum,
median, and maximum NSE values; the ConvLSTM reaches higher minimum and median
NSEs and comparable maximum NSE values.

Figure 4.2 visualizes the NSE values across all 46 basins for the models trained on all
stations combined in a cumulative distribution plot and denotes the corresponding area
A under the distribution curve. Ideally, the curves would show a “ L”-shape, with all
basins’ NSEs close to one. This would correspond to an area A under the curve of zero.
For worse models, the distribution shifts leftward, which results in a larger area under
the curve. Due to its poor lowest NSE values, VIC-GRU has the highest area under the
curve (AVIC-GRU = 1.00), although the bulk of its NSE values is better than the LSTM’s
(ALSTM = 0.89). XGBoost has the lowest area (AXGBoost = 0.52).

To further analyze the results, we focus on three basins: one where both XGBoost and
VIC-GRU result in relatively accurate predictions, one where XGBoost outperforms VIC-
GRU, and one where VIC-GRU outperforms XGBoost. Each row in Figure 4.3 displays the
hydrograph and the models’ predictions for one of these basins, as well as a map showing
the basin’s location.
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Figure 4.2: Cumulative NSE distributions for the physically-based VIC-GRU (dotted line),
data-driven LSTM (dashed-dotted), ConvLSTM (dashed), and XGBoost (solid) models
across the Lake Erie basins. The models are trained on all stations combined. A∗ denotes
each model’s area under the distribution curve; lower values are better.

For basin 04207200 in Bedford, OH, USA (Figure 4.3, top), both VIC-GRU and XG-
Boost result in rather accurate predictions, with NSEs of 0.44 (VIC-GRU) and 0.57 (XG-
Boost). At basin 04177000 in Toledo, OH, USA (Figure 4.3, middle), VIC-GRU yields
an NSE of 0.33 and outperforms XGBoost (0.13). The reason for this are a few days at
the end of 2013 and in August 2014, where XGBoost overestimates the streamflow. The
NSE metric is sensitive to such outliers, which is why the overall NSE is much worse than
VIC-GRU’s. Finally, at basin 04166500 in Detroit, MI, USA, VIC-GRU results in an NSE
of −1.95, as it consistently overestimates flows, especially during the winter and spring
months. XGBoost predicts these peaks more accurately and thus achieves a much higher
NSE of 0.64. Notably, this basin is located in the metropolitan Detroit area and therefore
represents a highly urbanized watershed with strong patterns of human water management.
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Figure 4.3: Time series of actual streamflow (black) and predictions for VIC-GRU (blue)
and XGBoost (orange) at gauging stations 04207200, 04177000, and 04166500 during the
test period 2013–2014.
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4.4 Discussion

Although only a small case study, our results show that data-driven models can provide
more accurate streamflow predictions than a physically-based model. Even to researchers
who remain reluctant to adopt machine-learned models for streamflow prediction, our
experiments at least reveal that there is more information in the input data than what
the current physically-based models extract. A further advantage of data-driven models is
their greater flexibility, which allows them to learn patterns of human water management.
On the contrary, the assumptions that are inherent to physically-based models deprive
them of such adaptiveness.

The LSTM’s comparatively poor performance suggests that the Lake Erie dataset is too
small to fully exploit the potential of data-driven models that operate directly on gridded
data. This motivates our approach in the following case study, where we not only use
a larger dataset, but we also aggregate the data for each basin to train lumped models.
As such lumped models can take basin characteristics as input, we can still train a single
model to predict arbitrary basins. In fact, it is architecturally easier to design lumped
models that achieve such spatial generalization, since these models do not have to cope
with differently-shaped gridded input fields that naturally stem from the basins’ outlines.
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Chapter 5

Hybrid Physically-Based and
Data-Driven Streamflow Prediction

Even though our analyses in the previous chapter, together with other studies, provide
ample evidence that data-driven models can outperform physically-based models, the hy-
drologic community continues to be hesitant about adopting such models, both in research
and operationally [34]. To justify this reluctance, researchers and engineers often argue
that machine-learned models lack interpretability and therefore trustworthiness, as they
do not explicitly simulate hydrologic storages and states.

As a first step to overcome these issues, we propose a hybrid model that combines a
physically-based model’s interpretability with the predictive power of machine learning:
We train a data-driven LSTM to predict the time series of differences between ground
truth streamflow and the physically-based LBRM’s predictions.

We evaluate our model as part of the second phase of the Great Lakes Intercomparison
Project, which is still ongoing. Following up on lessons learned from the first project phase
on Lake Erie, the second phase uses a larger forcing dataset and more carefully chosen
basins that distinguish catchments of low human impact from most-downstream basins,
which are the basins that correspond to the last gauging station before a stream flows into
one of the lakes. Unlike low-impact basins, most-downstream basins can contain sub-basins
in urban areas or show other types of human water management. Further, the second phase
also performs spatial validation, where we test the models on previously unseen basins.
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Figure 5.1: Map of the Great Lakes gauging stations in our analysis, divided into basins
of low human impact (circles) and most-downstream basins (points) as well as calibration
(blue) and validation (orange) basins.

5.1 Data

Figure 5.1 shows a map of the gauging stations we use in this case study. Improving on the
previous study, we distinguish 99 basins of low human impact (i.e., not in highly urbanized
areas and no human water management) and 156 basins that are the most downstream.
In addition, we divide the basins into 141 calibration and 71 validation basins, and only
use the calibration basins during training. The validation basins simulate predictions on
ungauged basins, where we apply models to basins on which they have not been trained.
Table 5.1 lists the resulting number of calibration and validation basins in the groups of
low-impact and most-downstream basins.
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Table 5.1: Number of calibration and validation basins, divided into low-impact and most-
downstream basins. Since basins can be low-impact and most-downstream at the same
time, the rows and columns do not add up to the total number of basins.

Calibration Validation Total

Low-impact 66 33 99
Most-downstream 104 52 156

Total 141 71 212

Table 5.2: Meteorological forcing variables from the WFDEI-GEM-CaPA data product.
Each variable covers the Great Lakes at a resolution of around 10 km for the years 2000 to
2016 in three-hourly time steps. The variables are available at the indicated vertical levels.

Variable Explanation Level Unit

PRECIP Quantity of precipitation surface mm
TEMP DAILY AVE Average air temperature 40 m ◦C
TEMP MIN Minimum air temperature 40 m ◦C
TEMP MAX Maximum air temperature 40 m ◦C

The meteorological forcing dataset we use in this study is a subset of the WFDEI-GEM-
CaPA product [3], which contains precipitation and temperature information at different
vertical measurement levels (see Table 5.2) for the Great Lakes region at a resolution of
10 km from 2000 to 2016. We use the first eleven years for training and evaluate on the
remaining six years, both on the calibration basins we used during training (this is known
as temporal validation in hydrology) and on the unseen validation basins (known as spatial
validation in hydrology).

In addition, we provide the models with the static basin attributes described in Ta-
ble 5.3. As we train all models once for all calibration basins combined, these basin char-
acteristics allow the models to distinguish between different basins. Hence, we no longer
feed the models one-hot-encoded basin identifiers.

As we will show in Chapter 6, a training set of eleven years and 141 basins is not much,
even for lumped models; hence, we believe that the available data in this case study would
not be sufficient to thoroughly train models directly on the higher-dimensional gridded
data. Before training our models, we therefore aggregate the forcing data as well as static
basin attributes for each basin into lumped time series.
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Table 5.3: Static basin characteristics we use in the Great Lakes case study.

Variable Explanation Unit

Area2 Basin area m2

RivSlope Mean river slope %
RivLen River length km
BasinSlope Mean basin slope %
BkfWidth Mean river bank width m
BkfDepth Mean river depth m
MeanElev Mean basin elevation m
FloodP n Manning’s river flood plain coefficient s/m1/3

Q mean Mean discharge m3 s−1

CH n Manning’s river channel coefficient s/m1/3

Perim m Basin perimeter m
Regulation Indicator (0/1) of human regulation –

5.2 Models

We compare LBRM, an existing lumped physically-based model, with XGBoost, a standard
LSTM architecture, and a combined model that uses an LSTM to predict the error of the
physically-based LBRM model.

LBRM. The Large Basin Runoff Model (LBRM) as introduced in Section 2.3 is a lumped
physically-based model with six states [9]. This model takes precipitation and min-
imum and maximum temperature as input. Unlike the other models in this case
study, LBRM is trained on each basin individually. As of yet, we only have LBRM
predictions for most calibration stations, but not for validation stations; hence, we
only perform temporal evaluation for the LBRM model.

XGBoost. We feed the XGBoost model a fixed-history window of the previous 30 days’
precipitation, average, minimum, and maximum temperature, concatenated with the
static basin attributes into a flattened vector. Further, we normalize the input vari-
ables and the ground truth to a mean of zero and standard deviation of one. As
loss function, we use NSE′ (cf. Section 2.2.1), and we perform a cross-validated ran-
dom search to find suitable model hyperparameters. To reduce errors due to random
initialization, we train each architecture with eight different seeds and evaluate the
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ensemble of their averaged predictions. Appendix A provides more details on the
parameter tuning and training procedures.

LSTM. The LSTM model consists of one 256-neuron hidden layer with a dropout rate
of 0.4. We train the model on the last 270 days’ forcings, however, we concatenate
the static basin attributes to each forcing time step, as LSTMs support time-series
input. The reason why we choose a history of 270 days for the LSTM and 30 days
for XGBoost will become clear in Chapter 6, where we examine the optimal input
sequence lengths for both models. Again, we normalize the input and output variables
to a mean of zero and a standard deviation of one, and the loss function is NSE′.
As for XGBoost, we average the predictions of eight models with different seeds.
Appendix A provides further details on our model setup and training procedures.

LBRM+LSTM. Our hybrid model consists of a physically-based LBRM and a data-
driven LSTM component. The LBRM component takes as input the meteorological
forcings and generates a time series of predicted states for each time step (snow
pack, upper and lower soil moisture, groundwater, surface storage, and streamflow).
Subsequently, the LSTM component ingests the meteorological forcings and LBRM’s
predicted states at each time step and predicts the difference between ground truth
and LBRM’s streamflow prediction. To obtain the final predictions, we add the
LSTM’s error predictions to the LBRM predictions. The architecture and training
procedure of the LSTM are identical to those of the pure LSTM model. As we are
still awaiting LBRM predictions for the basins in the spatial validation set, we only
perform temporal evaluation for this model.

We choose to evaluate a combination of LBRM and LSTM rather than, for instance, a
combination of LBRM and XGBoost, since we believe the former to be more promising.
The reasons for this are two-fold: First, we will show that the pure LSTM already results
in better predictions than XGBoost due to the larger training set as compared to our study
on Lake Erie. Therefore, it might more successfully extract additional information from
LBRM’s states. Second, since XGBoost does not directly ingest time series, we would
need to flatten the input sequence of LBRM states together with forcings and static basin
attributes into a single vector. With six LBRM states and sequences of length 30, this
would add 6 × 30 = 180 dimensions to the input space. We consider it likely that the
available dataset is insufficient to adequately train a model on this space.
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Table 5.4: Minimum, median, and maximum of the NSE distributions for the physically-
based model LBRM, the two data-driven models XGBoost and LSTM, and the combined
model LBRM+LSTM on the Great Lakes basins. Section A shows the results for temporal
validation, while section B refers to spatial validation on low-impact and most-downstream
basins (at this point, we only have spatial validation results for XGBoost and LSTM). Best
values are highlighted in bold.

Statistic LBRM XGBoost LSTM LBRM+LSTM

(A)
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em
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or
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va
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n Min −24.16 −0.27 0.08 0.20

Median 0.41 0.37 0.60 0.66

Max 0.82 0.65 0.82 0.88
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t Min – −0.41 −1.95 –

Median – 0.37 0.51 –
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Min – −8.03 −1.99 –

Median – 0.27 0.38 –

Max – 0.52 0.70 –

5.3 Results

Table 5.4A lists each model’s minimum, median, and maximum NSE in temporal validation
(i.e., predictions on the training basins for the test period). Table 5.4B shows the spatial
validation results (i.e., predictions on previously unseen basins) for the purely data-driven
models. Naturally, the accuracy in spatial validation is lower than in temporal validation,
as the models have not seen these basins during training. Among the purely data-driven
models, the LSTM mostly outperforms XGBoost, as it shows higher minimum, median,
and maximum NSE values in all cases except spatial validation on low-impact basins, where
XGBoost’s minimum NSE is better. This is in contrast to our results on Lake Erie, likely
due to the larger training set and the lower-dimensional lumped setup. The physically-
based LBRM model has lower minimum, median, and minimum NSE values than the
LSTM. Compared to XGBoost, LBRM has higher median and maximum accuracy but
a far worse minimum NSE value. The combined LBRM+LSTM model yields the best
minimum, median, and maximum NSE values of all models in temporal validation.
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Figure 5.2: Cumulative NSE distributions for the physically-based LBRM (dotted line),
data-driven XGBoost (dashed-dotted), LSTM (dashed), and combined LBRM+LSTM
(solid) models across the basins in temporal validation (panel A) and the basins in spatial
validation (panel B). A∗ denotes each model’s area under the distribution curve; lower
values are better.

Figure 5.2A provides a more detailed view on these results, as it shows the models’
cumulative NSE distributions across the training basins and denotes the corresponding
area A under the distribution curve. Visually, worse models exhibit curves that are shifted
leftwards; quantitatively, this expresses in larger areas A under the distribution curve. We
see that the LBRM distribution has a much heavier left tail of poorly predicted basins
than all other models, even though it outperforms XGBoost on the basins it predicts well.
The LBRM+LSTM model provides the best NSE values, resulting in the lowest area A of
0.36—in other words, the combination of LBRM and LSTM is more accurate than either
model individually on most basins.

Figure 5.2B shows the cumulative distributions for XGBoost and LSTM across all spa-
tial validation basins (both low-impact and most-downstream). Consistent with Table 5.4,
the models’ results are worse than in temporal validation: For XGBoost, the area under
the curve increases from AXGBoost = 0.65 to 0.99, and for the LSTM from ALSTM = 0.42 to
0.72. Still, the LSTM performs better than XGBoost on most basins.
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Figure 5.3 shows the hydrographs of LBRM and LBRM+LSTM as well as the LSTM
component’s predicted corrections at three exemplary basins. Gauging station 04085427
near Manitowoc, WI, USA (Figure 5.3, top), is one of the few examples where the hybrid
model slightly deteriorates the prediction quality compared to LBRM, from an NSE of 0.71
to 0.67. This represents the largest reduction in NSE among all basins in our study. It
appears that in this case, the LSTM component lessens LBRM’s relatively accurate peak
predictions during the snow melt seasons. In contrast, station 04126970 near Mayfield, MI,
USA (Figure 5.3, middle), experiences the largest NSE improvement in our study: The
pure LBRM is completely off throughout the entire test period, as it overestimates modest
flows by about 6 m3 s−1 and does not properly anticipate peak flows (NSE −24.16). We
speculate that this might be due to an error in calibration. The added LSTM component
corrects the continual bias and better predicts high flows, which improves the NSE to 0.73.
Lastly, station 04119000 near Grand Rapids, MI, USA (Figure 5.3, bottom), is an example
where the LSTM component improves already good LBRM predictions. LBRM achieves
an NSE of 0.75, which the added LSTM raises to 0.88—the best NSE in our experiments.
Based on visual inspection, this improvement stems from better adaption to peak flows—
especially during an extreme event in 2013—and from more precise modeling of the decay
after such peak flows.
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Figure 5.3: Time series of actual streamflow (black) and predictions for LBRM (blue) and
LBRM+LSTM (orange), and predicted corrections (purple) at gauging stations 04085427,
04126970, and 04119000 in the test period 2011–2016. Dashed lines highlight peak flows.
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5.4 Discussion

Consistent with the results of our case study on Lake Erie, data-driven models outper-
form the physically-based LBRM model. Although LBRM has higher NSE values than
XGBoost on some basins, the data-driven models’ prediction quality is more consistent, as
the shorter left distribution tails and smaller areas in Figure 5.2 show. As expected, the
LSTM benefits from the additional training data and the lumped setup. Consequently, it
provides predictions that are not only more accurate than LBRM and XGBoost, but also
more accurate than the LSTM in the first case study. The fact that the LSTM’s accuracy
on low-impact test basins is higher than LBRM’s accuracy on the training basins indicates
that the LSTM would outperform LBRM in spatial validation, too.

We believe that the outstanding results for the combined LBRM+LSTM model are
promising precursors of joint data-driven and hydrologic modeling efforts. The hybrid
model predicts peak and base flows with high accuracy and improves the predictions of
decay after high-flow events. While one might argue that the LSTM’s substantial changes
to the LBRM output render any interpretation of LBRM states futile, we argue that the
opposite is true: The meaningfulness of purely physically-based models’ interpretations is
doubtful in situations where the models’ predictions are wrong. To this end, the combina-
tion with data-driven models yields a notion of the interpretations’ trustworthiness—the
states can only be reliably interpreted if the error correction is small. If, on the other hand,
the data-driven error prediction is large, this means that the physically-based states are
likely incorrect, which in itself can be a helpful interpretation that hints towards ways of
improving the model.

To take this approach even further, we can imagine future work that uses data-driven
models such as combinations of Gaussian processes and neural networks to explicitly predict
both the physically-based error and confidence intervals [11].
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Chapter 6

Effects of Limited Training Data

As we demonstrated in the previous chapters’ case studies, data-driven models can out-
perform physically-based models. We also saw, however, that the quality of data-driven
predictions seemed limited by the available training data. While the LSTM performed
poorly in the Lake Erie case study, it outperformed XGBoost and LBRM on the larger
Great Lakes dataset, and it might become even more accurate given more training data.
In this chapter, we clarify the models’ qualities on a large and diverse dataset of basins
with known streamflow measurements. We use 19 years of historical records from over 500
basins across the continental United States to quantify the effects of limited training data
in terms of time and space on tree- and LSTM-based streamflow prediction models.

Our analyses answer the following two main research questions:

� When we train a model on a given number of training years, we can still choose how
many previous days of forcings we feed the model to generate a single prediction—the
input sequence length. Which sequence length yields the best predictions for each
model, and does this depend on the training set size?

� How do training period length and the number of basins in the training dataset affect
the prediction quality of tree- and LSTM-based models?
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6.1 Data and Method

6.1.1 Data

For our experiments, we use the Catchment Attributes and Meteorology for Large-sample
Studies (CAMELS) dataset, provided by the U.S. National Center for Atmospheric Re-
search [36]. This dataset contains static attributes, streamflow measurements, and three
different lumped meteorological time-series products for 671 basins across the continental
United States. A number of studies use it as a sufficiently large and diverse dataset; hence,
we believe that our results generalize to other regions and datasets [1, 25, 33, 35]. Follow-
ing several of these studies, we use the Maurer forcing product (which is one of the three
products in the CAMELS dataset) [31]. Table 6.1 lists the meteorological attributes from
this dataset that we use in our study. Appendix B provides a list of the static basin fea-
tures contained in the CAMELS dataset. Following previous studies on the same dataset,
we discard basins with high discrepancy between their area as calculated using different
methods and train and test our models on the remaining 531 basins [25, 35].

Table 6.1: Maurer meteorological variables in the CAMELS dataset used in this study.

Variable Explanation Unit

prcp Daily cumulative precipitation mm
tmin Daily minimum air temperature ◦C
tmax Daily maximum air temperature ◦C
srad Average short-wave radiation W m−2

vp Vapor pressure Pa

6.1.2 Training and Evaluation Procedures

As data-driven models, we use XGBoost and the Entity-Aware LSTM (EA-LSTM) model
proposed by Kratzert et al. [25] as introduced in Section 2.4. To reduce errors due to
random initialization, we train each architecture with eight different seeds and evaluate
the ensemble of their averaged predictions. We use NSE′ (cf. Section 2.2.1) as the loss
function for all models. Appendix A provides further details on our training procedures
for the two types of models.

To determine the effect of limited training data on the models’ prediction quality, we
vary the training set size with respect to the following three dimensions:
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Training period length. The amount of historical data for a given basin. This is perhaps
the most obvious and most commonly exploited dimension in streamflow prediction.

Hydro-geo-climatic diversity. The number of basins that we use to train a single model.
While the advantage of greater geographic, hydrologic, and geophysical diversity may
at first seem counter-intuitive, we hope that models are able to generalize knowledge
across basins. For instance, a model may have never seen a period of drought in a
certain basin during training, but it may have seen a drought in a basin with similar
characteristics. In such a case, an ideal model would transfer the knowledge from
the second basin to the first and yield accurate predictions, even though it was never
trained to predict droughts on the first basin.

Input sequence length. Training period length and hydro-geo-climatic diversity deter-
mine the overall number N of observations that we show the models during training.
Additionally, we can vary the amount of data we feed a model to predict an indi-
vidual sample: when predicting streamflow yt for day t ∈ [1, . . . , T ], we feed the
model the previous k days’ forcings xt−k+1, . . . , xt. This parameter k is called the
input sequence length; it controls the amount of data we feed the models to fit an
individual streamflow observation yt. Note that, unlike the other two dimensions, the
sequence length is independent of the overall dataset size (apart from the training
period length being an upper bound). Rather, it is a tunable parameter of model
training; for instance, too short sequences (small k) will not contain sufficient infor-
mation for accurate predictions, and too long sequences (large k) make it challenging
to identify the most important patterns.

We use input sequence lengths k of 10, 30, 100, 270, and 365 previous days’ forcings for EA-
LSTMs. For XGBoost, we feed the sequences of length k as flattened vectors of 5k variables
(precipitation, minimum and maximum temperature, radiation, and pressure), concate-
nated with the 27 basin attributes (see Appendix B) to a vector of length 5k + 27. We do
not use sequences longer than 100 days for XGBoost, as we find that the experiments with
k = 100 already result in worse predictions than lengths of 30. Likely, this is because the
sequence length affects the input dimension by a multiplicative factor, as we use a flattened
vector as input. A history of 100 days already leads to a 100× 5 + 27 = 527-dimensional
input space, where training is challenging. Further, longer sequences drastically increase
the runtime of the already computation-intensive hyperparameter search.

Besides the sequence length, we evaluate the quality of each model by varying the
amount of training data in terms of the number of training years and the number of
basins. All training periods start from October 1999 and last three, six, or nine years.
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The basins are random subsets of 13 (2.5 %), 26 (5 %), 53 (10 %), 265 (50 %), and all 531
(100 %) basins. For the conditions that do not include all basins, we evaluate five different
random basin selections each. Following the same setup as Kratzert et al., we test all
models on the same test period from October 1989 until September 1999, and we evaluate
them on the set of basins that they were trained on.

For each of the 15 combinations of three training period lengths and five basin set sizes,
we select the EA-LSTM and XGBoost model trained with the input sequence length k that
results in the best median NSE across all basins and across the five random basin sets.

As a result, we obtain two distributions FEA-LSTM and FXGBoost of NSE values for the
models. Each distribution has a sample size of five times the number of basins (except
for the case of all 531 basins, where we do not have five random basin sets). We use a
Kolmogorov–Smirnov significance test to assess the null hypothesis that the distributions of
NSE values are identical. For this, we use the scipy function scipy.stats.ks 2samp. This
test is based on the maximum absolute difference between FEA-LSTM and FXGBoost. The sig-
nificance test’s p-value denotes the probability that the NSE values are at least as different
as in our experiment even though they come from the same distribution. To account for
the large number of significance tests (15), we apply Bonferroni correction [32] and test our
hypotheses at α = 0.01/15. Hence, we reject the null hypothesis of identical distributions
for p-values above 0.01/15 and accept it otherwise. Further, we estimate the corresponding
effect size as Cohen’s d [8]. The effect size is a metric for the difference of distributions;
it measures the difference between the means of the two NSE distributions, normalized
by their combined standard deviation (d = (µEA-LSTM−µXGBoost)/σ(EA-LSTM,XGBoost)). The
larger d, the further apart are the distribution means.

While the effect size d measures the difference between the two models’ NSE distribu-
tions, we quantify the quality of each model’s predictions as the area A under the curve
of its cumulative NSE distribution. Ideally, this value is zero, with an NSE of one on all
basins. As models yield smaller NSEs, the distribution shifts leftward and A increases.
Larger values of A therefore correspond to worse overall performance.

6.2 Results

6.2.1 Input Sequence Length

Table 6.2A shows the best sequence lengths for XGBoost and EA-LSTM. As expected,
the best sequence length generally increases with dataset size. For XGBoost, input se-
quence lengths beyond 30 perform worse even on larger training sets, likely due to the
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Table 6.2: Input sequence lengths k for XGBoost and EA-LSTM that yield the best median
NSE for each number of basins (rows) and training years (columns) (section A). Section B
shows the difference in median NSE between the best and next-smaller sequence length.
The cell entries are color-coded; lighter colors correspond to larger values.

Training years

XGBoost EA-LSTM

3 6 9 3 6 9

(A)

N
u
m

b
er

(p
er

ce
n
ta

ge
)

of
b
as

in
s

13 (2.5 %) 10 10 10 10 10 30

26 (5 %) 10 30 30 10 30 30

53 (10 %) 10 30 30 30 30 100

265 (50 %) 30 30 30 100 270 365

531 (100 %) 30 30 30 270 365 365

(B)

N
u
m

b
er

(p
er

ce
n
ta

ge
)

of
b
as

in
s

13 (2.5 %) – – – – – 0.046

26 (5 %) – 0.022 0.044 – 0.048 0.058

53 (10 %) – 0.033 0.045 0.044 0.063 0.014

265 (50 %) 0.053 0.062 0.070 0.017 0.005 0.002

531 (100 %) 0.061 0.072 0.078 0.007 0.005 0.001

aforementioned multiplicative increase of training space dimensionality. For EA-LSTMs,
the optimal sequence length continues to grow with larger datasets, reaching the longest
evaluated length of 365 on the three largest training sets.

Table 6.2B shows the difference in median NSE between the best and next-smaller
input sequence length for each training set size. The difference increases for XGBoost
(likely because of its constant sequence length of 30 on larger training sets) but decreases
for the EA-LSTM models, where it almost reaches zero on the largest configuration.

6.2.2 Training Period Length and Number of Basins

Table 6.3 provides a tabular comparison of the models’ minimum, median, and maximum
prediction quality on the different training set sizes, as well as the average percentage
of basins with NSEs below zero. The given results correspond to the models that use
their respectively optimal input sequence length k (see Table 6.2A). Figure 6.1 visualizes
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Table 6.3: Minimum, median, and maximum NSE scores and average percentage of failed
basins (pfailed[%], NSE ≤ 0) on the test period (Oct. 1989 to Sep. 1999) for XGBoost and
EA-LSTM models, trained with different amounts of training years (Nyears) and basins
(Nbasins). The values are calculated across five different random basin selections (we ag-
gregate minimum as minimum, median as median, maximum as maximum, and pfailed as
the average percentage of failed basins in each random basin set). In each row, the best
values for each metric are highlighted in bold.

Nyears Nbasins
XGBoost EA-LSTM

Min Median Max pfailed[%] Min Median Max pfailed[%]

3 13 −0.64 0.41 0.69 4.62 −0.31 0.43 0.70 1.54
26 −4.71 0.43 0.81 4.62 −1.58 0.48 0.80 3.08
53 −1.98 0.48 0.85 2.26 −1.36 0.56 0.88 0.38

265 −1.92 0.55 0.84 1.81 −0.25 0.65 0.91 0.30
531 −1.34 0.57 0.87 1.51 0.03 0.68 0.93 0.00

6 13 −1.06 0.49 0.72 4.62 −1.65 0.57 0.77 1.54
26 −4.14 0.53 0.78 3.08 0.01 0.61 0.84 0.00
53 −1.15 0.58 0.86 0.75 −0.26 0.64 0.91 0.38

265 −3.08 0.63 0.90 1.36 −0.20 0.71 0.94 0.45
531 −1.75 0.64 0.91 0.94 −0.90 0.72 0.95 0.56

9 13 −1.39 0.54 0.75 3.08 −0.16 0.63 0.81 1.54
26 −2.41 0.57 0.81 2.31 −0.01 0.64 0.87 0.77
53 −1.22 0.61 0.89 1.13 −0.02 0.68 0.93 0.38

265 −4.91 0.65 0.91 1.43 −0.96 0.73 0.95 0.23
531 −1.21 0.66 0.91 1.13 −1.38 0.74 0.96 0.19

these results in cumulative distribution plots. Each plot in a particular row and column in
Figure 6.1 corresponds to one of the 15 combinations of basin set size and training period
length, and it shows the two models’ empirical cumulative NSE distributions when we
use the respectively best input sequence length (cf. Table 6.2A). An ideal model in this
figure would exhibit “ L”-shaped curves, with an NSE of one on all basins. Quantitatively,
this would correspond to an area under the distribution curve of A = 0. Further, we
highlight configurations where the Kolmogorov–Smirnov test reports that the distributions
of XGBoost and EA-LSTM differ significantly with an effect size d > 0.35 (this threshold
is halfway between Sawilowsky’s suggestion for “small” and “medium” effect sizes [40]).
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Figure 6.1: Cumulative NSE distributions for XGBoost (blue) and EA-LSTM (orange) at
varying training set sizes in terms of training period (columns) and number of basins (rows)
using the optimal input sequence length k (cf. Table 6.2A). Each plot shows the p-value
of a Kolmogorov–Smirnov significance test and the effect size as Cohen’s d. Plots with
gray backgrounds correspond to combinations with p < 0.01/15 and d > 0.35, which indi-
cates distribution pairs with at least small to medium differences. AXGBoost and AEA-LSTM

indicate the area under the distribution curves; lower values are better.
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The plots show that, on very limited data (three to six years and 13 basins), the
distributions for the two models do not differ significantly, although the EA-LSTM’s median
NSE is slightly higher. As expected, more training data improves the predictions. Visually,
this reflects in the rightward shift of the distributions in Figure 6.1. Quantitatively, the
area under the curves decreases from AXGBoost = 0.64, AEA-LSTM = 0.58 on the smallest to
AXGBoost = 0.38 and AEA-LSTM = 0.30 on the largest configuration. At the configurations
with three years and 53 basins, at least 265 basins, or at least nine years, the EA-LSTM
outperforms XGBoost with an effect size above 0.35. The effect size increases with the
number of basins but does not show a clear correlation to the number of training years.

Figure 6.2A visualizes the relation between training set size and median NSE for XG-
Boost (circles) and EA-LSTM (squares) in a scatter plot. Lighter colors denote larger
numbers of basins, whereas larger markers correspond to more training years. For all but
the 531-basin configurations, the plot shows five points, which represent the five random
basin subsets. As training set size increases, we see squares more consistently above cir-
cles of same color and size, which means that the EA-LSTM outperforms XGBoost with
increasing consistency. Further, both models not only benefit from additional training
years, but also from additional basins: When we keep the training years constant (markers
of same size and shape) but increase the basin subset size (lighter colors), the predic-
tions improve. Additional training years, however, seem to improve predictions more than
additional basins (darker, larger markers are above lighter, smaller ones).

From a more high-level perspective, Figure 6.2B groups the median NSE values by the
orders of training set size magnitude denoted by gray lines in Figure 6.2A. Consistent with
the previous analyses, the models show similar prediction accuracy on the small training
sets, but EA-LSTMs outperform XGBoost on larger training sets. Up to training set sizes
of around 24×104 samples, we see strongly improving NSE scores. On even larger training
sets, the NSEs continue to improve, but at a much slower pace.

Finally, Figure 6.3 visualizes the NSE distributions’ spatial patterns in two heatmaps.
Panel A shows the models’ NSE values on the smallest training set, while panel B shows
the results on the largest training set. XGBoost’s predictions are generally slightly worse
than the EA-LSTM’s, but the accuracy of both models is strongly correlated: On the small
training set (Figure 6.3A), we observe a Pearson correlation coefficient of 0.84; on the large
dataset (Figure 6.3B), a correlation coefficient of 0.78. The models appear to make poor
predictions on the same basins, with only two visually striking exceptions in Figure 6.3B:
one where XGBoost results in much worse predictions than the EA-LSTM (NSE 0.29 vs.
0.81), and one vice versa (NSE 0.73 vs. 0.02). Manual examination reveals that these cases
result from few days where one model largely over-predicts streamflow. The NSE metric’s
sensitivity to such outliers consequently deteriorates the score on the affected basins.
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Figure 6.2: Relation between number of training samples (Nbasins × (Nyears × 365)) and
median NSE across all basins. Markers in panel A represent the median NSE for XGBoost
(circles) and EA-LSTM (squares) on a certain training period length (three to nine years,
marker size) and number of basins (13–531, marker color). For the combinations with less
than 531 basins, we report one median NSE score for each of the random basin subsets.
Panel B aggregates these median NSEs for XGBoost (blue) and EA-LSTM (orange) into
one boxplot per order of training set size magnitude as indicated by the gray lines in
panel A. The boxes extend from lower to upper quartile and have a line at the median.
The whiskers reach to the last data point that is up to 1.5× (p75− p50) beyond the ends of
the boxes; circles indicate outliers beyond those points. Note the logarithmic x-axis scales.
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Figure 6.3: Heatmap visualization of the XGBoost and EA-LSTM models’ NSE values for
each basin. Panel A shows the NSE values on the smallest configuration of three years and
13 basins. It displays basins that are part of at least one random 13-basin subset. Where a
basin is part of multiple subsets, we show the average NSE. Panel B shows the NSE scores
on the largest configuration of nine years and all 531 basins.
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6.3 Discussion

6.3.1 Input Sequence Length

Our findings reveal connections between the different dimensions of training set size: longer
training periods and more basins call for longer input sequences. This becomes especially
clear when we compare our results with those from a preceding study, where we trained
models on fixed-length input sequences [12]. There, EA-LSTMs performed worse than XG-
Boost on small datasets, whereas the adaptive sequence lengths we present above improve
the EA-LSTM’s predictions to a similar accuracy as XGBoost’s on small training sets.

The small differences in NSE between the sequence lengths of 270 and 365 for EA-
LSTM on the largest training configurations (cf. Table 6.2B) indicate that even longer
sequences would not further improve predictions. Also, this observation makes it seem
unlikely that the optimal sequence length increases beyond 365 for even larger training
sets. For XGBoost, the stable sequence length of 30 indicates that training sets would
need to be substantially larger to successfully exploit longer sequences.

6.3.2 Training Period Length and Number of Basins

While it is not surprising that additional training years improve predictions, it was not clear
from the outset that more basins yield this effect, too. Intuitively, one might think that
a model that needs to predict fewer basins could better adapt to these basins’ streamflow
patterns—as we do not test the model on unseen basins, the model could overfit on the
training basins. Yet, it turns out that this is not the case, as the models benefit from
additional training years and additional basins. The growing effect size d and the decreasing
area A under the cumulative distribution curve suggest that EA-LSTMs benefit more than
XGBoost from larger basin sets.

These observations suggest that models generalize knowledge across basins. We illus-
trate this concept with the example of a basin that consistently exhibits low flows during
its training period but has a high-flow event in the test period. If we train a model on just
this one basin, the NSE on the test period will likely be poor, as the model has never seen
high flows. When we train the model on a large number of basins, however, chances are
that there exists a similar basin that does have high flows in its training period. With this
information, a hypothetical model that transfers knowledge could produce good predic-
tions despite its lack of suitable training data for one basin. A recent study of Kratzert et
al. on the same dataset supports this conclusion, as it shows that data-driven models can
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predict ungauged basins (i.e., basins that were not seen during training) more successfully
than physically-based models [24]. The fact that the models continue to perform well in
such a setup further endorses our interpretation of shared knowledge across space.
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Chapter 7

Conclusion

In this thesis, we explored applications of machine learning to streamflow prediction. First,
we presented the Cuizinart as an easy-to-use interactive web tool that alleviates the sub-
setting of large environmental datasets. Second, we demonstrated in two case studies
how data-driven approaches can outperform existing, physically-based streamflow predic-
tion models. Moreover, we designed a combined physically-based and data-driven model
that yields more accurate predictions than models of either paradigm individually. The
data-driven component corrects the physically-based component’s predictions and pro-
vides a metric of the physically-based states’ trustworthiness. Motivated by the results
of the case study, we lastly evaluated the effect of limited training data on the quality
of data-driven predictions. We estimated optimal input sequence lengths for tree- and
LSTM-based streamflow prediction models and quantitatively highlighted the importance
of training models not only on long training periods, but also on large sets of basins. This
result indicates that data-driven models can transfer knowledge across basins of similar
characteristics, which is especially promising towards obtaining more accurate predictions
on ungauged basins.

As future work, we see great merit in combined physically-based and data-driven mod-
els under the paradigm of “theory-guided data science” [23]. For instance, algorithms
such as Local Interpretable Model-Agnostic Explanations (LIME) could explain which hy-
drologic scenarios cause incorrect physically-based predictions and therefore entail large
corrections [38]. Subsequently, hydrologists could improve the underlying physically-based
model to better adapt to these scenarios. Closely related to this approach is the idea of
“physics-guided machine learning”, where we incorporate domain knowledge directly into
data-driven architectures to ensure predictions that comply with known physical laws [19].
One example for such prior knowledge in streamflow prediction is the conservation of mass:
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Assuming a closed system, the total amount of streamflow, evapotranspiration, and dif-
ference in stored water must be identical to the total precipitation across time. In line
with these efforts towards tighter integration of physically-based and data-driven models,
another promising research direction are spatially distributed data-driven models. Like
the convolutional LSTM in our case study on Lake Erie, such models operate directly on
the spatial grid of input variables and therefore more naturally generalize across space
than lumped models. It is, however, challenging to train such models, because the high-
dimensional input grid requires copious training sets. Nevertheless, distributed data-driven
architectures could allow for better coupling of the two modeling paradigms, since state-
of-the-art physically-based models are often distributed setups as well.

In summary, we believe that joint efforts of physically-based and data-driven modeling
can help improve hydrologic models, redress the ostensible trade-off between accuracy and
interpretability, and therefore ultimately advance hydrologic understanding.
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APPENDICES

A Training Procedures

We train all our models using Python 3.7.3, PyTorch 1.1.0, and CUDA 9.0. For CPU-
intensive training such as XGBoost, we use Intel Xeon E5-2683 and E5-2699 v4 CPUs; for
GPU-intensive computations, we use NVIDIA P100 Pascal and V100 Volta GPUs.

A.1 LSTM-Based Models

We train our LSTM-based models for 30 epochs with an initial learning rate of 0.001 that
reduces to 0.0005 after ten epochs and to 0.0001 after another ten epochs. We feed batches
of 256 samples into the networks, which consist of one 256-neuron hidden layer with a
dropout rate of 0.4. For the EA-LSTM model, we use the open-source implementation of
Kratzert et al. (Git version 2dd199e, https://github.com/kratzert/ealstm_regional_
modeling).

A.2 XGBoost Models

For XGBoost (Git version 96cd7ec, https://github.com/dmlc/xgboost), we find suit-
able hyperparameters in two three-fold cross-validated random searches. First, we search
for good tree parameters (maximum tree depth, minimum child weight, column sampling,
gamma) in 5000 random samples. Next, we use the found parameters in a 100-iteration
random search to find regularization parameters (alpha, lambda). Both random searches
fit up to 100 trees at a learning rate of 0.25 and stop after 50 rounds without improvement.

In our study on the effect of limited training data on the CAMELS dataset, we find
that longer sequence lengths work better for larger datasets. Hence, we perform the hyper-
parameter search for sequence length 10 on three years and 13 basins, for sequence length
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30 on six training years and 53 basins, and for sequence length 100 on nine years and 265
basins. Table A.1 lists the final hyperparameters for each sequence length in this study.
After parameter tuning, we train the XGBoost models at a learning rate of 0.08 for up to
20 000 iterations; however, we stop once the NSE′-loss on a validation set of 10 % of the
training data does not improve for 100 rounds.

Table A.1: Final XGBoost hyperparameters for each input sequence length in our study
on limited data with the CAMELS dataset.

Sequence length

Parameter 10 30 100

n estimators 20 000 20 000 20 000
early stopping rounds 100 100 100
learning rate 0.08 0.08 0.08
max depth 4 6 7
min child weight 1 1 9
colsample bytree 0.962 0.400 0.884
colsample bylevel 0.916 0.968 0.485
gamma 1.293 1.005 4.586
reg alpha 1.091 18.944 24.190
reg lambda 2.738 3.704 67.595
subsample 0.9 0.9 0.9

B Attributes in the CAMELS Dataset

Table B.1 shows the 27 static basin attributes from the CAMELS dataset we use in our
study on the effect of limited training data (cf. Chapter 6).
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Table B.1: CAMELS static basin attributes used in this study. (Source: Addor et al. [2])

Variable name Explanation

p mean Mean daily precipitation.
pet mean Mean daily potential evapotranspiration.
aridity Ratio of mean PET to mean precipitation.
p seasonality Seasonality and timing of precipitation. Estimated by rep-

resenting annual precipitation and temperature as sin waves.
Positive (negative) values indicate precipitation peaks during
the summer (winter). Values of approx. 0 indicate uniform
precipitation throughout the year.

frac snow daily Fraction of precip. falling on days with temperatures < 0 ◦C.
high prec freq Frequency of high precipitation days (≤ 5× p mean).
high prec dur Average duration of high precipitation events (number of con-

secutive days with ≤ 5× p mean).
low prec freq Frequency of dry days (< 1 mm/day).
low prec dur Average duration of dry periods (number of consecutive days

with precipitation < 1 mm/day).
elev mean Catchment mean elevation.
slope mean Catchment mean slope.
area gages2 Catchment area.
forest frac Forest fraction.
lai max Maximum monthly mean of leaf area index (LAI).
lai diff Difference between the max. and min. mean of the LAI.
gvf max Maximum monthly mean of green vegetation fraction (GVF).
gvf diff Difference between the max. and min. monthly mean GVF.
soil depth pelletier Depth to bedrock (maximum 50 m).
soil depth statsgo Soil depth (maximum 1.5 m).
soil porosity Volumetric porosity.
soil conductivity Saturated hydraulic conductivity.
max water content Maximum water content of the soil.
sand frac Fraction of sand in the soil.
silt frac Fraction of silt in the soil.
clay frac Fraction of clay in the soil.
carb rocks frac Fraction of the catchment area characterized as “Carbonate

sedimentary rocks”.
geol permeability Surface permeability (log10).
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