
Studying polymer physics by
machine learning

by

Qianshi Wei

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Physics

Waterloo, Ontario, Canada, 2020

c© Qianshi Wei 2020

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Dr. Rene Fournier
Professor
Dept. of Chemistry, York University

Supervisor(s): Dr. Jeff Z.Y. Chen
Professor
Dept. of Physics, University of Waterloo

Internal Member: Dr. Russell Thompson
Associate Professor
Dept. of Physics, University of Waterloo

Internal Member: Dr. Mark W. Matsen
Professor
Dept. of Chemical Engineering, University of Waterloo

Internal-External Member: Dr. Nasser M. Abukhdeir
Associate Professor
Dept. of Chemical Engineering, University of Waterloo

ii

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Statement of Contributions

This thesis has 6 chapters and is written based on three co-author papers.

1. Results in Chapter 3: Qianshi Wei, Roger G Melko, Jeff Z. Y. Chen, Phys. Rev.
E, 95, 032504 (2017);
I am the first author.

2. Results in Chapter 4: Xin Xu, Qianshi Wei, Huaping Li, Yuguo Chen, Yuzhang
Wang, Ying Jiang, Phys. Rev. E, 99, 043307 (2019);
I am the co-first author with Miss Xu. We contributed equally to this work. I
contributed to the researches on PCA. Miss Xu contributed to the researches on
diffusion map. We both contributed to the researches on the hybrid approach.

3. Results in Chapter 5: Qianshi Wei, Ying Jiang, Jeff Z. Y. Chen, Phys. Rev. E, 98,
053304 (2018);
I am the first author.

As the first author, my responsibilities are conducting research, collecting results and
drafting paper manuscripts. These researches are conducted under the supervision of Dr.
Jeff. Z. Y. Chen, my supervisor.

iv

Abstract

Recently, machine learning becomes a computational method that burst in popularity.
Many disciplines, such as condensed matter physics, quantum chemistry, chemical engi-
neering as well as polymer physics have incorporate machine learning into their studies.
This thesis mainly focuses on applying machine learning methods into the study of poly-
mer physics. More specifically, two computational methods are studied: 1. how to classify
polymer states by supervised or unsupervised learning methods, 2. how to use FNNs to
search for structures of diblock copolymer under self-consistent field theory scheme.

In the first topic, polymer samples that consist of both vastly different structures, such
as gas-like random coil, liquid-like globular and subtly different structures, such as crys-
talline anti-Mackay, Mackay, are generated by Monte Carlo method. We then explored the
capability of a FNN on the classification of different polymer configurations systematically.
Base on a series of numerical experiments, we find that a FNN, after appropriate training,
is able to not only identify all these structures, but also accurately locate the transition
points between multiple states. The location given by the FNN has a good agreement with
that provided by specific-heat calculations from the traditional method, which shows that
the FNN offers a new tool for further studies of the polymeric phase transitions. We also
studied these states with principal component analysis (PCA). When polymer samples only
contain coil and globular states, PCA can distinguish these states, and offer insights to un-
derstand the relation between features and order parameters of these states. However, PCA
itself is not powerful enough to distinguish globular, anti-Mackay, Mackay states. Then, a
hybrid scheme combining PCA and supervised learning is utilized to identify and precisely
detect the critical point of phase transitions between these polymer configurations.

Compared with traditional methods, our studies demonstrate machine learning based
methods have some distinct advantages. Firstly, these methods directly and only use molec-
ular coordinates, which indicates its high compatibility with multiple sampling methods. In
addition, the trained FNN has high transferability. In terms of identify transition points,
our approaches requires much fewer samples, which indicates they are computationally
faster than the traditional methods.

In the second topic, we start from using the universal approximation theorem of FNN
to build a machine learning based PDE solver. Our work mainly focuses on diffusion
equations. This algorithm utilizes the function generated by the FNN as a trial function
and adjusts the weights and biases of the FNN to search for the solution of a given PDE.
The trial function will have a good match with the solution, when the weights and biases
are optimal. Our approach is important to high dimensional diffusion equations. We

v

discovered that the growth of the computational time obeys a power law with respect to the
dimensionality, which indicates that the machine learning based solver offers a candidate
algorithm that may not suffer from the “curse of dimensionality”.

We then demonstrated that this machine learning PDE solver can be conveniently
adopted to deal with multi-variable, coupled integrodifferential equations in the self-consistent
field theory for predicting polymer self-assembly structures. We observed all known three-
dimensional classical structures, and our solutions have an excellent agreement with tradi-
tional solutions.

vi

Acknowledgements

First of all, I’d like to express my appreciation to Prof. Jeff Z. Y. Chen for leading me into
the researches of polymer physics, machine learning, and providing supervision throughout
my Ph.D. studies. I also want to thank my advisory committee members composed of
Prof. Rene Fournier, Prof. Nasser Abukhdeir, Prof. Mark Matson, and Prof. Russell
Thompson, who provided many insightful suggestions on my projects and thesis. I also
would like to thank Prof. Ying Jiang and his team for enormous help, collaboration and
hospitality during my visit to Beihang university.

I am deeply indebted and grateful to my parents, in-laws and my beloved wife, Xi-
aodong. I can not reach this far without their endless supports and encouragements. I am
also grateful to tons of helps from my friends and colleagues in Univeristy of Waterloo.

Lastly, I’d like to thank the financial support form Natural Sciences and Engineering
Research Council of Canada, Beihang university and the computational resource from
Compute Canada.

vii

Dedication

To my family.

viii

Table of Contents

List of Tables xiii

List of Figures xiv

Nomenclature xxi

1 Introduction 1

1.1 Motivation . 1

1.2 Polymer states . 4

1.3 Identifying polymer states . 7

1.3.1 Ehrenfest classification . 8

1.3.2 Landau classification . 8

1.3.3 Machine learning methods . 11

1.4 Predicting equilibrium states of block copolymers 13

1.4.1 Micro-phase separation . 13

1.4.2 Traditional methods . 13

1.4.3 Machine learning based methods 16

1.5 Objective of thesis . 17

1.6 Organization of thesis . 18

ix

2 Machine learning methods 20

2.1 Background . 20

2.2 Classification by supervised learning . 22

2.2.1 Architecture of an FNN for classification 22

2.2.2 Supervised learning . 23

2.3 Unsupervised learning . 26

2.4 Machine learning PDE solver . 28

2.4.1 Regression by an FNN . 28

2.4.2 Constructing a machine learning PDE solver 29

2.4.3 Training the machine learning PDE solver 31

3 Identifying polymer states by supervised learning 34

3.1 Introduction . 34

3.2 Polymer models and states . 35

3.3 Training an FNN with polymer samples . 38

3.3.1 Constructing an FNN . 38

3.3.2 Training . 38

3.4 Coil-to-globule transition . 38

3.5 Low-energy polymer states . 42

3.6 In search of a phase transition . 43

3.7 The order of a phase transition . 47

3.8 Summary . 49

4 Identifying polymer states by unsupervised learning 52

4.1 Introduction . 52

4.2 Main procedure . 53

4.3 Coil-to-globule transition . 54

4.4 Globule-to-anti-Mackay-to-Mackay transition 57

4.5 Identifying transition points . 59

4.6 Summary . 62

x

5 Machine learning solver for the modified diffusion equation of AB diblock
copolymer 64

5.1 Introduction . 64

5.2 Main procedure . 65

5.3 Machine learning PDE solver . 67

5.3.1 Diffusion equation . 67

5.3.2 Performance . 70

5.3.3 Breaking the curse of dimensionality 72

5.4 Self-assembly of diblock copolymers . 75

5.4.1 Self-consistent equations for predicting the structures of diblock copoly-
mers . 76

5.4.2 Equilibrium structure observed . 81

5.5 Discussion . 82

5.6 Summary . 82

6 Conclusion and Outlook 84

6.1 Conclusion . 84

6.2 Outlook . 86

6.2.1 Identifying polymer states . 86

6.2.2 Machine learning based PDE solver 87

APPENDICES 89

A Polymer models and Monte Carlo methods 90

A.1 Gaussian-chain model with a square-well potential 90

A.2 FENE model with a LJ interaction . 91

A.3 Monte Carlo methods . 91

A.3.1 Metropolis method . 92

A.3.2 Wang-Landau method . 93

xi

B A pedagogical guide of the machine learning PDE solver 97

C Publications 100

References 101

xii

List of Tables

2.1 A list of different kinds of cost functions. qij is the jth FNN output of the
ith sample, νij is the corresponding label of the ith sample, j is the subscript
of which this sample belongs to. K is the number of classed to be classifed. 25

4.1 A comparison of the critical energy ec of structural transitions for coil (C),
globule (G), anti-Mackay (aM) and Mackay (M) states are determined by
our work and Ref. [182]. In the present work, we predict ec by taking
two types of data representation as input data, i.e. raw configurations and
configurations pre-processed by PCA, respectively. 62

xiii

List of Figures

1.1 Sketches of some typical polymer architectures. Monomer type A are colored
as red, B are colored as blue. 2

1.2 A graphical illustration of the coarse-grained model of a polypropylene chain. 5

1.3 Three dimensional graphs of typical configurations of a homopolymer chain
in (a) coil, (b) globular, (c) anti-Mackay, and (d) Mackay states, sampled by
Monte Carlo methods, as the temperature or energy per monomer decreased.
The N = 102 monomers are represented by blue spheres, except for those
in in (f) and (g). Detailed stacking modes are shown in (e), (f) and (g): at
the liquid-like globular state, the monomer positions are disordered, shown
in (e); both anti-Mackay and Mackay states are crystalline, differ from each
other by the monomer stacking symmetries, demonstrated by the red and
yellow spheres in (f) and (g). 6

1.4 Microphase structures of diblock copolymers. These structures are labelled
as, S which means body centred cubic spheres, C which means hexagonal
cylinders, G which means gyroid, and L which means lamellar. Red is A
rich region, in which the density of type A monomers is greater than type
B monomers. Blue is B rich region. Taken from Ref. [103] 7

1.5 A sketch of the free energy of liquid (red) and solid (blue) phase with respect
to temperature. TC represents the transition temperature between the liquid
and solid phase. 9

1.6 Phase diagram of diblock copolymer. (a) Theoretical prediction of the
SCFT; (b) Experimental phase diagram measured using polystyrene-polyisoprene
diblock copolymer. Taken from Ref. [113] 15

xiv

2.1 A graphical illustration of the data matrix, labels, supervised learning and
unsupervised learning. The arrow with text “Supervised” means supervised
learning methods tend to find a function that maps data matrix to labels.
The arrow with text “Unsupervised” means unsupervised learning methods
tend to find a way to transform the data matrix to a new data matrix with
smaller dimensionality. 21

2.2 A graphical illustration of a fully connected FNN. The circles represent
input, hidden, output neuron nodes, and arrows represent weights and bias.
The neuron nodes are connected via various weights, bias, and activation
functions layer by layer. 23

2.3 A graphical illustration of supervised learning. In this example, there are
two states, coil and globule, to be classified. The polymer configurations
will be fed into FNN. The FNN will output an inference following Eq. 2.2
based on each input. The supervised learning algorithms aim at adjusting
the FNN parameters so that the inference of FNN matchs the label provided. 24

2.4 A graphical illustration of the FNN architecture of the machine learning
PDE solver. The blue background is to emphasize that these FNNs are used
for solving PDE instead of classification. All circles represent neuron nodes,
where the input layer consists of nodes that have variables as input and the
output layer are simply the functions to be determined. The connections
between the input and hidden layers are assumed to be sigmoid functions
and the connections between the hidden and output layers are assumed to
be linear with adjustable coefficients. The architecture varies depending on
the problem that needs to be solved. Two examples are shown here. (a) a
simple two dimensional diffusion equation solver where q(x; t) is the density
of the diffusing material in an external field at location x and time t and
(b) complicated, coupled modified diffusion equations where q(x; t) is the
density of the diffusing material that couples to an unknown external field
w(x). In both examples, the functions to be found are represented by FNN. 29

xv

2.5 A flowchart of the training approach of the machine learning PDE solver.
The training contains 4 steps. Step (a), we need to initialize the machine
learning PDE solver with a guess of weights and biases. After a batch of
training samples are fed into the solver, it will output the values of q(x; t).
Step (b), operators are calculated based on these values analytically. Step
(c), cost function J is evaluated based on the sum of square module of
operators. Step (d), the appropriate weights and biases can be obtained
after J is minimized. 32

3.1 The cost with respect to epoch when training the FNN with samples con-
taining coil and globe configurations. 39

3.2 (a) Reduced mean-square radius of gyration (plus symbols, to the left scale)
and specific heat (circles, to the right scale) as functions of the reduced
temperature kBT/ε, determined from the Monte Carlo simulations of GSM
for N = 102, (b) the neural network outputs of test-recognizing indepen-
dent GSM configurations, (c) the neural network outputs of test-recognizing
independent, normalized GSM configurations, and (d) the neural network
outputs of test-recognizing normalized FENE configurations. The filled and
open squares represent the mean ν-values output from the globular and coil
neurons, respectively. The circles in plot (d) represent the specific-heat-like
γ (to the right scale) determined for the FENE model from a Wang-Landau
Monte Carlo simulation. Error bars associated with all squares are smaller
than the symbol size. 40

3.3 The cost with respect to epoch when training the FNN with samples con-
taining globe, anti-Mackay, and Mackay configurations. 43

3.4 Mean neural network outputs ν (square for globule, open diamonds for anti-
Mackay, and filled diamonds for Mackay) from the test samples, after the
network is trained to recognizing these states in regimes where they are
stable. In the background, the reduced specific heat-like γ (circles, to the
right scale) was independently produced from the Monte Carlo simulations.
Error bars are smaller than the symbol size. 44

xvi

3.5 Average neural network output ν from the globule and coil neurons on the
testing configurations for neural network models trained in various temper-
ature ranges. The inset in plot is the neural network predicted transition
temperature as a function of the training temperature-range used. Error
bars are smaller than the symbol size, unless otherwise plotted. The plus,
cross, and square symbols represent the mean ν from the two output neurons
on test samples, of neural network models initially trained in the temper-
ature range, Range = 0.00, 0.53, and 1.20, respectively. The blue circles
represent the same data in Fig. 3.2(a). 45

3.6 Average neural network output ν from “phase-1”- (squares) and “phase-2”-
nodes (circles) on the test configurations in the temperature range [2.5, 5.5]
for neural network models trained by using low- and high-temperature sam-
ples. This temperature range contains no actual phase-transition point. . 46

3.7 Standard deviation of neural network outputs ν (square for globule, open
diamonds for anti-Mackay, and filled diamonds for Mackay) from the test
samples, after the network is trained to recognizing these states in regimes
where they are stable. In the background, the reduced specific heat-like
γ (circles, to the right scale) was independently produced from the Monte
Carlo simulations. Error bars are smaller than the symbol size. 48

3.8 Histogram of the FNN outputs calculated from the samples generated near
globule-to-anti-Mackay transition. ν1, ν2 and ν3 represent the nodes de-
signed to identify globule, anti-Mackay and Mackay respectively. 50

3.9 Histogram of the FNN outputs calculated from the samples generated near
anti-Mackay-to-Mackay transition. ν1, ν2 and ν3 represents the nodes de-
signed to identify globule, anti-Mackay and Mackay respectively. 51

4.1 The top eigenvalues λ̃i obtained from PCA for coil and globule states in the
energy range e ∈ [−3, 1]. 55

4.2 A visualization of coil and globule configurational data, colored according
to e, in the energy range e ∈ [−3, 1]. The data is firstly projected to the
space spanned by top three eigenvectors W1, W2, W3 obtained from PCA, in
order to obtain a 3D representation of data. Z1, Z2, Z3 are the coordinates
of the data in this representation. The colored dots in these plots, from left
to right, are the two-dimensional projections of the 3D data to the W1OW2,
W1OW3, W2OW3 plane respectively. 56

xvii

4.3 A visualization of coil and globule configurational data, colored according
to Rg/σ in the same range of energy as Fig. 4.2. The colored dots in these
plots, from left to right, are the two-dimensional projections of the same 3D
data as in Fig. 4.2 to the W1OW2, W1OW3, W2OW3 plane respectively. . . 56

4.4 The behaviours of the nonlinear transformation of the top K eigenvectors
are described according to

∑K
i=1 Z

2
l . (a) The mapping between

∑K
i=1 Z

2
l

(K = 3) and R2
g/σ

2. The insert plot is for K = 9. (b) The Pearson

correlation coefficient ρ(
∑K

i=1 Z
2
l , R

2
g/σ

2) as a function of K. Rg is the radius
of gyration for polymers. 57

4.5 All normalized eigenvalues λl obtained from principal component analysis
(PCA) for globule, anti-Mackay, Mackay states in the energy range e ∈
[−5,−4]. The inset shows the first 50 normalized eigenvalues. 58

4.6 The structural transition learned by the W-shape approach in terms of input
configurations pre-processed by PCA with truncation of dimensionality l as
labelled in plots. The critical energy ec positioned by the dashed lines for (a)
coil-to-globule (b) globule-to-anti-Mackay and (c) anti-Mackay-to-Mackay
transitions reads -1.61, -4.43 and -4.74, respectively. 60

5.1 Two examples of physical problems solved here: (a) a simple diffusion equa-
tion where q(x; t) is the density of the diffusing material in an external field
at location x and time t and (b) complicated, coupled modified diffusion
equations where q1(x, y, z; t) and q2(x, y, z; t) are the complementary reduced
Green’s functions for a real AB-diblock copolymer self-assembly problem,
which couple to the self-consistent fields WA(x, y, z) and WB(x, y, z). In
both examples, the functions to be found are represented by feed-forward
neutral networks. The circles represent neuron nodes, where the input layer
consists of nodes that have variables as input and the output layer are sim-
ply the functions to be determined. The connections between the input and
hidden layers are assumed to be sigmoid functions and the connections be-
tween the hidden and output layers are assumed to be linear with adjustable
coefficients. 66

xviii

5.2 (a) Density plots of a diffusing material in a harmonic-potential well over
selective times, (b) comparison between the analytical solution (solid lines)
and the FNN solution (circle) at a few values of x for given t = 0.0, 0.1, 0.2, 0.5, 1.0,
and 2.0, (c) density plots of a diffusing material in periodic-potential well
over selective times, and (d) comparison between the Crank-Nicolson nu-
merical solution (solid lines) and the FNN solution (circle) at a few values
of x for given t = 0.0, 0.1, 0.2, 0.5, 1.0, 2.0. A(t) is a normalization constant
for q evaluated at each time step. The blue lines in the background, to the
right scaled, are the harmonic-potential well [(a) and (b)], and the period
potential well [(c) and (d)], applied on the diffusing material. 69

5.3 The number of epochs that the universal solver takes to reach a pre-specified
error tolerance level, from bottom to top, τ = 10−2, 10−3, and 10−4 respec-
tively, as a function of the number of hidden nodes, Nh. Each data points
is calculated based on 10 independent run with random parameter initial-
ization. The one-dimensional (D = 1) diffusion equation is studied here.
. 71

5.4 Comparison between the analytical solution (solid lines) and the FNN solu-
tion (circle) at a few values of x for given t = 0.0, 0.1, 0.2, 0.5, 1.0, and 2.0,
when error tolerant is set at (a) 10−3 and (b) 10−5, for a D + 1 = 2 problem. 73

5.5 Log-log plots of (a) the maximum epochs (M), and (b) the total computa-
tional time (T) that the universal solver takes to reach the error tolerance
level τ = 10−3, as functions of D, the number of spatial variables in a high-
dimensional diffusion equation, Eq. (5.10); (c) Log-log plot of the ratio
T/MNh as a function of D+ 3. The error bars, estimated from 10 indepen-
dent runs, are smaller than the plotted symbols, except for those explicitly
shown. Up triangle, down triangle, diamonds, squares, and circles represent
the results produced from FNNs that contain Nh = 100, 200, 300, 400, and
500 hidden nodes, respectively. The solid blue lines indicate the asymptotic
power laws on which the data points collapse. The dashed blue curve il-
lustrates an arbitrarily exponential dependence of the computational time
expected from a traditional solver. 74

xix

5.6 Solving the self-consistent field theory (SCFT) for the microphase structures
of diblock copolymers. Plot (a) illustrates a single polymer chain where a
covalent bond links A and B blocks together. Plot (b) shows the cross sec-
tion of an A-rich spherical domain in a B-rich background. Plots (c) and (d)
are our three-dimensional numerical solutions of the monomer-fraction pro-
files from the SCFT, which have body-centered cubic and gyroid structures,
respectively. The solutions are obtained from a machine-learning algorithm
that incorporates representations of functions conceptually shown in Fig.
5.1(b). For illustration purpose, we plot all A-rich regions with the same
green color. 76

5.7 Plot of L with respect to epoch. 80

A.1 Inverse temperature β(e) (red, to the left scale) and its derivative γ(e)
(light blue, to the right scale) as functions of reduced energy per monomer
e = E/Nε, in (a) low- and (b) midlow-energy regimes. The peaks in the
heat-capacity-like γ(e) separate different polymer phases: coil, globule, anti-
Mackay and Mackey (from high- to low-e regimes). The FENE model was
used in Wang-Landau Monteo Carlo simulations to produce this figure. . . 96

xx

Nomenclature

Abbreviations

BOO Bond orientational order

FENE Finitely extensible nonlinear elastic model

FNN Feed-forward neural network

LSTM Long short term memory

PCA Principal component analysis

PDE Partial differential equation

SCFT Self-consistent field theory

WLC Worm-like chain

Symbols

αi Penalty coefficient of machine learning based PDE solver

βi Penalty coefficient of machine learning based PDE solver

χ Flory-Huggins parameter

ε Potential-well depth

γ Specific-heat-like function

γi Penalty coefficient of machine learning based PDE solver

ν Label

xxi

φA Density function of type A monomer

φB Density function of type B monomer

σ Activation function

τ Error tolerance

C Heat capacity

D Dimensionality of input data

D′ Dimensionality of the data in low dimensional representation

E Energy

e Energy per monomer

F Free energy

f Volume fraction of type A monomer in a diblock copolymer

H Hamiltonian

J Cost function

kB Boltzmann constant

N Polymerization

Ql Bond orientational order parameters

Rg Radius of gyration

Rg Radius of gyration

T Temperature

TC Transition point

U Interaction potential

WA External field acting on type A monomer

WB External field acting on type B monomer

xxii

Ylm Spherical harmonics of degree l, order m

q Output of an FNN

xxiii

Chapter 1

Introduction

1.1 Motivation

A polymer is a macromolecule that consists of repeating units, called monomers, connected
sequentially through covalent bonds. Polymers are significant for many reasons. To begin
with, polymers are all around us, they are the building blocks of life. For example, DNA
is composed of two strands of nucleic acids sequences that form a double helix structure.
It carries genetic information and directs the manufacture of proteins. Proteins are also
polymers composed of amino acids that have versatile functionality. Some proteins func-
tion as enzymes in cells that catalyze biological chemical reactions. Some proteins bind in
membranes and behave as ion transporters that pump ions across the membrane to main-
tain a concentration gradient. Some proteins behave as signal transmitters between cells
from different tissues. Beyond the existence in the organism, polymers are the component
of many materials, such as cotton, rubber, plastic, glass, etc. Some of them are naturally
existing, while some are artificial. Rubber, which is formed by polymers crossed-linked
together, could be both natural or synthetic and has been used to make shoes, tires due to
its elasticity. Polyethylene is the most common synthetic plastic materials, that is used as
raw material for the manufacture of bags, containers. Acrylic and polycarbonate are good
candidates for windshields on auto-motors.

Polymer chains have enormous variance in architectures. Fig. 1.1 demonstrates some
typical examples. These architectures can be categorized based on monomer constituents
and chain topology. Based on how many types of monomers exist along the chain, poly-
mer chains can be categorized into two classes: homopolymer and heteropolymer. A
homopolymer is a polymer chain that is composed of one single type of monomer, such

1

A

B

(a) linear homopolymer (b) ring homopolymer (c) diblock copolymer

(d) star homopolymer (e) comb homopolymer (f) network homopolymer

Figure 1.1: Sketches of some typical polymer architectures. Monomer type A are colored
as red, B are colored as blue.

as a polypropylene chain which is composed of ethylene monomers. A heteropolymer is a
polymer chain that contains more than one kind of monomers. If a heteropolymer is com-
posed of multiple different homopolymers linked together, then it is called block copoly-
mer. The simplest and extensively studied block copolymers are AB diblock copolymers, as
sketched in Fig. 1.1(c). It is formed by connecting two homopolymers, one contains type A
monomer, such as polystyrene molecules, another contains type B monomer, such as poly-
isoprene molecules, together like A-A-A-A-A-A-B-B-B. The number of type A monomers
over the total number of monomers is denoted as f . Based on the topology, polymer
chains can be linear, branched, cross-linked, or many other typologies. A polymer chain is

2

“linear” if the sequential connection is single stranded. The simplest architecture is linear
homopolymer as demonstrated in Fig. 1.1(a). When the two ends of a linear homopolymer
are connected, it forms a ring homopolymer as shown in Fig. 1.1(b). Polymers can also
be branched, that is, the sequential connection has multiple strands. Two examples are
shown in Fig. 1.1(d)-(e). Fig. 1.1(d) is a sketch of the simplest branched polymers, star
homopolymer, that consists of multiple linear homopolymers that linked together to a core,
where the core could be as big as a molecule that have a large number of atoms or as small
as a single atom. Fig. 1.1(e) is a sketch of a comb homopolymer which consists of some
linear homopolymers grafted on a main chain. Multiple homopolymers can be cross-linked
to form a network homopolymer, as shown in Fig. 1.1(f). Here the cross-link could be ionic
or covalent bond formed between different homopolymers.

These architectures lead to a wide range of unique properties. Compared with simple
fluids, such as water, some polymer fluids, such as asphalt, demonstrate high viscosity.
Cross-linked polymers have elasticity different from traditional materials, such as rubbers
which can be stretched to multiple time longer than its original length. Acrylic and poly-
carbonate have distinct transparency and brittleness compared with traditional glasses. We
have seen that these structural properties of polymers can facilitate the design of soft func-
tional or pharmaceutical materials, and the development of nanotechnology applications,
etc [4, 6, 39, 116, 149, 161]. The studies of these properties not only stimulate the eco-
nomic growth in the industrial markets, but also promote the discovery and understanding
of novel behaviours in polymeric systems.

Polymer physics studies the phenomena due to chain connectivity. This field was pi-
oneered by Hermann Staudinger, who experimentally justified the covalent bond connec-
tivity [159]. Other pioneers, such as Werner Kuhn, Paul J. Flory, Prince E. Rouse Jr.
and Bruno H Zimm, established the basic concepts of polymer physics [46]. Their works
illustrate various static and dynamics properties [138, 197]. The development of exper-
imental tools, such as neutron diffraction [27, 86] and light scattering [36], allowed the
measurements of polymer conformations. These methods observed that polymer dissolved
in solvent can be in different states based on the temperature, such as an expanded coil
or collapsed globule [164]. Then, theoretical and numerical methods, such as molecular
dynamics, Monte Carlo methods and field-based methods, in traditional statistical physics
are applied to the studies of polymer physics. These theoretical methods allowed the re-
search of polymer morphology, such as the dynamic of polymer structures under different
temperatures [80]; searching, identifying new polymer states and linking the statistics of
a polymeric system to phase transitions [34]. These methods can be broadly categorized
into “particle-based simulation methods” or “field-based simulation methods”. In particle-
based simulation methods, the Hamiltonian we consider is composed of the kinetic energy

3

and interaction potential which are formulated according to the monomer positions and
momentums. It is intuitively understandable and straightforwardly implementable in the
practical applications to the polymeric systems proposed under the coarse-grained scheme.
There is an alternative approach, normally called field-based simulation, which imagines
the polymers living in a continuous external field, W (r), physically related to the spatially-
varying chemical potentials, rather than the direct consideration of phase space of particle
coordinates [48]. All these theoretical methods, along with experimental methods, lead to
the discovery of a large number of polymer states.

1.2 Polymer states

Polymer state is one of the most important concepts in the study of polymer chain. Many
physical properties, such as rigidity, viscosity, features, such as radius of gyration, knots,
are strongly determined by its states. In this section, we will introduce two polymeric
systems of interests, i.e. homopolymer and diblock copolymer, and the classical states
obtained from simulation.

In modern simulations, a widely adopted way to simulate polymer chain systems is
the coarse-grained approach. In this approach, a number of consecutive monomers are
grouped together and viewed as one larger monomer. As an example, Fig. 1.2 shows a
coarse-grained polypropylene chain. The interactions between monomers in coarse-grained
models are modelled as bonded and non-boned. The interaction connecting two consecutive
monomers along the backbone is called bonded, Ebond. The pair interaction between two
non consecutive monomers is called non-bonded, Eint. The Hamiltonian of a coarse-grained
polymer chain can be written as the summation of bonded and non-bonded interaction,
as:

H(r) = Ebond + Eint, (1.1)

where r = (x1,x2, . . . ,xN) is a chain configuration, xi is the coordinates of ith monomer,
and N is the number of monomers, also called polymerization. In general, the overall
effects of these interactions will be repulsive when the distance between two monomers are
small and attractive when the monomers are far away. Therefore, these interactions are
trying to maintain an “optimal” distance between monomers.

Statistically, the equilibrium state of a polymeric system is determined by the minimum
of the system free energy:

F = −TS + 〈H〉 (1.2)

4

CH3

CC
H

H H
()

Figure 1.2: A graphical illustration of the coarse-grained model of a polypropylene chain.

where T is the temperature of the system. This free energy has an entropy part, S, which
is determined by the total number of possible states, and an enthalpy part, 〈H〉, which
is determined by the weighted average of the energy of different polymer chain configura-
tions. The competition between the entropy and enthalpy leads to rich and complex states
observed in polymeric systems [7, 130, 145, 146, 178, 185, 191]. Take a homopolymer
solution as an example, Fig. 1.3 shows the states sampled from Monte Carlo methods.
The algorithms and technical details are documented in Appendix. A. The polymer state
in solution is determined by the “quality” of the solvent. Typically, when temperature is
high, entropy dominates the system energy, which leads to bonds orienting randomly to
occupy as many states as possible. As a result, the homopolymer will be in a random coil
state. In this case, the solvent is called good solvent. Upon on the decrease of temperature,
enthalpy will eventually outweigh entropy, and the homopolymer chain will collapse to a
closed pack globule state [162, 188, 56, 177]. In this case, the solvent is called bad or
poor solvent. Further reducing the temperature of the homopolymer chain may result in
solid-solid transitions [145, 146].

5

Figure 1.3: Three dimensional graphs of typical configurations of a homopolymer chain
in (a) coil, (b) globular, (c) anti-Mackay, and (d) Mackay states, sampled by Monte Carlo
methods, as the temperature or energy per monomer decreased. The N = 102 monomers
are represented by blue spheres, except for those in in (f) and (g). Detailed stacking modes
are shown in (e), (f) and (g): at the liquid-like globular state, the monomer positions are
disordered, shown in (e); both anti-Mackay and Mackay states are crystalline, differ from
each other by the monomer stacking symmetries, demonstrated by the red and yellow
spheres in (f) and (g).

6

Figure 1.4: Microphase structures of diblock copolymers. These structures are labelled as,
S which means body centred cubic spheres, C which means hexagonal cylinders, G which
means gyroid, and L which means lamellar. Red is A rich region, in which the density of
type A monomers is greater than type B monomers. Blue is B rich region. Taken from
Ref. [103]

Another important example is the self-assembly of diblock copolymer melt. The equi-
librium state of the diblock copolymer melt is determined by two parameters, f and χN .
Here, χ is the Flory-Huggins parameter, which reflects the strength of the repulsive in-
teraction, or incompatibility, between type A and B monomers. N is the total number of
monomers along the diblock copolymer chain, i.e. polymerization. Similarly, at the high
temperature regime, the domination of the entropy leads to a disordered, homogeneous
phase, which means type A and B monomers distribute uniformly in the melt. When
the melt is cooled to a temperature that is lower than a transition point, type A and B
monomers will segregate from each other, and aggregate with the same type of monomers.
Based on f , the diblock copolymer will self-assemble into different states. When f is small,
type A monomers can only occupy a small portion of the space. They are clustered as mi-
croscopic spheres together. This structure is referred as the body centred cubic spheres.
For the block copolymer with larger f , type A monomers can occupy more space. Different
structures will be formed, such as hexagonal cylinders, where one type of monomers forms
microscopic cylinders together; gyroid, where monomers form a bi-continuous structure.
When f is near 0.5, type A and B form lamellar structures, which is a layered structure,
as shown in Fig. 1.4.

1.3 Identifying polymer states

Polymer states could be studied very similarly as phases in condensed matter physics [6].
In condensed physics, a phase is a state of matter where all the chemical composition, ther-
modynamic properties, such as temperature, pressure, are uniform. An everyday example

7

is solid, liquid and gas phase of water. When some thermodynamic quantities changed, one
phase can transform into another phase, and this transformation is called phase transition
[190], e.g. when temperature increases from below to above melting point, ice will melt
into water.

The purpose of this section is to introduce how classical methods identifying states,
to illustrate some inspirations physicists received from machine learning methods and to
introduced basic ideas of machine learning methods.

1.3.1 Ehrenfest classification

The classification of phase transition was firstly developed by Paul Ehrenfest [43]. This
scheme looks into the Gibbs free energy, which is written as a function of thermodynamic
variables. A state corresponding to a local minimum of free energy is a meta-stable state,
while a state that corresponds to the global minimum is the stable or equilibrium states.
When examining the transition between states, this scheme examines the derivative of
the free energy with respect to some thermodynamic quantities, such as temperature or
pressure. The order of transition equals the lowest order at which the derivative of the
free energy is discontinuous, and the discontinuous point is considered as the transition
point. For example, Fig. 1.5 shows the free energy of liquid (red) and solid (blue) phase
with respect to temperature. When the temperature is higher than TC , the solid will have
a lower free energy than the liquid phase, so solid will be the equilibrium state. Similarly,
when the temperature is lower than TC , the liquid will be the equilibrium state. In this
example, the first order derivative of free energy is discontinuous at TC . Therefore, the
order of the transition is one, and the transition point is TC .

1.3.2 Landau classification

The modern scheme for the classification of phase transitions was proposed by Lev Landau
[92]. He introduced the concept of order parameter, which is defined as a thermodynamic
function that has different values in different phases, and thereby could be employed to
distinguish phases. Under Landau’s scheme, the first order transition contains latent heat,
which means the system absorbs or releases heat while the temperature stays the same.
This means the heat capacity has a peak when the system is finite in size. During the
transition, the system is in a “coexistence” state, in which some regions stay in one phase,
and rest transformed into another phase, the order parameter will be discontinuous at the
transition point. Second order phase transitions are also called continuous phase transition,

8

Temperature

Fr
ee

 E
ne

rg
y

Liquid

Solid

TC

Figure 1.5: A sketch of the free energy of liquid (red) and solid (blue) phase with respect to
temperature. TC represents the transition temperature between the liquid and solid phase.

because the order parameter evolves continuously at the transition point. For a second
order, the system is usually undergoing a change from a “random” state to a “ordered”
state. This change will not require energy, therefore the transition happens smoothly. This
means the heat capacity has an anomaly at the transition point. When the system is finite
in size, we can see a peak as well.

Under this scheme, the identification of states of a homopolymer is performed with
carefully designed order parameters. These order parameters could be evaluated analyt-
ically, measured experimentally or calculated numerically. In the numerical simulation,
order parameters are calculated through a statistical average of samples generated from
simulation methods, such as Monte Carlo methods [12] or molecular dynamics [56], etc.
Because the coil and globule states are distinct in size, they can be characterized by the

9

mean square radius of gyration, which is defined by:

〈R2
g〉 =

〈
1

N

N∑

i=1

(xi − xcm)2

〉
(1.3)

where xcm is the centre of mass of a polymer, 〈· · · 〉 represents mean over multiple samples.
The transition temperature, also referred as transition point, can be obtained by examining
the specific heat, which is defined as:

C =
(〈
E2

int

〉
− 〈Eint〉2

)
/kBT

2 (1.4)

where, kB is the Boltzmann constant. The specific heat peaks at the transition temperature
[81].

Traditionally, anti-Mackay and Mackay are two collapsed states that differ from each
other only by how monomers are stacked together. They have a very similar size, which
means it is impractical to use radius of gyration as the quantity to characterize the differ-
ence between these states. A new way to characterize their structural difference is required.
Typically, anti-Mackay and Mackay state are characterized through bond orientational or-
der parameters [193]. This parameter is firstly introduced by Steinhardt et al. to measure
orientational symmetries in clusters [160]. To evaluate bond orientational order parame-
ters, we start from associating a set of bonds connecting a monomer to its near neighbours.
The spherical harmonics of some suitable set of bonds are averaged by

Ql =

(
4π

2l + 1

l∑

m=−l

∣∣∣∣
1

Nb

Nb∑

i=1

Ylm(θi, φi)

∣∣∣∣
2)1/2

, (1.5)

where Nb is the number of suitable set of bonds, where “suitable” means the length of the
bond is smaller than a threshold rc [160]. Ylm is a spherical harmonics of degree l, order
m, and θi and φi are the polar angle and azimuthal angle of ith bond, respectively. These
spherical harmonic functions expand bond orientations into mutually orthogonal directions.
Different structures are expected to have different projections along these directions. For
anti-Mackay and Mackay, we need to consider two types of averages. The first one is using
all near neighbours in one cluster, i.e. every possible bonds in the cluster should be taken
into account to obtain a global parameter, Q6. The other one is just considering the bonds
connecting the central particle with the particles that belong to the core of the cluster,
corresponding to the local order parameter Qcore

6 [193].

10

1.3.3 Machine learning methods

Using order parameters to identify states works well when we only need to identify a small
number of states. Nevertheless, with the variation of polymerization, a homopolymer can
exhibit plenty of different states [193, 148], much more than coil, globule, anti-Mackay and
Mackay states we discussed. In order to distinguish all these states, one may have to design
new order parameters, due to the limited generalization capability of the order parameters.
To make things even worse, some of these order parameters could be very difficult to
design. As more and more new states are discovered and need to be identified, using order
parameters will be intractable. Therefore, it is desirable to have a method that can identify
multiple states simultaneously without the necessity of designing order parameters. For
this purpose, machine learning methods are considered to be good candidates. This idea
naturally arises from one of the extensively studied machine learning examples: image
recognition. The purpose of image recognition is to automatically identify or classify a
large volume of pictures that belong to one of the multiple predefined classes.

In a typical application, a two dimensional picture is digitized into pixels, and the
pixel’s intensities, usually represent as a value within 0 and 1, are used as the inputs for
training a machine learning model. In the training stage, one inputs pre-labelled pictures to
the machine learning model. The label specifies which class does an input picture belongs
to. For each input, The machine learning models will give an output that represents a
prediction made by the machine learning model. The output of machine learning models
could be very different from the label at the beginning of training. During the training,
the outputs will gradually align with the label. After the machine learning models are
well trained, the output will be fairly close to the label. For example, in a case when the
pictures are pre-categorized as 4 classes, the label is usually written as a binary vector, i.e.
a label [0, 1, 0, 0] means this picture belongs to the second class. When we see an output
[0.01, 0.96, 0.02, 0.01], it means the machine learning model infers the probability of the
input picture belongs to each classes as 0.01, 0.96, 0.02, 0.01 respectively.

Recently, physicists start to use machine learning to classify phases and to identify
phase transition points [117]. Melko and coworkers bring this idea to study the phase
transition of spin models [19]. We take the Ising model as an example. It has two phases:
a disordered phase where each spin can point up or down randomly, and an ordered phase
where each spin tends to align its direction with all neighbour spins. The spins have
binary values like the pixel’s intensity, and each configuration, regardless of dimension,
can be considered as a “snapshot” of pixels as well. The ordered and disordered states
of the Ising model can be labelled as [0, 1] and [1, 0] respectively. Then, one can train
machine learning models based on the labelled configurations to classify the ordered or

11

disordered phases [19]. Other similar findings are also reported around the same time,
including producing the phase diagram of topological quantum phase transitions [195],
determination of the critical temperature without introducing order parameters [170], etc.

From a machine learning point of view, polymeric systems have a certain level of similar-
ity with the Ising model. These systems also have multiple states that need to be identified.
These states of a polymer could be determined by the coordinates of the monomers, that
can be utilized as the input of the machine learning methods. These similarities provide a
compelling reason to use machine learning approaches to identify polymer states and tran-
sitions. The machine learning community has developed various methods for the purpose
of classifying different states. In our study, we studied two methods, feed-forward neural
network (FNN) and principal component analysis (PCA). These methods have different
philosophies. The data set we have are usually stored in a data matrix. Each row of this
matrix is a sample. The number of rows of this matrix is the number of training or test
samples we have. The number of columns is the dimensionality of the training or test
data. FNN generates the inference, i.e. the output of FNN, directly. The inference is
determined by the FNN parameters. The training of an FNN adjusts its parameters so
that the inference made by the FNN aligns with the label provided. Therefore, FNN will
have the capability of classifying states after well trained. On the other hand, PCA tends
to reduce the dimensionality of the data to 2 or 3 in a way that similar samples are mapped
to the same place in the low dimensional representation. By reduction, we mean to find a
function that maps the data matrix to a new matrix with fewer columns. This new matrix
stores the low dimensional representation of the training data. Then, clustering analyses
will be performed to the training data in the low dimension representation, to determine
the class to which each training sample belongs. There are various ways to perform the
dimensionality reduction. However, this thesis mostly focuses on PCA. Our efforts and
results are discussed in chapter 3 and chapter 4.

It is worthwhile to mention that machine learning methods have been applied to many
other studies in soft matter physics, such as evaluating the partition function of Lennard-
Jones fluids [38], generating polymer conformations [192], identifying structural defects in
polycrystalline [152] or liquid crystals [171], predicting the folding of a protein based on
amino acid sequence or inverse the amino acid sequence from a folded structure [102], and
so on.

12

1.4 Predicting equilibrium states of block copolymers

In the previous section, we demonstrated that the combination of machine learning methods
and sampling methods leads to a great many successful studies. In typical examples,
sampling methods generate configurational samples, and machine learning methods are
trained to identify which state does these configuration belongs to. In this section, we are
trying to deal with a different problem, that is we want to develop a machine learning
method that can directly predict the equilibrium states of a given polymeric system.

1.4.1 Micro-phase separation

In phase transition, one phase turns into another phase, such as ice turns into water. In
phase separation, a homogeneous mixture separates in two distinct phases. An everyday
example is oil and water phase separation. The immiscibility between oil and water give
them a tendency to occupy different regions in a container. When the temperature of oil and
water mixture is high enough, entropy overcomes the immiscibility, oil and water will exist
in a form of uniform emulsion. When the temperature is smaller than a transition point,
the immiscibility drives oil and water to segregate into different regions, and create two
phases from the homogeneous mixture. This phase separation happens macroscopically,
for example, we can see it with naked eyes after a hot chicken broth was left inside a
refrigerator for a while.

Micro-phase separation is very similar to oil and water phase separation. A common
example is diblock copolymer melts. For this system, the driving factor of the phase sep-
aration is the incompatibility between type A and type B monomers. Because type A
and type B blocks are covalently bonded, these monomers can not segregate into different
regions macroscopically but form mesoscopic periodic structures. The polymer thermody-
namics describe the incompatibility by the Flory-Huggins parameter and use χN as an
indication of micro-phase separation happens or not. We have seen the different states
diblock copolymer self-assembles into in Fig. 1.4, upon the combination of χN and f .

1.4.2 Traditional methods

There are multiple theories developed to predict the equilibrium state of a polymeric sys-
tem, within which field-based simulations are widely adopted in the study of mesoscopic
phases in melts of blends. The behaviour of polymers at the different length scale concerned
can be easily varied according to the representation of field function [116]. In particular, the

13

mesoscopic simulation to the ordered structures self-assembled from block copolymers in a
characteristic feature size 10−100 nm will highly benefit from this methodological flexibil-
ity, due to the desirable computational capacity in a broad range of structural length scale,
in comparison with particle-based simulation. Another fascinating advantage of the field-
based simulation is the exhibition of the relatively close connection with experiments, by
sharing the common mesoscopic variables such as Flory-Huggins parameters and statistical
segment length. By means of the mean field approximation in which only one configuration
is assumed to be much more important than all other configurations, in practice, one can
straightforwardly access the self-consistent field theory (SCFT) through the statistical field
theory derivation. In the recent thirty years, the power of SCFT has been demonstrated
particularly in the study of phases and phase behaviour of block copolymer systems. For
example, SCFT was able to produce an accurate phase diagram of diblock copolymers that
has a good agreement with experimental results [113], as shown in Fig. 1.6.

The origin of SCFT can be traced back to the work done by Edwards in the 1960s
[42]. Later, Helfand explicitly extended this theoretical framework to the block copolymer
in 1975 [62], and thereafter important contributions were made by Hong and Noolandi
[67]. In order to explore the ordered meso-structures assembled by diblock copolymers,
in 1980 Leibler [100] developed the analytical theory through expanding the free energy
functional around the homogeneous background state, only valid in the weakly-segregated
regime. Another analytical method, in the strong-segregated regime assuming that the
polymer chain is strongly stretched, was developed by Semenov in 1985 [82]. The develop-
ment of numerical solutions to the PDEs resulting from the SCFT pushed the research on
the structures formed by the block copolymer forward. Matsen and Schick in 1994 [111]
utilized the Fourier spectrum method to numerically solve the self-consistent equations
and successfully obtained the phase diagram of self-assembly of diblock copolymers. The
approach was later applied to a variety of polymeric systems, such as polymer blends [112],
multi-block copolymers [115, 57, 191, 40], polymer brushes [37] and polyelectrolytes [110].
Another branch of numerical approaches, well known as real space algorithm in which a
numerical solution is directly explored in the spatial space without prior knowledge about
the symmetry of order structures was developed by Fredrickson et al. in 1999 [40]. By
introducing the Gaussian fluctuations to the SCFT free energy functional, Shi et al. inves-
tigated the ordered structures affected by the fluctuation effects [154]. In addition, SCFT
was also applied to successfully predict the complex phase behaviours of liquid crystalline
polymers in bulk and confinement systems [20]. Besides, there is a large number of studies
that significantly contributed to the development of SCFT as well. Many valuable reviews
and books [5, 7, 48, 49, 58, 113, 116, 121, 153] shed substantial light on the applications
of SCFT.

14

Figure 1.6: Phase diagram of diblock copolymer. (a) Theoretical prediction of the SCFT;
(b) Experimental phase diagram measured using polystyrene-polyisoprene diblock copoly-
mer. Taken from Ref. [113]

The SCFT scheme leads to a set of equations, called self-consistent equations, which
are nonlinear coupled integrodifferential equations, that need to be solved self-consistently.

15

Traditionally, the self-consistent equations are solved through multiple loops starting from a
guess of W (r). The inner loop starts from solving the modified diffusion equations (MDEs)
containing the currentW (r) iteratively based on numerical methods such as finite difference
methods or spectral methods to obtain propagators of chains, where the propagators are
the conditional probability of a monomer at spatial position r, given the first monomer is
at spatial position r′. The intermediate loop updates the W (r) based on the density profile
calculated from propagators [48, 165, 114]. Here, the density is the statistical average of
the microscopic monomer density. This loop stops when W (r) converges after multiple
iterations. Once the solution is obtained from these two loops, the free energy can be
evaluated. On top of these loops, we need an outer loop to adjust the simulation box size,
to find the optimal box size with minimum free energy. The solution of the self-consistent
equations represents the equilibrium state when the free energy of this state is the global
minimum or meta-stable states otherwise. The solution one obtains is highly dependent on
the guess of W (r) at the beginning. Therefore, the possible states of a polymeric system
could be discovered through solving self-consistent equations with different initial guesses.

1.4.3 Machine learning based methods

The dimensionality of the self-consistent equations is determined by how many variables
the propagator have. It changes based on the polymer models. One of the fundamental
assumptions in SCFT is that the chain configuration can be represented by the Gaussian
chain model (GSM). For this model, the dimensionality of the propagator, q(x, y, z; t),
that needs to be solved is four, where t is a time-like variable and another three are spatial
variables. When the rigidity of a polymer chain is in concern, a more appropriate model
is worm-like chain (WLC). In order to find the equilibrium states of worm-like diblock
copolymers, the propagator, q(x, y, z, ux, uy; t), that needs to be solved is a six dimensional
diffusion like equation [77]. Similarly, t is a time-like variable; x, y, z are variables that
specify a spatial point; ux, uy are coordinates of a unit vector that specify the direction of
the monomer located at (x, y, z) pointed in. The efficiency of the SCFT is highly dependent
by the solver of the MDEs. Unfortunately, the computational complexity of traditional
methods, e.g. finite difference methods or spectral methods, grows exponentially with
respect to dimensionality, which means it takes longer and longer for the solver to find an
equilibrium state when the polymeric systems have an increasing number of parameters.
This phenomenon is referred as the “curse of dimensionality”.

Machine learning provides a new perspective in searching for equilibrium states of a
polymeric system. The foundation of this perspective is a machine learning based PDE

16

solver. The idea is to exploit a basic property of an FNN, known as the universal approxi-
mation theorem, which states that any continuous functions can be effectively represented
by FNNs, provided that adequate neuron nodes are used [69, 32, 68]. The FNN simply
takes the variables of the functions as the inputs and it outputs functions themselves. The
variety of functions are represented by the FNN parameters such as the weights and biases
of the sigmoid functions that connect the neuron nodes [61]. If we can tune these FNN
parameters to represent functions that satisfy differential equations and their auxiliary
conditions, then a solution is considered found by us [89, 90]. This tuning is achieved
by minimizing a cost function which embeds the targeted differential equations and their
auxiliary conditions as squared modulus. At the moment when this method was pro-
posed, i.e. around 2000s, due to the limited computational capability, most of the works
focused on solving low dimensional PDEs by FNNs with a small number of hidden neu-
rons [89, 90, 169, 134, 88]. Recently, taking advantage of the rapid growth of computational
power, researchers start to focus on solving high dimensional differential equations with
neural networks. For example, Karniadakis et al. [135] explored the accuracy and time
consumption on solving nonlinear PDEs by neural networks with respect to a different
number of hidden layers. Han et al. and E et al. [59, 41] proposed a deep learning
algorithm that can efficiently solve high dimensional PDEs for time-dependent physical
processes that involve stochastic input. One striking advantage of implementing machine
learning technique to solve PDEs is the possibility of breaking the curse of dimensionality
for a multi-variable problem [59, 156, 181, 76]. These works reflect the necessity of explor-
ing the usage of neural networks on solving PDEs that used to describe high dimensional
physical systems. Motivated by this necessity, we have designed an unsupervised, universal,
machine learning based solver, with a particular focus on solving self-consistent equations
and searching for polymer states. Our studies and results are discussed in chapter 5.

1.5 Objective of thesis

The objective of this thesis is to illustrate the machine learning methods we have applied
to study polymer physics. To fulfill this purpose, we will describe our studies mainly based
on two categories:

• identifying polymer states by supervised or unsupervised learning methods;

• utilizing FNNs to formulated a machine learning based PDE solver, that can be use
to search for equilibrium states of diblock copolymer melt under SCFT scheme.

17

1.6 Organization of thesis

This thesis has 6 chapters: chapter 1 - research motivation and historical efforts; chapter
2 - introduce to the methodologies; chapter 3 - identifying polymer states by supervised
learning; chapter 4 - identifying polymer states by unsupervised learning; chapter 5 - ma-
chine learning solver for the modified diffusion equation of AB diblock copolymer; chapter
6 - summary and outlook.

In chapter 2, we firstly introduce the machine learning methods that we utilized for
identifying polymer states. Then, we show how to build a machine learning PDE solver
for predicting block-copolymer structures.

In chapter 3, the ability of an FNN to learn and classify different states of polymer
configurations is systematically explored. Performing numerical experiments, we find that a
simple network model can, after adequate training, recognize multiple structures, including
gas-like coil, liquid-like globular, and crystalline anti-Mackay and Mackay structures. The
network can be trained to identify the transition points between various states, which
compare well with those identified by independent specific-heat calculations. Our study
demonstrates that the neural network provides an unconventional tool to study the phase
transitions in polymeric systems.

In chapter 4, motivated by the high interpretability of unsupervised learning meth-
ods, we show the ability of principal component analysis (PCA) to distinguish polymer
configurations and discover polymer phase transitions. PCA is applied to coil, globule,
anti-Mackay and Mackay states to reduce the dimensionality of polymer configurations.
The analyses of the polymer configurations in terms of low-dimensional representation not
only identify the distinct states in the feature space, but also offer significant insights to
understand the relation between salient features and order parameters in physics. In ad-
dition, a hybrid scheme combining the PCA and neural network is utilized to accurately
locate the transition point between polymer states.

In chapter 5, we firstly present a universal, machine-learning based solver for partial
differential equations in general. The solver approximates the target functions by FNNs
and adjusts the network parameters to produce the approximation to the desirable solu-
tions. The differential equations themselves, together with boundary conditions, etc, are
treated in the cost function. We demonstrate the usage of the algorithm by solving diffu-
sion equations in one dimension and high dimensions and found that the machine-learning
solver breaks the curse of dimensionality expected in a high-dimensional case. We also
demonstrate that the algorithm can be used to solve a set of much more complicated, cou-
pled integrodifferential equations, encountered in predicting polymer microphase-separated

18

structures, in terms of the self-consistent field theory.

In chapter 6, we concluded the discoveries of our researches, and proposed some possible
future studies.

19

Chapter 2

Machine learning methods

2.1 Background

Machine learning is an active research branch of computer science, which has vastly ma-
tured in recent years [47, 179, 187, 120, 122, 79]. The term “machine learning” was created
by A. L. Samuel [142] in 1959. Over the years, it was developed into a research field that
using machine learning methods to construct a mathematical model from observed data,
also called “training data”, in order to perform a task on unseen data, also called “test
data”, without of given a priori knowledge of the system itself [120]. Nowadays, multi-
ple machine learning methods, such as support vector machine [14, 163], random forest
classifier [65, 66], neural network [123], have been developed. The tasks they can perform
usually are classification or regression, and the capability of performing these tasks could
be obtained from training the machine learning methods.

In a broad sense, classification is the task of categorizing training data and test data
into classes. The training or test data is usually stored in a data matrix, shown as X in
Fig. 2.1, in a way that each row, ri = (xi1, xi2, · · · , xiD), D-dimensional vector, is a sample.
For example, if the sample is a configuration of a polymer with polymerization N , the xij’s
are the coordinates of all the monomers, and D = 3N . The number of rows, M , of this
matrix is the number of training or test samples we have. The number of the columns, D,
is the dimensionality training or test data. The label of the data specifies which pre-defined
classes do input samples belong to. A typical choice is to store them as a matrix as well. In
Fig. 2.1, ν is the label matrix. The ith row of matrix ν is the label of the ith sample. The
number of column K is the number of pre-defined classes. This task could be accomplished
by supervised learning when the training data is labelled, or unsupervised learning when

20

X =
r1
r2
⋮
rM M×D

=
x11 x12 ⋯ x1D
x21 x22 ⋯ x2D
⋮ ⋮ ⋱ ⋮

xM1 xM2 ⋯ xMD M×D

ν =
ν11 ν12 ⋯ ν1K
ν21 ν22 ⋯ ν2K
⋮ ⋮ ⋱ ⋮

νM1 νM2 ⋯ νMK M×K

X′ =
r′ 1
r′ 2
⋮
r′ M M×D′

=
x′ 11 x′ 12 ⋯ x′ 1D′
x′ 21 x′ 22 ⋯ x′ 2D′
⋮ ⋮ ⋱ ⋮

x′ M1 x′ M2 ⋯ x′ MD′ M×D′

Su
per

vis
ed

Unsupervised

Figure 2.1: A graphical illustration of the data matrix, labels, supervised learning and un-
supervised learning. The arrow with text “Supervised” means supervised learning methods
tend to find a function that maps data matrix to labels. The arrow with text “Unsuper-
vised” means unsupervised learning methods tend to find a way to transform the data
matrix to a new data matrix with smaller dimensionality.

the training data is unlabelled. In supervised learning methods, we are keen to find a
function that maps training data to its label. This function can be generated by many
machine learning methods, but we mainly focus on the ability of classification of a feed-
forward neural network (FNN). On the other hand, unsupervised learning methods tend
to reduce the dimensionality of the training data to 2 or 3 in a way that similar samples
are mapped to the same place in the low dimensional representation. By reduction, we
mean to find a function that maps the data matrix, X, to a new data matrix, X′ with
fewer columns, i.e. D′ < D. This new matrix stores the low dimensional representation
of the training data. Then, clustering analyses will be performed to the training data in
the low dimension representation, to determine the class to which each training sample
belongs. Similarly, there are various ways to perform dimensionality reduction. However,
this thesis mostly focuses on exploring the capability of PCA.

In contrast, regression is the task of estimating the function relationships between

21

training data, r and values, y. The training data are commonly called dependent variables
or regressors, and values are commonly called independent variables or predictors. For a
regression model, the dependent variables and independent variables are assumed to have
a function relationship as

y = q(r, θ) (2.1)

In Eq, (2.1), θ are parameters that specifically determines a unique q, to be obtained
through training.

Regression can be performed both by “Classical” methods, such as linear regression
or spectral decomposition [167] and by “Machine Learning” methods, such as FNN. The
boundary between regression by “Classical” methods and by “Machine Learning” is blurry.
As a rule of thumb, regression by classical methods usually restrict q to have some specific
forms and θ can be calculated deterministically. For example, in ordinary linear regression,
q are assumed to be linear functions, and θ are the slopes and intercept. It should be clear
that θ can be calculated deterministically. When the spectral decomposition is used, y
is expanded on a set of basis functions. The θ are the superposition coefficients of the
expansion. In comparison, q in machine learning based methods usually are generic. As
an example, when an FNN is used, θ are the weights and biases of the neural network.
Given a different set of θ, q can take a variety of forms. These parameters need to be
obtained iteratively through training.

2.2 Classification by supervised learning

2.2.1 Architecture of an FNN for classification

This subsection aims at illustrating the architecture of the FNN we used for the classifica-
tion of polymer states. An FNN is a computational implementation of machine learning
that has demonstrated surprising capability in recognizing patterns of enormous complex-
ity, after appropriately trained by human or self-trained through learning mechanisms
[13, 33, 53, 74, 127, 144, 150]. Originally motivated by the desire to establish an algorith-
mic model of the neuronal configuration of a mammalian brain, one finds that an artificial
neural network with a very simple underlying structure can already successfully perform
many complex tasks. For example, simple neural network models have shown transforma-
tive success in hand-writing and speech recognition [63, 97, 106, 123].

An FNN consists of three kinds of layers, input (i), hidden (h), and output (o). The
neurons or “nodes” in input, hidden, and output layers are called input neurons, hidden

22

Figure 2.2: A graphical illustration of a fully connected FNN. The circles represent input,
hidden, output neuron nodes, and arrows represent weights and bias. The neuron nodes
are connected via various weights, bias, and activation functions layer by layer.

neurons and output neurons respectively. In this thesis, by default, the neural network we
used contains one input layer, one hidden layer, and one output layer shown as Fig. 2.2.
The input layer will have Ni neurons, and Ni needs to be set as the same as the dimension-
ality of the training data, i.e. Ni = D. The hidden layer will have Nh neurons. The output
layer will have No neurons, and No needs to be set as the number of classes to be classified
or the number of functions to be regressed based on the anticipated tasks. These neurons
are connected by arrows, representing the weights, w, and biases, b, of neural network,
that forms a fully connected graph between, but not among the neurons beyond, consec-
utive layers. The weights and biases are also referred as the FNN parameters. The data
will be fed into the neural network through input neurons. Then, information contained
in data will be processed through hidden neurons and passed onto output neuron. Finally,
the output neuron will provide an “inference”.

2.2.2 Supervised learning

Supervised learning algorithms aim at learning a function that maps training data to their
label. Using the classification of the coil state and the globule state as an example, Fig. 2.3

23

Coil
⌫ =

1
0

�Input Hidden
Output

Globule

OR

⌫ =

0
1

�

OR

Figure 2.3: A graphical illustration of supervised learning. In this example, there are two
states, coil and globule, to be classified. The polymer configurations will be fed into FNN.
The FNN will output an inference following Eq. 2.2 based on each input. The supervised
learning algorithms aim at adjusting the FNN parameters so that the inference of FNN
matchs the label provided.

illustrates how FNN classifies different polymer states via supervised learning algorithms.
In supervised learning, the data consists of M polymer configurations to be classified, and
their label. These configurations can be viewed as rows in a data matrix XM×D. The rows
of ν are labelled as [1, 0] if they are coil states or labelled as [0, 1] if they are globule states.
Supervised learning methods start from a training stage. The training stage consists of
consecutive epochs. At the beginning of an epoch, the M training samples, which is a
M × D matrix, will be feed to FNN. For the ith training sample ri = [xi1, xi2, · · · , xiD],
i.e. a D by 1 vector, the output of the FNN is a vector function, qi = [qi1, qi2, . . . , qiK]:

qi = σ(wo · σ(wh · rTi + bh)). (2.2)

In Eq. (2.2) wh are the weights connect input and hidden layer, which is an Nh by D
matrix. wo are the weights connect hidden an output layer, which is an K by Nh matrix;
bh is the bias applied to the hidden neuron, which is an D by 1 vector. σ is the activation

24

Cost function formula

Mean square error: J = 0.5
M∑
i=1

K∑
j=1

(qij − νij)2

Cross entropy: J = −
M∑
i=1

K∑
j=1

νij ln(qij)

Table 2.1: A list of different kinds of cost functions. qij is the jth FNN output of the ith
sample, νij is the corresponding label of the ith sample, j is the subscript of which this
sample belongs to. K is the number of classed to be classifed.

function that has form
σ(z) = [1 + exp(−z)]−1. (2.3)

σ is an element-wise function, that is the shape of σ is determined by z. If z is a number,
then σ(z) is a number; if z is a vector or matrix, then σ is applied element wise on z. The
output of FNN could be viewed as an inference about the input sample. If one sees an
output [0.7, 0.3], it means the FNN thinks the input is a coil with a probability 70%, and
is a globule with a probability 30%.

The likelihood between the FNN inferences and labels could be measured by a cost
function J . A smaller J means the current inferences given by FNN are closer to true
labels of training data. J may take different forms such as mean square error or cross
entropy loss, etc. as shown in Tab. 2.1. Typically, for classification, we use cross entropy
cost

J = −
M∑

i=1

K∑

j=1

νij ln(qij). (2.4)

The choice of cross entropy is due to practical reasons. During training, q will gradually
approach the label. The cross entropy will not lead to a gradient vanishing problem as
square error do.

Then, stochastic gradient descent [141] is performed to minimize J by adjusting weights
and bias according to

w←w − η∇wJ

b←b− η∇bJ
(2.5)

In Eqs. (2.5), ∇wJ is the gradient of J with respect to all the weights. ∇bJ is the gradient
of J with respect to all the biases. η is a small quantity, called learning rate, that adjusts
how much do we want ∇wJ and ∇bJ to change weights and biases. This is one epoch.
After iterating through an appropriate number of epochs, the FNN is considered trained.

25

In desired cases, a trained FNN is expected to make correct classification on test data.
Here, by “appropriate ”, “desired”, we mean the cases that training is not severely affected
by overfitting [158].

Once the neural network is trained, we can feed in a batch of test samples. The output of
each individual test sample is an inference made by the FNN. For example, if the inference
is [0.98, 0.02], then the input test sample should be labeled as a coil. We can compare the
label inferred by FNN and the label associated with test data. The accuracy of the trained
FNN is calculated as the number of correct inference over the total number of test samples.

Note, throughout this thesis, the FNNs introduced only have one hidden layer. I
have also experimented with FNNs that have multiple hidden layers. Under the same
requirement of accuracy, FNNs with multiple hidden layers take significantly less training
time to reach the required accuracy. Using the same training time, FNNs with multiple
hidden layers usually return higher accuracy results. These findings are as expected.

2.3 Unsupervised learning

Albeit supervised learning algorithms have shown great capability for classifying complex
structures, they usually have limited interpretability. For example, it is hard to find which
feature, or combination of features, does the FNN extracts from the training data to per-
form the classification during the training stage. However, these features are important to
physicists as they can characterize the difference between structures, and they might be
used as the order parameters. In addition, in many occasions, compared with unlabelled
data, the labelled data are difficult or expensive to obtain, so we may not be able to collect
enough training samples to train supervised learning algorithms. In comparison, unsu-
pervised learning algorithms offer a way to analyze unlabelled data and in the meantime
self-discover features that lead to the classification of data.

Generally speaking, the purpose of unsupervised learning algorithms include, but not
limit to, dimensional reduction and clustering [13]. The goal of dimensional reduction is
to find a map from the original representation r = (x1, x2, . . . , xD) to a low dimensional
representation r′ = (x1, x2, . . . , xD′), where D > D′. Clustering aims at finding a series
of clusters in the low dimensional space. When the samples are clustered, we expect
the samples in the same group share more commonalities than those in different clusters.
Therefore, each cluster can be viewed as one class “discovered” by unsupervised learning
algorithms. Some classical unsupervised learning algorithms, such as principal component
analysis (PCA) [52], autoencoder [105], K-means [73], etc. can be utilized to classify

26

polymer samples. In this thesis, we mainly focus on the application of PCA in polymeric
systems.

PCA [128, 78] is an approach widely used to extract the features from a data set by
virtue of a linear dimensionality reduction technique. The so-called principal components
refer to a few of mutually orthogonal normalized vectors. They are defined in a way that
the projection of data along the first principal component has the largest variance, the
projection of data along the second principal component has the second largest variance,
and so on. PCA finds principal components by conducting the diagonalization to the
empirical covariance matrix calculated from the data matrix in the original coordinates.
Usually, PCA is used for pattern recognition and image compression. Therefore, PCA could
be adopted to investigate the significant variation of polymer configurations changing with
temperature and to play a role as an indicator of structural transition for polymers.

Suppose there are M polymer configurations to be classified. These configurations can
be viewed as data points in D-dimensional space, where D = 3N . After subtracting the
individual mean values to all data in each row, one obtains a data matrix XM×D that the
average of all the elements in the same row is zero. Implementing a standard orthogonal
transformation to the covariance matrix XTX, i.e.

XTXWl = λlWl, (2.6)

PCA derives a series of eigenvectors {Wl}Dl=1 sorted by its corresponding {λl}Dl=1 in de-
scending order, i.e. λ1 ≥ λ2 ≥ λ3 · · · ≥ λD. Here, Wl is an M by 1 matrix. Due to
the positive semi-define property of the covariance matrix, all λl are greater than or equal
to zero. In practice, it is more convenient to work with normalized eigenvalues of the
correlation matrix:

λ̃i = λi

/
D∑

j=1

λj (2.7)

One can obtain a column-wise orthogonal matrix WD×D′ = (W1,W2,W3, · · · ,WD′) by
selecting D′ (D′ ≤ D) principal components. Usually, the eigenvalues of the D′th prin-
cipal component should be much larger than the other eigenvalues. These D′ principal
components are often referred as dominant principal components. Then, the optimal low-
dimensional encoding of data XM×D′ is given by

ZM×D′ = XM×DWD×D′ (2.8)

which is an orthogonal projection of the data onto the column space spanned by the
eigenvectors. So, PCA is usually used to be a dimension reduction approach effectively

27

extracting the major variation of data. This point of view can be justified by examining
the correlation matrix of ZM×D′ , i.e.

ZT
M×D′ZM×D′ =WT

D×D′XT
M×DXM×DWD×D′

=WT
D×D′WD×D′DiagWT

D×D′WD×D′=Diag,
(2.9)

where Diag is a diagonal matrix with diagonal elements λ1, λ2, · · · , λD′ . Looking backward
at the mathematical operations mentioned above, one can straightforwardly interpret PCA
as a technique of finding the main directions of maximizing the variance of the projected
data.

2.4 Machine learning PDE solver

2.4.1 Regression by an FNN

The machine learning PDE solver is essentially a regression algorithm. Before we dive into
the solver itself, in this subsection, we introduce how to use an FNN to perform regression
tasks. Given a selected coordinate, r = (r1, r2, · · · , rD), one can assume that a vector
function q = (q1, q2, · · · , qK) is generated by an FNN following the form:

q = v · σ(w · r + b), (2.10)

where w, b, v are FNN parameters to be determined, D is the dimensionality of the
coordinate, and K is the dimensionality of the vector function. One advantage of the
form in Eq. 2.10 is that it can represent almost any continuous functions [69, 32, 68]. The
function relationship between y and r is assumed to follow Eq. 2.10. One needs to find
an appropriate set of FNN parameters through training, so that q maps r to y. The
training stage of regression is very similar to the training stage of supervised learning. By
constructing a cost function following

J =
1

2

K∑

i=1

〈
(yi − qi)2

〉
, (2.11)

where the average bracket 〈· · · 〉 is performed on theM selected samples, we can measure the
difference between FNN generated value, q, and observed value, y. Upon the minimization
of J , one can find a suitable version of FNN parameters. Therefore, once J is minimized,
Eq. (2.10) is considered as a function regressed based on the training samples. Given a
set of unseen coordinates, one can predict the values by simply plugging these coordinates
into Eq. (2.10).

28

Input
layer

Hidden
layer

Output
layer

Input
layer

Hidden
layer

Output
layer

Mutual

coupling

Input
layer

Hidden
layer

Output
layer

(a) (b)

�x

�t
q �q �w

x

t
x

Figure 2.4: A graphical illustration of the FNN architecture of the machine learning PDE
solver. The blue background is to emphasize that these FNNs are used for solving PDE
instead of classification. All circles represent neuron nodes, where the input layer consists
of nodes that have variables as input and the output layer are simply the functions to
be determined. The connections between the input and hidden layers are assumed to be
sigmoid functions and the connections between the hidden and output layers are assumed
to be linear with adjustable coefficients. The architecture varies depending on the problem
that needs to be solved. Two examples are shown here. (a) a simple two dimensional
diffusion equation solver where q(x; t) is the density of the diffusing material in an external
field at location x and time t and (b) complicated, coupled modified diffusion equations
where q(x; t) is the density of the diffusing material that couples to an unknown external
field w(x). In both examples, the functions to be found are represented by FNN.

2.4.2 Constructing a machine learning PDE solver

In polymer physics, many phenomena are modelled as the solution of some partial dif-
ferential equations (PDEs) with some given initial or boundary conditions [28, 48, 116].
One example we have seen is that the propagator of diblock copolymer melt can be solved
from modified diffusion equations. The efficiency and accuracy of the PDE solver highly
determine whether and how well we can study these phenomena. As the main purpose of
this section is to explain the construction and training of a machine learning PDE solver,
assuming that the solution we are interested, in this section, is a two dimensional function
q(x; t) on domain of interests x ∈ [0, L], t ∈ [0, 1]. The values of q(x; t), that corresponding
to ys a in regression task, are not directly observed. The Machine learning PDE solver
aims at finding q(x; t) with neural networks by taking the coordinates sampled from the
domain of interests as the only input.

To begin with, we need to construct a solver based on the problem to be solved. Fig. 2.4
demonstrates two typical architectures we used in our studies. For the boundary value prob-

29

lem in this section, the machine learning PDE solver uses an FNN, as shown in Fig. 2.4(a),
with two input nodes, i.e. Ni = 2, one hidden layer with Nh hidden nodes and one out-
put neuron, i.e. N0 = 1, to generate q(x; t). In this case, r in Eq. (2.10) takes the form
r = (x, t), and q(x; t) takes the same form as in Eq. (2.10). With different choices of w, b,
and v, the machine learning PDE solver will generate different q(x; t). Therefore, q(x; t)
could be viewed as a trial function. The universal approximation theorem guarantees that
there exists a set of appropriate weighs and biases so that q(x; t) generated by the FNN
could be arbitrarily close to the solution of the boundary value problem. Now, the problem
turns into how to find the appropriate weights and biases.

In order to find the optimal weights and biases, as values of q(x; t) are not known to
the machine learning PDE solver, a new cost function need to be designed. Assuming that
q(x; t) is determined by a boundary value problem represented as a series of operators:

D̂(q(x; t)) = 0, B̂1(q(x; t)) = 0, B̂2(q(x; t)) = 0, . . . Ĉ(q(x; t)) = 0, . . . (2.12)

Here, the number of operators varies based on the problem itself.

D̂ is the differential operators acting on q(x; t). The specific form of D̂ depends on
the PDE itself, for example, for a modified diffusion equation, it takes the form D̂ =
∂/∂t− ∂2/∂x2 −w(x), where w(x) is a given external field. When the analytic expression
of w(x) is given, we can use the architecture shown in Fig. 2.4(a) to solve for q(x; t) directly.
In the cases when w(x) is unknown but can be obtained iteratively through some auxiliary
conditions, we need to use another neural network to generate w(x), and couples two neural
networks together by Ĉ(q(x; t), w(x)). The specific form of Ĉ(q(x; t), w(x)) is determined
by the auxiliary conditions. In this case, we need to use the architecture as shown in
Fig. 2.4(b).

B̂ will have specific forms depends on boundary conditions or initial conditions. For
the first type of boundary condition, we have

B̂1(q(x; t)) = q(0; t)− b1(t) = 0; B̂2(q(x; t)) = q(L; t)− b2(t) = 0, (2.13)

where b1(t) and b2(t) are the value of q(x; t) at boundaries. The second type of boundary
condition can be implemented as

B̂1(q(x; t)) =
∂q(x; t)

∂x

∣∣∣∣
x=0

− b1(t) = 0;
∂q(x; t)

∂x

∣∣∣∣
x=L

− b2(t) = 0, (2.14)

in this case, b1(t) and b2(t) are the derivative of q(x; t) at boundaries. The form of B̂ for
the third type boundary condition can be defined based on Eq. 2.13 and Eq. 2.14 very

30

similarly. Periodic boundary condition requires q(x + L; t) = q(x; t). If q(x; t) is smooth,
this condition also indicates ∂nq(x + L; t)/∂xn = ∂nq(x; t)/∂xn, where n is the order of
partial derivative In practice, we find machine learning PDE solver can impose periodic
boundary condition accurately by using two terms

B̂1(q(x; t)) = q(0; t)− q(L; t) = 0; B̂2(q(x; t)) =
∂q(x; t)

∂x

∣∣∣∣
x=0

− ∂q(x; t)

∂x

∣∣∣∣
x=L

= 0, (2.15)

where B̂1 imposes q to have equal values at boundaries, and B̂2 imposes the value of the
first order derivative of q to be the same at the boundaries. In the cases B̂3 need to impose
initial condition q(x; 0) = ψ(x), we have

B̂3(q(x; t)) = q(x; 0)− ψ(x) = 0. (2.16)

The difference between q(x; t) and the solution of the boundary value problem could
be measured by a cost function defined as

J =
α

2

〈∣∣∣D̂(q(x; t))
∣∣∣
2
〉

+
∑

i

βi
2

〈∣∣∣B̂i(q(x; t))
∣∣∣
2
〉

+
γ

2

〈∣∣∣Ĉ(q(x; t))
∣∣∣
2
〉

(2.17)

where α, βi γi are penalty coefficients to emphasize the relative priority of each term in
the cost function, that is under the same J , q(x; t) tend to satisfy better with the terms
with larger coefficients. When J = 0, all operators for this boundary value problem are
satisfied, and q(x; t) is considered as the solution of this boundary value problem. Hence,
if we start from a guess of weights and biases, and minimize J , then the appropriate set of
weights and biases is considered as found when J is smaller than a threshold.

2.4.3 Training the machine learning PDE solver

The steps on how to train a machine learning PDE solver are shown in Fig. 2.5(a)-(d). In
step (a), the parameters of machine learning PDE solver are initialized randomly. Denoting
the variable vector as r = (r1, r2)1, the (r1, r2) pairs are considered as training sample.
Some of samples will be selected within the domain of interests for the evaluation of D̂, Ĉ
and some sample will be selected from the boundary for the evaluation of B̂.

The activation function of the jth hidden node is a typical sigmoid, and for the i’th
sample, it could be calculated as

σj = [1 + exp(−zj)]−1 (2.18)

1In this notation, r1 is the spatial coordinate x and r2 is the time variable t.

31

Differential operators

Auxiliary conditions

�D̂(q)

�B̂1(q), B̂2(q), ⋯
�Ĉ(q)

Cost function

J
Minimization

Optimal
Weights
and bias

(a) (b) (c) (d)

Machine learning
PDE solver

Figure 2.5: A flowchart of the training approach of the machine learning PDE solver. The
training contains 4 steps. Step (a), we need to initialize the machine learning PDE solver
with a guess of weights and biases. After a batch of training samples are fed into the
solver, it will output the values of q(x; t). Step (b), operators are calculated based on
these values analytically. Step (c), cost function J is evaluated based on the sum of square
module of operators. Step (d), the appropriate weights and biases can be obtained after J
is minimized.

where zj =
∑

iwjiri + bj and all wji form an Nh×Ni parameter matrix and all bj form an
Nh-dimensional parameter vector. The output layer is connected to the hidden nodes by

q(r) = v · σ (2.19)

where v is an Nh-dimensional parameter vector and σ is formed by the elements defined
in Eq. (2.18).

Once q(r) is obtaind, we will move to step (b) to evaluate the operators. It is instructive
to realize that all operators and derivatives needed can now be analytically determined.
For example, the first order derivative in D̂ can be calculated as

∂q(r)

∂rk
=
∑

j

vj exp(−zj)wjk
[1 + exp(−zj)]2

. (2.20)

Second partial derivatives can be taken as well but the analytic expressions are omitted
here. A through example calculation are provided in appendix. B. In short, the D̂, B̂, Ĉ
can all be expressed analytically and calculated if the FNN parameters are known.

Step (c) consists of multiple epochs. Within an epoch, samples are selected from the
variable space and used to evaluate the cost function J in Eq. 2.17. Then, in order to
minimize J , the direction of the deepest descent in the FNN-parameter space needs to

32

be calculated. Assuming that our machine learning PDE solver have only one D̂, Ĉ, and
multiple B̂, the gradient with respect to parameter could be written in a way as

∇wJ =α
〈[
D̂q(r)

] [
D̂∇wq(r)

]〉

+
∑

i

βi

〈[
B̂iq(r)

] [
B̂i∇wq(r)

]〉

+ γ
〈[
Ĉq(r)

] [
Ĉ∇wq(r)

]〉
(2.21)

The gradient of other FNN parameters, b and v, are calculated in a similar way. The
back-propagation method is used to efficiently evaluate the required gradient on q [141].
According to the deepest descent method, the parameter vectors are then updated accord-
ing to

w←w − η∇wJ (2.22)

b←b− η∇bJ (2.23)

v←v − η∇vJ (2.24)

where η is the learning rate. Here, the average bracket 〈· · · 〉 is performed on the selected
samples.

Once J is minimized, an version of optimal w, b and v are considered found by the
machine learning PDE solver.

33

Chapter 3

Identifying polymer states by
supervised learning

3.1 Introduction

For physicists, one of the most familiar systems is molecular systems, in which various
computer simulation algorithms are dedicated to study their properties. As reviewed in
Section 1.3, traditional methods on identifying states are deterministic in nature, one need
to design order parameters for all the states that need to be identified. These methods
demand a deep understanding of the system and require advanced mathematical tools [183].
In contrast, machine learning methods are empirical and data-driven, which means they
are able to learning the dependency between states, i.e. training samples, and label or
able to extract the salient features without understanding the system. One of the most
successful machine learning methods is FNN. Ref. [95] outlines the way to construct, train
an FNN to fulfill the purpose of imagine recognition. It demonstrates that FNN has strong
capability on classifying hand-written digits, everyday objects, such as balls, pets, cars,
etc.

These applications have inspired physicists who work on condensed matter physics.
Melko, et al. [19] set the foundation of studying state of matter by machine learning. They
demonstrated an FNN trained by large volume of spin model configurations generated
by Monte Carlo method can identify different states and transition points simultaneously.
This approach investigates the average output values of the test samples generated from
different temperatures. These values will form curves and their intersects are interpreted
as transition points. One advantage of this approach is that only spin configurations are

34

needed as input, without the need for system information, such as Hamiltonian, heat ca-
pacity, etc. Therefore, this idea is soon employed to identify the states sampled from other
condensed matter models, such as Hubbard model [22], Haldane model [195], Heisenberg
model [143], Potts model [101], etc. These applications justified the versatility and gener-
icity of machine learning based methods.

This comes along with another wave of works. For example, Arsenault et al. used
machine learning as a Green’s function solver in dynamical mean-field theory for providing
an efficient, low cost solver of the Anderson impurity model [2]. Behler et al. adopted
a neural network to represent potential energy surface and force-fields to improve the
accuracy of molecular dynamics [10]. Snyder et al. used a neural network to generate
highly accurate density functional for electronic structure calculation [157]. Geiger et al.
formulated a local structure detector in polymorphic systems [54].

Soft matter systems, especially coarse-grained models, have certain level of similarities
with condensed matter systems. Therefore, motivated by the successes in condensed matter
physics, in this chapter, we are motivated to explore the ability of an FNN on identifying
various configurations sampled from Monte Carlo simulations of polymeric models. The
configurations to be identified could be disordered, such as coil, partially-ordered, such
as liquid-like globular, and ordered, such as two crystalline structures, called anti-Mackay
and Mackay, in the low-energy regime. Indeed, these structures we listed here are well
studied traditionally [148, 193]. Therefore, they are a good start for the exploration of the
capability of hybrid traditional simulation methods, such as Monte Carlo methods, and
machine learning techniques, such as supervised or unsupervised learning methods to study
phase transitions in a classical polymeric system, and it is convenient to made comparisons
between the results from traditional methods and machine learning methods.

3.2 Polymer models and states

In this chapter, we focus on a single homopolymer chain. In total, two polymer models, call
GSM and FENE, are studied here. Both models have polymerization N = 102, and the
monomers interacted with each other through bonded and non-bonded interaction. The
reason we choose to study these two models is their states and transition points are well
studied. It straightforward to compare the results from traditional methods and machine
learning methods.

Within the first model, GSM, the bonded interaction between consecutive monomers
is modelled as harmonic string potential, identical to the one used in the Gaussian chain

35

model with a Kuhn length a [39]. Here, Kuhn length is a statistical segment length scale
that represents the distance between consecutive monomers in a flexible polymer chain.
The reduced bonded Hamiltonian of the polymer is

βEbond =
3

2a2

N−1∑

i=1

(ri − ri+1)2 , (3.1)

where β = 1/kBT is the Boltzmann factor, ri is the coordinate of the monomer-i. The
system interaction potential energy is

Eint =
1

2

∑

ij

U(|rij|) (3.2)

where rij is the distance vector between monomer-i and monomer-j. The non-bonded in-
teraction, U(r), between two monomers is a square-well potential: below a square distance
of 0.81a2 the monomers repel through the excluded-volume interaction, and between 0.81a2

and 2a2 the monomers experience an attraction of magnitude −ε, i.e.

U(r) =

∞ if 0 ≤ r2 < (0.9a)2,

−ε if (0.9a)2 ≤ r2 ≤ 2a2,

0 otherwise.

(3.3)

With the decreasing of temperature, GSM will exhibit a well-known coil-to-globule tran-
sition. Metropolis Monte Carlo simulations that incorporate the Boltzmann weight were
used for this model to produce 5× 103 independent configurations at every specified tem-
perature kBT/ε where kB is the Boltzmann constant. The detailed information of the
Monte Carlo procedure is documented in Appendix A.3.1. Assessing the data shown in
Fig. 3.2(a) for both reduced mean-square radius of gyration, S2 ≡ 〈R2

g〉/a2, and mean-
square deviation of the total energy from its average (which is proportional to the specific
heat), C̃ ≡ [〈E2

int〉 − 〈Eint〉2]/N2ε2, we observe that a coil-to-globule phase transition takes
place at kBT/ε ≈ 2.0, corresponding to the location of the peak in C̃.

Within the second model, FENE, the bonded monomers are connected by a particular
implementation of the Finitely Extensible Nonlinear Elastic (FENE) interaction, and the
non-bonded monomers interact with each other in the form of truncated Lennard-Jones
(LJ) potential with a potential well-depth −ε. Mathmetically, this model has a system
energy as the sum of the bonded and interaction energies. The former is described by

Ebond =
N−1∑

i=1

EFENE (|ri − ri+1|), (3.4)

36

where EFENE is a particular realization of the FENE model,

EFENE(r) = −20εR2 ln[1− (r − r0)/R)2], (3.5)

in which r is the distance between two connected monomers, R = 0.3b controls the bond-
length variations, and r0 = 0.7b. The interaction potential energy formally follow (A.2)
but the two body interaction is replaced by a truncated Lennard-Jones potential,

U(r) =

{
ULJ(r)− ULJ(rc) if 0 ≤ r < rc

0 otherwise,
(3.6)

where rc = 2.5σ. The Lennard-Jones potential has the standard form,

U(r) = 4ε

[(rm
r

)12

−
(rm
r

)6
]
, (3.7)

where rm = 2−1/6r0 and ε measures the potential-well depth (which is adjusted by the
value at the truncation point). The selection of FENE and LJ functions matches ex-
actly with those used in Ref. [146]. Reported by careful Monte Carlo studies utilizing
the Wang-Landau algorithm [148, 146], it is well-known that the FENE model exhibits
three different states in the low-energy region, globule, anti-Mackay (anti-Mackay), and
Mackay (M). In the Wang-Landau algorithm, e is used as the system parameter, one could
convert all languages to a low-temperature description but we stay here with the low-energy
description for simplicity. The benefits of using e as the system parameter are discussed in
Appendix A.3.2. With the decreasing of the energy, configurations of the FENE model will
firstly exhibit the coil-to-globule transition, and then a further decreasing of the energy
will trigger globule-to-anti-Mackay and anti-Mackay-to-Mackay transitions. These three
structures have subtle structural differences that cannot be distinguished by direct visual-
ization in Figs. 1.3(b), (c) and (d). In particular, the crystalline anti-Mackay and Mackay
states differ delicately from each other by the way that monomers are stacked [Figs. 1.3(f)
and (g)]. Similarly, 5 × 103 independent configurations are produced at every specified
energy e. For FENE, transition points are determined by looking into specific-heat-like γ
curve. Fig. 3.2(d) and Fig. 3.4 shown that in FENE model, Monte Carlo method gives the
transition points of coil-to-globule, globule-to-anti-Mackay and anti-Mackay-to-Mackay at
e = −1.80, e = −4.40, e = −4.74 respectively. The detailed information of the Monte
Carlo procedure and specific-heat-like γ are documented in Appendix A.3.2.

Strictly speaking, phase transitions can only be defined in the thermodynamic limit,
these transition points (produced in a finite-N system) have characteristic phase-transition
properties of a finite system [147, 148, 146].

37

3.3 Training an FNN with polymer samples

3.3.1 Constructing an FNN

The graphic demonstration of the FNN we used in this chapter is shown in Fig. 2.2.
The simulated configurations of a three dimensional polymer chain with N connected
monomers are mathematically represented by 3N spatial coordinates. In order to perform
the feed-forward step, we have two choices on how configurational information is fed into
the input neurons. The simple, naive option is to convert our problem to the image
recognition problem discussed earlier. The conversion can be executed by discretizing
three dimensional space into Ni grids, and then assigning a state of “occupied” as value 1,
or “unoccupied” as value 0 on top of a particular grid point. Then, this converted pattern
would be used for training or testing. Alternatively, in this chapter, we implement an end-
to-end supervised learning strategy, that is we classify polymer configurations by directly
using 3N raw spatial coordinates as Ni = 3N input. Then, the neural network is trained
to learn the relationship between the raw coordinates vectors and their corresponding the
labels. In the hidden layer, in total Nh = 100 neurons are used. In the output layer, the
number of the output nodes, No, will be set to 2 or 3 depending on the problems to be
studied.

3.3.2 Training

The way to train the FNN used is documented in section 2.2.2. During the training
period, cross entropy is adopted as the cost function, and a dropout regularization with a
50% dropout rate is applied to the hidden layer to avoid overfitting in the determination
of the weights and biases [158]. As a technical note, the dropout mentioned in the last
paragraph is a technique aims at preventing a FNN from overfitting during training. In
each epoch, this technique randomly selects some hidden neurons and ignores the weights
that connect these neurons and neurons in the next layer. One can imagine that different
smaller FNNs are trained in different epochs. As a result, the FNN gains the capability of
generalization.

3.4 Coil-to-globule transition

Some questions immediately arise. Is a FNN able to distinguish different polymer states?
If a FNN is capable of it, does it rely on the order parameters to classify these states? Does

38

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
o

s
t

Epoch

Figure 3.1: The cost with respect to epoch when training the FNN with samples containing
coil and globe configurations.

the FNN trained on samples generated from one model can identify the samples generated
from a different model? To answer these questions and in the mean time justifying the ca-
pability of the neural network in recognizing polymer states, we performed three numerical
experiments based on a batch of sample that contains coil and globule state.

In the first experiment, 3× 103 polymer configurations (specified by the coordinates of
monomers after setting a = 1) at every specified temperature within the ranges [0.5, 1.5]
and [2.5, 3.5] were labelled as training sets for the globule and coil states, respectively.
The two normalized output neurons were designated as the coil and globule labels, which
during training were assigned to have values ν = 1 for the corresponding state, and ν = 0
otherwise. No other information or estimators from Monte Carlo simulations, such as
the temperature, reduced specific heat, or radius of gyration were used in the training.

39

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

1.0 2.0 3.0 4.0 5.0
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

globule coilS
2

C
~

kBT/ε

(a)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.0 2.0 3.0 4.0 5.0
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

globule coilν C
~

kBT/ε

(b)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.0 2.0 3.0 4.0 5.0
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

globule coilν C
~

kBT/ε

(c)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

-2.6 -2.2 -1.8 -1.4 -1.0
-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2
globule coilν γ

e=E/Nε

(d)

Figure 3.2: (a) Reduced mean-square radius of gyration (plus symbols, to the left scale)
and specific heat (circles, to the right scale) as functions of the reduced temperature kBT/ε,
determined from the Monte Carlo simulations of GSM for N = 102, (b) the neural net-
work outputs of test-recognizing independent GSM configurations, (c) the neural network
outputs of test-recognizing independent, normalized GSM configurations, and (d) the neu-
ral network outputs of test-recognizing normalized FENE configurations. The filled and
open squares represent the mean ν-values output from the globular and coil neurons, re-
spectively. The circles in plot (d) represent the specific-heat-like γ (to the right scale)
determined for the FENE model from a Wang-Landau Monte Carlo simulation. Error bars
associated with all squares are smaller than the symbol size.

40

Fig. 3.1 shows the change of cost function with respect to training epochs. One can
straightforwardly see that the cost is stable and small enough after around 5000 epochs.
This is the indication of the FNN is trained.

Once the neural network was adequately trained and all neural network parameters
were stable, we input 500 new configurations at every temperature between the range
[0.5, 5.5], which were not used in the training session, as the testing set. The averaged
test values of the two output neurons, ν, are plotted in Fig 3.2(b) forming two curves
behind the filled and open squares. It’s straightforward to see that in the low temperature
regime, only the neuron designated as globule labels output a number near 1, and in high
temperature regime, only the neuron designated as coil labels output a number near 1,
which demonstrated that neural network is capable of identifying coil and globule. More
importantly, the intersection of two curves is interpreted as the transition point, since this
is where neural network think the test data neither like coil nor like globule state. As Fig
3.2(b) shows, these curves cross with each other at kBT/ε = 2.03, identifying a coil-to-
globule transition that in good agreement with the location of the C̃-peak, regardless of
the fact that the neural network model was trained in temperature ranges farther away
from the transition point.

The coil and globule states have distinguishably different shape, represented by the
radius of gyration, S2. To show that the neural network is not simply recognizing coil
and globule from their different overall sizes, in our second experiment we normalized all
coordinates, of the training and testing sets, by a factor 1/S. On average, the polymer
configurations now have the same normalized radius of gyration (= 1), across the entire
studied temperature range. The network was then trained in a similar manner described
above, with the normalized coordinates. The quality of output neurons to indicate the coil
and globule states for the testing data is equally good as in the previous case, shown in
Fig. 3.2(c).

In the third experiment, we tried to test on the transferability of a trained neural net-
work. While these numerical experiments were performed by using the configurational data
generated from GSM, we placed the network into the ultimate test in the third numerical
experiment. This time, the neural network parameters determined in the second experi-
ment were retained and we asked the network to recognize the configurations generated
from the FENE model, in which completely different potential functions were used than
in the square-well GSM. Furthermore, instead of producing the configurations from the
canonical ensemble where kBT/ε is used as the system parameter, we generated configura-
tions from the Wang-Landau algorithm for microcanonical ensembles, in which the total
(reduced) energy per particle e = E/Nε is directly used as the system parameter. At each
e-value illustrated in Fig. 3.2(d), 1 × 103 independent FENE configurations, normalized

41

by their corresponding S, were sent to the GSM-trained network for testing. The two
recognition curves produced from the output neurons, shown in the figure as the under-
lying curves behind filled and open squares, predict a coil-to-globule transition point at
e = −1.8. This prediction can be independently verified by examining the γ(e) curve,
which is a specific-heat-type measurement in reduced units defined in the microcanonical
ensemble [146]. The data represented by circles in Fig. 3.2(d) was calculated based on
the density of states determined from the Wang-Landau algorithm; it shows a peak at the
same location as the one successfully predicted by GSM-trained neural network.

3.5 Low-energy polymer states

The numerical experiments in Sec. 3.4 ascertains that the FNN has no problem identifying
different polymer states. With the intention of exploring the upper limit of this capability,
in this section, as a final numerical experiment, we are trying to challenge the neural
network to recognize three very similar states, using three neuron nodes in the output
layer, each assigned to recognize globule, anti-Mackay and Mackay separately.

The network was trained with FENE configurations in the energy range e = [−4.3,−4.16],
[−4.7,−4.5], and [−4.9,−4.8], where the globule, anti-Mackay and Mackay structures, re-
spectively, can be clearly labelled. The training data contained 3×103 configurations at
every energy bin. Fig. 3.3 shows the change of cost function with respect to training epochs.
One can straightforwardly see that the cost is stable and small enough after around 10000
epochs. After the network was adequately trained, it was tasked to recognize an indepen-
dent set of test data covering the entire energy range in Fig 3.4. Over 103 configuration
samples were used at every energy bin for this purpose. The mean ν-values of the test out-
put, from the globule, anti-Mackay, and Mackay nodes, are represented in Fig 3.4 by filled
squares, open diamonds, and filled diamonds. The intersections of the interpolated curves
predict that globule-to-anti-Mackay and anti-Mackay-to-Mackay transitions take place at
e = −4.40 and e = −4.74, respectively. These neural network predicted transition points
can be confirmed by an examination of the specific-heat-like γ function, independently cal-
culated from the Wang-Landau Monte Carlo simulations. From the γ-peaks, indicated by
the blue circles in the plot, we determine that the globule-to-anti-Mackay and anti-Mackay-
to-Mackay transition points are at e = −4.40 ± 0.03 and e = −4.74 ± 0.03 respectively,
which agree well with those from the neural network predictions. Albeit the identification
of these states, in many cases, is arduous for human, or require exquisitely designed order
parameters, the results of this experiment show that FNN can identify both states and
transition points based on suitable amount of training.

42

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

C
o

s
t

Epoch

Figure 3.3: The cost with respect to epoch when training the FNN with samples containing
globe, anti-Mackay, and Mackay configurations.

3.6 In search of a phase transition

The above numerical experiments demonstrated the FNN’s versatility in recognizing poly-
mer configurations and the usefulness of neural network in determining the transition
points. There are two essential questions we have not adequately addressed. 1) How does
the neural network predicted location of the transition depend on the range of used train-
ing data? 2) Would the network mistakenly identify a phase transition for a system where
a certain physical property smoothly crosses over from relatively large to small values
without going through a real phase transition?

To answer the first question we return to the GSM Monte Carlo data over a wide
range of the reduced temperature, [0.5, 3.5]. We conducted a series of 18 independent

43

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

-4.9 -4.8 -4.7 -4.6 -4.5 -4.4 -4.3 -4.2
-25

-20

-15

-10

-5

0

5
Mackay anti-Mackay globule

ν γ
e=E/Nε

Figure 3.4: Mean neural network outputs ν (square for globule, open diamonds for anti-
Mackay, and filled diamonds for Mackay) from the test samples, after the network is trained
to recognizing these states in regimes where they are stable. In the background, the reduced
specific heat-like γ (circles, to the right scale) was independently produced from the Monte
Carlo simulations. Error bars are smaller than the symbol size.

44

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

ν C~

kBT/ε

1.84

1.88

1.92

1.96

2.00

2.04

0.0 0.4 0.8 1.2
k

B
T

/ε
Range

Figure 3.5: Average neural network output ν from the globule and coil neurons on the
testing configurations for neural network models trained in various temperature ranges.
The inset in plot is the neural network predicted transition temperature as a function of
the training temperature-range used. Error bars are smaller than the symbol size, unless
otherwise plotted. The plus, cross, and square symbols represent the mean ν from the
two output neurons on test samples, of neural network models initially trained in the
temperature range, Range = 0.00, 0.53, and 1.20, respectively. The blue circles represent
the same data in Fig. 3.2(a).

training sessions, each assigned a different training temperature range, away from the coil-
to-globule transition point. The first session treated Monte Carlo configurations produced
from the system at two temperature values, one on the extreme left and the other extreme
right, where the coil-to-globule transition sits in the middle. In the subsequent sessions
the training temperature ranges expanded from the extreme left to the center and extreme

45

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

2.5 3.0 3.5 4.0 4.5 5.0 5.5

ν

kBT/ε

Figure 3.6: Average neural network output ν from “phase-1”- (squares) and “phase-
2”-nodes (circles) on the test configurations in the temperature range [2.5, 5.5] for neural
network models trained by using low- and high-temperature samples. This temperature
range contains no actual phase-transition point.

right to the center, incrementally. These trained networks were then put into test, by
inputting independent configurations over the extended [0.5, 5.5]-range. The mean output
ν-values from the C and globule nodes are illustrated in Fig 3.5 for a few selected sessions.
As the training range expands the FNN predicted transition temperature converges to
a fixed point; the final converging temperature agrees with the one determined by the
Monte Carlo C̃-peak, 2.03. This study suggests that the approximate location of the
transition temperature can be already estimated by using early training ranges far away

46

from the transition point and that the more precise determination of the transition point
can be achieved by progressively adding configurations closer to the transition point. The
procedure actually reveals a mechanism of finding a phase transition point, without a priori
knowledge of its existence, by taking two small training ranges as the starting point and
proposing a phase transition point somewhere in between.

To answer the second question, we conduct a numerical experiment on a neural network
with GSM Monte Carlo data in the reduced temperature range [2.5, 5.5]. Within this coil
region, both S2 and average energy (not shown) have significant variations. We enforcedly
train the neural network so that the two output neuron nodes mistakenly regard configu-
rations in the range [2.5, 3.5] as in phase-1 and [4.5, 5.5] as in phase-2. We then test the
network with independent configurations over the entire [2.5, 5.5] range. The results of the
output nodes are plotted in Fig. 3.6. Each node vaguely recognizes the configurations as
“phase-1” or “phase-2”, with a mean ν-value hovering around 0.5 in high uncertainties.
No clear signals, such as those determined above for true phase transitions, exist.

3.7 The order of a phase transition

In the previous sections, we illustrated the method of using FNN to study phase transitions,
including identifying different polymer states and locating the transition points. In short,
this method investigates the average of the FNN output on test samples. Based on the
test samples generated from different temperature or energy, we can eventually obtain 2
to 3 ν curves based on the problem to be studied. One looks into the intersect of two ν(e)
curves, and interpret this intersect as the transition point. Let’s call this method “50%
rule”.

In comparison to the 50% rule, recently, we discovered the transition points could be
located based on a different philosophy. We are aiming at studying the standard deviation
behaviour of the FNN outputs in each energy bins. Notice the fact that the samples are
generated by the Monte Carlo method. For the energy bins that are very far from the
transition point, most of the configurations sampled belong to one same state. On the
contrary, the configurations generated near the transition point could be a mixture of both
states. When an FNN makes inference on test samples, if most of the samples belong to
one state, then the FNN tends to make the same inference, and the standard deviation of
the outputs of each node will be small. Otherwise, if the samples consist of a mixture of
both states, the FNN is expected to make different inferences. The standard deviation of
the outputs of each node will be large. Therefore, if the standard deviation of the FNN

47

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

-4.9 -4.8 -4.7 -4.6 -4.5 -4.4 -4.3 -4.2
-25

-20

-15

-10

-5

0

5
Mackay anti-Mackay globule

s
td

(ν
)

γ

e=E/Nε

Figure 3.7: Standard deviation of neural network outputs ν (square for globule, open
diamonds for anti-Mackay, and filled diamonds for Mackay) from the test samples, after
the network is trained to recognizing these states in regimes where they are stable. In the
background, the reduced specific heat-like γ (circles, to the right scale) was independently
produced from the Monte Carlo simulations. Error bars are smaller than the symbol size.

outputs calculated from different energies or temperatures are plotted together, the curve
we obtain should peak at the transition point.

In this section, we chose to study the data set that contains globule, anti-Mackay and
Mackay configurations. It is well understood that the globule to anti-Mackay transition is
a first order transition and the anti-Mackay to Mackay transition is a second order tran-
sition [146], which makes it a good example data set to explore if analyzing the standard
deviation of FNN outputs can identify the structures or identify the order of the tran-
sition. We use the same data set and FNN architecture as in Sec. 3.5. Similarly, the
network was trained with configurations sampled from the FENE model in energy ranges
e = [−4.3,−4.16], [−4.7,−4.5], and [−4.9,−4.8] which contains globule, anti-Mackay and
Mackay structures, respectively. However, after the FNN is adequately trained, the stan-
dard deviation, instead of the mean, of the test outputs at every energy bins are calculated.

48

The results for globule, anti-Mackay, and Mackay nodes are represented in Fig. 3.7 by filled
squares, open diamonds, and filled diamonds. In this method, the peaks of the interpolated
ν-curve determine the transition points. By comparing Fig. 3.4 and Fig. 3.7, we find the
transition points given by standard deviation of ν agree well with the transition points
given by the 50% rule and specific-heat-like γ curve.

Furthermore, we visualized the distribution of the FNN outputs, given a set of test
samples near transition points. Fig. 3.8 and Fig. 3.9 show the distributions of FNN out-
puts near the globule-to-anti-Mackay transition and the anti-Mackay-to-Mackay transition
respectively. We expect the distributions of these FNN outputs behave differently at these
transition points so that we can identify the order of these transitions. However, the dis-
tributions in Fig. 3.8 and Fig. 3.9 look the same to the author, which means we may need
to consulting other methods to determine the order of a phase transition. At the moment,
we haven’t found a way to determine the order of a transition.

3.8 Summary

In this chapter, we described the training of FNN to recognize diversely and subtly dif-
ferent polymer states produced from Monte Carlo simulations. The example used here is
a classical molecular system displaying gas-, liquid-, and crystal-like structures at various
energies.

We demonstrated that the neural network can classify all the structures observed,
such as coil, globule, anti-Mackay and Mackay, and identify all the transitions observed.
The direct use of molecular coordinates as input into the neural network underlies the
robustness and simplicity of our approach, and suggests that other simulation tools, such
as molecular dynamics, could be used to produce configuration data for supervised learning
as well. The outcome of this work provides a compelling reason to incorporate machine
learning techniques into molecular simulations more generally, as a powerful hybridized
computational tool for the future study of other polymeric systems.

49

0.0 0.2 0.4 0.6 0.8 1.0
ν1

0

50

100

150

200

250

fre
qu

en
cy

0.0 0.2 0.4 0.6 0.8 1.0
ν2

0

50

100

150

200

250

fre
qu

en
cy

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035
ν3

0

200

400

600

800

1000

fre
qu

en
cy

Figure 3.8: Histogram of the FNN outputs calculated from the samples generated near
globule-to-anti-Mackay transition. ν1, ν2 and ν3 represent the nodes designed to identify
globule, anti-Mackay and Mackay respectively.

50

0.00 0.02 0.04 0.06 0.08 0.10 0.12
ν1

0

100

200

300

400

500

fre
qu

en
cy

0.0 0.2 0.4 0.6 0.8 1.0
ν2

0

20

40

60

80

100

120

fre
qu

en
cy

0.0 0.2 0.4 0.6 0.8 1.0
ν3

0

20

40

60

80

100

120

fre
qu

en
cy

Figure 3.9: Histogram of the FNN outputs calculated from the samples generated near
anti-Mackay-to-Mackay transition. ν1, ν2 and ν3 represents the nodes designed to identify
globule, anti-Mackay and Mackay respectively.

51

Chapter 4

Identifying polymer states by
unsupervised learning

4.1 Introduction

Taking advantage of the formidable capacity of machine learning methods in terms of clas-
sification, dimensionality reduction and cluster analysis, many compelling studies have
been devoted to classify the phase of matter and identify phase transition point [15,
19, 26, 22, 70, 101, 143, 129, 124, 182, 196, 195, 172, 23, 175, 184, 136, 194]. Basi-
cally, based on if the training data have labels or not, these applications can be cate-
gorized into two types, i.e. supervised learning and unsupervised learning. The studies
[101, 195, 143, 22, 129, 194, 15, 124, 182, 19, 196] using the former one indicate that the
machine learning models are trained by data associated with the correct labels before pre-
diction. Whereas, in Ref. [23, 26, 70, 136, 172, 175, 184], using the unsupervised learning
techniques, data without labels are divided into several groups through cluster analysis
and simultaneously features standing for a low-dimensional representation of data are ex-
tracted. The application of unsupervised learning on studying physics starts from Wang,
who utilizes PCA to classify states sampled from the Ising model [175]. He shows that
PCA can reduce the dimensionality of raw spin configurations from the number of spins
to one. He then finds that the clustering behaviour of low-dimensional representations is
highly determined by the order parameter. Hu et al. [70] have examined the performance
of PCA on classifying the states sample from more complicated spin models. They find
PCA is able to classify the states that do not have clear order parameter, such as the states
sampled from anti-ferromagnetic Ising model on triangular-lattice. They also discover that

52

PCA have limited capability. For identifying states in more complicated spin models, e.g.
XY model, one need to use advanced methods [184]. Compared with supervised learning,
unsupervised learning methods have the advantage of avoiding the time-consuming data
labels and playing the role of a preprocessor to data in supervised learning. Recently, a
hybrid approach combining both techniques is developed as well for identifying the phase
transition[170, 108]. Most of these applications mainly concentrate on the spin models in
condensed matter physics, such as Ising model [19, 129, 175, 184, 70, 170, 108], Hubbard
model [22, 15, 23, 26], XY model [172, 184, 70], and Anderson model [124, 26]. Neverthe-
less, applications in the field of soft matter largely lagged behind conventional condensed
matter counterparts.

In this chapter, we explore the application of the unsupervised learning methods in
polymer physics, especially on the structural transition of polymer configurations. The
unsupervised learning is commonly adopted in the dimension reduction to search for the
lower-dimensional feature space (i.e. underlying manifold) in which the raw data can be
embedded suitably. The most attractive advantage is its ability in the clustering analysis
without correct data labels in advance. Herein, we implement the unsupervised learn-
ing scheme to extract the characteristic quantities that can distinguish between different
structures from polymer configurations in terms of few types of dimensionality reduction
techniques, and moreover detect the location of phase transition. Our study exhibits the
great power of unsupervised learning scheme on the aspects of the recognition of structural
transitions and the inference of underlying feature for the polymeric systems, in face of the
challenge of big data with complex structures.

4.2 Main procedure

In this chapter, the polymer model we studied is FENE, which has exactly interactions
and parameters as the FENE model documented in chapter 3. The Monte Carlo methods
we used to generate samples are the same as the one documented in appendix A.3.2. The
reason of these choices is to make sure the configurations studied in this chapter contain
the same states and transition points as the configurations studied in chapter 3, so that
we can compare results produced form the unsupervised learning methods in this chapter
and supervised learning methods in chapter 3.

Once the samples are generated, they are organized into a data matrix, X, in a way
described in section 2.3. When PCA is applied to X, one can follow Eq. (2.6) and Eq. (2.7)
to obtain all the eigenvectors and normalized eigenvalues of the correlation matrix. Then,

53

depending on the number of dominant principal components, following Eq. (2.8), X can
be converted into its low dimensional representation, Z.

4.3 Coil-to-globule transition

As we know, for the FENE model, the coil-to-globule transition takes place in the high
energy regime, corresponding to a pronounced peak of the specific-heat-like γ [146]. We
prepare 400 configurations by the Wang-Landau method at each energy bin equally spanned
in the energy range e = E/Nε ∈ [−3, 1], within which the system undergoes a coil-to-
globule transition [182].

In the following section, we will use PCA to distinguish coil and globule states. As a
linear dimension reduction technique, PCA [128, 78] is an unsupervised learning method
widely utilized to extract the feature of raw data. The raw data, via PCA, are embedded
in a lower-dimensional space in which the largest variations of data are captured. Equiv-
alently, one tries to explore the lower-dimensional representation of the original data, in
order to minimize the average reconstruction error.

Fig. 4.1 shows the first 20 normalized eigenvalues. As shown in Fig. 4.1, there is a
jump between the third and the fourth eigenvalue. Apparently, there are three predominant
components in the leading eigenvalues, which indicates that polymer configurations can be
reduced and projected to a three dimensional space spanned by W1, W2 and W3. In the
coordinate system formed by the corresponding three orthogonal directions, as shown in
Fig. 4.2, all configurations are roughly divided into two parts through the visualization of
two-dimensional projections, in accordance to the variation of energy e, we observed the
configurations that have lower energy tends to cluster inside while the configurations that
have higher energy tends to spread around center.

It reveals that the configurations in the central regime (low energy) have a much smaller
radius of gyration (Rg) than the ones in the outside regime (large energy), this hints that
PCA may have discovered the importance of Rg from different configurations.To make
a more clear visualization of the relationship between Rg and the 3D representation of
configurational data, we colour codes the points in the three dimensional space spanned by
W1,W2 and W3 by its corresponding Rg instead of e, as shown in Fig. 4.3. It is clear that the
distinguishable feature for coil and globule states discovered by PCA is Rg, which directly
reflects the volume occupied by polymers. Motivated by the projections approximately
exhibiting the distribution with a circular shape as shown in Fig. 4.3, we intuitively
propose to attain one reduced dimensionality parameter by the non-linear transformation

54

0.00

0.05

0.10

0.15

0.20

0.25

0 2 4 6 8 10 12 14 16 18 20

λ~

i

Figure 4.1: The top eigenvalues λ̃i obtained from PCA for coil and globule states in the
energy range e ∈ [−3, 1].

of first few coordinates of data in the low dimensional representation according to
∑K

l=1 Z
2
l .

To analyze the relationship between
∑K

l=1 Z
2
l and Rg, we proposed a correlation analysis by

computing the Pearson correlation coefficient ρ(
∑K

i=1 Z
2
l , R

2
g/σ

2) which measures the linear
dependence between two variables. One finds that the reduced dimensionality variable∑K

l=1 Z
2
l shows a strong linear dependence on the (Rg/σ)2, as illustrated in Fig. 4.4. This

dependency further justified that PCA learned and distinguished coil and globule states
by discovering the Rg of each configuration.

55

Z1 Z2

Z2 Z3 Z3

Z1

Figure 4.2: A visualization of coil and globule configurational data, colored according to e,
in the energy range e ∈ [−3, 1]. The data is firstly projected to the space spanned by top
three eigenvectors W1, W2, W3 obtained from PCA, in order to obtain a 3D representation
of data. Z1, Z2, Z3 are the coordinates of the data in this representation. The colored dots
in these plots, from left to right, are the two-dimensional projections of the 3D data to the
W1OW2, W1OW3, W2OW3 plane respectively.

Z1 Z2

Z2 Z3 Z3

Z1

Figure 4.3: A visualization of coil and globule configurational data, colored according to
Rg/σ in the same range of energy as Fig. 4.2. The colored dots in these plots, from left
to right, are the two-dimensional projections of the same 3D data as in Fig. 4.2 to the
W1OW2, W1OW3, W2OW3 plane respectively.

56

ΣK l=1
Z2 l ΣK l=1

Z2 l

ρ
(Σ

K l=1
Z2 l,R

g2 /σ2)
Figure 4.4: The behaviours of the nonlinear transformation of the top K eigenvectors are
described according to

∑K
i=1 Z

2
l . (a) The mapping between

∑K
i=1 Z

2
l (K = 3) and R2

g/σ
2.

The insert plot is for K = 9. (b) The Pearson correlation coefficient ρ(
∑K

i=1 Z
2
l , R

2
g/σ

2) as
a function of K. Rg is the radius of gyration for polymers.

4.4 Globule-to-anti-Mackay-to-Mackay transition

With further decreasing the energy, using FENE model, as we know, one can obtain three
states globule (G), anti-Mackay (aM) and Mackay (M) in the low-energy region param-
eterized by the e, through adopting Monte Carlo simulation based on the Wang-Landau
algorithm [148, 146]. Following the same approach, we perform PCA on a stack of con-
figurations sampled from energy regime e = [−5,−4] by the Wang-Landau method, which
consist of globule, anti-Mackay, and Mackay structure. Similarly, this energy range is sliced
into 30 energy bins, 400 configurations are drawn for each energy bin. After PCA is applied,
Fig. 4.5 shows the normalized eigenvalues. Compared with Fig. 4.1 where the existence of
a jump easily reveals the dominant dimension as three, the eigenvalues shown in Fig. 4.5
decay smoothly. From the inset, we can see that the first eigenvalue is not significantly
large than the 20th eigenvalue, which means in order to find low dimensional representa-
tion for the mixed globule, anti-Mackay and Mackay samples, we need a space spanned by
at least 20 eigenvectors. Equivalently, PCA can only reduce the original configurations to
a space spanned by at least 20 Wis. Unfortunately, it is unrealistic to find a proper way
to visualize this 20 dimensional data to perform cluster analysis, which demonstrates that
the subtle structural difference among the three states is hard to be distinguished by a

57

0.00

0.02

0.04

0.06

0.08

0 50 100 150 200 250 300 350

λ~

i

0.00

0.02

0.04

0.06

0.08

0 10 20 30 40 50

λ~

i

Figure 4.5: All normalized eigenvalues λl obtained from principal component analysis
(PCA) for globule, anti-Mackay, Mackay states in the energy range e ∈ [−5,−4]. The inset
shows the first 50 normalized eigenvalues.

58

simple visualization through PCA, especially for aM and M states differ each other slightly
in the stacking manner of particles at the outer layer. As we saw from the last section,
PCA distinguishes different states based on Rg. Because of the collapsed states are similar
in Rg, that is the reason why PCA is unable of distinguishing these collapsed states.

To distinguish collapsed states by unsupervised learning, we need to turn to more
powerful methods. Xu et al. [189] purpose to use diffusion map, which is a nonlinear
dimensionality reduction technique firstly introduced by Coifman and coworkers [24], as
the dimensionality reduction method. They have shown that the diffusion map is able
to reduce the dimensionality of samples contains globule, anti-Mackay and Mackay to 3.
The correlation analyses find that the diffusion map discovers Qcore

6 as the parameter to
distinguish the difference between globule and anti-Mackay states and Q6 as the parameter
to distinguish of the difference between anti-Mackay and Mackay states.

4.5 Identifying transition points

Although unsupervised learning methods are able to distinguish multiple polymer states,
the identification of transition temperature or energy between structures can only be
roughly estimated by analyzing the low dimensional representations, such as looking for
“gaps” between clusters [175], or resorting to some particular clustering algorithms like K-
means [73], k-nearest neighbors [155, 29], support vector machines [14, 25]. These methods
usually can not make accurate predictions about the transition points.

Recently, van Nieuwenburg et al. developed an elegant hybrid approach that combines
the unsupervised learning techniques and neural network to explore the phase transition in
several condensed-matter systems[170]. Through training the neural network with states
labelled based on the hypothetical transition point, which might be deliberately designated
incorrectly, one can obtain the corresponding accuracy of the prediction. When the hypo-
thetical transition equals the actual transition point, the states are correctly labelled, and
the correct label will lead to higher accuracy. Eventually, the determination of a transition
point is equivalent to look for the turning point at which the data are correctly labelled.
For convenience, herein, we call this approach the W-shape scheme, on account of the
W-like profile of predictive performance. One fascinating trait of the W-shape scheme is
that it is essentially an unsupervised learning approach, owing to the training and test
data that do not need a prior correct label.

In the following part, we will demonstrate the utilization of the W-shape scheme in
our polymeric system. Assuming that there are two states A, B to be classified. The

59

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0
0.7

0.8

0.9

1.0

-4.7 -4.6 -4.5 -4.4 -4.3 -4.2 -4.1
0.7

0.8

0.9

1.0

-4.9 -4.8 -4.7 -4.6
0.7

0.8

0.9

1.0 Mackay anti-Mackay

anti-Mackay Globule

Coil

P(e)
 l=10
 l=20
 l=30
 l=40(a)

Globule

P(e)

 l=40
 l=60
 l=80(b)

P(e)

e=E/N

 l=40
 l=60
 l=80(c)

Figure 4.6: The structural transition learned by the W-shape approach in terms of input
configurations pre-processed by PCA with truncation of dimensionality l as labelled in
plots. The critical energy ec positioned by the dashed lines for (a) coil-to-globule (b)
globule-to-anti-Mackay and (c) anti-Mackay-to-Mackay transitions reads -1.61, -4.43 and
-4.74, respectively. 60

configurations are sampled by Wang-Landau methods in the range of energy of interests
[e1, e2], within which a phase transition from A state to B state takes place at ec. For
the energy bins that are very far from the transition point, most of the configurations
sampled belong to the same state. On the contrary, the configurations generated near
the transition point could be a mixture of both A and B states. In order to locate the
transition point ec for a transition, in the W-shape scheme [170], one needs to arbitrarily
specify an e. The FNN is trained with the data composed of two parts: one part is the
configurations sampled within the range [e1, e), and they are labelled as A; another part
is the configurations sampled within the range (e, e2], and they are labelled as B. The
configurations with energy e are not used in training. Then, one can locate ec according
to the testing performance of the FNN. As one limiting case, i.e. e = e1, corresponding
to the situation that all data are labelled as B, the network will predict all data 100% the
same with the label, so does the case e = e2. For the desired case e ≈ ec, most of the
data are labelled correctly, the network can obtain almost perfect prediction as well, due
to the correct labelling. However, the performance of the network for other e positively
depends on the percentage of data that are labelled correctly. That is, when e is proposed
other than e1, ec, e2, part of the states are mislabelled. The performance of the FNN will
decrease. As a result, the performance of the FNN shows a W-shape profile.

Similar to previous works [170, 182], the FNN used in this study is composed of three
layers, i.e. one input layer, one hidden layer and one output layer. Without loss of
generality, the sigmoid function is adopted to activate the weighted input. Two nodes in
the output layer are used to identify polymer configurations for a two-phase transition.
The cross entropy is adopted as the cost function. As to the input layer, the number of
nodes is manifestly determined by the dimensionality of input polymer configurations. For
the raw polymer configurations, each of which consists of 102 monomers, one has to use 306
nodes in the input layer, due to three degrees of freedom for each monomer. Nevertheless,
for configurations preprocessed by the PCA, the number of nodes required by the input
layer is equal to l, the dimensionality of the truncated matrix. It is worth to pointing out
that the representation of the input data plays an extremely crucial role in the machine
learning. The more suitable data representation is adopted, the more effective a neural
network can map the input data to the output data [170]. Conceptually, the number of
hidden nodes strongly depends on the structural complexity of polymer configurations.
In the present study, we find that 40 nodes in the hidden layer are enough to extract
meaningful structural information for all four configurations.

The prediction based on the W-shape scheme to the transition points for coil-to-globule,
globule-to-anti-Mackay, anti-Mackay-to-Mackay transitions, in terms of data representation
in form of raw configurations and the ones pre-processed by PCA, is list in Table 4.1. Inter-

61

Table 4.1: A comparison of the critical energy ec of structural transitions for coil (C),
globule (G), anti-Mackay (aM) and Mackay (M) states are determined by our work and
Ref. [182]. In the present work, we predict ec by taking two types of data representation as
input data, i.e. raw configurations and configurations pre-processed by PCA, respectively.

eC−G
c eG−aM

c eaM−M
c

Raw configurations -1.61 ± 0.05 -4.43 ± 0.03 -4.74 ± 0.03
PCA configurations -1.61 ± 0.05 -4.43 ± 0.03 -4.74 ± 0.03
Work in Ref. [182] -1.75 ± 0.05 -4.40 ± 0.03 -4.74 ± 0.03

estingly, these two different types of data representation result in the exact same prediction
of the critical transition energy. It indicates that structural features of polymer configu-
rations are well preserved by means of PCA. Further, as shown in Fig. 4.6, one observes
that the effective dimensionality l in PCA, in order to precisely locate the critical transi-
tion, can approximately be truncated according to the magnitude of eigenvalues associated
with the principal components. It implies that the W-shape performance benefits from
the configurations conducted by PCA in advance, particularly to the polymer system with
an extremely great number of monomers. In addition, as listed in Table 4.1, our results
satisfactorily agree with the ones previously predicted by the supervised learning [182]. A
small discrepancy exhibited on the prediction of the coil-to-globule transition is mainly
ascribed to the fluctuation in the data set [182], which may suppress the sharp signal to
detect the phase transition.

In addition, Xu [189] also tried to use the configurations produced by the diffusion
map as the input data for the W-shape scheme. Nevertheless, the W-shape scheme fails to
locate the transition points accurately. A plausible explanation would be that the delicate
characteristics of polymer configurations have to be abandoned in diffusion map, for the
sake of the extraction of salient features in the diffusion map method strongly rely on the
definition of similarity between different states.

4.6 Summary

In this work, we utilize the unsupervised learning techniques to explore the structural
transition of polymer configurations. Here, a single-chain homopolymer is studied. With
the decrease of the energy, our system undergoes coil-to-globule, globule-to-anti-Mackay
and anti-Mackay-to-Mackay transitions in sequence. A dimensionality reduction technique,
PCA, is adopted to distinguish these four states. PCA distinguishes the coil state from the

62

other three states, mainly ascribe to the robust extraction of the feature Rg. However, for
the collapsed states with the similar size, PCA alone is not powerful enough to distinguish
their difference.

We also studied a unified approach that combines the advantage of both unsupervised
learning methods and neural networks. This work demonstrates that this approach has a
remarkable capability of identifying the structures and structural transitions of polymeric
systems.

This approach adopted here provides a generic scheme to explore the configuration
transition by extracting features directly from polymer configurations themselves, without
the need for any prior knowledge of order parameters, the configuration labelling in advance
and complicated calculations to the thermodynamic quantities. It is desirable to extend our
present scheme to the other polymeric systems undergoing complex structural transitions
in the near future, such as self assembly of block copolymers, polyelectrolytes and polymer
liquid crystals.

63

Chapter 5

Machine learning solver for the
modified diffusion equation of AB
diblock copolymer

5.1 Introduction

Previous chapters reveal that incorporation of machine-learning techniques [75, 137, 13,
120, 55] into computational physics to tackle physical problems have dramatically changed
the classical approaches in physics. Supervised and unsupervised learning methods, with
their unsurpassed capability for practical applications such as image and voice recognition,
have found themselves a new playground in physics. Recent work has used machine-
learning techniques to classify, manipulate, or even create the big data produced for the
structural and dynamic information of various modelled systems [19, 195, 170, 182, 175,
71, 107, 166, 18, 157, 22, 23, 31, 152].

In this chapter, we explore the way of studying diblock copolymer structures by neural
networks under the SCFT scheme. Note that our computational concept is very different
from the traditional algorithms. We start from building a machine learning based PDE
solver. For a traditional PDE solver, the functions to be determined are usually represented
in some numerical form, by direct discretization or series-expansion on spectral bases; a
traditional PDE solver then adjusts these numerical values to satisfy the PDEs. Here,
using an FNN, we adopt a different philosophy. The functions to be solved are analytically
expressed as known functions of their variables (through the connectors between the neu-
rons) which contain undetermined parameters (such as weights and biases). During the

64

calculation (i.e., training session), the cost functions are minimized with respect to these
parameters. The final result is a universal representation of the calculated functions, but
with specific parameters determined through optimization. In a sense, an FNN does not
learn from the existing solutions of PDEs; they do, on the other hand, learn how to adjust
themselves to satisfy the formal expression of PDEs. When searching for equilibrium struc-
tures of diblock copolymer melt, the machine learning PDE solver generates the solution
of the modified diffusion equation. To solve the self-consistent equations, We need to use
another FNN to represent the external fields. The training process adjusts the parameters
of two FNNs simultaneously. Similarly, the minimization of the cost function with respect
to the parameters of two FNNs ensures the functions generated by both FNNs satisfy self-
consistent equations. Then, we can assess the density based on the propagators generated
from machine learning based PDE solver, and thereby determine the structure.

5.2 Main procedure

Assume that we are dealing with well-specified, coupled differential equations for functions
q1(r), q2(r), ... where the vector r generally represents multi-dimensional variables and
could be a combination of, for example, space and time variables. Generally, we write
PDEs as

D̂1[q1(r), q2(r)...] = 0, D̂2[q1(r), q2(r)...] = 0, ... (5.1)

The differential operators, D̂1 and D̂2, act on the functions. The partial differential equa-
tions are augmented by typical “boundary conditions” (or initial conditions if time variables
are involved). For example, at boundaries “1”, “2”, etc.,

B̂1[q1(r), q2(r)...] = 0, B̂2[q1(r), q2(r)...] = 0, ... (5.2)

In addition, there could be constraints that govern these quantities, which are represented
by

Ĉ1[q1(r), q2(r)...] = 0, Ĉ2[q1(r), q2(r)...] = 0, ... (5.3)

These conditions could involve (usually at a lower order) further derivatives. For abbrevi-
ation, the left hand sides are denoted as D̂1(r), D̂2(r), B̂1(r), B̂2(r), Ĉ1(r), Ĉ2(r), etc.

In Fig. 5.1 we schematically illustrate example FNNs to be used in this chapter. At the
initial stage, the parameters used in FNN are specified randomly or according to previous
experience, hence, in general, the functions q1(r), q2(r), ..., calculated from the FNNs are

65

x

y

z

t

q1

q2

Input

layer

Hidden

layer

Output

layer

Input

layer

Hidden

layer

Output

layer

x

y

z

Mutual

coupling

xD

t

q

Input

layer
Hidden

layer

Output

layer

x1

x2

(a) (b)

WA

WB

Figure 5.1: Two examples of physical problems solved here: (a) a simple diffusion equation
where q(x; t) is the density of the diffusing material in an external field at location x
and time t and (b) complicated, coupled modified diffusion equations where q1(x, y, z; t)
and q2(x, y, z; t) are the complementary reduced Green’s functions for a real AB-diblock
copolymer self-assembly problem, which couple to the self-consistent fields WA(x, y, z) and
WB(x, y, z). In both examples, the functions to be found are represented by feed-forward
neutral networks. The circles represent neuron nodes, where the input layer consists of
nodes that have variables as input and the output layer are simply the functions to be
determined. The connections between the input and hidden layers are assumed to be
sigmoid functions and the connections between the hidden and output layers are assumed
to be linear with adjustable coefficients.

far from the desirable solutions. We then design a cost function as

J =
α1

2

〈∣∣∣D̂1(r)
∣∣∣
2
〉

+
α2

2

〈∣∣∣D̂2(r)
∣∣∣
2
〉

+ ...

+
β1

2

〈∣∣∣B̂1(r)
∣∣∣
2
〉

+
β2

2

〈∣∣∣B̂2(r)
∣∣∣
2
〉

+ ...

+
γ1

2

〈∣∣∣Ĉ1(r)
∣∣∣
2
〉

+
γ2

2

〈∣∣∣Ĉ2(r)
∣∣∣
2
〉

+ ...

(5.4)

where 〈· · · 〉 is the algebraic average of the quantity within, sampled at a set of randomly
selected points in the domain of r. Upon the minimization of J as a function of FNN
parameters to reach J = 0, the search finds an approximation of the represented functions
q1, q2, ... The coefficients, α1, α2, β1, β2, γ3, γ4, ... are penalty coefficients that can be
fixed or adjusted during the minimization process. Ideally, if a minimal J = 0 is found, all
equations in (5.1), (5.2), and (5.3) are exactly satisfied.

In a typical machine learning application, such as pattern recognition, the first input

66

layer of an FNN is used for reading greyscale pixels of a known picture (one sample of the
training data set); through FNN, the output data gives a calculated guess of the properties
of the picture. During the training session, the cost function is used to minimize the
difference between the guesses produced by FNN on the training data set and the known
values of the desired properties. One iteration of minimization is called an epoch and
(usually) a different training data set is used for the next epoch. Once the cost function
converges to a value smaller than a tolerance level, the network is considered trained
by supervision [13]. The progress in formulating back-propagation for the minimization
process is key to computational efficiency [141].

A similar procedure is adopted here to solve differential equations. This procedure is
essentially based on the stochastic gradient descent method. It consists of multiple epochs.
At the beginning of an epoch, a set of coordinates r (with values randomly selected from
its domain of interest), instead of the greyscale pixel values, are used in the input layer as
a single “sample”. Through FNN, the output data produces a guess of the functions to
be studied. Within an epoch, many such randomly selected samples are used to produce
guesses of the functions at different points in the domain. During the training session, the
cost function is used to minimize the mean-square averages of the left-hand sides of Eqs.
(5.1), (5.2) and (5.3), which are calculated according to the outputting, machine-guessed
functions. One epoch of minimization is then performed. Once the cost function converges
to zero after multiple epochs, the PDEs are considered solved, or, the FNN is trained
to represent the functions that follow the PDEs, unsupervised. No numerical solutions
obtained from any other methods are used in this procedure.

Note, The formulae involved in the construction and training of the solver are doc-
umented in section 2.4. In addition, appendix B provides a more concrete pedagogical
guide.

5.3 Machine learning PDE solver

5.3.1 Diffusion equation

To demonstrate the machine learning PDE solver is able to find the solution, we firstly
consider a simple, one-dimensional linear diffusion equation for a single density function of
the diffusing material as a function of time, q(x; t), in an external field W (x). In reduced
units, the differential equation takes the form

D̂q(x; t) =

[
∂

∂t
− 1

6

∂2

∂x2
+W (x)

]
q(x; t) = 0. (5.5)

67

To demonstrate the procedure, we assume a harmonic-potential well, W (x) = x2/2, for
which an exact solution exists and can be used for benchmarking. The “boundary condi-
tion” (actually an initial condition here) is simply assumed to be

B̂1q(x; t) = q(x; 0)− 1 = 0. (5.6)

This particular initial condition represents a uniformly dispersed material in space at t = 0.
The physics to be described is to switch the external field W (x) on at t = 0, and to monitor
the evolution of how the material diffuses to the central region in x [see illustration in Fig.
5.2(a)]. No further boundary conditions need to be specified for the problem.

An FNN with a single hidden layer containing Nh = 102 nodes is used. The machine-
learning procedure consists of consecutive epochs. A single epoch starts from the current
value of FNN parameters. Assume that we are interested in the variable domain x = [−5, 5]
and t = [0, 2]. S = 500 samples, i.e, 500 pairs of (x, t), are randomly selected. Among
these coordinate pairs, 20% samples are selected from the “boundary” t = 0. The left-
hand sides of Eqs. (5.5) and (5.6) are evaluated for these samples at their given values.
One interesting technical note is that the derivatives needed for the evaluations all have
analytic forms, which means there is no need, for example, to approximate ∂q/∂t by a
finite difference, or to approximate ∂2q/∂x2 at the boundaries of x domain by boundary
conditions. The deepest-descent direction in the FNN parameter space is determined based
on the above calculation. The back-propagation algorithm [141] is utilized to adjust FNN
parameters, along that direction. During this step, we set α = 1 and β1 = 50. We then
start a new epoch based on the adjusted FNN parameters. For the current example, the
tolerance level for the acceptable J value is set at τ = 10−3.

The machine learning solution of this toy problem is displayed in Fig. 5.2 in two views.
The physical process is described by Fig. 5.2(a). At t = 0, the external field is switched
on and the one-dimensional material begins to diffuse to the central region as t increases.
The symbols in plot (b) are used to illustrate the function, selectively at a few values of
x for given t. As a benchmark for comparison, the solid black curves represent the exact
solution to the problem. The above example contains natural boundary conditions at
x = ±∞ where q(x; t) → 0. A traditional finite-difference method would require to cover
the entire x domain in order to address the ∂2q/∂x2 term properly. Here we have selected
a x domain [−5, 5] to solve the PDE where the ∂2q/∂x2 term is analytically represented
by FNN at the x = ±5. No special attention is paid to these boundaries.

In contrast, to solve the PDE in Eqs (5.5) and (5.6) in, for example, a periodic potential
with period L, we need to specify an additional periodic boundary condition,

B̂2q(x; t) = q(0; t)− q(L; t) = 0. (5.7)

68

(b)

(d)(c)

(a)

W
(x
)

W
(x
)

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

q
(x
;t
)/
A
(t
)

x

0.0

1.0

2.0

3.0

4.0

5.0

-5.0 -3.0 -1.0 1.0 3.0 5.0
0

2

4

6

8

10

12

14

q
(x
;t
)/
A
(t
)

x

t<0

W=0

t=0.1

t=0.2

t=0.5

t=1.0

t=2.0

t=0.1

t=0.2

t=0.5

t=1.0

t=2.0

t<0

W=0

Figure 5.2: (a) Density plots of a diffusing material in a harmonic-potential well over
selective times, (b) comparison between the analytical solution (solid lines) and the FNN
solution (circle) at a few values of x for given t = 0.0, 0.1, 0.2, 0.5, 1.0, and 2.0, (c) density
plots of a diffusing material in periodic-potential well over selective times, and (d) com-
parison between the Crank-Nicolson numerical solution (solid lines) and the FNN solution
(circle) at a few values of x for given t = 0.0, 0.1, 0.2, 0.5, 1.0, 2.0. A(t) is a normalization
constant for q evaluated at each time step. The blue lines in the background, to the right
scaled, are the harmonic-potential well [(a) and (b)], and the period potential well [(c) and
(d)], applied on the diffusing material.

69

Our next toy example is letting W (x) = sin(πx) and we focus on the domain x = [0, 2].
The main computational structure remains exactly the same and the only addition is the
B̂2 term to the cost function with a coefficient β2 = 50. We selected S = 600 samples
for each epoch and placed 1/6 samples to deal with B̂1 and another 1/6 samples B̂2. The
solution is displayed in Figs. 5.2(c) and (d) where the symbols in (d) represent selective
values of x to generate the data. The black curves in (d) are numerical solutions based on
a traditional, Crank-Nicolson method [30] to solve the above PDE. A good agreement is
seen between the solutions from the two methods.

It is worthwhile to mention that the final solutions found by the machine learning PDE
solver will agree well with each other when training starts from different initial weights and
bias. This robustness to initialization indicates we can regress the FNN used by machine
learning PDE solver on an appropriate guess of the solution, so that a set of weights and
bias is obtained, and then, we can use this set of weights and bias as the initial parameters
of the machine learning PDE solver. This trick almost certainly will shorten the training
time.

5.3.2 Performance

Generally speaking, the time it takes the machine learning PDE solver to find the solution is
highly determined by the number of nodes, Nh, in the hidden layer and the error tolerance.
To achieve a better performance, i.e. obtain a certain level of accuracy using less training
time, we need to explore the optimal choice of Nh and set a reasonable error tolerance.

Optimal choice of the number of hidden neurons

The performance of the solver should depend both on the number of hidden nodes (the
width of an FNN) and the number of hidden layers (the depth of an FNN). While we
assumed one hidden layer for simplicity, Nh can affect the rate of convergence, which is
related to another parameter: the tolerance level τ of the approximation by the solver. The
number of minimization epochs to reach convergence depends on Nh and a pre-specified τ .

To demonstrate this point, in Fig. 5.3 we solved a D = 1 diffusion equation by setting
three different values for τ and observe the number of epochs that the solver takes to
converge. When Nh is too small, FNN is less capable, which means the solver takes a longer
time to search for the solution. When Nh is too high, there are too many FNN parameters
to be optimized and some may never be needed; this slows down the training. An optimal
number of Nh is seen in the plot. Of course, for different mathematical problems, the

70

6

8

10

12

14

16

18

0 200 400 600 800 1000

E
p
o
c
h
(1

0
3
)

Nh

Figure 5.3: The number of epochs that the universal solver takes to reach a pre-specified
error tolerance level, from bottom to top, τ = 10−2, 10−3, and 10−4 respectively, as a
function of the number of hidden nodes, Nh. Each data points is calculated based on
10 independent run with random parameter initialization. The one-dimensional (D = 1)
diffusion equation is studied here.

71

optimal Nh may vary and usually there is a lack of a priori knowledge of the optimal Nh

for a new problem.

Optimal choice of error tolerance

In all cases, our the requirement of error tolerance is set as 10−3, and it is actually quite
good. In Fig. 5.2(b) we show solution of a 1+1 dimensional solution with harmonic
potential (blue curve, Fig. 5.2(b)). The circles are the reproduced FNN solutions against
the exact solution represented by the solid curve. One can show that

q(x; t) =
∞∑

n=0

cnqn(x)e−(1/2+n)t/
√

3 (5.8)

where qn(x), (n = 0, 1, 2...) is a set of orthonormal functions,

qn(x) =

(
31/4

2nn!
√
π

)1/2

Hn(31/4x)e−
√

3x2/2 (5.9)

with Hn the nth-order physicist’s Hermit polynomial [1]. The coefficient cn is given by cn =∫∞
−∞ dxqn(x). Solid curves in Fig. 5.2 are produced by letting t = 0.0, 0.1, 0.2, 0.5, 1.0, 2.0

in Eq. (5.8). Visually, there is no difference in requiring τ = 10−3 or 10−5.

5.3.3 Breaking the curse of dimensionality

One of the greatest challenges in computational complexity theory is to break the curse
of dimensionality for computationally solving a problem that contains multiple variables
[11]. Taking the diffusion equation for illustration, in D spatial dimensions we write

D̂q(x; t) =

[
∂

∂t
− 1

6

D∑

n=1

∂2

∂x2
n

+W (x)

]
q(x; t) = 0. (5.10)

where x = (x1, x2, . . . , xD) is a D-dimensional vector. Any traditional numerical method
to solve this requires the computation to determine at least ND representative data points.
For example, the finite difference method directly divides the D-dimensional space into
representative nodes, where on average N nodes for each xn are needed. Taking an under-
estimate that a tradition algorithm is linear in ND to achieve a solution of precision τ , in
high-D this amounts to exponential growth in computational time and storage resource

72

(b)(a)

W
(x
)

0.0

1.0

2.0

3.0

4.0

5.0

-5.0 -3.0 -1.0 1.0 3.0 5.0
0

2

4

6

8

10

12

14

q(
x;
t)/
A(
t)

x

0.0

1.0

2.0

3.0

4.0

5.0

-5.0 -3.0 -1.0 1.0 3.0 5.0
0

2

4

6

8

10

12

14

q(
x;
t)/
A(
t)

x
W
(x
)

ε ≈ 10−3
ε ≈ 10−5τ τ

Figure 5.4: Comparison between the analytical solution (solid lines) and the FNN solution
(circle) at a few values of x for given t = 0.0, 0.1, 0.2, 0.5, 1.0, and 2.0, when error tolerant
is set at (a) 10−3 and (b) 10−5, for a D + 1 = 2 problem.

[126]. In another example, the spectral-function approach requires a series-expansion of
the functions in terms of well-defined spectral functions carrying D integer indices, where
on average N coefficients need to be determined for each type of indices. In short, most
real algorithms [132], of course, are more expensive than ND. This problem is known as
the curse of dimensionality [11].

Our universal solver takes the approach of representing functions by FNNs and turns the
differential-equation solving problem into a machine-learning problem. In such a form, the
number of nodes in the hidden layer, Nh, and the maximum epoch loops, M , required in a
learning process to achieve a pre-specified precision τ , directly determine the computational
complexity. To understand the dependence of M on D, as an example, we numerically
solve Eq. (5.10) in a specific potential field W (x) = (1/2)

∑D
n=1 x

2
n, incorporating an

initial condition B̂1q(x; 0) = q(x; 0) − 1 = 0 generalized from (5.6), for selected D up to
102. Other technical parameters include: for every training epoch the selection of S = 500
sample points [each (D + 1)-dimensional] in the D + 1 dimensional space spanned by
(x1, x2, . . . , xD; t), pre-specified error tolerance τ = 10−3 for J , and the placement of 20%
of the sampling points at t = 0 to deal with the initial condition. To collect adequate
statistics, for a given D we conducted 10 separate learning runs, each starting from a
random selection of the FNN parameters. A data point in Fig. 5.5 is an averaged result
from these 10 runs.

73

10
2

10
3

10
4

10
5

10
6

10
7

10
0

10
1

10
2

M

D+1

(a)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

T(s)

D

(b)

10
-5

10
-4

10
-3

10
0

10
1

10
2

T/MNh

D+3

(c)

Figure 5.5: Log-log plots of (a) the maximum epochs (M), and (b) the total computational
time (T) that the universal solver takes to reach the error tolerance level τ = 10−3, as
functions of D, the number of spatial variables in a high-dimensional diffusion equation,
Eq. (5.10); (c) Log-log plot of the ratio T/MNh as a function of D + 3. The error bars,
estimated from 10 independent runs, are smaller than the plotted symbols, except for those
explicitly shown. Up triangle, down triangle, diamonds, squares, and circles represent the
results produced from FNNs that contain Nh = 100, 200, 300, 400, and 500 hidden nodes,
respectively. The solid blue lines indicate the asymptotic power laws on which the data
points collapse. The dashed blue curve illustrates an arbitrarily exponential dependence
of the computational time expected from a traditional solver.

74

To explore the complexity of the problem, we used different numbers of nodes on the
hidden layer, Nh. Except for the low-Nh (= 100) data, a striking feature of Fig. 5.5(a) is
that the maximum epochs for convergence, M , follows a linear behaviour at large D on a
double-logarithmic plot, with a slope ν ≈ 1.9,

M ∝ Dν . (5.11)

Although we are unable to analytically deduce this dependence, the numerical evidence
indicates a rather optimistic scaling property for the required computational loops with a
common exponent ν, asymptotically for large D and Nh.

Based on this relationship, we can estimate the computational resource required to
solve a problem. The FNN structure is described in the section 2.4. The total number
of FNN parameters P = (D + 1) × Nh + Nh + Nh × 1, where the three terms are for the
number of w-parameters between the input and hidden layers, the number of b-parameters
on the hidden layer, and the number of v-parameters between the hidden and output
layers, respectively. An immediate advantage machine learning based PDE solve have
is computational storage. Our solver memorizes P = (D + 3)Nh parameters instead of
approximately ND+1 representative nodes.

Another main concern is the computational time. On each epoch pass, P parameters
need to be updated. The computational time of the back-propagation method [13] linearly
depends on P , hence the total computational time T is asymptotically proportional to

T ∝MP = M(D + 3)Nh. (5.12)

This is a surprisingly pleasant power-law scaling produced by the universal machine-
learning solver, in comparison with the exponential law ND illustrated in plot-(b) an-
ticipated from a traditional approach.

5.4 Self-assembly of diblock copolymers

Having built the machine learning PDE solver, our next goal is to predict the crystal-
lographic structures that self-assemble mesoscopically from placing many identical linear
polymer chains in a finite volume [8], through using our algorithm to solve a rather com-
plicated integrodifferential equation set for a classical computational problem in polymer
physics. The SCFT is a useful tool for structural prediction of a densely packed system
known as diblock copolymer melt. The system of interests contains n same diblock copoly-
mer chains, occupying a cubic that has volume V . Each copolymer, as shown in Fig.

75

(a)

(b)

A
B

(c) (d)

Figure 5.6: Solving the self-consistent field theory (SCFT) for the microphase structures of
diblock copolymers. Plot (a) illustrates a single polymer chain where a covalent bond links
A and B blocks together. Plot (b) shows the cross section of an A-rich spherical domain
in a B-rich background. Plots (c) and (d) are our three-dimensional numerical solutions of
the monomer-fraction profiles from the SCFT, which have body-centered cubic and gyroid
structures, respectively. The solutions are obtained from a machine-learning algorithm
that incorporates representations of functions conceptually shown in Fig. 5.1(b). For
illustration purpose, we plot all A-rich regions with the same green color.

5.6(a), contains two blocks, consisting of A- and B-type molecular units (“monomers”),
respectively represented by green and white circles. Along a polymer chain that has a
total of N monomers (N is usually large), the volume ratio between A- and B-monomers
is f . A pair of A- and B-monomers have a weak “dislike” energy, written in terms of
the dimensionless Flory-Huggins parameter χ [72, 45]. Within the SCFT for a uniformly
packed system, there are only two system parameters, f and χN .

5.4.1 Self-consistent equations for predicting the structures of
diblock copolymers

The SCFT for the microphase-separated structures of a “polymer melt” consisting of many
diblock copolymers is a well-established topic area in polymer physics. A significant number
of researchers have contributed to this active area of research. In this thesis, we introduced
the historical efforts in section 1.4. Here we list the nonlinear integrodifferential equation
set that is required to solve in order to find a specific microphase-separated structure, in
a form that can be used in our machine learning based solver. As a technical note, in all

76

mathematical expressions below, the spatial variables have been scaled by the root-mean-
square end-to-end distance of a polymer.

SCFT scheme:

The theory contains two physical parameters, the system-averaged, overall monomer frac-
tion between species A and B, f , and the reduced Flory-Huggins parameter χN that
measure the degree of incompatibility of the two species. The theory couples seven func-
tions together: the monomer fraction profiles φA(x) and φB(x) for the spatial distributions
of type-A and type-B monomers, the effective mean fields WA(x) and WB(x) acting on
type-A and type-B monomers, the “propagators” for a single polymer chain q1(x; t) and its
complementary q2(x; t), and finally, a Lagrangian multiplier ξ(x) to enforce the a uniform
density of a melt condition. The time-like variable t is an arc-variable along a linear poly-
mer chain, comparable to the real time variable in the Feynman’s path-integral formalism
for quantum physics. Under SCFT scheme, q1(x; t) and q2(x; t) obey modified diffusion
equations:

∂q1

∂t
=

[
1

6
∇2 −W (x; t)

]
q1, q(x; 0) = 1 (5.13)

−∂q2

∂t
=

[
1

6
∇2 −W (x; t)

]
q2, q2(x; 1) = 1 (5.14)

where W (x; t) = WA(x) when 0 ≤ t ≤ f and W (x; t) = WB(x) when f ≤ t ≤ 1. WA(x),
WB(x), φA(x), φB(x) and ξ(x) obey self-consistent field equations:

φA(x) =
1

Q

∫ f

0

dtq1(x; t)q2(x; t) (5.15)

φB(x) =
1

Q

∫ 1

f

dtq1(x; t)q2(x; t) (5.16)

WA(x) =χNφB(x) + ξ(x) (5.17)

WB(x) =χNφA(x) + ξ(x) (5.18)

φA(x)+φB(x) = 1 (5.19)

where Q = (1/V)
∫

dxq(x; 1). Under SCFT scheme, Eq. (5.13) - Eq. (5.19) can be solved
self-consistently, typical algorithms are well-documented in a textbook [48].

The problem is further complicated by the fact that the free energy must be minimized
by adjusting the volume. Assuming periodicity L = V 1/3, once the a self-consistent solution

77

is obtained, we can adjust L by

Lnew = Lold − η
nN

3V Q

∫
dx

∫
dtq1(x; t)∇2

xq2(x; t), (5.20)

where Lnew is the new periodicity, Lold is the current periodicity and η is a small multiplier
that adjusts how fast we change the periodicity [3].

Once a self-consistent solution is obtained, the free energy of this system can be calcu-
lated by

β

n
F =− lnQ+

1

V

∫
dx[χNφA(x)φB(x)

−WA(x)φA(x)−WB(x)φB(x)− ξ(x)(1− φA(x)− φB(x))].

(5.21)

which can be used to compare the stability of different structures once the self-consistent
equations are solved.

Machine learning based approach

In our machine learning based approach, we represent four of the seven functions, WA(x),
WB(x), q1(x; t), and q2(x; t) by FNNs. Both WA(x) and WB(x) are functions of (x, y, z)
and share a single FNN. Both q1(x; t) and q2(x; t) are functions of (x, y, z; t) and share
another FNN. The concept is illustrated in Fig. 5.1. They are coupled together in the
differential equations and by constraints and are also connected through the definition of
the other three functions which are expressed by integral relationships between these.

There are a number of constraints that are implemented in the cost function J as
conceptually laid out in subsection 2.4 and section 5.2. Letting r = (x; t) we write

D̂1q1(r) =

[
∂

∂t
− 1

6
∇2 +W (x; t)

]
q1(x; t)

D̂2q2(r) =

[
− ∂

∂t
− 1

6
∇2 +W (x; t)

]
q2(x; t)

(5.22)

The cost function JD = α
〈

[D̂1(r)]2
〉
/2+α

〈
[D̂2(r)]2

〉
/2 deals with the modified diffusion

equations satisfied by q1 and q2 by requiring the two square terms to vanish. The “initial
conditions” that need to be imposed on these functions are reflected in writing

B̂1q1(r) = q1(x; t = 0)− 1,

B̂2q2(r) = q2(x; t = 1)− 1,
(5.23)

78

and then incorporated in the cost function Jic = α1

〈
[B̂1(r)]2

〉
/2 +α2

〈
[B̂2(r)]2

〉
/2. For a

structure that has a periodicity L in the x-direction, the boundary conditions for q1(x; t)
and q2(x; t) are considered by taking the differences

B̂3q1(r) = q1(0, y, z; t)− q1(L, y, z; t),

B̂4q2(r) = q2(0, y, z; t)− q2(L, y, z; t),

B̂5q1(r) = ||∇q1(0, y, z; t)−∇q1(L, y, z; t)||,
B̂6q2(r) = ||∇q2(0, y, z; t)−∇q2(L, y, z; t)||.

(5.24)

where || · || is the module of a vector. The cost function Jbc = α3

〈
[B̂3(r)]2

〉
/2 +

α4

〈
[B̂4(r)]2

〉
/2 + α5

〈
[B̂5(r)]2

〉
/2 + α6

〈
[B̂6(r)]2

〉
/2 effectively reproduces the periodic

conditions when it is minimized to 0. Similar treatments are introduced for the y- and
z-direction boundary conditions.

SCFT couples q1, q2, WA, and WB through relations expressed by the constraints Ĉ1 = 0
and Ĉ2 = 0, where

Ĉ1 =WA(x)− χNφB(x)− ξ(x), (5.25)

Ĉ2 =WB(x)− χNφA(x)− ξ(x). (5.26)

The functions φA(r) and φB(r) are defined by

φA(x) =
1

Q

∫ f

0

dtq1(x; t)q2(x; t), (5.27)

φB(x) =
1

Q

∫ 1

f

dtq1(x; t)q2(x; t), (5.28)

where the constant

Q =
1

V

∫
drq1(x, 1) (5.29)

is integrated from the q functions over the considered space of volume V . The function ξ(x),
originates from the Lagrangian multiplier of the incompressibility condition, is connected
to the above quantities by

ξ(x) = [WA(x) +WB(x)− χN]/2. (5.30)

The constraints Ĉ1 = 0 and Ĉ2 = 0 are effectively implemented in our machine-learning
solver through minimizing the cost function JC = γ[Ĉ1]2/2 + γ[Ĉ1]2/2.

79

1.28

1.30

1.32

1.34

1.36

1.38

1.40

1.42

1.44

0 100 200 300 400 500 600 700 800

L

1000 Epoch

Figure 5.7: Plot of L with respect to epoch.

The total cost function J is the sum

J = JD + Jic + Jbc + JC (5.31)

and is minimized in the learning process, with α = 1, β1 = β2 = 1000, β3 = β4 = 200, and
γ = 200. The minimization procedure consists of consecutive epochs. In one single epoch,
S = 7× 103 points are randomly selected in the variable domain and fed into both FNNs
to generate all required function values and derivatives used in the cost function. The
coefficients of the penalty terms were selected by trial and error; the relative magnitudes
decide the prioritization of minimizing the related terms. Normally, to emphasize the
auxiliary conditions, we use coefficients that are two orders of magnitude higher than the
coefficients for the partial differential equations themselves.

We adjust L every 1000 epochs following Eq. (5.20). As an example, the behaviour of
L with respect to epoch when f = 0.5 and χN = 12 is plotted in Fig. 5.7 When L stables,
a structure is considered as found.

80

5.4.2 Equilibrium structure observed

The chemically different A- and B-type monomers drives the diblock copolymer system to
phase-separate into A- and B-rich spatial domains, but only the micro-phase separation
happens due to the covalent bond that connects A and B blocks links the two phase-
separated domains together within the dimension of a typical polymer size. Figure 5.6(b)
illustrates how A- and B-rich spatial domains can form in a multi-chain system. The
delicate balance of the interaction energy and entropic stretching energy of the A and B
blocks results in the formation of various geometric domains with size in the nanometer
range [5, 115, 98, 99, 84, 83]. Two well-known 3D structures i.e. body-centered cubic
(bcc) sphere phase (QIm3̄m) and complex bicontinuous cubic (gyroid) phase (QIa3̄d), as an
example, calculated from theories and observed in a wealth of works are shown in Fig.
5.6(c) and Fig. 5.6(d), within a unit cell.

Basically, four basic, unknown functions q1(r), q2(r), WA(x), and WB(x), must be
found numerically for a given [f, χN] pair. In a traditional approach, multiple iterations
are needed to achieve the self-consistency of the solution set. The main idea is to propose
a guess for the external fields WA(x) and WB(x), which are used in the diffusion-like
equations governing the propagator functions q1(r) and q2(r). Then, integrating over the
t variable step by step, one obtains the solutions for q1(r) and q2(r). The external fields
WA(x) and WB(x) are then updated according to these solutions and a new iteration step
starts. Self-consistency is obtained after multiple loops of iterations, at which point the W
fields converge.

A completely different philosophy is adopted here. In order to implement our new
machine-learning solver, we propose that the four functions are presented by two FNNs,
conceptually shown in Fig. 5.1(b). The learning is done by looping through epochs. At
every epoch, the FNNs learn the new profiles of these four functions simultaneously by
updating the FNN parameters, according to the minimization requirement of the cost
function. The cost function itself contains terms that are targeted at solving the diffusion-
like equations, that effectively deal with the boundary conditions for given t and given x,
and that couple WA, WB with q1, q2 nonlinearly in an integral form. There is no need
to integrate the differential equations over t-range step by step, because t is now treated
at an equal footing as x. Most importantly, the iteration loop that updates WA(x) and
WB(x) step-by-step is now eliminated. The self-consistency is directly enforced through
the non-linear coupling of the four functions. The heart of this theoretical approach is to
solve SCFT equations in order to yield structural prediction.

Starting from a random choice of the FNN parameters, the FNNs finally converge to
one of the metastable or stable structures allowed for a given [f, χN] set. We reproduced

81

all known structures, such as those presented in Ref. [49, 115] and selectively present
two in Fig. 5.6(c). These three-dimensional bcc structure [5.6(c)] and gyroid structure
[Fig. 5.6(d)] can be obtained from the machine-learning solver at [f, χN] = [0.28, 16] and
[0.375, 16], respectively. There is a good agreement between our and previous solutions.

5.5 Discussion

In this chapter, we demonstrated a new way of solving equilibrium states of diblock copoly-
mer melt based on machine learning based PDE solver. As of now, the free energy converges
to the second decimal point, and a typical run needs hours, which is orders of magnitude
slower than the traditional method. The accuracy and efficiency of this solver are needed
to be improved in the future. Two promising improvements are using deep neural networks
to generate the unknown functions and employing more advanced training methods, such
as second-order methods [9]. We hope the solver can be more accurate and faster in the
future.

5.6 Summary

Taking advantage of the universal approximation theorem, in this work we present a
machine-learning procedure designed to solve PDEs typically seen in theoretical physics.

We started by introducing a fundamental diffusion problem. The mathematical prob-
lem of finding a solution now becomes finding the FNN parameters with optimization. The
computational time required to solve a problem now depends on iterations to optimize net-
work parameters. We demonstrated, through a particular example, how the computational
time scales as the number of variables in a problem and the number of hidden nodes. One
interesting finding is that the number of epochs required to achieve convergence follows
a power law with a universal exponent independent of the number of hidden nodes. A
direct consequence is that the computational time of a problem with a large number of
variables can now be efficiently handled by the universal solver. As a function of the num-
ber of variables, the anticipated exponentially large computational time in a traditional
method is now replaced by a faster power law. Thus, we expect that this universal solver
is particularly useful for physical problems containing many variables.

Then, we employed an adapted version of machine learning PDE solver to solve for di-
block copolymer states by tackling a complicated integrodifferential equation set produced

82

from the SCFT. We observed a good agreement between our solution and the traditional
solution. Searching for stable and meta-stable conformations of a polymeric system is a
long enduring and crucial topic in soft matter physic in large part due to their rich and
complex self-assembly behaviour [7, 185, 112, 116, 191, 178]. The heart of a theoretical
approach is to solve SCFT equations in order to make a structural prediction. Here we wish
the machine-learning solver can overcome the main hurdle encountered in a conventional
method – the stability of a proposed algorithm.

83

Chapter 6

Conclusion and Outlook

6.1 Conclusion

In this thesis, we explored some machine learning techniques that can be employed to study
structural properties of polymeric systems.

In chapter 1 and chapter 2, the large number of historical efforts on studying polymer
structures are reviewed. The recent inspirations we get from machine learning and machine
learning techniques we utilized are summarized.

In chapter 3, we studied the capability of a supervised learning method on identifying
polymer states and transition points. We demonstrated that a well trained FNN can iden-
tify structures, such as coil, globule, anti-Mackay and Mackay conveniently, merely depends
on the monomer coordinates, even when the difference between structures is minuscule.
This ability of structural identification can be transfer to configurations sampled from dif-
ferent models without re-train the neural network. This method can also be adapted to
identify transition points accurately. One advantage of this approach is directly sending
the configurational data represented by molecular coordinates to a neural network, without
defining order parameters or calculating the heat capacity, which are conventionally used
in computer simulations to rigorously determine a transition point.

In chapter 4, we explored the capability of unsupervised learning methods on identify-
ing polymer states and transitions points. Two methods, PCA and a unified approach are
studied. We found that PCA can distinguish random coil from collapsed states through
dimensional reduction and visualization, mainly due to the feature Rg is extracted from
configurations. Although PCA is widely considered as the simplest unsupervised learning

84

technique and preserves only linear information in projection, the results presented persua-
sively reveals its effectiveness. Moreover, we also find that PCA is not sophisticated enough
to distinguish the difference between globule, anti-Mackay and Mackay states, which sug-
gest that in order to classify collapse states with similar Rg, we need to consult more
powerful methods. On the other hand, the unified approach shows a strong ability in accu-
rately locating the transition points in an unsupervised learning manner. We also find the
prediction of the transition points could highly benefit from the data representation. The
low dimensional representations obtained from PCA facilitate the training of the neural
network, particularly to the polymeric system with high polymerization, mainly ascribe
to many redundant details are eliminated through the pre-treatment of data according to
linear dimensionality reduction.

These methods introduced in chapter 3 and chapter 4 are generic and have the potential
to be utilized in future studies. In the study of phase transitions, machine learning methods
provide a way to identify structures without designing an order parameter, and a way to
locate the transition point without calculating heat capacity in the first place. In partic-
ular, in the low-energy (or low-temperature) regime, a simulated system often encounters
potential-energy traps which need to be treated by using a non-Boltzmann weight. Taking
the Wang-Landau algorithm as an example, the calculation of the heat capacity in the
extremely low-energy regime requires high numerical precision of the computed density
of states, which is achievable but requires extensive computations. The neural network
process describes here, on the other hand, does not require such precision, as long as inde-
pendent configurations used for supervised training are produced by numerical simulation
methods.

In chapter 5, we developed a machine learning PDE solver and demonstrated how to find
equilibrium structures of diblock copolymer through solving integrodifferential equations
in SCFT. For our machine learning PDE solver, a striking feature we found is that the
computational cost follows a power-law instead of exponential, which means this solver
is potentially helpful for physical problems involving high-dimensional PDEs. Our solver
avoids the potential pitfalls typically seen in a traditional approach to solve PDEs. The
approximations for the derivative operators in the PDEs are no longer needs and all required
information is expressed by analytic expressions, through the representing FNNs. The
approximation made in a traditional method highly influences the stability of a typical
algorithm in such a way that the stability of a computational algorithm usually becomes
the main concern. Here, this difficulty is avoided by turning the solution-finder problem
into a machine learning problem. The solver is an unsupervised procedure that requires no
prior information of the solution and accommodates boundary conditions and constraints
systematically. In terms of searching for new structures, our solver provides a new way to

85

solve self-consistent equations, and to generate equilibrium structures of diblock copolymers
given f and χN . The structures obtained from our approach have good agreements with
traditional methods.

6.2 Outlook

The machine learning methods we studied open plenty of opportunities for future works.
The purpose of this section is to outlines some possible future studies.

6.2.1 Identifying polymer states

• Exploring the usage of more advanced neural networks:
In Ref. [182], we only explored the capability of FNN. There are more advanced neural
network architectures, such as long short-term memory (LSTM), residual networks,
are believed to be more powerful than FNN [55]. Their potential for identifying
polymer states haven’t yet been fully explored. Recently, the LSTM has been incor-
porated in our approach and applied to classify confined off-lattice rod-like molecules.
We successfully identified multiple types of topological defects induced by frustra-
tions [171]. This success encourages us to further explore the capability of different
kinds of neural networks.

• Utilize a better representation of input data:
As pointed out in chapter 4, the representation of the input data is very important.
Taking Ref. [54] as an example. Geiger et al. investigated detecting local polymor-
phism in Lennard-Jones fluid. In this work, raw coordinates of particles are encoded
into a set of symmetry functions before fed into an FNN. These symmetry functions
are designed to be rotationally, translationally and permutationally invariant. Using
symmetry functions as input, one does not have to generate training samples ori-
ented along various directions, nor need to shift, re-scale samples. In the meantime,
this conversion reduces the dimensionality of input data to the number of symmetry
functions used. Nevertheless, finding a proper representation, albeit feasible in this
work, is a nontrivial task in general. for polymeric systems, a promising tool is bond
orientational order (BOO) parameters [160, 193]. Finding a proper representation for
machine learning methods via BOO is rather unstudied. Using BOO as input may
decrease the number of training samples needed and lead to a more efficient training.

86

• Identifying order of a transition:
We find it is hard for machine learning methods to determine the order of a transition.
Hopefully, this problem could be overcome by future studies.

6.2.2 Machine learning based PDE solver

• Application in worm-like chain model:
Given the fact that machine learning PDE solver is more competitive for high dimen-
sional problems, we expect our approach can be applied to more complex systems.
For example, in order to find equilibrium structures of worm-like diblock copoly-
mers, the modified diffusion equation we need to solve, under the SCFT scheme, is
a six dimensional diffusion like equation. Simply solving this equation under a given
chemical field by traditional methods is time and computer memory consuming [77],
let alone solving it self-consistently. As a next step, we hope our approach can be
developed and applied to the worm-like chain models as a tool to study the phase
behaviours [20, 77, 37]. We believe our approach will reduce the computational cost
on solving self-consistent equations of the worm-like chain models, and providing
plenty of opportunities in searching for more equilibrium structures. In addition, we
hope that complications involving stability analysis of a finite-difference method, for
instance in solving a PDE or self-consistent equations, no longer the concern.

• PDEs of other types:
By far, machine learning based PDE solver is mostly applied to solve parabolic PDEs,
such as Schrodinger’s equations [135], modified diffusion equation [181], or Black-
Scholes PDEs [156]. In comparison, Karniadakis et al. [135] demonstrated that
machine learning based PDE solver is able to solve Burger’s equation, which is one
kind of hyperbolic PDE. Nevertheless, The study on the extensibility of this approach
to other hyperbolic PDEs is limited and worth spending efforts in the future.

• etc.Stochastic differential equation:
Solving stochastic differential equations (SDE) is crucial to many studies in polymer
physics, one of which is using molecular dynamics to study polymer states [12]. The
research in this direction is at a preliminary stage. We hope this area can get more
attention.

In summary, the studies presented in this thesis reflect that machine learning methods
provide exciting new ways to study polymer morphology, such as using the unified ap-
proach to identify transition points and simultaneously discover order parameters without

87

prior knowledge of the structures themselves, and using neural network to approximate
the solution of PDEs and generating equilibrium states of diblock copolymer melts. We
anticipate machine learning methods are going to play an increasingly important role in
polymer physics, and in the meantime we hope our works can stimulate other ideas in
future researches or real-life applications.

88

APPENDICES

89

Appendix A

Polymer models and Monte Carlo
methods

A.1 Gaussian-chain model with a square-well poten-

tial

In the text, the first model we used is a polymer made of monomers that are connected by
spring potentials. The reduced bonded Hamiltonian of the polymer is

βEbond =
3

2a2

N−1∑

i=1

(ri − ri+1)2 , (A.1)

where β = 1/kBT is the Boltzmann factor. The system interaction potential energy is

Eint =
1

2

∑

ij

U(|rij|) (A.2)

where rij is the distance vector between monomer-i and monomer-j. The pair-wise inter-
action potential has the form,

U(r) =

∞ if 0 ≤ r2 < (0.9a)2,

−ε if (0.9a)2 ≤ r2 ≤ 2a2,

0 otherwise.

(A.3)

We refer to this model as GSM in the text.

90

A.2 FENE model with a LJ interaction

In the text, we used the second polymer model which has a system energy E as the sum
of the bonded and interaction energies. The former is described by

Ebond =
N−1∑

i=1

EFENE (|ri − ri+1|), (A.4)

where EFENE is a particular realization of the FENE model,

EFENE(r) = −20εR2 ln[1− (r − r0)/R)2], (A.5)

in which r is the distance between two connected monomers, R = 0.3b controls the bond-
length variations, and r0 = 0.7b. The interaction potential energy formally follow (A.2)
but the two body interaction is replaced by a truncated Lennard-Jones potential,

U(r) =

{
ULJ(r)− ULJ(rc) if 0 ≤ r < rc

0 otherwise,
(A.6)

where rc = 2.5σ. The Lennard-Jones potential has the standard form,

U(r) = 4ε

[(rm
r

)12

−
(rm
r

)6
]
, (A.7)

where rm = 2−1/6r0 and ε measures the potential-well depth (which is adjusted by the
value at the truncation point).

A.3 Monte Carlo methods

For a polymeric system with a Hamiltonian H(r), all the statistical information is in
partition function defined as

Z =
∑

exp {−βH(r)} (A.8)

where the summation takes over all possible configurations, β = kBT is inverse tempera-
ture, kB is Boltzmann constant, T is temperature. A thermodynamic quantity, O, usually
can be calculated by

〈O〉 =
1

Z

∑
O(r) exp {−βH(r)} (A.9)

91

where exp{−βH(r)}/Z is called Boltzmann factor. Nevertheless, the number of possi-
ble configurations grows exponentially with chain polymerization, which makes the direct
evaluation of O usually unfeasible. On the contrary, If we view O(r) as an observation
and view p(O(r)) = exp{−βH(r)}/Z as the probability of this observation occurs. If we
can obtain samples of O(r) following a probability distribution p(O(r)), then O can be
estimated by

〈O〉 =
∑

i

Oi(r)p(Oi(r)) (A.10)

where Oi(r) represents the value of O calculated based on the ith sample. This is just
the basic idea of Monte Carlo simulation. In short, Monte Carlo method refers broadly
as a class of algorithms that obtain numerical solutions through random sampling. It
was originally proposed by Fermi, Ulam, von Neumann, Metropolis [119] in the 1930s-
1940s, and then developed to polymer physics by a lot of pioneers, Binder [91], Landau
[174]. When utilizing Monte Carlo simulations to study coarse-grained polymer models,
two versions of Monte Carlo methods, Metropolis method and Wang-Landau method, are
very commonly used. In the subsequent subsections, we will describe the basic concepts
of these methods, the application of Metropolis methods to sample configurations of the
GSM, and the application of Wang-Landau methods to sample configurations of the FENE
model.

A.3.1 Metropolis method

The direct calculations of statistical quantities are usually unachievable, partially due to
there are too many configurations to sum over in partition function. However, the Monte
Carlo method allows one to find the equilibrium distribution following exp {−βH(r)}, and
then the statistical quantities of interests can be estimated by the ensemble averages [50].
Taking Monte Carlo simulation of a polymer chain, with Hamiltonian H(r), as an example.
Metropolis method aims at generating random samples sequentially from a distribution
p(r), read

p(r) ∝ exp {−βH(r)} (A.11)

Here, p(r) is determined up to a constant multiplier. It introduced a transition probability
from current state r to a proposed trial state r′, to evolve a random guess distribution to
p(r) after algorithm reaches stationary. Assuming that the transition probability from a
state r to a proposed new state r′ is Trr′ , then the dynamic function of p(r) is given by

∂p(r)

∂t
=
∑

r6=r′

(Tr′rp(r
′)− Trr′p(r)) (A.12)

92

The equilibrium will be reached when ∂p(r)/∂t = 0. This equilibrium condition indicates
that if the polymer chain is currently at state rt, and Metropolis method proposes a move
rt+1, then trial move will be accepted or reject based on acceptance ratio:

j = Trtrt+1/Trt+1rt = p(rt+1)/p(rt) = min{1, exp{−β(H(rt+1)−H(rt))}} (A.13)

If the proposed move is accepted, the current state is set as rt+1, otherwise, the current
state remains as rt. We can keep proposing new states and recording the current state
once for a while. Then, one can calculate the quantities of interest, O, as

〈O〉 =
1

L

L∑

i=1

O(ri) (A.14)

In our work, we use Metropolis method the sample configurations from GSM. The
configurations and measurements used in Figs. 3.4(a), (b), (c), and Fig. 3.5 in chapter 3
were produced from Monte Carlo runs in which the Boltzmann weight W = exp(−βEbond−
βEint), where the two potential energies are expressed in Eqs. (A.1) and (A.2), were
used. Every Monte Carlo step (MCS) contains N repeated Monte Carlo trial moves of
locally displaced monomers. For every specified kBT/ε, 107 MCS was used in the initial
equilibration and 5 × 103 configurations were recorded in a production run comprised of
2×108 MCS, taken with a lapse of 4×104 MCS. The specific heat, which is defined by:

C̃ =
(〈
E2

int

〉
− 〈Eint〉2

)
/ε2 (A.15)

In both cases, the Monte Carlo average 〈. . .〉 was performed in the production run.

A.3.2 Wang-Landau method

In the above sections, we assumed all different configurations are independent of each other.
However, that independency is not guaranteed. In Metropolis method, to avoid the bias
introduced from highly correlated configurations, samples can only be taken longer than
every other tac steps, where tac is the autocorrelation time, defined as

tac =

∑∞
t=1 (〈O(t0)O(t0 + t)〉 − 〈O〉2)

〈O2〉 − 〈O〉2
(A.16)

where t0 means the current sample step. The larger tac is, the longer we need to wait
between two consecutive samples. Unfortunately, tac usually divergent at the transition

93

point of a second order transition, and this phenomenon is called critical slowing down.
When accurately locate phase transition points is crucial, the sampling in near transition
point is very inefficient due to the long waiting. Besides, polymer systems usually involves
complicated energy landscape that has deep local minima. The acceptance rate in Eq. A.13
may be very low when random sampling trying to go across the barrier between local
minima, which makes sampling inefficient as well.

To overcome these disadvantages, in 2001, Wang and Landau[174, 173] proposed an
algorithm that utilize the density of states, g(e), a quantity describes the number of states
available in an energy level over an energy interval, to calculate thermodynamic quantities
of interest. This algorithm relies on an observation that a flat histogram of energy dis-
tribution will generated if one random sample states in energy space with the probability
inverse proportional to the density of states. In another word, it uses a weight factor w(e)
to form a flat histogram h(e) at different energy levels, read

w(e)g(e) exp(−βe) ∝ h(e) = constant (A.17)

When equilibrium, w(e) ∝ 1/g(e). At the beginning, Wang-Landau algorithm set g(e) as
1, and histogram H(e) as 0 for all e. Then it performs a series of loops. Inside one loop,
when the system state is rt at current time, and it is proposed to move to rt+1, one have
energy et = e(rt) and et+1 = e(rt+1). The acceptance probability in Wang-Landau method
is inversely proportional to g(e), which gives an acceptance ratio

j = w(et+1)/w(et) = min{1, g(et)/g(et+1)} (A.18)

Once the new state is determined, g(e) and H(e) can be updated following:

g(e) = g(e)× c
H(e) = H(e) + 1

(A.19)

c is an adjustable constant, usually set as exp{1} at the beginning. This loop ends when
H(e) is flat, and c will be updated to

√
c. Wang-Landau method is considered stabled

when c is close enough to 1, and g(e) is considered as converged to the desired density.
Afterwards, the partition function can be calculated following

Z =
∑

e

g(e)e−βe (A.20)

and the the quantities of interest, O, can be calculated thereby. For example, when study
the phase transitions of the FENE model, the quantities of interests is inverse temperature
β(e) and its derivative γ(e). Inverse temperature usually defined as

β(e) = T−1(e) = (
dS

de
)N,V (A.21)

94

where e is the system energy per monomer, S(e) = kB ln g(e) is microcanonical entropy
given energy e. The derivation of inverse temperature is given as

γ(e) =
dβ(e)

de
=

d2S

de2
(A.22)

β(e) and γ(e) offered a systematical way to classify phase transitions. The transition points
locates at the peak of γ(e). For the first order transitions, the slop of β(e) at the transition
point is positive, or the peak value of γ(e) is positive. For the second order transitions,
the slop of β(e) at the transition point is negative, or the peak value of γ(e) is negative.

Using the Wang-Landau algorithm, we determined the density of states of the FENE
model, which was used for the calculation of β(e) and γ(e) both defined and discussed in
Ref. [146] in Figs. 3.4(d), 3.4 in chapter 3, and Fig. A.1 in Appendix A.2, over a wide
range of energy space by conducting two series of simulations, one covering e = [−5,−4]
and the other [−3, 2]. In total 30 energy bins were used in each simulation. We used the
procedure described in Refs. [174, 173], with a final modification-factor ffinal = exp(2−29)
to produce high-precision data. One small revision is made to the original procedure;
when the inverse density of states is used as the Monte Carlo transition weight, linear
interpolations are introduced to connect the logarithmic values of the density of states at
the centers of adjacent energy bins; this is in contrast to the original histogram-type weight
scheme.

Configurations used in these figures were produced from a production run consisting
of 109MCS, in which the inverse density of states was used as the Monte Carlo transition
weight. Approximately 5 × 103 configurations were recorded at every energy bin. The
inverse temperature β(e) and its derivative γ(e) defined in a microcanonical ensemble, and
calculated from sampled configurations are shown in Fig. A.1, produced from Monte Carlo
simulations following the Wang-Landau algorithm [174, 173]. The left panel is similar to
Fig. 1 in Ref. [146], but shifts in both e and vertical directions are noticeable. These
shifts do not affect the physics we discuss in this paper. The current parametrization
exactly follows the description in Ref. [146], except for the length scale b included here for
accounting purpose; it is unknown where these shifts come from.

95

-1.0

-0.5

0.0

γ(
e

)

-5.0 -4.5
e=E/Nε

2

3

4

5

6

β
(e

)

-2.5 -2.0 -1.5
e=E/Nε

0.2

0.4

0.6

0.8

1.0

β
(e

)

-5

0
γ(

e
)

(a) (b)

Figure A.1: Inverse temperature β(e) (red, to the left scale) and its derivative γ(e) (light
blue, to the right scale) as functions of reduced energy per monomer e = E/Nε, in (a) low-
and (b) midlow-energy regimes. The peaks in the heat-capacity-like γ(e) separate different
polymer phases: coil, globule, anti-Mackay and Mackey (from high- to low-e regimes). The
FENE model was used in Wang-Landau Monteo Carlo simulations to produce this figure.

96

Appendix B

A pedagogical guide of the machine
learning PDE solver

To provide a detailed illustration on how to build and train a machine learning PDE solver,
under a pedagogical purpose, we use a toy initial value problem:

∂q

∂t
= c

∂

∂x2
q (B.1)

with the boundary condition and initial condition

q(0; t) = 0, q(L; t) = 0, q(x; 0) = ψ(x) (B.2)

as an example to specify technical details of machine learning PDE solver. In this appendix,
the FNN we use is exactly the same as the one in Fig. 2.4, with two input neurons, Nh

hidden neurons and one output neuron. This FNN has three sets of parameters:

• w: weights connect input and hidden neuron, a Nh × 2 matrix

• b: biases fed into hidden neuron, a Nh × 1 vector

• v: weights connect hidden and output neuron, a 1×Nh matrix

For a single input (xn; tn), where the first column stores the spatial coordinate, xn, sam-
pled from the domain of interests, the second column stores the corresponding timestamp,
tn, the output of the FNN is

q(xn; tn) =

Nh∑

j=1

vjσ(zj(xn; tn)), (B.3)

97

where, zj(xn; tn) = wj1xn + wj2tn + bj, σ is the activation function

σ(zj(xn; tn)) = [1 + exp(−zj(xn; tn))]−1. (B.4)

For simplicity, σ(zj(xn; tn)) will be noted as σjn.

In Eq. (B.3), all partial derivatives needed in the PDE to be solved can be calculated
analytically. For example

∂q(xn; tn)

∂tn
=

Nh∑

j=1

vjσjn(1− σjn)wj2 (B.5)

Second order partial derivatives can be taken this way as well but the analytic expressions
are omitted here.

Assuming that N0 inputs are sampled within the domain of interest, N1 inputs are
sampled from the boundary x = 0, N2 inputs are sampled from the boundary x = L and
N3 inputs are sampled at initial time t = 0. In this case, the specific form of cost function
is given by:

J =
1

2N0

N0∑

n=1

[(
∂

∂s
− c ∂

∂x2

)
q(xn; tn)

]2

+
1

2N1

N1∑

n1=1

q(0; tn1)
2 +

1

2N2

N2∑

n2=1

q(L; tn2)
2

+
1

2N3

N3∑

n3=1

[q(xn3 ; 0)− ψ(xn3)]
2

(B.6)

Defining:

∆n =

(
∂

∂s
− c ∂

∂x2

)
q(xn; tn)

=
∑

j

vjσjn(1− σjn)wj2

−
∑

j

cvjσjn(1− σjn)(1− 2σjn)w2
j1,

(B.7)

98

the derivative of cost with respect to weights and biases are given by:

∂J

∂wjk
=

1

N0

N0∑

n=1

∆n{vjσjn(1− σjn)(1− 2σjn)rnkwj2 + vjσjn(1− σjn)δk2

− c[vjσjn(1− σjn)(1− 6σjn + 6σ2
jn)rnkw

2
j1 + 2vjσjn(1− σjn)(1− 2σjn)wj1δk1]}

+
1

N1

N1∑

n1=1

q(0; tn1)vjσjn1(1− σjn1)rn1k +
1

N2

N2∑

n2=1

q(L; tn2)vjσjn2(1− σjn2)rn2k

+
1

N3

N3∑

n3=1

[q(xn3 ; 0)− ψ(xn3)] vjσjn3(1− σjn3)rn3k

∂J

∂bj
=

1

N0

N0∑

n=1

∆n{vjσjn(1− σjn)(1− 2σjn)wj2 − cvjσjn(1− σjn)(1− 6σjn + 6σ2
jn)w2

j1}

+
1

N1

N1∑

n1=1

q(0; tn1)vjσjn1(1− σjn1) +
1

N2

N2∑

n2=1

q(L; tn2)vjσjn2(1− σjn2)

+
1

N3

N3∑

n3=1

[q(xn3 ; 0)− ψ(xn3)] vjσjn3(1− σjn3)

∂J

∂vj
=

1

N0

N0∑

n=1

∆n{σjn(1− σjn)wj2 − cσjn(1− σjn)(1− 2σjn)w2
j1}

+
1

N1

N1∑

n1=1

q(0; tn1)σjn1 +
1

N2

N2∑

n2=1

q(L; tn2)σjn2 +
1

N3

N3∑

n3=1

[q(xn3 ; 0)− ψ(xn3)]σjn3

(B.8)
In Eq. (B.8), subscript j ranges from 1 to Nh, k ranges from 1 to 2. rn1, rn2 represents xn,
tn respectively. δ is the Kronecker delta.

At this stage, we have all the formula necessary for constructing and training a machine
learning PDE solver.

99

Appendix C

Publications

1. Michael Walters, Qianshi Wei, Jeff Z. Y. Chen, Phys. Rev. E, 99, 062701 (2019);

2. Xin Xu, Qianshi Wei, Huaping Li, Yuguo Chen, Yuzhang Wang, Ying Jiang, Phys.
Rev. E, 99, 043307 (2019);

3. Qianshi Wei, Ying Jiang, Jeff Z. Y. Chen, Phys. Rev. E, 98, 053304 (2018);

4. Qianshi Wei, Roger G Melko, Jeff Z. Y. Chen, Phys. Rev. E, 95, 032504 (2017);

100

References

[1] Milton Abramowitz and Irene A Stegun. Handbook of mathematical functions: with
formulas, graphs, and mathematical tables. Courier Corporation, 1964.

[2] Louis-François Arsenault, Alejandro Lopez-Bezanilla, O Anatole von Lilienfeld, and
Andrew J Millis. Machine learning for many-body physics: The case of the anderson
impurity model. Phys. Rev. B, 90(15):155136, 2014.

[3] Jean-Louis Barrat, Glenn H. Fredrickson, and Scott W. Sides. Introducing variable
cell shape methods in field theory simulations of polymers. The Journal of Physical
Chemistry B, 109(14):6694–6700, 2005. PMID: 16851752.

[4] Christopher M. Bates and Frank S. Bates. 50th anniversary perspective: Block
polymers—pure potential. Macromolecules, 50(1):3–22, 2017.

[5] F. S. Bates, M. F. Schulz, A. K. Khandpur, S. Förster, J. H. Rosedale, K. Almdal,
and K. Mortensen. Fluctuations, conformational asymmetry and block copolymer
phase behaviour. Faraday Discussions, 98:7, 1994.

[6] Frank S Bates. Polymer-polymer phase behavior. Science, 251(4996):898–905, 1991.

[7] Frank S. Bates and Glenn H. Fredrickson. Block copolymer thermodynamics: Theory
and experiment. Annual Review of Physical Chemistry, 41(1):525–557, 1990.

[8] Frank S. Bates, Marc A. Hillmyer, Timothy P. Lodge, Christopher M. Bates, Kris T.
Delaney, and Glenn H. Fredrickson. Multiblock polymers: Panacea or pandora’s
box? Science, 336(6080):434–440, 2012.

[9] Roberto Battiti. First-and second-order methods for learning: between steepest
descent and newton’s method. Neural computation, 4(2):141–166, 1992.

101

[10] Jörg Behler and Michele Parrinello. Generalized neural-network representation of
high-dimensional potential-energy surfaces. Phys. Rev. Lett., 98:146401, Apr 2007.

[11] Richard Bellman. Dynamic programming. Princeton University Press, 1957.

[12] Kurt Binder. Monte Carlo and molecular dynamics simulations in polymer science.
Oxford University Press, 1995.

[13] C Bishop. Pattern Recognition and Machine Learning. Springer, New York, 2007.

[14] Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. A training algorithm
for optimal margin classifiers. pages 144–152, 1992.

[15] Peter Broecker, Juan Carrasquilla, Roger G Melko, and Simon Trebst. Machine
learning quantum phases of matter beyond the fermion sign problem. Sci. Rep.,
7(1):8823, 2017.

[16] Murray Campbell, A.Joseph Hoane, and Feng hsiung Hsu. Deep blue. Artificial
Intelligence, 134(1):57 – 83, 2002.

[17] Jaime G Carbonell, Ryszard S Michalski, and Tom M Mitchell. An overview of
machine learning. In Mach Learn, pages 3–23. Springer, 1983.

[18] Giuseppe Carleo and Matthias Troyer. Solving the quantum many-body problem
with artificial neural networks. Science, 355(6325):602–606, 2017.

[19] Juan Carrasquilla and Roger G. Melko. Machine learning phases of matter. Nature
Physics, 13:431, Feb 2017.

[20] Jeff Z.Y. Chen. Theory of wormlike polymer chains in confinement. Progress in
Polymer Science, 54-55:3 – 46, 2016. The Effects of Confinement on Polymeric
Thermal Transitions and Nanostructuring.

[21] Stephen ZD Cheng. Phase transitions in polymers: the role of metastable states.
Elsevier, 2008.

[22] Kelvin Ch’ng, Juan Carrasquilla, Roger G. Melko, and Ehsan Khatami. Machine
learning phases of strongly correlated fermions. Phys. Rev. X, 7:031038, Aug 2017.

[23] Kelvin Ch’ng, Nick Vazquez, and Ehsan Khatami. Unsupervised machine learning
account of magnetic transitions in the hubbard model. Phys. Rev. E, 97:013306, Jan
2018.

102

[24] Ronald R. Coifman and Stéphane Lafon. Diffusion maps. Applied and Computational
Harmonic Analysis, 21(1):5 – 30, 2006. Special Issue: Diffusion Maps and Wavelets.

[25] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning,
20(3):273–297, Sep 1995.

[26] Natanael C Costa, Wenjian Hu, ZJ Bai, Richard T Scalettar, and Rajiv RP
Singh. Principal component analysis for fermionic critical points. Phys. Rev. B,
96(19):195138, 2017.

[27] JP Cotton, B Farnoux, and G Jannink. Neutron diffraction in dilute and semidilute
polymer solutions. The Journal of Chemical Physics, 57(1):290–294, 1972.

[28] Richard Courant and David Hilbert. Methods of Mathematical Physics: Partial
Differential Equations. John Wiley & Sons, 2008.

[29] T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE Trans. Inf.
Theor., 13(1):21–27, September 2006.

[30] J. Crank and P. Nicolson. A practical method for numerical evaluation of solutions of
partial differential equations of the heat-conduction type. Advances in Computational
Mathematics, 6(1):207–226, Dec 1996.

[31] E. D. Cubuk, S. S. Schoenholz, J. M. Rieser, B. D. Malone, J. Rottler, D. J. Durian,
E. Kaxiras, and A. J. Liu. Identifying structural flow defects in disordered solids
using machine-learning methods. Phys. Rev. Lett., 114:108001, Mar 2015.

[32] George Cybenko. Approximation by superpositions of a sigmoidal function. Mathe-
matics of Control, Signals and Systems, 2(4):303–314, Dec 1989.

[33] Christos Davatzikos, Kosha Ruparel, Yong Fan, DG Shen, M Acharyya, JW Loug-
head, RC Gur, and Daniel D Langleben. Classifying spatial patterns of brain activity
with machine learning methods: application to lie detection. Neuroimage, 28(3):663–
668, 2005.

[34] PG De Gennes. Collapse of a polymer chain in poor solvents. Journal de Physique
Lettres, 36(3):55–57, 1975.

[35] Pierre-Gilles De Gennes. Scaling concepts in polymer physics. Cornell university
press, 1979.

103

[36] P Debye. Molecular-weight determination by light scattering. The Journal of Physical
Chemistry, 51(1):18–32, 1947.

[37] Mingge Deng, Ying Jiang, Haojun Liang, and Jeff Z. Y. Chen. Wormlike polymer
brush: A self-consistent field treatment. Macromolecules, 43(7):3455–3464, 2010.

[38] Caroline Desgranges and Jerome Delhommelle. A new approach for the prediction
of partition functions using machine learning techniques. The Journal of Chemical
Physics, 149(4):044118, 2018.

[39] M. Doi and S. F. Edwards. The Theory of Polymer Dynamics. Oxford Univ. Press,
New York, 1986.

[40] Fran çois Drolet and Glenn Fredrickson. Combinatorial screening of complex block
copolymer assembly with self-consistent field theory. Phys. Rev. Lett., 83:4317–4320,
Nov 1999.

[41] Weinan E, Jiequn Han, and Arnulf Jentzen. Deep learning-based numerical methods
for high-dimensional parabolic partial differential equations and backward stochastic
differential equations. Communications in Mathematics and Statistics, 5(4):349–380,
Dec 2017.

[42] Sam F Edwards. The statistical mechanics of polymers with excluded volume. Pro-
ceedings of the Physical Society, 85(4):613, 1965.

[43] Paul Ehrenfest and Tatiana Ehrenfest. The conceptual foundations of the statistical
approach in mechanics. Courier Corporation, 2002.

[44] A Ferguson. Machine learning and data science in soft materials engineering. J.
Phys.: Condens. Matter, 30:043002, 2018.

[45] Paul J. Flory. Thermodynamics of high polymer solutions. The Journal of Chemical
Physics, 10(1):51–61, 1942.

[46] Paul J Flory. Principles of polymer chemistry. Cornell University Press, 1953.

[47] William J Frawley, Gregory Piatetsky-Shapiro, and Christopher J Matheus. Knowl-
edge discovery in databases: An overview. AI magazine, 13(3):57, 1992.

[48] Glenn Fredrickson. The equilibrium theory of inhomogeneous polymers. Oxford Uni-
versity Press, 2006.

104

[49] Glenn H. Fredrickson, Venkat Ganesan, and François Drolet. Field-theoretic
computer simulation methods for polymers and complex fluids. Macromolecules,
35(1):16–39, 2002.

[50] Daan Frenkel and Berend Smit. Understanding molecular simulation: from algo-
rithms to applications, volume 1. Elsevier, 2001.

[51] Matteo Frigo and Steven G Johnson. The design and implementation of fftw3. Pro-
ceedings of the IEEE, 93(2):216–231, 2005.

[52] Karl Pearson F.R.S. Liii. on lines and planes of closest fit to systems of points in
space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of
Science, 2(11):559–572, 1901.

[53] Kunihiko Fukushima. Neocognitron: A hierarchical neural network capable of visual
pattern recognition. Neural Net, 1(2):119–130, 1988.

[54] Philipp Geiger and Christoph Dellago. Neural networks for local structure detection
in polymorphic systems. The Journal of Chemical Physics, 139(16):164105, 2013.

[55] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016.

[56] Jiayi Guo, Haojun Liang, and Zhen-Gang Wang. Coil-to-globule transition
by dissipative particle dynamics simulation. The Journal of chemical physics,
134(24):244904, 2011.

[57] Zuojun Guo, Guojie Zhang, Feng Qiu, Hongdong Zhang, Yuliang Yang, and An-
Chang Shi. Discovering ordered phases of block copolymers: New results from a
generic fourier-space approach. Phys. Rev. Lett., 101:028301, Jul 2008.

[58] Ian W Hamley. Developments in block copolymer science and technology. Wiley, New
York, 2004.

[59] Jiequn Han, Arnulf Jentzen, and E Weinan. Solving high-dimensional partial differen-
tial equations using deep learning. Proceedings of the National Academy of Sciences,
115(34):8505–8510, 2018.

[60] W. K. Hastings. Monte Carlo sampling methods using Markov chains and their
applications. Biometrika, 57(1):97–109, 04 1970.

105

[61] Simon Haykin. Neural Networks: A Comprehensive Foundation (3rd Edition).
Prentice-Hall, Inc., 2007.

[62] Eugene Helfand. Theory of inhomogeneous polymers: Fundamentals of the gaussian
random-walk model. The Journal of Chemical Physics, 62(3):999–1005, 1975.

[63] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed,
Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N Sainath,
et al. Deep neural networks for acoustic modeling in speech recognition: The shared
views of four research groups. IEEE Signal Process. Mag., 29(6):82–97, 2012.

[64] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R
Salakhutdinov. Improving neural networks by preventing co-adaptation of feature
detectors. arXiv preprint arXiv:1207.0580, 2012.

[65] Tin Kam Ho. Random decision forests. In Proceedings of 3rd International Con-
ference on Document Analysis and Recognition, volume 1, pages 278–282 vol.1, Aug
1995.

[66] Tin Kam Ho. The random subspace method for constructing decision forests. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 20(8):832–844, Aug
1998.

[67] K. M. Hong and J. Noolandi. Theory of inhomogeneous multicomponent polymer
systems. Macromolecules, 14(3):727–736, 1981.

[68] Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural
Networks, 4(2):251 – 257, 1991.

[69] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward
networks are universal approximators. Neural Networks, 2(5):359 – 366, 1989.

[70] Wenjian Hu, Rajiv RP Singh, and Richard T Scalettar. Discovering phases, phase
transitions, and crossovers through unsupervised machine learning: A critical exam-
ination. Phys. Rev. E, 95(6):062122, 2017.

[71] Li Huang and Lei Wang. Accelerated monte carlo simulations with restricted boltz-
mann machines. Phys. Rev. B, 95:035105, Jan 2017.

[72] Maurice L. Huggins. Solutions of long chain compounds. The Journal of Chemical
Physics, 9(5):440–440, 1941.

106

[73] Anil K Jain. Data clustering: 50 years beyond k-means. Pattern recognition letters,
31(8):651–666, 2010.

[74] Anil K Jain, Robert P. W. Duin, and Jianchang Mao. Statistical pattern recognition:
A review. IEEE Trans. Pattern Anal. Mach. Intell., 22(1):4–37, 2000.

[75] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An introduc-
tion to statistical learning. Springer, 2013.

[76] Arnulf Jentzen, Diyora Salimova, and Timo Welti. A proof that deep artificial neural
networks overcome the curse of dimensionality in the numerical approximation of
kolmogorov partial differential equations with constant diffusion and nonlinear drift
coefficients. arXiv preprint arXiv:1809.07321, 2018.

[77] Ying Jiang and Jeff Z. Y. Chen. Influence of chain rigidity on the phase behavior of
wormlike diblock copolymers. Phys. Rev. Lett., 110:138305, Mar 2013.

[78] I. T Jolliffe. Principal Component Analysis. Wiley, Chichester, U.K., 2002.

[79] MI Jordan and TM Mitchell. Machine learning: Trends, perspectives, and prospects.
Science, 349(6245):255–260, 2015.

[80] Josh P. Kemp and Zheng Yu Chen. Formation of helical states in wormlike polymer
chains. Phys. Rev. Lett., 81:3880–3883, Nov 1998.

[81] Alexei R Khokhlov. Statistical physics of macromolecules. Amer Inst of Physics,
1994.

[82] AR Khokhlov and AN Semenov. On the theory of liquid-crystalline ordering of
polymer chains with limited flexibility. Journal of Statistical Physics, 38(1-2):161–
182, 1985.

[83] Kyungtae Kim, Akash Arora, Ronald M. Lewis, Meijiao Liu, Weihua Li, An-Chang
Shi, Kevin D. Dorfman, and Frank S. Bates. Origins of low-symmetry phases in asym-
metric diblock copolymer melts. Proceedings of the National Academy of Sciences,
115(5):847–854, 2018.

[84] Kyungtae Kim, Morgan W. Schulze, Akash Arora, Ronald M. Lewis, Marc A.
Hillmyer, Kevin D. Dorfman, and Frank S. Bates. Thermal processing of diblock
copolymer melts mimics metallurgy. Science, 356(6337):520–523, 2017.

107

[85] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[86] RG Kirste, WA Kruse, and K Ibel. Determination of the conformation of polymers
in the amorphous solid state and in concentrated solution by neutron diffraction.
Polymer, 16(2):120–124, 1975.

[87] Peter Kotelenez. Stochastic ordinary and stochastic partial differential equations:
transition from microscopic to macroscopic equations, volume 58. Springer-Verlag
New York, 2008.

[88] Manoj Kumar and Neha Yadav. Multilayer perceptrons and radial basis function
neural network methods for the solution of differential equations: a survey. Comput-
ers & Mathematics with Applications, 62(10):3796–3811, 2011.

[89] Isaac E Lagaris, Aristidis Likas, and Dimitrios I Fotiadis. Artificial neural networks
for solving ordinary and partial differential equations. IEEE Transactions on Neural
Networks, 9(5):987–1000, 1998.

[90] Isaac E Lagaris, Aristidis C Likas, and Dimitris G Papageorgiou. Neural-network
methods for boundary value problems with irregular boundaries. IEEE Transactions
on Neural Networks, 11(5):1041–1049, 2000.

[91] David P Landau and Kurt Binder. A guide to Monte Carlo simulations in statistical
physics. Cambridge university press, 2014.

[92] Lev Davidovich Landau. On the theory of phase transitions. Ukr. J. Phys., 11:19–32,
1937.

[93] Mohamed Laradji, An-Chang Shi, Rashmi C. Desai, and Jaan Noolandi. Stability
of ordered phases in weakly segregated diblock copolymer systems. Phys. Rev. Lett.,
78:2577–2580, Mar 1997.

[94] Y. LeCun, C. Cortes, and C Burges. The mnist database of hand-
written digits. http://web.archive.org/web/20080207010024/http://www.

808multimedia.com/winnt/kernel.htm. Accessed: 2010-09-30.

[95] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,
521(7553):436–444, 2015.

108

http://web.archive.org/web/20080207010024/http://www.808multimedia.com/winnt/kernel.htm
http://web.archive.org/web/20080207010024/http://www.808multimedia.com/winnt/kernel.htm

[96] Yann LeCun, Bernhard E Boser, John S Denker, Donnie Henderson, Richard E
Howard, Wayne E Hubbard, and Lawrence D Jackel. Handwritten digit recognition
with a back-propagation network. In Advances in neural information processing
systems, pages 396–404, 1990.

[97] Yann LeCun, LD Jackel, Léon Bottou, Corinna Cortes, John S Denker, Harris
Drucker, Isabelle Guyon, UA Muller, E Sackinger, Patrice Simard, et al. Learn-
ing algorithms for classification: A comparison on handwritten digit recognition.
Neural networks: the statistical mechanics perspective, 261:276, 1995.

[98] Sangwoo Lee, Michael J. Bluemle, and Frank S. Bates. Discovery of a frank-kasper
ŠÒ phase in sphere-forming block copolymer melts. Science, 330(6002):349–353,
2010.

[99] Sangwoo Lee, Chris Leighton, and Frank S. Bates. Sphericity and symmetry breaking
in the formation of frank–kasper phases from one component materials. Proceedings
of the National Academy of Sciences, 111(50):17723–17731, 2014.

[100] Ludwik Leibler. Theory of microphase separation in block copolymers. Macro-
molecules, 13(6):1602–1617, 1980.

[101] C-D Li, D-R Tan, and F-J Jiang. Applications of neural networks to the studies of
phase transitions of two-dimensional potts models. Ann. Phys., 391:312–331, 2018.

[102] Jianfeng Li, Hongdong Zhang, and Jeff Z. Y. Chen. Structural prediction and inverse
design by a strongly correlated neural network. Phys. Rev. Lett., 123, Sep 2019.

[103] Mingqi Li and Christopher K. Ober. Block copolymer patterns and templates. Ma-
terials Today, 9(9):30 – 39, 2006.

[104] Henry W. Lin and Max Tegmark. Why does deep and cheap learning work so well?
2016.

[105] Cheng-Yuan Liou, Jau-Chi Huang, and Wen-Chie Yang. Modeling word perception
using the elman network. Neurocomputing, 71(16-18):3150–3157, 2008.

[106] Richard P Lippmann. Review of neural networks for speech recognition. Neural
Comput, 1(1):1–38, 1989.

[107] Junwei Liu, Yang Qi, Zi Yang Meng, and Liang Fu. Self-learning monte carlo method.
Phys. Rev. B, 95:041101, Jan 2017.

109

[108] Ye-Hua Liu and Evert P. L. van Nieuwenburg. Discriminative cooperative networks
for detecting phase transitions. Phys. Rev. Lett., 120:176401, Apr 2018.

[109] Andrew W Long and Andrew L Ferguson. Nonlinear machine learning of patchy
colloid self-assembly pathways and mechanisms. The Journal of Physical Chemistry
B, 118(15):4228–4244, 2014.

[110] Xingkun Man, Shuang Yang, Dadong Yan, and An-Chang Shi. Adsorption and
depletion of polyelectrolytes in charged cylindrical system within self-consistent field
theory. Macromolecules, 41(14):5451–5456, 2008.

[111] M. Matsen and M. Schick. Stable and unstable phases of a diblock copolymer melt.
Phys. Rev. Lett., 72:2660–2663, Apr 1994.

[112] M. W. Matsen. Phase behavior of block copolymer/homopolymer blends. Macro-
molecules, 28(17):5765–5773, 1995.

[113] M. W. Matsen. The standard gaussian model for block copolymer melts. Journal of
Physics: Condensed Matter, 14(2):R21, 2002.

[114] M. W. Matsen. Fast and accurate scft calculations for periodic block-copolymer mor-
phologies using the spectral method with anderson mixing. The European Physical
Journal E, 30(4):361, Dec 2009.

[115] M. W. Matsen and F. S. Bates. Unifying weak- and strong-segregation block copoly-
mer theories. Macromolecules, 29(4):1091–1098, 1996.

[116] Mark W Matsen. Self-consistent field theory and its applications. Soft Matter, 1:87–
178, 2006.

[117] Pankaj Mehta, Marin Bukov, Ching-Hao Wang, Alexandre GR Day, Clint Richard-
son, Charles K Fisher, and David J Schwab. A high-bias, low-variance introduction
to machine learning for physicists. arXiv preprint arXiv:1803.08823, 2018.

[118] Pankaj Mehta and David J Schwab. An exact mapping between the variational
renormalization group and deep learning. arXiv preprint arXiv:1410.3831, 2014.

[119] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H.
Teller, and Edward Teller. Equation of state calculations by fast computing machines.
The Journal of Chemical Physics, 21(6):1087–1092, 1953.

110

[120] Ryszard S Michalski, Jaime G Carbonell, and Tom M Mitchell. Machine learning:
An artificial intelligence approach. Springer Science & Business Media, 2013.

[121] Marcus Müller and Friederike Schmid. Incorporating fluctuations and dynamics in
self-consistent field theories for polymer blends. In Christian Holm and Kurt Kre-
mer, editors, Advanced Computer Simulation Approaches for Soft Matter Sciences
II, pages 1–58. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005.

[122] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

[123] Michael A Nielsen. Neural networks and deep learning. URL:
http://neuralnetworksanddeeplearning. com/.(visited: 01.11. 2014), 2015.

[124] Tomi Ohtsuki and Tomoki Ohtsuki. Deep learning the quantum phase transitions
in random electron systems: Applications to three dimensions. J. Phys. Soc. Jpn.,
86(4):044708, 2017.

[125] Lars Onsager. Crystal statistics. i. a two-dimensional model with an order-disorder
transition. Physical Review, 65(3-4):117, 1944.

[126] Christos H. Papadimitriou. Computational complexity. In Encyclopedia of Computer
Science, pages 260–265. John Wiley and Sons Ltd., 2003.

[127] Rajesh Parekh, Jihoon Yang, and Vasant Honavar. Constructive neural-network
learning algorithms for pattern classification. IEEE Trans. Neural Netw., 11(2):436–
451, 2000.

[128] Karl Pearson. On lines and planes of closest fit to systems of points in space. Philos.
Mag., 2:559–572, 1901.

[129] Pedro Ponte and Roger G. Melko. Kernel methods for interpretable machine learning
of order parameters. Phys. Rev. B, 96:205146, Nov 2017.

[130] Yuri O. Popov, Jonghoon Lee, and Glenn H. Fredrickson. Field-theoretic simula-
tions of polyelectrolyte complexation. Journal of Polymer Science Part B: Polymer
Physics, 45(24):3223–3230, 2007.

[131] Nataliya Portman and Isaac Tamblyn. Sampling algorithms for validation of super-
vised learning models for ising-like systems. 2016.

[132] William H Press. Numerical recipes 3rd edition: The art of scientific computing.
Cambridge university press, 2007.

111

[133] A Kai Qin, Vicky Ling Huang, and Ponnuthurai N Suganthan. Differential evolu-
tion algorithm with strategy adaptation for global numerical optimization. IEEE
transactions on Evolutionary Computation, 13(2):398–417, 2009.

[134] Marcelino Quito, Christopher Monterola, and Caesar Saloma. Solving N -body prob-
lems with neural networks. Phys. Rev. Lett., 86:4741–4744, May 2001.

[135] Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics informed deep
learning (part i): Data-driven solutions of nonlinear partial differential equations.
arXiv preprint arXiv:1711.10561, 2017.

[136] Wen-Jia Rao, Zhenyu Li, Qiong Zhu, Mingxing Luo, and Xin Wan. Identifying
product order with restricted boltzmann machines. Phys. Rev. B, 97(9):094207,
2018.

[137] Carl Edward Rasmussen. Gaussian processes in machine learning. In Advanced
lectures on machine learning, pages 63–71. Springer, 2004.

[138] Prince E Rouse Jr. A theory of the linear viscoelastic properties of dilute solutions
of coiling polymers. The Journal of Chemical Physics, 21(7):1272–1280, 1953.

[139] Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv
preprint arXiv:1609.04747, 2016.

[140] Samuel H. Rudy, Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. Data-
driven discovery of partial differential equations. Science Advances, 3(4), 2017.

[141] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning repre-
sentations by back-propagating errors. Nature, 323:533, 10 1986.

[142] A. L. Samuel. Some studies in machine learning using the game of checkers. IBM
Journal of Research and Development, 44(1.2):206–226, Jan 2000.

[143] Frank Schindler, Nicolas Regnault, and Titus Neupert. Probing many-body localiza-
tion with neural networks. Phys. Rev. B, 95(24):245134, 2017.

[144] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural Net,
61:85–117, 2015.

[145] Stefan Schnabel, Michael Bachmann, and Wolfhard Janke. Elastic lennard-jones
polymers meet clusters: Differences and similarities. The Journal of chemical physics,
131(12):124904, 2009.

112

[146] Stefan Schnabel, Daniel T. Seaton, David P. Landau, and Michael Bachmann. Micro-
canonical entropy inflection points: Key to systematic understanding of transitions
in finite systems. Phys. Rev. E, 84:011127, Jul 2011.

[147] Stefan Schnabel, Thomas Vogel, Michael Bachmann, and Wolfhard Janke. Surface
effects in the crystallization process of elastic flexible polymers. Chem. Phys. Lett.,
476(46):201 – 204, 2009.

[148] DT Seaton, T Wüst, and DP Landau. Collapse transitions in a flexible homopolymer
chain: Application of the wang-landau algorithm. Phys. Rev. E, 81(1):011802, 2010.

[149] Irwin H Segel. Enzyme kinetics: behavior and analysis of rapid equilibrium and steady
state enzyme systems. Wiley New York, 1993.

[150] H. S. Seung, H. Sompolinsky, and N. Tishby. Statistical mechanics of learning from
examples. Phys. Rev. A, 45:6056–6091, Apr 1992.

[151] Christopher J Shallue and Andrew Vanderburg. Identifying exoplanets with deep
learning: A five planet resonant chain around kepler-80 and an eighth planet around
kepler-90. Accepted for publication in the The Astronomical Journal.

[152] Tristan A. Sharp, Spencer L. Thomas, Ekin D. Cubuk, Samuel S. Schoenholz,
David J. Srolovitz, and Andrea J. Liu. Machine learning determination of atomic
dynamics at grain boundaries. Proceedings of the National Academy of Sciences,
115(43):10943–10947, 2018.

[153] An-Chang Shi. Self-consistent field theory. In Shiro Kobayashi and Klaus Müllen,
editors, Encyclopedia of Polymeric Nanomaterials, pages 2199–2203. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2015.

[154] An-Chang Shi, Jaan Noolandi, and Rashmi C. Desai. Theory of anisotropic fluctua-
tions in ordered block copolymer phases. Macromolecules, 29(20):6487–6504, 1996.

[155] B. W. Silverman and M. C. Jones. E. fix and j.l. hodges (1951): An important contri-
bution to nonparametric discriminant analysis and density estimation: Commentary
on fix and hodges (1951). International Statistical Review, 57(3):233–238, 1989.

[156] Justin Sirignano and Konstantinos Spiliopoulos. Dgm: A deep learning algorithm for
solving partial differential equations. Journal of Computational Physics, 375:1339–
1364, 2018.

113

[157] John C. Snyder, Matthias Rupp, Katja Hansen, Klaus-Robert Müller, and Kieron
Burke. Finding density functionals with machine learning. Phys. Rev. Lett.,
108:253002, Jun 2012.

[158] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting.
J. Mach. Learn. Res., 15(1):1929–1958, January 2014.

[159] H. Staudinger and Jules Meyer. Über neue organische phosphorverbindungen iii.
phosphinmethylenderivate und phosphinimine. Helvetica Chimica Acta, 2(1):635–
646, 1919.

[160] Paul J. Steinhardt, David R. Nelson, and Marco Ronchetti. Bond-orientational order
in liquids and glasses. Phys. Rev. B, 28:784–805, Jul 1983.

[161] Gert R Strobl. The physics of polymers, volume 2. Springer, 1997.

[162] Shao-Tang Sun, Izumi Nishio, Gerald Swislow, and Toyoichi Tanaka. The coil–
globule transition: Radius of gyration of polystyrene in cyclohexane. The Journal of
Chemical Physics, 73(12):5971–5975, 1980.

[163] J.A.K. Suykens and J. Vandewalle. Least squares support vector machine classifiers.
Neural Processing Letters, 9(3):293–300, Jun 1999.

[164] Gerald Swislow, Shao-Tang Sun, Izumi Nishio, and Toyoichi Tanaka. Coil-globule
phase transition in a single polystyrene chain in cyclohexane. Physical Review Letters,
44(12):796, 1980.

[165] R. B. Thompson, K. O/. Rasmussen, and T. Lookman. Improved convergence in
block copolymer self-consistent field theory by anderson mixing. The Journal of
Chemical Physics, 120(1):31–34, 2004.

[166] Giacomo Torlai and Roger G. Melko. Learning thermodynamics with boltzmann
machines. Phys. Rev. B, 94:165134, Oct 2016.

[167] Lloyd N Trefethen. Spectral methods in MATLAB, volume 10. Siam, 2000.

[168] Peter J. M. van Laarhoven and Emile H. L. Aarts. Simulated annealing, pages 7–15.
Springer Netherlands, Dordrecht, 1987.

[169] B. Ph. van Milligen, V. Tribaldos, and J. A. Jiménez. Neural network differential
equation and plasma equilibrium solver. Phys. Rev. Lett., 75:3594–3597, Nov 1995.

114

[170] Evert P. L. van Nieuwenburg, Ye-Hua Liu, and Sebastian D. Huber. Learning phase
transitions by confusion. Nature Physics, 13(5):435, 2017.

[171] Michael Walters, Qianshi Wei, and Jeff Z. Y. Chen. Machine learning topological
defects of confined liquid crystals in two dimensions. Phys. Rev. E, 99:062701, Jun
2019.

[172] Ce Wang and Hui Zhai. Machine learning of frustrated classical spin models. i.
principal component analysis. Phys. Rev. B, 96(14):144432, 2017.

[173] Fugao Wang and D. P Landau. Determining the density of states for classical sta-
tistical models: A random walk algorithm to produce a flat histogram. Phys. Rev.
E, 64(5):056101, 2001.

[174] Fugao Wang and D. P. Landau. Efficient, multiple-range random walk algorithm to
calculate the density of states. Phys. Rev. Lett., 86:2050–2053, Mar 2001.

[175] Lei Wang. Discovering phase transitions with unsupervised learning. Phys. Rev. B,
94:195105, Nov 2016.

[176] Qiang Wang, Takashi Taniguchi, and Glenn H. Fredrickson. Self-consistent field the-
ory of polyelectrolyte systems. The Journal of Physical Chemistry B, 108(21):6733–
6744, 2004.

[177] Rui Wang and Zhen-Gang Wang. Theory of polymers in poor solvent: phase equi-
librium and nucleation behavior. Macromolecules, 45(15):6266–6271, 2012.

[178] Zhen-Gang Wang. 50th anniversary perspective: Polymer conformation–a pedagog-
ical review. Macromolecules, 50(23):9073–9114, 2017.

[179] Timothy L. H. Watkin, Albrecht Rau, and Michael Biehl. The statistical mechanics
of learning a rule. Rev. Mod. Phys., 65:499–556, Apr 1993.

[180] Jennifer N. Wei, David Duvenaud, and Alan Aspuru-Guzik. Neural networks for the
prediction of organic chemistry reactions. ACS Central Science, 2(10):725–732, 2016.
PMID: 27800555.

[181] Qianshi Wei, Ying Jiang, and Jeff Z. Y. Chen. Machine-learning solver for modified
diffusion equations. Phys. Rev. E, 98:053304, Nov 2018.

[182] Qianshi Wei, Roger G. Melko, and Jeff Z. Y. Chen. Identifying polymer states by
machine learning. Phys. Rev. E, 95:032504, Mar 2017.

115

[183] Xiao-Gang Wen. Quantum field theory of many-body systems: from the origin of
sound to an origin of light and electrons. Oxford University Press on Demand, 2004.

[184] Sebastian J Wetzel. Unsupervised learning of phase transitions: From principal
component analysis to variational autoencoders. Phys. Rev. E, 96(2):022140, 2017.

[185] George M. Whitesides and Bartosz Grzybowski. Self-assembly at all scales. Science,
295(5564):2418–2421, 2002.

[186] M. D. Whitmore and J. D. Vavasour. Self-consistent field theory of block copolymers
and block copolymer blends. Acta Polymerica, 46(5):341–360, 1995.

[187] Ian H Witten and Eibe Frank. Data Mining: Practical machine learning tools and
techniques. Morgan Kaufmann, 2005.

[188] Chi Wu and Xiaohui Wang. Globule-to-coil transition of a single homopolymer chain
in solution. Physical review letters, 80(18):4092, 1998.

[189] Xin Xu, Qianshi Wei, Huaping Li, Yuzhang Wang, Yuguo Chen, and Ying Jiang.
Recognition of polymer configurations by unsupervised learning. Phys. Rev. E,
99:043307, Apr 2019.

[190] Julia M Yeomans. Statistical mechanics of phase transitions. Clarendon Press, 1992.

[191] Bin Yu, Pingchuan Sun, Tiehong Chen, Qinghua Jin, Datong Ding, Baohui Li, and
An-Chang Shi. Confinement-induced novel morphologies of block copolymers. Phys.
Rev. Lett., 96:138306, Apr 2006.

[192] Wancheng Yu, Yuan Liu, Yuguo Chen, Ying Jiang, and Jeff ZY Chen. Generating
the conformational properties of a polymer by the restricted boltzmann machine.
The Journal of chemical physics, 151(3):031101, 2019.

[193] Lixin Zhan, Jeff Z. Y. Chen, and Wing-Ki Liu. Determination of structural transitions
of atomic clusters from local and global bond orientational order parameters. J.
Chem. Phys., 127(14):141101, 2007.

[194] Pengfei Zhang, Huitao Shen, and Hui Zhai. Machine learning topological invariants
with neural networks. Phys. Rev. Lett., 120(6):066401, 2018.

[195] Yi Zhang and Eun-Ah Kim. Quantum loop topography for machine learning. Phys.
Rev. Lett., 118:216401, May 2017.

116

[196] Yi Zhang, Roger G Melko, and Eun-Ah Kim. Machine learning z2 quantum spin
liquids with quasiparticle statistics. Phys. Rev. B, 96(24):245119, 2017.

[197] Bruno H Zimm. Dynamics of polymer molecules in dilute solution: viscoelasticity,
flow birefringence and dielectric loss. The journal of chemical physics, 24(2):269–278,
1956.

117

	List of Tables
	List of Figures
	Nomenclature
	Introduction
	Motivation
	Polymer states
	Identifying polymer states
	Ehrenfest classification
	Landau classification
	Machine learning methods

	Predicting equilibrium states of block copolymers
	Micro-phase separation
	Traditional methods
	Machine learning based methods

	Objective of thesis
	Organization of thesis

	Machine learning methods
	Background
	Classification by supervised learning
	Architecture of an FNN for classification
	Supervised learning

	Unsupervised learning
	Machine learning PDE solver
	Regression by an FNN
	Constructing a machine learning PDE solver
	Training the machine learning PDE solver

	Identifying polymer states by supervised learning
	Introduction
	Polymer models and states
	Training an FNN with polymer samples
	Constructing an FNN
	Training

	Coil-to-globule transition
	Low-energy polymer states
	In search of a phase transition
	The order of a phase transition
	Summary

	Identifying polymer states by unsupervised learning
	Introduction
	Main procedure
	Coil-to-globule transition
	Globule-to-anti-Mackay-to-Mackay transition
	Identifying transition points
	Summary

	Machine learning solver for the modified diffusion equation of AB diblock copolymer
	Introduction
	Main procedure
	Machine learning PDE solver
	Diffusion equation
	Performance
	Breaking the curse of dimensionality

	Self-assembly of diblock copolymers
	Self-consistent equations for predicting the structures of diblock copolymers
	Equilibrium structure observed

	Discussion
	Summary

	Conclusion and Outlook
	Conclusion
	Outlook
	Identifying polymer states
	Machine learning based PDE solver

	APPENDICES
	Polymer models and Monte Carlo methods
	Gaussian-chain model with a square-well potential
	FENE model with a LJ interaction
	Monte Carlo methods
	Metropolis method
	Wang-Landau method

	A pedagogical guide of the machine learning PDE solver
	Publications
	References

