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Abstract

In this thesis, we summarize the work which we authored or co-authored during our PhD

studies and also present additional details and ideas that are not found elsewhere. The main

topic is the study of T-duality in theoretical physics through the lens of para-Hermitian

geometry and Born geometry as well as the description of mathematical aspects of said

geometries. In the summary portion, we introduce the D-bracket and a related notion of

torsion on para-Hermitian manifolds, consequently using these geometric elements to define

a unique connection with canonical properties analogous to the Levi-Civita connection in

Riemannian geometry. We then discuss para-Hermitian geometry and Born geometry in the

framework of generalized geometry, showing that both arise naturally in this context. We

also show that the D-bracket can be recovered from the small and large Courant algebroids

of the para-Hermitian manifold using the formalism of generalized geometry. Lastly, we dis-

cuss applications to theoretical physics beyond the immediate context of T-duality, showing

that our generalized-geometric formulations of para-Hermitian geometry and Born geometry

correspond to extended symmetries of two-dimensional non-linear sigma models. We also

introduce the notion of para-Calabi-Yau manifolds and use this new geometry to study the

semi-flat mirror symmetry. We show, in particular, that both the mirror manifolds carry

Born structures and that the mirror map relates the symplectic moduli space of the Born ge-

ometry on one side to the complex and para-complex moduli on the other side. Additionally,

we discuss the para-Hermitian geometry underlying the topological T-duality of Bouwknegt,

Evslin and Mathai and present various new discussions and reformulations of known results.

iv



Acknowledgements

I would like to thank my supervisors for essential lessons they taught me both academ-

ically and in life. Specifically, I thank Laurent Freidel for showing me the importance of

humility, I thank Shengda Hu for his continuous support during my PhD journey, and I

thank Ruxandra Moraru for leading me towards mastery in academic writing.

I must also thank professors Spiro Karigiannis, Robert Mann and Richard J. Szabo for

the many insightful suggestions, questions and reported typos that helped me improve this

thesis.

I would also like to thank my peers and friends in academia, especially Dylan Butson

for teaching me the ABC’s of differential geometry, Miroslav Rapčák for showing me many
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Chapter 1

Introduction

The aim of this thesis is to unify the differential geometry that underlies the concept of

T-duality in theoretical physics, particularly string theory, under the roof of para-Hermitian

geometry, and its special case, Born geometry. For this, we start with a brief review of

the appearance of T-duality in physics. The following paragraphs should not, however, be

understood as a full account of the notion of T-duality, but rather as an introduction to the

particular cases we will consider in this work.

In short, T-duality is an equivalence of two physical theories that arises in string theory

and more generally quantum field theory. A particular class of quantum field theories that

give rise to T-duality are 2D σ-models, which are theories of maps from a Riemann surface,

called the worldsheet, into a target manifold (usually also Riemannian), called the target

space. What is meant by equivalence of physical theories is vastly dependent on the given

context, but for the purpose of this work we shall say that two theories are equivalent if they

yield the same equations of motion.

Let now Geo1 and Geo2 denote the placeholders referring generically to the geometric

data associated to the two T-dual theories. We will be mostly concerned with studying the

geometric realization of T-duality, i.e. the purely geometric relationship between Geo1 and

Geo2. The philosophy we employ is that any time T-duality exists, the two geometries

Geo1 and Geo2 can be recovered from a shared geometric origin Geo, which should then

be understood as the fundamental geometric picture and Geo1 and Geo2 as its physical
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realizations, or limits:

Geo

Geo1 Geo2
T-duality

. (1.0.1)

The very appearance of T-duality is then seen as a consequence of the existence of the

overarching geometry Geo. This geometry is the main object of interest in this thesis and

we propose its description in terms of Born geometry.

The above philosophy can also be realized at the level of physical theories, following the

natural belief that there exists a unifying theory “upstairs” corresponding to Geo. There,

T-duality should act simply as a symmetry, exchanging the arrows to Geo1 and Geo2.

This research program is generally called Double Field Theory after the pioneering work

of Hull and Zwiebach [1], which studies T-duality covariant string field theory on tori. The

name is derived from the fact that the fields of the theory on Geo carry degrees of freedom

corresponding to both Geo1 and Geo2 and therefore are doubled. A similar approach, where

Born geometry first appeared, is the Metastring Theory [2, 3] of Freidel, Leigh and Minic,

where Geo is also given an additional physical interpretation of phase space of what the

authors call the fundamental string.

The case we will mostly study is when Geo1 and Geo2 are two different target space

geometries for a shared worldsheet. Then, Geo1 refers to a particular manifold M with

additional data, for example a Riemannian metric g and a closed three-form H. Similarly,

Geo2 is then given by a triple (M̃, g̃, H̃) of the same type of data on a different manifold M̃ .

The simplest naive model for Geo is given by the manifold M = M × M̃ with the diagonal

metric G = g × g̃ and the three-form p∗H − p̃∗H̃, where p ∶ M → M and p̃ ∶ M → M̃ are the

obvious projections. Because M and M̃ are understood as the physical spaces of the T-dual

theories, we call M the extended spacetime (or extended geometry/space). The geometry

of M can be more intricate and in particular will not be globally a product M × M̃ but,

locally, it will (at least for the cases we study) always have this form. The manifolds M

and M̃ will also be recovered from M in a more subtle way, for example by taking certain

quotients.

Typically, there will be a free action by dual tori1 T d and T̃ d on M and M̃ , respectively.

If the action is also transitive, then M = T d and M̃ = T̃ d, but in general M and M̃ are only

1By dual torus we mean a torus defined by the dual lattice.
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torus fibrations:

T d M

B

p and
T̃ d M̃

B̃

p̃ .

When B = B̃, we can take M =M ×B M̃ to be the fiber product and understand T-duality

as the exchange of the torus fibres. This geometric scenario is typical of topological T-

duality [4, 5] and a similar picture also arises in SYZ mirror symmetry [6]. In general,

we call this abelian T-duality because the group actions on M and M̃ are abelian. This

picture can be generalized to the case of a free action of non-abelian groups, carrying the

name non-abelian [7] or Poisson-Lie T-duality [8, 9]. In this case, the duality between

the tori is replaced by the requirement that the Lie algebras of the groups G and G̃ acting

on M and M̃ , respectively, are dual as vector spaces.

We will now illustrate how para-Hermitian and Born geometries arise in the simplest

possible T-duality scenario, where both M and M̃ are circles S1 and M = S1 ×S1 = T 2 is the

two-dimensional torus.

1.1 Example: Born geometry toy model

Consider a string theory on a circle S1
R with radius R, i.e. a theory of maps from a Riemann

surface into the circle S1
R. One of the important physical quantities one might wish to

calculate is the center of mass energy of the string sitting in this circle. Because the string is

allowed to wrap around the circle multiple times, the energy depends on an integer m that

counts this, called the winding number. Of course, the energy also depends on a momentum

p, which must take only discrete values because the space is circular and is proportional to

n/R, where n is an integer called the momentum number and R is the radius of the circle.

Calculating the total energy, one gets with appropriate choice of physical constants,

E2 ∼ (mR)2 + ( n
R

)
2

+⋯,

where (⋯) represents terms independent of m,n and R. Here we can observe the simplest

incarnation of T-duality: the energy of the string is invariant under the exchange (m,n,R) ↔
(n,m, 1

R). This tells us that a string propagating on a circle with a radius R, momentum
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number n and winding number m will have the exact same energy as a string propagating

on a circle with a radius R′ = 1/R, momentum number m and winding number n.

We will now aim to formulate this feature geometrically, i.e. look for the unifying ex-

tended geometry from which both T-dual pictures can be recovered as in (1.0.1). To do so,

we interpret the winding number m attached to the circle S1
R as a momentum along some

dual circle with radius R′ = 1/R. In this way, we are replacing a string wrapped m times

around the circle S1
R and propagating with a momentum number n by a string propagating

on the extended space S = S1
R × S1

R′ with momentum numbers (n,m) in each of the circular

directions. Note that we can recover the two T-dual pictures from S equally well by in-

terpreting one of the circles as the space-time direction with momenta tangent to it, while

identifying the momenta along the other circle as the winding modes.

The extended space S = S1
R × S1

R′ of the toy model is in fact the first instance of Born

geometry and we will now use it to illustrate the defining properties of this geometry. First,

we recall the fact that while the momenta along S1
R are represented by vectors, the winding

modes around S1
R are given by covectors. Because T-duality exchanges winding modes

around S1
R and momenta along S1

R′ (and vice versa), it can be written as a map

T ∶ TS1
R ⊕ T ∗S1

R → T ∗S1
R′ ⊕ TS1

R′

(∂θ, dθ) ↦ (dθ̃, ∂θ̃),

where (θ, θ̃) are coordinates on S1
R × S1

R′ . From our previous discussion it is clear that T-

duality also maps in the opposite direction and we denote this map by T as well. This defines

a metric η on S by

η(X,Y ) = ⟨TX,Y ⟩,

where ⟨ , ⟩ is the duality pairing between TS and T ∗S and X,Y are vector fields on S. T

acts on X as TX = Tx+T x̃, where X = x+ x̃ is the splitting into components tangent to S1
R

and S1
R′ , respectively. The metric η is of signature (1,1) and satisfies

η(∂θ, ∂θ) = η(∂θ̃, ∂θ̃) = 0 and η(∂θ, ∂θ̃) = η(∂θ̃, ∂θ) = 1.

We also observe that there is a natural endomorphism K ∈ Γ(End(TS)), defined by

K∂θ = ∂θ and K∂θ̃ = −∂θ̃, (1.1.1)
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and satisfying

K2 = 1, η(KX,KY ) = −η(X,Y ). (1.1.2)

The pair (η,K) defines a para-Hermitian structure on S, which can be seen as the basic

building block of the Born geometry on S. In order to get the full Born geometry, we define

a metric g on S1
R by

g(∂θ, ∂θ) = 1,

which in turn defines a metric g̃ on S1
R′ :

g̃(∂θ̃, ∂θ̃) = g−1(T∂θ̃,T∂θ̃).

The pair (g, g̃) then defines a diagonal Riemannian metric H on S by H = g⊕ g̃. In summary,

the Born geometry on S is given by the triple (η,K,H), which in the coordinate frame

(∂θ, ∂θ̃) is given by the matrices

η =
⎛
⎝

0 1

1 0

⎞
⎠
, K =

⎛
⎝

1 0

0 −1

⎞
⎠
, H =

⎛
⎝

1 0

0 1

⎞
⎠
.

These structures satisfy a wealth of compatibility conditions characteristic for Born geometry.

In particular, there is a symplectic structure ω = η−1K, a complex structure I = η−1ω and a

chiral involution J = η−1H, which satisfy the para-quaternionic algebra

−I2 = J2 =K2 = 1, {I, J} = {J,K} = {I,K} = 0, IJK = −1.

Even though this toy example is very simple and non-physical due to only one compact

spatial direction, the main intuitive idea remains the same in more complicated geometric

settings where there are both compact and non-compact spatial directions and T-duality acts

only on certain cycles of the manifold. The corresponding geometry is then a fibration where

T-duality only acts on the fibres and the radius of the circle is generalized to a measure given

by a fiber metric g. One can also consider a non-zero NS-NS flux given by a closed three-form

H which is locally specified by a two-form b called the b-field and satisfying H = db. If one
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then performs T-duality as an exchange of two fiber directions (with coordinates labelled by

x and x̃), the components of g and b are transformed according to the Buscher rules (due to

T. H. Buscher [10, 11]) and new quantities g̃ and b̃ are obtained:

g̃x̃x̃ =
1

gxx
b̃x̃µ =

gxµ
gxx

g̃x̃µ =
bxµ
gxx

b̃µν = bµν +
gx̃µbxν − bxµgxν

gxx

g̃µν = gµν +
bx̃µbxν − gxµgxν

gxx

(1.1.3)

where the directions labelled by Greek letters are not acted upon by T-duality. We observe

that when b = 0 and the metric g is diagonal, the Buscher rules tell us that the metric

component in the T-dualized direction is replaced by the inverse metric, which is in accor-

dance to our initial toy model example where the change in geometry was represented by

the replacement R → 1/R.

The purpose of this work is to generalize the above example to more complicated settings

and explore the properties of Born geometry in detail, relating them to various applications

in physics, both in string theory and beyond.

The thesis is organised as follows. In Chapter 2, we introduce para-Hermitian geome-

try, which is the most important building block of Born geometry because it describes the

fundamental T-duality splitting. As such, it should be thought of as the background or

kinematical component of Born geometry. It is defined by a triple (M, η,K), where M is an

even-dimensional manifold, K is a tangent bundle endomorphism satisfying K2 = +1 and η

is a split-signature metric. K defines a para-complex structure on M, whose two eigenbun-

dles define as splitting of the tangent bundle, and η captures the duality between the two

eigenbundles of K. The two dual eigenbundles are then physically understood as directions

tangent to mutually T-dual physical and winding (local) directions. A special case of this

geometry, called para-Kähler geometry, arises when the non-degenerate two-form ω = ηK is

closed. We provide several examples of para-Hermitian manifolds, showing how the action of

T-duality is realized on them. We also relate our description of T-duality in terms of para-

Hermitian geometry to that of Bouwknegt, Evslin and Mathai, called topological T-duality.

We then introduce a differentiable structure on M that is adapted to the para-Hermitian T-

duality splitting and is given by the D-bracket, a bracket operation on the vector fields of the

manifold. We conclude the chapter with the definition of para-Calabi-Yau manifolds, which

are a subclass of para-Kähler manifolds for which the holonomy group of the Levi-Civita
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connection of η is contained in SL(dim(M)/2).

In Chapter 3, we introduce Born geometry, which is equivalent to adding an extra metric

structure on top of the existing background para-Hermitian data on M, and therefore defines

the dynamical structure on the manifold. Another part of this dynamical structure is given by

a unique canonical connection, called the Born connection, which parallelizes all the defining

structures of Born geometry and is also compatible with the D-bracket of the underlying

para-Hermitian manifold. This connection is therefore the Born geometry analogue of the

Levi-Civita connection in Riemannian geometry and, as we show, it also reduces to the

Levi-Civita connection of the spacetime manifold inside the extended space M. In the last

section of this chapter, we present a new example of Born geometry arising in the context of

semi-flat mirror symmetry, which in this case provides a mirror map between Born structures

on the total spaces of the tangent and the cotangent bundles of an affine manifold. We also

show that the mirror map relates the symplectic moduli space of the tangent bundle to both

the complex and para-complex moduli spaces of the cotangent bundle and vice versa.

Chapters 4 and 5 are dedicated to the relationship between para-Hermitian and Born

geometries and the framework of generalized geometry, which studies geometric structures

on the bundle (T ⊕ T ∗)M . In Chapter 4, we first review two building blocks of generalized

geometry, Dirac geometry and generalized structures. Then, we present basic facts about

generalized para-Kähler and generalized chiral structures, which are examples of commuting

pairs of generalized structures, and are the generalized-geometric versions of para-Hermitian

and Born geometry, respectively. Lastly, we study how generalized Bismut connections can

be used to study the integrability of the commuting pairs of generalized structures.

Finally, in the Chapter 6, we discuss applications of the geometric structures discussed

in this thesis beyond T-duality, concretely to nonlinear two-dimensional supersymmetric σ-

models. There, both generalized para-Kähler and generalized chiral geometries correspond

to additional symmetries of the said σ-models.

1.2 Literature overview

Most of the material and ideas presented in this thesis previously appeared in other works

and we will review these here. Most importantly, the presentation of extended geometry

through the formalism of para-Hermitian and Born manifolds was developed in the works of

the author in collaboration with Freidel and Rudolph. Section 2.4 about the D-bracket on
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para-Hermitian manifolds is based on [12, 13, 14] and most of the Chapter 3, particularly the

discussion on Born geometry is taken from [14]. A review of this portion of the thesis from

conference proceedings can be also found in [15]. These works build on the original ideas of

Vaisman [16, 17] and have been developed further in the works of Chatzistavrakidis, Jonke,

Marotta, Pezzella, Szabo, Vitale, and others [18, 19, 20, 21]. From the physics point of view,

the idea of doubling the spacetime directions to accommodate T-duality originates in the

work of Tsytlin and Siegel [22, 23, 24, 25] and then in the seminal works on Double Field

Theory of Hohm, Hull and Zwiebach [1, 26, 27]. A comprehensive overview with additional

references can be found in [28, 29]. Born geometry was in this context first studied by Freidel,

Leigh and Minic in [2, 3], where the name was also coined. See also Boulter’s masters thesis

[30], where examples of Born structures on compact complex surfaces are given along with

important mathematical results.

The interpretation of para-Hermitian and Born geometry in terms of generalized geometry

in Chapter 4 follows almost exclusively the author’s work with Hu and Moraru [31]. A lot of

the present ideas are analogous to the generalized complex and generalized Kähler geometry

of Gualtieri [32, 33]. A good source of information about generalized geometry are also

lecture notes found on Gualtieri’s homepage [34].

Finally, some of the discussion in Chapter 5 is taken from [13] and from [31]. The ideas

presented in Chapter 6 were mostly presented in this form in [31] and some will also appear

in joint work with Williams [35]. The relationship between para-Hermitian geometry and

para-supersymmetry was first observed be Abou-Zeid and Hull in [36]. The relationship

between chiral geometry and the splitting of the (1,1) superconformal algebra was studied

by Stojevic in [37].
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Chapter 2

Para-Hermitian Geometry

We now introduce the main mathematical building block of Born geometry, which is para-

Hermitian geometry. As we will see, para-Hermitian geometry naturally arises in the de-

scription of a phenomenon called T-duality, appearing in physics and in particular string

theory, that relates two a priori different physical theories, which are then called T-dual.

The geometric picture we will invoke here is that of Double Field Theory (DFT) and Metas-

tring Theory, which consider an extended space M that is locally decomposed into two sets

of canonical directions. These directions allow for two descriptions that correspond to the

two T-dual theories: In one of them, half of the directions are assigned the physical inter-

pretation of the space of positions and the other half is understood as the space of winding

modes, while in the other, the roles are exchanged. Geometrically, the action of T-duality is

therefore realized as the exchange of the canonical directions.

Para-Hermitian geometry (M,K, η) is given by an even-dimensional manifold M, a tan-

gent bundle endomorphism K satisfying K2 = 1 and a split-signature metric η. This triple

describes the extended space as follows. The eigenbundles of the endomorphism K corre-

sponding to the ±1-eigenvalues distinguish the mutually T-dual directions within the ex-

tended space, on the level of the tangent bundle. On the level of the manifold M itself, the

interpretation is more subtle. The simplest scenario arises when both the eigenbundles are

integrable, in which case there exist two complimentary foliations of M, which we denote M

and M̃ . Locally, this translates to the existence canonical local coordinates, parametrizing

the physical and winding directions, on every patch of M. However, in typical physical set-

tings, at least one of the eigenbundles is not integrable, and the intuitive global description

in terms of two foliations cannot be recovered. If at least one of the foliations is still present,
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the physical space can be identified with the leaf space of this foliation. In this thesis,

this quotient approach will not be discussed in a great depth, but an interested reader may

consult [21], where a significant progress in this direction has been made.

Therefore, K fixes what we call the T-duality frame of the tangent bundle and con-

sequently also determines the local splitting of M. The metric η then captures the fact

that the physical and winding tangent directions are linearly dual to one another, giving the

2d-dimensional extended space an O(d, d) structure. Hence, the defining data (η,K) is a

geometric repackaging of the information we have about the T-duality set-up and should be

understood as a background or kinematic structure of the extended geometry. The only extra

piece of data one needs to define Born geometry is then a choice of a metric structure on

M , which in turn defines a metric on M̃ (and vice versa). This metric, along with a choice

of a compatible connection, is from the physical point of view understood as the dynamical

component of the geometry.

In what follows, we will lay out basic definitions and properties of para-Hermitian ge-

ometry illustrated on various examples, mostly taken from the literature on T-duality. In

the remainder of the section, we will discuss a construction of a new differentiable structure

on para-Hermitian manifolds: the D-bracket. This bracket operation on vector fields of the

extended spacetime is necessary for the applications to T-duality because of the fact that

vectors tangent to the physical and winding directions M and M̃ , respectively, behave as

duals of each other and we would like the bracket operation to respect this property. We will

see that the D-bracket is uniquely fixed by the underlying para-Hermitian structure and in

later sections we will discuss deformations of this construction in the presence of a B- and

β-field, which give rise to a twisting of the bracket by geometric and non-geometric fluxes.

2.1 Para-Complex Geometry

As the name suggests, para-Hermitian geometry is closely related to Hermitian geometry,

with the crucial difference being that the underlying structure is not complex but para-

complex. Instead of the Hermitian pair (I, g), where I is a complex structure and g a

compatible metric (i.e. I is an isometry of g), we consider a pair (K,η), where K is a para-

complex structure that is an anti-isometry of the metric η as in (1.1.2). Therefore, we first

discuss para-complex geometry and then continue by adding the para-Hermitian metric η to

the picture.
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Definition 2.1.1. Let E → M be a vector bundle. A para-complex structure on E is

a product structure, i.e. a fiber-wise linear endomorphism K ∈ Γ(End(E)) that satisfies

K2 = 1E, whose +1 and −1 eigenbundles, denoted L and L̃, respectively, have the same rank.

An almost para-complex manifold is a manifold equipped with a para-complex structure on

its tangent bundle.

Remark. In the context of T-duality, we refer to the splitting of the tangent bundle of a

para-Hermitian manifold TM = L⊕ L̃ as the T-duality frame.

An (almost) para-complex manifold is therefore a special case of an (almost) product

manifold such that the two real eigenbundles have the same rank. A direct consequence of

this is that any almost para-complex manifold is even-dimensional. The use of the word

almost as usual refers to integrability of the endomorphism and is used for para-complex

structures on the tangent bundle, where integrability can be defined in terms of the Lie

bracket. That is, we omit the word almost, or call the structure K integrable for emphasis,

whenever its eigenbundles are involutive under the Lie bracket and therefore each define a

foliation of the underlying manifold. In that case, the base manifold M is called para-complex

and denoted (M,K). The Frobenius integrability condition can be expressed in terms of the

Nijenhuis tensor NK :

NK(X,Y ) ∶= [X,Y ] + [KX,KY ] −K([KX,Y ] + [X,KY ])
= (∇KXK)Y + (∇XK)KY − (∇KYK)X − (∇YK)KX
= 4(P [P̃X, P̃Y ] + P̃ [PX,PY ]),

(2.1.1)

which vanishes if and only if K is integrable. Here, X,Y ∈ Γ(TM), ∇ is any torsionless

connection and

P ∶= 1

2
(1 +K), and P̃ ∶= 1

2
(1 −K), (2.1.2)

are projections onto the ±1-eigenbundles. From (2.1.1), it is apparent that K is integrable if

and only if both its eigenbundles are simultaneously Frobenius integrable (that is, involutive

distributions in TM); the integrability of one of the eigenbundles is, however, not tied to the

integrability of the other. This is one of the main differences between complex geometry and

para-complex geometry: while in the complex case the eigenbundles are complex bundles

related by complex conjugation, here the eigenbundles are real and therefore one can be

integrable while the other is not. We call this phenomenon half-integrability. More on
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this can be found for example in [12, 13] or in [38], where examples of half-integrable para-

complex structures motivated by physics are given. We should also emphasize here that in

most of the physical applications the para-Hermitian structure is not fully integrable.

Notation. In the following we will use the following notation for the splitting of a vector field

X ∈ Γ(TM) into its components in L and L̃:

X = x + x̃, x = P (X) ∈ Γ(L), x̃ = P̃ (X) ∈ Γ(L̃). (2.1.3)

We conclude this introductory portion with the simplest example of a para-complex

manifold, which is the product of two d-dimensional manifolds:

Example 2.1.2 (Manifold product). Let M and M̃ be two d-dimensional manifolds. Then

M = M × M̃ is a para-complex manifold. The eigenbundles L and L̃ of the (integrable)

endomorphism K are defined, over every point (p, p̃) ∈M =M × M̃ , by setting

L(p,p̃) = TpM and L̃(p,p̃) = Tp̃M̃.

In particular, any smooth manifold M gives rise to a para-complex manifold M =M ×M . ◁

2.1.1 Adapted coordinates and the Dolbeault complex

Let now (M,K) be an almost para-complex manifold. IfK is integrable, a local neighborhood

U ⊂ M locally splits as U = U × Ũ with corresponding set of 2n coordinates (xi, x̃i) called

adapted coordinates, with respect to which K satisfies (see for example [39, 40])

dxi ○K = dxi, and dx̃i ○K = −dx̃i. (2.1.4)

Therefore, a para-complex structure – similarly to a complex structure – can be equivalently

specified either by an integrable endomorphism K, or by a choice of adapted coordinates

(xi, x̃i) on every neighborhood. These coordinates must then transform on patch overlaps

as

(xi, x̃i) ↦ (yj(xi), ỹj(x̃i)). (2.1.5)

Even when K is not integrable, the splitting of the tangent bundle TM = L ⊕ L̃ gives
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rise to a decomposition of tensors analogous to the (p, q)-decomposition in almost complex

geometry. Denote Λ(k,0)(T ∗M) ∶= Λk(L∗) and Λ(0,k)(T ∗M) ∶= Λk(L̃∗). The splitting is then

Λk(T ∗M) = ⊕
k=p+q

Λ(p,q)(T ∗M), (2.1.6)

with corresponding sections denoted as Ω(p,q)(M). The bigrading (2.1.6) then yields the

natural projections

Π(p,q) ∶ Λk(T ∗M) → Λ(p,q)(T ∗M).

When K is integrable, the de-Rham differential splits as d = ∂ + ∂̃, where

∂ ∶= Π(p+1,q) ○ d

∂̃ ∶= Π(p,q+1) ○ d,

are the para-complex Dolbeault operators, acting on forms as

∂ ∶ Ω(p,q)(M) → Ω(p+1,q)(M)
∂̃ ∶ Ω(p,q)(M) → Ω(p,q+1)(M),

(2.1.7)

such that when K is integrable, we have

∂2 = 0, ∂̃2 = 0, and ∂∂̃ + ∂̃∂ = 0.

We also introduce the twisted differential:

Definition 2.1.3. Let (M,K) be a paracomplex manifold. The twisted differential dP is

defined for an arbitrary k-form α by

dPα ∶= (Λk+1K) ○ d ○ (ΛkK)α,

where ΛkK denotes the k-the exterior power of the endomorphism K:

(ΛkK)α(
k entries
³¹¹¹¹¹¹·¹¹¹¹¹¹µ⋅, ⋯ , ⋅ ) = α(K ⋅, ⋯ ,K ⋅).

The twisted differential can be simply expressed in terms of the Dolbeault operators in
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the following way:

Lemma 2.1.4. Let (M,K) be a paracomplex manifold with ∂ and ∂̃ the para-complex Dol-

beault operators and dP the twisted differential. Then the following identity holds

dP = ∂ − ∂̃. (2.1.8)

Proof. Let α ∈ Ω(p,q)(M) with p + q = k. Then we have

dPα = (−1)q(Λp+q+1K)dα = (−1)2q∂α + (−1)2q+1∂̃α = (∂ − ∂̃)α.

2.1.2 Foliations of a para-complex manifold

When (M,K) is a para-complex manifold of dimension 2d, the distributions L and L̃ define

d-dimensional foliations of M, which we call M and M̃ and are defined by the property that

they integrate L and L̃, respectively:

TpM = Lp and TpM̃ = L̃p,

for all points p ∈M. We call such foliations the fundamental foliations of the para-complex

manifold M.

For the definition of foliation we are using, we refer the reader to [41, Def. 1.1].

Notation. Throughout this thesis, we may equivalently refer to the pair (M,K) by the

ordered triple (M,M, M̃), which explicitly specifies the fundamental foliations.

Each of the two foliations can be understood as a decomposition of M into leaves, which

are immersed submanifolds of M. Since all the leaves have the same dimension (because

the eigenbundles have constant rank), the foliation is called regular. We therefore get a set

of d-dimensional submanifolds Mi ⊂ M such that, for every point p ∈ M, there is a unique

Mi passing through this point. Typically, there are infinitely many such submanifolds. We

therefore have

M = ⋃
i

Mi, and M̃ = ⋃
j

M̃j,
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where the indices i and j are running over the (potentially uncountable) sets labelling the

individual leaves.

Both M and M̃ are therefore disjoint unions of d-dimensional manifolds and can also be

given a topology with respect to which they are themselves d-dimensional manifolds (see [41]

or [42]), called the leaf topology. For M , this is done by considering a subset U ⊆ M to be

open if and only if U is open in Mi for some i. In this topology, each Mi are in particular

open subsets in M . The topology of M̃ is defined analogously. Because every point p ∈ M
lies on exactly one leaf of M and also on exactly one leaf of M̃ , we see that as sets of points,

all three manifolds M, M and M̃ are the same, but the topology is different for each M, M

and M̃ . As a result, the topology of the foliations never has a countable basis and typically

has uncountably many connected components.

For this reason, we will understand foliations in terms of their individual leaves, which

are immersed submanifolds of M. This will become useful for example in Section 5.1, where

we will discuss morphisms between bundles over M and M or M̃ . Interested reader may also

consult [21], where foliations and quotients in the context of para-Hermitian geometry are

discussed in more detail.

Example 2.1.5 (R2). Take the manifold R2 with the standard coordinates (x, y). Then

K∂x = ∂x and K∂y = −∂y,

defines a para-complex structure and the two corresponding foliations are simply the hori-

zontal lines y = const. for L and the vertical lines x = const. for L̃. Both the para-complex

structure and the foliations also descend to the torus T 2, which we get by identifying

(x, y) ∼ (x + 1, y) ∼ (x, y + 1), where the leaves become circles. ◁

2.1.3 Recovering the physical space

From the physics point of view, we wish to understand M as the extended manifold, which

in particular describes simultaneously the two T-dual manifolds of half the dimension. For

this reason, we must geometrically describe how such manifolds are recovered from M. The

para-complex splitting TM = L ⊕ L̃ gives rise to two different ways of how to achieve this

– either by the integration map, which assigns to M the pair of d-dimensional foliations M

and M̃ , or by the quotient map. In the case of the torus T 2 described in Example 2.1.5,

both M and M̃ are sets of circles parametrized by a circle, while the quotient map recovers

15



in both cases just a single circle. Physically, it is natural for the physical space to have

only one connected component, and for the winding space to have the structure of a fiber

bundle, i.e. a space of windings attached to every point of the spacetime. Therefore, from

an intuitive point of view, the quotient map M →M/M̃ recovers a geometry more suitable

for a spacetime description, while the integration map M→ M̃ is more suitable for the dual,

winding description. Note that, T-duality – which exchanges what is seen as the physical

space and what is understood as the winding space – switches the two pictures. Note also

that for both the space-time Mphys. = M/M̃ and the winding space M̃ , only L̃ must be

integrable, while for the T-dual picture we need the integrability of L. Such description of

the physical and winding spaces is used in many physical examples where only one of the

eigenbundles is integrable, arising especially in the presence of fluxes. For more in-depth

discussion on the space-time interpretations of the extended space see for example [2, 3, 21].

A large class of (almost-)para-complex manifolds for which only one of the eigenbundle

is generically integrable and which are not globally given by a product of two manifolds, are

fiber bundles:

Example 2.1.6 (Fiber bundle). Let M π→ M be a fiber bundle with d-dimensional fibres

over a d-dimensional manifold M and consider the following exact sequence of vector bundles

over M:

0Ð→ V = Ker(π∗) Ð→ TMÐ→ π∗TM Ð→ 0,

where V is called the vertical distribution of π and maps into TM by inclusion. A splitting

of the above exact sequence amounts to a choice of an Ehresmann connection, i.e. a choice

of a horizontal subbundle H ⊂ TM, such that TM = H ⊕ V . One then obtains an almost

para-complex structure K on M defined by

K ∣H= 1, and K ∣V = −1.

While the distribution V is always integrable and the integral foliation is given by the fibres

of M→M , the distribution H is in general not integrable and its obstruction to integrability

can be taken as the definition of the curvature of the chosen connection. In other words, the

para-complex structure K is always half-integrable and full integrability is equivalent to a

choice of a flat Ehresmann connection. ◁

16



2.1.4 Para-holomorphic functions and bundles

We will now discuss the para-holomorphic structure of para-complex manifolds, and give

important examples of para-holomorphic vector bundles. As usual, a map of para-complex

manifolds is called para-holomorphic if its pushforward commutes with the respective para-

complex structures:

Definition 2.1.7. Let (M,KM) and (N,KN) be para-complex manifolds. A map F ∶M→ N
is called para-holomorphic if

KN ○ F∗ = F∗ ○KM. (2.1.9)

In the following we will omit the prefix “para-” in para-holomorphic whenever no confu-

sion with complex holomorphicity is possible. Locally, the map F ∶M → N of para-complex

manifolds can be understood via local coordinates as

F ∶ U→ V

F = (f i, f̃j) = (yi(xk, x̃l), ỹj(xk, x̃l))i,j=1,⋯,n
k,l=1,⋯,m,

where (xk, x̃l) and (yi, ỹj) are adapted local coordinates on U ⊂ M and V ⊂ N, respectively.

It is easy to check from (2.1.9) that F is a holomorphic map if and only if the components

satisfy the para-complex Cauchy-Riemann equations

∂

∂x̃i
f j = ∂

∂xi
f̃j = 0. (2.1.10)

The conditions (2.1.10) tell us that the holomorphic function F is given by a pair (f, f̃) of

functions between the fundamental foliations of the para-complex manifolds M and N. This

also means that the transition functions on a para-complex manifold (2.1.5) are holomorphic

since the foliations M and M̃ must be preserved.

A holomorphic vector bundle E
π→ M over the para-complex manifold (M,K) is then

defined analogously to complex geometry as a para-complex vector bundle whose total space

is a para-complex manifold with π a holomorphic map. The form of the transition functions

(2.1.5) then gives us an intuition of what holomorphic bundles and their holomorphic sections

look like. For example, the tangent bundle TM is itself a holomorphic bundle (see for example
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[40, 31]); this is simply because the tangent bundle is glued together on patch overlaps by

the pushforwards Tx→y of the transition functions (2.1.5):

Tx→y =
⎛
⎝

∂yj(x)
∂xi

0

0
∂ỹj(x̃)
∂x̃i

⎞
⎠
,

which defines a holomorphic structure on TM with local canonical coordinates1 (dxi, dx̃j)
on the fibres. The holomorphic sections of TM – the holomorphic vector fields – are locally

of the form

X =X i(x)∂i + X̃i(x̃)∂̃i,

i.e. the components in L and L̃ individually define vector fields on the foliations M and M̃ ,

respectively. By a similar argument, the cotangent bundle is also a holomorphic bundle. The

following example illustrates the intuition behind the local structure of holomorphic bundles

and their sections

Example 2.1.8. Let E →M and Ẽ → M̃ be arbitrary vector bundles over n-dimensional

manifolds M and M̃ and let s ∶ M → E and s̃ ∶ M̃ → Ẽ be smooth sections. Then E =
p∗E⊕ p̃∗Ẽ →M ×M̃ , where p ∶M ×M̃ →M and p̃ ∶M ×M̃ → M̃ are the natural projections,

is a holomorphic vector bundle over the para-complex manifold (M =M ×M̃,K) of Example

2.1.2 and s = p∗s + p̃∗s̃ is a holomorphic section of E. ◁

2.2 Para-Hermitian Geometry

We now introduce a metric η compatible with the para-complex structure K, which by

contraction η ○K induces a non-degenerate two-form ω. When ω is closed, we get para-

Kähler geometry.

Definition 2.2.1. Let (M,K) be a para-complex manifold and let η be a pseudo-Riemannian

metric that satisfies η(K ⋅,K ⋅) = −η. Then we call (M,K, η) a para-Hermitian mani-

fold2. The fundamental form ω of a para-Hermitian manifold is a tensor defined by the

contraction ω ∶= ηK.

1Here, dxi and dx̃j are understood as fiber-wise linear functions TM ∣p→ C∞(M) for every p ∈M.
2If K is not integrable, i.e. (M,K) is almost para-complex, we would call (M,K, η) an almost para-

Hermitian manifold.
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The above definition implies that ω is skew, i.e. for any X,Y ∈ X(M), we have

ω(X,Y ) = η(KX,Y ) = −η(X,KY ) = −ω(Y,X).

ω is also nondegenrate (because η is nondegenerate), which makes it an almost symplectic

form, sometimes called the fundamental form. From K2 = 1 we also have K = η−1ω = ω−1η.

Another observation is that since the eigenbundles of K have the same rank, η has neutral

(or split) signature. Furthermore, the eigenbundles of K are isotropic with respect to both

η and ω. This means that the almost symplectic form ω is of type (1,1): ω ∈ Ω(1,1)(M).

Remark. As shown above, the data (M,K, η), (M, η, ω) and (M,K,ω) are equivalent on a

para-Hermitian manifold and so we use the different triples interchangeably to refer to a

para-Hermitian manifold. Additionally, we may again replace K by the pair of fundamental

foliations M and M̃ as described in Section 2.1.

Example 2.2.2 (Local structure). Almost para-Hermitian structures all look the same

locally. Indeed, let (M,K, η) be a 2d-dimensional almost para-Hermitian manifold. Bejan

then shows [43] that there exist local frames of TM with respect to which

K =
⎛
⎝

0 1

1 0

⎞
⎠
, η =

⎛
⎝
1 0

0 −1
⎞
⎠
, ω =

⎛
⎝

0 1

−1 0

⎞
⎠

or

K =
⎛
⎝
1 0

0 −1
⎞
⎠
, η =

⎛
⎝

0 1

1 0

⎞
⎠
, ω =

⎛
⎝

0 −1
1 0

⎞
⎠
, (2.2.1)

where the matrix blocks have dimension d. The second choice of frame that diagonalizes K

is called adapted because it corresponds to the splitting of the tangent bundle TM = L⊕ L̃
into the eigenbundles of K; we denote such frame by (ei, ẽi) and the dual frame by (ei, ẽi):

⟨ei, ej⟩ = ei(ej) = δij, ⟨ẽi, ẽj⟩ = ẽi(ẽj) = δji .
⟨ei, ẽj⟩ = ⟨ẽi, ej⟩ = 0.

(2.2.2)

◁

The structure group of a para-Hermitian manifold is the para-unitary group, isomorphic
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to Gl(d):

pU(2d) =
⎧⎪⎪⎨⎪⎪⎩

⎛
⎝
A 0

0 (At)−1

⎞
⎠

A ∈ Gl(d)
⎫⎪⎪⎬⎪⎪⎭
, (2.2.3)

and since it preserves both η and ω, we have pU(2d) = GL(d) = O(d, d) ∩ Sp(2d).

A para-Hermitian vector bundle is a para-complex vector bundle (E,K) endowed with a

split fibre metric η, with respect to which the para-complex structure K is anti-orthogonal.

The following is an important example of such vector bundle, which will frequently appear

in this work.

Example 2.2.3. (Extended tangent bundle) Consider the extended tangent bundle (T ⊕
T ∗)M over an arbitrary manifold M . We get a constant, linear para-Hermitian structure on

every fibre, given by the following pair (K,η):

K =
⎛
⎝
1 0

0 −1
⎞
⎠
⎛
⎝
T

T ∗

⎞
⎠
, and η(X + α,Y + β) ∶= ⟨X + α,Y + β⟩ = α(Y ) + β(X),

where X + α and Y + β are sections of (T ⊕ T ∗)M and ⟨ , ⟩ is the duality pairing. ◁

2.2.1 Para-Kähler Manifolds

We will now summarize some important properties of a special class of para-Hermitian

manifolds, para-Kähler manifolds.

Definition 2.2.4. Let (M, η, ω) be a para-Hermitian manifold with dω = 0. We call (M, η, ω)
a para-Kähler manifold.

Remark. As a consequence of the compatibility ω(K ⋅,K ⋅) = −ω(⋅, ⋅), the eigenbundles L and

L̃ are Lagrangian with respect to ω. Therefore, a para-Kähler manifold (M, η, ω) can be seen

as a symplectic manifold with a preferred choice of Lagrangian distributions L and L̃, the

unique Lagrangians of ω isotropic with respect to η. Such symplectic manifolds are called

bi-Lagrangian. For more details, see [44, 45].

Lemma 2.2.5. Let (M,K, η) be an almost para-Hermitian manifold. Then (M,K, η) is

para-Kähler if and only if ∇̊K = 0 (or equivalently ∇̊ω = 0), where ∇̊ is the Levi-Civita

connection of η.
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Proof. The idea of the proof is entirely in parallel to the analogous statement in complex

geometry, see for example [46, Theorem 5.5].

The structure of para-Kähler manifolds is, similarly to Kähler manifolds, locally given

only in terms of a real, smooth function:

Proposition 2.2.6. Let (M,K, η) be a para-Kähler manifold. Then for every point p ∈ M,

there exists a smooth real function f in a neighborhood U around p, such that ω = ∂∂̃f .

Proof. By the Poincaré lemma, there exists a neighborhood V around p and a one-form α

such that ω = dα. Furthermore, because ω is of type (1,1), the components α = α(1,0)+α(0,1)

satisfy

ω = ∂̃α(1,0) + ∂α(0,1), and ∂α(1,0) = ∂̃α(0,1) = 0.

This further implies (by a local exactness of the para-complex Dolbeault operators, see [39])

that α(1,0) = ∂u and α(0,1) = ∂̃v for some u, v ∈ C∞(U), where U is a neighborhood around p,

possibly smaller than V . Finally, defining f ∶= v − u we get

ω = ∂̃α(1,0) + ∂α(0,1) = ∂∂̃(−u + v) = ∂∂̃f.

2.2.2 The Canonical Connection

On any almost para-Hermitian manifold, one can define the canonical connection which will

play an important role in our constructions later on:

Definition 2.2.7. Let (M, η,K) be an almost para-Hermitian manifold and ∇̊ the Levi-

Civita connection of η. We define the canonical connection ∇c by

η(∇c
XY,Z) = η(∇̊XY,Z) − 1

2
∇̊Xω(Y,KZ). (2.2.4)

Remark. The canonical connection appears in [47], where the authors introduce a class of

para-Hermitian connections ∇t parametrized by t ∈ R. This class also includes the Chern

connection and the Bismut connection of a para-Hermitian manifold. The canonical connec-

tion is given by ∇t=0 and all connections in this class degenerate to the canonical connection

on a class of para-Hermitian manifolds called nearly para-Kähler.
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The canonical connection is a para-Hermitian connection (i.e. ∇cη = ∇cω = 0). This

implies that ∇c preserves the eigenbundles of K:

∇cy ∈ Γ(L) and ∇cỹ ∈ Γ(L̃),

where y ∈ Γ(L) and ỹ ∈ Γ(L̃). This property becomes obvious when ∇c is rewritten in the

following form:

∇cY = ∇c(y + ỹ) = P ∇̊y + P̃ ∇̊ỹ. (2.2.5)

From (2.2.4) we also note that when (M, η,K) is para-Kähler, we get ∇c = ∇̊.

We note here that para-Kähler manifolds whose metric η is flat will locally have adapted

coordinates such that the forms of η and K reduce to (2.2.1):

Proposition 2.2.8. Let (M, η,K) be a para-Kähler manifold. Then η is a flat metric if and

only if there locally exists an adapted coordinate system (xi, x̃i) in which (K,η,ω) take the

form

K =
⎛
⎝
1 0

0 −1
⎞
⎠
, η =

⎛
⎝

0 1

1 0

⎞
⎠
, ω =

⎛
⎝

0 −1
1 0

⎞
⎠
.

Proof. This is a direct consequence of [48, Thm. 1.2.1], see also [44, Thm. 14], because bi-

Lagrangian is equivalent to para-Kähler and ∇̊ coincides with the bi-Lagrangian connection

of the bi-Lagrangian manifold (see [44]).

2.2.3 Examples of para-Hermitian manifolds

We now present basic examples of (almost) para-Hermitian and para-Kähler manifolds.

Example 2.2.9 (Doubled Tori). The simplest example comes from a straightforward gen-

eralization of the toy model given in the introduction. Consider a d-dimensional torus

T d = Rd/Λ and its dual, (T d)∗ = (Rd)∗/(Λ)∗, (Λ)∗ being the lattice dual to Λ. Then

M = T d×(T d)∗ is para-Kähler with the para-complex structure given explicitly by the global

product structure (see Example 2.1.2) and the O(d, d) pairing is induced by the duality

between the two lattices. ◁
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Example 2.2.10 (Tangent bundles). We will now study a special case of the Example 2.1.6

when the fiber bundle is the tangent bundle of a manifold, M = TM π→M , and augment this

by a compatible para-Hermitian metric. Consider a choice of a linear connection ∇ on TM

that defines the splitting TM = TTM = H ⊕ V to the horizontal and vertical subbundles

of TM, giving rise to a half-integrable para-complex structure K. If {xi}i=1⋯n are local

coordinates on M , {vi}i=1⋯n the fiber coordinates and Γkij = (∇ ∂

∂xi

∂
∂xj

)k are the connection

coefficients, then H is spanned by the vector fields:

Hi =
∂

∂xi
− Γkijv

j ∂

∂vk
,

and V is simply spanned by the vertical vector fields V i = ∂
∂vi

. The dual frame is then given

by the one-forms (dxi, τi), where

τ i = dvi + Γijkv
kdxj.

We also get two maps from the tangent bundle of the base TM into V and H called the

horizontal and vertical lift:

Vertical lift: v ∶ TM → V ∶X ↦Xv, Xv[α] ∶= α(X) ○ π,
Horizontal lift: h ∶ TM →H ∶X ↦Xh, Xh[α] ∶= ∇Xα,

where α and ∇Xα are one-forms on M regarded as functions on TM . Now, choose a Rie-

mannian metric g on M . This allows us to define an O(d, d) metric η on M = TM by

η(Xh, Y v) = g(X,Y ), and η(Xh, Y h) = η(Xv, Y v) = 0.

Explicitly, this is

K = dxi ⊗Hi + τ i ⊗
∂

∂vi
, and η = gij(dxi ⊗ τ j + τ i ⊗ dxj).

Clearly, (η,K) are compatible and define a half integrable para-Hermitian structure on

M. In [12], it is shown that whenever ∇ is torsionless, (η,K) is almost para-Kähler, i.e.

ω = ηK is closed. Therefore, if one takes for example Γ to be the Levi-Civita connection, the

above construction yields a half-integrable para-Kähler structure which is fully integrable

whenever g is a flat metric. ◁
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Example 2.2.11 (Cotangent bundles). We will now define a para-Hermitian structure

compatible with the para-complex structure on a cotangent bundle M = T ∗M induced by

a choice of a connection as in Example 2.1.6. Here we will consider a much more general

construction of the para-complex structure K than in the Example 2.2.10, because we will

consider a generic Ehresmann connection, i.e. any splitting of T (T ∗M) = H ⊕ V without

any assumption on the local connection coefficients. Such para-Hermitian structures were

described in [18, 21].

We start by choosing a local Darboux chart (qi, pi) on T ∗M . Then V is locally spanned

by the vectors vi = ∂
∂pi

and H is spanned by hi = ∂
∂qi

+Cijvj for some local coefficients Cij. In

the special case when the connection is chosen to be a linear connection ∇ with connection

coefficients Γijk = (∇ ∂

∂qj

∂
∂qk

)i, we have Cij = Γkijpk.

In general, the coefficients Cij can be arbitrary and when they are not linear in the

coordinates p, the connection is called non-linear. The canonical symplectic form ω0 = dpi∧dqi
is compatible with the para-complex structure K defined by the splitting TM = H ⊕ V if

and only if Cij = Cji [18, 21]. Therefore, when this condition is satisfied, the Ehresmann

connection, which is uniquely determined by the collection of local coefficients {Cij}, defines

a para-Kähler (since dω0 = 0) structure (ω0,K) if and only if Cij are symmetric functions. ◁

In Section 3.3, we will present a different way of constructing para-Kähler structures on

the tangent and cotangent bundle of an affine manifold.

Example 2.2.12 (Drinfel’d doubles). There is a natural para-Hermitian structure on every

(classical) Drinfel’d double, defined as a 2d-dimensional Lie group D whose Lie algebra d

splits as d = l& l̃ into two dual subalgebras l and l̃ [49]. The duality between l and l̃ gives rise

to a signature (d, d) invariant pairing on d, with respect to which l and l̃ are isotropic, and

the triple (d, l, l̃) is called a Manin triple on d. Because there is a split-signature pairing on

d together with a pair of maximally isotropic subspaces, d – the tangent fiber at the identity

of D – has the structure of a para-Hermitian vector space. Therefore, a Manin triple is

equivalent to a para-Hermitian structure on d. Now, the fact that l and l̃ are Lie subalgebras

means that there exist Lie subgroups G and G̃ such that D = G&G̃, which shows that there

is in fact a global para-Hermitian structure on the whole D with the fundamental foliations

given by G and G̃. Explicit details of this construction can be found in [18]. There, it is

shown for example that such a para-Hermitian structure is para-Kähler if and only if both

G and G̃ are abelian. ◁

24



2.3 T-duality and physical interpretation

The main reason why para-Hermitian geometry is important in the context of Born geom-

etry is that it describes a geometric setting that facilitates T-duality. In this work we will

distinguish between the linear T-duality and the T-duality of the underlying manifolds.

The latter is the correspondence between two T-dual manifolds M ′ and M̃ ′, while the former

is the corresponding linear map on bundles – typically the tangent and cotangent bundles

and their direct sum – over the extended, para-Hermitian manifold M, from which M ′ and

M̃ ′ can be recovered as discussed in Section 2.1.3. M ′ and M̃ ′ are therefore not necessarily

the fundamental foliations M and M̃ of M, but can be for example the quotients M ′ =M/M̃
and M̃ ′ =M/M .

The manifold M should therefore be understood as a correspondence space between M ′

and M̃ ′, in the sense that it maps into each of the two manifolds, even though there might

be no explicit map between them:

M

M ′ M̃ ′

p p̃

Linear T-duality

Top. T-duality

(2.3.1)

2.3.1 Linear T-duality

Let us assume for clarity of the notation that the conditions of Proposition 2.2.8 are satisfied

(i.e. M is para-Kähler and η is flat) so that the adapted frame and its dual are given by

(∂i, ∂̃i) and (dxi, dx̃i). The linear T-duality is a fiberwise linear map that acts as an exchange

of tangent vectors of M with cotangent vectors of M̃ [50], which can be locally expressed in

the adapted frames as

T ∶ TM ⊕ T ∗M → T ∗M̃ ⊕ TM̃
(∂i, dxj) ↦ (dx̃i, ∂̃j).
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This is equivalent to the existence of the metric η, which is defined using T and the natural

duality pairing ⟨ , ⟩ between TM and T ∗M:

η(x, ỹ) ∶= ⟨Tx, ỹ⟩ = ⟨x,Tỹ⟩, η(x,y) ∶= ⟨Tx,y⟩ = 0 = η(x̃, ỹ) ∶= ⟨Tx̃, ỹ⟩, (2.3.2)

where we used the notation (2.1.3) and denote the inverse of T by the same symbol.

Via η, the directions tangent to M and M̃ , respectively, are then naturally dual to each

other, i.e. in the adapted frame we have

η(∂i, ∂̃j) = δji and η(∂i, ∂j) = η(∂̃i, ∂̃j) = 0.

This is also the reason for our choice of the index notation, denoting the vectors tangent

to M and M̃ by ∂i and ∂̃i, respectively. We see that the duality between ∂i and ∂̃i is a

consequence of the T-duality between M and M̃ and the choice of η on the para-complex

manifold M is equivalent to the choice of the T-duality map T. The linear T-duality map T

can then be repackaged as an endomorphism of (T ⊕ T ∗)M

T =
⎛
⎝

0 η−1

η 0

⎞
⎠

∈ Γ(End((T ⊕ T ∗)M)), (2.3.3)

which, as we will see in Section 4.2.4, defines a generalized metric on the para-Hermitian

manifold.

Linear T-duality as an O(d, d) transformation We will now describe the action of

the T-duality map (2.3.3) on the para-Hermitian structure (η,K). First, we note that K

naturally acts on (T ⊕ T ∗)M via its diagonal action, denoted as K:

K =
⎛
⎝
K 0

0 K∗

⎞
⎠
.

The action of the linear T-duality map T is then straightforward to compute, T(K) =
TKT−1 = TKT = −K. Therefore, the action of T-duality on K itself is simply given by

K
Tz→ −K.

In order to find out how T-duality acts on η, we simply recall the definition of η via T
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(2.3.2) and the fact that T2 = 1:

η(T⋅,T⋅) = ⟨T2⋅,T⋅⟩ = ⟨⋅,T⋅⟩ = η(⋅, ⋅).

Therefore, T-duality is an isometry of η, making it an element of the O(d, d) group. In DFT,

this is typically taken as one of the defining properties of T-duality transformations and in

[21], all O(d, d) transformations on a given para-Hermitian manifold are called generalized

T-duality transformations. In Section 5.3, we will discuss another important O(d, d)
transformation, the B-transformation.

2.3.2 T-duality of underlying manifolds

T-duality of the underlying manifolds M ′ and M̃ ′ is given by the correspondence via M
(2.3.1) and in particular the maps M p→ M ′ and M p̃→ M̃ ′. In our case, M is an (almost-)

para-Hermitian manifold and p and p̃ are either the quotient maps,

p ∶M→M/M̃ =M ′, and p̃ ∶M→M/M ≃ M̃ ′, (2.3.4)

or the integration maps

p ∶M→M, and p̃ ∶M→ M̃. (2.3.5)

When all four of the above maps exist, T-duality acts on the para-Hermitian manifold M as

the exchange of the ordered triples

(M,M, M̃) ↔ (M, M̃,M), (2.3.6)

exchanging p and p̃ in both (2.3.4) and (2.3.5), and consequently also M ′ and M̃ ′.

When M is globally a product of the two T-dual manifolds M =M ′×M̃ ′, the relationship

between the two pictures (2.3.4) and (2.3.5) is clear. In such case, the quotients yield M ′ and

M̃ ′ and the fundamental foliations are of the formM = ⋃p̃∈M̃ ′M ′×{p̃} and M̃ = ⋃p∈M ′ M̃ ′×{p}.

Therefore, M is the union of copies of M ′ labelled by points in M̃ , and similarly for M̃ and

M̃ ′. Because M is always a product locally, we always have such description at least in a

local sense.

Note that the linear T-duality is weaker than the T-duality of the underlying manifolds

in the sense that the linear T-duality identifies the T-dual directions (in our case, the eigen-
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bundles of the para-Hermitian structure K) only on the level of the bundles on M, but

there might not always be good notions of what the T-dual manifolds M and M̃ are, for

example when the para-Hermitian structure is not integrable. Such scenarios arise in string

theory, where they correspond to so-called non-geometric backgrounds. Those are situations

when the linear T-duality identifies directions T-dual to M ′ within M for which there is no

corresponding T-dual manifold M̃ ′ [18, 21, 38]. However, those situations are still physi-

cally perfectly valid and even though M̃ ′ does not exist as a smooth manifold (in [51, 52],

this object is called a T-fold), M is still a good geometric description of the full doubled

space. One can even consider a scenario where none of the para-Hermitian eigenbundles are

integrable, in which case there exists no description in terms of a half-dimensional “physical

space” geometry and M is then called an essential doubling [21].

2.3.3 The Full and Partial T-duality

So far, we have been describing T-duality on a para-Hermitian manifold (M,M, M̃, η) as the

exchange between the two foliation manifolds M and M̃ . In that case, we call the T-duality

full, because the whole manifold M locally splits only to the two sets of T-dual directions.

Typically, the full T-duality arises from a free and transitive action of the Drinfel’d double

D = G & G̃ (see Example 2.2.12), giving rise to a Poisson-Lie T-duality:

Example 2.3.1 (Poisson-Lie T-duality). The para-Hermitian structures of Example 2.2.12

give rise to a notion of T-duality called the Poisson-Lie T-duality3 [8, 9]. There, the quotient

maps are D
p→D/G̃ = G and D

p̃→D/G = G̃. The two can be also related by linear T-duality,

which acts on the level of the Lie algebra d as the exchange between the Manin triples (d, l, l̃)
and (d, l̃, l), i.e. the mapping K ↦ −K. ◁

In many situations, it is nevertheless desirable to consider partial T-duality, which in

its linear form acts as an exchange of only subspaces of the tangent and cotangent bundles of

the base manifold. The geometric setting needed for the partial T-duality is a pair M → B

and M̃ → B of fiber bundles over some common base B and typical fibres M ′ and M̃ ′,

respectively, such that each fiber of the fiber product M = M ×B M̃ is a para-Hermitian

manifold. This means that over every b ∈ B, the fiber M ′ × M̃ ′ carries a non-degenerate

split-signature symmetric pairing η compatible with the para-complex structure defined by

3This name stems from the fact that in this picture both G and G̃ are Poisson-Lie groups.
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the product, so that (M ′ × M̃ ′, η) is para-Hermitian:

M ′ × M̃ ′ M

B

.

The partial T-duality then acts as the exchange of the fibres of M and M̃ , i.e. as a full

T-duality on every fiber M ′ × M̃ ′.

The full manifold M could also be a para-Hermitian manifold, but only the fibres are

necessarily para-Hermitian because that is where the T-duality that ensures the existence

of the para-Hermitian metric via (2.3.2) acts. After all, in the most typical string theory

scenario, the string spacetime M is given by a compactification of the form M = B ×M ′,

where B is a 4-dimensional Minkowski spacetime, M ′ is some compact manifold and the

T-duality acts only on M ′. Denoting the T-dual to M ′ by M̃ ′, the full extended manifold

for this T-duality scenario is therefore M = B ×M × M̃ ′ and so the para-Hermitian manifold

M ′ × M̃ ′ is the compact subsector of the full string theory geometry M.

An example of partial T-duality on a manifold which is para-Hermitian also away from

the T-dualized directions is given for example by the doubled torus:

Example 2.3.2 (Doubled torus). Consider the para-Hermitian doubled torus M = T d ×
(T d)∗ from Example 2.2.9. There, T-duality is simply a choice of a d-dimensional torus

T̂ ⊂M, called a polarization. The two extremal choices T̂ = T d and T̂ = (T d)∗ correspond to

the two fully T-dual pictures and the way we recover T̂ is as a quotient by the complementary

torus action, i.e. T d =M/(T d)∗ and (T d)∗ =M/T d. One can also consider a partial T-duality

for example in one direction, viewing M as the fibration

T 2 M

T d−1 × (T d−1)∗
,

in which case the linear T-duality is no longer given by (2.3.3), but by the partial T-duality
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matrix along the torus T 2

TT 2 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1(d−1)×(d−1)

0 1

1(d−1)×(d−1)

1 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

, (2.3.7)

which now defines a para-Hermitian pairing via (2.3.2) only on the T 2-fibres where TT 2 acts

non-trivially. ◁

We conclude by describing how T-duality can be understood on the tangent and cotangent

bundles.

Example 2.3.3 (Tangent and cotangent bundles). In Examples 2.2.10 and 2.2.11, we

described half-integrable para-Hermitian and para-Kähler structures on the tangent and

cotangent bundles of an arbitrary manifold, M = TM and M = T ∗M . There, because the

structures are generally only half-integrable, T-duality can be understood as a correspon-

dence between the foliation of M by the fibres M̃ and the corresponding leaf space given by

the original manifold M ≃M/M̃ . Therefore, in this case p and p̃ in (2.3.1) are given by the

quotient map p ∶M /M̃→ M and the integration map p̃ ∶M
∣M̃→ M̃ .

Another option, more typically employed in the literature on T-duality, is to consider the

bundle M = (T ⊕ T ∗)M with the obvious para-Hermitian structure on the fibres (Example

2.2.3). The T-duality is then fibre-wise over every point in M and exchanges the TM and

T ∗M dual fibres. We also employ this approach in Section 3.3, where the T-duality is given

by a mirror map between the manifolds TM and T ∗M . ◁

2.3.4 Topological T-duality

We will now turn to perhaps the most studied case of T-duality, which is in the literature

referred to as the topological T-duality [4, 5] and show how para-Hermitian geometry fits

into this picture.

Let M
π→ B and M̃

π̃→ B be two principal torus bundles over the same base B and denote
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by H and H̃ closed 3-forms on M and M̃ , respectively. Consider the following diagram:

(M =M ×B M̃, p∗H − p̃∗H̃)

(M,H) (M̃, H̃)

B

p p̃

π π̃

. (2.3.8)

We say that (M,H) and (M̃, H̃) are T-dual if there exists a two-form ω on M such that

• dω = p∗H − p̃∗H̃,

• ω is invariant under both torus actions on M and M̃ ,

• (ω0) j
i = ω(∂θi , ∂θ̃j) is a non-degenerate matrix, θi and θ̃j being the coordinates on the

dual torus fibres.

From the above definition we immediately see that we obtain a para-Hermitian structure

(η,K) on every fiber of M = M ×B M̃ from the above data: the para-complex structure

simply acts as the identity in the directions of the M -fibres and negative identity in the

directions of the M̃ -fibres, and the split pairing is defined by η = ω0K, where ω0 is the

fundamental form defined by the coefficients (ω0) j
i = ω(∂θi , ∂θ̃j).

Generally, topological T-duality only defines a para-Hermitian fibration over the base

B and neither the correspondence space M ×B M̃ nor the full product space M × M̃ are

endowed with a natural para-Hermitian structure. As such, topological T-duality is therefore

an example of partial T-duality and one cannot a priori expect that the base directions of

the fibration will be para-Hermitian or even even-dimensional.

Example 2.3.4 (Topological T-duality on S3). Consider the topological T-duality setting

(2.3.8), where M is the three-sphere S3 seen as the circle Hopf fibration over S2

S S3

S2

with H = 0. It can be checked that according to (2.3.8), the T-dual M̃ of this circle bundle

is the trivial circle bundle S2 × S1 π̃→ S2 with H̃ = σ ∧ dθ̃, where σ is the volume form on S2.
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If we parametrize S2 by the angle coordinates (φ,ψ) ∈ [0,2π] × [0, π], we get σ = dφ ∧ dψ
and in this case ω = (dθ − φdψ) ∧ dθ̃ and ω0 = dθ ∧ dθ̃, (θ, θ̃) being the T-dualized circle

coordinates. ◁

Remark. As we noted above, the correspondence space M =M ×B M̃ in Example 2.3.4 is a

T 2-fibration over S2 and by construction, it is not a para-Hermitian manifold, but rather a

para-Hermitian fibration, i.e. the fiber over any point of the base S2 is a para-Hermitian

manifold.

As we have seen above, the relationship between topological T-duality and the full T-

duality on para-Hermitian manifolds, which exchanges the whole of M and M̃ , is that the

former degenerates to the latter when the base is a point:

M =M × M̃

M M̃

{∗}

p p̃

π π̃

. (2.3.9)

In this case, it is easy to see from the defining properties of topological T-duality (2.3.8)

that both H and H̃ must vanish as the property p∗H − p̃∗H̃ = dω forces H and H̃ to satisfy

H(x,y) = 0, and H̃(x̃, ỹ) = 0,

where we used the notation (2.1.3). For H, this follows from ω being invariant and therefore

dω(x,y) = 0 and additionally p̃∗H̃(x, ⋅, ⋅) = 0. For H̃, the argument is analogous.

However, there is still a way of including the H-flux (and other fluxes as well) in the

T-duality setting on para-Hermitian manifolds (2.3.9) and we will discuss this in the Section

5.3.

2.4 Differentiable Structure and The D-bracket

We will now describe a new differentiable structure on a para-Hermitian manifold that arises

from T-duality considerations. In the following, (M, η,K) is a para-Hermitian manifold

with (M,M̃) the fundamental foliations and we will again assume that the conditions of
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Proposition 2.2.8 are satisfied so that there locally exists a holonomic frame in which η and

K are constant. This is merely for notational convenience and for making the connection

with formulas appearing in physics (where this is usually the case) more explicit.

In the usual geometry, the differentiable structure of the manifold is encoded in the Lie

bracket [ , ] of the vector fields, which then extends to the Cartan calculus on the manifold,

i.e Lie derivative L, de-Rham differential d etc. This gives rise to a natural notion of

integrability for different geometric structures, such as closedness of a symplectic form under

d, integrability of a (complex) endomorphism defined by the Lie bracket or the Poisson

condition [β, β] = 0 for a bi-vector in terms of the Schouten bracket. The differentiable

structure also enters for example in the definition of the torsion tensor of a connection

∇, T (X,Y ) = ∇XY − ∇YX − [X,Y ], which measures how the skew-symmetrization of the

corresponding covariant derivative differs from the Lie bracket.

When describing the physics setting of T-duality in terms of a para-Hermitian manifold,

the usual differentiable structure is, however, not an appropriate choice. This is because

the Lie bracket does not respect the duality between physical and winding directions. We

have seen that on para-Hermitian manifolds, T-duality relates the vector field ∂̃i to dxi,

and therefore ∂̃i should transform under the diffeomorphisms of M as a one-form and this

should be reflected in the action of a new bracket operation on vector fields on M that we

will denote by [[ , ]].

We will now derive the form of the new bracket from physics heuristics. First, since

the para-Hermitian splitting TM = L ⊕ L̃ defines the T-duality frame and both L and L̃

are tangent to the physical directions in the two T-dual pictures, the bracket [[ , ]] should

restrict to the usual Lie bracket on both L and L̃:

[[x,y]] = [x,y] = (xi∂i(yj) − yi∂i(xj))∂j,
[[x̃, ỹ]] = [x̃, ỹ] = (x̃i∂̃i(ỹj) − ỹi∂̃

i(x̃j))∂̃j,
(2.4.1)

where we used the notation for vector fields on M and their splitting into components in L

and L̃ (2.1.3):

X = x + x̃ = xi∂i + x̃j ∂̃
j, X ∈ Γ(TM), x ∈ Γ(L), x̃ ∈ Γ(L̃).

Consider now the T-dual picture in which L generates the translations along the physical

space and L̃ represents the (linearly dual) winding directions. Because the sections of L̃ in

this case represent one-forms, they should transform under the infinitesimal diffeomorphisms
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along L accordingly:

[[x, ỹ]] = (xi∂i(ỹj) + ỹi∂j(xi))∂̃j.

The analogous, T-dual statement, reads

[[x̃,y]] = (x̃i∂̃i(yj) + yi∂̃j(x̃i))∂j.

Putting these formulas together while using the capital index notation,

X = xi∂i + x̃j ∂̃
j =XI∂I ,

we get

[[X,Y ]] = (XI∂IY
J − Y I∂IX

J + ηILηKJY I∂KX
L)∂J , (2.4.2)

which is a local coordinate expression for a bracket operation well-known in the literature

of DFT under the name D-bracket. Note that we derived this expression for the simple

case of a flat para-Kähler manifold. Our aim will now be to formalize the definition of the

D-bracket for any almost para-Hermitian manifold and find its coordinate-free description.

We start with the formal definition of the D-bracket. The choice for the axioms might

not be very intuitive at a first glance, but we will subsequently show that this definition

corresponds well to the above discussion.

Definition 2.4.1. Let (M, η,K) be an almost para-Hermitian manifold. We define the D-

bracket to be a bracket operation on the space of vector fields

[[ , ]] ∶ X(M) ×X(M) → X(M),

satisfying the following properties:

1. Leibniz property

[[X,fY ]] = f[[X,Y ]] +X[f]Y,

2. Compatibility with η

X[η(Y,Z)] = η([[X,Y ]], Z) + η(Y, [[X,Z]])
η(Y, [[X,X]]) = η([[Y,X]],X),

3. Compatibility with K: vanishing generalized Nijenhuis tensor
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NK = [[X,Y ]] + [[KX,KY ]] −K ([[KX,Y ]] + [[X,KY ]])
= 4 (P [[P̃X, P̃Y ]] + P̃ [[PX,PY ]]) = 0.

4. Relationship with the Lie bracket

[[PX,PY ]] = P ([PX,PY ]),
[[P̃X, P̃Y ]] = P̃ ([P̃X, P̃Y ]),

for any X,Y,Z ∈ X(M) and f ∈ C∞(M)

Let us now verify that the above is a good definition of the D-bracket, i.e. that (2.4.2)

satisfies conditions 1. − 4. of Definition 2.4.1.

Lemma 2.4.2. Let (M, η,K) be a para-Kähler manifold with η a flat metric. Then (2.4.2) is

a local expression for a D-bracket on (M, η,K) in adapted coordinates, i.e. satisfies properties

1. − 4. of Definition 2.4.1.

Proof. The property 1. is straightforward to verify and properties 3. and 4. are verified by

(2.4.1). For property 2., we rewrite (2.4.2)

η([[X,Y ]], Z) = ZKηJK (XI∂IY
J − Y I∂IX

J) +ZKηIJ (Y I∂KX
J) ,

so that η([[Y,X]],X) = Y KηIJ(XI∂KXJ) = η([[X,X]], Y ), verifying the second line of prop-

erty 2. To verify the first line, we use the fact that the components of η are constant:

X[η(Y,Z)] = ηIJXK(Y I∂KZ
J +ZI∂KY

J)
η([[X,Y ]], Z) + η(Y, [[X,Z]]) = ZKηJK (XI∂IY

J − Y I∂IX
J) +ZKηIJ (Y I∂KX

J)
+ Y KηJK (XI∂IZ

J −ZI∂IX
J) + Y KηIJ (ZI∂KX

J) ,

where in the second expression only the first terms on each line survive after cancellations,

proving the equality and completing the proof.

We have therefore shown that the D-bracket exists at least on flat para-Kähler manifolds.

It is not, however, immediately clear that such a bracket will exist on any almost para-

Hermitian manifold and if it does exist, we would like to know if it is unique. The following

statement answers both of these questions:
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Theorem 2.4.3. Let (M, η,K) be an almost para-Hermitian manifold and ∇c be its canonical

connection. Then the following expression defines a D-bracket:

η([[X,Y ]], Z) ∶= η(∇c
XY −∇c

YX,Z) + η(∇c
ZX,Y ). (2.4.3)

Moreover, the D-bracket is unique.

Proof. First, in order to check all the properties of the Definition 2.4.1, we simply use the

definition of ∇c, particularly its form (2.2.5).

In order to prove uniqueness, we consider two D-brackets [[ , ]] and [[ , ]]′ associated to

the same almost para-Hermitian manifold (M, η,K), denoting their difference by

[[X,Y ]]′ = [[X,Y ]] +∆(X,Y ) and ∆(X,Y,Z) = η(∆(X,Y ), Z)

From the η-compatibility properties of the D-bracket (property 2. of Definition 2.4.1), it

follows that ∆(X,Y,Z) is fully skew, while Leibniz property (property 1.) tells us that ∆

is tensorial, meaning ∆ is a three-form on M. Furthermore, the relationships with the Lie

bracket (property 4.) implies that ∆(PX,PY ) = 0 = ∆(P̃X, P̃Y ), which in turn means that

∆(PX,PY,Z) = 0 and ∆(P̃X, P̃Y,Z) = 0 for all Z ∈ X(M). Since ∆ is a three-form, this

concludes that ∆ = 0 identically.

We note a useful form of the D-bracket (2.4.3) in terms of the Levi-Civita connection

instead of the canonical connection, which follows from (2.2.4):

η([[X,Y ]], Z) = η(∇̊XY − ∇̊YX,Z) + η(∇̊ZX,Y )

− 1

2
[dω(3,0)(X,Y,Z) + dω(2,1)(X,Y,Z) − dω(1,2)(X,Y,Z) − dω(0,3)(X,Y,Z)].

(2.4.4)

We conclude the discussion with several remarks. The properties 1. and 2. in Definition

2.4.1 define a metric algebroid [53] (η, [[ , ]], a = 1). It is also easy to see, for example from

(2.4.3), that [[ , ]] is not skew and satisfies

[[fX,Y ]] = f[[X,Y ]] − Y [f]X + η(X,Y )Df, Df = η−1df. (2.4.5)

Moreover, the D-bracket does not satisfy the Jacobi identity. However, it can be split in two

parts, each of which does satisfy the Jacobi identity independently. We will discuss this in

Section 5.1.
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2.4.1 The D-Torsion

Note that even though the D-bracket itself is unique, the expression (2.4.3) is not, i.e. there

are many different connections apart from the canonical conenction ∇c that can be used

to define the D-bracket via (2.4.3). This is exactly analogous to the Lie bracket, which is

defined on vector fields X and Y by

[X,Y ] = ∇XY −∇YX,

for any ∇ with vanishing torsion. This leads to the analogous notion for the D-bracket, the

D-torsion:4

Definition 2.4.4. Let (M, η,K) be an almost para-Hermitian manifold, [[ , ]] its D-bracket

and ∇ a connection on TM. The D-torsion of ∇ is defined as

T∇(X,Y,Z) ∶= η(∇XY −∇YX,Z) + η(∇ZX,Y ) − η([[X,Y ]], Z). (2.4.6)

The meaning of the D-torsion is that it measures how much the bracket [[ , ]]∇ associated

to the connection ∇, given by

η([[X,Y ]]∇, Z) ∶= η(∇XY −∇YX,Z) + η(∇ZX,Y ), (2.4.7)

deviates from the D-bracket. The D-torsion therefore vanishes precisely when [[ , ]]∇ is the

D-bracket. In [13], the connections with a vanishing D-torsion are called adapted.

The D-torsion has the following properties:

Lemma 2.4.5. The D-torsion T∇(X,Y,Z) of a connection ∇ is a three-form – i.e. it is

tensorial and fully skew – if and only if ∇ is compatible with η. When this is the case the

bracket [[ , ]]∇ satisfies the Property 2 of Definition 2.4.1. Moreover, if ∇ is para-Hermitian

– i.e. it preserves (η,K) – the (3,0) and (0,3) components of T∇(X,Y,Z) vanish and [[ , ]]∇
satisfies properties 1. − 3. of Definition (2.4.1).

Proof. We introduce the contorsion tensor Ω associated with ∇ which measures its deviation

4In [14], this quantity is called the generalized torsion but here we choose the name D-torsion and reserve
the name generalized torsion for its more common usage in the context of generalized geometry. In later
sections we will see that the two notions are closely related.
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from the canonical connection,

η(∇XY,Z) = η(∇c
XY,Z) +Ω(X,Y,Z).

The D-torsion in terms of the contorsion reads

T∇(X,Y,Z) = Ω(X,Y,Z) −Ω(Y,X,Z) +Ω(Z,X,Y ).

It is easy to check that the contorsion tensor is skew-symmetric in its last last two entries if

and only if ∇ preserves η,

Ω(X,Y,Z) = −Ω(X,Z,Y ) ⇐⇒ ∇η = 0.

Using the skew-symmetry property of Ω, we get

T∇(X,Y,Z) = Ω(X,Y,Z) +Ω(Y,Z,X) +Ω(Z,X,Y ) = ∑
(X,Y,Z)

Ω(X,Y,Z).

The D-torsion T∇(X,Y,Z) is therefore invariant under cyclic permutations. The fact that is

is totally skew follows from skewness of Ω in the last two entries.

For the converse statement, we use that

T∇(X,Y,Z) + T∇(Y,X,Z) = Ω(X,Y,Z) +Ω(X,Z,Y ),

which vanishes if T∇ is fully skew. This yields Ω(X,Y,Z) + Ω(X,Z,Y ) = 0, which implies

(after a brief calculation) that ∇ must be compatible with η.

If ∇ is a para-Hermitian connection, i.e. ∇P = P∇, then

η(∇PXPY,PZ) = η(P∇PXPY,PZ) = 0.

From this it is clear that the contorsion satisfies Ω(PX,PY,PZ) = 0 and that the (3,0)
component of T∇ also vanishes. The same argument applies for P̃ . Therefore, the D-torsion

of a para-Hermitian connection is a (2,1)+ (1,2)-form. This means that [[ , ]]∇ satisfies the

properties 1.− 3. of the Definition 2.4.1, while 4., which fixes the (2,1)+ (1,2) tensorial part

of [[ , ]], is in general violated.

Example 2.4.6 (D-torsion of the Levi-Civita connection). A counter-intuitive fact follow-
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ing from the definition of the D-torsion is that the Levi-Civita connection of η now has

torsion (with respect to [[ , ]]) unless ω is closed. This is easy to see from (2.2.4). Using the

formula

dω(X,Y,Z) = ∑
(X,Y,Z)

∇̊Xω(Y,Z),

we find that the D-torsion of the Levi-Civita connection of η is given by

T∇̊(Y,X,Z) = 1

2
[dω(3,0) + dω(2,1) − dω(1,2) − dω(0,3)](X,Y,Z),

where the superscript (p, q) denotes the para-Hermitian bigrading of forms. ◁

2.5 Para-Calabi-Yau manifolds

In this section, we introduce the notion of para-Calabi-Yau manifolds. As the name suggests,

these manifolds should play the role of the para-complex version of Calabi-Yau manifolds

in complex geometry. We introduce this notion for its importance in section 3.3, where this

geometry underlies a key example of Born geometry that appears in the context of mirror

symmetry.

We start with a recollection of Calabi-Yau manifolds. For more details, the reader may

consult for example the book [54]. There are many different ways to define what a Calabi-Yau

manifold is, but for the purpose of our discussion we choose the following:

Definition 2.5.1. A Calabi-Yau manifold is a Kähler manifold (M,g, I) of complex

dimension d such that the holonomy group of the underlying Riemannian metric g is Hol(g) ⊆
SU(d).

Typically, a part of the definition of a Calabi-Yau manifold is the requirement of com-

pactness of M and sometimes, one requires that Hol(g) is exactly equal to SU(d).

Recall that on any Kähler manifold we have Hol(g) ⊆ U(d). A consequence of the

property Hol(g) ⊆ SU(d) ⊂ U(d) is that there exists a covariantly constant, non-vanishing

section Ω ∈ Ω(d,0)(M) called the holomorphic volume form. On Cd, the structures (g,ω,Ω)
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in the canonical holomorphic coordinates take the form:

g =
d

∑
i=1

dzi ⊗ dz̄i, ω = i

2

d

∑
i=1

dzi ∧ dz̄i, and Ω = dz1 ∧⋯ ∧ dzd.

We can describe Ω in a coordinate-independent way as follows:

Lemma 2.5.2. Let (M,g, I) be a Calabi-Yau manifold of complex dimension d and ω =
gI the fundamental form. There exists a nowhere vanishing section Ω ∈ Ω(d,0)(M) that is

holomorphic, that is, ∂̄Ω = 0, and satisfies

ωd

d!
= (−1)

d(d−1)
2 ( i

2
)
d

Ω ∧ Ω̄.

We now turn to the analogue of the above notions in the para-complex setting. Let

(M,K, η,ω) be a 2d-dimensional para-Kähler manifold with ∇̊ the Levi-Civita connection

of η. From ∇̊ω = ∇̊η = 0, we have that the holonomy group of a para-Kähler manifold is

GL(d) = O(d, d) ∩ Sp(2d). For a para-Calabi-Yau manifold, instead of the reduction from

U(d) to SU(d), we force the holonomy group to be in SL(d):

Definition 2.5.3. A para-Calabi-Yau manifold is a para-Kähler manifold (M,K, η) of

dimension 2d such that the holonomy group of η is Hol(η) ⊆ SL(d).

Remark. Note the interesting property that both SU(d) and SL(d) are real forms of SLC(d).

Let us now investigate what structure on para-Calabi-Yau manifolds is analogous to the

holomorphic volume form. Consider the canonical para-Kähler structure on R2d, given by

η = dxi ⊗ dx̃i + dx̃i ⊗ dxi and ω = dxi ∧ dx̃i,

which is preserved by GL(d). Introducing the following constant tensor

Ω̂ = dx1 ∧⋯ ∧ dxd + dx̃1 ∧⋯ ∧ dx̃d = Ω + Ω̃,

we see that the triple (η,ω, Ω̂) is preserved exactly by SL(d) and Ω̂ satisfies

ωd

d!
= (−1)

d(d−1)
2 Ω ∧ Ω̃.

Therefore, we have the following analogue of Lemma 2.5.2:
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Lemma 2.5.4. Let (M, η,K) be a para-Calabi-Yau manifold of dimension 2d and ω = ηK
the fundamental form. There exists a nowhere vanishing section Ω̂ = (Ω, Ω̃) ∈ Ω(d,0)(M) ⊕
Ω(0,d)(M) that is para-holomorphic, that is, ∂̃Ω = ∂Ω̃ = 0, and satisfies

ωd

d!
= (−1)

d(d−1)
2 Ω ∧ Ω̃.

Proof. The proof is exactly analogous to the complex case. See for example [55, Lemma 4.4].

Recall that on a para-complex manifold (M,M, M̃) of dimension 2d, the appropriate

analogue of the holomorphic forms are the para-holomorphic forms, given by pairs (α, α̃) ∈
Ω(k,0)+(0,k)(M) (here the bigrading is with respect to the para-complex structure), satisfying

∂̃α = ∂α̃ = 0. Therefore, the para-holomorphic volume form is exactly the correct analogue

of the holomorphic volume form in the case of the Calabi-Yau manifolds.

Furthermore, the fact that Ω̂ is para-holomorphic (particularly ∂̃Ω = 0) implies that the

section Ω locally takes the form

Ω = Ω(x) dx1 ∧⋯ ∧ dxd,

defining a volume form on M . Similarly, Ω̃ defines a volume form on M̃ and we see that

the para-Calabi-Yau structure on M augments the fundamental foliations M and M̃ of the

para-complex manifold with volume forms and both the foliation manifolds are consequently

orientable.

Remark. One of the unresolved problems in the para-Hermitian framework for DFT [12, 14,

13], is the interpretation of the dilaton field φ in terms of the para-Hermitian geometry. The

dilaton is crucial for string theory in that it defines an integration measure µ = e2φ on the

space-time manifold M and consequently also the notion of divergence. On a para-Calabi-

Yau manifold, there is a natural integration measure on both fundamental foliations M and

M̃ , given by the volume forms Ω and Ω̃. Para-Calabi-Yau manifolds, or their generalization

(for example to the para-Hermitian case dω ≠ 0) could therefore serve as the geometric model

that adresses the dilaton issue.
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Chapter 3

Born Geometry

We have seen that para-Hermitian geometry consists of a 2d-dimensional para-complex man-

ifold (M,K) with a compatible metric η of signature (d, d) and that this data represents what

we call the T-duality frame on the tangent bundle and therefore serves as the background

kinematic structure on the manifold. In this chapter, we will take the next step by adding the

dynamical data to the picture, which is encoded in another compatible metric H of signature

(2d,0), giving rise to what has been named Born geometry [2]. The additional Riemannian

structure H defines two more endomorphisms of the tangent bundle which – along with the

para-complex structure K already in place – form a para-hypercomplex structure.

Definition 3.0.1. Let (M, η, ω) be a para-Hermitian manifold and let H be a Riemannian

metric satisfying

η−1H = H−1η, ω−1H = −H−1ω. (3.0.1)

Then we call the triple (η,ω,H) a Born structure on M where M is called a Born man-

ifold and (M, η, ω,H) a Born geometry.

Remark. The condition on signature of H can be relaxed without changing any general

properties of Born geometry discussed in this work. Indeed, when M is considered to be

an extended spacetime (as opposed to extended space), H is usually taken to have the

signature (2d − 2,2). We also note here that in [56], Born geometry was incorrectly called

para-hyperKähler.

We now review the three fundamental structures of Born geometry. First, as we have
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seen, it contains an almost para-Hermitian structure (ω,K) with compatibility

K2 = 1, ω(KX,KY ) = −ω(X,Y ).

Next, the compatibility between η and H implies that J = η−1H ∈ Γ(End(TM)) defines

what we refer to as a chiral structure (η, J) on M1:

Definition 3.0.2. Let (M, J) be an almost para-complex manifold and let η be a pseudo-

Riemannian metric that satisfies η(JX,JY ) = η(X,Y ). Then we call (J, η) a chiral struc-

ture2 on M.

Finally, the compatibility between H and ω defines an almost Hermitian structure (H, I)
on M

I = H−1ω, I2 = −1, H(IX, IY ) = H(X,Y ).

One easily verifies that the three endomorphisms I, J,K, satisfy KJI = 1, which means that

the triple (I, J,K) obeys the para-quaternionic algebra

−I2 = J2 =K2 = 1, {I, J} = {J,K} = {K,I} = 0, KJI = 1, (3.0.2)

where { , } is the anti-commutator, forming a para-hypercomplex structure. The key

relations between the structures of Born geometry are summarized in Table 3.1.

Integrability The integrability of Born geometry is very subtle, since we can consider

integrability of three separate endomorphisms and two of these endomorphisms are para-

complex, admitting half-integrability. The relationship between the integrability of the para-

hypercomplex structure at hand has been explored in [57], where the authors found that

whenever two out of three structures are integrable, the third is integrable as well. Unless

explicitly stated, we will therefore always assume the endomorphisms I, J,K to be almost

(para-)complex. In Section 4.3.3, we will also introduce a different notion of integrability for

Born geometry motivated by generalized geometry.

1In our context the endomorphism J underlying the chiral structure is always para-complex but one can
relax the condition on the ranks of the eigenbundles, in which case J would only be a product structure.

2In mathematics it is customary to call this structure a pseudo-Riemannian almost product structure.

43



I = H−1ω = −ω−1H J = η−1H = H−1η K = η−1ω = ω−1η

−I2 = J2 =K2 = 1 {I, J} = {J,K} = {K,I} = 0 IJK = −1

H(IX, IY ) = H(X,Y ) η(IX, IY ) = −η(X,Y ) ω(IX, IY ) = ω(X,Y )

H(JX,JY ) = H(X,Y ) η(JX,JY ) = η(X,Y ) ω(JX,JY ) = −ω(X,Y )

H(KX,KY ) = H(X,Y ) η(KX,KY ) = −η(X,Y ) ω(KX,KY ) = −ω(X,Y )

Table 3.1: Summary of structures in Born geometry.

Example 3.0.3 (Local structure). Similarly to para-Hermitian structures, Born structures

also have a canonical local form. Let (M,K, η) be a 2n-dimensional almost para-Hermitian

manifold and choose the adapted frame (ei, ẽi), in which we have (using the d-dimensional

block notation)

K =
⎛
⎝
1 0

0 −1
⎞
⎠
, η =

⎛
⎝

0 1

1 0

⎞
⎠
, ω =

⎛
⎝

0 −1
1 0

⎞
⎠
. (3.0.3)

Now, from the properties (3.0.1) and the fact that H is symmetric, we find that H must take

the form

H =
⎛
⎝
g 0

0 g−1

⎞
⎠

for some symmetric, invertible d-dimensional matrix g. The para-unitary group pU(2d) =
GL(d) that preserves (η,ω,K), acts on H by

H ↦
⎛
⎝
AtgA 0

0 (AtgA)−1

⎞
⎠
,

which means that we can choose A that diagonalizes g, AtgA = 1 so that we get a new

adapted frame (e′i, ẽ′i) = (Aei, (At)−1ẽi), in which H takes the form

H =
⎛
⎝
1 0

0 1

⎞
⎠
.
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◁

The above example shows three important facts about Born geometry, which are sum-

marized in the following statement:

Proposition 3.0.4 ([14]). There exists a Born structure on any almost para-Hermitian

manifold (M,K, η), and it is equivalent to a choice of a metric g on L, the +1 eigenbundle

of K, i.e. a non-degenerate symmetric tensor g ∈ Γ(L∗ ⊗L∗). Moreover, there exists a local

frame in which the born structure (η,ω,H) takes the canonical form

η =
⎛
⎝

0 1

1 0

⎞
⎠
, ω =

⎛
⎝

0 −1
1 0

⎞
⎠
, H =

⎛
⎝
1 0

0 1

⎞
⎠
. (3.0.4)

Lastly, the structure group of Born geometry is

O(d, d) ∩ Sp(2d) ∩O(2d) = O(d).

The way in which the metric g on L defines the compatible Riemannian metric H on M
is the following. The fact that L and L̃ are maximally isotropic with respect to η implies

that η defines by contraction the bundle isomorphisms

η ∶
⎧⎪⎪⎪⎨⎪⎪⎪⎩

L→ L̃
∗

L̃→ L∗
.

Understanding g also as an isomorphism g ∶ L → L∗, we can construct the isomorphism

g̃ ∶ L̃ → L̃
∗

given by the composition of maps g̃ = η ○ g−1 ○ η, which in turn defines a metric

on L̃ that we also denote by g̃. Then H takes the diagonal form

H =
⎛
⎝
g 0

0 g̃

⎞
⎠
.

The above statement makes a perfect sense in the context of the extended spacetime

(M,M, M̃): the choice of a Born structure is simply a choice of a metric on tangent direc-

tions along the physical space M , reducing the structure group to the group of orthogonal

transformations of M , O(d). Furthermore, this tells us that all examples of para-Hermitian

manifolds listed in Section 2.2.3 give rise in a simple way to Born geometries simply by
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choosing a metric on one of the eigenbundles. We demonstrate this on the following example

from [14, 18] that naturally arises in Lagrangian mechanics:

Example 3.0.5 (Born structures on the tangent bundle). Let M = TM be the tangent

bundle of a Riemannian manifold (M,g) and choose a connection Γ, which defines a (half-

)integrable para-Hermitian structure (K,η) on M, as described in Example 2.2.10. Pulling

back g by the fiber projection TM
π→M defines a metric on the horizontal subbundle H and

also induces a metric g̃ on the vertical bundle V as described above: g̃ = ηg−1η. In turn, this

defines the diagonal Riemannian metric on M = TM called the Sasaki metric

H = gij(dxi ⊗ dxj + τ i ⊗ τ j),

where τ i are the one-forms in V ∗ described in the Example 2.2.10. ◁

3.1 Perspectives on Born geometry

Depending on the perspective one wants to emphasize, there are multiple ways to present

Born geometry, given the various different structures it defines. So far, the emphasis was

put on the para-Hermitian triple (η,ω,K) which defines the underlying T-duality frame and

differentiable structure compatible with this frame. However, there are many different ways

one can present Born geometry and we will discuss them in the following sections.

3.1.1 Chiral perspective

In DFT, the extended geometry is usually presented in terms of the chiral structure (η,H, J)
and the para-Hermitian structure only arises implicitly as a choice of the T-duality frame,

sometimes called the polarization. This point of view can be summarized in the following

way:

Lemma 3.1.1. The Born structure (η,ω,H) is equivalent to the chiral triple (η,H, J) sat-

isfying

J = η−1H, J2 = 1,
η(JX,JY ) = η(X,Y ), H(JX,JY ) = H(X,Y ),

(3.1.1)
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along with a compatible almost symplectic form ω fixing the polarization

ω−1η = η−1ω, ω−1H = −H−1ω. (3.1.2)

Proof. We have already shown that starting with a para-Hermitian manifold and a compat-

ible Riemannian metric H yields the compatible chiral structure. The converse statement

follows from observing that ω−1η = η−1ω implies K = η−1ω is a para-Hermitian structure

compatible with η.

The chiral structure J plays an important role in subsequent constructions. For this

reason, we introduce the chiral subspaces C± which are the ±1-eigenbundles of J . Together

these subspaces span the tangent space of our Born manifold

TM = C+ ⊕C−. (3.1.3)

We now also have another set of projection operators onto these subspaces, which we denote

by P±. Additionally, we introduce the following notation for the splitting of a vector field on

M into the eigenbundles of J :

X± = P±(X), P± =
1

2
(1 ± J). (3.1.4)

The compatibility conditions of η and J further imply that the eigenbundles C± are orthog-

onal with respect to η

η(X±, Y∓) = 0, (3.1.5)

for any X±, Y± ∈ Γ(C±). The following property will be used later repeatedly:

Lemma 3.1.2. The para-Hermitian structure K on a Born manifold maps the chiral sub-

spaces into each other isomorphically,

K ∶ C± → C∓ (3.1.6)

such that K(X±) = (KX)∓.

Proof. Because {J,K} = 0, K(X±) = (KX)∓ follows immediately from (3.1.4). Since K is

clearly invertible, the map is an isomorphism.
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Even though chiral structures are similar to para-Hermitian structures in the sense that

they are defined by a real endomorphism J that is compatible with a metric η, the fact that

J is orthogonal with respect to η forces many qualitative differences. The eigenbundles of J

are not isotropic with respect to either of the metrics η or H = ηJ . Moreover, the Nijenhuis

tensor of J ,

NJ(X,Y,Z) ∶= η(NJ(X,Y ), Z),

is of type (2,1) + (1,2) in the bigrading of J , as opposed to the Nijenhuis tensor

NK(X,Y,Z) = η(NK(X,Y ), Z)

of an almost para-Hermitian structure (2.1.1), which is of type (3,0)+(0,3) (in the bigrading

defined by K). Because the contraction ηJ = H is now a metric, the condition analogous to

the “para-Kähler” condition dω = 0 is different. Instead, one can classify the chiral structures

with respect to the fundamental tensor F :

F (X,Y,Z) ∶= ∇̊XH(Y,Z) = η((∇̊XJ)Y,Z). (3.1.7)

The full classification in terms of 36 classes was done in [58] but here we recall only two

subclasses, W3 and W0.

Definition 3.1.3. Let (η, J) be an almost chiral structure. We say (η, J) is of class W3 if

∑
Cycl. X,Y,Z

F (X,Y,Z) = 0. (3.1.8)

If F = 0 identically, we say (η, J) is of class W0.

Note that the condition (3.1.8) is the chiral geometry analogue of the condition dω = 0

in para-Hermitian geometry via the formula

dω(X,Y,Z) = ∑
Cycl. X,Y,Z

∇̊Xω(Y,Z),

which is the para-Hermitian version of (3.1.8) once we plug in the definition of F (3.1.7).

Therefore, the classW3 should be thought of as the closest analogue of para-Kähler structures

one can define for chiral structures.
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3.1.2 Para-hypercomplex perspective

The para-hypercomplex perspective, which considers the triple {I, J,K} satisfying the para-

quaternionic algebra (3.0.2) as the starting point of Born geometry, is another natural point of

view. First, Boulter proves in his work [30] that any para-hypercomplex triple in fact admits

a Born structure, meaning there always exists a metric η that is appropriately compatible

according to Table 3.1.

We now show that Born geometry is in fact one of only two options of adding a metric

η3 compatible with the para-hypercomplex triple {I, J,K}. Because there are two options

for the choices of orthogonality for each, we could in theory get 23 = 8 options. However,

because K and J are both structures of the same type and all three structures anticommute,

this already restricts the options to 3 cases

1. I is orthogonal ⇒ J,K have the same orthogonality:

• Both J,K are orthogonal,

• Both J,K are anti-orthogonal.

2. I is anti-orthogonal ⇒ J,K have different orthogonality.

As we will now explain, two of the above options in fact give the same geometry and there-

fore there are only two inequivalent options of how to choose the orthogonality of a para-

hypercomplex triple with respect to a metric.

First, we start with the case when I is orthogonal and both J and K are anti-orthogonal.

In this situation all three contractions

ωI = ηI, ωJ = ηJ, ωK = ηK,

define a non-degenerate two-form. This geometry is called para-hyper-Hermitian and has

been studied for example in [59, 60] and other works, including in physics [61, 62].

Now, let all I, J,K be orthogonal with respect to η. From the first column of the met-

ric compatibility relationships in Table 3.1, we see that upon identifying our η with H,

(I, J,K,H = η) is Born geometry.

3No conditions on the signature of η are a priori assumed.
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Lastly, when I is anti-orthogonal and J and K have opposite orthogonality with respect

to η, we choose without a loss of generality that K is anti-orthogonal and J is orthogonal,

which again recovers Born geometry, this time described in the second column of Table 3.1.

We conclude that apart from para-hyper-Hermitian geometry, Born geometry describes the

only other way one can choose a metric compatible with a para-hypercomplex structure

{I, J,K}. In particular, since para-hyper-Hermitian structures only exist on manifolds of

dimension 4n (see for example [30, Remark 3.3]), Born geometry is the only such choice on

manifolds of dimension 2(2n − 1).

3.1.3 Bi-Chiral perspective

In the above discussion we have neglected one remaining structure that one gets as a con-

traction of all η, ω and H, η̂ ∶= ηH−1ω. Using the properties of Table 3.1, one easily verifies

that the orthogonality of the para-complex structures J,K with respect to η̂ is swapped

compared to η:

η̂(JX,JY ) = −η̂(X,Y ), and η̂(KX,KY ) = η̂(X,Y ).

This means that the data of Born geometry can be equivalently specified by a bi-chiral

structure – i.e. a pair of chiral structures (η, J), (η̂,K), which share the same metric

H = ηJ = η̂K – that mutually anti-commute: {J,K} = 0. We will come back to this point

of view in Section 4.3.2, where Born geometry is defined in terms of a commuting pair of

generalized structures, i.e. endomorphisms of the bundle (T ⊕ T ∗)M.

3.2 The Born connection

In the previous sections, we introduced Born geometry and argued that it represents a

choice of dynamical metric H on a para-Hermitian manifold (M, η,K). More precisely, it

corresponds to a choice of a “physical space” metric g on L, which consequently also defines

the T-dual metric g̃ on L̃, so that both L and L̃ are Riemannian vector bundles.

From the physics point of view, the metric represents gravity. As in general relativity, we

need to accompany the metric structure by an appropriate compatible connection on M. A

naive choice would be the Levi-Civita connection of H, ∇H. If we follow our reasoning from
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Section 2.4, we realize that this is not the right choice, simply because ∇H is not compatible

with the T-duality frame and the underlying differentiable structure given by the D-bracket.

Instead, we are looking for a connection ∇B that satisfies the following properties:

• Compatibility with the T-duality splitting: ∇Bω = ∇Bη = ∇BK = 0,

• Compatibility with the dynamical data: ∇BH = 0, and

• Compatibility with the D-bracket: vanishing of the D-torsion T∇B = 0.

As we show in [14], such a connection not only exists, but is also unique:

Theorem 3.2.1 ([14]). Let (M, η, ω,H) be a Born geometry. Then there exists a unique con-

nection ∇B on TM called the Born connection which parallelizes the Born structure (η,ω,H)
on M and has a vanishing D-torsion, T∇B = 0. Moreover, ∇B can be expressed in terms of

the para-Hermitian structure K = η−1ω and the chiral projections X± = P±(X) as

∇B
XY = [[X−, Y+]]+ + [[X+, Y−]]− + (K[[X+,KY+]])+ + (K[[X−,KY−]])−. (3.2.1)

Proof. Here we sketch the proof of the theorem, a detailed version of the proof can be found

in [14]. First, we show that the expression (3.2.1) indeed defines a connection and has

the listed properties, i.e. it is compatible with all the structures of Born geometry and its

D-torsion vanishes. For the tensoriality, we use the property (2.4.5):

∇B
fXY = f∇B

XY − Y+[f](X−)+ − Y−[f](X+)−
−K(Y+)[f](KX+)+ −K(Y−)[f](KX−)−
+ η(X−, Y+)(Df)+ + η(X+, Y−)(Df)−
+ η(X+,KY+)(KDf)+ + η(X−,KY−)(KDf)−

= f∇B
XY,

(3.2.2)

where D = η−1d and we made use of Lemma 3.1.2 along with the fact that C± are orthogonal

with respect to η (3.1.5) and complementary to each other. Similarly, the derivation property

in the second argument follows by

∇B
XfY = f∇B

XY +X−[f](Y+)+ +X+[f](Y−)−
+X+[f](K2Y+)+ +X−[f](K2Y−)−

= f∇B
XY +X[f]Y,

(3.2.3)
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which shows that ∇B indeed is a connection.

The compatibility of ∇B with η follows from the property 2. in Definition 2.4.1 of the

D-bracket and the orthogonality properties of J and K with respect to η. The fact that

∇B parallelizes J follows directly from the expression (3.2.1) which manifestly preserves the

eigenbundles of J . Lastly, ∇BK = 0 follows from Lemma 3.1.2, which can be used to show

that ∇B
X(KY ) =K(∇B

XY ) by directly plugging into (3.2.1).

To show that T∇B = 0, we use the definition of the D-torsion 2.4.4:

T∇B(X,Y,Z) = η(∇B
XY −∇B

YX,Z) + η(∇B
ZX,Y ) − η([[X,Y ]], Z),

and again use the fact that ∇B itself can be written using [[ , ]]. Carrying out the calculation

eventually yields

T∇B(X,Y,Z) = −∑
±
η(NK(X±, Y±), Z±),

which vanishes as a result of the axiom 3. in Definition 2.4.1.

For the uniqueness, we assume ∇̃ is another connection satisfying the properties listed in

Theorem 3.2.1. We then decompose ∇̃ into the four chiral components:

η(∇̃XY,Z) = ∑
±

[η(∇̃X±Y∓, Z) + η(∇̃X±Y±, Z)], (3.2.4)

and show that the properties of ∇̃ imply that ∇̃ = ∇B for each of the four components. For

example,

η(∇̃X+Y−, Z) ∇̃J=0= η(∇̃X+Y−, Z−)
T̃ =0= η([[X+, Y−]], Z−) + η(∇̃Y−X+, Z−) − η(∇̃Z−X+, Y−)

∇̃J=0= η([[X+, Y−]], Z−) = η([[X+, Y−]]−, Z). (3.2.5)

The rest follows analogously, which completes the proof of the uniqueness as well as of the

whole Theorem 3.2.1.

3.2.1 The Levi-Civita connection on L

In Proposition 3.0.4, we presented the point of view that Born geometry augments para-

Hermitian geometry with a metric g on the eigenbundle L, which is then (when certain
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integrability conditions are satisfied) identified with a space-time metric on the manifold

M =M/M̃ . This interpretation of Born geometry is completed by the Born connection ∇B,

which on L restricts to the Levi-Civita connection of g. This means that (H,∇B) is an

appropriate extension of the gravitational dynamics on M , given by the metric g and its

Levi-Civita connection, to the extended space M. Moreover, the next result shows that the

existence and uniqueness of the Born connection can be understood as the consequence of

the existence and uniqueness of the Levi-Civita connection of g.

Theorem 3.2.2. Let (M, η,K,H) be a Born manifold with H defined by a metric g on the

+1-eigenbundle L of K, which is integrable:

H =
⎛
⎝
g 0

0 g̃

⎞
⎠
,

where g̃ = ηg−1η. Then the partial connection

∇B
P● ∶ Γ(L) ×X(M) → X(M),

(x, Y ) ↦ ∇B
x Y,

with ∇B the Born connection, takes in the splitting TM = L⊕ L̃ the form

∇B
x =

⎛
⎝
∇g

x 0

0 ∇g∗
x

⎞
⎠
,

where ∇g is the Levi-Civita connection of g and ∇g∗ is the dual connection on L̃ defined by

η(∇g∗
x ỹ,z) = xη(ỹ,z) − η(ỹ,∇g

xz).

Proof. The proof amounts to checking that the restriction of ∇B to L preserves the metric

g and has a vanishing torsion along L, therefore showing it must be the unique Levi-Civita

connection of g with these properties. The former is true due to ∇BH = 0 and the fact that

H ∣L= g:

0 = (∇B
xH)(y) = ∇B

x (H(y)) −H(∇B
x y) = ∇B

x (g(y)) − g(∇B
x y) = (∇B

x g)(y),

where we also implicitly used that ∇B preserves L. The torsionlessness along L follows from

the fact that the D-torsion of ∇B vanishes identically and [[ , ]] restricts to a Lie bracket on

L
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0 = T∇B(x,y, z̃) = η(∇B
xy −∇B

yx, z̃) +
=0

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
η(∇B

z̃ x,y)−η([x,y], z̃) = η(T∇B(x,y), z̃).

Lastly, we find the component of ∇B along L̃ by η-compatibility

η(∇B
x ỹ,z) = xη(ỹ,z) − η(ỹ,∇B

xz) = xη(ỹ,z) − η(ỹ,∇g
xz).

Similarly, we find an analogous form of the partial connection along L̃ defined by ∇B
P̃●:

∇B
x̃ =

⎛
⎝
∇g̃

x̃ 0

0 ∇g̃∗
x̃

⎞
⎠
∶
⎧⎪⎪⎨⎪⎪⎩

Γ(L̃) ×X(M) → X(M)
(x̃, Y ) ↦ ∇B

x̃ Y
,

where ∇g̃ is the Levi-Civita connection of g̃ on L̃ and ∇g̃∗ is again the dual connection defined

by η(∇g̃∗
x̃ y, z̃) = x̃η(y, z̃) − η(y,∇g̃

x̃z̃).

3.3 Example: Born geometry and mirror symmetry

We will now turn to an example of Born geometry arising in one of the most elementary

geometric setting of so-called SYZ mirror symmetry [6], the semi-flat mirror symmetry.

Even though this example of mirror symmetry is relatively simple and easy to understand

in elementary geometric terms, it already shows a non-trivial relationship between moduli

of geometric structures on the mirror manifolds. The goal of this section is to show that:

1. Both sides of the semi-flat mirror symmetry admit Born geometries.

2. The mirror map relates the moduli spaces of the symplectic structures on one side

to the moduli of para-complex structures on the other side, on top of the well-known

relationship of symplectic and complex moduli.

We follow the discussions in [63, 64, 65], which are the most relevant references for the

material discussed in this section and we now briefly review the most important facts.

Broadly speaking, mirror symmetry is a correspondence between two sets of mathematical

data that was originally discovered in physics as an equivalence of supersymmetric nonlinear
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σ-models, but has been vastly generalized beyond that context since then. In this section,

we will be concerned with the SYZ mirror symmetry, where the correspondence is between

pairs of Calabi-Yau manifolds M and M̃ , specifically ones that admit a particular type of

fibration. The mirror symmetry in this case acts geometrically as an exchange of these

fibrations, which are linear duals of each other. This corresponds well with the picture of

T-duality, which is usually locally described precisely by such an exchange, giving rise to the

motto of SYZ mirror symmetry: “mirror symmetry is T-duality” [6]. One of the hallmarks

of mirror symmetry is the feature that it relates the moduli space of symplectic structures

on M with the moduli space of complex structures on M̃ . In the physics language, this

exchange is realized as a correspondence between an A-model on M and a B-model on M̃ .

In the following paragraphs, we will study the semi-flat case of SYZ mirror symmetry,

where the pair of Kähler Calabi-Yau manifolds is given byM = TB and M̃ = T ∗B, the tangent

and cotangent bundles of an affine manifold B. Our result is that this setting admits an

equally natural description in terms of para-Kähler and para-Calabi-Yau geometry, where

the mirror map exchanges the symplectic moduli on M with the para-complex moduli on M̃ .

The underlying symplectic fundamental forms of both the Kähler and para-Kähler geometries

coincide, while the complex and para-complex structures anti-commute and therefore define

Born geometry. Consequently, the mirror map in the semi-flat case relates Born geometries

on M and M̃ , mapping between the symplectic moduli on one side and the para-complex

and complex moduli on the other side.

Remark. Note that even though each of the manifolds M = TB and M̃ = T ∗B are individually

para-Hermitian (particularly, they are para-Calabi-Yau), the para-Hermitian structures do

not describe the T-duality facilitated by the mirror map. Instead, the T-duality described

in this section is partial and happens on the fibres of the total space of the manifold M =
TB ×B T ∗B = (T ⊕ T ∗)B, which are para-Hermitian as well.

The para-complex point of view We start with the discussion of the para-Calabi-Yau

geometry on the side of M and then contrast it with the usual Calabi-Yau geometry of M .

Consider an affine manifold B and take a neighbourhood U ⊂ B with local coordinates ui.

Let U × Rn with the coordinates (ui, vi), vi denoting the coordinates on Rn, be the local

model for M = TB. We define the para-complex structure on M in terms of its adapted

coordinates, which we choose to be (xi = ui + vi, x̃j = uk − vk). The fact that M is affine

means that M admits an atlas with affine transition functions in GL(n) ⋉ Rn, i.e. of the
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form

ui ↦ u′i(ui) = Ai juj +Bi, A ∈ GL(n), B ∈ Rn.

We therefore choose (U,ui) from this atlas. This implies that the natural fiber coordinates

of TM , vi = dui4, transform as vi ↦ Ai jv
j, so that the adapted coordinates (xi = ui + vi, x̃j =

uk − vk) transform by

(xi, x̃j) ↦ (Aikxk +Bi,Ajkx̃
k +Bj),

which shows that the total space of TB is an affine manifold with (xi, x̃j) affine coordinates.

In particular (xi, x̃j) are adapted coordinates of an integrable para-complex structure on

TB, because the transition functions are para-holomorphic.

We now endow M with a para-Calabi-Yau structure defined by the fundamental form ω

and the para-holomorphic volume form Ω̂:

ω = ωij dxi ∧ dx̃j = −2ωij du
i ∧ dvj,

Ω̂ = 1

2
(dx1 ∧⋯ ∧ dxn + dx̃1 ∧⋯ ∧ dx̃n) = Ω + Ω̃.

We also assume that the local para-Kähler potential φ on U ⊂M , which defines ω via

ωij = ∂i∂̃jφ = ( ∂2

∂ui∂uj
− ∂2

∂vi∂vj
)φ,

is of the form φ(u, v) = φ(u). This means it is invariant under the translations in the fiber

directions of TB and the geometry is therefore semi-flat, hence the name semi-flat mirror

symmetry. The fact that the pair (ω, Ω̂) defines a para-Calabi-Yau structure means that it

satisfies the Monge-Ampere equation:

ωn = CΩ ∧ Ω̃⇐⇒ det( ∂2φ

∂ui∂uj
) = C.

The above has a unique solution for φ [66] assuming φ ∣∂U= 0 and φ is convex (∂i∂jφ > 0).

For the Monge-Ampere equation to be invariant under the affine transformations, we must

have det(A) = 1, which is a requirement that defines a special affine manifold. Therefore,

we will from now on require that B is special affine. For completeness, we note that the

4Here du is understood as a fiber-wise linear function TM ∣p→ R, for p ∈ U .
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para-Kähler metric η takes the form

η = ωij(dxi ⊗ dx̃j + dx̃i ⊗ dxj) = 2ωij(dui ⊗ duj − dvi ⊗ dvj).

The complex point of view In the usual discussion of the semi-flat mirror symmetry,

one considers a complex structure defined by the holomorphic coordinates zi = ui+ivi instead

of the para-complex structure above. The fundamental form is then taken to be ωI = i∂∂̄φ,

which in the semi-flat case φ(u, v) = φ(u) coincides with ω. The Riemannian Kähler metric

is then

g = ωij(dui ⊗ duj + dvi ⊗ dvj).

It is easy to show that I and K anticommute, and because ωI = ω, we see that this geometric

setting defines Born geometry.

Legendre transform and the mirror map So far we described the geometry on the

side of TB. Now, we will describe the corresponding mirror geometry on T ∗B. We start by

considering new coordinates ûi on U ⊂ B given by

∂ûi(u)
∂uj

= ωij =
∂2φ

∂ui∂uj
,

with the inverse transformation ∂ui(û)
∂ûj

= ωij = (ωij)−1. Integrating this, we can write the

relationship between the coordinates

ui(û) = ∂ψ(û)
∂ûi

,

for some local function ψ(û) so that ωij = ∂ψ(û)
∂ûi∂ûj

and φ(u) and ψ(û) are Legendre transforms

of one another:

ψ(û) = uiûi − φ(u).

This ensures that ψ also satisfies the Monge-Ampere equation, but with the inverse constant

det( ∂2ψ

∂ûi∂ûj
) = C−1. (3.3.1)
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We continue by discussing the cotangent bundle M̃ = T ∗B. The metric η on M = TB
defines a negative-definite metric −2ωijdvi⊗ dvj on each fiber, which can be inverted to give

a negative-definite metric on fibres of T ∗B so that there is a metric on M̃ :

η̂ = 2(ωijdui ⊗ duj − ωijdv̂i ⊗ dv̂j),

where we denoted the fiber coordinates dual to vi = dui by v̂i = ∂
∂ui

. Using the canonical

symplectic form on T ∗B,

ω̂ = dui ∧ dv̂i

we define a para-Kähler structure K̂ via

K̂ ∶= η̂−1ω̂.

It can be checked that K̂ is again integrable and the corresponding adapted coordinates are

(x̂i = ûi + v̂i, ˆ̃xj = ûj − v̂j), in terms of which we get

ω̂ = ω̂ijdx̂i ∧ dˆ̃xj

η̂ = ω̂ij(dx̂i ⊗ dˆ̃xj + dˆ̃xi ⊗ dx̂j),

where ω̂ij = ∂2ψ
∂ûi∂ûj

. Crucially, M̃ is also a para-Calabi-Yau manifold because ψ satisfies the

Monge-Ampere equation (3.3.1). Moreover, we get a relationship between the moduli of

symplectic structures on M and para-complex structures on M̃ , since varying the symplectic

structure on M corresponds to a change of φ, which also changes ψ as well as the coordinates

ûi. This in turn changes the para-complex structure K̂ defined by its adapted coordinates,

and in particular depending on ûi.

We find that in this case the mirror symmetry not only relates the symplectic and complex

moduli of the mirror manifolds M and M̃ (details about this statement can be found for

example in [63]), but also relates the symplectic and para-complex moduli in an analogous

way. Therefore, the semi-flat mirror symmetry defines a map between the Born geometries

on M and M̃ , where the variation of the symplectic structure on one side corresponds to a

variation of the complex and para-complex structures on the other side.
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Chapter 4

Born Geometry and Generalized

Geometry

In this section we introduce the framework of generalized geometry, which we shall use to

describe many geometric objects discussed so far, from a different point of view. In Section

4.3, we define generalized para-Kähler geometry and show how it relates to para-Kähler and

para-Hermitian geometry. We also define generalized chiral geometry and discuss its subclass

that is equivalent to Born geometry. A different point of view on the relationship between

para-Hermitian manifolds and generalized geometry is presented in Section 5. There, we

introduce small Courant algebroids, which are objects attached to the fundamental foliations

M and M̃ of a para-Hermitian manifold (M,M, M̃, η), and use them to explicitly construct

the D-bracket.

The central role in generalized geometry is played by the extended tangent bundle TN ⊕
T ∗N = (T ⊕T ∗)N over, for the time being, an arbitrary manifold N and geometric structures

defined on this bundle. Later on, N will be taken to be either M (resp. M̃) or M, where M

and M̃ are the fundamental foliations of a para-Hermitian manifold (M,M, M̃, η). Because

the present considerations hold for any N , we shall abbreviate (T ⊕ T ∗)N by T ⊕ T ∗.

The appeal of studying the extended tangent bundle is that many different geometric

objects can be elegantly understood as objects on T ⊕ T ∗ in a unified way. For example, all

of complex, symplectic and Poisson structures can be recast as subbundles of T ⊕ T ∗ called

Dirac structures and their different integrability conditions all boil down to an involutivity

condition of the corresponding Dirac structures under an appropriate bracket. Another

reason to study the extended tangent bundle in our case is that it is the simplest para-
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Hermitian vector bundle (see Example 2.2.3) and the extended tangent bundle T ⊕ T ∗ on a

para-Hermitian manifold (M,M, M̃, η) is closely related to the extended space M with its

split tangent bundle TM = L⊕ L̃.

We first review basic facts from Dirac geometry, which studies the bundle T⊕T ∗ itself and

its natural Courant algebroid structure. Then we will focus on the generalized structures,

which are endomorphisms on T ⊕ T ∗ compatible with the underlying Dirac geometry. A

special non-degenerate type of generalized structures give rise to generalized metrics, which

we will also discuss along with interesting connections and bracket operations they induce

on T ⊕ T ∗.

4.1 Dirac Geometry Review

The natural Courant algebroid structure [67] on T ⊕ T ∗ is given by the following data.

The symmetric pairing,

⟨X + α,Y + β⟩ = α(Y ) + β(X),

the Dorfman bracket

[X + α,Y + β] = [X,Y ] + LXβ − ıY dα, (4.1.1)

and the anchor π ∶X + α ↦X. The three structures are compatible in the following way

π(X + α)⟨Y + β,Z + γ⟩ = ⟨[X + α,Y + β], Z + γ⟩ + ⟨Y + β, [X + α,Z + γ]⟩. (4.1.2)

In the above, X + α denotes a section of T ⊕ T ∗. The Dorfman bracket can be thought

of as an extension of the Lie bracket from T to T ⊕T ∗ and therefore we opt to use the same

notation for both brackets; the expression [X,Y ] is always the Lie bracket of vector fields

whether we think of [ , ] as the Lie bracket or the Dorfman bracket and no confusion is

therefore possible.

Remark. The Courant algebroid structure can be equivalently given by the Courant bracket,
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which is just a skew-symmetrization of [ , ]:

[X + α,Y + β]Cour. =
1

2
([X + α,Y + β] − [Y + β,X + α])

= [X,Y ] + LXβ − LY α −
1

2
d(ıXβ − ıY α).

The inverse relationship is given by

[X + α,Y + β] = [X + α,Y + β]Cour. + d⟨X + α,Y + β⟩.

While [ , ]Cour. is conveniently skew-symmetric, it does not satisfy the Jacobi identity, which

[ , ] does. Instead, the Jacobi identity of [ , ]Cour. is violated by an exact non-vanishing

3-product, which is why Courant algebroids are Lie 2-algebroids (or, Lie algebroids up to

homotopy).

The Courant algebroid on T ⊕T ∗ is exact, meaning that the associated sequence of vector

bundles

0Ð→ T ∗ πt

Ð→ T ⊕ T ∗ πÐ→ T Ð→ 0, (4.1.3)

is exact. Here, πt is the transpose of π with respect to the pairing ⟨ , ⟩,

⟨πt(α), Y + β⟩ = ⟨α,π(Y + β)⟩ = ⟨α,Y ⟩

i.e. πt ∶ α ↦ α+0. In fact, all exact Courant algebroid structures on T ⊕T ∗ are parametrized

by a closed three-form H ∈ Ω3
cl [68], sometimes called the H-flux1 or Ševera form, which

enters the definition of the bracket (4.1.1), changing it to a twisted Dorfman bracket

[X + α,Y + β]H = [X,Y ] + LXβ − ıY dα + ıY ıXH. (4.1.4)

Remark. In the following text we tend to omit the word twisted and it should be assumed we

mean “twisted Dorfman bracket” whenever we say only “Dorfman bracket” unless specified

otherwise.

1Flux is a term used mainly in physics, in this context simply meaning the “tensorial contribution to the
bracket”.
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The b-field transformation. Any isotropic splitting s ∶ T → T ⊕ T ∗ of (4.1.3) is given

by a two-form b, such that X
s↦ X + b(X). This is equivalent to an action of a b-field

transformation on T ⊕ T ∗2

Definition 4.1.1. Let b be an arbitrary two-form. A b-field transformation is an endo-

morphism of T ⊕ T ∗ given by

eb =
⎛
⎝
1 0

b 1

⎞
⎠
∈ Γ(End(T ⊕ T ∗))

u =X + α ↦ eb(u) =X + b(X) + α
(4.1.5)

The map eb satisfies ⟨eb⋅, eb⋅⟩ = ⟨⋅, ⋅⟩ and acts on the (twisted) Dorfman bracket as

[eb(X + α), eb(Y + β)]H = eb([X + α,Y + β]H+db), (4.1.6)

which implies that when H is trivial in cohomology, then a choice of a b-field transformation

such that db = −H brings the twisted bracket [ , ]H into the standard form (4.1.1). When

H is cohomologically non-trivial this can be done at least locally. This also means that any

choice of splitting with a non-trivial b-field can be absorbed into the Dorfman bracket in

terms of the flux db.

We remark here that all the results in this thesis remain valid for any exact Courant

algebroid E (i.e. E fits in the sequence (4.1.3)), which can be always identified with T ⊕ T ∗

by the choice of splitting equivalent to a choice of a representative H ∈ Ω3
cl. This also amounts

to setting b = 0 in all formulas since the b-field appears as a difference of two splittings.

Dirac Structures An important class of objects in Dirac geometry are (almost) Dirac

structures, which are subbundles L ⊂ T ⊕ T ∗ with special properties.

Definition 4.1.2. An almost Dirac structure L is a maximally isotropic subbundle of

T ⊕ T ∗, i.e. ⟨u, v⟩ = 0 for any u, v ∈ Γ(L) and rank(L) = rank(T ). When L is involutive

under the Dorfman bracket, i.e. it satisfies [L,L] ⊂ L, we call L simply a Dirac structure.

An important fact we will repeatedly use is that the Dorfman bracket becomes fully

skew when restricted to sections of a Dirac structure L and in particular becomes a Lie

2Here we are using the term b-field transformation more liberally as it is customary to use the term only
in the cases when db = 0 so that eb is a symmetry of [ , ].

62



algebroid bracket. L then inherits a Lie algebroid structure given by ([ , ] ∣L, πT ), πT being

the projection to the tangent bundle T . More details about Dirac structures can be found

in [69, 70, 71].

We conclude this section with a useful formula for [ , ] [13, Prop. 2.7]

⟨[X + α,Y + β], Z + γ⟩ = ⟨∇X(Y + β) − ∇Y (X + α), Z + γ⟩
+ ⟨∇Z(X + α), Y + β⟩,

(4.1.7)

where ∇ is any torsionless connection.

4.2 Generalized Structures

We continue by introducing generalized structures, i.e. endomorphisms of the extended

tangent bundle T ⊕ T ∗ that square to ±1 and are (anti-)orthogonal with respect to the

natural pairing ⟨ , ⟩ on T ⊕ T ∗. This involves four different choices, but in this thesis we

will only discuss the two real structures that square to +1: generalized para-complex

and generalized product structures. For more details on their complex counterparts,

generalized complex (GC) and anti-complex structures, see for example [32] and [31],

respectively.

4.2.1 Generalized para-complex structures

In [72, 73], the notion of generalized para-complex (GpC) geometry along with basic inte-

grability conditions and examples was introduced. Here we review the properties of GpC

structures relevant to our discussion. A more complete overview can be also found in [31].

Definition 4.2.1. A generalized para-complex (GpC) structure K is an endomorphism

of T ⊕ T ∗, such that K2 = 1 and ⟨K⋅,K⋅⟩ = −⟨⋅, ⋅⟩, whose generalized Nijenhuis tensor

NK(u, v) = [Ku,Kv] + K2[u, v] − K([Ku, v] + [u,Kv]), (4.2.1)

vanishes for any u, v ∈ T ⊕ T ∗.

Similarly to usual endomorphisms of the tangent bundle, we use the name almost when-

ever we want to emphasize that integrability of K is not concerned. Moreover, also in direct
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analogy to tangent bundle geometry, the generalized Nijenhuis tensor (4.2.1) can be rewritten

as

NK(u, v) = 4(P[P̃u, P̃v] + P̃[Pu,Pv]), P = 1

2
(1 +K), P̃ = 1

2
(1 −K),

which tells us that the integrability of K is equivalent to the involutivity of the eigenbundles

of K under [ , ]. From the definition of K we can infer that its eigenbundles are almost Dirac

structures and so K is integrable exactly when both its eigenbundles are Dirac structures.

Moreover, a splitting of T ⊕ T ∗ into a pair of transversal Dirac structures T ⊕ T ∗ = L ⊕ L̃
defines a generalized para-complex structure by setting K ∣L= 1 and K ∣L̃= −1:

Theorem ([72]). There is a one-to-one correspondence between generalized para-complex

structures on M and pairs of transversal Dirac subbundles of T ⊕ T ∗.

Remark. In the present context, it is useful to view the GpC structures as the generalized ge-

ometry analogue of para-Hermitian structures: the endomorphism K defines a para-complex

structure on the bundle T ⊕ T ∗, and the natural metric ⟨ , ⟩ is the para-Hermitian O(d, d)
structure (d being the dimension of the underlying manifold). We will make this analogy

more precise in Section 5.1.

The most general form of an almost GpC structure is given by

K =
⎛
⎝
A Π

Ω −A∗

⎞
⎠
, such that

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

A2 +ΠΩ = 1
AΠ −ΠA∗ = 0

ΩA −A∗Ω = 0

. (4.2.2)

where A ∈ Γ(End(T )) and Ω ∈ Ω2(M), Π ∈ Γ(Λ2T ) are skew tensors. We now present main

examples. More can be found in [72].

Example 4.2.2 (The trivial structure and its deformations). Any manifold supports the

following GpC structure

K0 =
⎛
⎝
1 0

0 −1
⎞
⎠
,

that has eigenbundles T and T ∗ and is always integrable. The following two GpC structures
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can be seen as deformations of K0 by either a two-form b or a bi-vector β:

Kb =
⎛
⎝
1 0

2b −1
⎞
⎠
, Kβ =

⎛
⎝
1 2β

0 −1
⎞
⎠
.

Kb is integrable if and only if db = 0, i.e. b is presymplectic and its eigenbundles are Lb =
graph(b) = {X + b(X) ∣ X ∈ X} and L̃ = T ∗. Similarly, Kβ is integrable if and only if β is

Poisson and its eigenbundles are L = T and L̃ = graph(−β) = {α − β(α)} ∣ α ∈ Ω}. ◁

Example 4.2.3 (Para-complex structures). A para-complex structure K ∈ Γ(End(T )),
defines the diagonal generalized para-complex structure:

KK =
⎛
⎝
K 0

0 −K∗

⎞
⎠
.

The corresponding Dirac structures are given by L = L⊕L̃∗ and L̃ = L̃⊕L∗. The integrability

of KK is equivalent to Frobenius integrability of K , i.e. vanishing of the Nijenhuis tensor of

K. ◁

Example 4.2.4 (Symplectic structures). A symplectic form ω defines the anti-diagonal

GpC structure

Kω =
⎛
⎝

0 ω−1

ω 0

⎞
⎠
.

The ±1 eigenbundles are given by graph(±ω) = {X ±ω(X) ∣X ∈ X}, and the integrability of

Kω is equivalent to dω = 0. ◁

4.2.2 Generalized product structures

Definition 4.2.5. A generalized product structure (GP) is an endomorphism J ∈
Γ(End(T ⊕ T ∗)) such that J 2 = 1 and ⟨J ,J ⟩ = ⟨⋅, ⋅⟩.

For the GP structures, integrability is not well defined via the Dorfman bracket, because

their eigenbundles are not isotropic with respect to the pairing ⟨ , ⟩ and as a result the

involutivity under the Dorfman bracket is not well-defined. This can be seen for example

from the fact that the expression (4.2.1) is not tensorial for the GP structures. We will tackle
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this issue in Section 4.3.3, where we define a notion of integrability that is applicable to GP

structures as well.

Remark. If we understand GpC structures as para-Hermitian structures on T ⊕ T ∗, the

GP structures can in the same way be seen as the generalized geometry analogue of chiral

structures: they are defined by a real endomorphism J that is an isometry of the O(d, d)
structure ⟨ , ⟩ (compare Definitions 4.2.5 and 3.0.2).

A general form of GP structures is the following

J =
⎛
⎝
A τ

σ A∗

⎞
⎠

with

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

A2 + τσ = 1,
Aτ + τA∗ = 0,

σA +A∗σ = 0,

(4.2.3)

where A ∈ Γ(End(T )) and τ ∈ Γ(T ⊗ T ), σ ∈ Γ(T ∗ ⊗ T ∗) are symmetric tensors. The main

examples are the following:

Example 4.2.6 (Para-complex structures). Any almost para-complex structure J ∈ Γ(End(T ))
induces a GP structure

JJ =
⎛
⎝
J 0

0 J∗
⎞
⎠
,

whose +1- and −1-eigenbundles are C+ = C+ ⊕C∗
+ and C− = C− ⊕C∗

− , respectively, where C±

are eigenbundles of J . ◁

Example 4.2.7 (Pseudo-Riemannian structures). Any pseudo-Riemannian metric η de-

fines a GP structure

Jη ∶=
⎛
⎝

0 η−1

η 0

⎞
⎠

whose ±1-eigenbundles are graph(±η) ⊂ T ⊕ T ∗, implying they are isomorphic to the tan-

gent bundle T . Such generalized product structures are called generalized metrics and are

discussed in detail in Section 4.2.4. ◁
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4.2.3 Action of b-field transformation

The b-field transformation (4.1.5) induces an action on endomorphisms of T ⊕ T ∗ by conju-

gation:

eb ∶ End(T ⊕ T ∗) → End(T ⊕ T ∗)
A ↦ eb(A) = eb ○ A ○ e−b.

The properties of eb then ensure that it preserves the type of a generalized structure:

Proposition 4.2.8 ([31]). The b-field transformation preserves the type of a generalized

almost structure A for any two-form b. This means that if A2 = ±1, then [eb(A)]2 = ±1 and

if ⟨A⋅,A⋅⟩ = ±⟨⋅, ⋅⟩, then also ⟨eb(A), eb(A)⟩ = ±⟨⋅, ⋅⟩. Additionally, if db = 0, eb also preserves

the integrability of an isotropic structure A.

Proof. The fact that eb preserves type is straightforward to check:

eb(A)eb(A) = ebAe−bebAe−b = eb(A2)
⟨eb(A)⋅, eb(A)⋅⟩ = ⟨ebAe−b⋅, ebAe−b⋅⟩ = ⟨Ae−b⋅,Ae−b⋅⟩ = ±⟨e−b⋅, e−b⋅⟩ = ±⟨⋅, ⋅⟩

= ⟨A⋅,A⋅⟩.

We now prove the statement about the integrability for A a GpC structure, for GC struc-

tures the proof is analogous except the appearing bundles are complexified. Let now A
be integrable and u, v ∈ Γ(T ⊕ T ∗) be +1 eigenvectors of A. Then eb(u) and eb(v) are +1

eigenvectors of eb(A). Using (4.1.6) and db = 0:

[eb(u), eb(v)]H = eb[u, v]H ,

so that the +1 eigenbundle of eb(A) is involutive. Similar argument shows involutivity of the

−1 eigenbundle of eb(A).

4.2.4 Generalized metrics and related structures

In this section, we discuss generalized metrics, which are a special, non-degenerate case of

generalized product structures. Such structures are generically given by b-field transforma-

tions of the structure Jη in Example 4.2.7. We also recall some properties of the generalized
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Bismut connection, which is a generalized connection on T ⊕ T ∗ that one can naturally

associate to any generalized metric.

Definition 4.2.9. A generalized (indefinite) metric G is a non-degenerate generalized

product structure, which means that G defines a metric (that is, a non-degenerate symmetric

tensor) on T ⊕ T ∗ by

G(u, v) ∶= ⟨Gu, v⟩

for all u, v ∈ Γ(T ⊕ T ∗).

Remark. The name generalized metric is typically used in the literature when G is positive-

definite, but here we use the term for indefinite metrics as well, emphasizing this fact by the

name “indefinite generalized metric” whenever necessary. We also note that the discussion

below was first presented in the positive definite case in [32].

Let us now describe what non-degeneracy implies for the general form (4.2.3) of general-

ized product structures. It is easy to show that for a GP structure J to be non-degenerate,

its upper right corner has to be an invertible map T ∗ → T . Whenever this is the case,

the system of equations in (4.2.3) can be solved explicitly in terms of a pseudo-Riemannian

metric η ∶= τ−1 and a two-form b ∶= −ηA. The structure J is then simply the b-transform of

the GP structure Jη from Example 4.2.7:

J = G(η, b) ∶= eb(Jη) =
⎛
⎝
1 0

b 1

⎞
⎠
⎛
⎝

0 η−1

η 0

⎞
⎠
⎛
⎝
1 0

−b 1

⎞
⎠
. (4.2.4)

The eigenbundles of G(η, b) are C± = graph(b ± η) and are therefore isomorphic to T . We

denote these isomorphisms by π± ∶ C±
≃Ð→ T so that

π±(X + α) =X, X + α ∈ Γ(C±),
π−1
± (X) =X + (b ± η)X, X ∈ Γ(T ).

(4.2.5)

We also recall the following useful formula that recovers the metric η from G = G(η, b):

η(X,Y ) = 1

2
⟨Gπ−1

± X,π
−1
± Y ⟩ = ±1

2
⟨π−1

± X,π
−1
± Y ⟩ (4.2.6)

for all X,Y ∈ Γ(T ).
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Generalized Bismut Connection. To any generalized metric, one can associate a gen-

eralized connection called the generalized Bismut connection, which plays a central role in

Section 4.3.3 where it is used to define integrability of certain non-isotropic generalized

structures.

We start with the definition of a generalized connection (in the context of the exact

Courant algebroid T ⊕ T ∗) and its generalized torsion from [33]:

Definition 4.2.10. Consider the H-twisted Courant algebroid structure on T ⊕T ∗ π→ T and

let u, v,w ∈ Γ(T ⊕T ∗) be arbitrary sections. A generalized connection D on this Courant

algebroid is a map

D ∶ Γ(T ⊕ T ∗) × Γ(T ⊕ T ∗) Ð→ Γ(T ⊕ T ∗)
(u, v) z→Duv,

satisfying Dfuv = fDuv and Dufv = fDuv + π(u)[f]v for any f ∈ C∞. Moreover, D is

compatible with the pairing ⟨ , ⟩3:

⟨Duv,w⟩ + ⟨v,Duw⟩ = π(u)[⟨v,w⟩].

The generalized torsion of D is defined with respect to the H-twisted Dorfman bracket as

TD(u, v,w) = ⟨Duv −Dvu − [u, v]H ,w⟩ + ⟨Dwu, v⟩. (4.2.7)

Therefore, Definition 4.2.10 generalizes the notion of an ordinary connection on the bun-

dle T ⊕ T ∗ to a setting where the linear slot of the connection D● can be contracted with a

section of T ⊕T ∗ instead of just a vector field. Using the splitting u =X +α, we can separate

D into two parts:

DX+α = ∇X + χ(α), (4.2.8)

where ∇ is a regular connection on the bundle T ⊕ T ∗ and χ is a so(T ⊕ T ∗)-valued vector

field. Therefore, we are taking a derivative along the vector field part X just like in the case

of an ordinary connection, but we are additionally allowing for an endomorphism of T ⊕ T ∗

that depends on the one-form part α of the section u.

3Sometimes this property is taken to be an extra unitarity requirement on the generalized connection
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Just like the D-torsion, the generalized torsion is then a straightforward analogue of the

usual torsion on the bundle T ⊕ T ∗, where the role of the usual Lie bracket is replaced by

the Dorfman bracket, i.e. the generalized torsion TD of a generalized connection D vanishes

if and only if D defines the H-twisted Dorfman bracket by the formula

⟨[u, v]H ,w⟩ = ⟨Duv −Dvu,w⟩ + ⟨Dwu, v⟩. (4.2.9)

We will discuss the relationship between the D-torsion and the generalized torsion in the

Section 5.1. For now, we notice that when the generalized connection is given by the diagonal

action of the regular connection, its generalized torsion is simply a cyclic sum of its torsion

(modulo H-flux):

Lemma 4.2.11. Let D = ∇ be a generalized connection on T ⊕ T ∗ given by the diagonal

action of a regular connection on T ⊕ T ∗, i.e. χ = 0 in (4.2.8). Then the generalized torsion

of D is given by the (ordinary) torsion T of ∇ and the H-flux of T ⊕ T ∗:

TD(u, v,w) = −H(X,Y,Z) + ⟨T (X,Y ), γ⟩ + ⟨T (Z,X), β⟩ + ⟨T (Y,Z), α⟩,

where u =X + α, v = Y + β and w = Z + γ.

Proof. The formula is easily proved using (4.1.7).

We continue our discussion by recalling the definition of a generalized Bismut connection

from [74], extending it to indefinite metrics:

Definition 4.2.12. Let G = G(η, b) ∈ Γ(End(T ⊕T ∗)) be a generalized metric and denote its

eigenbundles by C±. We split sections u ∈ Γ(T ⊕ T ∗) accordingly and denote the projections

by subscripts, u = u+ + u− with u± ∈ C±. The following expression then defines a generalized

connection parallelizing G called the generalized Bismut connection:

DH
u v = [u−, v+]H+ + [u+, v−]H− + [Cu−, v−]H− + [Cu+, v+]H+ (4.2.10)

for all u, v ∈ Γ(T ⊕ T ∗), where [ , ]H is the twisted Dorfman bracket and C is the almost

generalized para-complex structure

C =
⎛
⎝
1 0

2b −1
⎞
⎠
= eb

⎛
⎝
1 0

0 −1
⎞
⎠
e−b ∈ Γ(End(T ⊕ T ∗)),
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which maps C±
C↦ C∓.

The generalized Bismut connection has a generalized torsion [31] TD = 2π∗+Hb + 2π∗−Hb.

Additionally, it is related to two “usual” connections ∇± via the isomorphisms π±:

Duv = π−1
+ ∇+

π(u)π+v+ + π−1
− ∇−

π(u)π−v−,

∇± = ∇̊ ± 1

2
η−1Hb,

(4.2.11)

where ∇̊ is the Levi-Civita connection of η in G(η, b) and Hb is the H-flux of the Courant

algebroid with the b-field absorbed, Hb =H + db.

The connections ∇± appear in physics as the natural connections in the context of su-

persymmetry, particularly 2D (2,2) supersymmetric σ-models. The reason for this is that

they parallelize the metric η and have fully skew torsion equal to T∇± = ±Hb.

4.3 Commuting Pairs of Generalized Structures

We will now study pairs of generalized para-complex and chiral structures (J+,J−) that com-

mute and their product is non-degenerate in the sense that it defines a generalized metric4.

Let (J±) be such pair and denote G = J+J−, then any pair out of the three endomorphisms

(G,J±) commute and we will call such pairs commuting pairs. Our discussion will follow

[31], where more details can be found. Several of the constructions below are also analogous

to ones well known in the context of generalized Kähler (GK) geometry. To consult the

classical literature on GK geometry, see [32, 33].

4.3.1 Generalized para-Kähler geometry

We start with the definition:

Definition 4.3.1. An almost generalized para-Kähler structure (GpK) is a commut-

ing pair (G,K+) of a split signature generalized metric G = G(η, b) and a GpC structure K+.

If additionally both K+ and K− ∶= GK+ are integrable with respect to the (twisted) Dorfman

bracket, we call (G,K+) a (twisted) GpK structure.

4Notice that any product of two generalized structures that commute will define an endomorphism of
T ⊕ T ∗ of the appropriate type, i.e. it will square to 1 and be orthogonal with respect to ⟨ , ⟩.
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Since any two structures in the triple (G,K+,K−) determine the third, we may refer to

the GpK structure (G,K+) by the pair (K+,K−), in particular when integrability – which is

tied with K± – is discussed. As the name suggests, GpK structures generalize para-Kähler

geometry:

Example 4.3.2 (Para-Kähler manifolds). Let (η,K) be an almost para-Hermitian struc-

ture, with ω = ηK the fundamental form. Then

K+ =
⎛
⎝
K 0

0 −K∗

⎞
⎠
, K− =

⎛
⎝

0 ω−1

ω 0

⎞
⎠
, G =

⎛
⎝

0 η−1

η 0

⎞
⎠
,

gives an almost generalized para-Kähler structure that is integrable if and only if (η,K) is

para-Kähler. ◁

Let C± be the eigenbundles of G(η, b). From the fact that G = K+K−, we see that K+ ∣C±=
±K− ∣C± , allowing us to define two para-complex structures K± as follows:

K+ = π+K±π−1
+ K− = ±π−K±π−1

− . (4.3.1)

Using (4.2.6), it can be easily checked that η(K±X,K±Y ) = −η(X,Y ) and ηK± ∶= ω± defines

two almost symplectic forms, therefore (η,K±) are two almost para-Hermitian structures.

We therefore see that any (almost) generalized para-Kähler structure defines an (almost)

bi-para-Hermitian structure (η,K±) with extra data given by the two-form b. The converse

is also true; given (K±, η, b) we reconstruct the isomorphisms π± (4.2.5) and use them to

define a pair of commuting structures K± using K±:

K± = π−1
+ K+π+PC+ ± π−1

− K−π−PC− , (4.3.2)

where PC± are the projections onto C± given by PC± = 1
2(1 ± G). In matrix form, this yields

an expression similar to one well-known from GK geometry

K± =
1

2

⎛
⎝
1 0

b 1

⎞
⎠
⎛
⎝
K+ ±K− ω−1

+ ∓ ω−1
−

ω+ ∓ ω− −(K∗
+ ±K∗

−)
⎞
⎠
⎛
⎝
1 0

−b 1

⎞
⎠
. (4.3.3)

Clearly, this recovers Example 4.3.2 in the limit b = 0 and K+ = ±K−. We saw that in such

limit the integrability of the simple GpK structure is equivalent (η,K) being para-Kähler.

In the general bi-para-Hermitian case, the statement is more complicated, as we showed in
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[31]:

Theorem 4.3.3 ([31]). A generalized almost para-Kähler structure (K+,K−), given alterna-

tively by the induced bi-para-Hermitian data (K+,K−, η, b), is integrable if and only if the

following conditions are simultaneously satisfied:

1. K± are integrable para-Hermitian structures, that is, their Nijenhuis tensors vanish,

2. dP+ω+ = −dP−ω− = −(H + db),

where dP± = (∂± − ∂̃±) are the dP operators (2.1.8) of K±.

The proof of this statement can be found in [31]. We conclude this section with an

explicit non-trivial example of a GpK structure taken also from [31].

Example 4.3.4 ([31]). The para-quaternions are defined as

H′ = {q = x1 + x2i + x3j + x4k ∶ −i2 = j2 = k2 = 1, k = ij, ij = −ji}.

H′ is therefore a 4-dimensional vector space with six natural endomorphisms given by the

left/right multiplications by i, j, k. We denote K− (K+) the para-complex structures defined

by the left (right) multiplication by k.

Consider now the following quotient:

M = (H′/{x2
1 + x2

2 = x2
3 + x2

4})/ ∼,

where q ∼ 2q for all q ∈ H′/{x2
1 +x2

2 = x2
3 +x2

4}. The structures K± described above descend to

the quotient M and we also get a signature (2,2) metric

η = 1

∣q∣2 (dx1 ⊗ dx1 + dx2 ⊗ dx2 − dx3 ⊗ dx3 − dx4 ⊗ dx4),

where

∣q∣2 = x2
1 + x2

2 − x2
3 − x2

4,

is the pseudo-norm of q ∈M. One can check that η(K±⋅,K±⋅) = −η(⋅, ⋅) and also

dPK±ωK± = ±H,

where

H = 2

∣q∣4 (x1dx2 ∧ dx3 ∧ dx4 − x2dx1 ∧ dx3 ∧ dx4 + x3dx1 ∧ dx2 ∧ dx4 − x4dx1 ∧ dx2 ∧ dx3).
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Clearly, dH = 0, which means that (K±, η) is a GpK structure on M with a non-zero flux

H. In [31], it is also shown that there is a similar GpK structure on M associated to the

multiplication by j on H′. ◁

4.3.2 Generalized Chiral Structures

In this section, we explore a generalization of chiral geometry discussed in Chapter 3 and

consequently show that a special case of this geometry is equivalent to Born geometry.

Definition 4.3.5. An almost generalized chiral structure (GCh) is a commuting pair

(G,J+) consisting of a generalized metric G = G(g, b) and a GP structure J+.

Note that given an almost generalized chiral structure (G,J+), the product J− ∶= GJ+
is another GP structure. The generalized almost structures defining a generalized chiral

structure therefore all have non-isotropic eigenbundles, and so there is no notion of integra-

bility for such structures in terms of the Dorfman bracket as in GK/GpK geometry. We

nonetheless tackle the issue of integrability for these structures in Section 4.3.3.

The canonical example of an almost generalized chiral structure is given by usual chiral

geometry (see Chapter 3):

Example 4.3.6 (Chiral geometry). Let (η, J) be an almost chiral structure with H ∶= ηJ
as in Chapter 3. Define

G(η) =
⎛
⎝

0 η−1

η 0

⎞
⎠
, G(H) =

⎛
⎝

0 H−1

H 0

⎞
⎠
, J+ =

⎛
⎝
J 0

0 J∗
⎞
⎠
.

Then, both (G(H),J+) and (G(η),J+) define GCh structures such that J− = G(H)J+ =
G(η). ◁

Let now (G = G(H, b),J+) be a generalized chiral structure and denote the eigenbun-

dles of G by C±. Similarly to GpK geometry, the GCh structure corresponds to a pair of

endomorphisms J± via the maps π± (4.2.5):

J+ = π+J±π−1
+ , J− = ±π−J±π−1

− , (4.3.4)

such that (J±,H) is a pair of almost chiral structures on the tangent bundle. Conversely,
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the formula that recovers the generalized chiral data from (J±,H, b) is given by

J± = π−1
+ J+π+PC+ ± π−1

− J−π−PC− , (4.3.5)

where PC± = 1
2(1±G) are the projections onto C±. The usual expressions in the matrix form

are

J± =
1

2

⎛
⎝
1 0

b 1

⎞
⎠
⎛
⎝
J+ ± J− η−1

+ ∓ η−1
−

η+ ∓ η− J∗+ ± J∗−
⎞
⎠
⎛
⎝
1 0

−b 1

⎞
⎠
, (4.3.6)

where η± ∶= HJ± denote the two metrics associated to (J±,H).

Born Geometry as a Generalized Chiral Structure We now explain how Born ge-

ometry fits in the picture of commuting pairs as a generalized chiral structure with anti-

commuting tangent bundle data. We stated the following result in [31].

Proposition 4.3.7 ([31]). Let (G(H, b),J ) be a generalized chiral structure and let (J±,H)
be the corresponding tangent bundle data. Then {J+, J−} = 0 is equivalent to (I = J+J−, J =
J+,K = J−,H) defining an (almost) Born structure.

Proof. From Section 3.1.3 we know that the data (η, I, J,K) of an (almost) Born structure

induces a pair of chiral structures (J,H) and (K,H) with {J,K} = 0, where H = ηJ . This

pair is enough to construct the generalized chiral structure (G(H, b),J ) with arbitrary b.

The converse follows once we check the appropriate compatibility properties showing that

the tangent bundle structures J± and H with {J+, J−} = 0 define an almost Born structure

with I = J+J−, J = J+,K = J− and η = HJ , ω = ηK.

4.3.3 Integrability via generalized Bismut connections

We will now show that the integrability of a generalized para-Kähler structure (G,K±) can

be formulated in terms of the generalized Bismut connection of G and that in this way a

notion of integrability can be defined for generalized chiral structures as well. We present

the statements without proofs and technical lemmas, all of which can be found in our work

with Hu and Moraru [31].

In the following, we use and extend the idea of [74], where it is proved that an almost

GK structure (G,I±) is integrable if and only if the generalized Bismut connection D of G

75



parallelizes the GC structures I±, and its generalized torsion is of the type (2,1) + (1,2)
with respect to both the GC structures I±. The idea of this section is to show that an anal-

ogous statement holds for the generalized para-Kähler structure (G,K±) (Definition 4.3.1)

and works well as a definition of integrability for the generalized chiral structures (G,J±)
(Definition 4.3.5). As an intermediate step, we define a notion of weak integrability of these

structures by requiring only DK± = 0 or DJ± = 0; further restrictions on the type of the

generalized torsion of D then defines full integrability. In the case of GpK geometry we

require that the type is (2,1)+(1,2) with respect to both K± (analogously to GK geometry),

while in the case of generalized chiral structures we require that the type is (3,0) + (0,3)
with respect to J±. In this way, we can talk about integrability of generalized structures

even if their eigenbundles are not isotropic, which is in particular the case for generalized

chiral structures.

An additional advantage of this approach is that it provides a natural way to weaken

the integrability. As we will see, weak integrability relaxes the Frobenius integrability of

the corresponding tangent bundle bi-para-Hermitian (4.3.1) or bi-chiral (4.3.4) structures,

which can sometimes be desirable from the point of view of physics. For example, the para-

Hermitian geometry of DFT may not always be fully integrable and various DFT fluxes enter

as an obstruction to integrability. Moreover, in applications to non-linear supersymmetric

σ-models, where the generalized geometry typically enters in the form of the tangent bundle

endomorphisms K± (4.3.1) and J± (4.3.4), it has been observed that sometimes only the

requirement that these endomorphisms are parallelized by the connections ∇± (4.2.11), might

be sufficient [75, 37]. As we will show in Proposition 4.3.9, this is exactly equivalent to our

condition of weak integrability.

The definition of weak integrability of generalized para-Kähler/chiral structures is given

by the following

Definition 4.3.8. Let G be a generalized (pseudo-)metric, D its generalized Bismut connec-

tion and let A be a generalized almost para-complex or product structure that commutes with

G. We say A is weakly integrable if DA = 0.

Note that it follows that in the above definition when A is weakly integrable then also

A′ = GA is weakly integrable. We will now analyse what the condition DA = 0 means in

terms of the tangent bundle data corresponding to (G,A). Recall that for any commuting

pair (G,A), where G is an (indefinite) generalized metric, we get a pair of tangent bundle
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endomorphisms via A± = ±π±Aπ−1
± .5 This can be inverted into a formula for A in terms of

A±:

A = π−1
+ A+π+P+ + π−1

− A−π−P−, (4.3.7)

where P± = 1
2(1 ± G) projects from T ⊕ T ∗ to C±. Using (4.3.7) and (4.2.11) we can now

rephrase the weak integrability condition DA = 0 in terms of ∇± and A±:

Proposition 4.3.9 ([31]). Let (G,A) be a commuting pair with G a (indefinite) generalized

metric and D the generalized Bismut connection of G given by (4.2.11). Then DA = 0 if and

only if ∇±A± = 0, A± being the tangent bundle endomorphisms corresponding to A.

As we mentioned above, the weak integrability condition is for the GpK structure simply

a weakening of the usual integrability conditions (Theorem 4.3.3), which is the content of

the following statement proved in [31]:

Proposition 4.3.10 ([31]). Let (G,K±) be an almost GpK structure. Then K± are weakly

integrable if and only if the fundamental forms ω± of the induced bi-para-Hermitian data

(K±, η) and the corresponding Nijenhuis tensors NK± are related to the flux Hb =H + db by

dω
(3,0)±
± = ∓3H

(3,0)±
b = ±3

4
N

(3,0)±
K± , dω

(2,1)±
± = ∓H(2,1)±

b ,

dω
(0,3)±
± = ±3H

(0,3)±
b = ∓3

4
N

(0,3)±
K± , dω

(1,2)±
± = ±H(1,2)±

b ,
(4.3.8)

where (k, l)± denotes the bigrading associated to K±.

To see that the equations (4.3.8) describe a weakening of the usual integrability condi-

tions, we simply notice that whenever the (3,0)±+(0,3)± components of dω± or equivalently

of Hb vanish, the almost para-complex structures K± are integrable and the equations for

the (2,1) + (1,2) components can then be simply rewritten as

dP±ω± = ±Hb,

recovering the integrability conditions of Theorem 4.3.3. Intuitively, this also shows why one

needs to impose a restriction on the type of the generalized torsion of D in order to get the

full integrability of (G,K±):
5In terms of the concrete notation used previously, A = K or A = J and correspondingly, A± =K±/J±.

77



Theorem 4.3.11 ([31]). An almost generalized para-Kähler structure (G,K+) is integrable

and in particular both K± are generalized para-complex structures if and only if DK± = 0 and

TD is of type (2,1) + (1,2) with respect to both K±.

We now turn to generalized chiral structures. In this case, we know that the results cannot

be fully analogous because the corresponding tangent bundle geometry is very different;

for example, the fundamental tensor of the tangent bundle chiral structure, F (X,Y,Z) =
η((∇̊XJ)Y,Z), is not fully skew and is of type (2,1) + (1,2) (with respect to J) and so is

the Nijenhuis tensor NJ(X,Y,Z) = η(NJ(X,Y ), Z). However, they can still be related to

the flux Hb:

Proposition 4.3.12 ([31]). An almost generalized chiral structure (G,J ) is weakly integrable

if and only if the fundamental tensors F± of the corresponding tangent bundle structures

(η, J±) are related to the Hb-flux by

F±(X,Y,Z) = ∓1

2
(Hb(X,J±Y,Z) −Hb(X,Y, J±Z)) , (4.3.9)

Equivalently, both (η, J±) are of typeW3 almost product pseudo-Riemannian structures whose

Nijenhuis tensors NJ± are related to H by

NJ±(X,Y,Z) = ±2 (H(2,1)±+(1,2)±
b (J±X,Y, J±Z) +H(2,1)±+(1,2)±

b (X,J±Y, J±Z))

The properties of the fundamental tensor F (see for example [76]) imply that Hb de-

termines all non-zero components of F . Furthermore, in contrast to the G(p)K geometry

where the weak integrability relates all components of Hb to components of the fundamental

forms ω± and integrability of the tangent bundle structures is controlled by the (3,0)+(0,3)
parts, in the generalized chiral case the weak integrability condition DJ± = 0 only fixes the

(2,1) + (1,2) components of Hb, which are also the components tied to integrability of the

tangent bundle structures.

We therefore introduce the following definition of the (full) integrability for generalized

chiral structures:

Definition 4.3.13. Let (G,J±) be an almost generalized chiral structure and D the general-

ized Bismut connection of G. We say (G,J±) is integrable when it is weakly integrable and

the generalized torsion of D is of type (3,0) + (0,3) with respect to both J±.

We then have the following statement:
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Theorem 4.3.14 ([31]). An almost generalized chiral structure (G,J+) is integrable if and

only if the corresponding tangent bundle data (η, J±) are integrable type W0 chiral structures.

The notion of integrability for generalized chiral structures therefore forces the corre-

sponding tangent bundle structures to be both integrable and of type W0, which according

to our discussion in Section 3.1.1 is the chiral geometry analogue of integrable para-Kähler

structures.
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Chapter 5

The Courant algebroids of a

para-Hermitian manifold

So far, we have discussed generic properties of the bundle (T ⊕ T ∗)N over an arbitrary

differentiable manifold N and showed that certain structures on this bundle render the base

manifold para-Hermitian or Born. In such case, we would call (T ⊕ T ∗)M the standard

(or large) Courant algebroid of M. If the para-Hermitian structure on M is integrable, the

foliation manifolds give rise to an additional pair of Courant algebroids called small:

Definition 5.0.1. Let (M,M, M̃, η) be a para-Hermitian manifold. We call (T ⊕ T ∗)M the

standard or large Courant algebroid of M, while (T ⊕T ∗)M and (T ⊕T ∗)M̃ are called

the small Courant algebroids of M.

The large Courant algebroid (CA) is the standard CA over the whole manifold M and the

small CAs are the standard CAs over the half-dimensional foliations M and M̃ . Therefore,

while the large CA always exists, the small CAs require integrability of L or L̃, which by

itself are sufficient conditions for the existence of the small CAs on M or M̃ , respectively.

In the forthcoming discussion we will explore the relationship between the large and small

CAs as well as each of the pictures separately.

We also show that there are natural maps between the small CAs and the tangent bundle

of M. These maps are closely related to T-duality on the para-Hermitian manifold and allow

us to realize the D-bracket as a sum of the Dorfman brackets on the respective small CAs.

Moreover, structures on the tangent bundle TM such as the Born structures and the Born

connection can be viewed as well-known generalized structures on the small CAs.
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5.1 The D-bracket from the small Courant algebroids

Let (M, η,K) be an almost para-Hermitian manifold. We can define the following vector

bundle isomorphisms

ρ ∶ TM = L⊕ L̃→ L⊕L∗

X = x + x̃↦ x + η(x̃)
ρ̃ ∶ TM = L⊕ L̃→ L̃⊕ L̃∗

X = x + x̃↦ x̃ + η(x) ,
(5.1.1)

where η(X) is a one-form defined by η(X, ⋅). The fact that η(x̃) is an element of L∗ follows

from the fact that η(x̃) only contracts with a vector in L, which is a result of L being

isotropic with respect to η (and similarly for η(x) and L̃).

Assume now that the para-Hermitian structure on M is integrable and let M and M̃

be the corresponding fundamental foliations of M. We have by definition Lp = TpM and

L∗p = T ∗
pM for every point p ∈M, which means TM ∣M

ρ≃ (T ⊕T ∗)M . An analogous statement

holds for (T ⊕ T ∗)M̃ as well. In fact, each statement holds separately for half-integrable

para-Hermitian structures on M. To summarize, we have

Proposition 5.1.1. Let (M,M, M̃, η) be a para-Hermitian manifold and let ρ and ρ̃ be the

maps defined by (5.1.1). Then the restrictions of TM to M and M̃ are isomorphic to the

bundles (T ⊕ T ∗)M and (T ⊕ T ∗)M̃ , respectively.

There is an important caveat to the above statement; in order to make the bundles TM ∣M
and (T ⊕ T ∗)M (and similarly for M̃) isomorphic and ρ a proper bundle map, one must to

construct the isomorphism separately over each leaf Mi of the foliation M . Then, ρ is a

shorthand for the collection of isomorphisms

ρi ∶ TM ∣Mi
→ (T ⊕ T ∗)Mi.

For more details, see the discussions in [77, Example 4.17] and [21, Remark 2.35].

The goal of our discussion is to show that the maps ρ and ρ̃ are not only vector bundle

isomorphisms, but they are also isomorphisms of Courant algebroids. First, we introduce

some notation:

Definition 5.1.2. Let (M, η,K) be an almost para-Hermitian manifold with an associated

D-bracket [[ , ]] given by the formula (2.4.3). We define the L- and L̃- projected D-brackets
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[[ , ]]L and [[ , ]]L̃, respectively, by the formulas

η([[X,Y ]]L, Z) ∶= η(∇c
P (X)Y −∇c

P (Y )X,Z) + η(∇c
P (Z)X,Y ),

η([[X,Y ]]L̃, Z) ∶= η(∇c
P̃ (X)Y −∇c

P̃ (Y )X,Z) + η(∇c
P̃ (Z)X,Y ),

(5.1.2)

where ∇c is the canonical connection of the almost para-Hermitian manifold.

It is clear that the projected brackets sum up to the D-bracket:

[[ , ]] = [[ , ]]L + [[ , ]]L̃.

Another important fact is that the projected brackets, unlike the D-bracket, satisfy the

Jacobi identity. Instead of proving this, we state a stronger result, which we proved in [13]:

Theorem 5.1.3 ([13]). Let (M, η,K) be an almost para-Hermitian manifold. Whenever L

is integrable, the projected bracket [[ , ]]L defines a Courant algebroid structure on TM, along

with the projection P = 1
2(1+K) and pairing η. Moreover, this Courant algebroid restricts to

the integral foliation M of L and this restriction is isomorphic to the small Courant algebroid

(T ⊕ T ∗)M via ρ:

ρ ∶ (TM ∣M , [[ , ]]L, P, η) → ((T ⊕ T ∗)M, [ , ]M , πTM , ⟨ , ⟩),

where ((T ⊕ T ∗)M, [ , ]M , πTM , ⟨ , ⟩) denotes the standard Courant algebroid on M , i.e.

[ , ]M is the Dorfman bracket on M , πTM the projection (T ⊕ T ∗)M → M and ⟨ , ⟩ the

duality pairing. An analogous statements holds for L̃, M̃ , [[ , ]]L̃ and P̃ .

We therefore see that the small Courant algebroids induce a pair of Courant algebroid

structures on the tangent bundle TM via the maps ρ and ρ̃ with the corresponding Courant

algebroid brackets given by the projected D-brackets.

Instead of reproducing the complete proof of the Theorem 5.1.3 from [13], we shall explain

why this statement holds true on a more intuitive level. In doing so, we will also motivate why

the expression for the D-bracket takes the form (2.4.2), which exhibits a clear similarity with

the formula (4.1.7) for the standard Dorfman bracket in terms of a torsionless connection ∇.

Because TM∣M is isomorphic to (T⊕T ∗)M via ρ, we can simply define a Courant algebroid

bracket on TM∣M by ρ−1[ρX,ρY ]M , [ , ]M being the Dorfman bracket on M . This can be

extended to a bracket [[ , ]]′L on the whole bundle TM, since any vector field X ∈ X(M) in
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particular defines a section XM ∈ Γ(TM∣M) by leaf-wise restriction, X ∣M= XM . Therefore,

because any point p ∈ M lies in a unique leaf Mi of M , we can define the bracket [[ , ]]′L
point-wise by

[[X,Y ]]′L,p = ρ−1[ρXM , ρYM]M,p. (5.1.3)

An analogous argument for M̃ yields the bracket [[ , ]]′
L̃
. The goal now is to show that these

brackets coincide with (5.1.2), [[ , ]]′
L/L̃ = [[ , ]]L/L̃. To do this, we write the bracket [ , ]M

using the formula (4.1.7):

⟨[x + α,y + β]M ,z + γ⟩ = ⟨∇M
x (y + β) − ∇M

y (x + α),z + γ⟩
+ ⟨∇M

z (x + α),y + β⟩,
(5.1.4)

where x,y,z are vector fields in TM , α,β, γ are one-forms in T ∗M and ∇M is a torsionless

connection on M . In order to express this as the bracket (5.1.3) on TM , we choose the

sections of (T ⊕ T ∗)M such that there are vector fields X,Y,Z ∈ X(M) satisfying

ρX∣M= x + α, ρY ∣M= y + β, and ρZ∣M= z + γ.

Using (5.1.4), we express (5.1.3) in the following form

η([[X,Y ]]′L, Z) = η(ρ−1(∇M
x (y + β) − ∇M

y (x + α)), Z) + η(ρ−1∇M
z (x + α), Y ). (5.1.5)

In order to see that (5.1.5) equals [[ , ]]L, which is given by

η([[X,Y ]]L, Z) = η(∇c
xY −∇c

yX,Z) + η(∇c
zX,Y ), (5.1.6)

we notice that both the connections ∇M on (T⊕T ∗)M and ∇c on TM = L⊕L̃ act by diagonal

actions

∇M =
⎛
⎝
∇M

(∇M)∗
⎞
⎠
⎛
⎝
T

T ∗

⎞
⎠
, and ∇ =

⎛
⎝
∇c

∇c

⎞
⎠
⎛
⎝
L

L̃

⎞
⎠
. (5.1.7)

For ∇M this is obvious simply because a linear connection preserves the tensor type and

for ∇c this follows from the fact that it preserves the eigenbundles of K. Moreover, ∇M is

torsionless and ∇c has a vanishing torsion components along L. We can therefore take ∇M
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to be given by

∇c
xρ

−1(y + β) = ρ−1∇M
x (y + β),

which achieves the desired result and renders [[ , ]]′L = [[ , ]]L.

We have therefore shown that the projected brackets are mapped via ρ/ρ̃ to the standard

Dorfman brackets on M and M̃ and the reason they are exactly matched is the choice

of the connection ∇c to define the projected brackets in (5.1.2). Concretely, the crucial

property of ∇c is that the partial connections ∇c
P (●) and ∇c

P̃ (●) define generalized connections

on (T ⊕ T ∗)M and (T ⊕ T ∗)M̃ (again, via ρ/ρ̃) with vanishing generalized torsion. This

property is, however, simply a consequence of the fact that ∇c has vanishing D-torsion (by

Definition 2.4.1):

Proposition 5.1.4. Let (M,M, M̃, η) be a para-Hermitian manifold and ∇ a para-Hermitian

connection with a vanishing D-torsion. Then the partial connections ∇P (●) and ∇P̃ (●) define

generalized connections D and D̃ on (T ⊕ T ∗)M and (T ⊕ T ∗)M̃ by

ρ(∇P (X)Y ) =DP (X)ρ(Y ), and ρ̃(∇P̃ (X)Y ) =DP (X)ρ̃(Y ),

whose generalized torsions TD and T D̃ vanish.

Proof. By ∇X = ∇P (X)+∇P̃ (X) and [[ , ]] = [[ , ]]L+[[ , ]]L̃, we find from the requirement that

the D-torsion vanishes that 0 = TD + T D̃. Since ∇ is para-Hermitian, it acts in the splitting

TM = L⊕L̃ diagonally and Lemma 4.2.11 tells us that TD is in the para-Hermitian bigrading

of type (2,1), while T D̃ is of type (1,2), therefore both have to vanish separately.

The strong section condition of DFT In DFT, it is observed that even though the

D-bracket is not a Courant algebroid bracket, this can be fixed by imposing the strong

section condition. This amounts to choosing local coordinates (xi, x̃i) on a patch U of

the extended manifold M and restricting the dependence of the vector fields (and other

sections) to only half of the coordinates (xi, x̃i). This subset of coordinates then defines a

local polarisation. Then, the local expression for the D-bracket in the coordinates (xi, x̃i)
restricts to the Dorfman bracket for sections locally constant along certain coordinates.

The two most commonly discussed polarisations are defined by setting {∂̃i = 0}i=1,⋯,d or

{∂i = 0}i=1,⋯,d and should be viewed as the two T-dual local polarisations. For this to be
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defined globally, the choice of local coordinates must be made consistent on every patch

U′ ⊂M and when (xi, x̃i) and (x′i, x̃′i) are two sets of coordinates on U and U′, they must be

related on U ∩U′ by

(x′i, x̃′i) = (x′i(x), x̃′i(x̃)).

This is nothing but the requirement that the manifold M is para-complex and the local

coordinates are adapted, parametrizing the fundamental foliations M and M̃ . In light of

this realization, the section condition is therefore interpreted as the restriction of TM (and

other bundles, whose sections we wish to study) to M or M̃ . The sheaves of sections of the

resulting bundles TM ∣M (TM ∣M̃) are then C∞(M) (C∞(M̃))-modules, i.e. when expressed

locally, they are independent of the x̃i (xi) coordinates. Such sections are then foliated (see

[41]), i.e. behave well under the foliation quotients M
/M̃Ð→ M or M

/MÐ→ M̃ , as discussed in

[21].

In the present framework, there is, nevertheless, no need for the restrictions or quotients

as we can acquire the Courant algebroid brackets on the level of the full doubled space M.

According to Theorem 5.1.3, the appropriate procedure for recovering a bracket operation

that satisfies the Jacobi identity from the D-bracket is by introducing the projected D-

brackets (5.1.2). In [13], we show the following

Proposition 5.1.5 ([13]). Let (M,M, M̃, η) be a flat para-Hermitian manifold and let X

and Y be vector fields parallel along M̃ . Then

[[X,Y ]] = [[X,Y ]]L,

or equivalently, [[X,Y ]]L̃ = 0.

Because any vector fields X and Y on M restricted to M are in particular parallel along

M̃ , the above statement shows that the procedure of projecting the bracket [[ , ]] → [[ , ]]L
can be, on a flat manifold, understood as a generalization of the restriction of TM to TM ∣M .

Of course, a similar statement again holds for L̃ and M̃ .

5.1.1 Generalized structures

The maps (5.1.1) allow us to think about the generalized endomorphisms of the small Courant

algebroids (T ⊕ T ∗)M ((T ⊕ T ∗)M̃) as endomorphisms of TM. We will now describe this
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correspondence for (T ⊕T ∗)M , but for M̃ the discussion is identical (upon replacing ρ with

ρ̃).

Let J be a generalized structure on (T ⊕T ∗)M that satisfies J 2 = ε1 and ⟨J ⋅,J ⋅⟩ = δ⟨ , ⟩
with ε and δ being either 1 or −1. Then

J = ρJ ρ−1 (5.1.8)

defines an endomorphism of TM (upon pulling it back by the restriction map M → M),

which satisfies

J2 = ε1 and η(J ⋅, J ⋅) = δη(⋅, ⋅).

Therefore, we in particular get the following correspondences

• J is (almost) generalized complex structure on (T ⊕T ∗)M if and only if J is (almost)

Hermitian structure on (TM, η),

• J is (almost) generalized para-complex structure on (T ⊕ T ∗)M if and only if J is

(almost) para-Hermitian structure on (TM, η) and

• J is (almost) generalized product structure on (T ⊕T ∗)M if and only if J is (almost)

chiral structure on (TM, η),

the fourth option being ε = −1, δ = −1 and giving the correspondence between generalized

anti-complex and anti-Hermitian structures which we have not discussed, but interested

reader can consult for example [31] for basic definitions and properties.

The above defines a correspondence of the linear structures; for the integrability, the

discussion is more subtle. One immediate result is the following

Proposition 5.1.6. Let (M,M, M̃, η) be a para-Hermitian manifold and let (J , J) be a

pair of endomorphisms related by equation (5.1.8), i.e. J ∈ Γ(End((T ⊕ T ∗)M)) and J ∈
Γ(End(TM)). Then J is integrable in the generalized sense if and only if the eigenbundles

of J are involutive under the projected bracket [[ , ]]L.

Proof. This is a consequence of Theorem 5.1.3, which states that [[ , ]]L is related to the

Dorfman bracket on (T ⊕ T ∗)M exactly via the map ρ, which means that ρ also relates the

two Nijenhuis tensors governing the involutivity under [ , ]M on (T ⊕ T ∗)M and [[ , ]]L on

TM.
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Remark. From the above result it is not clear what is the relationship between the usual

integrability of J and generalized integrability of J , and what can be inferred about the

endomorphism J when it is involutive under [[ , ]]L. In particular, we do not know of any

interpretation of the involutivity under the projected brackets (or even the full D-bracket) in

terms of the geometry of M, such as an existence of special local coordinates. This is desir-

able from the point of view of the philosophy that the D-bracket serves as a replacement for

the standard Lie bracket, for which such an interpretation exists in terms of Frobenius inte-

grability and consequently the Newlander–Nirenberg theorem in case of the (para-)complex

geometry.

Relationship with Born Geometry The Born structure (η,K,H) on an integrable para-

Hermitian manifold (M, η,K) can also be understood in terms of endomorphisms of (T ⊕
T ∗)M . First, the metric η is identified as before with the pairing ⟨ , ⟩ on (T ⊕ T ∗)M and

the para-complex structure K defines the simplest generalized para-complex structure K on

(T ⊕ T ∗)M :

K =
⎛
⎝
1 0

0 −1
⎞
⎠

ρz→ K =
⎛
⎝
1 0

0 −1
⎞
⎠
. (5.1.9)

The chiral structure J on TM then similarly defines a generalized product structure on

(T ⊕T ∗)M , which – as a consequence of the Born compatibility condition {J,K} = 0 – takes

the form

J =
⎛
⎝

0 g−1η

ηg 0

⎞
⎠

ρz→ G =
⎛
⎝

0 g−1

g 0

⎞
⎠
,

i.e. G is a generalized metric with a vanishing b-field. This is the reason why the metric

H = ηJ is sometimes with a slight abuse of language referred to as a generalized metric.

Having discussed the generalized structures on (T ⊕T ∗)M induced by the Born geometry

on TM, we now turn our attention to the Born connection, which we discussed in Section

3.2, and which has an interpretation in terms of a well-known structure on (T ⊕ T ∗)M as

well:

Proposition 5.1.7. Let (M, η,K,H) be a Born manifold with H = ηJ defined by a metric

g on the +1-eigenbundle L of K as above and let also ∇B be the Born connection. Then the
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generalized connection D on (T ⊕ T ∗)M defined by

Dρ(X)ρ(Y ) = ρ(∇B
x Y ), x = PX, (5.1.10)

is the generalized Bismut connection associated to the generalized metric G(g) = ρJρ−1.

Proof. The statement is a consequence of Theorem 3.2.2, which tells us the explicit form of

∇B
x in terms of the Levi-Civita connection ∇g of g and the fact that the generalized Bismut

connection with b =H = 0 takes the same form [74]:

Du =
⎛
⎝
∇g

x 0

0 ∇g∗
x

⎞
⎠
, x = π(u),

where ∇g∗ denotes the usual linear dual connection on T ∗M and π ∶ (T ⊕ T ∗)M → TM is

the canonical projection. Nevertheless, Dx and ∇B
x are easily seen to be mapped onto each

other by ρ as claimed in the statement.

There is another way in which we could project the Born connection ∇B in order to

obtain the generalized Bismut connection on the bundle (T ⊕ T ∗)M . Recall that ∇B can

be expressed purely in terms of the D-bracket (3.2.1), which can be split to the projected

brackets (5.1.2) and we found in Theorem 5.1.3 that the projected brackets are mapped onto

the standard Dorfman brackets on the small CAs via ρ[[ , ]]L = [ρ−1 , ρ−1 ]M . The definition

of the generalized Bismut connection (4.2.10) (with H = 0)

Duv = [u−, v+]+ + [u+, v−]− + [Cu−, v−]− + [Cu+, v+]+ ,

is formally very similar to our definition of the Born connection (3.2.1):

∇B
XY = [[X−, Y+]]+ + [[X+, Y−]]− + (K[[X+,KY+]])+ + (K[[X−,KY−]])−.

Moreover, we know that ρ maps G onto J , therefore the eigenbundles of G and J , which are

on both sides of the mapping denoted by the ± subscripts, are related via ρ. Additionally,

when b = 0, the map C exactly coincides with the image of K under ρ. Finally, using the

property of the map C noted in [74]

C[u, v]H = [Cu,Cv]−H ,
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which in our case of vanishing H-flux simply means [Cu, v] = C[u,Cv], we find that the

generalized Bismut connection Duv is mapped via ρ to an expression that coincides with

∇B, except the D-bracket is replaced by the projected bracket [[ , ]]L.

Proposition 5.1.8. Assume the setting of Proposition 5.1.7 and define the L-projected Born

connection ∇B,L

∇B,L
X Y = [[X−, Y+]]L+ + [[X+, Y−]]L− + (K[[X+,KY+]]L)+ + (K[[X−,KY−]]L)−.

Then we have the relationship between the projected Born connection and the Bismut con-

nection of G(g)

ρ(∇B,L
X Y ) =Dρ(X)ρ(Y ).

Consequently, taking into account (5.1.10), we find that the projected Born connection ∇B,L

coincides with the partial connection ∇B
P●:

∇B
PX = ∇B,L

X .

Remark. The correspondence between generalized structures and tangent bundle structures

defined by ρ is qualitatively different from the construction using the isomorphisms π± de-

scribed for generalized para-Kähler and chiral geometries. There, the pair of generalized

endomorphisms gives rise to a pair of tangent bundle endomorphisms over the same base

manifold, while here we have a correspondence between TM and (T ⊕ T ∗)M .

5.2 T-duality of the small Courant algebroids

We observe that the large CA of a para-Hermitian manifold (M, η,K) splits as the direct

sum of the bundles that correspond to the small CAs. To see this, we split (T ⊕ T ∗)M into

the eigenbundles of K (and K∗):

(T ⊕ T ∗)M = (L⊕L∗) ⊕ (L̃⊕ L̃∗),

and the correspondence with the small CAs is

(T ⊕ T ∗)M ≃ (L⊕L∗) ∣M , and (T ⊕ T ∗)M̃ ≃ (L̃⊕ L̃∗) ∣M̃ .
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Now, recall that linear T-duality is facilitated by the contraction with the para-Hermitian

metric η, which maps L → L̃
∗

and L̃ → L∗. On the small CAs, this yields the full T-duality

map (2.3.3), which is given by the generalized metric G(η):

G(η) =
⎛
⎝

0 η−1

η 0

⎞
⎠
∶
⎧⎪⎪⎨⎪⎪⎩

L⊕L∗ → L̃⊕ L̃∗ x + η(x̃) ↦ x̃ + η(x)
L̃⊕ L̃∗ → L⊕L∗ x̃ + η(x) ↦ x + η(x̃)

. (5.2.1)

Note that we can factorize this map as G(η) = ρ̃ ○ ρ−1, i.e. the following diagram commutes

(T ⊕ T ∗)M (T ⊕ T ∗)M̃

TM TM

G(η)

ρ−1 ρ̃−1

1

.

Therefore, the T-duality map is simply the identity on TM, which is another manifestation

of the T-duality covariance of our setup: when the sections of the small CAs are understood

as vector fields on the extended space M, T-duality acts trivially. Additionally, when we

realize the map (5.2.1) on the whole (T ⊕ T ∗)M, we find that the eigenbundles C± of G(η)
(which are also isomorphic to TM) are invariant under the T-duality map as well.

Example 5.2.1 (T-duality of generalized metrics). We can demonstrate the idea that

endomorphisms of the small CAs are acted upon trivially by T-duality once they are realized

as objects on the extended tangent bundle. Consider a generalized metric on one of the small

CAs, G(g, b) ∈ Γ(End((T ⊕ T ∗)M)):

G(g, b) =
⎛
⎝

−g−1b g−1

g − bg−1b bg−1

⎞
⎠
.

We can understand G(g, b) also as an (almost) chiral endomorphism J(ĝ, b̂) ∈ Γ(End(TM))
via the map ρ:

J(ĝ, b̂) = ρ−1 ○ G(g, b) ○ ρ =
⎛
⎝

−ĝ−1b̂ ĝ−1

ĝ − b̂ĝ−1b̂ b̂ĝ−1

⎞
⎠
,

ĝ = η−1g

b̂ = η−1b
.

This endomorphism can in turn be identified with an endomorphism G̃(g̃, β) ∈ Γ(End((T ⊕
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T ∗)M̃)) on the T-dual small CA:

G̃(g̃, β) = ρ̃ ○ J(ĝ, b̂) ○ ρ̃−1 =
⎛
⎝
βg̃ g̃−1 − βg̃β
g̃ −g̃β

⎞
⎠
,

g̃ = ηg−1η

β = η−1bη−1
.

We see that while G is given in terms of a metric and a two-form on L, G̃ is defined by a

metric and a bi-vector on L̃. This corresponds to the well-known fact in string theory that

a 2-form b-field is via T-duality mapped onto a β-field given by a bivector. To summarize,

we described the correspondence

J(ĝ, b̂)

G(g, b)
⎧⎪⎪⎨⎪⎪⎩

g = ηĝ
b = ηb̂

G̃(g̃, β)
⎧⎪⎪⎨⎪⎪⎩

g̃ = ηĝ−1

β = b̂η−1
,

ρ ρ̃

T-duality

and while the T-duality between the small CAs acts non-trivially, the action is trivial on the

level of the tangent bundle TM. ◁

The T-duality map above of course induces a map of the generalized endomorphisms of

the small CAs:

G(η) ∶ End((T ⊕ T ∗)M) → End((T ⊕ T ∗)M̃)
J ↦ G(η)J G(η),

(5.2.2)

and clearly preserves the type of the generalized structure.

Example 5.2.2. Recall from Section 2.3.4 that the full T-duality on a para-Hermitian

manifold M = T d×(T d)∗ can be understood as a topological T-duality of two torus fibrations

T d → {∗} and (T d)∗ → {∗} over a point. In particular, this is also true of the T-duality

map of Courant algebroids described in [5], which is now only linear since the base is zero-

dimensional and there is no H-flux allowed according to the geometric setting of topological

T-duality. One can also understand the different interpretations of T-duality presented in [5]

in the para-Hermitian framework. For example, T-duality can be interpreted in the language

of generalized submanifolds: the authors in [5] show that if J and J̃ are generalized complex

structures on M and M̃ , then J and J̃ are T-dual if and only if the correspondence space

M ×B M̃ is a generalized complex submanifold of M × M̃ endowed with the generalized
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complex structure (J ,CJ̃ C−1) on the product, where M and M̃ are as in (2.3.8) and C is

the trivial generalized para-complex structure on (T ⊕ T ∗)M̃ :

C =
⎛
⎝
1

−1
⎞
⎠
.

In our setting we have B = {∗}, so that M ×B M̃ =M × M̃ = M. The above statement then

says that the generalized complex structures J and J̃ on M and M̃ are T-dual if and only

if the following subbundle of (T ⊕ T ∗)M (ω = ηK as usual)

graph(−ω) = {X − ω(X) ∣X ∈ X(M)} ⊂ (T ⊕ T ∗)M,

is invariant under the generalized complex structure (J ,CJ̃ C−1) on M = M × M̃ , which

happens precisely when J̃ = G(η)J G(η) as in (5.2.2). ◁

5.3 The B-transformation and (non-)geometric Fluxes

We now introduce the B-transformation of a para-Hermitian structure (η,K), which is a

(finite) deformation KB of the endomorphism K that preserves one of its eigenbundles and

rotates the other in such a way that the transformed endomorphism KB is still orthogonal

with respect to η. When the invariant bundle is L̃, such deformation then via ρ corresponds

to a b-field transformation (4.1.5) of the small Courant algebroid (T ⊕ T ∗)M (similarly for

(T ⊕ T ∗)M̃ when L is invariant). The B-transformation should therefore be understood as

a TM-analogue of the b-field transformation (4.1.5). Consequently, the D-bracket [[ , ]]B
associated to KB can be seen as a deformation of the D-bracket of K.

In the special case when the underlying structure (η,K) is para-Kähler, the D-bracket

corresponding to KB is the twisted D-bracket and the difference between [[ , ]] and [[ , ]]B
– which is necessarily tensorial – is given by fluxes described in the DFT literature. More-

over, because the B-transformation of (η,K) generally spoils both the integrability and the

closedness of the fundamental form, this give the DFT fluxes a clear geometric interpretation.

This shows that the language of fluxes used in DFT (and in general in string theory)

can be included in the framework of para-Hermitian manifolds and that the twisted bracket

arises as a consequence of a deformation of the underlying geometry. For works discussing

the fluxes and twisted brackets from a different point of view, see [78, 79, 80, 29, 28] and
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references therein. A mathematical overview of related concepts is given in [81].

5.3.1 B-transformation of para-Hermitian manifolds

We first define the notion of a B-transformation for any almost para-Hermitian manifold:

Definition 5.3.1. Let (M, η,K) be an almost para-Hermitian manifold. A B-transformation

is an endomorphism of TM = L⊕ L̃, given by

eB ∶=
⎛
⎝
1 0

B 1

⎞
⎠
∈ Γ(End(TM)) (5.3.1)

where B ∶ L→ L̃ is a skew map, meaning η(BX,Y ) = −η(X,BY ) holds. The induced map on

the endomorphisms of TM by conjugation is also called a B-transformation and in particular

the B-transformation of K is given by

K
eBz→KB = eBKe−B.

We also say that (η,KB) is the B-transformation of K.

It is easy to see that B can be expressed in terms of either a two-form b or a bivector β,

η(BX,Y ) = b(X,Y ) = β(η(X), η(Y )), (5.3.2)

where b is of type (2,0) and β is of type (0,2), so we can write b(X,Y ) = b(x,y).

Similarly, we can define a map B̃ ∶ L̃ → L given by a type (0,2) two-form b̃ or a (2,0)
bivector β̃. Such B-transformation then takes the form

eB̃ ∶=
⎛
⎝
1 B̃

0 1

⎞
⎠
∈ Γ(End(TM)). (5.3.3)

The case when both the transformations (5.3.1) and (5.3.3) are performed simultaneously

was worked out in [18]. The new para-Hermitian structure then reads

KB,B̃ =
⎛
⎝
1 − 2B̃B 2(B̃ − B̃BB̃)

2B −1 + 2BB̃

⎞
⎠
. (5.3.4)
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An important property of the B-transformation (and the compositions of thereof) is that

it is an O(d, d) transformation, i.e. it preserves the O(d, d) metric η:

η(eB ⋅, eB ⋅) = η(⋅, ⋅) .

Because the simultaneous transformation by both B and B̃ makes the notation rather

cluttered but conceptually adds very little, we will continue discussing the case when only

one of the pair (B, B̃) is non-zero. Without loss of generality, we choose B̃ = 0 so that only

the B-transformation (5.3.1) is present.

In the splitting TM = L⊕ L̃ associated to the original K, KB is given by

KB =
⎛
⎝
1 0

2B −1
⎞
⎠
. (5.3.5)

It is easy to check that K2
B = 1 as well as η(KB ⋅,KB ⋅) = −η and therefore KB is another

almost para-Hermitian structure on M. The action of eB on K can also be seen as a shift of

the fundamental form:

ω
eBz→ ωB = ηKB = ω + 2b. (5.3.6)

The projections PB/P̃B ∶= 1
2(1 ±KB) associated to KB act as:

PB(X) = x +B(x), P̃B(X) = x̃ −B(x).

Because B maps L → L̃, we see that Im(P̃B) = L̃, but Im(PB) ≠ L, i.e K and KB share

the −1 eigenbundle, but the +1 eigenbundles are different. This means that even if K is

integrable, KB needs not be. Similarly, even if K is para-Kähler, ωB (5.3.6) is in general not

closed and so we can view KB as a deformation of K. As we will see, the D-bracket gives

rise to a Maurer-Cartan type equation relevant to this deformation problem.

It is also interesting to view the fact that the B-transformation spoils the integrability

and closedness of ω from the opposite point of view: given a (half-)integrable para-Hermitian

manifold (M, η,K), we can ask what are the conditions on the data (M, η,K) such that is

it possible to find a B-transformation of K into an integrable and/or para-Kähler struc-

ture (η,KB)? Clearly, such situations do exist but it is a priori hard to determine what

properties K needs to have for such deformations to exist. Notice this is a very different
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deformation problem than the usual one, where one is looking for deformations of some

integrable structure such that the integrability is preserved under the deformation.

We now present an example which was studied in great detail in [19] (see also [18, 21]).

This example is customarily discussed as a B̃-transformation of a para-Hermitian structure,

although upon replacing K with −K (the fully T-dual picture), one can see this example

also as a B-transformation, which we discussed so far.

Example 5.3.2 (SL(2,C)). Consider the real Lie algebra sl(2,C) generated by the basis

elements ei = i
2{σ1,−σ2, σ3} and ẽi = −iδijej, i = 1,⋯,3, σi being the Pauli matrices:

[ei, ej] = ε k
ij ek, [ẽi, ẽj] = −εijkek, and [ẽi, ej] = εi jkẽk.

We see that {ei}i=1⋯3 generates the subalgebra su(2), while {ẽi}i=1⋯3 do not close to form

a subalgebra. We denote the respective (real) spans by L and L̃, so that sl(2,C) = L ⊕ L̃.

There are two natural invariant scalar products on sl(2,C) defined by:

η(a, b) = 2Im(Tr(ab)), and (a, b) = −2Re(Tr(ab)),

for a, b ∈ sl(2,C). It can be checked that

η(ei, ej) = η(ẽi, ẽj) = 0, and η(ei, ẽj) = δji ,
−(ẽi, ẽj) = (ei, ej) = δij, and (ei, ẽj) = 0,

so that the above splitting of sl(2,C) defines a half-integrable para-Hermitian structure

(K,η), where

Kei = ei, and Kẽi = −ẽi,

with the integral foliation of L being SU(2) ⊂ SL(2,C). Moreover, ( , ) defines a Born

structure (K,η,H) by setting

H(ei, ej) = (ei, ej), and H(ẽi, ẽj) = −(ẽi, ẽj).
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In the frame (ei, ẽj), (K,η,H) is the canonical Born structure

K =
⎛
⎝
1 0

0 −1
⎞
⎠
, η =

⎛
⎝

0 1

1 0

⎞
⎠
, and H =

⎛
⎝
1 0

0 1

⎞
⎠
.

Now, we will B̃-transform the above K by a bi-vector on L (or, equivalently, a 2-form on L̃)

βij = ε3ij which changes the ẽi generators, keeping ei the same:

b̃i = ẽi − ε3ijej.

The generators satisfy

[b̃3, b̃1] = b̃1, [b̃3, b̃2] = b̃2, and [b̃1, b̃2] = 0,

and therefore form a subalgebra, called the Borel subalgebra sb(2,C). Consequently, the

splitting1 sl(2,C) = su(2) ⊕ sb(2,C) = L ⊕ L̃B̃ is integrable and defines the Manin triple

(sl(2,C), su(2), sb(2,C)) with the corresponding Drinfel’d double

SL(2,C) = SU(2) & SB(2,C).

This is an interesting scenario in which the seemingly more natural splitting given by (ei, ẽj),
in which the natural pairings η and ( , ) take a canonical form, is not fully integrable and

one obtains an integrable splitting by B̃-transforming it. ◁

5.3.2 B-transformation and generalized T-duality transformations

In Section 2.3 we introduced T-duality on para-Hermitian manifolds as a change of the para-

Hermitian structure K ↦ K ′, which in the case of the full T-duality maps K ↦ −K. We

also observed that the T-duality map T is an O(d, d) transformation, i.e. it preserves the

signature (d, d) metric η:

η(T⋅,T⋅) = η(⋅, ⋅) ,

which is a property T-duality shares with the B-transformation K ↦ KB. For this reason,

both the T-duality and the B-transformation (as well as their combinations) are in [21] collec-

1Here, the splitting is as a vector space, not as a Lie algebra.
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tively called generalized T-duality transformations. From this point of view, a (generalized)

T-duality transformation on a para-Hermitian manifold (M, η,K) is therefore any change of

the para-complex structure K that simultaneously preserves the underlying O(d, d) structure

η.

5.3.3 Relationship to b-field and β-field transformations

In generalized geometry, the b-field transformation (4.1.5) is well studied for its desirable

properties; it preserves the type of a generalized endomorphism – i.e. whenever J is an

(almost) generalized complex/para-complex/chiral structure then also eB(J ) = eBJ e−B is

(almost) generalized complex/para-complex/chiral – and when db = 0, it is also a symmetry

of the Dorfman bracket (4.1.6) and therefore preserves integrability. There is in some sense a

dual notion called the β-transformation, which is given by a bi-vector instead of a two-form:

eβ =
⎛
⎝
1 β

0 1

⎞
⎠
∈ Γ(End(T ⊕ T ∗)).

Contrary to eb, eβ is not a symmetry of the Dorfman bracket but instead satisfies the following

property:

[eβ(X + α), eβ(Y + γ)] = eβ([X + α,Y + γ] + [α, γ]β) + [β, β](α, γ),

where [ , ]β is the Poisson Lie algebroid bracket [82]:

[α, γ]β = Lβ(α)γ − Lβ(γ)α − dβ(α, γ),

and [β, β] is the Schouten commutator of β with itself, which is simply the Lie bracket of

vector fields extended to bi-vectors via the derivation property. The commutator [β, β] has

the important property that it vanishes if and only if β is Poisson bivector. The bracket that

is given by the sum of the Dorfman bracket and the bracket [ , ]β is also a Courant algebroid

bracket on T ⊕ T ∗ and the corresponding Courant algebroid is called the Poisson Courant

algebroid. In summary, whenever β is Poisson, the β-field transformation is a morphism

between the standard Courant algebroid and the Poisson Courant algebroid.

The B-transformation is related to both the b-field and β-field transformations of the

small Courant algebroids in the following way. Consider a para-Hermitian manifold whose
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eigenbundle L is integrable and its integral foliation is M . Then, eB given by (5.3.1) is

related to the b-field transformation of (T ⊕ T ∗)M by:

eb = ρ eBρ−1 =
⎛
⎝
1 0

b 1

⎞
⎠
∈ Γ(End((T ⊕ T ∗)M)),

where b is the (2,0)-form given by b = ηB. Similarly, the dual B-transformation (5.3.3)

defines a β-field transformation of (T ⊕ T ∗)M :

eβ = ρ eB̃ρ−1 =
⎛
⎝
1 β̃

0 1

⎞
⎠
∈ Γ(End((T ⊕ T ∗)M)),

where now β̃ is the (2,0)-bivector β̃ = B̃η. Of course, one can also think of eB and eB̃

as endomorphisms of (T ⊕ T ∗)M̃ whenever L̃ is integrable, except eB then corresponds

to a β-field transformation by a (0,2)-bivector β = Bη and eB̃ corresponds to a B-field

transformation by a (0,2)-form b̃ = ηB̃.

Note that this is consistent with the picture of T-duality given by (5.2.1) and Example

5.2.1, that factorizes into the map of the two small Courant algebroids. Via this map, the

b-field and β-field transformed small CAs are mapped onto each other and so the pairs

(b, β = η−1bη−1) and (b̃, β̃ = η−1b̃η−1) are seen as T-dual. In other words, the same map eB

(5.3.1) on TM is realized in the two T-dual pictures as a b-field transformation on one hand,

and as a β-field transformation on the other. This corresponds to the fact that T-duality

maps between the b-field and β-field deformations [83, 50].

The splitting of TM given by KB gives rise to an H-twisted Courant algebroid structure

on M with H = ∂b2. Conversely, consider the H-twisted Courant algebroid on M with H

a closed three-form on M . In general, H is not exact, but is only locally given by a two-

form potential. Using this local data, we can define a patch-wise B-transformation of the

underlying para-Hermitian structure that corresponds to the H-twisted Courant algebroid

(see Example 5.3.3).

Remark. In [84], the para-Hermitian geometry, including the B-transformation, was described

in terms of a stack formalism of a higher Kaluza-Klein geometry. The author further argues

why no global object in para-Hermitian geometry can recover a cohomogically non-trivial

H-flux on the physical space manifold M given by an integral foliation. This is in accor-

2Here ∂ is the Dolbeault differential along L, which coincides with the de-Rham differential on M when
L is integrable.
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dance with our above observation that in order to achieve this, we would have to consider

a collection of local B-transformations. On the other hand, in [21] it is shown that a non-

trivial H-flux can be achieved if one instead considers the physical space to be given by the

foliation Mphys. = M/M̃ . In such case, the para-Hermitian fundamental form ω, which is

globally defined on M, maps to a local 2-form on the quotient Mphys. and therefore gives rise

to cohomologically non-trivial fluxes as well.

5.3.4 B-transformation of Born structures

Let (M, η,K,H) be a Born manifold and we will again use the notation M and M̃ for the

fundamental foliations. The B-transformation acts naturally by conjugation not only on K,

but also on all other tensors of the Born structure, leaving only η invariant:

(η,K,H) eBz→ (η,KB,HB),

and because eB clearly preserves the compatibility conditions, (η,KB,HB) defines another

Born structure. In the splitting defined by KB, all the B-transformed structures again take

the canonical form, for example HB is diagonal, but defined by a different metric

HB =
⎛
⎝
gB 0

0 g̃B

⎞
⎠
KB

,

⎧⎪⎪⎪⎨⎪⎪⎪⎩

gB = g(1 −B)
g̃B = η(1 +B)g−1η

,

where g is the metric on L that defines the original H. Note that the metric gB = g(1 −B)
on L satisfies

gB(x +Bx,y +By) = g(x,y), x,y ∈ Γ(L).

In the splitting of K, where KB takes the form (5.3.5), the B-transformation of the chiral

structure J = ηH yields the familiar matrix expression for a generalized metric

J
eBz→ JB = eBJe−B =

⎛
⎝

−ĝ−1B ĝ−1

ĝ −Bĝ−1B Bĝ−1

⎞
⎠
K

, ĝ = η−1g,

which comes as no surprise, since B-transformation and the b-field transformation on the

small CA (T ⊕ T ∗)M are related by ρ, and J gives rise to the generalized metric G(g, b) via

ρ (5.1.8) as well.
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Example 5.3.3 (Doubled torus with H-flux). In Example 2.2.9, we described the standard

para-Hermitian structure (η,K) on the doubled torus T d × (T d)∗. We now describe a Born

structure (η,K,H) on the doubled torus M = T 3 × (T 3)∗ and show that in case when there

is additionally a constant 3-form H-flux on the “space-time manifold” M = T 3, it can be

absorbed in the Born structure in terms of a local B-transformation of (η,K,H). We then

perform a partial T-duality along a pair of cycles, and observe that locally, such T-duality

transformation recovers the famous Buscher rules. Our discussion here is local and we will

discuss global change of topology corresponding to this particular example later in Example

5.3.7.

As we know, choosing a Born structure on M = T 3 × (T 3)∗ is equivalent to a choice of a

metric g on M = T 3 and so in the adapted coordinates (x, y, z, x̃, ỹ, z̃), we choose the simplest

metric g = dx⊗dx+dy⊗dy+dz⊗dz, which yields the canonical Born structure (3.0.4). Now,

consider a constant H-flux on T 3, H = k dx ∧ dy ∧ dz. Locally, we can write H = ∂b for

b = kx dy ∧ dz and use this b to transform the Born structure by

B = η−1b = kx (∂̃z ⊗ dy − ∂̃y ⊗ dz) =
⎛
⎜⎜⎜
⎝

0 0 0

0 0 −kx
0 kx 0

⎞
⎟⎟⎟
⎠
.

This yields the new metric HB, expressed in the original frame corresponding to K as

HB = eBHe−B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0 0

0 1 + (kx)2 0 0 0 −kx
0 0 1 0 kx 0

0 0 0 1 0 0

0 0 kx 0 1 0

0 −kx 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
K

.

Now, we will T-dualize along the (z, z̃)-cycles, meaning we will define a new para-Hermitian

structure Kzz̃, which has the eigendirections tangent to (z, z̃)-directions swapped:

Kzz̃ =

⎛
⎜⎜⎜⎜⎜⎜
⎝

12×2

−1

−12×2

+1

⎞
⎟⎟⎟⎟⎟⎟
⎠
K

.
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Here, Kzz̃ can be seen as a particular O(d, d) transformation of the original structure K. In

the frame corresponding to Kzz̃ (whose +1-eigenbundle defines the T-dualized spacetime),

we get

HB =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0 0

0 1 + (kx)2 −kx 0 0 0

0 −kx 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 kx

0 0 0 0 kx 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
Kzz̃

.

From vanishing off-diagonal terms, we infer that there is no b-field on the T-dualized space-

time M ′ locally given by coordinates (x, y, z̃). Moreover, we read off the metric

gM ′ = dx2 + dy2 + (dz̃ − kxdy)2,

This result is in perfect accordance with the Buscher rules (1.1.3). The metric gM ′ is a metric

on a twisted torus or nilmanifold, as we will see in Example 5.3.7. ◁

5.3.5 (Non-)Geometric Fluxes

We once again turn to the scenario most commonly encountered in physics, which is when

the underlying para-Hermitian structure (η,K) is para-Kähler. In such case, the D-bracket

associated to the B-transformed para-Hermitian structure KB differs from the original one

by tensorial quantities called fluxes that are known in the physics literature on T-duality

covariant formulations of String Theory. These fluxes are related to the notion of integrability

defined by the D-bracket that we call D-integrability:3

Definition 5.3.4. Let (M, η,K) be an almost para-Hermitian manifold and [[ , ]]D the

associated D-bracket. We say an η-isotropic distribution D ⊂ TM is D-integrable (with

respect to K) if it is involutive under the D-bracket of K, i.e.

[[D,D]]D ⊂ D.
3In [13], this property is called weak integrability but here we use the name D-integrability, which clearly

reflects the association to the D-bracket.
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From the Property 3. of the Definition 2.4.1 of the D-bracket, it follows that the eigenbun-

dles of K are always D-integrable with respect to the D-bracket of K. Whenever it happens

that a different (almost-) para-Hermitian structure K ′ is also D-integrable with respect to

this D-bracket, we say that K and K ′ are compatible. We then have the following result

that we derived in [13]:

Proposition 5.3.5 ([13]). Let (KB, η) be a B-transformation of a para-Hermitian structure

(K,η) defined by (5.3.1) and denote b = ηB, β = Bη−1. Then KB is compatible with K iff

∂b + (Λ3η)[β, β] = 0, (5.3.7)

where ∂ is the Dolbeault differential along L, [ , ] is the Schouten bracket on polyvector fields

along L̃ and Λ3η denotes the third wedge power of the isomorphism defined by the contraction

with the metric η.

The equation (5.3.7) takes the form of the Maurer-Cartan equation and can be interpreted

in the following way. The eigenbundle LB = eB(L) of KB is via the maps ρ and ρ̃ (5.1.1)

mapped to an almost Dirac structure on both the small Courant algebroids of K. On

(T ⊕ T ∗)M , LB defines a graph of b:

Graph(b) = {x + b(x) ∣ x ∈ X(M)} ⊂ (T ⊕ T ∗)M,

which is integrable as a Dirac structure on this small CA (i.e. involutive under the Dorfman

bracket on (T ⊕ T ∗)M) if and only if ∂b = 0, i.e. b is closed on M . On the other hand, on

T ⊕ T ∗(M̃), LB defines a graph of β:

Graph(β) = {α̃ + β(α̃) ∣ α̃ ∈ Ω1(M̃)} ⊂ (T ⊕ T ∗)M̃,

which is integrable when [β, β] = 0, i.e. β is Poisson on M̃ . Therefore, we see that in order

for (5.3.7) to vanish, it is sufficient for LB to define an integrable Dirac structure on both

small CAs, in which case both terms in the equation (5.3.7) vanish identically. This is,

however, not a necessary condition as the two terms can be non-zero and still be cancelled

as they both take values in L.

We now state one of our main results in [13], which we leave without proof since it requires

several additional technical lemmas that are not important for the current discussion:
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Proposition 5.3.6 ([13]). Let KB be a B-transformation of a para-Kähler structure (M, η,K).

Then the D-bracket associated to KB is given by

η([[X,Y ]]D,B, Z) = η([[X,Y ]]D, Z) − (db)(X,Y,Z). (5.3.8)

where [[ , ]]D denotes the D-bracket of K.

From the expression (5.3.8) it is not immediately clear how the extra tensorial part db,

called the twist of the bracket, corresponds to various string theory fluxes. To see this,

we must examine the different components of db in the bigrading corresponding to KB.

While the frame of TM diagonalizing KB is {∂Bi = ∂i + bij ∂̃j, ∂̃j}, the dual frame of T ∗M is

{dxi, dx̃Bi = dx̃i + bijdxj}:

db = ∂ibjkdxi ∧ dxj ∧ dxk + ∂̃ibjkdx̃i ∧ dxj ∧ dxk

= ∂ibjkdxi ∧ dxj ∧ dxk + ∂̃ibjkdx̃Bi ∧ dxj ∧ dxk + bil∂̃lbjkdxi ∧ dxj ∧ dxk.

• The (3,0)B component of db is given by

d+b
(3,0)B = d+b + (Λ3η)[β, β]

where db is also the (3,0) component of db with respect to K. The two terms combine

to what is in DFT called a covariantized H-flux (or DFT H-flux), while the individual

terms correspond to the well known H-flux and what can be seen as a (dual) R-flux:

d+b =H = ∂ibjkdxi ∧ dxj ∧ dxk,
(Λ3η)[β, β] = R̃ = bil∂̃lbjkdxi ∧ dxj ∧ dxk,

The H-flux is a 3-form on M , while [β, β] is a three-vector on M̃ . In physics the R-flux

is usually a three-vector on the space-time manifold (in our case M), which is why we

call (Λ3η)[β, β] the dual R-flux. The usual R-flux on M would then be a result of the

B̃-transformation (5.3.3) corresponding to a bivector on L.

• The (2,1)B component of db reads

db(2,1)B = ∂̃ibjkdx̃Bi ∧ dxj ∧ dxk,
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In this expression we recognize the (dual) Q-flux. We again see that this expression

has the opposite index structure to the usual Q-flux due to the fact that β is a bivector

on M̃ as opposed to M , hence the name dual Q-flux.

The remaining components of db vanish. We notice that the H and R̃ fluxes are related,

giving the (3,0)B part of db (and therefore dωB, by (5.3.6) and dω = 0), and therefore the

obstruction to compatibility of KB with K. This obstruction,

Hijk = ∂[ibjk] + b[il∂̃lbjk],

is in the physics literature sometimes called the covariantized H-flux or an H-flux without

section condition [78].

We have seen that all the fluxes correspond to the same data – the map B, which can

be seen either as a two-form or as a bivector – and the resulting fluxes are just different

differential operations on b. This relationship between fluxes reflects what is observed in

physics, where the H, Q and R fluxes are related by T-duality. In our setting, this amounts

to the exchange of the individual xi and x̃i coordinates. For example, if one starts with

the H123 component of H, i.e. the component of H along x1, x2 and x3, after performing

T-duality along each of these coordinates, one ends up with an R-flux along the T-dual

coordinates x̃1, x̃2 and x̃3, R123. On the level of the corresponding bundles, this relationship

is realized by the isomorphism of η (and relabelling of coordinates).

Example 5.3.7 (Doubled Torus with H-flux). Consider the doubled torus setting M =
T 6 = T 3 × T̃ 3 from Example 5.3.3, i.e. M is endowed with the standard para-Hermitian

structure described in the Example 2.2.9, (x, y, z, x̃, ỹ, z̃) are the adapted coordinates and

we also consider a 3-form flux given by an integer multiple of the volume form on T 3,

H = k dx ∧ dy ∧ dz. We will now describe how the topology of M changes from a torus to

a nilmanifold M ′ by performing T-duality along one pair of cycles. We first describe the

standard construction of topological T-duality and then reinterpret the topology change in

the language of para-Hermitian manifolds.

Performing topological T-duality along the (z, z̃) coordinates according to (2.3.8), we

obtain a non-trivial fibration of the z̃-circles over the (x, y) coordinates. This bundle is

constructed as follows: choose a connection θ = dz on the original circle fibration locally

given by (x, y, z) → (x, y). This means k dx ∧ dy = dθ̃ must be the curvature of the dual

bundle (x, y, z̃) → (x, y) with θ̃ its connection. We therefore locally choose θ̃ = dz̃+kxdy and
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we have dω = H (H̃ = 0) with ω = −θ ∧ θ̃ = (dz̃ + kx dy) ∧ dz. The dual bundle is therefore

specified by the connection, in particular the cocycle condition for the identification x ∼ x+1

is given by θ̃(x + 1) − θ̃(x) = −df for f the gluing function along the z̃ fiber. This yields

f = −ky and we get the identifications for the T-dual circle bundle

(x, y, z̃) ∼ (x + 1, y, z̃ − ky) ∼ (x, y + 1, z̃) ∼ (x, y, z̃ + 1), (5.3.9)

which define a nilmanifold. Therefore, performing T-duality along the pair (z, z̃) maps the

trivial circle bundle given by (x, y, z) → (x, y) with H to a nilmanifold given by (x, y, z̃) →
(x, y) with identifications (5.3.9).

We now describe the example with non-trivial H-flux in terms of para-Hermitian geometry

on the doubled torus. The existence of the H-flux is realized through the B-transformation

corresponding to its local 2-form potential b = kx dy ∧ dz reflected in the shift of the para-

Hermitian structure K0 ↦ KB = K + 2B, where B = ηb. The frames of the eigenbundles get

transformed as

(∂x, ∂y, ∂z) z→ (∂x, ∂y + kx∂̃z, ∂z − kx∂̃y) = (eBx , eBy , eBz )
(∂̃x, ∂̃y, ∂̃z) z→ (∂̃x, ∂̃y, ∂̃z),

where we used the notation ∂x = ∂
∂x and ∂̃x = ∂

∂x̃ . The dual transformed frames are

(dx, dy, dz), and (dx̃, dỹ + kxdz, dz̃ − kxdy).

Note that this splitting is not integrable, as

[eBx , eBy ] = [∂x, ∂y + kx∂̃z] = k ∂̃z,
[eBx , eBz ] = [∂x, ∂z − kx∂̃y] = −k ∂̃z,

and the corresponding Nijenhuis tensor is N = k dx∧(dy⊗ ∂̃z−dz⊗ ∂̃y). Now, we perform the

T-duality, which is realized by the exchange of the transformed frame vectors in the (z, z̃)
directions:

eBz = ∂z − kx∂̃y ←→ ∂̃z

dz ←→ dz̃ − kxdy.
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We can now confirm that after T -duality, the +1-eigenbundle spanned by (eBx , eBy , ∂̃z) is now

integrable. The dual frame is (dx, dy, dz̃−kxdy) and since we still have x ∼ x+1 and y ∼ y+1,

the frame is globally defined exactly when the coordinates (x, y, z̃) satisfy (5.3.9). Therefore,

the T-dual is the same nilmanifold as before. To summarize, one can repackage the data of

the doubled torus with H-flux and para-Hermitian structure (η,K0) as the non-integrable

para-Hermitian structure (η,KB), which after T-duality along the (z, z̃) directions defines a

nilmanifold as the integral manifold of its +1-eigenbundle.

This example can be extended to a T-duality between two nilmanifolds by also considering

an H-flux H̃ = j dx ∧ dy ∧ dz, where the T-duality acts as the exchange of H-fluxes, k ↔ j,

together with the exchange of coordinates z and z̃. ◁

The Full set of fluxes In the above we only discussed the fluxes when theB-transformation

(5.3.1) is present. We will now recall the results from [18], where the most general set of

fluxes is obtained by simultaneously applying the transformations (5.3.1) and (5.3.3). In

such case, one gets as the different obstructions to D-integrability the following set of fluxes

with B = ηb and B̃ = ηβ:

Hijk = ∂[ibjk] + b[il∂̃lbjk],
F k
ij = ∂̃kbij + βkmHmij,

Q
ij
k = ∂kβij + βimβjlHmlk + bkm∂̃mβij + 2βp[i∂̃j]bpk,

Rijk = 3∂̃[iβjk] + 3β[ilβjm∂̃k]bml + 3β[im∂mβ
jk] + 3blmβ

[il∂̃mβjk] + βilβjmβknHlmn.

This is the full set of fluxes one obtains in DFT, see for example [29, eq. 5.88].

5.4 D-bracket from The Large Courant Algebroid

In Section 5.1, we realized the D-bracket as a sum of the two small Courant algebroid

brackets. We will now show that in the context of generalized para-Kähler geometry, one

can also construct the D-bracket by restricting the Dorfman bracket of the large CA to the

eigenbundles C± of the generalized metric corresponding to η. This construction is originally

due to [20] where this relationship was observed for para-Kähler manifolds. Later in [31],

the idea was fully formalized for any generalized para-Kähler manifolds as well.
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First, we observe that on any pseudo-Riemannian manifold (M, η), we get a tangent

bundle bracket operation similar to (2.4.4) from a restriction of the (twisted) Dorfman bracket

to the eigenbundles of a generalized metric G(η, b) with an arbitrary b-field:

Proposition 5.4.1 ([31]). Let G(η, b) be a generalized metric on a pseudo-Riemannian mani-

fold (M, η) with eigenbundles C±, H a closed 3-form and denote Hb =H+db. The restrictions

of the Hb-twisted Dorfman bracket to Λ3C± yield a bracket operation on the tangent bundle

called the almost D-bracket with a flux ±Hb:

±1

2
⟨[π−1

± X,π
−1
± Y ], π−1

± Z⟩ = η([[X,Y ]]η,±Hb , Z) = η([[X,Y ]]∇̊, Z) ± 1

2
Hb(X,Y,Z), (5.4.1)

where ∇̊ denotes the Levi-Civita connection of η and [[ , ]]∇̊ is defined by

η([[X,Y ]]∇̊, Z) = η(∇̊XY − ∇̊YX,Z) + η(∇̊ZX,Y ).

Proof. Using (4.1.7), we get

⟨[π−1
± X,π

−1
± Y ], π−1

± Z⟩ = ⟨∇̊Xπ
−1
± (Y ) − ∇̊Y π

−1
± (X), π−1

± (Z)⟩
+ ⟨∇̊Zπ

−1
± (X), π−1

± (Y )⟩ +H(X,Y,Z),

which after a straightforward calculation leads to the result.

The almost D-bracket of a pseudo-Riemannian manifold in fact defines a metric algebroid

[53] with anchor the identity, i.e. it satisfies the properties 1. and 2. in Definition 2.4.1.

Moreover, here we see that it arises via the isomorphisms (4.2.5) between the tangent bundle

TM and C± ⊂ (T ⊕ T ∗)M. Recalling (4.2.6), we see that π± are isomorphisms of metric

algebroids

Proposition 5.4.2. Consider the setting of Proposition 5.4.1 and denote G(⋅, ⋅) = 1
2⟨G(η, b)⋅, ⋅⟩.

Then the maps π± given by (4.2.5) define an isomorphism of the following metric algebroids

over M:

(TM, η,1, [[ , ]]η,±Hb) π±←→ (C±,G, π±, [ , ]).

The above statement is simply the rephrasing of the fact that the following relationships
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are satisfied:

η(X,Y ) = G(π−1
± X,π

−1
± Y ), [[X,Y ]]η,±Hb = π±[π−1

± X,π
−1
± Y ],

and that the anchors of the two metric algebroids are compatible, which is satisfied trivially:

π±π−1
± = 1TM.

The final step is now to show that whenever the generalized metric G(η, b) in question is a

part of a generalized para-Kähler structure (G(η, b),K±), the brackets [[ , ]]η,±Hb become the

D-brackets associated to the corresponding para-Hermitian structures (η,K±). We stated

this result in [31].

Theorem 5.4.3 ([31]). Let (G,K) be a GpK structure on M with a flux H and (η,K±)
the corresponding bi-para-Hermitian data. Then the D-brackets [[ , ]]± associated to the

para-Hermitian structures coincide with the brackets [[ , ]]η,±Hb associated to the generalized

metric G. In other words,

η([[X,Y ]]±, Z) = ±1

2
⟨[π−1

± X,π
−1
± Y ], π−1

± Z⟩. (5.4.2)

Proof. From Proposition 5.4.1 it follows that

±1

2
⟨[π−1

± X,π
−1
± Y ], π−1

± Z⟩ = g(∇̊XY − ∇̊YX,Z) + g(∇̊ZX,Y )

± 1

2
Hb(X,Y,Z).

It remains to relate this to the expressions for the D-bracket (2.4.4) associated to K±. The-

orem 4.3.3 tells us that K± are necessarily integrable and therefore the (3,0) and (0,3)
components of dω± in (2.4.2) vanish. Because dPω = dω(2,1) − dω(1,2), the (2,1) and (1,2)
components then get matched (recalling again Theorem 4.3.3) by equation dP±ω± = ∓(H+db).
This completes the proof.

The above result can be understood from the point of view of T-duality in the following

way. The eigenbundles C± on a GpK manifold, which play a central role in the construction,

were found in Section 5.2 to be the subbundles of (T ⊕ T ∗)M that are left invariant under

the linear T-duality operation. Therefore, the D-bracket can be interpreted as the Dorfman

bracket on (T ⊕ T ∗)M restricted to the T-duality invariant bundles C±. The reason for this

is that under T-duality, the projected brackets (5.1.2) are mapped onto each other, but the

whole D-bracket (which is their sum) is left invariant.
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Chapter 6

Applications to 2D σ-models

In this section we explain how the generalized para-Kähler and chiral geometries introduced

Section 4.3 arise in physics in the context of 2D supersymmetric non-linear σ-models. For

basics of supersymmetry (SUSY) and other details the reader can consult for example [85].

For details about 2D σ-models, in particular their (2,2) supersymmetric version, see [86, 36]

as well as the thesis [87] containing many useful details and calculations.

First, we introduce the 2D σ-models that we will study. They are given by the action

functional

S(1,1)(Φ) = ∫
Σ2∣2

[g(Φ) + b(Φ)]ijD1
+φ

iD1
−φ

j, (6.0.1)

where Φ = {Φi}i=1⋯n are superfields, i.e. maps Φ ∶ Σ2∣2 → (M,g). Here Σ2∣2 is a super-

Riemann surface with two real and two formal odd coordinates (x±, θ±1 ), (M,g) is (for now)

arbitrary pseudo-Riemannian manifold and b denotes a local two-form. The symbols D1
±

denote superderivatives, i.e. derivatives on the space of fields Φ defined by

D1
± =

∂

∂θ±1
− θ±1∂±. (6.0.2)

The superfields Φ can be written in terms of their polynomial expansion in the odd coordi-

nates θ±:

Φi(x±, θ±) = φi(x±) + θ+1ψi+(x±) + θ−1ψ−(x±) + θ+1 θ−1F i(x±), (6.0.3)

and the expressions g(Φ), b(Φ) then represent the formal Taylor series expanded around
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θ±1 = 0, for example the first two terms in this expansion for g read

g(Φ)ij = g(φ)ij + ∂kg(φ)ij(θ+1ψk+ + θ−1ψk−) +⋯ .

The action (6.0.1) has the important property that it is invariant under the action of the

following pair of derivative operators called supercharges

Q1
± =

∂

∂θ±1
+ θ±∂±, (6.0.4)

which obey the anti-commutation relations

{Q1
±,Q

1
±} = 2∂±, (6.0.5)

∂± = ∂
∂x± being the derivatives on the even part of Σ2∣2. It can be shown that Q1

± define an

extension of the Poincaré algebra to a superalgebra, where the only non-trivial odd brackets

are given by (6.0.5). Such a superalgebra is called a (1,1) supersymmetry algebra and the

action (6.0.1) is then said to carry a (1,1) supersymmetry (SUSY).

An interesting observation that gives a first clue about how the generalized geometry

enters the description of the 2D SUSY σ-models is that any generalized metric G (4.2.4)

defines a (1,1) action (6.0.1), because it corresponds to the data of a pseudo-Riemannian

metric g and a two-form b. In the following discussion, we will argue that whenever the

target manifold M with a generalized metric G(g, b) carries an additional generalized para-

complex or chiral structure that commutes with G, the σ-model defined by G(g, b) exhibits

extra superspace symmetries.

Remark. There is an analogous well-known statement in the case when (M,G) is generalized

Kähler, i.e. on top of the data of the generalized metric G(g, b), there is a generalized complex

structure I that commutes with G and such that I ′ = IG is also generalized complex. In

such case, one obtains a (2,2) SUSY σ-model.

6.1 (2,2) para-SUSY and GpK Geometry

In this subsection we explain that whenever there is an integrable generalized para-Kähler

structure (G,K±) on the target M of the σ-model (6.0.1) defined by the generalized metric

G = G(g = η, b), the σ-model acquires a (2,2) para-supersymmetry. This result has been
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obtained in [36] in terms of the bi-para-Hermitian geometry (η,K±, b) corresponding to the

GpK structure (G,K±). This work can also be used as a reference for details about para-

supersymmetry and more extensive study of said σ-models.

Remark. The original name for para-supersymmetry used in [36] is twisted supersymmetry

while some other works also used the name pseudo supersymmetry. Here we use the name

para-supersymmetry in order to avoid the confusion with topologically twisted σ-models,

which are frequently discussed in the context of (2,2) σ-models and to more intuitively

reflect the relationship to para-complex geometry.

Recall that the σ-model (6.0.1) always carries (1,1) SUSY, which means that it is invari-

ant under the action given by the infinitesimal generators (6.0.4), which satisfy the (1,1)
SUSY algebra (6.0.5). We now wish to extend this algebra to (2,2) para-SUSY algebra and

show that such extension only exists if the target is generalized para-Kähler. The (2,2)
para-SUSY algebra is an extension of the (1,1) algebra by additional supercharges Q2

± that

satisfy the relations opposite to (6.0.5). In other words, instead of two supercharges, there

are four and the only non-zero anti-brackets are:

{Q1
±,Q

1
±} = 2∂± and {Q2

±,Q
2
±} = −2∂±. (6.1.1)

The additional supercharges Q2
± have to (for dimensional reasons, see [36]) necessarily act

on the fields Φ by

Q2
±Φi = (K±(Φ))ijD1

±Φj, (6.1.2)

for some (for now unspecified) target space tensors K±. The requirement that the action

(6.0.1) is invariant under Q2
± forces the compatibility between (g + b) and K±:

g(K±⋅, ⋅) + g(⋅,K±⋅) = 0,

b(K±⋅, ⋅) + b(⋅,K±⋅) = 0,

along with the condition

∇±K± = 0,
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where ∇± are the connections defined in (4.2.11),

∇± = ∇̊ ± 1

2
H.

Here ∇̊ is the Levi-Civita connection of g and H is a closed global three-form, such that b is

locally its potential, db =H1.

Next, one must also ensure that the transformations (6.1.2) indeed extend (6.0.5) to a

(2,2) para-supersymmetry. This is equivalent to the conditions

K2
± = 1 and NK± = 0,

rendering (g,K±, b) a bi-para-Hermitian geometry, or equivalently, M to be a GpK manifold.

When we require that the theory is parity-symmetric, we find that the b-field term in

(6.0.1) has to vanish and additionally K+ = K− = K, which gives the para-Kähler limit of

the geometry. Additionally, one might require additional supersymmetry, which requires

additional para-complex structure that anti-commutes with K, which is therefore described

by the para-hyper-Kähler limit of GpK geometry. Various other heterotic supersymmetries

can be realized as well, all as special cases of the GpK geometry.

Remark. The integrability of K± can sometimes be relaxed [75], giving the GpK (or GK in

the case of usual SUSY) geometries which are only integrable in the weaker sense introduced

in Section 4.3.3.

Example 6.1.1 (The para-Kähler model). The most famous model that carries the usual

(2,2) SUSY is the Kähler model, which is a σ-model with the target a Kähler manifold and

the action is simply given by the local Kähler potential [88]. Here we present an analogous

model for the para-Kähler geometry [36].

To do this, we must first introduce a full (2,2) formalism, which means representing the

(2,2) para-SUSY on a super-Riemann surface Σ2∣4 with 4 odd coordinates instead of 2. This

consequently introduces a much larger space of fields

Φ ∶ Σ2∣4 → (M, η,K),

where we also already introduced the para-Kähler target (M, η,K). We denote the 4 odd

coordinates by (θ±, θ̃±) and introduce a new basis (Q±, Q̃±) of the (2,2) para-SUSY algebra,

1The expression (6.0.1) is local, which is the reason why the local two-form b appears
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which is given by

Q± =
1√
2
(Q2

± −Q1
±), and Q̃± =

1√
2
(Q2

± +Q1
±),

and satisfying the relations

{Q±, Q̃±} = −2∂±.

The representation of these charges on Σ2∣4 is:

Q± =
∂

∂θ±
− θ̃±∂± and Q̃± =

∂

∂θ̃±
− θ±∂±, (6.1.3)

and we also define the differential operators

D± =
∂

∂θ±
+ θ̃±∂± and D̃± =

∂

∂θ̃±
+ θ±∂±,

which can be used to define para-chiral fields (χi, χ̃j)i,j=1,⋯,d, which are fields constrained by

the differential conditions

D±χ̃
i = D̃±χ

j = 0,

for all i and j. It is easy to see that the fields have to have the following expansion in the

odd coordinates analogous (6.0.3):

χi = φi(y±) + ψi+(y±)θ+ + ψi−(y±)θ− + F i(y±)θ+θ−

χ̃i = φ̃i(ỹ±) + ψ̃i+(ỹ±)θ̃+ + ψ̃i−(ỹ±)θ̃− + F̃ i(ỹ±)θ̃+θ̃−,

where (φ,ψ±, F ) and (φ̃, ψ̃±, F̃ ) are some functions of y± = x± + θ±θ̃± and ỹ± = x± − θ±θ̃±.

Moreover, the bosonic parts (φi, φ̃j) of the para-chiral fields parametrize the directions of

the adapted coordinates (xi, x̃j) of the target para-Kähler manifold and therefore parametrize

the fundamental foliations.

Given all this data, the para-Kähler model on the para-Kähler manifold (M, η,K) is

then given by the action functional:

S(χ, χ̃) = ∫
Σ4∣2

f(χ, χ̃),
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where f is the local para-Kähler potential for the para-Kähler geometry. It is easy to check

that this action is invariant under the (2,2) para-SUSY generators (6.1.3) and is also well-

defined on the whole M due to the fact that f is the para-Kähler potential [36].

We end this example with the natural conjecture that any (2,2) para-SUSY σ-model on

an arbitrary GpK manifold is given by some local scalar generalized para-Kähler potential

similarly to the case of ordinary (2,2) SUSY described locally by the generalized para-Kähler

potential [89]. ◁

6.1.1 Topologically twisted theories and mirror symmetry

There is a construction that extracts a topological field theory from any (2,2) σ-model called

topological twisting. For ordinary (2,2) SUSY, this has been described by Witten in [90]

for the Kähler σ-model, where there are two distinct twists and one obtains the famous A-

and B-models. Later on, Kapustin and Li [91] generalized this result for arbitrary generalized

Kähler target. For a (2,2) para-SUSY, we describe the topological twists in a joint work

with Williams [35].

Another fact that is very well known and studied in the context of the usual (2,2) SUSY

but also works equally well for (2,2) para-SUSY, is that there exists a Z2 outer endomorphism

of the (2,2) algebra, acting as a certain exchange of the charges. This operation then relates

two a priori different (2,2) σ-models, rendering them in a certain sense equivalent and this

equivalence is the physical statement of mirror symmetry. In particular, when applied to

the topological twists of the (2,2) theory, it exchanges the two twists. In the case of the

Kähler model this means an exchange of the A- and B-models, which on the side of the

underlying Kähler geometry means an exchange of the symplectic and complex geometries.

In [35], we derive the analogous statements for (generalized) para-Kähler geometry and (2,2)
para-SUSY σ-models.

In our case of the (2,2) para-SUSY, the Z2 action on the algebra (6.1.3) is given by the

exchange

Q− ←→ Q̃−.

We conjecture here that this gives rise to a notion of mirror symmetry for para-complex

geometry, which in the case of para-Kähler manifolds relates the para-complex and symplectic

moduli, as illustrated in Section 3.3.
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6.2 (1,1) Superconformal Algebra and Generalized Chi-

ral Geometry

In [37], it has been shown that the chiral geometry also plays an important role in in-

troducing additional symmetries to (1,1) σ-models (6.0.1). While pairs of Hermitian and

para-Hermitian structures naturally arise when considering an extended supersymmetry,

pairs of chiral structures have different physical interpretation in terms of σ-models – they

correspond to introduction of additional copies of the (1,1) superconformal algebra. Here

we briefly review the results of [37].

Consider a σ-model on a target (M,g) given by the action (6.0.1). For every such σ-

model, there are so-called superconformal symmetries stemming from the fact that M carries

the metric g. The symmetries close to form an algebra, called a superconformal algebra. Now,

it is shown in [37] that when M admits two (almost-)product structures J± orthogonal with

respect to g, that are also covariantly constant with respect to ∇± (4.2.11),

g(J±⋅, J±⋅) = g, ∇±J± = 0, (6.2.1)

one can introduce additional symmetries δP± and δQ± associated to2 the +1 and −1 projectors

P± and Q±, respectively

P± =
1

2
(1 + J±), Q± =

1

2
(1 − J±).

The symmetries δP± and δQ± then form copies of the (1,1) superconformal algebra. The

conditions (6.2.1) are the only conditions on the tensors J±, in particular there are no further

requirements on integrability of J±. By results of Section 4.3.2 and Proposition 4.3.9, this

means that (J±, g, b) defines a generalized chiral structure that is weakly integrable.

Because the additional symmetries δP± and δQ± form a superconformal algebra even when

J± are not integrable, they lack a spacetime description in terms of a corresponding Rieman-

nian manifold, contrary to the original algebra associated to (M,g). The author of [37] then

relates this fact to the existence of non-geometric string backgrounds.

2We will not explain here how the symmetries are associated to the projectors P± and Q±; we merely
remark that the projectors are the only additional geometrical data entering the definitions of δP± and δQ± .

115



Conclusion

In this thesis we described various aspects and applications of Born geometry with a main

focus on its relationship to T-duality in physics, in particular to Double Field Theory (DFT)

and the notion of extended space originating therein. Let us now briefly summarize our

results and highlight some of the most interesting and important questions for future research.

In Chapter 2 of the thesis we discussed the basics of para-Hermitian geometry and ar-

gued that this geometry naturally describes the extended space of DFT and as such can be

understood as the main building block of Born geometry when seen through the scope of

T-duality. This is because the para-Hermitian geometry is fully fixed by the T-duality set-

ting and therefore plays the role of the background or kinematical structure of the extended

space. One of the important components of this kinematical structure is the D-bracket,

which is a new bracket operation on vector fields on the extended space, appearing in DFT

as the replacement of the Lie bracket, and which – as we showed – is naturally defined in

terms of the para-Hermitian geometry. We further discussed the mechanisms through which

para-Hermitian geometry facilitates T-duality and provided several examples, including the

important case of Topological T-duality. In the final section of the first part, we defined

the notion of para-Calabi-Yau manifolds, which are a special type of para-Hermitian mani-

folds that carry a compatible para-holomorphic volume form and can be understood as the

para-complex analogue of Calabi-Yau manifolds.

In Chapter 3 we first elaborated on different aspects, definitions and points of view on

Born geometry, establishing the fact that the data of Born geometry is equivalent to a choice

of a d-dimensional metric structure on the 2d-dimensional para-Hermitian extended space,

understood as the physical space metric. This aligns with our point of view of para-Hermitian

geometry as the background structure of Born geometry and additionally shows that in order

to define a full Born geometry, one only needs to choose the dynamical data in the form of

a metric. Furthermore, we showed that there exists a unique connection analogous to the
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Levi-Civita connection in Riemannian geometry – the Born connection – that satisfies two

main properties. First, it parallelizes all the structures of the Born geometry, and second, its

D-torsion, which is an altered notion of the usual torsion corresponding to the replacement of

the Lie bracket by the D-bracket in DFT, vanishes. In the final section we then discussed the

perhaps most notable new contribution of this thesis, which is the example of Born geometry

in the context of semi-flat mirror symmetry. This example shows that the canonical and well

understood example of mirror symmetry between the tangent and cotangent bundles of an

affine manifold (which are both Calabi-Yau manifolds) supports para-Calabi-Yau geometries

on both sides of the mirror map. Moreover, the Calabi-Yau and para-Calabi-Yau geometries

are compatible, so that they define a Born geometry, again, on each of the mirror manifolds.

This uncovers a new aspect of the mirror map – famously understood as the exchange of

symplectic and complex geometries – showing that in this case, it exchanges the symplectic

and para-complex geometries as well.

In Chapters 4 and 5 we explored the different ways the para-Hermitian and Born ge-

ometries are related to the mathematical framework of generalized geometry. After review-

ing mostly well known aspects of generalized geometry in the beginning of Chapter 4, we

showed that a generalized para-Kähler structure, which is a commuting pair of generalized

para-complex structures satisfying a certain non-degeneracy condition, is in one-to-one cor-

respondence to a pair of compatible para-Hermitian structures sharing the same metric.

Similarly, a commuting pair of compatible generalized product structures, called a general-

ized chiral structure, is in one-to-one correspondence to a pair of (usual) chiral structures.

If the two tangent bundle chiral structures additionally anti-commute, one recovers Born

geometry.

In Chapter 5, we explored a relationship between the para-Hermitian geometry and gen-

eralized geometry of a different flavor. Using the fact that an integrable para-Hermitian

manifold is equipped with a pair of transversal half-dimensional foliations, we showed that

there is a natural construction of the D-bracket in para-Hermitian geometry via the Courant

algebroids of these two foliations, called small Courant algebroids. We then also demon-

strated that using this point of view, one can naturally incorporate simple fluxes of DFT

into the D-bracket as well as clarify their relationship with the b- and β- transformations

of generalized geometry. In the last part of the chapter, we also showed that the D-bracket

can also be easily recovered from the data of generalized para-Kähler geometry, introduced

in Chapter 4.

Finally, in Chapter 6, we discussed an a priori unrelated way the para-Hermitian and
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Born geometries appear in physics, when considering 2D (1,1) supersymmetric (SUSY) σ-

models with extra superspace symmetries. First, we showed that para-Hermitian geometry

describes target spaces of 2D σ-models that exhibit a (2,2) extended para-SUSY in much

the same way Hermitian geometry describes targets of the usual (2,2) SUSY σ-models. In

fact, the most general geometry of the (2,2) para-SUSY models is given by a pair of para-

Hermitian geometries discussed in Chapter 4, or equivalently by a generalized para-Kähler

geometry. We then briefly discussed the topological twists of such σ-models and based on

the analogies with the usual (2,2) SUSY and our results of Section 3.3, we conjectured

that the para-SUSY σ-models should exhibit a new type of mirror symmetry exchanging

the symplectic and para-complex geometric data. Lastly, we described that Born geometry

appears as the target space of the 2D (1,1) σ-models when one considers a splitting of the

(1,1) superconformal algebra into two different copies.

Let us now discuss some of the most important future research directions continuing

the ideas presented in this thesis. First, we would like to fully incorporate the language of

DFT fluxes into the formalism of para-Hermitian geometry, going beyond our discussion in

Section 5.3. In our presentation, we mostly focused on the process of recovering the physical

space via the canonical foliations of the para-Hermitian manifold, but this approach cannot

recover cohomologically non-trivial fluxes on the physical space in terms of global objects

on the extended space, as discussed in [84]. One must instead invoke the construction of

physical space through quotients, where global objects on the extended space in some cases

indeed give rise to cohomologically non-trivial fluxes on the quotient [21]. Additionally, as

we pointed out in Section 2.1.3, the description of a physical space in terms of a foliation is

problematic from the interpretational point of view. This is because such a physical space

would typically have uncountably many connected components and one must consequently

either make a non-canonical choice of a particular leaf of the foliation, or identify the physical

space with the leaf space of the transverse para-Hermitian foliation.

Both of the above shortcomings of our approach therefore suggest that one should instead

consider the quotient by the transverse foliation as the model for the physical space. As we

noted, a lot of progress in this direction has been made in [21], but various ideas introduced

in this thesis still remain to be discussed in the context of the quotient paradigm. This

includes for example studying the small Courant algebroids of a para-Hermitian manifold

as well as the (almost) generalized structures they can carry, and their reductions under

the action of the quotient. Moreover, we hope to reconcile the relationship between the

small Courant algebroids of the physical space and the large Courant algebroid of the whole
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extended space through the reductions of the latter, in particular by invoking a reduction

construction known in generalized Kähler geometry and applying it to the case of generalized

para-Kähler geometry.

A related question that has not yet been answered in a satisfying way is the geometric

interpretation of the D-bracket and the notion of integrability it gives rise to, in order to

complete the picture of the D-bracket replacing the ordinary Lie bracket on the extended

space. In particular, it is desirable to understand the D-bracket integrability in terms of

theorems analogous to the Frobenius theorem and consequently the Newlander–Nirenberg

theorems for (para-)complex geometry. From our brief discussion in the Section 5.1.1, it is

clear that one can expect the D-bracket integrability to be closely related to the integrability

in terms of the Dorfman bracket on the foliation quotients, but one would also hope for an

interpretation intrinsic to the extended space as a whole. After all, the D-bracket can be

defined on any almost para-Hermitian manifold with no reference to the foliations.

The idea to replace the Lie bracket by the D-bracket as the physically more natural choice

on the extended space should also be taken further and the whole machinery of Riemannian

geometry should be mimicked using the D-bracket as well. While the first step of replacing

the torsion tensor by the D-torsion is already well understood, a fitting replacement of tools

indispensable for the formulation of a gravity-like theory on the extended space, such as the

curvature tensors and the corresponding scalar, has not been found yet. This is crucial for

the applications in DFT, where one would like to write a full action functional intrinsic for

the extended space, which in the language of DFT means partially or entirely relaxing the

section condition. Many results are known in scenarios where the section condition is present

and the Riemann tensor is defined on the extended space using the knowledge of the reduced

Riemann tensor of the physical space, but a top-down approach to this problem without an

a priori reference to the half-dimensional physical space has so far been elusive. A particular

task in this pursuit is to define a proper definition of the dilaton field, which is sufficiently

natural in the para-Hermitian framework and also satisfies the top-down criterion outlined

above. As discussed at the end of Section 2.5, because the dilaton field is closely related to

the existence of a volume form on the physical space, we believe that the notion of para-

Calabi-Yau geometry (or a relaxation thereof) could prove to be important for understanding

of this problem.

Lastly, there are many unanswered questions related to the appearance of the para-

Hermitian and Born geometries in the framework of 2D σ-models. First, we would like to

understand if the appearance of the same geometric objects in both a priori different physical
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models is a consequence of an underlying relationship between the two, or a mere coincidence.

If the formal similarity is indeed not coincidental, then it means that the para-SUSY of the

σ-model is closely related to the T-duality in DFT. This is because in both cases, these

features are equivalent to the presence of the para-Hermitian geometry. Understanding this

relationship could then provide new insights in both DFT and the para-SUSY σ-models.

On a more hypothetical level, one could study how the topological twists of the para-SUSY

σ-models fit into the DFT framework, as well as the relationship between the conjectured

mirror symmetry for the σ-models on one side and the T-duality in DFT on the other.

The topic of para-SUSY σ-models opens up numerous interesting questions on its own,

regardless of its link to DFT. As we already pointed out, the formulation of mirror symmetry

for such σ-models and more generally for para-complex geometry has not yet been estab-

lished. Given the extremely wide applicability of mirror symmetry in complex geometry to

countless areas of mathematics and physics, we hope that a closer inspection of this topic

will give rise to many new results and exciting research directions as well.
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