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GRAPHICAL ABSTRACT 

Bivariate dynamic sequence length-conversion and end-of-batch sequence length-chain length 

distributions of free radical copolymerization under various monomer reactivity ratios and feed 

compositions are visualized by Kinetic Monte Carlo simulation. 
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ABSTRACT 

Copolymer properties and processability depend on copolymer microstructure, i.e., copolymer 

composition and monomer unit arrangements along copolymer chains. To predict ultimate 

properties of copolymers, one needs complete information on the length and position of 

sequences of each monomer type, M1 and M2, in every polymer chain in the system. A versatile 

Kinetic Monte Carlo (KMC) code has been developed and applied for the simulation of typical 

free radical copolymerizations. The code allows explicit monitoring of every growing chain during  

the course and at the end of polymerization, and can account for comonomer systems of any 

arbitrary reactivity ratios (r1 and r2) over the full range of monomer composition. Meanwhile, it 

eliminates the need for solving arrays of differential equations arising from deterministic 

modeling approaches. Since the code virtually synthesizes billions of copolymer molecules and 

keeps in storage information on each and every copolymer chain in the system, it allows for 

detailed statistical analysis. The simulator visualizes the bivariate sequence length-chain length 

(SL-CL) distribution for typical copolymerization systems and examples with: r1<1 & r2<1; r1>1 & 

r2<1; (r1 x r2) = 1; and r1=r2=1, and is also applied successfully to an experimental scenario 

described in the literature. 

 

Keywords: Monte Carlo simulation; Copolymerization; Chain length-Sequence length 

distribution; Molecular architecture; Tailor-made copolymers 

 

 

 

 

 

 

 



4 
 

 

 

 

1. INTRODUCTION 

A common characteristic of free radical copolymerization is composition drift [1-3]. In general, 

the nature of comonomers (as reflected by their different reactivity ratios), the initial feed 

composition of the polymerizing mixture, and the employed reactor configuration and operating 

conditions, all influence the evolution of microstructure of growing chains, and lead to the 

formation of diverse polymer products having different properties [4]. 

The microstructure of a copolymer can be identified by the number and position of monomers in 

the chains [5]. From this standpoint, the level of success in controlling ultimate product 

properties is largely dependent on the extent to which copolymer composition and monomer 

sequences are appropriately manipulated. The first step toward this objective is to have powerful 

mathematical tools capable of explicit ‘monitoring’ of macromolecular features of copolymer 

chains at any given interval of the copolymerization [6]. 

The need for tracking sequence length distribution (SLD), chain length distribution (CLD), and 

hence the bivariate sequence length-chain length (SL-CL) distribution of copolymers has recently 

been discussed by Kryven and Iedema [7]. They have succeeded, by solving arrays of differential 

equations, in computing the length and sequence of styrene-acrylonitrile copolymers via 

numerical integration of two-dimensional population balance equations, and provided useful 

information about the bivariate SL-CL distribution. Their model permits fractionating copolymer 

chains in the system and enumerating sequences of each monomer type, from which one can 

calculate the mole fraction of different sequences. The authors obtained detailed patterns on 

chain composition using the developed detailed deterministic model. It must be kept in mind, 

however, that a population balance permits, at best, the calculation of frequencies of sequences 

of different lengths for different chain length fractions. It can address neither the position of 

sequences nor their inter- and intra-chain distribution. To make this clearer, suppose that we 

have two samples obtained from free radical copolymerization of monomer 1 (M1) and monomer 

2 (M2) under the same operating conditions (see Scheme 1). Suppose also that the chain length 



5 
 

(CL) of copolymer molecules takes on only the two values of 10 and 20, but with different 

frequencies. At the same time, the number of double and triple sequences (i.e., diads and triads) 

of M2, sequence length SL=2 and SL=3, take on the values of 3 and 8 in the two batches, 

respectively (as per Scheme 1). 

 

 
Scheme 1. Schematic of two batches obtained from a particular free radical copolymerization 

with only double and triple sequences of monomer M2 on chains having constant length of 10 

or 20; but with different placement/distribution of M1 and M2 sequences 
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The simple illustration of Scheme 1 represents the concept of SL and CL and demonstrates the 

inability of deterministic population balances to account for the prediction of SL position as well 

as SL inter- and intra-chain distribution. Suppose the objective is to calculate the mole and weight 

fraction of triple M2 sequences located on the chains with CL=20, i.e., the blocks specified with 

dotted rectangles in Scheme 1. The desired mole fraction, which takes on equal values for both 

samples, can be defined and calculated via equation (1), as the ratio of the number of triple M2 

sequences in copolymer chains with CL of 20 to the total number of M2-type sequences, including 

double and triple sequences, as follows: 
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Likewise, and assuming that MWM2 is the molecular weight of the M2 unit, the weight fraction of 

triple M2 sequences of chains having CL of 20 can be calculated via equation (2): 
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Although the triple M2 sequences in the two batches have the same mole and weight fraction, 

the properties of the two samples should be completely different considering that 

homopolymers of M1 also exist in the system and triple M2 sequences have different positions 

from one copolymer chain to the other. In a real case, we have billions of chains each having its 

particular molecular fingerprint [8, 9]. In such a case, the presence of M1-type homopolymers 

together with random localization of M2 sequences with different lengths (single, double, triple, 

quadruple, …) at the end and/or at some location in the middle of the copolymer chains might 

cause significant differences in processability as well as in thermal, rheological, mechanical and 

biological properties of the resulting copolymers (e.g., see [10, 11]). Thus, a more detailed tool is 

required for reliable simulation of microstructural copolymerization characteristics with the 

ability to explicitly track all copolymer chains in the system. 
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Kinetic Monte Carlo (KMC) simulations give complete information about the microstructural 

chain evolution. This stochastic approach allows for detailed simulation of copolymerization 

chain characteristics [12-15]. With KMC, it is possible to assign an identification card to any single 

chain in the polymerizing mixture, which subsequently allows for monitoring, fractionating, 

visualizing, and screening of copolymer chains [16, 17]. 

In a previous work, we developed a KMC algorithm to capture the bivariate distribution of chain 

length and copolymer composition [18]. The algorithm affords the detection of any single 

growing chain in the polymerization system and can precisely categorize chains according to the 

number, weight, and position of comonomer units randomly positioned in copolymer chains. By 

giving the mother KMC simulator the ability of monitoring and reporting the length and position 

of sequences of each type existing in any individual copolymer chain, the present work aims to 

pattern the SL-CL distribution of copolymer chains stochastically via simulating a typical free 

radical copolymerization (initiation, propagation, chain transfer, and termination). 

The present KMC simulator provides a detailed ‘copy’ of all copolymer chains synthesized during 

the course of polymerization. It can track the length and position of comonomer sequences, as a 

function of feed composition and reactivity ratios (r1 and r2) for different ratio combinations (r1>1 

& r2<1; r1<1 & r2<1; (r1 x r2) = 1 and r1=r2=1). The code is finally applied to visualize the SL-CL 

distribution of an experimental case previously studied in the literature. The present work helps 

engineers and scientists to acquire a comprehensive view of microstructural developments 

during the course of copolymerization.   

 

2. KINETIC MONTE CARLO SIMULATION 

Arrangement of monomer units along growing copolymer chains during polymerization depends 

on polymerization conditions and the values of the monomer reactivity ratios. In general, a 

typical free radical copolymerization with monomers M1 and M2 can be adequately described 

by the steps of  Scheme 2 (e.g., see [19]). The quantity and the types of growing chains, i.e., 

homopolymer or copolymer chains, together with random localization of single or block units of 

M2 monomer, are the result of dissimilar tendency of monomers to add to the growing radicals. 

This indeed makes the detection of sequences of different types complex. Thus, the code is 
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required to be computationally time-effective to be able to probe and fractionate all chains in 

the system on account of length and position of sequences of M1 or M2 type. This could be a 

serious challenge if one wanted to make the code versatile for quantification of any type of 

chains. 

 

(1) Initiator dissociation •→ fPRI dk 2  

(2,3) Initiation •• →+ j
k

j RMPR i
,1  

(4-7) Propagation •
+

• →+ jn
k

jin RMR ijp
,1,

,  

(8) Termination by combination mn
k

jmin PRR tc
+

•• →+ ,,  

(9) Termination by disproportionation mn
k

jmin PPRR td +→+ ••
,,  

i , j: 1 or 2  
•PR : Primary radical 

f: Initiator efficiency 
I , Mj: Initiator molecule and monomer/comonomer, respectively 

•
inR , : Macroradical with n repeating units ending in i-type monomer 

nP : Copolymer chain with n repeating units 
Scheme 2. Reaction scheme applied in KMC simulation of free radical copolymerization of 

typical M1 and M2 monomers for cases having different reactivity ratios 

 

We specified the kinetic parameters involved based on typical values from the literature and 

applied them to the simulation of a typical free radical copolymerization (Table 1) [19]. For all 

cases simulated in this work, the final conversion was set to 100%. 

 

Table 1. Parameters used in KMC simulation of typical free radical copolymerization of M1 and 

M2 monomers for cases having different reactivity ratios 

Parameter Value Units 
Initiator dissociation rate constant (kd) 10-3 sec-1 
Initiator efficiency (f) 0.50 - 
Chain initiation rate constant (ki) 104 lit mol-1 sec-1 
Homo-propagation rate constant (A, kp,11) 104 lit mol-1 sec-1 
Homo-propagation rate constant (B, kp,22) 104 lit mol-1 sec-1 
Termination by combination rate constant (ktc) 108 lit mol-1 sec-1 
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Termination by disproportionation rate constant (ktd) 108 lit mol-1 sec-1 
Initial monomer-to-initiator molar ratio 100 - 

 

In this work, the free radical copolymerization of M1 and M2 monomers was simulated at three 

different initial feed compositions (i.e., 25, 50, and 75 mole % of M1 monomer) for cases with 

different reactivity ratios: r1<1 & r2<1; r1>1 & r2<1; (r1 x r2) = 1; and r1=r2=1. The different 

distribution varieties of chains and sequences in the system are due to the reactivity ratios. The 

different cases simulated were initially used for visualization and comparison of SL-CL distribution 

patterns as functions of initial feed composition, and later to confirm the reliability of subsequent 

simulation results. 

To develop a versatile KMC simulator capable of quantifying 3D SL-CL distributions, Gillespie’s 

algorithm was utilized to virtually synthesize linear binary copolymer chains via free radical 

copolymerization and precisely determine the microstructure of the generated macromolecules. 

Obviously, the type and initial concentration of monomers significantly influence the number, 

length, and position of both sequences of M1 and M2 in the produced copolymer chains. 

Basically, in all copolymerization processes, the architectural and topological features of the 

produced macromolecules are mainly influenced by the homo- and cross-propagation reaction 

channels. In order to select a macroradical for propagation, a selection probability was assigned 

to each growing chain existing in the simulation volume. A random number, r, was generated and 

the mth growing chain of type h (terminal monomer unit) was selected for propagation provided 

the following criterion was satisfied: 
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In this criterion, pj,h is the selection probability of the jth growing chain of type h and Rh is the total 

number of macroradicals of type h in the simulation volume. Typically, in linear binary free radical 

copolymerization, two distinct types of macroradicals, i.e., radicals ending in M1 or M2 units, can 

be recognized in the medium. To propagate the selected growing chain at the given time interval, 

the selection probabilities of M1 and M2 were determined based on the instantaneous 
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propagation reaction rates relative to the total polymerization rate. In this way, the incorporation 

probability of monomer M1 and comonomer M2 to the growing chains was precisely determined. 

Considering the classical statistical copolymerization equations, these probabilities are related to 

the reactivity ratios and concentrations (or mole fractions) of unreacted monomer/comonomer 

at that specific moment. 

The selection mechanism of radical chains to participate in termination channels is similar to the 

aforementioned mechanism employed to simulate the propagation channel. These termination 

reactions have a prominent role in controlling the average molecular weight and molecular 

weight distribution. 

The number of initial M1 molecules was chosen as the basis to define and construct the 

simulation volume. To do this, a total of 1012 M1 monomer units was used as the initial input 

value to the computer code and the number of other reactants was computed based upon the 

copolymerization recipe, i.e. initial feed composition and initial monomer-to-initiator molar ratio. 

In previous work, we described the procedure by which placement of M2 comonomer was 

monitored [18]. The computational algorithm developed in this work addresses the need for 

monitoring the length and position of sequences of both monomer types, as demonstrated in 

Scheme 3. Each copolymer chain in the polymerization system contains a number of M1 and M2 

sequences with fixed lengths (i.e., static sequences). The terminal sequence on the active-side of 

a growing chain is ‘alive’ (i.e., a dynamic sequence) and its length varies with the course of 

copolymerization before experiencing a cross-propagation or termination event. Hence, a well-

designed data storage structure should be designed to store all architectural information 

necessary to completely visualize a copolymer chain. To do this, a novel algorithm was proposed 

capable of storing all instantaneous characteristics of dynamic last sequences along with all 

cumulative information of static sequences on the same chain. This algorithm allowed the 

simulation of a statistically large sample size with a computationally cost-effective execution 

time. 
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Scheme 3. Schematic representation of the algorithm applied to (a) synthesize copolymer 

chains through free radical copolymerization of typical M1 and M2 monomers and (b) visualize 

bivariate SL-conversion and SL-CL distributions 

 

The computer program was written in Pascal programming language (Lazarus 1.2.4 IDE) and 

compiled into 64-bit executable code using FPC 2.6.2. A sub-routine based on the “Mother-of-all 

Pseudo-Random Number Generators” algorithm was employed to produce the required random 

numbers for the simulation [20]. The random number generation subroutine satisfied the tests 

of uniformity and serial correlation with high resolution. The cycle length of the random number 

generator was 3×1047. Simulations were performed with a desktop computer with Intel Core i7-

3770K (3.50 GHz), 32 GB of memory (2133 MHz), under Windows 7 Ultimate 64-bit operating 

system. The runtime approximately took between 5 and 7 hours. 

 

3. RESULTS AND DISCUSSION 

It is well-documented that random copolymerization exhibits minimum compositional drift 

among all types of reactions, when values of reactivity ratios are nearly equal to unity, r1=r2=1. In 

such a case, there is no preference for the propagating species M1* and M2* to capture 

monomers of the same or different type. On the other hand, when we have different reactivity 

ratios, i.e., r1>1 & r2<1, or r1<1 & r2<1, composition drift is expected. Such compositional drifts 

can be, more or less, intensified/moderated by feed composition and/or by the relative 

difference of the reactivity ratios. Comparison of different copolymerizations with various 

reactivity ratios and feed compositions would be helpful to visualize the evolution in 

microstructure of chains during the course (and at the end) of the batch.  Typical 

copolymerizations were simulated in accord with reaction channels presented in Scheme 2 and 

kinetic parameters given in Table 1.  Investigations on variation patterns on concentration of 

reactants and products (monomers, polymers, macroradicals, and initiator), consumption rate of 

monomers, the number- and weight-average degree of polymerization and polydispersity indices 

all give useful information about the general features of the polymerization in terms of time or 

conversion. Then, 3D plots on weigh fraction of chains in terms of conversion and SL, and 
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bivariate SL-CL distribution of end-of-batch products are patterned and discussed. Finally, the 

aforementioned 3D plots are visualized for an experimental copolymerization accompanied by 

chain transfer to monomer. 

 

3.1. Simulation of Classical Copolymerization Kinetics 

3.1.1. Case (I) with r1<1 & r2<1 

In many cases, practitioners would like copolymerizations to run with the lowest possible 

compositional drift [21, 22]. With f1 and F1, respectively, as the instantaneous mole fraction of 

M1 in the feed and copolymer, the best condition would be F1=f1=f1,0 over a broad range of 

conversion (f1,0 is the initial feed composition). Thus, the code has been developed in a manner 

to capture fluctuations in microstructure of growing chains for systems with specified reactivity 

ratios at different initial feed compositions, i.e., f1,0= 0.25, 0.50, and 0.75. 

Polymerization of monomers with r1<1 & r2<1 leads to production of copolymers with regular 

alternating M1 and M2 units, because the propagating species M1* and M2* prefer to capture 

monomers of a different type. Thus, depending on the value of f1,0, composition drift will take 

place mildly or considerably. The copolymerization products between acrylonitrile and 

acrylamide (r1=0.86 & r2=0.81); maleic anhydride and vinyl acetate (r1=0.0 & r2=0.019); and 

styrene and methyl methacrylate (r1=0.52 & r2=0.46) are examples of copolymers with such an 

alternating tendency (e.g., see [19]). We used r1=0.7 and r2=0.1 in the simulation of a typical 

copolymerization as representative of this type of macromolecules. 

Figure 1 shows generic features of the product from such a typical copolymerization with r1=0.7 

and r2=0.1 under different feed compositions. From Figure 1A it can be observed that monomer 

M1 has been consumed faster than monomer M2 due to the greater value of its reactivity ratio. 

It can be also recognized that M1 has remained for a longer period in the system as the feed 

composition increased from of 0.25 to 0.50 to 0.75 (Figure 1A to Figure 1C). 
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Figure 1. Profiles of monomer conversion and monomer consumption rates vs. time (A, B, C); 

variation of number-average degree of polymerization (DPn) and polydispersity index (PDI) of 

copolymer chains vs. conversion with inset of CLD (Aꞌ, Bꞌ, Cꞌ); and variation of radical and 

polymer concentrations vs. conversion (Aꞌꞌ, Bꞌꞌ, Cꞌꞌ); r1=0.7 and r2=0.1; (A, Aꞌ, Aꞌꞌ) are for f1=0.25; 

(B, Bꞌ, Bꞌꞌ) for f1=0.50; and (C, Cꞌ, Cꞌꞌ) for f1=0.75 

 

It is interesting to emphasize that M1 and M2 coexist in the system under feed composition of 

0.75, as realized from the fact that conversion patterns in Figure 1C are superimposed on each 

other. This is due to the fact that a mixture of 75 mole percent of monomer M1 in a system with 

r1=0.7 and r2=0.1 is the azeotropic composition. At this point, where F1=f1, no composition drift 

will take place.  

The middle column in Figure 1 shows variation of the number-average degree of polymerization, 

DPn, on the left-hand side vertical axis, and polydispersity index, PDI, on the right-hand side 
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vertical axis, against conversion, while insets show the weight chain length distribution. From top 

to bottom, i.e., from Figure 1Aꞌ to Figure 1Cꞌ, i.e., by increasing the amount of M1 in the feed 

from 25 to 75 mole percent, the initial value of DPn decreases, due to the lower tendency of M1 

to homo-polymerize at higher concentrations. The third column of graphs shows variation of the 

concentration of the two types of radicals (designated by R1 and R2) and that of polymer against 

conversion. According to Figure 1Aꞌꞌ, macroradicals of M1 type, R1, are dominant in the system 

at the beginning of reaction, while faster consumption of M1 upsets the balance toward R2 at 

the later stages of reaction. This phenomenon was intensified toward higher conversions by 

increasing the feed composition from 0.25 to 0.50 (Figure 1Aꞌꞌ to Figure 1Bꞌꞌ ), but followed a 

completely different path in Figure 1Cꞌꞌ. In the latter case, concentrations of R1 and R2 are almost 

constant over the full composition range, which is a special case like random copolymerization 

with reactivity ratios equal to unity. As a further evidence for the so-called azeotropic point, 

copolymer chains with less heterogeneity and lower PDI values, are produced [1]. 

Figure 2 shows variation of instantaneous copolymer composition (F1) and instantaneous mole 

fraction of diads (F11, F12, and F22) for the system with r1=0.7 and r2=0.1 at different feed 

compositions of 0.25, 0.50, and 0.75 vs. conversion. 
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Figure 2. Profiles of instantaneous diad mole fractions (F11, F12, and F22) and instantaneous 

copolymer composition (F1) vs. conversion (A, B, C) and propagation reaction rate fraction (with 
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P1 and P2 denoting propagating chains ending in M1 and M2) vs. conversion (Aꞌ, Bꞌ, Cꞌ); r1=0.7 

and r2=0.1; (A, Aꞌ) are for f1=0.25; (B, Bꞌ) for f1=0.50; and (C, Cꞌꞌ) for f1=0.75 

 

In the case of 0.25 and 0.50 mole percent feed compositions (Figure 2A and Figure 2B), cross-

propagation takes place more than homo-propagation at an early- to intermediate-stage of 

conversion in view of higher values of F12 than those of F11 and F22. In agreement with Figure 

1Cꞌ, the homo- and cross-propagation of M1 are of the same order at azeotropic composition 

(Figure 2C), while homo-polymerization of M2 is rather low (see very low mole fraction of the 

corresponding diads, F22). Moreover, diad mole fractions of all types take constant values at 

azeotropic condition.  

The 3D plots of instantaneous variation of SL weight distribution vs. conversion and SL-CL 

distribution of end-of-batch product may shed additional light on the system. The dominance of 

cross-propagation at an early to intermediate stage in the case with 0.25 feed composition 

observed in Figure 2A is now supported by the formation of chains with sequences having lengths 

not exceeding 4 (Figure 3A). When M1 is consumed completely at an intermediate conversion, 

chains having longer sequences of M2 are formed in the system (Figure 4A). Upon increasing the 

feed composition from 0.25 to 0.75, moving from Figure 3A to Figure 3C, chains with longer 

sequences of M1 type are formed. On the other hand, the lengths of sequences of M2 illustrated 

in Figure 4B and Figure 4C follow an inverse trend. And more notably, the weight fraction patterns 

of sequences of different length, either M1 or M2, exhibit a rectangular shape at the azeotropic 

point (Figure 3C and Figure 4C). In support of this, M2 single units in Figure 4C have the highest 

weight fraction, which can be ascribed to cross-propagation with M1. A more general case 

showing minimum compositional drift, irrespective of feed composition, is the random 

copolymerization of M1 and M2 with r1=1 and r2=1 (see Figure 11 and Figure 12 in the Appendix). 

Polymerization of ethylene and vinyl acetate (r1=0.97 & r2=1.02) is an example of such random 

copolymerization. In such a situation, the two monomers show equal reactivities toward the 

propagating species of both types; hence, homo- and cross-propagation coincide with random 

placement of monomers along the copolymer chains. The characteristic of this behavior is that 
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the copolymer composition at any time during polymerization is the same with the one in the 

feed (e.g., see [19]). 

Analysis of the SL-CL distribution of the end-of-batch product offers additional clarification of the 

behavior. The presence of long rods corresponding to very short chains in the system in Figure 

3Cꞌ, which is more obviously seen in the case of double and triple sequences, is a signature of 

homo-polymerization of M1 at the azeotropic point. According to Figure 3Aꞌ, single M1 units are 

the main type of sequence in copolymer chains, whereas sequences of longer length can hardly 

be found. The rods representing homopolymers of M2 type appear in the cases of 0.25 and 0.50 

mole percent feed compositions in the SL-CL distribution patterns (Figure 4Aꞌ to Figure 4Cꞌ), due 

to the accumulation of monomer M2 at the final stages of these copolymerizations. 
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Figure 3. Profiles of evolution of weight fraction of sequence length distribution of M1 under 

feed composition of 0.25 (A); 0.50 (B); and 0.75 (C) against conversion; and SL-CL weight 

distribution of M1 for feed composition of 0.25 (Aꞌ); 0.50 (Bꞌ); and 0.75 (Cꞌ); r1=0.7 and r2=0.1 
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Figure 4. Profiles of evolution of weight fraction of sequence length distribution of M2 under 

feed composition of 0.25 (A); 0.50 (B); and 0.75 (C) against conversion; and SL-CL weight 

distribution of M2 for feed composition of 0.25 (Aꞌ); 0.50 (Bꞌ); and 0.75 (Cꞌ); r1=0.7 and r2=0.1 

 

3.1.2. Case (II) with r1>1 & r2<1 

Another copolymerization with considerable compositional drift would be the case where we 

have monomers with r1>1 & r2<1. In this case, monomer M1 has a higher reactivity than M2 

toward the propagating species M1* and M2*; hence, the copolymer is expected to have a larger 

fraction of M1 in the macromolecular chains. Examples of monomer pairs with reactivity ratios 

of this category are acrylic acid and vinyl acetate (r1=8.7 & r2=0.21); 1,3-butadiene and styrene 

(r1=1.4 & r2=0.58); styrene and vinyl chloride (r1=90 & r2=0.01); and vinylidene chloride and vinyl 

acetate (r1=4.7 & r2=0.03) [19]. In this study, a typical system with r1=5.0 and r2=0.1 is selected to 

be simulated as representative of the category. Since the value of r2 is the same with the previous 

case, it is possible to compare compositional drift of the two cases on account of the different 

tendency of M1 to homo- or cross-propagate. 

Figure 5 shows typical profiles of generic features for the system with r1=5.0 and r2=0.1 at 

different feed compositions. Similar to the previous case, Figure 5A shows that M1 has been 

consumed more quickly than M2 due to its higher reactivity ratio. Comparison of trends in Figure 

5Aꞌ and Figure 5Aꞌꞌ shows that DPn takes an almost linear downward trend from 470 to 360 over 

the conversion range [0, 0.50], and then experiences a plateau between conversions 0.50 to 0.70, 

until the concentration of M2 macroradicals overtakes that of M1, followed by a sudden drop to 

175 at the end of the polymerization. This ‘shoulder’ corresponds to an intermediate stage and 

will be revisited later. Figure 5Aꞌꞌ demonstrates that macroradicals of R1 type are abundant in the 

system in the beginning, while faster consumption of M1 tips the balance toward R2 at the later 

stages of polymerization. Moreover, by increasing the feed composition from 0.25 to 0.75 (Figure 

5Aꞌꞌ to Figure 5Cꞌꞌ), the R1 macroradicals play the major role. 
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Figure 5. Profiles of monomer conversion and monomer consumption rates vs. time (A, B, C); 

variation of number-average degree of polymerization (DPn) and polydispersity index (PDI) of 

copolymer chains vs. conversion with inset of CLD (Aꞌ, Bꞌ, Cꞌ); and variation of radical and 

polymer concentrations vs. conversion (Aꞌꞌ, Bꞌꞌ, Cꞌꞌ); r1=5.0 and r2=0.1; (A, Aꞌ, Aꞌꞌ) are for f1=0.25; 

(B, Bꞌ, Bꞌꞌ) for f1=0.50; and (C, Cꞌ, Cꞌꞌ) for f1=0.75 

 

Figure 6 shows instantaneous diad mole fractions and overall copolymer composition, F1, as a 

function of feed compositions vs. conversion. According to the patterns obtained by the KMC 

simulator for the diads (left-hand side plots in Figure 6), one can see three distinct regions, early-

stage, intermediate-stage, and late-stage (Figure 6A) with respect to conversion. At the early-

stage, the rate of consumption of monomer M1 is higher than M2; hence, diads of types 11 and 

12 are dominantly formed. 
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Figure 6. Profiles of instantaneous diad mole fractions (F11, F12, and F22) and instantaneous 

copolymer composition (F1) vs. conversion (A, B, C) and propagation reaction rate fraction (with 
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P1 and P2 denoting propagating chains ending in M1 and M2) vs. conversion (Aꞌ, Bꞌ, Cꞌ); r1=5.0 

and r2=0.1; (A, Aꞌ) are for f1=0.25; (B, Bꞌ) for f1=0.50; and (C, Cꞌꞌ) for f1=0.75 

 

This is consistent with the higher fraction of propagating species M1* in Figure 6Aꞌ. At the 

intermediate-stage, the amount of M1 declines suddenly, monomer M2 takes over, and the 12-

type diads are the most widespread sequence type in the polymerizing medium. Eventually, at 

the late-stage, where M1 is consumed completely, M2 controls the reaction so that only diads of 

the 22-type sequences can find a chance to form. It is worth mentioning that these transitions 

took place at higher conversion values as the content of M1 in the initial feed increased.  

The comparison of 2D plots obtained for the two copolymerization cases (compare Figures 1 and 

2 with Figures 5 and 6) obviously shows more heterogeneity in the latter case, where chains with 

more pronounced compositional drift exist. This difference is better appreciated in 3D plots of 

the case with r1=5.0 and r2=0.1 (Figure 7 and Figure 8). Compared to the corresponding figures 

with r1=0.7 and r2=0.1 (Figure 3 and Figure 4), the variety of sequences of M1 type together with 

steeper changes are easily observed.  Also, contrasting the snapshots of distribution patterns in 

Figure 7 and Figure 8, one can see that at the end of polymerization, M2 sequences are of limited 

length because of a larger contribution of M1 to homo- and cross-propagation steps. The higher 

the percentage of M1 in the initial feed, the more the variety of chains; i.e., a wider range of 

chain and sequence length. All these snapshots confirm that the case of r1=5.0 and r2=0.1 is 

associated with a more significant compositional drift. 
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Figure 7. Profiles of evolution of weight fraction of sequence length distribution of M1 under 

feed composition of 0.25 (A); 0.50 (B); and 0.75 (C) against conversion; and SL-CL weight 

distribution of M1 for feed composition of 0.25 (Aꞌ); 0.50 (Bꞌ); and 0.75 (Cꞌ); r1=5.0 and r2=0.1 
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Figure 8. Profiles of evolution of weight fraction of sequence length distribution of M2 under 

feed composition of 0.25 (A); 0.50 (B); and 0.75 (C) against conversion; and SL-CL weight 

distribution of M2 for feed composition of 0.25 (Aꞌ); 0.50 (Bꞌ); and 0.75 (Cꞌ); r1=5.0 and r2=0.1 

 

An ideal copolymerization can be treated as a special type of r1>1 & r2<1, when r1×r2 is equal to 

unity [19]. This case takes place when the two types of propagating species have the same 

preference for capturing monomers M1 and M2. Anionic and cationic copolymerizations, e.g., 

monomer pairs of vinylidene chloride and vinyl chloride with r1=3.2 and r2=0.3 are characterized 

by this type of behavior. The 3D plots of this type are provided with r1=2.0 & r2=0.5 in the 

Appendix (Figure 13 and Figure 14). Compared to the case with r1=5.0 and r2=0.1 (Figure 7 and 

Figure 8), the reactivity ratios are closer to each other, there is a higher frequency of 

incorporation of both M1 and M2 to the copolymer chains, and dependency on feed composition 

seems more significant, with quite a remarkable presence of homopolymer chains together with 

copolymer ones. 

 

3.2. Simulation of SL-CL Distribution of Styrene-Acrylonitrile Copolymerization 

The KMC code developed in this work has been applied to the copolymerization of styrene (Sty) 

and acrylonitrile (AN) successfully modeled by Kiparissides et al. [23]. As mentioned earlier, the 

code remains flexible irrespective of reactivity ratios, composition of feed, and type of reactions 

involved in the scheme. Styrene-acrylonitrile (SAN) resins are among engineering thermoplastics 

suitable for industrial applications thanks to their load-bearing capabilities together with 

transparency, high heat distortion temperature, and excellent chemical resistance [24]. 

The reaction scheme adopted is shown in Scheme 4. It can be seen that transfer to monomer is 

added to the channels compared to the cases studied before (Scheme 2). The developed 

algorithm is able to monitor microstructural evolution, both instantaneously and cumulatively, 

without any limitation. Considering the data given in Table 2 and Table 3 [23], the number of 

initial monomer and initiator molecules were computed accordingly and fed to the simulator. 

 

(1) Initiator dissociation •→ fPRI dk 2  
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(2,3) Initiation •• →+ j
k

j RMPR i
,1  

(4-7) Propagation •
+

• →+ jn
k

jin RMR ijp
,1,

,  

(8-11) Chain transfer to monomer •• + →+ jn
k

jin RPMR ijtM
,1,

,  

(12) Termination by combination mn
k

jmin PRR tc
+

•• →+ ,,  
i , j: 1 or 2 (1: Styrene (Sty) and 2: Acrylonitrile (AN)) 

•PR : Primary radical 
f: Initiator efficiency 
I , Mj: Initiator molecule and monomer/comonomer, respectively 

•
inR , : Macroradical with n repeat units ending in i-type monomer 

nP : Copolymer chain with n repeat units 
Scheme 4. Reaction scheme applied in KMC simulation of free radical copolymerization of Sty-

AN 

 

Table 2. Initial conditions applied to KMC simulation of free radical copolymerization of Sty-AN 

Parameter Value Unit 
Initial initiator concentration 0.05 mol lit-1 
Molecular weight of monomer 1 104.14 g mol-1 
Molecular weight of monomer 2 53.06 g mol-1 
Density of monomer 1 0.87 g cm-3 
Density of monomer 2 0.76 g cm-3 
Density of copolymer 1 1.05 g cm-3 
Density of copolymer 2 1.15 g cm-3 
Copolymerization temperature 60 °C 

 

Table 3. Kinetic parameters used in KMC simulation of free radical copolymerization of Sty 

(monomer 1) and AN (monomer 2) 

Parameter Value Unit 
Initiator dissociation rate constant (kd) 8.1217×10-6 sec-1 
Initiator efficiency (f) 0.58 - 
Initiation rate constant (k1) 2.5821×102 lit mol-1 sec-1 
Initiation rate constant (k2) 4.1402×105 lit mol-1 sec-1 
Homo-propagation rate constant (Sty, kp,11) 2.5821×102 lit mol-1 sec-1 
Homo-propagation rate constant (AN, kp,22) 4.1402×105 lit mol-1 sec-1 
Reactivity ratio of Monomer 1 (r1) 0.36 - 
Reactivity ratio of Monomer 2 (r2) 0.078 - 
Chain transfer to monomer rate constant (ktM,11) 1.1226×10-2 lit mol-1 sec-1 
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Chain transfer to monomer rate constant (ktM,12) 3.3759×10-1 lit mol-1 sec-1 
Chain transfer to monomer rate constant (ktM,22) 6.8432 lit mol-1 sec-1 
Chain transfer to monomer rate constant (ktM,21) 3.4092×101 lit mol-1 sec-1 
Termination by combination rate constant (ktc,11) 9.9663×107 lit mol-1 sec-1 
Termination by combination rate constant (ktc,22) 9.4650×108 lit mol-1 sec-1 
Termination by combination rate constant (ktc,12) 1.8458×109 lit mol-1 sec-1 

 

SAN copolymerization is associated with random placement of monomers along chains leading 

to linear amorphous copolymer chains. Normally, physical properties and processability of SAN 

copolymers are dependent on molecular weight and acrylonitrile content. For instance, hardness 

of SAN increases by increasing the AN level [24]. Thus, visualization of SL-CL distribution patterns 

as a function of feed composition would be very useful. A careful view of Figure 9A indicates that 

cross-propagation should be dominant at feed composition of 0.25, because the sequence length 

does not exceed the value of 5 here. At conversions higher than 0.50, where M1 is possibly 

consumed, M2 sequences of longer length are formed (Figure 10A). This trend has been followed 

at initial feed composition of 0.50 with a more random character, as realized from the rectangular 

shape of distributions (Figure 9B and Figure 10B). At the highest feed composition studied in this 

work, cross- and homo-polymerization took place at the same time. Diversity of chains together 

with formation of homopolymer chains, featured via the abundance of short sequences, is 

detectable in Figure 9C and Figure 9Cꞌ. It can be realized from the SL-CL distribution patterns that 

the frequency and length of sequences have markedly been governed by the feed composition. 
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Figure 9. Profiles of evolution of weight fraction of sequence length distribution of Sty (M1) in 

copolymerization with AN (M2) with r1=0.36 and r2=0.078 under feed composition of 0.25 (A); 

0.50 (B); and 0.75 (C) against conversion; and SL-CL weight distribution of Sty for feed 

composition of 0.25 (Aꞌ); 0.50 (Bꞌ); and 0.75 (Cꞌ) 
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Figure 10. Profiles of evolution of weight fraction of sequence length distribution of AN (M2) in 

copolymerization with Sty (M1) with r1=0.36 and r2=0.078 under feed composition of 0.25 (A); 

0.50 (B); and 0.75 (C) against conversion; and SL-CL weight distribution of AN for feed 

composition of 0.25 (Aꞌ); 0.50 (Bꞌ); and 0.75 (Cꞌ) 

 

 

4. CONCLUSION 

A versatile Kinetic Monte Carlo (KMC) code has been developed and applied to the simulation of 

free radical copolymerization of monomers of different reactivity ratios (r1 and r2) under various 

feed compositions. The code successfully monitored the microstructural evolution during the 

course and at the end of the polymerization and made it possible to explicitly capture, screen 

(based on conversion, chain length, and sequence length), and visualize the bivariate dynamic 

sequence length-conversion and end-of-batch sequence length-chain length distribution for 

different types of copolymers with reactivity ratios of (r1<1 & r2<1); (r1>1 & r2<1); (r1×r2=1); and 

(r1=r2=1). Typical bivariate distribution patterns were plotted for either M1 or M2 monomers for 

feeds composed of 25, 50, and 75 mole percent of M1, based on a typical polymerization scheme 

considering initiation, homo- and cross-propagation, and termination (either combination or 

disproportionation) channels. The versatile code (easily expandable to include additional steps in 

the copolymerization scheme, as illustrated via the last case study) developed in this work is 

characterized by a powerful data storage structure with the capability of recording, sorting, and 

distinguishing macromolecules based on the length and position of sequences of each type 

extracted from every single chain in the system. The results of this work provide detailed 

snapshots during copolymerization, very useful for visualizing and tailor-making macromolecular 

chains. 

 

5. APPENDIX 
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Figure 11. Profiles of evolution of weight fraction of sequence length distribution of M1 under 

feed composition of 0.25 (A); 0.50 (B); and 0.75 (C) against conversion; and SL-CL weight 

distribution of M1 for feed composition of 0.25 (Aꞌ); 0.50 (Bꞌ); and 0.75 (Cꞌ); r1=1.0 and r2=1.0 
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Figure 12. Profiles of evolution of weight fraction of sequence length distribution of M2 under 

feed composition of 0.25 (A); 0.50 (B); and 0.75 (C) against conversion; and SL-CL weight 

distribution of M2 for feed composition of 0.25 (Aꞌ); 0.50 (Bꞌ); and 0.75 (Cꞌ); r1=1.0 and r2=1.0 
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Figure 13. Profiles of evolution of weight fraction of sequence length distribution of M1 under 

feed composition of 0.25 (A); 0.50 (B); and 0.75 (C) against conversion; and SL-CL weight 

distribution of M1 for feed composition of 0.25 (Aꞌ); 0.50 (Bꞌ); and 0.75 (Cꞌ); r1=2.0 and r2=0.5 
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Figure 14. Profiles of evolution of weight fraction of sequence length distribution of M2 under 

feed composition of 0.25 (A); 0.50 (B); and 0.75 (C) against conversion; and SL-CL weight 

distribution of M2 for feed composition of 0.25 (Aꞌ); 0.50 (Bꞌ); and 0.75 (Cꞌ); r1=2.0 and r2=0.5 
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