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Abstract

Deep Learning and back-propagation have been successfully used to perform centralized
training with communication protocols among multiple agents in a cooperative Multi-Agent
Deep Reinforcement Learning (MARL) environment. In this work, I present techniques
for centralized training of MARL agents in large scale environments and compare my work
against current state of the art techniques. This work uses model-free Deep Q-Network
(DQN) as the baseline model and allows inter agent communication for cooperative pol-
icy learning. I present two novel, scalable and centralized MARL training techniques
(MA-MeSN, MA-BoN), which are developed under the principle that the behavior policy
and message/communication policies have different optimization criteria. Thus, this work
presents models which separate the message learning module from the behavior policy
learning module. As shown in the experiments, the separation of these modules helps in
faster convergence in complex domains like autonomous driving simulators and achieves
better results than the current techniques in literature.

Subsequently, this work presents two novel techniques for achieving decentralized exe-
cution for the communication based cooperative policy. The first technique uses behavior
cloning as a method of cloning an expert cooperative policy to a decentralized agent with-
out message sharing. In the second method, the behavior policy is coupled with a memory
module which is local to each model. This memory model is used by the independent
agents to mimic the communication policies of other agents and thus generate an indepen-
dent behavior policy. This decentralized approach has minimal effect on degradation of the
overall cumulative reward achieved by the centralized policy. Using a fully decentralized
approach allows us to address the challenges of noise and communication bottlenecks in
real-time communication channels. In this work, I theoretically and empirically compare
the centralized and decentralized training algorithms to current research in the field of
MARL.

As part of this thesis, I also developed a large scale multi-agent testing environment. It
is a new OpenAI-Gym environment which can be used for large scale multi-agent research
as it simulates multiple autonomous cars driving cooperatively on a highway in the presence
of a bad actor. I compare the performance of the centralized algorithms to existing state-of-
the-art algorithms, for ex, DIAL and IMS which are based on cumulative reward achieved
per episode and other metrics. MA-MeSN and MA-BoN achieve a cumulative reward of at-
least 263% higher than the reward achieved by the DIAL and IMS. I also present an ablation
study of the scalability of MA-BoN and show that MA-MeSN and MA-BoN algorithms only
exhibit a linear increase in inference time and number of trainable parameters compared
to quadratic increase for DIAL.
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Chapter 1

Introduction

Reinforcement Learning is the method of learning how to behave in an unknown environ-
ment using trial and error. Multi-agent Reinforcement learning extends this approach to
multiple agents learning to behave in the environment and with each other. This chap-
ter introduces the concepts of Reinforcement Learning and Multi-Agent Reinforcement
Learning and other advanced topics used throughout this thesis. I start with discussing
Reinforcement Learning (RL) and how Multi-Agent Reinforcement Learning (MARL) ties
into the concepts of Reinforcement Learning and Cooperative Game Theory. The MARL
section discusses the challenges with training multiple agents in the same environment. I
also briefly describe the current approaches used in the literature today to train MARL
agents. I then discuss the motivation of this thesis and the practical implications of my
work. I then introduce the topic of Safe Reinforcement Learning (Safe-RL) and how the
concepts and techniques in Safe-RL can be leveraged to train MARL agents in multi-agent
environments.

1.1 Reinforcement Learning (RL)

Reinforcement Learning is a field of research focused on developing solutions which help
an actor learn by interacting with the environment. The actor is also referred to as an
agent. Learning in Reinforcement Learning algorithms happens under the pretense of a
reward signal which the actor/agent learns to maximize, by taking certain actions, after
partially observing the environment. The collection of actions taken by an agent in the
environment, based on an agent’s perception of the environment, is known as the policy
of the agent. The agent’s perception of the environment is known as the observation
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of the environment. The observation received by the agent can include the entire state
information or could only represent a partial state of the environment at any give instance
of time. These different types of environments lead to different learning algorithms for fully
observable environments and partially observable environments. In this thesis, we work
with a partially observable environment of a highway driving simulator. During evaluation
of learning algorithms, we evaluate the cumulative reward achieved by the agent’s policy
in a particular environment. Cumulative reward maximization leads to agents learning a
self-interested policy and the agent’s learning is restricted to self preservation and reward
accumulation.

Reinforcement Learning algorithms can be mainly categorized into two broad categories,
model-free and model-based algorithms. Model-based algorithms learn a policy in the
environment by modeling the environment (and its transition dynamics) based on their
observation. This leads to a complex model which might take longer to train but might
achieve better performance. A model-free approach does not model the dynamics of the
environment, and instead learns a policy based on raw data received from the environment.
Model-free approaches are thus usually faster and easier to train. In this thesis, I focus on
using model-free approaches.

As this thesis focuses on multi-agent systems with multiple agents learning in conjunc-
tion with other agents to learn a cooperative behavior, I will focus most of my discussion
on the properties of different reinforcement learning algorithms in multi-agent systems.
The greedy learning algorithm of a single agent can restrict the agent’s policy, or behavior
policy, from exploring a cooperative policy with other agents in the environment. This
is because the single agent reinforcement learning algorithms try to extract maximum re-
ward from the environment without regard for other entities in the environment. These
entities in multi-agent systems could be agents which could cooperate to achieve a more
suitable behavior policy in such environments. Single-agent reinforcement learning is thus
restricted to competitive games only where an agent learns to interact against adversaries.
Cooperation in multi-agent reinforcement learning can still be achieved if the reward signal
provided by the environment explicitly encourages cooperation among agents. However,
the requirement of a reward signal from the environment which helps agents learn an inter-
agent cooperative policy is an unsatisfactory pretense and thus these methods could not be
easily scaled to environments requiring cooperative behavior policies from multiple agents.
In this thesis, I present techniques to train multiple agents with a cooperative policy which
scales to large scale complex domains.
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1.2 Motivation

There are many real-world multi-agent environments with an infinite horizon which are
hard for a single agent to solve using an independent policy such as autonomous driving.
Autonomous driving requires algorithms whose learning is scalable to a large scale and
provides minute control over various aspects of the model. It also requires the model to be
modularized enough so it could be validated for safety. Most current autonomous driving
research focuses on modeling the road environment consisting of only human drivers. All
other drivers on the road are considered as part of the environment to avoid modelling
of each driver’s behavior. Under this simplification, the autonomous car is treated as
a single agent in the environment and it learns a self-interested behavior policy. Such
policies are plausible but exhibit an overly pessimistic behavior on the road to maintain
high safety standards. However, with increasing congestion and autonomous vehicles on
the road, a greedy policy would lower the quality of traffic and diminish the throughput
of traffic on the roads. A shared cooperative policy among multiple cars might also be
better at achieving the goal of better traffic control and higher traffic throughput. The
communication between agents needed for cooperation among cars is also not guaranteed
to be available and thus agents need a method of cooperative without communication.

1.3 Multi Agent Reinforcement Learning (MARL)

Multi Agent Reinforcement Learning is a field of research for learning behavior policies
for multiple agents using reinforcement learning techniques. Training multiple agents in
continuously evolving environments using a self-interested agent will lead to sub-optimal
results or worse, the training will fail to converge as shown in the experiments of this
thesis. A typical approach for learning policy for self-interested agents is using a well-
known algorithm, DQN (Deep Q-Network). This is a model free learning algorithm which
uses the underlying transition dynamics of the environment to learn a value function,
Q(o), of the environment. A Q−value model maps the observation (o) of the agent to the
predicted cumulative reward based on the agent’s policy. The Q(o) value model relies on
the transition dynamics of the environment. A stationary transition dynamics implies, the
stochastic transition probability Ttime(s, s

′) of the environment is constant over time. A
non-stationary transition dynamics implies, the stochastic transition probability Ttime(s, s

′)
for any 2 given states is not constant over time. The policy learnt using many model-
free and model-based independent reinforcement learning algorithms claims the transition
probability of the environment should be stationary. In a Multi Agent environment, where
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multiple agents are learning simultaneously, the transition dynamics of the environment
are governed by the evolving policies of the multiple agents. The evolving policies of
agents over time, leads to a non-stationary transition dynamics of the environment and
thus traditional single-agent reinforcement learning algorithms fail to converge [41].

To overcome the problem of non-stationarity in the environment during training of
multiple agents, the current literature proposes multiple methods, including memory based
models, communication between agents, shared policy independent agents and independent
agents with gradient information sharing. Memory based models use a memory module to
save the state transitions in the environment in a long term memory. During training, the
agents can retrieve the transitions from the memory module and replay them for training.
The advantages of using a long term memory module is that the agents can iteratively
learn a better policy while the transition dynamics of the environment are stationary.
Communications can be used between agents is a centralized MARL training method
where agents communicate with other agents in the environments. The message passed
between agents can communicate an agent’s intent at a given state based on its current
policy. The intent of the message is used by the receiving agent as a guide to improve its
decision making. The information sharing between the agents reduces the non-stationarity
in the transition dynamics of the environment and improves the learning process. In many
environments, research has shown that having a shared policy function for all agents in a
multi-agent environment can lead to a convergence in MARL. This approach has only been
tested in limited scenarios and based on the literature review and my experimentation does
not scale well to larger environments. The message shared between the agents is generated
using the policy network and trained using policy gradients. This approach leads to each
agent having the additional responsibility of learning a good policy in the environment and
delivering effective messages to other agents in the environment [7]. Current approaches
also show a poor performance in large-scale environments with sparse rewards and a long
time to horizon. My thesis works is focused on such environments.

Recent research work [11, 13] has focused on learning decentralized MARL policies
by sharing the gradient information between agents during training. The direction of
gradient computed by an agent to update its value/policy function approximator is used
as a reference by the other agents to update its gradient to align with the original agent.
This approach leads to multiple agents learning a cooperative policy and training in a fully
decentralized manner. This training process can be inefficient and slow depending on the
environment.
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1.4 Deep Learning

Deep Learning refers to the modern approach for using deep Neural Networks to learn a
functional approximation from some given inputs to some possible outputs. The neural
networks can be trained in two different ways, supervised or unsupervised, methods. The
supervised training methods for neural networks minimize the error between the predictions
of the neural network and the true output value. The error is reduced by updating the
weights of the neural network in the direction of least error. The most common optimization
technique used in training neural networks is Stochastic Gradient Decent (SGD) which
uses a simple step based gradient estimation based on a batch sampling of the training
data. The computed gradients are applied to the weights of the neural network using
backpropagation. This technique ensures that the predictions of neural network would be
a step closer to the true predictions.

Neural networks are widely used in RL and MARL training methods as they are used as
a good functional approximation to predict the value of a state. The value of a state in RL
represents the value an agent would receive if the agent were to follow the current policy to
the end of the task or episode. The value of the state is computed as a the cumulative sum
of rewards from the given state to the end of the task or episode; when following the given
policy. Current RL research uses neural networks to predict the mean value of a particular
state; given a policy. The gradient calculations to update the neural networks are a little
different than regular supervised learning and depends on the baseline training method
used. The baseline methods can be categorized into two different categories, value based
methods and policy based methods. The value based methods focus on learning a value
function of the current state and a greedy selection policy is used to maximize the value
of an agent’s policy. In policy based methods, the agents learn a stochastic policy directly
from the transitions from the environment. The training gradients optimize the policy
directly in the direction which maximizes the cumulative value achieved by the agent.

1.5 Communication between agents

In centralized training of MARL algorithms, the focus is on communication between the
agents. Agents are allowed to communicate with each other, this includes speaker and
listener agents. Communication between agents can be divided based on the type of com-
munication between agents. Agents can engage in Cheap Talk, in which a speaker sends
a costless message to other agents and the listener agents can choose to listen to it or
ignore the message before deciding on a behavior action. This approach is also considered
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as ”doing by talking”. The information shared between the agents doesn’t need to be
trained. The listener agents thus necessarily don’t need to formally use this information
in the final decision making process. Agents can also engage in Signalling games, which in
contrast don’t include explicit messages sent by a speaker to a listener, instead include an
agent indicating their intent by taking a behavior action in the environment. Signalling
games can thus be viewed as talking by doing, whereas Cheap talk can be viewed as doing
by talking. Another communication model is Speech Act Theory, which is similar to Cheap
talk, but speaker agents send a message which is intended to convey information (which
could include policy information or the agent’s private observation information) to the
listener and also influence change on the policy of the listener. Due to the constrained
behavior of the agents, Speech Act Theory can only be applied in cooperative games and
not in competitive games. In competitive games, agents would revert back to using Cheap
talk to gain an advantage over other agents.

In this thesis, I focus on using Speech Act Theory as the communication model between
agents. The message shared between agents in large scale POMDPs is supposed to be
self-revealing and self-committing. The listener relies on this information from the speaker
to make its own decision. In Speech-act theory, the agent takes 2 different types of actions,
behavior(locutionary) action and message/non-behavior(illocutionary) action [37]. The
behavior action taken by an agent affects a change in the environment and a message
action does not affect any direct change in the environment. The experiments in this thesis
focus on partially observable large scale environment where each individual agent must
independently take its action. To achieve an optimal policy, agents need to communicate
useful information regarding their private observation of the environment with each other
to cooperatively find an optimal policy. The speaker agents’ message actions also need to
be self-revealing and self-committing so that the message received by the listener agent
leads to a direct correlation to the transitions in the environment. Such correlation leads
to better Speaker Consistency and Instantaneous Coordination between agents. Speaker
consistency is a metric used to measure the correlation between an agent’s message action
and their behavior action. Instantaneous coordination is a metric which measures the
correlation between the speaker’s message action and the listener’s behavior action. High
values for the correlation between the speaker and listener thus leads to a better cooperative
policy between agents in a multi-agent system.
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1.6 Contributions

In this thesis, I propose four novel methods for MARL environments. I propose two central-
ized training algorithms for MARL environments which extend the use of communication
between agents to achieve a centralized policy. I also propose two decentralized methods
using memory modules and behavior cloning which can be used to during execution phase
in the MARL environments. The methods and the policies trained using these methods
are evaluated against current state of the art techniques in centralized training of MARL
agents using communication channels. The final policy is also evaluated qualitatively and
quantitatively using metrics developed by the MARL community.

The first centralized approach uses a mesh communication channel which leads to a
connection between every pair of agents. The agents are free to communicate a discrete
message at each time-step. Each agent only receives their private partial observation of
the environment and possibly a message from the other agents in the environment. At
each discrete time step, all agents perform a 2-step process of generating a message action
(which gets shared with the listeners) and generating a behavior action (after listening to
the speakers message action) which is performed in the environment. The speaker agent
is free to decide to use cheap talk or meaningful messages which comply with speech-act
theory. The listener agent is free to decide to use the message as a guide for prediction
of the value/policy function in conjunction with the current observation. The discrete
message is a one-hot vector of length 12 and thus agents can only send 12 different types
of messages. Varying the restriction on the length of the message size leads to different
policies learnt by the agents. The learning can also collapse if the length of the message is
too short for the environment.

The second centralized approach employs the use of a broadcast message action which
is generated by a centralized message generation model. The centralized model receives
message actions from each individual agent and composes a unified message action for
all agents. This unified message is used by all agents in the environments to generate a
behavior action for the environment. This approach limits the size of the message shared
in the environment to a constant value for all agents. This approach leads to faster in-
ference model with reduced system memory requirements. This approach is valuable for
environments which exhibit a shared resource between the agents.

The first decentralized approach uses the behavior cloning method for training. The
decentralized multi-agent model is needed because in real-time the centralized message
sharing is slow and can adversely affects an agent’s ability to take actions in real-world
MARL environments. The decentralized model allows each agent to evaluate their model
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independently from other agents and generate an action prediction. The centralized trained
policy from the previous two methods is used as an expert policy which is mimicked by
an independent agent. The independent agent is trained using behavior cloning. This
approach requires minimal parameter tuning to achieve decentralized execution in the
environment.

The second decentralized approach generates a decentralized multi-agent model using
the centralized approaches discussed above. This approach leads to slight degradation in
the cumulative reward achieved by the previously trained centralized policy. However, the
degradation in performance is controllable by varying the degree of past history of obser-
vations used during execution. The approach used in this thesis allows parallel training of
the decentralized policy along with the centralized policy training.

The rest of the thesis presents the results generated from the above approaches and
their comparison with current state of the art multi-agent reinforcement learning methods
like DIAL [10] and IMS [39]. This work compares the algorithms on a highway multi-car
driving scenario with multiple agents learning to drive with cooperation. The highway
scenario is imitated with robots driving on a treadmill. I evaluate the centralized methods
proposed in this thesis on the highway driving scenario along with the proposed decentral-
ized algorithms. I evaluate the messages generated by the centralized training methods
and how these messages affect the policy of the listener. I also evaluate the scalability of
my approach by increasing the scale of the highway driving environment.
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Chapter 2

Literature Review

Multi-Agent Reinforcement Learning (MARL) has a rich literature (particularly in the
robotics domain [6]) and with the advent of Deep Learning, it is becoming a highly active
research field. MARL algorithms use the independent Deep-RL approaches as baselines,
such as model-free Deep Q-learning (DQN) [32], policy-based actor-critic (A2C) [31], and
extend them to cooperative or competitive multi-agent environments. Independent and
cooperative tabular Q-learning with multiple agents has been studied in [41]. The empirical
evaluation shows that cooperative Q-learning can be achieved by sharing other agents’
private observations, policies or episode information. The cooperative Q-learners are slow
to learn but eventually outperform independent Q-learners in a partially observable MDP
environment. Hyper Q-learning extends the idea of observation sharing to policy parameter
sharing between the agents. This change allows the agents to condition their policy on the
changing parameters of the other agents and thus avoid the problem of non-stationary
environments in MARL [43].

2.1 Independent Policy Learners

Independent agents can also learn to behave in a cooperative manner under certain cir-
cumstances, like presence of cooperative reward or the presence of teacher feedback. In-
dependent policy learners could still diverge in a multi-agent environment. The work in
[44] shows that independent agents could be trained to cooperatively behave in a Starcraft
environment when they are controlled by a single central model which can observe the full
state of the game. This leads to a centralized execution policy for multiple agents which
is not feasible in most real-world environment as they need to be self-reliant.
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2.1.1 Deep Q-Networks with Stabalized Experience Replay

The authors in [14] successfully train multiple independent agents by implementing a
stabilization on the experience replay memory. The replay memory is used by Deep Q-
Network algorithm as a history of sample trajectories for training. The replay buffer
stabilize the training of Deep Q-Networks as they are able to optimize on new and old
samples in the same mini-batch of training. This poses a problem in multi-agent setting
where there are multiple agents evolving over time. The older samples in the replay buffer
represent the old transitions of other agents which are no longer valid as their policy has
evolved. The stabilization of the replay buffer in a multi-agent system is done by prioritizing
newer experiences in the experience buffer for training as they represent the current policy
of the other agents. This allows the agent to focus on the latest transition dynamics of the
other agents and stabilizes the policy optimization as it reduces the non-stationarity in the
mini-batch of samples used for training. I also compare the training of our decentralized
policy against the independent agents trained using Stabilized Experience Replay (SER).

2.2 Optimization based models

The work done in [11, 13] has shown that agents can be trained independently in a multi-
agent environment by sharing the update gradients between the agents. The following
parameter is added to an agent’s policy network update:(

∂V 1(θ1i , θ
2
i )

∂θ2i

)T
∂2V 2(θ1i , θ

2
i )

∂θ1i ∂θ
2
i

· δη (2.1)

and represents the change in one agent’s parameters based on the gradients of the other
agent. This approach thus leads to agents updating their parameters which align with
other agents and thus lead to convergence after training. The gradient sharing can also be
eliminated by modeling the policy of other agents and performing local updates based on
the model of other agent’s policy.

2.3 Emergent Communication

Communication between multiple agents is considered as a source of intelligence in agents.
The communication between agents can be supervised or unsupervised. Supervised com-
munication between agents requires hard-coded rules which must be followed by the agents
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for each message which is shared. In our scenario of training multiple autonomous cars, a
hard-coded message which would help in training of the MARL system would be the lo-
cation of the agents. However, generating hard-coded information is not a solution which
would scale well to large domains. The agents can also learn to communicate via self-
generated unsupervised messages. If trained properly, the message sharing between agents
could lead to emergent communication between agents which can be exploited to train
multiple agents in a centralized manner. Effective communication channels in MARL can
be trained using backpropagation as shown in the papers for DIAL [10] and IMS [39].

2.3.1 Iterative Message Sharing (IMS)

The authors in [39] employ a message sharing protocol where an aggregated message
is generated by averaging the messages from all agents and passing it back as an input
to the agents along with their observation’s hidden state representation to compute the
final action-values. This Iterative Message Sharing (IMS) is iterated P times in a single
discrete time-step of the environment before the final action for all agents at that time-
step is computed. The message generated by all agents is aggregated using the averaging
function and passed back to the agents for re-evaluation of the agent’s next message. The
authors suggest that multiple iterations of message sharing are required because only one
agent seems to be communicating at a single iteration of message sharing. This approach
leads to a model which can be easily scaled to a variable number of agents but increasing
the number of agents will also increase the cost of message sharing as the agents will
require larger number of iterations to communicate effectively. The model is trained using
the optimization criteria used in Deep Q-Networks(DQN). The gradients computed from
Q− error (error in the state value predictions) calculation is used to train the individual
agents. The message action and behavior action are generated by the same network. Thus
a single policy update is enough to allow their model to converge to a cooperative policy
between agents.

2.3.2 Differentiable Inter-Agent Learning (DIAL)

Differentiable Inter-Agent Learning DIAL [10] also trains cooperative agents to commu-
nicate through back-propagation, for sequential multi-agent environments. The speaker
agents send a message to the listeners. The listener agent receives the message (mt−1)
from the speaker and uses it to predict an action at. The agents use their current observa-
tion along with past messages from other agents to predict the best action. The delay in
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the message received by the listener can cause a sub-optimal convergence of the cooperative
policy in dynamic environments. Dynamic environments evolve over time which could lead
to the message mt−1 being less purposeful at time t. The agents are trained in a similar
fashion as IMS. The final policy predictions are used to compute the gradients for the
model based on the prediction errors. The gradients help improve the shared message and
policy models. Due to shared policy and message models, the agents are able to generate
self-revealing messages; which help in reducing the non-stationary in the environment’s
transition dynamics and learn a cooperative policy.

The above approaches perform well in multi-agent environments. IMS tested their
approach on a small autonomous driving test-bed with intersections. The goal was to train
agents to effectively communicate to alleviate need for lights at an intersection. The tests
for DIAL included the Switch-Riddle prison problem and a self developed MNIST game
where agents must learn the parity of the digits they observe. These task have many multi-
agent properties, however lack the property of being dynamic and large scale. I apply these
algorithms to our large scale driving environment and compare the results with the novel
approaches presented in this thesis. My work differs from these approaches in two ways.
(a) The iterative network structure of the communication protocol is removed and replaced
with a feed-forward neural network. (b) The centralized model is only used during training
and a decentralized policy using a memory module is trained in parallel for execution. This
is done because the communication among agents in autonomous driving environment is
not guaranteed.

2.4 Decentralized Execution in Multi-Agent Systems

Work in [28, 33, 21] has shown that the MARL agents could be evaluated with discrete
communication channels by using a softmax operation on the message. Recent work from
[28, 12] has shown that the actor-critic algorithm could be naturally extended to truly de-
centralized execution by completely eliminating communication channels. The centralized
training is achieved by using a shared critic for homogeneous agents or by using a separate
centralized critic for every agent which maps the observation and action of every other
agent to compute the state-action value function.

In this thesis, I focus on developing decentralized algorithms which derive directly from
the centralized policy trained using message sharing between the agents. My work focuses
on training in a centralized manner to achieve maximum cooperation among agents without
providing agents with reward functions or methods which are created by developers and
could be biased towards the environment or the final expected policy. My work uses the

12



final centralized policy to guide the decentralized policy between agents and thus achieves
a better policy than the decentralized training techniques discussed in literature.

2.5 Other research on communication between agents

There is a vast literature on the emergence of communication protocols between multiple
agents in the same environment [24, 33, 39, 8] which also use backpropagation to pass gra-
dients between the continuous channels and establish an effective communication protocol.
This has also been used to relay visual information between agents [8]. The multi-agent
setting has also been considered in the context of game theory [25] and has shown how
using the appropriate hand-crafted reward structure could lead to the agents behaving
cooperatively or competitively. Similar work with explicit reward function structuring to
achieve cooperation and competition is shown in [40]. Our work differs from these ap-
proaches as the multi-agent autonomous driving environment doesn’t provide explicitly
hand-crafted reward function for cooperation, though our proposed algorithms are extend-
able to cooperative reward domains. MARL has also studied in [17] which shows that
parameter sharing between independent value/policy-networks for homogeneous agents
helps in learning cooperative policy.
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Chapter 3

Background

3.1 MDP and POMDP

Markov Decision Process (MDP) is way to model the environments to apply a reinforcement
learning algorithm. MDPs exhibit the property that the current state depends on a finite
set of past states, and the transition dynamics of the environment are stationary. The
transition dynamics of the environment represent the probability of transition between
two states given an action. The transition dynamics can be stochastic or deterministic. In
MDPs, the agents are assumed to be able to observe the entire state of the environment,
whereas in POMDP (Partially Observable-Markov Decision Process), the agents can only
partially observe the state space. In MDPs, the agents can make an action prediction based
on the latest observation received from the environment. In POMDPs, the agents must
use the past observation history to make an action prediction. In Multi-Agent systems,
I work with partially observable discrete stochastic games. Due to the large number of
agents training in parallel the environment’s transitions are no longer stationary. Using
single agent Reinforcement learning techniques can lead to divergence of the training agent
in non-stationary environments.

3.2 Deep Q-Networks (DQN)

The Deep Q-Network (DQN) is an extension of the tabular Q-learning algorithm which
uses neural networks to approximate the action-value function Q(o, a) [32]. o denotes the
observation of the agent in the environment, a is the action, r is the reward received from
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the environment, and t denotes the discrete time-step. γ is used as a discount factor when
calculating the cumulative reward received during an episode. The value of the current
state can be computed using the formula,

Q(ot, at) = E
a
[r(ot, at) + γ E

a
[max
at+1

QT (ot+1, at+1; θ′)]] (3.1)

QT (the target Q-value) is generated using the target network which computes the esti-
mates for next state-action values and is periodically updated to the newest online network
(Q(ot, at)). DQN uses the same update rule as Gradient Q-Learning; except a separate
target Q-network is used for the action-value evaluations of the next state. DQN uses
Bellman equation to iteratively arrive at the optimal policy for an agent. The update rule
minimizes the following error:

TD-Error(w) = [Q(ot, a; θ)− r − γmaxat+1QT (ot+1, at+1; θT )]2 (3.2)

where θ and θT represents the weights of the online and target Q-network respectively.
The DQN uses an experience replay buffer to generate batches of trajectories to use for
updates of the Q-network. Gradient Descent is used to train the parameters θ by iteratively
minimizing the loss TD-Error. The experience replay memory (ER) and a separate target
network is used to stabilize the training. The Eval/online network is updated continuously
and the Target Network is updated once every fixed number of iterations.

3.3 Hierarchical DQN

Hierarchical DQN [23] extends DQN by using prior knowledge of the environment. It is
a framework that integrates hierarchical value functions operating at different temporal
scales. The agent’s learning goals are split into 2 levels of hierarchy: top-level (meta-
controller) to generate high-level actions/goals and bottom-level (controller) to achieve the
high-level goals. This model allows us to split the responsibility of the agent into different
models. The meta-controller DQN is trained using the observations and reward signal from
the environment and the low-level DQN is trained using the goal-observation (from meta-
controller) and an intrinsic reward for actions executed in the environment is generated by
the internal critic. Thus the action-value function for the low-level controller is

Q∗(ztc, a; g) = E
a
[r∗(ztc, a; g, θ) + γr(zt, a) + E

zt+1
c ,a

[QT ∗(zt+1
c , a′; g, θ′)]] (3.3)

where g are the sub-goals generated by the meta-controller and zc is the goal-observation
of the controller. This algorithm has shown good performance in environments with sparse
and delayed feedback.
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3.4 Multi-Agent Reinforcement Learning

In this thesis, I consider a general sum multi-agent partially observable stochastic game
G which is modeled by the tuple G = (X,S,A, T,R, Z,O) with N agents, (x ∈ X), in
the game, which can act independently of each other. The game environment transitions
between states s ∈ S, and the agents observe an observation z ∈ Z. The observation z is
generated using the function z = O(s, x), which maps the state of the environment to each
agent’s private observation z. The game environment is modeled by the joint transition
function T (s, ai, s

′) where ai represents the vector of actions for all agents x ∈ X. I use
the subscript notation i to represent the properties of a single agent x, a bold subscript
i to represent properties of all agents x ∈ X and −i to represent the properties of all
agents other than xi. I use the superscript t to represent the discrete time-step. All agents
receive a reward from the environment based on a utility function R, which provides
agents with an instantaneous reward for an action ai. The game environment represents
a Decentralized Partially Observable Markov Decision Process (DEC-POMDP) [3]. The
agents can send and receive cost-less discrete messages between each other, which are bit
vectors, represented as mt

i and are considered as a communicative/messsage actions by
the agent. However, the game environment does not provide a utility function for the
communication actions performed by an agent. All agents that share the same observation
space and have the same objective in the environment can be considered as homogeneous
agents. The message generated by an agent xi training in MARL environment at discrete
time-step t is represented as mt

i. The major challenges in the domain of multi-agent
reinforcement learning include the problem of dimensionality, coordinated training, and
training ambiguity. Having strong communication between agents can solve some of these
problems.

3.5 Behavior Cloning

Behavior Cloning is a method for inverse reinforcement learning in which an agent learns
a policy by following an expert act in the environment. Behavior Cloning is used to learn
an approximate policy πθ(z

t, at) for the environment based on the expert policy π∗(zt, at),
through supervised learning techniques; where πθ represents the learned policy and π∗ is the
optimal policy based on the demonstrations D of the expert. The learner agent receives the
observation zt from the environment and must select a greedy action at which maximize the
log-likelihood of the learner’s policy πθ from the ground truth π∗. The objective function
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can be represented as follows:

π∗θ = argmaxθ log
∑

(a,z)∈D

πθ(a, z) (3.4)

3.6 Communication Between Agents

Communication between agents in a multi-agent environment can be sub-divided into three
different categories depending on the method and nature of information shared between
the agents. The first method is cheap talk, or “doing by talking”, in which agents com-
municate information to other agents dependent on their observation of the environment.
The messages shared between the agents are not incentivised to a convey a property of the
environment or the agent’s policy. This type of communication between agents rarely leads
to a cooperative multi-agent policy as the communication between agents is not focused
on the task at hand.

The second method is signaling games, or “talking by doing”, in which agents share
information by performing an action in the environment. This type of communication
between agents requires an environment where agents can observe agent’s behavior in a
temporal fashion as no actual data is being shared between the agents. This approach
is very useful in multi-agent autonomous driving, as currently driving involves estimating
a vehicle’s future trajectory and actions based on its current behavior. This approach is
widely used in this thesis to achieved decentralized execution in multi-agent environments.

The third approach in multi-agent environment is speech-act theory which can also be
thought of as ”doing by talking”. The key difference between cheap talk and speech-act
theory is that the messages shared between agents are focused on the cooperative task at
hand. This approach can only be effectively used in cooperative multi-agent environments
as the agents would not share helpful messages in multi-agent competitive environments.
This approach is widely used in Deep-MARL literature where the message shared between
agents is trained using backpropagation. This allows the speaker agents to send messages
which generates a better cooperative policy. The speech-act theory suits our needs well
when building cooperative centralized multi-agent policies for autonomous driving envi-
ronment, where agents can share data with each other and must behave cooperatively.
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Chapter 4

Methods for Scalable Multi-Agent
Reinforcement Learning

In this chapter, I propose two methods for centralized training of cooperative policies in
MARL domains, and present two methods for fully decentralized execution of the coopera-
tive policy. This work is currently published in Canadian AI 2020 conference proceedings.
Training in a general sum game using independent DQN leads to divergence as can be seen
in the results. The online learning of agents in the environment leads to non-stationary
model of the environment. Thus by learning in a multi-agent environment, the agents
negatively affect the others performance, which leads to divergence.

Note that each agent in a multi-agent environment is required to learn a communication
policy and an action policy. The communication policy is used to send messages to other
agents and the action policy is used for in-environment actions (e.g, navigation). The DIAL
and IMS algorithms allow the agents to learn a combined policy for communication and
action policy using a the same TD-error generated from the environment. The proposed
centralized training algorithms are designed to achieve an independent communication
and action policy model. As shown in the experiments section, this distinction allows the
proposed algorithms to easily learn a cooperative policy in large scale environments.

Next, to achieve partial decentralized training, using discrete messages between agents
while maintaining differentiability, we introduce a Gumbel-Softmax [21] operation on the
continuous message generated by each agent [33]. Gumbel-Softmax generates a continuous
approximation of the categorical distribution by replacing the argmax operation in Gumbel-
max trick with a Softmax operation. This approach only allows for partial decentralized
execution of the policy.
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To achieve fully decentralized policy, I propose two methods. The first method uses
imitation learning of the final cooperative behavior policy to learn new policy which is com-
pletely independent. This can be seen as learning from a teacher or an expert. The second
approach introduces per-agent memory modules. This approach eliminates all communi-
cations between agents after training has converged, while maintaining the policy achieved
in the centralized methods.

All methods proposed in this thesis can be extended to use a Hierarchical Deep Q-
Network (hDQN) model. Hierarchical DQN proposes that the final behavior policy can
be split between 2 or more models. The split is achieved by logically splitting the utility
function into hierarchical levels. For example, in autonomous driving environments, the
higher level models can be concerned with learning a more abstract policy like navigating
between different lanes, navigating to different sections of the road. The lower level model
can be concerned with a more focused behavior policy to learn, ex, learning to turn the
wheel to achieve the correct direction, or accelerating and decelerating to achieve a partic-
ular goal. In this thesis, all experiments performed on the treadmill driving environment
use a hierarchical DQN. The individual methods detail how a model can be converted into
a hierarchical model.

4.1 Multi-Agent Message Sharing Network

(MA-MeSN)

The DIAL and IMS methods demonstrated that emergent communication between multiple
agents can be achieved by optimizing messages shared between agents using backpropaga-
tion. DIAL presents a network structure where the communicative and non-communicative
(dynamics of the agent) actions are generated using the same neural network. This ap-
proach forces a strong correlation between the communicative and non-communicative
policies, but leads to sub-par results. I suspect that the poor performance is because of the
joint objective of maximizing the non-communicative and communicative action policy’s
cumulative reward. Having a conflicting or uncorrelated objective leads to sub-optimal
solutions.

I recognize this as a bottleneck to achieving scalable multi-agent policies and present
a scalable multi-agent network structure in Fig. 4.1. I use a separate neural network for
communicative and non-communicative actions. The f ′′ neural network maps the message
received from the other agents m-i along with its partial observation of the environment
oi to a state-action-message value function Q(s, a,m). I refer to this network as the policy
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Figure 4.1: Architecture of Multi-Agent Message Sharing (MA-MeSN)
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network and is shown in the far right side of Fig. 4.1. The message is generated by the
other agents x-i using the neural network approximator f ′ which maps the agent’s private
observation to a communication action m-i. I refer to this network as the message network.
The message sharing interaction/negotiation can be extended to multiple iterations for
faster convergence. I only allow a one time message sharing (all agents send a message
and receive a message) between all agents in this algorithm. The complete architecture is
shown in Fig. 4.1.

In contrast to previous work in DIAL, I optimize the message network using the joint
gradients of all policy networks as shown in Alg. 1. The gradients for the online batch are
combined and backpropagated in the message network. Optimizing the message network
with joint gradients leads to messages which are generalizable/compatible to all agent’s
behavior policies. Without the joint optimization, we see a larger variance in the results
of cumulative reward during evaluations.

4.1.1 Comparison to Previous Work

This approach has two advantages over DIAL. The messages mt
−i(z

t
−i, f(zti)) are condi-

tioned on the entire observable state at time t, as opposed to DIAL, where messages
mt
−i(z

t−1
−i ) are a function of the previous time-step private observation of each agent zt−1−i .

Sending a message in the previous discrete time observation requires the speaker to learn
the stochasticity of the environment. Even with good model approximations, neural net-
works will generate messages mt−1

−i associated with the mean of transition probabilities. On
the other hand (in MA-MeSN), training the message network to generate messages mt

−i
for the current observation only requires the understanding of the agent dynamics and the
utility function. Secondly, this allows for the MA-MeSN algorithm to train offline using
a step based experience replay. However, optimization logic in DIAL requires sampling
episodes from the online policy to train the communication channel; because the agents
need to stay up-to-date with the non-stationary evolving model of the environment.

4.1.2 Hierarchical MA-MeSN Model

The MA-MeSN model uses the hierarchical DQN as the baseline model for training. The
model shown in Fig. 4.1 shows the top-level DQN in the hierarchical model. The obser-
vation Oi represents the observation from the environment. The action Ai represents the
meta-action generated by the agent. The action Ai is concatenated with the observation
Oi of the environment and passed as input to the lower level controller DQN. The lower
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Algorithm 1 Multi-Agent Message Sharing Network (MA-MeSN)

1: for i = 1, . . . , N do
2: Initialize replay memory D〉 : i ∈ {1..N} to capacity M
3: Initialize the online and target, message and policy networks f ′i,θ, f

′′
i,θ, f

′
i,θ′ , f

′′
i,θ′

4: end for
5: for episode = 1, . . . , E do
6: for t = 1, . . . , Tconvergence do
7: for i = 1, . . . , N do
8: Select a random action ati with probability ε
9: Otherwise, select ati = arg maxaQf ′′i

(oti,m
t
−i, a; f ′′θ )

10: Execute action ati, collect reward rt+1
i and observe next state ot+1

i

11: Store the transition (oti, a
t
i, r

t+1
i , ot+1

i ) in D〉
12: Sample mini-batch of transitions (oji , a

j
i , r

j+1
i , oj+1

i ) from D〉
13: Generate the messages from other agents mj

−i = f ′−i(o
j
−i)

14: Set yji =

{
rj+1
i , if oj+1

i is terminal

rj+1
i + γmaxa′ Qf ′′i

(oj+1
i ,mj+1

−i , a
′; f ′′i,θ′), otherwise

15: Compute gradients using target value yji for policy network f ′′θ
16: ∆Qf ′′i

= yji −Qf ′′i
(oji ,m−i, a; f ′′i,θ

17: Apply gradients ∇θi,f ′′ to f ′′i,θ
18: for j = 1, . . . , N do
19: ∇θj,f ′ ← ∇θj,f ′ +∇θj,f ′′

{Collect gradients using residual gradients from policy networks.}
20: end for
21: Apply gradients ∇θi,f ′ to f ′i
22: end for
23: Every C steps, set θ′i,f ′′ ← θi,f ′′∀i
24: Every C steps, set θ′i,f ′ ← θi,f ′∀i
25: end for
26: end for

level DQN is an independent model and doesn’t use message sharing. The lower level
DQN receives a positive reward when it reaches the goal generated using action Ai and
no reward otherwise. For the rest of the thesis we only deal with generating higher level
goals and message sharing generated as result of it. All competing methods are upgraded
to use hierarchical DQN as their baseline model instead of simple DQN. This approach
significantly improves the performance for all methods. In Sec 5.3.1, I the result of using
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DQN vs Hierarchical DQN and quantitatively show that hierarchical DQN can achieve a
better overall policy with single agent methods.

4.2 Multi-Agent Broadcast Network (MA-BoN)

Message sharing between the agents at the current discrete time-step (MA-MeSN) allows
for stability during training in large scale environments. However, the message and policy
networks for all agents needs to be individually evaluated to compute the state-action value
for each agent. In this method, I propose using a centralized message generation network
as shown in Fig. 4.2. The neural network f ′ maps the shared partial observation encoding
from all agents to a broadcast message bmt. I study the properties of MA-MeSN and
MA-BoN in Sec. 5.3.4 and show that this network is feasible in multi-agent general sum
games.

The NN f ′ learns a combined communication message as the broadcast message (bmt).
Each agent can now independently evaluate the action-value for their private observation
using the function g′(zti , bm

t), which is a function of the complete observed state of the
environment. This network also allows for parallel action-value evaluations with a single
forward pass of the network and avoids the |P | iterations required by IMS, which can be a
bottleneck for real-time applications as further discussed in the results Sec. 5.3.3. Contrary
to the iterative message sharing network I don’t share the observation encoding f(zi) with
the policy network g′′. Empirically, feeding the observation encoding f(zi) directly to g′

leads to a negative side-effect of residual block skip-connection where the optimization to
the broadcast messages gets short-circuited.

The training algorithm for MA-BoN is similar to the MA-MeSN algorithm and is pre-
sented in Alg. 2. The main difference is on line 18 where the cumulative policy gradients are
applied to only the broadcast network. Due to the use of a single centralized communica-
tion model in MA-BoN, this model can only be used in symmetric cooperative multi-agent
environments. MA-BoN can also be decentralized by the use of a memory module LSTMπ

trained parallel to the policy network (MA-BoN-MM) as detailed in Sec. 4.5. This al-
gorithm reduces the the training time considerably as the training algorithm exhibits a
running time of O(N2), instead of O(N3) from MA-MeSN. Both the MA-MeSN and MA-
BoN model use Gumbel-Softmax operation on the message policy to generate stochastic
messages which can be easily converted to discrete messages for partial decentralized exe-
cution.
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Algorithm 2 Multi-Agent Broadcast Network (MA-BoN)

1: for i = 1, . . . , N do
2: Initialize replay memory D〉 : i ∈ {1..N} to capacity M
3: Initialize the online and target, message and policy networks f ′i,θ, f

′′
i,θ, f

′
i,θ′ , f

′′
i,θ′

4: end for
5: for episode = 1, . . . , E do
6: for t = 1, . . . , Tconvergence do
7: for i = 1, . . . , N do
8: Select a random action ati with probability ε
9: Otherwise, select ati = arg maxaQf ′′i

(oti,m
t
−i, a; f ′′θ )

10: Execute action ati, collect reward rt+1
i and observe next state ot+1

i

11: Store the transition (oti, a
t
i, r

t+1
i , ot+1

i ) in D〉
12: Sample mini-batch of transitions (oji , a

j
i , r

j+1
i , oj+1

i ) from D〉
13: Generate the messages from other agents mj

−i = f ′−i(o
j
−i)

14: Set yji =

{
rj+1
i , if oj+1

i is terminal

rj+1
i + γmaxa′ Qf ′′i

(oj+1
i ,mj+1

−i , a
′; f ′′i,θ′), otherwise

15: Compute gradients using target value yji for policy network f ′′θ
16: ∆Qf ′′i

= yji −Qf ′′i
(oji ,m−i, a; f ′′i,θ

17: Apply gradients ∇θi,f ′′ to f ′′i,θ
18: Collect gradients ∇θi,f ′ from all policy networks.
19: Apply gradients ∇θf ′ to f ′ {f ′ is the broadcast network.}
20: end for
21: Every C steps, set θ′i,f ′′ ← θi,f ′′∀i
22: Every C steps, set θ′i,f ′ ← θi,f ′∀i
23: end for
24: end for

4.2.1 Comparison to Previous Work

The work done in IMS (Iterative Message Sharing) [39] provided a method for generating
a generalized (broadcast-type) message, which is shared by all agents. This approach is
useful when there is a centralized communication entity. This allows for reduced commu-
nication network bandwidth. IMS uses an iterative method for computing an ”iterative”
broadcast message for the agents. The embedding from all agents is accumulated using
weighted sum and passed back to the agents. This process is repeated multiple times to
share the information between agents. Due to the summation of the agent’s embeddings,
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only a single message is able to be shared between the agents at a single iteration. In a sim-
ulated environment, the simulation can be paused for the model to complete its iterations.
However, this approach poses a problem when operated in real-time. MA-BoN alleviates
this problem by training two different models for the message/broadcast policy and the
behavior policy which are trained in a tandem. The trained broadcast network generates
messages which can be inclusive of all agent’s personal messages. However, to compensate
for the reduce communication iterations, the MA-BoN requires a bigger throughput and
thus the broadcast message network’s output size is 64 bits (2 bytes).

4.2.2 Hierarchical MA-BoN Model

Similar to the MA-MeSN, the MA-BoN model is also extended to use the hierarchical DQN
model as the baseline. The policy network (f ′′) is the only network which deals with the
hierarchical DQN method. The actions Ai are goals which are passed to the lower level
DQN. Thus, MA-BoN is easily extendable to a hierarchical structure in terms of the policy
network.

4.3 Partially decentralized MA-MeSN and MA-BoN

models

The MA-MeSN and MA-BoN approaches are centralized training methods for multi-agent
environments. During real-world execution, the message channels are not necessarily avail-
able. The literature provides multiple methods for developing a decentralized execution
policy. A decentralized approach presented in the literature is to use a probabilistic sam-
pling approach to generate a discrete messages which are passed between agents [34]. This
approach reduces the size of the messages shared between agents, but it does not provide
a fully decentralized policy. In the following two sections I present methods which allow
fully decentralized execution with no message sharing between the agents.

4.4 Cooperative Distributed Behavior Cloning

(CoDBC)

Behavior cloning or Imitation learning has been used in the literature to perform inverse
reinforcement learning. Inverse reinforcement learning is the concept of learning a policy
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directly from observations attained from executing an expert policy. In the scenario of
MARL, the centralized policy is the expert policy. The decentralized policy can be trained
by imitating the expert centralized policy. The CoDBC policy is trained using behavior
cloning. The policy update for CoDBC is calculated by minimizing the following error
function using stochastic gradient decent.

E(WCoDBC) =
1

2

∑
n

|πCoDBC(oti)− πMA−MeSN(oti)|
2

(4.1)

Each agent is trained separately after the centralized policy has converged. After the
centralized policy has converged, the final policy is used to generate observations-action
pairs for each agent. This data is used in an online manner to train the decentralized
CoDBC agents. Using offline training for large scale environments leads to sub-optimal
results when using inverse reinforcement learning techniques.

4.5 Decentralized Model using Memory Modules

(MM)

The CoDBC approach needs to be trained after the centralized model has converged.
This is because, the behavior cloning equation requires a stationary policy for learning.
This leads to extra training time and resources. I present an alternative technique to
train a decentralized cooperative policy using memory modules. I utilize a LSTM memory
module µ associated with each agent’s policy network. The LSTMµ learns a mapping from
agent’s private observation to the message generated by other agents in the environment.
The trained memory module is then used during fully decentralized execution to simulate
message generation from agents in the environment. The memory module, µ, is trained
using temporal supervised learning and can generate messages which are continuous in
nature as they don’t need to be transported over a communication channel. The following
equation shows the error function used to compute the gradients for πµ.

E(WMM) =
1

2

∑
n

|πMM(oti...o
t−N
i )− πf ′MA−MeSN

(ot−i)|
2

(4.2)

The function πf ′MA−MeSN
represents the message network for an agent as shown in

Fig. 4.3. The term πf ′MA−MeSN
(ot−i term represents the message generated by all other
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agents in the environment. Thus the above equation 4.2 is computing the error between
the message generated by other agents in the environment using the function πf ′MA−MeSN

and

the prediction of the message generated using the memory module network πMM(oti...o
t−N
i )

using this history of observations for the current agent. Essentially the MM learns the
functional mapping from an agent’s observation history to the message generated by the
other agents.

The learning process for MM sounds counter intuitive due to the fact that the obser-
vations and actions (messages generated by the speaker agents) do not always correlate.
However, in the scenario of autonomous driving, an agent can view the state transitions
of other agents using its own observation. The behavior action of an agent can thus be
viewed as model of signalling games (talking by doing). Talking by doing allows an agent
to communicate its actions without an explicit message being shared between the agents.
This information sharing is prominent in driving as an agent’s movement mostly coincides
with their intentions. Thus the memory module is able to learn a message generation policy
which in tandem with the behavior policy of the current agent allows for a decentralized
cooperative policy.

The model architecture is presented in Fig. 4.3. During training of the centralized
policy, the module τ switches the input to the policy network between the output of µ
module and the Concat module. This approach allows the policy network to generalize
on both types of messages (the messages can be from other agents or simulated using the
memory module µ). During decentralized execution, the communication channels between
the agents are snipped and the τ module permanently switches to using the simulated
messages from the memory module µ. Thus the individual memory modules µ along with
their policy network f ′′ can be independently used for fully decentralized execution of the
learned cooperative policy (MA-MeSN-MM).
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Chapter 5

Results for Scalable Multi-Agent
Reinforcement Learning Algorithms

In this chapter, I present the results and comparison of the algorithms presented in the
previous chapter. This chapter first presents the multi-agent environments which were
tested as part of this work. Then I present the results of using the methods presented
in this thesis and compare them to the current state of the art methods in literature. I
also verify my methods against OpenAI’s multi-agent environment for sanity validation of
the algorithms. Throughout the chapter the results are discussed and ablation studies are
performed on different aspects of the algorithms presented.

5.1 Experimental Methodology

In this section I present the multi-agent treadmill driving environment used for analysis of
the proposed algorithms. I also present two environments currently used for multi-agent
training in the literature, the well known Predator Prey and Cooperative Communication
environments. These environments are released by OpenAI as part of their multi-agent
reinforcement learning research projects [28].

The goal of this work was to develop a multi-agent learning algorithm for large scale
multi-agent environment. The multi-agent particle environments, currently used for MARL
algorithm evaluations, do not provide us with a domain with complex physics, real-world
safety constraints and a large state-space for algorithm evaluation. Thus, the following
subsection details the highway driving environment using a treadmill simulator which is
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used for evaluation of the algorithms presented. This environment could be considered
as the baseline for future algorithm comparisons because the multi-agent particle environ-
ments have been mostly solved by current MARL research. I show in Sec. 5.2.1, 5.2.2 that
all algorithms are all able to learn an optimal policy in an efficient manner in the particle
environments, but DIAL and IMS fail to efficiently learn a cooperative policy in the large
scale treadmill driving environment.

5.1.1 Treadmill Driving Environment

The main focus of this thesis is to develop multi-agent reinforcement learning algorithms
which can be used to train multiple robots to drive in harmony on a treadmill. The
software architecture of the treadmill includes a ROS based architecture which uses a pub-
lisher/subscriber model to communicate with agents. The same model is used to achieve
communication between agents. The information shared between agents is limited to 2
bytes per step for every robot. The Fig. 5.1 shows the treadmill with robots driving on it.
Each robot has a tag at the top for identification. A camera mounted at the top of the
treadmill computes the location of the robots. This information is then transformed into a
proximity based observation (which resembles data retrieved from proximity sensors) and
provided to the learning agents during training and execution.

The actual training was not performed on the treadmill, rather a VREP simulator was
implemented which mimics the treadmill environment with multiple agents. The VREP
simulator is then wrapped with the OpenAI’s Gym APIs to enable step based execution of
the treadmill environment. In the environment, the treadmill is always running and thus
creates an infinite highway for the robots maneuvering in the environment. The size of the
treadmill is kept fixed at [100, 100] steps. Agents can enter or exit the treadmill from the
front and back. The treadmill contains a minimum of 2 cooperative autonomous agents
and the number of cooperative agents can be changed dynamically. These agents can be
controlled using Deep MARL methods. The environment also contains at least one ad-
versarial (aggressive) car. The adversary exhibits a stochastic behavior policy which tries
to cause a crash with the closest autonomous car. The cooperative autonomous vehicles
can sense the closest car as part of its partial private observation of the environment, but
do not receive information from the environment to distinguish between their intentions
(cooperative/adversary). The agents can send messages to other agents using a discrete
communication broadcast channel, to which other agents subscribe. The private reward
received by an autonomous car is the normalized distance from the closest observed car.
The agents’ actions include 3 angles of steering in both directions and 3 discrete levels of
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Figure 5.1: Treadmill with multiple robots driving.

acceleration/deceleration. The reward function does not provide explicit rewards for co-
operation between the agents or for maintaining stable emergent communications between
agents. The episode is terminated when the distance between any two agents is 0 (collision
is encountered). Each experiment takes 8− 12 hours of training on a GTX-960 GPU. The
exploration in all experiments follows a linear decay schedule for the first 20% or 100K
steps of the experiment (whichever is achieved earlier) and then is set to a constant value
of 0.05. The observed state space of the environment is 1012.

5.1.2 Predator Prey Environment

The environment in this and the next subsection are set up with a sparse cooperative reward
structure with a long time-to-horizon to show the validity of the porposed centralized
algorithms (MA-MeSN, MA-BoN) in such domains. In this multi-agent environment, all
agents are homogeneous as multiple predator agents learn to capture a prey. The prey is
an adversary agent and moves to avoid the predators. The predators receive a reward of
0.5 if they capture the prey independently and a reward of 1.0 when the prey is captured
together in the same time-step. The partial observation of the predator only contains
the location of the prey and thus agents must communicate to achieve cooperation. The
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episode is terminated after 1000 time-steps.

5.1.3 Cooperative Communication

In this multi-agent environment, the agents are heterogeneous and must learn a different
policy. The environment contains a speaker agent, listener agent and 2 colored landmarks.
The listener agent must travel to the correct landmark in the environment (which is as-
signed randomly at the beginning of the episode) while avoiding the wrong landmark. The
episode ends after the agent reaches one of the landmarks. The reward to reach the correct
landmark is 1.0 and 0.0 for the wrong landmark. The listeners’ observation only consists
of the landmarks in the environment. The speaker agent receives the full state of the envi-
ronment along with the color of the correct landmark for that episode. The speaker agent
must communicate with the listener agent using only 2 bit communication.

5.2 Results - Particle Environments

In this section, I present the results of training my algorithms on predator prey and co-
operative communication environments. This result is for validation of the algorithms
presented in this thesis on multi-agent environments which have been accepted by the
MARL community.

5.2.1 Centralized Training - Predator Prey

The results of MA-MeSN algorithm on the multi-agent predator prey environment are
shown in Fig. 5.2. All experimental results represent the average over 5 runs and the
results were smoothed using a moving average. All algorithms use a linearly decaying
exploration schedule for the first 100K steps from 1.0 to 0.05 and then use a constant
value of 0.05 for the rest of the training. All experiments are run for 7M steps and 60K
episodes. All agents in the environment use parameter sharing of weights and biases of the
neural network with a size of 1 hidden layer with 256 hidden units, with a communication
channel of size 8 units.

The centralized training methods, MA-MeSN and MA-BoN, was able to achieve good
performance in this environment. DIAL and IMS are also able to achieve a better perfor-
mance compared to independent agents which achieve an average reward of 0.75.
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Figure 5.2: Comparison of Cumulative Reward on Predator Prey Environment.

Note, there is a slight variation in my implementation of DIAL. I employed importance
sampling from the replay buffer for DIAL as DIAL’s original proposal of per-episode batch
training is expensive and unstable. This change actually improved DIAL’s performance
on long time-to-horizon, sparse reward tasks. The results clearly show that the algorithm
(MA-MeSN) proposed in this thesis are acceptable on environments with sparse cooperative
rewards. This experiment also validates that the algorithms presented in this thesis are
valid for MARL environments.

MA-MeSN is able to learn a centralized policy for capturing the prey with nearly the
same sample complexity as the IMS algorithm. Qualitative analysis of the independent
DQN shows that the agents are able to capture the prey cooperatively only when the
prey is cornered by chance. The average value of 0.7 achieved by the independent agents
aligns with this analysis as well. The IMS shows the best sample complexity as with the
reduced state space of the environment, the messages generated only need to communicate
2 different sentiments, attack or hold. Through cross-validation, I find that we require
P = 3 communication iterations for IMS with 2 predators.

34



Figure 5.3: Comparison of Cumulative Reward on Cooperative
Communication Environment.

5.2.2 Centralized Training - Cooperative Communication

The result of training on the cooperative communication environment is shown in Fig. 5.3.
All experimental results represent an average over 5 runs with the same hyper-parameters
as detailed in the previous section. The experiments are run for 7M steps and 100K
episodes. To achieve discrete 2-bit communication between the speaker and the listener, I
apply a softmax on the output of the speaker before sending it to the listener. The learning
curves for MA-MeSN, MA-BoN and DIAL are compared against independent agents. MA-
BoN and MA-MeSN don’t use parameter sharing and the communication channel from the
listener to the speaker is disabled.

The main focus of the training in this environment is to establish a one-way communica-
tion using only the reward received by the listener. The models backpropagate the partial
gradients computed using the temporal difference at the listener side during training. This
approach helps the speaker agent to optimize its messages based on the observation of the
environment. All centralized training algorithms are able to converge to a nearly optimal
policy. The independent DQN policy picks a random location due to the lack of communi-
cation from the speaker (devoid of the knowledge of the correct color of landmark to reach)
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and thus achieves an average reward of 0.5.

5.3 Results for Centralized Training -

Treadmill Driving Environment

In this section, I present the results and discussion for the centralized training algorithms,
MA-MeSN and MA-BoN. In all the algorithms tested on the treadmill driving environment
(MA-MeSN, MA-BoN, DIAL, IMS, independent DQN, independent DQN with SER, MA-
MeSN-MM, MA-BoN-MM, CoDBC), I use a hierarchical neural network structure [23].
In this section, I present the learning curve for my algorithms on the treadmill driving
environment. I also present an ablation study of MA-BoN algorithm. Then I study the
inter-agent communication messages generated by the MA-MeSN algorithm and how they
affect the final cooperative policy of the MARL system.

5.3.1 Hierarchical DQN in Single-Agent Treadmill Environment

Hierarchical DQN [23] extends DQN by using prior knowledge of the environment. It is
a framework that integrates hierarchical value functions operating at different temporal
or logical scales. The agent’s learning goals are split into 2 levels of hierarchy: top-
level (meta-controller) to generate high-level actions/goals and bottom-level (controller)
to achieve the high-level goals. The meta-controller DQN is trained using the observa-
tions and reward signal from the environment and the low-level DQN is trained using the
goal-observation (from meta-controller) and an intrinsic reward for actions executed in the
environment generated by the internal critic. Thus the action-value function for the con-
troller is Q∗(ztc, a; g) = Ea[r∗(ztc, a; g, θ) + γr(zt, a) +Ezt+1

c ,a[Q
T ∗(zt+1

c , a′; g, θ′)]] where g are
the sub-goals generated by the meta-controller and zc is the goal-observation of the con-
troller. This algorithm has shown good performance over settings with sparse and delayed
feedback.

For treadmill driving environment, I find that using hierarchical DQN shows improved
performance and time complexity when compared to DQN. Fig. 5.4 shows the results for
comparison of Hierarchical DQN vs regular DQN with single autonomous agent train-
ing in treadmill environment. Thus, all methods applied to the driving environment use
Hierarchical Deep Q-Networks [23] along with the Double Q-learning update [45].
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Figure 5.4: Comparison of Hierarchical DQN vs Regular DQN on
driving environment with single autonomous agent.

5.3.2 Centralized training on multi-agent driving environment.

In this section, I compare the centralized training algorithms against DIAL and IMS. In
all the experiments, the exploration is set to a ε-greedy policy with ε linearly decayed
from 1.0 to 0.05 over the first 100K steps and then set to a constant value of 0.05. All
experiments are run for a maximum of 4K episodes (0.8M steps). All neural networks
consist of two layers with 4096 neural units in the first layer. DIAL network consists of
two layers with 6144 units in the first layer to allow for fair evaluation to other algorithms.
The size of message sharing channel is set to 12 by using the second fully-connected hidden
layer. The optimizer used for training is the Adam optimizer with a learning rate of
5 × 10−4. The batch-size for updates is 64 and the target network is updated after 200
steps, except DIAL’s target network is updated after 40 episodes. For the IMS algorithm,
the experiments are using P = 5 for communication iterations through cross-validation;
where P represents the number of iterations of message sharing performed at a single
environment time-step.

The results for centralized training of cooperative multi-agents are shown in Fig. 5.5.
All experiments are repeated 20 times and averaged to produce the learning curves. The
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Figure 5.5: Comparison of Cumulative Reward for Centralized
Training Algorithms in Driving Environment.

highest cumulative reward is achieved with MA-MeSN followed by the MA-BoN algorithm.
The IMS and DIAL algorithms are able to improve on the policy achieved by independent
DQN, as they have the advantage of message sharing over independent DQN policy. IMS
shows a slow learning curve compared to other algorithms with P = 5 communication
iterations. IMS training also requires curriculum learning approach to train the network
efficiently [39]. However, to maintain fairness to other algorithms, this was left out in
the experiments. Curriculum learning provides a framework for pre-training the model on
simpler tasks before fine-tuning the model in the real environment.

DIAL shows steady improvement in performance, however, the performance of the final
policy is weak when compared to MA-MeSN, because the messages from other agents are
not conditioned on the present state of the environment mt−1

i . To avoid divergence in
MARL, DIAL uses episodic training, which causes skewed gradient updates based on pre-
viously observed data and can hinder convergence in tasks with large state space (treadmill
environment state space:1012). Secondly, DIAL uses the same model for message policy and
behavior policy prediction. This is a viable approach in static multi-agent environments
because the agents only policy is to share messages and don’t need to learn a behavior pol-
icy. MA-MeSN and MA-BoN on the other hand show strong performance when compared
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to DIAL. This increase in performance can be attributed to the design of the message
sharing model where MA-MeSN and MA-BoN have a designated message network which
is only responsible for generating messages to be sent to other agents. The agents use the
policy network to generate the behavior actions for the environment. The benefits of this
method and its validity is studied in depth in Sec. 5.3.4.

The MA-BoN and MA-MeSN use step-based replay memory (zti , a
t
i, r

t
i) which provides

diverse training samples for offline updates to the value function. This is a big advantage
over DIAL during training as it reduces the system resource requirements and requires
simpler algorithms to manage the training. MA-MeSN and MA-BoN thus achieve a stable
learning curve with faster convergence properties than DIAL and IMS [32]. The MA-BoN
results show comparative performance to MA-MeSN and provide the benefit of reduction
in the number of communication layers needed from |N |× |N | to |N |. MA-BoN also allows
for reduced inference time as policies for all agents can be evaluated in parallel, as opposed
to |N | serial evaluations for DIAL, IMS and MA-MeSN. This is further studied as part of
scalability ablation study in Sec. 5.3.3.

5.3.3 Ablation Study of scalability of MA-BoN

This section demonstrates the scalability of the MA-BoN approach compared to IMS and
DIAL. The ablation study of the MA-BoN method is carried out by varying the number
of cars in the environment and presenting the results in Fig. 5.6. The Fig. 5.6b shows a
comparison of the inference time it took to complete an episode and the Fig. 5.6a shows
the average cumulative reward achieved per episode when the number of agents in the
environment is increased. The results for cumulative reward comparison are computed
by averaging results of 5 training runs for each algorithm with different seed values. The
training of all algorithms was completed over 15, 000 episodes or 2.5M steps. The proposed
centralized training approach of MA-BoN is able to sustain better performance compared
to other approaches when the complexity of the environment is increased. The inference
time grows linearly for MA-BoN in comparison to the quadratic increase for DIAL. MA-
BoN shows better scalability as the message generation network for each agent is optimized
using the cumulative gradients from all agent’s temporal difference loss. Thus the message
is more generalizable in complex settings, while DIAL and IMS suffer from the problem
of optimizing the joint objective for communicative and non-communicative policy; which
leads to reduced robustness of the messages shared between agents.
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Figure 5.6: Scalability comparison on the treadmill environment.
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5.3.4 Theoretical study of Emergent Communication

The results obtained from generating the learning curve in Fig. 5.5 show a positive corre-
lation between message sharing and the eventual performance achieved by the centralized
cooperative policy. To study the effects of the message sharing between agents, I provide
quantitative results for the message policy and how it effects the behavior policy. In this
section, I study the emergent communication developed during training of the centralized
MARL algorithm, MA-MeSN using the techniques presented in this paper [27]. The work
done in [27] shows that a better cooperative policy between agents could be achieved
without explicit need for message sharing between the agents. This can happen in envi-
ronments which either present a static environment or a stationary environment from the
view of the speaker. This leads to the agents learning an independent policy which treats
the messages received from other agents as cheap talk. In such situations, the messages
shared between the agents are not useful. The second observation made in [27] is that the
inter-agent communication could arise due to weight sharing between the policy network
and the message network. They show that agents which use a single model for predicting
the behavior policy and the message policy can lead to an positive signaling but doesn’t
necessarily improve the performance of the agents.

Each agent generates a message action (for communication between agents) and a be-
havior action (this can be an action in the environment which can be the agent’s dynamics
in the environment). Table 5.1 shows the results for MA-MeSN using common metrics [27]
to measure the effect of these messages in our domain. There are multiple metrics used in
the table.

Speaker Consistency (SC) is used to measure positive signaling as it measures the
mutual information between the message mi and the actions ai of the agent. The mutual
information between the messages and the actions is used to measure the effect the messages
have on the trained policy of the MA-MeSN algorithm. We can see a slight positive
correlation between the communication and environment actions (for the same agent),
which indicates that the agents are sharing information which could lead to a cooperative
equilibrium. The value of speaker consistency for MA-MeSN is 0.18. This value is lower
than other models which share the weights of the message and policy network. In the case
of MA-MeSN, the message network is independent of the policy network which leads to
the message policy to focus on policy of other agents instead of its own, as the message is
not consumed by the agent itself. The message is required by other agents to learn about
the future actions of the speaker agent. Thus, I believe this metric does not necessarily
provide a complete picture of the agent’s communication policy.

The positive signaling metric also does not guarantee that other agents are listening to
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Table 5.1: Summary of emergent communication metrics for MA-MeSN: speaker consis-
tency(SC), instantaneous coordination(IC), entropy(H), Message Input Norm(MIN) and
Avg. cumulative reward with white noise messages(∆r) [27].

Metric SC IC H MIN ∆r

Value 0.18 0.41 1.27 63.75 427.1

the message and actively utilizing it to achieve a cooperative behavior policy by achieving
a higher cumulative reward. The metric Instantaneous Coordination (IC) can be used to
measure the positive listening between agents. Instantaneous Coordination is computed
using the mutual information between the speaker’s communicative actions m−i and the
listener’s environment actions ai. MA-MeSN achieves a value of 0.41 for IC which indicates
that the listener agent’s policy is dependent on the messages of the speaker. This higher
value of the Instantaneous Coordination (IC) is more valuable for measuring inter-agent
communication than Speaker Consistency (SC) because it focuses on the eventual behavior
policy of the agents (dependent on the speaker’s message) to measure the effect of the
inter-agent communication. Instead, speaker consistency only focuses on a single agent’s
correlation between its message policy and behavior policy. In cooperative environments,
the agents would convey information which is useful to other agents, but this message
might not align with the agent’s eventual actions in the environment. This is defined as a
key distinction in the communication model of multi-agent systems [37] and discussed in
the background chapter of this thesis. The speaker consistency metric focuses on finding
positive correlation between the speech-act theory (”doing by talking”) and signaling games
(”talking by doing”). In environments like autonomous driving a high value of speaker
consistency is sometimes not needed or necessary to achieve optimal centralized cooperative
policy.

The metric Message Input Norm(MIN) is used to compute the L2-norm of the weights
of the message input layer of the listener. The MIN metric helps understand if the listener
agent’s model is ignoring the message it receives from the speaker agent. This verification
is done to further study if the positive correlation found with the IC metric is not a
coincidence. A large number supports the theory that the listener’s behavior policy is
dependent on the message. The MA-MeSN model exhibits a value of 63.75 which shows
that the listener agent is not actively ignoring the message received and is a factor in the
final behavior policy of the listener agent.
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The ∆r metric measures the difference in the average cumulative reward when the
messages are replaced with white noise. This metric also allows us to evaluate the listener
agent’s policy’s dependence on the speaker agent’s messages. There is a large drop in the
performance, suggesting that the agents have indeed developed emergent communication.
The performance drops from an average cumulative reward of 750 to an average cumulative
reward of 427.1. This metric is further proof that the inter-agent communication is a
necessary part of the final cooperative policy.

The metric Communication Message Entropy measures the consistency of the messages
when compared to the same input. The MA-MeSN model achieve a low value of 1.27 for
entropy, which shows that the speaker is not using different messages for the same input
and is rather consistent in its signals. Based on the strong results of IC, MIN, ∆r and
entropy, the lower value of SC is less concerning as the model’s inter-agent communication
analysis supports the model’s learning curve performance.

5.4 Results for Decentralized Execution -

Treadmill Driving Environment

In this section, I present the results for decentralized training and execution in the multi-
agent treadmill driving environment. The Fig. 5.8 shows the learning curves for the CoDBC
and MM methods presented in this thesis and its comparison to the decentralized state of
the art methods in the literature.

5.4.1 CoDBC - Results

In this sub-section, I compare the CoDBC method of fully decentralized execution, to
the techniques like DQN with stabilized experience replay (SER), and Independent DQN.
CoDBC policy is trained using imitation learning of the (expert) centralized cooperative
policy from MA-MeSN. All of the hyper-parameters and experimental setup are exactly
the same as the experiments for the centralized training section. The learning curves
are generated by averaging the results of 20 experiments with different seed value. The
agents are trained in a sequential manner. First the centralized model MA-MeSN is trained
using the method described in Sec. 4.1. Each agent in the environment is replaced with
an independent agent. Essentially the centralized model for a single agent presented in
Fig. 4.1 is substituted for a single neural network which does policy predictions based on
the partial observation from the environment (this model doesn’t receive any messages
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Figure 5.7: Comparison of Cumulative Reward for Decentralized
Training in Multi-Agent Driving Environment.

from the speaker agents). The other agents in the environment still need a message from
the independent agent. The message is generated by using the original centralized model
for the replaced agent. This method allows for other agents to behave with a cooperative
centralized policy and allows for the decentralized policy to be trained in a cooperative
manner. The main idea of training each agent in a sequential manner is that the policy
of all agents in the multi-agent environment has now converged and is thus stationary.
Traditional RL methods can be used to train the single agent independent policy in the
multi-agent environment now as the transition dynamics won’t lead to divergence in the
temporal difference updates of Q-learning. Independent policies for all agents are thus
trained and the results are shared in Fig. 5.7.

The Fig. 5.7 shows the comparison of the CoDBC method to other independent ap-
proaches, for ex, independent DQN, DQN with SER (statbalized experience replay). The
performance for DQN is poor compared to other decentralized techniques. This is because
the treadmill environment does not explicitly reward agents for cooperation. Independent
DQN agents can only converge to a cooperative policy in multi-agent systems if the system
itself provides feedback for achieving cooperation. The reward function in the treadmill
environment only allows the agents to learn to avoid crashes. This information is not
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enough for agents to maintain safe distance from other friendly agents. Due to the lack
of signalling between agents, the independent DQN policy is also not able to distinguish
between cooperative agents and adversarial agents. This distinction can be achieved either
with signaling between agents (through their actions or via information sharing) or directly
from the environment. The independent DQN is not able to gather this information from
either of the above mentioned sources. The learning curve for DQN shows good perfor-
mance initially when all agents are exploring and the dynamics of the environment are
perceived as stationary. However, as the exploration reduces to 0.05, the evolving poli-
cies of other agents induces non-stationarity in the environment model and the off-policy
training in DQN fails.

Deep Q-Networks use an experience buffer from which samples are replayed to stabilized
training in single agent environments. This approach as seen previously doesn’t extend well
to multi-agent environments. The issue is with the evolving policies of other agents which
exhibit a non-stationary transition matrix for the environment. DQN-SER (DQN with
Stabilized Experience Replay) [14] focuses on the evolving policies of the other agents in
the off-policy training regime of DQN as the problem which needs to be solved. DQN-
SER thus implements different stabilizing methods for the experience replay. The method
implements an importance sampling procedure where the most recent samples are over-
sampled compared to samples from the past. This is done by computing the weight of each
sample’s gradient using a linearly decaying function based on the episodes elapsed since
a sample was collected. Thus, DQN-SER is able to prioritize its training on the latest
samples (which represent the latest policies of other agents) collected in the DQN’s buffer
and thus avoids divergence. Due to the recency bias in the training of DQN-SER, the
transition matrix only focuses on the latest transitions in the environment and the non-
stationarity is reduced in the training of multiple agents. The learning curve of DQN-SER
shows a steady improvement for 4000 episodes. The agents are able to avoid divergence
and improve their cooperation without any form of message sharing. However, as seen in
the Fig. 5.7, the final policy for CoDBC is able to outperform both independent DQN and
DQN-SER.

5.4.2 Memory Modules - Results

While the CoDBC method outperforms DQN and DQN-SER, the number of episodes
required to learn a cooperative policy is nearly 8000 episodes, as CoDBC needs to be run
sequentially after MA-MeSN policy training has converged. The memory modules provide
a better training procedure than the cooperative decentralized behavior cloning method
(CoDBC). Behavior cloning requires the agents to converge to a stationary policy which
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Figure 5.8: Comparison of Cumulative Reward for Decentralized
Training in Multi-Agent Driving Environment.

could be replicated using an independent model. The model is also not able to converge
to 100% of the performance of the centralized MA-MeSN model. The memory module
presents a solution to the sequential problem and achieves a better cumulative reward
than the CoDBC approach. The cumulative reward achieved during training of memory
modules using the MA-MeSN-MM approach is shown in Fig. 5.8.

The method MA-MeSN-MM achieves decentralized cooperative policy by learning a
function mapping from private observations to the messages received from other agents.
This is different from the CoDBC approach as the independent agents in CoDBC learn a
policy from the agent’s observation to the centralized agent’s behavior policy. The CoDBC
approach thus is missing the communication from other agents to help in its training. In
memory module, the neural network µ is trained to map the observation history of other
agents to the message received from the agents. This assists the memory module to infer
the policy of an agent as cooperative or adversary and in-turn predict the message which
would be received from the cooperative agent. This approach also provides the benefit of
having different models for message policy and behavior policy and does need altering of
the behavior policy trained during centralized training in MA-MeSN. The same model f ′′
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is used for behavior policy predictions. The only difference arises in the messages which
are being fed to the policy network f ′′.

The cumulative reward curve shown in Fig. 5.8 is computed by switching the τ function
to select the predicted messages using the µ model, as shown in Fig. 4.3. The memory
module (MM) is trained in parallel to the policy network and thus does not require addi-
tional training after MA-MeSN has converged. The Fig. 5.8 shows that the MA-MeSN-MM
approach is able to out-perform all other decentralized approaches and doesn’t need to be
trained in a sequential manner. This approach is ideal for real-time agents in MARL envi-
ronments with a goal of cooperation as communication channels are unreliable and induce
a time-latency.
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Chapter 6

Conclusion and Future Work

In this thesis I proposed two novel methods for centralized training and two novel methods
for decentralized training. I also present a novel multi-agent training simulator for au-
tonomous driving on a highway in the presence of an adversary agent. The thesis presents
the results of training the centralized and decentralized methods on the treadmill driving
environment.

6.1 Conclusion

The main focus of this thesis was to present scalable multi-agent approaches which could
be used to train in multi-agent autonomous driving environments. The first approach
presented in this thesis is the MA-MeSN centralized training method (Multi-Agent Mes-
sage Sharing Network). The algorithm provides an inter-agent learning algorithm when
a centralized message sharing location is not available. This approach achieves the best
performance in the scalable environment of multi-agent treadmill driving environment.

The second centralized method presented in this thesis is the MA-BoN method which
is a specialization of the MA-MeSN method for environments which allow for a centralized
message sharing location. The MA-BoN also achieves nearly the same average cumulative
reward at convergence time as MA-MeSN. The slow learning curve for MA-BoN represents
the restrictions on the learning process due to a single message being shared between the
agents.

In this thesis, I presented techniques for training and execution of a cooperative pol-
icy which is shared among multiple agents. For the execution of the decentralized policy,
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I developed and presented two novel methods, CoDBC and MM. The Cooperative Dis-
tributed Behavior Cloning (CoDBC) algorithm uses regular behavior cloning to clone the
centralized policy into a decentralized policy. The Memory Module (MM) algorithms, like
MA-MeSN-MM and MA-BoN-MM, show that predicting the messages from other agents
based on observation history can lead to better decentralized policy.

In this thesis, the multi-agent simulator and OpenAI Gym Environment for the tread-
mill driving environment were developed using python. This environment included basic
physics of driving and adversary agents to mimic driving on a highway. Using the ap-
proaches presented in this thesis, the message sharing between agents is only required
during the training process.

The thesis also verified the algorithms on OpenAI’s multi-agent particle environments
which are based on multiple game theoretic models of multi-agent scenarios. The algo-
rithms presented in this thesis were able to perform appropriately in these environments
and achieve a good performance when compared to the optimal policy.

6.2 Future Work

There are many directions I want to further explore this work. The main motivation of
this thesis was to develop a training algorithm which can work with multiple agents for
autonomous driving. However, there can be situations where the messages between agents
are not received for a certain time period or a new agent joins the group or leaves the
group. A future work for this thesis is to develop an algorithm which can be trained with
variable number of agents in the environment and maintain a varying policy depending on
the number of robots in the environment.

I have done work in this direction. A simple approach for variable number of agents
is to use safety regularization during policy training. The safety regularization can be a
penalty term which depends on the number of the agents. The transfer learning approaches
in reinforcement learning can also be used to train agents when there is variability in the
environment.
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