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Abstract 

The purpose of this thesis was to determine whether the understanding of spine movement 

dysfunction, as indicated by abnormal displacement, velocity, and torso moment data measured by 

a clinical evaluation system (Isostation B-200), was augmented by a flexion-extension task and 

the knowledge of the EMG activity from select abdominal and back extensor muscles and/or by 

knowledge of individual torso tissue forces, estimated fiom an EMG assistecl, dynarnic, three 

dimensional spine model. Because individuals symptomatic for low back pain could not produce 

tme Maximal Voluntary Contractions (MVCs) which were needed for scaling the model's EMG 

inputs, a method was developed which successfully replaced the MVC scahg factor by an EMG- 

to-Force (EMG,,,) scaling factor. Mode1 outputs using the MVC and EMG,,, methods were 

compared for 10 asymptomatic and 4 symptomatic males for a fkeestyle flexion-extension task. 

The EMG,,, method produced sigdicantly lower compressions and flexor muscle forces, but no 

ciifference was found in extensor muscle force. 

The EMGFo,, method was theo used to investigate the understanding of spine movement 

dysfunction. Four males symptomatic (SYMP) for recment low back pain and 10 asyrnptomatic 

(ASYMP) males were each evaluated on two days. The SYMP group were tested on days they 

identified as ''Gd or "Baà". Each day they were tested using the Isostation B-200 and 

performed a flexion-e.?ctension task with hand loads of O, 5 and 1 0 kg. The 8-200, EMG and 

model output data fiom the ASYMP p u p  were used to develop custom profiles for each of 

these methods. Muscle force data, presented as an Amplitude Probability Distribution Function 

(APDF) quantified différences between the groups by determinhg the amount of time that the 

forces were above a criterion level. improved functionality was associated with decreases in 



excessive spinal flexor andor extensor muscle force production and the flexion component of the 

flexion-extension task was better for distinguishing an SYMP individual f?om the MYMP group. 

The EMG profiles (mV, % W C )  did not distinguish the SYMP group or reveal the improved 

function. Performance profiles for the B-200, EMG and the mode1 were found to augrnent the 

understanding of spine movement dysfûnction. 



Acknowledgernents 

This thesis would not exist if it were not for the help of many people. At the top of this 

list is my supervisor, Dr. Robert Norman. His encouragement, insight, mentering and most 

importantly of all, his friendship have meant more to me than he wiU eva know. Dr. Mike 

Sharratt, a comminee member and more importantly a fkiend, is persondy responsible for my 

interest in pursuing a doctorate degree. Who would have thought that teaching a sailing lesson at 

camp Tawingo would have lead to this? Dr. Stuart McGill has taught me more than 1 thought 

possible, particularly about EMG assisted models. 1 thank hirn for letting me stand on his 

sboulders. 1 would also like to acknowledge the contributions of Drs. David Dainty, Dan Stashuk 

and Bill Marras. Your comments, feedback and perspective were aii very valuable. 

1 would Like to thank the Canadian Memonal Chiropractie College for awarding me the 

Spine fellowship. This research could not have been done without their generous support. 

There were many graduate students with whom I crossed paths during my tenure at 

Waterloo. Brian, Dave, Jack, Jim, Vanessa, Marthe, Moe, Patti, Wendy, Sharon, Steve, and Stu 

are each responsible for having distracted me at least once while 1 was ûying to finish my degree. 

You ail owe me a beer! And oh yeah, Pete! What 1 can I Say about Pete. Late nights, early 

momings, bean dip, CW McCall, ODES, a coffee or two, a beer or three, a kid and the best damn 

fiiend I've ever had. You owe me two beers! 

In Waterloo, Wendel1 and Ken saved my butt a few thousand times. Thanks. In College 

Park, Lynne and Sacey saved my butt a few thousand times. Double th&! 

I have been blessed by a wondef i  family and fantastic in-laws. 1 thank each and every 

one of you for ail of your support and encouragement. Mom & Dad, Deb, Greg, Kell Bi Kell, 



Doug & Julie, Laura & Jim, Rosemary & Mark, Robin & Robert, Andy & Kim, you are au the 

best. 

Matthew, 1 love you with all my heart. You have shom me the joys of the world through 

your eyes. Every day you woke up with a mile  and bright clear eyes, ready to attack the &y, not 

a wony in sight. Whenever 1 was tired, hstrated or sad, 1 sirnply had to have a "big squeezer 

hug" from you and all was right with the world. 

And h d y ,  my 'Brown Eyed Girl". There was a Saturday in KnoxviUe when 1 met you 

and my life changed forever. We have shared adventures in Kiawah, Martha's Vineyard, Paris, 

Cairns, Sydney, Auckland and we have so many others yet to discover. Thank you for being a 

part of my Me, standing beside me and loving me. 1 could not have done this without you and 

you deserve an honorary degree! 1 have been truiy blessed and 1 love you with aLl my heart. 

(vii) 



Dedication 

To: 

Rebecca Ann Frazer: hundred - hundred. 

Geny and Gloria Frazer: You taught me how to Love. 

Beverly Mae Frazer 1 think of you often and wonder, "What if .  .. ?". 



Table of Contents 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Abstract (iv) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Acknowledgements (vi> 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Dedication (vüi) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ListofTables (Jw 

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 
Overview of Thesis Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Introduction 2 
Statement of Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 
Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Subproblem 1 1  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Assumptions 12 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Limitations 13 

Review of Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Diagnosis 14 

FunctionalAnatomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15 
Vertebrae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16 
IPtervertebralDisc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16 
Ligament . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17 
Muscle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19 

Mechanismsofhjuy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21 
Vertebra ........................................................ 21 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Ligament 23 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Muscle 26 

Pain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27 
Measurement of Back Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  28 
Spinal Electromyography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31 

Flexion - Relaxation Phenornenon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32 
Electromyography and Low Back Discornfort . . . . . . . . . . . . . . . . . . . . . . . . . . .  32 



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Electromyography Normalization 33 
Biomechanical Models of the Spine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ReductionModels 35 
OptimizationModels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  36 
EMG Assisted ModeIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  40 
EMG Assisted Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  44 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Summary 47 

EMG Amplitude Changes in The Lurnbar Spine Extensor And Flexor Musculature During 
Maximal And Submaxirnal Constant Force Contractions . . . . . . . . . . . . . . . . . . . . . . . .  49 
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  49 
Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  50 

Subjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  50 
Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  51 
Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  51 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  DamReduction 53 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ArnplitudeAnalysis 53 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Frequency Analysis 54 

Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  55 
Maximal Volutary Contractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  55 
Amplitude Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  55 

Sustained . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  55 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  L o a d s o f V ~ g h t e ~ l ~ i t y  56 

Cornparison of the two techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  60 
FrequencyAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  60 

10 s and Sustained Contractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  60 
Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  62 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Conclusions 65 

A Technique for the Calculation of EMG to Muscle Force Scaling Factors 
for an EMG Assisted Lumbar Spine Mode1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  66 
Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  66 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Introduction 66 
Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  67 

ModelOverview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  67 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Subjects 73 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Instrumentation 74 
Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  75 
DataReduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  77 



. . . . . . . . . . . .  . . . . . . . . . . . .  . . . . . . . . . . . .  . . . . . . . . . . . .  . . . . . . . . . . . .  . . . . . . . . . . . .  . . . . . . . . . . . .  . . . . . . . . . . . .  . . . . . . . . . . . .  . . . . . . . . . . . .  . . . . . . . . . . . .  . . . . . . . . . . . .  . . . . . . . . . . . .  . . . . . . . . . . . .  . . . . . . . . . . . .  . . . . . . . . . . . .  
- * . . . - . . . - . *  . . . . . . . . . . .  g : : : : : : : : : : :  . . . . . . . . . . .  2i . . . . . . . . . a .  . . . . . . . . . . .  8 . .  . . . . . . . . .  
C, . . . - . . . . .  .z . . . . . . . m . . .  . . . . . . . . . . .  
: : : : : : : : : : :  



Lumbar Spine Mode1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 10 
Muscle Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  110 

Lumbar Spine Mode1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  112 
Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  112 
Isostation B-200 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  112 

Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  113 
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  113 
Oswestry Low Back Disability Questionnaire . . . . . . . . . . . . . . . . . . . . . . . . . .  115 
PainScale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  116 
IsostationB-200 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  117 

OOC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  117 
B-200 Profile Pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  118 

Electromyography Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  123 
EMG - units of "mV" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  124 
EMG - units of "% MVC" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  132 
EMG-unitsofN&n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  140 

ModelOutputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  144 
. . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Muscle Force .. 144 

LAIL5 Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  155 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Case Shidy Presentations 158 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  CaseStudy#l 159 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Pain 160 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  lsostationf3-200 160 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  EMG - units of* 160 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Muscle Force APDFs 161 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  LAIL5 Compression 161 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  hterpretation 161 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  CaseStudy#2 167 
Pain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  168 
IsostationB-200 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  168 
EMG- u n i t s o f a  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  169 
Muscle Force APDFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  169 
Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  169 
Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  170 

CaseStudy#3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  175 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Pain 176 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  IsostationB-200 176 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  EMG - units of% 177 

Muscle Force APDFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  177 
LAIL5 Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  177 
Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  178 

CaseStudy#4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  184 
Pain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  185 

(xii) 



Isostation B-200 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  185 
EMG . units of N&n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  185 
Muscle Force APDFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  186 
LAIL5 Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  186 
Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  187 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Discussion 192 
Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  204 

Discussion, Conclusions. Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  207 
Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  207 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Conclusions 216 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  References 223 

AppendixA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  232 
Oswestry Low Back Pain Disability Questionnaire . . . . . . . . . . . . . . . . . . . . . . . . . . . .  232 

(xiii) 



List of Tables 

Table 1 The mean moment (SD) and EMG amplitutes for ail flexor ( ~ 6 )  and extensor (n=4) 
muscles for the maximal and sustained contraction tests . . . . . . . . . . . . . . . . . . . . . . . . 5 5  

Table 2 Significant regression relationships £?om the 10 s, submaximal isometric contractions. 

Table 

Table 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , . . . . . . . . * . . . . . * . . . * . . . . . .  59 
Table 3 The EMG amplitudes (% MVC) as determhed by the sustained contraction and 

regression analysis prediction techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 
Table 4 The average mean power kequency (%) (Mean (* SD)) obtained at the time of peak 

EMG activity, normalized to the fint value for each muscle, for each contraction during 
the 70% MVC, 10 s, and sustained isometric exertions . . . . . . . . . . . . . . . . . . . . . . . . . 61  

Table 5 Characteristics of study participants (mean (SD)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74 
Table 6 The Merence (MVC - EMGFa,) in peak compression produceci during the dynamic 

flexions due to the technique used to calculate the EMG scaling factors . . . . . . . . . . . . 80 
Table 7 Characteristics of study participants (mean (SD)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 
Table 8 The number of trials excluded due to gain factoring exceeding 3.5 . . . . . . . . . . . . . . . 1 12 
Table 9 A sumnary of the B-200 OOC protocol test resuits . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 18 
Table 10 Summary of increased secondary and tertiary axes moment activity for OOC 50% 

resistance tests, dynamic sequence 1 and 2, test days 1 and 2 . . . . . . . . . . . . . . . . . . . . 123 
1 1 The mean (SD) RMS difference (% of maximum) in the LAIL5 reaction moment, as 
calculated by the linked segment model and the right and left lower erector spinae EMG 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  140 

12 The mean (SD) RMS différence (% of maximum) in the L4L5 reaction moment, as 
calculated by the linked segment model and the right and left upper erector spinae EMG 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  141 

Table 13 Comparison of 'Bad" and "Good" day test results, by assesment tool, for Case Study 
#1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  159 

Table 14 Summary of increased secondary and tertiary axes moment activity for OOC 50% 
resistance tests, dynamic sequence 1 and 2, test days 1 and 2 . . . . . . . . . . . . . . . . . . . . 162 

Table 15 Comparison of 'Bad" and "Good" day test results, by assessment tool, for Case Study 
#2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  167 

Table 16 Cornparison of "Bad" and "Go& day test results, by assessment tool, for Case Study 
#3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  175 

Table 17 Summaty of increased secondaty and tertiary axes moment activity for OOC 50% 
resistance tests, dynamic sequence 1 and 2, test days 1 and 2 . . . . . . . . . . . . . . . . . . . . 179 

Table 18 Comparison of 'Baâ" and 'CGood" day test results, by assessment tool, for Case Study 
#4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  184 

Table 19 Summary of increased secondary and tertîary axes moment activity for OOC 50% 
resistance tests, dynamic sequence 1 and 2, test days 1 and 2 . . . . . . . . . . . . . . . . . . . . 187 

(xiv) 



List of Figures 

Figure 1 : The Isostation B-200 is a trLaxia1. lumbar spine dynamometer . . . . . . . . . . . . . . . . . .  29 
Figure 2: An example of the linear envelope EMG produced for the RUES during the 10 s 

subrnaximal isometric contractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  55 
Figure 3: Mean (* 1 SD) peak activation levels for all muscles. for ali subjects during the 

sustained. 70% MVC extensiori and flexion efforts . . . . . . . . . . . . . . . . . . . . . . . . . . . .  57 
Figure 4: Representative output of the EMG assisted lumbar spine model during the performance 

of a single trunk flexion and extension with no load in the h d s  . . . . . . . . . . . . . . . . . .  69 
Figure 5:  The postures used for producing the isometric extension maximal and subrnaximal 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  efforts 76 
Figure 6: The effect of processing method and load on the peak and mean L4L5 compressive 

force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  82 
Figure 7: The effect of processing method and load on the peak and mean LAL5 muscle momeW 
Figure 8: The effect of processing method and load on the peak and mean muscle forces . . . . .  84 
Figure 9: The muscle force produced in the lumbar spine model as a fiinction of EMG activation 

level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  86 
Figure 10: A .  illustration of the average EMG. average muscle force and moment relationship 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  87 
Figure 11: Themean (+ 1 SD) Oswestrypainscale scores . . . . . . . . . . . . . . . . . . . . . . . . . . . .  115 
Figure 12: The mean (+ 1 SD) Visual Analog Scale pain scores . . . . . . . . . . . . . . . . . . . . . . . .  116 
Figure 13: B-200 summary perfonnance profile for the ASYMP group (1 0 subjects)for Dynamic 

Rotation at 50% Resistance, Day 1, Sequence 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  120 
Figure 14: B-200 summary performance profile for case study #3 (Good day), for dynamic 

rotation at 50% resistance, day 1, test sequence # 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . .  121 
Figure 15: Summw profile of the mean (*1 SD) ASYMP (9 subjects) EMG activity levels (mV) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  forDay1, OkgLoad 125 
Figure 16: Summvy profile of the mean ( I l  SD) ASYMP (10 subjects) EMG activity levels (mV) 

for Day 2, O kg Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  126 
Figure 17: Sumxnary profile of the mean (*1 SD) ASYMP (9 subjects) EMG activity levels (mV) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  forDay1, 5kgLoad 127 
Figure 18: Summary profile of the mean (*1 SD) ASYMP (10 subjects) EMG activity levels (mV) 

for Day2, 5 kg Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  128 
Figure 19: Summary profile of the mean ( I l  SD) ASYMP (6 subjects) EMG activity levels (mV) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  forDay1, 10kgLoad 129 
Figure 20: Summary profile of the mean (*1 SD) ASYMP (10 subjects) EMG activity levels (mV) 

for Day 2, 10 kg Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  130 
Figure 2 1 : Case Study #3 graphed against the summary proNe of the mean ( I l  SD) ASYMP (1 0 

subjects) EMG activity levels (mV) for Day 2, 10 kg Load . . . . . . . . . . . . . . . . . . . . .  131 
Figure 22: Summary profile of the mean (*1 SD) ASYMP (9 subjects) EMG activity levels (% 

MVC) for Day 1, O kg Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  133 
Figure 23: Summary profile of the mea n ( I l  SD) ASYMP (10 subjects) EMG activity levels (% 

MVC)forDay2, OkgLoad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  134 



Figure 24: Summary profile of the mean (11 SD) ASYMP (9 subjects) EMG activity levels (% 
MVC) for Day 1,s  kg Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  135 

Figure 25: Summary profile of the mean ( I l  SD) ASYMP (10 subjects) EMG activity levels (% 
MVC)forDay2,5kghad ..............................................136 

Figure 26: Summary profile of the mean ( I l  SD) ASYMP (9 subjects) EMG activity levels (% 
MVC) for Day 1, 10 kg Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  137 

Figure 27: Summary profile of the mean (*1 SD) ASYMP (1 0 subjects) EMG activity levels (% 
MVC) for Day2, 10 kg Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  138 

Figure 28: Case Study #3 graphed against the summary profle of the mean ( I l  SD) ASYMP (1 0 
subjects) EMG activity levels (% MVC) for Day 2,5 kg Load . . . . . . . . . . . . . . . . . . .  139 

Figure 29: Summary profle of the mean (* 1 SD) ASYMP (9 subjects Day 1, 10 subjects Day 2) 
LAIL5 moment m) calculated using moment normaiized EMG fiom the left and rigbt 
upper erector spinae electrodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  142 

Figure 30: Case Study #3 graphed against the ASYMP mean (* 1 SD) L4/L5 moment profile 
calculated using moment normalized EMG fiom the left and right upper erector spinae 
electrodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Figure 3 1 : Surnmary profile of the mean (*1 SD) ASYMP (9 subjects) muscle force (N) for Day 
1,OkgLoad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 4 5  

Figure 32: Summary profile of the mean ( I l  SD) ASYMP (10 subjects) muscle force (N) for Day 
2, O kg Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  146 

Figure 33: Summary profle of the mean (*1 SD) ASYMP (9 subjects) muscle force (N) for Day 
1,5kgLoad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Figure 34: Summary profile of the mean (A1 SD) ASYMP (9 subjects) muscle force OIS) for Day 
2,5kgLoad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Figure 35: Summary profile of the mean ( I l  SD) ASYMP (8 subjects) muscle force OIS) for Day 
1, 10 kg Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  149 

Figure 36: Su- profile of the mean (*1 SD) ASYMP (8 subjects) muscle force (N) for Day 
2,lOkgLoad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5 0  

Figure 37: Case Study #3 graphed against the sumrnary profile of the mean ( I l  SD) ASYMP (8 
subjects) muscle force (N) for Day 1, O kg Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15 1 

Figure 38: Summary APDF profile of the muscle forces (N) by each electrode site for Day 1, O kg 
load . . . . . . . . . . . . . . , , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . l 5 3  

Figure 39: Summary APDF profile of the muscle forces (N) by each electrode site for Day 1, O kg 
load and Case Study #3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  154 

Figure 40: The cumulative time (%), for Case Study #3, in which the muscle force for each 
electrode site (n = 12) was greater than the ASYMP criterion force (mean + 1 SD) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5 5  
. . .  Figure 41 : Summaiy profile of the mean (* 1 SD) ASYMP L4L5 compression force (N) 156 

Figure 42: Case Study #3 graphed against the summary profile of the mean (* 1 SD) ASYMP ) 
L4/L5 compression force (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  157 

Figure 43: Case Study #1 graphed against the ASYMP mean (* 1 SD) U/L5 moment profile 
163 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Figure 44: The time that the force for each muscle (n = 12) was greater than the ASYMP criterion 



force (mean + 1 SD) for Case Shidy # 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  164 
Figure 45: The cumuiative time (%), for Case Study #1, in which the muscle force for each 

electrode site (n = 12) was greater than the ASYMP critenon force (mean + 1 SD) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 6 5  

Figure 46: Case Study #1 graphed against the summary profile of the mean (* 1 SD) ASYMP ) 
LNL5 compression force (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  165 

Figure 47: Case Study #2 graphed against the ASYMP mean (* 1 SD) L4/L5 moment profile 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 7 1  

Figure 48: The t h e  that the force for each muscle (n = 12) was greater than the ASYMP criterion 
force (mean + 1 SD) for Case Study #2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  172 

Figure 49: The cumulative tirne (%), for Case Study #2, in which the muscle force for each 
electrode site (n = 12) was greater than the ASYMP criterion force (mean + 1 SD) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 7 3  
Figure 50: Case Study #2 graphed against the summary profile of the mean (* 1 SD) ASYMP ) 

U/L5 compression force (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  174 
Figure 5 1 : Case Study #3 graphed against the ASYMP mean (* 1 SD) L4/L5 moment profile 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 8 0  
Figure 52: The time that the force for each muscle (n = 12) was greater than the ASYMP criterion 

force (mean + 1 SD) for Case Study #3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18 1 
Figure 53: The cumulative time (%), for Case Study #3, in which the muscle force for each 

electrode site (n = 12) was greater than the ASYhIP criterion force (mean + 1 SD) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 8 2  

Figure 54: Case Study #3 graphed against the summary profile of the mean (* 1 SD) ASYMP ) 
ML5 compression force (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 83 

Figure 55: Case Study #4 graphed against the ASYMP mean (* 1 SD) L4/W moment profile 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - . . . . 1 8 8  

Figure 56: The thne that the force for each muscle (n = 12) was greater than the ASYMP cnterion 
force (mean + 1 SD) for Case Study #4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  189 

Figure 57: The cumulative tirne (%), for Case Study #4, in which the muscle force for each 
electrode site (n = 12) was greater than the ASYMP criterion force (rnean + 1 SD) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 9 0  
Figure 58:  Case Study #4 graphed against the summary profile of the mean (* 1 SD) ASYMP ) 

L A I L S  compression force (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19 1 



Chapter 1 

Introduction 

Overview of Thesis Format 

This thesis addresses the issue of spine movement dysfunction and was approached 

through a senes of three investigations. Each investigation is intended to be a stand alone 

publication and is reported in an individual chapter. This approach produces a certain degree 

of repetition, especially in the methods section . 

The overall purposes of the studies were to determine whether the understanding of 

spine movement dysfunction. as indicated by abnormal displacement. velocity, and torso 

moment data measured by a clinical evaluation system (Isostation B-200)' was augmented by a 

flexion-extension task and the knowledge of the EMG activity from select abdominal and back 

extensor muscles andor by knowledge of individual torso tissue forces estirnated from an 

EMG assisted, dynarnic. three dimensionai spine model. Chapter 1 introduces the problem and 

defines the issues. Chapter II is a more thorough review of the literature pertaining to these 

issues. 

In order to use the biological model developed by McGill ( 1992) it was necessary to 

find an alternative to the maximal voluntary contraction (MVC) method used for obtaining a 

muscle's maximal EMG amplitude. The MVC method is problematic because individuais 

symptomatic for low back pain cannot produce the mie MVCs which are necessary for scding 

the model's EMG inputs. Chapters III and N report on two approaches investigated to 

overcome this particular problern. 



Chapter V is an extensive investigation which directly addresses the purpose of the 

thesis. The three studies are then discussed in Chapter VI. This chapter also co~tains a 

summary and list of suggestions for future research. 

Introduction 

The mechanisms of back injury are not well understood. Knowledge of the distribution 

of tissue forces in injured and uninjured spines in response to extemal loading is required if 

injury mechanisms are to be comprehended. The understanding of injury mechanisms is pre- 

requisite to the development of effective prevention and rehabilitation methods (Norman, 

1992). 

At some point in their life, 80% of the adult population will have an episode of acute 

low back injury. Typically, 70-80% of these episodes will resolve within six weeks of injury 

(Nachemson, 1976, Spitzer et al., 1987). The probability of work return decreases from 50% 

after 6 months absence to practically 0% after 2 years absence (Rowe, 1983). The economic 

cost of low back injury in the United States has been estimated to be between $16 and $50 

billion each year (Frymoyer, 1990). These costs are not normally distribured as over 80% are 

accounted for by only 10% of the injured population (Spengler et al., 1986). 

Generating a specific diagnosis, and identifying the source of spine movement 

dysfunction, from symptoms is dificult. At least eleven structures for each motion unit are 

capable of producing low back pain in response to mechanical injury andor chemicai irritation 

(White and Panjabi, 1990). As a result, the diagnostic process has become overwhelmed by the 

sheer number of "diagnoses". These ternis are not well defined and the specificity of some 



"diagnostic" tests is questionable (Nachemson, 1992). Patients may receive two or three 

diagnoses for the same symptoms depending on the focus of the health care practioner (Spitzer 

et al.. 1987). Bigos et al.. (1986) reported that only 12 - 15% of back problems had physical 

findings that indicated the exact cause of symptoms. The other 85% were classified as 

"idiopathic" or "nonspecific". Tnano et al. (1993) used the forced descriptive categories of 

entrapment. mechanical or muscular back pain to avoid the dilemma of determining the exact 

pathoanatomical bais of a patient's cornplaint. Marras et al. (1993 and 1995) have used the 

motion parameters of trunk velocity and acceleration in conjunction with a specific test 

protocol as a means to quantify and classify spine movement dysfunction. Stage one of their 

two stage model correctly classified more than 94% of 5 10 individuals as either being healthy 

or having a low back disorder. The second stage of the model was found to reasonably classify 

(30% error rate) the individuds suffering from a low back disorder into one of ten iow back 

disorder classification groups. 

Regardless of the classification system used, the "traditional" treatment of acute low 

back pain with decreased movement (Le. prescribed bed rest) greater than 1-2 days appears to 

be of little use (Deyo et al., 1986). Rather, maintaining or achieving movement of the structures 

in the lower back, is now the desired rehabilitation outcome (Deyo et al., 1986, Waddell. 

1987). A cornmon clinical goal that conservative treatment methods have focused on is the 

renirn of an individual's "abnomal" function to "normal". Typically this is achieved through 

the use of modalities such as fiexibility, strengthening and/or manipulation (specific, controlled 

movements of the spine) as  in the chiropractic approach (Vernon, 199 1 ). Therefore, some 
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clinicians use the degree of normal movement or obvious movement disability as  "rneasures" 

of treatment outcome rather than dwelling on the pathoanatomy per se. 

Decreased spinal strength and velocity of movement are characteristic observations 

made of individuals symptomatic for low back pain. Commercial, computerized 

dynamometers have been designed to measure and quantify these parameters for the lumbar 

spine. They are becoming a routine component of the assessrnent and rehabilitation procedure 

(Spengler and Szpalski, 1990). A "Back Dysfunction" rating, to help classify individuals. c m  

be produced, by utilizing a custom clinical evaluation system software package in conjunction 

with a specific dynamometer, the lsostation B-200 (Deutsch, 199 1 ). The Back Dysfunction 

rating and other performance data may also be used as a guide in the rehabilitation process, to 

assist in determining when an individual has regained "normal" function. 

The "Back Dysfunction" rating rnust be interpreted with caution. Back dysfunction, is 

determined by abnormal dispiacement, velocity and torso moment data output during specific 

directions of movement (e.g. flexion. rotation to the right). The rating is not a diagnostic 

rneasure, but simply a composite outcome measure of an individual's response, given their 

functionality at the time of the test. to woriung against externai loads. By concentrating on the 

magnitude of the peak moment and velocities of each test, it ignores the moment timc history 

that produced the movements. Also, the software compares absolute, not relative peak 

moments when quantifjing back dysfunction. individuals symptomatic for iow back pain rnay 

have decreased strength. Thus, an individual may have an absolute value for a peak torque 

which is considered abnormal. but when expressed as a percentage of their own strength, it 

may indeed be in the normal range. Also, in trying to understand the changes that occur with 
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regaining normal function, analysis of the moment-tirne histories may be more imponant than 

simply comparing peak values. 

Using a dynamometer may aid in the identification of dysfunctional spine movements. 

but the location of the dysfunction (e.g. right side) and the cause(s) of the abnormal 

displacements, velocities and torso moments remain unidentified. To answer these questions 

requires knowledge of the functionai nature of the muscles that contribute to the movement. 

Electromyography (EMG) has been used to study the response of the extensor 

musculature to sustained isometric muscle contractions for individuais asymptomatic and 

symptomatic for low back pain. The observation of electrical silence (flexion-relaxation 

phenornenon) at the end range of flexion found in asymptomatic individuals has been found 

absent in 20 - 45% of individuals with low back pain (Floyd and Silver, 1955, Triano and 

Schultz, 1987). 

The assessment of EMG amplitudes in the spinai musculature of symptomatic and 

asymptomatic low back pain individuals during the performance of static and dynarnic tasks 

has produced mixed findings. in comparing the EMG amplitudes between these two groups, 

researchen have found no differences (Nouwen et al., 1987). increased amplitude (Arena et al.. 

1989) and decreased amplitude (Ahem et al., 1988) for the asymptomatic group. Each of these 

studies represented the task by a single EMG value (e.g. mean EMG), which ignores the time 

history of the EMG signal. Sutarno (1993) investigated the kinematic and EMG time histones 

of symptomatic and asymptomatic people performing a flexion-extension task, but had 

difficulty categorizing the low back pain individuals. This may have been due to the size of the 

load and the fact that only one subject was in pain at the time of testing. The assessment of 



individuals at different periods during the time course of iheir symptomatic period may 

enhance both the classification of individuals and provide more insight into muscular function 

and low back pain. 

Changes in the EMG power spectmm have been used to differentiate between 

individuals symptomatic and asyrnptomatic for low back pain. Montani e t  al.. ( 1992) found 

that the mean power frequency declined faster for those with a history of low back pain than for 

controls. Back pain subjects also had an asymrnetry in fatigue rates between their left and right 

lower erector spinae. Unfominately, the relationship between the asyrnmetry and the site 

andor side of the low back pain was not explored. De Luca and colleagues have also utilized 

sustained isometric contractions and the power spectnims from multiple electrode sites to 

successfully distinguish between healthy subjects and individuals with low back pain (Roy et 

al., 1989. Roy et al., 1990, De Luca, 1993). 

It appears then, that the EMG power spectrum may be used to classify individuals with 

and without low back pain. It may also assist in locaiizing the problem area and augrnenting 

the understanding of the effects of injury on some aspects of muscular performance. However. 

this method is limited to the performance of static contractions . To-date, it cannot be used to 

identify the specific impairment associated with the dynarnic activities of dai!y living, such as 

flexion-extension. 

Monitoring the force time histories of the spinal musculature is another method that 

could be used to assess muscle function. Tissue forces in the lumbar spine may be estimated 

using sophisticated computerized spine models (McGill and Norman, 1986. McGiil, 1992. 

Marras and Sommerich. 199 1 a, 199 1 b). McGill ( 1 992), developed a three dimensional 
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dynamic mode1 which uses EMG as a biological input signal in order to partition the restorative 

moment into forceftime histories for 50 muscle fascicles. 12 ligament vectors and the 

compression and shear forces acting on the LARS motion unit. An earlier version of the model 

(McGilI and Norman. 1986). found motion unit compression to be appreciably reduced to well 

below failure levels as compared to compression predicted from a mdimentary, single 

equivalent erector tissue model with a 5 cm moment m. Output from this model was also 

used as the bais for a hypothesis about the source of sacroiliac pain (McGiIl. 1987). 

ffiowledge of the forceftime histories for ligament and muscles may allow the 

determination of a more precise identification of dysfunctional structures in individuals with 

low back pain. However. because maximal voluntary contractions are required to norrnalize 

the EMG input, the model has never been utilized with a spine movement dysfunction 

population symptomatic for low back pain. Therefore, it is not known if individuals with spine 

movement dysfunction have tissue forceltime histories different than normals, or what the 

effects of recovery would be on the forcehime histones. 

The goal of this thesis is to integrate the commercial dynamometer, electromyography 

and a sophisticated modei of the spine to learn more about spine movernent dysfunction in 

individuals asymptomatic and symptomatic for low back pain. Assessrnent of the entire 

moment time history produced during low back dynamometer testing will allow an enhanced 

assessrnent of the "normal" parameters and facilitate the identification of "abnormal" pattems. 

Assessment of EMG time histones dunng the performance of a dynamic activity of daily 

living task may provide further insight into the muscular function. The spine model, which 

incorporates EMG as an input, will allow muscle force-time history pattems to be measured for 
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dynamic activities. By evaluating asymptomatic individuals twice, the amount of variability 

between test sessions may be documented for each of the evaluation techniques. This will 

assist in evaluating the responses of the syrnptomatic individuals when measured at intervals 

during the recovery period. The application of these measures may provide insight in to the 

muscular source. as well as the effects, of spine movement dysfunction. 

Statement of Purpose 

The purpose of this study was to determine whether the undentanding of spine movement 

dysfunction. as indicated by abnormal displacement. velocity. and torso moment data measured 

by a clinical evaluation system. was augmented by a flexion-extension task and the knowledge 

of the EMG activity from select abdominal and back extensor muscles and/or by the knowledge 

of individuai ton0 tissue forces estimated frorn an EMG assisted, dynamic. three dimensional 

spine model. 

Researc h Questions 

S peci ficall y, the following research questions were addressed: 

1. Could the dynamic spine model be used for people in pain? 

RATIONALE: The model required that maximum voluntary contractions be performed 

to norrnalize the EMG. These contractions were problematic for individuals with low 

back pain. Was it possible for asymptomatic individuals to perform sustained. 

submaximal contractions of sufficient intensity that would induce maximal electrical 

activation of the flexor and extensor musculature? If so, this would avoid the need to 



use the typical maximal voluntary contractions to determine the maximal electrical 

activation. 

7 -. Was movement dysfunction identification, as documented by abnomal peak 

displacement. velocity and tors0 moment data output from a commercial dynamometer 

(Le. the Isostation 8-200) confirmed andor augmenteci by the assessment of the entire 

moment-time history? 

RATIONALE: Displacement. velocity. and moments may be obtained from a variety 

of dynamometers. The Isostation B-200 is a specific commercial dynamometer that 

utilized this information to produce a "Back Dysfunction" rating. Individuals with low 

back pain have been found to produce abnormally low magnitudes of peak torque 

production in primary and secondary axes during isometric and dynamic testing. But 

this comparison was made using absolute values. which did not account for strength 

differences. instead of relative values. Did a comparison of the relative moment 

magnitudes over the whole time history enhance the assessment? 

3. Did EMG obtained from select abdominal and back extensor muscles help specify a 

more precise location of spine movement dysfunction? 

RATIONALE: The B-200 quantified a level of dysfunction, but it oversirnplified the 

lumbar spine and the tests were not representative of tasks typically encountered in the 

activities of daily living. EMG has been utilized to assess muscular function. Did 

EMG profiles constnicted from asymptomatic individuals perfoming a flexion- 
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extension task provide insight into normal muscle function and serve as a reference for 

symptomatic individuals. assisting in providing a more specific identification? 

1. Was a more precise identification of the region of the back involved in the movement 

dysf~nction. if not which tissue. possible, using the information provided by the spine 

model? 

RATIONALE: The spine model provided forceltime histones for 50 muscle fascicles. 

12 ligaments and compression and shear forces acting on the LAIL5 motion unit. Did 

this level of knowledge provide more specific identification of dysfunctionai structures? 

5. What were the effects of recovery from spine movement dysfunction on the phase and 

magnitude of the lumbar spine rnodel tissue forcehime histories dunng isometric and 

dynamic contractions and did these force-time profiles provide more information than 

either the EMG or B-200 alone? 

RATIONALE: The EMG assisted. dynamic. three dimensional spine model partitioned 

the reaction moments produced by a linked segment model into the restorative moments 

generated by the 50 muscle fascicles, 12 ligamentous components, and the non-linear 

elastic intervertebrai disc. Muscle fascicles that were hinctionally similar were 

assigned activation patterns from common surface EMG electrodes. Therefore, if 

changes in muscle function occurred with recovery, the changes should be observed in 

the model muscle force outputs. Also, if changes in muscle Function did occur, these 

may have been observed in the EMG profiles and the B-200 profiles. 



Subproblem 

1.  What were the specific resources necessary for each method? 

RATIONW: this allowed a costhenefit analysis to be performed so that for a specific 

scenario (e.g. clinical practice. research laboratory), the most appropriate method could 

be selected. 

To answer these questions and address these subproblems. individuals asymptomatic 

and symptomatic for low back pain perfomed a series of static and dynamic tests. The 

Oswestry Low Back Disability questionnaire and a visual analog pain scale were given to al1 

participants. Isometric, maximal voluntary contractions and sustained. submaxirnal isometric 

contractions were used in an attempt to elicit maximal EMG electrical activation levels. The 

dynamic testing incorporated a standing, flexiordextension task with and without loads. A 

standard clinical evaluation testing protocol was perfomed by dl participants. The EMG from 

six bilateral muscle groups (i.e. 12 channels), trunk kinematics, the tissue forceftime histories 

from a spine model and the position, velocity and moment data from the B-200 were analyzed 

to determine differences between the asyrnptomatic and symptomatic individuals. Each 

asymptomatic person was tested twice. The asyrnptomatic individuals' data provided both 

normative values for each day of testing and measures of variability between test days. The 

symptomatic individuals were tested at two points of time during the course of their recovery 

from dysfunction in order to determine the effects of recovery. 



Assump tions 

1. Not al1 of the muscles for which forces were estimated could be monitored by surface 

EMG (e-g. psoas). It was assumed that the EMG-time history from agonist musculature 

(e-g. intemal oblique for psoas) satisfactody represented these muscles. This 

assumption is supported by data from McGill et al. ( 1996) who found that well selected 

surface electrode locations did provide a representation of deeper muscle EMG activity, 

with RMS differences of 2- 15% MVC RMS difference found during the performance 

of clinicat tasks. 

2. It was assumed that each lumbar joint accounts for a constant proportion of flexion. 

Therefore, external measures of spine kinematics were used to measure the rotations a< 

individual lumbar levels. 

3. It was assumed that muscle forces may be approximated by using estimates of their 

length, velocity and linear envelope electromyograrn in conjunction with appropriate 

low pass filtenng of the electrornyogram. 

4. During the performance of the isometric and dynamic flexion-extension tasks, 

kinematic symmetry was assumed between the left and right sides of the body. 

5 .  As a result of suffkient rest petiods between test sessions, the subjects were not 

fatigued. 



Limitations 

Conclusions were limited by the number of. age of. and to the type of subjects recmited 

for this study. 

7 . The isostation B-200 was a novel testing device for the lumbar spine. This limited the 

test results to this specific type of lumbar spine dynamometer. 

3. The dynarnic contractions were of a small duration and intensity. It was not anticipated 

that fatigue would result. However. if it did. it was not be possible to correct the EMG 

signals for the effects of fatigue. 



Chapter II 

Review of Literature 

Diagnosis 

The process of diagnosis for individuals with low back pain has become a 

categorization process that shouid hilly consider the aetiogensis and prognosis of the disorder 

(Troup and Videman, 1989). However, the diagnostic process has become overwhelrned by the 

shear number of "diagnoses" and their inconsistent application. Lumbar strain, lumbar sprain. 

lumbago, sciatica, facet syndrome, ligamentitis. myofasciitis. sacroiliac joint dysfunction. 

degenerative disk disease. segmentai instability and low back pain of idiopathic origin. to name 

but a few, are very common diagnoses. These tems are not well defined and the specificity of 

some "diagnostic" tests is questionable (Nachemson, 1992). A patient may present with two or 

three different diagnoses for the sarne symptoms, simply by having consulted multiple health 

care practioners (Spitzer et al., 1987). The application of strict diagnostic criteria does not 

improve rnatters. Bigos et al., ( 1986) reponed that only 12 - 15% of back problems had 

physical findings that indicated the exact cause of symptoms. The other 85% were classified as 

"idiopathic" or "nonspecific". Triano et ai., (1993) utilized the forced descriptive categories of 

entrapment, mechanical or muscular back pain, to avoid the dilernma of determining the exact 

pathoanatornical b a i s  of a patient's cornplaint. 

The assessrnent of higher order trunk motion characteristics has been found to facilitate 

the assessrnent of individuds with low back disorders. Marras et al. (1993, 1995) have used 

the parameters of trunk velocity and acceleration in conjunction with a specific test protocol as 

a means to quantify and classify spine movement dysfunction. individuals performed flexion 

14 
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and extension efforts in five transverse plane trunk postures. Ignonng the initial flexion and 

extension cycle and averaging the subsequent cycles allowed 14 tmnk motion charactenstics to 

be measured for each posture. An eight variable motion component model was developed that 

incorporated trunk motion characteristics from each of the movement planes. To account for 

the interaction of the variables. four different evaluation technique's were used to mesure the 

success of the model's classification of the study participants. Stage one of the two stage mode1 

correctly classified more than 94% of 5 10 individuals as either being healthy or having a low 

back disorder. The second stage of the model was found to reasonably classify (30% error 

rate) the individuals suffiring from a low back disorder into one of ten low back disorder 

classification groups. This method may eventually be used as a tool to help diagnose low back 

disorders. 

The "stage" of low back injury is often described as acute. sub-acute, or chronic. Until 

recently, there has been no consistent definition of these terms. They are now defined based on 

the duration of absence from work: acute (fewer than seven days); sub-acute (seven days to 

seven weeks) and chronic (more than seven weeks) (Spitzer et al.. 1987). Recurrent Iow back 

pain has been added to these stages and is defined as a four to six week symptom free period. 

prior to the current episode, with more than six episodes of pain within the 1 s t  year (Triano et 

ai., 1993). 

Functional Anatomy 

A functional spinal unit (FSU) consists of the superior and inferior vertebrae, the 

connecting intervertebral disc and ligaments (White and Panjabi. 1 990). Each of these 
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structures. and the surrounding musculature. are innervated by nerves capable of relaying 

sensations of discornfort when stimulated by a mechanical andior chernical stimulus (White 

and Panjabi, 1990). Understanding of the functionai anatorny of the spine is irnperative for the 

interpretation of spinal mode1 output and the undentanding of low back injury mechanisms. 

Vertebrae 

A vertebra consists of an antenor block, the vertebral body, and a posterior bony ring. 

the neural arch. The vertebral body of the lumbar spine is cylindrical in shape. wider in the 

coronal plane than the sagittal and the vertebral body increases in size from LI to L5. The 

neural arch contains the oval shaped pedicle of the lumbar spine, which arises from the 

superior and posterior lateral border of the vertebra. The spinous process projects almost 

directly postenor from the vertebral body. The two superior facets are positioned laterally of 

the two inferior facets. so that the infenor facets from the superior vertebra articulate inside the 

superior facets of the inferior vertebra (Miely et al.. 1990). 

This articulation is a facet or zygapophyseal joint. These synovial joints permit 

vertebral articulation and serve as stabilizing structures to protect the spine against torsional 

damage. Depending on the posture and loading rate, the facets aiso resist anterior shear and 

share a percentage of spinal loading, (White and Panjabi, 1990). 

Intervertebral Disc 

The intervertebral disc consists of a gelatinous nucleus pu!posus encompassed by a 

laminated. annulus fibrosus and is situated between the cartilaginous endplates of the superior 

and inferior vertebrae. The nucleus pulposus fills 30-50% of the disc volume and its water 
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content (70-908). decreases with age (White and Panjabi, IWO). The annulus fibrosus fibers 

are arranged in concentric layers. The fibers are angled approximately 30" from the horizontal 

and successive layers slant in opposite directions. The disc is avascular, relying on diffusion 

due to vertebral loading and unloading for nutrition. 

Ligament 

The seven ligaments associated with the intervertebral joint are the anterior 

longitudinal, postenor longitudinal, ligamentum flavum. capsular. intertransverse, interspinous 

and supraspinous. The role of the ligaments is to protect the spinal cord by restricting motion 

segment displacement within an adequate physiological range, providing stability to the spine. 

transfemng tensile loads and absorbing large arnounts of energy during traumatic situations 

(White and Panjabi, IWO).  

Anterior Longitudinal (ALL): This ligament runs the entire length of the spinal column. and 

is attached firmly to the anterior edge of the vertebral body and loosely to the annular fibers. It 

consists of three layen. The deep. intermediate and superficial layers connect one, two or 

three, and three or four vertebrai layers, respectively (White and Panjabi. 1990. Miely et al.. 

1990). 

Posterior Longitudinal (PLL): This ligament runs the entire length of the spinal column. It 

has an interwoven attachment with the intervertebral disc and is wider at the disc level than at 

the intervenebral body (White and Panjabi. 1990, Miely et al., 1990). 
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Ligamentum Flavum (Lm: This stmcture has a paired appearance due to a midline cleavage. 

and runs from one vertebrai lamina to the next. It is yellow in appearance due to the large 

content of elastin fibers (White and Panjabi. 1990. Miely et al., 1990). 

Capsular (CL): These ligaments attach on the articular regions of the superior and inferior 

facets and blend mediaiiy with the ligament of flavum. The fibes are generally oriented 

perpendicular to the plane of the facet joints (White and Panjabi, 1990, Miely et al.. 1990). 

Intertransverse (ITL): These ligaments span the transverse processes. In the lumbar region 

these ligaments are thin and membranous (White and Panjabi. 1990. Miely et al.. 1990). 

Interspinous (ISL): The intenpinous ligament is bilateral and consists of a ventral. middle 

and dorsal part. Its fibers transverse the interspinous space in a posterocranial direction 

(Heylings. 1978). 

Supraspinous (SSL): The supraspinous ligament attaches to the tips of the spinous processes 

and is thick and well developed in the lumbar region (White and Panjabi, 1990. Miely et al.. 

1990). Heylings (1978), found this ligament not to extend caudally beyond L5. Caudal to this. 

its position is taken by the most medid tendon of the erector spinae. 



Muscle 

The musculature in the region of the lumbar spinae is commonly referred to a s  the 

erector spinae. The work of Macintosh and Bogduk. ( 1987) and Macintosh et al.. ( 1986) 

reveals that the erector spinae really consists of three distinct muscle groups, the multifidus 

(M), longissimus thoracis (LT). and iliocostalis lumborum (IL). The IL and LT can each be 

subdivided into two distinct sections. the pars thoracis (Pt) and pars lumborum (PI). This 

produces five distinct muscle groups, the M. LTpT. LTpL, iLpT and ILpL. 

Multifidus (M): The multifidus can be divided into five distinct bands. Each band has 

fascicles that are contiguous rostrally and arise from the tip of a spinous process. its laterai 

surface and the vertebral lamina. At Ll ,  the deepest and shortest fibers insert into the venebral 

marnmillary process of L3. The next layer of fibers insert at LA, the next layer of fibers at L5 

and the last layer of fibers attaches to the sacrum. This onginhsertion pattern is repeated for 

each of the remaining lumbar venebra and the number of layers inserting on the sacrum 

increases for each successive venebra (Macintosh et al.. 1986). The caudal attachment point 

for each band of fascicles is almost directly beneath their origin on the spinous processes. 

making extension of the lumbar spine the primary action of multifidus (Macintosh and Bogduk. 

1986). 

Longisshus Thoracis pars Thoracis (LTpT): The LTpT arises from the thoracic transverse 

processes (Tl - T3,4) and ribs (T3,4 - T12). The fascicles arising from Tl - T6 attach caudally 

to the lumbar spinous processes. The fascicles arising from ï7 - T 12 attach caudally to the 



sacral spinous processes. the dorsal aspect of the fourth sacral segment (Macintcch and 

Bogduk. 1987). Lumbar spine extension is produced by bilateral activation while unilateral 

activation produces lateral flexion. 

Longissimus Thoracis pars Lumbomm (LTpL): The LTpL consists of five fascicles that 

arise from the accessory and transverse processes of the lumbar vertebra (LI - L5) and 

converge ont0 the posterior-superior iliac spine (LI - L4). The L5 fascicle attachment point is 

the ventromedial surface of the ilium (Macintosh and Bogduk. 1987). Bilateral activation 

produces extension of the lumbar spine. Unilateral activation induces a small ipsilateral laterai 

flexion, and rotation. 

Iliocostalis Lurnborum pars Thoracis (ILpT): The ILpT arises frorn the ribs (T5 - Tl 2) and 

attaches to the iliac crest in a medial to lateral order (T5 - T 12) (Macintosh and Bogduk, 1987). 

Lumbar spine extension is produced by bilateral activation whiie unilateral activation produces 

lateral flexion. 

Iliocostalis Lumborum pars Lumborum (ILpL): The ILpL consists of four fascicles that 

arise from the lateral one quarter of the transverse process of the lumbar vertebra (L 1 - LA) and 

the adjacent thoracolumbar fascia Each fascicle attaches caudally to the iliac crest (Macintosh 

and Bogduk. 1987). Bilateral activation produces extension of the lumbar spine. Unilateral 

activation induces a srnall ipsilateral lateral flexion, and rotation. 



Mechanisms of Injury 

Tissue injury results when the magnitude of the tissue load is greater than the tissue 

tolerance. This can occur via the application of a single excessive load, cyclical loading with 

subcritical loads or subcritical loads sustained over a period of time. For the subcriticai loads. 

the rate of darnage may exceed the rate of repair. resulting in tissue failure under rnildly 

abnormal loads (Goel et al.. 1988. McGill. 1995). Due to the viscoelastic nature of bone, 

ligament. tendons and passive muscle, the rate of loading must also be considered as an injury 

mechanism (White and Panjabi, 1990). 

Vertebra 

The compression strength of the vertebrae increases from C 1 to L5. A sharp decrease 

in strength occurs after 40 yean of age. primarily due to the decrease in osseous content. Every 

unit of decrease in osseous tissue content. produces a two fold decrease in compressive 

strength. The resultan: central or peripheral endplate fracture of a compressed FSU depends on 

the nucleus pulposus' undegenerated, or degenerated. state. In either case. the annulus fibrosis 

is not damaged (White and Panjabi, 1990). 

Yang and King (1984) found the facets transmitted between 3 - 47% of the applied 

load, depending on the posture and the functional integrity of the FSU. They also found that 

excess facet loading caused the inferior facet to pivot about the pars, stretching the joint 

capsule. The facets provide approximately 45% of the torsional strength (White and Panjabi. 

1990) and cyclic tonional loads produce both d i x  and facet joint darnage (Goel et al.. 1988). 

Posterolateral disc injury has been proposed to alter facet joint asymmetry. leading to facet 



cartilage degeneration, osteoarthritis. facet atrophy and intervertebral forarnen narrowing 

(Panjabi et al., 1984). 

Intervertebral Disc 

Simple disc compression. thought to be the cause of disc hemiation and its associated 

pain, is more likely to result in end plate fracture. Torsion has been shown to be the 

mechanism required to injure the annulus fibers (Farfan et al., 1970). Disc hemiation was 

found to occur by sudden compression of a fully flexed, laterally bent, FSU (Adams and 

Hutton, 1982). The compressive strength of the lumbar spine is affected by gender and age. At 

40 years of age. the strength is approximately 6700 N for males, and 4700 N for fernales. 

Compressive strength decreases 1000 N and 600 N per decade. for men and women 

respectively (Jager and Luttmann. 1992). 

Clinically, the posterior or postenolateral portions of the disc are the most common 

sites of disc hemiation, which is thought to be preceded by micro-tearing of the annulus fibers. 

Fissures in the annulus are present by 30 yean of age (Holrn, 1990). decreasing their capacity 

to contain the nucleus pulposus (Wiesel et al., 1985). 

Panjabi et al.. ( 1984) found that annulus injury and nucleus removal significantly 

altered the main motions, the coupled motions and the creep response of the FSU. Right 

posterolateral injury resulted in asymmetrical FSU motion and increased the range of spinal 

movement but did not affect the rate of creep. McGill and Brown (1992). measured the 50% 

recovery time for creep, induced in nomals by prolonged flexion. to be two minutes. 
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Increased spinal movement due to injury and increased joint laxity due to creep effects. could 

combine to further increase the risk of hyperflexion trauma. 

Very little is known about the effects of shear. Load shear represents the shear force 

produced by the weight of the load and body before the offsetting shear forces produced by the 

extensor musculature are considered. Jager and Luttrnann (1992) report small displacement. 

but no damage occurring for 200 N of shear, but total rupture for 7400 N. However, 

biomechanical modeis provide insight into the magnitude of shear produced by lifting loads. iri 

1988, McGill and Norman studied the effects of a detailed anatomical model on the shear 

forces produced in response to a L4L5 moment of 227 N-m. improved anatomical detail was 

capable of reducing the magnitude of shear from 565 N with LA shearing anteriorly on L5, to 

200 N with L4 shearing posteriorly on L5, as a result of support by muscle activity. The 35% 

reduction illustrates the substantiai contribution made by the musculature. Potvin et ai., 

( 199 1). found shear forces ranged from a squat lift maximum of 194 t 136.3 N at 22 kg, to 483 

LZ79.1 N at 22 kg for stoop lifts (L4 shearing posteriorly on L5). Cholewicki et al., ( 199 1 ). 

used a static. two dimensional computerized model to study female and male powerlifters 

during a national championship. The mean loads of 145.8 kg for females and 256.7 kg for 

males, produced load and joint shears of 1666 N and 1 107 N respectively, for females, and 

2832 N and 1739 N for males. 

Ligament 

In the neutrai position, the ligaments provide only minimal stability. It is near the 

physiological end ranges of motion that the ligaments play a major role. 



Posterior Longitudinal (PLL): The PU.  is strained equally by flexion and lateral bending 

(Panjabi et ai., 1982). 

Ligarnenturn Flavum (Lm: The LF's high elastin content and prestress allows it to resist 

extreme flexion of the spine (Hukins et ai., 1990). The paired structure of the LF means that 

both sides are strained in flexion. For lateral bending to the right, the left LF is strained more 

than the right LF. This pattern reverses for right lateral flexion. Minimal strain is induced by 

left or right rotation (Panjabi et al.. 1982). 

Capsular (CL): The coupled motion of the FSU produces strain in both the left and right CL 

during flexion and extension. Right rotation produces maximal strain in the right CL but no 

strain in the left CL. However, a nght lateral bend produces minimal strain in the right CL and 

a strain in the left CL greater than extension (Panjabi et al.. 1982). Anderson et al., ( 1985) 

predicted strains at 100% of L5/S 1 flexion for the CL of 101.3%. inaccurate modeling of the 

CL was cited by the authors to produce its unrealistically high strain. 

Supraspinous (SSL) and Interspinous (ISL): The SSL and ISL are the most strained 

ligaments during flexion. Simuiated flexion of excised spinous processes found SSL and ISL 

toad transmission only towards the end range of motion (Hindle et al., 1990). SSL removal 

showed the ISL capable of handling 75% of the load. Although the entire FSU was not tested, 

these observations are consistent with the mode1 predictions of McGill (1988). Adams and 

Hutton (1982) found the SSL and ISL the first structures darnaged with hypemexion of the 
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joint. Hukins et al., (1990) dismissed the SSL and ISL role of resisting flexion. Based on the 

SSL's collagen structure and Iack of tensile stiffness, its described role is to simply act as an 

anchorage site for the erector spinae tendons. The ISL collagen fibre orientation, determined 

from x-ray diffraction, was "roughly parallel to the spinous process". "so that they do not 

stiffen the ligament as it is stretched dunng flexion of the spine". Their function for the ISL is 

to anchor the thoracolumbar fascia. Closer examination of "roughly parallel" shows that the 

arrangement is fanlike "about an axis parallel to the spinous process". This description actually 

describes the hinction of ISL perfectly. Hexion of a supenor vertebrae would increase the 

angle of the axis, resulting in an increase in both the ISL's ability to resist flexion and the 

amount of antenor shear produced. 

Anderson et al., (1985) predicted strains at 100% L5/S 1 flexion for the SSUISL of 

8.8%. Modeling the SSLlISL as one structure is likely the source for its low strain prediction. 

McGill, (1988). found the LAL5 ISL to contribute the geatest flexion resisting forces and to 

undergo the largest stress and strain. At full flexion, the ISL strain was within reported failure 

limits. Although the location selected for the ISL may have been responsible for these 

predictions, the large strains were cited to match well with the clinical observations regarding 

the incidence of ISL failure. 

Anterior Longitudinal (ALL): The ALL is strained in extension and lateral bending (Panjabi 

et al., 1982). 
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Musc te 

Many individuds with low back discomfort are suffering from a non-radiating type of 

iow back pain. The cause of the discomfort is thought to be muscular strain or a ligamentous 

sprain, secondary to a specific traumatic stress, continuous mechanicd stress or micro-tearing 

of the annulus fibrosis (Wiesel et al., 1985). Large moments may be produced about the 

lumbar spine and modeling output would suggest that the forces required to produce the 

sufficient moments are primarily muscular. For example. Troup and Chapman ( 1969) report 

isornetric back extensor strength of 391 i 76 Nam for men and 244 t 53 N-m for women. The 

body has the capacity to both withstand and produce high levels of muscle force, as shown by 

Cholewicki et al., ( 199 1). How then is muscle injured? 

Muscle injuries induced in laboratones have not been achieved by isometric or 

concentnc contractions. but rather passive stretch or eccentric actions are required (Frymoyer 

and Gordon, 1989). Injury induced by an eccentnc action would indicate that too much tension 

has been developed in sorne section of the myotendinous or osseotendinous junction (Frymoyer 

and Gordon, 1989). 

Muscle injury may be maintained or aggravated by muscle spasm. Spasm is a 

shortening of a muscle due to nonvoluntary motor nerve activity (Gatterman, 1990). High 

precontraction metabolite ievels due to persistent muscle spasm and prolonged tension may be 

associated with excessive back muscle fatigue (Armstrong. 1984). Current treatment 

objectives for low back injury include rest for the affected anatomical stnictures, and 

decreasing muscular spasm (Spitzer et al., 1987). Dirninishing these protective spasms while 

eliminating the underlying cause is thought to be beneficial so that pain-spasm-pain cycles are 
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prevented (Spitzer et al., 1987). The pain-spasm-pain cycle may be self sustaining following 

injury to the muscle (Gatteman and Goe, 1990). Roland ( 1986) reviewed the evidence for a 

pain-spasm-pain cycle in spinal disorders. Experimental evidence could not prove the 

existence of a pain-spasm-pain cycle, however, a large body of evidence was consistent with a 

pain-spasm-pain cycle. Pain and spasm did not occur independently. Pathways exist whereby 

pain causes muscle spasm and muscle spasm causes pain. 

Pain 

Regardless of the mechanism. tissue injury in the lumbar spine produces low back pain. 

The anterior and posterior longitudinal ligaments, postenor annular fibers, ligarnentum flavum, 

interspinous ligaments, intervertebral joint capsules, periosteum of vertebrae, fascia of 

vertebrae, blood vessels of vertebrae, walls of epidural and paravertebral veins and 

paravertebrai musculature are ail capable of producing a pain stimulus as a result of either 

mechanical and/or chernical irritation (White and Panjabi, 1990). 

Treatment prograrns often use the resolution of pain and an increase in reported 

capability by the patient as outcome measures. Recently, the Oswestry Low Back Pain 

Disability Questionnaire and the Visual Analogue scale were reported as appropriate, useful, 

and responsive outcome measures for use with back pain patients (Triano et al., 1993, Von 

Korff et ai., 1992). Although these techniques provide information about the limits of a 

person's daily activity due to pain, they do not address whether the tissue originally injured has 

recovered and is capable of generating and/or transmitting force. 



Measurement of Back Function 

The range, symmetry and rhythm of spinal motion are of major diagnostic significance 

(Wiesel et al., 1985). The clinicai methods utilized to measure spinal motion include simple 

observation, inclinometers, electromagnetic sensors. and even sophisticated commercial 

dynamometers. 

The Isostation B-200 (Figure 1)  is a tri-axial dynamometer used for the assessrnent and 

rehabilitation of individuals with low back pain. It provides resistance and monitors torque, 

angular displacement and angular velocity for tri-axial low back motion. Isornetric 

contractions may be performed with the three axes locked into a neutrai position. Dynarnic 

testing is isoinertial. that is the resistance selected to oppose an individual's effort is kept 

constant. Only concentric contractions are utilized as a testing modality. 

The most common clinical evaluation protocol utilizes an individual's isometnc torque 

production in each axis. to select resistance settings for dynarnic testing in each a i s .  A 

software-driven evaluation system then compares the individual's performance parameters 

against a database and, based on the nurnber of "abnomai indicators", asçigns a levei of back 

dysfunction (Deutsch, 199 1). The report also graphically compares the individuals 

performance against the database standards so that rehabilitation decisions rnay be made. 

Although this approach "quantifies" the individual's back dysfunction. it provides no insight 

into the stnictures invoived. 
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"normal" range. Consistent deficiencies are evaluated as low back dysfunctions. The maximal 

effort protocol masks the subtleties of movement by using peaks and averages determined from 

the middle three of five repetitions. 

This protocol is very lengthy (25 - 40 minutes) to complete. Because a discriminant 

analysis approach is utilized. al1 of the tests rnust be completed before a level of back 

dysfunction may be assigned. Another limitation of this protocol is that the "secondary" testing 

axes (those that are not the principle direction of movement) are always set to their maximum 

resistance level. Although this allows the secondary axes torques generated by the subject to 

be compared for left versus right side asymmetries. it eiiminates any kinematic data from being 

produced in the secondary axes. 

A major design limitation of the B-200 is that the axes that the individual rotates about 

are not aligned with the matornical axis of the spine. The measurernent is designed to take 

place about the L5-S 1 intervertebral disc. yet the intersection of the three mechanical axes is 

postenor to the individual, as  they stand in the dynamometer. Also. mechanical stops are set in 

rach direction of rnovement so that individuals may not rnove to their extreme ranges of 

motion. This inadvertently restricts ligament loading from occumng. 

Due to the restraint system used, the B-200 does not load the spine in a "natural" 

fashion. Frazer and Norman (1993) found large levels of CO-contraction in isometric activities, 

a required testing mode in the B-200. They questioned if the machine constraints were not 

increasing forces in other structures of the low back (e-g. intervertebral disc and ligaments). 

Preliminary data indicates large levels of CO-contraction in isometnc activities (a comrnon 

testing mode in the B-200). 
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User designed "custom" protocols can be utilized within the B-200 software. This 

restricts the arnount of normative data available for clinical assessment, but it does provide a 

great deal of research flexibility. Parnianpour et al. ( 1988) used the a custom 8-200 protocol to 

quantify low back fatigue and concluded that fatigue caused the spinal structures to be loaded 

in more injury prone configurations. This conclusion was based on activity occumng in the 

"secondary" testing axes. 

Patients with low back pain have been found to produce less secondary mis activity 

than nomals (Deutsch, 199 1. Mchtyre and Glover, 1993). It was thought that these 

individuals rnay be "guarding" their movements. 

These research findings and the clinical evaluation protocol have ail focused on the 

peak moments and velocities. By concentrating solely on the magnitude of the resultant peak 

andor average moments and velocities. the moment time histones that produced the 

movements are ignored. Evaiuating this aspect of the performance rnay enhance the 

assessment protocol even further. 

Spinal Electromyography 

The musculature of the spine provides stability of the spinal column and controls 

intervertebral spind motion. The analysis of myoelelectric activity is one of the prirnary 

methods for understanding the function of the spine (Frymoyer and Gordon. 1989). 



Flexion - Relaxation Phenornenon 

The flexion - relaxation (FR) phenornenon is the absence of electrical activity in the 

back musculature while in a fully flexed posture. This implies that the structural loads are 

being camied by the ligarnentous and articular passive tissues. 

Floyd and Silver ( 1955) investigated the FR response of 45 nonnals and 105 patients 

with backache in both fully flexed standing and sitting postures. Al1 of the normals and 7 1 of 

the patients exhibited electrical silence in both postures. In standing, the FR response was 

shown by 15 patients and the remaining 19 patients failed to exhibit the response in either 

posture. The flexion range of motion was not measured so it is not possible to detemine if 

there was a difference in the range of spinal flexion between the three groups. 

Triano and Schultz ( 1987) found that al1 7 controls and 23 of 4 1 patients were able to 

exhibit the FR response. The 18 patients unable to produce electrical silence had significantly 

decreased ranges of flexion and extension motion compared to the other two groups. It is not 

known whether the muscle activity is present to prevent an individuai from flexing into a 

posture which rnay load painful passive tissues or if the muscle activity initiates a pain-spasm- 

pain cycle, also preventing full flexion from being reached. It is also possible that a 

misalignment of the vertebrae has occurred, lirniting the range of motion. This would load 

some of the passive structures on one side of the vertebrae, but muscle force would also be 

required to provide joint stability. 

Electromyography and Low Back Discomfort 

Electromyography has been utilized extensively in the evaluation of low back 

discornfort. As a non-invasive technique. it may be used to distinguish between healthy and 



dysfunctional backs. The technique is based on power spectral shifts that the EMG signal 

undeqoes with sustained muscle contraction. 

Montani et al. ( 1992) found that people with a history of low back pain had greater 

rates of mean power frequency decline than controls and that there was an asymmetry in the 

fatigue rates between an individuai's left and right lower erector spinae. Unfortunately. they 

did not explore the reiationship between the asymmetry and the site or side of the low back 

pain. 

De Luca and colleagues, utilizing changes in the median frequency of the power 

spectrum, have been able to distinguish individuals with low back pain from those without. 

with a minimal accuracy of 84% (Roy et ai.. 1989. Roy et al., 1990. De Luca 1993). 

Kondraske et al. (1987) utilized a similar protocol but were not nearly as successful. Possible 

reasons for the success of De Luca and colleagues are the utilization of a fixed, consistent 

posture, monitoring of six electrode sites and careful monitoring of the isometric contractions 

so that they are very consistent (De Luca 1993). 

These methodologies show that EMG can be used to ciassify individuais with and 

without low back pain. EMG also assists in localizing the problem area and augments the 

understanding of injury effects on muscle. However, these techniques are still one step 

removed from estimating the force distribution in spinal tissues of individuals with spine 

movement dysfunction due to low back pain. 

Electromyography Normalization 

To compare EMG activation patterns between individuals and/or different muscles. or 

to use EMG as an input for a biomechanical model. it is necessary to normalize the EMG 



signal. This is typically achieved by scaling the EMG activation pattern of interest to the 

magnitude of activation produced by a maximal voluntary contraction (MVC). These 

normalization contractions are problematic for individuals suffering from a low back disorder. 

Fear of re-injury, pain, decreased motivation and inexpenence in perfoming these types of 

contractions are possible explanations for an individual's inability to perform MVCs. The 

quantification of the maximal EMG activation level for a specific muscle group utilizing 

contraction intensities other than MVC is an attractive alternative for the low back injury 

population. 

Submaximal, continuous isometric contractions in well motivated subjects. have been 

found to produce maximal EMG activation. Montani et al. (1986) found the RMS EMG 

amplitude of the biceps brachii to increase from 50% to 100%. for a one-minute sustained 508 

MVC isometric contraction (subjects were practiced and received visual feedback on the force 

level). Petrofsky et al. (1982) present data on the handgnp and biceps brachii muscle that 

illustrates constant, 70% MVC isometric contractions producing RMS EMG amplitudes of 

100% MVC amplitude by the end of the testing session (subjects were practiced). The mean 

(I SD) duration for the handgnp contractions was 48 (I 1 1) seconds and 73(1:13) seconds for 

the biceps contractions. The durations in these two studies match well with the endurance 

times of Rohmert ( 1960) summarized by Bigland-Ritchie and Woods ( 1984). Although De 

Luca and colleagues utilize sustained, high level contractions as a part of their protocol, to the 

author's knowledge. they have not published the effects of these contractions on the EMG 

amplitude detected frorn the erector spinae. 
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As discussed previously, individuais with low back pain have difficulty in performing 

isometric MVC's. If submaximai, sustained isometnc contractions could produce maximal 

electrical activation in the lurnbar musculature, it would be an attractive alternative method for 

obtaining maximal electrical activation. 

Biomechanical Models of the Spine 

The lumbar spine has been the focus of biomechmical modeling for over three decades. 

Mode1 outputs directly affect the assessrnent of lumbar spine function and the estimate of tissue 

loads and injury risk. Therefore, the model assumptions. inputs. and operational parameters 

must faithfully represent the in vivo characteristics of the body. The most significant challenge 

to modeling is the development of a method to overcome the indeterminacy produced by the 

anatomicai redundancy of structures capable of generating or supporting moments of force 

(Norman, 1992). 

Reduction blodeis 

Early modelers used a reductionist approach for their sagittal plane analysis by simply 

representing the spinal extensor musculature as a single equivalent muscle with a 5 cm moment 

am.  Moms et al., ( 196 1 ) determined the compressive force on the lumbar spine by 

counteracting the extemal load moment with an erector spinae extensor force and an 

intraabdominai pressure stabilizing force. Chaffin (1969) utilized a digital computer and 

incorporated a seven link, rigid body model to analyze maximal static strength. Regardless of 

their potential hip and knee extensor strengths, subjects appeared to lirnit their compressive 



forces to a constant magnitude (males - 6000 N, females = 3500 N) and load shear forces 

never exceeded 500 N. Freivalds et al.. ( 1984) utilized a dynamic version of the same model 

using actual segment motion. Estimated L5lS 1 compressive force-time histones reached 

7000 N for maximal volitional lifts and revealed the effects of box size, load magnitude and 

lifting style. Anderson et al., (1985) produced a biomechanical model of the lumbosacral joint 

to analyze the effects of posture and lifting loads (O to 500 N). The calculation of the 

restorative moment due to abdominal pressure, disc, ligaments, and muscle showed that the 

muscular moment predominated. The muscular moment was distributed between the multifidi 

and erector spinae based on a ratio of cross sectional areas. They concluded that typical lifting 

tasks cm produce excessive disc compression because of the large muscle moment 

requirements. 

These models al1 share the sarne problem in that the assessrnent of loads routinely 

handled in industry results in the output of compression forces that are larger than those 

required to produce micro-fractures of the cartilage endplates in cadaver spinal segments 

(Chaffin and Andersson, 1984, White and Panjabi, 1990). This anomaly indicates that the 

anatomy a d o r  tissue tolerance data requires reassessment. Two different modeling strategies 

have been developed for the partitioning of forces in response to the indeterminacy produced 

by increased anatomical fidelity. 

Optimization Models 

Schultz et al.. (1983) investigated four optimization strategies, for an L3 level model of 

the tmnk that consisted of 22, 14 or 10 muscles, in order to predict the muscle forces required 



to perform a variety of complex tasks. The optimization functions incorporated were: 1 ) 

approximately minimize the maximal muscle contraction intensity (by setting a muscle 

intensity of 10 kPa ( 1 N/cm2), solving for minimum compression using linear programrning, 

and then increasing the muscle intensity in 10 kPa increments as required), 2) same as 1 ) but 

with 1000 kPa (100 ~/cm')  as the maximum muscle intensity, 3) rninimized sum of the square 

of the muscle contraction forces, and 4) minimized sum of the cube of the muscle contraction 

forces. The 10 muscle model and the first optimization strategy produced sufficiently 

satisfactory results based on the validation method of correlating the mean predicted muscle 

force to the mean EMG amplitude. Although, the selected objective function did not permit 

antagonistic muscle activation. the authors found it consistent with the subjects behavior, who 

had "relatively little unnecessary antagonistic activity". 

Schultz et al.. ( 1982) directly measured the intervertebral disc pressure and EMG 

amplitudes produced dunng static symmetric and asymmetnc postures. in an effort to validate a 

dual cost linear program. The program would search for the intemal forces necessary to 

produce the net reaction moment required for equilibrium and minimize the compressive load 

on the third lumbar vertebrae. The previously descnbed 10 muscle model was used and the 

predicted disc compression was well correlated with the mean disc pressure (r=0.94). 

Correlations between predicted muscle force and mean EMG activity ranged from 0.2 for the 

extemal obliques to greater than 0.9 for the erector spinae. The authors correctly noted that the 

cost function utilized would produce the non-physiologicai responses of no antagonistic muscle 

activity and that the synergists with the largest moment arms would be recruited first. 



Gracovetsky ( 1986. 1988) selected an objective function of stress minimization 

(compression and shear) and equalization (at al1 joint levels) in order to partition the reaction 

moment. The biomechanical rnodel incorporated improved anatomical detail of the 

lumbodorsal fascia (LDD and a method by which the transverse abdominis acts on the LDF to 

produce an anti-flexion moment through the posterior ligaments. However, the extensor 

musculature moment arm was srnaller than the moment arm of the ligaments, contrary to the 

reports of others (Hutton and Adams, 1982, McGill and Norman, 1988). This anatomical 

limitation dictates that in the objective function of minimization of compression, the ligaments 

must be recruited first. Therefore, the model outputs and resulting conclusions al1 reflect the 

posterior ligament strategy. Further research has found the moment contribution of the LDF to 

be minimal (Macintosh et al., 1987, McGill and Norman, I988), illustrating the need for an 

accurate anatomical representation of the entire trunk. 

Bean et al., ( 1988) applied a double linear prograrnming rnethod to the model of 

Schultz et al., (1982). The objective functions were to minirnize the muscle intensity and then 

aiinimize the joint compression force. Double linear prograrnming is advantageous because it 

permits an assessment of the effects of the constraints or solution "costs". However, the 

resulting joint compression and predicted muscle forces are still a product of the objective 

function and. therefore, suffer directly from any limitations in the cost function. 

Limitations of Optimization Models 

The selection of an appropriate cost function and the validation of the resulting 

optirnization rnodel are the two major issues encountered by optimization modelers. It is 
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simply impossible to know which objective function(s) the body incorporates at any time. The 

production of "true" antagonistic activity is also an issue for simple cost functions (e.g. 

rninimize compression). but this drawback does not necessarily apply to al1 optimization 

models. 

Herzog and Binding ( 1992) have analytically demonstrated that cocontraction is 

predicted in a non-linear optirnization (minimized sum of the cube of the muscle contraction 

forces) and that cocontraction may also enhance the rnuscular mechanical efficiency. A planar. 

three link system consisting of: 1) three. single joint and two, two joint agonist muscles and 2) 

three, single joint and two, two joint antagonist muscles, was used. The authors identified that 

the approach was only analyticai and that the application of physiologicai data would certainly 

influence the output. 

involved with the selection of an objective function is the application of specific 

boundary conditions (e.g. magnitude of maximal muscle intensity). Lavender et al. (1992) 

recommended that the minimum levels of muscle activation for a given moment in a specific 

direction be incorporated as boundary conditions for optirnization models. 

EMG has also been used to indirectly validate optimization models (Schultz et al.. 

1982, Gracovetsky, 1988, Bean et al., 1988). Using EMG as a method to control these models. 

or even indirectly validate hem, produces an interesting situation, for a mode1 that utilizes this 

as an input measure must be inherently valid (Norman, 1992). 



EMG Assisted Models 

These models use the EMG activation patterns as one of several inputs for partitioning 

the resultant moment between different muscle fascicles. One of the earlier. detailed 

descriptions of using EMG to predict tissue forces in dynarnic activities cornes from the work 

of Hof and Van Den Berg (198 1). Linear envelope EMG from the gastrocnemius and soleus, 

were combined with the ankle joint angle as inputs to an electrical analogue of the Hill muscle 

model. The analogue mode1 values for torque. work and integrated torque were compared to 

those values measured by a custom torque plate. The moment calculated by the model 

reflected the measured moment very faithfully. The relative error for 657 positive work, 

negative work and integrated torque data points was 6.2% (* 14%). 

Electromechanical delay. eccentric contractions and cocontractions were the areas that 

posed the most significant problems for the model. Detemining the correct gain for the EMG 

signais and EMG crosstalk were signal processing complications that also affected the mode1 

output. However, the success in predicting the moment output based on the biological signal 

from the two muscles producing the moments, indicated that EMG should also be capable of 

determining the relative contribution of each muscle to the moment. This is the approach that 

EMG assisted modelers have expanded upon. 

Marras and Sommerich ( 199 la, 199 1 b) have incorporated the 10 muscle model of 

Schultz et al.. (1983) as the bais of their EMG assisted model which they have applied to 

symmeuic, and asymmetric isokinetic, constant torque contractions. Each subject's L5 torso 

depth and breadth is used to predict the cross sectional area and moment arms. For three of the 

muscles, the effects of length - strength (L-S factor) are incorporated by normalizing the EMG 
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to maximal EMG activation (EMG,) obtained at rhree different flexion angles. A data base 

of isometric EMG to isokinetic EMG ratios is used to modulate three of the muscles for 

force/velocity. The gain factor incorporates the muscle force per cross sectional area, which 

begins at 10 ~ / c m '  and increases by this step amount as much as required. The EMG signal for 

each muscle is simplified to be represented by four time points and straight Iine approximation. 

This simplifies the cdculation of forces to a maximum of 40 time points. At each time point 

the tension level for each muscle is therefore determined by; 

Force = Gain * (EMGEMG,,) * V ratio * L-S factor * area. 

Output from the model showed compression increased with velocity (100 N per 10°/s 

increase) and extemal load, and decreased slightly with asymmetry. Posterior shear increased 

with extemal load, while the right an left shear was found to be highly variable. Indirect 

mode1 validation was attempted by a cornparison of the measured torque to predicted torque. 

An ? r 0.7 was found for more than 85% of the torque pairs. However, the average gain per 

subject ranged between 80 and 250+ ~ / c r n l  and nine of eleven subjects had gains greater than 

100 ~lcrn'. These muscle force producing potentials are much larger than the 35 to 100 ~ l c m '  

cited from the physioIogicai literature by McGill and Norman ( 1987). 

This issue was addressed in a fully dynamic version of the model which was tested 

under controlled isometric, isokinetic and isoinertial exertions for 20 subjects that performed 

sagittally symmetric and asymrnetric flexion-extension tasks (Granata and Marras, 1993). 

Using a senes of exertions and averaging the values from a range of calibration test conditions 
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produced an average gain of 42 (11 1 )  N*cm2. Cornparison of the predicted and measured 

lifting moments for over 2 100 trials produced an R2 of greater than 0.8. 

McGill and Norman (1986) developed an EMG assisted model that partitioned the 

L 4 L 5  dynamic moment into dix. ligarnentous (7) and muscular (48) components using a 

three-dimensional skeleton. based on the anthropornetrics of a 50th percentile male and the 

1 inear envelope from six electrode sites. A link segment model was used to determine the 

LAU reaction moments and the passive tissues were assigned force and moments based on 

their strain. The remaining restorative moment was portioned among muscles based on the 

EMG activation patterns from six electrode sites. The force at any time (t) is scaled by the 

ratio of EMG(t)/EMG,,. The maximum force producing potential, Fm=, was varied from 35 - 

55 ~lcrn'. Muscle forces were scaled by force/velocity (V Fac) and force/length (L Fac) 

modulating factors. Any force due to passive elasticity was then added. The Gain factor was 

used to increase the relative contribution of all muscles to force the instantaneous predicted 

extemal UIW moment to match the measured moment. This approach also ensured that 

cocontraction is considered. Thus, the muscle force at any time was determined by the 

foilow ing equation; 

F,(t) = Gain * [(EMG(t)/EMG,,,) * (Fm=) * (V Fac) * (L Fac) + F,,] 

Improved matornical modeling decreased shear and compression estimates by 42.5% 

and 16.2% respectively. compared to values calculated from a model with a simple 5 cm 

erector tissue moment arm length. The ligaments were reveaied to play a minor role in the 

squat lifts studied. 
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Potvin et al., ( 199 1 )  utilized a revised version of this model to study lifts with varying 

degrees of tmnk flexion. A total of 50 functional muscle fascicles were deveioped by dividing 

eleven muscles bilaterall y and seven ligaments were represented by eleven force vectors. 

increased trunk flexion significantly increased anterior shear forces of the supenor on the 

inferior vertebrae, while compression was insensitive to this muscle-ligament interplay. This 

apparent anomaly occurred because the combined musculature moment arm is greater than that 

of the ligaments, so that the increased ligament recruitment with increased trunk flexion, offset 

the decreased compression due to decreased muscle activation. 

This study highlighted the sensitivity of this model in detemining ligament recruitment 

as some of the data from six of the original fifteen subjects were unable to be utilized. During 

some of the trials for three subjects, the ligament contributions were predicted to be greater 

than the total extensor moment, even though the muscles were active. This over prediction is 

caused by the steep slope of the ligament stress - strain curve at the end range of motion. 

Ligament recruitment was modeled to occur at 6" less than the subject's fully flexed position. 

For another three subjects, some of their trials had almost zero ligament recruitment, while 

their EMG activation levels were less than the group mean. These exarnples highlight the fact 

that, just as the regression equations used by Marras and Sommerich work better for some 

individuals, some people do not "fit" these models. 

The previous versions of the model incorporated three dimensional anatomy but studied 

sagittal plane movement. McGill ( 1992) modified the model even further, incorporating a 

three-dimensional linked segment model to produce the reaction forces and moments about 

three orthogonal axes corresponding to the LAAS joint, while examining lateral bending. The 
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reaction moments were then partitioned into the substantive moment cornponents using a three- 

dimensional representation of tmnk tissues. Inputs to the mode1 were three-dimensional joint 

coordinates, dynamic hand loads and 12 channels of trunk EMG. The model was found to be 

very sensitive to how subjects recmit their musculature to satisfy moment constraints. A 

reassessment of the role of the abdominal musculature in generating a flexor moment was 

required so that the flexion moment could be increased in order to balance the moments. 

The mode1 outputs showed very little ligament contribution. Lateral flexion towards 

standing decreased compression. anterior shear and lateral shear. The results showed that a 3 

to 4 cm moment a m  would be appropriate for a single equivaient lateral flexion muscle model 

to be used in industry. A large compressive penalty was observed, due to 8% coactivation in 

lateral bending, and was interpreted as a strategy to increase mechanicd stiffness by increasing 

bending stiffness. 

EMG Assisted Optimization 

Cholewicki et al., ( 1995) have compared an EMG assisted model (EMG), optimization 

approach (approximate minimization of muscle stress and rhen spine compression) (OPT) and 

a method that combines both EMG and optirnization termed EMG Assisted Optimization 

(EMGAO). The last method used a minimization of the EMG model variable gain while 

satisfying the moment requirements about the U/L5 joint as an objective function. 

Mathematicdly this can be expressed as: 



C Ml( 1 -gI)' = min 

M, = (M, ,~  + M , ~  +M,Y 

Subjects performed isornetnc ramp contractions up to maximal effort in the directions 

of flexion, extension. lateral flexion left and lateral flexion right. The three techniques were 

compared using RMS difference between muscle force estimates from each technique with the 

EMG assisted method chosen as the reference. Average absolute errors between measured 

extemal moment and predicted moments were not found for OPT and EMGAO. The EMG 

method had a mean average error ranging from 5.8% in extension to 17.3% in right lateral 

bending. The muscle force predictions between EMG and EMGAO had RMS differences of 

only 17%. 3 1% and 42% for extension, flexion and lateral bending. EMG versus OPT 

produced RMS errors of 1238. 123% and 2 18%, respectively. Although the OPT predicted 

lower joint compression by 32%. 43% and 23%. it was due to the inability of the optimization 

method to identify "pure" antagonistic muscle activation. Activation of an "antagonist" could 

be produced if a moment about another axis was required. 

The EMGAO approach combined the major advantages of the EMG method, by 

producing similar force predictions with physiologically based recruitment patterns, with that 

of the OPT method by fulfilling the moment constraints. The disadvantage to the optimization 

mode1 was that it did not allow for cocontraction and was not sensitive to individual 

differences in muscle synergy. 



Neural Networks 

Nussbaum et al. ( 1995) utilized an artificial neural network model to predict spinal 

muscle activity. Subjects resisted static moment loads of 10 to 50 N.m applied in 30" 

increments from flexion (O0). through lateral bending (90"). to extension ( 180") while in an 

upright posture. EMG was measured bilaterally from the erector spinae. rectus abdominis. 

extemai oblique and intemal oblique and were nonnalized using maximal and resting values. 

A multilayer. fully connected. feed-forward artificial neural network was trained using subsets 

of the moment-EMG data set. Using the normalized EMG as the criterion measure. the output 

of the network mode1 was compared to two optimization-based muscle force prediction 

models. The optimization models were a double linear programing method that minimized 

maximal muscle intensity and then minimized joint compression and a nonlinear program that 

minimized the sum of the cubes of muscle force intensities. 

The neural network model was found to predict muscle activities that were better 

correlated with the experimental data than either optimization method. It was also capable of 

predicting cocontraction. Although not performed in this study, this model would also allow 

spinal muscle force estimates to be made for novel loading situations. However. the utility of 

the model in its current f o m  may be limited because it estimates muscle forces for only static 

postures. It was also designed to estimate muscle forces for a particular posture and not 

necessarily a particular individual. 



Summary 

The mechanisrns of low back injury are not well understood. This is due in part. to the 

number of possible injury sites. but it is also complicated by the volume of diagnoses utilized 

in the assessment of low back injury. Electromyography, commercial dynamometen and EMG 

assisted models of the spine have been utilized for the measurement and analysis of spine 

movernent dysfunction, but the techniques have never been integrared. 

1. The isostation B - 2 0  cm be used to quantify an individual's level of back dysfunction. 

However. because this approach focuses on peak pararneters and does not quantify the 

entire movement time history, limited information is leamed regardiag where in the 

movement cycle the abnormal parameters are produced. Also, some comp~sons  

would be more appropriate if relative rather than absolute measures were used. The 

cornparison of the relative moment magnitudes over the whole time history would 

enhance the assessment of back dysfunction. 

2. The EMG input signals for the spine mode1 require normalization to maximal electrical 

activation. This level of activity is typically produced by performing isornetric. 

maximal voluntary contractions. These types of contractions are problematic for 

individuals with spine movement dysfunction. The performance of sustained, 

submaximal isornetric contractions should elicit maximal muscle electricd activation. 
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3. The EMG assisted model of McGill ( 1992) produces forcehime histories for 50 muscle 

fascicles and 12 ligament vectors, but it has never been applied to a population with 

spine movement dysfunction. It is not known if this level of knowledge would provide 

a more specific identification of the dysfunctional structures. 

4. The EMG assisted model of McGill ( 1992) has never been applied to a spine movement 

dysfunction population, so the effects of recovery on the lumbar spine tissue forcehime 

histones during dynarnic and isometnc contractions is unknown. 

5. The EMG, combined with estimates of the muscle and force time histories will provide 

a range of tissue responses for a particular diagnosis. This information could eventually 

be used to document similarities and differences among the numerous diagnoses made 

of individuals with spine movernent dyshnction. 



Chapter III 

EMG Amplitude Changes in The Lumbar Spine Extensor And Flexor Musculature 
During Maximal And Submaximal Constant Force Contractions 

Introduction 

Electromyography (EMG) has become a common tool in the analysis of human 

movement. To facilitate cornparisons between difierent muscles and individuals the EMG 

amplitudes are typically transformed or normalized to levels of a relative contraction force, 

typicaily a maximum voluntary contraction (MVC) (Basrnajian and De Luca ( 1985). This 

allows differences in amplitudes to be attributed to the phenornenon of interest rather than 

technical factors such as the precise location of electrodes upon re-application or differences in 

skin impedance. This method of normalization has been successfully used in computer models 

designed to estimate muscle forces in the limb ( e g  Hof and Van Den Berg, 198 1 ; Olney and 

Winter, 1985). However. for the muscles of the back. EMG normalization using MVC's is 

more problematic. Due to the challenging nature of performing MVCs, skilled performers 

have been found to require several attempts using different postures in order to produce a 

maximal amplitude (McGill, 1991). Also, due to fear of re-injury. pain. decreased motivation 

andor inexpenence in performing MVCs. individuals with low back pain have difficulty 

producing "true" MVCs. This has prevented EMG assisted models of the lumbar spine from 

being utilized with individuals syrnptomatic for low back disorders because the performance of 

MVCs is required for normalization purposes (Marras and Sommerich, 199 1 a. 199 1 b, McGiIl 

and Norman, 1986; McGill, 1992. Granata and Marras, 1993). The application of these rnodels 
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to this population is particularly important if injury rnechanisms and rehabilitation processes 

are to be comprehended. 

An attractive alternative would be the quantification of maximal EMG activation levels 

for a specific muscle group utilizing a contraction intensity other than MVC. It may be 

possible to obtain maximal EMG amplitude via prolonged isometnc contractions. For the 

biceps brachii, Petrofsky et al. (1982). and Moritani et al. (1986). observed that at the 

termination of sustained, submaximal isometric contractions of 70% and 50% MVC. 

respectively, the EMG amplitudes were equivalent to those produced during MVC effons. 

Another approach would be the construction of the upper portion of the EMG-moment 

relationship by performing repeated submaximal contractions of varying intensity. Linear 

regression could then be used to predict the maximal EMG amplitude. 

The purpose of this snidy was to determine if EMG amplitudes equivalent to those 

observed during MVC efforts could be predicted/elicited for the extensor and flexor 

musculature of the spine via either: (I) sustained, 70% MVC isometric contractions, or (ii) the 

use of submaximal. isometric contractions, of varying intensity and linear regression. A 

secondary purpose was the quantification of the changes in magnitude in the mean power 

frequencies for these muscle groups during the sustained isometric efforts. 

Subjects 

Eight males (mean height = 1.78 m, SD I 0.08, mean mass = 82.0 kg, SD I 9.5, mean 

age = 32.4 yr. SD I 13.0) from a university population volunteered for the study. Each 
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participant was asymptomatic for low back pain within the last year. Prior to participation. 

each individual reviewed and signed a consent form approved by the Office of Human 

Research. 

Instrumentation 

EMG was recorded bilaterally from the rectus abdominis (3 cm laterai to the umbilicus, 

aligned straight upward), extemal oblique (approximately 15 cm lateral to the umbilicus, 

oriented diagonally down and inward), interna1 oblique (below the extemal oblique electrodes 

and just superior to the inguinal ligament, aligned diagonally up and outward), upper erector 

spinae (5 cm lateral to T9 spinous process, oriented up and slightly outward) and lower erector 

spinae (3 cm lateral to L3 spinous process, directed up and outward). (McGilI, 1992, Sutamo, 

1993). using disposable Ag-AgCI electrodes (Medi-Trace. ECE 180 1 ) with a center-to-center 

distance of 2.5 cm. Pnor to electrode application, the skin at each site was prepared by shaving 

the skin and abrading the area with tissues soaked in alcohol. The raw myoelectric signals 

were input to a differentid amplifier (CMRR of 80 dB at 60 Hz), prefiltered (bandwidth of 20 

to 500 Hz) and then amplified. 

Tasks 

Subjects were required to perform the following tasks for extension and flexion 

respectively: two. ten second MVCs, a series (3 or 4) of subrnaximal, ten second. isometric 

efforts and a sustained 70% MVC held until volitional termination. 
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The connecting fastener of a shoulder harness was aligned with the ton0 (head, ams, 

and trunk) center of mas, measured from the greater trochanter (Winter, 1990). The subjects 

then lay prone (or supine) over a two-tiered bench. with the greater trochanter aligned with the 

edge of the higher tier and their upper body weight supported on the lower tier. To measure the 

moment-time history for the MVC triais a linear variable differential transformer (LVDT) was 

connected to the harness and secured to the floor. The length of the connecting cable was 

adjusted until the subject's torso was horizontal, but clear of the lower tier during isometric 

exertions. For the MVC triais, subjects were instructed to slowly raise themselves, to build up 

to their maximum effort over two seconds and then to hold that effort until they were instructed 

to relax. The MVC was followed by a minimum of one minute rest, during which time the 

maximum moment was recorded and signal quality checked. A second MVC was then 

performed. 

These MVC efforts were followed by a series of 10 s, constant moment isometric 

extensiodflexion efforts, ranging from the weight of the upper torso, to 85% MVC. Typically, 

participants performed four trials for flexion (range = 2 to 4) and extension (range = 3 to 5). 

For one individual, their torso mass represented 80% of their maximum flexor strength. This 

person was tested using only their torso mass and one other flexion load. The load (including 

torso mass) required to produce a specific percentage of MVC was calculated and attached to 

the harness cable. replacing the LVDT. Subjects were required to raise their toeo to a 

horizontal position, resulting in the loads being raised just clear of the floor. Each 10 second 

collection period was preceded by a practice effort, so that subjects could become accustomed 

to the loading. 
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Upon completion of the highest submaximal level. the 70% loads were attached to the 

cable. Subjects were instmcted to raise their torso to the same position as the previous 

submaximal efforts and to hold that position. with the load just ciear of the floor, for as long as 

possible. Verbal encouragement was provided throughout the test. 

Data Reduction 

The LVDT and EMG signals were N D  converted (AT-MIO- 16, 12 bit ADC, National 

Instrument, Inc.) at 1024 Hz and stored on magnetic-opticai disk. For EMG normalization the 

raw EMG signals were full wave rectified and low pass filtered (2nd order, single-pas. 

Buttenvonh digital filter) at a cutoff frequency of 2.5 Hz to produce a linear-envelope (LE). A 

2.5 Hz cutoff frequency was selected because it reaches peak response to an impulse in 63 ms, 

which is in the middie of the 30 - 90 ms twitch response to peak tension found by Buchthai and 

Schmalbmch ( 1970). Olney and Winter ( 1985) found cutoff frequencies to range from 1.8 to 

2.8 Hz for the rectus femoris. Potvin (1992) found 2.7 Hz to be the best frequency for the 

lower and upper erector spinae musculature. 

Amplitirde Analysis: The maximum EMG amplitude observed for each muscle was detennined 

from al1 MVC trials by displaying the LE EMG for a muscle against the force curve and 

selecting the largest amplitude in the region of approximately constant amplitude excluding the 

region during which force was being developed or reduced. The largest amplitude (Le single 

point) for each muscle was termed MVC. For the submaximal constant moment and sustained 

trials, each channel was norrnaiized to the 100% MVC amplitude. The peak amplitude and 
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time of occurrence were then recorded. Care was taken to avoid periods during the start of the 

contraction when adjustment to the load was occumng. For the sustained contractions, the 

peak amplitude and time of occurrence were recorded for both the fint 10 second (INITIAL) 

portion and the rernaining (TERMINAL) portion of the contraction. 

Frequency Analysis: To determine the mean power frequency (MnPF), a 1024 point Fast 

Fourier Transform, using a Hanning window, was performed for each one second period of raw 

EMG immediately preceding and inclusive of the time point of maximal EMG occurrence. 

This point was selected on the basis that it would incorporate ail of the EMG interference 

pattern that was associated with the LE envelope peak. Thus, the FFT would encompass the 

muscle force occumng during that contraction of that specific muscle. The MnPF of the 

extensor and flexor muscles was determined for each of the subrnaximal Ioads and the 

sustained INITIAL and TERMINAL time periods. Each MnPF was norrnalized to the MnPF 

produced during the first second of stable force production. Again. care was taken to avoid the 

penods in which force was being developed or reduced. 



Marimal Voluntory Contractions: The mean peak extension and flexion moments were 

328.7 2 50.2 N.m and 307.2 i 43.3 N.m. respectively (Table 1)  

Table 1 The mean moment (SD) and EMG amplitudes for al! flexor (n=6) and extensor (n=4) 
muscles for the maximal and sustained contraction tests. The * indicates a significant increase 
in EMG amplitude, p < .Ol. 

Maximal Contraction 70% Sustained Contraction 

Peak EMG Amplitude (% MVC) 
Moment (Nm) INITIAL TERMINAL Duration (s) 

Extension 328.7 (50.2) 67.0 (14.8) 87.8 (13.1) ' 42.6 (13.1) 

Flexion 307.2 (43.4) 8 1.6 (27.5) 1 15.6 (3 1.3) ' 30.4 ( 10.2) 

Amplitude Analysis 

Sustained: The sustained 70% MVC flexion and extension contractions produced a significanr 

increase, p c -01, in the group rnean EMG amplitudes for al1 of the extensor (n = 4) and flexor 

(n = 6) muscles (Table 1). The load had been selected for each person as 70% of their 

isometric maximum moment. The initial mean extensor amplitude was 67% MVC and 

increased to 88% by the end of the contraction, a 30% increase with respect to the initiai 

contraction intensity (Table 1). The initiai mean flexor EMG amplitude was 80% MVC and 

increased to 1 15% MVC by the end of the sustained contraction. This represenis a 40% 

increase with respect to the initial contraction intensity of 82% MVC (Table 1 ) .  
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Loads of Varying Intensip: Figure 2 illustrates representative data for the trials of the loads of 

varying intensity. The mean peak activation levels were calculated for al1 of the muscles. for 

al1 of the subjects. for each of the loads. Linear regression of the peak extensor EMG 

amplitudes and the extensor load moment reveaied that on average, the extension musculature 

response was 2 1.5% MVC below the applied load moment (EMG Amplitude (96 MVC) = 1.15 

x Extensor Load Moment - 2 1.57) (see Figure 3a). Linear regression of the peak fiexor EMG 

0 i 1 î 

4 4.5 5 5.5 6 6.5 7 7.5 8 

TIm (SI 
Load Monrnt (% MVC) u 50 -* 65 - 70 - 75 

Figure 2: An exarnple of the linear envelope EMG produced for the RUES during the 10 s 
submaximal isometric contractions. 

amplitudes and the flexor load moments found the flexion musculature was 22.5% MVC above 

the applied load moment (EMG Amplitude (9% MVC) = 0.89 x Fiexor Load Moment + 

22.54)(see Figure 3 b). 
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To further investigate this response. regression analysis of the flexor and extensor EMG 

amplitude versus the flexor and extensor load moment. respectively. was performed using each 

of the submaximal loads, of each muscle, of each subject. Surprisingly, of the 32 possible 

regressions for the extensor muscles (8 subjects X 4 muscles), only 13 produced significant 

correlations and 4 of these came from subject #6 (Table 2). The lower erector spinae 

accounted for 9 of the 13 significant reiationships. Of the 48 possible regressions for the 

tlexor muscles (8 subjects X 6 muscles), only 4 correlations were significant (Table 2). The 

rectus abdominis produced 3 of the 4 significant flexor muscle equations. The significant 

regressions are summarized in Table 2. 

Using only the significant regression equations. the average predicted maximum 

extensor EMG activity, normalized to MVC, was 99.2%. However the range between the 

upper and lower boundaries of the 95% confidence interval was almost 50% MVC (Table 2). 

The average predicted maximum for the flexors was 88% MVC, with the 95% confidence 

interval spanning 78 to 98 % MVC (Table 2). 



Figure 3: Mean (I 1 SD) peak activation levels for ail muscles, for al1 subjects during the 
sustained, 70% MVC extension and flexion efforts. Figure 3 (a) illustrates that the average 
extension activation was 20% less than anticipated. Figure 3 (b) shows that the average flexion 
activation was 22% greater than anticipated. In each figure. the dashed line represents the 
identity line. The filled squares represent the mean EMG response of al1 muscles and subjects 
at that load. The error bars represent 1 SD. The solid line is the line of best fit produced by 
linear regression. The number below each data point indicates the number of muscles used to 
calculate the mean for that data point. 



59 Table 2 Significant regression relationships from the 10 S. submaxirnai isometnc contractions. 

Subject 

Extension 

1 

I 

2 

2 

2 

3 

5 

6 

6 

6 

6 

7 

8 

Flexion 

1 

4 

7 

8 

Muscle Group 

RLES 

LLES 

RLES 

LUES 

L U S  

LLES 

LUES 

RUES 

RLES 

LUES 

LLES 

LLES 

RLES 

Average (SD) 

LRA 

RRA 

RIO 

RRA 

Average (SD) 

Predicted 
Maximum 

EMG 

103.4 

94.4 

1 10.2 

96.2 

1 14.4 

61.2 

104.3 

96.1 

98.6 

103.0 

125.2 

100.9 

81.5 

99.2 (15.5) 

95.8 

71.9 

1 15.8 

69.8 

88.3 (2 1.8) 

95% Confidence interval 

Lower 

67.9 

74.0 

100.6 

40.7 

87.2 

31.4 

92.5 

93 .O 

69.6 

60.8 

105.1 

82.6 

76.2 

75.5 (2 1 -9) 

81.1 

67.1 

102.2 

62.6 

78.3 (17.8) 

Probability 

.O2 1 

.O 14 

.O0 1 

.O47 

.O12 

.O45 

.O03 

.O0 1 

.O20 

.O30 

.O05 

.O07 

.O 15 

.O40 

.O03 

.O 18 

.O28 
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Cornparison of the two techniques. 

The MVC amplitudes for the E S .  LES and RA were detennined for two subjects to illustrate 

the use of the techniques. Subject 2 was selected because he had 3 significant regressions for 

the extensors and O for the flexors. Subject 4 was selected because he had O significant 

regressions for the extensors and 1 for the flexon. As shown in Table 3. neither rnethod results 

in a consistent and satisfactory value for the maximum EMG amplitude. 

Table 3 The EMG amplitudes (96 MVC) as detennined by the sustained contraction and 
regression analysis prediction techniques. The * indicates the muscles that had significant 
regressions for each subiect. 

-- - - - 

Subject 2 Subject 4 

Muscle Sustained Regression Sustained Regression 

R E S  88 

LUES 122 

RLES 78 

LLES 100 

RRA 185 

LRA 112 

Frequency Andysis 

10 s and Sustuined Contractions: For each of the muscles there was no significant difference 

between the average MnPF for the 70% MVC 10 s contractions and the INl77A.L penod of the 

sustained contractions. The sustained isornetric contractions produced significant decreases in 



Table 4 The average mean power frequency (5) (Mean (t SD)) obtained at the time of peak 
EMG activity, nomalized to the first value for each muscle. for each contraction dunng the 
70% MVC. 10 S. and sustained isometric exertions. L = left. R= right. The t and 1 indicate 
significant differences between the N7 lA .L  and TERMINAL nomalized MnPFs for p c -05. 
and p < .O 1. respectively. The * and 5 indicate significant difference between the 10 s and 
TERMINAL normalized MnPFs for p < -05 and p < .O 1, respectively. 

70% MVC Contraction 10 s 
Duration: 

Sustained Decrease 
(%'l 

Muscle - S ide 

Extemal Oblique L 

R 

interna1 Oblique L 

R 

Rectus Abdominis L 

R 

Average 

Upper Erector Spinae L 

R 

Lower Erector Spinae L 

R 

Average 

TERMINAL 

86.6 (2 1.5) 18.5 

88.5 ( 13.3)'q 14.0 

each of the muscles except the lefl extemai oblique (Table 4). On average, the extensor and 

flexor musculature MnPF decreased 2 1 % and 17%, respectively. 



Discussion 

As expected, the extensor musculature produced a larger MVC moment than the flexor 

musculature. The flexion and extension moments are 2.0 and 1.3 tirnes larger. respectively. 

thm those produced in standing postures in Our lab (Frazer and Norman, 1993). Troup and 

Chaprnan ( 1969) measured flexor and extensor moments that were 1.2 and 1 -5 times larger 

than those produced in this study. Part of the differences are due to the restraining devices and 

measurement techniques. For example. Troup and Chapman ( 1969) had their subjects hold 

their arms horizontal and in an extended position and measured the flexion and extension 

forces at the hands. The differences also reflect the large variability that exists in human 

strength. 

The sustained. submaximal isometnc contractions did produce an increase in the EMG 

arnplinide of the flexor and extensor musculanire. For the extensors. the final mean amplitude 

increased by about 20% MVC, from 67 % MVC to 88% MVC. For the flexors. the increase 

was even more dramatic as the mean amplitude increased 35% MVC. from 80% MVC to 1 16% 

MVC. Even if the technique had produced increases to the 100% MVC amplitude. there would 

be difficulty in applying the technique to individuals unable to produce tme MVCs. For these 

individuals, any measure of the "maximum" moment producing ability would likely be an 

underestirnate. This would result in the 70% load calculation aiso king an underestimate. The 

challenge to the musculature would be decreased, rnaking it unlikely that the final amplitude 

would match the 100% MVC amplitude. 



The repeated submaximal loading technique was also successful in producing a 

relationship between the EMG amplitude and the load moment for both the flexors and 

extensors. The resulting regression equations ailow the prediction of the EMG amplitude 

based upon the load moment. Unfortunately, the peak extensor EMG amplitudes were 20% 

Iess than anticipated while the flexor EMG amplitudes were 20% greater than expected. 

On a case by case basis. the regression results becarne even more varied. For the 

extensors, the average maximal predicted EMG was 100% MVC. but the upper confidence 

interval was 25% MVC greater than the predicted value. If this regression method were to be 

used to predict the maximal EMG amplitude. it would definitely be possible to incorporate an 

erroneously low maximum EMG amplitude. If the predicted value was 100 % MVC. but the 

correct value was actually 125 %MVC, then the result would be an underestimate, by 20%. of 

the relative magnitude for that particular EMG signal. 

One of the difficulties in applying the repeated submaximal loading technique in the 

prone and supine positions is that the upper body weight represents a large percentage of a 

person's maximum moment. This minirnizes both the number and range of data points 

available to use. For exarnple, the torso moment for one of the subjects represented 80% of 

their flexion strength. They were able to comfortably maintain only one greater load, 85% 

MVC, lirniting their regression analysis to only two data points. 

Figure 3 dso provides hrther insight into the dificulty of this technique. By adjusting 

the subjects position and altering the load attached to their tono, specific tono load moments 

could be produced. However. despite being in a very similar posture as the MVC trial. there 

was apparently a difference in how the subjects supported the induced load moment. The 
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depressed peak extensor amplitude during the submaximal ten second and sustained exenions 

indicates that musculature not rnonitored (e.g. multifidus) was contributing to the production of 

the required support moment. Also, subtle shifts in posture may have had significant effects on 

the EMG activation levels. Elevation of the peak flexor amplitude during the submaximal ten 

second and sustained exertions was very surprising. With the LVDT no longer affixed to the 

floor. subjects may have adopted a slightly more flexed posture than in the MVC condition. 

The resulting shorter muscle length would require increased EMG activation levels for each 

unit of musculsr force produced. inbar et al. (1987). found that Median Power Frequency 

increased as muscle length decreased. Analysis of the MnPF for the flexion trials showed no 

significant increase in any of the monitored musculature. although the mean value was typically 

greater than the 100% value obtained during the MVC trials. 

The significant decreases in the mean power frequencies for the extensor muscles is 

similar in magnitude to those found by Roy et al. (1989) and Mayer et al. (1989). Roy et al. 

( 1989) used an upnght standing posture with an 80% MVC load sustained for up to 1 minute. 

Mayer et al. ( 1989) utilized the individuals upper torso mass as the load in conjunction with a 

horizontal posture similar to this study. However. the subjects were required to perform 10. 15 

second trials, each trial separated by 10 s of rest. To the author's knowledge, this is the first 

study to investigate the flexor musculature changes in MnPF. 

This study found that submaximal isometric contractions, either sustained or of varying 

intensity, were capable of producing increases in both flexor and extensor EMG amplitude. 

However, the increases were either not large enough and /or consistent enough to be used as a 

means for predicting maximal EMG amplitudes. 



Conclusions 

Maximal EMG amplitude of the flexor and extensor musculature of the spine may not be 

reliably determined: 

I ) using sustained, subrnaximal exertions, or, 

2) using the maximal amplitude observed from submaximal contractions of varying intensity. 



Chapter IV 

A Technique for the Calculation of EMG to Muscle Force Scaling Factors 
for an EMG Assisteci Lumbar Spine Model. 

Nomenclature 

joint a i s  of the dominant moment 
EMG electrode site 
muscle fascicle 
moment arm 
velocity factor 
length factor 
average muscle force (N) 
average EMG (a/d unit) 
Iinear envelope EMG amplitude (a/d unit) 
maximum linear envelope EMG amplitude (a/d unit) 
EMG to force scaling factor (N/a/d unit/cm2 ) 
within trial maximum linear envelope EMG amplitude (a/d unit) 
muscle force (N) 
passive elastic force (N) 
common gain factor 
highest submaximai isometric trial 
lowest submaximai isometric trial 
extemal moment at MIL5 
muscle moment (Nom) 
reaction moment at L 4 L 5  (Nom) 
moment of ligament 1 (Nam) 
moment of LAIL5 intemertebral disc (N-m) 
muscle force per cross sectional area ( ~ l c r n '  ) 
physiological cross-sectional area (cm2 ) 

Introduction 

Lumbar spine tissue force time histories have been estimated via electromyography 

(EMG) assisted modeIs (McGilI, 1992; Granata and Marras, 1993). in order to calculate tissue 

forces, these models require scaling factors for the EMG. The scaling factors are obtained by 



the perfomance of maximal voluntary contraction (MVCs) efforts in tmnk flexion and 

extension. 

However, eliciting maximal contractions from an individual is not a trivial task and 

there is no single "best" rnethod for al1 subjects (McGill, 199 1). injury during the performance 

of trunk extension MVCs has also been reported (Zeh et al., 1986). There are also populations 

( e g  individuals with low back pain. workers inexperienced with maximal contractions) who 

cannot produce "true" MVCs. Yet it is exactly these populations that would benefit greatly if 

these sophisticated models were applied to their specific situations. 

This chapter describes a technique for the calculation of scaling factors that does not 

require MVCs. The outputs of an EMG assisted lumbar spine model were cornpared, using 

both this new method and the standard MVC procedure, in the application of calibrated EMG 

to a healthy and an injured population. 

Methods 

Mode1 Overview: 

The structurai biomechanicd model used to estimate tissue Ioads consisted of two parts. The 

first is a dynamic, three dimensional, fifteen link segment representation of the body which 

utilized the extemally applied dynamic forces and individual anthropornetrics as inputs. The 

reaction forces and moments were calciilated about three orthopaedic axes corresponding to the 

LAL5  joint using inverse dynamics and working through the hands, arms, head and trunk 

linkages [see McGill and Norman (1 986) for a detailed two-dimensional description]. The 

second part, an anatomically detailed model of a three-dimensional pelvis, ribcage and 

intervening lumbar vertebrae, was then used to partition the three reaction forces into their 
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tissue components. This model incorporates fifty muscle fascicles. thiny-eight of which are 

capable of producing a restorative moment at the LAIL5 joint, thirteen ligamentous elements 

spanning the joint. a non-linear elastic intervertebral disc and an-equivalent torsional spnng 

that represented the gut, skin viscera etc. Moment partitioning is accomplished by using EMG 

as an indicator for the neural activation levei for each muscle. This neural input combined with 

modulators for velocity, length and the passive elastic component produces a muscle moment, 

which cm then be adjusted to ensure that a sufficient restorative moment is produced [see 

McGill ( 1 992) for a detailed description]. 

The model was "tuned" for each subject by having the subject "hang from their 

ligaments" in a fully fIexed position. Subtracting the passive elastic muscular component from 

the extemal moment allowed the ligamentous contribution to be calibrated for the angular 

displacements of the torso with respect to the pelvis. EMG,, scaling factors, obtained from a 

standard set of static flexion and extension contractions and combined with physiologie muscle 

fascicle cross sectionai area, allow each muscle fascicle's force (F,,,(t)) to be calculated 

(Equation 1). A common gain factor (G(t)) was obtained by dividing the extemai reaction 

moment (Me) by the sum of the muscle moments (Equation 2). Multiplication of the muscle 

forces by the gain factor (Equation 3) amplified or attenuated the muscle forces, so that the 

summation of al1 of the tissue moments equaled the measured extemai moment, thereby 

preserving the relative contribution of the muscular components to the muscle moments 

(Equation 4). 



Representative mode1 output is shown in Figure 4a. Muscle forces were calculated for 

the Ll - LA pars lumborum muscle fascicles of longissimus thoracis and iliocostalis for the 

performance of a single trunk flexion and extension. To illustrate the effect of the MVC 

scaling factor, the magnitudes of the EMG,, values were respectively doubled and halved (i.e. 

subject had twice, and then one-half of their original strength) and the muscle forces 
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Figure 4: Representative output of the EMG assisted lumbar spine model dunng the 
performance of a single trunk flexion and extension with no load in the hands. (a) Muscle 
forces and gain factor. for the Ll-LA pars lumborum muscle fascicles of longissimus thoracis 
and iliocostalis. Altering the maximum EMG amplitudes used for scaling the EMG signal by a 
factor of 0.5 and 2.0 preserved the muscle forces calculated by the model (b), due to 
modulations in the gain factor (c). The Un5 compressive force was also unaffected (d). 

recalculated. Altering the EMG,, values produced an RMS difference of only 0.8 N for the 

L 1 pars lumborum muscle fascicle. which had an average force of 32.8 N (Figure 4b). The 

right lower erector spinae electrode, which supplied the EMG time history for eight muscle 
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fascicles. had an average force of 300 N for the flexion - extension trial. The altered EMG 

scaling factors produced an RMS difference of 8.3 N. Figure 4c illustrates the gain factor 

compensations produced by the altered EMG, values. The effect of altering the MVC scaling 

factors on LAILS compression is shown in Figure 4d. The average compression was 1800 N 

with an RMS difference of 32 N. Regardless of the EMG level used as the MVC scaling 

factor, the model predicts the same net dynarnic muscle forces and compressions. 

This occurs because of the underlying assumption that the muscles are ail recruited to 

the same level of activation (e.g. 50 or 100% MVC). which keeps the partitionhg of the forces 

biologically consistent. if it were possible to have individuals recruit their musculature to a 

specific submaximal level. then this would be an alternative method for scaling the EMG. 

However, if there are differences in the levels of recruitment, then the model will incorrectly 

calculate muscle forces. For example, if the right lower erector spinae muscle was only 

activated to 50% of its MVC level. but 100% activation was assumed, then it would effectively 

be credited with force production two times what it was really producing. This would not only 

produce an error for this muscle, but it would also alter the scaling factor, resuiting in incorrect 

forces for the other muscles. 

However, the model's ability to predict the same muscle force for a specific level of 

EMG which is not truly "maximal" is still a very important observation. If, for each electrode 

site, the largest single EMG amplitude observed within a triai (i.e. EMGFd) is utilized in place 

of the EMG,, term in Equation 1,  then muscle forces may be determined for each electrode 

site. Performing a trial of a different muscular contraction intensity and obtaining the EMG,, 

for each of the electrode sites would allow the muscle forces associated with each electrode site 
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to be determined. For each electrode site this would result in a pair of EMG,,, values and 

associated muscle forces. This allows for an EMG-to-Force scaling factor to be calculated for 

each electrode site. This chapter discusses how this approach was utilized for a series of 

su brnaximal, isometnc, flexion and extension efforts which then al lowed the cdculation of an 

EMG electrode site specific EMG-to-Force scaling factor. 

Each submaximal flexion and extension trial was treated as if it were a Maximal 

Voluntary Contraction, with the EMG,,, term determined from the largest EMG amplitude 

produced in each channel for that specific submaximal trial. This EMG, term was used in 

place of the EMG,, tem in Equation 1. Analysis of the lowest submaximal isometric effon 

(e-g. 50010 MVC) via the spine mode1 produced isometric muscle forces for that specific flexion 

or extension effort. The highest submaximal isometric trial (e.g. 75% MVC), which required a 

larger isometric moment, was then analyzed and the EMG,, ternis determined and substituted 

into Equation 1 in place of the EMG,, term. Analysis of that trial by the spine mode1 

produced a second set of isometric muscle forces for that specific trial. For each flexion and 

extension trial, the muscle forces were sumrned for each EMG dectrode site. Then for each 

trial, the specific flexion or extension muscle forces and EMG amplitudes were averaged 

across the portion of the contraction where the L4L5 moment was constant. This produced 

average muscle forces and EMG amplitudes for two different load (moment) situations. 

ailowing the construction of a specific EMG-to-Force (EMG,,) scaling factor for each EMG 

channel (Equation 5). To facilitate calculation of the EMG-to-Force scaling factors. it was 

assumed that CO-contraction did not occur during the submaximal isometric efforts. This 
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assumption was also verified for each subject prior to data analysis. Therefore, the respective 

flexor/extensor EMG was set to zero during performance of the isornetric extensiodflexion. 

The EMG, and Po tems in Equation 1 were replaced by the EMG,, term. producing 

Equation 6. 

To evaluate the effect of incorporating the EMG-to-Force technique into the model, 

both the MVC (Equation 1)  and EMG-to-Force (Equation 6) techniques were applied to 

dynamic, sagittal plane lifts. 

Su bjects 

Ten participants asymptomatic for low back pain, and four participants syrnptomatic for 

recurrent low back pain, were recruited for this study (Table 5). Each participant was tested on 

two separate occasions, with the Iow back pain population identifying a "good" and a "bad" 

day. For two of the asymptomatic participants, the first test session was their bad day. Test 

sessions averaged six and eight weeks apart for the syrnptomatic and asymptomatic groups. 

respectively. Each subject signed a consent form, approved by the Office of Human Research. 



after reading an information letter that described the experimental procedures and associated 

risks. 

Table 5 Characteristics of studv ~artici~ants ( rnean [SDN. 

Age (years) Height (m) Mass (kg) 

Normals (n = 10) 27 (2) 1.77 (0.05) 78.4 (7.4) 

Patients (n = 4) 30 ( 1  1 )  1.8 1 (0.03) 90.0 ( 10.7) 

hstrumentation 

Surface EMG was recorded bilaterally, using Ag-AgCI disposable electrodes (Medi- 

Trace, ECE 180 1 ) with a 2.5 cm center-to-center distance. from the following muscles: rectus 

abdominis (3 cm laterai to the umbilicus. aligned straight upward), external oblique 

(approximately 15 cm lateral to the urnbilicus, oriented diagonally down and inward). interna1 

oblique (below the external oblique electrodes and just supenor to the inguinal ligament. 

aligned diagonally up and outward), latissimus dorsi (iateral to T9 over the muscle belly, 

oriented up and outward), upper erector spinae (5 cm lateral to T9 spinous process. oriented up 

and slightly outward) and lower erector spinae (3 cm lateral to L3 spinous process. directed up 

and outward) (McGill, 1992. Sutarno. 1993). The raw myoelectric signais were prefiltered 

(bandwidth of 20 to 500 Hz) and arnplified with a differential amplifier (CMRR of 80 db at 60 

Hz). Reflective markers, representing the fifth metatarsal. heel, knee, hip. Un5. ear canal. 

shoulder, elbow, wrist and hand were attached to measure body joint dispiacements. Trunk 

kinematics were measured using the 3Space IsoTrak (Polhemus Navigation Sciences. 

McDonell Douglas Electronics Company). which consisted of a magnetic source. placed over 



the sacrum, and a sensor. placed over the 12" thoracic vertebrae spinous process. The rhree 

dimensionai position and orientation of the sensor relative to the source, were calculated by the 

3Space electronics. The 3Space signal was collected at 20.5 Hz. 

Tasks 

Subjects were required to perform a standard set of Maximal Voluntary Contractions 

designed to elicit maximal EMG activation. The peak EMG amplitude observed for each 

channel was termed MVC,,. and these scaling factors were used when Equation 1 was used to 

calculate muscle forces (MVC rnethod). Two, 10 second trials for each isometric effort were 

performed. For the abdominal musculature, the subject sat in a bent knee sit up position. hands 

behind the head. feet restrained, with their torso approxirnately 30" to the horizontal. A manual 

resistance was provided to the subject's shoulders while they performed a maximal sit-up and 

trunk twisting effort. For the extensor muscuIature. the subject lay prone over the edge of a test 

plinth, hands behind their head and their feet restrained. A maximal extensor effort was 

performed against manual resistance. For the latissimus dorsi, the subject sat on the edge of 

the plinth, with shoulders abducted to 90" and elbows fiexed to 90". Manual resistance was 

provided against the elbows while the subject attempted to adduct maximally. Finally. the 

subjects performed a series of "quasi isometnc" efforts, attempting to activate each muscle 

group maximally while performing exertions similar to those of body builders posing in 

competition. 

Subjects also performed isometric flexion and extension efforts, that ranged from 50% 

to 90% of their maximal flexion and extension moments, respectively. The 10 second 
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isometric efforts were performed in a prone (extension) and supine (flexion) position utilizing a 

two tier bench, so the postures would be similar to those used to elicit the MVCs (Figure 5). 

A pair of maximal effort isornetric exertions were obtained by restraining the subject so that the 

greater trochanter was aligned with the edge of the upper tier. A chest harness was secured to 

an LVDT which was attached to the floor. The connecting fastener of the chest harness was 

aligned with the torso (head, m s  and trunk) center of mass, measured from the greater 

trochanter (Winter, 1990). Subjects were then able to raise their torso off the lower tier in an 

extension, or flexion. effort and the isometric moment was measured. The single highest peak 

was terrned maximal. Submaximal loading was induced by releasing the cable from the floor 

and having subjects raise their torso to a horizontal position. The extemai moment was 

increased by adding the appropriate load required to produce a pre-determined moment (e.g. 

60%- 65%, 70% of maximum moment) and having subjects raise to a horizontal position. The 

external load was then incrementaily increased until the subject reached the load that they 

could comfortably hold for the 10 second triai. The series of submaximal efforts produced a 

iow (body weight) and a high moment (largest percentage) condition for anaiysis. The 

resulting iow and high moment trials were used to construct the muscle specific EMG-to-Force 

scaling factors, as descnbed previously. and were used when Equation 6 was used to calculate 

muscle forces (EMG,, method). 

Subjects then perforrned four repetitions of hi11 range trunk flexion and extension, with 

loads of 0.5 and 10 kg, which were assumed to be distnbuted evenly between the hands. 

Subjects utilized self selected style and pace, and the load originated 0.185 m in front of the 
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great toe. The load was lifted to knuckle height and the subjects were instructed to pause at 

each end point. 

Figure 5: The postures used for producing the isometric extension maximal and submaxirnal 
effons. Maximal extension effons (a), were produced by raising the tono off of the bench and 
extending against the LVDT secured to the floor. Submaximal loading (b). was induced by 
hanging known Ioads to produce appropriate percentages of the maximum moment. Flexion 
effons were performed in the supine posture. 

Data Reduction 

The LVDT and EMG signais were ND converted (AT-MIO- 16. 12 bit ADC. National 

hstmment. Inc.) at 1024 Hz and stored on magnetic-optical disk. The EMG signals were full 

wave rectified and low pass filtered (2nd order. single-pas, Butterworth) at a cutoff frequency 

of 2.5 Hz to produce a linear-envelope (LE). A 2.5 Hz cutoff frequency was selected because it 

reaches peak response to an impulse in 63 msec, which is in the middle of the 30 - 90 msec 

twitch response to peak tension found by Buchthal and Schmdbruch ( l97O). Olney and Winter 

( 1985) found cutoff frequencies to range from 1.8 to 2.8 Hz for the rectus fernoris. Potvir! 

( 1992) found 2.7 Hz to be the best frequency for the lower and upper erector spinae 
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musculature. The LE EMG and LVDT signals were interpolated. and the 3Space signtils 

extrapolated. respectively, to 30 Hz. in order to match the video sampling frequency. 

AI1 trials were video taped (Panasonic AG- 18OU) in the sagittal plane and the joint 

coordinates digitized (Peak5, version 5.2. Peak Performance Technologies. hc.)  at 30 Hz to 

form a linked segment representation of the body. Right and left symmetry was assumed. The 

Z coordinate for each marker was assigned a positive or negative offset from midline equal to 

% of the shoulder width, as calculated frorn the subject's height (Winter, 1990). 

The joint coordinate data. combined with the dynarnic hand forces were input into the 

linked segment rnodel. producing the L4/L5 reaction forces and moments. Muscle and 

ligament lengths were determined via the kinematic portion of the model and the lumbar spine 

position information (3Space). For the dynamic flexion and extension trials, the kinetic portion 

of the modei calculated the passive tissue moments (ligament and disc) and then partitioned the 

remaining moment amongst the muscles, using either the MVC method. equation 1 or the 

EMG,,, method, equation 6. 

Data Analysis 

To control for task initiation and termination in the dynamic trials, the second and third 

flexion and extensions were used for data analysis. Shoulder rnarker velocity was used to 

determine the start and end points for each flexion and extension movement segment. To 

facilitate within and between subject c o m p ~ s o n s ,  rnodel outputs for each flexion and 

extension segment were normalized to fifty data points. The muscle force per cross sectional 

area (Po) was set to 35 ~lcrn' .  The individual muscle fascicle forces were summed together for 
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each electrode site. This allowrd a direct comparison of the muscle force being produced by 

each electrode. To keep muscle forces within a bioiogically valid range. the gain factor ( G ) .  

was not allowed to get larger than 3.5. Trials in which this occurred were not included in data 

analysis. 

To assess mode1 behavior for the individuals asymptomatic for low back pain. the peak 

and average compressions, flexor muscle moments, and extensor muscle moments were 

analyzed using a repeated measures ANOVA of Method (2) by Day (2) by Load (3).  The 

flexor and extensor muscle forces were analyzed in repeated measure ANOVAs of Method (2)  

by Day (2) by Load (3) by Electrode Muscle Force (6). 

Mode1 behavior for the individuals symptomatic for low back pain was assessed using a 

repeated measures design of Method (2) by Day (2) for peak and average, compression. flexor 

moment and extensor moment, and Method (2) by Day (2) by Muscle Force (6) for the fIexor 

and extensor muscles. 

To satisfy the assumption of similarity of variance. ii was necessary to perfonn a log 

transformation of the muscle moment and musde force data. 

Resulîs 

The repeated measures analysis requires that observations be available for each subject 

in each condition. To maxirnize the number of asymptomatic individuals available for 

comparison (n = 9). the second flexion was used for assessrnent. To maximize the analysis for 

the number of individuals symptornatic for low back pain, the statistical analysis was restricted 

to the first flexion performed with the 10 kg load. 



Effect of Dav 

The day of testing produced no significant difference in any of the mode1 parameters. 

for either test group. To simplify the graphical presentation of the processing rnethod and load 

effects. the data were averaged across days. 

Effect of Processing Method 

compression: For the individuals asymptomatic for low back pain, the EMG,,, processing 

method produced significantly lower peak and average compressions (Figure Sa). The 

ciifferences in peak compression ranged from 245 - 410 N (Table 6). For the symptomatic 

individuals. the trend of the EMG,,, method producing a lower peak L4L5 compression wüs 

not statistically different for the 10 kg load. (p < .056), although the differences ranged from 

400 - 900 N (Table 6). The EMG,,, method did produce a significantly lower average L U S  

compressions in the SYMP group(Figure 5b). interestingly. the difference in the MVC and 

Table 6 The difference (MVC - EMG,,) in peak compression (N) produced dunng the 
dynamic flexions due to the technique used to calculate the EMG scaling factors. There was no 
statistical difference between days for the loads in each group. 

Day 1 1 Good Day Day 2 1 Bad Day 

Load (kg) O 5 10 O 5 10 

ASYMP 245 260 399 380 410 262 
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EMG,,, rnethods for the 10 kg load was similar for the SYMP group's Good Day and ihe 

ASYMP group's Day 1 and Day 2.  

Muscle Moments: For the symptomatic and asymptomatic subjects. the EMG,,, method 

produced significantly lower peak and average entensor and flexor muscle moments (Figure 6ü 

- d). 

Muscle Forces: The average and peak extensor muscle forces were found not to be affected by 

the processing technique for either group (Figure 7 a. c). However. the EMG,,, processing 

technique resulted in significantly lower peak and average flexor muscle forces for both groups 

of subjects (Figure 7 b, d). 

Eflect of Load 

Compression: For the asymptomatic individuals the peak and average values of compression. 

were al1 significantly increased (p < .0005) by the load held in the hands (Figure 5a). 

Muscle Moments: For the asymptomatic participants. the load in the hands significantly 

increased the peak and average values of the extensor muscle moments (Figure 6a). but not the 

peak and average flexor muscle moments (Figure 6b). 

Muscle Forces: Figure 7a shows the significant increase in the peak and average extensor 

muscle forces with an increase in hand load for the asymptomatic individuals. However. the 

peak and average values of flexor muscle forces were not affected significantly (Figure 7b). 
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Figure 6: The effect of processing method and load on the peak and mean L4L5 compressive 
force. For the asymptomatic individuals (a), the * indicates that during the second flexion, the 
peak and mean compressions calculated using the EMG,,, method were significantly smaller 
(p c .0005) than those obtained using the MVC technique. The load held in the hands 
significantly increased the peak and mean compressive forces (p c -0005). For the 
symptornatic individuals (b), during the first flexion with the 10 kg load in the hand. the 
processing method produced no difference in the peak U/LS compressive force (p  > .056). but 
the mean compression for the EMG,,, method was significantly lower (p < .039). as indicated 
by the *. 



Figure 7: The effect of processing method and load on the peak and mean L4L5 muscle 
moments. For the asymptomatic participants. the * indicates that during the second flexion. the 
EMG,,, technique produced significantly smaller peak (p c .0005) and mean (p < .0005) 
extensor muscle moments (6a) and significantly smaller peak (p < ,002) and mean (p  < .0005) 
flexor muscle moments (6b), than those calculated using the MVC method. The load held in 
the hands increased the peak (p c -0005) and mean (p < .02) extensor muscle moment 
significantly (6a), but had no effect on either the peak or mean flexor muscle moment (6b). For 
the symptomatic individuals, performing the first flexion with the 10 kg load, the * indicates 
that the EMG,,, technique produced significantly smaller peak (p < ,034) and mean ( p c .O2 1 ) 
extensor muscle moments (6b) and peak (p c, .O 16) and mean (p < .O 14) flexor muscle 
moments (6d). 



Figure 8: The effect of processing method and load on the peak and mean muscle forces. For 
the asymptomatic group, performing the second flexion, there was no statistical difference 
between the EMG,,, and MVC methods in the peak and mean extensor muscle forces (7a). 
The load held in the hands significantly increased both the peak (p < .0005) and average (p  < 
-0005) extensor forces (7a). The peak and mean flexor muscle forces (7b) were both 
significantly lower using the EMG,,, processing method (p < .0005), as indicated by the *. 
The hand load had no effect on the peak flexor muscle force (7b), but did increase the mean 
flexor muscle force significantly (p < .037). For the symptomatic group, during the first 
flexion with the I O  kg load, the processing method had no effect on peak or mean extensor 
muscle force (7c). The flexor muscle forces (7d) were significantly smaller using the EMG,,, 
method for both the peak (p < .025) and mean (p < .022) values, as indicated by the *. R = 
right; L = left; Lat Dorsi = iatisimus dorsi; U Er Sp = upper erector spinae; L Er Sp = lower 
erector spinae; Rect Abd = rectus abdominis; Ext Ob1 = external oblique: int Ob1 = interna1 
oblique. 



Discussion 

This study compared a maximal voluntary contraction (MVC) and an EMG-to-Force 

(EMG,,,) methodology for determining EMG scaling factors in order to calculate muscle 

forces of the lumbar spine. using an EMG assisted model. In flexiodextension tasks with hand 

loads of 0, 5 and 10 kg. the EMG,,, method, compared to the standard MVC method. resulted 

in significantly lower compressions. flexor and extensor muscle moments and flexor muscle 

forces in individuals asymptomatic for low back pain. The EMG,,, method successfully 

produced the same peak and average extensor muscle forces as the MVC method. Both of 

these findings occur as a result of the EMG,,, calibration procedure utilized in this study. 

With the MVC approach. the model incorporates a non-Iinear EMG-to-Force term for 

the calculation of muscle forces (Figure 8). Points dong this curve are also used when 

calculat ing the EMG-F scaling factors. However. the equation which calculates musc le force 

for the EMG,,, method is linear, because the 100% MVC value is unknown. This would 

produce only slightly different muscle forces. However. these small differences are then 

magnified by differences in gain factors. 

Differences in gain factor occur as a function of the horizontal posture used in the 

calibration procedure. Each subject's torso mass represented a substantial percentage of their 

maximal flexion and extension moment producing ability. This resulted in the calculation of 

the EMG,, scaling factors occumng in the upper region of the EMG-to-Force relationship. In 

this area, there is very little difference in the amount of force produced by each method per 

each unit of EMG (Figure 8). At Iower levels of EMG, the large calibration moments result in 



an overestimation of the amount of force produced per unit EMG for the EMG,,, method. 

resultino in a lower gain. 
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Figure 9: The muscle force produced in the lumbar spine mode1 as a function of EMG 
activation level. The dark line indicates the non-linear rnethod used with the standard, MVC 
approach. The open squares illustrate a linear force-EMG relationship. The EMG,,, method 
uses a combination of the two. calculating the muscle forces at two levels of EMG using the 
MVC method and then assuming a linear EMG-to-force relationship. 

The EMG,,, method is also sensitive to the calibration forces calculated for each 

muscle. Thus. even though for both trials, the muscle force and EMG were averaged over a 

period of time when the moment was stable. fluctuations in the EMG signal and muscle forces 

calculated would allow changes in the EMG,,, relationship to occur (Figure 9). Overall. the 

EMG,, calibration method calculated significantly smaller force values for the flexor 

musculature electrodes and similar force values for the extensor musculature eiectrodes. This 

resulted in a smaller calculated fiexor muscle moment, which in turn lead to the cdculation of 

a greater net extensor moment. and ultimately. a smaller gain factor. The combined effect of 

the linear EMG,,, muscle force calculation and differences in gain factor resulted in the 
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Figure 10: An illustration of the average EMG. average muscle force and moment relationship. 
Ideally. The solid squares show the ideal relationship. However. increases or decreases in 
either the average EMG value or the average muscle force over the period where the moment is 
stable would alter the EMG,,, scaling factor calculated. 

calculation of less muscle force. flexor and extensor moment and L 4 L 5  compression. 

The EMG,,, processing method allowed a sophisticated EMG assisted mode1 of the 

lumbar spine to be successfully applied to individuals suffering from recurrent low back pain 

who knowingly could not provide true maximum voiuntary contractions (MVCs). However. 

using the EMG,,, technique did result in peak and average spinal compressions that were 

significantly smaller than those calculated using the MVC method. Nevertheless, this 

difference shouid not minimize the importance of the EMG,,, processing rnethod for the 

compressions in the ASYMP group were only underestimated by 250 - 400 N. depending on 

the load being handled. Also, for the SYMP group's Good Day. the underestimate was also 

only 400 N. Thus. the magnitudes of the spinal compressions could be corrected if desired. 
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Srcondly. for the SYMP group. no statisticül difference in peak compression was found 

between the two rnethods (Figure jb). Yet according to the SYMP group's data a difference in 

the compression would be expected between the two methods (Figure 53). It may be that the 

compressive forces calculated by the EMG,,, method were elevated. This would seem 

unlikely because the EMG,,, method incorporated moments that were easier to produce than 

MVCs. It is more probable that the EMG scaling factors detennined using the  MVC method 

were altered as result of not producing true MVCs. if this is the reason for the compressions 

not being significantly different, then the compressions would be even greater than those 

calculated. 

If the compressions for symptomatic individuals are going to be underestimated. as 

occurred in this study, the EMG,,, method would be the preferred method for calculating the 

EMG scaling factors because the required muscle contractions are easier for symptomatic 

individuals to perform. Also. compression is only one parameter calculated by the model. 

Muscle forces are also calculated and there were no differences in the extensor forces for either 

group of individuals. Changes in muscle force distribution may be one method of monitoring 

recovery for symptornatic individuals. If the MVC method alters the scaling factors. then the 

EMG,,,, method would appear to be a superior technique. 

The EMG,, method may be desirable to use on populations other than those 

symptomatic for low back pain. Populations in which the individuals are inexperienced in the 

performance of MVCs (e.g. industrial workers) would find the EMG,, rnethod easier to 

perform. Also. if the relative magnitudes and or distribution of muscle forces were the prirnary 

factors of interest. then the EMG,,, method would also appear to be advantageous. 
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The non-significrince of test day is an important finding for EMG assisted models that 

use either method for calculating muscle forces. As the areas and subject populations of 

research that EMG assisted models are applied to increase. (e.g. assessment of treatment 

modalities for individuals with low back pain). then differences in outputs rnay be more 

confidently assigned to factors other than the day of the test. 

The production of maximal voluntary contractions (MVCs) is a challenging task. and 

one in which skilled performers may require several attempts using different postures in order 

to obtain a maximal value (McGill. 1991). The knowledge that different postures produce 

different maximal amplitudes. rneans that a researcher rnay never be certain that some other 

posture may have elicited an even greater value. Mirka ( 199 1 )  has also demonstrated that trunk 

angle is a factor which needs to be considered when normalizing EMGs. Zeh et al. ( 1986) 

encountered several reports of back discomfort and objective signs of injury in three employees 

during strength testing involving MVCs. As an alternative rnethod for scaling EMGs. the 

EMG,,, method addresses these concems and provides other important advantages. 

The first and most significant is that MVC's are not performed. This allows 

populations (e-g. low back pain. industnal workers) that are not typically included in research 

that incorporates these models. Not having to perfom MVCs also alleviates the concems of 

low back injury associated with MVCs (Zeh et al.. 1986). As with the MVC approach. the 

EMG,,, calibration is both subject and muscle specific. However. the EMG,,, method has 

the added advantage that a specific posture may be uriiized, if desired. In this study. a 

horizontal posture was selected in an attempt to match the MVC postures. This particular 

strategy was time consuming, because of the size of the moments used and the way they were 



created. Adopting other postures (e-g. standing) and incorporaring visual feedback for the 

maintenance of a desired moment would decrease the length of time required to perform the 

calibration and allow the assessrnent of posture specific activities. The calibration procedure 

may also be performed using load levels much closer to those being evaluated. For example. 

in a lifting task the extensor muscles rnay be calibrated at 40% to 50% MVC. whîle the flexor 

musctes are calibrated at a much smailer level. This would rninimize the errors associated with 

the incorporation of a linear EMG to Force relationship. 

In order to facilitate the comparison of the two methods. the rnodel gain factor was 

allowed to Vary. even for very small moments. Both the magnitude and the variability of the 

model gain factor contain information which retlect the biology of the system being modeled. 

The magnitude of the model gain factor indicates how well an individual "fits" the model. For 

example. if the gain factor had an average value of 2. it would reflect that perhaps the 35 

utilized for Po was an underestimate for that individual. The variability about the average value 

provides an indication of where in the rnovement the model parameters required much more or 

less modulation. For example. dunng periods when very small moments are required (e.g. 

standing upright), the muscles have stability requirernents that they must satisfy, not moment 

requirements (Cholewicki and McGill. 1996). This produces a situation where the gain factor 

becomes very large because there is a very small signai-to-noise ratio (moment-to-EMG). so 

that data from the model dunng these periods may not be valid. However, as the moment 

demand increases. the muscles function to meet this demand and the model output should be 

correct. if the gain factor becomes variable dunng these periods it allows the effects of other 

model modulators to be examined (e.g. velocity factor. ligament contribution). This 



information rnay then be used to correct the biological representation in the model to more 

accurately reflect the hurnan system. 

In summary. a technique for the calculation of EMG scaling factors required for using 

an EMG assisted model of the lumbar spine was developed and successfully applied to 

symptomatic and asymptomatic low back pain populations. The results show that the EMG,,, 

method produces significantly lower compressions and flexor muscle forces. but no difference 

in extensor muscle forces when compared to the standard MVC approach. The day of testing 

was found not to significantly affect model output for either method and the EMG,,, approach 

has several benefits for future research. 



Chapter V 

The Assessrnent of Spine Movement Dysfunction by 
a Commercial Dynamometer, EMG and an EMG Assisted Mode1 

Introduction 

The understanding of injury mechanisms is pre-requisite to the development of 

effective rehabilitation and prevention methods (Norman. 1992). Yet for the low back. the 

rnechanisms of injury are not well understood. It is estimated that in 20 - 85% of low back 

pain (LBP) cases. the exact etiology of injury is unknown (White and Gordon. 1982). 

Typically. if a low back injury is not structural or neural in nature. then abnormal muscular 

activity and other soft tissues are suspected. Also. even when the cause of an injury is known. 

it is probable that normal muscle function will be impaired secondary to pain or mechanical 

disorders (De Luca. 1993). It is not surprising then. rhat researchers have developed many 

methods in an effort to quantify muscle function, and that clinicians have developed numerous 

treatments to improve the muscle function of LBP suffers. 

A common clinical goal that conservative treatment methods have focused on is the 

return or irnprovement of an individuai's "abnormal" function to "normal". Typically this is 

achieved through the use of modalities such as flexibility. strengthening andor manipulation. 

The variable(s) used to quantify "normal" depends on the clinician. but being pain free is 

typically associated with normal function. However. due to the difficulty in quantifying pain. 

and the increased costs associated with LBP. there h a  been a move towards objective methods 

for the quantification and treatment of LBP individuals. 
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The quest for objectjvity h a  lead to the development of uni-axial and multi-axial 

cornputerized spinal dynamometers and they have become a routine component of the 

assessrnent and rehabi litation procedure of individuals with LBP (Spengler and Szpalski. 

1990). Quantification of performance. computerized summary reports. and the relatively short 

testing time are dl reasons for the increased utilization of these dynamometers . hcorporating 

objective assessments as part of the rehabilitation program has been demonstrated to be more 

effective than simple pain management programs (Mayer et al.. 1986). 

The purpose of this study was to determine whether the understanding of spine 

movement dysfunction. as indicated by abnormal displacement, velocity. and torso moment 

data. was augmented by knowledge of the EMG activity from select abdominal and back 

extensor muscles andor by knowledge of the individual torso tissue forces estimated from an 

EMG assisted. dynamic. three dimensional spine model. This was investigated by the 

assessment of individuals symptomatic and asymptomatic for low back pain. on two separate 

test days, using: 

I ) a computerized lumbar spine dynamometer (Isostation 8 - 2 0 )  and a clinical 

evaluation protocol (OOC software, Version 3. l ) ,  

2)  a custom profile analysis of the B-200 moment-time histories. 

3) the assessment of spinal EMG profiles (presented as mV and %MVC) produced 

from the performance of a dynamic flexion-extension task. and. 

4) the assessment of spinal muscle force profiles. estimated by an €MG-assisted model 

of the lumbar spine, produced while performing a dynamic flexion-extension task. 



Rationale 

The Isostation B-200 is a three dimensional lumbar spine dynamometer designed to 

objectively measure "back function". It compares an individual's torso displacement. velocity 

and moment data. produced during a specific clinical evaluation protocol (Occupational 

Orthopaedic Center (OOC) Version 3.1 ). against a data base in order to classify or quantify an 

individual's level of "back dysfunction". The resultant level of back dysfunction and 

associated performance data may then be used as a guide in the rehabilitation process and to 

assist in determining when an individual has regained "normal" function. Although this 

approach identifies normal and dysfunctional spine movements. it oversimplifies the 

individual's rnovernent patterns. By concentrating on the magnitude of the resultant peak 

and/or average moments and velocities. it ignores the moment time history that produced the 

movements. Evaluating this aspect of the performance may further enhance the assessment. 

Also. this dynamometer oversirnplifies the lumbar spine. The dynamometer's rotation, flexion 

extension and lateral flexion mechanical axes do not align with the mechanical axes of the 

lumbar spine. 

Electromyography (EMG) of the lumbar spine musculature has emerged as a method 

through which the function of the musculature in individuals symptomatic and asymptomatic 

for LBP may be evaluated. The amplitude component of the EMG signal from the spinal 

musculature has been used to quantify the flexion-relaxation phenomenon (Floyd and Silver, 

1955; Triano and Schultz. 1987; Sutamo. 1993). In 1968. de Vries found greater amplitude 

changes for people with LBP in the fatigue response of the spinal muscles during quiet 

standing. Other researchers have looked at a combination of static and dynamic tasks to try and 
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identify differences associated with LBP and the results have been mixed. Ahern et al. < l988) 

found no difference between a control and a LBP group in static tasks. but in dynamic tasks 

there was decreased EMG activity in the LBP group. Arena et al.. ( 1989) found that for 

standing. sitting. laying prone and fiexion-extension. controls had decreased EMG activity 

compared to those wi th intervertebral disk disorder and those with unspeci fied musculoskelet al 

backache. Nouwen et al.. ( L 987) found no significant differences in bilateral paraspinal EMG 

between LBP patients and pain-free controls during the performance of rotation, flexion- 

extension or lateral bending. 

One reason for the divergent results is the different tasks that are perfomed. Another 

important difference is the EMG reporting method. Each of these studies have used p V  to 

express the EMG and have used a single number to represent the activity performed. either 

mean EMG (pV), integrated EMG (pV*s), or rate of EMG (pV/s) production. Arena et al.. 

( 1990) found that surface EMG of the paraspinal muscles was more reliable when expressed as 

an absolute rather than a relative measure and many researchers do use pV. However. 

Basmajian and De Luca (1985) recommend that the EMG signal amplitude should be 

normalized to a convenient and referable quantity, such as its maximum value. Also. by 

condensing an entire movement cycle or task into a single number. important differences in the 

task's EMG time history may be lost. Therefore. it is important the entire EMG time history of 

the task be utilized in the analysis. 

Sutarno ( 1993) documented 3D kinematic and EMG time histories of 14 trunk muscles 

during the performance of uni-axial twist. flexion-extension and side-bend movements for 24 

nomals and 5 low back pain individuals. Difficulty in categorizing the LBP individuals using 
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the kinematic and EMG variables rnay have been due to the use of a srnail load ( I O kg) and the 

fact that only one of the LBP individuals was in pain at the time of testing. Although the 

technique was applied in a laboratory setting, it could easily be adapted for use in a clinical 

environment. 

Other researchers have used changes in the EMG power spectmm. associated with 

fatigue during the performance of isometric tasks, in order tc differentiate between normals and 

LBP individuals (Kondraske et al.. 1987: Roy et al., 1989: Roy et al., 1990; Biedermann et al.. 

199 1 ,  Moritani et al., 1992; De Luca. 1993). The power spectmm method facilitates the 

classification of individuals, assesses sorne aspects of muscle function and assists in tracking 

improvement during the rehabilitation process. However, this method is Iimited to the 

performance of static contractions. Therefore, i t  fails to identify the specific impairments that 

are associated with the performance of activities of daily living, such as flexion and extension. 

Determining the force time histories of the lumbar musculature is another method 

through which normal function may be quantified. Knowledge of these force time histories for 

individuais asymptomatic and symptomatic for LBP may also provide insight into injury 

mechanisms. Forces in the lumbar spine may be estimated using sophisticated, computerized 

modeis (McGill and Norman, 1986, McGill. 1992. Marras and Sommench. 199 1 a, Granata and 

Marras. 1993). McGi11 (1992). developed a three dimensional dynarnic model which uses 

EMG as a biological input signal in order to partition the restorative moment into forcehime 

histories for 50 muscle fascicles. 12 ligament vectors and the compression and shear forces 

acting on the L4L5 motion unit. Previously, this model required the performance of maximum 

voluntary contractions (MVCs) in order to calculate the scaling factor for the EMGs. Pain. 
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decreased motivation ancilor fear of re-injury are al1 reasons which rnay prevent an individuai 

from performing a "true" MVC. This prevented this model from being used in conjunction 

with LBP individuals. An adaptation of the method for detennining the model's EMG scaling 

factors. as reported in the previous chapter. now allows this model to be used in coi~junction 

with LBP individuals. 

Knowledge of the force time histories of the lumbar spine musculature would also be 

beneficial in assessing recovery from injury. With recovery, performance parameters such as 

peak isometric moment, peak velocity or endurance time rnay show improvements or return to 

normal. But they provide no information regarding changes in muscular function. nor do they 

necessarily relate to activities of daily living. However, the cornparison of the muscle forces 

during a dysfunctional or painful period (Le. a bad day). versus those during a functional or 

pain free period (Le. a good day), rnay reveal changes in the function of the lumbar spine 

musculature. Another advantage to assessing muscle forces is that the EMG time histories 

required as model inputs. rnay also be used by themselves as an intermediate method of 

ÿssessing muscle function. This EMG time-histories rnay be beneficial in improving O u r  

understanding of the relationships between muscular function and physical performance. 

Arena et al. ( 199 1 )  assessed the muscular function of people with LBP performing six 

tasks, on days with low, and high pain States. A non-significant trend of increased mean €MG 

activity was observed. Differences rnay not have been detected due to the absence of 

normalization and/or representation of each task by a single number. To this author's 

knowledge, the assessrnent of muscle forces in individuals symptomatic for LBP during days of 

different levels of functionality, has never been performed. 
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In summary. there is a clinical need for quantitative methods to evaluate lumbar spine 

function. It is possible that the assessment produced by one commonly used evaluation tool. 

the Isostation B-200. may be augmented by evaluation of the moment time histories produced 

during testing. Incorporaring EMG of the spinal musculature as a component of the evaluation 

is an attractive technique for the quantification of muscular performance. EMG assessments of 

individuals symptomatic for LBP in previous research have typically ignored assessment of the 

EMG time history and the performance tasks have not been strongly related to activities of 

daily living. EMG of the spinal musculature rnay also be used as an input for a cornputer 

mode1 of the spine. allowing lumbar spine muscle forces to be estimated. Finally. in previous 

investigations of muscular function. the testing has typically involved a single evaluation 

period and the focus has been on comparing the resuits for individuals syrnptornatic for LBP to 

an asymptomatic group. Very little research h a  foliowed individuals symptornatic for LBP 

longitudinally, in an effort to compare an individual's bad day results to their good day. 

M e t  hods 

Subjects 

Ten pa.rticipants asymptomatic for low back pain (ASYMP Group) and four participants 

symptomatic for recurrent low back pain (SYMP Group) were recmited for this study 

(Table 7). Each participant was tested on two separate occasions. with the low back pain 

population identifying a "good and a "bad" day. For two of the syrnptomatic participants. the 

first test session was their bad day. Test sessions averaged six and eight weeks apart for the 

symptornatic and asymptomatic groups, respectively. Each subject signed a consent form. 
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approved by the Office of Human Research. after reading an information letter that describrd 

the experirnental procedures and associated risks. 

Table 7 Characreristics of study participants (mean (SD)). 

Age O ' e W  Height (rn) Mass (kg) 

Nonnals 27 (2) 1.77 (0.05) 78.4 (7.4) 

Patients 30 ( 1  1 )  t .8 r (0.03) 90.0 ( 10.7) 

Instr~imentation 

During the isometric and dynamic flexion and extension t d s  EMG, body segment 

locations, tmnk kinematics and torsohand forces were recorded. Surface EMG was recorded 

bilateraily R = Right. L = Left), using Ag-AgCl disposable electrodes (Medi-Trace. ECE 180 1 ) 

with a 2.5 cm center-to-center distance, from the following muscles: rectus abdominis (RA. 3 

cm lateral to the umbilicus, aligned straight upward). extemal oblique (EO, approxirnately 15 

cm lateral to the umbilicus. oriented diagonally down and inward). internai oblique (IO, brlow 

the extemal oblique electrodes and just superior to the inguinal ligament. aligned diagonally up 

and outward), latissimus dorsi (LD. lateral to T9 over the muscle belly. oriented up and 

outward), upper erector spinae (UES, 5 cm lateral to T9 spinous process, oriented up and 

slightly outward) and Iower erector spinae (LES, 3 cm lateral to L3 spinous process, directed up 

and outward) (McGill, 19%. Sutarno, 1993). The raw myoelectric signals were prefiltered 

(bandwidth of 20 to 500 Hz) and amplified with a differential amplifier (CMRR of 80 db at 60 

Hz). Reflective markers. representing the fifth metatarsal, heel. knee, hip, UL5. ear canal. 
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shoulder. elbow. wrist and hand were attached to measure body segment displacements. Trunk 

kinematics were measured using the 3Space IsoTrak (Polhemus Navigation Sciences. ~McDone I l  

Douglas Electronics Company). which consisted of a magnetic source. placed over the sacrum. 

and a sensor. placed over the 1 Z'h thoracic vertebra spinous process. The three dimensional 

position and orientation of the sensor relative to the source, were calculated by the 3Space 

electronics and were sampled at 20.5 Hz. The torso and hand forces produced in the vertical 

direction during the isometric and dynamic flexion and extension trials were rneasured using a 

linear variable differential transformer (LVDT) and amplifier (Daytronics Transducer Amplifier. 

Modei 3270). 

Tasks 

Oswestrv Ouestionnaire 

At the start of each test sessions. subjects completed the Oswestry low back pain 

disability questionnaire (Fairbank et al.. 1980. see kppendix A) . 

Pain Scale 

At the start of each test session, each subject was asked to indicate "How much pain do 

you feel at this tirne?" by placing a mark on a 10 cm visual analogue scale (VAS)(Appendix B). 

The left and right ends of the line were labeled "No Pain" and "Worst Imaginable", respectively 

(Von Korff et al.. 1992). Subjects also completed a new VAS following the cornpletion of the 

isometric flexions and extensions, the dynamic flexions and extensions, the lsostation B-200 

and 24 hours post-testing. 
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 maximal Voluntarv Contractions 

Subjects were required to perform a standard set of Maximal Voluntary Contractions 

designed to eiicit maximal EMG activation so that the EMGs could be presented as %MVC. 

The peak EMG amplitude observed for each channel was temed MVC,,. Two. 10 second 

trials for each isometric effort were performed. For the abdominal musculature, the subject sat 

in a bent knee sit up position, hands behind the head, feet restrained. with their torso 

approximately 30" to the horizontal. A manual resistance was provided to the subject's 

shoulders while they performed a maximal sit-up and tmnk twisting effort. For the extensor 

musculature, the subject lay prone over the edge of a test plinth. hands behind their head and 

their feet restrained. A maximal extensor effort was performed against manual resistance. For 

the latissimus dorsi. the subject sat on the edge of the plinth. with shoulders abducted to 90" and 

elbows flexed to 90". Manual resistance was provided against the elbows while the subject 

attempted to adduct maximally. Finally. the subjects performed a series of "quasi isometric" 

efforts. attempting to activate each muscle group maximally while performing exenions similar 

to those of body builders posing in cornpetition. 

Isometric Flexion and Extensions 

Subjects performed isometric flexion and extension efforts. that ranged from 50% to 

90% of their maximal flexion and extension moments. respectively. The 10 second isometnc 

efforts were performed in a prone (extension) and supine (flexion) position utilizing a two tier 

bench. The subject was positioned so that the greater trochanter was aligned with the edge of 

the upper tier and their legs were restrained with velcro straps. A chest harness was secured to 
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an LVDT which was attached to the tloor. The connecting fastener of the chest harness WU 

aligned with the torso (head, arms and trunk) center of mas. measured from the greater 

trochanter (Winter. 1990). Subjects were then able to raise their torso off of the lower tier in an 

extension. or flexion, effort and the isometric moment was measured. A pair of maximal effort 

isometric exertions were obtained and the single highest peak was termed maximal. 

Submaximai loading was induced by releasing the cable from the floor and having subjects raisr 

their torso to a horizontal position. The extemal moment was increased by adding the 

appropriate load required to produce a pre-determined moment (e.g. 70% of the isometric 

maximal moment) and having the subject raise their torso to the horizontal position. The 

extemal load was then incrementally increased until the subject reached the maximal load that 

they felt they could comfortably hold for the 10 second trial. This series of submaximal efforts 

produced a low (body weight) and a high moment (largest percentage) condition for analysis. 

The resulting low and high moment trials were used to constmct muscle specific EMG-to-Force 

scaling factors, in conjunction with an EMG assisted lumbar spine mode1 in order to calculate 

muscle forces. 

Dynamic Flexion and Extensions 

Subjects performed four repetitions of full range trunk flexion (lower) and extension 

(lift), with loads of 0. 5 and 10 kg. The 5 and 10 kg loads were attached to an instrumented load 

plate with a pair of handles. An uniaxial LVDT measured the vertical forces applied to the nght 

handle. Forces on the left handle were assumed to be the sarne. Subjects utilized a self selected 
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style and pace. and the load originated 0.183 m in front of the great toe. They were instnicted to 

pause at the end point of each flexion and extension. 

Esostation B-200 

Subjects were restrained in the Isostation B-200 (Isotechnologies, inc.). in an up-right. 

neutral standing posture. The subject's pelvis was restrained firrnly. the thoracic pack was 

adjusted to the level of the 1- thoracic vertebra and the thigh strap was securely fastened. A 

standard clinical protocol, the Occupational Onhopaedic Center (OOC) protocol (Version 3.1 ). 

was then performed. Two repetitions of range of motion (ROM) were perfomed for right ( R )  

and left (L) rotation (ROT). flexion (FLEX) and extension (EXT) and right and left lateral 

flexion (LF). Two repetitions of maximum isometnc effort were then perfomed for RROT. 

LROT. RLF. LLF, FLEX and EXT. Five repetitions of rotation were then performed against a 

resistance which was 25% of the isometric rotation maximum. The load was then increased to 

50% of the isometric maximum and five more repetitions were perfomed. Five repetitions of 

25% MVC and then 50% MVC Ioading were then performed in the FLEXEXT a i s .  Due to 

strength differences in producing flexion and extension moments. the protocol selected the 

smaller of the flexion and extension isometric values, to ensure that the weaker muscle group 

would be able to complete the task. Five repetitions of 25% MVC and then 50% MVC 

resistence were then perîormed in the LF axis. Dunng dynamic testing the resistance in the 

non-movement axes (e.g. FLEXEXT & LF during ROT) were set to the machine maximum. A 

second, 2 repetition ROM test was then perfomed for each axis. followed by a second senes of 

dynamic testing for each axis. Although the order of testing the axes was identical to the first 
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dynamic sequence. the loading was reversed so that the 50% MVC load w u  followed by the 

15% MVC load. Consistent with the clinical protocol. subjects were not infonned of the order 

change and they were encouraged in ail trials to move as hard. as fast and as far as they could. 

Calibration 

A calibration trial was collected using a 1 mV. peak-to-peak 100 Hz sine wave as a 

known input signal into the EMG bioarnplifiers. The LVDT was calibrated in the vertical 

direction using a zero load and a 10.3 kg mas.  

Mode1 Overview 

The structural biornechanical model used to estimate tissue loads consisted of two parts. 

The first is a dynamic, three dimensional. fifteen link segment representation of the body which 

utilized the extemally applied dynamic forces and individual anthropornetrics as inputs. The 

reaction forces and moments were calculated about three onhopaedic axes corresponding to the 

L4L5 joint using inverse dynamics and working through the hands. arms, head and trunk 

linkages [see McGill and Norman ( 1986) for a detailed two-dimensional description]. The 

second part, an anatomically detailed modei of a three-dimensional pelvis, ribcage and 

intervening lumbar vertebrae, was then used to partition the three reaction forces into their 

tissue components. This model incorporates fifty muscle fascicles, thirty-eight of which are 

capable of producing a restorative moment at the U/LS joint. thirteen ligamentous elements 

spanning the joint, a non-linear elastic intervertebral disc and an-equivalent torsional spring that 

represented the gut, skin viscera etc. Moment partitioning is accomplished by using EMG as an 

indicator for the neural activation level for each muscle. This neural input combined with 
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modulators for velocity. length and the passive elastic component produces a muscle moment. 

which can then be adjusted to ensure that a sufficient restorative moment is produced [see 

McGiIl ( 1992) for a detailed description]. 

The mode1 was "tuned" for each subject by having the subject "hang from their 

ligaments" in a fully flexed position. Subtracting the passive elastic muscuiar component from 

the extemal moment allowed the ligamentous contribution to be calibrated for the angular 

displacements of the torso with respect to the pelvis. EMG-to-force scaling factors (ELMG,,,) 

for each electrode site. for each subject. were obtained from a set of submaximal, isometric 

flexion and extension contractions. These factors. combined with each muscle fascicle's 

physiologic cross sectional area and an assumed force per cross sectional area of 35 ~ / cm ' .  

allowed each muscle fascicle's force (F,,,(t)) to be calculated (Equation 7). A common gain 

factor (G(t))  was obtained by dividing the extemal reaction moment (Mc) by the sum of the 

muscle moments. Multiplication of the muscle forces by the gain factor amplified or attenuated 

the muscle forces, so that the summation of al1 of the tissue moments equaled the external 

moment. thereby preserving the refntive contribution of the muscular components to the muscle 

moments. 

where: 

m muscle fascicle 

6 velocity factor 



cl length factor 

EMG linear envelope EMG amplitude (a/d unit) 

EMG,,, EMG-to-force scaling factor (Nldd unit) 

F muscle force (N) 

Fpec passive elastic force (N) 

Data Reduction 

Oswestry Questionnaire 

Each response to the 10 questions on the Oswestry questionnaire was scored from O to 5 .  

The total was then divided by 50 and multiplied by 100 to express it as a percentage. 

Unanswered questions were not included in the sconng and the denominator was adjusted 

accordingly (Fairbank et al.. 1980). 

Pain Scale 

Each 10 cm VAS was divided into 20 sections and numbered from 1 (No Pain) to 20 

(Worst Imaginable) (Scott and Huskinsson. 1976). The sconng value for each 0.5 cm section 

was equal to each section's respective number. The scale was scored by recording the "level of 

pain" indicated. 

Isornetnc and Dvnarnic Flexion and Extension Trials 

The LVDT and EMG signals were A D  converted (AT-MIO- 16, 12 bit ADC. National 

Instrument, Inc.) at 1024 Hz and stored on magnetic-optical disk. The EMG signals were full  
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wave rectified and low pass filtered (2nd order. single-pas. Buttenvonh) at a cutoff frequency 

of 2.5 Hz to produce a linear-envelope (LE). A 2.5 Hz cutoff frequency was selected because it 

reaches a peak response to an impulse in 63 rnsec. which is in the middle of the 30 - 90 msec 

twitch response to peak tension found by Buchthal and Schmalbmch ( 1970). Olney and Winter 

( 1985) found cutoff frequencies to range from 1.8 to 2.8 Hz for the rectus femoris. Potvin 

( 1992) found 2.7 Hz to be the best frequency for the lower and upper erector spinae 

musculature. The LE EMG and LVDT signals were interpolated, and the 3Space signals 

extrapolated to 30 Hz, in order to match the video sampling frequency. 

The isometric and dynamic flexion-extension trials were video taped (Panasonic AG- 180 

UR) in the sagittal plane and the joint coordinates digitized (Peak5. version 5.2. Peak 

Performance Technologies, inc.) at 30 Hz to form a link segment representation of the body. 

Right and left symmetry was assumed. The Z coordinate for each marker was ssigned a 

positive or negative offset from midline equd to % of the shoulder width, as calculated from the 

subject's height (Winter, 1990). 

The joint coordinate data, combined with the dynamic hand forces were input into a 

linked segment model (3DYNLNK), producing the reaction forces and moments for the UR5 

joint. Muscle and ligament lengths were determined via the kinematic portion of the mode1 and 

the lumbar spine position information (3Space). For the dynamic flexion and extension trials, 

the kinetic portion of the model calculated the passive tissue moments (ligament and disc) and 

then partitioned the remaining moment amongst the muscles, using muscle specific EMG,,, 

scaling factors. 
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Isostation B-300 

For each trial of the OOC protocol. the position. velocity and moment data for the ROT. 

F/E, arid LF axes were ND converted (Labtender, 8 bits, Scientific Solutions) at 50 Hz and 

stored on hard disk. The OOC software utilized a set of decision niles to analyze ROM, peak 

isornetric moment. peak velocity. average velocity and peak secondary axes moments to 

produce a report that indicated both the severity of the subject's back dysfunction (i.e.. none. 

rnild. moderate. or severe) and the quality of effort (physiological. non-physiological) put forth 

during the test (Deutsch. 199 1 ). 

Data Anniysis 

Oswestry Ouestionnaire 

The Oswestry low back pain disability questionnaire scores for the ASYMP and SYMP 

individuals were analyzed in a 2 X 2 (Day X Group) repeated measures ANOVA. 

Pain Scale 

The VAS data for the ASYMP and SYMP subjects were analyzed in a 2 X 2 X 5 (Day X 

Group X Test) repeated measures ANOVA. 

Dvnamic Trials 

To control for the effects of task initiation and termination in the dynamic trials, the 

second and third flexion (lowers) and extension (lifts) cycles were used. These segments of the 

task were termed Lift A, Lower A. Lift B. Lower B. respectively. A shoulder rnarker velocity of 
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zero was used to determine the onset and termination times for each segment. For comparison 

purposes. the output variables associated with the dynarnic trials. video. EMG. 3Space and hand 

force. were norrnalized (interpolated or extrapolated as required) in order to produce fifty data 

points for each segment of the dynumic test. 

Electrornyoeraph~ Profiles 

EMG - units of "mV" 

The time normalized EMG data ( A D  units) for each muscle were converted to mV 

using each channels scaling factor obtained from the 1 mV calibration trial. A normal profile of 

the ASYMP individuals response to each movement and load was produced by ensemble 

averaging the ASYMP responses at each point in time for each segment. for each muscle. 

Summary figures of the mean ( 2  1 SD) response for each of the 12 muscles. for each lift and 

lower. were then produced for each day and load combination (e.g. Day 1. Load O kg). Each 

single page figure then served as a comparison template for the SYMP group. 

EMG - units of "% MVC" 

The time normalized EMG data ( N D  units) for each muscle were norrnalized to the 

maximum value obtained for that muscle during the MVC trials. The data for each muscle. day 

and load were then ensemble averaged as described in the previous section. This produced six. 

single page figures of the ASYMP individuals which served as comparison templates for the 

SYMP group. 
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EMG - units of moment (N*m) 

For each of the isometric extension position loads, the link segment mode1 calculated the 

WIL5 reaction moment. For the right (R) and left (L) upper erector spinae (UES) and lower 

erector spinae (LES) electrode sites the average level of EMG activity associated with each load 

was calculated for the isometnc portion of the trial. This allowed the construction of an EMG 

to moment scaling factor for the RUES, LUES. RLES and L L E S  as weli as the average response 

of the R + L UES (Le.. mathematical average ([RUES(t) + LUES(t)] / 2) and R + L LES. The 

extensor EMG signals produced during the dynamic flexion and extension trials were then 

converted by the scaling factors into a representation of the L4RS reaction moment. The RMS 

differences between the link segment mode1 L4L5 moment and the six U/LS moment time 

histories produced using the EMG were calculated for each of the electrode sites for each of the 

subjects. The EMG based moment time history with the srnailest RMS difference compared to 

the link segment mode1 was then used as a representation of the U L 5  moment. The EMG 

moment time histories for the ASYMP group were then ensemble averaged for each day. load. 

lift and lower condition. This produced a single page profile of the ASYMP group which 

served as a cornparison profile for the SYMP individuals. 

Lumbar Spine Mode1 - Muscle Forces 

Each electrode site provided an EMG signal which was used to estimate muscle fascicle 

forces. For each electrode, their respective individual muscle fascicle forces were summed 

together for each point in time, producing cumulative muscle force tirne histories for each of the 

twelve electrode sites. The cumulative muscle forces for the ASYMP individuals were then 
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ensemble averaged producing summary muscle force profiles (rnean (t I SD))  for each 

electrode site. for each day. load and lifvlower condition. This produced a single page for each 

day and load combination. which were used as comparison ternplates for the SYMP group. The 

upper boundary (mean + 1 SD) for each of the ensemble averaged muscle force profiles was 

also used to create an Amplitude Probability Distribution Function (APDF) for each electrode 

site. The APDF desct-ibes the distribution of different levels of muscle force during the period 

over which the activity was recorded. Each point on the distribution function curve shows the 

probability of the muscle force being lower than or equal to the actual muscle force level 

(Jonsson. 1978). Plotting electrode specific APDFs for a SYMP individual's muscle force and 

the ASYMP upper boundary (mean + l  SD) on the same graph illustrates the if excessive muscle 

force has been produced. Excessive muscle force is illustrated when the APDF curve for an 

ASYMP individual Iay to the right of the APDF criterion curve (mean + 1 SD) (e -g  Figure 38 ). 

This produced a comparison template for the symptomatic individuals muscle force data which 

facilitated the quantification of the amount of time that a muscle force was above the ASYMP 

criterion (mean + I SD). To keep muscle forces within a biologically valid range. the gain 

factor (G), was not allowed to get larger than 3.5. Trials for subjects in which this occurred. 

were not included in the data analysis and are summarized in Table 8. 



Table 8 The number of trials excluded due to gain factoring exceeding 3.5. 

Load (kg) Lift A Lower A Lift B Lower B 
- - 

O 2 1 - 7 O 

Day 1 5 4 O 4 O 

1 O 5 1 3 O 

Day 2 

Lumbar Spine Mode1 - Cornmession 

The mode1 estimates of the W/L5 compression time history were time normalized for 

each subject's lifts and lowers. Ensemble averages of the ASYMP participants were produced 

for each load, day, liftllower and displayed on a single page. These were then used as 

cornparison templates for the SYMP group. 

Isostation B-200 

The OOC clinical report variables of "Abnormal Indicators" and "Non-Physiological 

hdicators" were tested by a 2 X 2 (Day X Group) repeated measures ANOVA. 

To analyze the primary axis velocity as well as the secondas, and tertiary axes moments 

for a specific movement, a custom data analysis system was developed. The dynamic trials for 

the 25% and 50% rotation, flexion-extension and lateral flexion trials were converted to ASCII 
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files so that a "normal" performance profile could be produced. For each dynamic trial. the start 

and end times for each movement (e-g. right rotation. left rotation), within each repetition were 

deterrnined from the primary mis velocity and moment data. To accommodate for task 

initiation and termination. the first and fifth repetitions for each test were discarded. For the 

rniddle three repetitions. the primary axis moment. velocity and position data. as well as the 

secondary and tertiary moment data. were then normalized with respect to cime. so that each half 

repetition (e.g. right rotation) consisted of 25 data points. The position data were then 

norrnalized to the maximum range of motion value obtained in each direction for chat particular 

resistance. The secondary and tertiary moment data was normalized to the maximum isometric 

value obtained for each specific axis and direction of movement ( e g  lateral flexion left). The 

three repetitions were then averaged together for each direction of movement. producing an 

average profile, for each variable, for each of the asymptomatic individuals. An ensemble 

average of the asymptomatic individuals' average profiles was then constructed for primary mis 

velocity. ptimary mis position, secondary axis moment and tertiary axis moment for each of the 

25% and 50% tests. A profile page of these five variables was then created for each of the eight 

dynarnic tests sequences perfomed. 

Results 

Overview 

The purpose of this study was to determine if the understanding of spine movement 

dysfunction was augmented by the knowledge of EMG activity and torso tissue forces. In this 

study the undentanding of spine movernent dysfunction is augmented beyond the information 
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provided by the kinematic and moment data from the Isostation B-200 or from the free lifts and 

lowers if: 

a)  a symptomatic individual is not identified by the clinical Isostation B-200 report or the free 

lifts on the Good or Bad days but emerges using the EMG. Isostation 8-200 andor muscle force 

profiles. 

b) a profile for a particular EMG electrode site or muscle force is located outside the nomal 

range (mean +_ 1 SD). 

To facilitate the presentation of the Oswestry Low Back Disability Questionnaire. the 

Pain Scale and the Isostation B-200 OOC results. the ASYMP and SYMP groups are presented 

together. This is followed by the custom profiles developed from the ASYMP individuals for 

the B-200. EMG and mode1 outputs. The use of each of the normal profiles as cornparison 

templates is illustrated by using data from symptomatic Case #3. The data for each of the 

symptomatic individuals is then presented using a case study format. 

In this study. the symptomatic participants identified a "Good" and a "Bad" d3y with 

respect to their back function. For inclusion in the study it was not necessary to have the Bad 

day occur first. For the purposes of statistical analysis, the Good day for the symptomatic 

individuals was assumed to have occurred on Day 1. This required an adjustment of test order 

for two of the SYMP group members. However. for the profile analysis, the asymptomatic data 

were plotted against the appropriate ASYMP profile for that test day. 
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Oswestry Low Back Disribilitv Ouestionnaire 

The Oswestry disability questionnaire data were analyzed using a 2 X 2 (Day X Group). 

repeated measures analysis of variance (ANOVA). As illustrated in Figure 10 the individuals 

asymptomatic for Iow back pain reported less low back disability than the symptomatic people 

with a significant Group main effect, F( 1. 12) = 22.28. p < -0005. The mean scores for both 

proups would be classified as Minimal Disability (Fairbank et al.. 1980). The Day of testing 

main effect and the Day X Group interaction were both non-significant. F( 1. 12) = .72. p < .-i II 

and F( 1 ,  12) = 2.16, p < .168, respectively. 

Day 1 1 Good Day Dsy 2 / Bad Day 

Test Day 

Figure 1 1 : The mean (+ 1 SD) Oswestry pain scale scores (note: maximum score = 100). The * 
indicates that the mean score for asymptomatic subjects was significantly lower than that for 
symptornatic subjects (F = 22.28. p < .0005). There was not a significant difference between 
days (F = .72. p < -4 12). 



Pain Scale 

The 10 cm pain scale measures were analyzed using a 2 X 2 X 5 (Day X Group X Test) 

repeated measures ANOVA. The ASYMP individuals indicated significantly lower levels of 

pain than the S YMP participants. as the Group univariate main effect was significant. F( 1 . 1 2 )  = 

23.15. p c -0005 (see Figure i 1). The univariate Day and multivariate Test main effects were 

non-significant, F( 1. 12) = .42. p < .530 and F(4. 9) = 3.37, p < .06. respectively. Al1 of the 

interaction effects were non-significant. 

20 
1 g - I Asyrnptomatic 

Cl Symptomatic 
16 - - 

14 - D a y  1 - Good Day  
O x 12 - T r D a y  2 - Bad Day 

Test Condition 

Figure 12: The mean (+ 1 SD) Visual Analog Scale pain scores (note: maximum score = 20) for 
both groups and days. following each specific test. The * indicates that the asymptomatic 
individuals indicated significantly lower levels of pain (F = 23.15. p c ,0005) than the 
symptomatic people. There were no significant differences between days (F = .42, p < S30) or 
between test conditions (F = 3.37. p c -06). 
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Isostation B-200 - OOC 

The number of abnormal and non-physioiogical indicators used to prepare the B-200 

OOC clinical reports are summarized in Table 9. Each variable was analyzed using a 2 X 2 

(Day X Group). repeated measures ANOVA. For the abnormal indicators there were no 

significant main effect for Day or Group. and no interaction effect for Day X Group. F( 1.  12) = 

1.86, p c .198, F(1. 12) = 2.48. p < .IJl. F(1, 12) = 3.54. p c .084. respectively. For the non- 

physiological indicators there were no main effects for Day or Group, and no interaction effect 

forDayXGroup.F(I, II)= 1.06. pc .323 .  F(I. 12)=.74,p<.405,F(1. 12)= 1.81.p<.103. 

respectively. Interestingly, 3 of the 4 cases had normal function on both their "Good and 

"Bad" days. 



Table 9 A summary of the B-200 OOC protocol test results. No significant differences were 
found between groups or days for the abnormal indicators. the non-ph ysiological indicators or 
the amount of back dysfunction. 

Day 1 - Good Day 
B-200 Non- Amount of 

Indicator Abnorrnal phvsiological Dvsfunction 

Back Pain 
ASYMP 1 2 rnild 

O 1 none 
O O none 
O 1 none 
O 1 none 
1 O mild 

Day 2 - Bad Day 
Non- Amount of 

Abnorrnal ~hvsioioeica Dvsfunction 
! 

O O none O i none 
SYMP 

(Case #) 

1 O O none O - 7 none 
2 O O none O 1 none 
3 4 O mild 9 O moderate 

B-200 Profile Pages 

The asymptomatic individuals' data from each of the two 50% resistance tests, for each 

day of testing. were used to produce four cornparison profiles each for the rotation and lateral 

fiexion axes. Figure 12 is the asymptomatic group profile for the first dynamic 50% rotation 

test for Day 1 .  To facilitate analysis of the profiles. each primary axis rnovement was divided 
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into four quadrants. For cxample a complete right and left rotation repetition was divided from 

maximal left rotation to neutral (Q 1) ,  neutral to maximal right rotation (Q2) ,  maximal right 

rotation to neutral (43) and neutral to maximal left rotation (44). Overlaying an asymptomatic 

individuals test results graphically illustrates the regions where the velocity. secondary axis 

moments andor tertiary axis moments deviate from the mean + 1 SD region (Figure 13. for 

Case study #3). The consistency of the performance is illustrated by the coefficient of variation 

(CV) for the average velocity in each movernent quadrant. For exarnple. in Figure 12, for 

Quadrant 1 (full left rotation to the mid-range or neutral position) the asymptomatic group had a 

CV of 10%. Each B-200 profile page provides a graphical summary of the primary a i s  velocity 

and secondary axis torques for a particular axis and resistance. Displaying the movement data 

for a specific individual against the profile aliows a comprehensive. qualitative visual 

assessrnent of pnmary axis velocity and secondary and tertiary axis moment to be made. 

facilitating the identification of "abnormal" regions (Figure 13). 
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Figure 13: B-200 sumrnary performance profile for the ASYMP group (10 subjects)for 
Dynamic Rotation at 50% Resistance. Day 1. Sequence 1. (a) The mean velocity (I 1 SD) for 
right (+ve velocity) and left (-ve velocity) rotation. The horizontal axis is nomalized from - 
100% of left rotation to 100% of right rotation. The rotation velocity and position axes were 
paired into 4 quadrants (Q 1, 42, 43 and 44). (b) Mean coefficient of variation for each 
quadrant. (c) The mean Iateral flexion moment produced during right rotation. (d) The mean 
flexion-extension moment produced dunng right rotation. (e) The mean lateral flexion moment 
produced during left rotation. (f) The mean flexion-extension moment produced dunng left 
rotation. 
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Figure 14: B-200 summary performance profile for case study #3 (Good day), for dynamic 
rotation at 50% resistance. day 1, test sequence # 1. (a) The decreased average rotation velocity 
falls within the normal band for most of the test. (b) The test shows normal variability. (c) The 
mean lateral flexion moment during right rotation is within the normal bands for Q 1 and 42. 
(d) The mean flexion-extension moment dunng right rotation is within the normal band during 
the first half of the rotation (Q3), but is outside of this range for the second half (44). (e) The 
rnean lateral flexion moment during left rotation is within the normal bands for 4 3  and 44. (0  
The mean flexion-extension moment during left rotation is within the normal range for the first 
half of the rnovement (43). but is outside of this range for the second half (44). 
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To quantify the moment profiles. the secondary and tertiary axis moment rime histories 

curves were evaluated numerically. If a symptomatic individuals data were outside the mean t 1 

SD region for more than 50 90 of the quadrant. it was regarded as a positive response. An 

example of a case study profile is shown in Figure 13. During this 50% resistance rotation test. 

only two positive responses were observed. These occurred in quadrant 2 and quadrant 4 for the 

tertiary moment (Flexion-Extension) and this test would be scored as having two positive 

responses in the tertiary axis. To complete the rotation repetitions, this person required almost 

30% of their flexion strength. while the asymptomatic group utilized less than 10% of the their 

flexion strength. If an individual had excessive secondary and tertiary moments for an entire 

movement (e.g. increased lateral flexion and flexion-extension activity during rotation) there 

would be eight positive responses. 

This assessrnent was applied to al1 of the OOC tests for each symptornatic participant. 

The dynarnic 50% resistance tests for rotation and lateral flexjon were found to be the mosr 

responsive tests and the sumrnary data for Case Study #3 is shown in Table 10. 



Table 10 Summary of increased secondary and tertiary axes moment activity for OOC 50% 
resistance tests. dynamic sequence 1 and 2, test days 1 and 2. Excessive secondary and teniary 
activity is indicated by a / and X, respectively. For rotation tests. lateral flexion is secondary. 
flexion extension is teniary. For Iateral flexion tests, flexion-extension is secondary and rotation 
is tertiary. The shaded areas indicate the tests for the individual's "Bad" day. 

Case Study # 3 Test Movement Quadrant 
Prirnary Axis (day - sequence #) 1 - 7 3 4 Totals 

Rotation 1 - 1  X x 0 . 2  
1 - 2  0 . 0  

2 -  1 v' 1 / X  d X  d X  4 9 3  
2 - 2 c/x v c/x X 3 9 3  

Lateral Flexion 

Totals Bad Day 2 , 2  4 , 1  4 2  2 , 2  12,7  
Good Day 1 , 2  L !  2 . 0  3 . 1  6 , 4  

Electrornyogra~hy Profiles 

The ensemble averaged myoelectric profiles were plotted to illustrate the amplitude and 

temporal components of the muscle activity patterns produced for the two extensions (lifts) and 

flexions (lowers). 



EMG - units of "mV". 

The EMG "mV" amplitude profiles (Figures ?? to ??) produced for the 0. 5 and 10 kg 

lifts and lowers for each test day were designed to facilitate the assessment of an individual by 

simply overlaying their EMG time histories. As anticipated. low levels of activation were 

observed for the right and left rectus abdominis, extema oblique and interna1 oblique. regardless 

of the type of activity (lift or lower). 

The extensor musculature produced greater levels of activity which increased in order 

from the Iatissimus dorsi. upper erector spinae and Iower erector spinae. The activity for a 

specific extensor electrode was always greater for the lifting phases. hcreasing the load did not 

appear to increase the flexor activity, but did produce an increase in the extensor activity. 

particularly the upper and lower erector spinae. With increases in load these two electrodes 

showed specific patterns. The upper erector spinae peaked at the onset of the lift. The lower 

erector spinae produced two identifiable peaks of activity. the first located at the onset of the l i  ft  

and the second during the rnid-range. Similar mean activity levels and patterns were produced 

for Day 1 and Day 2. Figure ?? is an example of the EMG patterns for a SYMP individual (Case 

S tudy #3). 
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Figure 15: Summary profile of the mean (t 1 SD) ASYMP (9 subjects) EMG activity levels (mV) 
for Day 1 ,O  kg Load. Each graph identifies a specific electrode site. Within each graph the 
panels indicate specific lifts (A or B. extension) and lowers (A or B, flexion). Each panel is 
nonnalized from the start to the end of the liftnower. Legend: R= right, L = left. RA = rectus 
abdominis, EO = external oblique. IO = intemal oblique. LD = latissimus dorsi, UES = upper 
erector spinae, LES = lower erector spinae. 
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Figure 16: Surnmary profile of the mean (11 SD) ASYMP (10 subjects) EMG activity levels 
(mV) for Day 2, O kg Load. Each graph identifies a specific electrode site. Within each graph 
the panels indicate specific lifts (A or B, extension) and lowers (A or B, flexion). Each panel is 
normalized from the start to the end of the 1iftAower. Legend: R= right, L = left. RA = rectus 
abdominis. EO = extemal oblique, IO = intemal oblique. LD = latissimus dorsi. UES = upper 
erector spinae. LES = lower erector spinae. 
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Figure 17: Surnmary profile of the mean ( t l  SD) ASYMP (9 subjects) EMG activity levels 
(mV) for Day 1. 5 kg Load. Each graph identifies a specific electrode site. Within each graph 
the panels indicate specific lifts (A or B. extension) and lowers (A or B. flexion). Each panel is 
nonnalized from the start to the end of the liftnower. Legend: R= right. L = left. RA = rectus 
abdorninis. EO = extemal oblique. IO = intemal oblique, LD = latissimus dorsi, UES = upper 
erector spinae. LES = lower erector spinae. 
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Figure 18: Summary profile of the mean ( t l  SD) ASYMP (10 subjects) EMG activity levels 
(mV) for Day 2, 5 kg Load. Each graph identifies a specific electrode site. Within each graph 
the panels indicate specific lifts (A or B, extension) and lowers (A or B. flexion). Each panel is 
nomalized from the start to the end of the 1iftAower. Legend: R= right. L = left, RA = rectus 
abdorninis. EO = extemal oblique. 10 = intemal oblique. LD = latissimus dorsi, UES = upper 
erector spinae. LES = iower erector spinae. 
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Figure 19: Summary profile of the mean (t 1 SD) ASYMP (6 subjects) EMG activity levels 
(mV) for Day 1. 10 kg Load. Each graph identifies a specific electrode site. Within each graph 
the panels indicate specific lifts (A or B. extension) and lowers (A or B. flexion). Each panel is 
normalized from the start to the end of the lift/lower. Legend: R= right. L = left, RA = rectus 
abdominis. EO = extemal oblique. IO = intemal oblique. LD = latissimus dorsi, UES = upper 
erector spinae. LES = lower erector spinae. 
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Figure 20: Sumrnary profile of the mean (rl SD) ASYMP (10 subjects) EMG activity levels 
(mV) for Day 2, 10 kg Load. Each graph identifies a specific electrode site. Within each graph 
the panels indicate specific lifts (A or B. extension) and lowers (A or B. flexion). Each panel is 
nonalized from the start to the end of the liftflower. Legend: R= right. L = left, RA = rectus 
abdorninis. EO = external oblique. IO = interna] oblique, LD = latissimus dorsi. UES = upper 
erector spinae, LES = lower erector spinae. 
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Figure 2 1 : Case Study #3 graphed against the summary profile of the mean (r 1 SD) ASYMP 
( IO subjects) EMG activity levels (mV) for Day 2. 10 kg Load. Each graph identifies a specific 
electrode site. Within each graph the panels indicate specific lifts (A or B. extension) and 
lowers (A or B, flexion). Each panel is normalized from the start to the end of the liftllower. 
This figure highlights the difficulty with the profile technique. Al1 patterns are within the 
normal band, yet RRA and LRA display distinct bimodal patterns not observed in group mean. 
Legend: R= right. L = left. RA = rectus abdominis. EO = extemal oblique, IO = intemal 
oblique. LD = latissimus dorsi. UES = upper erector spinae. LES = lower erector spinae. 



EMG - units of "% MVC" 

As anticipated. normalizing the EMG amplitude profiles to 8 MVC did not alter the 

shapes of the resulting profiles (Figures 2 1 to 26). For the flexor musculature. the activation 

levels ranged from 2 - 6 % M W .  regardless of the type of activity (lift or lower). load or day of 

testing. 

The magnitude of activity in the extensor musculature increased from the latissimus 

dorsi, which had the least activity. to the upper erector spinae, to the lower erector spinae. which 

had the greatest amount of activity. The activity for a specific extensor electrode was always 

greater for the lifting phases. increasing the load did produce an increase in the extensor activity. 

partjcularly the upper and lower erector spinae. With increases in the size of the load. the upper 

erector spinae showed a distinct peak at the onset of the lift. The lower erector spinae produced 

two identifiable peaks of activity, the first located at the onset of the lift and the second during 

the rnid-range. Similar mean activity levels and patterns were produced for Day 1 and Day 2 .  

Figure 27 is an example of the EMG patterns for a SYMP individual (Case Study #3). 
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Figure 22: Summary profile of the mean (rl SD) ASYMP (9 subjects) EMG activity levels (5'0 
MVC) for Day 1. O kg Load. Each graph identifies a specific electrode site. Within each graph 
the panels indicate specific lifts (A or B. extension) and lowers (A or B. flexion). Each panel is 
normalized from the start to the end of the 1iftAower. Legend: R= right. L = left. RA = rectus 
abdominis, €0 = extemal oblique. IO = intemal oblique, LD = latissimus dorsi. UES = upper 
erector spinae. LES = lower erector spinae. 
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Figure 23: Sumrnary profile of the mean (11 SD) ASYMP ( 10 subjects) EMG activity levels 
(% MVC) for Day 2, O kg Load. Each graph identifies a specific electrode site. Within each 
graph the panels indicate specific lifts (A or B, extension) and lowers (A or B. flexion). Each 
panel is nonndized from the start to the end of the IiftAower. Legend: R= right. L = left, RA = 
rectus abdominis, EO = extemal oblique. IO = intemal oblique, LD = latissimus dorsi. UES = 
upper erector spinae. LES = lower erector spinae. 
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Figure 24: Sumrnary profile of the mean (r 1 SD) ASYMP (9 subjects) EMG activity levels (5% 
MVC) for Day 1, 5 kg Load. Each graph identifies a specific electrode site. Within each graph 
the panels indicate specific lifts (A or B. extension) and lowen (A or B. flexion). Each panel is 
normalized from the start to the end of the Iiftllower. Legend: R= right. L = left. RA = rectus 
übdominis. EO = extemal oblique. IO = intemal oblique. LD = latissirnus dorsi, UES = upper 
erector spinae. LES = lower erector spinae. 
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Figure 25: Summary profile of the mean (II  SD) ASYMP ( 10 subjects) EMG activity levels 
('31 MVC) for Day 2, 5 kg Load. Each graph identifies a specific electrode site. Within each 
graph the panels indicate specific lifts (A or B. extension) and Iowers (A or B. flexion). Each 
panel is nonnalized from the start to the end of the liftllower. Legend: R= right, L = left, RA = 
rectus abdominis, EO = extemal oblique. IO = interna1 oblique. LD = latissimus dorsi. L E S  = 
upper erector spinae. LES = lower erector spinae. 
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Summary profile of the mean (II SD) ASYMP (9 subjects) EMG activity levels ('31 
MVC) for Day 1. 10 kg Load. Each graph identifies a specific electrode site. ~ i t h i n  each 
graph the panels indicate specific lifts (A or B, extension) and lowers (A or B, flexion). Each 
panel is normalized frorn the start to the end of the IiftAower. Legend: R= right. L = left. RA = 
rectus abdominis, EO = extemal oblique. IO = intemal oblique. LD = latissimus dorsi. UES = 
upper erector spinae. LES = lower erector spinae. 
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Figure 27: Summary profile of the mean (2 1 SD) ASYMP ( I O  subjects) EMG activity levels 
(5% MVC) for Day 2, 10 kg Load. Each graph identifies a specific electrode site. Within each 
graph the panels indicate specific lifts (A or B. extension) and lowers (A or B. flexion). Each 
panel is normalized from the start to the end of the liftnower. Legend: R= right, L = left. RA = 
rectus abdominis, EO = extemal oblique. 10 = interna1 oblique, LD = latissimus dorsi, UES = 
upper erector spinae. LES = lower erector spinae. 
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Figure 28: Case Study #3 graphed against the summary profile of the mean (11 SD) ASYMP 
(10 subjects) EMG activity levels (% MVC) for Day 2, 5 kg Load. Each graph identifies a 
specific electrode site. Within each graph the panels indicate specific lifts (A or B. extension) 
and lowers (A or B. flexion). Each panel is norrnalized from the start to the end of the 
lift/lower. This figure highlights the difficulty with normalizing to % MVC. Muscles that are 
not scaled to "true" MVCs appear to excessive amounts of activity. Legend: R= right, L = left. 
RA = rectus abdominis, EO = extemal oblique. IO = internai oblique. LD = latissimus dorsi, 
UES = upper erector spinae. LES = lower erector spinae. 
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EMG - units of Nom 

The RMS differences were calculated between the ML5 reaction moment time history. 

as calculated by the linked segment model. and the moment time histories produced using the six 

EMG-to-moment scaling factors (described in the Methods, Data Analysis. EMG -units of N-m 

section). for each day, load and lift and lower. The RMS differences were expressed as 

percentage of the largest moment produced in each subject's trial. Across al1 conditions. the 

upper pair of rlectrodes produced the smallest mean RMS difference of 41.5 C .  while the lower 

pair of electrodes had a mean RMS difference of 49.8 8. Based on these results. the right and 

left upper erector spinae electrode scaling factors were selected as the ones to use in order to 

estimate the L4/L5 reaction moment. The individual RMS differences for each of the days. loads 

Table 11 The mean (SD) RMS difference (% of maximum) in the LAIL5 reaction moment. as 
calculated by the linked segment model and the right and left lower erector spinae EMG. The 
values were expressed as a percentage of each subjects maximum L4k5 moment ( N m )  
produced durincr: a trial. 

Load (kg) 

5 

Lift # 1 .-) 3 1 2 1 - 3 

1 43.1(17.0) 45.6( 16-81 47.8( 17.4) 4 7 3  17.4) 49.0( 15.4) 4 7 3  19.8) 
D ~ Y  

2 43.4(12.1) 44.2(13.5) 37.7(13.5) 41.0(13.4) 35.9( 13.8) 39.3(15.6) 

Lower # 1 2 1 2 1 - 7 



and activities for the upper and lower electrode pair are listed in Tables I 1 and 12. respectivcly. 

Table 12 The mean (SD) RMS difference (% of maximum) in the L a 5  reaction moment. as 
calculated by the linked segment mode1 and the right and left upper erector spinae EMG. The 
values were expressed as a percentage of each subjects maximum UR5 moment (N.m) 
produced dunng ü trial. 

Load (kg) 

Lift # 1 - 7 1 - -7 1 - 3 

Lower # 1 - 3 1 2 1 Ii 3 

By using the scaling factor for the upper erector spinae electrode pair. the U/L5 reaction 

moment time history was produced for each person. for each day. for the three loads of lifts and 

lowers. An ensemble average of the ASYMP group L4R5 reaction moment. representing days. 

loads and trials was then produced (Figure 28). Figure 29 is an example of the L4L5 moment 

time history for a SYMP individual (Case Study #3). 
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Figure 29: Sumrnary profile of the mean (t 1 SD) ASYMP (9 subjects Day 1, 10 subjects Day 
2) LAAS moment ( N m )  calculated using moment normalized EMG from the left and right 
upper erector spinae electrodes. Each graph identifies a specific day and load. Within each 
graph. the panels indicate specific lifts (A or B, extension) and lowers (A or B. flexion). Each 
panel is normalized from the start to the end of the lifülower. 
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Figure 30: Case Study #3 graphed against the ASYMP mean (+ 1 SD) L41L5 moment profile 
calculated using moment normalized EMG from the left and right upper erector spinae 
electrodes. Each graph identifies a specific day and load (Nom). Within each graph the panels 
indicate specific lifts (A or B extension) and lowen (A or B. flexion). Each panel is 
normalized from the start to the end of the lift/lower. Note: Day 2 = Bad Day and no data was 
available for the Good day, 5 kg load. 



Model Outputs 

Muscle Force 

For each eiectrode site. the muscle forces produced by each muscle fascicle were 

summed. This allowed the results to be presented graphically as they were for the mV and 

%MVC EMG data. The profiles display the mean ASYMP muscle force per electrode, produced 

during the 0.5  and 10 kg lifts and are presented in Figures 30 to 35. For each of the flexor 

muscles. the forces on the right side were less than those produced in the left. The latissimus 

dorsi muscle forces were greater for lifts than lowers, and increased slightly with increases in 

load, but the average force was less than 100 N. The upper erector spinae forces were also 

greater for the lifts and increased with the size of the load in the hands. The upper erector spinae 

forces were the largest and were greater in Iifts than in lowers and increased with the load in the 

hands. The double peak evident in the EMG signals was not present in this display format. 

Figure 36 is an example of the EMG patterns for a SYMP individual (Case Study #3). 
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Figure 3 1 : Summary profile of the mean (II SD) ASYMP (9 subjects) muscle force (N) for Day 
1. O kg Load. Each graph identifies a specific electrode site. Within each graph the panels 
indicate specific lifts (A or B. extension) and lowers (A or B, flexion). Each panel is nonnalized 
from the start to the end of the liftnower. Legend: R= right. L = left, RA = rectus abdominis. EO 
= extemal oblique. IO = interna1 oblique, LD = latissimus dorsi. UES = upper erector spinae. 
LES = lower erector spinae. 
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Surnmary profile of the mean ( i l  SD) ASYMP (10 subjects) muscle force (N) for 
Day 2, O kg Load. Each graph identifies a specific electrode site. Within each graph the panels 
indicate specific lifts (A or B. extension) and lowers (A or B. flexion). Each panel is 
norrnalized from the start to the end of the liftllower. Legend: R= right, L = left. RA = rectus 
abdominis. EO = extemal oblique. 10 = interna1 oblique. LD = latissimus dorsi. UES = upper 
crector spinae. LES = lower erector spinae. 
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Figure 33: Summary profile of the mean (11 SD) ASYMP (9 subjects) muscle force (N) for 
Day 1. 5 kg Load. Each graph identifies a specific electrode site. Within each graph the panels 
indicate specific lifts (A or B. extension) and lowers (A or B. flexion). Each panel is 
normalized from the start to the end of the lift/lower. Legend: R= right, L = left. RA = rectus 
abdominis. EO = extemal oblique, IO = interna1 oblique. LD = latissimus dorsi. UES = upper 
erector spinae. LES = lower erector spinae. 
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Figure 34: Surnmary profile of the mean (11 SD) ASYMP (9 subjects) muscle force (N) for 
Day 2, 5 kg Load. Each graph identifies a specific electrode site. Within each graph the panels 
indicate specific lifts (A or B. extension) and lowers (A or B. flexion). Each panel is 
normalized from the start to the end of the lifvlower. Legend: R= right. L = Ieft. RA = rectus 
abdominis. EO = extemal oblique, IO = intemal oblique. LD = latissimus dorsi. UES = upper 
rrector spinae. LES = lower erector spinae. 
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Figure 35: Summary profile of the mean (II SD) ASYMP (8 subjects) muscle force (N) for 
Day 1. 10 kg Load. Each graph identifies a specific electrode site. Within each graph the 
panels indicate specific lifts (A or B, extension) and lowers (A or B. flexion). Each panel is 
nomalized from the start to the end of the lifaower. Legend: R= right. L = left, RA = rectus 
abdominis. EO = external oblique. IO = intemal oblique. LD = latissimus dorsi. UES = upper 
erector spinae. LES = lower erector spinae. 
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Figure 36: Summary profile of the mean (t 1 SD) ASYMP 

LLES 
-- Lift-h- -U, L a w c r B .  

(8 subjects) muscle force (N) for 
Day 2, 10 kg Load. Each graph identifies a specific electrode site. Within each graph the 
panels indicate specific lifts (A or B. extension) and lowers (A or B, flexion). Each panel is 
normalized from the start to the end of the lifflower. Legend: R= right. L = left, RA = rectus 
abdominis. EO = extemal oblique. IO = intemal oblique, LD = latissimus dorsi. UES = upper 
erector spinae. LES = lower erector spinae. 
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Figure 37: Case Study #3 graphed against the summary profile of the mean ( i l  SD) ASYMP (8 
subjects) muscle force (N) for Day 1. O kg Load. Each graph identifies a specific electrode site. 
Within each graph the panels indicate specific lifts (A or B. extension) and lowers (A or B. 
flexion). Each panel is normalized from the start to the end of the IiftAower. The EMG,,, 
processing method highlights regions of excessive activity (e-g. RUES) that are "normal" in the 
mV norrnalization and is not affected by submaximal efforts encountered in the MVC approach 
(e-g. RRA). Legend: R= right, L = left. RA = rectus abdominis, EO = extemal oblique. IO = 
interna1 oblique. LD = latissirnus dorsi. UES = upper erector spinae. LES = lower erector spinae. 
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The summary profiles provide a visual impression of the muscle force time histories. 

However. for a given individual. it is difficuit to quantify the amount of tirne that the muscle 

force is above the mean + 1 SD level. To measure this. the muscle forces were first graphed as 

an amplitude probabiiity distribution functions (APDF). Figure 37 shows the summary APDF 

for the asymptornatic individu& Day 1. O kg load condition. In Figure 38 the APDF of Case 

Study #3 has been superimposed. Periods of increased muscle force for Case Study #3 are 

indicated whenever that curve lies to the right of the ASYMP mean + 1 SD curve. To quantify 

the total time spent above the APDF criterion for a specific muscle. the number of observations 

to the right of the mean + 1 SD were divided by the totai number of observations. This 

calculation was performed for each muscle, for each day, load. lift and lower. The total time 

above the APDF criterion was then summed for a11 twelve electrodes. The maximum amount of 

increased activity would be 1200% ( 12 muscles * 100% increased activity). Dividing the total 

time above the APDF criterion by the maximum amount of time ( 1200%) and multiply by 100 

expressed as a percentage (range = 0% to 1 ûû%) the amount of increased force production. This 

single number provides an overall indication of the amount of time that force production greater 

than the ASYMP criterion force (mean + I SD level) occurred. Figure 39 is an example of the 

summary APDF data for a SYMP individual (Case Study #3). 
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Figure 38: Summary APDF profile of the muscle forces (N) by each electrode site for Day 1, O 
kg load. The thin line repreieiits the upper boundary (mean + 1 SD) muscle force (N) of the 
ASYMP (n = 9 subjects) group. Each figure represents a specific electrode site and task activity 
(i.e. lifting or Iowering). The ordinate for each figure is Probability. 
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Figure 39: Summary APDF profile of the muscle forces (N) by each electrode site for Day 1. O 
kiload and Case Study #3. The thin line represents the upper boundas, (mean + 1 SD) muscle 
force (N) of the ASYMP (n = 9 subjects) group. The thick line represents the case study. Each 
figure represents a specific electrode site and task activity (Le. lifting or lowering). The ordinate 
for each figure is Probability. 
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U t  A b w e r  Lft B Lower 
A B 

Bad Day 

Lift A Luwer Ltft B b w e r  
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Good Day 

Figure 40: The cumulative time (%). for Case Study #3, in which the muscle force for each 
electrode site (n = 12) was greater than the ASYMP criterion force (mean + 1 SD). Note: no 
data available for the Good day, 5 kg load. 

L4L5 Compression 

The time normalized, UIW compression time histories estimated by the mode1 for the 

ASYMP group were used to produce the ensemble averages for each day and load as illustrated 

in Figure 40. As expected, the load in the hands increased the peak and average compression 

values. Figure 41 is an example of the Lan5 compression for a SYMP individual (Case Study 

#3). 



Day 1, O kg 
3m Lff.4 b w e r A  W t B  LowerB 

Day 2, O kg 
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Figure 41 : Summary profile of the mean (t 1 SD) ASYMP L4L5 compression force (N). Each 
graph identifies a specific day and load. Within each graph, the panels indicate specific lifts (A 
or B, extension) and lowers (A or B, flexion). Each panel is normalized from the start to the 
end of the 1iftAower. 
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Figure 43: Case Study #3 graphed against the summary profile of the mean (+ 1 SD) ASYMP ) 
L4L5 compression force (N). Each graph identifies a specific day and load. Within each graph. 
the panels indicate specific lifts (A or B, extension) and lowers (A or B. flexion). Each panel is 
normalized from the start to the end of the lift/lower. Note: Day 2 = Bad Day and no data was 
available for the Good day. 5 kg load. 



Case Study Presentations 

Four of the study participants were individuais symptomatic for recurrent low back pain. Each 

individual was tested on days that they described as a "good day" and a "bad day". Inclusion in 

the study did not require a specific order for the good dayhad day. For each of the cases. the 

results for each of the analysis tools are presented. 



Case Studv # 1 

This 14 year old, 1.8 m. 78.0 kg high schooi student suffers frorn multipie joint dysfunction in 

the thoracolumbar and sacroiliac regions and an erector spinae strain. Despite these difficulties. 

this individual was very active in football and basketball. The right was rypically worse than the 

left and he was negative for radiation of pain into the legs. 

Table 13 Cornparison of "Bad and "Good day test results, by assessment tool. for Case Study 
#1. 

Assessment Tool Bad Day (Day 1 ) Good Day (Day 1) 

Oswestry Score (8) 1 1 1 1  

VAS ( following each test component) 4, 7,  8, 10, 12 2 , 4  7,9,  10 

B-200 OOC Back Dysfunction 
- # of abnormal indicators 
- # of non-physiological indicators 

B-200 Profile - velocity 
- abnormal secondary moment 
- abnormal tertiary moment 

 mornen nt Profile (N-m) 
- O kg 
- 5 kg 
- 10 kg 

Muscle Force - APDFs 
(average time above APDF criterion (%)) 

- Lifts (0. 5. 10 kg) 
- Lowers (0, 5, 10 kg) 

Compression 
- O kg 
- 5 kg 
- 10 kg 

i rot, 1 fie, 1 If Jrot, J f l e .  If 
1 8 
4 - 7 

below upper lirnit 
below upper limit 
above upper limit 

below upper limit 
below upper limit 
above upper Iimi t 

within normal lirnit within normal limit 
within normal limit within normal lirnit 
within norrnal limit within normal limit 



Pain - 

The Oswests, low back dysfunction questionnaire rated the level of dysfunction as 

minimal. There was no difference in the score between days. A paired samples t test found that 

the VAS pain scores decreased significantly in value for the Good day. p < .009. 

Isostation B-200 

The OOC test results reported normal back function for both test days and showed an 

increase in the maximal velocities for the Good day of testing. While there was no difference in 

the maximal rotation isometric strength between days. decreases of 6'70 in lateral flexion. 308  in 

flexion and 3 5 4  in extension were observed. The B-200 profile results show an increase in 

rotation and flexion-extension velocities into the normal range throughout the respective 

movement cycles. Although the lateral flexion maximal velocity improved, it remained below 

the normal range for both test days. The B-200 profile also revealed an increase in the lateral 

flexion moment produced during rotation on the Good day. The moment, which is greater than 

40% MVC, is now well above the nomal range. A decrease in the flexion moment produced 

during lateral flexion was also observed (Table 13). 

EMG - units of N-m 

For both days of testing, the L4L5 moment bordered on the upper boundary of the 

normal range during the lifts and lowers, for the O and 5 kg loads. For the 10 kg load, it 

exceeded this region on both test days (Figure 42). 



 muscle Force APDFs 

On the Bad day, increased force was noted in the RLD and RUES for both lifts and 

lowers and the duration of the increased force increased with load (Figure 43). On the Good day. 

there was increased LUES force. primarily during the lowers, and an increase in RLES force. 

primarily during the lifts (Figure 43). Overall. on the Good day. there was less rime in which the 

muscle forces exceeded the APDF criterion (Figure 44). 

L4L5 Com~ression 

For both test days. the compressive forces matched the average pattern, but the magnitude 

was typically at or below the mean - 1 SD value (Figure 45). 

hterpretation 

Significant improvements in pain from the Bad to Good Day were reflected by the VAS. 

but not the Oswestry scores. The normal back function reported by the OOC evaluation system 

is a combination of the conservative nature of the decision rules and the vigorous effort put forth 

by this individual. The OOC baseline rehabilitation data does reflect an improvement in 

performance, but indicates further rehabilitation is required (Appendix C). The 8-200 profile. 

particularly the velocity profile. highlights a retum to a more normal performance. The increased 

lateral flexion moment during rotation may be a consequence of the maximal effort produced 

throughout the testing. The decrease in the total muscle force above the APDF criterion Ievel 

reflected the decreased magnitude of excessive force production. There was a shift in the 

muscles producing excessive forces from the upper right sided musculature (RLD. RUES), to the 



left UES and right LES. It is a reasonable hypothrsis that the increased EMG activity 

contributed to the right sided pain/dysfunction. Although the patient had a "Good" day. there are 

still sorne residual problems. as shown by the decreased lateral flexion velocity and the increased 

EMG moment produced when handling the 10 kg load. 

Table 14 Summary of increased secondary and tertiary axes moment activity for OOC 50% 
resistance tests. dynamic sequence 1 and 2. test days 1 and 2. Excessive secondary and teniary 
activity is indicated by a r /  and x, respectively. For rotation tests. lateral flexion is secondary. 
flexion-extension is tertiary. For lateral flexion tests. flexion-extension is secondary and rotation 
is teniary. The shaded areas indicate the tests for the individual's "Bad" day. 

Case Study # 1 Test Movement Quadrant 
Primary Axis (day - sequence #) 1 C 7 3 4 Totals 

Rotation 1 - 1 0 , o  
1 - 2  d X  x X 1 , 3  
2 -  1 r/ d d 4 .  O 
1 - 2  * c / X  1 . 1  

Lateral Flexion 1. - 1 
1 - 2  
2 -  1 d 
2 - 2 X 



Day 2, O kg 
170 - 

Ut A Luwer A Ut B b w e r  B 

Day 1, IO kg 

Group Mean Group Mean +/- 1 SD 

Day 2,10 kg 
350 l a w r A  Lift B LDurrB 

Figure 43: Case Study #l  graphed against the ASYMP mean (I 1 SD) L4L5 moment profile. 
Each graph identifies a specific day and load (N-m). Within each graph the panels indicate 
specific lifts (A or B extension) and lowers (A or B. flexion). Each panel is normalized from 
the start to the end of the IifiAower. Note: Day 1 = Bad Day. 



Bad Day 
164 

Goud Day 

Figure 44: The time that the force for each muscle (n = 12) was greater than the ASYMP 
criterion force (rnean + 1 SD) for Case Study # 1 .  Legend: R= right, L = left, RA = rectus 
abdorninis, EO = external oblique. IO = intemal oblique, LD = latissimus doni, UES = upper 
erector spinae, LES = Iower erector spinae. 
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Figure 45: The cumulative time (5%). for Case Study # I .  in which the muscle force for each 
electrode site (n  = 12) was greater thm the ASYMP criterion force (mean + 1 SD). 



Day 1-5 kg Day 2,s kg 
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Figure 46: Case Study # l  graphed against the summary profile of the mean (2 1 SD) ASYMP ) 
L 4 L 5  compression force (N). Each graph identifies a specific day and load. Within each 
graph, the panels indicate specific lifts (A or B. extension) and lowers (A or B. flexion). Each 
panel is nomalized from the start to the end of the IiftAower. Note: Day 1 = Bad Day. 



Case Study #2 

This 33 year old. 1.70 m, 104 kg hockey official suffers from variable sided low and rnid back 

pain due to chronic bilateral sacroiliac dysfunction and degenerative disc disease at L5/S 1. 

Table 15 Cornparison of "Bad" and "Good day test results, by assessrnent tool, for Case Study 
#2. Note: B-200 profile data not availabte for Bad Day (Day 2). 

Assessment Tool Bad Day (Day 2) Good Day (Day 1 ) 

Oswestry Score (4)  

VAS (following each test component) 

B-200 OOC Back Dysfunction 
- # of abnomal indicators 
- # of non-physiological indicators 

8-200 Profile - velocity 
- abnormal secondary moment 
- abnormal tertiary moment 

 moment Profile (N-m) 
- O kg 
- 5 kg 
- 10 kg 

lMuscle Force - APDFs 
Average Time above APDF Cnterion (%) 

- Lifts (0.5, 10 kg) 
- Lowers (0, 5, 10 kg) 

Compression 
- O kg 
- 5 kg 
- 10 kg 

above upper limit 
above upper limit 
below upper limit 

at upper limit 
at upper limit 
at upper limit 

Jrot, Jf le.  J l f  
3 
7 

below upper limit 
at upper hmit 

lowers exceed limit 

above upper limit 
above upper lirnit 
above upper limit 
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Pain - 

The Good day showed a 2% decrease in the Oswestry score. This reflected a decrease in 

his pain intensity rating from moderate to very mild. However. the Oswestry classification is still 

moderate dysfunction. Paired samples t-tests revealed a non-significant trend in decreased VAS 

scores between days (p < .053), although four of the five lower scores occurred on the Good day 

and the fifth score was unchanged. 

lsostation B-200 

The OOC test reponed normal back function on both test days. On the Bad day. the peak 

isometric strength scores were reduced by 12% in rotation, 3 9 5  in flexion. 2 2 8  in extension and 

43% in lateral fiexion. On the Good day, maximum velocities increased in al1 dynamic tests. 

with the exception of the second flexion-extension series. The B-200 test data was not stored for 

the Bad day. so i t  was not possible to produce a complete 8-200 profile analysis. On the Good 

day. this individual's average velocity profiles for al1 tests were well within the normal band. 

except for the second flexion extension test at 50% resistance. During rotation, the amount of 

lateral flexion moment generated followed the group profile curve very closely. This was 

coupled with an extension moment (peak moment of 30% extensor MVC). that was well beyond 

the normal band. for the entire rotation test. However, during lateral flexion. the individual 

utilized a flexion moment. that peaked at 50% of their isometric strength. This value also 

exceeded the nomal range (Appendix D). 
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EiMG - units of N-m 

On the Good day, the L4/L5 moment was near the rnean + 1 SD upper lirnit during the 

lifts (extensions) and lowers (flexions). For the 10 kg lowers, the moment exceeded this band. 

For the Bad day O kg condition. the LUL5 moment exceeded the upper boundary during lifts and 

lowers. The addition of the 5 and 10 kg loads produced more typical patterns (Figure 46). 

Muscle Force APDFs 

For the Bad day. a majority of the fiexor forces were above the APDF criterion Ievel for 

the lifts and lowers (Figure 47). This excessive force diminished during the loaded conditions. 

The RLD and LLD had excessive force during the O kg condition and this also decreased with the 

addition of the 5 and 10 kg loads. The LUES was above the criterion for al1 three loads. while 

the LLES was pnrnarily above the criterion during the O kg condition. The RUES and EUES 

showed minimal excessive force production. For the Good day. the right and left RA exceeded 

the APDF criterion level. The RLD and RUES were also above the criterion for the lifts and 

lowers for al1 three loads. The LUES activity increased with loading. The average values for the 

APDFs across muscles showed a decrease from the Bad to the Good day (Figure 48). 

Compression 

For the Good day of testing, the L4/L5 compressive forces exceeded the mean + 1 SD 

region for the lifts and lowers for al1 three loads. On the Bad day of testing, the compressive 

values were much closer to the mean during the lifts, but were at or above the upper boundary for 

the lowers (Figure 49). 



170 

lnterpretation 

The VAS scores reflected the difference between the Good and Bad days better than the 

Oswestry low back pain questionnaire. The normal back function reported by the OOC 

evaluation system appears to be a combination of the conservative nature of the decision mles 

and the level of effort produced by this individual. The muscle force APDFs reflect an increased 

amount of flexor force production, which may be serving to help stabilize or splint this person. 

His problem is also revealed during the performance of lowen (eccentnc contractions). Increased 

levels of muscle activity were found on the Good day (EMG-moment. 10 kg; Compression. al1 

loads) and Bad day (EMG-moment. O kg; Compression, al1 loads). The EMG based techniques 

allow the upper erector spinae musculature to be included in the evaluation. providing a more 

thorough assessrnent of individuals. 
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Figure 47: Case Study #2 graphed against the ASYMP mean (I 1 SD) LAILS moment profile. 
Each graph identifies a specific day and load ( N m ) .  Within each graph the panels indicate 
specific lifts (A or B extension) and lowers (A or B. fiexion). Each panel is normalized from 
the start to the end of the lift/lower. Note: Day 2 = Bad Day. 



Bad Day 

Figure 48: The time that the force for each muscle (n  = 12) was greater than the ASYMP 
criterion force (mean + 1 SD) for Case Study #2. Legend: R= right, L = left. RA = rectus 
abdominis. EO = extemd oblique. 10 = intemal oblique, LD = latissimus dorsi. UES = uooer 

L L 

erector spinae, LES = Iower erector spinae. 
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Figure 49: The cumulative time (%), for Case Study #2. in which the muscle force for each 
electrode site (n = 12) was greater than the ASYMP criterion force (mean + 1 SD). 
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Figure 50: Case Study #2 graphed against the sumrnary profile of the mean (+ 1 SD) ASYMP ) 
L 4 L 5  compression force (N). Each graph identifies a specific day and load. Within each 
graph, the panels indicate specific lifts (A or B. extension) and lowers (A or B, flexion). Each 
panel is normaiized from the start to the end of the IiftAower. Note: Day 2 = Bad Day. 
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Case Studv #3 This 33 year old. 1.56 m. 88.8 kg manual materials handler/tmck driver suffers 

Rom myofascial pain syndrome. This inciudes upper thoracic spine pain and low back pain. His 

right side is typically worse than his left. Still performs al1 activities of daily living and pursues 

recreational activities, including goal-tending in ice hockey. 

Table 16 Cornparison af "Bad" and "Good" day test results, by assessrnent tool. for Case Study 
#3. Note: no data available for the Good day, 5 kg load. 

Assessrnent Tool Bad Day (Day 2) Good Day (Day 1 ) 

Oswestry Score (%) 24 26 

VAS (following each test component) 7, 10, 10, 13, 1 1  8, 11.9, 12. 12 

B-200 OOC Back Dysfunction 
- # of abnormal indicators 
- # of non-physiological indicators 

B-200 ProfiIe - velocity 
- abnormal secondary moment 
- abnormal tertiary moment 

Moment Profi le (N-m) 
- O kg 
- 5 kg 
- 10 kg 

Moderate 
9 
O 

hot, 1 f/e, 1 lf Jrot, if/e, i If 
12 7 
6 4 

lifts, above limit within normal limit 
at upper limit 
at upper limit within normal limit 

Muscle Force - APDFs 
Average Time above APDF Critenon (%) 

- Lifts (0, 5, 10 kg) L I ,  6 ,  22 25,  - ,  36 
- Lowers (0, 5, 10 kg) 7, 13, 34 34, - ,  36 

Compression 
- O kg 
- 5 kg 
- 10 kg 

within nomai limit within normal limit 
within normal limit - 
within normal limit within normal Iimit 



Pain - 

The Oswestry scores were 768 and 24% for the Good and Bad days. respectively. 

ranking the disabiiity as rnoderate. This individual described his pain as being fairly severe on 

his Good day and rnoderate for the Bad day. The VAS scores aIso reflected this anomaly. with 

the pain recorded as an 8 and 7, for the Good and Bad days respectively (Table 17). A paired 

samples t-test found no significant difference between the VAS scores for the two days of 

testing, p c .704 (Table 17). 

lsostation B-200 

The B-200 OOC test results indicated Moderate dysfunction on the Bad day. and Mild 

dysfunction on the Good day. Increases in isometnc strength were observed in al1 directions on 

the Good day. except for right rotation. which decreased by 5%. On the Good day (Day 1 ). 

decreased peak velocities were observed in the 25% and 50% Flexion-Extension tests and the 

75% Lateral Flexion tests. There was also a decreased peak Lateral Flexion moment noted 

during the 25% resistance Rotation tests. On the Bad day (Day 2) in addition to these variables 

still being decreased there was also a decreased maximum velocity in the 25% and 50% Rotation 

tests, a decreased maximum Flexion-Extension moment dunng Lateral Flexion at 2 5 8  

resistance. and a decreased isometric Flexion moment (Appendix E). For the Bad day compared 

to the Good day, the 8-200 profile analysis showed an increase from, 6 to 12 and 4 to 7. in the 

number of positive responses for the secondary and tertiary axes. respectively. The increases 

occurred dunng the tests in the rotation axis. On the Bad day, there was a substantial increase in 

the magnitudes of the Lateral Flexion and Flexion-Extension moments produced throughout the 
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rotation range of motion (Table 17). Interestingly. the OOC report marked sorne peak secondary 

axes moments as being abnonnally low. However. in cornparing them to the B-200 profile these 

values were found to fa11 within the normal range (Appendix E). 

EMG - units of Nam 

For the Good day. the L 4 L 5  moments are within the normal range. On the Bad day. the 

O kg load condition showed a particularly excessive moment during lifting. The rest of the 

activity was within the normal range (Figure 50). 

iMuscle Force APDFs 

The average time above the APDF criterion values in Table 16 are greater for the Good 

day than for the Bad day. On the Good day. the LRA and LI0 produced excessive forces for al1 

load conditions. The RUES. RLES. LUES and LLES also had excessive force production for 

lifting and lowering and this increased with load. For the Bad day. the RUES was active for al1 

loads. As the load increased, so did the excessive force production in the RRA, LRA, RIO and 

L I 0  (Figures 5 1 and 52). 

L4/L5 Com~ression 

The UAS compressive forces are within the normal range for both days (Figure 53).  



Interpretation 

It is surprising that even though the subjects back felt "better" for the Good day. i t  was 

not reflected in the pain sales.  Perhaps there are other intnnsic factors that this individual used 

in evaiuating how their back felt. The OOC system reflected the difference between the two 

days, as the dysfunction increased from Mild to Moderate for the Bad day. The B-200 Profile 

reflected this change via the increased secondary and tertiary moments. hproved functionin_g in 

the Good day resulted in decreased abnormal EMG based moments. particularly for the O kg 

Ioad. The excessive muscle forces produced on the Good day, may serve to increase the 

stabilization of the spine. This improved stability may be one of the intrinsic factors used in 

evaluating performance and may also be the source of the increased pain. 



Table 17 Surnmary of increased secondary and tertiary axes moment activity for OOC 50% 
resistance tests. dynamic sequence 1 and 2.  test days 1 and 2. Excessive secondary and teniary 
activity is indicated by a I /  and X .  respectively. For rotation tests. lateral flexion is secondary. 
flexion-extension is tertiary. For lateral flexion tests. flexion-extension is secondary and rotation 
is tertiary. The shaded areas indicate the tests for the individual's "Bad day. 

Case Study # 3 Test Movement Quadrant 
Prirnary Axis (day - sequence #) 1 - 7 3 4 Totals 

Rotation 1 - 1  X % 0 . 2  
1 - 2  0 . 0  

2 -  1 d c/X c/x VX 473 
2 - 2  vx d d X  X 3 9 3  

Lateral Flexion 

Totals Bad Day 2 , 2  4 , 1  4 2  2 , 2  12,7 
Good Day 1 . 2  1 . 1  2 . 0  2 . 1  6 0  
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Figure 5 1 : Case Study #3 graphed against the ASYMP rnean (I 1 SD) LAAS moment profile. 
Each graph identifies a specific day and load (Nam). Within each graph the panels indicate 
specific lifts (A or B extension) and lowers (A or B,  flexion). Each panel is normalized from 
the start to the end of the !ift/lower. Note: Day 2 = Bad Day and no data was available for the 
Good day. 5 kg load. 



Bad Day Good Day 

Figure 52: The iime that the force for each muscle ( n  = 12) was greater than the ASYMP 
criterion force (mean + 1 SD) for Case Study #3. Legend: R= right, L = left, RA = rectus 
abdominis, EO = external oblique, IO = intemal oblique, LD = latissimus dorsi, UES = upper 
erector spinae, LES = lower erector spinae. Note: no data available for the Good day, 5 kg 
load. 
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Figure 53: The cumulative time (%), for Case Study #3, in which the muscle force for each 
electrode site (n  = 12) was greater than the ASYMP criterion force (mean + 1 SD). Note: no 
data available for the Good day, 5 kg load. 
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Figure 54: Case Study #3 graphed against the summary profile of the mean (2 1 SD) ASYMP ) 
L4L5 compression force (N). Each graph identifies a specific day and load. Within each graph. 
the panels indicate specific lifts (A or B. extension) and lowers (A or B, flexion). Each panel is 
normalized from the start to the end of the liftnower. Note: Day 2 = Bad Day and no data was 
available for the Good day. 5 kg load. 
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Case S t u d ~  #.) - This 40 year old. 1.79 m. 9 1.4 kg massage rherüpist suffers from myofucial pain 

syndrome which includes chronic left sacroiliac dysfunction and low back pain. The left side is 

typically worse than the right. but he still performs al1 of his activities of daily living. 

Table 18 Cornparison of "Bad" and "Good day test results. by assessrnent tool. for Case Study 
#4. 

Assessrnent Tool Bad Day (Day 1 ) Good Day (Day 2) 

Oswestry Score (%) 14 8 

VAS (following each test cornponent) 5 ,  2, 1.3, 1 3 , 4  3, 6, 5 

8-200 OOC Back Dysfunction 
- # of abnormal indicators 
- # of non-physiological indicators 

B-200 Profile - velocity 
- abnormal secondary moment 
- abnormal tertiary moment 

Moment Profile (Nm) 
- O kg 
- 5 kg 
- 10 kg 

Muscle Force - APDFs 
Average Time above APDF Criterion (9%) 

- Lifts (0, 5. 10 kg) 
- Lowers (0,5, 10 kg) 

Compression 
- O kg 
- 5 kg 
- 10 kg 

Jrot ,  1 fle, 1 If Jrot ,  1 f/e, i If 
7 7 
7 8 

within normal limit 
withinnonnailimit aboveupperlimit 
lower exceeds limit above upper limit 

above upper limit 
above upper limit at upper Iimit 
above upper lirnit at upper limit 
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Pain - 

The Oswestry scores were 148 and 8% for the Bad and Good days. respectively. ranking 

the disability as minimal. The pain at the start of the session on the Bad day was scored as 

rnoderate and this decreased to very mild for the Good day. The Good day initial VAS score of 

3. was lower than the Bad day score of 5 (Table 18). However, al1 of the remaining scores for 

the Good day were greater than those of the Bad day (see Table 18). Therefore, a paired-samples 

t test found a non-significant difference in VAS scores (p < .152). 

Isostation B-200 

The OOC protocol rated this individual as having Nomal back function for both days. 

Isometric strength increased in rotation and flexion. The extension strength decreased by 9% and 

the lateral flexion strength was unchanged. Peak velocities were greater in al1 tests for the Good 

versus Bad day (Appeiidix F). The B-200 profile reflected this improvernent in both the rotation 

and flexion-extension axes. However. despite the increased velocity . the lateral flexion profi le 

still remained below the normal range. The 8-700 profile produced the same nurnber of positive 

responses. 7. for the secondary axes and an decrease from 8 to 6 for the tertiary axes for the Good 

and Bad days, respectively. However, rhere was a shift in the movement as to where the 

increased secondary and tertiary moments were produced. For the Good day, the positive 

responses were produced at the start and end of the repetitions, Q 1 and 44, respectively. For the 

Bad day, the positive responses occurred in the middle of the repetitions, 4 2  and 43 (Table 19). 

EMG - units of N-rn 



On the Bad day, the EMG-to-moment profile for the O kg load shows a decreasçd 

moment during the lift and an average pattern during the lowers. The magnitudes increased with 

loading, resulting in an excessive moment being produced when lowering the IO kg load. Also. 

the moments during the lowers peaked earlier than normal profile. For the lifts. the peak 

moments occur later than in the normal profile. On the Good day. excessive moment was 

produced dunng the lifts and lowers. for al1 loads. The pattern of moment production is similar 

to that of the Bad day. For the lowers. this occurs at the start of the cycle and for the lifts it 

occurs at the end of the rnovement (Figure 54). 

Muscle Force APDFs 

On the Bad day. there is an increase in the force produced by the RRA. REO. RIO and 

RLD dunng the load handling. hcreasing the load resulted in increased activity in the FUES 

and LLES. On the Good day, the RRA, RIO, LEO, LI0 and LLES showed excessive force 

production (Figure 55). The cumulative total time above the APDF criterion decreased from the 

Bad day to the Good day (Figure 56). 

L4/L5 Compression 

On the Bad day. the L4L5 compressions exceeded the normal range at the onset and 

during the terminal portion of the lifts. The peak compressive values were also greater for the 

lowers. For the Good day, the lifts matched the normal profile in both magnitude and timing. 

The lowers marginally exceeded the upper boundaries (Figure 57). 



lnterpretation 

The initial VAS scores retlected the improvement between the two days. However. rach 

of the test components was scored as being more painful on the Good day. This may have been a 

function of increased effort. as both the B-200 and prone M W ' s  were greater for the Good day. 

00th the OOC and B-200 profile systems documented the increased velocity of movement on the 

Good day. The B-200 moment profiles reflected the change in how the performance was 

occurring. The EMG based measures showed the difference in the magnitudes and patterns of 

utilization. especially for the 10 kg load. The differences in the moment profiles may reflect this 

particular person's style of lifting. The increased flexor activity on the Bad day may indicate an 

increased need for stabilization . 

Table 19 Sumrnary of increased secondary and tertiary axes moment activity for OOC 50% 
resistance tests, dynamic sequence 1 and 2, test days 1 and 2. Excessive secondary and tertiary 
activity is indicated by a (/ and X. respectively. For rotation tests, lateral flexion is secondary. 
flexion-extension is teniary. For lateral flexion tests, flexion-extension is secondary and rotation 
is tertiary. The shaded areas indicate the tests for the individuai's "Bad" day. 

Case S tudy # 4 Test Movement Quadrant 
Primary Axis (day - sequence #) 1 2 3 4 Totals 

Rotation 1 - 1 fl% d 2,1 
1-2 c / x  c /X  292 
2 -  1 d x % X 1 . 3  

2 - 2 d v' 2 . 0  

Lateral Flexion 

Totals Bad Day 2 , 3  1 , l  1 , 2  3 , 1  7 3  
Good Day 1 , 2  2 , 2  1 , l  3 , 3  7 . 8  
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Figure 55: Case Study #4 graphed against the ASYMP mean (2  1 SD) L4/W moment profile. 
Each graph identifies a specific day and load (N*m). Within each graph the panels indicate 
specific lifts (A or B extension) and lowers (A or B. flexion). Each panel is normalized from 
the start to the end of the liftAower. Note: Day 1 = Bad Day and no data was available for the 
Good day. O kg load. 



Bad Day Good Day 

Figure 56: The time that the force for each muscle (n = 12) was greater than the ASYMP 
criterion force (mean + 1 SD) for Case Study #4. Legend: R= right, L = left, RA = recrus 
abdominis, EO = external oblique, IO = intemal oblique. LD = latissimus dorsi, UES = upper 
erector spinae, LES = lower erector spinae. Note: no data available for the Good day. O kg 
load. 
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Bad Day 
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Figure 57: The cumulative time (9%). for Case Study #4. in which the muscle force for each 
electrode site (n = 12) was greater than the ASYMP critenon force (mean + 1 SD). Note: no 
data available for the Good day. O kg load. 
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Figure 58: Case Study #4 graphed against the summary profile of the mean (I 1 SD) ASYMP ) 
L4L5 compression force (N). Each graph identifies a specific day and load. Within each 
graph. the panels indicate specific lifts (A or B. extension) and lowers (A or B. flexion). Each 
panel is normalized from the start to the end of the Iifaower. Note: Day 1 = Bad Day and no 
data was available for the Good day, O kg load. 
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Discussion 

The purpose of this study was to determine whether the understanding of spine movement 

dysfunction. as indicated by abnorrnal displacement. velocity and torso moment data measured 

by a clinical evaluation system. was augmented by a flexion-extension task and the knowledge of 

EMG activity and/or by knowledge of individual torso tissue force estimates from an EMG 

assisted, dynamic three dimensional spine model. Pain scales, custom Isostation B-200 

rnovement profiles. EMG of the spinal musculature and an EMG assisted model of the lumbar 

spine were found ro provide more information regarding the low back function of the individuals 

symptomatic and asymptomatic for low back pain (LBP) that volunteered for this study. 

individuals with recurrent low back pain were targeted as the specific symptomatic 

population for this study. These individuals have a strong feel for their back status. They have 

periods where their back dysfunction impinges minimally on their daily routine. followed by 

episodes. typically of predictable recurrence. which limit their activities and their daily routine. 

However, during the penods of recurrence. they know they will reach a state where their back 

dysfunction will once again be in remission. This made these individuals ideal candidates in  

which to investigate differences in spine movement dysfunction. Another advantage of this 

group is that these were not first time injuries and they would not be expected to become chronic. 

Prolonged or chronic back pain (Le. greater than 3 months) is complicated by psychological 

concems and secondary gain issues (Spitzer et al.. 1 987. Gatchel. et al.. 1995). These factors 

should be minimal in the groups used in this study. Also. Spitzer et al. ( 1957) found that 

recurrent episodic cases should be treated by an approach used for acute cases. Therefore. 
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techniques or results produced by studying these recurrent cases would be reasonable starting 

points for future work with acute cases. 

In this study. the symptomatic individuals were tested on days they identified as a Good 

day and a Bad day. Their pain statu was evaluated using the Oswestry low back pain disability 

questionnaire (Fairbanks et al.. 1980) and a Visual Analog Scale (VAS). The functional daily 

differences were not reflected by the overall Oswestry rating and the VAS only differentiated one 

of the individuals. This may reflect the nature of the measurernent scales and the participants i n  

this study. The Oswestry questionnaire classifies disability using the following categories and 

scores: Minimal Disability (0-20%). Moderate Disability (20-40%). Severe Disability (40-60%) 

and Cnppled (60430%). Scores of 80- lûûI  indicate a person is bed-bound or exaggerating their 

syrnptoms. These scores are based upon the self reported arnount of pain felt at the time of 

testing and the ability to perform in nine areas related to activities of daily living. The visual 

analog scale (VAS) is used as a graphic indication of pain by marking a I O  cm line. 

Using the Oswestry scores, two of the individuals were classified as having "minimal 

disability" on their Bad day. Therefore. they could not improve their classification per se. on the 

Good day. Yet on the Good day, one score decreased from 14 to 8% and the other remained at 

1 18. For the two individuals with moderate disability, one score decreased from 26 to 24% for 

the Good day. but the other score increased from 24 to 26% for the Good day. The differences in 

both scores reflect changes in the pain levels on the Good day (Le. Case 3's pain increased). The 

responses to the other nine sections were almost identical between days. 

Likewise, the VAS scores showed a significant improvement for only one subject (Case 

) The VAS also revealed that Case #3 rated their pain at the start of testing greater on the 
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Good day then on the Bad. Given that the syrnptornatic individuals felt that they had improved 

function, but the rating instruments failed to reflect this. there must be other intrinsic and 

extrinsic factors besides pain (e.g. stability) and the performance of activities of daily living, that 

are evaiuated by individuals when evaluating their functional state. 

The clinical evaluation system utilized in this study was the Isostation 8-200 and the 

OOC software system (Version 3.1). Two reponed strengths of this system are its ability to 

comprehensively evaluate back function and monitor changes that occur throughout treatment 

(Deutsch. 1991). in this study. the system produced reports of normal back function. on both 

test days. for three of the four cases. The moderate dysfunction on the Bad day for the other case 

(Case #3) irnproved to mild dysfunction on their Good day. 

There are several possible explanations for this anomaly. Perhaps the three cases truly 

have normal back function. However, it seems uniikely that this was just an increase in 

symptoms not associated with some type of back dysfunction. Also. this was not the first time 

that these individuals had been symptomatic for low back pain and they had actively sought 

treatment frorn a chiropractor and received relief during previous LBP episodes. 

Another explanation may lie in the system's very conservative scoring of abnorrnal 

performance. Before being considered as an indicator of back dysfunction. the isometric and 

secondary axes strength values must fa11 below the 2.5" percentile level in the cornparison 

database. The peak velocity parameter must fall below the jh percentile. For the secondary axes 

moments and the peak velocity parameter values. this requirement must occur in both of the 

dynamic test sequences, for the same resistance (Deutsch. 199 1). Perhaps the recurrent LBP 

participants in this study. who were accustomed to their dysfunction and used to performing 
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activities with it. were not as limited as might be expected. Or perhaps the peak parameters wrre 

within the normal range. but a majority of the time histones were abnomal. 

The number of individuals in the normal comparison database rnay be a factor. The OOC 

software (Version 3.1) compares an individual's test results to a database of performance scores 

for 62 people. matched for gender. Although the data base represents a wide range of ages. 

heights and weights (Deutsch. 199 1 ). there rnay not be a sufficient number of people within the 

database to produce a Gaussian distribution or sufficient variability. Thus. a small change in  a 

performance parameter rnay be enough to shift the scoring of a result from abnomal to normal. 

Finaily, the underlying approach to scoring the data rnay contribute as well. One of the 

strengths of the OOC system is that relative percentages are used for each individual in 

detemining the pnmary axis loads for dynamic tests. However. in the scoring of the peak 

secondary axes moments. the absolute magnitude of the peak moment is used. This creates two 

problems. By expressing the moment in absolute ternis, a person rnay be classified as having a 

low secondaryltettiary axis peak moment. but relative to their own isometric strength they may 

be producing a typical peak secondaryhertiary moment. This would represent a Type 1 or False 

Positive error. Secondly. a single number (i.e. the peak) rnay indeed be in the normal range. 

while a majority of the time history is beyond the boundary. This reflects a Type II error or False 

Negative. 

The B-200 profile system developed in this study attempted to address these issues. The 

single page graphitai results facilitates the analysis by providing an overview of the velocity. 

secondary and tertiary moment parameters for each test. However. this technique is still labor 

intensive because a separate summary page is produced for each of the twelve dynamic tests that 
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are conducted in an OOC evaluation. Therefore. a scoring system was developed to facilitate the 

B-200 profile analysis even further. This system used a less stnngent criterion ( A I  SD) than the 

OOC software (2.5 and 5.0 Percentile) and concentrated on the pnmary axis velocity and the 

secondary axes moments produced during dynamic testing. Using this system. performance 

differences from the normal profiles and changes between the Good and Bad day tests were 

quantified for the three subjects that had complete raw data files. In comparing the differences 

between days. one individual's results shifted more towards normal. another stayed the same and 

the third one shifted further from normal. One of the major advantages of the B-200 Profile 

analysis system developed in this study is that the ensemble average for the middle three 

repetitions is the data that are analyzed. This prevents spurious peaks from biasing test results. 

Also, the moment variables are expressed relative to the isometric strength that an individual 

could produce in each of the effort directions. This further highlights any left or right sided 

asymmetries that an individual may have. as illustrated in this study. 

The profiles presented here must be interpreted and generalized with caution. The 

Isostation B-200 was certainly a novel testing experience for the participants. With the pelvis 

restrained, a significant mass strapped to the upper tmnk and the off-plane axes "locked" iit 

maximal resistance, it waç assumed that each participant would produce "natural" motions while 

moving as hard and as fast as they could. The resulting performance reflected both the "natural" 

muscular recruitment pattern and an individual's efforts in learning to deal with constraints 

imposed by the dynamometer and the test protocol. 

Other researchers have published normal values for Isostation B-200 parameters (Levene 

et al., 1989; Gornez et al., 199 1; Mchtyre and Glover, 1993). However. these studies have 
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utilized peak and average parameter values for describing and comparing populations. Szpalski 

et al. ( 1 996) have incorporated ensemble averaging of the velocity data for 50% resistance 

flexion-extension tests in trying to document differences between nomals, individuals with 

spinal stenosis and posterior bulging discs. Instead of analyzing the entire flexion and extension 

velocity curves, they used four points from within each motion. When the flexion and extension 

velocities were normalized to the peak flexion velocity. these authon found significant 

differences in the motion pattems among al1 three groups. Although they only investigated 

velocity in  one axis. these authors felt that diagnosis-specific spinal movement signatures do 

exist. if this is indeed the case, then the system developed in this study should facilitate in 

defining the signatures even funher. 

This study also incorpordted a flexion-extension task designed to determine if EMG 

activity could augment the understanding of low back dysfunction. The EMG profiles for the 

ASYMP group were normalized to be expressed in terms of mV and %MVC. However. 

inspection of the SYMP EMG profiles plotted against the ASYMP EMG profiles showed the 

method did not augment the analysis for the SYMP group because the curves for the SYMP 

individuals typically fell within the mean 2 1 SD range. Of the twelve electrode sites, the upper 

erector spinae site consistently showed the most excessive activity. For the 10 kg trials. the 

variability ranged from 20 - 25% MVC at the time of peak extensor activity. Sutamo ( 1993) 

found sirnilar pattems and peak magnitudes for %MVC norrnalized EMGs, for spinal fiexor and 

extensor muscles of males performing a sirnilar flexion-extension task with O and 10 kg loads. 

However. the variability was much smaller. For a 10 kg load, the standard deviation was less 

than 6.5% at a peak extensor activity of 40% MVC. The specific nature of the task is one factor 
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which affects the magnitude of the variability. Although Sutamo's ( 1993) subjects perfomed 

flexion-extension task. the lifting posture and type of lift (stoop) were much more controlled than 

in this study. When the subjects speed of movernent was paced. the variability was reduced even 

funher. Dunng a fully flexed. static posture. the upper erector spinae electrode of McGill and 

Kippers ( 1994) had a standard deviation of 8.9%. while Callaghan and McGill ( 1995) found 

variability of over 10% MVC for static postures that required sirnilar thoracic and lumbar spinae 

activation levels as in this study. 

Another reason for not using the trials normalized to B MVC was illustrated by the 

SYMP group in which the difficulty in trying to obtain a true MVC was apparent. Producing an 

effort less than 100% resulted in the rectus abdominis contraction level exceeding 10% MVC 

(Figure 27). Whether fear of re-injury, pain or decreased motivation, the ASYMP group did not 

appear to produce true MVCs. Performance of a MVC is a skiil and obtaining a maximum value 

may require numerous test positions (McGill. 199 1 ) and even then a researcher cannot be 

confident that a true maximum was obtained. 

Combining the EMG and the link segment mode1 together to produce a signal calibrated 

in N-m was an attractive alternative to the EMG profiles because it provided a calibrated signal 

which did not require MVCs. In this study, the average RMS differences across al1 loads and 

days were 4 1.5% and 49.8% for the thoracic and lumbar electrode sites. respectively. Potvin et 

al., ( 1990) calibrated the EMG signal to represent the LAIL5 compressive force and found RMS 

differences of 39% and 58% using a thoracic and lumbar electrode site, respectively. Wells et al.. 

( 1997) also used this approach as a means of estimating exposure in the work place. However. 

in the present study, calibrating the EMG signal to estimate the UL5 reaction moment produced 



equivocal results. Changes between the Bad and Good day test sessions. which could be 

attributed to improved functionality, were observed for some of the symptomatic individuals. 

However. the variability present in the normals minimized the utility of these profiles. The N-m 

calibrated EMG method was advantageous because a single output was produced which 

incorporated information from two of the rnost active spinal muscles for the flexion/extension 

task used in this study. This technique could very easily be applied to a variety of tasks. It 

requires minimal hardware and software. making it a useful instrument for use in a dinical 

environment. This method could also be useful as an educational tool in industry. demonstrating 

the different muscular loading responses that occur with different lifting styles and postures. 

The assessment with muscle forces estimated via the computerized spine mode1 

augmented the analysis of spine movement dysfunction the most. This method corrected for the 

normalization difficulties encountered when expressing the EMG in units of mV or QMVC. The 

ability to observe which of the flexor and/or extensor electrode locations resulted in excessive 

muscle forces allowed a more detailed assessment of the performance to be made. However, the 

twelve electrode sites. three loads. two lifvlower cycles and two test days made understanding 

and interpreting the cornparison profiles in order to pinpoint problematic muscles Cifficul t. 

The Amplitude Probabili ty Distribution Function (APDF) was incorporated as a method 

through which the amount of time in which muscles had excessive force generation could be 

quantified. This produced a two step analysis for the SYMP group. The first was a breakdown 

by day, task, load and electrode location (e.g. Figure 43). This graphical summary of the APDF 

identified both the muscle groups and the effect of the load in the hand on excessive muscle force 

production. They also illustrated that for the flexion-extension task utilized in  this study. the 
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rccentric phase appeared to be more important in documrnting differences in recovery because 

more excessive force production was found to occur during these activities (see Figure 44). The 

second part of the analysis was the overall summary for each day and load which quantified the 

percentage of time that the muscle forces were above the APDF criterion level (see Figure 44). 

Using this approach, changes in excessive muscle force production were quantified for each 

SYMP individual in this study. The importance of this result is underscored by the fact that the 

ASYMP group was only "mildly" abnormal as indicated by the Oswestry and VAS scores. On 

the Good day, three of the cases (Case # 1.  2.4) had decreases in the amount of excessive force 

production. The other individual showed an increase in excessive force production. This person 

ülso had increased pain on this day. despite reporting their back function to be irnproved. 

These results illustrate that decreased pain may not necessarily reveal improvements in 

function and the y underscore the importance in assessing function and not focusi ng solel y on 

pain. Functionality may depend upon a number of intrinsic and extrinsic factors. These results 

also highlight a possible limitation in studying a recurrent low back pain population. As their 

functionality improves, these individuals perform a greater number of, and more demanding. 

activities. This provides a greater opportunity for an increase in pain or perhaps even a relapse. 

The Cases in this study had full-time responsibilities and were typically tested at the end of their 

work day. So even though they may have felt functionally improved, there rnay be an increased 

cost (e.g. pain) associated with being able to participate in or perform more activities. 

One of the difficulties with the APDF method is the loss of timing information (Le. when 

did the excessive forces occur?). This limitation may be overcome by breaking the specific tasks 
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into discrete movement phases. This would allow specific periods to be identified and focused 

upon. However. it does increase the number of events that would need to be analyzed. 

Another drawback to the criterion strategy used in this study is that the magnitude of the 

excessive force production was not considered. Thus two individuals with different force 

profiles would produce identical evaluations. For example. one individual may have a muscle 

force profile which was only slightly greater (e-g. I N) then the criterion level for the entire time 

history and another person may have a profile which was rnuch greater (e-g. 100 N) then the 

criterion level for the entire tirne history. Both of these individuals would be identified as having 

excessive force production for the entire time history. but the difference in magnitude would be 

ignored. Also. an individual may have identical force-time histories for a right and left electrode 

site, but the "normal" APDF criterion levei profiles (mean + 1 SD) may be differenr for the right 

and left electrode sites. This could result in one muscle being to the right of the criterion and be 

considered to be producing "excessive" force while the other which was to the left of the 

criterion would be considered normal. htegrating the area between the "normal" APDF criterion 

curve and an individual's APDF curve would allow the excessive muscle force production to be 

quantified and it could be normalized to the entire area encompassed by the total APDF criterion. 

The spine mode1 used in this study also estimates the L4L5 compressive force and this 

parameter was incorporated into the SYMP profile analysis. Aithough the overall L 4 L 5  

compressive force profile was a one page analysis, the variability in the range of compressions ( 

200 to 900 N) introduced by the absence of the specific Iiftingllowering instructions did not 

differentiate the SYMP individuals frorn the ASYMP individuals. However, because 

compression is one of the few tissue tolerance standards that are available. its inclusion is 
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wonhwhile as i t  provides insight regarding the relative risk of injury (NIOSH. 198 1 ). The 

üssessment of compression estimates from the mode1 are also advantageous because the effects 

of muscular CO-contraction are also reflected. The L 4 L 5  compression estirnates would also be 

useful in dernonstrating to individuals how their particular movement profile affects their relative 

risk of injury for the performance of a particular task. 

In this study the participants performed a freestyle, self paced flexion-extension task. 

This allowed each SYMP individuai to perform the task so they could make accommodation for 

their particular injury. either by avoiding a problematic posture or moving in a manner which 

minimized pain. The resulting assessments measured these accommodations by quanti fying 

deviations trom normal. However. it would have been possible to incorporate a task which 

involved a constrained movement posture and/or pace. This type of task may also have produced 

responses which deviated from normal because the constraints exacerbated a painful condition. 

However, this method increases the risk of injury aggravation and individuals may elect not to 

perform the task at all. Lncorporating a combination of freestyle and constrained tasks would be 

an approach which would result in a very thorough assessrnent of spine movement dysfunction. 

The conclusions of the current study must be considered in light of the assumprions and 

limitations inherent in the research design and methodology. The results are specific to the two 

populations utilized in this study. Although an yffort was made to incorporate older ASYMP 

individuals so that they would better reflect the anticipated SYMP group, the use of a university 

based student population made this challenging. hcreasing the number of individuals in each 

group would have been advantageous and helped to decrease the variability for the ASYMP 

group profiles. In this study the normal range was defined as the mean 1 SD. Statistically. this 
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range only incorporated 68% of the "normal" population. leaving 16% to faII above this riingr 

and 16% to fa11 below this range. Increasing the range to include the mean t 2 SD would have 

decreased the number of occurrences where spine movement dysfunction was documented. 

particularly for the B-200 profile system. However. for the muscle force profiles the 

conclusions would not have been altered because the symptomatic individuals muscle force 

production was excessive for so many of the EMG electrode sites. Due to the planar nature of 

the flexion-extension task, kinematic symmetry was assumed between the right and left sides. 

However, this would not have significantly altered the magnitude of the muscle force estimates. 

The use of surface EMG meant that not al1 of the muscles that forces were estimated for 

could be monitored (e.g. psoas). requiring the EMG time history from synergistic muscles to be 

used (e.g. internal oblique for psoas). This assumption is supported by data from McGill et al. 

( 1996) who found that well selected surface electrode locations did provide a representation of 

deeper muscles with RMS differences of 2-156 MVC found dunng the performance of clinical 

tasks. The approach of using synergistic EMG time histories in symptomatic individuals may 

produce abnomal results in and of i tself. For example. if the right intemal oblique muscle had 

abnomal function or timing then the right psoas muscle fascicles would also be credited with 

abnormal function or timing, producing an incorrect assessment. Likewise. if the right internal 

oblique was functioning normally but there was a problem with one of the psoas fascicles. then it  

would not be identified because the right intemal oblique time history was used to partition the 

muscle force. Therefore, one must be cautious in the interpretation of dysfunction. 

Some researchers have used optimization as a rnethod to assist in muscle force 

partitioning. However, this technique is insensitive to both EMG electrical silence and the 
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different load sharing strategies that occur beiween people. As previousiy mentioned. the 

EMG,,, method for calculating the EMG scaling factors for the model produces underestimates 

of the L4L5 compressive forces. Modifications in the strategy used to collect the scaling factors 

would help to minimize this difference. 

This study utilized EMG and an EMG assisted model of the lumbar spine in conjunction 

with a flexion extension task to try and improve the understanding of spine movement 

dysfunction as indicated by a clinical evaluation system. A more thorough analysis of the data 

produced by a clinical evaluation system enhanced the assessrnent of the SYMP group. The 

estimation of muscle forces for the symptomatic individuals documented that changes in muscle 

performance are correlated with improvements in function. in future research. i t  would be 

beneficial to incorporate tasks (e-g. asymmetrical loading) that would concentrate on specific 

muscles sites. This may Funher isolate dysfunctional muscle performance. 

Conclusions 

1 .  The APDF presentation technique provided a visual summary of the muscle force data 

that immediatel y highlighted the in tra-individual di fferences between loads and days, and 

the inter-individual differences between each symptomatic case and the asymptornatic 

population. The APDF method also qualitatively indicated for the symptomatic 

individuais which of the flexor and extensor electrode sites were most affected for each 

load and test day. 
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7 . The "percentage of time above the APDF criterion level" calculation quantified the intrii- 

and inter-individual differences in the flexor and extensor muscle forces for each of the 

electrode locations, hand loads and test days. Expressing the EMG in units of mV or 

%MVC did not distinguish these differences. 

3. Improved functionality. as indicated by decreases in Oswestry and visual analog scale 

scores. was typically (3 out of 4 cases) associated with decreases in excessive spinal 

flexor andor rxtensor muscle force production. 

4. The eccentric (flexion) component of the flexiodextension task was the better activity for 

distinguishing between the symptomatic individuals and the asymptomatic population. 

The differences were most pronounced for the largest loads (Le. 10 kg). 

5. A custom profile analysis of the B-200 moment-time histories, obtained during the 

performance of a c h i c d  evaluation protocol, was found to augment the identification of 

spine movement dysfunction. The system developed in this study identified the abnormal 

performances and documented changes in performance associated with recovery. The 

OOC clinical evaluation protocol provided a rating of spine dysfunction for one of the 

case studies. but was insensitive to some types of spine dysfunction. 
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6. The moment normalized spinal EMG method (calibrated in N.m) was equivocal in its 

ability to reflect the changes and irnprovement for the individuals symptomatic for Iow 

back pain when compared to the asymptomatic population. 

7 .  EMG profiles of the spinai fiexor and extensor musculature activity, produced while 

performing a dynamic flexion-extension task and presented as mV or BMVC. did not 

enhance the undentanding of the spine movement dysfunction. The variability in the 

profiles made the identification of abnormal activity difficult. 



Chapter VI 

Discussion, Conclusions, Recommendations 

Discussion 

This study is one of the first to evaluate spine movement dysfunction using a commerciai 

lumbar spine dynamometer. EMG and an EMG assisted model. For each of the evaluation 

instruments a group of individuals asymptomatic for low back pain were used to develop 

"normal" perfomance profiles. Comparison of individuals symptomatic for low back pain ro the 

normal pro fi les al lowed the appropriateness of each technique for evaluating spine movemen t 

dysfunction to be determined. Repeating the evaluations for eact? of the participants over a 

period of time allowed changes in performance for the symptomatic individual's "Good" and 

"Bad" day to be documented. 

The results of the study were very encounging because each of the methods could be 

incorporated into a technique that could be utilized for the assessment of spine movement 

dysfunction. However. the conclusions reached in this study are limited by the small number of 

participants. particularly for the symptomatic group. This was a function of recruiting only 

individuals with recurrent low back pain who were selected primarily because of their experience 

with low back pain. The individuais in this study had to be farniliar enough with their back 

"status" so that they could be evaluated on a good and a bad day in order to see which of the 

evaluation techniques could document the changes in spine movement dysfunction. 

Each of the major questions will now be discussed in terms of how they were answered 

by the results of these studies. 



Question #1: 
Can the dynamic spine model be used for people in pain'? 

RATIONALE: The model requires maximum voluntary contractions to normalize the 
EMG. These contractions are problematic for individuals with low back pain. 1s it 
possible for asymptomatic individuals to perfom sustained. submaximal contractions of 
sufficient intensity in order to induce maximal electrical activation of the flexor and 
extensor musculature? This would avoid the typical maximal voluntary contractions. 

The model was successfully adapted so that it could be used for people in pain. An 

original assumption was that sustained. isometric contractions of sufficient intensity would 

produce maximum amplitude EMG. This assumption was based on observations from work 

performed using the biceps brachii. However. this technique was unsuccessful when applied to 

the flexor and extensor musculature of the lumbar spine. Although the flexor and extensor 

EMGs increased by 35% and 20%. respectively. they failed to produce an EMG of 100% MVC. 

Small shifts in the test posture and the recruitment of other musculature to produce the required 

flexor and extensor moment were cited as explanations for these results. 

Attempts were made to predict the maximal EMG amplitude by using submaximal 

contractions of varying intensity. Difficulties in replicating the test posture may have 

contaminated these results as well. On an individual basis. none of the subjects produced a 

substantial number of correlations in the flexor and extensor musculature that would have made 

the method viable. 

An alternative technique was developed to calculate EMG-to-muscle force scaling factors 

which allowed the spine model to be used without performing MVCs. The construction of the 

model in its modular format made it possible to detemine muscle forces for a particular level of 

contraction. provided the maximum amplitude that was observed was considered to be the 

maximum or 100% activation level. A sensitivity study which manipulated activation level 



209 

revealed no significant difference in the resultant muscle force çalculations by using this 

approach. 

This very important observation meant that for a pair of isometric contractions of 

different intensity there would be two levels of muscle force and two levels of EMG activation 

which could then be used to produce EMG-to-force scaling factors. As a result. the performance 

of appropriate calibration trials combined with modifications in the rnodel's software allowed 

muscle forces to be estimated that were not dependant upon performing MVCs. 

To test the model's output, groups of individuais asyrnptomatic and symptomatic for low 

back pain perfomed dynamic flexion and extension efforts. It was shown that the extensor 

muscle forces were not significantly different using either the MVC or the EMG,,, processin; 

methods. However. the EMG,, method was shown to produce significantly smaller lumbar 

spine compressions, flexor and extensor muscle moments and flexor muscle forces. 

Question #2: 
1s movement dysfunction identification, as documented by abnormal peak displacement. 
velocity and torso moment data output frorn a commercial dynamometer (i.e. the 
Isostation 8 - 2 0 }  confirmed and/or augmented by the assessment of the entire moment- 
time history? 

RATIONALE: Displacement. velocity. and moments may be obtained from a variety of 
dynamometers. The Isostation 8 - 2 0  is a specific commercial dynamometer that utilizes 
this information to produce a "Back Dysfunction" rating. individuals with low back pain 
have been found to produce abnormally low magnitudes of peak torque production in 
primary and secondary axes during isometric and dynamic testing. But the comparison is 
made using absolute instead of relative vaiues. which would consider strength 
differences. Would a comparison of the relative moment magnitudes over the whole time 
history enhance the assessment? 

The commercial dynamometer (Isostation B-200) and clinical assessment software (OOC. 

Version 3.1 ) used in this study found normal back function in three of the four case studies. The 
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founh showed improvernent from Moderate to MiId back dysfunction when evaluated on the Bad 

and the Good day. respectively. Several possible reasons were discussed for this observation 

with the conservative scoring system and utilization of peak values the most likely ex planacion 

For this anomaly. 

Using the raw data from each of the clinical tests to produce a custom B-200 performance 

profile allowed abnormal performances to be quantified for each of the symptomatic individuals. 

The custom performance profile incorporated the primary axis velocity and the secondary and 

tertiary axes moments. However. when evaluating the changes between the Bad day and the 

Good day it was observed that the number of abnormal indicators did not necessarily decrease. 

One individual's score decreased, another person's stayed the same and the third person's 

increased. The velocity of rnovement showed improvement in 3 of the 4 cases for the Good day 

of testing. The custom 8-200 performance profile is an alternative assessrnent method that has 

the potential to be used in developing profiles for both specific populations and diagnoses. 

Question #3: 
Does EMG obtained from select abdominal and back extensor muscles help specify a 
more precise location of spine movement dysfunction? 

RATIONALE: The B-200 quantifies a level of dysfunction, but it oversirnplifies the 
lumbar spine and the tests are not representative of tasks typically encountered in the 
activities of daily living. EMG may be utilized to assess muscular function. Would 
EMG profiles constructed from asymptomatic individuals performing a flexion-extension 
task provide insight into normal muscle function and serve a s  a reference for 
symptomatic individuals. assisting in providing a more specific identification? 

Presenting the EMG signals as mV or % MVC did not help specify a more precise 

location of spine movement dysfunction. Overall. the right and left upper erector spinae 



11 I 

electrode sites were the two locations that illustrated excessive rictivity on a consistent basis. 

However. comparing an individual case's profile to the asymptomatic profiles was not 

particularly insightful due to the amount of variability present for the dynarnic flexions and 

extensions. The major contributing factor to the variability was the freestyle nature of the t s k .  

The participants were allowed to perform the lifts and lowers using a self-selected style and 

speed. 

The 0, 5 and 10 kg loads were selected for use in this study because they were thought to 

be typical of loads encountered in the performance of activities of daily living (e-g. lifting and 

lowering). However. the combination of the load size and the freestyle nature of the task were 

insufficient to produce a profile that would be feasible to use as a means of specifying a more 

precise location of dysfunction. 

The right and left upper erector spinae EMG signals were also used to create a moment 

normalized spinal EMG profile. Combining the EMG and the link segment mode1 together to 

produce a signal calibrated in N-m was an attractive alternative to the EMG profiles because it 

provided a calibrated signal which did not require MVCs. The RMS difference produced using 

this approach was very similar to that found by Potvin et al. (1990). However, calibrating the 

EMG signal to estimate the L4/L5 reaction moment during the performance of the flexion and 

extension tasks produced equivocal results. Although changes between the Bad and Good day 

test sessions, which could be attributed to improved functionality, were observed for some of the 

symptomatic individuals, the variability present in the normals minimized the utility of these 

profiles. These profiles also incorporated only two electrode sites. This restricts the musculature 

upon which the assessrnent is based to one anatomical region of the spine. 



Question #4: 
1s a more precise identification of the region of the back involved in the movement 
dysfunction. if not which tissue. possible. using the information provided by the spine 
model? 

RATIONALE: The spine model provides forcehime histories for 50 muscles. II 
ligaments and compression and shear forces acting on the L4RS motion unit. Does this 
level of knowledge provide more specific identification of dysfunctional structures'? 

The results of this study showed that a more precise identification of the region of the 

back involved in the movement dysfunction is produced by knowledge of the muscles forces 

estimated by the spine model. By summing the rnuscular forces associated with each EMG 

electrode. it was possible to produce a muscle force profile for each electrode site. day, load and 

task. When this information was presented via an Amplitude Probability Distribution Function 

(APDF) (Figure 38). it visually highlighted which of the flexor ancilor extensor muscles had 

excessive force production. and for which part of the fiexiodextension task (e.g. flexion). A 

cnterion level (mean + 1 SD) for muscle force was deterrnined for each electrode site for the 

asymptomatic population. The calculation of the "percentage of tirne above the criterion" 

allowed the excessive force production to be quantified for each day. load and task. The 

graphical presentation of this data ( e g  Figure 43) clearly identifies which of the flexor andor 

extensor electrode sites have excessive activity and which muscles show improvement between 

the Good and Bad test days. Collapsing the excessive force production across al1 muscles 

created an overall sumrnary (Figure 44) and allowed a single nurnber to represent each load and 

task. Excessive muscle force production occurred in 3 of the 4 cases for the Bad day compared 

to the Good day. Excessive force production was not restricted to onIy the extensor muscles as 

excessive flexor musculature force production was also observed. This observation emphasizes 

the need to estimate both flexor and extensor muscle forces 



Question #5: 
What are the effects of recovery from spine movement dysfunction on the phase and 
magnitude of the lurnbar spine mode1 tissue forcehime histories during isometric and 
dynamic contractions and do these force-time profiles provide more information than 
either the EMG or B-200 alone? 

RATIONALE: The EMG assisted. dynamic. three dimensional spine mode1 partitions 
the reaction moments produced by a linked segment mode1 into the restorative moments 
generated by the 50 muscle fascicles, 1 2 ligarnentous components. and the non-linear 
elastic intervertebral disc. Muscle fascicles that are functionally similar are assigned 
activation patterns from common surface EMG electrodes. Therefore, if changes in 
muscle function occur with recovery, these should be observed in the mode1 muscle force 
outputs. Also, if changes in muscle function occur. these may also be observed in the 
EMG profiles and the B-200 profiles. 

The effect of recovery from spine movernent dysfunction was manifested by a decrease in 

excessive muscle force production, as observed in three of the four cases. For each case this 

could be observed by the summary APDFs and quantified by the pementage of time above the 

APDF criterion level. The summary APDFs also illustrated that for the flexion-extension task 

utilized in this study. the eccentric phase appeared to be more important in documenting 

differences in recovery because more excessive force production was found to occur in this 

region of activity. 

It was anticipated that changes in muscle function should be observed in the EMG 

profiles and the 8-200 profiles as well. For the EMG profiles, the upper erector spinae electrode 

site revealed some differences. The moment normalized EMG profile (calibrated in Nam) 

reflected some changes towards the "normal" profile for the asymptomatic individuals. 

However, the overall results were equivocal for this method. Improved performance was noted 

in the 8-200 OOC clinical evaluation report with respect to greater peak velocities. Changes rhat 

were observed in the custom B-200 performance profiles could be due to improved coordination. 
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strength andior decreased activation of antagonists. Overall it was impossible to üttri bute the 

irnprovement to one specific factor. 

Question #6: 
What are the specific resources necessary for each method? 

RATIONALE: this allows a costhenefit analysis to be perfomed so that for a specific 
scenario. the most appropriate method may be used. 

The Isostation B-200 and clinical evaluation software system had several strengths. The 

duration of the testing time was relatively short. The cornparison of each individual's results to a 

gender matched database provides some degree of breadth to the assessment. Minimal time was 

required to output the standard report. Also, the 8-200 software has the capability of providing 

custom graphical analysis for a particular test. These advantages rnust be weighed against 

several weaknesses. The most important is that the mechanical axes of the machine do not a l i y  

with the mechanical axes of the lumbar spine. The cost of the dynamometer may be prohibitive 

to some (=$70,000 U.S.). The clinical database sarnple size is limited to only 62 gender matched 

individuals. The number of individuals in the database cannot be increased, nor can it be 

customized in anyway (e-g. height or weight ranges). The software does allow the raw data to be 

displayed graphically, but no visual comparison to the OOC database is possible. 

The custom B-200 profile provides an advantage in database development and 

management. A user would have the ability to construct a database specifically tailored to their 

clinical population and needs (e.g. diagnostic category, age. occupation). Currently, data 

reduction and report generation for the custom B-200 profile method is a time consuming process 
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because each of the raw data files must be converted into ASCII format by the manufacturer's 

proprietary software program. 

The EMG rnethods allowed a profile to be developed. but normalization issues. especially 

for individuals in pain make its utility questionable. The issue of producing a "tme" MVC will 

always persist. The technique is a reasonable method to utilize in the clinic because the costs are 

minimal in terms of time. and equipment costs are moderate. depending on the number of 

channels to be utilized. 

The muscle force information provided by the computerized lumbar spine model clearly 

made it the most informative method. However. i t  was also the most costly in terms of 

equiprnent. processing time and personnel. The numerous steps required to collect and process 

the data currently make it feasible only in a laboratory situation. 

Conclusions and Recommendations 

The prirnary purpose of this thesis was to evaiuate a clinical dynamometer. EMG and an 

EMG assisted rnodel of the lumbar spine to determine if more may be learned about spine 

movement dysfunction. Chapters ID and IV addressed methodological subproblems that had to 

be solved before Chapter V, the primary study, could be perfonned. Chapter III investigated a 

method to obtain a muscles maximal EMG amplitude without performing maximal voluntary 

contractions. Chapter N developed a method of obtaining EMG-to-muscle force scaling factors. 

that did not require the performance of maximal voluntary contractions. These scaling factors 

were then used in place of the maximal EMG amplitude scaling factors required by the EMG 

assisted lumbar spine model. In Chapter V individuals asymptomatic and symptomatic for low 
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back pain were cornpared using the clinical dynamometer. EMG and an EiMG assisted lumbar 

spine model to leam more information about spine movement dysfunction. Each of the 

evaluation methods had its own strengths and weaknesses. However, there were components of 

each method which were shown to be associated with improvements in the symptomatic 

individuals. The following sections surnmarize the conclusions from this research and present 

suggestions for future research. 

Conclusions 

1.  The maximal back extension efforts required to calibrate EMG to units of muscle force in 

a complex EMG assisted model. that were necessary prior to this study, can now be 

replaced by submaximal efforts. This is a necessity for use of this model with 

individuals in pain or afraid of injury. It would also be advantageous to use in situations 

(e.g. industry) where individuals may be unfamiliar with producing maximal effort 

muscular contractions. Regardtess of the method used, there was no difference in the 

calculated extensor muscle forces. The submaximal effort method did resuIt in smaIler 

flexor muscle forces and lumbar compressive forces. 

2. The APDF presentation technique provided a visual summary of the muscle force data 

that irnmediateiy highlighted the intra-individual differences between loads and days, and 

the inter-individual differences between each symptomatic case and the asymptomatic 

population. The APDF method also qualitatively indicated for the symptornatic 
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individuals which of the flexor and extensor electrode sites were most affected for sach 

load and test day. 

3 .  The "percentage of time above the APDF criterion level" calculation quantified the intra- 

and inter-individual differences in the flexor and extensor muscle forces for each of the 

electrode locations. hand loads and test days. Expressing the EMG in units of mV or 

%MVC did not distinguish these di fferences. 

4. lmproved functionality. as indicated by decreases in Oswestry and visual analog scale 

scores. was typically (3  out of 4 cases) associated with decreases in excessive spinal 

flexor andfor extensor muscle force production. 

5 .  The eccentric (flexion) component of the flexion/extension task was the better activity for 

distinguishing between the symptomatic individuals and the asymptomatic sarnple. The 

differences were most pronounced for the largest loads (Le. 10 kg). 

6 .  According to the data, the day of testing did not significantly affect the model outputs of 

flexor or extensor muscle force. fiexor or extensor muscle moment, or spinal 

compression. This is an important conclusion for utilization of the model with studies 

that require multiple test sessions. 
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7. A custom profile analysis of the 9-200 moment-time histories. obtained during the 

performance of a clinical evaluation protocol. was found to augment the identification of 

spine movement dysfunction. The system developed in this study iden tified the abnomal 

performances and documented changes in performance associated with recovery. The 

OOC clinical evaluation protocol provided a rating of spine dysfunction for one of the 

case studies. but was insensitive to some types of spine dysfunction. 

8. The moment normalized spinal EMG rnethod (calibrated in N.m) was equivocal in its 

ability to reflect the changes and improvement for the individuals symptomatic for low 

back pain when compared to the asymptomatic population. 

9. Maximal EMG amplitude of the flexor and extensor musculature of the spine can not be 

reliably determined using sustained, submaxirnal exertions. Although the EMG 

amplitude did increase by more than 20% and 35%MVC for the flexors and extensors. 

respectively, the final amplitudes were too variable for this method to be used. 

10. Maximal EMG amplitudes of the flexor and extensor musculature of the spine can not be 

reliably predicted by means of linear regression and extrapolation from the maximal 

amplitude observed from submaximal contractions of varying intensity. Changes in 

posture and the recruitment of other musculature may have contnbuted to the poor 

predictions obtained in this study. 
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1 1 . EiMG profiles of the spinal flrxor and cxtensor musculature activity. produced while 

prrforming a dynamic flexion-extension task and presented as mV or %MVC. did not 

enhance the understanding of the spine movement dysfunction. The vat-iability in the 

profiles made the identification of abnonal activity difficult. 

Future Considerations 

1. The calibration posture incorporated in this study is too cumbersome. The current prone 

and supine postures are difficult to position a person in. are uncornfortable once the 

person is positioned. and the moments induced by the torso are very large. limiting the 

calibration range. Having a person perform the test contractions in a standing position 

would greatly facilitate the calibration procedure. 

2 .  The calibrations should be performed in the range of lumbar moments that will be 

produced in the study. The prone and supine postures used in this study produced large 

moments due to the torso mas.  As a result, the EMG-to-Force calibration method 

overestimated the amount of muscle force produced per unit EMG. Utilizing a standing 

posture would minimize this effect. 

3. This study utilized a two point, linear calibration method. Adding a third point would 

help to minimize the overestimation of muscle force per unit EMG in the EMG-to-Force 

method. This would also allow a curvilinear calibration to be perforrned. 
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4. The task utilized should be more stressful. If a flexion/extension task similar to the one 

in this study is to be used, the load should be greater than I O  kg. This should amplify the 

responses of the symptomatic individuals. 

5 .  The performance of the task should be more structured. One of the limitations of the 

EMG profiles was the amount of variability present. This was due to the freestyle nature 

of the task where only the location of the load was controlled. Restricting posture and 

controlling the speed of movement may perturb the musculature in such a rnanner that the 

responses of the symptomatic individuais are amplified with respect to the asymptomatic 

individuals. 

6 .  The symptomatic individuals used in this study are representative of most clinical low 

back research studies in that whoever is available is recmited. This is partly due to the 

clinical nature of low back pain in that you never know who will be suffering and when. 

Now that the mode1 may be applied to those with low back pain. it would be possible to 

develop a database of individuals evaluated early on in their symptomatic period and then 

continualfy evaluate them at future points in time (e-g. more than the two used in this 

study). The results for specific populations could then be analyzed using a number of 

soning criteria (e.g. physical findings, age, gender, treatment protocol), providing further 

insight into the assessrnent and treatment of spine movement dysfunction. 
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7. The "moment normalized" EMG processing method which incorporated the left and right 

upper erector spinae musculature produced equivocal results. This was due to the 

variability in the normal profile, which was partly a function of the task. Incorporating a 

more stringent task rnay improve its utility. It would also be beneficial to present the 

output using the APDF format and criterion level approach incorporated in this study. If 

this type of system were capable of identifying penods of excessive EMG activity. then 

the approach would be very beneficiai in a clinical environment. The equipment and time 

costs that an EMG based system would require are minimal. This would allow the 

excessive activity to be represented using a variety of interfaces (e.g. computer screen. 

audio signal. LED panel) so that a personal training/rehabilitation system could also be 

developed. If this information was present in an APDF and a cntenon level established. 

it may differentiate between the asymptomatic and symptomatic individuais. It may 

require a more stnngent task as well. This method would not require use of the mode! 

which would be more attractive to clinicians. Once a normal profile group was 

established, then there would be severai methods in which excessive activity could be 

displayed (e.g. computer screen. LED panel). 

8. The APDF format used for expressing the excessive muscle force production could be 

improved by integrating the area between an individual muscle's APDF curve and the 

APDF criterion level. This would help to further quantify the magnitude of excessive 

force production. It would also be possible to incorporate pattern recognition technology 
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with the APDF profiles in an effort to determine if specific muscle force profiles or 

signatures exisred for specific types of spinal dysfunction. 
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Appendix A 

Oswestry Low Back Pain Disability Questionnaire 



The Oswestry Low Back Pain Disability Questionnaire 
Fairbank et al., ( 1980). Phyiotherapy. 66. 27 1 -173. 

Baker et al.. ( 1989). in: (Roland. MO. Jenner. JR. eds.) 
Back Pain: New Approaches to Rehabilitation and Education. 1 74- 1 86. 

This questionnaire has been designed to give us information as to how your back pain h a  
affected your ability to  manage in everyday life. Please answer every section. and mark in rach 
section ONLY THE ONE BOX which applies to you. We redise you may consider that two  of 
the statements in any one section relate to you. but PLEASE JUST MARK THE BOX WHICH 
.MOST CLEARLY DESCRIBES YOUR PROBLEM. 

Section 1 - Pain lntensity 
0 1 have no pain at the moment. 

The pain is very mild at the moment. 
The pain is moderate at the moment. 
The pain is fairly severe üt the moment. 

0 The pain is very severe at the moment. 
The pain is the worst imaginable rit the moment. 

Section 2 - Personal Care (Washing, Dressing, etc.) 
1 can look rifter myself nomal ly  without causing extra pain. 

a I c m  look after myself normally but it causes extra pain. 
a It is painful to look after myself and 1 am slow and careful. 

1 need some help but manage most of my personal care. 
I need help every day in most aspects of seIf care. 
1 do not get dressed, wash with difficulty and stay in bed. 

Section 3 - Lifting 
1 c m  lift heavy weights without extra pain. 

a 1 c m  lift heavy weights but it gives extra pain. 
Pain prevents me from lifting heavy weights off the floor. but I can manage if they are 
conveniently positioned e.g. on a table. 
Pain prevents me from lifting heavy weights but I c m  manage light to medium weights i f  
they are conveniently positioned. 

0 1 c m  only lift only very fight weights. 
0 1 cannot lift or carry anything at all. 

Section 4 - Walking 
a Pain does not prevent me walking any distance. 
a Pain prevents me from walking more than 1 mile. 
0 Pain prevents me from walking more than 1/2 mile. 
0 Pain prevents me from waiking more than 114 mile. 
0 1 can only wafk using a stick or  cmtches. 
0 1 am in bed most of the time and have to crawl to the toilet. 



Section 5 - Sitting 
CI I can sit in any chair ris long as I likr. 

I can sic in my favourite chair as long as 1 like. 
Pain prevents me from sitting more than 1 hour. 

ci Pain prevents me from sitting more than 30 minutes. 
a Pain prevents me from sitting more than 10 minutes. 

Pain prevents me fmm sitting at al]. 

Section 6 - Standing 
0 I can stand as long as 1 want without extra pain. 

1 can stand as long as I want but it gives me extra pain. 
Pain prevents me from standing more than 1 hour. 
Pain prevents me from standing more than 30 minutes. 

CI Pain prevents me from standing more than 10 minutes. 
o Pain prevents me from standing at al 1. 

Section 7 - Sleeping 
CI My sleep is never disturbed by pain. 

My sleep is occasionally disturbed by pain. 
0 Because of pain 1 have less than 6 hours sleep. 
CI Because of pain I have less than 4 hours sleep. 

Because of pain 1 have less than 2 hours sleep. 
0 Pain prevents me from sleeping at all. 

Section 8 - Sex Life 
a My sex life is normal and causes no extra pain. 
a My sex life is normal and causes some extra pain. 

My sex Iife is nearly normal but is very painful. 
0 My sex life is severely restricted by pain. 
a My sex life is nearly absent because of pain. 

Pain prevents any sex life at all. 

Section 9 - Social Life 
0 My social life is normal and causes me no extra pain. 

My social life is normal but increases the degree of pain. 
CI Pain has no significant effect on my social life apart from lirniting my more rnergetic 

interests e.g. sport, etc. 
0 Pain has restricted my social life and 1 do not go out as often. 
0 Pain has restricted rny social life to home. 
0 1 have no social life because of pain. 

Section 10 - Travelling 
1 can travel anywhere without pain. 

u I can travel anywhere but it gives me extra pain. 
Pain is bad but 1 manage journeys over two hours. 

O Pain restricts me to journeys of less than 1 hour. 
a Pain restricts me to short journeys under 30 minutes. 
0 Pain prevents me from travelling except to receive treatmect. 



Appendix B 

Visual Analogue Pain Scale 



Visual Analogue Pain Scale 

On the line beiow. please make a mark to indicate how rnuch pain you feel at this time. 

No Pain Worst Imaginable 



Appendix C 

Case S tudy # I 



Please Note 

Page@) not included with original material and unavailable 
from author or university. Filrned as received. 

Pages 238 & 239 
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Figure C l  Case Study # 1  graphed against the sumrnary profile of the mean (11 SD) ASYMP 
(9 subjects) EMG activity levels (mV) for Day 1. O kg Load. Each graph identifies a specific 
electrode site. Within each graph the panels indicate specific lifts (A or B. extension) and 
lowers (A or B. flexion). Each panel is normalized frorn the start to the end of the lift/lower. 
Legend: R= right, L = left. RA = rectus abdominis, EO = extemal oblique. IO = intemal 
oblique. LD = latissimus dorsi. UES = upper erector spinae, LES = lower erector spinae. Note: 
Day 1 = Bad Day. 
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Figure C2 Case Study # I  graphed against the summary profile of the mean ( A I  SD) ASYMP 
( 10 subjects) EMG activity levels (mV) for Day 2, O kg Load. Each graph identifies a specific 
electrode site. Within each graph the panels indicate specific lifts (A or B, extension) and 
lowers (A or B. flexion). Each panel is normalized from the start to the end of the lift/lower. 
Legend: R= right, L = left. RA = rectus abdominis. EO = extemal oblique, IO = interna1 
oblique. LD = latissimus dorsi, UES = upper erector spinae. LES = lower erector spinae. Note: 
Day 2 = Good Day. 
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Figure C3 Case Study # l  graphed against the summary profile of the mean ( 1 1  SD) ASYMP 
(9 subjects) EMG accivity levels (mV) for Day I .  5 kg Load. Each graph identifies a specific 
electrode site. Within each graph the panels indicare specific Iifts (A or B. extension) and 
lowers (A or B, flexion). Each panel is normalized from the start to the end of the tift/lower. 
Legend: R= right. L = left, RA = rectus abdorninis, EO = external oblique, IO = interna1 
oblique, LD = latissimus dorsi, UES = upper erector spinae, LES = Iower erector spinae. Note: 
Day 1 = Bad Day. 
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Figure C4 Case Study # l  graphed against the surnrnary profile of the mean ( 1 1  S 9 )  ASYMP 
( 10 subjects) EMG activity levels (mV) for Day 2 , 5  kg Load. Each jyaph identifies a specific 
electrode site. Within each graph the panels indicate specific lifts (A or B, extension) and 
lowers (A or B. flexion). Each panel is normalized from the start to the end of the IiftAower. 
Legend: R= right, L = left, RA = rectus abdominis, EO = externa] oblique, IO = interna1 
oblique, LD = Iatissimus dorsi, UES = upper erector spinae, LES = lower erector spinae. Note: 
Day 2 = Good Day. 
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Figure C5 Case Study # 1  graphed against the surnmary profile of the mean ( i l  SD) ASYMP 
(9 subjects) EMG activity levels (mV) for Day 1 ,  10 kg Load. Each graph identifies a specific 
electrode site. Within each graph the panels indicate specific lifts (A or B, extension) and 
lowers (A or 8, flexion). Each panel is normalized from the start to the end of the liftnoiver. 
Legend: R= right. L = left. RA = rectus abdominis. EO = extemal oblique, IO = intemal 
oblique, LD = latissimus dorsi, UES = upper erector spinae. LES = lower erector spinae. Note: 
Day 1 = Bad Day. 
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Figure C6 Case Study #1 graphed against the summary profile of the mean (A SD) ASYMP 
( 10 subjects) EMG activity levels (mV) for Day 2, 10 kg Luad. Each graph identifies a specific 
electrode site. Within each graph the panels indicate specific lifts (A or B, extension) and 
lowers (A or B, flexion). Each panel is normalized from the start to the end of the lifvlower. 
Legend: R= right. L = left, RA = rectus abdominis. EO = external oblique, IO = intemal 
oblique, LD = latissimus dcrsi. UES = upper erector spinae, LES = lower erector spinae. Note: 
Day 2 = Good Day. 
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Figure C7 Case Study # I  graphed against the surnmary profile of the mean (4 SD) ASYMP 
(9 subjects) EMG activity leveis (% MVC) for Day 1, O kg Luad. Each graph identifies a 
specific electrode site. Within each graph the panels indicate specific lifts (-4 or B, extension) 
and lowen (A or B. flexion). Each panel is normalized from the start to the end of the 
liftflower. Legend: R= right, L = left, RA = rectus abdominis, EO = extemal oblique, IO = 
intemal oblique, LD = latissirnus dorsi, UES = upper erector spinae, LES = lower erector 
spinae. Note: Day 1 = Bad Day. 
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Figure CS Case Study # I  graphed against the summary profile of the mean (tl SD) ASYMP 
( 10 subjects) EMG activity levels (% MVC) for Day 2. O kg Luad. Each graph identifies a 
specific electrode site. Within each graph the panels indicate specific lifts (A or B. extension) 
and lowen (A or B. flexion). Each panel is normalized from the start to the end of the 
lift/lower. Legend: R= right. L = left, RA = rectus abdominis, EO = extemal oblique. IO = 
internai oblique. LD = latissimus dorsi. UES = upper erector spinae, LES = lower erector 
spinae. Note: Day 2 = Good Day. 
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Figure C9 Case Study #1 graphed against the summary profile of the mean (11 SD) ASYMP 
( 10 subjects) EMG activity levels (9% MVC) for Day 1, 5 kg Load. Each graph identifies a 
specific electrode site. Within each graph the panels indicate specific lifts (A or B, extension) 
and lowers (A or B. flexion). Each panel is normalized from the start to the end of the 
lifvlower. Legend: R= right. L = left, RA = rectus abdominis. EO = external oblique, IO = 
interna1 oblique, LD = latissimus dorsi. UES = upper erector spinae. LES = lower erector 
spinae. Note: Day 1 = Bad Day. 
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Figure Cl0 Case Study # I  graphed against the summary profile of the mean (11 SD) ASYMP 
( 10 subjects) EMG activity levels (% MVC) for Day 2, 5 kg Load. Each graph identifies a 
specific electrode site. Within each graph the panels indicate specific lifts (A or B. extension) 
and lowers (A or B, flexion). Each panel is normalized frorn the start to the end of the 
liftllower. Legend: R= right, L = left. RA = rectus abdominis, EO = external oblique. IO = 
interna1 oblique, LD = latissimus dorsi, UES = upper erector spinae, LES = lower erector 
spinae. Note: Day 2 = Good Day. 
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Figure C l1  Case Study # I  graphed against the summary 
(9 subjects) EMG activity levels (% MVC) for Day 1. 10 
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profile of the mean (11 SD) ASYMP 
kg Load. Each graph identifies a 

specific electrode site. Within each graph the panels indicate specific lifts (A or B. extension) 
and lowers (A or B. flexion). Each panel is normalized from the start to the end of the 
liftnower. Legend: R= right. L = left, RA = rectus abdominis. EO = extemal oblique, IO = 
intemal oblique, LD = latissimus doni. UES = upper erector spinae. LES = lower erector 
spinae. Note: Day 1 = Bad Day. 
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Figure C l 2  Case Study #1 graphed against the summary profile of the mean (11 SD) ASYMP 
(10 subjects) EMG activity levels (% MVC) for Day 2. 10 kg Load. Each graph identifies a 
specific electrode site. Within each graph the panels indicate specific lifts (A or B, extension) 
and lowers (A or B. flexion). Each panel is normalized from the start to the end of the 
lift/lower. Legend: R= right, L = left. RA = rectus abdominis, EO = extemal oblique, IO = 
intemal oblique. LD = latissimus dorsi, ClEs = upper erector spinae. LES = lower erector 
spinae. Note: Day 2 = Good Day. 
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Figure C13B-200 summary performance for Case Study #1 (Bad day), for dynamic rotation at 
50% resistance. day 1 , test sequence # 1. 
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Figure C14B-200 sumrnary performance for Case Study # l  (Good day). for dynamic rotation 
at 50% resistance, day 2. test sequence # l  . 
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Figure C15B-200 summary performance for Case Study # I  (Bad day). for dynamic rotation at 
50% resistance, day 1. test sequence #2. 
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Figure C16B-200 sumrnary performance for Case Snidy # 1 (Good day). for dynamic rotation 
at 508 resistance. day 2. test sequence #2. 
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Figure C17B-200 summary performance for Case Study # l  (Bad day). for dynarnic lateral 
flexion at 508 resistance. day 1. test sequence # l  . 
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Figure C18B-200 sumrnary performance for Case Study # I  (Good day). for dynamic lateral 
flexion at 508 resistance, day 2,  test sequence # l .  
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Figure C19B-200 summary performance for Case Study # I  (Bad day). for dynamic lateral 
flexion at 50% resistance. day 1 .  test sequence #2. 
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Figure CZOB-200 summary performance for Case Study # l  (Good day), for dynamic lateral 
flexion at 50% resistance. day 2. test sequence #2. 
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Figure C21 Case Study #1 graphed against the s u m m q  profile of the mean ( I I  SD) ASYMP 
(9 subjects) muscle force (N) for Day 1, O kg Load. Each graph identifies a specific electrode 
site. Within each graph the panels indicate specific lifts (A or B. extension) and lowers (A or 
B. flexion). Each panel is normaiized from the start to the end of the IiftAower. Legend: R= 
right. L = left, RA = rectus abdominis. EO = external oblique. IO = internai oblique. LD = 
latissimus dorsi. UES = upper erector spinae. LES = lower erector spinae. Note: Day 1 = Bad 
Day . 
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Figure C22 Case Study #1 graphed against the summary profile of the mean (t 1 SD) ASYMP 
( 10 subjects) muscle force (N) for Day 2. O kg Load. Each graph identifies a specific electrode 
site. Within each graph the panels indicate specific lifts (A or B, extension) and lowers (A or 
B. flexion). Each panel is normalized from the start to the end of the liftnower. Legend: R= 
right, L = left. RA = rectus abdominis. EO = extemal oblique, IO = interna1 oblique. LD = 
latissimus dorsi. UES = upper erector spinae. LES = lower erector spinae. Note: Day 2 = Good 
Day. 
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Figure C23 Case Snidy #1 graphed against the sumrnary profile of the mean ( t l  SD) ASYMP 
(9 subjects) muscle force (N) for Day 1,s kg Load. Each graph identifies a specific electrode 
site. Within each graph the panels indicate specific lifts (A or B. extension) and lowers (A or 
B. flexion). Each panel is normalized from the start to the end of the liftllower. Legend: R= 
right. L = left. RA = rectus abdominis, EO = extemal oblique, IO = intemal oblique, LD = 
latissimus dorsi. UES = upper erector spinae. LES = lower erector spinae. Note: Day 1 = Bad 
Day. 
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Figure C24 Case Study # l  graphed against the summary profile of the mean (11 SD) ASYMP 
(9 subjects) muscle force (N) for Day 2, 5 kg Load. Each graph identifies a specific electrode 
site. Within each graph the panels indicate specific lifts (A or B, extension) and lowers (A or 
B. flexion). Each panel is normaiized from the start to the end of the liftnower. Legend: R= 
right, L = left, RA = rectus abdominis, EO = extemal oblique, IO = intemal oblique, LD = 
latissimus dorsi. UES = upper erector spinae, LES = lower erector spinae. Note: Day 2 = Good 
Day . 
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Figure C25 Case Study #I graphed against the summary profile of the mean (21 SD) ASYMP 
(8 subjects) muscle force (N) for Day 1, 10 kg Load. Each graph identifies a specific electrode 
site. Within each graph the panels indicate specific lifts (A or B. extension) and lowen (A or 
B, flexion). Each panel is norrnalized frorn the start to the end of the lifinower. Legend: R= 
right, L = left, RA = rectus abdominis, EO = external oblique, IO = internal oblique. LD = 
latissimus dorsi. UES = upper erector spinae, LES = lower erector spinae. Note: Day 1 = Bad 
Da y. 



R R A  
- 30 I L o w t r  ,A L I T (  B I o w c r  B 

5 
3 g 2 0  - 
L 

R IO 
- II0 -Wi 1 n w c r  A L t f r  R 1 n w r r  R 

5 , J ~  
I r '  

7 ' 
#' t 

R L D  
- 150 
5 
E i o o  JL'\ I 

R U E S  

R L E S  
- 1500 : L ' f t A  l i ftB L o w c r B  
5 

L E 0  
- 8 0  -U-4 

I i F t  R 1.n w r r  R 

5 u 60 + \ 

t 

L L D  
L i f t  A t o  w e r  A Lifr B L o w c r  B 

i l 

l 

L U E S  
L o w c r  A Lift B L ~ w c r  B 

G r o u p  M e a n  G r o u p  M ean +/-  I S D  S u b j e c t  

Figure C26 Case Study # l  graphed against the summary profile of the mean (r 1 SD) ASYMP 
(8 subjects) muscle force (N) for Day 2, 10 kg Luad. Each graph identifies a specific electrode 
site. Within each graph the panels indicate specific lifts (A or B, extension) and lowers (A or 
B, flexion). Each panel is nonnalized from the start to the end of the liftnower. Legend: R= 
right, L = left. RA = rectus abdominis, EO = extemal oblique, IO = intemal oblique, LD = 
latissimus dorsi, UES = upper erector spinae, LES = lower erector spinae. Note: Day 2 = Good 
Day . 





Figure C28 Summary APDF profile of the muscle forces (N) by each electrode site for Day 2, 
O kg load and Case Study #1. The thin line represents the upper boundary (mean + 1 SD) 
muscle force (N) of the ASYMP (n = 10 subjects) group. The thick line represents the case 
study. Each figure represents a specific electrode site and task activity (i.e. lifting or lowering). 
The ordinate for each figure is Probability. Note: Day 2 = Good Day. 
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Figure C29 Surnmary APDF profile of the muscle forces (N) by each electrode site for Day 1. 
5 kg load and Case Study # I .  The thin line represents the upper boundary (mean + 1 SD) 
muscle force (N) of the ASYMP (n = 9 subjects) group. The thick line represents the case 
study. Each figure represents a specific electrode site and task activity (Le. lifting or lowering). 
The ordinate for each figure is Probabiiity. Note: Day 1 = Bad Day. 



I V , :  : : j -  ,- 
a a . . . .  . . . .  1. . . . . . . . . . . . .  a. . .  

a. . . . . . . . . . . .  . . . . . . . . . .  . . 
Y. : . 3.  . :/#: : ; : : : 

. m . . . . .  . . .  . . . / . . . . . . . .  Y . y - - .  3 2  

Figure C30 Summary APDF profile of the muscle forces (N) by each electrode site for Day 2. 
5 kg load and Case Study # l .  The thin line represents the upper boundary (mean + 1 SD) 
muscle force (N) of the ASYMP (n = 9 subjects) group. The thick line represents the case 
study. Each figure represents a specific electrode site and task activity (i.e. lifting or lowering). 
The ordinate for each figure is Probability. Note: Day 2 = Good Day. 



Figure C31 Summary APDF profile of the muscle forces (N) by each electrode site for Day 1, 
10kg load and Case Study # l .  The thin line represents the upper boundary (mean + I SD) 
muscle force (N) of the ASYMP (n = 8 subjects) group. The thick line represents the case 
study. Each figure represents a specific electrode site and task activity (i.e. lifting or lowering). 
The ordinate for each figure is Probability. Note: Day 1 = Bad Day. 



'-1: . . . . . . . . . .  .c . ::pi . . . . .  . , . . . . . .  - 7 7 : :  .:. :::::'jii: y.::::: .$ 
./. . . . . . . . . . .  ,t . . . . . . . . . . .  ,, , . . . . . . .  . t .  . r. ,/. . . . . . . . .  . I  



OOC Evaluation Results for 

Abnormal Indicators 
r Rotation FlexiExt Lat Flex 

Dernographic Data Resistance Settings 

Isometric Iar rorque 
Naz Velooitp 

Rotation Sec Hax Torqor 
1 Flex/Ezt Seo Raz Torqae 

l Lat Fler Sic  UIX torqur 

Age : 1 4  SPI H 
Eeiqht : 180.3 cm Yeaqht : 35.4 kg 

Diagaosis : 
Surgical Category : 
Aativity Level Cateporp : 

Non- phy siological lndicators 
1) not abserved 
21 Max velocity 50% qrerter thrn or rqurl 25X, srq 2 : hE 
3) not observed 
41 nat obstrvtd 
5) not observed 
61 4 range of motion ratio : FIE 

b 

Rotation 25% : 20 N-m 
Rotation 50% : 42 ü-m 
FlexIExt 25% : 43 I - m  
Fl~xrExt 50% : 98 W-m 
Lat Flex 25% : 34 K-m 
Lat Flrx 50% : a6 K m  

Baseline Rehabilitation Data 
I I 1 Rota ticn 1 Flexion/Extension 1 Lateral Flexion 

Test Administered By : HBF Signed : Date : 

Figure C33 Isostation B-200 report (page 1) for Case Study #1 on Day I (Bad Day). 
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Figure C35 Isostation B-200 report (page I )  for Case Study # I  on Day 2 (Good Day). 
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Case Study #2 
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Figure D l  Case Study #2 graphed against the sumrnary profile of the mean (tl SD) ASYMP 
(9 subjects) EMG activity levels (mV) for Day 1. O kg Load. Each graph identifies a specific 
electrode site. Within each graph the panels indicate specific lifts (A or B. extension) and 
lowers (A or B. flexion). Each panel is normalized from the start to the end of the IiftAower. 
Legend: R= right. L = left, RA = rectus abdominis. EO = externai oblique. IO = intemal 
oblique. LD = latissimus dorsi, UES = upper erector spinae. LES = lower erector spinae. Note: 
Day 1 = Good Day. 
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Figure D2 Case Study #2 graphed against the surnmary profile of the mean (+l SD) ASYMP 
( 10 subjects) EMG activity levels (mV) for Day 2, O kg Load. Each graph identifies a specific 
electrode site. Within each graph the panels indicate specific lifts (A or B. extension) and 
lowers (A or B. flexion). Each panel is norrnalized from the start to the end of the liftllower. 
Legend: R= right, L = left, RA = rectus abdominis. EO = extemal oblique. IO = intemal 
oblique, LD = latissimus dorsi, UES = upper erector spinae. LES = lower erector spinae. Note: 
Day 2 = Bad Day. 
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Figure D3 Case Study #2 graphed against the summary profile of the rnean (II SD) ASYMP 
(9 subjects) EMG activity levels (mV) for Day 1 .  5 kg Load. Each graph identifies a specific 
electrode si te. Within each graph the panels indicate specific lifts (A or B. extension) and 
Iowers (A or B. flexion). Each panel is normalized frorn the start to the end of the lifflower. 
Legend: R= right. L = left. RA = rectus abdorninis. EO = extemal oblique. IO = intemal 
oblique, LD = latissimus dorsi. UES = upper erector spinae, LES = lower erector spinae. Note: 
Day 1 = Good Day. 
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Figure D4 Case Study #2 graphed against the summary profile of the mean (il SD) ASYMP 
( 10 subjects) EMG activity levels (mV) for Day 2, 5 kg Load. Each graph identifies a specific 
electrode site. Within each graph the panels indicate specific lifts (A or B. extension) and 
lowers (A or B. flexion). Each panel is normalized from the start to the end of the liftllower. 
Legend: R= right. L = left. RA = rectus abdominis. EO = extemai oblique, IO = internai 
oblique. LD = latissimus dorsi, UES = upper erector spinae. LES = lower erector spinae. Note: 
Day 2 = Bad Day. 
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Figure D5 Case Study #2 graphed against the summary profile of the mean (11 SD) ASYMP 
(9 subjects) EMG activity levels (mV) for Day 1, 10 kg Load. Each graph identifies a specific 
electrode site. Within each graph the panels indicate specific lifts (A or B, extension) and 
lowen (A or B. flexion). Each panel is normalized from the start to the end of the lifvlower. 
Legend: R= right, L = left, RA = rectus abdominis. EO = extemal oblique. IO = interna1 
oblique. LD = latissimus dorsi. UES = upper erector spinae. LES = lower erector spinae. Note: 
Day 1 = Good Day. 
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Figure D6 Case Study #2 graphed against the summary profile of the mean (11 SD) ASYMP 
( 10 subjects) EMG activity levels (mV) for Day 2. 10 kg Load. Each graph identifies a specific 
electrode site. Within each graph the panels indicate specific lifts (A or B. extension) and 
lowers (A or B. flexion). Each panel is normalized from the start to the end of the IiftAower. 
Legend: R= right. L = left. RA = rectus abdominis. EO = extemal oblique. IO = interna1 
oblique. LD = latissimus dorsi. UES = upper erector spinae. LES = lower erector spinae. Note: 
Day 2 = Bad Day. 
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Figure D7 Case Study #2 graphed against the summary profile of the mean ( t l  SD) ASYMP 
(9 subjects) EMG activity levels (% MVC) for Day 1. O kg Load. Each graph identifies a 
specific electrode site. Within each graph the panels indicate specific lifts (A or B, extension) 
and lowen (A or B. flexion). Each panel is normdized from the start to the end of the 
lift/lower. Legend: R= right. L = left. RA = rectus abdominis, EO = extemal oblique. IO = 
interna1 oblique. LD = latissimus dorsi, UES = upper erector spinae. LES = lower erector 
spinae. Note: Day 1 = Good Day. 
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Figure DS Case Study #2 graphed against the summary profile of the mean ( t l  SD) ASYMP 
(10 subjects) EMG activity levels (9% MVC) for Day 2, O kg Load. Each graph identifies a 
specific electrode site. Within each graph the panels indicate specific lifts (A or B, extension) 
and lowers (A or B. flexion). Each panel is nomalized from the start to the end of the 
lift/lower. Legend: R= right. L = left. RA = rectus abdominis, EO = extemal oblique, IO = 
interna1 oblique. LD = latissimus dorsi. E S  = upper erector spinae. LES = lower erector 
spinae. Note: Day 2 = Bad Day. 
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Figure D9 Case Snidy #2 graphed against the summary profile of the mean (21 SD) ASYMP 
(9 subjects) EMG activity levels (% MVC) for Day 1.5 kg Load. Each graph identifies a 
specific electrode site. Within each graph the panels indicate specific lifts (A or B. extension) 
and lowers (A or B, flexion). Each panel is normalized from the start to the end of the 
liftnower. Legend: R= right, L = left. RA = r e m s  abdominis. EO = extemal oblique. IO = 
interna1 oblique. LD = latissimus dorsi, UES = upper erector spinae, LES = lower erector 
spinae. Note: Day 1 = Good Day. 
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Figure D l 0  Case Study #2 graphed against the summary profile of the mean ( t l  SD) ASYMP 
( 10 subjects) EMG activity levels (% MVC) for Day 2.5 kg Load. Each graph identifies a 
specific electrode site. Within each graph the panels indicate specific lifts (A or B. extension) 
and lowers (A or B. flexion). Each panel is normalized from the start to the end of the 
liftllower. Legend: R= right, L = left. RA = rectus abdominis. EO = extemal oblique, IO = 
interna1 oblique. LD = latissimus dorsi. UES = upper erector spinae. LES = lower erector 
spinae. Note: Day 2 = Bad Day. 



R L D  
6 0 L i f t A  L ~ w c r A  L i f t B  L o w t r B .  

b I 

R U E S  
8 O Liit A L o w c r  A L i f t B  L o w t r 3  

R L E S  
8 O  . L ~ ~ L ~ L - L Q E C L B ,  ~4 B . LOWKB- 

L L D  
8 O L i f l A  L o w c r A  Lifi B Lowcr 0  

Ll 

C r o u p  M e a n  G r o u p  M e a n  + / -  I SD S ubjrc t  

Figure Dl1  Case Study #2 graphed against the sumrnary profile of the mean (+l SD) ASYMP 
(9 subjects) EMG activity levels (% MVC) for Day 1. 10 kg Load. Each graph identifies a 
specific electrode site. Within each graph the panels indicate specific lifts (A or B. extension) 
and lowers (A or B. flexion). Each panel is normalized from the start to the end of the 
liftllower. Legend: R= right, L = left. RA = rectus abdominis. EO = extemal oblique. IO = 
interna1 oblique, LD = latissimus dorsi. UES = upper erector spinae, LES = lower erector 
spinae. Note: Day 1 = Good Day. 
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Figure Dl2 Case Study #2 graphed against the summary profile of the mean (11 SD) ASYMP 
( 10 subjects) EMG activity levels (% MVC) for Day 2, 10 kg Load. Each graph identifies a 
specific electrode site. Within each graph the panels indicate specific lifts (A or B. extension) 
and lowen (A or B. flexion). Each panel is norrnalized from the start to the end of the 
liftllower. Legend: R= right, L = left. RA = rectus abdominis, EO = extemal oblique, IO = 
interna1 oblique, LD = latissimus dorsi, LIES = upper erector spinae, LES = lower erector 
spinae. Note: Day 2 = Bad Day. 
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Figure Dl6  B-200 summary performance for Case Study #2 (Good day), for dynamic lateral 
flexion at 50% resistance. day 1 ,  test sequence #2. 
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Figure Dl7  Case Study #2 graphed against the summary profile of the mean (11 SD) ASYMP 
(9 subjects) muscle force (N) for Day 1.0 kg Load. Each graph identifies a specific electrode 
site. Within each graph the panels indicate specific lifts (A or B. extension) and lowers (A or 
B. flexion). Each panel is normalized from the start to the end of the IiftAower. Legend: R= 
right. L = left, RA = rectus abdominis. EO = externai oblique, IO = intemal oblique. LD = 
latissimus dorsi, UES = upper erector spinae, LES = lower erector spinae. Note: Day 1 = Good 
Day . 
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Figure Dl8  Case Study #2 graphed against the summary profile of the mean (II SD) ASYMP 
( 10 subjects) muscle force (N) for Day 2. O kg Load. Each graph identifies a specific electrode 
site. Within each graph the panels indicate specific lifts (A or B, extension) and lowers (A or 
8, flexion). Each panel is nonnalized from the start to the end of the Iifvlower. Legend: R= 
right, L = left, RA = rectus abdominis. EO = extemal oblique. IO = intemal oblique. LD = 
latissjmus dorsi, UES = upper erector spinae. LES = lower erector spinae. Note: Day 2 = Bad 
Day . 
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Figure Dl9 Case Study #2 graphed against the summary profile of the mean (II SD) ASYMP 
(9 subjects) muscle force (N) for Day 1. 5 kg Load. Each graph identifies a specific electrode 
site. Within each graph the panels indicate specific lifts (A or B, extension) and lowers (A or 
B. flexion). Each panel is normalized from the start to the end of the liftnower. Legend: R= 
right, L = left. RA = rectus abdominis, EO = extemal oblique, IO = intemal oblique. LD = 
latissimus dorsi. UES = upper erector spinae, LES = lower erector spinae. Note: Day 1 = Good 
Day . 
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Figure D20 Case Study #2 graphed against the surnrnary profile of the mean (tI SD) ASYMP 
(9 subjects) muscle force (N) for Day 2.5 kg Load. Each graph identifies a specific electrode 
site. Within each graph the panels indicate specific lifts (A or B. extension) and lowen (A or 
B. flexion). Each panel is normalized from the start to the end of the liftnower. Legend: R= 
right. L = left, RA = rectus abdominis. EO = extemal oblique. IO = intemal oblique. LD = 
latissimus dorsi. UES = upper erector spinae. LES = lower erector spinae. Note: Day 2 = Bad 
Day . 
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Figure D21 Case Study #2 graphed against the summary profile of the mean (21  SD) ASYMP 
(8 subjects) muscle force (N) for Day 1. 10 kg Load. Each graph identifies a specific electrode 
site. Within each graph the panels indicate specific lifts (A or B, extension) and lowers (A or 
B. flexion). Each panel is normalized from the start to the end of the liftAower. Legend: R= 
right. L = left, RA = rectus abdominis. EO = extemal oblique. IO = intemal oblique, LD = 
latissimus dorsi. UES = upper erector spinae. LES = lower erector spinae. Note: Day 1 = Good 
Day. 
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Figure D22 Case Study #2 graphed against the summary profile of the mean ( t l  SD) ASYMP 
(8 subjects) muscle force (N) for Day 2, 10 kg Load. Each graph identifies a specific electrode 
site. Within each graph the panels indicate specific lifts (A or B, extension) and lowers (A or 
B. flexion). Each panel is norrnalized from the start to the end of the liftnower. Legend: R= 
right, L = left, RA = rectus abdominis, EO = extemai oblique. IO = interna1 oblique. LD = 
latissimus dorsi. UES = upper erector spinae. LES = lower erector spinae. Note: Day 2 = Bad 
Day. 
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Figure D23 Summary APDF profile of the muscle forces (N) by each electrode site for Day 1 ,  
O kg load and Case Smdy #2. The thin line represents the upper boundary (mean + 1 SD) 
muscle force (N) of the ASYMP (n = 9 subjects) group. The thick line represents the case 
study. Each figure represents a specific electrode site and task activity (i.e. lifting or lowering). 
The ordinate for each figure is Probability. Note: Day 1 = Good Day. 
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Figure D24 Summary APDF profile of the muscle forces (N) by each electrode site for Day 2, 
O kg load and Case Study #2. The thin line represents the upper boundary (mean + 1 SD) 
muscle force (N) of the ASYMP (n = 10 subjects) group. The thick line represents the case 
study. Each figure represents a specific electrode site and task activity (i.e. lifting or lowering). 
The ordinate for each figure is Probability. Note: Day 2 = Bad Day. 
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Figure D25 Summary APDF profile of the muscle forces (N) by each electrode site for Day 1. 
5 kg load and Case Study #2. The thin line represents the upper boundary (mean + 1 SD) 
muscle force (N) of the ASYMP (n = 9 subjects) group. The thick line represents the case 
study. Each figure represents a specific electrode site and task activity (i.e. lifting or lowering). 
The ordinate for each figure is Probability. Note: Day 1 = Good Day. 



Figure D26 Summary APDF profile of the muscle forces (N) by each electrode site for Day 2. 
5 kg load and Case Study #2. The thin line represents the upper boundary (mean + I SD) - 

muscle force (N) of the ASYMP (n = 9 subjects) group. The thick line represenrs the case 
study. Each figure represents a specific electrode site and task activity (i.e. lifting or lowering). 
The ordinate for each figure is Probability. Note: Day 2 = Bad Day. 
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Figure D28 Summary APDF profile of the muscle forces (N) by each electrode site for Day 2. 
10 kg load and Case Study #2. The thin line represents the upper boundary (mean + 1 SD) 
mus& force (N) of the ASYMP (n = 8 subjects) group. The thick line represents the case 
study. Each figure represents a specific electrode site and task activity (i.e. lifting or lowenng). 
The ordinate for each figure is Probability. Note: Day 2 = Bad Day. 
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Appendix E 

Case Study #3 
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Figure El  Case Study #3 graphed against the summary profile of the mean ( t l  SD) ASYMP 
(9 subjects) EMG activity levels (mV) for Day I ,  O kg Load. Each graph identifies a specific 
electrode site. Wiihin each graph the panels indicate specific lifts (A or B. extension) and 
lowers (A or B. flexion). Each panel is normalized from the start to the end of the lift/lower. 
Legend: R= right. L = left, RA = rectus abdominis. EO = extemal oblique. IO = interna1 
oblique. LD = latissirnus dorsi. UES = upper erector spinae. LES = lower erector spinae. Note: 
Day 1 = Good Day. 
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Figure E2 Case Study #3 graphed against the summary profile of the mean ( t l  SD) ASYMP 
( 10 subjects) EMG activity levels (mV) for Day 2. O kg Load. Each graph identifies a specific 
electrode site. Within each graph the panels indicate specific lifts (A or B. extension) and 
lowers (A or B. flexion). Each panel is normalized from the start to the end of the IiftAower. 
Legend: R= right. L = left. RA = rectus abdominis. EO = extemal oblique. IO = intemal 
oblique. LD = latissirnus dorsi. UES = upper erector spinae. LES = lower erector spinae. Note: 
Day 2 = Bad Day. 
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Figure E3 Case Study #3 graphed against the summary profile of the mean (11 SD) ASYMP 
( 10 subjects) EMG activity levels (mV) for Day 2. 5 kg Load. Each graph identifies a specific 
electrode site. Within each graph the panels indicate specific lifts (A or B. extension) and 
lowers (A or B, flexion). Each panel is normalized from the start to the end of the lift/lower. 
Legend: R= right. L = left, RA = rectus abdominis. EO = extemal oblique, IO = intemal 
oblique. LD = latissimus dorsi. UES = upper erector spinae, LES = lower erector spinae. Note: 
Day 2 = Bad Day. 
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Figure E4 Case Study #3 graphed against the surnmary profile of the mean (tl SD) ASYMP 
(9 subjects) EMG activity levels (mV) for Day 1, 10 kg Load. Each graph identifies a specific 
electrode site. Within each graph the panels indicate specific lifts (A or B, extension) and 
lowers (A or B. flexion). Each panel is normalized from the start to the end of the IiftAower. 
Legend: R= right. L = left. RA = rectus abdominis, EO = extemal oblique. 10 = intemal 
oblique, LD = latissimus dorsi. UES = upper erector spinae, LES = lower erector spinae. Note: 
Day 1 = Good Day. 
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Figure ES Case Study #3 graphed against the summary profile of the mean (21 SD) ASYMP 
( 10 subjects) EMG activity levels (mV) for Day 2, 10 kg Load. Each graph identifies a specific 
electrode site. Within each graph the panels indicate specific lifts (A or B. extension) and 
lowers (A or B. flexion). Each panel is nonnalized from the start to the end of the lifvlower. 
Legend: R= right. L = left. RA = rectus abdominis. EO = external oblique. IO = intemal 
oblique. LD = latissimus dorsi. LES = upper erector spinae. LES = lower rrector spinae. Note: 
Day 3 = Bad Day. 
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Figure E6 Case Study #3 graphed against the summary profile of the mean (r 1 SD) ASYMP 
(9 subjects) EMG activity levels (% MVC) for Day 1, O kg Load. Each graph identifies a 
specific electrode site. Within each graph the panels indicate specific lifts (A or B. extension) 
and lowers (A or B. flexion). Each panel is normalized from the start to the end of the 
lift/Iower. Legend: R= right, L = left. RA = rectus abdominis. EO = extemal oblique. IO = 
interna1 oblique. LD = latissimus dorsi. UES = upper erector spinae, LES = lower erector 
spinae. Note: Day 1 = Good Day. 
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Figure E7 Case Study #2 graphed against the summary profile of the mean (t l SD) ASYMP 
(IO subjects) EMG activity levels (% MVC) for Day 2, O kg Load. Each graph identifies a 
specific electrode site. Within each graph the panels indicate specific lifts (A or B. extension) 
and lowers (A  or B. flexion). Each panel is normalized from the start to the end of the 
lift/lower. Legend: R= right. L = left. RA = rectus abdominis. EO = extemal oblique. IO = 
intemal oblique. LD = latissimus doni. UES = upper erector spinae, LES = lower erector 
spinae. Note: Day 2 = Bad Day. 
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Figure ES Case Study #3 graphed against the sumrnary profile of the mean (+l  SD) ASYMP 
( 10 subjects) EMG activity levels (% MVC) for Day 2.5 kg Load. Each graph identifies a 
specific electrode site. Within each graph the panels indicate specific lifts (A or B. extension) 
and lowers (A or B. flexion). Each panel is normalized from the start to the end of the 
1ifUlower. Legend: R= right. L = left. RA = rectus abdominis, EO = extemal oblique, IO = 
intemal oblique, LD = latissimus dorsi. UES = upper erector spinae. LES = lower erector 
s p i n a e . ~  Note: Day 2 = Bad Day. 
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Figure E9 Case Study #3 graphed against the summary profile of the mean (21 SD) ASYMP 
(9 subjects) EMG activity levels (9% MVC) for Day 1 ,  10 kg Load. Each graph identifies a 
specific electrode site. Within each graph the panels indicate specific Iifts (A or B, extension) 
and lowers (A or B. flexion). Each panel is normalized from the start to the end of the 
IiftAower. Legend: R= right. L = left. RA = rectus abdominis. EO = extemal oblique. IO = 
intemal oblique. LD = latissimus dorsi. UES = upper erector spinae. LES = lower erecror 
spinae. Note: Day i = Good Day. 
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Figure E l0  Case Study #3 graphed against the summary profile of the mean (+l SD) ASYMP 
( 10 subjects) EMG activity levels (9% MVC) for Day 2. 10 kg Load. Each graph identifies a 
specific electrode site. Within each graph the panels indicate specific lifts (A or B. extension) 
and lowers (A or B. flexion). Each panel is normalized from the start to the end of the 
liftnower. Legend: R= right. L = left. RA = rectus abdominis. EO = extemal oblique. IO = 
interna1 oblique. LD = latissimus dorsi, UES = upper erector spinae. LES = lower erector 
spinae. Note: Day 2 = Bad Day. 
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Figure El1 B-200 summary perfotmance for Case Study #3 (Good day), for dynamic rotation 
at 50% resistance. day 1. test sequence # 1 . 
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Figure E l2  B-100 summary performance for Case Study #3 (Bad day). for dynamic rotation at 
5 0 8  resistance. day 2. test sequence # I  . 
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Figure E l3  B-200 summary performance for Case Study #3 (Good day), for dynamic rotation 
at 50% resistance. day f . test sequence #2. 
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Figure E l 4  B-200 summary performance for Case Study #3 (Bad day), for dynamic rotation at 
50% resistance. day 2 .  test sequence #2. 
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Figure El5  B-200 summary performance for Case Study #3 (Good day), for dynamic lateral 
flexion at 50% resistance. day 1. test sequence #1. 
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Figure E l 6  8-200 summary performance for Case Study #2 (Bad day). for dynamic lateral 
flexion at 50% rcsistance. day 2. test sequence # 1 .  
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Figure E l 7  8-200 summary performance for Case Study #3 (Good day). for dynamic lateral 
flexion at 50% resistance. day I .  test sequence #2. 
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Figure E l8  B-200 summary performance for Case Study #3 (Bad day). for dynamic lateral 
flexion at 50% resistance. day 2. test sequence #2. 
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Figure E l 9  Case Study #3 graphed against the summary profile of the mean (+! SD) ASYMP 
(9 subjects) muscle force (N) for Day 1. O kg Load. Each graph identifies a specific electrode 
site. Within each graph the panels indicate specific lifts (A or B. extension) and lowers ( A  or 
B. flexion). E;ich panel is normahzed from the start to the end of the lift/lower. Legend: R= 
right, L = left. RA = rectus abdominis. EO = external oblique. IO = intemal oblique. LD = 
latissimus dorsi. UES = upper erector spinae. LES = lower erector spinae. Note: Day 1 = Good 
Day . 
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Figure E2O Case Study #3 graphed against the summary profile of the mean (II SD) ASYMP 
( 1 O subjects) muscle force (N) for Day 2, O kg Load. Each graph identifies a specific electrode 
site. Within each graph the panels indicate specific lifts (A or B. extension) and lowers (A  or 
B. flexion). Each panel is normalized from the start to the end of the lift/lower. Legend: R= 
right, L = left. RA = rectus abdominis. EO = external oblique, IO = intemal oblique. LD = 
latissimus dorsi. UES = upper erector spinae. LES = lower erector spinae. Note: Day 2 = Bad 
Day. 
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Figure E21 Case Study #3 graphed against the summary profile of the mean (11 SD) ASYMP 
(9 subjects) muscle force (N) for Day 2. 5 kg Load. Each graph identifies a specific electrode 
site. Within each graph the panels indicate specific lifts (A or B. extension) and lowers ( A  or 
B. flexion). Each panel is nomalized from the start to the end of the lift/lower. Legend: R= 
right. L = left. RA = rectus abdominis. EO = extemal oblique. IO = intemal oblique, LD = 
latissimus dorsi, UES = upper erector spinae, LES = lower erector spinae. Note: Day 2 = Bad 
Day . 
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Figure E22 Case Study #3 graphed against the summary profile of the mean (t 1 SD) ASYMP 
(8 subjects) muscle force (N) for Day 1 , 10 kg Load. Each graph identifies a specific electrode 
site. Within each graph the panels indicate specific lifts (A or B. extension) and lowers ( A  or 
B. flexion). Each panel is normalized from the stan to the end of the lift/lower. Legend: R= 
right. L = left. RA = rectus abdominis, EO = extemal oblique, IO = interna1 oblique. LD = 
latissimus dorsi. UES = upper erector spinae. LES = lower erector spinae. Note: Day 1 = Good 
Day. 
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Figure E23 Case Study #3 graphed against the summary profile of the mean (+ 1 SD) ASYMP 
(8 subjects) muscle force (N) for Day 2. 10 kg Load. Each graph identifies a specific electrode 
site. Within each graph the panels indicate specific lifts (A or B. extension) and lowers (A  or 
B. flexion). Each panel is normaiized from the start to the end of the lift/lower. Legend: R= 
right. L = left, RA = recius abdominis. EO = external oblique, IO = interna1 oblique. LD = 
latissimus doni. UES = upper erector spinae, LES = lower erector spinae. Note: Day 2 = Bad 
Day. 
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Figure E24 Sumrnary APDF profile of the muscle forces (N) by each eiectrode site for Day 1. 
O kg load and Case Study #3. The thin line represents the upper boundary (mean + 1 SD) 
muscle force (N) of the ASYMP (n  = 9 subjects) group. The thick line represents the case 
study. Each figure represents a specific electrode site and task activity (Le. lifting or lowering). 
The ordinate for each figure is Probability. Note: Day 1 = Good Day. 
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Figure E25 Surnmary APDF profile of the muscle forces (N) by each electrode site for Day 2. 
O kg load and Case Study #3. The thin line represents the upper boundary (mean + 1 SD) 
muscle force (N) of the ASYMP (n = 9 subjects) group. The thick line represents the case 
study. Each figure represents a specific electrode site and task activity (i.e. lifting or lowering). 
The ordinate for each figure is Probability. Note: Day 2 = Bad Day. 
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Figure E27 Summary APDF profile of the muscle forces (N) by each electrode site for Day 1. 
10 kg load and Case Study #3. The thin line represents the upper boundary (mean + 1 SD) 
muscle force (N) of the ASYMP (n = 9 subjects) group. The thick line represents the case 
study. Each figure represents a specific electrode site and task activity (i.e. lifting or lowering). 
The ordinate for each figure is Probability. Note: Day 1 = Good Day. 



Figure E2S Summary APDF profile of the muscle forces (N) by each electrode site for Day 2 .  
10 kg load and Case Study #3. The thin line represents the upper boundary (mean + 1 SD) 
muscle force (N) of the ASYMP (n = 9 subjects) group. The thick line represents the case 
study. Each figure represents a specific electrode site and task activity (Le. lifting or lowering). 
The ordinate for each figure is Probability. Note: Day 2 = Bad Day. 
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Figure E29 Isostaion B-200 report (page 1 ) for Case Study #3 on Day 1 (Good Day). 
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Figure E30 Isostaion B-200 report (page 2) for Case Study #3 on Day I (Good Day). 
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Figure E31 Isostaion 8-200 report (page 1 )  for Case Study #3 on Day 2 (Bad Day). 
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Figure E32 lsostaion B-200 report (page 2) for Case Study #3 on Day 2 (Bad Day). 
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Figure F1 Case Study #4 graphed against the surnrnary profile of the mean ( A I  SD) ASYMP 
(9 subjects) EMG activity levels (mV) for Day 1. O kg Load. Each graph identifies a specific 
electrode site. Within each graph the panels indicate specific lifts (A or B, extension) and 
lowers (A or B, flexion). Each panel is normalized from the start to the end of the lift/lower. 
Legend: R= right, L = left. RA = rectus abdominis, €0 = extemal oblique. IO = interna1 
oblique, LD = latissimus dorsi. UES = upper erector spinae. LES = lower erector spinae. Sote: 
Day 1 = Bad Day. 
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Figure F2 Case Study #4 graphed against the summary profile of the mean ( - c I  SD) ASYMP 
(9 subjects) EMG activity Ievels (mV) for Day 1. 5 kg Load. Each graph identifies a specific 
elecrrode site. Within each graph the panels indicate specific lifts (A or B. extension) and 
lowers (A or B. flexion). Each panel is normalized from the start to the end of the lifvlower. 
Legend: R= right. L = left. RA = rectus abdominis. EO = external oblique. IO = intemal 
oblique, LD = latissimus dorsi. UES = upper erector spinae. LES = lower erector spinae. Note: 
Day I = Bad Day. 
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Figure F3 Case Study #4 graphed against the summary profile of the mean (A SD) ASYMP 
(10 subjects) EMG activity levels (mV) for Day 2. 5 kg Load. Each graph identifies a specific 
electrode site. Within each graph the panels indicaie specific lifts (A or B. extension) and 
lowers (A  or B. flexion). Each panel is normalized from the stan to the end of the lifflower. 
Legend: R= riglit, L = left. RA = rectus abdominis. EO = extemal oblique. IO = intemal 
oblique. LD = latissimus dorsi. UES = upper erector spinae. LES = lower erector spinae. Note: 
Day 2 = Good Day. 
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Figure F4 Case Study #4 graphed against the summary profile of the mean ( + i  SD) ASYMP 
(9 subjects) EMG activity levels (mV) for Day 1 ,  10 kg Load. Each graph identifies a specific 
electrode site. Within each graph the panels indicate specific lifts (A or B. extension) and 
Iowers ( A  or B. flexion). Each panel is nonnalized from the start to the end of the 1iftAower. 
Legend: R= right, L = left. RA = rectus abdominis. EO = extemal oblique. IO = intemal 
oblique, LD = latissimus dorsi. UES = upper erector spinae. LES = lower erector spinae. Note: 
Day 1 = Bad Day. 
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Figure F5 Case Study #4 graphed against the summary profile of the mean (t 1 SD) ASYMP 
( IO subjects) EMG activity Ievels (mV) for Day 2, 10 kg Load. Each graph identifies a specific 
electrode site. Within each graph the panels indicate specific lifts (A or B. extension) and 
lowers (A or B, flexion). Each panel is normalized from the start to the end of the lifdlower. 
Legend: R= right. L = ieft, RA = rectus abdominis, EO = extemal oblique. IO = intemal 
oblique. LD = latissimus dorsi. UES = upper erector spinae. LES = lower erector spinae. Note: 
Day 2 = Good Day. 
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Figure F6 Case Study #4 graphed against the summary profile of the mean (t 1 SD) ASYMP 
(9 subjects) EMG activity levels (% MVC) for Day 1.0 kg Load. Each graph identifies a 
specific electrode site. Within each graph the panels indicate specific lifts (A or B. extension) 
and lowers (A or B. flexion). Each panel is normalized from the start to the end of the 
liftnower. Legend: R= right. L = left. RA = rectus abdominis. EO = extemal oblique. IO = 
intemal oblique. LD = latissimus dorsi. UES = upper erector spinae. LES = lower erector 
spinae. Note: Day 1 = Bad Day. 
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Figure F7 Case Study #4 graphed against the summary profile of the mean ( + I  SD) ASYMP 
(9 subjects) EMG activity levels (% MVC) for Day 1. 5 kg Load. Each graph identifies a 
specific electrode site. Within each graph the panels indicate specific Iifts (A or B. extension) 
and lowers (A or  B. flexion). Each panel is norrnalized from the start to the end of the 
lift/lower. Legend: R= right, L = left, RA = rectus abdominis, EO = extemal oblique. IO = 
interna1 oblique. LD = latissimus dorsi, E S  = upper erector spinae, LES = lower erector 
spinae. Note: Day I = Bad Day. 
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Figure F8 Case Study #4 graphed against the surnmary profile of the mean (11 SD) ASYMP 
( 10 subjects) EMG activity levels (% MVC) for Day 2.5 kg Load. Each graph identifies a 
specific electrode site. Within each graph the panels indicate specific lifts (A or B. extension) 
and lowers (A or B. flexion). Each panel is nomalized from the start to the end of the 
lift,lower. Legend: R= right, L = left. RA = rectus abdominis. EO = extemal oblique. IO = 
interna1 oblique. LD = latissimus dorsi. UES = upper erector spinae. LES = lower erector 
spinae. Note: Day 2 = Good Day. 
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Figure F9 Case Study #4 graphed against the summary profile of the mean (21 SD) ASYMP 
(9 subjects) EMG activity levels (5% MVC) for Day 1. 10 kg Load. Each graph identifies a 
specific electrode site. Within each graph the panels indicate specific lifts (A or B. extension) 
and lowers (A  or B. flexion). Each panel is normalized from the start to the end of the 
lifflower. Legend: R= right. L = left, RA = rectus abdominis. EO = external oblique. IO = 
intemal oblique. LD = latissimus dorsi. UES = upper erector spinae. LES = lower erector 
spinae. Note: Day 1 = Bad Day. 
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Figure FI0 Case Study #4 graphed against the surnmary profile of the mean (t 1 SD) ASYMP 
( 10 subjects) EMG activity levels (% MVC) for Day 2, 10 kg Load. Each graph identifies a 
specific electrode site. Within each graph the panels indicate specific lifts (A or B. extension) 
and lowers ( A  or B. flexion). Each panel is normalized from the start to the end of the 
IiftAower. Legend: R= nght. L = left. RA = rectus abdominis. EO = extemai oblique. IO = 
interna1 oblique. LD = Iatissimus dorsi, UES = upper erector spinae. LES = lower erector 
spinae. Note: Day 3 = Good Day. 
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Figure FI1 B-200 sumrnary performance for Case Study #4 (Bad day). for dynamic rotation at 
50% resistance. day 1. test sequence # 1 .  
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Figure FI2 B-200 summary performance for Case Study #4 (Good day). for dynarnic rotation 
at 50% resistance, day 2, test sequence # l .  
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Figure F13 B-200 summary performance for Case Study #4 (Bad day), for dynamic rotation üt 

50% resistance, day 1 ,  test sequence #2. 
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Figure F14 B-300 summary performance for Case Study #4 (Good day). for dynamic rotation 
a< 50% resistance. day 2, test sequence #2. 
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Figure FI5 8-200 summary performance for Case Study #4 (Bad day). for dynamic lateral 
flexion at 50% resistance. day 1. test sequence # I .  
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Figure FI6 B-200 summary performance for Case Study #4 (Good day), for dynamic lateriil 
flexion at 50% resistance, day 2, test sequence #1. 
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Figure F17 B-200 summary performance for Case Study #J (Bad day). for dynamic lateral 
tlexion at 50% resistance. day 1. test sequence #2. 
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Figure FI8 8-200 summary performance for Case Study #4 (Good day). for dynamic lateral 
flexion at 50% resistance. day 2 .  test sequence #2. 
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Figure F19 Case Study #4 graphed agajnst the summary profile of the rnean (11 SD) ASYMP 
(9 subjects) muscle force (N) for Day 1. O kg Load. Each graph identifies a specific electrode 
site. Within each graph the panels indicate specific lifts (A or B. extension) and lowers ( A  or 
B. flexion). Each panel is normalized from the start to the end of the liftnower. Legend: R= 
right. L = left. RA = rectus abdominis, EO = extemal oblique. IO = intemal oblique. LD = 
latissimus dorsi. UES = upper erector spinae. LES = lower erector spinae. Note: Day 1 = Bad 
Day. 
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Figure F2O Case Study #4 graphed against the summary profile of the mean (tl SD) ASYMP 
(9 subjects) muscle force (N) for Day 1, 5 kg Load. Each graph identifies a specific electrode 
site. Within each graph the panels indicate specific lifts (A or B. extension) and lowers (A  or 
B. flexion). Each panel is normalized from the start to the end of the liftnower. Legend: R= 
right. L = left. RA = rectus abdominis. EO = external oblique. IO = intemal oblique. LD = 
latissimus dorsi. UES = upper erector spinae. LES = lower erector spinae. Note: Day 1 = Bad 
Day. 
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Figure F21 Case Study #4 graphed against the summary profile of the mean (21 SD) ASYMP 
(9 subjects) muscle force (N) for Day 2. 5 kg Load. Each graph identifies a specific electrode 
site. Within each graph the panels indicate specific lifts (A or B. extension) and lowers ( A  or 
B, flexion). Each panel is normalized from the start to the end of the 1iftAower. Legend: R= 
right, L = left. RA = rectus abdorninis. EO = extemal oblique. IO = intemal oblique, LD = 
latissimus dorsi. UES = upper erector spinae. LES = lower erector spinae. Note: Day 2 = Good 
Day . 
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Figure F22 Case Study #4 graphed against the sumrnary profile of the rnean (+l SD) ASYMP 
(8 subjects) muscle force (N) for Day 1. 10 kg Load. Each graph identifies a specific electrode 
site. Within each graph the panels indicate specific lifts (A or B. extension) and lowers (A  or 
B. flexion). Each panel is normalized from the start to the end of the lift/lower. Legend: R= 
right. L = left, RA = rectus abdominis. EO = external oblique. IO = intemal oblique. LD = 
latissimus dorsi. UES = upper erector spinae. LES = lower erector spinae. Note: Day I = Bad 
Day. 



R I O  

R L D  
100  L o w e r  A Lift 8 L u w c r  R 

R U E S  
A I O D O  L ~ f r  A L o w e r  A L ~ f r  B L o w e r  B 

G r o u p  M ean G r o u p  M Gan +/-  

L L D  
Lif i  A L o w c r h  L.if1 B Louer  B 

- /?\, 
I 

L L E S  

1 S D  . S ubject 

Figure F23 Case Study #4 graphed against the summary profile of the mean (t 1 SD) ASYMP 
(8 subjects) muscle force (N) for Day 2, 10 kg Load. Each graph identifies a specific electrode 
site. Within each graph the panels indicate specific lifts (A or B. extension) and lowers (A or 
B. flexion). Each panel is normalized from the start to the end of the lift/lower. Legend: R= 
right. L = left, RA = rectus abdominis. EO = extemai oblique. IO = internai oblique. LD = 
latissirnus dorsi. UES = upper erector spinae, LES = lower erector spinae. Note: Day 2 = Good 
Day . 
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Figure F24 Summary APDF profile of the muscle forces (N) by each electrode si te for Day 1 . 
O kg load and Case Study #4. The thin line represents the upper boundary (mean + 1 SD) 
muscle force (N) of the ASYMP (n = 9 subjects) group. The thick line represents the case 
study. Each figure represents a specific electrode site and task activity (Le. lifting or lowering). 
The ordinate for each figure is Probability. Note: Day 1 = Bad Day. 
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Figure F25 Surnmary APDF profile of the muscle forces (N) by each 
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electrode site for Day 1. 
5 kg load and Case Study #4. The thin line represents the upper boundary (rnean + 1 SD) 
muscle force (N) of the ASYMP (n = 9 subjects) group. The thick line represents the case 
study. Each figure represents a specific electrode site and task activity (i.e. lifting or lowering). 
The ordinate for each figure is Probability. Note: Day 1 = Bad Day. 



Figure F26 Summary APDF profile of the muscle forces (N) by each electrode site for Day 2. 
5 ke load and Case Study #4. The thin line represents the upper boundary (mean + 1 SD) 

Y 

muscle force (N) of the ASYMP (n = 9 subjects) group. The thick line represents the case 
study. Each figure represents a specific electrode site and task activity (i.e. lifting or lowering). 
The ordinate for each figure is Probability. Note: Day 2 = Good Day. 
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Figure F27 Summary APDF profile of the muscle forces (N) by each electrode site for Day I . 
10 kg load and Case Study #4. The thin line represents the upper boundary (mean + 1 SD) 
muscle force (N) of the ASYMP (n = 8 subjects) group. The thick line represents the case 
study. Each figure represents a specific electrode site and task activity (i.e. lifting or lowering). 
The ordinate for each figure is Probability. Note: Day 1 = Bad Day. 
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Figure F28 Summary APDF profile of the muscle forces (N) by each electrode site for Day 2. 
10 kg load and Case Study #4. The thin line represents the upper boundary (mean + 1 SD) 
musGe force (N) of the ASYMP (n = 8 subjects) group. The thick line represents the case 
study. Each figure represents a specific electrode site and task activity (Le. lifting or lowering). 
The ordinate for each figure is Probability. Note: Day 2 = Good Day. 
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Demographic Data Resistance Settings 
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61 not observed 

Baseline Rehabilitatton Data 
I Rotatron 1 F1~xion/Extens1on Lateral Flexion 

Test Administertd Ey : Hardy Frazer Signed : Date : 

Figure F29 Isostaion B-200 report (page 1 )  for Case Study #4 on Day 1 (Bad Day). 
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6 Sobnormal, l e s s  than orit iaal  level \ 
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(sec S t a t i s t i a a l  P e v i e r  in OOC Biok Evrlurtion Bystem)  

168.0 

Version 3.0 

Figure F30 Isostaion B-200 report (page 2) for Case Study #4 on Day 1 (Bad Day). 
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Figure F31 Isostaion 8-200 report (page 1) for Case Study #4 on Day 2 (Good Day). 
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Figure F32 Isostaion 8-200 report (page 2 )  for Case Study #4 on Day 2 (Good Day). 




