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Abstract 

The range and population of the Burrowing Owls as flagship migratory species of the open prairie 

landscape are in decline across the northernmost portion of their global range in Canada. Multiple 

sources of degradation, including those induced by human footprint, are attributed to this declining 

trend. Yet the degradation caused by these factors is yet to be quantified and mapped at the 

landscape-level.  

Using the InVEST habitat quality model, the habitat quality values for these endangered birds were 

quantified, mapped, and evaluated across both the historic and current ranges of these species in the 

Canadian Prairie ecosystem. In doing so, four different general categories of disturbance, namely the 

modified landscape, transportation network, urban areas, and energy infrastructure were considered. 

Also, variations of habitat quality values were modeled across the current range of these species 

upon the consideration of the different combinations of these sources of disturbance at this spatial 

extent.  

The results of the study illustrate that despite the differences in the relative habitat quality values 

between the historic and current ranges of Burrowing Owls, these variations are not statistically 

significant between the two ranges when all sources of degradation are considered concurrently in 

the study area. Across the current range, also, the difference in habitat quality values is not 

statistically significant between the considered scenarios, even when specific habitat patches are 

assessed.  

Nevertheless, the habitat quality was most affected by the transportation network data layer, 

followed by the energy and urban data layers. Consequently, the delineated spatial sources of 

disturbance can only be considered to have intensified the synergistic association between the other 

factors attributed to the decline of these species including the prolonged impact of grassland 
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conversion activities of the past, which has altered the configurational characteristics of the 

landscape, as well as to the other environmental factors affecting the population of these endangered 

species across the study area and beyond. 

Considering the existing composition of land use/cover and share of specified sources of 

disturbance in habitat quality degradation across the current range of Burrowing Owls, conservation 

measures can be applied beyond the designated critical habitat boundaries for these species to 

preclude the potential future impacts of these sources of degradation. Further studies are still 

required to assess habitat quality values under the anthropogenic sources of degradation beyond the 

considered spatial extent and with regard to the other sources of disturbance across the global range 

of these species.     
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Chapter 1. Introduction 

1.1 Context and Scope 

The global biodiversity crisis is a major product and, interestingly, a concern of the late modern 

period, where due to the overexploitation of natural resources by the human race, terrestrial and 

marine ecosystems are losing their capacity to sustain different forms of life on Planet Earth 

(Johnson et al., 2017). Propelled by the need to increase the supply of provisioning ecosystem 

services, anthropogenic activities transformed the land and seascapes across the biosphere (Hoekstra 

et al., 2005). Technological advancements have led to unprecedented rates of natural resource 

exploitation, gradually destroying habitat for various taxa, the persistence of which benefits the very 

ecosystems and services we are using (MA, 2005). 

Among different taxonomic groups, avifauna is the most influenced group with the highest range 

and population decline over the last two centuries due to the direct impact of human activities 

(Gaston and Blackburn, 1997). This thesis is a modeling study aimed to assess the impact of human 

footprint on the breeding habitat of one of the charismatic migratory bird species of the Americas 

“Burrowing Owls (Athene cunicularia)” across the Canadian Prairies, their breeding habitat in 

Canada (COSEWIC, 2017). 

This breeding habitat is part of the Prairie Ecozone, which is the most altered terrestrial ecosystem 

in the country (Kerr and Deguise, 2004). The area is recognized by the flat to rolling prairie 

landscape, the significant proportion of which has been converted from grass to grain in the past 

couple of centuries (Riley et al., 2007). Notwithstanding the significant reductions in the rate of 

native habitat conversion across the landscape (Watmough and Schmoll, 2007), the population of 

wildlife species kept declining across this ecosystem over the past few decades. This trend is 
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attributed to the more recent landscape change across the region, characterized by the combined 

impact of human-induced disturbances such as further configurational alterations (i.e., availability 

and distribution) of the native habitat, and the expansion of urban, transportation, and energy 

infrastructure in the area (Davis, 2004; Ludlow et al., 2015). Other environmental factors such as 

extreme climatic events across the region are also estimated to have accelerated the decline of 

biodiversity across this unique ecosystem (Jarzyna et al., 2016).  

This thesis is a modeling and mapping study to quantify and portray the relative habitat quality 

values for Burrowing Owls under the anthropogenic sources of threat across the historic and current 

ranges of these migratory birds across the Canadian breeding grounds, where they are considered 

endangered. The results present, for the very first time, whether the considered sources of 

degradation can be a contributing factor behind the gradual decline of these species from the 

landscape. 

What is important to note is that despite providing essential information on the potential causes of 

decline, the majority of the previous studies investigated the declining trend of these species 

considering only small samples of these birds across fragments of their breeding habitat. 

Consequently, these species-specific studies failed to portray a landscape-level image describing this 

trend at larger spatial extents, including their entire range in the Canadian Prairies. Also, there exists 

no precedent of quantified relative habitat quality values for these migratory birds among past 

studies.  

Built upon the fundamental information collected from the existing literature on Burrowing Owls, 

this study is the first step to quantify the relative habitat quality values across the historic and current 

ranges of these species. In doing so, a coarse-filter landscape-level modeling framework was utilized 

to present habitat quality maps across both ranges for these avian species in the Prairie Ecozone. In 
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this respect, key information was collected on the biology of Burrowing Owls, the ecological and 

environmental processes these species depend upon for survival, and their behavior in response to 

the human-induced configurational changes of the environment  

1.2 Thesis Structure 

The second chapter of this study presents a comprehensive literature review on what we know so far 

about the biology, demographic trends, habitat requirements, ecological processes and threats to 

Burrowing Owls both across their global range and in Canadian breeding grounds. Accordingly, the 

research gaps and questions are identified in the next step. Before that, however, a general review of 

the literature is presented on the history of human-induced landscape alterations of the global 

terrestrial ecosystems and the repercussions of these changes on living organisms. Also, the concept 

of habitat and its relationship with wildlife is briefly discussed from the lens of multiple scholars. In 

this respect, different habitat quality measurement techniques are compared for avian species. 

The third chapter introduces the methods utilized in this study. It starts with a thorough description 

of the modeling framework adopted for the habitat quality measurement. In addition to the general 

framework, the rationale behind this modeling approach is presented with an in-depth explanation 

of the mathematical background to model development and the parameters required by this 

landscape-level modeling framework. Also, a simple multi-criteria decision rule is presented to 

parameterize one of the parameters required by this model with relevance to specific factors 

affecting the considered species.  

Chapters four, five, and six are the results, discussion, and conclusion sections of this thesis. The 

results of this modeling study are presented in chapter four through appropriate statistical analyses 

over the modeled habitat quality values and the contributions made by the considered spatial sources 
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of disturbance to habitat quality degradation. These results are then discussed in chapter five with 

reference to the available literature in ecology and conservation planning, and other scholarly works 

on Burrowing Owls. The implication for practice is briefly discussed afterward, and the section is 

finalized by the limitations associated with the modeling approach adopted in this research. The 

conclusion section summarizes the meaning of the results and proposes potential future research 

trajectories that could be adopted to further enlighten our understanding about the landscape-level 

habitat quality mechanisms affecting the rage and population of Burrowing Owls across the study 

area and beyond.     
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Chapter 2. Literature Review 

2.1 Biodiversity Decline in the Age of Anthropocene  

The first human-induced ecosystem structure change dates back to over two million years ago when 

the ecological niche of large species was destroyed by the genus of Homo in Africa (Johnson et al., 

2017). Since then, human-driven destabilization of natural environments has caused vast 

configurational alternations to the natural settings. In the past millennials (i.e., the age of 

Anthropocene), the entirety of the global biodiversity has shrunk by Homo sapiens through 

destabilization of life and life-supporting processes across all ecosystems on Planet Earth (Wilson, 

1989; Johnson et al., 2017). Led by the degradation of natural environments (Pereira et al., 2010; 

Rands et al., 2010), the human footprint on global ecosystems is now considered to cause a larger 

biome crisis (Hoeskstra et al., 2005), influencing all planetary biogeographic units (i.e., ecoregions), 

distinguished by unique climate, ecosystem, and biodiversity (Olson et al., 2001; Hoeskstra et al., 

2005). 

The relationship between biodiversity and ecosystem is a complex one (Mace et al., 2012). On the 

one hand, biodiversity is critical for ecosystem stability and the services it provides (MA, 2005). 

More specifically, biodiversity, from microorganisms to large vertebrates, can be seen as a regulator 

of ecosystem processes, a final ecosystem service, or a good (Mace et al., 2012). Accordingly, 

ecosystems are altered over time by the drivers of environmental change affecting wildlife and plant 

species (Hautier et al., 2015). On the other hand, the flow of organisms, materials, and energy is 

critical to maintaining biological diversity in different ecosystems through ecological processes 

(Crooks and Sanjayan, 2006). These processes connect species to one another. Consequently, the 

extirpation of only one ecological partner will influence others through the elimination of ecological 

functions required to sustain viability (Mace et al., 2012). Propelled by increasing human population 
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and demand for a better life (Hanski, 2011), this mutual relationship has been disrupted through a 

complex web of interactions influencing living organisms and their environment (Nelson et al., 

2006). Drivers of human-induced ecosystem change can take a variety of direct and indirect 

biological, physical, social, political, economic, demographic, and cultural forms (MA, 2005), 

disturbing ecological processes and different forms of life, in a combined fashion, over space and 

time (Nelson et al., 2006).  

The land use/cover change, overexploitation of natural resources, environmental contamination, 

and species translocation are the most fundamental factors that have historically contributed to the 

declining trend of global biodiversity (Lande, 1998). Among these causes of decline, land use/cover 

change, particularly conversion of native land covers to agricultural land uses, is the oldest direct 

ecosystem change driver with the largest impact on global ecosystems and ecological processes 

defined in natural settings (Nelson et al., 2006). The anthropogenic land use/cover conversion to 

increase the net primary productivity has not only led to the decline of biodiversity through 

degradation and elimination of suitable wildlife habitat across the globe but also degraded the 

carrying capacity of different ecosystems in maintaining ecological balance required for the viability 

of organisms (Brooks et al., 2002; Gatson et al., 2003; Groom et al., 2006). Technological and 

scientific advancements in agriculture have accelerated the overexploitation of natural resources and 

the extent of land conversion activities (Nelson et al., 2006).  

Global climate fluctuations along with modifications made to natural and semi-natural land 

use/cover, energy development, and urban and infrastructural developments are the more recent 

causes leading to ecosystem disruption and biodiversity decline across the globe (Kerr and Deguise, 

2004; Luck et al., 2004; Bartlett et al., 2015; Maxwell et al., 2016; Scheffers et al., 2016). The 

underlying characteristics of all these factors are the elimination of suitable habitat and degradation 
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of life-supporting processes for wildlife species across different ecosystems. More specifically, the 

synergistic association between these anthropogenic activities have accelerated habitat degradation 

by decreasing the natural rates of decay and succession across different habitat conditions for 

wildlife species (Sinclair et al., 1995; Sax and Gaines, 2003; Thomas et al., 2004; Ewers and Didham, 

2006; Brook et al., 2008).   

2.2 Wildlife Habitat and its Quality as Relative Concepts 

Species habitat and its quality are integral to wildlife ecology and considered as the building blocks 

of biodiversity persistence in ecosystems (Hodgson et al., 2009). Accordingly, more and better 

habitat are sometimes deemed to be positively associated with occupation (i.e., inhabitancy), which 

in turn would increase species population and range in a given ecosystem (Sinclair et al., 1995; 

Hodgson et al., 2009; Hodgson, 2011). Given that habitat is a species-specific concept (Fischer and 

Lindenmayer, 2007), a variety of terms such as habitat occupancy, carrying capacity, habitat 

suitability, critical habitat, and habitat structure were used to describe habitat and its condition for 

different species (e.g., Boyd, 1986; Laymon and Barret, 1986; Alverson et al., 1988; McCoy and Bell, 

1991; Block and Brennan, 1993; Anderson and Gutzwiller, 1994). For instance, Daubenmire (1968) 

considered habitat typology as the basis for comparing the quality of different land use/cover. 

Building upon this definition, some past studies (e.g., Gysel and Lyon, 1980; Peek, 1986; Laymon 

and Barret, 1986; Morrison et al., 1991; Samuel and Fuller, 1994) equated habitat with natural 

vegetation structure. This definition of habitat entails an only partial description of the habitat 

requirement for different groups of species, and thus caused confusion over the true nature of this 

concept in wildlife conservation. 

As an effort to standardize habitat and habitat-related terminologies, Hall et al. (1997) defined 

habitat as “the resources and conditions present in an area that produce occupancy including 
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survival and reproduction by a given organism.” (p. 175). Unlike any single-criterion perception of 

habitat, this definition portrays the term as the sum of specific resources unique to each organism in 

an environmental setting (Hall et al., 1997). Habitat quality was accordingly defined as a continuous 

variable illustrating the environmental conditions required for survival, reproduction, and persistence 

of individuals and populations, and critical habitat for species was defined as areas with high habitat 

quality (Hall et al., 1997).  

Despite presenting an intuitive definition of habitat quality, this definition masks specific 

requirements concerning the persistence of individuals and populations among different taxonomic 

groups (Johnson, 2007). For instance, access to high-quality habitat is prioritized for some 

individuals, even if it is limited across spatial scale, whereas for populations, the abundant average 

habitat would be of higher interest (Hobbs and Hanley, 1990; Pidgeon et al., 2006). More 

specifically, different groups of species require unique habitat conditions, which may vary based 

upon factors such as scale, spatiotemporal changes caused by the anthropogenic alteration of the 

landscape, and natural or induced habitat selection/avoidance behavior by species (Forman, 1995; 

George and Zack, 2001; Hanski, 2011; Haddad et al., 2015). These factors influence the wildlife-

habitat relationship and the nature of the concepts such as habitat and habitat quality among 

different groups of species or even among individuals in the same taxonomic group (Johnson, 2007). 

2.2.1 Considerations for Avian Species 

During the past century, the population of the global avifauna has significantly reduced to just a 

quarter of the pre-agricultural era, making birds the most declined taxonomic group among different 

species (Fisher and Paterson, 1964; Wood, 1982; de Juanna, 1992; Gaston and Blackburn, 1997). 

The average global population of avifauna is estimated to be less than a hundred billion species, 

which shows dramatic declines across a range of tropical and temperate areas, including 
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grassland/steppe, scrubland, temperate deciduous forests, savannah, and tropical woodland (Gaston 

et al., 2003). This trend has led to an increased vulnerability of approximately 40% of the global 

avian population (BirdLife International, 2018). Fragmentation and loss of native habitat, which in 

many real situations occur concurrently across the landscape (Forman, 1995), are the major causes of 

this declining trend. In addition, other anthropogenic drivers of change such as landscape 

modifications, energy development, reduced food availability, urban and infrastructural expansions, 

and climate change have been recognized as the other causes of global avian population decline 

(Wiens, 1995; BirdLife International, 2018).  

Habitat for birds, can be defined as environmental factors and processes contributing to the 

evolutionary history and fitness (i.e., survival or reproductive success) of species (Block and 

Brennan, 1993). Habitat quality for birds, accordingly, can be measured either by assessing the 

attributes of a given habitat or through simultaneous assessment of the demographic, distributional, 

and performance (physical) indicators of bird species (Johnson, 2007). The former approach requires 

the consideration of critical factors such as availability of nests and food resources, as well as other 

indicators (e.g., predation, competition) limiting the use or accessibility to these essential resources 

(Johnson, 2007). More specifically, habitat quality should be examined considering not only the 

necessary resources for survival but also a set of factors affecting these essential resources (Morrison 

et al., 2006). Consequently, using only the crude vegetation index as a surrogate for avian habitat 

quality would yield inadequate results as it only provides a descriptive view of the species-habitat 

relationship (Morrison, 2001).  

Incorporating the simultaneous impact of demographic, distributional, and performance indicators 

into the habitat quality assessment across a given landscape is not realizable, first and foremost, due 

to the financial and data limitations in avian research. Also, biased judgments on the importance of 
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each indicator may overshadow the accuracy of habitat quality assessment (Johnson, 2007). Last but 

not least, these indicators cannot be individually utilized as they are unique to each species and may 

vary over space and time (Johnson, 2007).  

For instance, demographic attributes such as abundance, survival, and reproduction are considered 

to be popular measures of habitat quality (Bock and Jones, 2004; Knutson et al., 2006). Yet, there 

might be diverging results between these factors across some ecosystems, particularly in those 

heavily influenced by human disturbances as conditions favoring one species might not necessarily 

be considered appropriate for the other (Franklin et al., 2000).  

Similarly, factors such as time lags, or relaxation time as introduced by Diamond (1972), ecological 

traps, site fidelity, dispersed habitat patches, and intraspecific competitions may lead to different 

distributional patterns, which might result in the disproportionate use of habitat by avian species in 

diverse landscapes (Johnson, 2007), ultimately casting doubt on the accuracy of habitat quality 

results in studies constructed solely on species distribution across a given ecosystem (Jones, 2001; 

Manly et al., 2002; Morrison et al., 2006; Thomas and Taylor, 2006).  

Likewise, despite being effective, particularly in migratory birds for which the demographic and 

distributional factors are hard to attain, the performance indicators (i.e., physical conditions) also 

partially describe the quality of habitat or reproductive success for avian species. This is because 

these measures can also vary over time and in response to environmental disparities between 

different ecosystems or behavioral differences among species. For instance, species with high levels 

of body fat might prefer habitats with scarce food resources and minimal danger of predation to 

habitats with abundant food resources and more serious danger of predation (Johnson, 2007). 
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The process of habitat selection is another important consideration in determining habitat quality for 

avian species (Johnson, 1980). According to Hutto (1985), habitat selection is a “hierarchical process 

involving a series of innate and learned behavioral decisions made by an animal about what habitat it 

would use at different scales of the environment” (p. 458). Also,  a four-step hierarchical process for 

habitat selection was introduced by Johnson (1980), which starts with the geographical range 

selection, and is followed by the selection of home range, selection of specific patches across the 

landscape, and selection of the available trophic options, respectively. The outcome of this process is 

the disproportionate use of some resources over others across the landscape, which was named 

“habitat preference” by Hall et al. (1997).  

Using similar definitions, George and Zack (2001) identified regional, landscape, macro, and micro-

habitat scales as spatial hierarchies, the dynamics of which influence species behavior across a given 

ecosystem. Consequently, the interdependence of habitat selection and the issue of scale is of the 

utmost importance in determining habitat quality for avian species (Johnson, 2007). That is, habitat 

selection by species is a scale-dependent process whereby factors or dynamics at the higher scales 

(e.g., at the landscape scale) influence the micro-scale processes (Allen et al., 1987). 

The other dimension that needs to be simultaneously investigated with the process of multi-scalar 

habitat selection is the time factor and its relevance to habitat preference by species (George and 

Zack, 2001). Accordingly, both spatial and temporal scales of habitat selection depend on species 

dispersal across the environment and its perception of the dynamics within the ecosystem (Kotliar 

and Wiens, 1990). More specifically, small-scale habitat selection preference may be influenced by 

factors occurring at a fraction of time (e.g., availability of prey or presence of competitors), whereas 

large-scale habitat selection depends on the long-term evolutionary processes such as geological or 

geomorphological changes, which occur over decades or even centuries. In addition, large-scale 
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habitat selection is considered to be a genetic factor (Hutto, 1985), whereas micro-scale habitat 

selection is determined by factors such as environmental learning and perception, which differs from 

time to time and from one species to another.  

The Anthropogenic-driven changes in the landscape might accelerate the occurrence of some of the 

long-term processes or environmental perceptions of habitat preference among some species (Cody, 

1985). Thus, the large-scale ranges of many species might be affected due to human-induced 

alterations of natural ecosystems (George and Zack, 2001). Consequently, the interplay between the 

time, scale, and species-specific preference factors need to be considered when the wildlife-habitat 

interaction is the subject of habitat quality studies, and the acquired results should not be 

extrapolated beyond the scales at which these factors might change (Hall et al., 1997).  

2.3 Burrowing Owls as Endangered Flagship Species of the Canadian Prairies 

The Burrowing Owl (Athene cunicularia) is a tiny ground-dwelling migratory owl species of the 

open grassland areas, which is closely associated with burrowing (fossorial) mammals (COSEWIC, 

2017). It weighs no more than 238 g, stands 20 cm tall, and has the smallest facial disk among owl 

species (Scobie et al., 2013, COSEWIC, 2017). This charismatic grassland bird species has long legs, 

big rounded yellow eyes, a short tail, and a brownish body that has cream and beige spots in the 

chest and feather areas (Environment Canada, 2012). From southern Canada to southern South 

America, the open grassland systems of the Americas, are the breeding range of this flagship 

predatory species (Environment Canada, 2017). The western Burrowing Owls (hereafter Burrowing 

Owls) and the Florida Burrowing Owls are the two subspecies of this bird that breed across North 

America (Dechant et al., 2002).  
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These species were historically considered as common elements of the Canadian prairies and the 

small portions of the southern British Columbia. Nevertheless, their range and population have 

significantly declined across their breeding grounds in Canada. The majority of the remaining 

population (=254 mature individuals) currently breed from southcentral Alberta to southern 

Saskatchewan (COSEWIC, 2017). From the reintroduced birds, only 16 species are living in British 

Columbia. Despite a very short period of reoccupation in Manitoba, following a reintroduction 

program (Environment Canada, 2012), the most recent field observations illustrate a zero occupancy 

rate across this westernmost prairie province in the past few years (COSEWIC, 2017).  

As migratory species, Burrowing Owls return to their Canadian breeding grounds in early April and 

remain in these areas until September (Haug, 1985; Haug and Oliphant, 1990). These species lay an 

average clutch of 9 eggs, of which three to five eventually fledge (Wellicome, 2000). Hatchlings gain 

sustained flight ability within forty days of birth, and dispersal of the fledglings begins only thirty 

days later (Wellicome, 1997). However, owls remain in the natal site until August and start migrating 

to their wintering habitat in the south during September (Haug and Oliphant, 1990).  

Adult pairs cooperate over nest maintenance; yet during the breeding season, male birds involve in 

active vigilance and food provisioning activities outside of the Burrows, but female owls brood 

hatchlings. Both adults and juveniles might use several non-natal burrows - also known as satellite 

burrows - located in close proximity (≤ 30 m) to the nest burrows. This behavior is an anti-parasite 

and anti-predation strategy, which is adopted by adults to protect juveniles and increase the 

probability of hatchling survival (Desmond, 1991; Plumpton and Lutz, 1993; Desmond and Savidge, 

1999). Site fidelity (i.e., returning to the natal sites) differs between adults and first returning 

generations. This number varies from 0 km (i.e., absolute fidelity) to 3500 km among different 

individuals across the breeding grounds (Wellicome et al., 1997; De Smet, 1997; Duxbury, 2004).  
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During the past forty years, the breeding range of Burrowing Owls in the Canadian Prairies has 

shrunk to only a third of their historic range in the early 1900s (Environment Canada, 2012). This 

range contraction occurred concurrently with dramatic back to back decennial declines of 90% and 

64% from 1990 to 2000, and from 2005 to 2015, respectively (COSEWIC, 2017).  

Burrowing Owls were first designated as “Endangered” species in 1995 by the Committee on the 

Status of Endangered Wildlife in Canada (Wellicome and Haug, 1995). In 2003, the status of these 

birds was also confirmed as “Endangered” by the Species at Risk Act (SARA) developed by the 

federal government to protect, manage, and recover endangered and threatened species 

(Environment Canada, 2012; COSEWIC, 2017). Despite this designation across the Canadian 

breeding grounds, these birds are still considered as “Apparently Secure” across their global range 

(NatureServe, 2019).  

2.4 Habitat 

2.4.1 Availability of Burrows  

As their name suggests, Burrowing Owls have a very high association with their burrows. The 

burrows utilized by these species differ depending on the type of use; while some are used for 

nesting, some others are used for roosting purpose (Environment Canada, 2012). Since the 

availability of appropriate burrows is a critical factor for these semi-colonial species (Bent, 1961; 

Haug et al., 1993), they tend to locate their nests in areas with abundant burrows excavated by 

fossorial mammals including Coyote, Foxes, American Badger, Black-tailed Prairie Dogs, and 

Richardson’s Ground Squirrel (Salt and Wilk, 1958; Bent, 1961; Stewart, 1975; Desmond 1991; Haug 

et al. 1993; Wellicome and Haug, 1995; Desmond and Savidge, 1996, 1999; Wellicome 1997; Leupin 

and Low, 2001; COSEWIC 2006; Thiele et al, 2013).  



15 
 

Among these species, the abundance of Black-tailed Prairie Dogs is estimated to be positively linked 

with the owls’ population across its North American breeding range (Butts and Lewis, 1982). There 

is also strong evidence that across the Canadian range, burrows excavated by other mammals such as 

Richardson’s Ground Squirrels and American Badgers are frequently utilized as nesting sites by these 

ground-dwelling bird species (COSEWIC, 2017). The results attained from field research also 

suggest that these species might also select artificial burrows - excavated as conservation measures - 

to maintain and expand their existing range (De Smet, 1997; Wellicome et al., 1997; Leupin and 

Low, 2001; Nadeau, 2015; Riding and Belthoff, 2015). For instance, the reintroduced population of 

Burrowing Owls in their westernmost Canadian range in BC tend to utilize the artificial burrows 

(Mitchell, 2008). However, the occurrence of the wild pairs in the Prairie Provinces of Canada, 

particularly Alberta and Saskatchewan, depends mainly on the abundance of burrows in the colonies 

of the Black-tailed Prairie Dogs, or the ones that are excavated naturally by other fossorial mammals 

(COSEWIC, 2006). 

Studies on the Prairie Dog colonies (Bent, 1961; Butts and Lewis 1982; MacCracken et al., 1984; 

Desmond and Savidge, 1996; Toombs, 1997) showed considerable rates inhabitancy by Burrowing 

Owls in both active and inactive burrows. However, the owl species are inclined to occupy the active 

burrows as nest depredation rates are much lower in active colonies (Butts and Lewis 1982; 

Desmond and Savidge, 1999; Toombs, 1997). In the absence periodical maintenance by the Prairie 

Dogs, nest depredation rates are much higher, and burrows are usually prone to the encroachment 

of dense vegetation cover (Desmond, 1991; Desmond and Savidge, 1999).  

The areas within the conspicuous high density colonies of the Black-tailed Prairie Dogs in the 

western block of the Grasslands National Park in Saskatchewan are designated as critical habitat for 

almost 15% of the Burrowing Owls population in Canada (Environment Canada, 2012). Outside 
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this range, the low remaining burrows are distributed across a vast spatial scale. Other burrows 

excavated by fossorial mammals, including Richardson’s Ground Squirrel and American Badger are 

rarely occupied by the Owls across their Canadian range (Environment Canada, 2012).   

2.4.2 The Landscape-Level Habitat Requirements 

Despite the contraction of their historic breeding range, Burrowing Owls have been recorded across 

a wide variety of land use/cover categories in Canada and the U.S. (Dechant et al., 2002; 

Environment Canada, 2012; COSEWIC, 2017). More specifically, if high dependency on nest 

burrows is not considered, Burrowing Owls can be regarded as both prey and habitat generalists, 

which is an indication of their relative resistance to environmental changes across the landscapes 

they tend to occupy throughout the year (Environment Canada, 2012). 

The results of the available modeling and empirical studies to date suggest that Burrowing Owls 

could occur, reproduce, and survive across both natural (i.e., grasslands and wetlands) and semi-

natural environments (i.e., croplands, introduced pasture). Consequently, conservation practices 

targeting specific land use/cover are deemed to be lacking the spatial extent needed to be considered 

for controlling the declining population of these migratory birds (Environment Canada, 2012).  

According to some studies (Hjertaas and Lyon, 1987; Restani et al., 2001; Murphy et al., 2001; Klute 

et al., 2003; Warnock and Skeel, 2004; Holroyd and Trefry, 2011), the significant native habitat loss 

due to the pre-1980s landscape conversion activities is the primary reason for the contraction of the 

historic range of Burrowing Owls in the Canadian Prairies. Despite this contraction, however, many 

U.S. and Canadian studies since the 1940s have investigated the suitability of different land 

use/cover as nesting and foraging habitats for Burrowing Owls (Dechant et al., 2002). The results of 
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these studies illustrated various habitat preferences among individual owl species (Dechant et al., 

2002; Environment Canada, 2012; COSEWIC, 2017). 

The choice of nesting location depends heavily on two factors: a) availability of short and sparse 

grass cover, which is regularly grazed by livestock or consumed by rodent mammals, and b) 

proximity to areas containing a high density of nesting and roosting burrows (James et al., 1991; 

Plumpton and Lutz, 1993; Faanes and Lingle, 1995; Wellicome and Haug, 1995; Clayton and 

Schmutz, 1999; Poulin et al., 2005; Thiele et al., 2013). At the landscape level, Burrowing Owls 

occupy treeless areas with flat plains (Haug et al., 1993; Thiele et al., 2013). Regardless of the type of 

the grass cover (native or non-native), these species typically tend to occupy burrows with immediate 

grass surroundings (Clayton and Schmutz, 1999; Poulin et al., 2005).  

The results of an earlier study by Wedgwood (1976) in southcentral Saskatchewan illustrated strong 

nesting avoidance across the tilled grounds, woody vegetation, and even reintroduced grasslands. 

Yet, nest success was reported to be higher in tame pasture than in native grasslands in another 

study by Haug (1985). Thus, suitable nesting grounds consist of open grassland systems such as 

prairie landscapes (which may include non-grass vegetation such as sagebrush), grazed pasture, and 

sometimes, edges of agricultural fields (Poulin et al., 2005). Evidence from past studies (Salt and 

Wilk, 1958; Bent, 1961; Stewart, 1975; Wedgwood, 1976; Haug, 1985) also confirms the association 

between the nesting location and vegetative cover in immediate nest surroundings. 

Despite being the dominant landscape across the breeding range of Burrowing Owls, croplands are 

rarely utilized as nesting grounds by these avian species (Haug, 1985; Poulin et al., 2005; Stuber et al., 

2018). Furthermore, nest success is typically low in these areas as these lands are regularly cultivated 

(Dechant et al., 2002). In Alberta, only 41% of the identified nest sites were located within 500 

meters of croplands. In 59% of times that Burrowing Owls were observed across croplands, no 
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nesting locations were identified (Schmutz, 1997). This might indicate that farming landscapes are 

more often used as foraging or loafing destination for these avian species.  

Habitat selection for breeding was examined at a larger extent in Alberta and Saskatchewan in a later 

study by Clayton and Schmutz (1999) across four different land use/cover categories including 

native pasture, tame pasture, cropland, and other. Among these, native pasture was recorded as the 

most suitable habitat for nesting and roosting over the two-year observation period in twenty-one 

study sites in Alberta. In Saskatchewan, however, both nesting and roosting sites were equally 

divided between the native and non-native pasture (Clayton and Schmutz, 1999). In rare instances, 

other land use/cover categories, including hayland, fallow fields, roadsides, and even urban areas 

were recorded as breeding sites. Nevertheless, these areas were considered as non-suitable breeding 

habitat for Burrowing Owls, and their use is only limited to occasional foraging endeavors by these 

species (Konrad and Gilmer, 1984; Haug, 1985; James et al., 1990; Haug et al., 1993).  

The maximum recorded diurnal home range for these species is 250 m, which belongs to the adult 

male owls spending a significant portion of the day protecting the nest burrows (Haug and Oliphant, 

1990; Scobie, 2015). The nocturnal home range, however, demonstrates an entirely different 

behavior among these species. While Burrowing Owls typically select immediate nest surrounding 

for foraging purposes, a large body of evidence (Haug and Oliphant, 1990; Plumpton, 1992, Sissons 

et al., 2001; Sissons, 2003; Marsh et al., 2014a; Marsh et al., 2014b; Scobie, 2015) suggest that these 

species might fly to further distances which may extend their home ranges beyond the preferred land 

use/cover for foraging purposes. This distance could potentially increase under extensive cultivation 

regimes (Haug, 1985; Wellicome and Haug, 1995), or be diverted to roads and roadsides, which, 

despite the high relative average prey availability (Sissons et al., 2001), are not considered as 

preferred destinations for these species (Marsh et al., 2014b).  
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Prey abundance could not be considered as the only factor affecting foraging habitat selection by 

Burrowing Owls as this behavior was observed over different compositions of land use/cover 

(Sissons et al., 2001; Marsh et al., 2014b). Yet, instances of successful foraging attempts illustrated a 

high association with sparse vegetation across the foraging grounds with different land use/cover 

(Marsh, 2014a). Among these, croplands, pasture, and fallow fields were investigated simultaneously 

in multiple studies (Butts and Lewis, 1982; Desmond, 1991; Haug et al., 1993; Wellicome, 1994; 

Sissons et al., 2001; Sissons, 2003; Marsh et al., 2014a; Marsh et al., 2014b). 

In southern Saskatchewan, the results of the studies by Wellicome (1994) and Wellicome and Haug 

(1995) across different land use/cover categories illustrated that prey abundance was lower across 

the periodically-plowed landscapes such as croplands and fallow fields. Also, habitat with taller 

vegetation cover (30-60 cm) including some areas of native grasslands, roadside vegetation, and 

mature croplands had more prey abundance than areas covered with tame pasture (Wellicome, 

1994). Yet, strong foraging avoidance was observed across mature crops with average height of at 

least 100 cm, even when prey sources were abundant. This behavior is attributed to the hindrance 

caused the owls’ flying ability by the dense vegetation cover, which ultimately lead to extended 

foraging time and energy across these fields. Two more recent studies by Marsh et al. (2014a; 2014b) 

approved this negative relationship between the vegetation height and foraging time across different 

land use/cover categories in Alberta and Saskatchewan.   

In an effort to narrow down the factors determining the critical breeding habitat for Burrowing 

Owls, Stevens et al. (2010) modeled the distribution of these species with reference to the impact of 

both biotic and abiotic environmental factors across a landscape consisting of 30% of their current 

breeding habitat in the Canadian Prairies. Although not providing absolute habitat suitability values, 

the results of the model suggested that abiotic factors, including elevation and slope, were much 
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more important predictors than biotic factors for nesting site selection. Nevertheless, biotic factors, 

such as land use/cover, remain relatively important in the 4.8 square kilometers of the immediate 

nest surroundings (Stevens et al., 2010). Among these land use/cover categories, medium patches of 

grasslands, areas with positive native grass growth, and ephemeral wetlands were estimated to be 

more suitable habitat for these species. The results of the model also illustrated that no relationship 

could be inferred between the home range selection and nest success or fledgling production 

(Stevens et al., 2010).  

Empirical studies of the last two decades in Alberta and Saskatchewan (Haug and Oliphant, 1990; 

Sissons et al., 2001; Sissions, 2003) revealed varying results with reference to foraging home range 

and reproductive success of adult Burrowing Owls across a combination of patches considered as 

habitat for these birds. While cultivated croplands were the dominant patches (more than 50%) in 

two of the local study sites located in Saskatchewan (Haug and Oilphant, 1990; Sissons et al., 2001), 

farming areas only comprised a negligible share (only 1%) of the habitat composition across the 

local study site in Alberta (Sissons, 2003). Despite a relatively small share (less than 5%) of the land 

use/cover composition in both sites, ephemeral wetlands were also recorded among the most 

popular areas for foraging by the adult Burrowing Owls (Haug and Oilphant, 1990; Sissons, 2003).  

While the lowest nest success was observed across the croplands of Saskatchewan (Haug and 

Oliphant, 1990), the least number of fledglings were recorded in Alberta, where the landscape was 

dominated by pasture areas (Sissions, 2003). Home ranges also varied widely, even among the areas 

dominated by cultivated lands. Across the local study sites in Saskatchewan, for instance, home 

ranges vary, on average, between 0.34 and 2.41 square kilometers of the nest sites (Haug and 

Oilphant, 1990; Sissons et al., 2001). This range was around 3.28 square kilometers in a pasture-

dominated study site in Alberta (Sissons, 2003).  
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The results of these studies suggest that home ranges for adult Burrowing Owls are not necessarily 

correlated with the abundance of croplands or pasture areas. Evidence from another study by Shyry 

(2005) on the nocturnal foraging behavior of the juvenile owls in Alberta confirms the results of 

empirical studies on adult Burrowing Owls in the area. In this study, no significant association was 

found between foraging tendency and the availability of natural grassland areas. Quite surprisingly, at 

a finer scale, owls preferred unconventional destinations for foraging, which have minimum 

vegetation cover such as truck trails and petroleum well pads (Scobie et al., 2013). 

2.5 Sources of Habitat Degradation 

The contracted range and decreasing population of Burrowing Owls might raise some questions 

concerning some intrinsic vulnerabilities among these species (Lantz et al., 2004). Except for the 

small remaining population across the edges of the current range, however, the rest of the owls in 

the Great Plains do not illustrate associations with intrinsic vulnerability characteristics such as 

endemism, extreme habitat specificity, low dispersal, genetic isolation, and hybridization (Clayton 

and Schmutz, 1999; Poulin et al., 2005; Todd, 2001a; Todd, 2001b; Thiele et al., 2013). The results 

of a study by Korfanta (2001) illustrated that genetic isolation and low dispersal of these species 

across their breeding range are wrong hypotheses.  

Highly specific habitat requirements are also rejected as these birds have historically illustrated 

adaptations to moderate changes in the land use/cover, leading scholars to categorize them as 

habitat and prey generalists (Haug et al. 1993; Warnock and James 1997; Clayton and Schmutz 1999; 

Orth and Kennedy 2001). Nevertheless, productivity, survival, and high associations with nest 

burrows are unique attributes of the Burrowing Owls’ ecology that might be interpreted as 

increasing intrinsic vulnerability characteristics (Lantz et al., 2004) or limiting factors (COSEWIC, 
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2017), disrupting ecological processes across the breeding range of these endangered birds, 

particularly in the presence of anthropogenic sources of disturbance.  

The declining population of Burrowing Owls across their breeding range in Canada cannot only be 

attributed to a single external factor. Rather, this decline is a result of the cumulative impact of 

multiple extrinsic threats and critical limiting factors influencing these birds in a complex way 

(Environment Canada, 2012). These factors include categories such as loss of burrows, loss of 

trophic options, increased predation, extreme weather conditions, landscape modification through 

the application of environmental contaminants, energy development, and collisions with vehicular 

traffic (Environment Canada, 2012; COSEWIC, 2017).  

These degradation categories are directly and, sometimes, indirectly correlated in a complex way, 

may encompass or lead to other causes of degradation, portray unique historical trends, and result in 

the cumulative impact of very high for these endangered species (COSWEIC, 2017). Undoubtedly, 

loss of native habitat through extensive crop production, petroleum explorations, and urban 

development is the most critical factor driving the landscape alteration in the Canadian Prairies 

during the past decades (COSWEIC, 2017). Nevertheless, the real impact of these activities on the 

declining population of Burrowing Owls in Canada remains poorly quantified (Environment 

Canada, 2012), and is only limited to speculations in a number of studies (Hjertaas et al., 1995; 

Sheffield, 1997; McDonald et al., 2004). 

2.5.1 Loss of Native Habitat 

Loss of native habitat could be considered as one of the degradation sources adversely influencing 

the historic and current ranges of Burrowing Owls. Although occurred with different reported 

intensities across the Great Plains, the historical conversion of native grasslands to croplands in the 



23 
 

Canadian Prairies throughout the past decades (WWFC, 1987; Samson and Knopf, 1994) has been 

considered as the primary reason leading to habitat loss for Burrowing Owls (Wellicome and Haug, 

1995; Clayton and Schmutz, 1999; Poulin et al., 2011). Despite its significant influence on the past 

population trends, the conversion of grasslands to cultivated land uses, including agriculture and 

introduced pasture, is currently considered a low-impact threat across the existing range of these 

species (COSEWIC, 2017). However, in southwestern Saskatchewan, where approximately 40% of 

the native habitat had been converted to agriculture in the past few decades, native habitat loss is 

still considered a medium-impact threat for these birds (Parks Canada Agency, 2016). 

The remaining native habitat is estimated to undergo low conversion rates in the near future, 

primarily due to inappropriate soil structure and moisture level required for seeding annual crops 

(Olimb and Robinson, 2019). Nevertheless, this consideration might be affected by unpredicted 

market forces (e.g., changes in crop values) or improved crop seeds with high resistance to different 

geomorphological conditions, including those found across the remaining patches of the grasslands 

in the prairies (Gjetvaj and Bentham, 2014). 

Interestingly though, the population of Burrowing Owls has been declining with faster rates than the 

loss of native habitat in southern Saskatchewan (Holroyd and Trefry, 2011). Evidence presented by 

Skeel et al. (2001) illustrated an annual loss of six percent of the native plant species from the late 

1980s to the early 1990s in southern Saskatchewan. In this period, however, the population of 

Burrowing Owls declined with rates much higher (approximately four times higher) than the loss of 

grasslands in the area (Skeel et al., 2001). At a larger scale in the Canadian Parries, the rate of 

population decline over the past three decades outpaced the rate of native habitat conversion 

(COSEWIC, 2006). Thus, habitat loss due to land conversion activities cannot be presumed as the 

sole major factor propelling this declining trend (Holroyd and Trefry, 2011). 
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2.5.2 Ecosystem Modification, Severe Weather Condition, and Declined Trophic Options 

The combined impact of ecosystem modifications and diminishing trophic options is a fundamental 

threat for the endangered population of Burrowing Owls across their existing range in Canada 

(Environment Canada, 2012; COSEWIC, 2017). The systematic use of rodenticides and insecticides 

negatively affects the prey availability for Burrowing Owls through reductions of offspring 

production and survival rates among these species (James et al., 1990).  

Abundant prey is a fundamental factor influencing offspring production during the breeding season 

(Environment Canada, 2012). According to Poulin et al. (2011), availability of prey sources such as 

voles and grasshoppers is a critical factor for the persistence of these species across the landscape; 

abundant prey might lead to increased populations through  improving the survival rates among the 

adults and juveniles (Poulin, 2003). This association became apparent in 1997, when an 

unprecedented eruption in the number of voles across the prairies led to increased rates of nest 

success and post-fledgling survival across the breeding grounds of Burrowing Owls in Alberta and 

Saskatchewan (Wellicome et al., 1997; Wellicome, 2000; Todd et al., 2003).  

The use of chemicals as pest control measures on agricultural fields and pasture areas might also 

adversely influence Burrowing Owls. That is, the ingestion of the carcasses of the poisoned insects 

or other prey species would indirectly poison these small raptors (Environment Canada, 2012). Due 

to a negative association that exists between the application of pesticides and nest and reproductive 

success of Burrowing Owls (James and Fox, 1987; James et al., 1990; Mineau and Whiteside, 2013; 

Mineau and Palmer, 2013), a 0.5 km buffer is considered, as a preventive measure, across the prairie 

farmlands of Alberta upon the application of chemicals, particularly carbofuran and Carbaryl 

(Environment Canada, 2009).  
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Nevertheless, the use of these and other chemical substances across the wintering grounds of 

Burrowing Owls in the U.S. and Mexico could also be considered as a severe threat for these 

migratory birds, resulting in lower rates of return to the Canadian breeding grounds per annum 

(McDonald et al., 2004). The results of the few available studies on the application of insecticides to 

the livestock population for parasite treatment (Floate et al., 2008; Suarez et al., 2008) illustrated a 

negative correlation between the implementation level of chemicals and the availability of the insects 

in the pasture areas. The application of pesticides also adversely influences the population of 

burrowing mammals through the direct or indirect poisoning incidents (Proulx, 2014). This would, 

in turn, increase the areas of ungrazed pasture and decrease the availability of suitable burrows and 

foraging grounds for Burrowing Owls (Hjertaas and Lyon, 1987; Marsh et al., 2014b). 

Severe weather conditions and altered grazing patterns are considered to be the other factors 

influencing the existing population of Burrowing Owls by undermining the suitable habitat and 

decreasing the trophic options for these small predatory birds (Heisler et al., 2014; Marsh et al., 

2014b). Accordingly, extreme weather condition - mostly associated with storm events, prolonged 

winters, or extended droughts - could adversely influence the population of these species (Wellicome 

et al., 2014), particularly through nest destruction or abandonment, reduced offspring production 

(Fisher and Bayne, 2014), restricted foraging range (Wellicome, 2000), or the decline of rodent 

mammals across the prairies. Altered grazing patterns due to changes in the management and 

ownership regimes might be another contributing factor, as well. In this respect, the transfer of 

ownership and management of grazed pasture might serve as a major reason behind the declining 

population trend. With the conversion of grazed pasture to croplands and the subsequent loss of 

grazing livestock, the nesting and foraging requirements for Burrowing Owls are seriously affected 

across their breeding grounds in the prairie landscape (COSEWIC, 2017).  
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2.5.3 Landscape Fragmentation, Sensory Disturbances, and Increased Predation 

Despite being relatively unquantified, the fragmentation of native landscape due to the dramatic 

reduction of the prairie habitat is also considered as a contributing factor to the declining population 

of Burrowing Owls in several studies (e.g., Konrad and Gilmer, 1984; Ratcliff, 1986; Haug et al., 

1993). A fragmented landscape may result in less pair-bonding among the small and localized groups 

(Klute et al., 2003). It might also result in extended home range, higher road mortalities across the 

semi-natural matrices including vast areas of croplands (Warnock and James, 1997; Clayton and 

Schmutz, 1999), and increased population of mammalian predators and large avian raptors preying 

on these tiny birds during the breeding season (Wellicome and Haug, 1995).  

If not the most critical degradation source, increased predation, according to a number of studies 

(Wellicome and Haug 1995; Leupin and Low, 2001; Todd et al., 2003; Shyry, 2005), is one of the 

major reasons behind the increasing fatality of Burrowing Owls across their breeding range. In the 

absence of larger mammalian predators due to extensive alterations made to the landscape structure 

for crop production, the population of the smaller predators such as striped Skunk, Raccoon, and 

Coyote has increased in the prairies. This increase is understood as a major cause of nest 

depredation across the existing breeding grounds (Environment Canada, 2012).  

The increased population of larger avian raptors is another predation threat for Burrowing Owls. 

Utility poles, trees, and availability of perch features of this kind is the main reason for increased 

predation across the Burrowing Owls’ range (Houston and Bechard, 1983). This trend is primarily 

attributed to the combined impact of declined prey availability and landscape fragmentation (Todd 

2001a,b). 
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Numerous artificial perch sites across the prairies also attract adult male Burrowing Owls during the 

breeding season (Scobie, 2015). Vigilant attentiveness and communicating potential predation 

threats with burrows is one of the major nest protection strategies adopted by the male Burrowing 

Owls from the nesting to post-fledgling periods (Chipman et al., 2008). The abundance of artificial 

perch sites (e.g., fence posts) across the landscape, however, has altered this behavior significantly by 

attracting more owl species to the elevated features developed concurrently with the land use/cover 

transition across the changing prairie landscape (Martin, 1973).  The co-occurrence of the abundant 

anthropogenic features such as the elevated perch sites and road networks may influence the quality 

of audible waves transmitted to and from the nest locations (Parris and Schneider, 2009).  

The results of a study by Scobie (2015) on the combined impacts of the anthropogenic perch 

features (e.g., fence posts) and traffic sound on the diurnal space usage of the adult male Burrowing 

Owls in southeastern Alberta and Saskatchewan illustrated strong perching avoidance from features 

located in the proximity of roads with average passing traffic speed of 80 km/h. Also, roads in many 

areas of the prairies are situated above the surrounding land uses, and, consequently, might cause 

visual disturbance to protective vigilance activities by these species. 

In response to this disturbance, owls might utilize road surface areas (Scobie, 2015). This behavior, 

would increase the probability of predation by larger avian predators flying along these corridors 

during the daytime (Meunier et al., 2000). Additionally, using roads as perch locations could also 

increase the probability of collision with passing vehicular traffic, which is deemed to be a major 

factor leading to increased fatality rates among these avian species (Wellicome, 1997; Clayton and 

Schmutz, 1999; Todd, 2001b; Shyry, 2005).  

The impacts of acoustic sensory disturbances emanating from some of the anthropogenic features 

were investigated on the nocturnal foraging habitat of Burrowing Owls in the same study by Scobie 
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(2015). Accordingly, when the atmospheric attenuation is not considered, Burrowing Owls are 

capable of detecting sounds up to an average maximum of 0.2 km, 0.2 km, and 1 km from oil wells, 

small vehicles, and larger vehicles with passing traffic speed of 97 km/h or higher, respectively. 

Despite relying on both sensory and visual leads while foraging, the space usage of Burrowing Owls 

is more affected by the footprint of the physical elements across the landscape (Scobie, 2015). 

2.5.4 Other Sources of Degradation  

Urbanization, mining, and energy development are the other factors estimated to be influencing the 

existing population of Burrowing Owls by further dividing the suitable habitat for these endangered 

species across the prairie landscape (Environment Canada, 2012; COSEWIC, 2017). However, the 

real impact of these factors is poorly studied across the breeding range of these birds in Canada. 

Among these factors, the impact of urban areas was investigated on the non-migratory subspecies of 

Burrowing Owls in a number of studies in the urban-rural gradient context in the southern United 

States (Millsap and Bear, 2000; Chipman et al., 2008) and South America (Cavalli et al., 2018; Franco 

and Marcal-Junior, 2018). Accordingly, despite relative adaptation to the built environment (Franco 

and Marcal-Junior, 2018; Cavalli et al., 2018) and availability of prey sources in these areas (Chipman 

et al., 2008), the population of these subspecies remains highly sensitive to increasing urban density 

and the associated anthropogenic sources of disturbance (e.g., road kills, pets, etc.), in the built 

environments (Millsap and Bear, 2000).  

There is no published study on the impact of the mining industry on the suitable habitat for these 

birds, nor there exist any relevant research investigating the potential impacts of the growing 

renewable energy projects, particularly wind farms, on the current range of these birds in Canada. 

Nevertheless, compared to non-renewable sources of energy, which are currently experiencing an 

economic downturn, the potential expansion of the wind energy projects over the next few decades 
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is estimated to further undermine the habitat quality for these endangered species (COSEWIC, 

2017). 

The impact of wind turbines on Burrowing Owls, however, was directly assessed in a number of 

studies across a wind resource area in California, USA (Smallwood et al., 2007; Smallwood et al., 

2009; Smallwood et al., 2013). Accordingly, nearly 600 owl species perish per annum due to 

collisions with wind turbines (Smallwood et al., 2009; Smallwood et al., 2013). Most collisions 

occurred in the vicinity of wind farms located in a range of 15 m from the Ground Squirrel Burrows, 

20 m of intensive livestock grazing areas, and 90 m from the nest sites. Burrowing Owls fly more 

frequently within 50 m of the turbines in the area. They also tend to perch in areas with lower 

concentration of wind turbines (Smallwood et al., 2007). 

Despite causing sensory disturbances to Burrowing Owls, petroleum infrastructure, operation sites, 

and the associated linear features are regarded as features which influence the space usage of 

Burrowing Owls (Scobie, 2015). The area occupied by these features directly influences the habitat 

for these species by creating edge effects and changing the optimum height and density of 

vegetation structure. More specifically, these alterations have serious consequences on critical 

factors, including prey abundance, perch availability, and predation risk, all with a direct impact on 

the persistence of these endangered birds across the landscape (Scobie, 2015).  

There are federal regulations to mitigate the impact of upstream petroleum infrastructure on 

Burrowing Owls and their nest locations (Environment Canada, 2009). Although not legalized, these 

regulations set timing restrictions and setback guidelines to buffer nest sites both in time and space 

at federal as well as provincial scales (Scobie et al., 2013). According to these regulations, the 

maximum recommended setback buffer is 0.2 km from the nest sites and satellite burrows 

throughout the breeding period for low-impact developments (Environment Canada, 2009).  
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In 2011, provincial restrictions were enacted for new drilling activities in Alberta for upstream oil 

and gas infrastructure on public lands (Government of Alberta, 2011). In Saskatchewan as well, 

there are provincial guidelines, but these guidelines bear no legal restriction and are only limited to 

recommendations (Government of Saskatchewan, 2017). Since provincially-owned lands are the 

target of these guidelines, none of these documents apply to privately owned lands across this 

landscape. Furthermore, these guidelines target new developments only and do not address the 

disturbance caused by the existing operating petroleum infrastructure. 

2.6 The Existing Gaps and Research Questions 

As discussed, habitat and its quality are fundamental, but relative concepts influencing wildlife across 

a variety of terrestrial ecosystems. Built upon the wildlife-habitat interaction, this relativeness has 

historically served as a contributing factor to the development of species-specific habitat 

measurement methods used by different experts. Nevertheless, indicators used in these methods are 

hard to measure simultaneously, due to the time, financial, and data limitations, and can only portray 

a partial picture of habitat quality when considered individually.   

Further confusion in habitat quality measurement is caused due to lack of knowledge about the 

impact of the multi-scalar processes on the behavioral attributes of species in different ecosystems, 

the time-dependency of factors associated with the evolutionary characteristics of species, and the 

scope of natural and human-induced alterations across different terrestrial ecosystems.  

Habitat quality measurement for the Burrowing Owls in the Canadian Prairies is no exception to 

these partial and relative measurement approaches. More specifically, the majority of the past studies 

on habitat preference of Burrowing Owls (e.g., Haug, 1985; Haug and Oliphant, 1990; Schmutz, 

1997; Sissons et al., 2001; Scobie, 2015) were based upon the demographic, distributional, or 
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performance indicators of small samples of these birds and across fragments of their current range 

in the Canadian Prairies. Despite providing critical information regarding the contracted range and 

the species-habitat interactions in small population samples, these studies overlooked the 

spatiotemporal factors affecting the quality of habitat across still a wide prairie landscape deemed to 

be relatively suitable within the current range of these species. 

Given that there is still a gap in the existing body of knowledge concerning the cumulative influence 

of multiple anthropogenic sources of degradation on the landscape-level habitat quality values for 

Burrowing Owls in Canada, more comprehensive relative habitat quality models are needed to 

improve our understanding with reference to the influence of the existing spatial sources of 

disturbance and their distribution on habitat quality values for these endangered species.   

The purpose of this thesis, consequently, is to study the relative habitat quality values for Burrowing 

Owls under the existing spatial composition of anthropogenic sources of degradation across the 

historic and current ranges of these endangered species in the Canadian Prairies. More specifically, 

this study aims to answer the following sets of questions: 

 

1. What are the relative habitat quality values across the historic and current ranges of 

Burrowing Owls in Canada considering the existing spatial distribution of the transportation, 

energy, urban, and the modified land uses? And whether the resultant habitat quality values 

differ dramatically across both spatial extents? 

 

2. How does the habitat quality value change for Burrowing Owls when the different 

combinations of spatial sources of degradation are considered across the current range of 
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these species in the Canadian Prairies? And whether variations between the resultant habitat 

quality values are significant? 
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Chapter 3. Methods and Materials 

3.1 Study Area  

The study area in this research encompasses both the recent (2004) and historic (pre-1970s) ranges 

of Burrowing Owls in the Canadian Prairies (Figure 3.1). This area is considered the northernmost 

range of these endangered bird species in North America. Both of these ranges are located within 

the boundaries of a landscape known today as the Prairie Ecozone of Canada, which has the total 

area of 465,094 square km, an area equal to approximately 4.7% of the land surface area in the 

country.  

The historic breeding range of Burrowing Owls covers approximately 450,000 km2 of this landscape. 

It stretches as far east as the Red River Valley in Manitoba and west to the foothills of the Rocky 

Mountains in Alberta (Environment Canada, 2012). From the south, the landscape has borders with 

the US states of Montana, North Dakota, and Minnesota, and from the north, it is boarded by 

Boreal Plains Ecozone (ESTR Secretariat, 2014). The historic range of Burrowing owls had shrunk 

by 27% in the 1970s (Wedgwood, 1978) and by 53% by the early1990s (Wellicome and Haug, 1995). 

With only 160,000 km2 of breeding area, the current range of the Burrowing Owls covers only 36% 

of its historic range in the Prairie Ecozone, mainly including the prairie landscape of southcentral 

and southeastern Alberta and southwestern Saskatchewan (COSEWIC, 2017).  

As one of the fifteen national terrestrial ecological zones (ESWG, 1995), the Prairie Ecozone is an 

ecosystem characterized by flat and rural lands rich in agriculture and energy production. The 

landscape has historically been considered as suitable habitat for a wide variety of plant and animal 

species (ESTR Secretariat, 2014). This ecosystem is also distinguished by its variable climate marked 
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with freezing winters (-6 °C ≤ average temperature range ≤ -17 °C), warm moist summers (15 °C ≤ 

average temperature range ≤ 19°C), and variable average annual precipitation ranging from 288 

mm/year to 540 mm/year (ESTR Secretariat, 2014). The varying degrees of moisture and high 

evaporation created a suitable condition for the growth of native temperate grass vegetation in the 

region (Samson et al., 2004).  

The landscape was historically covered by large areas of mixed-grass, moist mixed-grass, as well as 

very small patches of fescue grass and tallgrass in the westernmost and southeastern part of the 

ecosystem (Askins et al., 2007; Doherty et al., 2017). Historically, natural fire regimes caused by 

lightning, periodic drought, and grazing by large mammals (e.g., Elk, Bison, Pronghorn) and small 

rodents (e.g., Black-tailed Prairie Dogs and Richardson’s Ground Squirrel) were the major ecological 

processes involved in the formation and maintenance of the native vegetation across the landscape 

(Steinauer and Collins, 1996; Gauthier et al., 2003). 

Figure 3.1 The Global and Canadian Ranges of Burrowing Owls 
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Historic Range 

Current Range 
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With much smaller shares of the natural land cover across the ecozone, wetlands and woodland 

areas are the other essential components of the prairie landscape. The Prairie Ecozone has millions 

of shallow ephemeral wetlands or potholes, which were formed during the last ice age due to 

retreating masses of subterranean ice (Askins et al., 2007). Accordingly, vast areas of the flat to 

rolling landscape of the Prairie Ecozone are also known as the “prairie pothole” region (Doherty et 

al., 2017). Despite covering only 3% of the area and the climate-dependency of these ephemeral 

potholes, the ecological role of these wetlands has been central to the regional biodiversity in this 

ecosystem (ESTR Secretariat, 2014).  

Significant loss of wetlands, however, occurred since European settlers arrived in this area and 

continued ever since as more wetlands were drained for cultivation purposes (ESTR Secretariat, 

2014). Woodlands are the other native land category across the prairie landscape and cover a very 

small proportion (≤ 5%) of this area. Despite the overall declines across the entire ecosystem, 

woodlands have shown small increase across some areas as a result of the altered fire regime and 

extirpation of large mammalian grazers (ESTR Secretariat, 2014). 

Due to the natural fertility of the soils in the Prairie Ecozone, almost the entire landscape with 

suitable soil and slope condition has been converted from grass to grain or tame pasture (Askins et 

al., 2007). Approximately 70% of the native vegetation in the area was converted by the late 20th 

century (Riley et al., 2007), but the conversion rate has slowed down afterward. Despite the past 

conversion rates, land protection measures failed to protect much of the remaining native land cover 

in this vulnerable ecosystem. As such, only 4.5% of the remaining native land cover is situated 

within the boundaries of the protected areas in this ecosystem (ESTR Secretariat, 2014).  

Among the three Prairie Provinces, Manitoba has the least grassland cover, and almost all the native 

grass species have been replaced with cultivated lands. Approximately 57% and 80% of the native 
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grasslands had already been converted in Alberta and Saskatchewan, respectively (Samson and 

Knopf, 1994). The result of this conversion is a highly fragmented landscape, with the majority of 

the remaining native habitat patches having surface areas of less than 10 ha (ESTR Secretariat, 

2014). The predominantly agricultural landscape of the Prairie Ecozone is dedicated to annual crop 

production (i.e., cereal grain and oilseed) with the remaining areas of native and tame grass utilized 

for livestock grazing and cattle production (ESTR Secretariat, 2014).  

Historically, the natural periodic grazing of large herds of ungulates (e.g., bison, pronghorn) 

sustained the variability of grass species in the area. However, the overall vigor of the native 

grasslands had declined since the natural grazing regime was replaced with intensive annual livestock 

grazing, which, unlike natural grazing patterns across the landscape, is spatially confined to certain 

patches (Knopf, 1994). The native grassland patches with homogenous density and height are less 

likely to attract some species of grassland birds (Knopf, 1994; Robins and Dale, 1999) and sustain 

their population during periodic droughts (George et al., 1992).  

Apart from the extensively cultivated landscape, roads, urban areas, and energy infrastructure are the 

other human land uses fragmenting the Prairie Ecozone. Rapid urban expansion has altered, what 

has historically been known as a rural landscape, to an urbanized ecosystem with multiple population 

centers, growing in size and spatial impact (ESTR Secretariat, 2014). Extensive road and railroad 

networks have been built to support the transport of people and freight between these growing 

urban centers (Thorpe & Godwin, 1999; ABMI, 2018).  

The Prairie Ecozone is also a landscape rich in petroleum reserves. As such, extensive oil drilling 

projects have been central to anthropogenic disturbance to wildlife across the prairie landscape (e.g., 

Walker et al., 2007). Given the promising potential of this area for harnessing renewable sources of 

energy, the number of renewable energy projects such as wind and solar power has increased across 
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this landscape. Further areas are also expected to be allocated for the development of renewable 

energy projects of this kind in the years and decades to come (Copeland et al., 2011).   

3.2 The Modeling Framework 

3.2.1 InVEST: A Spatially Explicit Decision Support System 

The modeling framework utilized in this study to measure the landscape-level habitat quality for 

Burrowing Owls is the “Habitat Quality” module of the Integrated Valuation of Ecosystem Services 

and Tradeoffs (InVEST) models. (Sharp et al., 2019). The InVEST modeling toolset is the product 

of the Natural Capital Project, a joint partnership between the World Wildlife Fund, the Nature 

Conservancy, Stanford University, and the University of Minnesota.  

These models equate ecosystem services with environmental services and facilitate decision-making 

on natural resource management through mapping and quantifying the past, current, and potential 

future status of the natural environments and ecosystems. Using ecological production functions, 

this modeling framework considers both spatial and tabular data of land use/cover status, change, 

and management in conjunction with other environmental or, if applicable, economic information 

required to analyze single or multiple environmental services and processes, the synergistic 

association between these services, and potential tradeoffs among them (Tallis and Polasky, 2011; 

Sharp et al., 2019).  

These models are a set of Decision Support Systems (DSS) which produce spatially explicit 

outcomes that could be interpreted through social, economic, environmental, or conservation 

perspectives for different points in time. (Tallis and Polasky, 2011). As such, experts, practitioners, 

managers, and other stakeholders could be integrated into the scenario development, 
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parameterization, and decision-making stages of this modeling framework (Tallis and Polasky, 2011). 

Figure 3.2 illustrates the framework of the InVEST modeling toolset.  

This toolset, according to Sharp et al. (2019), is categorized into four groups: I) The final ecosystem 

services assessment tools - which consider those provisioning and regulating environmental services 

with direct benefit to human beings, II) the supporting ecosystem service assessment tools (e.g., 

habitat risk assessment and habitat quality), III) tools to facilitate ecosystem service assessment, and 

IV) supporting tools (e.g. scenario generator tool).  

3.2.2 The InVEST Habitat Quality Module: A Landscape-level Habitat Quality Model 

As a supporting ecosystem assessment tool, the InVEST habitat quality module was developed 

based upon the habitat and habitat quality definitions by Hall et al. (1997). This model utilizes the 

information on land use/cover and spatial sources of disturbance (threats) to biodiversity to produce 

relative habitat quality maps under the environmental and anthropogenic sources of disturbance. 

Biodiversity in this context is not considered as an ecosystem service with embedded economic 

value. Rather, it is perceived as an independent variable of natural environments that has its own 

Figure 3.2 The Framework of the InVEST DSS 

DECISION 

Synthesis Assessment Scenario 
Generation 

Data 
Compilation 

Scope 
 Definition 

Setting 
 Objective(s) 

Iteration Spatial Tabular 



39 
 

intrinsic values, including the conservation of ranges of genes, species, populations, or habitats 

(Sharp et al., 2019).  

Depending on the scale of consideration, this assessment provides key insights into the relative 

extent and degradation of habitat in any terrestrial ecosystem at any given time for a target 

conservation objective, which can be a single species, group of species, or biodiversity in general 

(Polasky et al., 2011). More specifically, habitat quality in this context is considered as a proxy for 

more detailed measures of biodiversity. As a result, ecosystems with higher habitat quality will be 

representative of better living environments for the target conservation species (Sharp et al., 2019). 

This modeling framework, therefore, is particularly useful for making initial conservation 

assessments (Terrado et al., 2016).  

The InVEST habitat quality framework represents a coarse-filter approach considering the 

landscape-level habitat assessment that uses the vegetation index as a basis to identify habitat 

suitability of different land use/cover for the target conservation objective (Sharp et al., 2019). While 

this approach looks over detailed species occurrence data, it represents unique simplifications and 

advancements concerning conservation and conservation-dependent decision-making practices 

across different landscapes (Sharp et al., 2019).  

First, the model considers the sensitivity of species or their habitat to different spatial sources of 

disturbance, which is a variable factor when different land uses and taxonomic groups are 

considered. In addition, the model takes into account the relative impact of the spatial sources of 

disturbance on selected land use/cover categories or a given species. This, in turn, enables analysts 

to assess habitat quality results based upon the varying degrees of habitat degradation caused by 

different spatial sources of threat across the landscape. Another fundamental consideration in this 

modeling framework is the impact of the distance factor and the degree to which an ecosystem is 
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degraded due to the proximity to spatial sources of disturbance. In this respect, proximity is 

considered as a critical determining factor for habitat degradation. Last but not least, the habitat 

quality model accounts for the degree to which the land is legally, socially, or physically protected 

and assumes that protection is effective in maintaining habitat quality, and thus persistence of the 

conservation targets in a given environment (Nelson et al., 2011; Sharp et al., 2019). 

The model utilizes raster data of land use/cover where each cell is assigned to a unique class, varying 

based on the details of classification determined by the analyst. Following this classification, each 

land use/cover class is assigned a suitability score, which could take either a binary value (i.e., 0 = 

not suitable or 1 = suitable) or a range of suitability scores between 0 and 1, depending upon the 

modeling perspective (i.e., species-specific consideration or biodiversity in general) and the habitat 

preference by the subject of study (generalist species vs. specialist species). More specifically, if the 

data is limited or species of interest illustrate heavy reliance on specific land use/cover, then a binary 

approach would be an ideal way to illustrate habitat quality scores.  

In contrast, generalist species such as Burrowing Owls might be able to use multiple patches of 

natural and semi-natural areas across a given ecosystem (Franklin and Lindenmayer, 2009). Thus, 

habitat quality modeling based on a range of values would be more appropriate for these species. 

When a continuum of suitability scores is considered, more areas could be subject to land 

management and conservation/restoration practices, and habitat quality scores will be illustrative of 

the combined impact of land protection practices and species’ habitat preferences. In contrast, a 

binary consideration of habitat suitability dismisses the interrelationship of the habitat extent, 

importance, and suitability with its quality (Sharp et al., 2019).  

The model also requires raster data of spatial sources of degradation, where each grid cell on the 

threat raster(s) is assigned a value of 1 or 0, indicating the presence or absence of the spatial sources 
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of degradation, respectively. To produce habitat quality scores, the model first considers the 

cumulative impact of the spatial sources of degradation to determine habitat degradation level in 

each grid cell. This pixel-based degradation value is calculated by the following equation:  

𝐷𝑥𝑗 =  ∑ ∑ (𝑊𝑟
𝑌𝑟
𝑦=1

𝑅
𝑟=1 / ∑ 𝑊𝑟

𝑅
𝑟=1 ) 𝑟𝑦𝑖𝑟𝑥𝑦𝛽𝑥𝑆𝑗𝑟  (eq. 1) 

where Dxj represents the total threat level in grid cell x with land use/cover type j; r indicates each 

source of threat; y illustrates all grid cells on r’s raster map, and Yr denotes the set of grid cells on 

threat r’s raster map.  

Each threat’s weight is denoted by Wr, which can take any value between 0 and 1; the higher the 

value of this parameter is the higher degree of degradation it causes. βx represents the level of 

accessibility to the habitat as an indicator of its protection status. This parameter can take any value 

from 0 to 1, with values close or equal to 1 showing higher accessibility to the habitat and values 

close or equal to zero, illustrating lower accessibility to the habitat being studied. Sjr denotes the 

relative sensitivity of habitat or species to the spatial sources of disturbance.  

This parameter, also, can take a range of values between 0 and 1. In this respect, the higher values 

illustrate higher sensitivity of the land use/cover or species of interest to the spatial sources of 

degradation. irxy illustrates the impact of threat source r, which originates in grid cell y, ry, on habitat 

in cell x. This threat level is mediated by the distance between the source and the habitat cell and is 

calculated using either one of the following distance-decay equations: 

𝑖𝑟𝑥𝑦 =  1 − (𝑑𝑥𝑦/𝑑𝑟 𝑚𝑎𝑥)  (eq. 2) 

𝑖𝑟𝑥𝑦 =  exp (−(2.99/𝑑𝑟 𝑚𝑎𝑥))𝑑𝑥𝑦  (eq.3) 

where dxy is a linear distance between grid cells x and y, and the dr max is the maximum effective 

distance beyond which the impact of the spatial source of disturbance fades across space. The 
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underlying assumption in equation 2 highlights a linear relationship between the impact emanating 

from a given source of threat and the maximum effective distance beyond which the impact of that 

threat dissipates across space. In contrast, equation 3 considers an exponential distance-decay 

function, where the impact of a given source of threat across space changes as exponents of its 

maximum effective distance.  

It is important to note, however, that if the exponential function is utilized to describe the impact of 

degradation caused by sources of disturbance, then the model will disregard the irxy values that are 

too small or close to zero to expedite the modeling process. If the irxy values are greater than 0, then 

the habitat grid cell x is considered to be in threat r’s disturbance zone (Sharp et al., 2019). The Dxj 

values are then converted into the habitat quality scores using the following equation:  

𝑄𝑥𝑗 =  𝐻𝑗  (1 − (𝐷𝑥𝑗
𝑧 /(𝐷𝑥𝑗

𝑧 + 𝐾𝑧)))  (eq.4) 

where Qxj is the habitat quality score in cell x that is situated in land use/cover j; Hj is an indicator of 

habitat suitability of the land use/cover at pixel j. Habitat quality scores have values between 0 and 

1, where a higher habitat quality score in each cell indicates the lower degradation of habitat in that 

grid cell. If habitat quality scores are equal to zero, then either the land use/cover is not a suitable 

habitat or the habitat being assessed is totally degraded by the cumulative impact of the spatial 

sources of degradation. The k and z =2.5 are the scaling parameters (constants); the value for the 

parameter k is determined by the user but is typically set equal to half of the highest degradation 

score in habitat degradation map (Sharp et al., 2019). To perform this model calibration, the model 

needs to be run by the default value of k=0.5, and then a new k value will be determined based on 

the highest degradation score. The rank of grid cells in habitat quality maps is invariant of these 

changes as the value of k is only related to the spread and central tendency of habitat quality values. 
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It is important to note that if habitat quality models target specific species, all model parameters 

need to be considered for the target species only (Sharp et al., 2019).  

3.3 Models and Scenarios 

The habitat quality models in this study (Figure 3.3) were specifically developed to answer the 

research questions outlined in section 2.4. Accordingly, the cumulative impacts were modeled and 

mapped for all threats as well as three distinct combinations of threats (scenarios) across the historic 

and current ranges of Burrowing Owls using the habitat quality module of the InVEST 3.7.0 toolset. 

In this respect, the habitat quality scores attained from the scenarios applied to the current range of 

Burrowing owls would be illustrative of key conservation requirements and priorities, as well as the 

impact of the different combinations of spatial threats on the overall habitat quality. The habitat 

quality scores acquired from the deterministic model run in the historic range would be illustrative of 

degradations made to the habitat when all sources of disturbance are considered concurrently across 

this spatial extent. This would be critically essential to determining the potential role of the 

considered sources of degradation in the contracted range of Burrowing Owls in the study area. 
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Figure 3.3 The Habitat Quality Models for the Burrowing Owls 
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The spatial sources of disturbance in this model are those anthropogenic features or land use/cover 

categories causing direct disturbance to these species or to the ecological processes supporting these 

birds across both ranges. Therefore, the spatial data layers for agricultural fields, tame pasture, major 

roads, secondary roads, railroads, urban centers, active oil facilities, inactive or abandoned oil 

facilities, and wind turbines were utilized to perform different model runs across both ranges. These 

spatial data layers were classified into four general threat groups including 

a) The Modified Landscape (Agriculture + Tame Pasture) 

b) The Transportation Network (Major Roads + Secondary Roads + Railroads) 

c) The Urban Centers (Urban Areas) 

d) The Energy Infrastructure (Active Oil Facilities + Inactive Oil Facilities + Wind Turbines) 

To compare habitat quality values under different scenarios across the current range of Burrowing 

Owls, the data layers in the modified landscape category was considered to be integral to different 

combinations of threat in the scenarios.  

3.3.1 Spatial Data Layers Preparation 

The land use/cover data map is the basic spatial data layer required by the InVEST habitat quality 

model. Accordingly, a reclassified version of the 2018 Annual Crop Inventory (ACI) data layer was 

clipped to the boundaries of the study area and utilized as the input land use/cover layer to the 

model. The ACI is the product of the science and technology branch of the Agriculture and Agri-

food Canada (AAFC) and has the overall target accuracy of at least 85% at a final spatial resolution 

of 30 m (AAFC, 2019). 

Given that both the historic and the current ranges of Burrowing Owls are located within the 

boundaries of the Prairie Ecozone, and to prevent inflated habitat quality scores at the edges of 
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these ranges, the ACI layer was clipped by the Prairie Ecozone boundary using ArcGIS 10.7. Since 

there are no precedents of habitat quality mapping for Burrowing Owls at this spatial scale, the 2018 

data layer was considered to be the baseline landscape-level modeling year for this species. As such, 

the reclassified version of the clipped raster data layer was the only layer utilized in different model 

runs for the considered scenarios. In this respect, the clipped ACI land use/cover data layer was 

reclassified into five distinct classes, namely grassland, pasture, cropland/fallow, wetland, and other 

based upon the habitat preferences of Burrowing Owls (Figure 3.4). The description of the 

reclassified land use/cover, as well as the assigned code to each class, are outlined in Table 3.1.  

 

 

 

 

 

 

 

The model also requires a spatial data layer for the protected areas in the study area. Accordingly, a 

shapefile of the national protected areas was obtained from the Canadian Protected and Conserved 

Areas Database (CPCAD), and then clipped to the boundaries of the study area. This spatial data 

layer was compiled and managed by Environment and Climate Change Canada (ECCC) and 

Figure 3.4 The Reclassified Land Use/Cover Input Data Layer 
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contains information on terrestrial protected areas and other effective area-based conservation 

measures (ECCC, 2019).  

Using the guidelines of the International Union for Conservation of Nature (IUCN) for categorizing 

protected areas (Dudley, 2008), the accessibility scores required by the model were assigned to each 

of the protected areas in the CPCAD data layer. The map of protected areas, as well as a table, 

including the name, description, and assigned accessibility values of protected areas, are included 

within the Appendix section of this thesis.     

 

 

Data layers for the spatial sources of degradation are the second group of data inputs required by the 

model. In this respect, the agriculture and tame pasture layers were extracted from the raster land 

use/cover data layer and considered as distinct spatial threat layers input to the model. The road 

network shapefile was acquired from the road network file of Statistics Canada for year 2018 

(Statistics Canada, 2018), and then clipped by the boundaries of the Prairie Ecozone. This spatial 

Land use/cover class               Code                                 Description 

 Grassland                                     1                                      Includes predominantly native grasses and other herbaceous 
vegetation and may include some shrubland cover. The ACI code for 
this land cover is 110 in the 2018 data layer. 

Pasture/Forage                             2                                       Periodically cultivated land uses including tame grasses and other 
perennial crops such as alfalfa and clover grown alone or as mixtures 
for hay, pasture or seed. The ACI code for this land cover is 122 in 
the 2018 data layer. 

Cropland/Fallow                          3                                       Annually cultivated land uses (i.e., cereals, wheat, oilseeds), as well as 
vegetables and fresh products except those produced in greenhouses. 
In addition, other categories including too wet to be seeded and fallow 
areas are all considered as seeded landscape for agricultural 
production. The ACI code for this group of land uses is 130-197 in 
the 2018 data layer. 

Wetland                                       4                                        Includes lands with a water table near/at/above soil surface for 
enough time to promote wetland or aquatic processes. The ACI code 
for this land cover is 80 in the 2018 data layer. 

Other                                          5                                        Includes all land use/cover layers which are not generally considered 
habitat in the considered range. These are water, barren fields, urban 
and developed areas, greenhouse, shrubland, coniferous trees, 
broadleaf trees, and mixed wood areas. The ACI code of these layers 
are 20, 30, 34, 35, 50, 210, 220, and 230 in the 2018 ACI data layer. 

Table 3.1 The List and Description of the Reclassified Land Use/Cover Classes  
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data layer consists of five distinct road categories, which were divided into the major roads and 

secondary roads data layers, according to the street rank description within the national road 

network reference guide (Statistics Canada, 2018).  

In this respect, the first three categories (i.e., Trans-Canada highway, national highway system, and 

major highways) were considered as the major road network layer, and the other two categories (i.e., 

secondary streets and all other streets) were classified as the secondary road layer input data to the 

model. The latest railroad network data was obtained from the Atlas of Canada National Scale Data 

source (Natural Resource Canada [NRCAN], 2014) and clipped to the boundaries of the Prairie 

Ecozone. All the transportation group layers were then converted to raster data layers input in 

ArcGIS, to be integrated into the modeling framework.  

The urban areas data layer was obtained from the 2016 census boundary files (Statistics Canada, 

2019), which encompasses the latest boundaries of population centers and rural areas classification 

in Canada. This shapefile was then clipped to the boundaries of the study area and converted to the 

raster data file required by the model runs. The location of wind farms in Canada was extracted from 

the Renewable Energy Power Plants, 1MW or more – North American Cooperation on Energy 

Information (NRCAN, 2018), and the exact locations of the wind turbines were digitized 

accordingly.  

In this regard, the maximum area occupied by each turbine pad was considered to be a circular 

buffer equal to 581 m2, an area of a wind turbine pad with a 27 m diameter (Gipe, 1993). The data 

layers for petroleum energy facilities were obtained from the provincial resources (Alberta Energy 

Regulator [AER], 2019; Government of Saskatchewan, 2019; Government of Manitoba, 2019), and 

then reclassified into the active oil facilities and inactive oil facilities (suspended and abandoned) data 

layers in the study area. The surface area of the considered petroleum facilities was set to the average 
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lifetime area of oil well drilling pads, which is equal to 10500 m2 (Buto et al., 2010). Accordingly, a 

circular buffer area of 58 m was considered for both oil facility classes in the study area. All the 

spatial sources of disturbance are illustrated in Figure 3.5.     

3.3.2 Model Parameterization 

The habitat suitability of the considered land use/cover classes in this study was equated to the 

definition of habitat preference by Hall et al. (1997). To determine the suitability scores, 17 post-

1980s studies were selected and reviewed based on the habitat preference of Burrowing Owls across 

the delineated land use/cover classes. Among these studies, 14 assessed habitat use of Burrowing 

Owls within the Canadian breeding grounds in Alberta, Saskatchewan, or both of these Prairie 

Provinces.  

These studies are based on the recorded occurrence incidents of Burrowing Owls or the likelihood 

of their occurrence across the delineated land use/cover classes. Habitat suitability scores were 

determined according to the reported occurrence incidents or likelihoods of occurrence in different 

classes. These reports were classified into two groups: a) habitat use for nesting and roosting 

purposes and b) habitat use for foraging and loafing purposes.  
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Accordingly, the percentage of studies reporting the occurrence of these species across individual 

land use/cover categories was calculated for each group separately, and then averaged among the 

two habitat groups to determine the habitat suitability of each category for these bird species. For 

instance, grassland areas were utilized in 92% of the studies assessing the nesting and roosting 

behavior of Burrowing Owls and in 100% of the studies reporting the occurrence of these species 

for foraging and loafing activities. Habitat suitability of the grasslands, consequently, was calculated 

(averaged) as 96%, which is equal to 0.96 within the [0 1] score continuum. In this approach, classes 

that are underutilized in relation to their abundance were not taken into consideration. The 

calculated habitat suitability scores along with the considered studies are listed in Table 3.2. 

The maximum effective distances were determined for the delineated spatial sources of degradation 

from the literature on Burrowing Owls. In this regard, the regulations or recommendations on 

appropriate buffer distance was considered as an initial factor for setting the distance parameter in 

the model. However, if buffer distances did not apply to the identified sources of degradation, the 

maximum effective distance would be determined based on the distance beyond which Burrowing 

Owl’s perception of sensory disturbance fades away across space.  

However, the underlying assumption in this case was that this distance must reach beyond the 

average diurnal home range radius of 0.25 km for these species. If none of these initial conditions 

applied, then the maximum effective distance would set equal to the average diurnal home range 

radius of Burrowing Owls. It was also assumed that the threats emanating from all the identified 

sources of degradation follow a linear distance-decay function.  
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The impacts of the spatial sources of disturbance were directly derived from the threat assessment 

worksheet enclosed within the latest status report for these endangered species (COSEWIC, 2017). 

Within this framework, the threat impact for each spatial source of degradation was calculated 

considering the scope (i.e., the proportion of species or ecosystems that could be affected by the 

spatial sources of disturbance within a decade) and severity (i.e., the level of damage to the species or 

ecosystems within the three-generation period) of different sources of degradation (IUCN, 2017; 

COSEWIC, 2017).  

Since land modifications (i.e., the application of pesticides and rodenticides) occur across the 

cultivated landscape, the threat scores from this source of threat were taken into account for the 

agricultural fields, as well as the pasture areas. All of the spatial sources of degradation are listed in 

Table 3.3, along with the corresponding maximum effective distance and threat impact scores.    

 

 

 

3.3.3 The Elimination Method: A Simple Multi-Criteria Decision Analysis Rule 

Complex environments typically represent challenges that need to be addressed through more than 

one criteria at the same time. That is, the order of preferences for available alternatives should be 

defined considering a variety of criteria defined by analyst(s) (Radford, 1989). Multiple Criteria 

Decision Analysis (MCDA) techniques are a suite of decision making approaches developed based 

upon the coexistence of multiple criteria and different alternatives from which decision makers need 

to choose the most preferred one(s) by reference to an explicit set of pre-defined objectives, 

determined on a common set of values. 

Threat Group Modified 
Landscape Transportation Urban Energy 

Spatial Source of 
Degradation Agriculture Pasture Major 

Roads 
Secondary 

Roads Railroad Urban  Active  
Oil  

Inactive  
Oil 

Wind  
Turbines 

Maximum Effective 
Distance 0.5 0.5 1 0.25 0.25 0.25 0.25 0.25 0.25 

Impact Level  High High Medium Medium Medium Negligible Negligible Negligible Medium 
Assigned Impact 

Score 0.8 0.8 0.6 0.6 0.6 0.2 0.2 0.2 0.6 

Table 3.3 The Maximum Effective Distance (km) and Threat Impact Scores for the Considered Sources of Degradation    
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In the Multiple Criteria Decision Analysis (MCDA), the combination of three main factors needs to 

be considered by analysts before a suitable technique is employed to address the problem being 

studied. These factors are a) availability of numeric measures of progress for assessing the 

considered criteria, b) whether or not the same measurement unit is available for the assessment, and 

c) whether the relative prioritization of criteria could be presented using a numerical format or 

ordinal preferences should also be considered (Radford, 1989). Central to all MCDA techniques is 

the judgment of analyst(s) in determining the objectives, criteria, relative weighting system, and the 

degree to which the alternatives meet the defined criteria. Although this might raise questions on the 

subjectivity of the MCDA approaches, these techniques are open to adjustments by the discretion of 

analyst(s) or decision makers(s), and upon the availability of more and better information. 

The common element of all MCDA techniques is the performance matrix (Dodgson et al., 2009). 

This matrix consists of rows and columns including the criteria and options considered in a decision 

situation. The entries of the matrix cells are the performance levels for each option against the 

defined criteria. These performance levels are more often assessed through numerical (cardinal) 

factors, but may take non-quantitative representations such as color coding or binary categorization. 

The majority of the MCDA techniques (e.g., linear additive models, analytical hierarchy process) 

convert these matrices into consistent numerical values using approaches referred to as 

compensatory methods or the combination of scoring and weighting analyses applied to the options 

and criteria in the performance matrix, respectively (Dodgson et al., 2009). Thus, most MCDA 

techniques vary from one another based upon the numerical operations applied to the elements of 

the matrix. 

In many decision situations, however, the progress of the available alternatives towards considered 

criteria cannot entirely be measured by quantitative factors. Sometimes, this issue could be addressed 
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by assuming proxy measures for some factors that are not easily quantifiable. But there are instances 

where, due to the deficit of suitable numeric weighting framework, priorities amongst the considered 

set of criteria could be presented only at ordinal scale (MaCrimmon, 1973). In these decision 

situations a suite of qualitative techniques (Nijkamp and Van Delft, 1977), such as qualitative 

outranking approaches can be utilized to find best alternatives or to rank alternatives in order of 

importance.  

Unlike compensatory MCDA techniques, which require numerical operations on performance 

matrices, these matrices could also be considered independently as a basis for judgment of 

alternatives. In other words, the dominance of options could be determined using non-

compensatory approaches, where the ranking procedure is done considering no external numeric 

factor and by simply taking into account new threshold levels for different criteria or through the 

perceived importance of criteria and elimination of options one at the time in an iterative process 

until the most suitable alternative is determined. The former is achieved using a non-compensatory 

method known as conjunctive and disjunctive selection procedure and the latter is performed using 

another method of this kind, known as lexicographic ordering (Dodgson et al., 2009). 

The MCDA method utilized in this study is a variant of the Elimination by Aspects, which is a 

combined non-compensatory method constructed based upon the selection procedure and 

lexicographic ordering (Dodgson et al., 2009). The Elimination method is a simple MCDA rule that 

could be utilized when ordinal scales are also integral to the criteria assessment procedure 

(MaCrimmon, 1973; Radford, 1989). It is based upon ranking a set of alternatives considering their 

contribution to individual criterion developed from the available factors in a multi-criteria decision 

environment. When ordinal-scale assessments are required, each of the considered alternatives is 

assessed in terms of a letter grade (e.g., A, B, C etc.) or its extension (e.g., A- or B+ etc.), 
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representing the degree to which that alternative meets a criterion defined for the assessment (Please 

see Table 2 in the Appendix). 

By placing different alternatives in the order of preference against the list of criteria through 

sequential evaluation, analysts would be able to rank the alternatives. This is particularly useful in 

practical decision situations, where identifying a dominant alternative is not possible due to the 

complexities and the interrelationship between the assessment criteria. For instance, in real-life 

situations, alternatives that highly satisfy a single criterion might score poorly in some other criteria 

or very high in a criterion which contradicts with the initial factor being considered (Radford, 1989). 

To evaluate the alternatives against the considered criteria, a minimum or maximum threshold, also 

known as the performance level, can be utilized through the principal objectives upon which the 

factors are defined. Starting from the top factor, alternatives that do not meet the performance levels 

at each row are eliminated using a cross (×) sign in the corresponding cell (please see Table 3 in the 

Appendix). This way, all the alternatives could be ranked sequentially. Accordingly, the alternatives 

which are eliminated when measured against the higher performance levels are the least preferred 

ones, and those eliminated upon assessment by a lower priority performance level are of the higher 

preference. 

The rank of those alternatives that fail in the same initial performance levels is determined based on 

the total number of eliminations. If this procedure fails to determine the dominance of some 

alternatives over others, the performance levels can be changed by analyst(s) - to create a new 

threshold level- and ranking procedure should be repeated (Radford, 1989). Some decision situations 

might involve tradeoffs or synergies between different factors. That is, the lower performance level 

in one factor could be compensated by a higher level performance in a less preferred factor. 
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Alternatively, the influence of a criterion may be complemented by another criterion or a set of 

criteria, or it might be dependent on or independent from the other assessment criteria.  

To define new threshold levels which accounts for these synergistic (or tradeoff) associations, 

considered criteria can be connected by conjunctive, disjunctive, and conditional linkages, 

represented by “AND”, “OR”, and “IF” statements, respectively (Please see Table 4 in the 

Appendix). In this respect, all linked criteria must fulfill the described performance level when the 

conjunctive (AND) statement is considered. The disjunctive statement (OR), however, only requires 

one of the linked criteria to be assumed credible, and the conditional statement (IF) can be assumed 

credible if the performance level meets the condition laid out by the analyst (Radford, 1989). 

3.3.4 Applying the Elimination Method to Parameterize the Sensitivity Scores in the 

InVEST Habitat Quality Model for Burrowing Owls  

The relative sensitivity of land use/cover or species to the spatial sources of disturbance is the final 

parameter required by the InVEST habitat quality model. Given that this concept can also be 

inferred from an opposite term, the “resistance” when species are the target conservation objective 

(Nelson et al., 2011), the relative resistance of species to the spatial sources of disturbance can also 

be considered to ascertain the relative sensitivity scores required by the model.  

Accordingly, the direct and indirect impacts of the identified spatial sources of disturbance on 

Burrowing Owls and on the ecological processes these birds rely on to survive in the environment 

were considered to determine the relative sensitivity scores specific to these endangered species. 

This was done using the elimination method where the spatial sources of disturbance were ranked 

against the set of criteria developed based on the ecological processes and other environmental 

factors influencing these bird species. 
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The spatial sources of disturbance were thereupon set to be the alternatives the priority of which 

was determined through a range of assessment criteria determining the direct and indirect sensitivity 

levels in the environment being studied. These criteria were classified into five overarching groups 

considering the literature on Burrowing Owls’ use of habitat, dependency on other species, and 

persistence in the face of the anthropogenic sources of disturbance. These groups are loss of 

burrows, landscape fragmentation, collisions, landscape modification, and sensory disturbance. To 

assess the factors within each group, an ordinal-scale assessment measure was utilized whereby 

accordance and discrepancy of the listed alternatives and defined criteria were determined using 

letters “Y” and “N”, respectively (Table 3.4).  

Sensitivity Criteria/Spatial 
Sources of Degradation 

Cultivated Landscape 
                                       

Transportation 

      
Urban                                 Energy 

Agriculture 
Tame 

Pasture 
Major 
Roads 

Secondary 
Roads Railroad Urban 

Active Oil 
Wells 

Abandoned oil 
Wells Wind Farms 

Loss of Burrows 

Direct Destruction of Burrows Y  N N N N N N N N 

Declined Population of the 
Prairie Dogs 

N Y  N  N  N  N N N N 

Declined Population of at least 
one other associated burrowing 
mammal (Squirrel & Badger) 

Y  N Y  N N N N N  N  

Fragmentation 

Native Habitat Removal Y  Y Y  Y  Y  Y  Y  Y  Y  

Increased Predation of Owls  N N Y  Y N N N N N 

Extended Home Range N N N N N N N N N 

Collisions 

Fatal Collisions of Owls  N N Y  Y N N N N Y  

Landscape Modification 

Declined Prey Population Y  Y N N N N N N N 

Increased Indirect Poisoning Y  Y N N N N N N N 

Declined Nest Success Y  N N N N N N N N 

Declined Reproductive Success Y  Y N N N N N N N 

Sensory Disturbances 

Source of Audio Disturbance  N N Y  Y  N N Y  N N 

Source of Visual Disturbance N N Y  Y  N N N N Y  

In cases where the association between the listed threats and criteria was missing from the literature, 

no accordance was considered. In this assessment scheme, supplementary information was also 

utilized to support the determined accordance and disparity between the identified threats and the  

Table 3.4 The Considered Criteria and the Performance of the Spatial Sources of Disturbance 

4 
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defined criteria (Watson, 2005; Tuckwell and Everest, 2009; COSEWIC, 2011; COSEWIC, 2012; 

Roch and Jaeger, 2013; Cabrera-Cruz and Villegas-Patraca, 2016; Watson et al., 2018), and to 

ascertain if there is an association between the listed sources of degradation in terms of their 

potential impact on Burrowing Owls and the ecological processes these endangered bird species 

depend upon to persist in the study area (Barrientos et al., 2019).  

Criteria within each group were then linked with each other or with the criteria from other groups 

using conjunctive, disjunctive, and conditional linking statements to define new threshold levels 

against which the threat alternatives were assessed. These performance levels were used to eliminate 

the spatial sources of disturbance sequentially (Table 3.5).  

Threat Groups Modified Landscape Transportation

 
Urban Energy 

Spatial Source of 
Degradation Agriculture Tame Pasture 

Major 
Roads 

Secondary 
Roads Railroad Urban Active Oil  Inactive Oil 

Wind 
Turbines 

Linked Assessment Criteria                   
Lead to the direct destruction of 
burrows AND affect prey 
availability  

 × × × × × × × × 
Lead to the decreased population 
of the prairie dogs OR at least one 
other associated burrowing 
mammal 

   × × × × × × 
Cause increased predation  OR 
fatal collisions of owls × ×   × × × ×  
Cause increased indirect Poisoning   × × × × × × × 
Lead to the declined reproductive 
success. IF not, it should lead to 
the declined nest success 

  × × × × × × × 
Lead to extended home range OR 
native habitat removal  

         

Serve as a source of Audio OR 
Visual Disturbance × ×   × ×  ×  

The spatial sources of degradation were then ranked contrary to their elimination stage. However, it 

is critical to note that within this ranking process, higher ranks were considered to be representative 

of higher sensitivity of Burrowing Owls to the sources of degradation. Accordingly, six ranks were 

assigned to the threats as some of them were eliminated at the same stage of assessment. Finally, 

Spatial Source of Degradation Agriculture 
Tame 

Pasture 
Major 
Roads 

Secondary 
Roads Railroad Urban Active Oil  Inactive Oil 

Wind 
Turbines 

Ranking 1 3 2 4 6 6 5 6 4 
Relative Sensitivity Scores 1 0.66 0.86 0.5 0.16 0.16 0.33 0.16 0.5 

Table 3.5 The Linked Criteria for the Elimination of Spatial Sources of Disturbance and the Relative Sensitivity Scores 

4 
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considering the number of ranked positions, the relative sensitivity scores were assigned to each 

source of degradation using its relative position in the final ranking. For instance, railroads, urban 

areas, and inactive oil facilities were determined as the sources of perturbation to which Burrowing 

Owls illustrate the highest resistance or lowest sensitivity level. Consequently, these group of threats 

were assigned a ratio of 1/6, which is equal to the relative sensitivity score of 0.16 in the [0 1] scores 

continuum.    

3.4 Data Analyses 

As discussed in section 3.2.2, the outputs of this modeling process are habitat quality maps rendered 

across the study area with every single pixel describing the habitat quality values calculated based on 

eq. 4. The results of the study are investigated through appropriate statistical analyses, using the IBM 

SPSS Statistics, along with an index used as a benchmark to assess the relative degradation caused by 

different sources of disturbance to habitat quality values. More specifically, the former method of 

analysis is used to measure the statistical significance of differences in habitat quality values between 

the historic and current ranges of Burrowing Owls, and the values attained under the three defined 

scenarios across the current range of these endangered species. The relative destruction caused by 

the sources of disturbance can be inferred from the following formula: 

HQ change index = (μHQ Scenario i – μHQAll)/μHQAll (eq. 5) 

where HQ change index illustrates the relative change of habitat quality values across the landscape when 

the values in each scenario are compared to habitat quality values when all sources of degradation 

are considered concurrently across the landscape.  

This benchmark was developed based on the concept of Ecosystem Change Index, which is used to 

measure the temporal changes of a given ecosystem service at time X with reference to its state in a 
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baseline time (I) across a given landscape (Matlock and Morgan, 2011). However, instead of a 

temporal scale, eq.5 takes into account the mean habitat quality results in each scenario (μHQ Scenario i) 

and compares it to the mean habitat quality values when all sources of degradation are considered 

(μHQAll). Accordingly, the higher this index is for each scenario, the higher the relative habitat quality 

will be under that scenario. Since each scenario was constructed by excluding one of the spatial 

threat data layer groups, higher habitat quality change index values in a given scenario will be 

indicative of the higher degradation caused by the spatial threat data layer missing from that 

scenario.  
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Chapter 4. Results 

4.1 Variations of Habitat Quality between the Historic and Current Ranges of Burrowing 

Owls 

The quality of habitat for Burrowing Owls at every single pixel of the input land use/cover data 

layer was calculated considering the assigned values to model parameters and mapped into the 

habitat quality raster subsequently. The historic and current ranges of Burrowing Owls were then 

extracted from this output data layer to illustrate the habitat quality values across both ranges (Figure 

4.1).  

 

Figure 4.2 illustrates the relative distribution of habitat quality values across the historic and current 

ranges of Burrowing Owls. The two distributions are relatively similar, illustrating multiple peak 

points (i.e., modes) accumulating around certain ranges. These ranges belong to the delineated land 

use/cover categories in the area, defined as a factor of their suitability level considered in the model.  

As such, when the most unsuitable areas (i.e., Hj=0 and HQ=0) are considered, the proportion of 

the landscape which has an absolutely zero habitat quality value is much higher within the historic 

range of Burrowing Owls than the proportion of non-habitat areas across the current range of these 

species. At the other end of the habitat quality spectrum, however, the proportion of highly suitable 

habitat areas are much higher in the current spatial extent, compared to historic range of these 

Figure 4.1 The Habitat Quality Maps across the Historic and Current Ranges of Burrowing Owls 



62 
 

species. Unlike the distribution of habitat quality values at the two ends of the continuum, the 

proportion of habitat with low to moderate quality is similar across both ranges and only illustrates 

slight differences (≤4%) between the two spatial extents.  

To determine if there is statistically significant difference in the habitat quality values, as a 

continuous dependent variable between the two ranges, the ranked-based non-parametric Mann-

Whitney U test was performed over random samples (n=100) of the pixel groups at each of the 

ranges considered in the study (Table 4.1).  

The result of this test illustrated that despite the differences in the habitat quality values between the 

historic (Mdn=0.56) and current (Mdn=0.57) ranges of Burrowing Owls, these differences cannot be 

considered statistically significant (P=0.424), thus resulting in the rejection of an alternative 

hypothesis. 

Figure 4.2.The Relative Frequency of the Habitat Quality Values  
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Null Hypothesis  Test Sig. Decision 

The distribution of HAQ is the 
 same across categories of scenarios 

Independent-Samples  
Mann-Whitney U Test 

0.424 Retain the Null Hypothesis 

4.2 Variations of Habitat Quality under Different Scenarios in the Current Range 

4.2.1 Assessment of Habitat Quality across the Landscape  

A One-Way ANOVA test (Table 4.2) was performed to determine if habitat quality values differ 

significantly between the three scenarios (groups) in the current range of Burrowing Owls. 

Accordingly, random samples of size 20 (n=20), representing different groups of pixels from each 

scenario were selected to perform the analysis.  

HQ Test Statistic (F-Test) Sig. 

Between Groups 2.707 0.075 

There were no outliers among these samples and the data was not normally distributed for each 

scenario as assessed by the Shapiro-Wilk test (p<0.05). In addition, there was homogeneity of 

variances as assessed by Levene’s test of homogeneity of variances (p=0.309). Despite the violation 

of normality, the results of One-Way ANOVA was considered as this test is fairly robust to 

deviations from normality, particularly when sample sizes are smaller than 50 (Lix et al., 1996), 

which is the case in this study. The results of this statistical test illustrated that the difference in 

habitat quality values between the three considered scenarios was not statistically significant 

(p>0.05). The habitat quality maps for these scenarios are illustrated in Figure 4.3.  

 

 

 

Table 4.1 The Result of the Mann-Whitney U Test  

Table 4.2 The Result of the One-Way ANOVA Test between Different Scenarios  

The significance level is 0.05 
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 Figure 4.3 The Habitat Quality Maps under the Three Scenarios  
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Despite the rejection of the alternative hypothesis on the existence of statistically significant 

differences between the mean habitat quality values among the selected samples, using the habitat 

quality change index in eq. 5, the mean values in each scenario was compared to the mean habitat 

quality of the current range when all sources of degradation are considered in this spatial extent.  

The change index was calculated as 0.05, 0.09, and 0.04 for the first, second, and third scenarios, 

respectively. These numbers suggest that the transportation data layer group, followed by the energy 

and urban data layers, result in the highest degrees of degradation to the current range of Burrowing 

Owls, respectively. The results of the habitat quality change index are plotted as a radar chart in 

Figure 4.4.  

 

4.2.2 Assessment of Habitat Quality Results in different Land Use/Cover Categories 

In addition to testing the statistical significance of the differences in the mean habitat quality values 

under the three considered scenarios, a more-in-depth analysis was performed on the variant habitat 

quality results across the specific land use/cover categories in the current range of Burrowing Owls. 

Figure 4.4 The Habitat Quality Change Index for Different Scenarios  
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Accordingly, four different One-Way ANOVA tests were performed on samples of size 20 (n=20), 

which unlike the samples in the ANOVA test in the preceding section, were randomly selected from 

the specific land use/cover categories in the study area. The results of the performed tests for all 

categories were not statistically significant at α=0.05. For the Grassland and Pasture categories, the 

results of the Welch ANOVA tests were reported as the homogeneity of variances was violated in 

the samples selected from these categories, according to Levene’s test for equality of variances 

(p<0.05). The results for these statistical tests are listed in Table 4.3.  

HQ _Grassland Test Statistic Sig. 

Welch 0.115 0.892 

HQ_Cropland 
  

ANOVA-Between Groups 0.511 0.603 

HQ_Pasture 
  

Welch 0.425 0.657 

HQ_Wetland 
  

ANOVA-Between Groups 0.839 0.438 

To further investigate the impact of different sources of degradation on each category, the Box and 

Whisker Plots of the habitat quality values were considered for different land use/cover categories 

(Figure 4.5). As such, the impact of energy, transportation, and urban data layers on habitat quality 

across each of the classes was determined from the analyses of the first, second, and third scenarios, 

respectively.  

The habitat quality values under the second scenario were the highest among the three considered 

scenarios across each of the land use/cover categories in the study area. The values under this 

scenario illustrated the highest means and minimum variations (SD) across all categories (i.e., 

0.87±0.06 in grasslands, 0.3±0.02 in croplands, 0.61±0.04 in pasture areas, and 0.18±0.02 in 

wetlands). Consequently, the spatial sources of degradation in the transportation data layer have the 

highest degradation impact on the patches of habitat at different categories.  

Table 4.3 The Results of the ANOVA Tests for the Specific Land Use/Cover Categories  



67 
 

Among the other two scenarios, the first scenario represented slightly higher mean habitat quality 

values and lower variations than the third scenario, meaning that the considered energy sources of 

disturbance degrade habitat more than the urban centers across the different land use/cover 

categories in the current range of Burrowing Owls.  
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Figure 4.5 The Box and Whisker Plots of the HQ Values across the Specific Land Use/Cover Categories 



68 
 

Chapter 5. Discussion 

5.1 The Results in the Context of Literature 

The analyses of the results attained from the habitat quality models in this study confirm that despite 

the existence of differences in the habitat quality values between the two ranges, these variations are 

not statistically significant. Furthermore, variations in relative habitat quality values between the 

different scenarios are also not statistically significant across all land use/cover categories in the 

current range of these species, and when the individual land use/cover categories are the subject of 

investigation. Nevertheless, the mean habitat quality values in the current breeding grounds are more 

affected by the existing transportation network, followed by the energy and urban data layers, 

respectively. This trend is also observed across the individual land use/cover categories specified in 

the study area. 

The disparity of habitat quality values between the historic and current ranges of burrowing owls 

illustrates that the delineated spatial sources of degradation cannot cause considerable degradation to 

the habitat of these avian species, when the existing configuration of land use/cover categories is 

considered across the study area.  That is, despite the fact that the current range of burrowing owls 

is situated within the boundaries of the historic range, habitat degradation caused by the cumulative 

impact of these sources of degradation cannot merely explain the contracted range and the declined 

population of these species. Thus, an alternative explanation must exist to shed light on the 

extirpation of these migratory birds from their historic range. 

Given that the majority of the landscape across the historic range of Burrowing Owls was converted 

from grass to grain, a more plausible explanation for the contracted range of these species would be 

the relationship that exists between the spatial configurations of habitat patches at this spatial extent. 
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More specifically, where significant proportions of the landscape had been transformed, area (patch 

size), and isolation are the factors influencing the population of species in terrestrial ecosystems 

(Andren, 1994).  

That is, the spatial configuration of habitat patches becomes the dominant determining factor as the 

proportion of converted landscape increases. Yet, the impact made by the considered sources of 

degradation is not sufficient to attribute the contracted range of these species to the cumulative 

degradation caused solely by these data layers across the historic range. Rather, this might be 

attributed to the isolation and patch size effects caused by the past landscape transformation 

processes (Samson and Knopf, 1994). 

According to Andren (1994), a minimum extinction threshold (i.e., the native habitat proportion) of 

30% must exist for the persistence of avian species across the terrestrial ecosystems. This means that 

regardless of the rate of colonization, at a certain point in a continuum of disturbed habitat 

configuration characterized by fragmentation at one end and complete habitat loss at the other, the 

metapopulation of species loses viability (Hanski, 2011). The results of this modeling study illustrate 

that the proportion of habitat in the native vegetation patches (i.e., grasslands) across the historic 

range of Burrowing Owls is 21%, which falls well below the 30% native habitat extinction threshold 

defined by Andren (1994). 

While this threshold might seem to be unrealistic to habitat generalists like Burrowing owls (Clayton 

and Schmutz 1999; Orth and Kennedy 2001), the extent of dispersal, variant site fidelity (Wellicome 

et al., 1997; De Smet, 1997; Duxbury, 2004), the limiting factors particular to these species (Lantz et 

al., 2004), and their close association with fossorial mammals (Sidle et al., 1998; Wellicome 1997; 

Leupin and Low, 2001) are the ecological attributes that might have contributed to the declined 

resistance level among these species across their historic breeding grounds.   
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Consequently, despite being relatively effective in reducing the habitat quality values across the 

historic range of Burrowing owls, the modifications made to the landscape, as well as the edge and 

isolation effects caused by the considered spatial sources of degradation, can only be presumed to 

have a complementary impact on the changes occurred to the landscape configuration through 

historic land conversion activities. 

Across the current range of Burrowing Owls, where despite the disproportionate rates of native 

grass loss and population declines over the past decades (Skeel, 2001; Holroyd and Trefry, 2011) 

these species are still extant across the prairie landscape of Saskatchewan and Alberta, the relative 

frequency of high-quality habitat is 38%, which is higher than the 30% conversion threshold 

considered for the persistence of avian species across a given ecosystem. 

Nevertheless, the relative habitat quality values under the specified spatial sources of disturbance at 

this spatial extent yield no significant differences with the habitat quality values across the historic 

range of these species, nor they differ from one another when different scenarios are considered. 

These results corroborate the findings of Scobie (2015) in the mixed-grassland areas of southern 

Alberta and Saskatchewan, where notwithstanding the owls’ avoidance from certain anthropogenic 

features such as roads with high traffic speed, human footprint is yet to affect the breeding habitat 

for Burrowing Owls, and these birds might even prefer nest sites surrounded by cultivated 

landscapes or even surface of roads perceived to be less menacing.  

Given that at the landscape level, the wildlife response is not instantaneous and represents 

nonlinearities to native habitat loss across terrestrial ecosystems (Hanski, 2011), the observed 

declining trends in the population of Burrowing Owls across their current range could be attributed 

to the relaxation time (Diamond, 1972) associated with the past conversion activities, and, to a much 
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less extent, to the edge and isolation effects caused by the spatial data layers considered in this 

modeling study. 

However, since the extinction threshold is not yet violated across the current range of these species, 

other potential factors such as severe weather condition (Heisler, 2014) and loss of trophic options 

(Poulin, 2003), whereby the ecological processes are being disrupted at the landscape (Hutto, 1985) 

and micro-habitat (Allen et al., 1987) levels, might better justify the observed and continuing 

demographic trends of these endangered birds. In addition to these potential causes of habitat 

degradation, the declining population of Burrowing Owls as migratory birds might also be related to 

factors affecting the returning wild pairs outside of the considered spatial extent in this study (e.g., 

landscape modifications), particularly across the wintering grounds in the southern portions of their 

global range (McDonald et al., 2004). 

 5.2 Implications for Practice 

This study presents the first relative habitat quality model at the landscape level with reference to the 

most cited spatial anthropogenic sources of degradation affecting the habitat for the Burrowing 

Owls across their breeding grounds in the Canadian Prairies. Based on the existing theories about 

the critical habitat (Hall et al., 1997) and landscape-level extinction threshold for species (Andren, 

1994), the current spatial extent for these endangered avian species can potentially be considered as 

a spatial extent where the action plans should be implemented.  

That is, the proposed fire and grazing management strategies, habitat restoration, population 

monitoring and management, and reintroduction practices (Parks Canada Agency, 2016) can be 

implemented at similar or close rates to what is being currently implemented across the conspicuous 

colonies of the Black-tailed Prairies Dogs, designated as the existing critical habitat boundaries for 

Burrowing Owls (Environment Canada, 2012). More specifically, the existing home ranges should 
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not entirely be equated to the currently occupied habitat patches as high-quality habitat patches 

across the landscape might be selected for occupation at a later time (Hall et al., 1997), provided that 

new burrows be excavated or allocated for reintroduction purposes.   

Since a significant proportion of the high-quality habitat areas is located within the grassland patches 

of the current range, the results of this study can be used in conjunction with concurrent 

probabilistic models of grassland conversion (e.g., Gage et al., 2016; Olimb and Robinson, 2019), as 

well as the spatially explicit habitat suitability and resource selection model for Burrowing Owls 

(Stevens et al., 2010) and other grassland birds (Fedy et al., 2018) in the remaining grassland areas of 

the prairies to target the high quality habitat patches with different conversion risks and probability 

of occupation. Since Burrowing Owls are considered as flagship species (Environment Canada, 

2017), adoption of conservation strategies at this spatial extent would also benefit the associated 

burrowing mammals, and other avian species with high association with the grassland patches and 

similar sensitivity levels to the identified sources of disturbance across the study area (Askins et al., 

2007).  

Despite illustrating no statistical significance, the differences in the mean habitat quality values under 

different scenarios in the current range of these species could be used to mitigate the relative habitat 

degradation caused by the considered spatial data layers across this spatial extent. As there is no 

precedent for the quantification of habitat quality values under the anthropogenic sources of 

degradation across the current range of Burrowing Owls, the habitat quality change index calculated 

for transportation, energy, and urban data layers can be considered as a basis for prioritizing the 

recovery actions to mitigate the impact of these anthropogenic features across the landscape and 

different land use/cover categories. 
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Considering the existing spatial composition of these spatial data layers, conservation, recovery, and 

reintroduction measures should be implemented by prioritizing the impacts of the transportation 

network, energy infrastructure, and population centers, respectively. This is of the utmost 

importance as the further expansion or intensification (e.g., use) of these sources of disturbance 

across the current range of Burrowing Owls might lead to statistically significant differences, which 

may ultimately cause extinction cascades (Fischer and Lindenmayer, 2007) when combined with 

further native habitat loss across this landscape.  

 5.3 The Limitations and Modeling Advancements   

Like any modeling study, the results of this research should be interpreted by considering some 

limitations and simplifications in the habitat quality simulation framework. The first salient point in 

this process is the proxy-based nature of the habitat quality model. Despite the inclusion of 

ecosystem structure, the proxy-based measures in ecology can only capture a small section of a vast 

web of cause and effect mechanisms characterized by nonlinearities associated with the ecological 

causal pathways in a given ecosystem (Stephens et al., 2015). 

As such, the results of this study should not be seen in lieu of the species-specific studies (e.g., 

Marsh et al., 2014 a,b; Scobie, 2015) about our endangered birds. Rather, these results should be 

interpreted through the prevalence and heterogeneity of different habitat patches and the degree to 

which the suitable landscape is disconnected by the human footprint. This modeling approach, 

therefore, provides further insights to the studies assessing the demographic, distributional, and 

physical characteristics of these birds. Furthermore, degradation to habitat patches is calculated 

considering the additive impact of the delineated spatial sources of degradation on the landscape. 

However, the cumulative impact caused by these sources of disturbance could be much greater than 

the sum of its parts (Sharp et al., 2019).  
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Besides, not all the anthropogenic sources of degradation are considered in this modeling study. For 

instance, due to the dearth of knowledge on the impact of mining and industrial areas on the habitat 

quality values for Burrowing Owls, these areas are excluded from the threat data and only 

considered as land use/cover categories with zero suitability level. Similarly, the impact of petroleum 

infrastructure was considered to be focused in the proximity of the drilling well pads, and as such, 

the potential influence of pipelines or new technological advancements (Brittingham et al., 2014) 

that enable hydraulic fracturing at more depths and reoperation of abandoned wells were not 

integral to this modeling study.   

Moreover, the results of this study should only be considered for a fixed spatial extent and point in 

time and are not generalizable over different spatiotemporal scales. That is, the temporal changes 

across the landscape are not part of the habitat quality assessment in this study, mainly because this 

research serves as a first habitat quality model at the landscape level, and should be used as a 

baseline model for conservation actions at the current range of these species with reference to the 

considered sources of degradation. Consequently, extrapolating the results of this study to a larger 

spatial extent beyond the considered range of these species would be inappropriate due to 

differences in ecosystem structure and composition of spatial sources of degradation across other 

spatial extents. 

Nevertheless, the incorporation of the elimination method into the parameterization of the relative 

sensitivity scores could be considered as a stepping stone in this modeling framework, whereby 

Burrowing Owls’ sensitivity to different sources of disturbance is determined using a set of criteria 

defined based upon the direct and indirect factors affecting the resistance of these species to 

environmental changes across the study area. More specifically, factors such as edge effect, 

accessibility to trophic options, or extended home ranges that might not be directly considered 



75 
 

through the spatial configuration of the habitat patches and sources of degradation, are incorporated 

into the ranking system which defines the perceived level of threat, and thus species’ relative 

sensitivity to the sources of degradation. 

In addition, this approach is aligned with the participatory nature of the InVEST decision-making 

toolset and provides a more robust and flexible parameterization approach by incorporating a 

variety of factors, which could be directly acquired from the literature on the species or expert 

surveys on different criteria and their order of importance, rather than relying on general principles 

of ecology (e.g., Forman, 1995) or inferences from cognate studies that might lead to ill-structured 

modeling assumptions, when species-specific habitat quality measurement is the purpose of 

assessment. 
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Chapter 6. Conclusion 

This research was conducted to answer the essential knowledge gaps in the literature on the impact 

of the anthropogenic sources of disturbance on habitat quality for Burrowing Owls across their 

breeding grounds in the Canadian Prairies. Based on the adopted landscape-level habitat quality 

model, the existing spatial distribution of the spatial sources of degradation did not result in 

statistically significant variations in the habitat quality values between the historic and current ranges 

of these endangered migratory birds. Similarly, different combinations of sources of disturbance 

illustrated no dramatic differences in the mean habitat quality values across the current range of 

these species. 

Accordingly, the contracted range and the declining population of these ground-dwelling birds of 

the open prairie landscape could be attributed to other factors, such as the relaxation time associated 

with past landscape transformation activities, inclement weather conditions, stochastic 

environmental changes, and access to trophic options across the study area. Yet, since the 

considered spatial extent serves as the northern edge of the global range for these small migratory 

birds and that these endangered avian species only occupy the study area during the breeding season, 

their decline from the landscape might also be the result of the synergistic association between 

various factors leading to habitat quality degradation across their wintering grounds in the southern 

parts of their global range. 

Despite showing no statistical significance, the different habitat quality values under the considered 

scenarios across the current range of Burrowing Owls were integral to the calculation of the habitat 

quality change index as a measure of habitat degradation caused by the different groups of data 

layers considered in this modeling process. Accordingly, the transportation, energy, and urban data 
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layers were determined to cause, in descending order of importance, the highest levels of 

degradation across the current range of Burrowing Owls.  

As such, conservation measures (e.g., buffer zones) targeting these spatial sources of degradation can 

be prioritized according to the calculated habitat quality change index to preclude statistical 

significance that might be caused through the expansion or intensification of the sources of 

disturbance, which may, in conjunction with further habitat transformation, lead to extinction 

cascades among these charismatic migratory birds across the Canadian Prairies. However, since the 

extinction threshold is not yet violated across the current range of these species, conservation 

measures at the existing critical habitat boundaries could be expanded to match the spatial extent of 

the current range in order to maintain, and if possible, improve the relative habitat quality for these 

endangered species at a larger spatial scale. 

This study is an initial step, from a landscape modeling preservative, to delve deeper into the 

influence of the human footprint on habitat quality for Burrowing Owls at the northernmost 

portion of their global range. However, since habitat and its quality are both relative concepts, the 

results of this study should only be judged at a fixed spatiotemporal scale, and thus need to be 

considered as a baseline habitat quality model in the absence of preexisting landscape-level models 

across the prairies. As such, the results should not be extrapolated beyond this spatial extent and 

point in time. Consequently, future studies should evaluate the potential impacts of the other 

anthropogenic or environmental sources of degradation at various spatial scales and points in time. 
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Appendix 

 

 

 

 

IUCN Categories                              Assigned Accessibility Value        Description 

Ia: Strict Nature Reserves                                          0                                    Protected areas that are strictly set aside to protect          
biodiversity and also possibly 
geological/geomorphological features, where human 
visitation, use and impacts are strictly controlled  

Ib: Wilderness Area                                                  0.28                                Protected areas that are usually large unmodified or 
slightly modified areas, retaining their natural 
character and influence, without permanent or 
significant human habitation, which are protected and 
managed so as to preserve their natural condition. 

II: National Parks                                                    0.42                                 Large natural or near natural areas set aside to protect 
large-scale ecological processes, along with the 
complement of species and ecosystems characteristic 
of the area, which also provide a foundation for 
environmentally and culturally compatible spiritual, 
scientific, educational, recreational and visitor 
opportunities. 

III: Natural Monument or Feature                          0.57                                  Protected areas set aside to protect a specific natural 
monument, which can be a landform, sea mount, 
submarine cavern, geological feature, or even a living 
feature such as an ancient grove. They are generally 
quite small protected areas and often have high 
visitor value. 

IV: Habitat/Species Management Area                  0.71                                  Protected areas aiming to protect particular species or 
habitats and management reflects this priority. Many 
category IV protected areas will need regular, active 
interventions to address the requirements of 
particular species or to maintain habitats, but this is 
not a requirement of the category. 

V: Protected Landscape                                        0.86                                   Includes areas where the interaction of people and 
nature over time has produced an area of distinct 
character with significant ecological, biological, 
cultural and scenic value: and where safeguarding the 
integrity of this interaction is vital to protecting and 
sustaining the area and its associated nature 
conservation and other values. 

VI: Sustainable use of natural areas                        1                                       Protected areas that conserve ecosystems and 
habitats, together with associated cultural values and 
traditional natural resource management systems. 

Table 1. The list and definitions of IUCN categories and the assigned accessibility values  
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Alternatives 

Factors Alternative 1 Alternative 2 Alternative 3 Alternative 4 Alternative 5 

Factor 1 11.9 15.6 10.5 13.1 12.4 

Factor 2  B- A C- C+ B+ 

Factor 3 B- B- B C+ C+ 

Factor 4 B C- A B C 

Factor 5 C+ C+ B+ C- C+ 

Factor 6 8.7 15.6 6.9 17.8 11.4 

Factor 7 21 84 14 67 37 

 

 

 
 

Alternatives 

Criteria without linking statements 
(In decreasing order of importance) 

Alternative 1 Alternative 2 Alternative 3 Alternative 4 Alternative 5 

Factor 1 must be greater than 11 
  

× 
  

Factor 2 must be C+ or better 
  

× 
  

Factor 3 must be C+ or better 
     

Factor 4 must be B or better 
 

× 
  

× 
Factor 5 must be B or better × × 

 
× × 

Factor 6 must be 10 or less 
 

× 
 

× × 
Factor 11 must be less than 50 

 

× 
 

× 
 

      

Alternatives Alternative 1 Alternative 2 Alternative 3 Alternative 4 Alternative 5 

Initial ranking 1 4 5 2 3 

 

 

 

 
Alternatives 

Criteria using linking statements 
(In decreasing order of importance) 

Alternative 1 Alternative 2 Alternative 3 Alternative 4 Alternative 5 

Factor 1 must be greater than 10 AND 
Factor 5 must be C+ or better  

   
× 

 

Factor 2 must be better than B OR  
Factor 4 must be at least B+ 

× 
    

IF Factor 3 is less than B, then  
Factor 6 must be less than 10 

 

× 
  

× 

IF factor 2 is B or more, then 
 Factor 7 must be less than 40 

 

× 
   

      

Alternatives Alternative 1 Alternative 2 Alternative 3 Alternative 4 Alternative 5 

New ranking 4 3 1 5 2 

Table 3. Sequential Elimination Process in a Sample MCDA Situation 

 

Table 2. Sample Factors and Alternatives in a MCDA Situation 

 

Table 4. Sequential Elimination and Ranking based on Linked Criteria 

 


