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Abstract

High demand for mobility has undeniably been causing numerous negative impacts on
the economy, the society and the environment. As a potential solution to address this
challenge, a rapid transition is taking place in the transportation sector with emerging
concepts of mobility marketplace. The basic premise is to treat the transportation sys-
tem and its use as a collection of commodities or services that can be bought from the
transportation market. This concept is increasingly becoming a reality with the techno-
logical developments in automotive industry such as connected and autonomous vehicles
(CAVs). However, there are many policy, design and operation related issues that must be
addressed before these traffic management schemes become reality. This thesis research
aims at addressing some of these challenges and issues with a specific focus on the two
most promising market-driven instruments, namely, mobility permits (MP)- and mobility
credits (MC)-based traffic management schemes, which have been proposed to manage
travel demand and mitigate traffic congestion by controlling roadway-use right. This re-
search has made several distinctive contributions into the literature. We first conduct
a critical review of the state-of-the-art methodological advances on MP- and MC-based
travel demand management schemes. We synthesize the relevant body of literature with
an in-depth discussion on related studies to provide an improved understanding of the
fundamental constructs of these problems, including problem variants, methodologies, and
modeling attributes. We also discuss the research gaps and challenges and suggest some
possible perspectives and directions for future research.

Based on the gaps identified in the literature review, an integrated framework is pro-
posed for implementing various roadway-use right-based traffic management programs such
as MP and MC-based schemes. This framework entails a unique construct for integrating
the needs of multiple stakeholders (e.g., road users and authorities), diverse network con-
ditions, and traffic control methods. It allows easy incorporation of different components
required for implementing a coordinative mobility scheme, taking into account the influ-
ence of the participating players and the underlying issues. The framework can be served
as a road-map to future studies on different roadway-use right-based solutions for traffic
congestion management.

With our proposed framework, we then focus on addressing various specific challenges
arising in designing and implementing MP-based and MC-based schemes, such as, represen-
tation of realistic user characteristics (e.g., utility function, user priorities and cooperation),
availability of information on users and traffic conditions, uncertainty in system conditions
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and user behaviors, and circulation of mobility rights in market place. For the MP-based
scheme, we focus specifically on designing a mobility scheme for single-bottleneck road-
ways. Roads with bridges, tunnels and business districts with limited parking spaces are
the most obvious examples of a simple roadway with a single-bottleneck in a transportation
network. We deal with observing operational objectives, specifically, balancing efficiency,
equity (users priorities), and revenue outcome of distributing mobility permits under the
“fairness” constraint. We explore the theoretical properties of the proposed scheme and
show that the proposed scheme can achieve an optimal traffic pattern. Particularly, we
show that the proposed scheme is a Pareto-improving and strategy-proof scheme capable
of achieving efficient and effective market prices suitable for travelers. Our computational
results indicate the effectiveness of the proposed scheme as an alternative solution for
MP-based traffic management on single-bottleneck roadways.

We then investigate the case of traffic congestion management in a general road net-
work through a MC-based scheme. Specifically, we propose a MC-based traffic manage-
ment scheme in a road network consisting of a mixed-fleet traffic with connected and au-
tonomous vehicles (CAVs) and conventional vehicles (non-CAVs). The basic premise of the
proposed scheme is to regulate or influence travel demand and congestion with regards to
the supply (capacity) of road networks, implementing a market-driven traffic management
paradigm. A set of revenue-neutral, Pareto-improving MC-based charge and reward poli-
cies applicable to stochastic traffic environments are developed, considering different char-
acteristics of users such as cooperative versus selfish routing behaviors, human-associated
factors (e.g., level of uncertainty) and interactions due to a shared infrastructure setting.
Path-free mathematical programming models are formulated, obviating computationally
intractable path enumeration process pertinent to the existing studies. This makes the
proposed scheme suitable for examining the theoretical characteristics of large-scale realis-
tic transport networks. We examine several theoretical properties related to the proposed
MC-based scheme, including the existence and uniqueness of the equilibrium price, and
existence of Pareto-improving credit charges and rewards rates that can promote travel
decision behaviors of individual travelers towards a network-wide optimal state. Our com-
prehensive computational results indicate that the proposed MC-based scheme can be an
effective tool for managing travel demand and routing decisions in mixed-vehicle traffic
settings.
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Chapter 1

Introduction

1.1 Background

In roadway mobility networks, typically, each user individually looks for an ideal depar-
ture/arrival time and chooses a route and transportation mode that conceivably has the
highest utility, under the prevailing traffic conditions. Without a proper mobility man-
agement strategy, individuals’ self-concerned actions, in large, can lead to a collectively
undesirable traffic state coined as congestion. It is one of the main factors contributing
to inefficiency in transport with a broad range of externalities such as lost time, excessive
wasted energy, social distress, public discomfort, harmful emissions and environmental
deterioration.

In Canada, traffic congestion has reached an acute level. A conservative analysis con-
ducted in 2006 showed that traffic congestion cost $4.6 billion annually, of which almost
$3.7 billion was incurred in the Toronto, Montreal and Vancouver regions (Force 2012).
A recent report by Commission et al. (2015) shows that congestion directly costs Toronto
about $7 billion annually and Vancouver $1.4 billion. It is projected that the average
annual cost to a commuter will grow to $1,100 and the national total congestion cost will
grow up to $199 billion by 2020 (Schrank et al. 2012, 2015). Traffic congestion is also a
common issue in many other countries around the world. For example, in urban areas
of the US, each commuter approximately wasted $960 per year during the rush-hours on
roads and the total congestion cost approximately $160 billion in 2015 (Schrank et al.
2015). A recent report shows that the average travel time index in the 10 most congested
cities in China is close to 2, indicating that during rush-hours one would spend at least
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twice the free flow travel time on a trip on a normal day. For Beijing, it was reported that
the congestion cost totaled over $11.3 billion in 2014, 80% of which was the lost time (Nie
2017a).

To harness the ever-increasing mobility demand in congested areas, practitioners and
researchers have introduced a host of solutions, which can be classified into supply- and
demand-based solutions. Supply-based solutions focus on increasing the capacity of trans-
portation network by building roads and lanes and removing bottlenecks. However, increas-
ing network capacity by adding more roads and lanes, turned out to be “self-defeating”
in the sense that the increased capacity of road infrastructure can lead to increased travel
demand and therefore congestion consequently (Johnston et al. 1995). Indeed, it has been
shown that expanding road capacity is more likely to induce additional demand without
reducing traffic congestion— the Pigou-Knight-Downs paradox (Downs 1962).

In contrast, demand-based strategies focus on reactive or proactive controlling of the
travel demand from users side. There are two types of demand-based methods, namely,
price-based and quantity-based schemes. The London congestion charge, the Stockholm
cordon charge, and Singapore’s Electronic Road pricing system are a few successful cases of
congestion pricing. However, congestion pricing faces many questions pertaining to social
equity and perception of fairness, which strongly influence the public acceptability and
economic efficiency of the scheme (Chen and Yang 2012).

Though a powerful mechanism, congestion pricing has not been widely adopted due
to public objections. Thus some researchers and planners have proposed quantity-based
demand schemes that directly restrict mobility demand levels. Quantity-based regulations
can be categorized into cap-and-trade (CAT) and command-and-control (CAC) schemes.
CAT schemes are market-based regulatory mechanisms that assign right of ways (ROWs)
along with economic incentives and tradability option while CAC set strict bounds on
ROWs without integrating a fully free market dynamics such as tradability. Some variations
of these types of schemes have been practiced in several cities across the world to control
traffic congestion and related negative effects. The pre-established rules and car prohibition
programs, such as alternate-day travel right, even-odd rationing, and generally license plate
rationing (LPR), are indeed the simplest quantity-based CAC schemes. These control
mechanisms have been applied in many Latin American cities like Mexico City and Sao
Paulo, and recently in a few large cities in China such as Beijing and Guangzhou (Wang,
Gao, Xu and Sun 2014b). These schemes, however, could become less effective in a long
term. For instance, in Beijing and Mexico City it has been observed that people started
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circumventing these rationing rules by owning multiple cars with odd and even numbers.
This resulted in considerable welfare losses and inequality issues such as wealthier people
can afford to own multiple cars. Consequently, Beijing abandoned the odd-even rationing
policy, and introduced one weekday driving ban (Han et al. 2010, Gu et al. 2017). However,
there has been no evidence that the “One Day without a Car” program has improved air
quality or reduced the congestion significantly in Beijing (Davis 2008, Sun et al. 2014). In
Bogota, capital of Columbia, cars were banned during the peak hours for two days per week
in order to make it harder for citizens to break the rule by buying two cars. The government
continued to switch the combination of days and numbers every year; however, people
started to drive more during off-peak hours, thus rendering the government appointed
peak hours as ineffective (Nie 2017a). Regardless of their configuration, the LPR schemes
are proposed to reduce congestion by restricting the mobility demand via rationing, which
can help reduce congestion under certain conditions. However, these policies are ineffective
solutions as they lack supply-demand drivers and free market dynamics (Nie 2017b).

Mobility permit (MP)-based traffic management has been proposed as an alternative
solution with potentials to circumvent the shortcomings of road pricing and simplistic ra-
tioning approaches. Mobility permit, also called mobility credit, is an innovative scheme
that assigns roadway space to travelers according to pre-established permit endowment
policies. The underlying idea is that one should have a permit or enough credits to use a
specific road at a specific time, i.e., roadway space is a commodity or service to be bought
from a transportation market. Some MP schemes allow the permit holders to trade or ex-
change their permits as “market goods” in a free market, which are thus coined as tradable
mobility permit. This helps re-distribute social welfare among the eligible participants (Fan
and Jiang 2013). It is worth mentioning that some of the aforementioned demand-oriented
control schemes (e.g., LPR, even-odd and alternate-day rationing, and managed lanes) are
actually primitive forms of permit-oriented mechanisms without integrating proper mar-
ket drivers and users concerns within their operations. One of the main reasons for the
limited adoption of MP-based schemes was lack of technological support and operational
environment. This is however no longer the case due to recent technological advances and
developments in the transportation sector as discussed in the following section.
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1.2 Motivation

Mobility permit- or credit-based traffic management is a market-based mechanism to mit-
igate traffic congestion. Market-based schemes have been proven to be very effective solu-
tions to similar problems in some other applications. For example, permit-based schemes
have been applied to deal with public issues on common-property assets such as controlling
pollution and emission and managing natural resources. A market-based traffic manage-
ment mechanism can result in an increased net benefit for society by managing mobility
demand in a collective way through which commuters are required to pay reasonable prices
for transportation (Grant-Muller and Xu 2014). In other words, with a proper market-
driven mechanism, the mobility demand and thus congestion can be controlled under the
power of a free market medium. A road transport market can be constructed by casting
road space as a common commodity; thus mobility demand can be controlled either with
CAT or CAC schemes. The underlying idea is to endow the spatiotemporal ROWs to eligi-
ble commuters based on normative or rationing rules while observing the efficiency of the
mobility system (Fan and Jiang 2013). Compared to the other traffic management strate-
gies (e.g., tolling, pricing, or taxation) a permit-based mobility scheme is considered to be
more flexible, targeted, cost-effective, and responsive to the changes in roadway transporta-
tion dynamics (Godard 2001). A properly designed and distributed permit-based scheme
can attain a better social acceptability and allow for achieving a more desirable welfare
state.

While the potential of these schemes has been shown and various permit- and credit-
based management strategies have been proposed theoretically, none of them has been
implemented and validated in practice due to the lack of advanced technologies and social
and political support (Verhoef et al. 1997, Fan and Jiang 2013). This is no longer the
case. Recent technological advances in information and communications technology (ICT)
and automotive industry have paved the way for implementation of coordinative mobility
permit-based traffic management system. Individual travelers are increasingly equipped
with smartphones to communicate and exchange travel information. For example, many
travelers are already using real-time mobile navigation applications, such as Google Mapsľ

and Wazeľ, to adjust their everyday mobility behaviors and make decisions about travel,
route, mode of travel, and origin and destination choices. The introduction of connected
and autonomous vehicles (CAVs) presents another opportunity for coordinated and coop-
erative travel, such as those in a MP-based mobility system (Klein and Ben-Elia 2016).
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Another seismic shift that is taking place in the transportation sector is the rise of
mobility marketplace and mobility-as-a-service (MaaS). MaaS aims to unify different travel
options from different kinds and modes of mobility service providers, into a single seamless
intuitive gateway such as a mobile App. It allows users to buy on-demand or subscribe to
an affordable mobility package, and help them manage their trips from planning step to
final payments (Mobility-as-a-Service n.d.). MaaS will bring about a huge change in the
way people and goods move. People are expected to depart from personally-owned modes
of transportation, and change their behavior from making conventional mobility decisions,
from ride to here or there, to utilizing point to point mobility-on-demand services with a
range of personalized mobility options. Mobility becomes an on-demand service requested
by travelers who manage and use their credits to pay for consuming the limited capacity of
the mobility network of all modes. This shift is expected to induce significant changes in the
current transportation theories and practices. Expectedly, MaaS will be hosted by mobility
service providers on top of smart infrastructures, mobility-sharing facilities, connected
traffic systems, connected and autonomous vehicles (CAVs), tracking technologies along
with Internet of things (IoT) through a unified gateway that serves travelers and manages
their trips.

All these developments will have revolutionary impact on car ownership and trip making
models, mobility demand, users’ expectations about quality of service, and competition in
the mobility market. Undoubtedly, with all the technological advances and the rising
MaaS, MP-based traffic management system will become a reality. To enable such a future
however, sophisticated service recommendation, permit allocations and pricing schemes
must be developed, which are the main interest of this research, as detailed in the following
sections.

1.3 Problem Statement

As discussed in the previous section, MP-based mobility management becomes increasingly
feasible both technologically and politically. However, to assure the viability, effectiveness
and acceptability of a permit-based traffic management system, many technical problems
still need to be addressed. One of the main problems is how to price the mobility permits
and allocate them to the users of different mobility systems. The underlying problem can
be seen as a resource management problem, in which a decision maker needs to decide on
the pricing and allocation of scarce resources (mobility permits as roadway usage rights)
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to users considering different requirements and criteria. A pricing and allocation scheme
must consider the objectives of mobility service planner and provider, mobility users’ con-
cerns and desires, and then determine the market values (prices) of permits according to
transportation network characteristics (e.g., bottlenecks). Mobility permit pricing and allo-
cation must balance between heterogeneous users’ concerns about the fairness and mobility
service providers’ requirements about the overall efficiency of the system. In other words,
given transportation network characteristics, a mobility manager must issue permits and
endow them to the users of the system based on their time-varying desires while satisfying
efficiency measures in terms of level of service and return on investment. In addition, the
simplicity and computational efficiency of the scheme are other implementation-related fac-
tors that can highly affect the interoperability of the permit-based mobility management
scheme.

The idea of using permits for mobility control can be traced back to Verhoef et al.
(1997), who explored possible applications of different permit mechanisms in the regulation
of road transport externalities. Goddard (1997) was the first to propose the use of mobility
permits for restricting travel demand. Later, Koolstra (1999) studied the potential benefits
of an advance slot reservation system for highway users, analyzing the difference between
the user equilibrium and the system optimal departure times. Yang and Wang (2011)
formally set up a mathematical model for MP-based traffic management problem in general
networks with a link-specific charging scheme. They analyzed and explored a system of
travel credits and obtained the existence of a unique equilibrium link flow pattern, with
either fixed or elastic demand, by solving a standard traffic equilibrium model subject to
a total credit consumption constraint. They also showed that, under a revenue-neutral
manner, at equilibrium the credit price in the trading market is conditionally unique, and
the correct selection of link-specific rates and appropriate distribution of credits among
travelers can lead to the most desirable network flow patterns. However, their scheme is
essentially a price-based mechanism that cannot eliminate congestion unless credit charges
are time-varying or all travelers treat credit charge equivalently (Bao et al. 2016). Moreover,
it is limited in addressing users’ priorities and concerns on the equity and fairness notion.
In addition, their scheme faces the asymmetric information problem which can lead to
a regulatory failure. Doan et al. (2011) addressed the pricing strategies in the discrete
time single bottleneck model with general heterogeneous commuters and proved that a
system optimal assignment can eliminate the queue. They formulated the system optimal
problem as a linear programming (LP) model and discussed the existence and uniqueness
of solution by applying duality theory. They proved that an equilibrium solution can
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be achieved with corresponding optimal tolling. Extending the work of Yang and Wang
(2011), Wada and Akamatsu (2013) proposed a network scale MP-based mechanism under
which each commuter purchases a specific number of permits based on their preferred path.
However, their mechanism requires a commuter to buy all the link-specific permits along
their path which makes it very complicated for a real-world transportation network. All
these studies also assume that users behave rationally and react consistently under the
same assumed settings, which is not the case in practice.

To address travelers’ self-concerned behavior, some of the proposed MP-based schemes
try to operate the transportation network at a user equilibrium (UE) traffic pattern where
travel decisions are coordinated through a unified gateway. On the other hand, to address
the mobility service providers’ concerns about efficiency of the system some researchers
proposed using MP-based schemes that operate the mobility system at a system optimum
state. However, neither UE is the most efficient state when the collective travel times
in the entire transport system is expected to be minimized, nor system optimal (SO) is a
stable equilibrium in the absence of proper intervening forces such as incentives and charges
(Rothengatter 1982). To manage mobility demand efficiently in a transportation network,
it is important to account for the dynamics of users’ behavior and expectations on top
of the simplicity and efficiency concerns. In our understanding about MP-based scheme,
more attention is being given to UE and SO measures which should not always be the sole
or major considerations. In this regard, a coordinated mobility control based on a user-
centric permit scheme can gain more political and public support at a satisfactory level of
network efficiency. The proposed designs are also limited in addressing application-related
factors which have hindered the practicality a MP-based schemes. For instance, most of
the current studies are built on restrictive assumptions, e.g., rationality of travelers and
availability of perfect information. They also assume that in a transportation network,
individual users choose a path that conceivably has the least cost (time) from the origin
to the destination which is not the case always in practice. A mechanism that relaxes
these assumptions seems to be more requested in practice to facilitate the adoption of
permit-based mobility management systems in large.

A recent survey in the San Francisco Bay Area revealed that about 60% of the respon-
dents were willing to consider user-specific mobility services (Khattak and Yim 2004). This
means that on our road to a future with a mobility ecosystem, we need to be equipped with
innovative mobility control policies while putting users at the core of transport services.
Therefore, we need to incorporate issues and concerns both from travel demand and mobil-
ity supply sides to make a mobility permit-based traffic management scheme operable. We
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must help users feel secure and trust a permit-based mobility system and satisfy operators
and investors expectations on return and efficiency. The prospect should be developing
futuristic mobility management measures, aiming to improve efficiency and effectiveness of
current and future mobility systems. These forms of mobility service mechanisms should
be of interest to both users and operators.

1.4 Research Objectives

This research is motivated by the need to develop innovative mobility management systems
for mitigating urban traffic congestion in transportation networks with advanced connec-
tivity technologies. In particular, we will consider a set of futuristic mobility management
schemes to control travel demand and traffic congestion in the emerging transport technolo-
gies. The proposed research will focus on some of the main technical issues with MP-based,
such as trade-off between efficiency and fairness, users’ preferences, uncertainty and het-
erogeneity, and computational efficiency needs. We will also look into mixed-autonomy
transportation networks with cooperative and non-cooperative travel behavior of users.
Specifically, the objectives of this research are to:

• Construct an integrated framework considering issues related to system settings and
requirements of a futuristic user-centric mobility management scheme,

• Develop mobility management schemes for single-bottleneck roadways and network
with multiple bottlenecks,

• Develop models and solution algorithms for the underlying pricing and allocation
problems of the proposed mobility management schemes with an explicit considera-
tion of equity and efficiency requirements,

• Explore the theoretical properties of the formulated problems, such as existence of
equilibrium and optimality, and investigate the effect of various assumptions about
the system settings,

• Conduct case studies to demonstrate the applicability and effectiveness of the pro-
posed models and algorithms with comprehensive experiments on system perfor-
mance and sensitivity under different settings.
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1.5 Thesis Outline

This thesis is comprised of six chapters as follows:

• Chapter 1 introduces the motivation and background of the proposed research, and
continues with highlighting current practices, directions in the mobility management
field and limitations of current studies.

• Chapter 2 provides a literature review, classification and taxonomy of various mo-
bility management schemes proposed in the relevant studies.

• Chapter 3 discusses the proposed conceptual framework of an integrated paradigm
on designing mobility permit-based travel demand management scheme to highlight
the operational challenges of designing futuristic user-centric mobility management
schemes.

• Chapter 4 focuses on the design and performance analysis of mobility permit pricing
and allocation on single-bottleneck roadway. It presents the theoretical properties
of the proposed scheme and provides the results of a comprehensive set of numerical
experimentations under different settings.

• Chapter 5 focuses on the design and performance analysis of a credit-based mobility
management scheme for transportation networks with ATIS and connectivity tech-
nologies. It presents the theoretical properties of the proposed scheme and provides
the results of comprehensive numerical experimentations under different settings.

• Chapter 6 concludes the study, summarizes the findings of the research discussed in
chapters 3 to 5 and draws conclusions based on this work. Important next research
steps are highlighted as well.
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Chapter 2

Literature Review †

2.1 Summary

With the advent of new communication and information technologies, the idea of treating
roadway transportation as a shared economy and next-generation of mobility services is
increasingly becoming a reality. The basic premise is that the roadway system can be
viewed as a collection of scarce commodities of a shared economy and it can be managed
by endowing right use to its users. Over the past two decades, a growing body of research
has explored different variations of roadway-use right schemes, including credit- and permit-
based mobility schemes, with specific focus on the three problems arising in these schemes—
pricing, efficient allocation and charging of permits or credits for mobility management.
In this chapter, we attempt to synthesize the relevant body of literature by presenting an
in-depth comprehensive review of the state-of-the-art methodologies for addressing these
decision problems. The goal is to provide an improved understanding of the fundamental
constructs of these problems by systematically classifying the problem variants, proposed
methodologies, and modeling attributes. We also discuss the research gaps and challenges
and suggest some possible perspectives and directions for future research.

This chapter surveys the existing contributions in the literature on the methodological
advancements on permit- and credit-based mobility management schemes, focusing on the

†This chapter is adapted from a previously published paper: Lessan, J., & Fu, L. (2019). Credit-and
permit-based travel demand management state-of-the-art methodological advances. Transportmetrica A:
Transport Science, (just-accepted), 1-24. by Taylor & Francis in Transportmetrica A: Transport Science
on 2019/11/14, available online: https://www.tandfonline.com/doi/full/10.1080/23249935.2019.1692963.
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use of different models and problem settings. Great attention is also given to the identifi-
cation of the potential research directions for future researchers. The specific objectives of
this chapter are to:

1. review the contemporary methodological advancements on congestion management
using roadway-use right schemes;

2. provide an improved understanding of the fundamental constructs of the specified
problems;

3. synthesize the relevant body of literature and classify different proposed methodolog-
ical approaches; and

4. discuss the research gaps, challenges, and possible directions for future research.

2.2 Background

The idea of rationing a limited common resource (capacity) through permits can be traced
back to the theory of permit markets in regulating the use of the common resources, which
was suggested by Crocker (1966) and Dales (1968) as a way of controlling atmospheric
pollution and water pollution respectively. In roadway transportation sector, some early
studies on roadway-use rights mainly focus on the conceptual developments, potential bene-
fits, and feasibility of different credit- and permit-based control schemes for mitigating road
transport externalities (Goddard 1997, Verhoef et al. 1997, Kockelman and Kalmanje 2005,
Gulipalli and Kockelman 2008). However, none of these studies address the key decision
issues arising in the design and implementation of these schemes—pricing, distributing,
and charging problems— and their influences on traffic flow and market equilibrium con-
ditions. Since then, a resurgent interest has focused on developing different variations of
roadway-use right schemes and related issues.

2.3 Problem Description and Formulation

As discussed previously, roadway-use right schemes can be classified into two distinct
approaches, namely, credit- and permit-based. A permit-based scheme involves a road au-
thority restricting roads (or links) usage to those travelers who have acquired road-specific
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permits in advance (Wang, Liu and Huang 2018). In credit-based schemes, on the other
hand, the road authority would issue a certain number of mobility credits to all eligible
travelers and then charges the users with a specific number of credits for each road (link)
they have used (Yang and Wang 2011). A permit is issued to a specific user for a specific
time interval or place, while credits are user agnostic and can be used for any time inter-
vals or places. Another difference is that a credit-based scheme does not directly restrict
travel demand, while as a quantity-based mechanism, a permit-based scheme often aims to
completely eliminate the occurrence of traffic congestion by not letting the travel demand
at any time interval to be greater than the capacity of the network (Wada and Akamatsu
2013).

2.3.1 Problem Context

The roadway-use right schemes generally involve three different actors (stakeholders):
transportation firms (e.g., a private service provider), road network (mobility) users, and
central transport authority (government). The transport authority aims to mitigate traf-
fic congestion on the network and needs to deal with not only individual users but also
transportation firms and transit agencies. In the mobility right system, each user must
purchase a set of permits or must acquire enough credits corresponding to the chosen
mobility service. The roadway-use rights are good instruments to commoditize mobility
services and spread social welfare by letting the participants exchange their rights, allowing
the transport authority to outsource mobility services to third party, i.e., transport firms.
The private firms can also finance roadway construction and receive a part of the equities
as a reward for constructing the road network system (Yang and Wang 2011), or they can
be transport operators offering a broad range of mobility services. The central transport
authority needs to determine permits or credits distribution to the users, and subsequent
usage charges. A roadway-use right scheme from the transport authority’s perspective can
have different goals, such as minimizing total travel time (TTT) or total transportation
cost (TTC), or maximizing the social welfare of a transportation system. All these require
the transport authority to understand the key decision problems to manage the travel
demand in the network so as to achieve some system-level goals.
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2.3.2 Key Decision Problems

Despite all the differences, the implementation of the credit- and permit-based schemes
faces similar decisions: how should the credit/permit be distributed, priced, and charged?

The first problem is of resource allocation, in which the central transport authority
decides on the allocation or distribution of scarce resources (usage rights) to users, including
how many permits or credits to issue and to whom. This task, however, depends on several
factors such as OD demands, network characteristics, bottlenecks, links dependencies, and
time periods. The second problem is how to price the mobility rights which is also affected
by users’ travel behavior, such as arrival/departure time, mode, route choice and trading
behavior. The third problem is the charging mechanism for the usage of the roads (links),
which depends on the scheme itself and the network characteristics.

2.3.3 Basic Formulations

In what follows, we introduce the basic formulation of roadway-use right schemes, focus
on their similarities and differences. This will provide a foundation for discussing various
extension of the basic models in the subsequent sections.

Credit-based Mobility Scheme

To formally illustrate the traffic flow pattern and network equilibrium conditions under
this scheme, we borrow the credit-based model of Yang and Wang (2011) for a roadway
transportation network G = (N, L) with a set of N nodes and a set of L directed links. In
this network, each node is identified by a sequence of natural numbers i, and each link of L

is denoted by a pair (i, j) of the upstream node i and the downstream node j. Let the set
of OD pairs be denoted by W and Rw be the set of all routes between an OD pair w ∈ W .
The travel demand for each OD pair w ∈ W is denoted by qw, qw > 0. The transportation
authority implements a network-wide credit-based travel demand management system in
which a specific number of credits are distributed to individual road users in advance and
each user is charged with a link-specific amount of credits for using each link. The road
users are assumed to be homogeneous, each having a value of time (VOT) equal to unity.

It is assumed that the total number of available credits are distributed uniformly to
each traveler over the OD pair w ∈ W ; that is, the number of credits available to all
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users of the same OD pair is the same. Let K denote the total amount of credits, and k̄

denote the initial credit amount distributed to each traveler, thus K = k̄
∑

w∈W qw. Let kij

denote the credit charges on link (i, j) ∈ L; thus k = kij, (i, j) ∈ L denotes a link credit
charge scheme. Therefore, the entire credit charging scheme can be represented by (K, k).
With this credit-based scheme in place, all users would choose their routes based on their
generalized travel cost (τw), which is the sum of total travel time plus the link-dependent
credit charges, in such a way that their generalized travel cost for their trips are minimized
while they have sufficient credits for traversing the links along their chosen routes. Indeed,
at traffic equilibrium, all utilized paths between the same OD pair w ∈ W will have equal
and minimal generalized travel cost and for all the utilized paths the generalized travel
cost should be greater than the minimal generalized travel cost. At the same time, the
credit market price (p) is positive only when all the issued credits are consumed (Yang and
Wang 2011). The resulting state can be formulated as mathematical model (2.1)-(2.3),
integrating UE and credit market equilibrium state.

min
v∈φ(f ,v)

Z(v) = ∑
(i,j)∈A

∫ vij

0 tij(ω)dω (2.1)

subject to:∑
(i,j)∈A kijvij ≤ K, (2.2)

where φ(f ,v) is the feasible set of OD demand and link flows, which can be defined by:

φ(f ,v) ={(f , v)|, vij =
∑

w∈W

∑
r∈Rw

fw
r δw

ij,r,
∑

r∈Rw

fw
r = qw,

fw
r ≥ 0,∀(i, j) ∈ L,∀w ∈ W,∀r ∈ Rw}, (2.3)

where fw
r denotes the traffic flow on path r ∈ Rw, vij denotes the traffic flow on link

(i, j) ∈ L, and δw
ij,r is equal to 1 if path r ∈ Rw, w ∈ W uses link (i, j) ∈ L and zero

otherwise. For simplicity, let tij(vij), ∀(i, j) ∈ L denote a separable and monotonically
increasing link travel time function; therefore, the path travel time on route r ∈ Rw can
be obtained as tw

r = ∑
(i,j)∈L tij(vij)δw

ij,r, r ∈ Rw, w ∈ W . Assume that φ(f ,v) is non-empty,
according to Yang and Wang (2011) for this convex optimization problem with linear
constraints an optimum solution (f ∗, v∗) is obtainable with the Lagrange multipliers p

and τ = (τw, w ∈ W ) that are associated with the credit feasibility and the path flow
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conservation constraints, respectively. The Lagrangian function L for the problem can be
expressed as

L(v, τ , p) = Z(v) +
∑

w∈W

τw{
∑

r∈Rw

fw
r − qw}+ p(K −

∑
(i,j)∈A

kijvij). (2.4)

The general optimality conditions for the problem can be obtained by the Karush-
Kuhn-Tucker (KKT) conditions. Indeed, the optimality conditions are equivalent to the
UE conditions, and the credit market equilibrium conditions (Yang and Wang 2011). More-
over, the Lagrangian multipliers p and τw correspond to the unit credit price at market
equilibrium and the minimal generalized travel cost at equilibrium respectively. Nonethe-
less, as discussed there are some special cases where the credit price may not be unique.
This problem can be extended to investigate market equilibrium and traffic flow patterns
with credit-based scheme under social optimum, Pareto-improving (making each individual
user better off) and revenue-neutral (having equal charges and subsides), and restrained
traffic flow situations (Yang and Wang 2011).

Permit-based Mobility Scheme

We borrow the model of Wada and Akamatsu (2013) and Akamatsu and Wada (2017), to
formally illustrate the permit-based mobility management scheme. The general network
consists of a set of N nodes, and a set of L directed links. Each element of N (i.e., each
node) is identified by a number i, and each element of L (i.e., each link) is denoted by a
pair (i, j) of the upstream node i and the downstream node j. For simplicity, it is assumed
that the network contains only a single OD pair in which R is the set of path connecting
the OD pair (o, d). The total travel demand, Q, is fixed during the time interval [0, T ]. Let
q(t), q(t) > 0, denote the OD flow for users arriving at the destination at time period t.

To control the travel demand, the transportation authority implements a link-based
mobility permit system in which each user must hold a permit in order to use a specific
road (link) in the network. Without loss of generality, it is assumed that the number of
permits issued by the authority for each link (i, j) over each time period is limited so that
the total traffic (demand) using the link would not exceed its capacity (µij) at all times.
Moreover, it is assumed that for each link (i, j) the unit price of the permits of link (i, j) is
a function of the time the user enters the link t, denoted by pij(t). Therefore, this scheme
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would lead to varied permit prices in the market. With this permit-based scheme in place,
all users would choose their routes and travel times in such a way that their generalized
transportation cost for their trips are minimized while the conservation of dynamic link
flows and bottlenecks (capacities) conditions are sustained. The generalized transportation
cost consists of the schedule cost which is represented by w(t) as the function of destination
arrival time period t and the monetary equivalent of the total travel time paid by all users.
Indeed, at traffic equilibrium no user can improve his/her own cost by changing the path
choice unilaterally, i.e., all utilized paths between the same OD pair w ∈ W will have
equal and minimal generalized travel cost and for all the unused paths the generalized
travel cost would be greater that the minimal generalized travel cost. At the same time,
the permit market price of each link (pij) is positive only when the link is saturated. The
equilibrium state can be obtained from the solution of a mathematical formulation similar
to the credit-based scheme. However, due to the relative complexity of the permit-based
scheme, we separately illustrate each of its component and then show how they together
build up to the final model.

To describe travelers’ choices and the conditions on link flows and capacity conservation,
let yij(t) (zij(t)) be the inflow (outflow) arriving (leaving) at (from) link (i, j) at time period
t. Moreover, let NO(i) (NI(i)) denote the set of downward (upward) nodes of the links
incident to (from) node i, then the flow conservation for each node i can be represented as

∑
k∈NO(i)

yik(t)−
∑

k∈NI(i)
zki(t) = −q(t)δid, ∀t ∈ I, ∀i ∈ N, (2.5)

where δid = 1 if i = d; zero otherwise. Without loss of generality, it is assumed that the
time interval [0, T ] is discretised into small intervals [t, t + ∆t] of length ∆t. Each time
interval is represented by t = m∆t, where m = 0, 1, 2, ..., M and denoted as interval time
period t for t ∈ I.

Furthermore, it is assumed that the dynamic traffic flow on each link should satisfy the
First-In-First-Out (FIFO) condition which is expressed as

Aij(t) = Dij(t + tij(t)), (2.6)

where Aij(t) (Dij(t)) is the cumulative numbers of permit holders arriving (leaving) into
(from) link (i, j) at time t. Using the flow variables, the FIFO condition can be written as
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yij(t) = zij(t + tij(t)).(1 + dtij(t)/dt), (2.7)

where tij(t) is the travel time of link (i, j) for a user entering into the link at time t. Given
that tij(t) is a constant under the permit-based scheme where there is no congestion in the
network, the FIFO condition reduces to

yij(t) = zij(t + tij(t)), ∀t ∈ I, ∀(i, j) ∈ L. (2.8)

The conservation of dynamic link flows condition (2.5) at each node combined with the
FIFO condition (2.8) on each link can be expressed by

∑
k∈NO(i)

yik(t)−
∑

k∈NO(i)
yki(t− tki) = −q(t)δid, ∀t ∈ I, ∀i ∈ N. (2.9)

The bottleneck constraint on each link (i, j) with capacity limit µij can be expressed
as

yij(t) ≤ µij, ∀t ∈ I, ∀(i, j) ∈ L. (2.10)

Finally, flow conservation for OD flows and OD travel demand can be written as

∑
t∈I

q(t) = Q. (2.11)

Under this system of permit-based mobility scheme, the dynamic traffic flow pat-
tern that minimizes the total generalized transportation cost on the feasible set of time-
dependent OD demand and link flows conservations can be modeled as

min(q,y)≥0 F (q, y) = ∑
t∈I q(t)ω(t) + α

∑
(i,j)∈L

∑
t∈I yij(t)tij (2.12)

subject to:
(2.9), (2.10), and (2.11).

The first term in the objective function is the so-called total schedule cost, and the
second term, with α being a coefficient that converts travel time to the monetary equivalent,
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is the total travel cost. For any network in which the above problem has feasible solutions,
Akamatsu and Wada (2017) show that the equilibrium assignment under the system of
time-dependent link-specific permits minimizes the ‘social transportation cost’ defined by
the objective function. This can be shown using the necessary and sufficient conditions
for the optimality of the optimization problem. To derive the optimality conditions, the
Lagrangian function L for the problem can be expressed as

L(q, y, ρ, π, p) = F (q, y) +∑
i∈N

∑
t∈I

πi(t){q(t)δid +
∑

k∈NO(i)
yik(t)−

∑
k∈NO(i)

yki(t− tki)}+

∑
(i,j)∈L

∑
t∈I

pij(t){yij(t)− µij}+ ρ(Q−
∑
t∈I

q(t)), (2.13)

where function F is the objective function of the optimization problem; π, p, ρ are La-
grangian multipliers corresponding to constraints (2.9)-(2.11) in the optimization problem,
respectively. The necessary and sufficient conditions for the optimality of the problem given
by the KKT conditions would result in the optimal values of p∗(t), π∗(t), ρ∗. The optimal
value of these multipliers coincides with the equilibrium link permit prices, equilibrium
minimum path costs, and the equilibrium generalized transportation costs in equilibrium
conditions. The optimal flow patterns (q∗(t), y∗(t)) also coincide with the equilibrium flow
patterns (Akamatsu and Wada 2017). The author also extend the proposed scheme to
general networks with many-to-many OD pairs under different conditions such as hetero-
geneous users with different schedule delay functions and users with elastic trip demands
cases.

2.4 Classification of Roadway-use Schemes

The basic problems described in the previous section have been extended in many directions
over the past decades. Many variations of roadway-use schemes and problem formulation
have been proposed. In this section, we first provide a classification of different variations
and extensions of the roadway-use right schemes. We then look into different model-
ing characteristics and specific transport setting used in the literature. Table (2.1) and
(2.1) summarize the state-of-the-art models on roadway-use right schemes given different
attributes and assumptions. We have identified some differences and similarities in the at-

18



tributes used in the proposed schemes, including credits/permits distribution, charging and
transferability, users’ characteristics, system state, level of information, transaction costs,
financing, sustainability, parking space regulation, and the effect of CAVs on roadway-use
schemes. In the following subsections, we provide a detailed discussion about each of these
specific issues.

2.4.1 Credits/Permits Distribution, Charging and Transferability

As discussed earlier, an important issue with the existing credit- and permit-based schemes
is that they require the transport authority to predetermine the credits or permits charging
levels. Recently, Wang, Gao and Xu (2019) proposed a mixed-integer non-linear bi-level
programming model, which includes an upper level sub-model for the transport authority
that tries to find the optimal number of lanes and credit charging level with their locations,
given a lower level sub-model for user equilibrium formulation. In the sub-model the
network users try to minimize their individual generalized travel cost given the network
design strategy determined by the upper level problem. Another issue with the credit- and
permit-based schemes is that they need well-designed periodic credit/permit distribution
and collection strategies by the transport authority. To circumvent this issue, Xiao, Long,
Li, Kou and Nie (2019), present a credit internal cycling without periodic credit expiration
and distribution. They examine conditions for the existence of the solution, and prove
that there is no negative cycle under the proposed scheme and that the Pareto-improving
solution exists under certain conditions. Our review shows that almost all of the studies
consider the tradability of the permit or credits in their scheme designs to turn the mobility
rights into a market commodity, complementary incentive or equity improvement measure,
except for Liu et al. (2015) that applies a reservation scheme for travel permit and Liu
and Nie (2017) that allows users to redeem or rebate their unused credits. Regarding the
distribution mechanism, the roadway-use schemes can differ in the way they distribute the
credits or permits to users. While most of the proposed schemes bestow all eligible travelers
with equal mobility charges or rewards, some studies propose different right endowment
process where the mobility rights are tied with license plate that directly controls auto
ownership (Nie 2017b). This confirms that giving mobility rights to all (eligible) travelers
is possibly more efficient than the other alternatives.
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2.4.2 Users’ Characteristics

The most typical setting considered in literature assumes homogeneous commuters/vehicles
with identical travel time or route duration. However, user heterogeneity is a central issue
in traffic equilibrium analysis and plays a pivotal role in shaping the property and design
of roadway-use schemes (Zhu et al. 2014). Doan et al. (2011) address the pricing strategies
in the discrete time single bottleneck model with general heterogeneous commuters. Wang
et al. (2012) extend the work of Yang and Wang (2011), considering heterogeneous users
with different VOTs. They formulate it as a variational inequalities problem and examine
the sufficient conditions for the uniqueness of the aggregate user equilibrium link flows
and establishment of market equilibrium credit price. For managing bottleneck congestion
and modal split in a competitive highway/transit network with continuous heterogeneity
in the individuals’ VOT who are initially endowed of a certain amount of travel credits,
Tian et al. (2013) implement time-dependent credit charges only for the usage of the road
bottleneck in a competitive highway/transit network with continuous heterogeneity in the
individuals’ VOT.

Zhu et al. (2014) investigate the multi-class network equilibrium problem under a credit
scheme. They treat the heterogeneity of users by adopting a continuously distributed
VOT in their evaluation of travelers’ time savings. In the spirit of analyzing the effects of
commuters’ characteristics in determining link tolls and total allocated credits, Wang et al.
(2012) consider heterogeneous users with a discrete set of values of time. They investigate
the relationship between the uniqueness of the aggregate UE link flow pattern and the
equilibrium credit price. He et al. (2013) study the effect of the mixed behaviors of UE-
following and self-optimizing oligopoly Cournot players in the optimal design of a credit-
based scheme with transaction costs. Bao et al. (2014) develop a more realistic scheme
by considering travelers’ loss aversion behaviors in their route choice. Given the market
with transaction cost for buying and selling credits, they demonstrate that the system
optimum link flow pattern may not be achievable when travelers’ loss aversion behavior is
considered. Zhu et al. (2014) investigate the conditions under which travelers are assumed
to be heterogeneous with a continuous distribution of value of time. Nie and Yin (2013)
propose a scheme to manage morning commute choices where the central authority divides
the planning horizon into peak and off-peak periods, rewarding off-peak period commuters
and charging peak period commuters. Liu et al. (2015) show that user heterogeneity causes
further loss of efficiency, and thus they propose an auction-based reservation to mitigate the
efficiency loss. Akamatsu and Wada (2017) propose an auctioning system for a designated
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bottleneck where vehicles can use it with time-place specific permits.

Wang, Liu and Huang (2018) propose a OD-based travel permits scheme to manage
mobility in bi-modal networks with user heterogeneity in VOT, which simplifies the static
model setting to the homogeneous case. The modal split equilibrium is guaranteed by
modelling the market-clear conditions as a complementary problem. The proposed scheme
is actually a second-best pricing approach as all travellers between the same OD pairs are
charged the same permit, independent of their respective used paths and links (Wang, Liu
and Huang 2018).

Elasticity is another factor that affects the efficiency of the travel management policies.
Yang and Wang (2011) show that under an elastic demand case, a unique user equilibrium
flow pattern can be obtained too. Zhu et al. (2014) show that their modeling framework
can be used to deal with demand elasticity by constructing an expanded network. Bao et al.
(2016) look into traffic assignment under elastic demand case. The elastic demand case is
also considered in a few other studies as well (Miralinaghi and Peeta 2016, Wang, Liu and
Huang 2018, Bao et al. 2017). For the permit-based scheme, Akamatsu and Wada (2017)
investigate the case with elastic demands where OD demand is a monotone decreasing
function of the generalized transportation cost. Some studies look into another notion of
elasticity, internal elasticity, by allowing inter-modal competition or substitution of modes
with respect to credit charges (Xu and Grant-Muller 2016b,a, Tian et al. 2013). Specifically,
Tian et al. (2013) investigate trip mode and travel pattern impacts on credit schemes and
show that when the system optimum is achieved the total social cost is reduced for all
transit modes.

2.4.3 System State

Most of the models in the literature are “single-period” static schemes. However, some
studies have taken a multiple period setting into account. Here, we only look into multi-
period credit- or permit-based mobility schemes. Ye and Yang (2013) propose a day-to-day
dynamic model assuming that the credit price on each day is a function of the credit price
of the previous day and the excess credit demand in the market. Miralinaghi and Peeta
(2016) is the first study to address a long-term planning problem with the concept of a
multi-period permit-based scheme. Wang, Wada, Akamatsu and Nagae (2018) extend the
theory of bottleneck permits of Akamatsu and Wada (2017) to cases with multiple period
markets, assuming that the users’ valuations for permits depend on the purchase period.
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They design its implementation mechanism and show that a multiple period market can
be more efficient than a single period market when users’ valuations change over time.

While the initial works on designing the credit- and permit-based schemes assume travel
demand, users behavioral choices, and network condition to be fixed, many elements of an
actual system could exhibit significant uncertainties. To ensure the designed schemes are
robust against changes, some short-term uncertainties such as day-to-day time-varying
travel demand and users choice behavior, long-term changes in land-use, and technological
advances should be accounted in the schemes. Complexity is introduced when uncertainty
is considered in roadway use schemes. Han and Cheng (2017) establish an equivalent
minimization model for the stochastic user equilibrium assignment problem with a credit
scheme. They consider the travelers’ perception errors of generalized path travel costs
where all the available routes are likely to be chosen according to a certain probability
distribution.

The majority of articles studied in this survey consider static and deterministic settings
and rely on the restricted assumption that model inputs such as travel demand and link
capacities are time-invariant. However, daily volatility of traffic flow and fluctuation of
network’s links capacities can influence travelers’ route choice behavior. For a continuous
dynamic model in a finite time horizon the existence and uniqueness of the equilibrium are
established in Ye and Yang (2013) who examine the price and flow dynamics under the
travelers’ learning of the evolution of network flows and credit price. Under a no late-arrival
assumption, a dynamic credit charging scheme is proposed in Xiao et al. (2013) to build
a similar scheme to that of Yang and Wang (2011) where the credit price is determined
by a competitive market. Irrespective of how commuters vary in their value-of-time, the
authors show that a time-varying credit charging scheme can eliminate traffic congestion
at bottlenecks. A time-varying credit charging scheme is also proposed in Tian et al.
(2013) and Tian and Chiu (2015) where users are able to form individual propensities in
their travel decisions by reinforcement learning principles. Miralinaghi and Peeta (2016)
focus on the fluctuation of credit prices over the planning horizon rather than within a
period. The proposed model can be combined with day-to-day models of Ye and Yang
(2013) to represent credit price and link flow evolutions at each period. Li, Ukkusuri and
Fan (2018) cast light on how to schedule a time-varying credit charge scheme. An optimal
dynamic credit scheme is proposed to attain mobility and emission goals by redistributing
travel demand flows. To capture the flow propagation and dynamic user equilibrium a
dynamic network loading model is proposed to investigate the flow redistribution in terms
of simultaneous path and departure time choices under a carbon credit charge scheme.
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2.4.4 Level of Information

Travel demand, link travel times and travelers’ VOTs are not usually readily available in
practice (Yang and Wang 2011). However, accurate estimation of potential travel demand
and users’ preferences can have a significant impact on the efficiency of a roadway scheme.
Therefore, the regulator or service providers need relevant information about crucial fac-
tors such as users’ VOT and travel demand (Grant-Muller and Xu 2014). Though it is
proven that under symmetric information setting both Pigouvian taxes and credit schemes
that allow for tradability yield the same production efficiency outcome (Bao et al. 2017).
However, in real-world asymmetric information setting both can lead to regulatory fail-
ure and underpricing. One stream of research has addressed some of the uncertainties
involved in the design of roadway-use right schemes. For the single roadway setting, Wang
and Yang (2012) illustrate the effectiveness of a revealed credit price in determining the
optimal credit scheme in the absence of a demand function and propose an iterative credit
adjustment procedure with a guaranteed linear convergence rate. However, in a general
network, the problem becomes much more complicated. Han and Cheng (2015b) investi-
gate the effects of the travelers’ perception errors on the travel cost under mobility schemes,
which corresponds to the stochastic user equilibrium. They establish an equivalent min-
imization model with linear constraints for UE and market equilibrium conditions. It is
then simplified into the UE model with a linear total credit amount constraint, under the
assumption of Gumbel distributed perception errors. Then, the Wardrop system optimal
mobility scheme problem is analyses, and a sufficient condition is provided for the system.

2.4.5 Transaction Costs

Roadway-use scheme could require significant administrative effort for managing credits
or permits. To investigate the impact of administrative burden, Nie (2012) looks into the
impacts of transaction costs on traffic and market equilibrium and the system efficiency
of permit-based model of Yang and Wang (2011). He examines the effects of transaction
costs on auction and negotiated markets. In an auction market, users purchase all of
the needed mobility credits through competitive biddings. In a negotiated market, the
users can trade the initially received amount of mobility credits from the government with
each other through negotiation to meet their needs. He shows that with proper prices the
auction market can achieve the desired equilibrium allocation of mobility credits as long as
the unit transaction cost is lower than the price that the market would reach in absence of
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transaction costs. He et al. (2013) study the effect of the mixed behaviors of UE-following
and self-optimizing oligopoly Cournot players in the optimal design of a credit scheme
with transaction costs. Bao et al. (2014) demonstrate that when travelers’ loss aversion
behavior is considered the system optimum link flow pattern may not be achievable for a
market with transaction cost.

2.4.6 Financing and Sustainability

The involvement of transportation firms, as an integral stakeholder in the markets of travel,
has been considered in Bao et al. (2017). They examine private financing and mobility
management of road network with a build-equity-credit (BEC) scheme. The properties
of several different BEC scenarios are investigated and it is found that the link service
level in BEC is not constant but depends on multiple factors and the total market value
of the credits charged on the new link can offset its construction cost and the profit of
the private firm can always be non-negative. In the same spirit, Wang, Gao, Xu and
Sun (2014a) investigate a public-private partnership network charging plan with a hybrid
implementation of credit- and road pricing schemes. The charging plan comprises a credit
scheme for public roads and a regular tolling sub-scheme that is imposed in the sub-network
of private roads under build-operate-transfer contracts. Taking into account Cournot-Nash
players, the authors develop three bi-objective optimization models with hybrid roadway
charging schemes and show that there exist anonymous feasible hybrid charging schemes
that support a system optimum link traffic pattern.

Wang, Xu, Grant-Muller and Gao (2018) combine a credit-based mobility scheme and
link capacity improvement measure that orients sustainable transport development by con-
sidering road supply (i.e. link capacity) development and travel demand management.
Similarly, in the recently published paper (Wang, Gao and Xu 2019), a link-specific credit
charging scheme is integrated into the network design problem to better the transport
performance from the both transport network planning and travel demand management
perspectives. In a similar vein, Akamatsu and Wada (2017) and Akamatsu et al. (2006)
also consider ‘self-financing principle’, i.e., the case in which the revenue from selling the
permits to the road users is used for financing the capacity expansion of the network.
Sakai et al. (2017) design Pareto-improving permit-based scheme for a V-shaped two-to-
one merge bottleneck. They formulate the morning commute model in the network and
describe the arrival time choice equilibrium in the network with merging bottleneck and
show the conditions under which show that the first-best pricing scheme can achieve a
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Pareto-improvement. They propose different implementations of bottleneck permits for
Pareto-improving, and derive their equilibrium solutions for each implementation. Specif-
ically, they demonstrate that when the permit revenues are used for expanding the bottle-
neck capacity, the Pareto-improvement state is achieved and social cost is decreased.

2.4.7 Parking Space Regulation

The roadway-use scheme can be used for managing parking space in areas with inadequate
parking space. For instance, different permit-based schemes are studied in Zhang et al.
(2011) for a many-to-one networks where each origin is connected to the destination by a
highway with a bottleneck and a parallel transit line. Liu, Yang, Yin and Zhang (2014)
develop a permit-based scheme for parking reservations implementable when commuters
are either homogeneous or heterogeneous in their VOT. To resolve undesirable benefit dis-
tribution among commuters, they propose an equal cost-reduction distribution of parking
permits where commuters with higher VOT receive fewer permits. Considering the park-
ing space constraint at destination, Xiao, Liu and Huang (2019) propose two permit-based
schemes for managing parking issue under three alternative modes, i.e., transit, driving
alone and carpool. They investigate equilibrium state and system-optimal distributions of
parking permits in a many-to-one multi-modal network setting. It is found that the prices
of parking permits decrease with the parking supply, and carpoolers pay less for parking
than a solo driver. Furthermore, for solo-driving and carpool vehicles, the undifferenti-
ated permit scheme with a uniform price is more efficient than the differentiated permit
scheme. However, when the parking supply is relatively low the undifferentiated permit
scheme significantly changes the permit-holding order of solo drivers and carpoolers (Xiao,
Liu and Huang 2019).

2.4.8 Transport Networks with CAVs

A rapid transition is taking place in the transportation sector with emerging concepts
of mobility marketplace—a shared economy with a collection of marketable commodities.
The basic premise is to treat the roadway transportation capacity as a collection of com-
modities or services that can be bought from the transportation market. This concept is in-
creasingly becoming a reality with the technological developments in automotive industry.
CAVs are one example of these technological advancements. More explicitly, communica-
tion, connectivity, and automated technologies installed in CAVs are main vantage sources
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that in many ways will fuel this seismic shift in urban mobility system (Wang, Peeta and
He 2019). First, vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), and vehicle-to-
anything (V2X) communication technologies will enable a seamless connectivity, and thus
enabling integrated monitoring and actively influencing the mobility marketplace. Second,
CAVs will enter the marketplace in different forms including individually-owned automated
cars, robotaxis, and large autonomous taxis. Third, a wide range of microtransit and mobil-
ity services, such as ride-sharing and ride-hailing, will emerge in the mobility marketplace.
Forth, an advanced traveler information system will create a technology-informed mobil-
ity marketplace and thus enables CAVs to obtain more accurate information about travel
paths compared to the conventional vehicles. Fifth, a centralized traffic management could
leverage the connectivity advantage of CAVs, enabling new opportunities of implementing
some advanced traffic management schemes in the mobility marketplace. A rich host of
mobility options is foreseeable as a result, ranging from smart jitneys and robotaxis to
autonomous ride-sharing shuttles (Cervero 2017, Babones 2018). These transformations
will inevitably shape the mobility marketplace—a collection of commodities manageable by
incorporating some market-driven scheme to control traffic and harmonize travel demand
with respect to the roadway space (Yang and Wang 2011, Akamatsu and Wada 2017, Chen
et al. 2020, Luo et al. 2019, Wang, Peeta and He 2019). In general, CAVs, if operated under
a centralized traffic management system, might be managed as a fleet of a marketplace
similar to those of airliners, and thus operate (or behave) according to a desired system
objective.

Traffic control and travel demand management approaches for conventional traffic have
been investigated for decades. In the decades to come, however, transportation network
and traffic flow will experience a seismic shift due to the imminent advent of CAVs, which
are prospected to enter the public streets in the next decade (Bertoncello and Wee 2015).
A long transition period, however, is expected and needs to be planned for the decades
to come. We will have a mixed-fleet transport environment composed of both human-
driven and connected automated vehicles. In other words, we will continue having traffic
flow of human-driven vehicles (non-CAV users) while observing increasing traffic flow from
CAV users. A mixed-fleet transportation environment will present complex challenges for
employing any regulatory tool to manage travel demand and control congestion. This is
mostly due to the characteristics of non-CAV and CAV users, and their dynamical inter-
actions. It will be even more complicated when the non-CAVs and CAVs share the same
transport network under a credit-based scheme in their daily commutes. For example, the
non-CAV users must decide between being charged for accessing less congested roadways or
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spending more time in congested roadways for making routing decisions under uncertainty.
On the other hand, CAV users will have the advantage of making more informed routing
decisions and at the same time could be charged less or even subsidized under coordinated
routing decisions. Moreover, with a proper incentive program a transport authority can
speed up the adoption of CAVs. This will be in line with previous findings that a system-
optimal traffic pattern can be achieved only with joint implementation of an advanced
traveler information system and a proper traffic control scheme (Yang 1998).

Recently there has been increasing interest to develop new traffic control models, con-
sidering a mixed transport setting with CAVs, with the goal of proper incentive program
design, efficient traffic control approaches and algorithms for this new setting (Zhang and
Nie 2018, Li, Liu and Nie 2018, Chen et al. 2019). In this regard, Zhang and Nie (2018)
explore the trade-off between efficiency in terms of the travel time savings and control
intensity in terms of the number of automated vehicle users that let the central transport
authority decide for their route. It is assumed that the controlled vehicles are guided in
order to minimise the total travel time while the uncontrolled vehicles attempt to mini-
mize their own travel cost. In the same spirit, Li, Liu and Nie (2018) look into stability
and efficiency issues and how to bring under the control a mixed traffic system including
both human-driven and autonomous vehicles to an equilibrium. It is still an open question
whether or not the existing travel demand management models and schemes somehow can
be used or extended to bring a mixed-fleet traffic setting under the control.

A few studies have been conducted to examine how to regulate traffic flow or distribute
travel demand across road networks with CAVs. Advanced traffic management schemes
have been recognized as one of the sources of the efficiency gain from CAVs to improve the
throughput of transport facilities (Luo et al. 2019). In other words, with the integration of
an ATIS and a traffic management scheme the possibility of actively motivating users to
behave more in a desired manner is increasingly becoming a reality. This combination is
relevant practically, providing more flexibility to manage travel demand and shape general
public’s habitual travel behavior towards a system-level goal such as maximizing social
welfare, promoting desired traffic condition, and sustaining emission control programs.
This is also in line with the basic premise that with joint implementation of emerging
transport technologies such as ATIS and CAVs and proper traffic demand control schemes
we can actuate a system-optimal traffic pattern. In general, if we can influence the travel
decisions of roadway users, we can then manage and operate our road networks centrally
and maximize the improvement potential offered by CAVs.
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A traffic stream with a mixture of cooperative and non-cooperative users, however, will
present complex challenges to bring the ever-increasing travel demand under control due
to their operational characteristics, route overlapping and dynamical interactions of its
users when sharing the same transport infrastructure. Recently the issue of travel demand
management of a mixed transport environment has been fueled by the fact that in the
coming decades our roadway vehicle fleet will most likely be made up of a mixture of CAVs
and non-CAVs. One of the main motivations is that CAVs could operate in a cooperative
way to a meet up system objective, in contrast to non-cooperative behavior who adopt a
self-serving routing principle (Chen et al. 2020). In the spirit of modeling mixed traffic
equilibrium behavior, a large chunk of studies have been presented in the literature and
various forms of mixed traffic equilibrium have been put forward since the pioneering work
of (Haurie and Marcotte 1985).

One stream of research looks into properties and equilibrium conditions of a mix traffic
flow setting. In this regard, Harker (1988) looks into different equilibrium conditions on
networks with multiple OD pairs, where each OD pair can obey either cooperative and
non-cooperative behaviors. In a similar spirit, Van Vuren et al. (1989) and Van Vuren and
Watling (1991) model a mixed traffic equilibrium problem and assume that cooperative
users are provided with a route guidance system operated by a central transport authority.
They investigate the conditions for uniqueness and stability of the stochastic user equilib-
rium. Similarly, Yang (1998) studies multiple equilibrium behaviors under the adoption
of an ATIS with the objective of reducing uncertainty with recurrent network congestion.
He proposes a convex programming model and establishes the conditions for the existence,
uniqueness and stability of the network performance and demand equilibrium for any given
level of the market penetration rate of ATIS. In the advent of ATIS, Maher and Hughes
(1995) also study the potential of such a system to drive a multi-user class stochastic user
equilibrium assignment towards the system-optimal conditions. Similarly, Lo and Szeto
(2002) study the concept of mixed traffic equilibrium in an elastic manner and develop a
methodology to study the trade-off among conflicting objectives of service providers, users,
and the traffic management agency from a route planning and guidance system. Yin and
Yang (2003) consider a specific ATIS whose objective is to reduce drivers’ travel time un-
certainty with recurrent network congestion where the users might not always comply with
the advice provided by ATIS. Yang et al. (2007) examine the existence and uniqueness of
solutions in a mixed behavior network equilibrium model involving routing behaviors of
user equilibrium, system-optimum and Cournot-Nash travelers where each traveler makes
routing decision given the routing decisions of other travelers. Wang, Peeta and He (2019)
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consider that CAVs can follow the leading vehicle with lower headways than conventional
vehicles. They use results by Levin and Boyles (2016) who provide mixed-traffic volume-
delay functions.

The next stream of related studies is about designing approaches and schemes to man-
age mixed-vehicle transport environment. In this spirit, Li, Liu and Nie (2018) look into
stability and efficiency issues and how to bring under the control a mixed traffic system
including both human-driven and autonomous vehicles to an equilibrium. In the same
way, Zhang and Nie (2018) explore the trade-off between efficiency in terms of the travel
time savings and control intensity in terms of the number of automated vehicle users that
let the central transport authority decide for their route. It is assumed that the controlled
vehicles are guided in order to minimize the total travel time while the uncontrolled ve-
hicles attempt to minimize their own travel cost. Chen et al. (2020) study traffic streams
comprise a mix of CAVs and selfish vehicles and develop a path-control scheme based
on a linear program to achieve the SO state of the network by controlling a portion of
CAVs. However, their assumptions on a deterministic traffic setting are restrictive due
to the factors involved with operating AVs including sharing common network infrastruc-
tures (routes and links) with non-CAVs and AVs human-driver mode, vehicles reaction
and response times. Any of these factors can contribute to operational uncertainties on
AVs’ driving behaviors such as speed profiles in regulating the traffic behavior of non-CAVs
and optimally distributing traffic demand at large. Our review shows that traffic control
models and theories for mixed traffic conditions have been rarely addressed in literature in
part due to their inherent mathematical and theoretical complexities along with unforeseen
early emergence of CAVs. As such, there has been a resurgent call to develop new traffic
models, considering the CAV environment and possible effects and interactions within a
mixed-vehicle traffic condition, with the goal of preparing incentive program design, effi-
cient traffic control approaches and algorithms for this new setting (Zhang and Nie 2018,
Li, Liu and Nie 2018, Chen et al. 2019).

2.5 Solution Methods and Computational Experiments

The formulations of roadway-use problem discussed previously are computationally in-
tractable; as a result, most of the studies have focused on developing specific solution
methods. For example, in Han and Cheng (2015a), the Lagrangian dual formulation of
the model is used as an efficient solution algorithm. Han and Cheng (2015a) find that the
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Lagrangian dual formulation is a continuously differentiable concave maximization prob-
lem sharing the same optimal solution with the original model, and that its gradient can
be obtained by invoking the successive average method. According to these properties, a
two-step convergent solution algorithm is developed such that the outer iteration is im-
plemented by using gradient projection method with a predetermined step size sequence
while the inner iteration is implemented by using the successive average method. Given
the non-convex property of the bi-level model, Li, Ukkusuri and Fan (2018) propose the
pattern search algorithm embedded with the projection method. Wang, Gao, Xu and Sun
(2014b) develop a relaxation algorithm for a continuous network design problem with a
credit scheme and equity constraints.

In Wada and Akamatsu (2013) the solution is based on an auction mechanism by
reformulating the optimization problem into a master problem and a sub-problem and then
applying Benders decomposition principle. For practical applications, heuristics and meta-
heuristics are expected to be likely implemented as real-life problems become considerably
more complex and larger in scale. The number of solution methods introduced in the
literature has grown over the past decades and the computational capacity of computers has
increased exponentially, enabling to solve large instances of the real-life problems. Recently,
in Han and Cheng (2017) a heuristic sensitivity analysis-based algorithm is developed to
solve the optimal design problem, with analytical expressions of gradient information of the
SUE link flow and ME credit price. The objectives and feasible sets in the bi-level problems
of Wang, Liu and Huang (2018) are both complicated, which makes it hard to solve them
in polynomial time. Wang, Liu and Huang (2018) apply a modified genetic algorithm
to obtain the optimal supply for the OD-based travel permits, or the optimal number of
auto users under the OD-based tolling scheme. The modified algorithm in each iteration
deletes the infeasible chromosomes and produces new solutions again if the crossover and
mutation operations generate infeasible ones, until it generates feasible solutions. To the
best of the authors’ knowledge, Wada and Akamatsu (2013) is the only study that proposes
an evolutionary approach for the allocation of network permits on general networks with
multiple OD pairs. They propose to obviate path enumeration by introducing a column
generation procedure and prove that the proposed mechanism is truthful and converges to
a dynamic system optimal allocation pattern.

In terms of modelling and solution aspects an agent-based perspective allows the han-
dling of large-scale problems and relaxes assumptions such as user homogeneity, which
brings more flexibly to model complexity in the system like learning and interaction. Tian
and Chiu (2015) turn to agent-based economic-transportation hybrid modelling and set up
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an integrated agent-based evaluation platform to better predict travellers’ route choice and
trading behaviours. The platform is an iterative process that consists of policy making and
travellers’ behaviour modules such that each individual traveller carries his or her personal
memory across. The goal of establishing this framework is to provide further intelligence to
potential policy makers’ decision-making process. The proposed platform is able to make
use of both individual level microscopic behaviour data as well as aggregated traffic flow
and market performance data.

Xu and Grant-Muller (2016a) propose a simulation framework to analyse the mode-
choice of travelers in the traffic network before and after the implementation of a credit-
based scheme. This framework is applied to the case of Beijing, China where it is demon-
strated that the credit scheme is a promising policy to reduce the total vehicle-miles trav-
eled in the traffic network. Similarly, Miralinaghi and Peeta (2016) use simulation to
show that the minimum travel time objective does not always generate effective paths and
that departure time switches across all user groups, especially for users with a high value
of travel time, while a minimum emissions objective yields desirable behavioural adjust-
ments. Besides, minimum travel time credit design does not always generate minimum
carbon emissions in the network, especially in networks with complex OD pairs and paths.

For a multi-modal setting, Nie and Yin (2013) consider the mode and route choices using
numerical examples under the credit-based scheme with real-life data (to the best of our
knowledge, this is the first paper that does this). Most commonly used reasonably sized
networks and benchmark models are X-shape, Ziliaskopolous network, Nyguen-Dupuis
network, and Sioux Falls network, which are used in several studies to show the applicability
of the proposed algorithms. For specifications of these networks see Suwansirikul et al.
(1987), Wang, Xu, Grant-Muller and Gao (2018), and Li, Ukkusuri and Fan (2018). In most
of the numerical experiments the Bureau for Public Roads (BPR) function is adopted to
define the link travel times for the specified networks. The networks of analytical models are
small and artificial though they provide useful and influential guidance. However, dealing
with larger real world networks and scenarios requires efficient solution procedures. As a
numerical example, Wada and Akamatsu (2013) use the Sioux Falls network, which has 24
nodes and 76 links and 528 OD pairs with specific physical conditions for each link (i.e.,
free-flow travel time, capacity), to demonstrate the convergence properties of the proposed
mechanism in a realistic network.
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2.6 Conclusions

As discussed in the previous sections, a large body of research has focused on developing
and formulating different variants of roadway-use rights schemes—a futuristic instrument
to mitigate traffic congestion and its negative externalities in urban areas worldwide. This
in-depth review of the state-of-the-art methodological advances on this topic provides the
basic constructs and theoretical and analytical aspects of the problem in designing the
schemes under certain conditions. Summarizing the body of literature on different variants
of the roadway-use schemes, we identified the following remarks and prospectives for further
improvement and applicability of roadway-use right schemes:

Problem modeling: The formulations of a roadway-use scheme for the general
setting is not a trivial task. Usually a separable and monotonically increasing link
performance function is considered which assumes travel cost on the route is the
sum of its link travel times. This simplifying assumption is used in most of the
studies, except for Wang, Liu and Huang (2018) and Zang et al. (2018) where the
link travel time is assumed to be flow-dependent and Han and Cheng (2017) where
the objective function is to maximize the network reserve capacity. The modeling
of the roadway use schemes mostly involves a mathematical programming approach
where the problem is formulated as optimization or variational inequalities, incor-
porating equilibrium conditions for permits or credits. Under convexity property,
the KKT conditions can be used to investigate the pertinent theoretical properties
and conditions under which equilibrium for users and optimum market prices can be
sustained. Heterogeneity of users and demand elasticity are challenging to capture
and implement in mathematical models. Availability of perfect information and ra-
tional travelers for system optimal approach are the most basic used assumptions in
mathematical formulation with equilibrium constraints which are not in accordance
with real-world settings.

Endowment problem: For the mobility right endowment problem, we observe that
most of the studies follow a free and uniform distribution approach for allocation of
mobility permits or credits. A uniform distribution scheme is in fact not sufficiently
fair (Wang et al. 2012). Though the free allocation scheme can increase its social
acceptability, it may not satisfy the system planner’s efficiency and return expec-
tations. On the other hand, a dictatorial approach can lead to inequality, entry
barriers of potential (prospective) entrants and the receivers’ eligibility verification
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issues (Fan and Jiang 2013). The majority of these schemes incentivize users by
allowing them to trade their mobility rights or redeem their unused rights. Some
studies, however, propose a reward and charge mechanism in which those who travel
during off-peak hours or use less congested roadways are rewarded and those who
travel during congested time periods or use more congested roadways are charged
(Nie and Yin 2013, Liu and Huang 2014, Nie 2015, Xiao et al. 2015, Zhu et al. 2017,
Xiao, Long, Li, Kou and Nie 2019). Roadway-use right endowment requires having a
well-designed system for periodic distribution and collection of credits or permits by
the transport authority. A remedy to this is recycling credits charged (i.e. positive
credit rate) on some travelers into subsidies (i.e. negative credit rate) given to others
(Xiao, Long, Li, Kou and Nie 2019).

Pricing problem: For the mobility right pricing problem, almost all of the studies
assume that the credit or permit price is determined within a free market. Among
credit-based schemes, a few studies assume that the credit price can only be deter-
mined or changed by the transport authorities (Gao et al. 2018, Li, Ukkusuri and
Fan 2018). The pay-for-use method relies on the existence of full information about
the travel demand and cost functions which are difficult to obtain in practice (Wang,
Yang, Han and Liu 2014). When users’ valuations are uncertain, computing the
near-optimal prices requires an efficient protocol to elicit pertinent information and
determine the market price of mobility permits (Lessan and Karabatı 2018). A solu-
tion for the incomplete information issues is using auction-based reservation scheme,
which is discussed in some studies (Akamatsu and Wada 2017, Su and Park 2015).
In a congested time slot when the mobility demand from potential users exceeds the
available capacity of the time slot, employing a mechanism that finds near optimal
market prices for the permits or credits become important as it can help the trans-
port authority to achieve a higher efficiency in terms of return of investment on top
of mitigating traffic congestion.

Charging problem: Regarding the charging problem, our review shows that most
of the proposed models consider the link-specific rates (charges) with few exceptions
for OD-based and VMT-based charging schemes. Wang, Liu and Huang (2018)
is among the works that proposes an OD-based charging scheme where travelers
between the same OD pairs, independent of their used paths and links, are charged
the same. The OD-based charging scheme enables more flexibility than other policies
such as the link-specific ones to manage traffic (Wang, Liu and Huang 2018). On
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the other hand, time-dependent charging schemes seem too complicated to be well
received by users as they cannot predict the amount of charges for each specific link
(route) in advance (Xiao et al. 2015). In a few studies, the charging mechanism
has taken different forms, such as distance-based charging (Xu et al. 2018, Xu and
Grant-Muller 2016a,b, Gao and Hu 2015) and time-varying charging (Li, Ukkusuri
and Fan 2018, Wang, Wada, Akamatsu and Nagae 2018, Tian et al. 2013, Xiao
et al. 2013). Generally, the time-based or time-place-distance-based (as for P&R and
CBD, see Gao et al. (2018)) charges would enable more effective control of the travel
demand on the network (Yang and Wang 2011). Our review shows that the proposed
schemes have some differences and similarities in the attributes used with the existing
proposed schemes. Their dependence on a periodic credit distribution and collection
mechanism to sustain the credit circulation in the system is another operational issue
that could incur administrative costs due to distribution or circulation of the credits.
To circumvent this issue, the credit circulation is suggested that recycles credits
charged (i.e. positive credit rate) on some travelers into rewards (i.e. negative credit
rate) given to other travelers (Xiao, Long, Li, Kou and Nie 2019). Overall, recent
findings show that reward-based travel demand management instruments can be an
effective tool to manage traffic and promote adoption of emerging transport services
(Tsirimpa et al. 2019, Zhu et al. 2019, Hu et al. 2015).

Implementation: The implementation of these schemes put some important ad-
ministrative burdens on transport authority. This requires the transport authority
to obtain detailed information of network links and a proper calculation of link-
specific charges. Also, it can raise public concerns about the equity and fairness of
the charging rates from the general public. The implementation of the link-specific
schemes could become very complicated when a multi-modal and multi OD-pair
traffic network with heterogeneous users and transaction costs are considered. A
solution to this is to implement a second-best permit scheme. This (second-best)
approach is actually less efficient but more practical as it can erase the negative
effects induced by the OD-based and link-specific tolling policy (Wang, Liu and
Huang 2018). The implementation-related issues, such as considering flexibility and
efficiency, simplicity and fairness concerns in the design of these schemes are hardly
touched. The implementation must deal with the government management agency,
travelers, transportation firms, insurance companies, financial institutions and other
intermediaries. In a similar spirit, institutional structures, operational rules for book-
ing, cancellation, and trading introduce many challenges towards the practicality of
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roadway-use schemes. In the same way, monitoring the usage of facilities in terms
of time, places, and rules for detecting and fining non-compliances are other hardly
touched operational issues (Fan and Jiang 2013). For a given set of transportation
network characteristics, a transport authority must endow the users of the system
based on their time-place-varying desires while satisfying efficiency measures in terms
of level of service and return of investment.

Sustainability: To achieve sustainable development targets in a transportation
market, equitable and yet efficient schemes need to be developed (Zhang and Waller
2018). A more realistic, however more complicated, approach is considering multiple
objectives at the same time. One can consider maximizing the number of charge-
free links, minimal charges or rewards, permissive charges, or minimizing excess
travel time and other transport externalities such as total number of traffic accident
fatalities, total network emissions, or fuel consumption as a secondary objective along
with the common system travel time or cost objective function. The trade-off between
different objectives, such as allocative efficiency, incentive compatibility, and budget
balance should be evaluated. A co-evolutionary approach can be a good choice to
model the interactions between different objectives and policy makers, technologies,
institutions, business strategies and users (Foxon 2011). An extension to the (second-
best) existing methods can be developing cordon-based, area-based, or distance-
based supplementary schemes. Another extension can be considering a controlled
congestion state in which the total transportation cost is minimized while a certain
level of service is satisfied.

Prospective: Our review shows that potentials of roadway-use right schemes under
ATIS for managing travel demand of a mixed-fleet setting have not been tackled
so far in the literature in part due to their inherent mathematical and theoretical
complexities along with unforeseen early emergence of CAVs. An operational issue
is the existence of a free trading market for trading credits or permits. It can be
realizable, for example, with the inclusion of a credit-base scheme within an ATIS in
parallel with emergence of CAVs. This, however, motivates further studies to look for
designing traffic control approaches with possibility of credit- or permit-based scheme
and ATIS integration for traffic management and employing incentive programs and
policies that can also act as a platform for trading credits or permits.

In our path to designing a mobility scheme, it is important to have an integrated
architecture that address some or all of the identified issues above and considers users’ and
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operators’ expectations, and traffic control and network requirements, in order to operate
the entire system efficiently. This helps us to incorporate different components required
for implementing a coordinative mobility scheme, take into account the influence of the
participating players and the underlying issues. To this end, in the Chapter (3), we present
the architecture of an integrated framework that embeds our proposed schemes. We then
elaborate our design with its key components while addressing the expected challenges.
Our review of the relevant literature suggests that existing models for roadway-use right
schemes have not yet incorporated innovative designs and charging schemes on the basis
of the mechanism design paradigm. A careful mechanism design practice helps relax many
practical challenges such as the assumptions of users’ rationality and existence of perfect
information. It can also obviate issues related to the misreporting of spatial-temporal trip
costs by travelers to reduce their generalized travel costs (Ren et al. 2020). Therefore, there
is a need for careful mechanism design practice integrated to these schemes in order to solicit
truthful information. To complete this gap, we contribute to the literature by proposing a
permit-based scheme for single-bottleneck roadways setting and a credit-based scheme for
general transportations networks in Chapters (4) and (5), receptively, using a mechanism
design approach. We also present the theoretical properties of the proposed schemes and
provide the results of comprehensive numerical experimentations under different settings.
The proposed schemes come with right transferability option that enables redistribution
of marginal welfare among users.

In Chapter (4), we design and analyze a mobility permit pricing and allocation on
single-bottleneck roadway. Our review of the relevant literature suggests that existing
models for permit-based traffic management have not yet incorporated innovative designs,
such as user-centric and hybrid schemes, using the mechanism design paradigm. In this
regard, there is room for improvement of the permit-based mobility management schemes
by addressing application-related issues and concerns of the mobility users, the mobility
service providers and authorities. To address these issues, we integrate a mechanism design
practice and present a Pareto-improving permit-based mobility scheme which is applicable
to single-bottleneck roadways with multiple involved stakeholders. Furthermore, we design
a MP-based scheme that is strategy-proof and efficient in finding effective market prices
suitable for travelers.

In Chapter (5), we design a credit-based mobility management scheme that address
the issues of mixed-fleet traffic flow for transportation networks with advanced connectiv-
ity technologies. Particularly, we propose a traffic management scheme applicable to the
settings where the traffic stream is a mixture of cooperative and non-cooperative users.

36



We present a set of revenue-neutral credit-based mobility schemes on general transporta-
tion networks under stochastic environment and interaction effects attributable to this
transport setting. Unlike the traditional credit-based schemes, our schemes use a combi-
nation of distinctive charges and rewards (subsidies) that are usable to lead the network
traffic to a lower system cost, or promote the adoption of CAVs, avoiding periodic col-
lecting and distributing mobility credits in the end. Specifically, we demonstrate that a
(Pareto-improving) revenue-neutral charging scheme is still attainable on a transportation
network composed of CAVs and non-CAVs. We also study some specific circumstances
that the proposed model can be applied with a few adjustments. Apart from the most of
the proposed schemes, we consider a mixed CAV and non-CAV stochastic network flow
setting. There are also differences in the protocols used in the proposed scheme, including
a charge and reward strategy and a revenue-neutral policy, to address issues related to
public acceptance and avoid difficulties in most current studies that are mainly based on
assuming a charging scheme with a periodic credit distribution process.
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Chapter 3

User-centric Paradigm on Designing
Mobility Management Schemes †

As discussed in the previous chapters, it is important to deploy an effective mechanism
to coordinate the travel demand of commuters throughout the mobility network, control
traffic, and operate the entire system efficiently. This chapter presents the architecture of
an integrated mobility management system in which our proposed permit-based mobility
management is embedded. This helps us understand different components required for
implementing a coordinative permit-based traffic management system, the influence of the
participating players, and the underlying issues. We then elaborate our design with its key
components and present our methodology for addressing the expected challenges.

3.1 Integrated MP-Based Traffic Management

The conceptual framework of the proposed MP-based traffic management system is illus-
trated in Figure (3.1). Different from Gärling et al. (2002) and Dogterom (2017), we take
a holistic approach by considering the needs and functions of all actors (e.g., regulator,
planners, providers and users) of a permit-based mobility management system. To imple-
ment such a coordinated MP-based mobility management mechanism, a futuristic mobility
system is envisioned with the following assumed settings:

†Parts of this chapter is submitted online: Lessan, J., Fu, L., & Bachmann, C. (Submitted 2020).
Towards Managing Mobility on Road Networks using Permit-based Schemes, Submitted to: Transportation
Research Part E: Logistics and Transportation Review, February 2020.
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• Mobility becomes a market-based economy; users need to pay to use mobility services
of any mode with specific mobility permits at competitive market prices,

• Mobility becomes a new type of service mostly offered by advanced demand respon-
sive mobility providers, such as ride-hailing or ride-sourcing services.

• At transportation market, the competition is on offering users with personalized and
competitive mobility options,

• Mobility network infrastructures become more and more integrated, and connections
between different modes become seamless,

• Private vehicle usage decreases; people are expected to change their behavior from
making conventional trip decisions - to ride here or there - to utilizing permit-based
and point to point mobility-on-demand services,

• Vehicles are equipped with advanced tracking and communication technologies,

• Mobile Apps or other systems help mobility users in facilitating permit-based mobil-
ity decisions, providing them with real-time, place-dependent travel information,

• Mobility permit charges are tied to the type of service, time, ownership, and other
relevant factors which are differentiated with specific time-place-mode dependent
plans.

As depicted in Figure (3.1), the MP-based system works at the interconnection of
mobility users, mobility permit and service providers, under the governance of a system
regulator, for meeting the travel needs of users. One of the factors that influences the
demand for mobility is the purpose of users for satisfying certain needs or obligations.
Usually, users are faced with different service options; however, their choices and decisions
on using any of the available options are influenced by their preferences, the status and
attributes of the options, and the spatial, temporal and interpersonal factors. In the
proposed mechanism, each user’s preferences are translated into personalized off-line or on-
demand service offers based on the information obtained from the user. Users are charged
through permits or access rights whose prices are determined by a board of trustees, or
ideally, in a free mobility market. In the market, travelers are allowed to trade their permits
with each other freely under the regulator’s supervision. To prevent a high permit price
when the demand for mobility surges the system operator can hold a reserved capacity in
order to respond to unexpected demand surges or supply shortcomings.
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Figure 3.1 High-level Framework of the MP-based System

Figure (3.2) illustrates the main procedure of mobility permit endowment operation.
In the first step, a front end user sends a permit request to the server of the selected service
provider. A permit request includes an OD pair, a desired departure/arrival time, and a
service type (on-demand or planned), and a mode of service (private car, taxi, carpool, and
minivan). In the second step, the system offers a menu which consists of different service
options, depending on the user’s preferences. In the third step, the user chooses a subset
of the options and confirms it with the service provider. The user may choose only one
option or reject all the offers. In the last step, the server sends a notification/confirmation
to the user and specifies the option he/she is assigned with.

For simplicity, but without loss of generality, we assume that the users are willing to
follow the system instructions and proposals, e.g., option, route and time recommendations,
when they are assigned with permits. While it is commonly recognized that users are self-
concerned, we assume that a monitoring and penalization mechanism is implementable with
emerging abilities to control trajectories of moving objects. Also, monitoring, scheduling,
and routing operations require the system operator to enforce all users being equipped with
a tracking device. Current communication and location-aware technologies allow tracking
of the trajectories of moving objects with a high precision which can then be used to
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Figure 3.2 A Schematic of MP-based Reservation Process

provide mobility service recommendations and optimize traffic patterns based on real-time
trajectory of users. However, this raises privacy concerns, for example, about the users’
private information about their location. Therefore, the system regulator needs to put
strict rules on mobility service providers to ensure that users’ information will be held
secure and only used to help operate and coordinate the system. The independence of the
system regulator and competition of the service providers help encourage the transparency,
fairness, and competitiveness of operations within the mobility market.

We have presented the procedure and process of the MP-based mobility scheme. The
procedure for a credit-based scheme can be similar but with some operational differences.
For instance, instead of permits, there are charges tied to each link of the transportation
network about which users are informed and charged upon passing through them. The
decision on whether all travelers or part of them have to participate is a managerial issue
which is out of the scope of this research. We need to mention this decision also depends
on the problem setting. For example, in a single-bottleneck network setting only travelers
who want to pass through the bottleneck are involved in the permit or credit system. How-
ever, in a general transportation network setting with multiple bottlenecks the transport
regulator may require all of the travelers to participate. In general, the users are faced
with multiple options when traveling from their origin to destination, regarding routes and
travel time and assumed to be flexible in choosing one of the several options between their
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OD pairs. Specifically, individual users are expected to pick their routes based on their
preferences which are often unknown to the system operators and could vary by location
and time. Indeed, this is one of the difficulties for the mobility manager that the users’ spa-
tiotemporal utilities are uncertain. Under this situation, and to overcome the uncertainties
associated with the users’ private utility and their bounded rationality, it is necessary to
integrate their expressed preferences over services. To this end, for each individual user’s
preferences and mobility service requirements, the proposed scheme provides them with
flexibility to designate their preferences and priories from a menu that includes a list of
affordable mobility options (services). To operate such a system, the main operational
challenges are: how to set prices and allocate link-specific mobility permits over a trans-
portation network; how to make users comply with such a system; how to meet the system
planner (operator), service provider and regulator’s expectations on the return of invest-
ment and operational efficiency. Next, we characterize the potential influencing factors for
practicality of a MP-based mobility management system and discuss our solutions for the
problems.

3.2 Challenges and Proposed Solutions

The novelty of the proposed permit-based scheme discussed in Section (3.1) also comes
with several technical challenges, including personalization and customization, simplicity,
computational efficiency, user-acceptance, and system stability. This section presents some
ideas on how to address these challenges.

3.2.1 Personalization and Customization of Permits or Credits

The customization of permits or credits are one of the distinctions of this work from
the other proposed schemes in the literature. For example, using a permit reservation
medium, the mobility system manager collects users’ mobility preferences such as the origin
and destination pair, desired departure time (DDT), desired arrival time (DAT), desired
speed, acceptable earliness and lateness, mode of service (economic, business, emergency,
minimum time, or congestion free). Based on the availability of permits and the announced
permit prices, each individual user can sort out a short list of the preferred service options
based on their utility. The preferences are expressed as an ordering of the provided options
to the service provider. Each service option corresponds to a bundle of link-specific permits
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for the set of links required to use that service. We assume that each user has a time-
dependent private valuation for each option of arriving to the destination with scheduled
earliness, lateness, or at desired time period. Personalization of mobility permits has
not been addressed in the previous schemes. For example, Wada and Akamatsu (2013)
proposed a MP-based mechanism under which each commuter needs to purchase a number
of permits depending on their preferred path. However, in practice it is cumbersome for
users to figure out a bundle of permits out of available options for their desired mobility
services. To solve this issue, in the proposed scheme the service provider offers a service
menu based on each users’ OD pairs and desired arrival/departure time. Listing different
mobility options, a service option in the menu is a combination of: 1) expected arrival time
at the destination, 2) total permit cost to pass the links (bottlenecks) of each route during
the specified time. This is one of the distinctions of the proposed scheme to reduce the
complexity of the MP-based mobility management system that is found to have a large
impact on the public support. In the case of credit-based scheme, we design credit charges
specific to users’ types and also roadways (links) of the transportation network. To avoid
a long discussion here, we will discuss the details of credit customization in Chapter (5).

We relax the assumptions on users’ rationality and availability of full information and
assume that users can have any sort of mental processes (to maximize their private indi-
vidual utility or behave in a completely irrational way) in determining their own preference
list. Indeed, by letting users choose and announce their own preferences out of the avail-
able mobility service options, we can overcome the conventional restrictive assumption on
users’ rationality and uncertainty about their utilities. User heterogeneity is usually taken
into account by considering a set of discrete VOT functions or by defining continuously
distributed VOT functions (Wang et al. 2012); however, such functions are difficult to
be established. Different from the literature, in order to cast user heterogeneity effect
we propose integrating users’ choice behavior by letting them have their own preferences
throughout the permit endowment process. Therefore, we assume that the system manager
provides users with multiple permit options and allows them the flexibility to choose their
preferences out of the provided options. The manager ideally seeks to solve the system
optimal mobility permit allocation problem. Although the system may not guarantee as-
signing every user to their most preferred requested service, it assigns them to their highest
preferred option using a permit allocation scheme.
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3.2.2 Allocation of Permits or Credits

Center to a MP-based traffic management system is a component solving a resource allo-
cation problem, in which the mobility service provider decides on the allocation of scarce
resources (permits and usage rights) to users. Therefore, efficient allocation of mobility
permits has the highest priority, which should be carried out in a sequential steps. This
task, however, depends on several factors such as OD demands, network characteristics
(bottlenecks and links dependencies), alternative options, background traffic, and consid-
ered time periods.

First, in a sequential manner, big time slots such as months and weeks are divided into
several shorter time slots such as days and peak and off-peak hours. Each time slot is
allocated with specific number of mobility permits given the predicted traffic pattern at
network/roadway scale. Mobility demand dynamics over the entire transportation network
is another key factor, when designing a MP-based traffic management scheme. In this
regard, we consider short-term planning horizons during which the capacity of the network
is fixed, and assume that the travel demand during the horizon is stationary and finite. To
prevent the congestion issue over the entire network, the total allocated quotas to mobility
service providers along with the withheld (reserved) quotas cannot exceed the network
capacity. Moreover, to manage temporary or unexpected mobility demand surge or supply
shortage, the system manager uses the reserved capacity.

Then, mobility users express their preferences and then participate in the proposed
permit allocation mechanism. As discussed in the previous section, based on users’ infor-
mation and the availability of permit quotas permits are issued to endow the holders to
fulfill their mobility need. Specifically, a mobility need is actually a trip from any origin
to any destination of the permit-based mobility network that needs to use one or multiple
bottlenecks of the network. Finally, based on the users’ expressed preferences, the sys-
tem operator assigns them with permits to use the roadway network such that the overall
traffic pattern is optimized. We will show that the traffic pattern can be coordinated and
optimized with well-defined permit allocation policies. We note that the permit trading
market can also be designed and monitored by the system planner to allow the tradability
of endowed permits and distribution of the welfare in the form of exchanging permit for
permit, or money for permit and vice versa.

In the case of credit-based scheme, there are also differences in the protocols used in
the proposed scheme. Particularly, a credit circulation policy through which is suggested
that recycles credits charged (i.e. positive credit rate) on some travelers into rewards (i.e.
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Figure 3.3 Components of a Permit-based Mobility Control System

negative credit rate) given to other travelers. In this way, we can avoid difficulties in most
current studies that are mainly based on assuming a charging scheme with a periodic credit
distribution process. To avoid a long discussion here, we will discuss the details of credit
circulation policy in Chapter (5).

Figure (3.3) depicts components and steps to operate a mobility permit-based manage-
ment scheme. As discussed, the allocation of the mobility permits are the main challenges,
which influence the viability, effectiveness and acceptability of a permit-based traffic man-
agement system. In this research, we consider two different settings. First one is a single-
bottleneck roadway setting, and the second one is a transportation network with multiple
bottlenecks with several pairs of origins and destinations. In the either of these settings, a
service provider must endow mobility permits at effective (congestion mitigating) market
prices to users of the system based on their time-varying desires, travel needs and their
expectations of fairness while achieving a satisfactory level of investment return. Specif-
ically, in Chapter (4), using a mathematical programming approach, we show how these
restrictions can be embedded in a constrained coordinated permit allocation model with
efficiency and fairness objectives on top of observing different operational constraints.
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3.2.3 Fairness and Efficiency

As discussed in the previous section, our focus in this study is on developing (near) optimal
pricing and allocation of permits under a fairness requirement. Therefore, two operative
goals must be taken into account in making mobility permit allocation decisions. The first
one is allocative efficiency, a degree to which the entire system operates close to a system
optimal state with respect to a collective measure from a central planner’s point of view.
The second one is equity or fairness, a degree to which the outcome of the scheme satisfies
the desires and needs of each mobility user. The issue of balancing efficiency and fairness
has been studied extensively in several traffic management literature; however, it has not
been addressed in MP-based traffic management schemes.

Due to the subjective nature of fairness and different possible interpretations of equity,
there is no unique “one-size-fits-all” solution for fairness (Karsu and Morton 2015), or a
principle that is universally accepted as “the most fair”(Bertsimas et al. 2012). However,
the most recognized measures and dimensions of fairness are, namely, “horizontal” and
“vertical” equity (Levinson 2010, Viegas 2001) ∗. The “horizontal” concept is also called
equitability which is concerned with the “equal treatment of equals”. On the other hand,
the “vertical” equity is a balance measure concerning with the “unlike treatment of un-
likes”, distinguishing the entities by their specific attributes such as their needs, claims
or preferences†. Equitability is distinguishable from balance depending on whether an un-
derlying anonymity assumption holds, i.e., it holds when all the permutations of users are
treated indifferently (Karsu and Morton 2015).

Along with equity considerations throughout the permit allocation process, a sys-
tem manager (regulator or policy-maker) is concerned with allocative efficiency (e.g., net
throughput of the network as total system travel time) to meet the return of investment
and revenue drivers. However, efficiency and equity are two conflicting measures in es-
tablishing mobility management systems. A system design resulting in the highest social
surplus (including time gains, paid charge and adaptation costs plus revenues) is consid-
ered the most efficient yet the least equitable design (Kristoffersson et al. 2017). The
efficiency concern has been a sole criterion in most of the conventional mobility manage-

∗We do not consider other measures related to equity, such as envy-freeness.
†A horizontally equitable policy distributes treats equally all individuals. A vertically equitable policy,

on the other hand, favors groups that are socially or economically disadvantaged, for instance low-income
groups. The vertical equity is categorized into vertical with respect to income and social class, and vertical
with respect to need and ability. These two types of vertical equity are typically evaluated through a
welfare-based and access-based approaches, respectively (Litman 2002).
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ment schemes. However, we consider both (efficiency and fairness) as key technical and
practical issues in mobility management systems. One natural way, in the literature, to
achieve an efficiency-equity trade-off is to use an aggregation function that reflects concerns
for both equity and efficiency, which will be adopted in this research. By maximizing such
aggregation (value) function, one can avoid favoring some entities too much while depriving
some others. However, a drawback with an aggregation function is that the decision maker
has to set a priori an aggregation scheme, which is not in accordance with the equity aim
of the intended scheme and thus less likely to be perceived as a fair solution (Karsu and
Morton 2015). Despite this challenge, we propose an alternative approach to tackle the
restrictions imposed by the fairness-efficiency requirements. We integrate the vertical and
horizontal equity measures into the mobility permit allocation process in order to deal with
the trade-off between efficiency and fairness. This is another distinction of this work from
the conventional approaches, to the best of our knowledge. In the case of our credit-based
scheme, we suggest a charge and reward strategy and a revenue-neutral policy, to address
issues related to fairness public acceptance. To avoid a long discussion here, we will discuss
the details of credit-based scheme in Chapter (5).

3.2.4 Pricing of Permits or Credits

How to price mobility permits is another key issue in implementing a MP-based traffic
management scheme. Specifically, in a congested time slot when the mobility demand from
potential users exceeds the available capacity of the time slot, employing a mechanism that
finds near optimal market prices for the permits can help the mobility service provider
achieve a higher efficiency in terms of return of investment on top of mitigating traffic
congestion. However, when users’ valuations are uncertain, computing near-optimal prices
requires efficient protocols to elicit pertinent information and determine the market price
of mobility permits (Lessan and Karabatı 2018). Our literature review reveals that the
lack of fairness and ignoring users’ preferences are the common weaknesses of almost all
the proposed mechanisms for pricing mobility permits. This is also due to the fact that
the proposed schemes are built on system-optimality expectations of system planners.
Some of the proposed endowment and pricing mechanisms follow a free permit distribution
approach (i.e., uniform or grandfathering), and some other follow pay-for-permits allocation
scheme. Though a free way of permit allocation scheme, for example, can increase its social
acceptability, it does not satisfy the system planner’s efficiency and return expectations.
On the other hand, a grandfathering approach can lead to inequality, entry barriers of
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potential (prospective) entrants and the receivers’ eligibility verification issues (Fan and
Jiang 2013). The pay-for-permits method relies on the existence of full information about
the travel demand and cost functions which are difficult to generate in practice (Wang,
Yang, Han and Liu 2014).

Some conventional allocation schemes such as first-come first-served (FCFS), queue-
position, or priority-based are unable to differentiate commuters based on their VOT and or
account for their schedule preferences which would lead to efficiency loss. In this study, we
propose to apply a progressive auction approach with which the mobility service provider
and the users go through an auction process to determine the allocation outcome and
price of permits for each time slot. The mobility service provider plays the auctioneer
role and starts with an initial price vector for the time slots, P0, equal to the minimum
sales prices (reservation prices). The users follow the auction by selecting their desired
permits. At each iteration after performing a provisional permit pricing and allocation,
given the reactions of mobility users to the posted prices, the mobility service provider
decides to raise the permit price of one or more time slots to proceed the auction to the
next iteration or stop it at the current iteration. The iterative process of provisional pricing
and allocation continues until a stopping criteria is satisfied. When the decision is made to
stop the auction, the allocation of permits are finalized based on the assignments generated
on the last iteration of the auction and requirements on the efficiency and equity concerns.
The termination criterion of the iterative auction mechanism relies on the objectives of the
service provider, which in our case is efficiency maximization goal while observing fairness
of the allocations. As users place monetary values on each of the offered options, thus,
given a price vector, they choose those items that bring them maximum benefits. A price
vector then yields equilibrium if every user can be assigned to one service option while no
capacity limit is violated.

It is worthwhile to mention that our auctioning scheme uses an open-bid, multi-item
and user-oriented pricing approach which is different from similar works such as Wada
et al. (2010) and Wada and Akamatsu (2013) that implement sealed bids and single-item
mechanisms. Different from Liu et al. (2015), we incorporate users’ preferences in the our
auction mechanism to find the effective market prices of time slots given the entire users’
preferences while guaranteeing them to be allocated with one of their preferences. We will
show the existence of an equilibrium, and the uniqueness of the pricing outcome under a
properly designed auction mechanisms. We need to mention that in case of credit-based
scheme, the price of permits can be determined through a market clearing state and that
this price is scalable. Therefore, the issue of pricing credits is less challenging. To avoid a
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long discussion here, we will discuss the details in Chapter (5).

3.2.5 Computational Efficiency

The MP-based pricing and allocation problems, once formulated mathematically, is ex-
pected to be computationally intractable which will be a key challenge to the permit-based
traffic management scheme. There are various approaches for dealing with computation-
ally intractable allocation problems, such as applying stochastic search methods such as
randomization, using heuristics such as genetic algorithm, or relaxing some constraints of
the problem. We focus on developing randomized algorithms for solving large size instances
from real-world settings. Since the design of such algorithm depends on each specific prob-
lem and the assumptions made in this regard, we will provide detailed discussions about
the approximation algorithms of single bottleneck cases in the next chapter.

3.2.6 Performance Analysis

As discussed before, we are dealing with two contrasting goals, namely, efficiency and
fairness. It is hard to find a unique criteria to measure the performance of the proposed
mobility permit-based scheme under these criteria. It is a problem of balancing trade-off
between efficiency loss and fairness loss; the efficiency obtained from a fair solution in
general would be less than the efficiency obtained from a system optimum solution, and
the equity obtained from an efficient solution can be far less desirable based on the fairness
objective. However, to evaluate the performance of the proposed MP-based schemes we
introduce two different metrics to MP-based traffic management systems.

First, we introduce the Price of Fairness (PoF) from Nicosia et al. (2017) and Trichakis
(2011), as a standard indicator to measure efficiency loss due to introducing fairness to the
system, that is defined as

PoF (U ; S) = SO(U∗)− UMPA(U ; S)
SO(U∗)

. (3.1)

Where SO(U∗) is the maximum efficiency from a system optimal allocation that max-
imizes the efficiency of the entire system (U), and UMPA(U ; S) is a solution (S) that
observes fairness requirements through the permit allocation. PoF measures the relative
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loss of utility due to a mobility permit allocation solution. This can give the decision maker
a guideline about the cost of fairness (Nicosia et al. 2017).

Next, we then restate the price of efficiency (PoE) from Trichakis (2011), which is
defined as the total welfare loss from a UMPA(U ; S) solution relative to the maximum
obtainable welfare from an equity-oriented system (ES(U∗)). The PoE metric is defined
as

PoE(U ; S) = ES(U∗)− UMPA(U ; S)
ES(U∗)

. (3.2)

These metrics which are specific to our permit-based schemes let the mobility planner
observe the trade-off between efficiency and fairness in allocating mobility permits. Other
than these metrics, we will perform rigorous sensitivity analyses to check the stability of the
proposed schemes against the dynamics of mobility demand such as travelers’ heterogeneity
and loss aversion. We need to mention that in the case of our credit-based scheme, we
perform our comparisons about traffic state against the so-called user optimal and system
optimal conditions, similar to the existing literature.
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Chapter 4

Mobility Permit-based Traffic
Management Scheme for
Single-bottleneck Roadways †

4.1 Summary

As discussed in details in the previous chapter, the pricing and allocation of mobility
permits is an essential part of a MP-based traffic management system. As roads with
bridges and tunnels are the most obvious examples of a roadway network with a single-
bottleneck, we first propose a mobility permit allocation mechanism using a mixed-integer
programming model for single-bottleneck roadways. We then introduce the steps of a price
formation method based on a progressive auction mechanism. Next, we discuss the prop-
erties of the proposed scheme. Finally, we demonstrate the performance of the proposed
MP-based scheme considering various scenarios and metrics under different settings.

†Parts of this chapter is published online: Lessan, J., Fu, L., & Bachmann, C. (2019, July). A
Mechanism for Pricing and Allocation of Mobility Permits on Single-Bottleneck Roadways. In 2019 5th
International Conference on Transportation Information and Safety (ICTIS) (pp. 1074-1080). IEEE.
by © 2019 IEEE, available online: https://ieeexplore.ieee.org/document/8883855. And some other parts
are also submitted online: Lessan, J., Fu, L. & Bachmann, C. (2020). Towards Managing Mobility on
Road Networks using Permit-based Schemes, Journal: Transportation Research Part E: Logistics and
Transportation Review.
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Figure 4.1 Single-bottleneck Roadway Model

4.2 Allocation of Mobility Permits: Problem Formu-
lation

4.2.1 Preliminaries

We build an optimization model for mobility permit allocation on single-bottleneck road-
ways based on the departure time choice problem (Liu et al. 2015), with operational re-
quirements. After describing the discrete time traffic flow and congestion dynamics on
a single-bottleneck roadway, we then formulate the user-centric mobility permit assign-
ment model that provides an optimal traffic flow pattern with respect to users’ expressed
preferences. The single-bottleneck roadway model is a modification of the basic morning
rush hour problem where a continuum N of heterogeneous commuters want to travel from
an origin (O) to a destination (D) using a roadway with a single bottleneck of a fixed
capacity (M), as shown in Figure (4.1). We do not make any restrictive assumptions on
the users’ travel information or utilities; however, we suppose that all prices and users’
valuations are integers, and the number of users sharing the roadway space is large enough
such that each user’s behavior has infinitesimal effect on the other users. We assume that
there are a considerable number of users (individual travelers or freight transporters) who
have preferences with respect to the available services and they have enough flexibility over
the start or completion time of their mobility desires. In other words, they are willing to
accept scheduled earliness or delay costs if they cannot find an ideal service time. Users are
assumed to be asymmetric regarding their spatiotemporal mobility desires and informa-
tion and are self-concerned, i.e., they are concerned about their own travel and indifferent
about the others.

Without loss of generality, we assume that the stationary travel demand during a time
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Figure 4.2 Traffic Dynamics in a Single-bottleneck Roadway

interval [t, t̄] is finite and bounded above by N ∈ Z>0, and the capacity of the bottleneck
is fixed during a short-term horizon. Then, the following condition holds:

∫ t̄
t r(t)dt ≤ N ,

where r(t) is the departure rate. Figure (4.2) depicts the mechanism of travel demand
with respect to the roadway space (supply). Clearly, when travel demand reaches the
supply (bottleneck) capacity, traffic congestion happens. To monitor and control mobility
demand and thus traffic congestion, the regulator divides the interval [t, t̄] into a set of
chronologically increasing time points, i.e., {t = t1, t2, ..., tK−1, tK = t̄}, as shown in Figure
(4.3), where K ∈ Z>0 is the number of time slots. For each time interval k ∈ K a continuum
of potential users (N) of mass θk request passing the roadway bottleneck. However, to avoid
congestion, the total number of users who are allocated with mobility permits to pass the
bottleneck at each specified time slot should be less than the capacity limit (M) for that
time interval.

The mobility service provider uses a reservation system to issue a limited number
of travel permits with which permit holders are allowed to use the bottleneck within pre-
specified time intervals. Specifically, the kth ∈ {1, 2, ..., K} interval dedicated to travel pass
tpk is denoted as: tpk = [tk−1, tk], 1 ≤ k ≤ K. The commuters can make reservations for
any of the travel passes. However, a reservation system that offers multiple choices (in the
form of a menu) and allows commuters to express their preferences seems more preferable
for users. To this end, the mobility service provider offers a menu P M = (∆, P ) with
|∆| = |P | = L options where ∆ = (tp1, tp2, ..., tpL) is the set of available mobility options
such that tpl can be used to pass the bottleneck during lth time interval (tpl ⊂ [t, t̄], l =
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Figure 4.3 Pre-specified Time Intervals for Single-bottleneck Roadway Usage

1, 2, ..., L) and P = (p1, ..., pL) is the set of corresponding charges (pl > 0, l = 1, 2, ...L). The
permits are differentiated with respect to time-intervals at different price levels depending
on t ∈ tpl; l = 1, ..., L.

Each user i, i = 1, 2, ..., N, is allowed to choose their desired options from the menu
and specify their preferences. Let Ui(tpl) be the utility of buyer i, i = 1, 2, ..., N, when
purchasing the lth option. We then let qi = (qi,1, ..., qi,L) be the preference list of user
i, i = 1, 2, ..., N, where q̂i,l = arg maxk∈q1,...,qL\{qi,1,...,qi,l−1} Ui(tpk), l = 1, 2, ..., L. In other
words, each commuter’s decision problem is equivalent to searching and sorting through
the offered permit options and then announcing their preference list. Although each user’s
travel information is private, they can be assumed to have monotonically decreasing order
preferences, i.e., Ui(qk−1) ≥ Ui(qk) for k = 2, ..., |L|, based on a privately known strict
ordering relation, “≽i”, which reflects user i’s utility function of any form.

To avoid congestion, the number of accepted and finalized requests to pass through the
bottleneck in the kth travel interval should be within the capacity of the bottleneck during
that time interval, i.e., Mk ≤

∑N
i δi

lktpl, for k = 1, ..., K. The total travel capacity during
[t, t̄] is ∑L

k=1 Mk > N . The system manager can eliminate traffic congestion by limiting the
number of allocated permits to be less than or equal to the bottleneck capacity of that time
period. In other words, a congestion-free traffic pattern can be described with a vector of
issued permits y = (y1, ..., yN) with yi = (yi1, ..., yiL), such that ∑N

i=1
∑L

l=1 yi,lδ
i
lk ≤Mk, k =

1, 2, ..., L, where δi
lk is the Kronecker delta (i.e., 1 if lth preference of user i is the kth option

in the price menu; and zero otherwise) and yi,l ∈ qi,k or yi,l = 0, i = 1, 2, ..., N . The vector
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p̂ = (p̂1, ..., p̂N) is the payment vector, where p̂i, i = 1, 2, ..., N, indicates the price that the
user i, i = 1, 2, ..., N incurs, if he/she is assigned with yi. In particular, p(t) : [t, t̄] → R is
a step function which can be written as p(t) = ∑l=L

l=1 pl1tpl
where pl are real numbers and

1tpl
is the indicator function that takes the value of 1 if t ∈ tpl and zero otherwise.

In what follows, assuming a given price vector p, we first list the parameters and decision
variables used for the mathematical programming of a user-centric permit allocation scheme
with efficiency-equity notion, and then present the respective MIP model.

• Indices:
i : is the index of commuters for i = 1, 2, ..., N ,
k : is the index of time slots for k = 1, 2, ..., K,
l : is the preference index in a decreasing order for l = 1, 2, ..., L ≤ K.

• Parameters:
Mk: is the bottleneck capacity during kth mobility pass interval, for simplicity Mk =
M ,
qi,l: is the lth preference (selected option) of commuter i,
pk: is the price of kth travel pass interval,
δi

lk: is Kronecker’s delta; takes value of one if the lth preference of commuter i is the
kth option in the price menu; and zero otherwise
BM : a large positive number (Big M).

• Decision Variables:
xi,l: a binary variable that takes the value of one if commuter i is assigned to the lth

preference; zero otherwise.
zi,l: a binary variable that takes the value of one if the lth preference of commuter i

is allocable at the corresponding travel interval; zero otherwise.

Using the above parameters and decision variables, the user-centric mobility permit
allocation problem (UMPAP) is formulated through the objective function (4.1) and the
constraint sets (4.2) to (4.8). This objective function finds the allocation with the highest
possible efficiency (here in terms of monetary return) from users while assigning each user
to their most-preferred travel path where it is available in the specified time interval∗. This

∗No individual user is guaranteed, a priori to be assigned with their first-choice by all circumstances.
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model is a variant of the standard user equilibrium model with additional constraints on
the permit allocation conditions.

UMPAP: max
N∑

i=1

L∑
l=1

K∑
k=1

xi,lpkδi
lk (4.1)

s.t:
N∑

i=1

L∑
l=1

xi,lqi,lδ
i
lk ≤ Mk, k = 1, 2, ..., K, (4.2)

δi
lk = 1 ⇒

qi,l + BM(zi,l) ≥Mk, i = 1, 2, ..., N ; l, k = 1, 2, ..., K,

qi,l + BM(zi,l − 1) ≤Mk, i = 1, 2, ..., N ; l, k = 1, 2, ..., K,
(4.3)

L∑
l=1

xi,l = 1, i = 1, 2, ..., N, (4.4)

xi,l ≤ 1−
l−1∑
j=1

xi,j, i = 1, 2, ..., N ; l, k = 1, 2, ..., K, (4.5)

zi,l ≤ 1−
l−1∑
j=1

xi,j, i = 1, 2, ..., N ; l, k = 1, 2, ..., K, (4.6)

xi,l ≤ zi,l, i = 1, 2, ..., N ; l, k = 1, 2, ..., K, (4.7)
(1− zi,l) + xi,l ≥ xi,r − (1− zi,r), i = 1, 2, ..., N ;

l = 1, 2, ..., L; r = l + 1, ..., L, (4.8)
xi,l, zi,l ∈ {0, 1}, i = 1, 2, ..., N ; l = 1, 2, ..., L. (4.9)

Constraint set (4.2) observes the capacity limit of the bottleneck for each travel pass
interval k defined by the system manager. The constraint set (4.3) forces the variables zi,l to
take the value of one if the lth preference (of type k) of commuter i is less than the available
travel pass capacity of type k; and zero otherwise. We note that the constraint sets (4.4)
to (4.8) are to check the eligibility of each user i to be allocated if none of their preferences
with a higher priority has been allocated to their earlier. Through the constraint set (4.8),
we implement equitability and balance requirements. In other words, it is guaranteed that
if commuter i is allocated with a permit, the allocation is made for their top allocable
choice. The user-centric allocation scheme within this model gives each user an equivalent
access opportunity (equitability) at the level of anonymity by not differentiating the users
in the selection step, after which it tries to balance the allocations by distinguishing users
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given their (personal) preferences. Finally, to avoid partial allocations, we restrict the
decision variables xi,l, zi,l to be binary, using the constraint set (4.9).

The UMPAP is a coordinated constraint allocation problem that is an extension of
the classical generalized assignment problem first introduced by (Ross and Soland 1975),
which is here bounded by additional constraints to observe users’ priorities. A similar idea
of preference-oriented assignment was initially introduced by Lessan and Karabatı (2018)
where it was used to find the pessimistic scenario of a randomized allocation problem.

Theorem 4.2.1. User-centric mobility permit allocation problem is NP-hard.

Proof. To prove the computational complexity of the problem, we consider one of its special
cases with a polynomial-time reduction from the 2-partition problem, which is shown to
be NP-hard (Garey and Johnson 1990). The 2-partition problem is defined as follows:

Let A = {a1, a2, ..., an} be a finite set, where ai ∈ Z>0 is the size of element i, i =
1, 2, ..., n. Is there a subset A′ ⊆ A such that ∑ai∈A′ ai = ∑

ai∈A−A′ ai?

We note that this problem remains NP-hard even if |A′| = |A|/2 or if the elements in
A are ordered (Garey and Johnson (1990).

We assume that the service provider offers two permit options 1 and 2, which are priced
at pi,1 and pi,2, respectively, with equal total capacity such that |M1| = |M2| =

∑
ai∈A ai/2,

and we then define the utility function of user i, i = 1, 2, ..., n as follows:

ui(x) =


ai + 1 if x = ai,1 = ai,2 = ai,

0 otherwise.

(4.10)

We assume that pi,1 = pi,2 = ai for i = 1, 2, ..., n. With this price menu and the utility
functions defined above, each commuter i, i = 0, 1, 2, ..., n, presents a list which consists
of both options. A solution for the above problem, if exists, will be a solution of the 2-
partition problem and the objective function of the optimized model will be exactly equal
to ∑

ai∈A ai. Since the above outlined reduction is a polynomial-time reduction from a
2-partition problem, we can now claim that UMPAP, too, is NP-hard.
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4.2.2 A Heuristic for Mobility Permit Allocation

Under a socially acceptable equilibrium all users should be enabled to obtain favorable
reservations closer to their most-desired time. Unfortunately, some conventional allocation
schemes such as FCFS, queue-position, or priority-based would fail to do so. However, this
issue can be tackled by a random assignment approach that treats the users equally at the
time of allocation. The heuristic random priority (RP) allocation scheme proposed here is
a way to accommodate reservation requests and address commuters’ concerns about equity
and fairness. The RP scheme works in two steps: In the first step, the system planner
chooses at random an ordered list of users. In the second step each user i, i = 1, 2, ..., N

is allocated such that the assignment scheme goes through their preferences and allocates
their most-preferred option, if it is available at the time of request. Algorithm (1) shows
the pseudo-code for RP allocation scheme. This randomized allocation scheme addresses
users’ fairness expectation and then resolves the computational complexity of the problem.
It also induces a non-manipulable property in the sense that the equilibrium is robust
against market participants’ beliefs about each other.

The proposed heuristic assignment scheme is widely used in practice and it comes with
several other attractive properties as well. This mechanism is strategically simple as market
participants do not need to bother themselves collecting information about others’ actions
or strategies. It helps policy makers to obtain information about the true preferences of
participants. In addition, participants who lack the information are not disadvantaged
relative to sophisticated participants (Azevedo and Budish 2017). This implicitly embeds
another notion of fairness.

Proposition 4.2.1. The traffic pattern outcome achieved by RP allocation scheme is
Pareto efficient and strategy-proof.

Proof. To show that the proposed scheme can achieve a Pareto efficient traffic pattern,
we need to prove that any allocation outcome through PR is Pareto efficient. We note
that the proposed scheme is a serial dictatorship as it generates an arbitrary list of users.
Then starting from the user on top of the list each user is matched with their top choices
that is available. It continues in this way down the list until the last user is allocated. As
a serial dictatorship allocation scheme is proven to be Pareto efficient and strategy-proof
(Smith 2003, Svensson 1999), and since every outcome of our mobility permit assignment
corresponds to a serial dictatorship allocation mechanism, it readily proves the proposition.
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Algorithm 1 Pseudo-code for Multi-item RP Allocation Scheme
1: Initialize:
2: PM ← {(tp1, p1), . . . , (tp|K|, p|K|)} Price Menu
3: M ← {M1, . . . , M|K|} List of Capacities
4: A← {a1, . . . , a|N |} List of Agents
5: Q← {q1, . . . , q|N |} Preference List
6: Σ ← Random ordering of A
7: procedure Allocate
8: for σ ∈ {1, . . . , |Σ|} do
9: ith ordered user ← σ(i)

10: ALi ← 0 and k ← 1
11: while ALi = 0 and k ≤ K do
12: q̂i,l ← arg maxl∈{qi,1,...,qi,L}=qi∈Q qi,lδ

i
lk ≤Mk

13: if q̂i,l > 0 then
14: ALi ← 1
15: k ← k + 1
16: Mk ←Mk − q̂i,l Update Capacity
17: q̂i ← q̂i,l

18: p̂i ← p(qi,l)
19: else k ← k + 1
20: return q̂, p̂
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4.2.3 Pricing of Mobility Permits: A Progressive Auction Method

A mobility service yields an operative (near) optimal traffic pattern if each user can be
assigned to the highest available option in their requested service list while no capacity
limit is violated under the effective market price of permits. In other words, the mobility
service provider needs to allocate mobility permits through a pricing mechanism which
can attain the best equilibrium (price menu) from the point of view of the users. To this
end, we propose a progressive pricing algorithm with two different pricing and allocation
approaches. The first approach solves our UMPAP problem at each iteration of the auction
and uses a flat pricing method that raises the permit price of all time slot permits at a
constant rate. The iterative pricing and allocation terminates when the revenue outcome
of the current iteration falls below that of the most recent iteration. The second approach
for the pricing and allocation of permits is a hybrid method through which the price of
over-demanded time slots are only raised at each step until there is no over-demanded time
slot.

Figure (4.4) illustrates the general process and each step of the iterative hybrid method.
Given each user’s travel priorities, the mobility service provider offers an initial personalized
price menu, a set of permitted trip options and the respective prices. As users place
monetary value on each of the offered options, given a price menu, they can choose those
items that bring non-negative surplus and puts the option that has the maximum surplus
on top of their preference list and the second highest on the second position and so on.
Then, users announces their preference list that specifies which permit option or options
they want to buy at the initial prices. At each iteration and for each updated price
menu, the service provider collects users’ priorities, and for each user the mobility service
provider offers a menu of available services which includes a permit vector and a price
vector with one-to-one correspondence relation. The service provider then collects the
users’ preferences over the offered options and identifies a minimal over-demanded set,
that is, an over-demanded set which none of its proper subsets is over-demanded (Demange
et al. 1986). The service provider then raises the price of permits for the time slots in the
minimal over-demanded set by one unit and announces a provisional allocation using our
heuristic randomized allocation method. At each stage if the demand at each time slot
falls shorter than the capacity for that slot then a market equilibrium has been already
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Figure 4.4 Iterative Auction for Pricing and Allocation of Permits

achieved for that time slot, i.e., it is possible to assign each user to one of their requested
options. If no such assignment exists, then there is at least one over-demanded (congested)
time slot that the number of users demanding permit for is greater than the capacity of
that time slot. We modify the definition of an over-demanded set from Cramton et al.
(2006). Let qi(P ) = (qi,1, qi,2, ..., qi,L) be the preference list of user i at the price vector
P = (p1, p2, ..., pL). Let C ⊆ K and R(C) be the set of users such that 0 ̸= qi(P ) ⊆ C for
all i ∈ R(C). We say that a set of time slots C is over-demanded if |R(C)| > ∑

c∈C Mc. A
necessary and sufficient condition for the existence of a feasible assignment is that there
should be no over-demanded time slots due to Hall (1935) and Demange et al. (1986).
According to Shapley and Shubik (1971), there exists an equilibrium, a unique price vector,
that is the best equilibrium from the point of view of the users. This means that the
iterative process should continue until no minimal over-demanded time slot exist. Now
the planner performs the permit assignment process through optimizing the allocations
according to our user-centric optimization model (UMPAP). In other words, when the
decision is to stop the auction, the allocation is finalized based on the assignments generated
through our user-centric mobility permit allocation model to find the optimum assignment
outcome regarding the efficiency and equity concerns.
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We note that the difference between the first and second auction methods relies on the
way that provisional pricing and allocations and the termination criteria are performed,
though both of them are similar regarding the other components. In the first auction
method at iteration provisional allocations are done using the proposed UMPAP approach
while in the second approach we replace it with the heuristic RP method to speed up
the process. In addition, the second auction method uses the MODS pricing approach to
raise the permit price of corresponding time slots while the first auction method simply
raises the permit prices of all time slots with a constant ratio. The termination criteria in
the first auction is based on comparing the revenue outcome of the current iteration with
that of the most recent iteration. However, the second auction mechanism stops when
no MODS exits, and it finalizes the permit assignments using the proposed optimization
method (UMPAP) for permit allocation.

4.3 Performance Analysis

In this section, we use two different benchmark models under symmetric full information
settings, developed in Appendix (A), for the purpose of evaluating the performance of
the proposed schemes. The first benchmark model is efficiency-oriented mobility permit
allocation under a coordinated system (MPA-CS) and system optimal (MPA-SO) setting.
The MPA-CS problem models the pricing and allocation of permits as Stackelberg game
with the service provider as the leader and the mobility users as followers. The MPA-SO,
which is obtained from MPA-CS, only looks for optimum allocation of permits without
pricing decision. The second benchmark model is mobility permit allocation under an
equity-oriented system (MPA-ES). The MPA-ES problem reflects the Rawlsian notion of
fairness principle under a symmetric case; it focuses on the individual utilities obtained by
each user such that on the optimum solution even the worst off user can get the highest
achievable utility (Rawls 2009).
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4.3.1 Computational Experiments

Given different parameters in our scheme, we have considered a total of 16 problem sets with
combinations of N = 20, and 40, and M = 5 and 10. We assume all the commuters have
the same ideal time, t∗ to pass the bottleneck. In all of the test problems we assume L = 4,
i.e., the mobility service provider offers four time slots. In order to control adequately
for heterogeneity, we randomly generate the parameters of the utility functions under two
distinctive heterogeneity scenarios:

1) Proportional heterogeneity: where commuters’ VOT, α, is an increasing func-
tion and follows the cumulative distribution function F (x) = Pr{α ≤ x} for x ∈ [α, ᾱ].
We denote F̄ (x) = 1−F (x) and the corresponding density function f(α), which is positive
for α ∈ [α, ᾱ] and zero otherwise. For a specific commuter i, their early and late arrival
penalty is proportional to αi, i.e., β = ρ1αi and γ = ρ2αi where 0 < ρ1 < 1 < ρ2 and ρ1 and
ρ2 are identical for all commuters. This assumption on heterogeneity is similar to Vickrey
(1973), Xiao et al. (2011) and Liu et al. (2015). To look at the efficiency loss due to user
heterogeneity, we assume that αi ∼ U [α, ᾱ]), i.e., the density function f(α) = 1/(ᾱ − α),
and f(α) = 0 otherwise. In all our experiments we let L = 4, and Ui = Uαi where U = 30.
Specifically, we assume ᾱ/α = 2, 3, 4, and 5. As summarized in Table (4.1), we consider 30
randomly generated problems for each of the Problem Sets 1-8, and 8×30 = 240 problems
in total.

Table 4.1 Parameters Setup for Proportional Heterogeneity Setting

Problem Set N M = N/s ᾱ/α No. of Problems

1 20 5 2 30

2 20 5 3 30

3 20 5 4 30

4 20 5 5 30

5 40 10 2 30

6 40 10 3 30

7 40 10 4 30

8 40 10 5 30
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For the first scenario the results of computational experiments are provided in Table
(4.2). The first column “SO/Gr” shows the ratio of the total obtained utility in the
centralized system (system optimal) to the utility of users in an ideal system where no
bottleneck exists. The second column “CSPl/Gr” shows the ratio of the service provider’s
extracted utility, under a coordinated setting, to the utility of users in the ideal system.
Similarly, the third column “CSUs/Gr” reports the ratio of the total welfare kept for
the users under a coordinate setting. The sixth column “ES/Gr” reports the ratio of
the preserved welfare under the equity-oriented system compared to the ideal system.
Columns eight and nine, report the ratio of the extracted utility, under our MIP-based
pricing and allocation scheme, to the total utility of the ideal system, respectively for the
system planner “MIPPl/Gr” and the users of the system “MIPUS/Gr”. In the same way,
column 10 and 11 report the ratio of the extracted utility, under the hybrid pricing and
allocation scheme, to the total utility from the ideal system, respectively for the system
planner “HyPl/Gr” and the users of the system “HyUs/Gr”. As it can be seen in the last
row of Table (4.2), when the MIP-based pricing and allocation mechanism is applied on
average both the system planner and users, under the privater information setting, can
sustain around 48% of the total welfare from the ideal system. The efficiency loss is partly
due to pricing and allocation decisions that the system planner applies when the system is
not coordinated and partly because of the behavior of the assumed utility functions that
restricts achieving the whole system’s profit. However, our hybrid scheme under private
information setting can achieve the same results that is achieved under the coordinated
setting, under full information. With the proposed hybrid pricing and allocation scheme
the system planner on average can extract more than 51% of the total welfare of the system
while users can sustain about 46% of the welfare in the system, which are similar to the
results obtained under the coordinated and full information setting.
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Table 4.2 Results from Proportional Heterogeneity Setting

MPA-SO MPA-CS MPA-ES MIP Scheme (Flat Pricing) Hybrid Scheme (MODS Pricing)

Problem Set SO/Gr CSPl/Gr CSUs/Gr Total ES/Gr MIPPl/Gr MIPUS/Gr Total HyPl/Gr HyUs/Gr Total

1 97.83 68.90 28.93 97.83 97.44 66.09 31.41 97.50 69.44 28.77 98.21

2 98.03 54.79 43.24 98.03 97.39 52.94 44.48 97.42 55.19 43.01 98.20

3 98.11 46.16 51.95 98.11 97.39 43.94 53.51 97.45 46.48 51.77 98.25

4 98.18 40.63 57.55 98.18 97.41 38.06 59.43 97.48 40.87 57.48 98.35

5 97.84 67.06 30.78 97.84 97.68 64.17 33.31 97.48 66.51 30.60 97.11

6 98.02 52.42 45.61 98.02 97.86 50.21 47.29 97.50 52.25 45.41 97.66

7 98.09 43.52 54.57 98.09 97.94 41.49 56.01 97.49 43.27 54.43 97.70

8 98.20 37.17 61.03 98.20 98.07 34.69 62.81 97.50 37.32 60.96 98.29

Ave. 98.04 51.33 46.71 98.04 97.67 48.94 48.53 97.47 51.41 46.55 97.97

67



2) Non-proportional heterogeneity: is the case where commuters may have differ-
ent ρ1 and ρ2. To focus on the heterogeneity in ρ1 and ρ2, we consider an identical VOT
for all commuters. It is further assumed that η = ρ1/ρ2 is identical for all commuters.
However, ρ1 continuously increases from ρl

1 to ρu
1 with a cumulative distribution function

of F (x) = 1 − F̄ (x). Similarly, we denote F̄1(x) = 1 − F1(x). Note that, even though
ρ1 and ρ2 can vary; it is assumed 0 < ρ1 < 1 < ρ2; then we see that, ρl

1 < ρu
1 < 1 and

ρl
2 = ηρl

1 > 1. This type of user heterogeneity is similar to that considered in Tian et al.
(2013) and Liu et al. (2015) and many others. Specifically, in this scenario we assume
ρ1 is uniformly distributed as ρ1 ∼ U(0.5, 1). Similarly, we let L = 4, and Ui = 60. As
summarized in Table (4.3), for this scenario, we consider 30 randomly generated problems
for each of the Problem Sets 1-8, and 8× 30 = 240 problems in total.

Table 4.3 Parameters Setup for Non-proportional Heterogeneity

Problem Set N M = N/s η = ρ1/ρ2 No. of Problems

1 20 5 2 30

2 20 5 3 30

3 20 5 4 30

4 20 5 5 30

5 40 10 2 30

6 40 10 3 30

7 40 10 4 30

8 40 10 5 30

For the second scenario the results of computational experiments are provided in Table
(4.4) with the same representative columns as described in Table (4.2).
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Table 4.4 Results from Non-proportional Heterogeneity Setting

MPA-SO MPA-CS MPA-ES MIP Scheme (Flat Pricing) Hybrid Scheme (MODS Pricing)

Problem Set SO/Gr CSPl/Gr CSUs/Gr Total ES/Gr MIPPl/Gr MIPUS/Gr Total HyPl/Gr HyUs/Gr Total

1 91.32 88.34 2.98 91.32 91.17 79.57 4.54 84.11 87.10 4.34 91.44

2 90.03 86.85 3.18 90.03 89.70 77.31 5.57 82.88 83.33 6.45 89.78

3 88.44 84.95 3.49 88.44 87.85 72.10 8.84 80.94 83.31 4.91 88.22

4 86.76 83.08 3.67 86.75 86.01 65.59 13.15 78.74 78.92 5.37 84.30

5 91.49 88.25 3.24 91.49 91.45 80.30 3.43 83.73 86.86 4.71 91.57

6 89.95 86.47 3.48 89.95 89.75 77.43 5.16 82.59 84.98 4.58 89.56

7 88.57 85.00 3.58 88.57 88.43 72.32 7.98 80.30 83.34 5.08 88.42

8 87.32 83.41 3.91 87.32 86.52 66.73 11.89 78.62 81.50 5.48 86.98

Ave 89.44 85.79 3.44 89.23 88.86 73.92 7.57 81.49 83.67 5.12 88.78
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As it can be seen in the last row of Table (4.4), with the MIP-based pricing and alloca-
tion mechanism, on average the system planner can sustain around 74% of the total welfare
of the ideal system and the users on average can get 7% of the total welfare. However, our
hybrid scheme, under private information setting, can achieve efficiency results similar to
that under the coordinated setting, under full information. With our hybrid permit pricing
and allocation scheme the service provider on average can extract more than 83% of the
total welfare of the system while users can sustain about 5% of the welfare in the system,
which are very close to the results obtained under the coordinated setting. The efficiency
loss of MIP-based method can be attributed to flat pricing and allocation decisions. While
with the hybrid scheme the efficiency loss is less than 1% which is trivial. The overall
comparison of the results between these two scenario show that user heterogeneity causes
further efficiency loss, though the proposed auction mechanisms can mitigate a propor-
tion of the loss. We can see that under non-proportional heterogeneity setting the hybrid
auction can transfer more surplus from users to the service provider.

From Tables (4.2) and (4.4), one can also see that the equity-oriented mobility permit
allocation scheme can sustain about 89% to 97% of the overall welfare in the system. In
other words, 3% to 11% of total welfare is lost when equity is the sole objective within the
system having a bottleneck. The welfare lost with MIP-based scheme can reach to 16% of
the total welfare within the system, mostly due to the flat pricing scheme. However, the
hybrid scheme with the MODS pricing method loses a trivial proportion (less than 0.2%)
of total welfare within the mobility system under both proportional and non-proportional
heterogeneity settings.

We now turn into analyzing the overall performance and acceptability ratios of the
proposed schemes (MIP-based and Hybrid) in terms of efficiency and equity loss using POF

and equity POE metrics defined in Section (3.2.6). Table (4.5) presents the values of PoF

and PoE for proportional and non-proportional heterogeneity settings for both MIP-based
and hybrid mobility permit pricing and allocation schemes. The values of PoF show that
the loss of total utility or overall welfare of a fair solution compared to the system optimum
(MPA-SO) in the non-proportional heterogeneity setting is significantly less than those in
the proportional heterogeneity setting. Moreover, the hybrid pricing and allocation scheme
results in a trivial efficiency losses, PoF is about 17% under the proportional heterogeneity
setting and 6% under the non-proportional heterogeneity setting. This difference can
be attributed to less diversity of users in terms of the earliness and lateness under non-
proportional heterogeneity setting. We see that the value of PoE for both schemes (MIP-
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based and Hybrid) are very close to each other and trivial under both settings while with
the hybrid mobility pricing and allocation scheme almost no efficiency is lost compared to
the overall welfare under system optimum traffic pattern.

Table 4.5 The values of PoF and PoE for Proportional and Non-proportional Heterogeneity
Settings

Pro. Hete. Non-pro. Hete.

Criteria MIP Scheme Hybrid Scheme MIP Scheme Hybrid Scheme

PoF 0.50 0.48 0.17 0.06

PoE 0.02 0.00 0.08 0.00

The computational effort required to perform pricing and allocation of mobility permits
is highly dependent to the number of participating users and the number of available
options. On average, the computational effort grows as the number of users increases.
However, to provide a rough estimate in the largest and complex problems (i.e., Problem
Set 4-8 of non-proportional heterogeneity scenario), the proposed MIP-based scheme on
average can finalize the pricing and allocation decisions in around 1450 s while with the
proposed hybrid mechanism on average it takes about 840 s. We note that the most
computational time in the hybrid scheme is due to the final step that requires the permit
allocation problem to be solved optimally. To solve this issue, a heuristic allocation scheme
can be used to finalize permit allocations when the respective market prices are found
through the hybrid scheme. This can significantly reduce the computational time, however,
it may result in transferring a small proportion of the service provider’s utility to mobility
users.

4.4 Conclusion

In this chapter, we focused on the design and analysis of user-centric pricing and allo-
cation of mobility permits for roadways with one bottleneck. We dealt with observing
operational objectives, particularly, balancing efficiency and fairness in mobility permit al-
location. We then explored the theoretical properties of the proposed scheme and showed
that the proposed scheme can achieve an optimal traffic pattern; though, it is computa-
tionally intensive to solve large size problem instances. Next, to tack the computational

71



complexity of the proposed scheme, we proposed a heuristic permit allocation algorithm
that sustains a Pareto-optimal traffic pattern with less computational effort. Next, we
designed the steps of an iterative auction mechanism for pricing the mobility permit under
two different pricing methods. To analyze the performance of the proposed schemes, we
performed computational experiments under different parameter settings. We showed that
a hybrid mechanism with a minimal over-demanded set pricing and heuristic allocation
method can be a good candidate for being the mobility scheme component of the proposed
integrated user-centric traffic management system. Although, the presented MP-based
traffic management scheme is Pareto-improving and most probable to be economically and
socially acceptable, to completely evaluate its acceptability we need to take into account
other practical factors, such as the way in which the revenue outcome of the scheme is
used. This needs designing revenue recycling policies that enhance the acceptability of
mobility management reforms (Mayeres and Proost 2002), which is out of this research’s
scopes and objectives.
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Chapter 5

A Mobility Credit Scheme for
Managing Traffic on Transportation
Networks with Advanced
Connectivity Technologies †

5.1 Summary

In this chapter, we present a credit-based mobility scheme to regulate traffic flow on a
road network consisting of a mix of CAVs and non-CAVs. Particularly, a set of revenue-
neutral credit schemes are proposed that uses a combination of link-based rewards and
charges to actuate network-wide travel behavior towards a system optimum pattern. We
first formulate the underlying problem as a logit-based stochastic traffic assignment prob-
lem, using a path-free mathematical program. We then model the mixed vehicle stochastic
user- and system-optimal traffic assignment problems as non-linear complementarity prob-
lems (NCPs) and use them to find Pareto-improving link-specific charges and rewards.
Numerical analyses demonstrate the efficiency of the proposed scheme under different hy-
pothetical scenarios and the performance of different variants of the proposed mobility

†This chapter is adapted from a recently revised and submitted article: Lessan, J., Fu, L. (2019). A
Mobility Credit Scheme for Managing Traffic on Transportation Networks with Advanced Connectivity
Technologies. Submitted to: Journal of Intelligent Transportation Systems: Technology, Planning, and
Operations, Revised February 2020.
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scheme. The study results can be used to support the effectiveness of credit-based scheme
in leveraging the advantage of CAVs in moving towards the marketable mobility paradigm.

5.2 A Compound Credit-based Scheme

5.2.1 User Equilibrium

We consider a transportation network represented by a fully-connected directed graph
G(N, A) with multiple OD pairs. Each node is denoted by a natural number i, and each
link a = (i, j) of A is identified by the upstream node i and the downstream node j. The
node set N includes origin nodes o ∈ O from which users start their trips, and destination
nodes d ∈ D at which users terminate their trips. Let W denote the set of OD pairs,
R denote the set of all routes, and Rw ⊂ R be the set of all routes between an OD pair
w ∈ W . The travel demand for each OD pair w = (o, d) ∈ W is denoted by qw, qw > 0
and the total travel demand is given by q = ∑

w∈W qw.

For simplicity, let ta(va), ∀a ∈ A denote the travel time (performance function) for link
a; therefore, the travel time on route r ∈ Rw can be stated as tw

r = ∑
a∈A ta(va)δw

ar, r ∈
Rw, w ∈ W , where δw

ar is equal to 1 if path r ∈ Rw, w ∈ W uses link a ∈ A; and zero
otherwise.

A traffic agency (central transport authority) wishes to use a credit-based charging
scheme denoted by (K, κ) with which he circulates K number of credits in the mobility
market. Travelers are either charged with κa > 0 or subsided with κa < 0 if they traverse on
link a; otherwise, it will be for free, i.e., κa = 0. The mobility market consists of two differ-
ent classes of users who share the same network, namely, cooperative and non-cooperative
users. The cooperative users, CAVs, are assumed to follow a network-wide routing prin-
ciple, making more informed real-time route choice decisions. On the other hand, the
non-cooperative users, non-CAVs, adopt self-serving routing principle to minimize their in-
dividual travel times. We note that all users must have registered with a central transport
authority in order for the scheme to work. Expectedly, tracking technologies along with
IoT will create a unified gateway to achieve this.

We assume that the traffic management agency uses a compound scheme under which
non-CAVs and CAVs users can be subject to different charge and subsidy policies. This
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means the charging are differentiated based on their registered class. In all these cases
the charges and rewards would be based on the cooperation level of the active vehicle on
following spontaneous network-wide routing options. In other words, changing the driver
mode to drive a CAV in human mode but cooperative manner is allowed as far as the
user follow the centrally made routing decisions. However, if the users opt out of the
cooperative behavior then their cost would be based on their self-serving routing decisions.
We need to distinguish the CAV users who make informed routing decisions, i.e., a CAV on
human mode does not change anything as far as it follows informed centrally made routing
decisions. Another point that we need to mention is that our proposed credit scheme is
a unified scheme where the two types of users could trade the credits, however, it is the
charge and reward rates on the links that differentiate the scheme for them. Moreover,
there is no initial allocation impact due to the credit scheme. It is assumed that the
integration of credit scheme into ATIS/CAVs technologies would lead to negligible (zero)
transaction costs, which makes the final equilibrium to be independent of initial allocations
of the credits (Yang and Wang 2011). Essentially, upon following the spontaneous system-
wide provided routing options, users are either charged or rewarded depending on their
cooperation level.

A differentiated scheme is suitable for the heterogeneous situations where undifferen-
tiated charges might not be sufficient for achieving a system optimal state (Mehr and
Horowitz 2019). Another benefit of having different charge and reward rates is that it
enables the system planner to promote travel behavior of the corresponding participants
towards a common goal (e.g., maximizing social welfare, promoting desired traffic condi-
tion or an emission control program). Paying one-shot purchase tax or simply applying
tolls, through having some motivational justification, would not help promote an improved
travel decision behavior. Indeed, reward-based instruments, compared to single-shot sub-
sidy or purchase tax schemes, are shown to be more effective in promoting eco-driving
travel decision behavior (Tsirimpa et al. 2019). We assume that a network-wide monitor-
ing infrastructure is in place in which participants can obtain real-time travel decision aids
and users’ movements throughout the network can be monitored. Thus the participants
can be charged or rewarded depending on their cooperation level tied with their travel deci-
sion behaviors. The credit-based scheme aims to stimulate a network-wide optimum state
by balancing the spent travel time (cost) with the incurred monetary charges or rewards
such that those who look for short travel time based on UE routing principle must pay for
it, and those who obey cooperative eco-driving behavior based on SO routing principle are
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rewarded accordingly.

For these settings the effects of stochastic behavior and the level of cooperation can be
incorporated by different values of the variability parameters (Yang 1998, Yin and Yang
2003). Without loss of generality, we assume two different levels of operational uncertainty
for both type of users. A higher variability level is attributed to non-CAVs users mainly due
to the fact that those users follow the UE routing principle to minimize their individual
travel times. A lower level of variability is attributed to CAV users to account for the
fact that they share common infrastructures such as road links with non-CAVs, and are
subject to network interruption and other possible situations such as bad weather, moving
bottlenecks, delays and lags affecting vehicle reaction and response times.

With these explanations, the first class of travelers are non-CAV drivers, who rest on
a user-optimum manner to route themselves under a stochastic setting, accounting q̂ < q

part of the total travel demand. It is further assumed that the routing decisions of non-
CAV drivers are associated with a variability parameter θ̂ and a charging scheme κ̂ ∈ κ.
The variability parameter is to include the monetary equivalent of the cost associated with
class-specific travel behavior and vehicle features. The non-CAVs make their route choice
following the SUE principle and select the route r from the route set r ∈ Rw based on
minimal perceived travel costs (ĉw

r ) defined as follows:

ĉw
r =

∑
a∈A

(ta(va) + ρκ̂a)δw
ar + ϵ̂w

r . (5.1)

where ρ denotes the monetary equivalent of unit credit price in the credit market.

With this definition, the perceived travel cost becomes equal to the monetary equivalent
of generalized travel time on the path r ∈ Rw which is the sum of the path travel time
and total credit used/earned on that path plus users’ perception error (ϵ̂w

r ) on the path
travel time, which follows Gumbel distribution for logit-based SUE. More specifically, we
assume that this class of users choose the rth route with probability p̂w

r which reads by a
logit-based formula:
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p̂w
r =

exp( ĉw
r

−θ̂
)∑

k∈Rw
exp( ĉw

k

−θ̂
)

(5.2)

=
exp[ tw

r +ρ
∑

a∈A
κ̂aδa,r

−θ̂
]∑

k∈Rw
exp[ tw

k
+ρ
∑

a∈A
κ̂aδa,r

−θ̂
]
, r ∈ Rw, w ∈ W, (5.3)

where θ̂ is travelers’ perception dispersion parameter, i.e., a positive value related to the
standard deviation of the random term, and measures the sensitivity of route choices to
travel cost.

Therefore, the traffic assignment problem of non-CAV drivers would satisfy the follow-
ing traffic pattern equilibrium:

f̂w
r = p̂w

r q̂w, r ∈ Rw, w ∈ W, (5.4)

where q̂w is the demand of non-CAV users between OD pair w ∈ W , such that∑w∈W q̂w = q̂,
and f̂w

r is the path flow of these users on path r ∈ Rw.

The second class of travelers are CAV users who constitute q̄ = q − q̂ part of the total
travel demand. It is assumed that CAV users obtain partial information about the road
traffic condition; therefore, they are associated with a different variability parameter θ̄ and
a different charging scheme κ̄ ∈ κ. Therefore, their experienced generalized travel time is
c̄w

r = ∑
a∈A(ta(va) + ρκ̄a)δw

ar + ϵ̄w
r on the path r ∈ Rw, and their traffic assignment would

satisfy the following traffic pattern:

f̄w
r = p̄w

r q̄w, r ∈ Rw, w ∈ W, (5.5)

where q̄w denotes the demand of CAV users between OD pair w ∈ W such that ∑w∈W q̄w =
q̄.

It is common in the literature that when generalized costs are created on the basis of
travel time and money, features such as higher average speed (travel efficiency) and fuel
consumption costs are converted into equivalent monetary costs. All these factors can
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be seen in an extended form of generalized travel cost function. For example, to study
the effects of CAV ownership on trip, mode, and route choice, Levin and Boyles (2015)
use an extended form of generalized travel time function with separate factors attributed
to each different feature. Similarly, to account for the reduced energy consumption due
to platooning, Wang, Peeta and He (2019) use a discount factor for fuel consumption
parameter in link travel time. In this study, we keep the travel time in the simplistic form,
but differentiate the generalized costs of CAVs and non-CAVs using different charging
scheme and associating different variability parameters to their travel time, with a lower
variability representing a higher travel efficiency of CAVs.

Under a feasible compound credit scheme (K, κ̂, κ̄), the mixed-vehicle stochastic user
equilibrium (MSUE) traffic flow and market equilibrium (ME) conditions can be written
as:

f̂w
r = p̂w

r q̂w, r ∈ Rw, w ∈ W, (5.6)
f̄w

r = p̄w
r q̄w, r ∈ Rw, w ∈ W, (5.7)

(K −
∑

a

(κ̂av̂a + κ̄av̄a))ρ = 0, ρ ≥ 0,
∑

a

κ̂av̂a + κ̄av̄a ≤ K, (5.8)

where

v̂a =
∑

w∈W

∑
r∈Rw

(f̂w
r )δw

ar,

v̄a =
∑

w∈W

∑
r∈Rw

(f̄w
r )δw

ar, a ∈ A. (5.9)

Equations (5.6) to (5.8) represent mixed stochastic user equilibrium and the credit
market clearing conditions. Specifically, Equations (5.6) and (5.7) is the traffic flow dis-
tribution based on SUE, and Equation (5.8) states that the equilibrium credit scheme
(K, κ̂, κ̄) is effective (ρ ̸= 0) only when the obtained link flow pattern under the compound
credit scheme is not identical to UE mixed link flow pattern. To assure this would not be
the case, we assume ∑a(κ̂av̂0

a + κ̄av̄0
a) > K for the mixed link flow pattern (v̂0

a, v̄0
a) under

no-credit scheme intervention. A similar argument can be found in Han and Cheng (2017)
for the single class SUE network flow pattern.

78



When we set K = 0, we will obtain a revenue-neutral cyclic charging scheme which
is different from periodic credit distribution scheme. In the cyclic scheme credits never
expire but circulate within the system such that the total number of collected credits is
constrained to be zero (Xiao, Long, Li, Kou and Nie 2019). Moreover, the cyclic credit
charging scheme allows for negative link charges (or subsidies), therefore users may obtain
some subsidy from choosing links with negative charges. This means that a cyclic credit
charging scheme under an ATIS has more flexibility than a periodic credit distribution
scheme to incentivize users to observe centralized routing decisions. A compound scheme
implicitly can include an undifferentiated case where the traffic agency uses the same
charging scheme for all vehicles just by setting κ̂a = κ̄a,∀a ∈ A.

5.2.2 Equivalent Mathematical Programming Formulation

Maher et al. (2005) propose a closed-form expression for the stochastic traffic assignment
with Gumbel distributed perception error. Sharing the same network, our setting is differ-
ent as the two classes of network users would interact and impact each other which requires
a different modeling approach. In this section, we propose the following logit-based min-
imization program model for characterizing the mixed traffic behavior and the resultant
equilibrium with two different Gumbel distributed perception errors under a feasible com-
pound credit-based travel demand scheme (K, κ̂, κ̄).
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Min Z(f̂ , f̄) =
∑
a∈A

∫ v̂a+v̄a

0
ta(x)dx

+ θ̂
∑

w∈W

∑
r∈Rw

f̂w
r (ln f̂w

r − 1) + θ̄
∑

w∈W

∑
r∈Rw

f̄w
r (ln f̄w

r − 1)

− θ̂
∑

w∈W

q̂w(ln q̂w − 1)− θ̄
∑

w∈W

q̄w(ln q̄w − 1) (5.10)

subject to:∑
r∈Rw

f̄w
r = q̄w, w ∈ W, (5.11)

∑
r∈Rw

f̂w
r = q̂w, w ∈ W, (5.12)∑

a∈A

κ̂av̂a + κ̄av̄a ≤ K, (5.13)

κ̄a ≤ κ̂a, a ∈ A, (5.14)
f̄w

r ≥ 0, r ∈ Rw, w ∈ W, (5.15)
f̂w

r ≥ 0, r ∈ Rw, w ∈ W, (5.16)

where the link flows are defined by

v̂a =
∑

w∈W

∑
r∈Rw

(f̂w
r )δw

ar, a ∈ A, (5.17)

v̄a =
∑

w∈W

∑
r∈Rw

(f̄w
r )δw

ar, a ∈ A. (5.18)

The above simplified model looks like Fisk’s logit-type SUE model with two different
perception errors (θ̂, θ̄), restrained by additional credit feasibility constraints (5.13) and
(5.14). Specifically, the constraint set (5.14) guarantees a permissive charging scheme to
encourage users to switch to CAVs driving mode. However, for simplicity and without loss
of generality, we relax this constraint here. In Section (5.2.5), we will show how we can
incorporate it when designing a compound credit charging scheme. Moreover, we will also
present a minimal value charging scheme such that the absolute value of charges, i.e., |κ̄a|
and |κ̂a| for all a ∈ A, are expected to be as low as possible to address the concerns pertinent
to social equity by obtaining small values of charges or rewards which are distributed over
the entire network. This is elaborated in Section (5.2.5).
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We note that the last two terms in the objective function (5.10) can be omitted, as
they are constant. The proposed mathematical model can be reduced to the case where
CAV users are assumed to have perfect compliance (θ̄ = 0) and thus make link choice
decisions in a system-optimum manner and non-CAV users follow UE routing principle
under stochastic setting. We assume that, when driving on each link, users stick to their
most recently chosen travel behavior before entering the link. Therefore aggregate number
of users of each type would not change due to spontaneous class type switches. This
situation can also be modeled by replacing the objective function (5.10) with the following
objective functions.

Z(f̂ , f̄) =
∑
a∈A

v̄ata(v̂a + v̄a) +

∑
a∈A

∫ v̂a+v̄a

0
ta(x)dx + θ̂

∑
w∈W

∑
r∈Rw

f̂w
r (ln f̂w

r − 1) (5.19)

It can also be reduced to a deterministic traffic stream situation where non-CAVs user
with user-equilibrium behavioral pattern are mixed with CAVs users with system-optimal
behavioral pattern by replacing the objective function (5.10) with the following objective
function.

Z(f̂ , f̄) =
∑
a∈A

∫ v̂a+v̄a

0
ta(x)dx +

∑
a∈A

v̄ata(v̂a + v̄a) (5.20)

In both of these situations the CAV users would be free of charge, however their travel
decisions can be managed centrally to control and distribute the traffic demand of non-CAV
users. The latter scenario with adjustments will be an extension of Chen et al. (2020) to a
stochastic traffic flow setting. In this chapter, we keep our formulation in its general form
modeled in the minimization programming problem (5.10)-(5.16). However, the obtained
results are relevant with corresponding adjustments to the described scenarios as well.

Proposition 5.2.1. (Existence) For a convex and monotonically increasing (with the
amount of flow) link performance functions, the minimization problem (5.10) - (5.18) is
a convex programming problem with linear constraints and has a unique aggregate link ow
solution for each vehicle class.
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Proof. We substitute Equations (5.17) and (5.18) into the objective function (5.10) such
that it can be stated only in terms of path flow variables (f̂ , f̄).

Z(f̂ , f̄) =
∑
a∈A

∫ ∑
w∈W

∑
r∈Rw (f̂w

r +f̄w
r )δw

ar

0
ta(x)dx

+ θ̂
∑

w∈W

∑
r∈Rw

f̂w
r (ln f̂w

r − 1) + θ̄
∑

w∈W

∑
r∈Rw

f̄w
r (ln f̄w

r − 1). (5.21)

We then need to determine its Hessian matrix that is

H [Z(f̂ , f̄)] =


∂2Z(f̂ ,f̄)
∂f̂w

r ∂f̂w′
r′

∂2Z(f̂ ,f̄)
∂f̂w

r ∂f̄w′
r′

∂2Z(f̂ ,f̄)
∂f̄w

r ∂f̂w′
r′

∂2Z(f̂ ,f̄)
∂f̄w

r ∂f̄w′
r′

 . (5.22)

The dimension of this matrix is (RW )4. We drive the first and second order partials of
Z(f̂ , f̄) with respect to different possible combinations of path flow variables for non-CAVs
and CAVs. Its first derivative with respect to a given non-CAVs’ path flow variable, (f̂w

r ),
is

∂Z(f̂ , f̄)
∂f̂w

r

=
∑
a∈A

ta(
∑

w∈W

∑
r∈Rw

(f̂w
r + f̄w

r )δw
ar)δw

ar + θ̂ ln f̂w
r = tw

r + θ̂ ln f̂w
r . (5.23)

Where tw
r is the travel time on path r between OD pair w ∈ W , that is, tw

r =∑
a∈A ta(∑w∈W

∑
r∈Rw(f̂w

r + f̄w
r )δw

ar)δw
ar. In the same spirit, the second derivative of ob-

jective function (5.21) with respect to a second path flow variable of non-CAVs becomes

∂2Z(f̂ , f̄)
∂f̂w

r ∂f̂w′
r′

=


∂(tw

r )/∂f̂w
r + θ̂

f̂w
r

if r′ = r; w′ = w,

∂(tw
r )/∂f̂w′

r′ otherwise.
(5.24)

Also we can drive the corresponding second derivative of the objective function (5.21)
with respect to two path flow variables of CAVs’ as follows:
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∂2Z(f̂ , f̄)
∂f̄w

r ∂f̄w′
r′

=

∂(tw
r )/∂f̄w

r + θ̄
f̄w

r
if r′ = r; w′ = w,

∂(tw
r )/∂f̄w′

r′ otherwise.
(5.25)

Moreover, we can drive the corresponding derivative with respect to both non-CAVs’
and CAVs’ path flow variables, which becomes

∂2Z(f̂ , f̄)
∂f̂w

r ∂f̄w′
r′

=

∂(tw
r )/∂f̄w

r if r′ = r; w′ = w,

∂(tw
r )/∂f̄w′

r′ otherwise.
(5.26)

We have f̂w
r > 0 and f̄w

r > 0 for r ∈ Rw, w ∈ W , based on our assumptions, and that
the path travel times (tw

r ) are sum of the corresponding link performance functions that
are monotonically increasing with respect to their flow and that the variability parameters
θ̂ and θ̄ are positive values. Considering Equations (5.24)-(5.26), and the fact that links
performance functions are concave and monotonically increasing with respect to their cor-
responding flows, we have positive definite matrices (∂(tw

r )/∂f̄w
r ) and two positive definite

matrices ( θ̂
f̂w

r
, and θ̄

f̄w
r

). Overall, we can see that the Hessian matrix is the summation of
positive definite and positive definite matrices, and thus it is a positive definite matrix.
Therefore, the objective function of minimization programming is strictly convex with re-
spect to path flows. Also, other constraints as well as the credit feasibility constraints are
linear, thus the problem is a convex programming with linear constraints. Moreover, the
uniqueness of solution route and link flows can be guaranteed by the strict convexity of
the objective function and solution space (Yang 1998). This completes the proof.

This proposition means that for monotone increasing link performance functions, the
equilibrium link flow pattern (va = v̂a + v̄a) under the compound credit scheme (K, κ̂, κ̄),
if exists, is unique.

Proposition 5.2.2. (Equivalence) Any local minimum solution (f̄∗, f̂∗) of the optimization
model satisfies the conditions (5.6)-(5.8), and the Lagrangian multiplier associated with the
linear credit feasibility constraint is the market equilibrium credit price.

Proof. Denote the Lagrangian function of the minimization problem (5.10)-(5.16) as below
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L(f̄ , f̂ , λ, µ, ρ) = Z(f̄ , f̂) + ρ(K −
∑

a

(κ̂av̂a + κ̄av̄a))

+
∑

w∈W

λw{
∑

r∈Rw

f̄w
r − q̄w}+

∑
w∈W

µw{
∑

r∈Rw

f̂w
r − q̂w}, (5.27)

where λw, µw, and ρ are the Lagrange multipliers associated with constraints (5.11), (5.12)
and (5.13), respectively. The Lagrange multipliers λw and µw can be regarded as the
minimal generalized travel costs, respectively, for CAVs and non-CAVs. In the same way,
the Lagrange multiplier ρ can be regarded as the credit price.

From the Karush-Kuhn-Tucker (KKT) conditions of Lagrangian function (5.27), the
following necessary and sufficient conditions can be obtained,

∂
L(f̄ , f̂ , λ, µ, ρ)

∂f̂
f̂w

r = 0, (5.28)

∂
L(f̄ , f̂ , λ, µ, ρ)

∂f̂
= 0, f̂w

r ≥ 0, (5.29)

∂
L(f̄ , f̂ , λ, µ, ρ)

∂f̄
f̄w

r = 0, (5.30)

∂
L(f̄ , f̂ , λ, µ, ρ)

∂f̄
= 0, f̄w

r ≥ 0, (5.31)

(K −
∑

a

(κ̂av̂a + κ̄av̄a))ρ = 0, (5.32)

K −
∑

a

(κ̂av̂a + κ̄av̄a) ≥ 0, ρ ≥ 0. (5.33)

First we consider the route flow associated with the non-CAV drivers. Equating the
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partial derivatives (5.29) to zero we can obtain the following optimality conditions:

θ̂ ln f̂w
r +

∑
a∈A

(ta(va) + ρκ̂a)δw
ar − µw = 0, r ∈ Rw, w ∈ W, (5.34)

We note that this equation is only valid when f̂w
r > 0, for r ∈ Rw, w ∈ W , since, all

path with zero flow are inactive and essentially have a generalized travel cost larger than
those of active path for the same OD pairs, due to UE conditions.

Now, we focus on the routes belonging to a specific OD pair w ∈ W , denoting tw
r (•) =∑

a∈A(ta(va) + ρκ̂a)δw
ar as the generalized path travel cost. We can transform Equation

(5.34) into

f̂w
r = exp[ t

w
r − µw

−θ̂
], r ∈ Rw. (5.35)

Solving for Equations (5.35) and (5.12), we can easily obtain

p̂w
r =

exp[ tw
r −µw

−θ̂
]∑

k∈Rw
exp[ tw

k
−µw

−θ̂
]

= f̂w
r

q̂w
r

, r ∈ Rw, w ∈ W. (5.36)

Equation (5.36) is just the SUE conditions for non-CAV users, which means that these
drivers will choose their routes in accordance with the logit-based route choice probability.
The same approach can be followed to show the equivalence of the route flow associated
with the CAV users.

Therefore, the mixed SUE conditions are satisfied for the route flows associated with
the CAV and non-CAV users where the Lagrangian multiplier ρ is the market equilibrium
credit price. This completes the proof.

Next, we will see that if such a price exists, it will be unique market clearing price.

Proposition 5.2.3. (Uniqueness of market clearing price) Under the condition that the
solution to the minimization programming problem exists and the credit market is clear,
there exists a unique positive equilibrium.
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Proof. The existence of solution is guaranteed according to Propositions (5.2.1) and (5.2.2)
as the objective function and the constraints are both convex for strictly increasing link
performance functions. Moreover, we assumed that the credit scheme is effective such as
that the obtained link flow pattern is not identical to the user equilibrium unique link
flow pattern, i.e., ∑a κ̂av̂0

a + κ̄av̄0
a > K holds for the link flow pattern (v̂0

a, v̄0
a) under no

credit scheme intervention. At the market clearing price, we have ∑a∈A κ̂av̂a + κ̄av̄a = K.
Summing up Equations (5.28) and (5.30) over all r ∈ Rw, w ∈ W and utilizing the
conditions ∑r∈Rw

f̄w
r = q̄w and ∑

r∈Rw
f̂w

r = q̂w, va = ∑
w∈W

∑
r∈Rw(f̄w

r + f̂w
r )δw

ar, v̂a =∑
w∈W

∑
r∈Rw(f̂w

r )δw
ar, v̄a = ∑

w∈W

∑
r∈Rw(f̄w

r )δw
ar we can obtain

∑
a∈A

(ta(va)va + ρ(κ̂av̂a + κ̄av̄a)) + θ̂
∑

w∈W

∑
r∈Rw

f̂w
r ln f̂w

r + θ̄
∑

w∈W

∑
r∈Rw

f̄w
r ln f̄w

r

=
∑

w∈W

(λwq̄w + µwq̂w). (5.37)

After substituting ∑
a∈A(κ̂av̂a + κ̄av̄a) = K, the equilibrium credit price under the

scheme is then given by

ρ =
∑

w∈W (λwq̄w + µwq̂w)− T∑
a∈A(κ̂av̂a + κ̄av̄a)

, (5.38)

where

T =
∑
a∈A

ta(va)va + θ̂
∑

w∈W

∑
r∈Rw

f̂w
r ln f̂w

r + θ̄
∑

w∈W

∑
r∈Rw

f̄w
r ln f̄w

r , (5.39)

is the time equivalent of system-wide travel cost for the mixed stochastic traffic assignment
problem. This completes the proof.

Given our assumption on the monotonicity of the link performance function with the
amount of traffic flow, we can see the convexity of the primal and thus the convexity of the
dual problem. Therefore, from the dual problem perspective, we can also say that if such
multipliers exists, then they must be unique minimal travel cost for each OD pair for each
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group of travelers. We note that, the minimal path for each OD pair may not be unique,
but the minimal cost for each OD pair, if exists, should be unique.

From Equation (5.37), we can see that the equilibrium market price (ρ), if exists, should
be bounded. Therefore, for the case of a cyclic scheme, if we let K ≤ 0, the equilibrium
credit price still exists due to (5.37)) and can be given by

ρ = lim
K→0−

Θ− T

K
, (5.40)

where Θ = ∑
w∈W (λwq̄w + µwq̂w) is the total OD travel disutility on the network.

This result is the extension of the findings on single-class deterministic settings (Xiao,
Long, Li, Kou and Nie 2019, Yang and Wang 2011, Han and Cheng 2017) to multi-class
stochastic environments. This is to make the proposed model self-sufficient and at the
same time, it is also used as a basis for us to design our optimal compound credit-based
schemes and solve it for optimal link-specific charge and reward rates on mixed-vehicle
traffic networks in the following section.

Lemma 5.2.1. Under perfect information scenario the market price of credits in a traffic
network with fully CAVs is the same to the price of credits in deterministic traffic network.

Proof. Under perfect information scenario for fully CAVs we will have θ̂ = θ̄ → 0 and thus
T = ∑

a∈A ta(va)va. After setting λw = µw and κ̂a = κ̄a = κa we can re-write Equation
(5.38) as

lim
θ̂=θ̄→0

ρ =
∑

w∈W µwqw −
∑

a∈A ta(va)va∑
a∈A κava

, (5.41)

which is equivalent to the price of credits obtained for the deterministic case (Yang and
Wang 2011). This completes the proof.

5.2.3 Designing Optimal Compound Credit-based Scheme

Ideally, if all vehicles are under control and follow centralized travel decisions, the central
authority could achieve a system-optimal state. Instead, we assume that the central au-
thority uses a charging and subsidy scheme to improve the system efficiency by guiding it
to move toward the so-called stochastic system-optimal state.
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According to Hearn and Ramana (1998), when both system- and user-optimal equilib-
rium have unique solutions, one can find a decentralizing charging scheme located in the
non-empty polyhedron defined in terms of given system-optimal solution. We can see that
the first-order optimality conditions for the proposed model and thus the resulting mixed
flow pattern is scale-invariant to the credit scheme. In other words, we can assume that
the link flow and market equilibrium conditions remain unchanged if we uniformly scale
up or down the total amount of credits and the link credit charges (Yang and Wang 2011).
Thus, without loss of generality, we can set ρ∗ = 1 in all of the following formulations.

In order to find a vector of the link-based charges in the context of SUE, which can give
rise to the minimal total travel time on the network, we impose the first-best charges which
can be obtained by solving an equivalent stochastic user-optimal problem with a modified
objective function. In other words, the stochastic system-optimal (SSO) problem is equiv-
alent to a standard SUE problem with link travel cost function defined as the summation
of link travel time incurred by a traveler and the marginal travel time (additional travel
time that the traveler imposes on all other travelers) in the link (Dafermos and Sparrow
1969), which is described as follows:

t̃a(va) = ta(va) + va
∂ta(va)

∂va

, (5.42)

where the first term on the right-hand side is the actual link travel time incurred by a
traveler and the second term is the additional travel time that a traveler imposes on all
other travelers in the link.

For a mixed (partially automated) traffic flow defined in Section (5.2.2), we set up
the following charging system (K, κ̂, κ̄) that induces the stochastic system-optimal flow
v∗

a = v̂a + v̄a
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∑
a∈A

[(
∑

w∈W

∑
r∈Rw

θ̂ ln f̂ ∗w

r )δw
ar + ta(v∗

a) + κ̂a]v̂∗
a =

∑
w∈W

q̂wµw, (5.43)
∑
a∈A

(
∑

w∈W

∑
r∈Rw

θ̂ ln f̂ ∗w

r )δw
ar +

∑
a∈A

(ta(v∗
a) + κ̂a)δw

ar ≥ µw, r ∈ Rw, w ∈ W, (5.44)
∑
a∈A

[(
∑

w∈W

∑
r∈Rw

θ̄ ln f̂ ∗w

r )δw
ar + ta(v∗

a) + κ̄a]v̄∗
a =

∑
w∈W

q̄wλw, (5.45)
∑
a∈A

(
∑

w∈W

∑
r∈Rw

θ̄ ln f̄ ∗w

r )δw
ar +

∑
a∈A

(ta(v∗
a) + κ̄a)δw

ar ≥ λw, r ∈ Rw, w ∈ W, (5.46)
∑
a∈A

(κ̂av̂∗
a + κ̄av̄∗

a) = K, (5.47)

where κ̂a = v̂a
∂ta(va)

∂va
, κ̄a = v̄a

∂ta(va)
∂va

are set to be respective link charges equal to the
monetary equivalent of marginal travel times for non-CAV drivers and CAV users on all
other travelers on the link. This polyhedron is based on the linear system defined in Hearn
and Yildirim (2002) and Yildirim and Hearn (2005), to characterize link-based toll pattern
that can decentralize the given SO flow pattern. Generally, these set of conditions express
that, for each user class in a system optimum state, the generalized travel cost including
the credit charges and rewards should not be greater than the travel cost under the the
UE condition for each path. Moreover, the overall network-wide transportation cost with
credit charges and rewards on SO state should be equal to that of UE state. We also
impose the credit feasibility condition trough Equation (5.47).

Proposition 5.2.4. When the credit price is unique and positive, a system-optimal com-
pound charging scheme (κ̂, κ̄) always exists with the credit price equal to 1.

Proof. We let T ∗ = ∑
a∈A ta(v∗

a)v∗
a + ∑

w∈W

∑
r∈Rw

(θ̂f̂ ∗w

r ln f̂ ∗w

r + θ̄f̄ ∗w

r ln f̄ ∗w

r ), then if we
multiply (5.43) -(5.46) with T ∗

T ∗+K
, we can easily verify that

∑
a∈A

[(
∑

w∈W

∑
r∈Rw

θ̂ ln f̂ ∗w

r )δw
ar + ta(v∗

a) + κ̂∗
a]v̂∗

a =
∑

w∈W

µ∗
wq̄w, (5.48)

∑
a∈A

(
∑

w∈W

∑
r∈Rw

θ̂ ln f̂ ∗w

r )δw
ar +

∑
a∈A

(ta(v∗
a) + κ̂∗

a)δw
ar ≥ µ∗

w, r ∈ Rw, w ∈ W, (5.49)
∑
a∈A

[(
∑

w∈W

∑
r∈Rw

θ̄ ln f̄ ∗w

r )δw
ar + ta(v∗

a) + κ̄∗
a]v̄∗

a =
∑

w∈W

λ∗
wq̄w, (5.50)

∑
a∈A

(
∑

w∈W

∑
r∈Rw

θ̄ ln f̄ ∗w

r )δw
ar +

∑
a∈A

(ta(v∗
a) + κ̄∗

a)δw
ar ≥ λ∗

w, r ∈ Rw, w ∈ W, (5.51)
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where

κ̂∗
a = κ̂aT ∗ −K(ta(v∗

a) + (∑w∈W

∑
r∈Rw

θ̂ ln f̂ ∗w

r )δw
ar)

T ∗ + K
, (5.52)

and

κ̄∗
a = κ̄aT ∗ −K(ta(v∗

a) + (∑w∈W

∑
r∈Rw

θ̄ ln f̄ ∗w

r )δw
ar)

T ∗ + K
, (5.53)

and

µ∗
w = T ∗

T ∗ + K
µw, λ∗

w = T ∗

T ∗ + K
λw. (5.54)

We can also verify that

K =
∑
a∈A

κ̂∗
av̂∗

a + κ̄∗
av̄∗

a

=
∑
a∈A

κ̂aT ∗ −K(ta(v∗
a) + (∑w∈W

∑
r∈Rw

θ̂ ln f̂ ∗w

r )δw
ar)

T ∗ + K
v̂∗

a

+
∑
a∈A

κ̄aT ∗ −K(ta(v∗
a) + (∑w∈W

∑
r∈Rw

θ̄ ln f̄ ∗w

r )δw
ar)

T ∗ + K
v̄∗

a

= T ∗ ∑
a∈A

κ̂av̂a + κ̄av̄a

T ∗ + K

−
∑
a∈A

v̂∗
aK(ta(v∗

a) + (∑w∈W

∑
r∈Rw

θ̂ ln f̂ ∗w

r )δw
ar)

T ∗ + K

−
∑
a∈A

v̄∗
aK(ta(v∗

a) + (∑w∈W

∑
r∈Rw

θ̄ ln f̄ ∗w

r )δw
ar)

T ∗ + K

= T ∗K − T ∗K

T ∗ + K
= 0. (5.55)

Given that for CAV users∑a∈A(∑w∈W

∑
r∈Rw

θ̄ ln f̄ ∗w

r )v̄∗
aδw

ar = ∑
w∈W

∑
r∈Rw

θ̄f̄ ∗w

r ln f̄ ∗w

r ,
and that for non-CAV users ∑a∈A(∑w∈W

∑
r∈Rw

θ̂ ln f̂ ∗w

r )v̂∗
aδw

ar = ∑
w∈W

∑
r∈Rw

θ̂f̂ ∗w

r ln f̂ ∗w

r ,
after substitution and with a few simplifications the last two terms is reduced to KT ∗. We
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can see that K can be zero, however, link credit rates are not necessarily zero as we let
the charges to be negative. This means that (κ̂∗

a, κ̄∗
a) is a cyclic revenue-neutral compound

charging scheme with ρ = 1 under which the total credit collected is zero.

5.2.4 Equivalent Path-free Model

The presented model in the previous section assumes that the road manager can enumerate
all the paths that users may choose, which is not feasible for large-scale networks. In this
section, we reformulate the proposed mathematical programming model to avoid path
enumeration. To this end, we re-describe the network topology from a local point of view
and represent a destination-based traffic flow model. The model presented here can also
be used as a base model to model conditions such as link capacity constraints or demand
elasticity.

Consider that the road network graph G = (N, A), where D ∈ N is a set of destinations
nodes such that link flows directed toward specific destinations d ∈ D. Let us consider V =
{V 1, V 2, ...V |D|} which each V d = {vd

ij|(i, j) ∈ A} is the flow vector on link (i, j) destined
to the destination d = {1, 2, ..., |D|}, with v̄d

ij and v̂d
ij to be, respectively, representative of

flows for CAVs and non-CAVs on the corresponding link. Then the path-free mixed-vehicle
stochastic user equilibrium traffic flow problem reads as the following convex minimization
model
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Min Zd(v̂, v̄) =
∑

(i,j)∈A

∫ v̂ij+v̄ij

0
tij(x)dx

+θ̂(
∑
d∈D

[
∑

(i,j)∈A

v̂d
ij ln v̂d

ij −
∑

(i,j)∈A

v̂d
ij(ln

∑
(i,k)∈A

v̂d
ik)])

+θ̄(
∑
d∈D

[
∑

(i,j)∈A

v̄d
ij ln v̄d

ij −
∑

(i,j)∈A

v̄d
ij(ln

∑
(i,k)∈A

v̄d
ik)]) (5.56)

subject to: ∑
j|(i,j)∈A

v̂d
ij −

∑
j|(j,i)∈A

v̂d
ji = q̂d

i , i ∈ N, d ∈ D, (5.57)
∑

j|(i,j)∈A

v̄d
ij −

∑
j|(j,i)∈A

v̄d
ji = q̄d

i , i ∈ N, d ∈ D, (5.58)

v̂ij =
∑
d∈D

v̂d
ij, (i, j) ∈ A, (5.59)

v̄ij =
∑
d∈D

v̄d
ij, (i, j) ∈ A, (5.60)

∑
ij∈A

κ̂ij v̂ij + κ̄ij v̄ij ≤ K, (5.61)

v̂ij ≥ 0, v̄ij ≥ 0, (i, j) ∈ A. (5.62)

Using this formulation, we then provide NCP equivalent formulations for the mixed
stochastic user- and system-optimal traffic assignment problems.

NCP Equivalent UE Traffic Assignment Problem

The non-linear complementarity problem is an easy way to find stationary points for non-
linear programs of a system of equations and inequalities (Karamardian 1969). Moreover,
it helps us to avoid solving complex integration element of the objective function (5.56).
We can establish an equivalent NCP formulation of the destination-based mixed stochastic
user equilibrium traffic assignment problem (MSUE-TAP) model using following comple-
mentarity conditions:
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MSUE-TAP

0 ≤ v̂d
ij ⊥ {tij(vij) + θ̂ln(

v̂d
ij∑

(i,k)∈A v̂d
ik

) + πd
i − πd

j } ≥ 0, (i, j) ∈ A, d ∈ D, (5.63)

0 ≤ πd
i ⊥ {

∑
j|(i,j)∈A

v̂d
ij −

∑
j|(j,i)∈A

v̂d
ji − q̂d

i } ≥ 0, i ∈ N, d ∈ D, (5.64)

0 ≤ v̂ij ⊥ {v̂ij −
∑

d

v̂d
ij} ≥ 0, (i, j) ∈ A, (5.65)

0 ≤ v̄d
ij ⊥ {tij(vij) + θ̄ln(

v̄d
ij∑

(i,k)∈A v̄d
ik

) + τ d
i − τ d

j } ≥ 0, (i, j) ∈ A, d ∈ D, (5.66)

0 ≤ τ d
i ⊥ {

∑
j|(i,j)∈A

v̄d
ij −

∑
j|(j,i)∈A

v̄d
ji − q̄d

i } ≥ 0, i ∈ N, d ∈ D, (5.67)

0 ≤ v̄ij ⊥ {v̄ij −
∑

d

v̄d
ij} ≥ 0, (i, j) ∈ A, (5.68)

0 ≤ vij ⊥ {vij − v̄ij − v̂ij} ≥ 0, (i, j) ∈ A, (5.69)

where the component-wise notation “⊥” signifies that (at least) one of the inequalities
must be satisfied as an equality. In this formulation, πd

i and τ d
i are minimum travel times

from node i to destination node d under user-optimal solution for non-CAV and CAV users,
respectively. The first constraint set (5.63) to (5.65) are complementarity conditions for
non-CAV users. According to condition (5.63) only when the link (i, j) is on the shortest
path from i to d we can have traffic flow on it. Condition set (5.64) for each link (i, j)
are NCP equivalent of flow conservation constraints tied to their respective travel times.
Condition set (5.64) for each (i, j) derive links flow of non-CAVs v̂ij from their path flows
v̂d

ij. Similar complementarity conditions are set through constraints (5.66) to (5.68) for
CAV users. Finally, constraint set (5.69) ties the overall link flow vij to the sum of non-
CAV and CAV link flows.

NCP Equivalent SO Traffic Assignment Problem

Given that the system-optimal objective function is to minimize the cost equivalent of total
travel time which is given by

F (f̂ , f̄) =
∑

(i,j)∈A

tij(vij)vij +
∑

w∈W

∑
r∈Rw

(θ̂f̂w
r (ln f̂w

r − 1) + θ̄f̄w
r (ln f̄w

r − 1)). (5.70)
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We build the following equivalent NCP model for the mixed stochastic system-optimal
traffic assignment problem (MSSO-TAP) under a no charge scheme with modified condition
sets (5.63) and (5.66) to include the marginal travel time cost for non-CAVs and CAVs,
respectively.

MSSO-TAP

0 ≤ v̂ij ⊥ {tij(vij) + v̂ij
∂tij(vij)

∂v̂ij

+ θ̂ln(
v̂d

ij∑
(i,k)∈A v̂d

ik

) + ζd
i − ζd

j } ≥ 0, (5.71)

0 ≤ v̄ij ⊥ {tij(vij) + v̄ij
∂tij(vij)

∂v̄ij

+ θ̄ln(
v̄d

ij∑
(i,k)∈A v̄d

ik

) + ηd
i − ηd

j } ≥ 0, (5.72)

and (5.64), (5.65), (5.67), (5.68), (5.69),

where ζd
i and ηd

i respectively are minimum travel times from node i to destination node d for
non-CAV and CAV users under a system-optimal solution. The rest of the complementarity
conditions are similar to those in MSUE-TAP.

We note that, for the system optimal model the objective function (5.70) measures the
net economic benefit defined as the travelers’ benefit (the utility related to the aggregate
demands) minus the total transportation cost. This is because the stochastic system opti-
mal flow measures the sensitivity of route choices to total travel cost using the logit route
choice model. According to Yang (1999), this measure has an economic interpretation
related to consumer welfare. For example, if we ignore income effects, a change in price
or any other characteristics of the travel environment results in a change in consumers’
welfare.

5.2.5 A Set of Pareto-improving Compound Charging Schemes

When the objective of congestion charging scheme is to achieve a system-optimum equi-
librium traffic flow pattern, in the context of SUE, stochastic system-optimum should be
adopted as the objective of the charging scheme. In other words, an optimal charging pat-
tern under a stochastic traffic flow pattern case has the same form as that which is optimal
in the deterministic case, but evaluated at the SSO flow values instead of the Wardropian
system-optimum flow values, even the ideal charging pattern may not be unique (Ma-
her et al. 2005). Intuitively, one can see that the same condition would hold for finding a
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charging scheme for the proposed mixed traffic model, as it is a generalization of SUE case.
Given that the ideal charging pattern is not necessarily unique (Yang 1999), this enables
us to choose a compound scheme (K, κ̂, κ̄) which satisfies certain exogenous constraints or
objectives. In what follows we present two different charging schemes.

Permissive Scheme

To assure a revenue-neutral scheme we can assume ∑(i,j)∈A v̂∗
ijκ̂ij + v̄∗

ijκ̄ij = 0. Moreover, as
we discussed earlier, the transport authority may look for schemes under which the CAV
users are subsidized more and charged less compared to non-CAV users. Such a differ-
entiated charging scheme is suitable for the situations where an undifferentiated charging
scheme might not be sufficient for achieving a system optimal state (Mehr and Horowitz
2019). This would also encourage CAV users and facilitate the acceptance of CAVs. In
other words, we assume a charging scheme κ̄ij ≤ κ̂ij, for all (i, j) ∈ A such that the charge
of traversing each link depends on whether vehicles are human–driven or CAVs.

Overall, we look for a (Pareto-improving) compound charging scheme and show that a
stochastic socially optimum flow pattern is attainable by imposing discriminatory charges
at each link to ensure that users’ optimal private choices will also be optimal social choices
in terms of the minimization of social cost. Our optimization model for finding link-based
charging scheme is formulated as follows:
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PO-1
Max Z(κ̂, κ̄) =

∑
(i,j)∈A

κ̂ij v̂
∗
ij + κ̄ij v̄

∗
ij, (5.73)

subject to:∑
(i,j)∈A

[tij(v∗
ij) + κ̂ij + θ̂ln(

v̂∗
ij∑

(i,k)∈A v̂∗
ik

)]v̂∗
ij =

∑
i∈N

∑
d∈D

µd
i q̂d

i , (5.74)

tij(v∗
ij) + κ̂ij + θ̂ln(

v̂d,∗
ij∑

(i,k)∈A v̂d,∗
ik

) + µd
i − µd

j ≥ 0, (i, j) ∈ A, d ∈ D, (5.75)

∑
(i,j)∈A

[tij(v∗
ij) + κ̄ij + θ̄ln(

v̄∗
ij∑

(i,k)∈A v̄∗
ik

)]v̄∗
ij =

∑
i∈N

∑
d∈D

λd
i q̄d

i , (5.76)

tij(v∗
ij) + κ̄ij + θ̄ln(

v̄d,∗
ij∑

(i,k)∈A v̄d,∗
ik

) + λd
i − λd

j ≥ 0, (i, j) ∈ A, d ∈ D, (5.77)

κ̄ij − κ̂ij ≤ 0, (i, j) ∈ A, (5.78)
µd

i ≤ πd
i , i ∈ N, d ∈ D, (5.79)

λd
i ≤ τ d

i , i ∈ N, d ∈ D, (5.80)

In this formulation the system-optimal flows v̂∗
ij and v̄∗

ij are given for each link. Variables
µd

i and λd
i are the potentials of node i with respect to destination d for non-CAV and CAV

users respectively, i.e., the length of path time (cost) from that node to destination node.
With this definition, we can see that the potentials (cost) of the destination node should be
zero (µd

d = 0, λd
d = 0), and that µd

i and λd
i are the length of the minimum-cost path between

i and destination d for the corresponding users. Constraints (5.75) and (5.77) ensure that
the reduced cost of a link (i, j) for destination d not to be negative for non-CAVs and
CAVs, respectively. In (5.79) and (5.80), πd

i and τ d
i are minimum travel time for non-CAVs

and CAVs, respectively, and they ensure that the solution is Pareto-improving. These set
of constraints along with constrains (5.74) - (5.77) guarantee the obtained charging scheme
maintains the traffic flow under at the user-optimal level and the potential of each node is
not greater that the obtained minimum travel times from that node to destination node.

The PO-1 formulation can be replaced by the following equivalent problem, by intro-
ducing a slack variable ξ ≥ 0.
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PO-2
Min ξ (5.81)
subject to:∑
(i,j)∈A

v̂∗
ijκ̂ij + v̄∗

ijκ̄ij = 0, (5.82)

∑
(i,j)∈A

[tij(v∗
ij) + κ̂ij + θ̂ln(

v̂∗
ij∑

(i,k)∈A v̂∗
ik

)]v̂∗
ij =

∑
i∈N

∑
d∈D

µd
i q̂d

i , (5.83)

tij(v∗
ij) + κ̂ij + θ̂ln(

v̂d,∗
ij∑

(i,k)∈A v̂d,∗
ik

) + µd
i − µd

j ≥ 0, (i, j) ∈ A, d ∈ D, (5.84)

∑
(i,j)∈A

[tij(v∗
ij) + κ̄ij + θ̄ln(

v̄∗
ij∑

(i,k)∈A v̄∗
ik

)]v̄∗
ij =

∑
i∈N

∑
d∈D

λd
i q̄d

i , (5.85)

tij(v∗
ij) + κ̄ij + θ̄ln(

v̄d,∗
ij∑

(i,k)∈A v̄d,∗
ik

) + λd
i − λd

j ≥ 0, (i, j) ∈ A, d ∈ D, (5.86)

κ̄ij − κ̂ij ≤ 0, (i, j) ∈ A, (5.87)
µd

i ≤ ξπd
i , i ∈ N, d ∈ D, (5.88)

λd
i ≤ ξτ d

i , i ∈ N, d ∈ D, (5.89)
ξ ≥ 0. (5.90)

In this formulation, πd
i and τ d

i are minimum travel times from node i to destination
node d for non-CAV and CAV users respectively under user-optimal solution, which are
obtained from MSUE-TAP (5.63) to (5.69). The essential idea behind this formulation is
based on the definition of “Pareto-improvement” for non-atomic user equilibrium problem.
Next, in the spirit of Xiao, Long, Li, Kou and Nie (2019), we set the definition of Pareto-
improvement as it applies to our model.

Definition 5.2.1. Under the compound credit-based scheme (K, κ̄, κ̂), if the system travel
cost is T (K, κ̄, κ̂) and λw(K, κ̄, κ̂) and µw(K, κ̄, κ̂) are the travel cost for CAVs and non-
CAVs between OD pair w under the credit scheme (K, κ̄, κ̂). Then, the credit scheme
(K, κ̄, κ̂) is Pareto-improving if the following conditions are satisfied:

• T (K, κ̄, κ̂) ≤ T (UE),

• λw(K, κ̄, κ̂) ≤ λw(UE),
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• µw(K, κ̄, κ̂) ≤ µw(UE).

Given πd
i and τ d

i are minimum travel times, which are obtained from MSUE-TAP,
in PO-2 if at the optimal solution we have ξ ≤ 1, then the credit scheme (K, κ̄, κ̂) is
Pareto-improving. Otherwise, the Pareto-improving solution does not exist.

Lemma 5.2.2. Under the credit-based scheme (5.73)-(5.80), the network contains no
negative cycle.

Proof. Here we only show that for non-CAV users no negative cycle exists, as for users with
CAVs the proof would be similar. We assume P denotes the set of links of any directed
cycle in the network. For any destination d, we have that

∑
(i,j)∈P

t̃d
ij =

∑
(i,j)∈P

(tij(v∗
ij) + κ̂ij + θ̂ln(

v̂d,∗
ij∑

(i,k)∈A v̂d,∗
ik

) + µd
i − µd

j )

=
∑

(i,j)∈P

(tij(v∗
ij) + κ̂ij + θ̂ln(

v̂d,∗
ij∑

(i,k)∈A v̂d,∗
ik

)) +
∑

(i,j)∈P

(µd
i − µd

j )

=
∑

(i,j)∈P

(tij(v∗
ij) + κ̂ij + θ̂ln(

v̂d,∗
ij∑

(i,k)∈A v̂d,∗
ik

)). (5.91)

From constraint (5.84), we have that

∑
(i,j)∈P

(tij(v∗
ij) + κ̂ij + θ̂ln(

v̂d,∗
ij∑

(i,k)∈A v̂d,∗
ik

))

=
∑

(i,j)∈P

(tij(v∗
ij) + κ̂ij + θ̂ln(

v̂d,∗
ij∑

(i,k)∈A v̂d,∗
ik

) + µd
i − µd

j ) ≥ 0. (5.92)

Therefore, no negative cycle exist under the PO-1 optimization problem.

Minimal Value (MV) Scheme

It may not be desirable if users are charged or subsidized with overly high rates. Essentially,
this type of “choking” or high-pressure situation would raise social equity concerns. We
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propose a charging scheme with the aim of avoiding excessively high values of charges or
rewards. In this scheme we look for minimal charge and subsidy values by using the the
minimal enclosing circle problem which is mostly used to plan the location of a shared
facility with the aim of minimizing the distance between the facility and the farthest users
(community) from it (Xu et al. 2003). If we think of the users on each link as communities in
the network, we can minimize the excessively high charges/rewards by solving the following
optimization problem.

PO-3
Min Zd(κ̂, κ̄) =

∑
(i,j)∈A

κ̂2
ij v̂

∗
ij + κ̄2

ij v̄
∗
ij (5.93)

subject to:
(5.74), (5.75), (5.76), (5.77), (5.79), (5.80), and (5.82).

The only remaining issue is the existence of the feasible solution which can be readily
put forward due to the fact that the credit values lie in a compact set and that the feasible
set is convex because all the constraints are linear. Therefore, the set of feasible solutions is
closed and bounded. The solution space is also non-empty provided that both MSSO-TAP
and MSUE-TAP always have a solution. The only requirement for the objective function
is to be integrable and positive, which holds true for both of the charging schemes. Hence
problem PO-1 and PO-3 have a feasible solution.

The link-based compound charging scheme (κ̂, κ̄) under a mixed traffic flow can be
found through following steps.

• Step 1: Solve the MSUE-TAP, and obtain OD travel dis-utilities πd
i and τ d

i ;

• Step 2: Solve the MSSO-TAP, and obtain link flow v̂∗d
ij , v̄∗d

ij , and v∗
ij;

• Step 3: Solve PO-2 or PO-3, and obtain the optimal (K, κ̂, κ̄). If the objective
function for PO-2 is less than 1 then the obtained scheme is Pareto-improving.
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Figure 5.1 Toy Test Network with Multiple Origin and Single Destination

5.3 Numerical Results

5.3.1 Small-scale Networks

Our first test network is adopted from Liu, Wang and Meng (2014), to run numerical
experiments and illustrate the performance of the proposed scheme. The test network has
seven nodes, 11 links, five OD pairs (1 → 7, 2 → 7, 3 → 7, 5 → 7, 6 → 7) with OD
total CAV (non-CAV) vehicle per hour (v/h) travel demand, respectively, equal to 1000
(3000), 1000 (2000), 1000 (5000), 1000 (1000), 1000 (4000) (see Figure (5.1)). For each
link, the link performance function takes the format proposed by the U.S. Bureau of Public
Roads (BPR) (Spiess 1990) with α = 0.15 and β = 4, for all a ∈ A. The value of free
flow travel time and capacity of each link (v/h) are provided in Table (5.1). The marginal
delay function for CAV and non-CAV flows are computed according to Equation (5.42).
We assume that the values of dispersion parameters θ̂ and θ̄ in Equation (5.10) is 10 for
non-CAV drivers and 2 for CAV drivers, implying a higher degree of uncertainty (5 times
more) associated with non-CAV users (Yin and Yang 2003). The value of time in this test
is taken as 1 cent/s (or 60$/h).

For the sake of obtaining link-specific charge/subsidy rates, the path-free models of
user- and system-optimal traffic assignment problems were solved. All experiments are
run on a laptop computer with an Intel (R) Core(TM) 7 Oct 8550U 1.80 GHz CPU and
a 15.8GB RAM. The optimal MSUE-TAP and MSSO-TAP link flows and link-specific
charges are tabulated in Table (5.2) and (5.3). We found total travel time (TTT) cost to
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Table 5.1 Parameters in Link Performance Functions

Link
t0
a (s) Ca (v/h)

Tail Head

1 4 60 4000

1 7 150 4000

1 5 50 4000

2 1 60 2000

2 6 100 3000

3 4 70 3000

3 7 110 4000

4 7 60 4000

5 6 10 2000

5 7 70 4000

6 7 110 4000
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be almost 51554 and 51052 for the computed MSUE-TAP and MSSO-TAP, respectively.
This implies that with the proposed link-based scheme we can reduce the total system
travel cost of this test example by one percent. For this small sized network, obtaining
1% improvement may not be very high, which can be due to the assumed setting and
the value of parameters. Indeed, we might have some exceptional cases (e.g., small size
problems) where the user equilibrium and system optimal flow patterns can lead to same
total cost. One reason for this can be that we are not dealing with an overly congested
network. However, it confirms that the proposed scheme have impact and improvement
even on very small size networks.
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Table 5.2 MSUE and MSSO Total Link Flows (v/h) and the Percentage of non-CAV and CAV Users (θ̂ = 20 and θ̄ = 2)

Link
MSUE-TAP MSSO-TAP

Total (v/h) non-CAVs (%) CAVs (%) Total (v/h) non-CAVs (%) CAVs (%)

(1,4) 3271.29 63.63 36.37 3021.39 62.72 37.28

(1,5) 2718.26 70.71 29.29 2542.07 69.29 30.71

(1,7) 863.73 98.43 1.57 1240.49 92.57 7.43

(2,1) 2853.27 64.95 35.05 2803.95 64.36 35.64

(2,6) 146.73 99.92 0.08 196.05 99.55 0.45

(3,4) 1422.86 99.33 0.67 1488.38 99.15 0.85

(3,7) 4577.15 78.36 21.64 4511.62 78.12 21.88

(4,7) 4694.14 74.46 25.54 4509.77 74.75 25.25

(5,6) 1.62 99.93 0.07 0.60 99.83 0.17

(5,7) 4716.64 61.91 38.09 4541.47 60.79 39.21

(6,7) 5148.35 80.58 19.42 5196.65 80.74 19.26

- TTT cost = 51554 TTT cost = 51052
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Table 5.3 Three Pareto-improving Charging Schemes

Link
Non-permissive ($) Permissive ($) Minimal Value ($)

non-CAVs CAVs non-CAVs CAVs non-CAVs CAVs

(1,4) -0.89 -1.02 <-0.01 <-0.01 -0.27 -0.27

(1,5) -0.68 -0.82 0.00 0.00 -0.27 -0.27

(1,7) -2.26 -2.40 0.00 0.00 0.09 0.06

(2,1) -1.56 -1.57 0.00 0.00 0.02 0.06

(2,6) -1.27 -1.43 0.00 0.00 0.68 0.46

(3,4) -0.97 -1.03 0.00 0.00 -0.27 -0.27

(3,7) -2.22 -2.27 0.00 0.00 0.09 0.06

(4,7) -1.24 -1.24 0.00 0.00 0.09 0.06

(5,6) 1.23 0.00 1.23 1.23 2.32 0.00

(5,7) -1.45 -1.45 0.00 0.00 0.09 0.06

(6,7) -2.61 -2.61 0.00 0.00 0.09 0.06

In this example, as the optimal charging is not unique, we present the results of three
different charging policies. The first scheme considers a non-permissive charging (PO-2
without condition (5.78)) policy, while the second scheme (PIP charges) considers permis-
sive charging policy (i.e., κ̄a ≤ κ̂a for all a ∈ A) and the third scheme considers minimal
value charging policy by solving PO-3 problem.

Our second test problem is on a small-size multi-OD grid network, which is adopted
from Yin and Yang (2003) with a few modifications to suit our setting. The test network
has 12 nodes, 17 links, and five OD pairs (1 → 12, 2 → 8, 2 → 11, 5 → 8, 5 → 11) with
OD total CAV (non-CAV) demands, respectively, equal to 500(800), 150(400), 200(100),
200(200), 100(200) (see Figure (5.2)). For each link, the link performance function takes
the BPR format with α = 0.15 and β = 4, for all a ∈ A. The specific value of free flow
travel time and capacity of each link are provided in Table (5.4) .

The values of dispersion parameters θ̂ and θ̄ in Equation (5.10) is taken as 20 for non-
CAV drivers and 2 for CAV users. Similarly, the value of time is taken as 1 cent/s. Using
the same computational resource, the optimal MSUE-TAP and MSSO-TAP link flows and
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Figure 5.2 Multi Origin and Multi Destination Grid Network

link-specific charges are found and reported in Table (5.5) and (5.6).

We consider another set of scenarios to see how the uncertainty parameter will affect
the link charge/subsidy values obtained from PO-2 for both non-CAV and CAV users. To
this end, we assume the OD demand values for both non-CAVs and CAVs to be equal for
each OD pair. We then set the ratio of y = θ̂/θ̄ to be 1, 2, 3, 4, 8, and 10 while keeping
θ̄ = 2. A higher value of ratio implies a higher degree of non-CAVs uncertainty. The results
are shown in Figure (5.3) and (5.4) for non-CAVs and CAVs, respectively.

It is interesting to see that in most case (for y = 1, 2, 4, and 10), as the value of
uncertainty for non-CAVs increases, they will be charged more or subsidized less for the
same link. However, when y = 8 in some links the proposed scheme turns to subside
non-CAVs to maintain a Pareto-improving traffic equilibrium and reduce the system-wide
transportation time. Interestingly, this is opposite to the general intuition that users with
a higher value of uncertainty should be charged more or subsidize less to lead the network
to a system-optimal state. On the other hand, we can see that the CAV users are charged
more and subsidized less when y = 8, especially for link (1, 2) and (1, 5) while in other
scenarios these users are mostly subsidized.

These findings drive us to check if we can find a charging scheme that can be more per-
missive towards CAV users while holding the Pareto-improving property. For this scenario,
adding the side constrains κ̄a ≤ κ̂a for all a ∈ A and solving the same charging problem we
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Table 5.4 Parameters of Link Performance Functions of the Grid Network

Link
t0
a Ca (v/h)

Link
t0
a (s) Ca (v/h)

Tail Head Tail Head

1 2 20 1000 6 7 17 1000

1 5 18 1500 6 10 20 500

2 3 23 500 7 8 13 1000

2 6 19 500 7 11 26 500

3 4 17 500 8 12 19 1000

3 7 16 500 9 10 7 800

4 8 22 500 10 11 18 800

5 6 14 1000 11 12 17 800

5 9 24 800 - - - -

Figure 5.3 Effect of Uncertainty Ratio (y) on Link Charge/Subsidy Values of non-CAVs
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Table 5.5 MSUE and MSSO Link Flows (v/h) and TTT Costs (θ̂ = 20 and θ̄ = 2)

Link
MSUE-TAP (v/h) MSSO-TAP (v/h)

Total non-CAVs CAVs Total non-CAVs CAVs

(1, 2) 370.08 367.39 2.69 366.07 363.84 2.22

(1, 5) 929.92 432.61 497.31 933.93 436.15 497.78

(2, 3) 608.28 482.09 126.18 645.29 494.10 151.18

(2, 6) 611.80 385.29 226.50 570.77 369.73 201.03

(3, 4) 195.42 182.24 13.17 290.12 214.66 75.45

(3, 7) 412.85 299.85 113.00 355.17 279.44 75.73

(4, 8) 195.42 182.24 13.17 290.12 214.66 75.45

(5, 6) 1042.25 619.67 422.58 1007.82 618.18 389.63

(5, 9) 587.66 212.93 374.73 626.11 217.96 408.14

(6, 7) 1233.14 749.80 483.34 1199.81 744.17 455.64

(6, 10) 420.91 255.16 165.74 378.78 243.75 135.03

(7, 8) 1290.41 754.65 535.76 1174.96 726.23 448.72

(7, 11) 355.58 295.00 60.58 380.02 297.37 82.65

(8, 12) 535.83 336.89 198.95 515.08 340.90 174.17

(9, 10) 587.66 212.93 374.73 626.11 217.96 408.14

(10, 11) 1008.58 468.10 540.48 1004.89 461.72 543.17

(11, 12) 764.16 463.11 301.05 784.92 459.10 325.82

- TTT cost = 3836 TTT cost = 3780
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Table 5.6 Two Pareto-improving Charging Schemes (θ̂ = 20 and θ̄ = 2)

Link
Non-permissive ($) Permissive ($)

non-CAVs CAVs non-CAVs CAVs

(1,2) 3.24 -1.63 0.04 -0.68

(1,5) 2.94 -1.66 0.15 0.15

(2,3) -0.45 0.00 0.00 0.00

(2,6) -0.26 0.00 0.00 0.00

(3,4) 0.00 0.00 0.00 0.00

(3,7) 0.00 0.00 0.00 0.00

(4,8) -0.34 -0.37 0.00 0.00

(5,6) 0.00 0.00 0.00 0.00

(5,9) 0.00 0.00 0.00 0.00

(6,7) 0.00 0.00 0.00 0.00

(6,10) 0.00 0.00 0.00 0.00

(7,8) -0.21 -0.27 0.00 0.00

(7,11) -0.26 -0.32 0.00 0.00

(8,12) -0.32 -0.32 -0.32 -0.32

(9,10) 0.00 0.00 0.00 0.00

(10,11) -0.37 -0.41 0.00 0.00

(11,12) -0.32 -0.32 0.00 0.00
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Figure 5.4 Effect of Uncertainty Ratio (y) on Link Charge/Subsidy Values of CAVs

find that κ̂(1,2) = −0.03, κ̄(1,2) = −0.90, κ̂(1,5) = κ̄(1,5) = 0.19, and κ̂(8,12) = κ̄(8,12) = −0.32
is another scheme that can sustain a Pareto-optimal equilibrium state.

Figure (5.5) plots the total travel time of the system under varied values of parameter y

for MSUE-TAP and MSSO-TAP settings. It can be observed that as the uncertainty ratio
increases the system travel time increases, which makes sense. However, total travel cost
under user equilibrium doesn’t change remarkably at some moderate uncertainty ratios
(y = 2 to y = 4).

5.3.2 Medium-scale Network

Our next example is the classical Sioux Falls network which is an aggregation of a network
used to model the city of Sioux Falls, South Dakota (LeBlanc 1975). It has 24 nodes,
76 links and 528 OD pairs. The link travel time functions are according to the standard
BPR function with α = 0.15 and β = 4, for all a ∈ A. The Sioux-Falls is a common
benchmark case study network being used in the literature. The link performance data
are provided in https://github.com/bstabler/TransportationNetworks. However, to adopt it
for our setting, we assumed that travel demand of non-CAV users is 1.5 times the original
demand data and travel demand from CAV users is 0.5 times the original travel demand.
Also, the values of dispersion parameters θ̂ and θ̄ is taken as 20 for non-CAV drivers and
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Figure 5.5 Effect of Uncertainty Ratio (y) on TTT

2 for CAV users. By solving the MSUE-TAP and MSSO-TAP, we have TTT cost to be
217792.37 and 206856.55 for the user-and system-optimal traffic flow patterns. This implies
that a traffic flow under a Pareto-improving charging scheme can reduce the TTT cost by
5%. The performance of the proposed schemes (IP, PIP, MV) is compared in Table (5.7).
One can observe that under the MV-charging scheme charge rates are much smaller than
those under the other two, with CAV users are being subsidized in all links. While all the
proposed charging schemes can reduce the total system travel cost for this problem, there
might be other charging schemes as well, depending on the authority’s objectives. The
final choice would be a managerial decision.

We now turn to the analysis of the computational effort required to run the proposed
scheme in this study. The credit finding algorithm and all the numerical experiments
are solved in GAMS which is a widely used optimization software to model and solve
many transport planning problems. All experiments are run on a laptop computer with
an Intel (R) Core(TM) 7 Oct 8550U 1.80 GHz CPU and a 15.8GB RAM. Generally, the
computational effort grows as the network size or number of OD pairs increases for the
same network. In Sioux Falls network, which is the largest test problem we solved, it takes
less than 300 s to solve the credit finding problem.
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Figure 5.6 The Sioux Falls Network

Table 5.7 Performance of the Proposed Schemes for Sioux Falls Network (θ̂ = 16 and θ̄ = 2)

Scheme Fleet Type Max. ($) Min. ($) SD. ($) Links
Charged

Links
Subsidized

Non-permissive
non-CAVs 12.12 -6.12 3.28 24 45

CAVs 0 -6.29 1.40 0 71

Permissive
non-CAVs 31.07 -6.29 4.44 19 48

CAVs 6.55 -6.29 2.23 17 50

Minimal Value
non-CAVs 1.57 -0.23 0.46 16 60

CAVs -0.23 -0.23 0.00 0 76
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5.4 Conclusion

In this chapter, we present a compound credit-based scheme for managing traffic flow
composed of CAVs and non-CAVs, considering characteristics such as AV users cooperative
versus selfish routing principles and the uncertainty due to operational setting, human
associated factors and their interaction due to using shared infrastructures such as network
links. We develop logit-based mixed-vehicle stochastic user- and system-optimal traffic flow
problems as mathematical models with non-linear complementarity inequalities. One of the
contributions of this work is to build a theoretical ground to obtain insights pertaining to
the assumed setting. Under the proposed scheme, we examine the existence and uniqueness
of the equilibrium price of the credit and look for a set of link-specific charges/subsidies
that can drive the network-wide traffic flow to an optimum state.

The proposed link-based congestion charging framework is an initial step for manag-
ing mixed-vehicle traffic flow. To implement the scheme in a real-world setting, many
interesting issues are still to be explored. We performed computational experiments on
the well-known datasets to analyze the performance of the proposed models. We tested
all models under various different parameter settings. The proposed scheme relies on
solving link-based convex optimization programming models, obviating computationally
intractable path enumeration. This makes the proposed model suitable for examining the
theoretical characteristics of large-scale as well realistic transport networks. The compu-
tational results indicate that the proposed scheme can be an effective tool for managing
travel demand and routing decisions in mixed-vehicle traffic settings.
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Chapter 6

Conclusions and Future Work

This chapter provides a summary and the main contributions of the thesis as well as future
research directions.

6.1 Summary of Research Contributions

The main goal of this research was to design and examine the potential of mobility permit-
based and credit-based traffic congestion management systems. Specifically, the research
focused on developing new models and solution algorithms for permit allocation under
single-bottleneck roadways as well as networks with multiple bottlenecks settings under
advanced connectivity technologies.

In Chapter 2, we examined the state-of-the-art in permit-based and credit-based mo-
bility management systems. A detailed and systematic literature review was conducted
to identify previously proposed models and solution approaches. This has provided new
insights into permit-based and credit-based mobility systems, their main advantages and
limitations, laying foundation for future research in this field.

Next, In Chapter 3 we developed an integrated framework to identify and integrate
the interests of all major stakeholders in a permit-based mobility market, such as mobility
users, mobility service providers, system regulator and the general public. The main ob-
jective was to provide a road-map that covers the key elements of a futuristic user-centric
traffic management system and then incorporate their requirements into a mobility regu-
latory scheme. This research has contributed to the literature by proposing the conceptual
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framework of an integrated user-centric mobility permit-based traffic management system
with particular attention on developing new pricing and allocation protocols under fairness
and efficiency requirements.

In Chapter 4, we focused on the design and analysis of pricing and allocation of mobility
permits for roadways with one bottleneck. We dealt with observing operational objectives,
particularly, balancing efficiency and fairness in mobility permit allocation. We then ex-
plored the theoretical properties of the proposed scheme and showed that the proposed
scheme can achieve an optimal traffic pattern; though, it is computationally intensive
to solve large size problem instances. Next, to tackle the computational complexity of
the proposed scheme, we proposed a heuristic permit allocation algorithm that sustains a
Pareto-optimal traffic pattern with less computational effort. Next, we designed an itera-
tive auction mechanism for pricing the mobility permit under two different pricing meth-
ods. To analyze the performance of the proposed schemes, we performed comprehensive
numerical experiments under different parameter settings. We showed that a hybrid mech-
anism with a minimal over-demanded set pricing and heuristic allocation method can be a
good candidate for being the mobility scheme component of the proposed integrated user-
centric traffic management system. The presented MP-based traffic management scheme is
Pareto-improving which increases its potentials to be economically and socially acceptable.
Our main contribution was to incorporate revenue and fairness aspects into designing a
single-bottleneck mobility management scheme while relaxing the assumption of availabil-
ity of full information in determining the optimal price and allocation of permits to manage
travel demand.

In Chapter 5, we developed models and algorithms for pricing and allocation of per-
mits in a user-centric permit-based mobility system on single-bottleneck roadways. In this
regard, considering the underlying issues, we presented new models and algorithms for
permit pricing and allocation problems with an explicit consideration of equity and effi-
ciency requirements. Moreover, we provided some properties related to the existence of
equilibrium and optimality of solution, and investigate the effect of various assumptions.
We then presented a compound credit-based scheme for managing traffic flow composed
of human-driven and CAVs with ATIS, considering characteristics of such networks such
as driver behavior related to human-driven vehicles and the uncertainty associated with
the interaction between human-driven and CAVs. We developed logit-based mixed-vehicle
stochastic user- and system-optimal traffic flow problems as mathematical models with
non-linear complementarity inequalities. One of the contributions of this chapter was to
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build a theoretical ground to obtain theoretical insights pertaining to the assumed setting.
Under the proposed scheme, we examined the existence and uniqueness of the equilib-
rium price of the credit and look for a set of link-specific charges/subsidies that can drive
the network-wide traffic flow to an optimum state. Another contribution of this chapter
from a modeling perspective was that we developed novel models for mixed-fleet stochas-
tic user- and system-optimal traffic assignments as non-linear complementarity problems
(NCPs) and use them to find (Pareto-improving) link-specific charges. This means that
the proposed scheme relies on solving link-based convex optimization programming models,
obviating computationally intractable path enumeration. This makes the proposed model
suitable for examining the theoretical characteristics of large-scale as well realistic net-
works. The computational results indicate that the proposed scheme can be an effective
tool for managing travel demand and routing decisions in mixed-vehicle traffic settings.
Our main contribution lies in improving traffic in mixed–vehicle networks, i.e., removing
user equilibria inefficiency, via a compound credit-based charge and reward scheme. In
addition, we studied the problem of assigning different charge and reward rates to network
links for inducing a system-optimal traffic state under different schemes. Our findings sup-
ported that a mixed-vehicle traffic network can be led to a system-optimum state using a
compound charge and reward travel demand management scheme.

Findings from this research can be useful to support the decisions of mobility service
providers, city planners, or transport authorities who are looking to implement initiatives
for managing travel demand and promoting certain travel behavior within conventional
transportation networks. The managerial insights are not only for policy makers, but also
for private sector transport service providers.

6.2 Recommendations for Future Work

One of the major challenges arising in designing a mobility scheme is how to balance
the conflicting interests of competing stakeholders and participants of the system. For
instance, fairness and economical viability have been characterised as key issues with sig-
nificant effects in common resource allocation settings. The simplicity and convenience
for individual traveller, and computational efficiency of the solution method are other
implementation-related factors that can highly affect the realization of the roadway-use
management schemes.
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In practice, network operational capacity are highly governed by the network charac-
teristics such as moving bottlenecks and route overlapping. A more complicated situation
would be considering all these settings together in the design of traffic control approaches
and algorithms for mixed traffic conditions. To account for the route overlapping and other
user- and vehicle-oriented uncertainties, we simply use a variability parameter in the ob-
jective function; a different approach can be using a modified-logit route-choice model such
as cross nested-logit with a coefficient component accounting for the covariance between
different paths. However, this would entail a path enumeration process that scales up the
computational complexity of the problem for a large-size network. No study considered
demand uncertainty and supply variability simultaneously within a scheme design. Some
previous work has focused on one of these uncertainties (Han and Cheng 2017), but not
in combination. Networks with variable bottlenecks where the route (link) capacities and
travel demand vary with certain probabilities or over time can be considered in future
research. The findings in this study can be extended to some general directions by con-
sidering characteristics of dynamic traffic networks such user elasticity and heterogeneity,
incorporating link capacity, and simultaneous demand and capacity fluctuations.

We proposed permissive, non-permissive, and minimal value schemes as different pos-
sible charging policies that can be implemented under specific settings. Future extension
can be considering specific features of CAVs such as fuel-saving and/or high travel effi-
ciency (higher average speed) in designing more specific charging schemes. Schemes with
different charging and pricing schemes such as discount and bundle options also need to
be investigated. Another problem that is worth investigating is the efficiency loss of a
scenario where CAVs are not managed as a fleet. In this scenario, the credit scheme might
be applied (to CAVs only) as a decentralized way to achieve a system optimum (possibly
Pareto-improving). Moreover, our framework might be applied with adjustments to other
settings such as CAV-restricted scenario where the CAV users would follow centralized
travel recommendations to meet certain system-wide objectives.
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Appendix A

In this chapter, we develop some benchmark models, under complete information setting, to
evaluate the performance of the proposed MP-based schemes, under incomplete information
setting, for single-bottleneck roadways under various scenarios and parameters setting. We
construct two different different types of benchmark models, namely, the efficiency-oriented
and equity-oriented models.

We assume that the maximum possible utility of mobility user i is finite and limited
by a positive value Ui ∈ R>0, which can be converted to monetary terms. By determining
the trade-off between their travel time and the unit monetary schedule-early delay and
schedule-late delay, users decides on the best departure time to maximize their utility
(Doan et al. 2011). In a typical setting, the time-dependent utility of user i, for arriving
at time t, can be expressed as: Ui(t) = Ui − Ci(t), t ≤ t ≤ t̄, where Ci(t) is their travel
cost with departure time t, which can be formulated as

Ci(t) = Ti(t)αi + max{βi(t∗
i − t− Ti(t)), γi(t + Ti(t)− t∗

i )}, (A.1)

where t∗
i ∈ [t, t̄] is the preferred arrival time. Ti(t) for t ∈ [t, t̄], is the travel time at

departure time t of commuter i. It can also be considered as the queuing delay at the
bottleneck, i.e., Ti(t) = qi(t)/s, where q(t)i is the length of queue the commuter would
face at the bottleneck if she departs at time t, and s is the capacity (service rate) of the
bottleneck. Parameter αi ∈ R>0 is the monetary value of unit travel time or VOT of ith

commuter. In the same way, βi, γi ∈ R>0, respectively, are the penalties (costs) for a unit
time of early and late arrival of ith commuter. Under this functional form of utility, our
hypothetical commuters order their trips in an increasing manner with respect to the values
of βi/γi for the early departure and in a decreasing manner with respect to the value of
γi/βi for the late departure (Tian et al. 2013). We note that the users’ time-dependent net
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utility functions characterize their type, which is determined by their Ti(t), αi, βi, γi, and
Ui for each user i. The maximum utility is achieved when a commuter sees no queue at
when arriving to the bottleneck. This functional form of users’ utilities is a good first-order
approximation of the broader class of concave utility functions. By using the lth permit to
travel since all queues (qi(t) = 0,∀i) are eliminated (Liu et al. 2015), the ith commuter will
experience a travel cost equal to

Ci(t) = max{βi(t∗
i − tpl), γi(tpl − t∗

i )}+ pl, (A.2)

where pl is the ask price for lth travel permit. We can assume t∗
i = q∗

i is the most-preferred
travel pass expressed by the commuter i, tpl = ol, l = 1, 2, ..., L, denotes all the available
options.

We first develop an efficiency-oriented benchmark model which aims to assign multiple
permits to a set of N users ({1, 2, ..., N}) where each user is guaranteed to get one option.
Under symmetric information scenario, we build both the coordinated and centralized
system models. To transform the max operators in Equation (A.2) to a mathematical
programming format, we have defined a binary variable τi,l that takes value of one when
the lth option is chronologically (time-wise) lower than their most-preferred option, and
zero otherwise. The rest of the parameters and variables used in these models are the same
as those used in Chapter (4).
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A.1 Efficiency-oriented Benchmark Model

MPA-CS: max
N∑

i=1

L∑
k=1

pkxi,k (A.3)

subject to:
L∑

k=1
xi,k ≤ 1, i = 1, 2, ..., N, (A.4)

N∑
i=1

okxi,k = Mk, k = 1, 2, ..., L, (A.5)

o∗
i + BM(1− τi,k) ≥ ok,

i = 1, 2, ..., N ; k = 1, 2, ..., L, (A.6)
o∗

i −BMτi,k ≤ ok,

i = 1, 2, ..., N ; k = 1, 2, ..., L, (A.7)
L∑

k=1
τi,kxi,k(o∗

i − ok)βi

+
L∑

k=1
(1− τi,k)xi,k(ok − o∗

i )γi + xi,kpk ≤

τi,l(o∗
i − ol)βi

+(1− τi,l)(ol − o∗
i )γi + pl,

i = 1, 2, ..., N ; l, k = 1, 2, ..., L, l ̸= k, (A.8)

Ui

L∑
k=1

xi,k −
L∑

k=1
(1− τi,k)xi,k(o∗

i − ok)βi

−
L∑

k=1
τi,kxi,k(ok − o∗

i )γi −
L∑

k=1
xi,kpk ≥ 0,

i = 1, 2, ..., N ; k = 1, 2, ..., L, (A.9)
xi,k, τi,k ∈ {0, 1},

i = 1, 2, ..., N ; l = 1, 2, ..., L, (A.10)
pk ≥ 0,

l = 1, 2, ..., L. (A.11)

In MPA-CS, the objective function (A.3) aims to find the optimum decisions (pricing
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and allocation of permits) for the efficiency-oriented setting while meeting the constraint
set (A.4) to (A.11). The inequality (A.4) states that a commuter should be assigned only to
one of available options. In the same way, constraint (A.5) takes care of the capacity limit
at each level of identified travel time interval. Using the constraint sets (A.6) and (A.7)
we force the variables τi,l to take a value of one if the lth option is less (time-wise) than the
most-preferred option of ith user, and zero otherwise. Constraint sets (A.8) and (A.9) are
the incentive compatibility (IC) and individual rationality (IR) constraints respectively,
by which we ensure the participation of the users. To guarantee users’ participation, we
introduce the IC and IR constraints to the model. In the optimal solution of MPA-CS
problem, every user is assigned to their top preference (guaranteed by the IC and IR
constraints), and the total assigned capacity is less than or equal to the available capacity.
We formulated the MPA-CS as a nonlinear mixed-integer programming model. In this
formulation, we set the xi,l, i = 1, 2, ..., N ; l = 1, 2, ..., L, as the allocation decision variable,
where xi,l takes value one if the commuter i, i = 1, 2, ..., N, is allocated with lth option.

The efficiency-oriented system optimum scenario is characterized by the space of all
feasible allocations X, and N known utility functions such that Ui : X 7→ ZN

≥0 for each
user i. Commonly, the system utility U(x) of a solution x ∈ X is the sum of the users’
utilities given by U(x) = ∑N

i=1 ui(x), and the optimal solution x∗. The efficiency-oriented
system optimum is given by U∗ = U(x∗) = maxx∈X

∑N
i=1 ui(x) under the side constraints.

Given o∗
l , user i, i = 1, 2, ..., N, decides to chose option l if and only if ui(o∗

l ) ≥ 0. Indeed,
the MPA-CS problem can be readily transformed to the mobility permit allocation problem
under system optimum (MPA-SO) centralized model by eliminating the pricing decision
and considering just the allocation decisions. Given commuters’ travel socio-demographic
information, the system manager can direct them toward the system-optimal solution state
where the travel costs of all travelers combined are minimized (Klein and Ben-Elia 2016).
The centralized problem reflects the symmetric information case, which can be modeled
by changing the objective function, as simplified in (A.12), and removing the IC, IR, and
pricing constraints (A.7), (A.8) and (A.9), respectively.

MPA-SO: max
N∑

i=1
Ui

(
L∑

k=1
xi,k

)
−

N∑
i=1

βi

(
L∑

k=1
τi,kxi,k(o∗

i − ok)
)

−
N∑

i=1
γi

(
L∑

k=1
(1− τi,k)xi,k(ok − o∗

i )
)

(A.12)

subject to: (A.4), (A.5), (A.6), (A.7), and (A.10).
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A.2 Equity-oriented Benchmark Model

In this section, we develop an equity-oriented benchmark model using maximin fairness
principle (Rawls 2009), which is the most acceptable policy pursued by the majority of
researchers (Hooker and Williams 2012). The maximin principle guarantees maximum
welfare of the worst off user, i.e., xMM = arg maxx∈X mini=1,2,...,N ui(x). This is the only
fairness measure that satisfies the max-min fair allocation optimality requirement (Bertsi-
mas et al. 2012). The underlying mobility permit allocation problem under equity-oriented
system (MPA-ES) can be formulated as follows:

MPA-ES : max y (A.13)
subject to:

(A.4), (A.5), (A.6), (A.7), and (A.10),

y ≤ Ui

(
L∑

k=1
xi,k

)
− βi

(
L∑

k=1
τi,kxi,k(o∗

i − ok)
)

−γi

(
L∑

k=1
(1− τi,k)xi,k(ok − o∗

i )
)

i = 1, 2, ..., N. (A.14)

We note that, the maximin principle does not guarantee the uniqueness of the obtained
solution, as there may be dominated solutions with the same objective function value
(Bertsimas et al. 2012).
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