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Abstract

Understanding the distribution of biochemical pathways across microorganisms is crit-
ical to understanding these organism’s evolution, ecology, and industrial applicability. Ad-
vances in genome sequencing and pathway databases have made genomically predicting
what pathways an organism possesses a common technique. Researchers are moving on
to scaling such analyses towards comparing the presence and absence of pathways across
multiple microbes from the same environment or lineage. However, performing such anal-
yses at scale is currently bottlenecked by the sheer number of pathways per organism and
the lack of powerful tools to facilitate such comparisons.

This thesis presents a new set of tools, called Micromeda, that will assist users in
making comparative genomic analyses. Micromeda consists of three core components.
These components are Micromeda-Client, which generates interactive heat maps that al-
low users to perform visual pathway comparisons; Micromeda-Server, which provides data
to Micromeda-Client; and Pygenprop, which allows users to perform programmatic com-
parisons of multiple organism pathways. Micromeda uses the Genome Properties database
as its pathway information source. This database is unique from other pathway databases
because it maps directly between protein domains and pathway steps. The domains that
the database uses are those from the InterPro consortium of protein databases.

With Micromeda, the process of discovering an organism’s pathways begins with the
domain annotation of an organism’s proteins by InterProScan. Afterwards, Pygenprop is
used to combine these annotations with information from the Genome Properties database
to predict biochemical pathways. This prediction of pathways from domain data results in
the creation of a Micromeda file. This novel file type carries both the pathway annotations
for multiple organisms and the sequences of proteins that support these annotations. In
the context of the Genome Properties database, such pathways are referred to as genome
properties, and pathway annotations are referred to as property assignments. The newly
created Micromeda file can later be uploaded to Micromeda-Client and Server for heat
map-based visualization.

Pygenprop uses object orient programming techniques to represent the Genome Prop-
erties database as a series of in-memory objects. These objects are used extensively within
Pygenprop’s property assignment process and Micromeda as a whole. Pygenprop is writ-
ten in Python. The library’s tight integration with the Python data science ecosystem,
which results in it being compatible with many emerging data science and machine learning
tools, lays the foundation for the library becoming the backbone of a new generation of
automated pathway analysis tools.
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Micromeda-Server is a Python web server application that provides data from uploaded
Micromeda files to Micromeda-Client. Micromeda-Server makes data accessible via a web
application programming interface (API). The APT provides clients, such as Micromeda-
Client, with access to property assignments and protein sequences found within uploaded
Micromeda files. The API can also provide information about individual pathways and
the overall structure of the Genome Properties database.

Micromeda-Client is a web client application whose purpose is to provide interactive
pathway analysis heat maps to users. These heat maps are used to compare pathways
across organisms within a dataset. The interactivity of these heat maps allows for pathway
annotations to be aggregated into summaries of multiple pathways or be disaggregated
down to a pathway step level. At a step level, users can see differences in the presence of
pathways steps. Individual pathways of interest can also be looked up via text search. The
heat map interface also allows users to download protein sequences that support individual
pathway steps across multiple organisms.

Rather than having to spend time reviewing spreadsheets of pathway annotations or
using existing ineffectual pathway annotation visualization software, researchers can now
perform their analyses using Micromeda’s streamlined and efficient heat maps. For large
datasets, Pygenprop can be used to compare the predicted pathways of multiple organisms
programmatically. Micromeda has the potential for shaping the way that future researchers
perform pathway analysis.
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Chapter 1

Introduction

Deoxyribonucleic acid (DNA) sequencing allows us to read an organism’s genome and,
through software, learn more about organism’s inherent capabilities without having to
study it in vivo or in vitro [44]. In an environmental microbiology context, such sequenced
genomes are used to learn more about microorganisms’ metabolic capabilities and possibly
shed light on these organism’s ecological roles [44]. In an applied context, predictions of
such metabolic capabilities are also useful for the selection of what microbes to use in a
bioprocess. In a genetic engineering context, genomically derived information can be used
to select what metabolic traits to remove from, or move between, organisms [144, 135].

Advances in DNA sequencing technology over the past decade have revolutionized our
ability to acquire bacterial and archaeal genomes. For example, with newer sequencing
technologies, such as Oxford Nanopore [76], a bacterial genome can be acquired in a mat-
ter of hours [98, 29]. Researchers have now moved on to extracting the genomes of un-
culturable microorganisms from environmental samples using culture-free techniques, such
as metagenomic [127] and single-cell [61] sequencing. Over the past few years, the tree
of life has been significantly expanded by the metagenome assembled genomes (MAGs)
[24] of these unculturable organisms [71, 119]. With microbiologists’ inability to gather
new genomes rectified, the problem now shifts to interpreting the resulting new wealth of
genomic data.

Due to their vast size and information density, the interpretation of genomes is often
assisted by software. The tool that was developed as part of the thesis work, Micromeda,
allows users to generate data visualizations that help them identify patterns in the pres-
ence and absence of biochemical pathways across organisms. Pygenprop, a library built to
assist in the development of Micromeda, enables users to perform such comparisons pro-



grammatically. A key feature of both Micromeda and Pygenprop is their ability to not only
compare the predicted metabolic features of organisms, in terms of biochemical pathways
present, but also allow users to access the underlying protein sequences that support these
predictions. Details about the information presented by Micromeda and its expected use
cases are given within the sections below. Towards the end of this chapter, the data sources
used by Micromeda are also discussed. The following chapters will discuss Pygenprop and
Micromeda’s overall implementation.

1.1 Enzymes and Biochemical Pathways

For many systems, both environmental and industrial processes can be carried out biochem-
ically. From a biological context, such processes are carried out via a series of chemical
reactions catalyzed by proteinaceous biological enzymes. Enzymes that facilitate similar
chemical reactions often have similar sequences of amino acid residues, structures, and
genes that encode them [60, 166].

A protein domain is a conserved subset of a protein’s sequence that carries out a
specific function and is evolutionarily conserved [131]. These domains are associated with
distinct sequence motifs, which are patterns in the protein’s amino acid sequence [131].
All enzymes have an active site (en.wikipedia.org/wiki/Active_site), and this active site
often has a unique sequence motif. This motif can be used to identify specific enzymes or
enzyme families uniquely [131].

A biochemical pathway represents a series of chemical reactions, that when chained
together, are beneficial to a cell [108]. Examples of such reactions are the breaking down
of a nutrient macromolecule into pieces that cells can use or the synthesis of components
of cellular structure [159]. Each reaction step in a pathway is often [87, 148] catalyzed by a
specific enzyme whose amino acid sequence, and thus structure and activity, is optimized
for the reaction [108, 166, 51]. Thus, there is a mapping between specific enzymes (and
the genes encoding them) and chemical reaction steps in biochemical pathways [151]. As
a result, by reading the genome, researchers can predict what biochemical pathways an
organism may possess [2, 151]. Also, the output from one pathway (e.g., the monomers
from the break down of a macro-nutrient) may be the input for a second biochemical
pathway that builds cellular structures [159, 142]. Thus, all pathways in a cell are some-
how connected and form a network of reactions [159, 142]. This network forms the cell’s
metabolism and is called its metabolic network [159].
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1.2 The State of Pathway Analysis

For many decades scientists have been designing and executing studies to figure out what
individual enzymes do and what substrates they can catalyze. The results of such studies
are stored in pathway databases. Specifically, what genes encode for what enzymes, what
enzymes catalyze what reactions, and what reactions belong to what biochemical pathways.
These databases also map how pathways are connected within cells” metabolic networks.
Examples of such databases include Kyoto Encyclopedia of Genes and Genomes (KEGG)
[80], MetaCyc [85], Genome Properties [132], SEED subsystems [117], Reactome [40], and
many others.

As the breadth and depth of the information within pathway databases increases, the
information contained within is increasingly being used by automated tools that perform
pathway analysis. Such tools help make rapid insights into the capabilities and roles of
organisms in a variety of environments. Often this software is released in the form of a
toolchain (i.e., a pipeline) where separate bioinformatics software applications are run in
series to generate a final output. Such pipelines take an organism’s DNA genome sequence,
perform in-silico transcription and translation (Fig. 1.1), identify enzymes, and identify the
pathways that these enzymes support via information contained within pathway databases
(Fig. 1.2). These tools perform some or all of the following key steps.

1. Prediction of what genes are present in an organism’s genome.
2. Translation of these genes’ sequences to protein for reduced redundancy (Fig. 1.1).

3. Taking known enzymatic protein sequences from pathway databases and using these
sequences to search the predicted proteins to find those with high sequence similarity.
Predicted proteins with high sequence similarity to known enzymes are likely to carry
out the same enzymatic function (see Section 1.1). This process is called protein
annotation (Fig. 1.1).

4. Using these newly found enzymes to figure out what chemical reactions could be
carried out by an organism.

5. Chaining these reactions together to figure out what biochemical pathways are likely
to be possessed by the organism (Fig. 1.1). This process is called pathway annotation.

6. Presentation of information about the pathways present and enzymes found in a way
that is comprehensible by users.
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Figure 1.1: How the glyoxylate shunt can be predicted from the presence of its
supporting enzymes. If a microorganism is to be classified as possessing a glyoxylate
shunt, then it should have highly similar proteins to those previously known to carry out
the pathway, such as Iso and MalG. Several steps are required to go from an organism’s
genome sequence to a prediction of its metabolic capabilities. The enzymes that carry out
the pathway steps must be identified (e.g., protein annotation). If found, these enzymes
would indicate the presence of pathway steps. Finally, if all or many steps are present,
then the biochemical pathway can be said to be present.

Users can deploy pathway prediction bioinformatics pipelines in two ways. The pipelines
can either be installed on to a user’s computer, where genomes can be processed directly,
or be deployed on to a web server, where users can upload their genomes for remote
processing. Some pipelines only work with pathway data from a specific database. For
example, Pathway Tools [84] can only present information about pathways found within
the MetaCyc [85] database. Often pipelines are optimized for generating data from the
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Figure 1.2: How an organism’s biochemical pathways are genomically predicted
using information from pathway databases. Predicting an organism’s biochemical
pathways involves joining together two distinct datasets. One is a prediction of what genes
are possessed by an organism. The other is a database containing the knowledge of what
genes are involved in previously known biochemical pathways. When predicted proteins
with sufficient homology to the previously cataloged genes are found within an organism’s
genome, pathway prediction can be made.

genomes of a specific clade on the tree of life. For example, Prokka [137], a pipeline that
predicts genes and annotates protein sequences, is only designed to work with the genomes
of prokaryotic microbes. Prokka only carries out the first two steps of the key pathway
analysis steps listed at the top of this section [137]. Once these proteins are predicted, they
can be uploaded to servers such as Kyoto Encyclopedia of Genes and Genomes Automatic
Annotation Server (KAAS) [110] for pathway annotation. Several tools can perform all of
the pathway analysis steps outlined in the key pathway analysis steps list. For example,
rapid annotation using subsystem technology (RAST) [9] can take the upload of whole or
partial bacterial genomes, predict the genes of these genomes, and provide users with a
report displaying found pathways.



1.3 The Current Bottlenecks of High Throughput Path-
way Analysis

Due to the current plethora of tools for genome annotation and pathway determination,
identifying pathways for single organisms is becoming a solved problem. Researchers have
progressed to comparing the presence and absence of pathways across organisms. Such
comparisons are applied in order to, for example, find information about individual or-
ganism’s ecological roles, evolution, or suitability towards different industrial tasks. For
example, the genomes of organisms that are closely related phylogenetically could be com-
pared to determine those that may have lost or gained a pathway or pathway step over
time. Alternatively, the pathways possessed by multiple organisms from within the same
environment could be compared to shed light on their potential ecological niches. Path-
way comparisons could also be used industrially to select organisms to add to bioprocess
co-cultures.

Although assigning pathway presence and absence to individual organisms can be done
quite rapidly, the comparison of these results across multiple organisms is currently a
considerable bottleneck in the area of pathway analysis. Often pathway annotation tools
that can process multiple genomes simultaneously present their results in the form of
computer spreadsheets (e.g., Microsoft Excel or comma-separated value (CSV) files [138]).
For example, metabolic and physiological potential evaluator (MAPLE) [146] and KAAS
[110], are KEGG-based pathway annotation platforms that allow users to download CSV
files with pathway annotation results. RAST also allows for the download of pathway
annotation CSVs. The web interfaces for these annotation systems also present annotation
results in a similar table-based format. Such pathway annotation servers sometimes require
multiple CSVs to be downloaded, one per annotated organism, which have to be joined
to compare pathway annotations across organisms. After the generation of these joined
annotation spreadsheets, users must manually scan through the thousands of pathway rows
and organism columns to find pathway differences across organisms. Researchers with data
science and coding skills may be able to generate custom R [128] or Python [156] scripts
that assist them in this scanning task by filtering down these annotation spreadsheets to
show only pathways that are different. Additionally, users could write custom scripts for
generating data visualizations that accelerate pattern detection.

Libraries have been written to accelerate script development by helping scriptwriters in-
teract with pathway data [167, 125, 165, 34, 75]. The majority of these libraries are written
to support either the Protein family (Pfam) [167, 125, 165, 34] and Metacyc [75] databases.
There is currently only one such library that supports the Genome Properties database,



the Genome Properties library created by European Bioinformatics Institute (EBI) (see
github.com/ebi-pf-team /genome-properties/tree/master/code). The majority of pathway
bioinformatics libraries are written in Perl [160] or R. In contrast, very few are written in
Python [167, 125, 165, 34, 75]. This lack of Python support makes the majority of these
libraries unusable for developing software written Python. The Python programming lan-
guage is increasingly being used in bioinformatics and is widely used by both academia and
industry for writing machine learning software [5, 112]. The machine learning algorithms
contained in Python libraries, such as scientific Python tool kit (Scikit)-learn [123], have
great potential for predicting microbial metabolite production based on gene expression
data and biochemical pathway networks [39, 41]. In addition to existing deficiencies in
database compatibility and Python compatibility, the majority of pathway bioinformatics
libraries also only focus on helping users download data from existing pathway databases
[150, 34] or visualize biochemical pathways as graph networks [125], rather than helping
users with making pathway comparisons across organisms. This focus on data download
and network visualization make these libraries less useful for comparative genomics. Only
clusterProfiler [165], an R library, provides cross-organism pathway comparison capability.
Thus, there is also a gap for a pathway library that assists coders in making pathway
presence and absence comparisons programmatically.

Pygenprop is a new Python pathway analysis library that was built around the Genome
Properties database and was generated as part of the thesis work. The library attempts
to address capability gaps found in existing pathway bioinformatics libraries by providing
users with expanded capability to compare the presence and absence of pathways across
organisms. Also, Pygenprop is tightly integrated with emerging Python-based data science
and machine learning tools found within the Scipy [78] ecosystem, including Scikit-learn.
Pygenprop is discussed at length in Chapter 2. Further details on the differences between
it and existing pathway bioinformatics libraries can be found in Section 2.10.

Due to a lack of coding skills among biologists, there is a need for dedicated bioinformat-
ics tools that simplify pathway comparisons across organisms. Software that visualizes the
presence and absence of pathways would be of great use for performing such comparisons.
Several emerging tools help users visualize pathway annotations from multiple organisms.
Both KAAS and RAST present pathway data visualizations on their websites, such as sup-
ported pathway diagrams or supported pathway pie charts. However, the figures created
by these sites are rather rudimentary and cannot easily be used to compare pathway an-
notations across organisms. Other annotation systems such as Microscope [154] and EBI’s
Genome Properties websites allow for comparisons of presence and absence of pathways us-
ing heat maps. These heat maps display pathway presence and absence according to rows
of pathways by columns of organisms. However, these software programs’ implementation,
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in terms of overall visual idioms used and supporting data presented, is currently lacking.
Because of the thousands of pathways that could potentially be possessed by an organ-
ism are nested (i.e., some pathways require the presence of other pathways to function),
Microscope [154] shows pathway annotation results across a series of heat maps spread
across many web pages. For similar reasons, EBI's Genome Properties website limits what
pathways can be presented at the same time. As a result, the heat maps generated by
Microscope and the EBI’s Genome Properties website do not allow one to easily navigate
between the presence and absence results of pathways that require the presence of other
pathways to function. Also, both sites require users to browse through multiple web pages
to learn more details about the pathways visualized in their heat maps, which is both
time-consuming and challenging to do when using computers with small screens. Func-
Tree2 [42], a pathway visualization software designed to present KEGG annotation data,
does not use heat maps but instead uses radial trees. Radial trees have diminished screen
space utilization when compared to heat maps. There is currently a gap for tools that
effectively presents pathway presence and absence data and allows for rapid comparisons
in a visual manner.

Having rapid access to the protein sequences of enzymes that catalyze the same reaction
steps across multiple organisms would be useful to researchers who want to perform phylo-
genetic analyses. Such analyses would help determine these enzyme’s evolutionary history.
Current pathway annotation visualization systems such as FuncTree2 or the Genome Prop-
erties website do not allow for the download of protein sequences that support the existence
of a pathway step. Microscope does allow for the download of protein sequences. However,
the proteins that support a pathway step across multiple organisms must each be down-
loaded individually from separate web pages. There is a gap for a tool that allows users to
identify and rapidly acquire, in batch, the protein sequences that support a pathway step
across multiple organisms.

Micromeda, the software presented within this thesis, more effectively conveys path-
way presence and absence information than either FuncTree2, Microscope, or the Genome
Properties website due to its use of interactive heat maps, which can dynamically show
and hide pathway information from multiple organisms. Interactive heat maps allow only a
single heat map page to be used and possess superior space utilization and user experience
to radial trees due to the heat map’s rectangular layout [114]. Micromeda also provides for
the download of protein sequences that support pathway steps. Users can download pro-
tein sequences identified as supporting the presence of a pathway step, in fast-all (FASTA)
format, directly from Micromeda’s single-page visualization interface. The resulting down-
loaded FASTA file contains sequences from multiple organisms within a dataset that are
known to possess a pathway step. The ability to download such sequences directly from



the visualization page and having all of these sequences with the same file allows for users
of Micromeda to have faster access to protein sequence information and reduced workload
as compared to Microscope. A more comprehensive and detailed comparison of the visu-
alization component of Micromeda to FuncTree2, Microscope, and the Genome Properties
website can be found in Section 4.8.

1.4 The Micromeda Platform
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Figure 1.3: Web-browser window containing Micromeda’s heat map visualization
and interface. This heat map consists of pathway rows by organism columns and allows
the comparison of pathway presence and absence across organisms. All other components
of Micromeda were built to support this interface by providing it with data. Further
explanation of the interface’s design can be found in Chapter 4.

The bioinformatics system presented within this thesis, called Micromeda, is designed
to address current gaps in the researcher’s ability to compare pathway presence and absence



across organisms. The platform generates these comparisons without losing information
about the protein sequences that support the pathways’ existence. The output of the
platform is an interactive heat map that displays rows of pathways by columns of organisms
(Fig. 1.3). Heat map cells are coloured by the level of support for a pathway’s existence in
each genome (Fig. 1.3). This data visualization is displayed within a user’s web browser.
As discussed in Chapter 4, this heat map is interactive, and users can tailor it to only
display presence and absence for specific pathways or pathway steps. A software stack
(see en.wikipedia.org/wiki/Solution_stack) consisting of several components, some of which
were developed as part of the thesis project, is used to generate data for the visualizations
that Micromeda presents. This stack is outlined in the list below.

e A program that generates protein sequences from predicted genes found within an
organism’s genome. For example, in the case of prokaryotic genomes, an existing tool
such as Prodigal [74] would be used.

e A pre-existing sequence search program for scanning for identifying markers within
the sequences of an organism’s predicted proteins. These markers are used to identify
enzymes that support the existence of a pathway. The search program chosen was
InterProScan5, whose output data are used by the Genome Properties Database.
An overview of InterProScanb [79] and its methodology can be found in Subsection
1.4.2.

e A pathway database that maps between predicted protein sequences derived from
an organism’s genome and biochemical pathway steps. The database chosen was the
Genome Properties database [132]. A short review of this database and the reason
for its selection can be found in Subsection 1.4.2. This database is pre-existing and
was not made as part of the thesis work.

e A software library that supports the generation of pathway annotations, rapid pro-
grammatic comparisons between organism pathway annotations and the generation
of Micromeda files. The library is compatible with many emerging machine learning
tools and opens up new avenues to their application to pathway analysis. This library
is called Pygenprop and is discussed in Chapter 2.

o A file format that allows users to easily transfer an assessment of what pathways are
possessed by multiple organisms and the protein sequences used to support this as-
sessment. These files, called Micromeda files, are the files uploaded to Micromeda-
Server, which is discussed in the bullet point below, and use a custom format that
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is discussed in Section 2.6. The format allows for the storage of the pathway and
sequence information in the most compact way possible.

e A server web application that runs on a remote computer system and in support of
a client application. This server application accepts Micromeda file uploads from
the client and provides the client with easy access to the data held within the file.
This component is called Micromeda-Server and is discussed in Chapter 3.

e A client web application that runs in the user’s browser. This web application allows
users to upload Micromeda files to Micromeda-Server. This application draws
pathway heat maps based on this uploaded data (Fig. 1.3). These heat maps allow
users to make comparisons across pathways and organisms. This component is called
Micromeda-Client and is detailed in Chapter 4. Links to a demonstration of the
client interface can be found in Section 4.5.

The Micromeda platform can be subdivided into two core components: a toolchain
for generating Micromeda files (labelled Micromeda Annotator in Fig. 1.5) and a web
application for visualizing the data these files contain (labelled Micromeda Visualizer
in Fig. 1.5). The individual steps for generating Micromeda files can be done manu-
ally using only three command-line interface (CLI) tools (see Fig. 1.4, Fig. 1.6, and
en.wikipedia.org/wiki/Command-line_interface). For example, with prokaryotic genomes,
Prodigal could be used to predict protein sequences from an organism’s genome sequence,
and InterProScan5 could be used to scan these proteins to identify enzymes that support
the existence of specific pathways (Fig. 1.6). Pygenprop contains a CLI (see github.com
/Micromeda/pygenprop#commandlineinterfacecli) that is automatically installed when
the library is installed on a user’s computer. This CLI allows users to generate Micromeda
files from the output domain annotation tab-separated value (TSV) files generated by
InterProScan. A tutorial that covers how to generate Micromeda files can be found at
github.com/Micromeda/micromeda-workflow.

1.4.1 Micromeda Software Architecture Overview

Micromeda follows a client-server web architecture [145] (see en.wikipedia.org/wiki/Client-
server_model and Section 3.1). Users interact with Micromeda-Client via their web browser,
and this client allows them to upload Micromeda files to Micromeda-Server. Micromeda
files contain all the information that the client requires to generate a pathway heat map.
These files store pathway annotations, InterProScanb output data, and supporting protein
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Figure 1.4: Steps performed and software tools used by Micromeda to predict
the genome properties of an organism. For prokaryotes, proteins must first be pre-
dicted via Prodigal. These proteins are then scanned using InterProScan5. The results of
InterProScan are then combined with the Genome Properties database to predict path-
ways steps. These predictions are carried out by Pygenprop, which also predicts the overall
presence and absence of pathways.

sequences for multiple organisms (see Section 2.6). Having all these datasets in a single
file simplifies the data upload process as only one file has to be uploaded by the user per
heat map drawn. After upload, the contents of the uploaded file are stored temporarily
in random access memory (RAM) on the computer used to host Micromeda-Server (see
Section 3.2). Micromeda-Client will ask Micromeda-Server for data from this file as the
client draws a heat map or responds to user activity (see Section 4.4). Multiple users can
interact with Micromeda-Server and Client simultaneously!.

!The number of simultaneous users that Micromeda-Server can support almost entirely depends on
the server computer systems the software is run on and the deployment strategy used (see Section 3.6).
Information about the scalability of Micromeda-Server, when running on a single computer, can be found
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Figure 1.5: Two core steps that users must perform to generate Genome Prop-
erties visualizations using Micromeda. A local computer system must be used to
execute a data generation step that creates a Micromeda file. Users can then upload this
file to a second remote computer system that generates heat map visualizations. The most
computationally complex step, Micromeda file generation, is not performed on the same
server that generates the data visualizations.

Micromeda’s user interface (UI) runs inside a user’s web browser. The reasoning for
using this approach, in contrast to building Micromeda as a native desktop application, is
the approach’s relative ease of deployment. End users only need to open the web address
for the client to be loaded into their web browser and run. Because the application is web
browser-based, it will work on any operating system with a modern web browser, including
mobile devices such as tablet computers and cell phones.

The reason that Micromeda files exist is that they allow the rapid transfer of pathway
annotation datasets that, in turn, allow for a separation of data generation and visu-
alization. This separation is essential because there are vast computational complexity
differences between generating pathway annotations and visualizing them. Micromeda’s

toward the end of Section 3.2
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Figure 1.6: How Micromeda files are built from InterProScan annotations of an
organism’s predicted proteins. These files possess not only pathway annotations but
also the protein sequences that support these annotations. Thus, Micromeda files allow for
the transfer of complete pathway analysis datasets. Such files can be uploaded to a remote
server for visualization.

pathway prediction method involves identifying specific enzymes by running InterProScanb
on the set of all predicted proteins of an organism. The algorithms used by InterProScanb
are very computationally complex. It takes on the order of two hours to scan through the
4313 proteins of E. coli K12 (National Center for Biotechnology Information Taxonomy
identifier (NCBI Taxa ID): 1010810) using 100% of all the central processing unit (CPU)

cores of a 16 core server?.

In contrast, Micromeda can render a pathway heat map for over forty organisms in
less than a second. Thus, if one wanted to have a web application that both computes
and visualizes pathway annotations for uploaded genome sequences, then this application

2InterProScanb was tested on a server with two Intel E5310 (4 CPU cores/4 threads/8 megabytes (MB)
cache/1.60 gigahertz (GHz) clock speed) processors and 16 gigabytes (GB) of RAM.
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would require the support of an extensive and well-maintained hardware infrastructure.
Developing the code to build, maintain, and sustain such a system draws away from the
core goal of the Micromeda platform, which was to design a tool that helps users visualize
pathway differences across organisms. Hence, for Micromeda, I chose to have users generate
pathway annotations locally, using InterProScanb and other tools, and have them upload
these files to a remote web server for visualization (Fig. 1.5). This design decision signif-
icantly reduces the hardware requirements for those who want to host Micromeda-Server
and Client. The decision also reduces the overall design complexity of Micromeda-Client
and Server and allows future development to focus on creating better and more feature-rich
versions of Micromeda’s Ul and visualizations.

1.4.2 An Overview of the Data Sources Used by Micromeda: the
Genome Properties Database, InterPro, and InterProScan5b

The architecture and implementation of Micromeda’s components, such as Pygenprop and
Micromeda-Client, are tied closely to the structure of the Genome Properties database and
the data presented by InterProScan and the InterPro consortium. Thus, it is pertinent
to detail these tools before moving on to later chapters. As mentioned in Section 1.4,
Micromeda uses Pygenprop to predict the biochemical pathways possessed by an organism.
These predictions are made by providing Pygenprop with a copy of the Genome Properties
database and the output of running InterProScan5 on the organism’s predicted proteins.
In addition to discussing the structure of the Genome Properties database, this subsection
will also discuss how domain annotations produced by InterProScan5 are combined with
mappings from the Genome Properties database to generate pathway predictions.

The InterPro Consortium of Protein Databases

Because the enzymes that carry out elements of metabolism in different organisms are
highly similar and often evolutionarily related, it is useful to categorize proteins into groups
that carry out a single function or share specific domains. Protein databases record the
function of these groups of proteins and their domains and also store copies of these pro-
tein’s sequences. In the past, many of these databases were maintained, operated, and
funded independently. However, in the past two decades, many of the operators of these
protein databases have banded together to form the InterPro consortium [6, 72, 73|, which
is headed by the EBI[37, 56]. As of 2019, the InterPro consortium of protein databases
manages fourteen member databases [56, 73]. Examples of member databases include Pfam
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[10], The Institute for Genomic Research protein family (TIGRFAM) [66], protein analysis
through evolutionary relationships (PANTHER) [107], the Conserved Domains Database
(CDD) [101], High-quality Automated and Manual Annotation of Proteins (HAMAP) [96],
PRINTS [8] and many others. Hosting of many of these member databases has been moved
to EBI maintained servers. In addition to the member databases, the consortium also pro-
vides the InterPro database [72, 56], which is a meta-database that allows for mapping
between identical records for the same protein or domain groups across member databases.
Each protein or domain catalogued is given a global InterPro identifier (e.g., IPRXXXX)
that is mapped to multiple identifiers for the same protein or domain within member
databases (e.g., PFXXXX or TFXXXX) [72, 56].

An import feature of protein databases is the ability to take the sequence of a novel
protein (i.e., a protein that is not currently in the database) and predict the placement
and function of the protein’s domains, which is a process called domain annotation. The
search algorithms used by member databases of the consortium compare novel proteins to
computational models (i.e., a profile) that represents the sequence diversity (i.e., not all
domains from different proteins and organisms have the same sequence) of each domain in
the database. If the novel protein possesses a region of high similarity to a model, then it is
likely that the novel protein possesses the domain that the model represents. Because the
member databases of the InterPro consortium were developed independently, the methods
they use for sequence search also vary (Fig. 1.7). The majority of these databases use
HMMER (Fig. 1.7) [48], which compares the sequence of a novel protein to a hidden
Markov model (HMM) [45].

If a portion of an organism’s protein and a model are highly similar in sequence, they
form a match. The quality of this match can be quantified by metrics such as the expected
value (E-value) score. This E-value score captures how likely it is that the match is real
(i.e., the organism’s protein contains the domain) given the chance of finding an equivalent
match randomly in other proteins. Another metric for match quality is the length of
the region of high sequence similarity, the alignment, shared between the protein and the
database domain. If it is determined that a match is of high quality, the aligned region of
the organism’s protein can be assigned the same name and function as the domain in the
database. As discussed in Chapter 2, Pygenprop can generate Micromeda files that store
such match information.
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Figure 1.7: Member databases of the InterPro consortium and the model-
based sequence search techniques that these databases use to classify
novel protein sequences. These search techniques require that the databases
store models that represent multiple proteins or proteins domains.  Examples of
such models include HMMs and position-specific scoring matrices (PSSM). Exam-
ples of software that use such models are HMMER [48] or reverse position-specific
basic local alignment search tool (RPS-BLAST) [104].  This figure is modified
from the one found at https://www.ebi.ac.uk/training/online/course/introduction-protein-
classification-ebi/protein-classification-resources-ebi-interpro.
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Each member database has algorithms for filtering out false positive matches, which
are those that occur between a model and a region of a protein that does not carry out the
same function as the domain that the model represents. The member databases perform
this filtering by implementing unique cut-off values, such as minimum E-value scores or
alignment lengths, that can be used to filter out matches that may be spurious. The cut-off
values can be made unique to each model.
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InterProScan

InterPro consortium created a tool, InterProScan, that allows users to compare a novel pro-
tein sequence to all domain models found within InterPro member databases. The tool is a
software wrapper for and execution engine of the model-based sequence search techniques
(e.g., HMMER [48]) used by all member databases of the InterPro consortium. Inter-
ProScan also implements the false positive filtering techniques developed for each member
database. The latest version of the software, InterProScan5, follows a Master/Worker ar-
chitecture (see en.wikipedia.org/wiki/Master/slave_(technology)) where a master process
schedules jobs for many worker processes. Depending on the number of CPU cores of the
computer running InterProScanb, tens to hundreds of models can be run against a novel
protein simultaneously. Due to its architecture, InterProScanb can also run jobs across
a compute cluster. Due to this scalability, InterProScan is capable of domain annotating
every protein of a microorganism in only a few hours, depending on the computer the
software is run on and the organism’s genome size. InterProScan takes a FASTA file [121]
containing an organism’s predicted proteins as input and writes domain annotations and
match data to TSV files. The match data includes supporting information such as E-value
scores for matches and predicted domain start and stop points on the organism’s annotated
protein.

The Genome Properties Database

The backbone of Micromeda is the Genome Properties database [66]. The Genome Prop-
erties database takes advantage of the identifiability provided by protein domains to map
from combinations of protein domains to enzymes that carry out pathway steps [132]. This
mapping is in contrast to most other pathway databases, which map from whole proteins
to biochemical pathways. If all the required domains for a pathway step are present in an
organism’s proteins, then the step is considered present. The domains used as markers by
the Genome Properties database are those catalogued within the InterPro consortium of
protein databases [6, 132].

The database goes beyond metabolism to include other organism capabilities such
as cell motility (e.g., the presence of flagella and chemotaxis) and even microbial vi-
ral immunity mechanisms such a CRISPR/Cas9 [70]. Within the database each capa-
bility is called a genome property. Multiple steps support each property, and each of
these is supported by evidence that can be found from an organism’s genome such as
the presence of InterPro domains (e.g., Pfam [10], TIGRFAM [65], or CDD [101] do-
mains) in predicted proteins. Several genome properties are required as lines of evi-
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dence by others, and thus the database forms a rooted directed acyclic graph (DAG)
(see en.wikipedia.org/wiki/Directed_acyclic_graph) of connected properties. There are five
types of genome properties: pathways, metapathways, systems, guilds, and categories (see
genome-properties.readthedocs.ioen /latest /flatfile.html#genome-property-types for details).
The initial release of EBI Genome Properties, version 1.0 (January 9, 2018), had 584 prop-
erties and 3083 steps. The latest public release of the Genome Properties database, version
2.0 (August 30, 2018), contains 1296 properties and 6525 steps [132]. One of the core goals
of the latest release was to expand the database beyond prokaryotic properties to include
properties that are only possessed by eukaryotes or are shared between prokaryotes and
eukaryotes. Version 2.0 has also incorporated pathways from MetaCyc [85]. The next ver-
sion of the database, version 3.0, is still in active development and is planned to be released
in spring 2020 (see github.com/ebi-pf-team/genome-properties/issues/30#issuecomment-
557090961). Version 3.0 will contain fixes to existing properties, the addition of new
properties® and code fixes to the Genome Properties Perl library (see github.com /ebi-pf-
team /genome-properties/tree/master/code). Section 2.2 discusses how Pygenprop repre-
sents the structure of the Genome Properties database in memory.

If a specified number of required steps are found within the domain annotations of an
organism’s proteins, then the organism is understood to posses a specific genome property.
The process of predicting what properties are possessed by an organism is called property
assignment. To assign properties to an organism, InterProScan is first used to domain
annotate all of its predicted proteins (e.g., those produced by Prodigal), and these annota-
tions are then combined with information from the Genome Properties database to assess
what properties are supported. Each property in the database is assigned YES, PARTIAL,
and NO support. With Micromeda, Pygenprop is used to carry out these assessments. The
Genome Properties database is provided to Pygenprop in the form of a release file, whose
contents are detailed in the Subsection 2.1.1. Subsection 2.3.2 details the exact algorithms
used for generating assignments.

Though the Genome Properties database does catalogue properties that are not bio-
chemical pathways (e.g., complex cellular components such as flagella), the vocabulary
used to describe the database is similar to the lexicon used to describe pathway compo-
nents. For example, entities that support the existence of individual genome properties
are called steps, not subcomponents or substructures. These naming conventions are still
used even when a property represents a cellular structure or process rather than a pathway.
For simplicity and consistency of language across the thesis, biochemical pathway-based

3There is no ceiling to the number of properties that could be added to the Genome Properties database.
As long as domains catalogued by the InterPro consortium can identify the proteins involved in a pathway
or structure, then a property representing the pathway or structure can be generated.
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verbiage and examples are used throughout the thesis when providing example usages of
Micromeda or describing the reasoning behind specific design decisions. However, it should
be noted that Micromeda’s analysis abilities are not strictly limited to pathway analysis.
The tool can analyze any property in the Genome Properties database, including those
describing non-metabolic capabilities.

Reasoning for Micromeda’s Use of Genome Properties and InterProScan

During the development of Micromeda, there were four reasons for selecting the Genome
Properties database over other databases and InterProScan over other search tools. These
reasons are explained below.

One of the primary reasons for using the Genome Properties database and InterProScan
is that they allow pathway annotations to be built from domains identified by model-based
search tools such as HMMER [48] or RPS-BLAST [104]. When compared to non-position
specific basic local alignment search tool (BLAST)-based [4] search methods, which are
commonly used by other pathway annotation systems, these model-based tools are better
at detecting enzymes whose sequences are phylogenetically divergent from those previously
known [48]. This improved detection capability provides Micromeda with an advantage
when it is applied to the genomes of previously unstudied organisms.

The Genome Properties database being domain-based also provides Micromeda with
another advantage. Because the database is based on domains rather than whole proteins,
Micromeda can detect the presence of enzymes that are split across multiple genes or have
fused with other proteins. In a recent study that focused on confirming genome-predicted
amino-acid auxotrophy across a variety of bacteria, the authors found that many predicted
instances of auxotrophy were misannotations [126]. Many of these misannotations were
the result of either gene fusions or the enzyme being split across multiple genes [126].
Traditional whole protein sequence-based detection methods such as BLAST [4], which are
typically used by pathway annotation pipelines based on databases such as KEGG, were
shown to miss these enzymes [126]. For example, if previous forms of a protein were all
found to be encoded by a single gene, such whole sequence methods were shown to filter
out versions of the enzyme that are split across genes due to inadequate alignment lengths
for matches to individual subunits [126]. In contrast, InterProScan will detect all required
domains, whether the proteins are on one gene or multiple.

Another advantage of Genome Properties is that it is freely available under an open-
source licence and hosted on GitHub [132]. In contrast, two of the most prominent
pathway databases, KEGG and BioCyc [82], have been commercialized. KEGG’s web-
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site is free for academic use in terms of using the data held within for hypothesis test-
ing (see kegg.jp/kegg/legal.html). However, bulk download of the entire database, as
would be required for a pathway annotation system such as Micromeda, has a licens-
ing fee of $2000 United States dollar (USD) per year (as of 2019 and see bioinformat-
ics.jp/docs/subscription_fees.pdf). This fee increases to $5000 USD per year if a user
“provide[s| any outside service using... KEGG data” (as of 2019 and see bioinformat-
ics.jp/docs/subscription_fees.pdf). Thus, if Micromeda were built around the KEGG database,
users creating Micromeda files would be required to pay $2000 USD per year, and any user
hosting Micromeda server, as a public service, would be required to pay $5000 USD per
year. BioCyc follows a similar paid scheme (metacyc.org/download.shtml).

The Genome Properties database has also been shown to have comparable coverage,
in terms of organism proteins used to support the existence of pathways, to databases
such a KEGG and Seed Subsystems [132]. This coverage was consistent across a variety
of microbes from distant taxonomic clades [132]. Thus, there is no high-level database
completeness disadvantage if Micromeda uses the Genome Properties database.

1.5 Summary

When Micromeda performs pathway annotation, it does so based on the presence of Inter-
Pro domains found within organisms’ predicted proteomes. These domains are detected
using model-based sequence search software that is orchestrated by InterProScan5. The
contents of the Genome Properties database is used to map from the presence of domains
to the presence of genome property steps. The presence of steps is used to infer YES, PAR-
TIAL, or NO support for individual genome properties. The model-based search techniques
used by InterProScan allow Micromeda to provide highly accurate and comprehensive re-
sults with no licensing fees.

Micromeda allows users to visualize the differences in pathway presence and absence
across organisms. The tool generates visualizations based on the data contained within
uploaded Micromeda files. Pygenprop is a software library that can not only produce
Micromeda files but also make programmatic comparisons of pathway presence and absence
across organisms. Potential improvements to individual components of Micromeda are
highlighted in the summary section of each of their chapters. Potential improvements
that would require modification of multiple components are highlighted in Chapter 5. As
discussed in Chapter 5, Micromeda breaks new ground in both features and implementation
and will increase both the speed and ease at which researchers perform pathway analysis.
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Chapter 2

Development of a Python library for
Programmatic Exploration and
Comparison of Organism Genome
Properties

During the development of Micromeda’s server component, it was recognized that it would
be useful to have a software library to assist with programmatic usage of the Genome Prop-
erties database. This library would be used to access the database’s information, assign
levels of support to individual properties and compare these assignments among organisms.
A vital component of the thesis work was the development of this library, called Pygenprop
[16]. Pygenprop is a Python library that provides an object-oriented framework [21] for
representing the Genome Properties database and assessing the property assignments of
multiple organisms. The library is deeply integrated with the Python data science software
stack [78] through its representation of property assignments as pandas DataFrames [105].
Pygenprop is also interoperable with modern machine learning frameworks, opening up
new use cases for pathway annotation data. Pygenprop additionally provides automation
features for tracking the data used to generate property assignments and storing assign-
ments for later use. This chapter will review the structure and function of Pygenprop’s core
components and the design decisions implemented during the library’s creation. Pygen-
prop was recently published in Oxford Bioinformatics [16]'. Source code and installation
instructions for Pygenprop are located at github.com/Micromeda/pygenprop.

!Chapter 2 was modified from [16]. The description of the Pygenprop’s internals was greatly expanded.
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2.1 Parsing the Genome Properties Database

Before addressing the object-oriented programming aspects of Pygenprop, it is important
to first discuss how the library imports data. In all use cases, Pygenprop requires the
information found within the Genome Properties database and before the library can use
this information, it must first be loaded into a computer’s main memory (i.e., RAM). This
parsing of the Genome Properties database is the job of Pygenprop’s Genome Properties
database parser.

The Genome Properties database consists of a series of flat files (see Subsection 2.1.1).
The database parser module loads these files from disk and encodes the information con-
tained within them in a tree-like data structure. The layout of this data structure is
detailed in the next section. A secondary goal of the parser is to build connections be-
tween individual properties as the database consists of a series of flat files, whose individual
property records are not indexed nor connected.

2.1.1 Overview of the Genome Properties Flat File Database and
Associated File Formats

The Genome Properties database (as of version 2.0) consists of a series of flat files that
are hosted inside a GitHub repository (see github.com/ebi-pf-team/genome-properties).
Information about individual properties is stored in the repository’s data folder, and within
this folder each property is assigned a second internal folder containing three files:

e A DESC file, that contains information about the property

e A status file that contains information on whether the property is public or has been
manually curated

e A FASTA [121] file containing representative protein sequences that are known to
carry out the steps of the property

The data folder contains information about both public and non-public genome prop-
erties.

In addition to the per-property folders, there is also a Genome Properties release file
located in the flatfiles folder of the repository that also contains Genome Properties in-
formation. Specifically, this file, called genomeProperties.txt, is a concatenation of all
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the DESC files of all public properties. This file is created with each new release of the
Genome Properties database on GitHub. Below is simplified view of the folder structure
used by the Genome Properties GitHub repository.

—— code/ - # The Genome Properties Perl library
— data/ - # Data about both public and private properties
GenProp0001/
DESC - # Detailed property information
FEE FASTA - # Sequences of proteins that carry out steps
status - # Public and manual curation status
GenProp0002/

DESC
FASTA
status

— flatfiles/
L genomeProperties.txt

Pygenprop’s Genome Properties database parser (see Section 2.1) is capable of parsing
both single DESC files of individual properties and the concatenated genomeProper-
ties.txt release file. The format of DESC files is very similar to the Stockholm sequence
alignment format used by both the Pfam and non-coding RNA families (Rfam) databases
[10, 62]. Like these file types, DESC files consist of a series of key-value pairs. Be-
cause these files use different keys than Stockholm, a custom parser had to be developed.
An example DESC file can be found at raw.githubusercontent.com /ebi-pf-team /genome-
properties/master/data/GenProp0145/DESC. A table of keys used in genome properties
DESC files can be found at genome-properties.readthedocs.io/en/latest /flatfile .html#desc-
file.

2.1.2 Parser Implementation and Performance

The database parser reads both DESC and genomeProperties.txt files one line at a
time to decrease memory usage. While loading line by line, lines are split into key-value
pairs and these pairs are loaded into a Python list. Once all keys for a single property
are found, the key-value pairs are used to create a series of in-memory Python objects
representing the property. In the case of genomeProperties.txt release files, Pygenprop
repeats this process for all property records in the file, placing each in a Python list. Once

24


http://raw.githubusercontent.com/ebi-pf-team/genome-properties/master/data/GenProp0145/DESC
http://raw.githubusercontent.com/ebi-pf-team/genome-properties/master/data/GenProp0145/DESC
https://genome-properties.readthedocs.io/en/latest/flatfile.html#desc-file
https://genome-properties.readthedocs.io/en/latest/flatfile.html#desc-file

parsing is completed, this list is used to create a GenomePropertiesTree object? that
represents the database’s rooted DAG structure. The parser then returns this final object.

Pygenprop’s Genome Properties flat file parser processes a single DESC file in 415
ps £6 ps (number of replicates (N) = 80) on average and the latest release of the entire
Genome Properties database (the genomeProperties.txt of release 2.0) in 242.0 ms £5.0
ms (N = 80)34.

2.2 Development of an Object-Oriented Class Frame-
work for the Representation of the Genome Prop-
erties Database

As discussed in the previous chapter, the Genome Properties database consists of a series of
interdependent genome properties representing both metabolic and structural features of
cells. Several properties are used as evidence of others, forming parent-child relationships
between properties and an overall rooted DAG structure across the database. Pygenprop
follows an object-oriented programming paradigm [21] (see en.wikipedia.org/wiki/Object-
oriented_programming) and thus after parsing the Genome Properties database, Pygenprop
represents the database as a series of in-memory objects (see Table 2.1 and Fig. 2.1) that
contain information about individual properties (Fig. 2.2). These objects are connected in
a linked list fashion [115] (see en.wikipedia.org/wiki/Linked list), where objects point to
each other. These connections are doubly linked, which enables climbing both up and down
the DAG and between GenomeProperty, Step, FunctionalElement, and Evidence objects
(Fig. 2.2 and Fig. 2.1). Methods and attributes of these objects can be used in software
applications or explored interactively in Jupyter Notebooks [88]. The below subsections
detail Pygenprop’s Genome Properties database classes and how these classes can be used.

2Note that capital letters are used to differentiate objects and classes from the concepts they repre-
sent. For example GenomeProperty objects represent individual genome properties and Step objects
represent individual property steps.

3Note that for the remainder of the thesis, unless otherwise noted, all performance tests were done on
a Macbook Pro (model A1502), with an Intel Core i5-4258U 2.4 GHz processor (2 CPU cores, 4 threads, 3
MB L3 cache), 16 GB of RAM and a 256 GB peripheral component interconnect express (PCle) solid-state
drive (SSD).

4Note that for the remainder of the thesis, unless otherwise noted, Python function execution time was
recorded with Python’s built-in timeit package (docs.python.org/3.6/library/timeit.html). Python version
3.6 was used for all testing. Variances displayed are standard deviations.
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Table 2.1: Summary of the object types used to represent the Genome Properties database.

Object Type What the Object Represents

Tree Genome Properties DAG

Genome Property Single genome property

Literature Reference | Article discussing a genome property

Database Reference Record in an external pathway database that is equivalent to
a genome property

Step Step supporting the existence of a genome property

Functional Element Functional element supporting the existence of a step

Evidence Evidence supporting the existence of a functional element

A child
Genome property may
Property Root have multiple
f— \ parents
Genome Genome Genome
Property 1 Property 2 Property 3

|

Step

N

Genome Database
Reference

Literature
Reference

'U
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(@]

ko)
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Figure 2.1: In-memory objects that Pygenprop uses to represent the Genome
Properties DAG. These objects are interconnected. Parent property objects are con-
nected to child property objects. Database references, literature references, and property
steps are also present in the object model and are connected as children of individual
property objects. The objects presented by Pygenprop can be used to build software that
queries the Genome Properties database. Figure is from [16].
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Figure 2.2: In-memory objects that Pygenprop uses to support its property
objects. With Pygenprop, each property object is supported by a series of objects that
represent a property’s steps and lines of evidence. Functional element objects form links
between steps and evidence. Property objects can be supported by multiple step, functional
element, and evidence objects. Figure is from [16].

2.2.1 The GenomeProperty Class

The GenomeProperty class creates a blueprint for objects that represent individual genome
properties. Once instantiated, these objects possess properties (i.e., attributes whose return
value is generated by a function) and attributes that represent data about the property.
This information mirrors that provided in the genome property’s DESC file before parsing.
Information about property steps, database references, and literature references have been
abstracted into separate classes. A summary of the methods, properties, and attributes of
GenomeProperty objects can be seen in Table 2.2 and example code below.
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Table 2.2: Methods, properties, and attributes of GenomeProperty objects.

Name Type Description

required_steps | Property Return a list of step objects representing steps that are
required to support the existence of the property

child_genome Property Return a list of the genome property identifiers of child

_property genome properties that are used as step evidences for

_identifiers the property

to_json Method Serialize the property to a JavaScript Object Notation
(JSON) [25] string

databases Attribute | List of database objects representing external database
references to the property

references Attribute | List of literature reference objects representing external
articles discussing the property

private_notes Attribute Private internal notes about the property

tree Attribute | GenomePropertyTree object (see Subsection 2.2.7) that
the property belongs to

description Attribute | Long-from description of the property

threshold Attribute | Minimum number of required steps that must be as-
signed YES in order for the property to be assigned
PARTIAL rather than NO support during property as-
signment

type Attribute | Property type (e.g., GUILD, CATEGORY, or PATH-
WAY)

steps Attribute List of step objects representing all steps that can
support the existence of the property (including non-
required)

public Attribute | True if the property is publicly released

children Attribute List of child genome property objects representing prop-
erties the are used as step evidences by the property

name Attribute | Name of the property

id Attribute | Genome property identifier (e.g., GenPropXXXX)

parents Attribute List of parent genome properties objects representing

properties that use the property as step evidences
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Example code for using GenomeProperty objects

property.id
Out: GenProp0144

property .name
Out: Chlorophyllide a biosynthesis from protoporphyrin IX

property. parents
Out: List of parent property objects

property.children
Out: List of child property objects

property.steps
Out: List of step objects

property . databases
Out: List of database reference objects

property.references
Out: List of literature reference objects

2.2.2 The DatabaseReference Class

The DatabaseReference class allows for the creation of objects that link a property to
equivalent records in other pathway databases such as KEGG [80] and MetaCyc [85].
These objects are children of GenomeProperty objects (Fig. 2.1). For example, in the case
of GenProp0145 (histidine degradation to glutamate), the GenomeProperty object would
have two child DatabaseReference objects. One is for signifying the equivalent KEGG path-
way (e.g., map00340) and another for the equivalent MetaCyc pathway (e.g., PWY-5028).
DatabaseReference objects can be used to build software that links records for the same
pathway across multiple databases. A summary of the attributes of DatabaseReference
objects can be seen in Table 2.3 and example code below.
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Table 2.3: Attributes of DatabaseReference objects.

Name Type Description

database_name | Attribute | Name of the external database (e.g., KEGG)

record_title Attribute | Name of the external database record that a property is
equivalent to

record_ids Attribute | Identifier of the external database record that a property
is equivalent to (e.g., a KEGG pathway map identifier)

Example code for using DatabaseReference objects

reference = property.databases [0]

reference .database_name
Out: MetaCyc

reference.record_title
Out: Pathway: 3,8—divinyl—chlorophyllide a biosynthesis III

# Returns a list to handle cases where
# there are multiple identifiers.
reference.record_ids [0]

Out: PWY-7159

2.2.3 The LiteratureReference Class

The LiteratureReference class lays out the foundation for objects that represent scientific
articles that support the existence of a property, such as a review summarizing current
knowledge about a metabolic pathway. Once instantiated, LiteratureReference objects are
children of GenomeProperty objects (Fig. 2.1). A summary of the attributes of Literatur-
eReference objects can be seen in Table 2.4 and example code below.

Table 2.4: Attributes of LiteratureReference objects.

Name Type Description
number Attribute | Number of the literature reference
pubmed_id Attribute | PubMed [28] identifier of the literature reference
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Table 2.4 continued from previous page

Name Type Description

title Attribute Title of the literature reference
authors Attribute Authors of the literature reference
citation Attribute Citation for the literature reference

Example code for using literature reference objects

reference = property.references [0]

reference . pubmed_id
Out: 17370354

reference . title
Out: Recent advances in chlorophyll biosynthesis.

reference.citation

Out: Photosynth Res. 2006;90(2):173 —194.

reference.authors
Out: Bollivar DW

2.2.4 The Step Class

The Step class is used to generate objects representing individual genome property steps.
These objects are children of parent GenomeProperty objects and have FunctionalElements
objects as children (Fig. 2.2). A summary of the properties and attributes of Step objects
can be seen in Table 2.5 and example code below.

Table 2.5: Properties and attributes of Step objects.

Name Type Description

name Property Return the name of the step

required Property Return true if the step is required for assignment of the
parent genome property

property Property Return a list of genome property identifiers of genome

_identifiers properties that are used as evidence for the step
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Table 2.5 continued from previous page

Name Type Description

interpro Property Return a list of InterPro identifiers [72] that are used as

_identifiers evidence for the step (e.g., [IPRXXXX)

consortium Property Return a list of InterPro consortium member database

_identifiers (e.g., Pfam or TIGRFAM [10]) signature accessions [72]
that are used as evidence for the step (e.g., PEXXXX)

genome Property Return a list of child GenomeProperty objects that are

_properties used as evidence for the step

number Attribute | Number of the step

parent Attribute | Parent GenomeProperty object of the step

functional Attribute List of FunctionalElement objects that are used to sup-

_elements port the existence a step

Example code for using step objects

step = property.steps[0]

step .number

Out: 1

step .name

Out: Magnesium—chelatase subunit ChlD (EC 6.6.1.1)

step.required

Out: True

step.interpro_identifiers
Out: A list of InterPro identifiers (e.g., IPR011776)

step.consortium_identifiers
Out: A list of consortium signature identifiers (e.g., TIGR02031)

step.functional_elements
Out: A list of functional element objects
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2.2.5 The FunctionalElement Class

The FunctionalElement class allows for the instantiation of objects that are placed between
Step and Evidence objects during parsing (Fig. 2.2). Functional elements are not part
of the original Genome Properties database schema and were added by Pygenprop to
account for property steps that can be catalyzed by multiple enzyme families. This issue
of having multiple types of enzymes capable of catalyzing a step is an open issue on
the Genome Properties database GitHub repository (see github.com/ebi-pf-team /genome-
properties/issues/29). The addition of FunctionalElements object addresses this issue. A
summary of the attributes of FunctionalElement objects can be seen in Table 2.6 and
example code below.

Table 2.6: Attributes of FunctionalElement objects.

Name Type Description

parent Attribute Step object that the FunctionalElement supports

evidence Attribute List of Evidence objects that support the existence of
the functional element

name Attribute | Name of the functional element

id Attribute | Identifier of the functional element

required Attribute | True if the functional element is required for assignment
of the parent genome property

Example code for using FunctionalElement objects

element = step.functional_elements [0]

element . id
Out: element.id

element .name
Out: Magnesium—chelatase subunit ChlD (EC 6.6.1.1)

element . required
Out: True
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element . evidence
Out: A list of evidence objects

2.2.6 The Evidence Class

The Evidence class allows for the generation of objects that represent individual pieces of
evidence that support the existence of functional elements and, in turn, genome property
steps. Pieces of evidence include the presence of InterPro consortium signatures [72] or
support for the existence of other genome properties found in an organism’s genome. A
summary of the properties and attributes of Evidence objects can be seen in Table 2.7 and
example code below.

Table 2.7: Properties and attributes of Evidence objects.

Name Type Description

has_genome Property Return true if the evidence is supported by the existence

_property a genome property

property Property Return a list of genome property identifiers of genome

_identfiers properties that are used by the evidence

interpro Property Return a list InterPro identifiers of genome properties

_identifiers that are used by this evidence (e.g., IPRXXXX)

consortium Property Return a list of InterPro consortium member database

_identifiers (e.g., Pfam) signature identifiers of genome properties
that are used by this evidence (e.g., PEXXXXX)

genome Property Return a list of child genome property objects that are

_properties used by this evidence

parent Attribute | Parent FunctionalElement object of this evidence

gene_ontology | Attribute | List of gene ontology (GO) term identifiers [7] associ-

_terms ated with the InterPro identifiers that are used by the
evidence

evidence Attribute | List of both InterPro and signature identifiers used by

_identifiers the evidence

sufficient Attribute | True if the evidence alone can prove the existence of a
functional element
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Example code for using Evidence objects

evidence = element.evidence [0]

evidence . has_genome_property
Out: false

evidence.sufficient
Out: true

evidence.interpro_identifiers
Out: A list of InterPro identifiers (e.g., IPR011776)

evidence.consortium_identifiers
Out: A list of consortium signature identifiers (e.g., TIGR02031)

2.2.7 The GenomePropertiesTree Class

GenomePropertiesTree® objects, as instantiated from the GenomePropertiesTree class, are
used to represent the rooted DAG structure of the entire Genome Properties database.
These objects contain a Python dictionary (i.e., a key-value mapping) of GenomeProperty
objects indexed by their property identifiers. Also, individual property objects point to each
other using their parent/child attributes (Fig. 2.1 and Table 2.2), allowing for climbing up
and down the DAG. These parent-child relationships between GenomeProperty objects are
built during a GenomePropertiesTree object’s instantiation. The GenomePropertiesTree
class provides its objects with methods that allow users to search for specific Genome-
Property objects, and acquire lists of the root (i.e., no parent property) and leaf (i.e., no
child properties) GenomeProperty objects. A summary of the methods, properties, and
attributes of GenomePropertiesTree objects can be seen in Table 2.8 and example code
below.

5The word “tree”, which refers to a different data structure from a DAG (branches of trees do not merge),
is used in the name of the class that represents the Genome Properties database. The class’s methods also
use tree terminology. This naming was done as a means of convenience as most bioinformatics users are
more familiar with trees.
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Table 2.8: Methods, properties, and attributes of GenomePropertiesTree objects.

Name Type Description

build_genome | Method [terate through every GenomeProperty that is a child of

_property the tree; set these Properties’ parent and child attributes

_connections (see Table 2.2) to point to matching child and parent
GenomeProperty objects that are also children of the
Tree. This method connects GenomeProperty objects
to create a DAG structure.

to_json Method Serialize the property tree to a JSON string

create Method Write a CSV file that maps from genome property iden-

_metabolism tifiers to the identifiers of equivalent records found in

_database Pfam and MetaCyc

_mapping_file

root Property Return the top-level GenomeProperty that has no par-
ent.

leafs Property Return a list of GenomeProperty objects whose steps
are not supported by any other properties

genome Property Return a list of the genome property identifiers (e.g.,

_property GenPropXXXX) for all genome properties within the

_identifiers database

interpro Property Return a list of InterPro identifiers that are used as ev-

_identifiers idence for steps (e.g., IPRXXXX) within the database

consortium Property Return a list of InterPro consortium member database

_identifiers (e.g., Pfam) signature accessions that are used as evi-
dence for steps (e.g., PFXXXXX) within the database

consortium Property Return InterPro consortium signature accessions in the

_identifiers form of a pandas DataFrame [105]

_dataframe

genome Attribute | Dictionary of genome property objects representing all

_properties genome properties within by the database; the dictio-

_dictionary nary is keyed by genome property identifier
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Example code for using GenomePropertiesTree objects

tree = GenomePropertyTree(xproperty_object_list)
tree_.two = parse_genome_properties_flat_file(prop_file_handle)

len(tree) # number of properties in the database
Out: false

tree.root
Out: The root FenomeProperty object

tree.leafs
Out: A list of leaf GenomeProperty objects
(those with no child properties)

# Properties in the tree can be iterated.
for genome_property in tree:

print (genome_property .id)
Out: Prints all genome property identifiers

# The tree can be rapidly searched
tree [ 'GenPropl127’ |
Out: The GenomeProperty object representing GenPropll127.

2.2.8 Performance of Pygenprop’s Genome Properties Database
Representation

Pygenprop’s representation of the Genome Properties database as a GenomePropertiesTree
object and its children takes only up 11.2 MB® of RAM as of database version 2.0. This
memory usage only takes up marginally more space than the database’s original genome-
Properties.txt file that takes up 1.8 MB on disk. The memory usage difference is due to
the representation of the database as a series of objects and their associated data struc-
tures. However, because 11.2 MB takes up little RAM on a modern machine, a more

6Note that for the remainder of the thesis, unless otherwise noted, all mem-
ory usages for Python objects were recorded wusing Python’s built-in getsizeof function
(docs.python.org/3/library /sys.html#sys.getsizeof).
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compact representation for the Genome Properties database was not pursued. Individual
genome property objects can be looked up, by property identifier, from within a Genome-
PropertiesTree object within 277 ns £8 ns (N = 80).

2.3 Assignment of Genome Properties to Organism
Genomes

Information contained within the Genome Properties database can be used to assign YES,
NO, or PARTIAL support for an organism possessing a genetically derived property, such
as a biochemical pathway. These property assignments are generated from assignments
of YES or NO support for these properties’ underlying steps (Fig. 2.3). Steps cannot be
assigned PARTIAL. Assignments of support for steps are calculated in two ways. One
way of calculating step assignments is from the presence of InterPro consortium database
signatures (e.g., Pfams, TIGRFAMs, and others) in the domain annotations of an organ-
ism’s proteins. These domain annotations are generated by running InterProScan [79] on
an organism’s predicted proteins. These InterPro annotations are used to calculate YES
and NO assignments for steps. Because the Genome Properties database is a DAG, some
properties’ steps use the assignments of other properties as evidence (Fig. 2.1). The sec-
ond way of calculating step assignments is from the presence of previously calculated YES,
PARTTAL, or NO support for other genome properties in the organism’s genome (Fig. 2.3).
These child property assignments are used to calculate YES and NO assignments for steps
(Fig. 2.3). Because steps can be only be assigned YES or NO, PARTIAL assignments of
support for child properties cause the step they support to be assigned YES (Fig. 2.3). All
steps of leaf properties only use InterPro domains as evidence; however, the steps of prop-
erties closer to Genome Properties DAG root may either use domains, other properties’
assignments, or both as evidence. As a result, the assignments for all genome properties
can be recursively calculated from DAG leaf to DAG root based solely on InterPro domain
evidence.

Pygenprop’s code for assigning genome properties is based on that of the Genome Prop-
erties Perl library (see github.com/ebi-pf-team/genome-properties/tree/master/code) that
ships alongside the Genome Properties database. Pygenprop replicates the Perl library’s
support assignment functionality. The Python library evaluates properties’ support, from
DAG leaf to DAG root, using a recursive algorithm (Fig. 2.3 and Section 2.3.2). For
each property, assignment starts by assigning each step evidence with YES or NO support
and then recursively flowing this assignment up through functional elements, steps, and
eventually back to the property itself (Fig. 2.3). The rules used for assigning support at
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different levels are detailed in the subsections below. For each genome that needs to have
properties assigned, an AssignmentCache object is generated. This object contains all data
required for property assignment and methods for assigning support using this data. A
detailed description of this class is also found in the subsections below.

Assignment G | Threshold: 0 mhere are required steph
YES Ps)r;)oeTt; 1F‘YIEF?TI>AOL then a property assignment is
PARTIAL = only calculated from the
NO

required steps. If all required
steps are assigned YES, then
the property is assigned YES.

Else if YES assigned required
steps are above a property
specific threshold assign the
property PARTIAL, otherwise
assign it NO.

Functional
Element 3

Functional
Element 2

Functional
Element 1B

Functional
Element 1A

If there are no
required steps,
then assign the
property YES if
all steps have
been assigned

Evidence 2 Evidence 3

Genome YES, NO if all
PF01221 HGRo0043 TIGR0O076 PFO2174 HGRO01A3 Property 2 steps have been
assigned NO,
K_) r—) and PARTIAL
herwise. )
(1t a piece of evidence Pi f : o
If there are no p leces 0
pieces of evidence is considered evidence whose Asilg(r:\t?iwlznts
that are "sufficient," "sufficient," its YES consortium roperties that
all must be assigned assignment overrules signatures are ZrepPARTIAL
YES to generate a the NO assignments not found in the are converted
YES assignment. of the other pieces of genome are to YES
\_  evidence. assigned NO. )

Figure 2.3: Overview of the genome property assignment process used by Py-
genprop. The assignment algorithms use by Pygenprop recursively generate assignments
for individual properties and steps from leaf to root along Genome Properties DAG. The
assignments of child properties and steps are used to calculates assignments of YES, PAR-
TIAL, and NO for parent properties.
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2.3.1 The AssignmentCache Class

AssignmentCache objects, instantiated from the AssignmentCache class, are used to assign
genome properties to an organism. These caching objects can be generated from three
sources:

e InterProScan TSV files (protein domain annotation files)

e Python lists of InterPro member database signature accessions for an organism (as
could be downloaded from precalculated InterProScan results of UniProt proteomes
[35])

e Precalculated property assignment files generated by the Genome Properties Perl
library

Pygenprop contains parsers for both InterProScan TSV files and Genome Properties pre-
calculated property assignment files. In all cases, InterPro member database signature
accessions are de-duplicated before their inclusion in an AssignmentCache object, as oc-
curs in the Genome Properties Perl library.

AssignmentCache objects contain two Python dictionaries (i.e., key-value mappings)
for storing previously calculated property and step assignments, respectively. The ob-
ject also contains a Python set that is designed to store all unique InterPro consortium
signature identifiers found in an organism’s protein domain annotations. The Assignment-
Cache has a method called bootstrap_assignments that uses a GenomePropertyTree
(Subsection 2.2.7) object and data stored within the AssignmentCache itself to calculate
levels of support for all properties. This function also calculates levels of support for
steps. AssignmentCaches from multiple organisms can later be combined during the cre-
ation of GenomePropertiesResults objects (as discussed in Section 2.4 below) that allow
comparison of property assignments across organisms. As mentioned at the top of this sec-
tionthese caches can be from different sources. Unlike Pygenprop, the Genome Properties
Perl library does not maintain the concept of an assignment cache and can only calculate
property support for a single organism from a single InterProScan TSV file. A summary of
the methods, properties, and attributes of AssignmentCache objects can be seen in Table
2.9 and example code below.
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Table 2.9: Methods, properties, and attributes of AssignmentCache objects.

Name Type Description

cache_property | Method Add a property assignment to the cache

_assignment

get_property Method Return a property assignment from the cache

_assignment

cache_step Method Add a step assignment to the cache

_assignment

get_step Method Return a step assignment from the cache

_assignment

flush_property | Method Remove a property assignment and its associated step

_from_cache assignments from the cache

synchronize Method If a property whose assignment is cached is not found

_with_tree in the tree, remove its assignment and associated step
assignments. This method allows for compatibility
between different versions of the Genome Properties
database and pre-calculated assignment files.

bootstrap Method Recursively assign support for properties from leaf to

_assignments root using an internal set pre-calculated assignments
and a InterPro consortium signature identifiers

bootstrap Method Search through a genome property tree to find steps that

_missing_step are not in the cache. Assign these steps NO because they

_assignments are missing. This method is used when pre-calculated
step assignments that result in NO have been omitted
to save disk space.

create Method Return two pandas DataFrames representing property

_results_tables and step assignments for the organism

property Property Return a list of genome property identifiers (e.g., Gen-

_identifiers PropXXXX) for properties whose assignment are in the
cache

property Attribute | Python dictionary of YES, NO, and PARTIAL labelled

_assignments property assignments keyed by genome property identi-
fier

step Attribute | Doubly nested Python dictionary of YES and NO la-

_assignments belled step assignments keyed by genome property iden-

tifier and step number
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Table 2.9 continued from previous page

Name Type Description

interpro Attribute | Set of InterPro consortium signature identifiers of do-

_signiture mains found in the organism’s protein domain annota-

_accessions tions

sample_name Attribute | Name of the organism or sample. When the Assign-
mentCache is created from a file, the sample name is set
to the filename without file extension

Example code for using AssignmentCache objects

tree = parse_genome_properties_flat_file(prop_file_handle)
cachel = parse_genome _property_longform _file(long_file_handle)
cache2 = parse_interproscan_file (interproscan_tsv_file_handle)
cache3 = AssignmentCache (sample_name="E _coli’,

interpro_signature_accessions=identifier_list)

cache2.sample_name

Out: C_benthia_.SPR155

cache2.get_property_assignment (’GenPropl1065 ")
Out: PARTIAL

cache2.get_step_assignment ('GenPropl067’, 2)
Out: YES

# Set GenProp2536 to YES
cache2.cache_property_assignment (*GenProp2536 7,

# Set GenProp2539 step two to YES
cache2.cache_step_assignment ( 'GenProp2539°’, 2,

# Remove GenProp2567 from the cache
cache2 . flush _property_from _cache (’GenProp2567 ")

# Bootstrap both step and property assignments
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cache2.boostrap_assignments(properties_tree=tree)

# Create pandas DataFrames for per organism property

# and step assignments

tables = cache2.create_results_tables(properties_tree=tree)
property_table = tables[0]

step_-table = tables 1]

2.3.2 Implemented Assignment Algorithms

As mentioned in Section 2.3, Pygenprop uses recursion, the process of program functions
repeatedly calling themselves internally, to assign YES, NO, or PARTIAL support for indi-
vidual properties found within the Genome Properties database. During assignment recur-
sion, Pygenprop uses a GenomePropertiesTree object (Subsection 2.2.7) to provide itself
with information about assignment requirements for each property and relevant connections
between properties. In the context of AssignmentCache objects, the process of generating
of assignments is referred to as bootstrapping. Bootstrapping is the term used to describe
the assignment process because properties are assigned from pre-existing information stored
within the cache, such as pre-calculated property and step assignments, and InterPro con-
sortium signature accessions. This pre-calculated information grows as more properties are
assigned. Pygenprop’s recursive assignment algorithms, like those in the Genome Proper-
ties Perl library, assign support to both properties and property steps (Fig. 2.3). Assign-
ments of support for steps are used to assign support for parent properties (Fig.2.3). The
overall DAG-level assignment algorithm used by Pygenprop, which ultimately assigns sup-
port for the DAG’s root property based on the assignments of the DAG’s leaf properties, is
an example of dynamic programming (see en.wikipedia.org/wiki/Dynamic_programming).

During the recursion process, the newly calculated step and property assignments are
added continually to the AssignmentCache object’s step and property assignment dic-
tionaries (Table 2.9). During successive recursive assignment calculations, these dictio-
naries are checked first, using the AssignmentCache’s get_property_assignment and
get_step_assignment methods (Table 2.9), to find step and property assignments that
have already been calculated in previous recursive cycles. During a recursive cycle, if a
pre-calculated assignment result is found, recursion is stopped, and this cached assignment
value is returned to the calling parent recursive function. This checking for and utilization
of previously calculated results is called memoization (see en.wikipedia.org/wiki/ Memoiza-
tion). Because the AssignmentCache object’s assignment dictionaries are used as a cache,
the rate of the assignment process will increase exponentially in speed as more properties
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are calculated, vastly reducing overall assignment time. Recursion also stops when step
assignments are calculated for steps that are supported by InterPro domains 2.3).

Step assignments are calculated recursively from both functional element and evidence
assignments (Fig. 2.3). Evidences are assigned YES or NO based on the presence an Inter-
Pro consortium signatures found in an AssignmentCache’s interpro_signature_accessions
attribute (Table 2.9) or a recursively calculated child property’s assignment (Fig. 2.3). The
signature identifier or child property to be used during calculations is specified inside each
evidence’s representative Evidence object (Table 2.7). Pieces of evidence are assigned NO
in two situations:

e The evidence’s InterPro consortium signature is not found in the AssignmentCache’s
interpro_signature_accessions attribute

e The evidence’s child genome property has been assigned NO

Otherwise, each evidence is assigned YES (Fig. 2.3)7. Functional elements are assigned
YES under two situations:

e [f all underlying pieces of evidence have been assigned YES

e If a single piece of evidence that sufficient on its own to support the existence of a
step is assigned YES®.

Other than these two situations, the functional element is assigned NO (Fig. 2.3). Steps
are assigned YES or NO based on the assignments of functional elements (Fig. 2.3). Steps
are assigned YES only if all functional elements of that step have been assigned YES and are
assigned NO otherwise. As noted in the second paragraph of Subsection 2.3.2, assignment
results for already calculated steps are checked for before step assignment recursion and are
added to the AssignmentCache after step assignment calculations. If a piece of evidence
has a genome property as its child, then this property’s assignment is calculated, creating
another recursion cycle.

"If a step uses the assignment a child property as evidence and this child property’s assignment is
PARTTAL, then the step’s evidence is assigned YES. This change from a PARTIAL to a YES assignment
is done because the algorithms used for calculating property assignments expect YES or NO assignments
as inputs, as would be the case if the property’s steps used InterPro domains as evidence.

8 As mentioned in Table 2.7, some pieces of evidence can be used as the sole piece of evidence for a step
(Fig. 2.3).
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Some properties have steps that are required to exist for the property to be assigned
YES or PARTIAL. Also, each property possesses a threshold attribute (see Table 2.2)
that specifies how many of these required steps must be present before an assignment of
PARTIAL support can be applied to the property. These threshold values are included
in the Genome Properties database and are predetermined for each property. They are
stored in each property’s DESC file (see Subsection 2.1.1). If there are required steps for
a property, then it can only be assigned YES if all required steps are present (Fig. 2.3).
The property is assigned PARTIAL only if the number of its required steps assigned YES
is higher than the required steps threshold attribute (Fig. 2.3). If the number of required
steps assigned YES is less than or equal to the required steps threshold, then the property
is assigned NO support. It is important to note that the property assignment does not
take into account steps that are optional, only those that are required. If a property’s
step’s assignment value is not known, it is calculated using the recursive step assignment
algorithm described earlier in Subsection 2.3.2.

Categorical properties, such as GenProp0011 (methanogenesis), do not have any re-
quired steps; all steps are optional. Thus a different assignment algorithm is required for
these property assignments. Categorical properties are only assigned YES if all steps are
assigned YES, NO if all steps are assigned NO, and PARTTAL otherwise (Fig. 2.3). Note
that the generation of support assignments for categorical properties is unique to Pygen-
prop and is not performed by the Genome Properties Perl library. The recursion in the
Perl library stops before it reaches categorical properties.

For a 2.9 MB InterProScan TSV file containing domain annotations for 4100 Escherichia
coli K12 proteins (NCBI Taxa ID: 1010810), the resulting AssignmentCache object was
found to take up 1.2 MB of RAM before bootstrapping assignments and 1.7 MB after.
Assignment bootstrapping was found to take 76.7 ms +£15.4 ms (N = 80) for K12.

2.4 Development of a Framework for Comparing Genome
Property Assignments Across Multiple Organisms

One of the main goals of Pygenprop was to facilitate programmatic comparisons of the
presence/absence of biochemical pathways across multiple organisms. Specifically, the li-
brary provides methods to filter out genome properties that are shared between organisms,
thus highlighting differences in these organisms’ metabolic or functional capabilities. Py-
genprop’s ability to assess these differences programmatically will allow future researchers
to automate many aspects of pathway analysis, such as complex phenotype prediction and
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the discovery of correlations between pathway presence and patterns of niche partitioning
[55]. To support programmatic exploration of genome properties assignments, Pygenprop
includes the GenomePropertiesResults class.

2.4.1 The GenomePropertiesResults Class

During their instantiation, objects of the GenomePropertiesResults class take a series of
AssignmentCache objects (Subsection 2.3.1), potentially from disparate sources, as input
(Fig. 2.4). During this process, the per-sample assignments found within these input
caches are transformed into two indexed pandas DataFrames [105] that hold data for mul-
tiple samples, one for property assignments and another for step assignments (Fig. 2.6).
The GenomePropertiesResults class also contains a series of methods that return versions
of these DataFrames with filtered down step and property assignments. A summary of
the methods, properties, and attributes of GenomePropertiesResults objects can be seen
in Table 2.10 and example code below. GenomePropertiesResults objects become useful
when used interactively in Jupyter Notebooks [88]. See github.com/Micromeda/pygenprop
/blob /master /docs/source/ static/tutorial /tutorial.ipynb for an example notebook work-
flow using Pygenprop to compare virulence genome properties of E. coli K12 (NCBI Taxa
ID: 1010810) and O157:H7 (NCBI Taxa ID: 83334).

Table 2.10: Methods, properties, and attributes of GenomePropertiesResults objects.

Name Type Description

get_results Method Return the assignment results as a pandas DataFrame
for a series of genome properties at either a step or prop-
erty level

get_results Method Return a summary of assignment results as a pandas

_summary DataFrame for a series of genome properties at either a
step or property level

get_property Method Return a list of assignments of support for all samples

_results and for a given property

get_step_results | Method Return a list of assignments for all samples and for a
given property step

to_json Method Serialize the results object to a JSON property tree
with assignment results for each sample annotating each
property node
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Table 2.10 continued from previous page

Name Type Description

to_assignment | Method Serialize the results object to a Micromeda SQLite

_database database file (.micro)

to_msgpack Method Serialize the results object to a MessagePack binary
string

sample_ names | Property Return the names of all organisms used in the creation
of the results object

differing Property Return a pandas DataFrame of property assignments

_property with properties whose assignments are the same across

_results all samples filtered out

differing_step Property Return a pandas DataFrame of step assignments with

_results steps whose assignments are the same across all samples
filtered out

supported Property Return a pandas DataFrame of property assignments

_property with properties whose assignments are NO across all

_results samples filtered out

supported_step | Property Return a pandas DataFrame of step assignments with

_results steps whose assignments are NO across all samples fil-
tered out

property_results| Attribute Pandas DataFrame of property assignments across all
samples

step_results Attribute Pandas DataFrame of step assignments across all sam-
ples

tree Attribute GenomePropertiesTree object provided during instanti-

ation of the GenomePropertiesResults object
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List of InterPro
Consortium Signatures

PF12345
PF02468
TFO1124

Legacy Genome
Properties Long-
form Assignment
Results File (.txt)

InterProScan
Annotation File
(.tsv)

PF12642
TF02478
TF02221

Assignment
Cache 1

Assignment
Cache 2

Assignment
Cache 3

Genome
Properties
Results

GenProp0567 | YES YES NO GenProp0567 |9 YES YES NO

GenProp0687 PARTIAL NO NO GenProp0687 '3 YES NO NO

GenProp0870 |NO NO YES GenProp0870 |1 NO YES YES
Property Assignment DataFrame Step Assignment DataFrame

Figure 2.4: How GenomePropertiesResults objects are generated by combining
the AssignmentCache objects generate for multiple organisms. These caches
can be generated from disparate sources, such as InterProScan results files or lists of
InterPro signatures provided by a remote server. The resulting GenomePropertiesResults
object possesses DataFrames containing either step and property assignments for multiple
organisms. The comparative pathway analysis software can use these DataFrames.

Example code for using GenomePropertiesResults objects

tree = parse_genome _properties_flat_file(properties_file_handle)
cache_one = parse_interproscan_file (ipr_file_handle_one)
cache_two = parse_interproscan_file(ipr_file_handle_two)
results = GenomePropertiesResults(cache_one, cache_two,

properties_tree=property_tree)
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results.sample_names

Out:

["E_coli_ K127,

"C_luteolum _DSM _273 "]

results.get_property_result (’GenPropl065 ")

Out:

[ 7NO7 ,

7NO7]

results. get_step_result (' GenPropl067’, 2)

Out:

[ "YES’,

?NO)]

# Get step assignments for GenPropl1065 and GenPropl067 with

# property and step names.

results. get_results (’GenPropl0657,
steps=True, names=True)

Out:

"GenPropl1067 7,

Property_Identifier | Property_Name Step_Number | Step_Name E _coli_ K12 | C_luteolum_DSM _273
GenProp1065 Radical SAM/SPASM TIGR04347/TIGR04031 system | 1 RSAM-partnered protein, Htur_1727 family NO NO

GenPropl065 Radical SAM/SPASM TIGR04347/TIGR04031 system | 2 Pseudo-rSAM protein/SPASM domain protein | NO NO

GenPropl1067 Defe: ms 1 CRISPR systems YES YES

GenPropl1067 Defense ms 2 Restriction enzyme system, type I YES NO

GenPropl067 Defense systems 3 DNA sulfur modification system dnd NO NO

GenPropl067 Defense systems 4 Abortive infection proteins NO NO

GenPropl067 Defense systems 5 Complement activation, common pathway 1 NO NO

# Get

results. get_results (’GenPropl0657,
steps=False , names=False)

Out:

"GenPropl1067 7,

property assignments for GenPropl065 and GenPropl067

Property_Identifier

E _coli_ K12

C_luteolum _DSM 273

GenProp1065

NO

NO

GenProp1067

PARTIAL

PARTIAL
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# Get counts of YES and NO assignments for steps GenPropl065

# and GenPropl067

results.get_results_summary (’GenPropl065’

Out :
Assignment | E_coli_ K12 | C_luteolum _DSM 273
NO 5 6
YES 2 1

# Get percentages of YES and NO assignments for steps GenPropl065

# and GenProp1067

results.get_results_summary (’GenPropl065’
steps=True, normalize=True)

Out :
Assignment | E_coli K12 | C_luteolum DSM 273
NO 71.428571 85.714286
YES 28.571429 14.285714

"GenPropl067’, steps=True)

"GenProp1067 7,

When generated from two AssignmentCache objects containing assignments built from
the proteomes of Escherichia coli K12 (NCBI Taxa ID: 1010810) and Chlorobium chlorochro-
matii CaD3 (NCBI Taxa ID: 340177), the resulting GenomePropertiesResults object took
up 14.4 MB of RAM after instantiation. Creating the object took 180.0 ms £10.0 ms (N
= 80).

2.4.2 The use of Pandas for Compatibility With the Python Data
Science and Machine Learning Software Stack

Pandas is a Python library for cleaning, filtering, and reshaping data. Pygenprop’s Genome-
PropertiesResults object presents property and step assignments as pandas DataFrames,
which are a two-dimensional data matrices with both column and row names. These
DataFrames allow users to quickly query and filter assignments and join these assignments
to pre-existing metadata. For example, gene expression data (microarray or transcrip-
tomic), culture optimal growth conditions, or even host environmental conditions could be
merged with genome property assignment results in only a few lines of pandas code.
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These joined datasets provide great potential as a source of data for data mining or as
training sets for machine learning algorithms. Pandas DataFrame objects are built on top
of NumPy arrays [105], which are used extensively across the entire Python data science
ecosystem [78]. The arrays allow for the transfer of data between algorithms; for example,
to those found in machine learning libraries such as Scikit-learn [123], PyTorch [120] or
Tensorflow [1]. When trained on pathway assignment data from Pygenprop’s Dataframes,
such algorithms could be used to build a new generation of bioinformatics classifiers that
facilitate the prediction of high-level organism phenotypes or preferred environmental con-
ditions.

2.5 Extension of the AssignmentCache and Genome-
PropertiesResults classes to Include Supporting
Match Information

As discussed in Subsection 1.4.2, Genome properties are assigned based on the presence of
InterPro domains that can be used, either singly or in combination, to uniquely identify
enzymes or protein structures that act as evidence for property steps. It may be the
case that domains used as step evidences will be found in more than one protein of an
organism. It may also be the case that some of these proteins may be false positives that
may posses the identifying domain, or a similar domain, but do not carry out a genome
property step. To assist in filtering out these false positives, researchers often want direct
access to match information, such as E-value scores, held within an InterProScan file.
Alternatively, users may want access to the entire sequences of proteins containing predicted
domains so these proteins can be analyzed more deeply. For example, the proteins that
are predicted to possess a motif that supports the existence of a property step could be
compared phylogenetically to reference proteins that are already known carry out this step
in other organisms. Previously, with the Genome Properties Perl library, the information
required to perform the such analyses was kept in four separate file types:

e GenomeProperties.txt files kept property information
e Per-organism long-form property assignment files kept property and step assignments
e Per-organism FASTA files [121] kept protein sequences

e Per-organism InterProScan TSV files kept domain annotations
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For a given organism, if a researcher wanted to find proteins that supports the existence
of a genome property step, then they would have to write a script to parse all four of these
file types, combine the data contained within each and perform searches on this joined
data. These scripts would be difficult and time-consuming to write as the researcher would
need to write much “boilerplate” code to carry out the joining of the datasets before
analysis. Because the file types listed at the start of this section are created per-organism,
if one wanted to apply such scripts to multiple organisms, then these scripts would have
to be able to remember what file belongs to what organism. This tracking would further
complicate script development.

Pygenprop already possesses much much of the aforementioned boilerplate code. For
example, code for parsing the Genome Properties database and for comparing the pres-
ence/absence of genome properties across organisms. To make it easier for researchers
to access domain and sequence information for proteins that support the existence of
genome property steps, Pygenprop contains extended versions of both the Assignment-
Cache and GenomePropertiesResults classes. These classes possess attributes, properties,
and methods related to accessing the supporting information that was initially provided
only within InterProScan TSV and FASTA files. These classes are called Assignment-
CacheWithMatches and GenomePropertiesResultsWithMatches, respectively.

2.5.1 The AssignmentCacheWithMatches Class

The AssignmentCacheWithMatches class extends the AssignmentCache class via class in-
heritance [140] (see en.wikipedia.org/wiki/Inheritance_(object-oriented programming)). In
addition to the attributes, properties, and methods inherited from the AssignmentCache
class, the AssignmentCacheWithMatches also possesses equivalents used for accessing sup-
porting information such as domain annotation E-value scores and protein sequences that
support the existence of property steps.

AssignmentCacheWithMatches objects are generated by parsing a FASTA file [121] of
an organism’s proteins and an associated InterProScan TSV of the domain annotations of
these proteins (Fig. 2.5). Pandas is used to parse the TSV file’s protein sequence identifier,
InterPro consortium signature accession and E-value score columns (Fig. 2.5). The FASTA
file parsed using Scikit-bio’s FASTA file parser (Fig. 2.5)[136]. The results of these parsings
are merged into a single DataFrame called matches that contains information that maps
from InterProScan TSV data to a column of raw protein sequences. A summary of the
attributes of AssignmentCacheWithMatches objects can be seen in Table 2.11.
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>PRO1345
MLLLLARCFLVILASSL...

InterProScan Protein >PRO1346
Annotation Sequences LREEEAGAYAPLTAHL...

File (.tsv) (fasta) ————— >PRO1347
RAFAPFRLAHALLAAL...

FASTA Sequences
v

PRO1345 PF22015 1x107-6

PRO1345 |MLLLLARCFLVILASSL...
PRO1345 TF10750 2x107-8

PRO1346 LREEEAGAYAPLTAHL...
PRO1346 PF18570 4x107-5

PRO1347 PF02435 7x107-150 PRO1347 | RAFAPFRLAHALLAAL...

| |
Domain Annotation DataFrame Sequence DataFrame

PRO1345 | PF22015 1x107-6 MLLLLARCFLVILASSL...

PRO1345 | TF10750 2x107-8 MLLLLARCFLVILASSL...

‘Assignment
Cache With
Matches

PRO1346 |PF18570 4x107-5 LREEEAGAYAPLTAHL...
PRO1347 | PF02435 7x107-150 | RAFAPFRLAHALLAAL...

Combined DataFrame

Figure 2.5: How AssignmentCacheWithMatches are made from input Inter-
ProScan TSV and FASTA files. AssignmentCacheWithMatches objects store property
assignments, InterProScan annotations, and supporting protein sequences for a single or-
ganism. Such objects are generated from a FASTA file of an organism’s proteins and
InterProScan TSV file of domain annotations of these proteins. AssignmentCacheWith-
Matches objects possess a DataFrame that maps between InterProScan annotations and
protein sequences.

Table 2.11: Attributes of AssignmentCacheWithMatches objects that are not possessed by
AssignmentCache objects.

Name

Type Description

matches

Attribute | Pandas DataFrame containing domain annotation infor-
mation and protein sequences for an organism
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2.5.2 The GenomePropertiesResultsWithMatches Class

The GenomePropertiesResultsWithMatches class extends the GenomePropertiesResults
class via class inheritance [140]. In addition to the attributes, properties, and methods in-
herited from the GenomePropertiesResults class, GenomePropertiesResultsWithMatches
class also possesses equivalents used for accessing supporting information. This supporting
information includes domain annotation E-value scores and protein sequences that support
the existence of property steps. A pandas DatakFrame within each instantiated Genome-
PropertiesResultsWithMatches object stores this information. Unlike AssignmentCache-
WithMatches objects, GenomePropertiesResultsWithMatches objects maintain supporting
data for more than one organism.

GenomePropertiesResultsWithMatches objects are generated by combining a series of
AssignmentCacheWithMatches objects for different organisms (Fig. 2.6). During instan-
tiation, the matches DataFrame (Table 2.11) of multiple input AssignmentCacheWith-
Matches objects are combined into a single more massive DataFrame. Sample names,
genome property identifier, and step number columns are then used to index this DataFrame,
allowing for fast lookups. Having a large combined DataFrame allows for E-value scores
and sequences to be compared across organisms. During the creation of this DataFrame,
domain annotations and proteins that do not support genome property steps are filtered
out. The GenomePropertiesResultsWithMatches class provides a variety of convenience
functions for accessing domain annotations for proteins that assist in the assignment of a
property step. These functions are capable of providing filtered DataFrames that compare
matches across organisms. Objects of the GenomePropertiesResultsWithMatches class can
be also be used to generate FASTA files, using Scikit-bio, containing proteins that are pre-
dicted to carry out a property step in multiple organisms. A summary of the methods,
properties, and attributes of GenomePropertiesResultsWithMatches objects can be seen
in Table 2.12 and example code below.

Table 2.12: Methods, properties, and attributes of GenomePropertiesResultsWithMatches
objects not possessed by GenomePropertiesResults objects.

Name Type Description

get_sample Method Return the step matches DataFrame filtered to include
_matches matches from only one sample

get_property Method Return the step matches DataFrame filtered to include
_matches matches from only one genome property

get_step Method Return the step matches DataFrame filtered to include
_matches matches from only one genome property step
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Table 2.12 continued from previous page

Name Type Description

get_supporting | Method Return a list of Scikit-bio sequences objects for proteins

_proteins_for that have domain annotations that support a specific

_step property step to a FASTA file

write Method Write the protein sequences that have domain annota-

_supporting tions that support a specific property step to a FASTA

_proteins_for file

_step_fasta

top_step Property Return the matches DataFrame with only the matches

_matches with the lowest E-value for each sample and property
step retained

step_matches Attribute | Pandas DataFrame containing both domain annotations

and sequences for proteins that support genome prop-
erty steps in multiple samples
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Protein InterProScan Protein InterProScan
Sequences Annotation Sequences Annotation
(.fasta) File (.tsv) (.fasta) File (.tsv)

Assignment
Cache With
Matches 1

Assignment
Cache With
Matches 2

Genome
Properties
Results With
Matches

Sample 1 | GenProp0567 |9 PF22015 | 1x107-6 MLLLL...
Sample 1 GenProp0687 |3 TF10750 |2x107-8 LREEE...
Sample 2 | GenProp0870 |1 PF02435 | 4x107-5| RAFAA...

Step Matches DataFrame

Figure 2.6: How GenomePropertiesResultsWithMatches are built from Assign-
mentCacheWithMatches object derived from multiple organisms. GenomeProp-
ertiesResultsWithMatches objects store property assignments, InterProScan annotations,
and supporting protein sequences for multiple organisms. Such objects are generated
by combining the AssignmentCacheWithMatches objects generated for multiple organ-
isms. These caches are generated from per-organism FASTA files and InterProScan files.
GenomePropertiesResultsWithMatches objects also retain the Property and step assign-
ment DataFrames from Fig. 2.4 (not shown).

Example code for using GenomePropertiesResults objects
tree = parse_genome_properties_flat_file(properties_file_handle)

cache_one = parse_interproscan_file_and_fasta_file(ipr_file_one ,
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fasta_file_one)

cache_two = parse_interproscan_file_and_fasta_file (ipr_file_two ,
fasta_file_two)
results = GenomePropertiesResultsWithMatches(cache_one, cache_two,

properties_tree=property_tree)

results.get_step_matches(’GenPropl764’, 1)

Out:

Sample_Name Signature_Accession | Protein_Accession | E-value | Sequence
C_chlorochromatii_CaD3 | PF00994 NC_007514.1_.1113 7.1e-19 MITV...
C_chlorochromatii_CaD3 | PF00994 NC_007514.1_151 1.3e-31 MRAV. ..
C_chlorochromatii_CaD3 | PF00994 NC_007514.1_1114 1.6e-29 | MTFT...
C_luteolum_DSM_273 PF00994 NC_007512.1_2044 2.2e-29 | MPSI...
C_luteolum_DSM_273 PF00994 NC_007512.1_147 1.3e-28 | MAFT...
C_luteolum_DSM_273 PF00994 NC_007512.1_148 3.7e-26 | MLTS...
C_luteolum_DSM_273 PF01507 NC_007512.1.1607 6.1e-38 | MSSA...
C_luteolum_DSM_273 PF01507 NC_007512.1_1606 5.4e-40 | MSRI...

# Retrieve matches only for hits with the lowest F-value
# and for a single step

results.get_step_matches (' GenPropl764’, 1, top=True)
Out :

Sample_Name Signature_Accession | Protein_Accession | E-value | Sequence
C_chlorochromatii_CaD3 | PF00994 NC_007514.1_151 1.3e-31 | MRAV...
C_luteolum _DSM _273 PF01507 NC_007512.1_1606 5.4e-40 | MSRI...

# Retrieve matches only for hits with the lowest E-value
# for a single property and for only one sample

results.get_property_matches(’GenPropl764’
sample="C_chlorochromatii_CaD3 ",
top=True)

Out :
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Step_Number | Signature_Accession | Protein_Accession | E-value Sequence
1 PF00994 NC_007514.1_151 1.300000e-31 | MRAE...
2 PF01687 NC_007514.1.1520 3.100000e-33 | MRLI...

# For a given property step, write the protein

# that 1s most likely to carry out the step in each

# organism. These proteins have the lowest E-value

# for their domain annotation match.

with open(’proteins.fasta’, 'w’) as fasta_file:

results. write_supporting _proteins_for_step_fasta(fasta_file ,

"GenPropl757 7,
2,
top=True)

2.5.3 AssignmentCacheWithMatches and GenomePropertiesRe-
sultsWithMatches Performance

For 1877 proteins from Pelodictyon luteolum DSM 273 (NCBI Taxa ID: 319225) and 1774
proteins from Chlorobium chlorochromatii CaD3 (NCBI Taxa ID: 340177), it took 80.4 ms
+1.7 ms (N = 80) and 89.4 ms +4.0 ms (N = 80) to parse the FASTA and InterProScan
TSV files and generate two AssignmentCacheWithMatches objects. These caches were then
combined into a single GenomePropertyResultsWithMatches object in 4.2 s £0.2 s (N =
20). The two assignment caches were found to take 21.3 and 15.3 MB of memory, respec-
tively. The final GenomePropertyResultsWithMatches object required only 29.8 MB of
memory. At over 4.2 seconds for joining only two caches, scaling analyses to large datasets
may become a challenge and opportunities for optimizing this step should be pursued.
The GenomePropertyResultsWithMatches object generated was subsequently serialized to
JSON in 7.1 s £1.3 s (N = 20). This speed may need to be optimized in the future.
The proteins most likely to carry out GenPropl757 step number two in each sample were
written to a FASTA file in 21.7 ms +£0.8 ms (N = 80) using the same GenomePropertyRe-
sultsWithMatches object’s write_supporting_proteins_for_step_fasta method (Table
2.12).
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2.6 Development of a File Storage Format and Database
Interface for Storing Genome Property Assign-
ments and Supporting Information

Once Pygenprop generates assignments of support for individual genome properties and
steps, users many find it useful to be able to store these assignments for later use or dis-
semination. With the Genome Properties Perl library, property and step assignments can
be saved to text files written in either a custom human-readable format (see github.com/
Micromeda/ pygenprop/blob/master/pygenprop/testing/test_constants/ _chlorochromatii
_CaD3.txt) or JSON format. Both of these file types are created per-organism and do
not contain supporting information such as annotation match scores or protein sequences.
Because the Perl library creates these files per-organism, a large number of records must
be tracked and managed if a researcher wants to compare assignments across multiple or-
ganisms. Also, if a user wants to retain information about domain annotations and protein
sequences that support these assignments, then they would have to track and manage a
series of additional InterProScan TSV and FASTA files for each organism. Tracking, man-
aging, and sharing all these files would be difficult, so Pygenprop supports the creation
of Micromeda files that store the information held within these three file types in a single
file. This new file type can store data for multiple organisms allowing the transfer of entire
datasets between users or computer systems.

2.6.1 Selection of a Data Storage Format

Micromeda’s assignment results file format is based on SQLite3 [118]. During Pygenprop’s
development, several file formats were reviewed before the selection of this format. The
types considered included custom text formats, custom binary formats, JSON, YAML
Ain’t Markup Language (YAML) [14], and Hierarchical Data Format version 5 (HDF5).
Custom text or binary files were passed over as they would provide minimal advantages over
existing off-the-shelf file types that offer similar performance with little to no development
overhead. JSON and YAML were not selected as they are both text encoded and take
up substantially more disk space than equivalent binary formats. HDF5 [58] is a binary
format used for storing enormous arrays of data, allowing a user to define data structures
inside the file. SQLite3 was chosen over HDF5 for the following reasons:

e It would take less time to design SQLite3 database tables than it would be to define
our own custom HDFb5 structures
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e SQLite3d’s compatibility with a broad range of tools and programming languages

e SQLite3 uses structured query language (SQL) [43] allowing for compatibility with
larger server-based database systems such as MySQL [47] and PostgreSQL [109, 118§]

2.6.2 The Usage of SQLAIchemy to Provide Expanded Database
Connectivity

Traditionally a relational database management system (DBMS), such as MySQL and
PostgreSQL, is a server process that continually runs on a computer system (i.e., they
are daemons [102]) waiting for input from other programs or human users [47, 109]. Such
databases are designed to handle connections from hundreds of applications or users simul-
taneously. Users and software communicate with relational DBMSs via a domain-specific
language (DSL) called SQL. The language allows a user to define the structure of a database
and add, remove, and query data [43]. In contrast to traditional databases, SQLite3 does
not run as a server process. Instead, SQLite3 is a software library and associated file type
that takes SQL strings as input and manipulates a single small file on disk according to
instructions found within these strings [118].

SQLAlchemy [11] is a tool that acts as a compatibility layer that allows users to write
software that can query and store data found in multiple types of relational DBMSs (Fig.
2.7). The tool also allows the user to define a relational database schema in a series of
Python classes, access individual database records as Python objects (Fig. 2.7) and query
a database using Python idioms. SQLAlchemy allows a user to create, update, delete,
and query data from an SQL compatible DBMS without writing a single line in the SQL
language [11].

Pygenprop uses SQLAlchemy to write assignment data and supporting match informa-
tion to SQLite3 files. In the context of Pygenprop, these files are called Micromeda files.
Also, due to the use of SQLAlchemy and through the changing of a single line of code,
Pygenprop can write assignments and supporting data to more extensive, daemon-based,
high-performance databases such as PostgreSQL or MySQL (Fig. 2.7).
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Figure 2.7: How Pygenprop uses SQLAlchemy objects to write property assign-
ments, InterProScan annotations, and protein sequences to Micromeda files
and databases. This process involves mapping GenomePropertiesResultsWithMatches
objects to a series of SQLAlchemy objects representing individual relational database ta-
bles. The use of SQLAlchemy allows for GenomePropertiesResultsWithMatches objects to

be written to a variety of relational DBMS.
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2.6.3 The Schema of the Micromeda File Format

As with all relational database schemas, Micromeda’s schema consists of a series of data
tables. These tables were designed in such a way as to store property assignments, step
assignments, and associated supporting information as compactly as possible. This com-
pactness is essential as it allows users to keep files sizes, and thus transfer times, to a
minimum allowing for quick dissemination of datasets. The optimizations that were cho-
sen to support this goal are listed below:

e Only retain supporting information for steps that are assigned YES

e Only retain step assignments that are assigned YES (step assignments of NO are
inferred using information from a GenomePropertiesTree object)

e Property and step assignments of support (i.e., YES, NO, or PARTIAL) are stored
as the numbers 0, 1, and 2, rather than strings, to save space

e The database schema was normalized to the 3rd normal form (3NF)? [13]

The Micromeda file’s final relational table structure can be seen in the schema found
in Fig. 2.8.

9Database normalization (see en.wikipedia.org/wiki/Database_normalization) is the process of splitting
large data tables into smaller tables that are linked together and only store each piece of data in the dataset
once. For example, a protein sequence only needs to be stored once if it is kept in a separate table.
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sample

sample_name varchar(500) PK

genome_property_assignment
genome_property_assignmen integer PK
sample_name varchar(500) FK
genome_property_id integer
presence integer

step_assignment

step_assignment_id integer PK
genome_property_assignment_id integer FK
step_number integer

A

step_interpro

integer PK FK
integer PK FK

step_assignment_id
interpro_hit_id

v

interpro_hit
interpro_hit_id integer PK
sequence_id varchar(600) FK
interpro_id varchar(30)
e_value float

sequence

sequence_id varchar(600) PK
sequence varchar(5500)

Figure 2.8: The relational schema used by Micromeda SQLite3 files. The schema
consists of a series of data tables that are normalized (see Footnote 9) to 3NF. There are
tables for samples, property assignments, step assignments, a mapping table between step
assignments and InterPro annotations, InterPro annotations, and proteins sequences.
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2.6.4 SQLAIlchemy Classes Used By Micromeda

Pygenprop maintains five SQLAlchemy classes for representing relational tables and records.
These objects represent individual property assignments, step assignments, InterProScan
domain annotations, and protein sequences and are used to generate SQL statements for
both creating SQL tables and database queries through SQLAlchemy’s object-relational
mapping (ORM) functionality. Attributes and Properties of these objects are detailed in
Tables 2.13, 2.14, 2.15, 2.16, 2.17.

Table 2.13: Attributes of Sample objects.

Name Type Description

name Attribute | Name of the sample (e.g., an organism name)
property Attribute List of property assignment objects
_assignments

Table 2.14: Properties and attributes of PropertyAssignment objects.

Name Type Description

assignment Property Return the property’s assignment as YES, NO, or PAR-
TIAL

identifier Property Return the property’s identifier (e.g., GenProp0078)

property Attribute | Unique numeric identifier for a property assignment of

_assignment a single sample

_identifier

property Attribute | Genome property identifier as a number (e.g., the 0078

_number of GenProp0078)

numeric Attribute Property’s assignment as the numbers 0, 1, or 2 (equal

_assignment to YES, NO, or PARTIAL)

sample_name Attribute Name of the sample that the property assignment be-
longs to

sample Attribute Sample object that the property assignment belongs to

step Attribute | List of step assignment objects belonging to a single

_assignments property
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Table 2.15: Attributes of StepAssignment objects.

Name Type Description
step Attribute Unique numeric identifier for a step assignment of a sin-
_assignment gle sample
_identifier
property Attribute | Genome property identifier that the step belongs to as
_assignment a number (e.g., the 0078 of GenProp0078)
_identifier
number Attribute | Number of the step
property Attribute | Property assignment object that the step assignment be-
_assignment longs to
interproscan Attribute | List of interproscan match objects that support the ex-
_matches istence of property assignment
Table 2.16: Attributes of InterProScanMatch objects.

Name Type Description
interproscan Attribute | Unique numeric identifier for an interproscan annotation
_match of a single protein sequence
_identifier
sequence Attribute | Identifier of a protein sequence
_identifier
interpro Attribute | InterPro consortium signature accession of a domain
_signiture found in a protein sequence
expected_value | Attribute | E-value of the match between a motif found in the pro-

tein and annotated domain
step Attribute List of step assignment objects that are supported by
_assignments the InterProScan annotation
sequence Attribute Sequence object that the InterProScan annotation an-

notates

Table 2.17: Attributes of Sequence objects.

Name Type Description
identifer Attribute | Identifier of a protein sequence
sequence Attribute | Protein sequence of the protein
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2.6.5 Reading and Writing Micromeda Files

Both GenomePropertiesResults and GenomePropertiesResultsWithMatches objects pro-
vide a to_assignment_database method (Tables 2.10 and 2.12). This method takes an
SQLAIchemy engine object and uses it to write assignment and annotation information
to a database. This engine object is created from a database uniform resource identifier
(URI) [19] string that can point toward an SQLite3 file or a larger process-based relational
database. Once called, this method converts the results object’s pandas DataFrames to a
series of SQLAlchemy objects and then use SQLAlchemy to write the information contained
within these objects to the engine’s connected database. Code for writing Micromeda files
can be found below.

# A SQLAlchemy engine object can be created
# for a variety of SQL databases

# Write to a Micromeda file
engine = create_engine(’sqlite:///data.micro’)
results.to_assignment_database(engine)

# Write to a PostgreSQL database

db_uri = ’postgresql://scott:tiger@localhost:5432/ mydatabase’
engine2 = engine = create_engine (db_uri)
results.to_assignment_database(engine2)

The reading of assignments from Micromeda files or databases is facilitated by the load
_assignment_caches_from_database and load_assignment_caches_from_database
_with_matches functions of Pyegenprop’s results module. These functions produce lists of
AssignmentCache or AssignmentCacheWithMatches objects, respectively. These lists can
the be combined into GenomePropertiesResults or GenomePropertiesResultsWithMatches
objects. Code for reading Micromeda files can be found below.

tree = parse_genome _properties_flat_file(properties_file_handle)
engine = create_engine (’sqlite:///data.micro”)

caches = load_assignment_caches_from _database_with_matches(engine)
results = GenomePropertiesResultsWithMatches (xcaches

properties_tree=property_tree)
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2.6.6 Micromeda File Performance

For 1877 proteins from Pelodictyon luteolum DSM 273 (NCBI Taxa ID: 319225) and 1774
proteins from Chlorobium chlorochromatii CaD3 (NCBI Taxa ID: 340177), a representative
GenomePropertiesResultsWithMatches was generated. This object was found to be able
to be serialized to a Micromeda file in 29.4 s 0.8 s (N = 20). This Micromeda file was
found to be approximately one fifth the size of the original files used to create the Genome-
PropertiesResultsWithMatches objects (Fig. 2.9). The same Micromeda file was found to
be able to be reconstituted back into GenomePropertiesResultsWithMatches object in 6.3
s £1.3 s (N = 20).

B Assignment File One [l InterProScan File One FASTA File One
B Assignment File Two [l InterProScan File Two [l FASTA File Two
M Micromeda File

6.00
5.00
4.00

3.00

File Size (MB)

2.00

1.00

0.00

Before Micromeda After Micromeda

Figure 2.9: Comparison of a Micromeda file’s size to the cumulative size of the
input files used to create it. Micromeda files take up significantly less space than the
input files used to make them. Previously, pathway analysis for two samples required the
tracking of at least six files. With Micromeda, the information contained within these files
is combined and reduced, allowing for property assignment and supporting information to
be stored in a single file and one fifth of the disk space.

=)
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2.7 Development of an In-Memory Transfer Format
for Property Assignments and Supporting Match
Information

When writing software for pathway analysis on high-performance computing (HPC) infras-
tructure, it may be of interest to transfer pathway datasets between machines via memory-
to-memory transfers. It may also be useful to be able to store pathway datasets in an
in-memory cache to accelerate bioinformatics web application performance. Micromeda-
Server uses such a cache (see Section 3.3). GenomePropertyResultsWithMatches objects
can be serialized into a format optimized for these use cases. A key performance metric
for both of these use cases is serialization/deserialization speed of GenomePropertyRe-
sultsWithMatches objects to and from the format. The memory space taken up by the
format is less of a concern. The format ultimately chosen was MessagePack [59](see msg-
pack.org).

Several formats were reviewed to support memory-to-memory transfer and in-memory
caching of GenomePropertyResultsWithMatches objects. These included: JSON, Google
Protocol Buffers [157], and MessagePack. JSON has been the gold standard for transferring
information between computer systems, especially over the internet, for over a decade
[97]. Because JSON is a text format, several binary alternatives such as ProtoBuffs and
MessagePack have emerged that can store the same amount data in less space, allowing
for faster transfers [59, 157, 90, 38, 15]. These formats also have much better serialization
performance than JSON [90, 38, 15|. For Pygenprop, MessagePack was selected over
Protocol Buffers because pandas provide built-in methods, though currently experimental,
for serializing DataFrames directly to MessagePack. MessagePack also serializes four times
faster than Protocol Buffers [38].

GenomePropertyResults and GenomePropertyResultsWithMatches objects have a method
called to_msgpack that supports serialization of these objects to a MessagePack binary
string. Internally, this function calls pandas’ to_msgpack function on a list of the object’s
pandas DataFrames (Tables 2.10 and 2.12), returning a MessagePack binary. For deserial-
ization, the process is run in reverse, using the function load_results_from_msgpack of
Pygenprop’s results module, converting the MessagePack binary stream back to a Genome-
PropertyResultsWithMatches object. Code for serializing and deserializing GenomeProp-
ertyResultsWithMatches objects can be found below.

message = results.to_msgpack ()
new_results = load_results_from_msgpack (message)
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For 1877 proteins from Pelodictyon luteolum DSM 273 (NCBI Taxa ID: 319225) and
1774 proteins from Chlorobium chlorochromatii CaD3 (NCBI Taxa ID: 340177), a repre-
sentative GenomePropertiesResultsWithMatches was generated. This object serialized to
a MessagePack binary in 29.5 ms £0.3 ms (N = 80) and deserialized in 54.0 ms £0.9 ms
(N = 80). The MessagePack binary required 4.2 MB of memory.

2.8 Verification and Automated Testing

To validate that property and step assignments of support were calculated correctly, the
property and step assignments generated by Pygenprop were compared to those produced
by the original Genome Properties Perl library. Based on a test proteome of 3,000 proteins,
property assignments differed from those of the original Perl library by 2.9%, due to an
error corrected Pygenprop (github.com /ebi-pf-team/genome-properties/issues/30).

The proteomes of Pelodictyon luteolum DSM 273 (NCBI Taxa ID: 319225) and Chloro-
bium chlorochromatii CaD3 (NCBI Taxa ID: 340177) were used to validate that assign-
ments and supporting information did not change before and after serialization of Genome-
PropertiesResults and GenomePropertiesResultsWithMatches objects. It was found that
Pygenprop could correctly reconstitute these objects (i.e., they had the same cryptographic
checksum value before and after) from both SQLite3 files and MessagePack binary strings.

Pygenprop has extensive end-to-end and unit tests for its codebase. There are currently
104 unit tests that validate the functionality of the majority of code functions. These tests
cover 94% of lines in the Pygenprop’s codebase. Pygenprop’s end-to-end test involves
the making of a JSON serialization of a GenomePropertiesResults object created from the
InterProScan results of two organisms. This test can be run against newly released versions
of the Genome Properties database to ensure compatibility over time.

2.9 Future Improvements

Although Pygenprop is currently feature-rich and available to the public, there are still
several improvements that could be used to make the library more useful. Some of these are
related to making the library more computationally efficient, whereas others are related to
improving its analysis capabilities. Several potential improvements are highlighted below.
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2.9.1 Adding The Ability To Serialize GenomeProperty Objects
to DESC Files

The Genome Properties database consists of a series of flat files hosted in a GitHub repos-
itory (see github.com/ebi-pf-team/genome-properties). New properties are added to the
database via adding additional property DESC files (see Section 2.1.1) to the repository.
Information about existing properties can be changed by editing the database’s existing
DESC files. These DESC files are plain text and currently must be created and edited
manually using a plain text editor. Changes to the database are added via fork and pull
workflow (see atlassian.com/git/tutorials/comparing-workflows/forking-workflow) where a
user makes a copy of the database on GitHub, makes changes to this copy, and then re-
quests that their copy’s differences be merged into the central Genome Properties database
repository via a GitHub pull request. The manual creation and editing of genome proper-
ties DESC files require one to thoroughly understand the DESC format and write or edit
property files with no errors. For example, before writing their first property file, users
must know all twenty-three two-letter keycodes (see Subsection 2.1.1) used by the DESC
file format. An easier way to create or edit property files, rather than manual editing,
would be of use for those users who are not familiar with the DESC format.

GenomeProperty objects and their related child objects (see Section 2.2) are designed to
represent individual genome properties and their steps, functional elements, and evidence.
It is currently possible to take a Genome Properties DESC file (see Subsection 2.1.1) and
use Pygenprop to turn the file’s contents into objects, but it is not possible to do the reverse.
Being able to serialize a GenomeProperty object and its children to a DESC file may be
useful to users who want to add new genome properties to the Genome Properties database
or edit the database’s existing properties. For example, the user could use Pygenprop,
loaded within a Jupyter Notebook [88], to parse an existing property’s DESC file into a
GenomeProperty object and its children. Afterwards and within the same notebook, the
user could programmatically edit the newly loaded property objects’ attributes. If the
ability to write DESC files was added to Pygenprop, then this updated property object
representing the edited property could then be written to an updated DESC file. This
updated file could then replace the old version of the property’s DESC file in the Genome
Properties database, which would result in the property being updated. A user could also
build, within a Jupyter Notebook, a new GenomeProperty object programmatically that
represents a new genome property. This new object could be written to a new DESC
file. The user could then add this new file to the database’s existing pool of flat files,
which would, in turn, add to a new property to the database. A property’s steps and
evidence can also be added or edited using the same object-oriented methods. Pygenprop
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writes these modified or added objects to the DESC file at the same time as their parent
property object. The ability to add and edit properties of the database using a notebook
interface would make it drastically more accessible for less experienced users to contribute
to the Genome Properties database as they would not have to remember the details of the
DESC format. The ability to write DESC files would also make it easier to generate new
properties from data contained in other pathway databases by allowing the porting process
to be more easily automated.

2.9.2 Adding A Method to Calculate Fold Change in the Pres-
ence of Genome Properties and Steps

The GenomePropertyResults class currently possesses a method called get_results_summary
(Subsection 2.10) that is used to summarize the presence and absence of genome property
or step assignments across multiple organisms. This method counts the occurrence of YES,
NO, and PARTTAL assignments for each organism in a dataset. For example, when compar-
ing the virulence properties of E. coli K12 (NCBI Taxa ID: 1010810) and O157:H7 (NCBI
Taxa ID: 83334) (see github.com/Micromeda/pygenprop/blob/master/docs/source/ static/
tutorial /tutorial.ipynb), this method would show users that O157:H7 has more of these
properties assigned YES than K12. This increase could be further quantified by adding a
calculate_assignment_fold _change method to the GenomePropertyResults class. This
method could take the name of a single sample to use as a baseline and, for the other
samples, calculate fold changes in the frequency of YES, NO, and PARTIAL assignments
of support for specific sets of genome properties or steps.

2.9.3 Improving Pygenprop’s Memory and Time Performance

Throughout this chapter, the performances of different components of Pygenprop have
been reviewed. Two of these performance numbers were found to be quite weak and
should be addressed. These are the times taken to read or write Micromeda files and
the time required for serializing GenomePropertiesResultsWithMatches objects to JSON.
Micromeda’s server component uses both of these functions extensively, and they are a
significant source of lag in Micromeda’s current web interface.

The performance of reading and writing Micromeda files could be improved by recon-
figuring how these files are written (i.e., not writing assignments one at a time) or using an
alternative faster file format such as MessagePack binary files. The creation of such Mes-
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sagePack files would be facilitated by GenomePropertiesResultsWithMatches to_msgpack
method.

The suggested improvements to Micromeda-Server discussed in Subsection 3.7.2 would
change the requirements for the JSON generated from GenomePropertiesResultsWith-
Matches objects. The object would only be required to generate JSON that contains
property assignments or step assignments. This change would speed up JSON generation
as assignments would no longer have to be added to a property tree nodes one at a time.
Assignment DataFrames could be converted to JSON using methods built into pandas.

2.10 Summary

Pygenprop is a Python library for the programmatic utilization of Genome Properties data.
The software has methods for both the exploration of the Genome Properties database
and the property and step assignments of multiple organisms. It also provides ways of
accessing the domain annotations and protein sequences that were used to calculate these
assignments. Micromeda files can be used to store and transfer entire pathway analysis
datasets allowing for increased reproducibility.

When compared to existing pathway analysis libraries, Pygenprop is unique because it
is currently the only Genome Properties library written for Python. The previous Genome
Properties library released by EBI was written in Perl. Unlike this Perl library, Pygenprop
provides numerous methods for comparing property assignments across multiple organ-
isms. Also, the library allows for the creation of Micromeda files, greatly reducing the
number of files required for pathway analysis. There are a variety of pathway analysis
software libraries written to support either the Pfam [167, 125, 165, 34] and Metacyc [75]
databases. However, the goal of these libraries is to either help users download Pfam
information via the database’s web application programming interface (API) [34] (see
en.wikipedia.org/wiki/Application_programming_interface) or help them generate graph
visualizations of metabolic networks [125]. In terms of analysis functionality, Pygenprop
is closest to clusterProfiler [165]. However, clusterProfiler is only compatible with the R
programming language [128], whereas Pygenprop is built for Python. None of the libraries
cited are integrated with Python’s Scipy [78] or machine learning ecosystems in the same
way as Pygenprop is, nor do they have its automation enabling features such as the track-
ing of supporting information or the serialization of entire datasets to files, databases, or
in-memory transfer formats. This level of automation leaves Pygenprop in a unique posi-
tion to be used for the development of future integrated pathway analysis tools, such as
Micromeda.
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With regards to Micromeda, Pygenprop provides the backbone to its server component.
In this role, the library gives Micromeda’s pathway visualization application JSON trees
of properties and their assignments, JSON strings containing information about individual
properties and FASTA files of protein sequences that support the existence property steps
across multiple organisms.
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Chapter 3

Development of a Web Application
Programming Interface for Genome
Properties Data

As discussed in Chapter 1, one of the goals of Micromeda is to provide users with an
interface for visualizing the presence and absence of genome properties across multiple
organisms. Users can access Micromeda’s heat maps through a web application that gen-
erates them from uploaded Micromeda file data. The use of a web application has several
advantages that are discussed in Subsection 1.4.1. Micromeda’s web application consists of
two components: client and server. The Ul client, which draws the heat maps, is supported
by a web server process that parses Micromeda files and provides a web API for access-
ing these file’s contents. This chapter will discuss the server component of Micromeda,
called Micromeda-Server, including the services it provides and its implementation. The
client web application that uses these services is discussed in Chapter 4. Source code for
Micromeda-Server is located at github.com/Micromeda/micromeda-server.

3.1 Overview of Web Servers

The World Wide Web and associated web applications are ideal delivery mechanisms for
data analysis software such as Micromeda [18]. Such applications follow a client-server
architecture [145] (see en.wikipedia.org/wiki/Client-server_model) where the code running
in the user’s browser is called the client. The user acquires this client by downloading
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it into their browser like any other webpage. If the client requires external data, then it
can request this information from a server process running on a server computer system®.
Requests to the server are made, via Hypertext Transfer Protocol (HTTP) [53], using a
series of uniform resource locator (URL) addresses [17] (i.e., web addresses) that return
specific types of data. These addresses are known as endpoints (Section 3.4) and form a

web APL

3.2 Micromeda-Server Workflow and Implementation

Micromeda-Server is designed to provide a web API to client applications that require
access to information about the Genome Properties database. The server also provides
an API for accessing temporarily stored property assignments, step assignments, and sup-
porting information for user-supplied datasets. Micromeda-Server is written in Python
and utilizes the Flask web development framework [63] (Fig. 3.1) to map Python func-
tions for handling specific web API requests to server URL addresses (i.e., “endpoints”).
Information about the Genome Properties database is supplied to Micromeda-Server via
a genomeProperties.txt release file (Fig. 3.1 and Subsection 2.1.1). Property assign-
ments, step assignments, and supporting information for user datasets are supplied via
user-uploaded Micromeda files (Fig. 3.1). These Micromeda files are parsed into Genome-
PropertyResultsWithMatches objects (Subsection 2.5.2) that are later stored in an in-
memory Redis cache [67] in MessagePack format [59] (Fig. 3.1, Fig. 3.2 and Section 2.7).
In the context of Micromeda-Server, the contents of each uploaded and cached Micromeda
file is called a dataset. A single Micromeda file, stored on the same server computer system
as Micromeda-Server, can also be provided to Micromeda-Server during start-up for use
as a default dataset (Fig. 3.1). This default dataset is also parsed to a GenomeProper-
tiesResultsWithMatches object and is used to supply data to Micromeda-Server’s API if
users have not uploaded any Micromeda files. The standard workflow for starting and then
using Micromeda-Server is the following:

1. Start Micromeda-Server while providing a genomeProperties.txt file and an op-
tional default Micromeda file (Fig. 3.1)

2. The genomeProperties.txt file is parsed to a GenomePropertiesTree object

IFor the rest of the thesis, the term server computer system is used to refer to the physical hardware
on which server software is run. The term server is used to refer to a software process that provides users
or applications with data.
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3. The default dataset Micromeda file is parsed to a GenomePropertiesResultsWith-
Matches object

4. The client application sends a user-supplied Micromeda file to the server via the
upload endpoint (Fig. 3.2)

5. The user-supplied Micromeda files are parsed to a GenomePropertiesResultsWith-
Matches object that is later stored in the Redis cache in MessagePack format (Fig.
3.2)

6. The server supplies the client with a dataset key that is unique to each uploaded
Micromeda file (Fig. 3.2)

7. The client can later supply this dataset key to the server during proceeding API
requests to get information from the previously uploaded Micromeda file (Fig. 3.2)

8. If the client provides no dataset key then the server supplies information about the
default dataset during API requests

Each GenomePropertiesResultsWithMatches object cached to Redis is given a time-to-
live (TTL) value [64] (see en.wikipedia.org/wiki/Time_to_live). Users can set this value for
any period, such as minutes or days. After the TTL of the cached object is exceeded, the
object is flushed from the cache; the user will then have to re-upload their Micromeda file.
The default TTL used is six hours. During each API request, if a dataset key is provided,
the MessagePack-formatted GenomePropertiesResultsWithMatches object is grabbed from
the cache and reconstituted into its original form (Fig. 3.2). During the API call this
reconstituted GenomePropertiesResultsWithMatches object’s methods are used to supply
data to the client (Fig. 3.2 and Fig. 3.3). Further details on these endpoints are provided
in Section 3.4.

Micromeda files contain information about both assignments and supporting informa-
tion used in their creation. This supporting information, such as protein sequences, can
take up substantial disk space. Permanently storing such information would be prohibitive
in terms of both hardware and maintenance costs. In response, Micromeda-Server was
designed to store uploaded datasets temporarily. Micromeda-Server does not have a user
login system 2 and uploads to the server are done anonymously.

2A user login system is very complex to build and maintain. Code for tracking user names, passwords,
and emails must be generated. This user information must be stored in a cryptographically secured and
anonymized database. Code for handling logins, logouts, and secure password changes would also have
to be implemented. Having Micromeda file upload be anonymous drastically reduced the complexity of
Micromeda-Server’s development and future deployment.
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Figure 3.1: Components of Micromeda-Server’s software architecture. The web
server code was written in Python using the Flask web framework [63]. Micromeda-Server
is supported by a Redis cache and a series of text files. A genomeproperties.txt file supplies
data for the generation of Genome Properties DAG. Micromeda files, either default or up-

loaded, provide information about property assignments, step assignments, and supporting
information of multiple organisms.
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Figure 3.2: How uploaded Micromeda files are cached to Redis by Micromeda-
Server. The caching process involves the generation of GenomePropertiesResultsWith-
Matches objects for each uploaded file. These objects are cached in Redis and reconsti-
tuted between API calls. Micromeda-Server uses methods possessed by these reconstituted
GenomePropertiesResultsWithMatches objects to produce responses that are sent back to
a web client application. Each uploaded file is assigned a dataset key that is provided to
the client. The client later uses this key to request data from a specific Micromeda file.

The number of simultaneous users that Micromeda-Server can support almost entirely
depends on the server computer systems the software is run on and the deployment strat-
egy used (see Section 3.6). Micromeda-Server is horizontally-scalable (see en.wikipedia.org/
wiki/Scalability#Horizontal or_Scale_Out), which means its performance can be improved
by running multiple copies of the software across multiple server computer systems. On
a single computer, the main bottleneck of Micromeda-Server is the processing power re-
quired to parse uploaded Micromeda files. For example, it can take several minutes for
a Micromeda file containing information from forty bacterial genomes to be parsed and
stored within Redis. This file parsing process can be parallelized across CPU cores, with
one core taking several minutes for parse each Micromeda file uploaded. Thus, the maxi-
mum number of simultaneous users who can upload Micromeda files in parallel is limited by
the number of CPU cores inside the server computer system on which Micromeda-Server is
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Figure 3.3: Endpoints that Micromeda-Server presents for accessing Genome
Properties and Micromeda file data. These endpoints return JSON documents and
FASTA files that are generated using methods of GenomePropertiesResultsWithMatches
objects, GenomeProperty objects, and GenomePropertiesTree objects.

hosted. Once the contents of Micromeda files are stored in Redis, and information is being
retrieved from this cache, the number of active users can be drastically increased as indi-
vidual client endpoint HTTP requests take only a few CPU cycles to complete. In terms
of memory usage, a Micromeda file containing information from forty bacterial genomes
only takes up a few hundred MB of RAM once uploaded. A server with thirty-two GB
of RAM should support close to one hundred simultaneous clients requesting information
from previously uploaded Micromeda files.

79



3.3 Use of Redis for Dataset Caching

Python, due to limitations in its default cPython interpreter [156], is only capable executing
one compute thread [133] (see en.wikipedia.org/wiki/Thread_(computing)) at a time [12].
This limitation causes problems for web server APIs that are required to handle multiple
requests from clients simultaneously. In response, the majority of Python web frameworks,
which provide boilerplate code for writing API endpoints, are designed to run multiple
copies of the Python web server code, which each handle separate endpoint requests (Fig.
3.4). Flask is one such framework [63]. These codes are run in separate processes (see
en.wikipedia.org/wiki/ Thread_(computing)#Threads_vs. processes) and do not share a
memory space (Fig. 3.4). Thus, any in-memory objects created for one API request are
not shared with the other parallel requests, which are being handled by different processes
(Fig. 3.4). Also, there is no guarantee that subsequent API requests from a single web client
will be mapped repeatedly to the same API server process (Fig. 3.4). This lack of mapping
between subsequent requests causes a problem as a GenomePropertiesResultsWithMatches
object created by the upload of a Micromeda file would be stored in one process and would
not be available to other processes that future client HT'TP requests may be mapped to
(Fig. 3.4). Ome way of circumventing this process isolation issue is to store data to be
shared between web server processes in an external process that is used as a cache (Fig.
3.2 and Fig. 3.4). This way, all web API processes have one place where they can request
shared data. Micromeda-Server uses Redis as this caching process. Redis is a caching
server that stores keyed Micromeda file data RAM.

Micromeda-Server uses Redis to cache GenomePropertiesResultsWithMatches objects,
in MessagePack format, for use by multiple request handling processes (Fig. 3.2 and Fig.
3.4). Micromeda-Server generates these GenomePropertiesResultsWithMatches objects
from Micromeda files uploaded to the server. During API requests where a client requires
data from a specific uploaded file, responding API processes can each pull a MessagePack
formatted GenomePropertiesResultsWithMatches object, representing the uploaded file,
from the Redis cache. Subsequently, each GenomePropertiesResultsWithMatches object
can be reconstituted within its process and its methods used to gather data for a API
request response (Fig. 3.2 and Fig. 3.4). Rapid serialization of MessagePack to Genome-
PropertiesResultsWithMatches objects allows for this design pattern (see Section 2.7).

30


http://en.wikipedia.org/wiki/Thread_(computing)
http://en.wikipedia.org/wiki/Thread_(computing)#Threads_vs._processes

Client Client

S

[ i

* 1 1 +
Server | , | Server Server | | Server
Process | Process Process , Process
A : B A , i
Object 1 Object 1
B
Client Client

S I

[ i

v . . v
Server | | Server Server |, | Server
Process | Process Process | Process

A . B A H
A ' A A ' A
Cache 1 Cache 1
Object 1 Object 1

Figure 3.4: How requests directed towards Python web endpoints are spread out
across multiple processes and sharing data between these processes is difficult.
(A) Processes cannot share in-memory objects directly due to operating system enforced
process boundaries. (B) In order for data to be shared between request handling processes,
it must be stored by a third central process, such as a cache or database.

3.4 Application Programming Interface Endpoints

Micromeda-Server provides several endpoints for supplying web clients with information
about individual genome properties and information from uploaded Micromeda files. These
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endpoints were written using the Flask Python web framework [63] and are represented by
clean URLs (see en.wikipedia.org/wiki/Clean_URL) where some information that would
normally be stored as HTTP GET parameters are stored in the URL path (Fig. 3.5). Flask
was chosen due to its simplicity as compared to more comprehensive frameworks such as
Django [69]. The endpoints also follow a representational state transfer (REST) archi-
tecture [52] (see en.wikipedia.org/wiki/Representational state_transfer). These endpoints
and their implementation are summarized in Table 3.1, Fig. 3.4, Fig. 3.5, and detailed in
subsections below.

https://micromeda.uwaterloo.ca/fasta/genprop0526/1?dataset_key=FXDABADS&all=false

Figure 3.5: Example of a URL that a client would use to request information
from Micromeda-Server. Micromeda-Server uses data held within URLs to figure out
what information to return for a given HT'TP request. The example URL depicted is used
to download a FASTA file containing the top proteins (i.e., those with the lowest E-value
domains) that support GenProp0526 step one for dataset FXDABADS. The URL path
variables are in blue and the HTTP GET parameters are in green. Note that the URL
displayed is an example and does not point towards an active copy of Micromeda-Server or
Micromeda-Client. Links to a demonstration of the client interface can be found in Section
4.5.

Table 3.1: Five endpoints of Micromeda’s server component. By using these endpoints,
clients can request data about individual genome properties, upload Micromeda files, and
request information about stored assignment databases.

Python | Endpoint HTTP | URL Path | GET Pa- | Return Value

Func- URL Re- Variables | rameter

tion quest Variables

Name Types

upload /upload GET, None None JSON containing a
POST dataset key that can

be wused by future
API requests to access
information from the
uploaded Micromeda
file
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Table 3.1 continued from previous page

Python | Endpoint HTTP | URL Path | GET Pa- | Return Value

Func- URL Re- Variables | rameter

tion quest Variables

Name Types

get_tree | /genome GET None dataset_key | JSON tree represent-

_properties (optional) ing all properties in
_tree the current Genome

Properties database
with each node an-
notated with a list of
YES, NO, PARTIAL
assignments for each
organism in a dataset

get_single| /genome GET property_id | None JSON containing

_genome | _properties/ information about a

_property | <string: genome property such

_info property_id> as a description of it
and a list of equiv-
alent records from
other databases (e.g.,
KEGG [86], MetaCyc
[85])

get /genome GET None None JSON array contain-

_multiple | _properties ing information about

_genome all genome properties

_property in the database. Each

_info property is given a de-

scription and a list
of equivalent records
from other databases
(e.g., KEGG, Meta-
Cyc)
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Table 3.1 continued from previous page

Python | Endpoint HTTP | URL Path | GET Pa- | Return Value
Func- URL Re- Variables | rameter
tion quest Variables
Name Types
get_fasta | /fasta/ GET property_id, | dataset_key | FASTA file containing
<string: step_number | (optional), | either all or the top
prop- all (op- | proteins (i.e., those
erty_id>/ tional) with the lowest E-
<int:step value domain annota-
_number> tions) supporting the
existence of a given
property step. A
dataset key can be
provided to specify a
dataset

The upload endpoint accepts the client upload of a Micromeda file and returns a hex-
adecimal encoded universally unique identifier (UUID) key [93] (see en.wikipedia.org/wiki/
Universally_unique_identifier) to the client. After upload, the Micromeda file is parsed and
transformed into a GenomePropertiesResultsWithMatches object. This object is then se-
rialized to MessagePack using the object’s to_msgpack function (Table 2.12) and the
resulting binary is cached in Redis using the Redis Python library [103] (Fig. 3.2). During
the previous process, a UUID, to be used as a dataset key, is generated using Python’s
built in UUID generation function [149]. This UUID is used as the key for requesting the
recently stored MessagePack serialization from the Redis cache (Fig. 3.2). Micromeda-
Server returns the key to the client application in response to the file upload. The client
can provide this key to other API endpoints to receive data from the uploaded Micromeda
file (Fig. 3.2).

The get_tree endpoint provides the client with a JSON tree representing all properties
and steps in Genome Properties database (Fig. 3.6). This tree represents parent-child
relationships between properties. Step nodes are also attached to their parent genome
property nodes and act as leaves (Fig. 3.6). Note that this endpoint returns a tree rather
than a DAG (Fig. 3.6). In this tree, properties that would have had two parents in the
Genome Properties DAG (Subsection 1.4.2) are duplicated (Fig. 3.6). Each property and
step node in the tree is annotated by a list of assignments of support (i.e., YES, NO, or
PARTTAL), one for each sample in a previously uploaded or default Micromeda file (Fig.
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3.6). The get_tree endpoint can take a dataset_key HTTP GET parameter variable
(Table 3.1). If a dataset key generated by the previous upload of a Micromeda file is
assigned to this variable, then the assignments of support stored in the key’s associated
Micromeda file are returned. The dataset key is used to request a MessagePack formatted
GenomePropertiesResultsWithMatches object, representing the uploaded Micromeda file,
from the Redis cache. Once reconstituted, the GenomePropertiesResultsWithMatches ob-
ject’s to_json method (Table 2.12) is called to generate the tree JSON provided by the
endpoint. This newly built JSON is returned to the client. If no dataset_key is provided
to the endpoint, then the default dataset GenomePropertiesResultsWithMatches object is
used to generate the tree JSON for the endpoint. The default dataset GenomeProperties-
ResultsWithMatches object is built from a default dataset Micromeda file that is provided
to Microemda-Server during the tool’s initial start up.

The get_single_genome_property_info endpoint takes a genome property identifier
as a URL parameter (Table 3.1). This genome property identifier is used query for a
matching GenomeProperty object (Section 2.2.1), representing the property whose iden-
tifier is specified, from a global GenomePropertiesTree object (Section 2.2.7) created on
Micromeda-Server’s start up (Section 3.2). If found, this GenomeProperty object’s to_json
method (Table 2.2) is called to create a JSON document containing the property’s informa-
tion. The endpoint returns this document. The JSON document contains the property’s
name, its description, and a list of equivalent records for the pathway that property repre-
sents found in other pathway databases (Table 2.2).

When the get_multiple_genome_property_info endpoint is called, the to_json method
(Table 2.2) is called for every GenomeProperty object (Section 2.2.1) that is a child of the
GenomePropertiesTree object (Section 2.2.7) created on Micromeda-Server start up. Each
of the resulting JSON strings generated is placed into a list within a single larger JSON
document, which is then returned by the endpoint.

The get_fasta endpoint is used to send the client a FASTA file containing protein se-
quences that support the existence of a property step across multiple organisms in a specific
uploaded dataset. The URL path of requests to this endpoint includes the genome property
identifier and step number of the property step whose protein matches should be included
in the returned FASTA file. The returned FASTA file can either contain all proteins that
support the existence of a property step or a subset of these supporting proteins, one per
sample, that have the lowest E-value match to the InterPro domain that is used to identify
the given property step. These proteins are known as the “top” hits. The contents of
the returned file is controlled by the presence of a HTTP GET parameter called all (Fig.
3.5). If all is set to true, then a FASTA file containing all proteins that support a step is
returned. Otherwise, a FASTA file containing only the lowest E-value proteins is returned.

85



Genome
Property One

Genome
Property One

Genome
Property
Three

Genome
Property
Three

Genome
Property Two

Genome
Property Two

Genome
Property Six

Genome
Property Five

Genome
Property Five

Genome
Property Six

Genome
Property Five

Property Six
Step One

Property Five
Step One

Property Five
Step One

Property Five
Step One

Property Six
Step One

Genome
Property One

Genome Cenome Genome

Property
Property Two Property Four
47 Three =

Genome Genome Genome
Property Five Property Five Property Six

Property Five Property Five Property Six
Step One Step One Step One

Figure 3.6: Comparison of the tree data structures returned by Micromeda-
Server’s Get_Tree endpoint to the property DAG built by Pygenprop. Unlike a
DAG (A), a tree (B) cannot have branches that merge. Thus, the JSON returned by the
Get_Tree can endpoint has some Genome Property nodes duplicated (B). In this JSON
document, each node is tagged with a list of YES (Dark Purple), PARTTAL (Light Purple),
and NO (White) assignments (C). Each assignment in this list belongs to a single organism
in a dataset.

Like the get_tree endpoint, the get_fasta endpoint also accepts a dataset_key HTTP
GET parameter (Fig. 3.5). The value of this variable is used to reconstitute a Genome-
PropertiesResultsWithMatches object representing a previously uploaded Micromeda file
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(Fig. 3.2). This object’s write_supporting_proteins_for_step_fasta method (Table
2.12) is used generate the FASTA file, which is sent to the client.

3.5 Micromeda Server Performance

The performance of Micromeda’s endpoints was tested using a Micromeda file generated
from the protein sequences and InterProScan annotations of Chlorobium chlorochromatii
CaD3 (NCBI Taxa ID: 340177) and Pelodictyon luteolum DSM 273 (NCBI Taxa ID:
319225). The performance metrics discussed in this section were recorded using Safari’s
(version 13; apple.com/safari) Web Inspector. When this file was sent to the upload end-
point of Micromeda-Server, it was parsed and added to the Redis cache in 11.3 s £2.0 s
(N = 3). The get_tree endpoint could create a genome property tree from this cached
Micromeda file in 9.4 s £4.0 s (N = 3). The get_fasta endpoint could generate a FASTA
file with the top supporting proteins for GenProp0633 step number two in 33.0 ms +4.0
ms (N = 10). A property information JSON file could be generated for GenProp0633
by the get_single genome_property_info endpoint in 7.0 ms £2.0 ms (N = 10). The
get_multiple_genome_property_info endpoint can generate a JSON information file for
all properties in 23.0 ms +5.0 ms (N = 10). The slow execution time of the upload and
get_tree endpoints caused latency in client application. For example, there was a no-
ticeable delay in the rendering of visualizations in Micromeda’s client application. Thus,
the performance of these endpoints should be optimized. Potential optimizations to the
endpoints are discussed in Section 3.7.

3.6 Micromeda Server Deployments

It is common to deploy web servers in different configurations depending on the expected
request volume. Three deployment strategies of increasing size are discussed below.

If a user wishes to install and run Micromeda-Server on their desktop or laptop and
only needs to visualize one dataset at a time, then a very simplified deployment strategy
can be used (Fig. 3.7). This deployment, called a single-user deployment, uses Flask’s
built-in development HTTP server to respond to requests. The server is activated when
Micromeda-Server’s Python script is run directly from a CLI. This single-user deployment
is slow and can only handle requests from a single client. In this configuration, the upload
endpoint is turned off, and Redis is not used. As a result, users cannot upload Micromeda
files. Instead, Micromeda-Server gets its assignment data from a single default Micromeda

87


http://apple.com/safari

file stored on disk (Fig. 3.7). This deployment method is similar to the one used by Anvio’s
MAGs visualization and refinement server [49]. The single-user deployment configuration
is also useful to developers who want to test newly developed features or bug fixes.

Client

\ U

A\ ~ o
Flask
Micromeda-

Server

User Genome
Predicted Properties
Pathways File Release File
(.micro) (xt)

User Laptop or Desktop /

Figure 3.7: How Micromeda-Server would be deployed to support a develop-
ment or single-user environment. In this deployment style, Micromed-Server uses
Flask’s builtin HTTP server, a genomeProperties.txt file, and a server-side Micromeda file.
However, this deployment style encounters problems when used by multiple users because
only a single copy of the Python Flask code is run at a time.

If a user requires Micromeda-Server to handle multiple users simultaneously, such as
would be the case if the software was installed on a server computer system, a larger de-
ployment must be used (Fig. 3.8). This deployment type, called a multi-user deployment,
adds additional software layers that increase Micromeda-Server’s scalability. As discussed
in previous sections, multiple copies of Micromeda-Server’s Python code must be run si-
multaneously to handle multiple client requests. This technique is done by putting the
Micromeda-Server under the command of a master HT'TP server that can route traffic to
multiple copies of the Python Flask code running separate processes (Fig. 3.8). Examples
of such master HTTP servers are Apache [54] and Nginx [129] HTTP servers. These master
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servers handle the parsing of HT'TP requests. In addition to the master server, a middle-
ware component, such asweb server gateway interface server (uWSGI) [153] or gunicorn
[32], must also be used. Redis is used to cache GenomePropertiesResultsWithMatches
objects between requests in this deployment type. All components of Micromeda-Server
deployed on the same server computer system (Fig. 3.8).

Client Client
One Two

| ( 11—] ( __f-] \
NGMX
wWSGl

Flask Flask Flask

Micromeda- | Micromeda- | Micromeda-
Server | i Server | i | Server

t _ ¢
BR

redis

Server Computer System

Figure 3.8: How Micromeda-Server would be deployed to support multiple users
using a single server computer system. When deployed to handle the traffic of
multiple clients, Multiple other types of software must support Micromed-Server. Multiple
copies of the application’s Python code are run simultaneously to handle multiple clients.
Redis is used to provide shared data between these processes. A uWSGI middleware
component is used to connect these copies to a high performance HTTP server, such as
Nginx, that can handle high web traffic volumes. The genomeProperties.txt files and
default Micromeda files are still used in this deployment style but were omitted from the
diagram for simplicity.
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For a large number of simultaneous users, Micromeda-Server may need to be scaled
horizontally across multiple servers (Fig. 3.9). This deployment type is called a multi-server
deployment. The scaling is facilitated by placing a load balancer (en.wikipedia.org/wiki/
Load_balancing_(computing)) out front of multiple copies of the multi-user deployment
running on separate server computer systems (Fig. 3.9). Redis can also be run on a
separate server computer system or computing cluster (Fig. 3.9). Such multiple server
deployment strategies can be scaled horizontally by adding new server computer systems
to the deployment (Fig. 3.9). These new server computer systems allow for increases in
request volume.

Various cloud computing corporations have developed Platform as a Service (PaaS) [92]
products (see en.wikipedia.org/wiki/Platform_as_a_service) that help users scale Python
web applications without having to spend time setting up complex multi-server deploy-
ments. These PaaS, such as Google App Engine (cloud.google.com/ appengine) or Heroku
(heroku.com), provide the simplicity of a single-user deployment with the scalability of
multi-server deployment. When a developer’s code is deployed to a PaaS, the resulting de-
ployment, called a PaaS deployment, provides attributes of both single-user deployments
and multi-server deployments. For example, developers are only required to upload their
Python code files to the platform and, subsequently, the platform will automate the rest
of the deployment process. For example, the PaaS will create load balancers and multiple
copies of request handling Python processes automatically. Such platforms perform scaling
tasks in the background and invisibly to the developer who uploaded the code.
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Figure 3.9: How Micromeda-Server would be deployed to support multiple users
using a cluster of computer systems. When Micromeda is required to scale to handle
hundreds or thousands of simultaneous users, its workload must be spread out across
multiple caching and web server computer systems. Each node in the web server cluster
runs additional copies of Micromeda-Server and supporting software. The performance
of such deployments can be increased by adding hardware to either the caching or web
server clusters. A copy of the genomeProperties.txt file and default Micromeda file would
be stored in each server computer system in the web server cluster. These file have been
omitted from the diagram for simplicity.
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3.7 Future Improvements

Micromeda-Server currently possesses endpoints that provide all the information needed by
Micromeda’s web-based visualization client (see Section 3.4). One endpoint provides an an-
notated Genome Properties tree that includes information about both the structure of the
Genome Properties database and assignments of supports for properties and steps. Other
endpoints offer detailed information about individual properties and steps, and allow for
the download of protein sequences that support property steps. In addition to the existing
endpoints, new endpoints could be made that would provide new data for future versions
of this client, allowing it to have expanded functionality. Performance optimizations for
the existing endpoints could also be made, which could reduce latency in the client’s Ul by
reducing the time spent waiting for responses from Micromeda-Server. Improvements to
Micromeda-Server’s existing endpoints and a potential new endpoint are discussed below.

3.7.1 Improving Performance of the Upload Endpoint

The upload endpoint takes a Micromeda file and saves the file’s contents to a Redis cache.
This endpoint was shown to have poor performance (see Section 3.5) and should be opti-
mized to be more responsive. Most of the performance problems with this endpoint can
be attributed to the performance of parsing Micromeda files into GenomePropertiesRe-
sultsWithMatches objects using the load_assignment_caches_from_database
_with_matches function of Pygenprop’s results module. The performance of this func-
tion was also weak (see Subsection 2.6.6). Performance improvements to this function are
discussed in detail in Subsection 2.9.3. The performance optimizations recommended in
that section should be adopted and will drastically improve the performance of the upload
endpoint.

3.7.2 Improving Performance of the Get_Tree Endpoint and Build-
ing Endpoints for Returning Property and Step Assign-
ments

The get_tree endpoint sends JSON to the client that contains both property tree and
assignment data. This JSON is generated by calling a GenomePropertiesResultsWith-
Matches object’s to_json method. This method is known to have speed issues (see Sub-
section 2.5.3 and Section 3.5) due to the method having to insert assignments into the
JSON tree one at a time, rather than in batch. This speed issue could be addressed
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by reconfiguring Micromeda-Server’s get_tree endpoint to no longer output a tree anno-
tated by property assignments. Instead, new endpoints could be built that return step
and property assignments separately (Fig. 3.10). New methods of GenomeProperties-
ResultsWithMatches objects would have to be developed to generate JSON for these new
endpoints (Section 2.9.3). The code for generating the property tree JSON could be moved
to the GenomePropertiesTree class (Fig. 3.10).

Caching the JSON generated by endpoints in Redis could also improve these endpoint’s
performance. On subsequent API calls, the cached data could be recalled from Redis and
immediately returned to the client instead of being regenerated with every API call. For
example, only having to generate a property tree once procedurally would significantly
improve endpoint performance.

Endpoints
get_step get get_step get_fasta get_single get_multiple : get_tree
_e-values _property _assignm- _genome _genome
_assignm- ents _property _property
ents _info _info
Property Step All Genome
Assign- Assign- Prgtp;erty S;nzr::e Genome Properties
ments ments F AS"I)'A JSFE)NV Properties Tree
JSON JSON JSON JSON
get_step_ get_property get_step_ wrgfgtseli’ﬁg_.}::r_'g* to_json() to_json() to_json()

e_values_json() _steps_json() assignment_json() step_fasta()

Genome
Properties Results
With Matches

Genome
Properties Tree

Genome Genome
Property

Figure 3.10: New endpoints that could be added to Micromeda-Server to allow
for expanded client functionality. These endpoints (blue) would return step assign-
ments, step supporting information, and property assignments. New endpoints would be
supported by new JSON generating methods of GenomePropertiesResultsWithMatches
objects (green).
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3.7.3 Creation of an Endpoint for Returning Domain Annota-
tions Supporting Property Steps

Micromeda files not only contain property and step assignments for a set of organisms but
also contain additional information such as domain annotations and proteins sequences that
support the existence of property steps. Micromeda-Server currently provides an endpoint
for accessing protein sequences that support steps (see Section 3.4). However, there are no
endpoints for accessing the stored InterProScan annotations of these proteins. Specifically,
these annotations contain E-value scores representing how closely the domain in the protein
matches to a model of a representative domain in a protein database (see Subsection 1.4.2).
The E-value scores for these domains may be useful to client visualizations that compare
not only the presence and absence of proteins that support property steps but also compare
how close these matches are to existing domain models. Thus, it may be useful to create
a new endpoint that returns domain annotation E-value scores for domains that support
property steps (Fig. 3.10). This endpoint could generate its data from the step_matches
DataFrame of reconstituted GenomePropertiesResultsWithMatches objects.

3.8 Summary

The creation of web server API’s for accessing information about biochemical pathways,
and even the precalculated presence and absence of these pathways across organisms, is
quite common [164, 111, 124, 155, 9, 146, 110, 33]. Indeed, such web APIs have been devel-
oped by both the creators of KEGG [86] and MetaCyc [83], not only for these database’s
web client applications but also for academic use. A web server has also been built for
Genome Properties database website [132] that is hosted by the EBI. However, the server’s
API is not publicly available and is only designed to support the Genome Properties
website. The KEGG, MetaCyc, and Genome Properties website all contain precalcu-
lated pathway annotations for sets of reference organisms [80, 85, 83]. Many pathway
annotation web sites such as From Metabolite to Metabolite (FMM) [33], KAAS [110]
and MAPLE [146] can pathway annotate user-supplied genomes uploaded in FASTA for-
mat [121]. Such annotation servers are complex to build and host due to the relative
computational complexity of scanning for genes that support the existence of pathway
steps. In contrast, the Genome Properties website allows for the upload of user-created
InterProScan annotation files. The creation of such annotations files pushes the most
computationally complex part of the Genome Properties pipeline, domain annotation, off
onto end-users [132]. As discussed in Subsection 1.4.1, Micromeda-Server follows a sim-
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ilar approach. However, unlike the Genome Properties website, Micromeda-Server takes
the upload of Micromeda files. Micromeda files allow the upload of datasets consisting of
pathway annotations from multiple genomes simultaneously, unlike other pathway servers,
which often require uploading genomes or InterProScan annotations for organisms one at
a time. Also, because Micromeda files contain protein sequences that support pathway
annotations, Micromeda-Server can present these sequences for download by users, which
is a feature of few other pathway annotation servers currently possess. With the avoid-
ance of computationally complex annotation steps and a variety of horizontally scalable
deployment options, Micromeda-Server should provide a reliable and sustainable API for
Micromeda’s client application.
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Chapter 4

Development of a Web-Based
Visualization Tool for the
Comparison of Organism Genome
Properties

As discussed in Chapter 1, a client web application provides Micromeda’s UI. This client’s
role is to provide users with a streamlined interface for visualizing patterns of property
and step assignment found across organisms. These assignment data are provided to the
client in the form of a user-uploaded Micromeda file (Section 2.6). After upload, these
files are sent to Micromeda-Server (Chapter 3) where they are parsed and used to pro-
vide data to the client. The client can request these data through a series of web API
endpoints (Section 3.4) provided by Micromeda-Server. This chapter discusses the client
web application, called Micromeda-Client, in detail. Links to a demonstration of the client
interface can be found in Section 4.5. Source code for Micromeda-Client is located at
github.com/Micromeda/micromeda-client.

4.1 Visualisation Design

One of the core uses of Genome Properties assignment data is to mine it for biologically
relevant patterns in the presence and absence of biochemical pathways or structural features
across organisms. Omne of the best ways to detect such patterns is through the use of
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data visualization. By visualizing Genome Properties assignment data, users can make
comparisons between organisms, pathways, and steps. Several example comparisons and
their research relevance are listed below and are displayed in Fig. 4.1.

e By looking at the assignments of a single property across organisms, users can select
subsets of organisms that may possess a specific phenotype (Fig. 4.1a). Such com-
parisons are useful in scientific fields where specific traits must be identified. Such
fields include pathogen research, microbial ecology, bioengineering, and bioprocess
engineering, among others.

e By comparing the assignments of multiple genome properties, users can identify
patterns of conservation across organisms in a dataset (Fig. 4.1c). In microbial
ecology, such comparisons can be used to identify microorganisms that fit specific
biochemically determined ecological niches (e.g., photoferrotrophy).

e By looking at the step assignments of a single property and organism, users can
evaluate the correctness of a property assignment (Fig. 4.1b). A property might be
assigned NO or PARTTAL because it is missing only a few required steps; However,
it may possess many other steps that are not required (Fig. 4.1b). Being able to
look at all step assignments for the property would allow users to determine why a
property has been given a specific assignment.

e By comparing step assignments of a single property across multiple organisms, users
can see whether pathway steps are retained across organisms (Fig. 4.1d). If a prop-
erty step is not retained in a large assortment of phylogenetically distant organisms,
it may not be required by a pathway or may be carried out by proteins that are
non-canonical in these phylogenetically distant organisms (Fig. 4.1d). Such non-
canonical proteins may not possess domains used by Genome Properties but still
carry out a missing pathway step.
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Figure 4.1: Examples of different pathway analysis tasks that can be supported
by the visualization of Genome Properties data. Comparisons can be made between
organisms, pathways, or pathway steps.

If Micromeda-Client is to support these listed comparisons, the data visualization
method used must allow users to perform the following tasks.

e Track assignments across organisms

Assess the magnitude of assignments

Aggregate assignments into summaries

Explore how these aggregate summaries are derived

Find assignments of interest

When a visualization approach was selected for use by Micromeda-Client, the compat-
ibility of the visualization with these tasks was prioritized.
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4.2 Overview of Genome Properties Data and How
Micromeda-Client Visualizes This Data

Specific visualization techniques are better suited for presenting certain types of data over
others, and it is essential first to discuss the nature of data to be visualized before discussing
how a specific visualization approach was selected for integration into Micromeda-Client.
At its core, the data presented by Micromeda-Client consist of assignments for genome
properties and their steps. Such assignments are ordinal data [132, 3], as their states of
YES, PARTIAL, and NO are ordered. It should be noted that properties are connected
hierarchically [132]. Thus, this structure is hierarchical data [132, 134]. The property
hierarchy influences the ordinal assignment data of each property because assignments of
parent genome properties can be used to summarize the assignments of child genome prop-
erties or steps [132]. Each piece of assignment data that is presented by Micromeda-Client
also belongs to a specific property or step and organism. Thus, the Genome Properties
data can also be considered to be multidimensional [122].

When designing a data visualization, often specific visualization techniques present
themselves intuitively as potential candidates, and this was the case while designing Micromeda-
Client. An appropriate visualization for multidimensional datasets, such as Genome Prop-
erties assignments, is a heat map [163, 152](Fig. 4.1) and this visualization technique was
the one chosen for the client (Fig. 4.1). A heat map was chosen over the competing vi-
sualization techniques such as bubble charts [152], circular maps [161, 143], or treemaps
[139] due to the number of variables that needed to be plotted by the client and the su-
perior space utilization of heat maps, which mimic the square dimensions of the computer
monitors they are displayed on [114].

Micromeda-Client’s heat map uses cell position to indicate what assignment belongs
to what property or step and organism (Fig. 4.1). Because most Micromeda files contain
information about fewer organisms than there are properties in the Genome Properties
database (e.g., approximately 40 organisms versus 1296 properties), assignments for the
same property, but from different organisms, are positioned within the same heat map row
(i.e, property labels are placed along y-axis rather the x-axis of the heat map). Columns
are used to group assignments from the same organism across properties or steps. This
configuration leads to a heat map that is much taller than it is wide and requires that
users scroll vertically. Vertical scrolling is much more convenient than scrolling horizontally
because it allows users to scroll the visualization quickly by using their mouse’s scroll wheel.

The magnitude of each assignment is encoded using cell colour (Fig. 4.1). Because
assignments are ordinal data, it makes sense to encode assignments using colour satu-
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ration, rather than hue [113]. For the heat map, a purple cell colour scheme was cho-
sen to ensure that the diagram is interpretable by those with colour blindness. Specif-
ically, colours were optimized for users with severe deuteranopia (i.e., complete loss of
green cones), which, though rarer, has stronger Red-green colour blindness affects (see
wikipedia.org/wiki/Color_blindness#Classification). A web service called ColorBrewer
(colorbrewer2.org) was used to select cell colours, and a tool called Sim Daltonism (github.
com/michelf/sim-daltonism) was used to ensure colour blind compatibility of the entire
diagram.

Any visualization technique used is also challenged by the magnitude of data to be
presented by Micromeda-Client. For example, if the heat map described at the top of this
section displayed all assignments for only a few organisms, then its size would prevent users
from finding or tracking assignments quickly across organisms. As of version 2.0 of the
Genome Properties database, there are 1296 properties and 6525 steps [132]. If the client
were used to generate a single heat map representing the assignments of all properties,
with each cell being 5 mm tall, then the heat map produced would be approximately
6.5 meters tall (i.e., fifteen vertical pages on a 24” monitor). If a similar heat map was
made, but for assignments of all property steps, then the heat map generated would be
over 32.6 meters tall (i.e., seventy-five vertical pages on a 24” monitor). If both of these
heat maps were combined, then the resulting heat map would be even longer. Micromeda-
Client’s visualization interface addresses the length issue by using interactive aggregation
and disaggregation [113] of assignment rows to reduce the overall length of the client’s
assignment heat map (Fig. 4.2). This reduced length facilitates rapid visual exploration
of property and step assignments.

Micromeda-Client’s Ul allows users to manipulate the contents of the client’s assignment
heat map to show and hide properties and steps according to their position in the Genome
Properties DAG [132] (Fig. 4.2). Because the Genome Properties DAG arranges individual
properties hierarchically, the assignments of properties closer to the root can be used to
summarize the assignments of properties closer to the DAG’s leaves (Fig. 4.2). In the
context of a heat map, this hierarchical assignment summarization means that a row of
assignments for a parent property can be used to summarize the rows of assignments of this
property’s children, either other properties or steps (Fig.4.2 and Fig. 4.1). Micromeda-
Client provides mechanisms to expand and collapse heat map rows to display either parent
summary assignments or more detailed child assignments (Fig. 4.2).

One critical design decision for Micromeda-Client was how to let users control the ag-
gregation and disaggregation of heat map rows. To support this usage, a new visualization
component to Micromeda-Client was designed, in addition to the assignment heat map.
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Figure 4.2: Overview of the components of Micromeda’s visualization design
that are critical to user interactivity. The use of an icicle diagram allows the final
visualization to be more compact. Clicking nodes in the icicle diagram changes the shape
of the heat map by adding and removing rows.

Specifically, the client uses a horizontal icicle diagram® placed left of the heat map. Icicle
diagrams were chosen over other ways of visualizing hierarchical data, such as trees, due
to their spacial compactness (Fig. 4.2). The icicle diagram is used to control the heat
map’s content (Fig. 4.2). Icicle diagrams are used to display hierarchical data, such as the
parent-child relationship between properties and between properties and their steps. With
Micromeda-Client, each genome property and step in the Genome Properties database
is assigned a node in the icicle diagram (Fig. 4.2). Nodes that represent properties are

ITraditional icicle diagrams have leaf nodes facing downwards. The icicle diagram used by Micromeda-
Client is rotated 90 degrees and has its leaf nodes facing to the right.
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coloured gray and nodes that represent steps of leaf properties are coloured green. The
leaf nodes of the icicle diagram are aligned to rows in the adjacent heat map (Fig. 4.2)
that contain the assignments for the property or step that the node represents.

With Micromeda-Client, the nodes in the icicle diagram are given a state of either on or
off. When a user clicks a node in an off state, a new column is added to the icicle diagram.
This column’s contents includes new icicle nodes representing the clicked node’s children.
Simultaneously, new assignment rows are added to the heat map. These rows belong to
the same properties or steps that the newly added icicle diagram nodes represent. The
new heat map rows replace the clicked node’s assignment row. The new icicle nodes and
heat map rows are vertically aligned. Each new node in the icicle diagram has the same
height as the heat map row to which the new node is aligned. The clicked node’s shape is
expanded vertically to align with the top and bottom of its first and last child node cells,
respectively. The overall length of the icicle diagram and heat map is extended. If the
user clicks the previously clicked node once again, then the expansion process is reversed.
The child nodes and their assignment rows are removed from the visualization (Fig. 4.2),
the clicked cell returns to its original shape, and its matching summary assignment row is
placed back into the heat map (Fig. 4.2). Child assignment rows are also removed from
the heat map. Columns in the icicle diagram are deleted, upon child cell removal, only if
all sibling or cousin nodes to the clicked node also have no children displayed.

The visualization strategy chosen for Micromeda-client supports the required tasks
presented at the top of this section. The heat map allows users to track assignments across
organisms and assess their magnitude. The interactive aggregation control provided by
the icicle diagram allows users to aggregate step and property assignments into summaries.
These aggregate assignments can later be disaggregated to show child assignments, allowing
users to explore how the parent assignments were derived. As the icicle diagram follows
the structure of the Genome Properties DAG, specific assignments can be found quickly
by following the DAG’s structure from parent to child. Searching for properties is further
enhanced by Micromeda-Client’s ability to search for properties by name. This search
functionality is discussed in the next section.

4.3 Additional Features of Micromeda-Client’s Inter-
face

In addition to the visualization capability presented in Section 4.2, the client’s interface also
possesses several other features that help users explore their data. In the top right corner of

102



the Ul is a text-based search box (Fig. 4.3). This box allows users to search for properties
by entering a text string containing either a property name or identifier. As the user enters
this string, a list of matching property names are displayed in a drop-down menu (Fig.
4.3). As the user enters additional information, this list of possible matches shrinks. If the
user clicks one of these property names, then Micromeda-Client will automatically scroll to
the heat map row where assignments for the clicked property are located. If the property
is not shown in the current version of the heat map, then it will be added to the heat
map by disaggregating heat map rows in a path towards the property. This path is built
recursively by disaggregating heat map rows of parent properties along a path from the
root of the Genome Properties DAG to the property that was clicked in the search menu.
As the user scrolls the client diagram, the X-axis labels of the diagram remain in a fixed
position at the top of the web browser window (i.e., the X-axis scrolls with the diagram
and does not become hidden during page scrolling) to provide users with sample/genome
name information. A similar scrolling behaviour as to when a search bar item is clicked
is also activated when a user clicks a node in the icicle diagram. The diagram’s X-axis is
scrolled to align with the clicked node’s associated heat map row.

While users explore the heat map, it may be useful for them to be able to access more
context about the displayed properties. The icicle diagram possesses question mark glyphs?
at the bottom of each property node that facilitates access to additional information about
the property that the node represents (Fig. 4.3). When a user places their cursor over one
of these glyphs, a pop-up box appears displaying information about the property that the
glyph’s node represents (Fig. 4.3). This pop-up box includes the name of the property,
a description of it, a link to the property on the EBI Genome Properties website (e.g.,
ebi.ac.uk/interpro/genomeproperties/ #GenProp0867), and a list of links to equivalent
records in other pathway databases such as KEGG [80] and MetaCyc [85]. The box is
hidden once again when the user’s cursor leaves the glyph or the pop-up box.

2A glyph is an elemental component of a data visualization. A data visualization is composed of a
series of glyphs. Often glyphs are directly mapped to data points [31].
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Figure 4.3: Web-browser window containing Micromeda’s heat map visualiza-
tion and interface annotated to highlight the interface’s search and information
gathering features. The interface provides functionality for getting additional informa-
tion about properties and steps (1) and provides the ability to download protein sequences
that support step assignments (2). A legend provides context to the heat map’s colour
scheme (3). The interface also supports property searching (4) and possesses a reset but-
ton that allows users to reset the heat map to its initial loaded state (5).
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Some leaf property steps have a different glyph at the bottom of their nodes that is
shaped like a download symbol (Fig. 4.3). This glyph allows users to download protein
sequences that support the existence of property steps. These download glyphs are only
placed on nodes whose associated property steps are assigned YES in at least one organism
displayed on the heat map. A pop-up box is also generated when these download glyphs are
hovered over. This box contains two download links (Fig. 4.3). The first link downloads
a FASTA file containing the protein sequences that are most likely to carry out the step
for each organism in a dataset®. The second link downloads a FASTA file containing any
protein that could have carried out the step across all organisms in a dataset®. When the
cursor is removed from this download pop-up box or the glyph, then the pop-up box is
hidden.

Micromeda-Client’s interface also includes a reset button. This button resets the heat
map and icicle diagram back to their starting configuration where only the top-level prop-
erties are shown (i.e., one level below the root of the Genome Properties DAG) to the
user. Users can click this button to reset the diagram to allow them to search for other
properties.

4.4 Implementation

Micromeda-Client’s interface consists of two web pages that were structured using Hyper-
text Markup Language version 5 (HTML) [99], styled using Cascading Style Sheets version
3 (CSS) [22], and scripted via European Computer Manufacturers Association (EMCA)
script version 6 (JavaScript) [57]. Users access one page for uploading user-generated

3As discussed in Subsection 1.4.2, each member database of the InterPro consortium possesses custom
software that filters domain matches. These filtering tools implement rules, such as minimum match
E-value scores or minimum match alignment lengths, that are used to remove false-positives matches.
These rules are unique to each member database and are custom to the sequence search tool used by each
database. InterProScan implements all sequence search tools and the false-positive filtering methods used
by member databases. All domain matches identified by InterProScan are considered to be true positives,
as they have passed scrutinous match filtering rules. Pygenprop utilizes these true-positive InterProScan
matches to predict genome properties. For a given dataset, there are often multiple proteins with predicted
true-positive domain matches that support a single genome property step. However, of this set matching
proteins, the protein with the lowest match E-value score for the step’s supporting domain is most likely
to carry out the step. As discussed in Section 3.4, Micromeda-Server’s get_fasta endpoint returns the
FASTA formatted sequences of either all proteins containing a match to a domain that supports a property
step, regardless of the organism, or a single protein per organism, each with the lowest E-value match to
the domain that supports a property step. Micomeda-Client’s step protein download pop-up boxes provide
web links that allow users to download FASTA files generated by the get_fasta endpoint.
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Micromeda files, and another for presenting the visualizations of the file’s data. To use
Micromeda-Client, users must first navigate to the upload page and upload a Micromeda
file. After the upload is complete, the user’s browser will automatically redirect to the
visualization page. Both pages are styled using the Bootstrap 3.0 CSS framework [141].
Bootstrap is used to set up page elements such as header navigation bars and drop-down
menus. Bootstrap also makes each page compatible with tablet computers and phones as
it will automatically restyle non-visualization page elements to fit on these device’s smaller
screens.

4.4.1 Core Data Structures

The client visualization page uses two core data structures and they are both accessed
during visualization generation. One is a diagram configuration array that contains a
series of measurements. These measurements are used during diagram drawing and control
spacing between heat map cells, heat map cell dimensions, the offset of axis labels, and other
visualization details (Fig. 4.4). The contents of this setting array are stored in a JSON
file [25], called diagram_configuration.json, which is deployed alongside the HTML files
of the client. The second data structure is a copy of the Genome Properties DAG in the
form of a tree (i.e., nodes with two parents are duplicated) of JavaScript objects. Each of
these objects represents a genome property or step and are linked together in parent-child
relationships. This data structure is analogous to the one used by Pygenprop (Section
2.2.7). Each of these objects possesses an attribute, called assignments, containing a list
of property assignments for the organism in a dataset. Micromeda-Client later uses these
assignments during the generation of its heat map. These property and step objects also
have an attribute, called enabled, containing a boolean (i.e., true or false). Elements of
Micromeda’s Ul manipulate the enabled attribute of objects in the property tree and this,
in turn, manipulates the contents of the visualization (Fig. 4.5). The enabled boolean
of each property object tree determines whether the children of the property should be
displayed in client visualization (Fig. 4.5). The property tree is placed within a parent
JavaScript object. This property tree JavaScript object is analogous to objects instantiated
from Pygenprop’s GenomePropertiesTree class (Section 2.2.7) and, as such, also possesses
methods for property identifier-based lookups of the tree’s underlying property objects and
methods for extracting lists of the tree’s root and leaf property objects.
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Figure 4.4: How pre-defined spacing, width, and length values determine the
layout of Micromeda-Client’s diagrams. Changes in these values can shift the size
and spacing of the heat map’s cells and axes. Dimension values are stored in an external
file that is loaded upon diagram generation. The contents of this file can be modified to
change the layout of Micromeda-Client’s heat map.

4.4.2 Loading the Visualization

As mentioned previously, requests for data from Micromeda-Server supports much of
the functionality of Micromeda-Client. All these requests are done through a technique
known as Asynchronous JavaScript and XML (AJAX) [77, 95] (see en.wikipedia.org/wiki/
Ajax_(programming)). AJAX allows requests to be made to the server, using JavaScript
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[57], without the need for a web page reload. This technique allows Micromeda-Client to
remain asynchronous to the server where it was downloaded. AJAX requests are made
via HTTP [53], through a series of URL addresses [17] that map to Micromeda-Server
endpoints (see Section 3.4). All AJAX requests to the server were made using the JQuery
JavaScript library [30, 95]. The URL address of Micromeda-Server, where AJAX requests
are made to, is found in a JSON file called server_config.json. This JSON configuration
file is deployed with the HTML files of the client (i.e., the HTML files for the client’s
visualization page and upload page). Both the file upload and visualization page call this
JSON file upon their initial load to acquire the location of Micromeda-Server.

The upload page contains a file drag and drop zone. When a user drops a Micromeda
file onto this zone, the file is sent via AJAX to Micromeda-Server using the server’s upload
endpoint (see Section 3.4). The drag and drop zone was implemented using DropzonelS
[106]. After the file upload is complete, Micromeda-Server returns the file’s associated
dataset key to Micromeda-Client. This dataset key is stored in the browser’s web local
storage [68] (en.wikipedia.org/wiki/Web_storage) using a library called localForage [36].
Once the dataset key is stored, the client redirects the browser to the visualization page
where visualizations of uploaded file’s contents are generated.

As the visualisation page loads, the client requests a JSON tree from Micromeda-
Server’s get_tree endpoint (see Subsection 3.4) via AJAX. The dataset key saved in the
browser’s local storage is provided with this request and ensures that Micromeda-Server
returns data from the browser’s most recently uploaded Micromeda file. Micromeda-Server
will respond to the get_tree request by returning a JSON tree containing assignments
for all properties and steps within this uploaded Micromeda file. The client parses this
JSON file into a JavaScript object tree and uses it as the property tree data structure
mentioned in Subsection 4.4.1.The visualization is then built using the dimensions from
the diagram configuration array, the structure of the property tree, and the enabled
attribute of property objects contained within the property tree (see Subsection 4.4.1). The
visualization itself is generated using functions from version 3.0 of the D3.js visualization
library [23] and custom JavaScript code.

4.4.3 Interactivity After Initial Visualization Load

One of the critical properties of the client’s visualizations is that they are interactive.
This interactivity is provided by manipulating the JavaScript property tree (Fig. 4.5).
When a user clicks a property node in the icicle diagram, a JavaScript onclick event [94]
(en.wikipedia.org/ wiki/DOM _events) is triggered that changes the state of the equiva-
lent property object in the property tree data structure. Specifically, the clicked node’s
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equivalent property object’s enabled attribute is inverted upon icicle node click (Fig. 4.5)
and the entire visualization is subsequently re-rendered. Because the enable attribute has
changed on the property object, the heat map visualization is re-rendered in a different
configuration (Fig. 4.5).

In the case where a user clicks a leaf node of the icicle diagram, the client changes the
matching property object’s enabled attribute from false to true. Then, when the diagram
is subsequently re-rendered, the children of the clicked node are also rendered (Fig. 4.5).
The client software then automatically scrolls the page, via JavaScript, so that the bottom
of the X-axis labels are aligned with the top of the clicked node. All scrolling behaviour
in the client is facilitated by JQuery [95]. The opposite occurs when users click a non-leaf
node of the icicle diagram. The client changes the associated property object’s enabled
attribute from true to false and, after re-rendering, the node’s children are removed from
the diagram. The client then scrolls so that the X-axis labels are aligned with the top
of the clicked node. When a parent property object’s enabled attribute is changed, this
change is not cascaded to its children. This lack of transfer provides the visualization with
a sort of “memory” where the visibility state of each grandchild property is retained (Fig.
4.5).

At page load, the property tree is used to create a JavaScript array of pairs of property
names and identifiers. After the visualization generation, an interactive search menu is
created in the top right-hand corner of the Micromeda-Client interface (Fig. 4.3). This
menu is built using the Select2 library [162] (select2.org) and uses the previously mentioned
pairs of property identifiers and names as search data. When a user searches for a property
name or identifier in the search menu, properties whose names or identifiers are similar
to the search query are displayed in a drop-down menu (Fig. 4.3). When the user clicks
one of these menu properties, then another JavaScript event occurs where the parent of
the matching property object in the JavaScript property tree is modified. All property
objects along the property tree in a path from the root to the parent of matching property
object have their enabled attribute set to true. When client visualization is subsequently
re-rendered, a path to the assignments of the clicked property is displayed along with
the property’s assignments. The client software then automatically scrolls the page, via
JavaScript, so that the bottom of the X-axis labels are aligned with the top of the icicle
diagram cell representing the clicked property.

After each re-rendering of the assignment visualization, Micromeda-Client sends a se-
ries of AJAX requests to Micromeda-Server. These are requests for information about
each property that is visible in the icicle diagram (Fig. 4.3). These requests are sent to
Micromeda-Server’s Get_Single_ Genome Property Info endpoint (see Section 3.4).
The endpoint returns a JSON document containing information about each property that
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is later displayed in property information pop-up boxes (Fig. 4.3). The contents of these
documents are cached in web local storage using localForage [36]. During the subsequent
diagram renderings, requests are not made for properties whose data is already cached.
Caching property information client-side and only requesting information about visible
properties reduces the number of requests sent to Micromeda-Server and the overall load
to be handled by the server computer system that Micromeda-Server is run on.

Both property information and FASTA download pop-up boxes are generated upon
activation of JavaScript onmouseover events [94] (en.wikipedia.org/wiki/DOM_events) of
the question mark and step download glyphs, respectively. When a question mark glyph of
a property icicle diagram node is hovered over, information about the property is retrieved
from web local storage using localForage. This property information was cached during
the previous diagram render.If no information for a property was previously cached, a
property information template is used. The cached or template property information
is used to generate the contents of the property informationpop-up box. The FASTA
download pop box, when generated, contains links for downloading FASTA files. These
links point to URLs provided by Micromeda-Server’s get_fasta endpoint (see Section 3.4).
When the“get all proteins” link is clicked (Fig. 4.3), the endpoint URL’s all HTTP GET
parameter is set to true during the request and a FASTA file containing all proteins that
support the step is returned (see Section 3.4). The all HTTP GET parameter is not added
to requests initiated by clicking the “get top proteins” link of the pop-up. This lack of a
parameter causes the return of a FASTA file containing only the proteins that are most
likely to support a step. During both of these types of sequence file requests, the dataset
key stored in local web storage is attached. This key tells the Micromeda-Server to generate
FASTA files from sequences found in the browser’s most recently uploaded Micromeda file.
Both pop-up boxes are hidden upon removal of the user’s cursor via the triggering of an
onmouseout event [94] (en.wikipedia.org/wiki/DOM_events).

4.5 Performance Testing, End-User Testing, and Demon-
stration of the Client User Interface

Performance testing found that the client’s visualization was capable of being re-rendered
almost instantaneously even when several hundred rows of assignments were displayed.
All interactive components of Micromeda-Client had practically no visual lag attributed
to their construction. All UI delay was caused by waiting for data from Micromeda-Server
endpoints. Ways of speeding up these endpoints are discussed in Section 3.7.
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A demo of Micromeda’s client interface can be found at tundra-pear.glitch.me. This
demo is hosted in a way that certain features that require Micromeda-Server, such as
Genome Property pop-ups and FASTA file downloads, are disabled. A video that displays
these disabled features can be found at tinyurl.com/wlgelmg. This video also demon-
strates the process of uploading a Micromeda file. A tutorial that covers how to generate
Micromeda files can be found at github.com/Micromeda/micromeda-workflow.

Three potential users of Micromeda-Client were provided with a customized version
of the demo interface linked in the preceding paragraph. These interface demos were
customized to contain data relevant to each user’s research project. The potential users
were required to provide the author with multiple microbial genomes or MAGs in FASTA
format. The author put these sequence files through the Micromeda pipeline (i.e., protein
prediction using Prodigal, scanning for Interpro domains with InterProScan, and Genome
Properties assignment with Pygenprop). The resulting property and step assignments were
integrated into a customized version of the client demo. The author generated one demo
for each user. The users that were provided with demos were from both academia and
industry. Specifically, they consisted of the following:

e An academic researcher interested in using Micromeda to analyze a series of MAGs of
putatively ammonia-oxidizing organisms found in wastewater treatment plant sam-
ples.

e An academic researcher that wanted to use Micromeda to analyze a series of MAGs
of anoxygenic phototrophic bacteria gathered from boreal shield lake water samples.

e A commercial entity interested in using Micromeda to assist them with the trait-
based down-selection of plant growth-promoting microbes from an existing genetically
sequenced culture collection. They hoped to use the down-selected organisms in
agricultural field trials.

These users were interviewed via video conference after they were provided with their
customized demo. The interviews were freeform and open-ended. However, the following
key questions were asked:

e Was the potential user happy with how Micromeda-Client presents property and step
assignment information?

e How intuitive did they find the client’s UI and were there any changes to the interface
that could be made to make it more intuitive?
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e [s there any aesthetic changes to Micromeda-Client that the user would recommend?

e What additional features should be added to the client to improve its data analysis
capabilities?

After user interviews, suggestions for improving the client’s UI were recorded. Several
of the potential user’s recommendations are discussed in Section 4.7.

4.6 Deployment

Before Micromeda’s Ul can be used, it must be downloaded into a web browser. A web
server must be made available to send the client code to the user’s browser. Micromeda-
Client can be deployed in two ways. The client can be served from a web server, such as
NGINX [129], running on the same server computer system as Micromeda-Server (Fig. 4.6).
Such a web server is already a component of the medium-scale deployment of Micromeda-
Server described in Section 3.6. Alternatively, Micromeda-Server can be served from
a content delivery network (CDN) [50] (en.wikipedia.org/wiki/Content_delivery network)
such as Amazon Cloudfront [158] (aws.amazon.com/cloudfront) or Cloudflare Anycast [27]
(cloudflare.com/cdn). In this deployment configuration, the end-user downloads the client
code from the nearest content delivery server in the CDN, rather than the same server
where Micromeda-Server is hosted (Fig. 4.6). After loading, the client would then send
API requests to Micromeda-Server, which would be hosted outside the CDN (Fig. 4.6).
During end-user testing, a version of Micromeda-Client was deployed via Amazon Cloud-
front CDN. The files for Micromeda-Client could also be downloaded and opened by a
developer’s web browser for development and testing purposes.

4.7 Future Improvements

Several improvements could be made to the client that would increase its overall usefulness.
These features would make the client more natural to use and provide users with more
information about their datasets. Several of these potential improvements were derived
from feedback gathered during end-user testing.
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Figure 4.6: The two primary deployment strategies for Micromeda-Client. The
client files for Micromeda-Client, in production, can either be deployed on the same server
computer system as Micromeda-Server (A) or deployed via a CDN (B).

4.7.1 Providing More Information About Property Steps

In the current version of Micromeda-Client, there are pop-up boxes that provide additional
information about individual genome properties, such as property descriptions and links
to equivalent records in other pathway databases. However, there are no equivalent pop-
up boxes for providing more detailed information about property steps. The Genome
Properties database includes additional information about steps that could be displayed in
another set of pop-up boxes. For example, using information about what domains support a
step could be used to generate links to domain records on the InterPro website. These links
could be added to the suggested step pop-up boxes. Also, such pop-up boxes could provide
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GO terms and links to details about these terms on the GO website because individual steps
are associated with such terms. The information in step information pop-up boxes would
provide additional context to heat map step assignments. The boxes would be activated
by hovering over a question mark glyph placed slightly above the download glyph of each
step node in the client’s icicle diagram (Fig. 4.3). The addition of step information pop-up
boxes would require an additional endpoint to be added to Micromeda-Server.

4.7.2 Providing Improvements to Search Capability

Currently, the search menu in the top right corner of the client interface allows users to
search for genome properties by name or identifier (Section 4.3 and Fig. 4.3). The ability
to search for properties could be expanded by allowing users to search for properties by
the identifier of equivalent records from KEGG [80] or MetaCyc [85]. These new search
terms would allow users, who are familiar with the identifiers of specific KEGG or MetaCyc
pathways, to rapidly find the equivalent pathway’s genome property and its assignments
in the Micromeda-Client heat map. It may also be useful to be able to search for property
steps, rather than just properties, by name and have the visualization open a path and
scroll to the assignment row for a searched step. Steps could also be searched for by
their associated InterPro domain signature identifiers or GO term numbers. Improved
ability to search for properties and steps would require additional endpoints to be added
to Micromeda-Server.

4.7.3 Automating the Scaling of the Visualization for Different
Screen Sizes

As mentioned in Subsection 4.4.1, the visualization generated by Micromeda-Client relies
upon a file called diagram_configuration.json that contains a series of measurements.
These measurements consist of length, width, and spacing values that control the layout of
the client’s heat map and icicle diagram (Fig. 4.4). The default values for these measure-
ments, as stored in diagram_configuration.json, facilitate the generation of an adequate
diagram layout for most datasets. However, for several datasets, such as those with long
organism names or large numbers of samples, the default diagram measurements can cause
visual anomalies such as text clipping between diagram cells and organism names being
displayed off-page.

To fix such anomalies, future versions of Micromeda-Client could use JavaScript to au-
tomatically adjust diagram configuration measurements to fit different datasets or browser
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window sizes. For example, X-axis spacing values could be changed dynamically based
on the length of the longest organism name in a dataset. Alternatively, the heat map
cell width could be adjusted based on the number of samples in a dataset. By adjusting
the default diagram layout values dynamically, Micromeda-Client could generate diagrams
that better fit a variety of datasets and user devices.

4.7.4 Modification of Micromeda-Client to Collect Assignment
Data From a Separate Endpoint

Currently, Micromeda-Client gathers its assignment data from the get_tree endpoint of
Micromeda-Server (see Section 3.4). There are problems with this approach, as discussed
in Subsection 3.7.2, and it would be more appropriate to have a separate server endpoint
for returning assignments for properties and steps. In addition to solving the problems
mentioned, having the client make a separate API call to gather these assignment data
would be useful as it would allow the client to request for Micromeda-Server to rearrange
the data before it is returned. This reconfigurability would also allow for step assignments
that are supported by protein domains to be replaced by match E-value scores or for
assignments of organisms to be returned in a different order.

4.7.5 Clustering Heat Map Columns by Assignment Similarity

Columns in the heat map contain assignments from different organisms. Currently, these
columns are ordered alphanumerically by organism name. Users may find it useful to be
able to cluster these columns by assignment contents rather than by name. Clustering by
assignment contents would group organisms that have similar assignments and potentially
similar metabolic, physiological, or structural characteristics. Columns could be clustered
either globally by the assignments of all properties and steps or locally by only those
properties and steps that are visible in the current diagram rendering. The simplest solution
for clustering these columns would be to use Micromeda-Server. As noted in Subsection
3.7.2, if the return of property and step assignments were pushed to a separate endpoint,
then the data returned would have to be generated by serializing assignment DataFrames
of GenomePropertiesResultsWithMatches objects to JSON [25]. If clustering columns in
the heat map was required, then Micromeda-Server could accomplish this visual clustering
by clustering the DataFrames of GenomePropertiesResultsWithMatches objects column-
wise using Scikit-learn [123] and pandas. Afterwards, these clustered DataFrames would
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then be converted to JSON and sent to the client. Returning clustered assignment JSON
data could be controlled by an HT'TP GET parameter in an endpoint request.

4.7.6 Visualizing Step Assignments by E-value Score Rather Than
by Categorical Assignment

Leaf genome properties are supported by steps that use InterProScan matches to InterPro
consortium domain signatures as evidence. These matches, between a motif found in a
protein of an organism and an InterPro domain, have an E-value score. Micromeda-files
store these scores. Matches with E-value scores that are below a specific per-InterPro
member database threshold are filtered out by InterProScan automatically. Matches that
remain are likely to be true positives (i.e., the motif matched is an ortholog to the domain
from the database). However, there is still some E-value score variation among the remain-
ing matches. Motifs with matches that have lower E-value scores are closer in sequence
to domains in the database and are more likely to be orthologous. These lowest E-value
matches are be said to be the“strongest” matches.

During end-user testing, several potential users were interested in having a way to
compare the relative strength of step assignments between organisms. For example, if a
property is assigned YES in two organisms, which organism is more likely to possess a
step? Step assignments are currently assigned a binary YES or NO, and thus the relative
strength of these assignments cannot be compared. One way to compare step assignments
between organisms would be to compare the strength of these assignments’ supporting
domain matches. For example, Micromeda-Client could display the E-value score of the
closest match supporting each step in its heat map in place of a binary YES or NO value.
These E-value scores could be coloured by shades of green along a continuous scale. Pop-up
boxes could also be generated by hovering over each cell in the heat map cell and would
display match info, such as the E-value score, protein name, and matched domain identifier.
No E-value data would be presented for NO assignments. An interface switch could be
implemented that would be used to switch property assignments between binary YES or
NO values and continuous E-value scores. A Micromeda-Server endpoint would have to be
built to provide these E-value score data, as discussed in Subsection 3.7.3.

4.7.7 Improving Filtering Capability of the Client

During end-user testing, users requested a way to identify assignments that differ between
organisms. Such differences could be highlighted by removing assignment rows from the
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heat map that possess the same assignment across all organisms in the dataset, leaving
only those that differ. For example, a UI switch would have to be implemented that would
allow users to switch between a complete assignment view of all assignment rows and only
those that differ. The assignment rows would have to be dropped based on those that are
displayed in the current version of the heat map. Each node in the JavaScript property tree
could be given a property called differing that returns true if the property’s associated
assignments are differing between organisms and false otherwise. Children of nodes on the
JavaScript property tree whose state is set to enabled would only be rendered if their
differing property is set to true.

The icicle diagram could be re-rooted based on the assignments and child assignments
of a specific property. For example, having the visualization show the property for iron
metabolism and its children. This feature could be implemented by having a glyph on
each node of the icicle diagram that, when clicked, allows for the diagram to be re-rooted
at the node. In the future, this feature could be expanded for users to select multiple
properties to display, for example by clicking three of the re-root glyphs and an interface
button. Being able to perform selections in this way would allow users only to compare the
assignments of two or more properties that are distant in the Genome Properties DAG.

4.8 A Comparison of Micromeda-Client to Other Path-
way Visualization Software

Several web-based software tools already exist for visually comparing the presence and
absence of biochemical pathways across organisms. However, while interviewing potential
users of Micromeda-Client, the interviewees conveyed their frustration with these existing
tools. Users mentioned how these tools forced them to navigate through multiple web
pages to gather the information needed to perform their analyses. This process is time-
consuming and error-prone.In response to this information, Micromeda-Client was designed
to integrate as much information as possible into a single view and interactivity is used
to allow users to show and hide property assignment information as needed. Below is a
detailed comparison between Micromeda-Client and three similar visualization tools.

As of fall 2019, there is only one Genome Properties assignment visualization tool
available other than Micromeda-Client. This tool is part of the EBI Genome Properties
website [132] (ebi.ac.uk/interpro/genomeproperties) and has an assignment viewing page
that displays a heat map similar to the one generated by Micromeda-Client [132] (Fig. 4.7a
and see ebi.ac.uk/interpro/genomeproperties/#viewer). In contrast to Micromeda-Client,
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information about the properties displayed is not accessible from the heat map itself and
must be viewed in a secondary web page. This page contains a property browser (Fig.
4.7b and see ebi.ac.uk/interpro/genomeproperties/#browse). Even when a user finds a
property on this browsing page, they must open a third page that contains the property’s
information such as a description and links to equivalent records. Thus, with the Genome
Properties website, if users need a more detailed description of a property, then they are
forced to swap between multiple web pages. To effectively use the EBI tool, from a Ul
perspective, users should place both property browser and assignment viewer windows
side by side. However, using both of these windows simultaneously requires either a large
monitor or two monitors placed side by side because the assignment heat map page of
the website does not scale down well with a shrinking window size. If both property
information and assignment information pages are open simultaneously on a 14” laptop,
then the controls of the assignment heat map page are cut off, and the visualization becomes
unusable. Unlike Micromeda-Client, the Genome Properties website’s assignment viewer
only displays a subset of leaf genome properties and their steps, not all properties and
steps (Fig. 4.7a). The website also does not perform any aggregation of assignments to
reduce the length of its heat map (Fig. 4.7a). Like the client, users can upload their data.
In the case of the EBI assignment viewer, users can upload InterProScan TSV files instead
of Micromeda files [132]. Thus, there is no way for users to access the underlying protein
sequences that support each step.

In contrast to the property assignment heat map generated by the Genome Properties
website, Micromeda-Client uses pop-up boxes to display its property information. Users
of Micromeda-Client do not have to search for information about a property of interest
in an entirely new window, nor do they need to swap between multiple windows to find
this information. Having all the information in a single view saves users time and reduces
mistakes where users view information about the wrong property. Also, unlike theEBI
Genome Properties website, Micromeda-Client displays assignments for all properties, not
just leaf properties. The icicle diagram that is present in the client’s visualization helps
organize property assignments, so users more easily find these assignments. Unlike the EBI
tool, the client’s assignment viewer does use interactive aggregation and disaggregation,
which decreases the length of its heat maps substantially.

Other websites that visualize pathway annotation information do use aggregation and
disaggregation in the same way as Micromeda-Client [154, 42]. However, some of these
tools have interface issues. For example, Microscope [154], a pathway annotation website,
also presents heat maps conveying levels of completeness for KEGG [80], MetaCyc [85],
and antibiotics & Secondary Metabolite Analysis Shell (antiSMASH) [20] pathways (Fig.
4.8). Like the Genome Properties database, both KEGG and MetaCyc organize their
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EMBL-EBI

Load Genome Properties:

o . e ’ @ Genome Properties
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Expand AllI Collapse All

~ GenProp0065: Genome properties
~ GenProp0017: Metabolism
~ GenProp00s3: Biosynthesis

~ GenProp0077: Natural products biosynthesis
GenProp0724:

pO757: Quorum:sensing, autoinducer-2 system
GenPropog0g: Bacteriocin system, lactococein 972 group
GenProp8s3: famil
- GenProp0861: Bacteriocin system, NHLP (nift1/nitie hydratase leader peptide) transport group
GenPropog01: Post-ribosomal natural product synthesis system, Burkholderia TOMM-type
- GenProp0919: SCIFFiradical SAM Clostricial gene pair
GenProp0g20: Radical SAM Y_X(10)_ GOL system
+ GenProp0921: Radical SAM par and His Xaa-Ser
- GenProp0936: Bacteriocin system, sporulation delay protein group
GenProp094s: Radical SAM maturase bacteriocin system, CLI_3235 type
- GenProp0954: Radical SAM-cylzed pepiide, Pep1357C family
Modified SAM YYdFG family

(a) The Genome Properties viewer displays (b) The Genome Properties browser provides
heat maps containing assignments for both information about individual properties and
reference and novel organisms. their hierarchy.

Figure 4.7: Browser windows containing the two main webpages of the Genome
Properties website. The viewer page (a) is used for viewing property and step assign-
ments. The browser page (b) helps users learn more about individual genome properties.
The viewer page (a) allows for the upload of InterProScan TSV files of novel organisms.
These files are used to calculate assignments for these organisms. With Micromeda-Client,
the same information presented by these two pages is integrated into a single page.

pathways hierarchically. However, with Microscope, when a user clicks the visualization
interface to gain access to the completeness of child pathways, an entirely new heat map
is generated on a separate page. Child pathway assignments are not displayed within the
same heat map view (Fig. 4.8). When navigating results from high-level pathways to
low-level pathways, users are required to open several heat map pages. To access a heat
map containing results for pathway steps, users may have to open five or more separate
pages. In addition to opening each level of the visualization on a separate page, if users
need to find additional information about a pathway, then they need to click on links that
take them to a separate page. This page mirrors a page on the KEGG or MetaCyc website
that describes the pathway (Fig. 4.8). There is no way to compare the cousin pathway
results within the same heat map (Fig. 4.8).

In contrast to Microscope, Micromeda-Client displays its aggregated and disaggregated
heat map rows within the same view. Thus, users are not required to swap back and
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Figure 4.8: User interface of and analysis services provided by the MicroScope
annotation server. The server presents both pathway assignment heat maps and pathway
diagrams. The heat maps show the presence and absence of pathways across reference
organisms and novel organisms whose genomes have been uploaded in FASTA format. The
pathway diagrams allow users to explore further the pathways annotated by the server.
Figure is from [154].

forth through multiple pages to find child pathway results and to understand how results
for parent properties are calculated. Information about the properties is also accessible
through pop-ups from within the same view. The assignment of cousin properties is easily
seen within the same heat map view.

In contrast to the Genome Properties website and Microscope, some alternative path-
way annotation visualization tools do present their data hierarchically within the same vi-
sualization [42]. For example, FuncTree2 [42] allows users to plot KO annotation [100, 81]
frequency (i.e, the number of proteins of an organism that that possess a specific KO an-
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Figure 4.9: Overview of the KEGG annotation visualization produced by Func-
Tree2. FuncTree2 presents a radial tree diagram that shows the abundance of KEGG
Orthology (KO) annotations within multiple organisms’ predicted proteomes. In diagrams
created by the tool, leaves of the radial tree represent individual KO annotations. In other
words, each leaf node represents a type of protein that can be found in a cell. Nodes
closer to the root represent different levels of classification that group these KO annota-
tions according to the hierarchy of pathways in the KEGG database. A stacked bar chart
annotates each leaf node. This chart possesses coloured bars representing the number of

proteins in each organism’s proteome with a specific KO annotation. These bar charts are
oriented radially. Stacked Bar charts also annotate other nodes in the radial tree. The

stacked bar charts on higher-level nodes represent reciprocal summations of KO counts of

child nodes. Nodes can be clicked to remove child nodes and change the shape and size of
the visualization. Figure is from [42].

notation) across multiple organisms (Fig. 4.9). Frequencies are visualized using a radial
tree with nodes annotated by stacked bar charts. The bar charts of leaf nodes of the tree
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represent counts for a singular KO, whereas charts annotating nodes closer to root display
summed KO counts for child nodes (Fig. 4.9). Unlike Micromeda-Client, aggregated and
disaggregated data are presented simultaneously. Nodes in the tree can be clicked to add
and remove child nodes from the visualization. Instead of the default KEGG-based tree,
FuncTree2 also accepts the upload of custom built trees and annotation frequencies derived
from other pathway databases.

One of the key design differences between FuncTree2 and Micromeda-Client is their
choice of radial and linear layouts, respectively. In the application note for FuncTree2,
its authors note that they chose to use a radial tree over horizontal trees in their vi-
sualization to save screen space. Radial trees are more space-efficient than horizontal
trees when presenting large numbers of nodes [26]. However, at least one study has
shown, via eye-tracking, that radial trees underperform traditional and orthogonal tree
layouts for a variety of visual search tasks [26]. Another study has shown that icicle di-
agrams (as used by Micromeda-Client) allowed users to have higher interaction accuracy
and efficiency [114] than radial sunburst diagrams (as used by tools such as Krona [116]
(github.com/marbl/Krona)). Such gains in user interaction capability should also carry
over to Micromeda-Client, which uses a rectangular, rather than a radial layout®.

Rather than defaulting to a horizontal tree or radial tree, micromeda’s client replaces
both of these trees with an icicle diagram. This icicle diagram provides superior spacial
compactness to either tree type as no edges have to be rendered and nodes can be placed
adjacently in a compact fashion. Rectangular diagrams have better space utilization than
radial diagrams on modern computer monitors [114]. In contrast to FuncTree2, the visu-
alization of Micromeda-Client only allows users to show either aggregated assignments for
a parent node or the disaggregated assignments of its children, not both simultaneously.
Both the decision to use icicle diagrams and to either present parent or child assignments
allow the client’s diagram to retain the same square layout as an annotated horizontal tree
with superior space utilization to a radial tree.

4.9 Summary

The web client of Micromeda allows users to visually explore and compare assignments for
genome properties and their steps across organisms. The software also provides information
about these properties and steps and provides links between them and equivalent records in

41 assert that radial layouts are most useful when they show connections between data on opposite sides
of the layout. This design pattern is used by visualization tools such as Circos [91].
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other databases. Due to the use of Micromeda files, the client also allows users to download
protein sequences that support the displayed assignments. These functionalities directly
support the required tasks listed in Section 4.1.

As discussed in the Section 4.8, the client’s visualization addresses many interface
issues that afflict other pathway annotation visualization software tools. As discussed in
the summary section of Chapter 3, another feature that sets Micromeda apart from these
tools is the access to supporting information used in property and step assignments such as
protein sequences. In the future, and as discussed in Subsection 4.7.6, the data presented
by Micromeda-Client could be further expanded to display more information such as E-
value scores. Annotation frequency, as displayed by default by FuncTree2, could also be
readily displayed by the client. Overall, Micromeda-Client will increase users’ ability to
utilize pathway annotation information and set a new standard for pathway annotation
visualizations.
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Chapter 5

Conclusions

Micromeda is designed to help researchers compare the genomically predicted functional
characteristics across multiple organisms. Two key elements facilitate this capability.
Firstly, Pygenprop, a library that assists Micromeda’s other components, can be used to
compare functional characteristics across organisms programmatically. Secondly, Micromeda-
Client can be used to generate an interactive heat map that allows users to perform the same
comparisons visually. Micromeda-Server was developed to provide an API that provides
data to this client. Micromeda files allow for the transfer of entire datasets of pathway
predictions and supporting information such as protein sequences to Micromeda-Client.
These files also enable the rapid transfer of datasets between researchers. Pygenprop is
used to generate these Micromeda files, and the client uses their contents to draw its heat
maps. The functional predictions made and displayed by Micromeda are derived from the
information found within the Genome Properties database and the domain annotations of
an organism’s proteins.

5.1 Micromeda in the Context of Previous Work

In contrast to many pathway annotation systems (see Sections 3.8 and 4.8) that are either
run remotely or locally on a researcher’s computer, Micromeda has both local and remote
components. InterProScan and Pygenprop are run locally on users’ computers and are used
to generate Micromeda files. These files are later uploaded to Micromed-Client, which is
deployed on a remote server along with Micromeda-Server. The main reason for this split is
to shift the computational cost of generating pathway annotations onto users while allowing
UI components, such as Micromeda-Client, to be centrally hosted. This central hosting
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will allow for the rapid deployment of updated versions of Micromeda with new UI features
and bug fixes.

From a human-computer interaction perspective, Micromeda provides a much-improved
UI for visualizing the difference in predicted function characteristics (Section 4.8). Unlike
other tools, Micromeda-Client uses interactivity to dynamically switch between displaying
summaries of the presence of multiple pathways and the presence of individual pathways
steps. The client also integrates various pieces supporting information, such as descriptions
of select genome properties, directly into its interface. This level of integration is in contrast
to other tools that require users to view such information in separate web pages.

Another key feature of the Micromeda that makes it stand out from other tools is the
platform’s ability to connect pathway annotations to the predicted protein sequences that
support them. Both Pygenprop and Micromeda-Client allow users to generate FASTA
files that contain proteins, from all organisms in a dataset, that support a property step.
These FASTA files could be used to build phylogenetic trees. This feature is not available
in other tools.

Pygenprop is one of the first libraries designed to support the programmatic compar-
ison of genomically predicted functional characteristics. When combined with tools such
as Jupyter Notebooks, the library provides a powerful tool for both developing pathway
analysis tools and performing rapid analyses. Pygenprop is the second library that is com-
patible with Genome Properties data and is one of the only pathway comparison libraries
written for Python. The library is also one of the first pathway analysis tools to integrate
with the Python data science ecosystem.

As the number of sequenced genomes increases and the cost of sequencing becomes more
affordable, there will be an increasing need for tools that can rapidly compare the pathways
of multiple organisms or even entire genome-resolved microbial communities. Micromeda
provides tools that can scale with these increasing datasets. Micromeda-client can be used
to visually compare the pathways of multiple organisms, and Pygenprop can examine the
possessed pathways of thousands. Micromeda’s improved user interface design and ability
to connect pathway annotations to protein sequences will improve the throughput at which
researchers can perform pathway analysis.

5.2 Future Improvements to Micromeda

As discussed in Section 1.5, the summary of each chapter of the thesis examines potential
improvements to the component that the chapter reviews. However, some substantial
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improvements require modifications to multiple parts of the Micromeda platform or are
outside the scope of previous chapters. These changes are discussed in the subsections
below.

5.2.1 Creation of an Automated Pipeline for Rapid and Easy
Generation of Micromeda Files

Currently, there is no automated pipeline that users can apply to generate Micromeda files.
As detailed in Section 1.4, users are required to install and run three CLI bioinformatics
tools on their organisms’ raw genome sequences to build Micromeda files. For convenience,
an automated bioinformatics pipeline should be developed that would first install all these
bioinformatics tools and later run them in series on user-supplied genomes. Components
of the pipeline could be deployed via Conda (conda.io) and run in Conda environments
to prevent these components from interfering with software installed previously. Pipeline
automation tools such as Snakemake [89] or Nextflow [46] could be used to develop such
a pipeline. These tools ensure that steps in the pipeline are executed in the correct order
and allow for these steps to be scaled out in parallel if multiple organism’s genomes are to
be processed.

5.2.2 Add the Option to Assign Properties According to Per-
centage Completeness Rather Than Categorically.

Currently, the heat map generated by Micromeda is coloured according to property as-
signments that follow a discrete scale. Each property is assigned YES, PARTIAL, or NO
support and is tinted to match. It should be noted that the algorithm employed to generate
these assignments uses only the presence of required steps for a property in its calculations
(see Subsection 2.3.2). If even a single required step is not supported, then the parent prop-
erty is assigned PARTIAL support. If Micromeda is applied to incomplete genomes, such
as those generated from metagenomes, then many genes encoding for proteins that support
property steps may be missing. These missing genes would result in many properties being
assigned PARTIAL support.

Users may find it useful to be able to quantify the level of support for each assigned
property along a continuous scale. This change would address these potentially high levels
of PARTTAL property assignments created by running Micromeda on incomplete genomes.
For example, properties that have more of their steps supported could be given higher
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values than those that are incomplete. Non-required steps could also influence such a
continuous scale. In the context of a heat map, these continuously scaled assignments of
support would be assigned different shades of the same colour.

Algorithms for calculating levels of PARTTAL support for biochemical pathways have
been developed before. For example, MAPLE [146], a KEGG-based pathway annotation
server, can calculate the module completion ratio (MCR) (i.e., continuous levels of support
based on the presence of pathway steps) for each module in the KEGG database. KEGG
modules are roughly equivalent to higher level genome properties. MCRs are calculations
of the level of completeness of individual pathways that take into account that multiple
different enzymes may catalyze some pathway steps. These ratios are calculated using
custom “boolean algebra-like equations” generated for each KEGG module [147]. These
equations take KO annotations (see Section 4.8, Fig.4.9, and [100]) of an organism’s pro-
teins as input. KO annotations are equivalent to the step evidence used to support genome
property steps.

Pygenprop could also implement a similar “completeness ratio” algorithm to that used
by MAPLE. Much of the logic encoded in MAPLE’s “boolean algebra-like equations” is
already built into the Genome Properties database itself. For example, the record for each
genome properties already records the InterPro domains, which represent multiple enzyme
families, that can be used to support a single step. The steps required for individual
properties are also codified. Calculation of “completeness ratios” for genome properties
may be complicated by the fact that several genome properties rely on the presence of
others (see Subsection 1.4.2), unlike KEGG modules, which are only supported by KO
annotations.

Pygenprop could implement such a “completeness ratio” based assignment system by
providing the library with a separate set of functions for calculating genome property
assignments. The library could then be modified to calculate either discrete or continuous
assignments for individual properties. These continuous assignments could be stored in
Micromeda files or generated dynamically. Micromeda’s interface could be modified to have
a user interface switch that would allow users to switch their current heat map between
displaying property assignments as either YES, NO, or PARTIAL or as a percentage of
step completeness. Micromeda-Server would have to be modified to provide an endpoint
(Section 3.4) for these serving completeness-based property assignments to Micromeda-
Client.
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5.3 Recommendations for Future Development

Researchers are scaling up their research projects from studying the capabilities of indi-
vidual microorganisms to looking at the functional capabilities of entire microbial commu-
nities from a systems biology perspective. Due to its ability to programmatically compare
thousands of pathway presence and absences from multiple organisms simultaneously, Py-
genprop has the potential to form the basis of future bioinformatics tools that support
the emerging community-scale research. Such tools could use patterns in the presence and
absence of pathway steps found in organisms from a single environment to detect patterns
of interspecies cross-feeding. Pygenprop’s integration with the Python data science ecosys-
tem could be leveraged to build classifiers that automatically identify organisms predicted
to carry out specific ecosystem functions. When combined with culture condition infor-
mation found in databases such as the Bacterial Diversity Metadatabase (BacDive) [130],
Pygenprop could be used to develop classifiers that use the presence and absence of genome
properties to predict an organism’s favoured growth conditions. If such a tool was applied
to multiple organisms from an environment, the data produced could be potentially used
to build tools that predict how microbial communities will shift in response to changes in
environmental conditions. It is recommended that future users of Pygenprop explore the
possibility of building such tools.

5.4 Summary

Micromeda is a set of tools that allow users to make rapid comparisons of the pathways
possessed by multiple organisms. Although there are many improvements to be made
to the software, the current version of the tool is robust and provides users with new
capabilities with regards to pathway analysis. The platform should be maintained and
further expanded upon in terms of both user interface and overall features. Micromeda
already provides users with a faster way to perform pathway analysis and future improved
versions, with improved performance and capabilities, will help users even more. It is
hoped that Micromeda will garner wide adoption by the scientific community.
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