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Abstract

A k-colouring of a graph G is an assignment of at most k colours to the vertices of
G so that adjacent vertices are assigned different colours. The reconfiguration graph of
the k-colourings, Rk(G), is the graph whose vertices are the k-colourings of G and two
colourings are joined by an edge in Rk(G) if they differ in colour on exactly one vertex.
For a k-colourable graph G, we investigate the connectivity and diameter of Rk+1(G). It
is known that not all weakly chordal graphs have the property that Rk+1(G) is connected.
On the other hand, Rk+1(G) is connected and of diameter O(n2) for several subclasses of
weakly chordal graphs such as chordal, chordal bipartite, and P4-free graphs.

We introduce a new class of graphs called OAT graphs that extends the latter classes
and in fact extends outside the class of weakly chordal graphs. OAT graphs are built from
four simple operations, disjoint union, join, and the addition of a clique or comparable
vertex. We prove that if G is a k-colourable OAT graph, then Rk+1(G) is connected
with diameter O(n2). Furthermore, we give polynomial time algorithms to recognize OAT
graphs and to find a path between any two colourings in Rk+1(G).

Feghali and Fiala defined a subclass of weakly chordal graphs, called compact graphs,
and proved that for every k-colourable compact graph G, Rk+1(G) is connected with
diameter O(n2). We prove that the class of OAT graphs properly contains the class of
compact graphs. Feghali and Fiala also asked if for a k-colourable (P5, co-P5, C5)-free
graph G, Rk+1(G) is connected with diameter O(n2). We answer this question in the
positive for the subclass of P4-sparse graphs, which are the (P5, co-P5, C5, P , co-P , fork,
co-fork)-free graphs.
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Chapter 1

Introduction

A reconfiguration framework consists of states and transitions between states. The states
represent feasible solutions to a source problem and there is a transition between states if
the corresponding feasible solutions satisfy a predefined adjacency relationship. Reconfig-
uration has been considered with many different source problems (see e.g. [51]) and these
reconfiguration problems have a wide range of applications. In this thesis, we focus on the
reconfiguration of vertex colouring.

The reconfiguration graph of the k-colourings, Rk(G), is the graph whose vertices are
the k-colourings of G and two colourings are joined by an edge in Rk(G) if they differ in
colour on exactly one vertex. See Figure 1 for an example of a 2-colourable graph G and
a small portion of R3(G).

Reconfiguration of vertex colouring can be used to model real-world problems, for
example in the reassignment of frequencies in a wireless network. Cereceda also noticed that
reconfiguration of vertex colouring was used in the study of statistical physics, in particular,
in the study of the Glauber dynamics of an anti-ferromagnetic Potts model (see [14]). These
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Figure 1.1: An example of a graph G and a subgraph of R3(G).
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applications have motivated many researchers to study colouring reconfiguration, leading
to new and interesting proof techniques to solve these problems.

Two such problems are concerned with the connectivity and diameter of Rk(G). The
first problem is to determine if for any two colourings, it is always possible to reconfigure
one colouring into the other by recolouring a single vertex at a time while ensuring that
all intermediate colourings remain proper. The second problem is to determine an upper
bound on the number of recolourings needed to reconfigure one colouring to another.

In this thesis, we only consider reconfiguration of vertex colouring. We note that several
variants of graph colouring have been considered for reconfiguration including list colouring,
edge colouring, acyclic colouring, and equitable colouring. The vertex colouring variant has
also been considered with a different reconfiguration step. Instead of recolouring a single
vertex at each step, the colours of a Kempe chain are interchanged (see Section 3.1.2).

We introduce a class of graphs which we call OAT graphs that can be constructed from
four simple operations. We will prove that OAT graphs have nice properties for colouring
reconfiguration.

Definition 1. A graph G is an OAT graph if it can be constructed from single vertex graphs
with a finite sequence of the following four operations. Let G1 = (V1, E1) and G2 = (V2, E2)
be vertex-disjoint OAT graphs.

1. Taking the disjoint union of G1 and G2, defined as (V1 ∪ V2, E1 ∪ E2).

2. Taking the join of G1 and G2, defined as (V1 ∪ V2, E1 ∪ E2 ∪ {xy | x ∈ V1, y ∈ V2}).

3. Adding a vertex u /∈ V1 comparable to vertex v ∈ V1, defined as (V1 ∪ {u}, E1 ∪ {ux |
x ∈ X}), where X ⊆ N(v).

4. Attaching a complete graph Q = (VQ, EQ) to a vertex v of G1, defined as (V1∪VQ, E1∪
EQ ∪ {qv | q ∈ VQ}).

These operations are summarized in Figure 1.2. The class of OAT graphs also includes
graphs that are not perfect as illustrated in Figure 1.3. However, for any graph G in this
class, the chromatic number of G is equal to the clique number of G.

Observation 1. If G is an OAT graph, then χ(G) = ω(G).

Specifically, the chromatic number and clique number of an OAT graph changes with
each operation as follows.
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G1 G2

Disjoint union

G1 G2

Join

N(u)

N(v)

Adding a comparable
vertex

v u

v
G

Q

Attaching a clique

Figure 1.2: The four operations that construct OAT graphs. A dashed line indicates no
edge.

1. If G is the disjoint union of the graphs G1 and G2, then χ(G) = max{χ(G1), χ(G2)}
and ω(G) = max{ω(G1), ω(G2)}.

2. If G is the join of the graphs G1 and G2, then χ(G) = χ(G1) + χ(G2) and ω(G) =
ω(G1) + ω(G2).

3. If G is obtained by adding a comparable vertex to a graph H then χ(G) = χ(H) and
ω(G) = ω(H).

4. If G is obtained by attaching a complete graph Q to a graph H, then χ(G) =
max{χ(H), |Q|+ 1} and ω(G) = max{ω(H), |Q|+ 1}.

Up to the knowledge of the author, this is the first time that results on the diameter
of Rk+1(G) have been proven for a class that includes graphs which are not perfect. Next,
we give several observations to help the reader gain intuition on how to construct simple
graph classes using the operations given in Definition 1.

Observation 2. The complete graph Kn is an OAT graph for every n ≥ 1.

Proof. The graph Kn can be constructed by repeatedly applying the join operation with
single vertices.

Observation 3. The complete bipartite graph Kp,q is an OAT graph for every p, q ≥ 1.

Proof. To construct Kp,q, first construct each bipartite set using the disjoint union opera-
tion. Then, apply the join operation between the bipartite sets.

3



Construct K3 Add comparable Add comparable Add comparable

Figure 1.3: Constructing an OAT graph that is not perfect.

Observation 4. The path Pn is an OAT graph for every n ≥ 1.

Proof. The graph Pn can be constructed from a single edge by repeatedly adding a pendant
vertex, which is also a comparable vertex.

Observation 5. The cycle Cn is not an OAT graph for n ≥ 5 but there exist OAT graphs
that contain Cn as an induced subgraph for every n ≥ 3.

Proof. First observe that no operation could have been used to construct the graph Cn for
n ≥ 5. Since Cn is connected, it could not have been constructed from the disjoint union
operation. Since co-Cn is connected for n ≥ 5, Cn could not have been constructed from
the join operation. Since the neighbourhood of each vertex of Cn is exactly two and no
two vertices share exactly the same neighbourhood, Cn could not have been constructed
from adding a comparable vertex. Finally, since Cn is biconnected, it could not have been
constructed from attaching a clique.

To construct an OAT graph that contains C2k+1 for k ≥ 2, add k − 1 pendant vertices
to the same vertex v of a clique with three vertices. Next, add vertices of degree two that
are comparable to v to construct the cycle (see also Figure 1.3). The graph C2k+1 can then
be obtained by deleting the vertex v. To construct an OAT graph that contains C2k for
k ≥ 2, begin by constructing the star graph K1,k (see Observation 3) with center v. Next,
add k − 1 vertices of degree two comparable to v to construct the cycle. The graph C2k

can then be obtained by deleting the vertex v.

Next, we give motivation for studying OAT graphs and in particular, the reconfiguration
graph of OAT graphs. Bonamy et al. [8] asked the following question. Given a k-colourable
perfect graphG, isRk+1(G) connected with diameterO(n2)? One cannot hope for a smaller
diameter since for Pn, the path on n vertices, R3(Pn) has diameter Ω(n2) [8]. Bonamy and
Bousquet [4] answered this question in the negative, using an example of Cereceda, van
den Heuvel, and Johnson [15], who showed that there exists a bipartite graph G where
Rk+1(G) has an isolated vertex and where k can be arbitrarily large (we will see it in
Figure 3.6). Feghali and Fiala [33] also investigated this question and found an infinite
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family of weakly chordal graphs G where Rk+1(G) has an isolated vertex (we will see it in
Figure 3.14). In the same paper, Feghali and Fiala introduced a subclass of weakly chordal
graphs called compact graphs (definitions and details in Section 3.5.7). They proved that
for a k-colourable compact graph G, Rk+1(G) is connected with diameter O(n2).

The following theorem is the main result of this thesis.

Theorem 1. Let G be an OAT graph and let k ≥ χ(G). Then Rk+1(G) is connected with
diameter at most 4n2.

In addition, we prove that the class of OAT graphs contains the class of P4-free graphs,
chordal bipartite graphs, and compact graphs, unifying several results in the literature. We
also prove that the class of OAT graphs contains the class of P4-sparse graphs, for which
colouring reconfiguration results were not previously known.

Another result of this thesis is an algorithm that recognizes OAT graphs in O(n3) time.

Theorem 2. There exists an O(n3) time algorithm to test whether a given graph G on n
vertices is an OAT graph.

1.1 Organization

The rest of this thesis is organized as follows.

In Chapter 2, we provide the graph-theoretic definitions and notation used in this thesis.
We review concepts used in graph colouring and we define the main graph classes that are
discussed throughout the thesis.

In Chapter 3 we briefly review reconfiguration frameworks and define several problems
relating to reconfiguration of vertex colouring. We survey results regarding the reconfigu-
ration graph of vertex colourings with the number of colours depending on several different
graph invariants. These invariants include the maximum degree, maximum average de-
gree, degeneracy, treewidth, and Grundy number. Following this, we survey results on
the complexity of k-Colour Path and k-Colour Bounded Path. Finally, we survey
results regarding the k-recolouring diameter of a graph G where k ≥ χ(G) + 1 and where
G belongs to one of several graph classes. We also discuss the relationship between OAT
graphs and these graphs classes.

In Chapter 4, we prove our main result: If G is a k-colourable OAT graph, thenRk+1(G)
is connected with diameter O(n2).
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In Chapter 5, we prove several lemmas that together imply that OAT graphs can be
recognized in polynomial time. We give an O(n3) time algorithm to recognize OAT graphs
and provide pseudocode for the algorithm.

Finally, in Chapter 6, we summarize the results of this thesis and end with several open
problems.
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Chapter 2

Preliminaries

This chapter is dedicated to providing the notation and definitions used throughout the
thesis. In Section 2.1, we give standard graph-theoretic notation and terminology. In
Section 2.2, we define graph colouring and discuss the greedy colouring algorithm. In
Section 2.3, we introduce several classes of graphs that will be referred to in this thesis and
discuss the relationship between these classes.

2.1 Graphs

For definitions not given here, refer to the book by Diestel [24]. Throughout this thesis,
all graphs considered are finite, simple (loops and multiple edges are not permitted), and
undirected, unless otherwise stated. Let G = (V,E) be a graph. The vertex-set of G is
denoted by V (G) and the edge-set of G is denoted by E(G). We typically use n = |V (G)|
to denote the number of vertices of G, and we typically use m = |E(G)| to denote the
number of edges of G. Two vertices u, v ∈ V (G) are called adjacent in G if there is an
edge between u and v. The complement of a graph G, denoted co-G, is the graph with
vertex-set V (G) where two vertices u, v ∈ V (G) are adjacent in co-G if and only if they
are not adjacent in G. The neighbourhood of a vertex v ∈ V (G), denoted by NG(v) (or
simply N(v) if the context is clear), is the set of vertices adjacent to v in G. The closed
neighbourhood of v, denoted N [v], is N(v)∪ {v}. For u ∈ N(v), we say u is a neighbour of
v.

For an edge e = uv ∈ E(G), u and v are called the endpoints of e. A matching in a
graph G is a set M ⊆ E(G) such that no two edges in M share a common endpoint. A

7



vertex is matched if it is the endpoint of some edge in a matching. A matching M of G is
called perfect if every vertex of G is matched in M .

The degree of a vertex v, denoted by d(v), is equal to |N(v)|. A graph is said to be
d-regular if every vertex has degree d. The maximum degree of G, denoted by ∆(G), is the
maximum degree of a vertex of G. A graph is d-degenerate if for all subgraphs H of G, H
has a vertex with degree at most d.

For U ⊆ V (G), the subgraph of G induced by U , denoted by G[U ], is the graph with
vertex-set U where vertices u, v ∈ U are adjacent in G[U ] if and only if u and v are adjacent
in G. For a graph H, we say that G is H-free if G does not contain an induced subgraph
isomorphic to H. For a set of graphs H, we say that G is H-free if G is H-free for every
H ∈ H. For convenience and when the context is clear, we consider a set of vertices
U ⊆ V (G) as a subgraph, namely, the subgraph of G induced by U . We use the notation
G \ v to denote the graph obtained from G by deleting v and all edges incident to v. We
use the notation G \ U to denote the graph obtained from G by deleting all vertices of U
and all edges incident to the vertices of U . A vertex v ∈ V (G) is a cut vertex if G \ v has
more connected components than G. A separator of a graph G is a set S ⊂ V (G), such
that G \ S has more connected components than G.

We use Pn to denote the path on n vertices and Cn to denote the cycle on n vertices.
A hole is a cycle on at least five vertices and an anti-hole is the complement of a hole. A
hole is even or odd if it has an even or odd number of vertices, respectively. The girth of a
graph is the minimum number of vertices in an induced cycle. A tree is a connected graph
with no induced cycles.

The length of a path between two vertices is the number of edges in the path. The
distance between two vertices u, v ∈ V (G), denoted by d(u, v), is the minimum length of a
path between u and v. If there is no path between u and v, then d(u, v) =∞. The diameter
of a graph is the maximum distance between two vertices in the graph. For non-adjacent
vertices u, v ∈ V (G), we say that u is comparable to v if N(u) ⊆ N(v). For vertices
x, y ∈ V (G), x and y are called true twins if N(x) = N(y) and x and y are adjacent. The
vertices x and y are called false twins if N(x) = N(y) and x and y are not adjacent.

A stable set in a graph is a set of vertices with no edges between them. A graph is
bipartite if its vertex-set can be partitioned into two stable sets. The complete bipartite
graph Kp,q is the bipartite graph with p and q vertices in each bipartition, such that there
are all possible edges between them. For q ≥ 3, the graph K1,q is called a star graph and
the vertex in the bipartite set with exactly one vertex is called the center of the graph.

A clique in a graph is a set of vertices with all possible edges between them. The clique
number of G, denoted by ω(G), is the size of a largest clique in G. A graph is called
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complete if it has all possible edges. The complete graph on n vertices is denoted by Kn.
We use the term clique and complete graph interchangeably even though one refers to a
set of vertices and the other refers to a graph. For X, Y ⊆ V (G), we say that X is joined
to Y if every vertex in X is adjacent to every vertex in Y .

2.2 Graph Colouring

For a positive integer k, a k-colouring of a graph G is a function c : V (G) → S for some
finite set S with |S| ≤ k. A colouring c is called proper if c(u) 6= c(v) whenever u and v
are adjacent in G. Throughout this thesis, we only consider proper colourings and omit
the use of the word “proper”. Unless otherwise stated, we take S = {1, 2, . . . , k}. Note
that a k-colouring of a graph G induces a partition of the vertices of G into k (possibly
empty) stable sets. We refer to these stable sets as colour classes.

A graph is k-colourable if it admits a k-colouring. The chromatic number of a graph
G, denoted by χ(G), is the minimum number k for which G is k-colourable. A graph G is
perfect if for all induced subgraphs H of G, χ(H) = ω(H).

A naive method used to colour a graph is the greedy colouring algorithm. The greedy
colouring algorithm is a procedure that takes as input a graph G and an ordering of the
vertices of G and computes a colouring of G as follows. For the ordering {v1, v2, . . . , vn} of
G and for each 1 ≤ i ≤ n, colour the vertex vi with the smallest colour that has not been
used to colour a neighbour of vi. Clearly, the greedy colouring algorithm gives a proper
colouring of the vertices. However, the number of colours used in a greedy colouring can
be much larger than the chromatic number, depending on which ordering of the vertices is
used.

It is easy to see that there exists an ordering of the vertices of G such that the greedy
colouring algorithm uses the minimum number of colours. Take any χ(G)-colouring α
of G and order the vertices as follows. Start by taking all the vertices of G coloured 1,
followed by all the vertices coloured 2, and so on. Another ordering (if it exists) where the
greedy colouring algorithm will use the minimum number of colours is a perfect elimination
ordering. A perfect elimination ordering of G is an ordering {v1, v2, . . . vn} of the vertices
of G such that for 1 ≤ i ≤ n, the neighbourhood of vi in the subgraph of G induced by
{v1, v2, . . . , vi−1} is a clique. It is well known that the graphs that have perfect elimination
orderings are exactly the chordal graphs (we will define chordal graphs in the next section).
The greedy colouring algorithm will colour a graph with the minimum number of colours if a
perfect elimination ordering is given since whenever a vertex is coloured, its neighbourhood
forms a clique.
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Chordal Distance-hereditary P4-sparse
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Compact

Co-chordal

Figure 2.1: The relationship between graph classes.

2.3 Graph Classes

In this section we define several classes of graphs that have been considered for reconfigu-
ration of vertex colouring. We will review results for these classes in Section 3.5. Figure 2.1
illustrates the relationship between these graph classes. A class C is a subclass of another
class D if and only if C is a descendent of D.

Recall that a graph is bipartite if its vertex-set can be partitioned into two stable sets.
It is well known that bipartite graphs are exactly the graphs with no odd cycles. A graph
is chordal if it does not contain a cycle with four or more vertices as an induced subgraph.
It is well known that a graph is chordal if and only if it has a perfect elimination ordering
[37]. A graph is co-chordal if it is the complement of a chordal graph.

Recall that a graph is H-free if it does not contain an induced subgraph isomorphic to
H. For example, P4-free graphs do not contain the graph P4 as an induced subgraph. The
class of OAT graphs generalizes the class of P4-free graphs, also called cographs, because
they are exactly the graphs that can be constructed from single vertex graphs with the
join and disjoint union operation [22]. The following two classes generalize P4-free graphs.

Definition 2 ([41]). A graph is P4-reducible if each vertex of the graph is in at most one
induced P4.

Definition 3 ([39]). A graph is P4-sparse if for every set of 5 vertices, there is at most
one induced P4.
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Another class of graphs that generalizes the class of P4-free graphs is the class of
distance-hereditary graphs [38]. A graph G is distance-hereditary if for all connected in-
duced subgraphs H of G, and any two vertices x, y of H, the distance between x and y
in H is the same as the distance between x and y in G. The class of distance-hereditary
graphs is exactly the class of graphs that can be constructed from single vertex graphs by
adding a pendant vertex, a true twin, or a false twin [38].

A graph is weakly chordal if it does not contain a hole or an anti-hole as an induced
subgraph. A graph is chordal bipartite if it is both weakly chordal and bipartite. Recall
that a graph G is perfect if for all induced subgraphs H of G, χ(H) = ω(H). The strong
perfect graph theorem [20] states that a graph is perfect if and only if it does not contain
an induced subgraph isomorphic to an odd hole or an odd anti-hole. It is clear from this
characterization that every weakly chordal graph is perfect. In fact, many classes of graphs
discussed in this thesis are subclasses of perfect graphs. For example, bipartite, P4-free,
P4-sparse, distance-hereditary, chordal, co-chordal, compact, and weakly chordal graphs
are all classes of perfect graphs.

A graph is planar if it can be drawn in the plane with points for vertices and curves
for edges such that edges only meet at vertices. A plane graph is a planar graph drawn
in such a way. The faces of a plane graph are the regions of the plane bounded by the
edges of the graph, including the unbounded outer region. Euler’s formula states that for
a connected plane graph with n vertices, m edges, and f faces, n−m+f = 2. The famous
four-colour theorem states that every planar graph is 4-colourable [2].

11



Chapter 3

Literature Review

In this chapter, we survey results on reconfiguration of vertex colouring with various restric-
tions on the number of colours and for various graph classes. In Section 3.1 we introduce
the general notion of reconfiguration and discuss reconfiguration of graph colouring. In
Section 3.2, we survey results concerning the connectivity and diameter of Rk(G) where
the parameter k is defined in terms of several graph invariants, including the maximum
degree, maximum average degree, and the Grundy number. In Section 3.3, we survey re-
sults on Cereceda’s conjecture and the cases for which it has been proven. In Section 3.4,
we survey results on the complexity of several reconfiguration problems. In Section 3.5
we survey results on the connectivity and diameter of Rk(G) where the parameter k is in
terms of the chromatic number.

3.1 Reconfiguration

In this section, we give definitions and notation for reconfiguration problems that are dis-
cussed throughout the thesis. Reconfiguration frameworks consist of states and transitions
between states usually modelled by a reconfiguration graph. We saw these briefly in Figure
1.1 but give the detailed definition here. The nodes of the reconfiguration graph represent
feasible solutions to a source problem and there is an edge between two nodes in the re-
configuration graph if the corresponding feasible solutions satisfy a predefined adjacency
relationship. This adjacency relationship is called a reconfiguration step and is a transfor-
mation rule that transforms one feasible solution into another. A reconfiguration sequence
is a path between two nodes in the reconfiguration graph.
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Reconfiguration problems have various applications, for example modelling dynamic
situations for which a feasible solution is known but for which a more desirable solution is
wanted. These applications lead to studying the following problems on the reconfiguration
graph. The simplest problem is about the existence of a path between two nodes in the
reconfiguration graph. Given two nodes x and y in the reconfiguration graph, is there a
reconfiguration sequence between x and y? The second problem is about the connectivity of
the reconfiguration graph. For all pairs of nodes x and y, is there a reconfiguration sequence
between x and y? The third problem is about the diameter of the reconfiguration graph.
That is, what is the maximum length of a shortest reconfiguration sequence between any
two nodes in the reconfiguration graph? And finally, the most difficult problem is about
finding a shortest path between two nodes. Given two nodes x and y in the reconfiguration
graph, what is a shortest reconfiguration sequence between them? Refer to [51] for a survey
on reconfiguration.

3.1.1 Colouring Reconfiguration

In this thesis, we focus on the reconfiguration graph of vertex colourings, defined as follows.

Definition 4. Given a k-colourable graph G, the reconfiguration graph Rk(G) is the graph
whose nodes are the proper k-colourings of G and two nodes are joined by an edge in Rk(G)
if the corresponding colourings differ in colour on exactly one vertex.

A graph G is k-mixing if Rk(G) is connected. The mixing number of a graph G is the
minimum k for which G is k-mixing. The k-recolouring diameter of G is the diameter of
Rk(G). A k-colouring of G is called frozen if it is an isolated vertex in the reconfiguration
graph Rk(G). That is, a k-colouring for which all k colours appear on the closed neigh-
bourhood of every vertex. A simple way to show that a graph G is not k-mixing is to
exhibit a frozen k-colouring of G.

There are many problems that have been studied in the area of reconfiguration of vertex
colouring. We define several of these problems here.

k-Mixing
Instance: A k-colourable graph G.
Question: Is G k-mixing (i.e. is Rk(G) connected)?

k-Colour Path
Instance: A graph G and two k-colourings of G, α and β.
Question: Is there a path between α and β in Rk(G)?
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k-Colour Bounded Path
Instance: A graph G, two k-colourings of G, α and β, and a positive integer l.
Question: Is there a path of length at most l between α and β in Rk(G)?

We survey results regarding the complexity of these problems in Section 3.4.

3.1.2 Reconfiguration with Kempe changes

Reconfiguration of vertex colouring has also been considered with a different reconfiguration
step, called a Kempe change. Let α be a colouring of G and let c and d be two distinct
colours of α. Let G(c, d) denote the subgraph of G induced by the vertices coloured c
and d in α. A Kempe chain is a connected component of G(c, d). The Kempe change
reconfiguration step interchanges the colours of some Kempe chain of G. Two colourings
are Kempe equivalent if each can be obtained from the other by a sequence of Kempe
changes. Kempe changes were introduced by Kempe in his failed attempt at proving the
four colour theorem. Next we survey some results on Kempe equivalence but note that the
rest of this thesis will not discuss reconfiguration using Kempe changes.

Meyniel [49] proved that all 5-colourings of a planar graph are Kempe equivalent. This
result was generalized by Las Vergnas and Meyniel [47] who proved that all 5-colourings of a
K5-minor free graph are Kempe equivalent. Mohar [50] proved that all (k+1)-colourings of
a k-colourable planar graph are Kempe equivalent. In the same paper, Mohar conjectured
the following.

Conjecture 1 ([50]). For k ≥ 3, all k-colourings of a k-regular connected graph that is
not a complete graph are Kempe equivalent.

Conjecture 1 was disproven for the case k = 3 by Feghali, Johnson and Paulusma [34],
who showed that all 3-colourings of a connected 3-regular graph G are Kempe equivalent
unless G is isomorphic to K4 or the triangular prism. For k ≥ 4, Conjecture 1 was proven
by Bonamy, Bousquet, Feghali, and Johnson [6].

Theorem 3 ([6]). For k ≥ 4, all k-colourings of a k-regular connected graph that is not a
complete graph are Kempe equivalent.

3.2 Recolouring in terms of several graph invariants

In this section, we survey results on the connectivity and diameter of Rk(G) where the
parameter k is in terms of a graph invariant of G, namely the maximum degree, maximum
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Figure 3.1: A 2-colouring of P4 and a greedy 3-colouring.

average degree, and Grundy number.

3.2.1 Maximum degree

Recall that Brooks’ Theorem states that every connected graph G is ∆(G)-colourable
unless G is isomorphic to a complete graph or an odd cycle, in which case G is (∆(G) +1)-
colourable. Jerrum [45] proved the following, relating the mixing number and the maximum
degree of a graph.

Theorem 4 ([45]). For any graph G and k ≥ ∆(G) + 2, G is k-mixing.

Feghali, Johnson, and Paulusma proved the following analogue to Brooks’ Theorem in
terms of the reconfiguration graph.

Theorem 5 ([35]). Let G be a connected graph that is not isomorphic to an odd cycle or
a complete graph, and let k ≥ ∆(G) + 1. For a k-colouring α of G, if α is not frozen, then
there exists a ∆(G)-colouring γ such that the distance between α and γ in Rk(G) is O(n2).

Furthermore, for ∆(G) ≥ 3, the authors showed that the reconfiguration graph
R∆(G)+1(G) consists of isolated vertices and at most one non-trivial component that has di-
ameter O(n2). Bonamy, Bousquet, and Perarnau [7] investigated the proportions of frozen
colourings to the total number of colourings. In particular, they showed that the number
of frozen colourings is exponentially smaller than the total number of colourings. They
also showed that frozen colourings may exist even for graphs of arbitrarily large girth.

3.2.2 Grundy number

Recall the greedy colouring algorithm discussed in Section 2.2. Note that the greedy
colouring algorithm may use more colours than the minimum (see Figure 3.1). The Grundy
number of G, denoted by χg(G), is the maximum k over all vertex orderings for which the
greedy colouring algorithm will output a k-colouring of G.

Bonamy and Bousquet proved the following theorem relating the mixing number of a
graph and the Grundy number.
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Theorem 6 ([4]). For any graph G and k ≥ χg(G)+1, G is k-mixing and the k-recolouring
diameter of G is at most 4 · χ(G) · n.

This result improves the bound given by Jerrum (Theorem 4) due to the following.
One can easily see that χg(G) ≤ ∆(G) + 1 since each vertex of G has at most ∆(G)
neighbours and so a greedy colouring will not use more than ∆(G) + 1 colours. Note that
there exist graphs where this bound is tight. For example, let G be the complete bipartite
graph Kp,p minus a perfect matching (see Figure 3.6 on page 24). Then χ(G) = 2 but
χg(G) = p = ∆(G) + 1 (order the vertices in Figure 3.6 from left to right and top to
bottom). Also note that there exist graphs G for which χg(G) is arbitrarily smaller than
∆(G), for example the star graphs K1,p.

3.2.3 Maximum average degree

The maximum average degree of a graph G, denoted mad(G), is the maximum average
degree of a non-empty induced subgraph H of G. Formally, mad(G) is defined as follows.

mad(G) = max
∅6=H⊆G

2|E(H)|
|V (H)|

It can be shown using Euler’s formula that planar graphs, planar graphs of girth 5, and
triangle-free planar graphs have maximum average degree strictly less than 6, 7/2, and 4,
respectively.

Bousquet and Perarnau proved the following theorem relating the maximum average
degree of a graph with its reconfiguration graph.

Theorem 7 ([13]). Let d and k be such that k ≥ d + 1. For every ε > 0 and every graph
G with mad(G) = d − ε, there exists a constant c := c(d, ε) such that the k-recolouring
diameter of G is O(nc).

This was improved by Feghali [31] who proved a bound of O(n(log n)d). This theorem
has several implications on Cereceda’s conjecture for classes of planar graphs. We will
review this now.

3.3 Cereceda’s Conjecture

In this this section, we survey results on the reconfiguration graph Rk(G) where the pa-
rameter k depends on the degeneracy of G.

16



Recall that a graph is d-degenerate if for all subgraphs H of G, H has a vertex with
degree at most d. If a graph is d-degenerate, then there exists an ordering of the vertices
of G, v1, v2, . . . , vn, such that vi has at most d neighbours in v1, v2 . . . , vi−1 for 1 ≤ i ≤ n.
We call this ordering a d-degenerate ordering of the vertices of G. Note that for a d-
degenerate graph G, the greedy colouring algorithm will output a (d+ 1)-colouring of G if
a d-degenerate ordering is given.

Cereceda [14] proved that for a d-degenerate graph G and k ≥ 2d+1, the k-recolouring
diameter of G is O(n2). This was improved by Bousquet and Heinrich [12] who showed
that if k ≥ 3

2
(d+1) then the k-recolouring diameter of G is O(n2). Bousquet and Perarnau

[13] showed that for k ≥ 2d + 2 the k-recolouring diameter of G is at most (d + 1) · n.
Bousquet and Bartier [11] proved that for any d-degenerate chordal graph G and k ≥ d+4,
the k-recolour diameter of G is at most f(∆(G)) · n. It was shown by Dyer [27] and
independently by Cereceda, van den Heuvel, and Johnson [15] that for a d-degenerate
graph G and k ≥ d + 2, G is k-mixing. However, the k-recolouring diameter exhibited by
these constructive proofs is O(cn) for some constant c. Cereceda [14] conjectured that the
exponential upper bound could be improved to a quadratic bound.

Conjecture 2 (Cereceda’s Conjecture [14]). For a d-degenerate graph G and k ≥ d + 2,
the k-recolouring diameter of G is O(n2).

This is an open problem that has become known as Cereceda’s Conjecture. If Cereceda’s
conjecture is proven, this upper bound would be tight due to the following. Bonamy et
al. [8] proved a lower bound on the diameter of Rk+1(G) for the path Pn. They gave
two 3-colourings of Pn that are at distance Ω(n2) in R3(G). From this, it is not hard to
construct a 2-degenerate chordal graph G and two 4-colourings of G that are at distance
Ω(n2) (see Figure 3.2). One cannot hope for fewer than d + 2 colours since, for example,
the complete graph Kn is (n− 1)-degenerate and every n-colouring of Kn is frozen.

Cereceda’s conjecture has been proven for 1-degenerate graphs (trees) [8], and for 2-
degenerate graphs with maximum degree at most 3 [35]. Cereceda’s conjecture is still
open for d ≥ 2 but has been solved for several graph classes, including chordal graphs,
graphs of bounded treewidth, and distance-hereditary graphs. Note that chordal graphs
are (χ(G) − 1)-degenerate since every chordal graph has a perfect elimination ordering
which is also a (χ(G)−1)-degenerate ordering. Bonamy et al. [8] proved that for a chordal
graph G and k ≥ χ(G) + 1, G is k-mixing and has k-recolouring diameter O(n2), proving
Cereceda’s conjecture for this class (we will return to this in Section 3.5.6).

A chordal completion of a graph G is a chordal graph H obtained from G by adding
edges. The treewidth of a graph G is equal to the minimum of ω(H) − 1 over all chordal
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completions H of G. Note that a graph G with treewidth at most d is d-degenerate since
it is the subgraph of a chordal graph with clique number at most d + 1. Thus, a perfect
elimination ordering of H is also a d-degenerate ordering of G. Bonamy and Bousquet
[4] proved the following theorem, thereby confirming Cereceda’s conjecture for graphs of
bounded treewidth.

Theorem 8 ([4]). For a graph G and k ≥ tw(G) + 2, G is k-mixing and has k-recolouring
diameter O(n2).

Feghali [29] gave a short proof of this theorem which can be transformed into an algo-
rithm that finds a path between two tw(G) + 2 colourings of G in quadratic time. Graph
classes with bounded treewidth include outerplanar graphs and Apollonian networks, which
we define next. A graph is outerplanar if it is isomorphic to a plane graph O such that
every vertex of O is on the outer face. A graph is an Apollonian network if it is isomorphic
to a plane graph that can be constructed from a triangle drawn in the plane by repeat-
edly adding vertices of degree 3 to some triangular face. Note that there exist graphs with
bounded degeneracy and unbounded treewidth, for example a

√
n×
√
n grid. We note that

a
√
n×
√
n grid is an OAT graph since it can be constructed from an edge by repeatedly

adding comparable vertices.

Cereceda’s conjecture is open even if the “O(n2) recolouring diameter” is relaxed to
any polynomial recolouring diameter. For many years, the best known bound on the k-
recolouring diameter of a d-degenerate graph, for k ≥ d + 2, was O(kn) as given by Dyer
et al. [27]. Recently, Bousquet and Heinrich greatly improved this bound.

Theorem 9 ([12]). For a d-degenerate graph G and k ≥ d+ 2, the k-recolouring diameter
of G is O(nd+1).

This implies that for a fixed constant d and k ≥ d + 2, the k-recolouring diameter
of a d-degenerate graph is polynomial in n. In particular for 2-degenerate graphs, the
4-recolouring diameter is O(n3).

3.3.1 Planar graphs

In this section, we discuss results on Cereceda’s conjecture relating to planar graphs. It
can be shown using Euler’s formula that every planar graph is 5-degenerate and every
triangle-free planar graph is 3-degenerate. As observed by Bonamy and Bousquet [4],
there exist planar graphs that are not 5-mixing and not 6-mixing which is shown by the
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Figure 3.2: A 2-degenerate chordal outerplanar graph and two 4-colourings which are at
distance Ω(n2) [4].
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Figure 3.3: A frozen 5-colouring and frozen 6-colouring of a planar graph [14].
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frozen colourings in Figure 3.3. Cereceda’s conjecture would imply that the 7-recolouring
diameter of a planar graph is O(n2).

The result of Bousquet and Perarnau [13] relating the maximum average degree of
a graph and the recolouring diameter of a graph (see Section 3.2) implies that the 8-
recolouring diameter of a planar graph is polynomial in n. This bound was improved by
Feghali [31] who showed that the 8-recolouring diameter of a planar graph is O(n(log n)7).
Eiben and Feghali [28] showed that the 7-recolouring diameter of a planar graph is at most
2O(
√
n). Feghali [32] showed that the 10-recolouring diameter of a planar graph is at most

n2. This was improved by Dvořák and Feghali [26] who showed that the 10-recolouring
diameter of a planar graph is at most 8n. The results of Bousquet and Heinrich [12] imply
that the 7-recolouring diameter of a planar graph is O(n6) and for k ≥ 9, the k-recolouring
diameter of a planar graph is O(n2).

As mentioned above, it can be shown using Euler’s formula that every triangle-free
planar graph (and thus every planar bipartite graph) is 3-degenerate. Bousquet and Hein-
rich [12] proved that for a planar bipartite graph G, R5(G) has diameter O(n2), proving
Cereceda’s conjecture for this class of graphs. Bousquet and Perarnau [13] proved that the
6-recolour diameter of a triangle-free planar graph is polynomial in the number of vertices.
This was improved by Feghali [31] (see Section 3.2) who proved a bound of O(n(log n)5).
The same theorem of Feghali proves Cereceda’s conjecture for planar graphs of girth 5
since these graphs are 3-degenerate and have maximum average degree at most 7/2.

3.4 Complexity of Reconfiguration

In this section, we survey results regarding the complexity of the k-Colour Path and
k-Colour Bounded Path problems (see Section 3.1 for the problem statements).

There is a general pattern that is followed between the complexity of a source problem
and the complexity of finding a path between two solutions in the reconfiguration graph.
In particular, if a source problem is NP-complete then the problem of finding a path be-
tween two solutions in the reconfiguration graph is PSPACE-complete. A known exception
that breaks this pattern is the 3-colouring problem. That is the decision problem of
determining whether a given graph G is 3-colourable. We will see that the correspond-
ing problem on the reconfiguration graph 3-Colour Path was shown to be solvable in
polynomial time.
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3.4.1 Complexity of k-Colour Path

Recall that k-Colour Path is the problem, given a k-colourable graph G and two k-
colourings α and β of G, determine whether there is a reconfiguration sequence between α
and β in Rk(G).

The complexity class PSPACE is the class of decision problems that can be solved by
a deterministic Turing machine using an amount of space that is polynomial in the size
of the input. Similarly, the class NPSPACE is the class of decision problems that can be
solved by a non-deterministic Turing machine using an amount of space that is polynomial
in the size of the input (see for example [57]). Cereceda [14] showed that k-Colour Path
and k-Mixing are in fact in PSPACE. It is actually shown that k-Colour Path is
in NPSPACE, and by Savitch’s Theorem [56], which states that PSPACE=NPSPACE, k-
Colour Path is in PSPACE.

For k = 2, the k-Colour Path problem is trivial (see Section 3.5.1). Cereceda,
van den Heuvel, and Johnson [17] examined the 3-Colour Path problem. The authors
proved that the decision problem 3-Colour Path is solvable in polynomial time. The
proof characterizes the instances for which a reconfiguration sequence exists and either
exhibits a reconfiguration sequence or exhibits a structure for which no reconfiguration
sequence can exist. The authors also prove that the diameter of every component of
R3(G) is O(n2), and there exist 3-colourable graphs G where a component of R3(G) has
diameter Ω(n2).

Bonsma and Cereceda [9] showed that for all k ≥ 4, k-Colour Path is PSPACE-
complete. The authors also showed that k-Colour Path remains PSPACE-complete for
bipartite graphs, for planar graphs and 4 ≤ k ≤ 6, and for planar bipartite graphs and
k = 4.

They also defined a class of graphs {GN,k | k ≥ 4, N ∈ N} such that GN,k has size
O(N2) and GN,k has two k-colourings α and β in the same component of Rk(GN,k) such
that the distance between α and β is Ω(2N). The fact that there exist colourings at
superpolynomial distances is not surprising since the decision problem k-Colour Path
is PSPACE-complete.

3.4.2 Complexity of k-Colour Bounded Path

Recall that k-Colour Bounded Path is the problem, given a graph G, two k-colourings
of G, α and β, and a positive integer l, determine whether there is a path of length at most
l between α and β in Rk(G). Johnson, Kratsch, Kratsch, Patel, and Paulusma [46] showed
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that 3-Colour Bounded Path can be solved in O(n+m) time, and their algorithm finds
a shortest path between two 3-colourings, generalizing the work of Cereceda et al. [17] on
the 3-Colour Path problem. A polynomial time algorithm cannot be expected for k-
Colour Bounded Path and k ≥ 4, since using a reduction from k-Colour Path, it
can be observed that in general, k-Colour Bounded Path is PSPACE-hard. Note that
there are at most kn distinct k-colourings of a graph, so a path between two k-colourings
exists if and only if a path exists of length at most kn. This only establishes weak PSPACE-
hardness since a chosen value of l = kn is exponential in the input size. Bonsma, Mouawad,
Nishimura, and Raman [10] showed that k-Colour Bounded Path is NP-complete when
l is encoded in unary, and thus is strongly NP-hard.

A parameterized problem is a decision problem in which every problem instance I has
an associated integer parameter p. A parameterized problem is fixed parameter tractable
(FPT) if every instance I can be solved in O(f(p)|I|c) time where f is a computable function
that depends only on p and where c is a constant independent of p (see for example [25]
[36]). It was shown independently by Bonsma et al. [10] and Johnson et al. [46] that k-
Colour Bounded Path is FPTwhen parameterized by k + l, although the algorithms
given in these two papers are quite different. Bonsma et al. [10] proved that k-Colour
Bounded Path can be solved in O((k · l)l2+l · ln2) and Johnson et al. [46] proved that
k-Colour Bounded Path can be solved in time O(2k(l+1) · ll · poly(n)).

3.5 Recolouring and the chromatic number

Now we turn to reconfiguration results where the parameter k depends on the chromatic
number χ(G). As we will see in Section 3.5.1, the case k = χ(G) is well-understood. We
therefore focus on the case k ≥ χ(G) + 1. There are many results here, and a major
motivation of this thesis was to find a graph class that unifies and generalizes many of
these results. We therefore not only survey the results but also study how the respective
graph classes relate to OAT graphs. Figure 3.4 gives an overview of the graph classes.

3.5.1 Recolouring with the minimum number of colours

Here we discuss the reconfiguration graph Rk(G) for k = χ(G). We first consider the case
when k = χ(G) = 2, so G is bipartite. The following observations are due to Cereceda, van
den Heuvel, and Johnson [15]. For any graph G with χ(G) = 2, R2(G) is disconnected. If
G is connected, then R2(G) consists of two frozen colourings. If G is not connected, then
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Perfect

Weakly Chordal OATBipartite

Chordal Distance-hereditary P4-sparse

P4-free Chordal Bipartite

Compact

Co-chordal

(k + 1)-mixing

may not be (k + 1)-mixing

Figure 3.4: Classes of graphs for which it is known whether a k-colourable graph in the
class is (k + 1)-mixing. Reconfiguration results for OAT graphs and P4-sparse graphs are
new results of this thesis.

there is a path between two colourings α and β in R2(G) if and only if for every non-trivial
connected component H of G, α and β agree on colour for every vertex of H. Furthermore,
suppose G has p isolated vertices and q non-trivial connected components. Then R2(G)
has 2q connected components, each of which is a p-dimensional hypercube.

Next, consider the case when k = χ(G) = 3. For any graph G with χ(G) = 3, R3(G)
is disconnected [15]. For every k ≥ 4, there exist k-chromatic graphs G for which Rk(G)
is connected and for which Rk(G) is disconnected. It is easy to see that for n ≥ 2, every
n-colouring of Kn is a frozen colouring. Cereceda, van den Heuvel, and Johnson [15] give a
family of graphs {Hk | k ∈ N} such that Hk is k-chromatic and k-mixing (see Figure 3.5).

Many classes of graphs discussed in this thesis are subclasses of perfect graphs. As
shown in the next section, for a k-colourable perfect graph G, it is not necessarily true
that Rk+1(G) is connected. This began an investigation into which subclasses of perfect
graphs have this special property. The rest of Section 3.5 is dedicated to surveying the
classes of perfect graphs for which this property has been proved or disproved.
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Figure 3.5: A k-chromatic graph that is k-mixing for k ≥ 4 [14].
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Figure 3.6: A frozen p-colouring of Lp, a complete bipartite graph minus a matching. [15]

3.5.2 Bipartite graphs

Cereceda, van den Heuvel, and Johnson [15] gave a family of bipartite graphs {Lp | p ≥ 3}
where Lp is obtained from the complete bipartite graph Kp,p by deleting the edges of a
perfect matching. They prove that for all k 6= p, Lp is k-mixing, and for k = p, Lp is not
k-mixing. See Figure 3.6 for a frozen p-colouring of Lp. We note that Lp is not an OAT
graph for any p, but every bipartite graph is an induced subgraph of an OAT graph.

Observation 6. For p ≥ 3, Lp is not an OAT graph.

Proof. We show that there is no operation that could have been used to construct Lp
from smaller graphs. Since Lp is connected, it could not have been constructed from the
disjoint union operation. Note that co-LP consists of two disjoint cliques with the edges of
a matching between them. Since co-Lp is connected, Lp could not have been constructed
from the join operation. Since every vertex of Lp has a distinct set of p − 1 neighbours,

24



v

...
...

Figure 3.7: An OAT graph L+
p with Lp as an induced subgraph.

Lp could not have been constructed by adding a comparable vertex. Finally, since Lp is
biconnected, it could not have been constructed from attaching a clique.

Observation 7. Every bipartite graph is an induced subgraph of a bipartite OAT graph.

Proof. Let B be a bipartite graph. Suppose B has p vertices in one bipartite set and q
vertices in the other bipartite set. To construct a bipartite OAT graph B+ that contains B
as an induced subgraph, first construct the star graph K1,p with center v. The p vertices of
K1,p \ v will correspond to one bipartite set of B. Since v is adjacent to all other vertices,
the q vertices in the other bipartite set of B can be added to K1,p as comparable vertices.
See Figure 3.7 for a bipartite OAT graph L+

p that contains Lp as an induced subgraph.

The reader may wonder how it is possible that for p ≥ 3, Lp has a frozen p-colouring,
while L+

p contains Lp as an induced subgraph and is p-mixing since it is a 2-colourable OAT
graph. The reason is that not all p-colourings of Lp can be extended to p-colourings of L+

p .
Note that in the frozen colouring of Lp, each bipartite set uses all p colours on its vertices.
Since u is adjacent to every vertex in one of the bipartite sets, the frozen colouring of Lp
can no longer extend to a p-colouring of L+

p since each of the p colours would appear on
the neighbourhood of u.

Cereceda, van den Heuvel, and Johnson [16] examined the 3-Mixing problem for bi-
partite graphs, since for a 3-chromatic graph G, R3(G) is not connected. The authors
characterize the bipartite graphs for which R3(G) is connected and show that the decision
problem 3-Mixing is coNP-complete. The authors also show that when the input graph
is restricted to be planar bipartite, the 3-Mixing problem is solvable in polynomial time.
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3.5.3 P4-free and P5-free graphs

Bonamy and Bousquet [4] proved that for a graph G, if k is larger than the Grundy number
of G, then G is k-mixing and the k-recolour diameter of G is at most 4 ·χ(G) ·n (see Section
3.2). It is well known that the greedy colouring algorithm will output a χ(G) colouring of
a P4-free graph G for any vertex ordering [18]. Thus, for any P4-free graph, the Grundy
number is equal to the chromatic number. Bonamy and Bousquet [4] then proved the
following result with an improved bound on the recolouring diameter for P4-free graphs.

Theorem 10 ([4]). If G is a k-colourable P4-free graph, then Rk+1(G) is connected with
diameter at most χ(G) · n.

Note that a similar result does not hold for Pt-free graphs for any t ≥ 6. For all p ≥ 3,
the graphs Lp introduced by Cereceda, van den Heuvel, and Johnson [15] are P6-free, are
2-colourable, and are not p-mixing.

In the case of P5-free graphs, Bonamy and Bousquet [4] mistakenly thought1 to have
given a 4-colourable P5-free graph G and a frozen 5-colouring of G. This graph is in fact
not P5-free as illustrated in Figure 3.8. In addition, Bonamy and Bousquet mistakenly
thought1 to have given a family of P5-free graphs {Gk | k ≥ 3} where Gk is (k + 1)-
colourable and has a frozen 2k-colouring. The graph Gk also contains an induced P5 for
every k ≥ 3 (see Figure 3.8 for an induced P5 in G3). It is again an open question whether
a k-colourable P5-free graph is (k+1)-mixing. We note that this question is open for k ≥ 3
since every 2-colourable P5-free graph is chordal bipartite.

3.5.4 P4-reducible and P4-sparse graphs

Here we recall two classes of graphs that generalize the class of P4-free graphs. Jamison
and Olario [41] introduced the class of P4-reducible graphs, which are the graphs where
each vertex is in at most one induced P4. Hoàng [39] further generalized this class to the
P4-sparse graphs, which are the graphs where for every set of 5 vertices, there is at most
one induced P4.

Jamison and Olario [43] prove that P4-sparse graphs are exactly the class of graphs that
can be constructed from single vertex graphs with the join operation, the disjoint union
operation and a third operation defined as follows (note that we only use the following
operation in the proof of Lemma 11).

1confirmed in private communication.
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Figure 3.8: Graphs mistaken to be P5-free by Bonamy and Bousquet. [4]. An induced P5

is marked with dashed edges.

Let G1 = (V1, ∅) and G2 = (V2, E2) be vertex-disjoint P4-sparse graphs with V2 =
{v} ∪K ∪R such that:

• |K| = |V1|+ 1 ≥ 2.

• K is a clique.

• R is joined to K and every vertex in R is non-adjacent to v.

• There exists a vertex v′ ∈ K such that NG2(v) = {v′} or NG2(v) = K \ {v′}.

Choose a bijection f : V1 → K \ {v′}. Define the third operation on G1 and G2 to be
the graph (V1 ∪ V2, E2 ∪ E ′) where

E ′ =

{
{xf(x) | x ∈ V1} if NG2(v) = {v′}
{xz | x ∈ V1, z ∈ K \ {f(x)}} if NG2(v) = K \ {v′}

See Figure 3.9 for an illustration of this operation. We note that every P4-sparse graph
(and thus every P4-reducible graph) is an OAT graph.

Theorem 11. Every P4-sparse graph is an OAT graph.

Proof. Let G be a P4-sparse graph. The proof is by induction on the number of vertices of
G. The claim clearly holds for single vertex graphs. Suppose G was constructed by the join
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Case 1: NG2(v) = {v′}
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Case 2: NG2(v) = K \ {v′}

Figure 3.9: The third operation defining P4-sparse graphs.

or disjoint union of the P4-sparse graphs G1 and G2. Then by the induction hypothesis,
G1 and G2 are OAT graphs and it follows that G is also an OAT graph.

Now suppose G was constructed by the third operation of P4-sparse graphs on G1 and
G2. By the induction hypothesis, G2 is an OAT graph. There are two cases to consider
depending on whether NG2(v) = {v′} or NG2(v) = K \ {v′}. First suppose NG2(v) = {v′}.
Then each vertex of V1 is a pendant vertex in G and is comparable to v′. Therefore,
G is an OAT graph since it can be constructed from G2 by adding each vertex of G1

as a comparable vertex. Now suppose NG2(v) = K \ {v′}. Then each vertex x ∈ V1 is
comparable to f(x) in G since K is a clique. Once again, G is an OAT graphs since it can
be obtained from G2 by adding each vertex of G1 as a comparable vertex.

Jamison and Olario [42] gave the complete forbidden induced subgraph characterization
for P4-sparse graphs. The class of (P5, co-P5, C5, P , co-P , fork, co-fork)-free graphs (see
Figure 3.10) is equivalent to the class of P4-sparse graphs. Feghali and Fiala left as an open
problem whether Rk+1(G) is connected with diameter O(n2) for a k-colourable (P5, co-P5,
C5)-free graph G. We answer this question in the positive for the subclass of P4-sparse
graphs.

3.5.5 Distance-hereditary graphs

Here we discuss the relationship between OAT graphs and distance-hereditary graphs and
survey results on the reconfiguration graph of a distance-hereditary graph. Recall that a
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Figure 3.10: The graphs P , co-P , fork and co-fork.

Figure 3.11: The domino, co-P5, and gem graphs.

graph G is distance-hereditary if for all connected induced subgraphs H of G, and any two
vertices x, y of H, the distance between x and y in H is the same as the distance between
x and y in G.

Although both OAT graphs and distance-hereditary graphs extend the class of P4-free
graphs, both classes contain graphs that are not members of the other class. One can show
from the definition that every distance-hereditary graph does not contain a domino, co-P5,
or gem graph as an induced subgraph [3] (see Figure 3.11). However, each of these graphs is
an OAT graph since they can be constructed from a clique by adding comparable vertices.
We also note that the class of OAT graphs does not extend the class of distance-hereditary
graphs due to the following. The graph in Figure 3.12 is a distance-hereditary graph since
it can be constructed from P4 by adding four true twins. However, this graph is not an
OAT graph since none of the four operations defining OAT graphs could have been applied
to build it.

The class of distance-hereditary graphs is a known generalization of P4-free graphs

Figure 3.12: A graph that is chordal, distance-hereditary, and not OAT.

29



(see Section 2.3 for definition and characterization). Bonamy and Bousquet [5] proved the
following result.

Theorem 12 ([5]). If G is a k-colourable distance-hereditary graph, then Rk+1(G) is con-
nected with diameter O(k · χ(G) · n2).

3.5.6 Chordal and chordal bipartite graphs

Here we survey results on the reconfiguration graph of chordal and chordal bipartite graphs.
We also examine the relationship between these graph classes and OAT graphs.

We first note that the class of OAT graphs extends the class of chordal bipartite graphs
due to the following. Bonamy et al. [8] proved that every chordal bipartite graph can
be constructed from a set of one or more isolated vertices by adding a pendant vertex
or adding a comparable vertex. Since adding a pendant vertex to any connected graph
with at least one edge is a special case of adding a comparable vertex, it follows that the
operations defining OAT graphs are sufficient for building such graphs.

Bonamy, Johnson, Lignos, Patel, and Paulusma [8] introduced a class of graphs called
k-colour-dense graphs and proved that this class of graphs contains the class of chordal
graphs and chordal bipartite graphs. The following definition of k-colour-dense is given in
[8]. For a fixed integer k ≥ 1, a k-colourable graph G is k-colour-dense if either

1. G is the disjoint union of complete graphs, each of which has at most k vertices, or

2. G has a separator S where G \S has components D and D′ with vertices u ∈ D and
v ∈ D′ such that

(a) |D| = 1 or |D ∪ S| ≤ k, and

(b) S ⊆ N(v), and

(c) the graph obtained from deleting u and v, and adding a vertex x adjacent to
N(u) ∪N(v), is k-colour-dense.

Bonamy et al. [8] proved the following results for k-colour-dense graphs.

Theorem 13 ([8]). If G is a k-colour-dense graph, then Rk+1(G) has diameter at most
2n2.
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The authors show that every k-colourable chordal graph is k-colour-dense and every
chordal bipartite graph is 2-colour-dense. Furthermore, for each k ≥ 2 and n ≥ k, there
exists a k-colourable chordal graph on n vertices that has (k+ 1)-recolour diameter Θ(n2).

We note that there exist OAT graphs that are not k-colour-dense graphs. The graph
in Figure 3.12 is chordal, and therefore k-colour-dense, but is not an OAT graph. We do
not know whether every OAT graph is a k-colour-dense graph and leave this as an open
problem.

3.5.7 Compact graphs

Recently, Feghali and Fiala [33] examined a subclass of weakly chordal graphs called com-
pact graphs defined below. A 2-pair {u, v} is a pair of non-adjacent vertices such that
every chordless path between u and v has exactly two edges. For a 2-pair {u, v}, let
S(u, v) = N(u) ∩ N(v) and let Cv denote the component of G \ S(u, v) that contains the
vertex v.

Definition 5 ([33]). A weakly chordal graph G is compact if every subgraph H of G either

• is a complete graph, or

• contains a 2-pair {x, y} such that NH(x) ⊆ NH(y), or

• contains a 2-pair {x, y} such that Cx∪S(x, y) in H induces a clique on at most three
vertices.

See also Figure 3.13. Feghali and Fiala proved that every co-chordal graph and every
3-colourable (P5, C5, co-P5)-free graph is compact [33]. We note that the class of OAT
graphs is a strict generalization of compact graphs.

Theorem 14. Every compact graph is an OAT graph but not every OAT graph is a compact
graph.

Proof. Let G be a compact graph. The proof is by induction on the number of vertices
of G. If G is a complete graph, then clearly G is an OAT graph. If not, then suppose G
contains a 2-pair {x, y} such NG(x) ⊆ NG(y). Then x is a vertex comparable to y. Since
the conditions defining compact graphs must hold for all induced subgraphs, G \ x is also
a compact graph. By the induction hypothesis, G \ x is an OAT graph. Then we can
construct G from G\x by adding back the comparable vertex x and the appropriate edges.

31



x y

z
w

Cx

S(x, y)

Cy...

Figure 3.13: A compact graph that is not a complete graph and that does not have a
comparable vertex [33].

Lastly, suppose G contains a 2-pair {x, y} such that Cx ∪ S(x, y) induces a clique on at
most three vertices in G. If S(x, y) contains two vertices then x is comparable to y and the
proof follows from the argument above. Now assume S(x, y) contains exactly one vertex
z and let w be the unique vertex in NG(x) \ NG(y) (see Figure 3.13). Then G \ {x,w} is
a compact graph and by the induction hypothesis, G \ {x,w} is an OAT graph. Then G
is an OAT graph since it can be constructed from G \ {x,w} by attaching the complete
graph on two vertices {x,w} to the vertex z. Therefore every compact graph is an OAT
graph.

Next we show that there are infinitely many OAT graphs that are not compact graphs.
Consider the infinite family of graphs constructed by attaching a complete graph with
more than three vertices to some vertex of another complete graph with more than three
vertices. By definition, every graph in this class is an OAT graph. Note that any graph
in this class does not satisfy any of the three requirements in the definition of compact
graphs.

We consider another example showing that the class of OAT graphs contains graphs
which are not compact. Note that since weakly chordal graphs are perfect, by definition
compact graphs are perfect. The graph in Figure 1.3 is not perfect but is an OAT graph
since it can be constructed from adding three comparable vertices to a clique of size three.
Therefore, not all OAT graphs are compact graphs.

Feghali and Fiala [33] prove the following result on the reconfiguration graph of a
compact graph.

Theorem 15 ([33]). If G is a k-colourable compact graph, then Rk+1(G) is connected with
diameter at most 2n2.

We note that our Theorem 1 generalizes this.
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Figure 3.14: A 3-colouring of a weakly chordal graph and a frozen 4-colouring [33].

3.5.8 Weakly chordal graphs

Feghali and Fiala [33] investigated the reconfiguration graph for the class of weakly chordal
graphs. They found an infinite family {Gk | k ≥ 3} of k-colourable weakly chordal graphs
where Rk+1(Gk) has an isolated vertex. See Figure 3.14 for a 3-colouring of G3 and a
frozen 4-colouring of G3. To see that this colouring is indeed frozen, notice that for any
vertex v, every colour either appears on the neighbourhood of v or is the colour of v.

33



Chapter 4

Recolouring OAT Graphs

In this chapter, we show that the (k + 1)-recolouring diameter of a k-colourable OAT
graph is O(n2). Our strategy uses a canonical χ(G)-colouring as a central vertex in the
reconfiguration graph Rk+1(G). For any two colourings α and β in Rk+1(G), we show how
to transform both into the canonical χ(G)-colouring γ by recolouring each vertex at most
2n times. Then to transform α to β, follow the steps from α to γ and then follow the steps
from β to γ in reverse.

In Section 4.1 we define the canonical χ-colouring of an OAT graph. In Section 4.2 we
discuss the Renaming Lemma, a method for finding a reconfiguration sequence between
two colourings of a graph, both of which induce the same partition of vertices into colour
classes. In Section 4.3 we prove our main result, that the diameter of Rk+1(G) for a
k-colourable OAT graph G is O(n2).

We also note a lower bound on the diameter of Rk+1(G). The path Pn for all n ≥ 1 is
an OAT graph with χ(Pn) = 2. Bonamy et al. [8] proved that R3(Pn) has diameter Ω(n2).
Thus, for general k-colourable OAT graphs G, the diameter of Rk+1(G) is Ω(n2).

4.1 The canonical χ-colouring

Let S be a set of k colours and let α : V (G)→ S be a k-colouring of G. The set S is called
the set of permissible colours for α and we denote S by S(α) when α is not clear from the
context. We also call α an S-colouring when wanting to emphasize its set of permissible
colours. The reason behind using this more general notation has to do with the names of
the colours and can be understood from the following example. Suppose G is constructed
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by the join of L and R. Suppose (to be concrete) that we have colourings α and β of G
on k = 5 colours. To reconfigure α to β, we will recurse on L and R. Now, it may happen
that α colours the vertices of L with {1, 4} and β colours the vertices of L with {2, 5}.
Both α and β are 2-colourings of L, but we use this more general notation to distinguish
these.

Next we define the reconfiguration graph of the S-colourings for some fixed set S. Let
RS(G) be the graph whose vertices are the S-colourings of G such that two vertices of
RS(G) are adjacent if and only if they differ by colour on exactly one vertex. By contrast,
the definition ofRk(G) assumes that S = {1, 2, . . . , k}. If |S| = k thenRS(G) is isomorphic
to Rk(G).

Let C(α) be the set of colours c such that α(v) = c for some vertex v ∈ V (G). Thus
C(α) ⊆ S(α) but they need not be equal. We say that the colour c appears in α if c ∈ C(α).
We say that a colouring α of G can be transformed into a colouring β of G in RS(G) if
there is a path from α to β in RS(G). Let H be a subgraph of G. Let nH denote the
number of vertices of H. The projection of α onto H is the colouring αH : V (H)→ S(αH)
where αH(v) = α(v) for all v ∈ V (H). There is usually a natural way to select the set of
permissible colours S(αH), but it will be specified if it is not clear from the context.

One way that clearly encodes how to construct an OAT graph is by using a tree struc-
ture.

Definition 6. Given an OAT graph G, a build-tree of G, denoted BT (G), is a rooted tree
that encodes how to construct G, and has the following properties.

1. The root node of BT (G) is G,

2. the leaf nodes of BT (G) are exactly the single vertices of G, and

3. the internal nodes of BT (G) each represent an operation that takes as input the
graphs corresponding to exactly two child nodes.

We note that a build-tree of G is not unique. For example, take the OAT graph G
constructed by attaching a complete graph to a vertex of another complete graph. The
graph G could have also been constructed by joining a single vertex to the disjoint union
of two complete graphs.

A build-tree leads to a naturally defined ordering of the vertices of G as follows. Starting
from the leftmost leaf node of BT (G) to the rightmost leaf node, order the vertices of G
from v1 to vn. For a given build-tree, we fix this ordering of vertices to force uniqueness
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Figure 4.1: An example of an OAT graph G and a build tree of G.

on the canonical χ(G)-colouring of G, defined next. In the case when a complete graph
Q with t vertices is attached to a vertex of an OAT graph H, we repeatedly use the join
operation to construct Q and also consider the vertices of Q to be given in some ordering
{q1, q2, . . . qt}. See Figure 4.1 for an example of an OAT graph G and a build tree of G.

Definition 7. Let G be an OAT graph and let C be an ordered set of χ(G) colours. Fix
a build-tree σ of G. The canonical χ-colouring of G with respect to C and σ is the χ(G)-
colouring of G constructed recursively through σ as follows.

1. If G is a single vertex v, then v is coloured with the first colour of C.

2. If G is the disjoint union of L and R, then take a canonical χ-colouring of L with
respect to the first χ(L) colours of C and a canonical χ-colouring of R with respect
to the first χ(R) colours of C.

3. If G is the join of L and R, then take a canonical χ-colouring of L with respect to
the first χ(L) colours in C and take a canonical χ-colouring of R with respect to the
next χ(R) colours in C (this is possible since |C| ≥ χ(L) + χ(R)).
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4. If G is constructed by adding a comparable vertex u to a vertex v of a graph H, then
take a canonical χ-colouring of H with respect to C and colour u the same colour as
v.

5. If G is constructed by attaching a complete graph Q to a vertex v of a graph H,
then take a canonical χ-colouring of H with respect to the first χ(H) colours of C.
Consider the vertices of Q as {q1, q2, . . .}. Colour the vertices q1, q2, . . . of Q in order
with the first |Q| colours of C \ c where c is the colour given to v in the canonical
χ-colouring of H.

Note that the canonical χ-colouring of G with respect to C and σ is unique since by
induction, at each step in the construction, there is no choice on which colour a vertex is
assigned. For the rest of this section, we assume the build-tree σ of G is fixed.

4.2 The Renaming Lemma

Our proofs use induction to recolour the subgraphs that build up the OAT graph in a fixed
construction. There are generally two steps to these proofs. The first step is to recolour
the vertices so that the partition of vertices into colour classes is the same as the target
colouring, namely the canonical χ-colouring. The second step is to rename these colours
so that the correct colour appears on the correct colour class. We rely on the Renaming
Lemma which states that once the vertices are partitioned into the desired colour classes,
we can rename each colour class to the desired colour by recolouring each vertex at most
twice.

The Renaming Lemma is an adaptation of an idea that is used in token swapping. It
was discovered by Akers and Krishnamurthy [1], independently by Portier and Vaughan
[54], and later by Pak [53]. It was also rediscovered by Bonamy and Bousquet [4] who
rephrased the lemma in terms of recolouring complete graphs. Our statement is expressed
more generally.

Lemma 1 (Renaming Lemma [4]). If α and β are two k-colourings of G that induce the
same partition of vertices into colour classes, and if S is a set of at least k + 1 colours
such that the permissible colours S(α) and S(β) are each a subset of S, then α can be
transformed into β in RS(G) by recolouring each vertex at most 2 times.

The proof of Lemma 1 uses directed graphs, and so we briefly review the notation that
is used. Let G be a directed graph. Each edge of G is considered as an ordered pair
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e = (u, v) where e is directed from u into v. The indegree of a vertex v ∈ V (G), denoted
d−(v), is the number of edges of G that are directed into v. The outdegree of a vertex
v ∈ V (G), denoted d+(v), is the number of edges of G that are directed from v.

Proof of Lemma 1. Let V1, V2, . . . , Vk be the partition of the vertices of G into k colour
classes induced by both α and β. Let Q be the complete graph on k vertices {q1, q2, . . . qk}
and let αQ (resp. βQ) be the colouring of Q where qi is coloured the same as each vertex
of Vi in α (resp. β) for all i = 1 . . . k. Suppose that αQ can be transformed into βQ in
RS(Q). Then to transform α into β in RS(G), follow the steps from αQ to βQ as follows.
Whenever qi is recoloured, then recolour every vertex in Vi the same colour. Therefore, it
is enough to show how to transform αQ into βQ in RS(Q) by recolouring each vertex at
most twice.

Initially, fix the colouring of Q to be αQ. Let D be the directed graph on k vertices
such that there is an arc qjqi in D if and only if in the current colouring of Q, qj is coloured
β(qi). Since no two vertices of Q are coloured the same colour in any colouring, d−(qi) ≤ 1
and d+(qi) ≤ 1 for all i = 1 . . . k. Therefore, D is the disjoint union of directed paths and
directed cycles. Note that for any vertex q, if d−(q) = 0 in D, then it can be immediately
recoloured into βQ(q).

Recolour each directed path v1, v2, . . . , vp as follows. Since d−(v1) = 0 recolour it βQ(v1).
Now we have that d−(v2) = 0 so recolour v2 with βQ(v2). Continue recolouring this way
until all vertices in the path are coloured as in βQ. Note that each vertex in the directed
path was recoloured at most once.

Now assume D contains no directed paths and is the disjoint union of only directed
cycles. Recolour each directed cycle v1, v2, . . . , vp, v1 as follows. Since |S| > k while |Q| = k,
vp can be recoloured with some colour that does not appear in the current colouring. Now
d−(v1) = 0 so the directed cycle becomes a directed path v1, v2, . . . , vp. Recolour each
vertex as described in the case of a directed path.

Note that each vertex in a directed path was recoloured at most once. Also only one
vertex in each directed cycle was recoloured at most twice, and each other vertex in the
cycle was recoloured at most once.

4.3 Recolouring to the canonical χ-colouring

In this section we prove that the (k+ 1)-recolouring diameter of a k-colourable OAT graph
is quadratic in the number of vertices, which follows from the following lemma.
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Lemma 2. Let G be an OAT graph. Let S be a set of k + 1 colours where k ≥ χ(G) and
let C be an ordered set of χ(G) colours such that C ⊆ S. Then any colouring in RS(G) can
be transformed into the canonical χ-colouring of G with respect to C by recolouring each
vertex at most 2n times.

Proof. The proof is by induction on the number of vertices n of G. Let α : V (G)→ S be
a (k + 1)-colouring of G. We show how to transform α into the canonical χ-colouring γ of
G with respect to C by recolouring each vertex at most 2n times. Clearly this holds if G
is a single vertex, so assume G was constructed with one of the four operations defining
OAT graphs.

Case 1: Suppose G is constructed as the disjoint union of the graphs L and R. Note that
L and R can be recoloured independently since there are no edges between L and R.
Let αL be the projection of α onto L and define S(αL) = S to be its set of permissible
colours. Similarly, let αR be the projection of α onto R and define S(αR) = S to be its
set of permissible colours. By Observation 1, χ(G) = max{χ(L), χ(R)}, and it follows
that αL is an S-colouring of L with |S| ≥ χ(L) + 1 and αR is an S-colouring of R with
|S| ≥ χ(R) + 1. Recall that for a subgraph H of G, nH denotes the number of vertices
of H. By the induction hypothesis, we can transform αL within RS(L) into the canonical
χ-colouring of L with respect to the first χ(L) colours of C by recolouring each vertex of
L at most 2nL times. Similarly, by the induction hypothesis, we can transform αR within
RS(R) into the canonical χ-colouring of R with respect to the first χ(R) colours of C by
recolouring each vertex of R at most 2nR times. Note that both of these reconfiguration
sequences appear in RS(G) since there are no edges between L and R. Taking these two
reconfiguration sequences consecutively gives the reconfiguration sequence within RS(G)
to transform α into the canonical χ-colouring of G with respect to C. Each vertex of L
has been recoloured at most 2nL < 2n times and each vertex of R has been recoloured at
most 2nR < 2n times.

Case 2: Suppose G is constructed as the join of the graphs L and R. Let αL and αR denote
the projections of α onto L and R, respectively. Note that C(αL) is disjoint from C(αR)
since there are all possible edges between L and R. We consider two cases depending on
the number of colours appearing in αL and αR.

First suppose |C(αL)| = χ(L) and |C(αR)| = χ(R). Then there exists some colour c
that does not appear in α since, by Observation 1, χ(G) = χ(L) + χ(R), and |S| > χ(G).
Define S(αL) = C(αL)∪{c} as the set of permissible colours for αL. Then αL is an S(αL)-
colouring of L and |S(αL)| > χ(L). By the induction hypothesis, αL can be transformed
within RS(αL)(L) into the canonical χ-colouring of L with respect to the first χ(L) colours
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of C(αL) by recolouring each vertex at most 2nL times. Furthermore, by our choice of
S(αL), none of the intermediate colourings of L uses a colour from C(αR) so the same
reconfiguration sequence appears within RS(G).

Since the canonical χ-colouring of L uses χ(L) colours, some colour c′ does not appear
in the current colouring of G. Define S(αR) = C(αR) ∪ {c′} as the set of permissible
colours for αR. Then αR is an S(αR)-colouring of R and |S(αR)| > χ(R). By the induction
hypothesis, αR can be transformed within RS(αR)(R) into the canonical χ-colouring of R
with respect the first χ(R) colours of C(αR) by recolouring each vertex at most 2nR times.
The same reconfiguration sequence appears within RS(G) since S(αR) is disjoint from the
colours that appear on the vertices of L.

Now suppose |C(αL)| > χ(L) or |C(αR)| > χ(R) (suppose the former). Define S(αL) =
C(αL) as the set of permissible colours for αL. Then αL is an S(αL)-colouring and |S(αL)| >
χ(L). By the induction hypothesis, αL can be transformed within RS(αL)(L) into the
canonical χ-colouring of L with respect the first χ(L) colours of C(αL) by recolouring each
vertex at most 2nL times. The same reconfiguration sequence appears in RS(G) since
S(αL) and C(αR) are disjoint. Now some colour c∗ that appeared in αL no longer appears
in the current colouring of G. Define S(αR) = C(αR) ∪ {c∗} as the set of permissible
colours. Then αR is a S(αR)-colouring and |S(αR)| > χ(R). By the induction hypothesis,
αR can be transformed within RS(αR)(R) into the canonical χ-colouring of R with respect
the first χ(R) colours of C(αR) by recolouring each vertex at most 2nR times. A similar
argument holds if instead |C(αR)| > χ(R). The same reconfiguration sequence appears in
RS(G) since S(αR) is disjoint from the colours appearing on L.

To complete this part of the proof, we now have a colouring α′ of G such that α′L
is a canonical χ(L)-colouring of L and α′R is a canonical χ(R)-colouring of R. Then α′

and the canonical χ(G)-colouring γ of G must partition the vertices of G into the same
colour classes. Then by the Renaming Lemma (Lemma 1), we can transform α′ into γ by
recolouring each vertex at most twice. Therefore we can transform α into γ by recolouring
each vertex of G at most 2 max{nL, nR}+ 2 ≤ 2n times.

Case 3: Suppose G is constructed by adding a vertex u comparable to a vertex v of the
OAT graph H = G \ {u}. First recolour u the same colour as v. This is possible since
u and v are non-adjacent and N(u) ⊆ N(v). Let αH be the projection of α onto H and
define S(αH) = S to be its set of permissible colours. By Observation 1, χ(H) = χ(G)
and so αH is an S-colouring with |S| > χ(H). By the induction hypothesis, αH can
be transformed within RS(H) into the canonical χ(H)-colouring with respect to C by
recolouring each vertex of H at most 2nH times. To extend this reconfiguration sequence to
RS(G), whenever v is recoloured, recolour u the same colour. By definition, this colouring
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of G is the canonical χ-colouring of G with respect to C. Each vertex of H was recoloured
at most 2nH < 2n times and u was recoloured at most 2nH + 1 < 2n times.

Case 4: Suppose G is constructed by attaching a complete graph Q to some vertex v of an
OAT graph H. Let αH be the projection of α onto H and define S(αH) = S to be its set
of permissible colours. By Observation 1, χ(H) ≤ χ(G) and so αH is an S-colouring of
H with |S| > χ(H). By the induction hypothesis, αH can be transformed within RS(H)
into the canonical χ-colouring γH of H with respect to the first χ(H) colours of C. To
extend this reconfiguration sequence to RS(G), whenever v is recoloured to some colour
c, we may need to first recolour at most one vertex q of Q that is coloured c. Since
χ(G) = max{χ(H), nQ + 1} and |S| ≥ χ(G) + 1 ≥ nQ + 2, and each vertex of Q has degree
nQ, there exists some colour c′ that does not appear on the neighbourhood of q and is not
the colour c. Recolour q with the colour c′ and then continue by recolouring v colour c.
Now H is coloured with the canonical χ(H)-colouring γH .

Let c∗ = γH(v) and let α′Q be the current colouring of Q and define S(α′Q) = S \{c∗} to
be its set of permissible colours. Recall that the vertices of Q are ordered {q1, q2, . . .}. The
canonical χ-colouring of Q with respect to C is the colouring γQ such that qi is coloured the
ith colour of C\{c∗}. Since |S| ≥ nQ+2, then |S\{c∗}| ≥ nQ+1. By the Renaming Lemma
(Lemma 1), α′Q can be transformed within RS(α′

Q)(Q) into γQ by recolouring each vertex
of Q at most twice. Since each vertex of Q is only adjacent to v in H and c∗ was never
used in this recolouring of Q, this reconfiguration sequence can extend to RS(G). Now by
definition, the current colouring of G is the canonical χ-colouring of G with respect to C.
Each vertex of H was recoloured at most 2nH times and each vertex of Q was recoloured
at most 2nH + 2 ≤ 2n times.

We are now ready to prove Theorem 1.

Proof of Theorem 1. Fix S = {1, 2, . . . , k + 1} to be the set of permissible colours used in
the colourings of Rk+1(G) and let C be an ordered set of χ(G) colours such that C ⊆ S. Let
α, β : V (G)→ S be two (k+1)-colourings of G. Then by Lemma 2, we can transform both
α and β into the canonical χ-colouring γ of G with respect to C in RS(G) by recolouring
each vertex at most 2n times. Then to transform α to β, follow the sequence from α to γ
and then follow the sequence from β to γ in reverse. Therefore Rk+1(G) is connected with
diameter at most 4n2.
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Chapter 5

Recognizing OAT Graphs

This chapter is dedicated to the problem of recognizing OAT graphs. In Section 5.1, we
show that OAT graphs can be recognized by greedily deconstructing them and in Section
5.2, we give an algorithm that recognizes OAT graphs in O(n3) time.

We first survey recognition algorithms for various graph classes discussed in this thesis.
The following graph classes have linear time recognition algorithms: chordal graphs [55],
co-chordal graphs [40], P4-free graphs [23], P4-sparse graphs [43], and distance-hereditary
graphs [38]. Chordal bipartite graphs can be recognized in O(min{n2, (n+m) log n}) time
[48, 52, 58], weakly chordal graphs can be recognized in O(mn2) time [60], and perfect
graphs can be recognized in O(n9) time [19].

5.1 Deconstructing OAT graphs

In this section we prove several useful lemmas that together imply that OAT graphs can
be recognized by greedily deconstructing them.

Lemma 3. A graph G is an OAT graph if and only if every connected component of G is
an OAT graph.

Proof. Suppose every component of G is an OAT graph. Then the disjoint union operation
can be used repeatedly to construct G. For the other direction, suppose G is an OAT graph.
The proof is by induction on the number of vertices of G. The claim clearly holds if G
has only one vertex or if G is connected, so assume not. By definition, G was constructed
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using the operations described in Definition 1. Then G was not constructed from the join
operation sinceG is disconnected. The other operations preserve the connected components
of G. We will show that in some construction of G, the disjoint union operation can be
swapped with these operations.

Case 1: Suppose G was constructed by the disjoint union operation of L and R. By
definition, L and R are OAT graphs. By the induction hypothesis, every component of L
is an OAT graph and every component of R is an OAT graph. Note that the components
of G are just the components of L and R. Therefore, every component of G is an OAT
graph as desired.

Case 2: Suppose G was constructed by adding a vertex u comparable to a vertex v of H.
By definition H is an OAT graph. By the induction hypothesis, every component of H is
an OAT graph. Clearly, v only has neighbours in one component H∗ of H. Then H∗ ∪ u
is an OAT graph since it was constructed from an OAT graph by adding a comparable
vertex and the appropriate edges. Since all other components of G are the components of
H, every component of G is an OAT graph.

Case 3: Suppose G was constructed by attaching a clique Q to a vertex z of a graph H.
By definition, H is an OAT graph. By the induction hypothesis, each component of H is
an OAT graph. Suppose z is a vertex of a component H∗ of H. Then G[H∗ ∪ Q] is an
OAT graph since it was constructed from an OAT graph by attaching a clique. Since all
other components of G are the components of H, every component of G is an OAT graph.

Lemma 4. Suppose the vertices of G can be partitioned into two sets L and R such that
L is joined to R. Then G is an OAT graph if and only if L is an OAT graph and R is an
OAT graph.

Proof. Suppose L and R are both OAT graphs. Then G is an OAT graph since G can be
constructed from the join of L and R. For the other direction, suppose that G is an OAT
graph. The proof is by induction on the number of vertices of G. By definition, G was
constructed by the operations described in Definition 1. Note that G was not constructed
by the disjoint union operation since G is connected.

Case 1: Suppose G is constructed from the join of L∗ and R∗. Assume that L 6= L∗ (and
R 6= R∗) and L 6= R∗ (and R 6= L∗) since otherwise we are done. By definition L∗ and R∗

are OAT graphs. Then L can be partitioned into two sets L1 = L∗ ∩ L and L2 = R∗ ∩ L.

43



L R

L∗

R∗

L1

L2

R1

R2

Figure 5.1: Two partitions of G into sets that are joined to each other.

Similarly, R can be partitioned into two sets R1 = L∗ ∩ R and R2 = R∗ ∩ R (see Figure
5.1). Note that at most one of L1, L2, R1, and R2 can be empty, otherwise L = L∗ and
R = R∗ (or L = R∗ and R = L∗). Since L∗ is joined to R∗, L1 is joined to L2 and R1 is
joined to R2. Since L∗ = L1∪R1 is an OAT graph and L1 is joined to R1, by the induction
hypothesis, L1 and R1 are OAT graphs (if one is empty, then the other is an OAT graph
since L∗ is an OAT graph). Similarly, since R∗ = L2∪R2 is an OAT graph and L2 is joined
to R2, by the induction hypothesis, L2 and R2 are OAT graphs (if one is empty, then the
other is an OAT graph since R∗ is an OAT graph). If one of L1 or L2 is empty, then L is
an OAT graph since either L = L1 or L = L2. If both L1 and L2 are not empty, then L is
an OAT graph since L is the join of L1 and L2. Similarly, if one of R1 or R2 is empty, then
R is an OAT graph since either R = R1 or R = R2. If both R1 and R2 are non-empty,
then R is an OAT graph since R is the join of R1 and R2.

Case 2: Suppose G was constructed by adding a vertex u comparable to a vertex v of H.
Then u and v must both be in L or both be in R since u and v are non-adjacent. Without
loss of generality, suppose u, v ∈ L. By definition, H is an OAT graph. Note that H is
the join of L \ u and R. Then by the induction hypothesis L \ u and R are OAT graphs.
Then L is an OAT graph since it can be constructed from L \ u by adding the vertex u
comparable to v and the appropriate edges.

Case 3: Suppose G was constructed by attaching a clique Q to a vertex z of an OAT graph
H. Since there are no edges between Q and H \ z in G, either all of the vertices of G \ z
are in L or all of the vertices of G \ z are in R. Without loss of generality, suppose the
vertices of G \ z are in L. Then since R 6= ∅, z is the only vertex in R. Then clearly R is
an OAT graph. Note that L is composed of the graphs H \ z and Q. By definition, H is
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an OAT graph. Note that since z ∈ R, H is the join of H \ z and z. Then by the induction
hypothesis, H \ z is an OAT graph. Then L is an OAT graph since L can be constructed
by the disjoint union of H \ z and Q.

Lemma 5. If G has a vertex u comparable to some vertex v of G, then G is an OAT graph
if and only if G \ u is an OAT graph.

Proof. Suppose G\u is an OAT graph. Then G is an OAT graph since G can be constructed
from G \ u by adding back the comparable vertex u and all appropriate edges. For the
other direction, suppose G is an OAT graph. The proof is by induction on the number
of vertices of G. By definition, G was constructed by using the operations described in
Definition 1.

Case 1: Suppose G was constructed from the disjoint union of the OAT graphs L and R.
Without loss of generality, suppose u ∈ L. Assume that L has another vertex, since if not
G \u is OAT by definition. If u is an isolated vertex, i.e. NG(u) = ∅, then u is comparable
to every other vertex of L. Otherwise, both u and v must be in L since there is a path
connecting them through N(u) ∩N(v). In either case, u is comparable to some vertex of
L. By the induction hypothesis, L\u is an OAT graph. Then G\u is an OAT graph since
it can be constructed from the disjoint union of L \ u and R.

Case 2: Suppose G was constructed from the join of the OAT graphs L and R. Then
both u and v are vertices of L or both u and v are vertices of R, since they are non-
adjacent. Without loss of generality, suppose u and v are vertices of L. Since u and v
are comparable in G, and removing the same set of vertices from N(u) and N(v) will not
change that N(u) ⊆ N(v), vertex u is comparable to v in L. By the induction hypothesis,
L \ u is an OAT graph. Then G \ u is an OAT graph since it can be constructed from the
join of L \ u and R.

Case 3: Suppose G was constructed by adding a vertex x comparable to another vertex y of
G \ x (see Figure 5.2). Assume u 6= x since otherwise G \ u is an OAT graph by definition.
Then since G \ x is an OAT graph and since u is still comparable to v in G \ x, by the
induction hypothesis G \ {x, u} is an OAT graph. Next we show that x is comparable to
some vertex of G \ {x, u}. If u 6= y, then y is a vertex of G \ {x, u} and therefore x is
comparable to some vertex of G \ {x, u}. If u = y, then v must be a vertex of G \ {x, u}
and N(x) ⊆ N(y) = N(u) ⊆ N(v). Furthermore, x is non-adjacent to v in G since u
is non-adjacent to v and N(x) ⊆ N(u). In any case, x is comparable to some vertex of
G\{x, u} and we can construct G\u from G\{x, u} by adding back x and the appropriate
edges. Therefore, G \ u is an OAT graph.
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Figure 5.2: An OAT graph with two distinct comparable vertices.

Case 4: Suppose G was constructed by attaching a complete graph Q to a vertex z of an
OAT graph H. If Q only contains the vertex u, then H = G \u is an OAT graph. Assume
that there exists some vertex x 6= u in Q. If u ∈ Q ∪ {z} then u is adjacent to x, and
so v must be adjacent to x as well. Then v ∈ Q ∪ {z}, contradicting that u and v are
non-adjacent, and so it must be that u ∈ H \ z. If u is comparable to some vertex in
H, then by the induction hypothesis H \ u is an OAT graph, and we can construct G \ u
from H \ u by attaching Q at z, proving that G \ u is an OAT graph. So assume u is
not comparable to any vertex in H, which implies that v ∈ Q. Then N(u) = {z} since
u ∈ H \z has no neighbours in Q while N(v) ⊆ Q∪{z}. We also know that z has no other
neighbours in H, otherwise u would be comparable to that neighbour. If H = {u, z} then
G \ u is a clique and therefore an OAT graph. If H contains vertices other than u and z,
then none of them are adjacent to v, z, or Q. Then H is the disjoint union of H \ {u, z}
and {u, z}. By Lemma 3, H \ {u, z} is an OAT graph. Therefore H \ u is an OAT graph
since it can be constructed from H \ {u, z} by using the disjoint union operation with z.
Then G\u is an OAT graph since it can be constructed from H \u by attaching the clique
Q at z.

Lemma 6. Suppose G has a cut vertex z such that G \ z has a component Q that is a
complete graph and such that z is joined to Q. Then G is an OAT graph if and only if
G \Q is an OAT graph.

Proof. Let H = G \Q and suppose H is an OAT graph. Then G is an OAT graph since G
can be constructed from H by attaching a clique Q to the vertex z. For the other direction,
suppose G is an OAT graph. The proof is by induction on the number of vertices of G.
By definition, G can be constructed by using the operations described in Definition 1.
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Case 1: Suppose G was constructed from the disjoint union of the OAT graphs L and R.
Without loss of generality, suppose z ∈ L. Then every vertex of Q is in L since z is adjacent
to every vertex of Q. By the induction hypothesis, L \Q is an OAT graph. Then G \Q is
an OAT graph since G can be constructed from the disjoint union of L \Q and R.

Case 2: Suppose G was constructed from the join of the OAT graphs L and R. Then all
of the vertices of Q and H are in R or in L since there are no edges between Q and H.
Without loss of generality, suppose all of the vertices of Q and H are in L. Then since R
is not empty, it must be the case that z ∈ R. Since Q is a connected component of L, by
Lemma 3, L \ Q is an OAT graph. Then G is an OAT graph since G can be constructed
by the join of L \Q and R.

Case 3: Suppose G was constructed by adding a vertex x comparable to another vertex y
of an OAT graph H ′. Note that z 6= x since z is adjacent to every vertex of Q (so y could
not be in Q) and no other vertex of G \Q is adjacent to a vertex of Q (so y could not be
in H \ z since x would have neighbours in Q). If x ∈ Q then x is the only vertex of Q since
x is adjacent to every other vertex of Q and z and no other vertex of G \ Q is adjacent
to a vertex in Q. Then H = G \ Q and therefore G \ Q is an OAT graph. Now assume
x ∈ G \Q and x 6= z. Since H ′ is an OAT graph, and can be constructed from H ′ \Q by
attaching a clique at z, by the induction hypothesis H ′ \Q is an OAT graph. If y ∈ G \Q,
then G \Q is an OAT graph since G \Q can be constructed from H ′ \Q by adding back
the vertex x comparable to y. If y ∈ Q, then either x is an isolated vertex or x is only
adjacent to z in G. If x is an isolated vertex, then G \Q is an OAT graph since it can be
constructed from the disjoint union of x and H ′ \Q. If x is only adjacent to z in G, then
G \Q is an OAT graph since it can be constructed by attaching the clique x to the vertex
z of H ′ \Q.

Case 4: Suppose G was constructed by attaching a complete graph Q′ to a vertex z′ of an
OAT graph H ′. Assume that Q 6= Q′ (and therefore disjoint) since if not, we are done.
Then by the induction hypothesis, H ′ \Q is an OAT graph. Then G \Q is an OAT graph
since it can be constructed from H \Q by attaching the clique Q′ at the vertex z′.

5.2 Recognition algorithm

In this section we give an algorithm called RECOGNIZE OAT that recognizes OAT
graphs in O(n3) time. The algorithm takes a graph G as input and either outputs a
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build-tree, certifying that G is an OAT graph or outputs the answer no. Recall that a
build-tree is a tree whose root node is G, whose leaf nodes are the single vertices of G, and
whose internal nodes represent the operations used to build G. As discussed previously,
the build-tree of G is not unique, and the algorithm only returns one of possibly many
build-trees.

LetG be the input graph. The idea of the algorithm is to check if any of the four defining
operations can be used to construct G from smaller graphs. If so, then we recursively test
those smaller graphs. Lemmas 3, 4, 5, and 6 justify the correctness of this approach. In
particular, it does not matter in which order we check the four operations. Here are further
details that (arbitrarily) use the order of operations from Definition 1. See Algorithm 1
for the pseudocode.

The algorithm first checks if G is connected. If not, then recursively check each con-
nected component of G. If each component is an OAT graph, then G is an OAT graph by
Lemma 3 and can be constructed by the disjoint union of its components. The build-tree
of G is updated accordingly.

If G is connected, then the algorithm checks if the complement of G is connected. If
not, then compute the connected components of co-G. The components of co-G correspond
to a partition of the vertices of G into sets that have all possible edges between them. For
each such component C of co-G, check whether co-C is an OAT graph. If each co-C is an
OAT graph, then by Lemma 4 G is an OAT graph and can be constructed from the join
operation of each co-C. The build-tree is then updated accordingly.

If both G and co-G are connected, the algorithm examines if G contains a vertex u
comparable to a vertex v. If so, then recursively check if G \ u is an OAT graph. If so,
then G is an OAT graph by Lemma 5 and can be constructed from G \ u by adding the
comparable vertex u. The build-tree of G is updated accordingly.

Finally, the algorithm checks if G has any cut vertices z such that G\z has a component
Q that is a complete graph and such that z is adjacent to all vertices in Q. If so, the
algorithm recursively checks if G \Q is an OAT graph. If so, then G is an OAT graph by
Lemma 6 and can be constructed by attaching Q to z in G \ Q. The build-tree of G is
updated accordingly.

If none of the above cases apply then G is not an OAT graph as justified by Lemma 3,
4, 5, and 6. Next we give implementation details and analyze the run-time of the algorithm
RECOGNIZE OAT(G).

Let G be the input graph with n vertices and m edges. In each recursive step of the
algorithm, there are four conditions that may need to be checked. We can only bound
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Algorithm 1: The recognition algorithm RECOGNIZE OAT(G).

Input: A graph G
Output: A build-tree that constructs G, or “false” (G is not an OAT graph)

if G is a single vertex then
return a leaf node that stores the single vertex.

end

else if G is disconnected then
for each component H of G do

if RECOGNIZE OAT(H) = false then return false ;
end
G is the union of its components. Update the build-tree accordingly and return
it ;

end

else if co-G is disconnected then
for each component C of co-G do

if RECOGNIZE OAT(co-C) = false then return false ;
end
G is the join of the complements of the components of co-G. Update the
build-tree accordingly and return it ;

end

else if G has a vertex u comparable to another vertex v then
if RECOGNIZE OAT(G \ u) = false then return false ;
else G is obtained from G \ u by adding a comparable vertex u. Update the
build-tree accordingly and return it ;

end

else if G has a cut-vertex z such that G \ z has a component Q that is a complete
graph and such that z is joined to Q then

if RECOGNIZE OAT(G \Q) = false then return false ;
else G is obtained from attaching the clique Q to z. Update the build-tree
accordingly and return it;

end
else

return false
end
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the run-time of checking some of these conditions by O(n2), so we will not be concerned
with finding better bounds for checking other conditions. We assume that G is given by
adjacency lists and compute the adjacency matrix of G in O(n2) time. Let A(G) (or simply
A) be the adjacency matrix of G where the rows and columns of A are indexed by the
vertices of G. For u, v ∈ V (G), the entry of A at row u and column v, denoted by A[u, v],
is 1 if u and v are adjacent and 0 otherwise.

Step 1: First determine the connected components of G. This can be done using depth-first
search in O(n+m) time.

Step 2: Next compute the adjacency matrix of co-G in O(n2) time by replacing A[u, v] by
1 − A[u, v] for u 6= v. Then compute the connected components of co-G in O(n2) time
using depth-first search.

Step 3: Next, search for the biconnected components and the cut vertices of G. This can
be done in O(n+m) time using depth-first search if G is stored with adjacency lists [61].
For each of the biconnected components Q of G, check if the vertices form a clique. This
can be done in O(n2

Q) time (where nQ = |V (Q)|) by checking whether Q has
(
nQ

2

)
edges.

Therefore, this entire step can be done in O(n2) time.

Step 4: Finally, search for a vertex u comparable to another vertex v of G. A brute force
approach for finding such a pair would take O(n3) time at each recursive step. Instead, we
use the square of the adjacency matrix A2(G) and maintain it recursively (details below)
to find a pair of comparable vertices at each step. It is well known that Ar[x, y] gives the
number of paths of length at most r from x to y in G. Then for non-adjacent and distinct
vertices x, y ∈ V (G), N(x) ⊆ N(y) if and only if A2[x, y] = d(x) (the degree of x) [59].
Therefore, given A2 we can test the existence of u in O(n2) time by scanning the entries
of A2.

We note that A2 can be computed in O(nω) time where the current best known value
of ω is about 2.376 [21]. However, to achieve the O(n3) running time of our algorithm, we
only require that A2 be computed in O(n3) time since, as we next show, A2 can be updated
in O(n2) time in each recursive step of RECOGNIZE OAT(G).

Lemma 7. Let G be an OAT graph and let A2(G) be given. Then for each subgraph H of
G considered in the recursive steps of RECOGNIZE OAT(G), A2(H) can be computed
in O(n2) time.

Proof. We show how to update A2(G) in the recursive steps for each of the four operations.
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Case 1: Suppose G is the disjoint union of the graphs L and R. Then A2(L) is simply
the submatrix of A2(G) with rows and columns corresponding to the vertices of L, and
similarly for A2(R).

Case 2: Suppose G was constructed from the join of the graphs L and R. Then A2(L) is
the matrix obtained from A2(G) by deleting the rows and columns corresponding to the
vertices of R and subtracting |V (R)| from every entry. This holds because for any two
vertices l1, l2 ∈ L, and any vertex r ∈ R, we had the path l1, r, l2 in G and this path does
not exist in L. Similarly, A2(R) is the matrix obtained from A2(G) by deleting the rows
and columns corresponding to the vertices of L and subtracting |V (L)| from every entry.

Case 3: Suppose G was constructed by adding a vertex u comparable to a vertex of the
OAT graph H. Then A2(H) can be obtained from A2(G) by deleting row u and column
u and for each pair of vertices x, y ∈ N(u) (not necessarily distinct), subtracting 1 from
A2[x, y]. This holds because G contained the path x, u, y which no longer exists in H.

Case 4: Suppose G was constructed from attaching the complete graph Q to the vertex v
of the OAT graph H. Then A2(H) can be obtained from A2(G) by deleting the rows and
columns corresponding to the vertices of Q and by subtracting |Q| from the entry A2[v, v].

Clearly, for each of these cases, the desired matrix can be obtained from A2(G) in O(n2)
time.

Thus, our algorithm initially computes A2(G) which takes O(n3) time. Then at each
step, we can find which operation (if any) could be used to construct G in O(n2) time.
In the same time, we can also compute A2 for the applicable subgraphs and then recurse.
The algorithm may be required to recurse Θ(n) times and therefore the total run-time of
the algorithm is O(n3). We note that changing the order in which the algorithm checks
for each of the four conditions may improve the run-time. This proves Theorem 2.
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Chapter 6

Conclusion

In this thesis, we introduce a class of graphs called OAT graphs defined by four simple
operations. This class of graphs includes chordal bipartite graphs, compact graphs, P4-
sparse graphs, and some graphs which are not perfect but have equal chromatic number
and clique number. We give an algorithm to recognize OAT graphs in O(n3) time and if
the input graph G is an OAT graph, the algorithm will return a build-tree of G. We showed
that for any k-colourable OAT graph G, the reconfiguration graph Rk+1(G) is connected
with diameter O(n2). The proof of this can be converted into an algorithm that exhibits a
recolouring sequence between any two (k+1)-colourings of G in polynomial time, assuming
we have a build-tree of G.

We close with a few open problems. It was mistakenly reported by Bonamy and Bous-
quet [4] that there exists k-colourable P5-free graphs G such that Rk+1(G) has an isolated
vertex. We showed that the examples given by Bonamy and Bousquet in this paper are in
fact not P5-free (see Section 3.5.3). This motivates the following question.

Problem 1. Given a k-colourable P5-free graph G, is G (k + 1)-mixing?

We note that every 2-colourable P5-free graph is chordal bipartite, so this statement
holds for k = 2. It might be that the answer is yes for other small values of k. This leads
to the following question.

Problem 2. For which k ≥ 3 is a k-colourable P5-free graph (k + 1)-mixing?

We now examine questions related to OAT graphs and weakly chordal graphs. It would
be interesting to consider if there are other simple operations that could generalize the class
of OAT graphs and maintain the property that Rk+1(G) is connected.
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Problem 3. Is it possible to include the operations of adding a true twin and adding a
simplicial vertex to the operations defining OAT graphs and still have Rk+1(G) connected
and of diameter O(n2)?

The class of graphs built from these six operations would then include distance-hereditary
graphs and chordal graphs. Or perhaps there are other simple operations that would allow
for the inclusion of these graph classes?

It is known that not all k-colourable weakly chordal graphs are (k + 1)-mixing (see
Section 3.5.8). Complexity questions appear to be wide open, so we ask the following.

Problem 4. Given a k-colourable weakly chordal graph G, what is the complexity of de-
termining whether G is (k + 1)-mixing?
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