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Abstract

We propose a mechanism for achieving cooperation and communication in Multi-Agent
Reinforcement Learning (MARL) settings by intrinsically rewarding agents for obeying
the commands of other agents. At every timestep, agents exchange commands through a
cheap-talk channel. During the following timestep, agents are rewarded both for taking
actions that conform to commands received as well as for giving successful commands. We
refer to this approach as obedience-based learning.

We demonstrate the potential for obedience-based approaches to enhance coordination
and communication in challenging sequential social dilemmas, where traditional MARL
approaches often collapse without centralized training or specialized architectures. We
also demonstrate the flexibility of this approach with regards to population heterogeneity
and vocabulary size.

Obedience-based learning stands out as an intuitive form of cooperation with minimal
complexity and overhead that can be applied to heterogeneous populations. In contrast,
previous works with sequential social dilemmas are often restricted to homogeneous popula-
tions and require complete knowledge of every player’s reward structure. Obedience-based
learning is a promising direction for exploration in the field of cooperative MARL.
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Chapter 1

Introduction

Reinforcement learning is an increasingly-attractive option for adaptive computational
agents due to its theoretical generalizability to complex problem spaces [43, 64]. However,
most of the successes in reinforcement learning have been limited to single-agent domains
[39]. While there has been a growing body of work pertaining to multi-agent reinforcement
learning, there remain some key challenges that must be overcome for multi-agent learning
to exhibit the same level of success as its predecessor.

Perhaps the most notable of these challenges is that of cooperation and collaboration [6],
which is almost impossible to guarantee [32]. Unless the environment is purely competitive,
agents must learn to work together in some fashion, if only to avoid wasteful conflict.
Somewhat counter-intuitively, even purely cooperative multi-agent environments come with
their own unique challenges. Simply training reinforcement learning agents on the joint
reward of all the agents in the environment leads to the ’lazy agent’ problem, where weaker
agents will take a backseat to let higher-performing agents take over [66]. In contrast,
evaluating agents based on their individual reward eliminates this problem, while creating
a tension between cooperation and competition. Such agents would behave like standard
single-agent reinforcement learning algorithms and selfishly compete over the sources of
reward in the environment, essentially abandoning all notion of cooperation. We can draw
parallels here to human multi-agent problems, where collective reward leads to social loafing
and individual reward leads to egocentrism [50, 29].

The most challenging environments come with elements of cooperation and competition
baked in to the problem description. The most prominent of these mixed cooperative-
competitive environments is the Prisoner’s Dilemma, which has guided computational and
psychological research for decades [34, 4]. In Prisoner’s Dilemma, players are paired up
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and can choose to cooperate or defect over a number of rounds. Mutual cooperation is the
preferred long-term strategy, but the short-term gains of defection can cause cooperation
to break down. Prisoner’s Dilemma belongs to a greater class of matrix games known
as social dilemmas [41] (mathematical formulation reproduced in Section 2.4), which all
capture this tension between short-term defection and long-term cooperation.

While all sorts of complex strategies, including reinforcement learning techniques [71],
have been leveraged to play social dilemmas, the best algorithms are often simple and
intuitive. An example of this is Rapoport’s Tit-for-Tat [56], which has been victorious in
multiple tournaments [2, 3] by simply starting with cooperation and subsequently mimick-
ing the opponent’s last move. In real-world social dilemmas, cooperation and defection is
not a simple atomic action. Rather, a sequence of actions can be construed as cooperative
on a graded scale. In order to better capture realistic social interactions, [34] introduced
temporally-extended versions of matrix game social dilemmas known as sequential social
dilemmas, which is the class of problems we work with in this thesis.

In sequential social dilemmas, the tension between cooperation and defection is main-
tained but extended temporally. For example, in the Harvest game [26] agents need to
collect apples from ’apple patches’ but apples re-spawn proportionately to the number of
apples in the rest of the patch. In this context, defection is defined as repeatedly harvesting
from a patch that is running low while cooperation comprises of staying away from patches
that are running low so they have time to replenish. The greater complexity arising from
this sequential structure necessitates the use of sophisticated multiagent reinforcement
learning methods [34].

Research on sequential social dilemmas has mostly centered around assigning intrinsic
rewards to agents based on psychologically-inspired motivations in order to guide coop-
eration [37]. As noted previously, naively assigning team reward or individual reward is
not sufficient for cooperation in mixed cooperative-competitive environments. Hughes et
al. [26] tackled the problem by introducing intrinsic rewards based on ’guilt’ and ’envy’
while [20] took an alternative approach by assigning intrinsic rewards based on reciprocity.
Recently, [28] used causal influence to achieve state-of-the-art scores, where agents are in-
trinsically rewarded for disrupting the action distributions of neighbouring agents. Jaques
et al. [28] conducted an ancillary experiment in which causal influence is combined with
a cheap-talk channel where sending and receiving communication has no cost; agents are
rewarded for sending symbols that maximise disruption. We build upon this idea within
the same problem domain to propose obedience-based learning.
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1.1 Problem Description

The question we ask in this work is: If we define a simple communication protocol
that allows agents to exchange commands, does providing intrinsic rewards for
obedience and leadership enhance cooperation in partially-observable sequen-
tial social dilemmas?

We believe that since selfish agents are already naturally predisposed to selfishly com-
manding other agents to cooperate, adding an intrinsic reward for obedience should push
the population towards a greater degree of cooperation. Additionally, we believe that mak-
ing this exchange provide intrinsic rewards to both parties, the commander and follower,
should further foster cooperation and speed up learning. While possibly not as powerful as
other handcrafted approaches, the strength of this approach lies in its intuitive simplicity
and generalizability.

In this work we provide empirical evidence for an affirmative answer to the research
question by simulating two sequential social dilemmas with an added cheap-talk channel
used to exchange commands. We evaluate the flexibility of our approach by varying vocab-
ulary size as well as using a heterogeneous population. Also, we distinguish ourselves from
the growing field of emergent communication in reinforcement learning, as we explicitly
define a communication protocol for the agents to use, guided by intrinsic reward.

1.2 Thesis Contributions

The following summarizes the key contributions of this thesis:

• We propose a novel form of psychologically-motivated intrinsic reward denoted as
obedience-based learning.

• We demonstrate the potential for obedience-based learning to improve multiagent
cooperation by evaluating performance on sequential social dilemmas, a popular and
challenging benchmark for cooperation.

• We observe the effects of varying the size of the communication vocabulary as well
as the homogeneity of the population.

• We provide an up-to-date open-source implementation of the Harvest and Cleanup
sequential social dilemmas with an optional cheap-talk channel built-in.
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1.3 Thesis Organization

The rest of the thesis is organized as follows:

• In Section 2 we provide an overview of the necessary background required for the work
in the thesis. This includes a review of reinforcement learning and social dilemmas.
The latter includes the rules of Harvest and Cleanup, the games we use in this work.

• Sections 3 and 4 encapsulates the entirety of our original work; we start with a
detailed explanation of obedience-based learning and our experimental setup before
continuing onward to the results of our experiments.

• Section 5 lays out our closing thoughts as well as multiple recommendations on
follow-up work.

4



Chapter 2

Background and Related Works

In this section we provide an overview of the relevant literature across the number of do-
mains touched upon in this thesis. We review Markov Decision Processes before discussing
recent advances in reinforcement learning with an emphasis on multiagent reinforcement
learning. We will then provide an overview of works pertaining to agent cooperation in
multiagent settings before discussing social dilemmas.

Reinforcement learning is an area of machine learning inspired by behavioural psychol-
ogy, and encompasses a suite of techniques that help software agents take actions in an
environment so as to maximize some notion of reward. Here, agents can be defined as
”something that acts” or as ”something that perceives and acts in an environment” [57].

2.1 Markov Decision Processes

An agent sequentially interacts with the environment over a sequence of timesteps t =
1, 2, 3, . . . by executing actions. After every action the environment provides feedback in
the form of observations and rewards. Observations are used in determining the agent’s
next action, while maximizing cumulative reward is the agent’s goal.

This formulation is typically modelled as a Markov Decision Process (MDP). An MDP
can be represented as a 6-element tuple (S,A, P,R, γ, h) where S is a finite set of possible
states, A is a finite set of possible actions, P (s′|s, a) is the transition probability of moving
from state s to state s′ through action a, R(s, a, s′) is similarly the reward obtained by
using action a to transition from state s to state s′, γ is the reward discount factor, and h
is the horizon i.e the number of time steps under consideration. The goal of the agent is
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to maximise expected cumulative discounted reward, given by
∑h−1

t γtR(st, at, st+1). Note
here that the discount factor 0 ≤ γ ≤ 1 penalizes later rewards, which allows us to work
with h =∞ while giving priority to early learning.

Agents make decisions based on policies, which are functions that capture the choice of
action at each time step. A policy can be defined as π(yt, s) = a, which maps the current
state and history at timestep t to what action should be taken. In fully-observable environ-
ments, the history is the sequence of past actions, states, and rewards that brought us to
this point, yt = a1s1r1at−1st−1rt−1. In partially-observable environments, the observations
ot provided by the environment do not encapsulate the entirety of the state, so the history
becomes yt = a1o1r1at−1ot−1rt−1. In this case the system is known as a partially observed
Markov Decision Process (POMDP). If the choice of action does not depend on how the
state was reached, we obtain what is known as a stationary policy which is defined simply
as π(s) = a. For simplicity, we will assume stationary policies going forward until multiple
agents are involved.

Clearly, the space of possible policies is immense. Agents can evaluate policies by
computing their expected cumulative reward, also known as the value function of a policy:

V π(s0) =
h∑
t=0

γt
∑
st

P (st|s0, π)R(st, π(st), st+1) (2.1)

We can also define an extended version of value functions known as Q-functions which
compute the total value of a state action pair. Intuitively, this is the expected reward of
the state action pair followed by the expected value of all subsequent actions. Here we
denote the successor state of s by s′ instead of using t subscripts:

Qπ(s, a) = E[R(s, a)] + γ
∑
s′

P (s′|s, a)V π(s′) (2.2)

The agent’s goal is to pick an optimal policy that maximises value, denoted π∗. In fully
observed environments, stationary optimal policies are guaranteed to exist [66].

In order to obtain an optimal policy, there are three primary classes of exact solu-
tion methodologies for MDPs: value iteration, policy iteration, and linear programming.
We will provide a brief overview of value iteration and policy iteration, as they are key
components of the RL algorithms we use.
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2.1.1 Value Iteration

Value iteration is a dynamic programming method that optimizes decisions in reverse
order. By unfolding the top-down recursion of value functions and generalizing we can
apply Bellman’s equation [7]:

V (st) = max
at

R(st, at) + γ
∑
st+1

P (st+1|st, at)V (st+1) (2.3)

The algorithm works as follows:

Algorithm 1: Value Iteration

1 V ∗0 ← maxaR(s, a) ∀s
2 for t = 1 to h do
3 V ∗t (s)← maxaR(s, a) + γ

∑
s′ P (s′|s, a)V ∗t−1(s

′) ∀s
4 end
5 Return V ∗

A policy can be induced by performing one more iteration and instead noting the actions
that maximize the value. With an infinite time horizon, value iteration is guaranteed to
converge to the optimal value [54]. In practice, value iteration is often terminated once the
value function begins changing infinitesimally.

2.1.2 Policy Iteration

Instead of inducing a policy from an optimized value function, this technique directly
optimizes the policy. Intuitively, instead of optimizing a value function and then inducing
a policy, we can alternate these actions in order to generate a continuously-improving
policy.
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The algorithm works as follows:

Algorithm 2: Policy Iteration

1 π ← any random policy
2 prev-policy = π
3 while True do
4 V π(s)← R(s, π(s)) + γ

∑
s′ P (s′|s, π(s))V π(s′) ∀s

5 π(s)← arg maxaR(s, a) + γ
∑

s′ P (s′|s, a)V π(s′) ∀s
6 if π == prev-policy then
7 break
8 end
9 prev-policy ← π

10 end
11 Return π

Policy iteration is guaranteed to converge to the optimal value function and policy in
a finite number of iterations assuming S and A are finite [59].

2.2 Reinforcement Learning Overview

Markov Decision Processes assume full knowledge of the environment’s transition prob-
abilities (P ) and reward structure (R). In reality, this level of information about an
environment is rarely known beforehand, and must be learned/approximated from expe-
rience. This is exactly what reinforcement learning techniques aim to do, by building
upon the framework of MDPs. In fact, model-based RL learn a model during execution so
the previously-discussed techniques can be applied. In contrast, model-free RL techniques
learn the optimal policy directly without learning the model. The high-level structure of
a reinforcement learning process is depicted in Figure 2.1.

Here we present an introduction to the fundamentals behind three prominent model-
free techniques: Q-learning, policy gradients, and actor-critic. We should note that though
we discuss the basic intuition behind each technique, there are a number of variants and
optimizations that are situationally applied. Most prominent among these tweaks is the
use of neural networks to create estimates of policies as well as value functions. This
combination of neural networks and RL techniques is known as deep reinforcement learning
(deep RL).
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Figure 2.1: A simple single-agent reinforcement learning system.

2.2.1 Q-learning

Q-learning is a well-known example of a model-free RL algorithm. By rewriting (2.2) with
one-sample estimations, we can obtain an approximation of the Q function based on reward
r as follows:

Q∗(s, a) ≈ r + γmax
a′

Q∗(s′, a′) (2.4)

We can then incrementally update an estimate of the Q-function by applying temporal
difference error [67]:

Q∗n(s, a) = Q∗n−1(s, a) + α
(
r + γmax

a′
Q∗n−1(s

′, a′)−Qn−1 ∗ (s, a)
)

(2.5)

By repeating (2.5) with new actions until Q∗ converges, we obtain the algorithm for
Q-learning. A converged Q-function allows the agent to know the best action to take from
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each state, which encodes a policy in and of itself.

Algorithm 3: Q-Learning

1 while True do
2 Select and execute a
3 Observe s′ and r from environment
4 Update counts: n(s, a)← n(s, a) + 1
5 Learning rate: α← 1/n(s, a)
6 Q∗(s, a) = Q∗(s, a) + α(r + γmaxa′ Q

∗(s′, a′)−Q ∗ (s, a))
7 if Q∗ converge then
8 break
9 end

10 s← s′

11 end
12 Return Q∗

While Q-learning is traditionally carried out by computing tables/vectors of Q-values
to store mappings from state, action pairs to Q-values, this becomes unsustainable as
the size of the state and action space rises. This is tackled by approximating the Q-
function rather than storing exact values, usually through the use of neural networks as they
are universal function approximators [40]. Q-learning with neural networks is known as
Deep-Q Networks (DQN), and while some additional techniques such as experience replay
(remembering and reusing past experiences [61]) and target networks (using a separate
network for a batch of updates before synchronizing) are necessitated to improve stability
the intuition of the algorithm remains the same.

2.2.2 Proximal Policy Optimization

While Q-learning creates an estimate of the value function, policy gradient methods work
directly to optimize the policy. This is analogous to the behaviour of value iteration and
policy iteration respectively for Markov Decision Processes.

Consider a stochastic policy πθ(a|s) = Pr(a|s; θ) characterized by θ. Policy gradient
methods work by computing an estimate of the policy gradient and then plugging it into
a stochastic gradient ascent algorithm. The most-commonly used gradient estimator has
the form:

ĝ = Êt[Oθ log πθ(at|st)At] (2.6)
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Here, the expectation Êt indicates the empirical average over a finite batch of samples,
in an algorithm that alternates between sampling and optimization [63]. We also see the
advantage function used here which is defined as A(s, a) = Q(s, a)− V π(s), capturing the
impact of a single action a on the value function.

Recently, a new family of policy gradient methods has emerged known as Proximal Pol-
icy Optimization (PPO). These methods follow the same fundamentals, but use a tweaked
’surrogate’ objective function to enable multiple epochs of minibatch updates rather than
being confined to one gradient update per data sample. The algorithm outline is repro-
duced from [63] below:

Algorithm 4: PPO, Actor-Critic Style

1 for iteration = 1,2, ... do
2 for actor = 1,2, ... do
3 Run policy πθold in environment for T timesteps

4 Compute advantage (Q-function) estimates Â1, ..., ÂT
5 end
6 Optimize surrogate L wrt θ, with K epochs and minibatch size M ≤ NT

θold ← θ
7 end
8 Return πθ

Every iteration, each of N (parallel) actors collect T timesteps of data. We then
construct the surrogate loss on these NT timesteps of data, and optimize it with (minibatch)
stochastic gradient descent or Adam [30], for K epochs [63]. Note that multiple actors is
not the same as multiple agents; PPO is a parallel algorithm where each actor oversees
a separate instance of the environment. It is common to parametrize PPO with neural
networks [38], similar to Q-learning.

2.2.3 Actor-Critic

Actor-Critic is an RL technique that uses value functions estimations as seen before to
compute an advantage function, which is used to evaluate the current policy and iteratively
improve it by moving in the direction of the gradient. The algorithm for Advantage Actor-
Critic (A2C) that takes in an initial state s, initial stochastic policy πθ, and horizon h is
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as follows:

Algorithm 5: A2C(s, πθ, h)

1 Initialize πθ to anything
2 for each episode do
3 Initialize s0 and set n← 0
4 while s is not terminal or n 6= h do
5 Select an
6 Execute an, observe sn+1, rn
7 δ ← rn + γmaxan+1 Q(sn+1, an+1)−Qw(sn, an)
8 A(sn, an)← rn + γmaxan+1Q(sn+1, an+1)−

∑
a πθ(s|sn)Q(sn, a)

9 Update Q : w ← w + αwγnδOwQw(sn, an)
10 Update π : θ ← θ + αθγ

nA(sn, an)O logπθ(an|sn)
11 n← n+ 1

12 end

13 end

Note that this algorithm combines a variety of concepts introduced in previous sections,
including temporal difference error from (2.5). Also note that this is the first algorithm
presented to explicitly represent the value function and policy simultaneously. The ’actor’
(policy) learns by using feedback from the ’critic’ (value function). In doing so, these
methods trade off variance reduction of policy gradients with bias introduction from value
function methods [5, 14].

Recently an asynchronous method of actor-critic has been proposed, known as asyn-
chronous advantage actor-critic (A3C) [44], which asynchronously executes multiple agents
in parallel on multiple instances of the environment. This has a similar stabilizing effect as
experience replay while speeding up processing. The Q-function is often represented using
a Deep Q-Network [45].

2.3 Multi-Agent Reinforcement Learning

The previous section considered a single learning agent in a stationary environment. In
multi-agent RL (MARL) multiple reinforcement learning agents are at play simultaneously
within the environment. From the perspective of a single agent, the other agents are usually
considered to be simply part of the environment, but their continually-changing behaviour
renders the environment non-stationary [11].
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Formally, consider problems where observations and actions are distributed across n
agents with an action space of A and observation space of O. We can denote each
agent’s reward function as [R1, R2, ..., Rn]. The state transitions are now n-dimensional
vectors; observations [o1, o2, ..., on], o ∈ O lead to actions [a1, a2, ..., an], a ∈ A with re-
wards [R1(o1, a1), R2(o2, a2), ..., Rn(on, an)]. If R1 = R2 = Rn, then the environment is
purely cooperative as all agents have the same goal (to maximise the same expected re-
turn). Alternatively, if n = 2 and R1 = −R2, then the two agents have opposite goals
and the environment is purely competitive. Mixed cooperative-competitive environments
exist somewhere between the spectrum of these two extremes. Generally, the environment
is modelled as a Markov game where actions are chosen and executed simultaneously, and
new observations are perceived simultaneously as a result of a transition to a new state
[66]. This is depicted in Figure 2.2.

There are ancillary benefits to MARL beyond the simple speedup offered by parallel
computation. For instance, agents can exhibit specialization [22] and experience sharing
[68]. Specialized examples of the latter include skilled agents acting as teachers [13] or
role models [53] for weaker agents. However, the exponential growth of the state-action
space means that deep RL techniques are almost compulsory. Each agent is also faced with
a moving-target problem; the best policy for an individual agent changes as the policies
of other agents change [11]. In fact, due to the complexities of the environment and the
combinatorial nature of the problem, most MARL problems are categorized as NP-hard
problems [9].

2.3.1 Cooperation

Except for the extremely rare case where the environment is purely competitive, agents
must learn to work together in some fashion, if only to avoid wasteful conflict. While some
cooperation will naturally emerge as agents learn to maximize their expected discounted
reward, the choice of reward function and algorithm can have a large effect on the degree
and form of cooperation induced.

One naive approach to training cooperative MARL problems is to perform the train-
ing with a centralized controller, essentially converting the domain to a single-agent RL
problem where the controller outputs the joint action of all agents at each timestep. This
would ensure cooperation among the agents. However, this approach causes the num-
ber of actions to exponentially increase and makes the problem intractable [48]. Also, in
partially-observable environments such as the one we use in this thesis, each agent only has
a small snapshot of the entire state, which further complicates the implementation of such
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Figure 2.2: An example of a multi-agent reinforcement learning system with 3 agents.
Actions are taken simultaneously, which triggers simultaneous experience of observations.
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a central controller. However, there has been some success with using centralized critics
as seen in [60].

Another intuitive way to go about encouraging cooperation is to give all agents the
same reward function, thus making the environment purely cooperative. In other words,
agents are trained on the joint reward of all agents. Unfortunately, this leads to the ’lazy
agent’ problem, where weaker agents will take a backseat to let higher-performing agents
take over [66]. For example, imagine training a 2-player soccer team using RL with the
number of goals serving as the team reward signal. Suppose one player agent has become a
better scorer than the other. When the worse player takes a shot the outcome is on average
much worse, and the weaker player learns to avoid taking shots [24], instead passing to the
stronger player. By doing this, the weaker player stymies his own learning and prevents
the players from ever learning how to properly cooperate to score together.

Clearly, the reward function must be more sophisticated than simple team reward. This
was formalized by [65] as the optimal rewards problem (ORP) which was later extended
to multiagent settings. Liu et al. [37] proposed multiagent ORP as the optimal set of
individual reward functions that guide the team of agents to joint-behaviour and in ex-
pectation maximize joint objective utility. While there has been recent work pertaining to
generating [16] or learning [37] optimal individual reward functions, we focus instead on
approaches that allow prior encoding of a priori domain knowledge into reward functions.

One approach for modifying reward functions is reward-shaping, where the reward
function is subtly modified so as to guide agents on correct paths without affecting the
optimal policy [47, 31]. Guaranteeing such a property can be difficult and requires a
significant amount of domain knowledge [18]. Regardless, there has been a growing body
of work using reward-shaping to improve cooperation [15, 17, 42].

More recently, intrinsic rewards based on psychological motivations such as curiosity
and exploration that are added to the given reward as bonuses have been shown to improve
the performance of computational agents [37]. Intrinsic rewards are defined in psychology
as being moved to do something because it is inherently enjoyable rather than a specific
rewarding outcome [12]. Compared to reward-shaping, intrinsic rewards have not been
validated on large-scale real-world applications, but are more generalizable as they can
lead to the emergence of cooperation without making strong assumptions about ’correct
paths’ [18]. This generalizability was demonstrated by [18], who proposed task-independent
reward-functions for their classifications of maintenance, approach, avoidance, and achieve-
ment problems. Iqbal et al. [27] were directly able to show a link between improved co-
operation and different forms of intrinsic rewards while making a case for the strength of
heterogeneous multi-agent architectures, where agents are outfitted with different intrinsic
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reward functions.

2.3.2 Communication

One way to improve performance and coordination, especially in partially-observable en-
vironments, is to let the agents communicate with each other. Allowing the agents to
share messages and learn to communicate can significantly improve their adaptability to
a given situation [58]. To allow information to circulate between agents, a variety of com-
munication channels and protocols have been explored. Communication channels can be
continuous to allow easy optimization or discrete to mimic human language. The com-
munication protocol can either be hand-crafted in advance or be learned by the agents
through reward functions.

Communication is a broad term, and can take a variety of forms in multi-agent systems.
While this thesis focuses specifically on communication in the form of discrete hand-coded
messages or signals, multi-agent communication often gets obfuscated with semi-shared
learning. For example, in [8] agents ’communicate’ a shared policy that is learned to-
gether. We also distinguish between cheap-talk communication and cost-associated com-
munication. The experiments in this thesis use cheap-talk channels but works such as [23]
have experimented with predefined costs for exchanging information in MARL settings.

While communication protocols often bolster coordination and cooperation between
agents, it is important to note that these protocols significantly increase the search space
of the problem, both by increasing the size of the observation available to the agent (it now
knows information coming in from other agents) and by increasing the agent’s available
choices (as the agent now has to choose environmental actions as well as communication
actions) [51]. As noted in [19], this increase in search space can hamper learning optimal
behaviours by more than communication itself may help. This is closely tied to the idea
of communication vocabulary, as the size of the vocabulary has a huge influence on the
performance of communicating agents [58]. As shown in [33], the required size of the
vocabulary is correlated with the complexity of the environment.

2.4 Social Dilemmas

Social dilemmas expose tensions between collective and individual rationality [55]. Par-
ticipants can choose to engage in cooperation, defection, or any combination of the two.
Mutual cooperation leads to better outcomes for all than any could obtain individually.
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However, the lure of free riding and other such parasitic strategies implies a tragedy of the
commons that threatens the stability of any cooperative strategy [1].

Repeated general-sum matrix games provide a mathematical framework for understand-
ing social dilemmas [34] in the context of two-player games. The four possible outcomes
of each stage are R (mutual cooperation reward), P (mutual defection punishment), S
(sucker outcome obtained by cooperating against a defector), T (temptation outcome ob-
tained by defecting against a cooperator). A two-player repeated general-sum matrix game
is a social dilemma when these four payoffs satisfy the following social dilemma inequalities
(formulation reproduced from [41]):

1. R > P Mutual cooperation is preferred to mutual defection.

2. R > S Mutual cooperation is preferred to being exploited by a defector.

3. 2R > T +S This ensures that mutual cooperator is preferred to an equal probability
of unilateral cooperation and defection.

4. either T > R where exploiting a cooperator is preferred over mutual cooperation
(greed) or P > S where mutual defection is preferred to being exploited (fear).

While matrix game social dilemmas (MGSD) have successfully served as models for
a wide variety of phenomena in theoretical science and biology [34], they often devolve
to very simple computational strategies. For example, in the prisoner’s dilemma MGSD,
players are paired up and can choose to cooperate or defect over a number of rounds. All
of the inequalities from 2.4 apply, and agents are motivated to defect out of both greed and
fear simultaneously. The best computational solution is Rapoport’s Tit-for-Tat [56], which
has been victorious in multiple tournaments [2, 3] by simply starting with cooperation and
subsequently mimicking the opponent’s last move.

2.4.1 Sequential Social Dilemmas

Leibo et al. [34] propose several shortcomings of the MGSD model that fail to capture
aspects of real-world social dilemmas. They note that realistic cooperation and defection
are not simple atomic actions. Rather, a sequence of actions or a policy can be construed
as cooperative on a graded scale. Also, these decisions must usually be made with only
partial information about the state of the world and the activities of other players. In order
to address these shortcomings and create more computationally-interesting simulations of
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realistic social interactions, [34] introduced temporally-extended versions of MGSDs known
as sequential social dilemmas (SSDs), which is the class of problems we work with in this
thesis. The above inequalities still hold, but the payoffs now apply to policies rather than
individual moves.

Two examples of SSDs are described below. Note that owing to the greater complex-
ity arising from their sequential structure, it is more computationally demanding to find
equilibria of SSD models, necessitating the use of sophisticated multiagent deep reinforce-
ment learning methods [34]. In subsequent works SSDs have become a popular benchmark
for multiagent cooperation. All agents would benefit from learning to cooperate in these
games, because even agents that are being exploited get higher reward than in the regime
where more agents defect [28]. However, traditional RL agents struggle to learn to coordi-
nate or cooperate to solve these tasks effectively [26]. Agents must learn what cooperation
and defection entails in a given environment while also learning to abstain from the latter.

Despite being proposed fairly recently, a handful of approaches have been proposed for
solving SSDs with MARL, mostly focusing on various psychologically-motivated intrinsic
rewards that promote cooperation. Hughes et al. [26] proposed a penalty for inequity aver-
sion, where overperforming and underperforming agents are given a negative intrinsic re-
ward, framed as ’guilt’ and ’envy’ respectively. This essentially punishes overly-cooperative
and overly-defective behaviour and helps bring the population to an equilibrium. Note that
this approach requires agents to have some knowledge of the rewards of other agents, which
might not always be feasible.

Another approach proposed by [20] assigns intrinsic rewards based on reciprocity similar
to tit-for-tat. Their setup consists of ’innovator’ agents and ’imitators;’ they show that the
presence of reciprocating imitators push the innovator towards cooperation as the leaders
quickly learn that defection will be punished by reciprocal defection. This approach requires
the imitators to have complete access to the states and actions of the innovator.

Lastly, [28] demonstrate the first truly-decentralized solution to SSDs by assigning in-
trinsic rewards based on causal influence; agents are rewarded for disrupting the action dis-
tributions of neighbouring agents. By combining this with a model-of-other-agents (MOA)
that allows agents to make counterfactual predictions about each other, they achieve state-
of-the-art scores on the Harvest and Cleanup SSDs. Jaques et al. [28] also conduct an
ancillary experiment where they explore combining causal influence intrinsic rewards with
a cheap-talk communication channel, where agents are rewarded for sending symbols that
maximise disruption, though they found this was not as powerful as the more-complex
MOA model.

18



Harvest

Harvest is a partially-observable public pool resource SSD game introduced in [52]. The
goal of the game is to collect apples, which provide a reward of +1. However, harvested
apples regrow at a rate proportional to the number of remaining nearby apples. If all
apples in a local area, which we refer to as an ’apple patch’, are harvested none of them
will ever regrow. The episode ends after 1000 timesteps, after which the map resets to its
initial state.

This is a tragedy of the commons dilemma in which an individual is tempted by a
personal benefit to deplete a resource that is shared by all. Selfish individuals want to
harvest as rapidly as possible while the group benefits when individuals abstain from this
behaviour, especially around nearly-depleted patches. Agents can also tag each other with
a ’penalty beam.’ Any agent caught in the path of the beam receives a hefty −50 reward
penalty, but the beam costs −1 reward and a wasted action to fire. Earlier works remove
victim agents from the game for a number of rounds instead of penalizing their reward,
but we adopt the penalty approach used in more recent publications. Figure 2.3 depicts
the relative payoff for a defector given a fixed number of other cooperators, known as a
Schelling diagram [62, 52]. From it we can see that increased cooperation is a preferred
outcome even from the perspective of a defector.

Cleanup

Cleanup is a partially-observable public goods SSD game where the goal is to collect apples
which provide a reward of +1. Apples spawn at a rate determined by the state of a
geographically separated river. Over time, this river fills with waste, linearly lowering the
spawn rate of apples. At a high-enough level of waste, no more apples can spawn. The
episode starts with the level of waste slightly above this threshold. The agents can take
actions to clean the waste by firing a ’cleaning beam’ when near the river, which provides
no reward but is necessary to generate any apples. The episode ends after 1000 steps, after
which the map is reset to its initial state.

This is a public goods dilemma, where an individual must pay a personal cost in order
to provide a resource that is shared by all. If some agents are contributing to the public
good by clearing waste from the river, there is an incentive to stay in the apple-spawning
region and reap the benefits of their hard work. However, if all players adopt this strategy
no further apples will spawn. Similar to Harvest, agents can take a −1 reward to fire a
’penalty beam’ that gives a hefty −50 reward fine to any agent caught in its path. The
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Figure 2.3: Reproduced from [26]. (A) shows the Schelling diagram for Cleanup, (B) shows
the Schelling diagram for Harvest. The dotted line shows the overall average return if the
individual were to choose defection.

Schelling diagram in Figure 2.3 validates that in this SSD all agents benefit from learning
to cooperate, even when an individual agent is defecting.
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Chapter 3

Methodology

We iterate upon the ideas of [28] while moving away from their causal influence model to
focus on what we denote as obedience-based learning. We augment open-source implemen-
tations [69] of the Harvest and Cleanup games detailed in Section 2.4.1 by embedding an
all-to-all communication channel into the game environments similar to the approach used
by [21].

The neural network model of each agent (based upon the architecture of [28]) is aug-
mented with an additional output head responsible for learning a communication policy
πc separate from the standard environmental policy πe as seen in Figure 3.1.

If we define ctij as the communication symbol sent from agent i to agent j at timestep t,
the result of these augmentations to both the environment and agent models means that,
at every timestep, agent i is responsible not only for choosing its next game-related action
ati, but also a vector [cti1, c

t
i2, ..., c

t
ii, ..., c

t
in] of communication symbols where n is the total

number of agents in the game. In other words, the action space of agent i changes from
simply [ati] to [ati, [c

t
i1, ..., c

t
in]]. Note that this is an all-to-all communication channel where

an agent sends a message to every other agent including itself. In a similar way, while
the observation space is normally the small portion of the game board visible to the agent
(represented as an image), the agent’s observations now also include a vector of symbols
that were sent to it in the last timestep, i.e [ct−11i , ..., c

t−1
ni ]. This is represented visually in

Figure 3.2. In summary, at every timestep agents exchange communication symbols with
one another, which can be used to inform their decisions in the next timestep. While
this is a large increase in the action and observation space, we hypothesize that the extra
information and the intrinsic reward scheme discussed below will prove beneficial to agent
cooperation overall.
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Figure 3.1: An agent’s view of the environment (represented as an image) is processed
through a single-layer convolutional neural network (Conv) [49]. The output is flattened
and connected to two fully-connected layers (FC) before being concatenated with communi-
cation symbols to be fed into a long-short-term memory network (LSTM) [25]. Additional
details can be found in Appendix A.

There are a handful of actions agents playing the Harvest and Cleanup games can
undertake, including moving in the four cardinal directions, rotating their orientation,
and firing beams. Apples are automatically collected when an agent occupies the same
space.In both games agents can fire penalty beams that ’fine’ other agents, whereas the
Cleanup game also allows for the firing of a cleaning beam that cleans waste. In our
communication vocabulary, we use a unique numeric symbol for each possible action. For
example, a symbol of 5 might correspond to a move-left command while a 6 symbol cor-
responds to move-right. The symbol 0 is reserved as a special value in our vocabulary
which we define as ’no-communication.’ We set self-communication and communication
sent to agents out-of-view to this special value, artificially preventing agents from com-
municating with themselves and out-of-view agents. Agents can also voluntarily send the
’no-communication’ symbol through the channel to abstain from communicating.

Obedience-based learning takes the form of intrinsic rewards given to agents based on
the symbols they are sending and receiving. First, we review the sources of environmental
rewards in these two SSDs:

1. Agents gain an environmental reward of +1 upon collecting an apple.
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Figure 3.2: A single round of our Cleanup SSD game, with an agent taking an action at
time t and getting a t+1 observation. Agents (and senders) are rewarded for taking actions
that align with observed communication. Note that the communication observation at t+1
is the transpose of the communication actions matrix at t. P is a penalty beam command,
C a cleaning beam command
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2. Agents gain an environmental reward of −1 for firing a penalty beam.

3. Agents receive an environmental reward of −50 for being hit by a penalty beam.

We experiment with adding two sources of intrinsic reward. The first, an obedience
reward, is earned when an agent takes an action corresponding to the symbols/commands
it received from other agents. As agents receive a distinct command from every other
agent, the magnitude of the intrinsic reward scales with the number of commands that
were obeyed. Second, we define a leadership reward, which rewards agents for providing
commands in the last timestep that were successfully obeyed in the current timestep. In
this work we use a linear scaling between intrinsic reward and the number of commands
obeyed/given, but we note the potential of alternative reward functions, such as a loga-
rithmic scaling. The total reward then becomes:

r = e+ α(commands obeyed) + β(successful commands) (3.1)

Where e is the environmental reward, and α and β are the obedience weight and
leadership weight respectively. We grid search over the weights to ensure capturing the full
spectrum of possible intrinsic rewards.

More formally, expanding our previous notation, at the start of timestep t agent i has
sent symbols [ct−1i1 , ..., ct−1in ] in the last timestep and received symbols [ct−11i , ..., c

t−1
ni ] as part

of the observation of this timestep. Agent i decides to take action ati while the other agents
in the system take actions [at1, ..., a

t
n]. Let O(x, s) be the number of occurrences of x in

the sequence s and let L(s1, s2) be the number of element-wise equivalences in sequences
s1 and s2. The total reward for agent i can then be defined as:

r = e+ α(O(ati, [c
t−1
1i , ..., c

t−1
ni ])) + β(L([at1, ..., a

t
n], [ct−1i1 , ..., ct−1in ])) (3.2)

We conduct our reinforcement learning experiments using the latest (0.8.2 as of publica-
tion) version of Ray [46], a recent framework for building and running distributed applica-
tions which comes bundled with the scalable hyperparameter tuning library Tune [36] and
scalable reinforcement learning library RLlib [35]. We note that the only existing openly-
available implementation of SSD environments [69] was based on an outdated version of
Ray, and we provide an updated open-source implementation 1 of these environments with
our communication framework available as an optional augmentation.

1https://github.com/gauravg11/sequential social dilemma games
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Chapter 4

Experiments

In this chapter we describe our investigations into obedience-based learning applied to
sequential social dilemmas, starting with the results of our individual experiments before
concluding with a summary.

We conducted a variety of experiments to validate our hypothesis regarding obedience-
based learning. All experiments follow the game description in Section 2.4.1 and obedience
modifications in Chapter 3 unless noted. Additionally, we conduct our simulations with
number of agents n = 5 and discount factor γ = .99 as in [28]. Further implementation
details can be found in Appendix A.

4.1 Hyperparameter Search

After some initial investigation we chose to use A3C for our analysis, as we found it to
be the best-performing algorithm both in terms of reward and performance (experiments
detailed in Appendix B).

Next, we conducted randomly-sampled grid search over a number of hyperparameters,
most notably obedience weight α and leadership weight β from Equation 3.1. Grid search
was used to identify the appropriate order of magnitude for each hyperparameter, before
random sampling from a uniform distribution within the chosen order of magnitude to
fine-tune the value (details in Appendix B).

We found strong initial evidence for a beneficial effect from obedience-based intrin-
sic reward, with the best-performing trials using α = .001, β = .001 for Cleanup and

25



Figure 4.1: Mean Environmental Reward per episode of agents playing Harvest (above)
and Cleanup (below). Obedience agents are using best-identified intrinsic reward, while
baseline agents can communicate but gain no intrinsic reward.

α = .01, β = .001 for Harvest. This can be seen in Figure 4.1, where we compare the
best-performing trials against a baseline of α = 0, β = 0 that has the communication
architecture intact. Clearly, the addition of obedience-based learning is leading to faster
emergence of coordination between agents, though the Cleanup agents are still struggling
to gain positive reward. Note that Figure 4.1 uses environmental reward alone on its y-axis,
intrinsic reward is not considered. We continue to use the hyperparamaters identified here
for our subsequent experiments.
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4.2 Obedience-Based Learning

We repeat our previous simulation with the identified hyperparameters over a much longer
training period; 2500 training iterations of ≈ 5 episodes per iteration. We also evaluate
an additional baseline where the agents are prevented from communicating in order to
isolate the benefits of communication, but note that by simplifying the problem in this
way individual timesteps are no longer directly comparable as a unit of time.

The results of this simulation for Harvest can be seen in Figure 4.2. As expected,
we can see from comparing baselines that simply allowing the agents to communicate
leads to more effective learning. Obedience-based learning initially struggles but there
is a window where it outperforms the communication baseline. Long-term, the baseline
agents converge to purely-defective behaviour where the agents greedily grab all the apples
in the environment from the start, though this is less prevalent when communication is
added. In this instance the addition of obedience seems to be hampering learning, likely
due to the greatly increased complexity of the problem space brought about by the added
intrinsic reward signal. Interestingly, we can see that the obedient agents converge to a
substantially lower value than the communication baseline; agents are either not collecting
apples or collecting them too rapidly. This corresponds with an uptick in intrinsic reward,
implying that agents have begin to shift their focus towards intrinsic reward over extrinsic
reward.

The same setup applied to Cleanup produced similar results, which can be seen in
Figure 4.3. Communication baseline agents quickly converge to complete indifference; as
they are not able to draw a link between cleaning the river and spawning apples, agents
stop exploring moves entirely. Baseline agents instead continuously explore the problem
space. The behaviour of obedience-based agents falls between these two extremes, with
smaller explorations of the problem space.

Overall, we see some promising preliminary results for obedience-based learning in that
it favors the system towards exploration vs exploitation, but also note that the strength of
the effect is not sufficient to overcome the challenging temptation of defection for egocentric
agents.

4.3 Reduced Vocabulary

Given our previous results, we decided to simplify the complexity of the problem and see
if that would encourage further exploration, ideally leading agents to discover the benefits
of cooperation.
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Figure 4.2: Mean Reward per episode of agents playing Harvest. Obedient agents use
α = .01, β = .001 while baseline agents use α = 0, β = 0. Communication baselines are
allowed to communicate. The two baselines overlap in the intrinsic reward portion of this
and subsequent figures.
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Figure 4.3: Mean Reward per episode of agents playing Cleanup. Obedient agents use
α = .001, β = .001 while baseline agents use α = 0, β = 0. Communication baselines are
allowed to communicate.
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We carried this out by reducing the size of our communication vocabulary. Intuitively,
having a unique communication symbol for each individual action is unnecessary. We mod-
ify the communications channel to collapse the vocabulary of symbols to just move, stay,
rotate, penalize, and clean. For example, when an agent now receives a move symbol, it
receives obedience reward for the move-left, move-right, move-down, and move-up actions.
We hypothesized that this modification would drastically reduce complexity without sac-
rificing the benefits of obedience-based learning. The results of applying this modification
can be seen in Figures 4.4 and 4.5.

While Cleanup still struggles to achieve positive reward, in Harvest we can now start
seeing substantial benefits from obedience-based intrinsic reward. In particular, Harvest
obedience with reduced vocabulary greatly outperforms the communication baseline. We
also see much higher overall intrinsic reward, indicating that reducing the vocabulary while
maintaining semantics has allowed agents to use obedience-based learning more effectively.
Clearly, obedience-based learning in Section 4.2 was struggling due to the extremely large
problem space. This demonstrates that obedience-based learning is most effective when
the communication vocabulary is carefully adjusted relative to the problem domain. This
could be done by either encoding a-priori domain knowledge as done here or by treating
the communication vocabulary as a hyperparameter and searching for optimal values.

4.4 Heterogeneous Agent Population

Previous works with SSDs [26, 28, 34] use homogeneous populations of agents in their
MARL simulations; all agents are completely identical to each other. Eccles et al. [20] use
two classes of distinct agents where one class simply mimics the moves of the other. By
giving a unique α and β to every agent, we create a truly-heterogeneous agent population
in order to gauge the flexibility of obedience-based learning.

We give every agent an index i between 0, 1, ..., n−1 and then set an individual obedience
αi = α∗ i and leadership βi = β ∗ i weight for each agent in order to model an environment
with widely-varying levels of obedience and leadership. In our setup with n = 5, this means
we have an agent with no obedience (i = 0), an agent with standard obedience (i = 1),
and agents with double (i = 2), triple (i = 3), and quadruple (i = 4) levels of obedience.
The results for this setup can be seen in Figures 4.6 and 4.7.

Note that these experiments are not using the reduced vocabulary methods from Section
4.3. While heterogeneous agents perform poorly in Cleanup, with results similar to the no-
communication baseline, in Harvest we see obedience agents outperform the communication
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Figure 4.4: Mean Reward per episode of agents playing Harvest with a reduced vocabulary.
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Figure 4.5: Mean Reward per episode of agents playing Cleanup with a reduced vocabulary.
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Figure 4.6: Mean Reward per episode of heterogeneous agents playing Harvest.
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Figure 4.7: Mean Reward per episode of heterogeneous agents playing Cleanup.
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baseline. We also see a high level of intrinsic reward, similar to what is seen in Section 4.3.
Clearly, when agents learn to properly utilize intrinsic obedience reward the environmental
reward also increases, demonstrating the efficacy of this approach. We have also shown
that obedience-based learning is not only robust to, but rather can even benefit from,
mixed populations.

4.5 Heterogeneous Agents with Reduced Vocabulary

In Sections 4.3 and 4.4, we showed reward gains when applying a reduced vocabulary
and heterogeneous agent populations to Harvest. We were curious to see if the benefits
from these techniques would be additive when applied together. The application of a
heterogeneous agent population to Harvest while using a reduced vocabulary can be seen
in Figure 4.8. As these techniques showed no benefits on Cleanup, we did not analyze it
in this experiment.

Surprisingly, this caused a complete collapse in environmental reward with a huge
surge in intrinsic reward. Using agents with up to 4× α and 4× β along with a simplified
vocabulary caused intrinsic reward to be too easily accessed at too great a magnitude,
overpowering the environmental reward signal. This demonstrates one of the pitfalls of
obedience-based learning shared by all intrinsic reward systems; the reward scheme needs
to be finely-tuned so as not to distract from the problem at hand. We feel this approach
has potential given our previous results, but would require substantial tuning to obtain a
suitable α and β, and hope to address this in future work.

4.6 Leader-Follower Agents

Lastly, we explored defining explicit ’leaders’ and ’followers’ in our agent population. This
was inspired by Eccles et al. [20] where the authors used an analogous ’innovator’ and
’imitator’ system to apply reciprocity to sequential social dilemmas. However, [20] required
a hand-coded ’niceness network’ to make the imitators mimic the innovator, and the former
required complete knowledge of the reward structure of the latter. We hypothesize that
we can create a similar effect by simply tweaking agent’s individual α and β values.

We first defined leader agents with α = 0, β = .01 and follower with agents α = 0.1, β =
0 so that leaders are rewarded only for successful leadership and followers rewarded only for
successful obedience. This led to results that were slightly worse than the communication
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Figure 4.8: Mean Reward per episode of heterogeneous agents with a reduced vocabulary
playing Harvest.
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baseline. Further investigation showed that both leadership and obedience were necessary
within a single agent for successful obedience-based learning. While one force can be
stronger than the other, eliminating either cripples learning. We settled upon α = .001, β =
.01 for leaders and α = .01, β = .001 for followers, the results of which can be seen in Figure
4.9 for Harvest and Figure 4.10 for Cleanup.

Defining explicit leaders and followers leads to significantly more cooperation in Harvest,
with some of the highest mean environmental reward values relative to other experiments
in this thesis. We also see a significant level of intrinsic reward, though not as high as
those seen in Section 4.5, indicating that we’ve found a healthy trade-off between extrinsic
and intrinsic reward. Cleanup continues to struggle to cooperate, though we do note that
convergence occurs faster here than in other experiments.

We were interested in how the behaviour of leaders and followers differ while playing
Harvest, so we visualized the game during training, an example of which can be seen
in Figure 4.11. Over time, the leaders learned to push the followers into a corner and
keep them there by continuously sending ’stay’ commands. This allowed leaders to collect
apples with less competition, causing apple patches to be depleted at a much slower rate.
Meanwhile, the followers were able to continuously earn intrinsic reward for obediently
staying in a corner. In other words, one group of agents learned to optimize intrinsic reward
while the other optimized environmental reward. As agents could only send commands to
one another when ’in view,’ the leaders also learned not to spend too much time away from
the follower’s range of view so the latter would not be tempted by environmental reward.
These results demonstrate that improved performance solving SSDs is not a guarantee of
true collaborative behaviour despite its use as a collaboration benchmark. On the other
hand, it could be argued that this is an instance where members of a community are
neglecting personal profit for the benefit of others, a form of cooperation otherwise known
as altruism. For follow-up work we recommend using additional metrics beyond joint
reward to move towards a more formal definition of cooperation.

37



Figure 4.9: Mean Reward per episode of explicit leaders and follower agents playing Har-
vest.
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Figure 4.10: Mean Reward per episode of explicit leaders and follower agents playing
Cleanup.
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Figure 4.11: Visualization of the Harvest game being played with explicit leaders and
followers. The pink and blue agent at the top-left are followers who are being commanded
to stay in place, while the remaining leaders consume apples (green) in close proximity to
the followers.
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Chapter 5

Conclusion

In this work we presented a novel form of psychologically-motivated intrinsic reward de-
noted obedience-based learning, where agents use a cheap-talk communication channel to
exchange commands. We evaluated the potential of the technique using sequential so-
cial dilemmas (SSDs) and find promising preliminary evidence of its ability to encourage
exploration of the problem space.

While our initial approach struggled to affect collective reward, we found that various
heterogeneous populations as well as a reduced communication vocabulary led to overall
increases in performance on the Harvest game. Cleanup remains challenging, as it is
simply too tempting for defecting agents to take advantage of the hard work of cooperating
agents, regardless of the commands being sent their way. We hypothesize that obedience-
based learning is more suited for tragedy of the common scenarios rather than public good
situations. Validating this would require extending obedience-based learning to further
MARL environments as discussed in Section 5.1.

While obedience-based reward is not as powerful as hand-crafted approaches to solve
SSDs using MARL (we obtained ≈ 600 collective Harvest reward compared to Jaques’
900+), the minimal complexity and decentralization of the approach stands out. Agents
do not need to model each other as in [28] or be aware of each other’s reward structures
as in [26]. Obedience-based learning is a powerful general technique for environments that
favor exploration, as the intrinsic reward for obeying commands from a variety of distinct
leaders helps encourage agents to continuously ’go out of their comfort zone.’

Though a simple computational problem, solving social dilemmas with multiple egocen-
tric agents remains a challenging problem across the computational and social sciences. We
hope that our work here, including up-to-date implementations of Harvest and Cleanup,
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will lead to further exploration of psychologically-motivated intrinsic rewards to promote
cooperation.

5.1 Further Work

The natural next step would be to evaluate obedience-based learning on other MARL
environments. Rather than manually building out a custom modified environment as
in this thesis, ideally a general-purpose communication channel could be built out that
integrates with OpenAI’s Gym [10] environments to allow easy testing of obedience-based
learning across a variety of domains. We envision this taking the form of a wrapper1

module that wraps around MARL environments to modify their reward structure while
keeping track of communication.

Based on our results with population heterogeneity, another avenue we would like to
explore is applying obedience-based learning to asymmetric games, especially asymmetric
social dilemmas [70]. We find this direction especially exciting as ’obedience’ takes on a
different context when the game becomes asymmetric; perhaps some games simplify to a
certain class of agents dictating commands to other classes.

We had two more direct follow-up experiments in mind that we were not able to tackle
due to time limitations. Firstly, the agents in our work had a 15 × 15 view of the envi-
ronment, it would be interesting to vary the vision-box of the agent. As a corollary, we
prevent agents from talking to other agents out-of-view, and relaxing this constraint could
lead to interesting results. Secondly, we wanted to explore applying a decay term to the
obedience intrinsic reward. Intuitively, decaying intrinsic obedience reward can help the
agent favor early exploration while still allowing late exploitation, giving us the best of
both worlds.

We would also like to simply repeat our experiments with greater computing power.
In particular, our hyperparameter searches were upper-bounded by available computa-
tional resources, as MARL simulations are very expensive to simulate, especially with our
communication scheme adding multiple extra dimensions to the action and observation
space. This is especially noticeable in our experiment combining reduced vocabulary and
heterogeneous agents which requires extensive hyperparameter searching.

While our neural network architecture was heavily inspired by the work of [28], there is
no guarantee that such an architecture leads to optimal obedience-based learning. While

1https://github.com/openai/gym/tree/master/gym/wrappers
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we found that our results were resilient to smaller architecture tweaks, we were not able
to test a set of substantially different neural network configurations. In the same vein, we
fixed the number of agents n = 5 and this would be another parameter of our experiment
that would be interesting to tune.

Lastly, we use a cheap-talk communication channel where exchanging commands is free,
but adding a small cost to communication could reveal interesting insights. In particular,
having agents choose between moving and communicating instead of being allowed to do
both would simplify implementation while creating an opportunity cost for communication.
It would also be of interest to establish a concrete upper-bound for Harvest and Cleanup
performance. This could be done through theoretical analysis or by hand-crafting perfectly-
cooperative agents that achieve maximum game scores.
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Antonio Garćıa Castañeda, Iain Dunning, Tina Zhu, Kevin McKee, Raphael Koster,
et al. Inequity aversion improves cooperation in intertemporal social dilemmas. In
Advances in neural information processing systems, pages 3326–3336, 2018.

[27] Shariq Iqbal and Fei Sha. Coordinated exploration via intrinsic rewards for multi-agent
reinforcement learning. arXiv preprint arXiv:1905.12127, 2019.

[28] Natasha Jaques, Angeliki Lazaridou, Edward Hughes, Caglar Gulcehre, Pedro A Or-
tega, DJ Strouse, Joel Z Leibo, and Nando De Freitas. Social influence as intrinsic mo-
tivation for multi-agent deep reinforcement learning. arXiv preprint arXiv:1810.08647,
2018.

[29] Steven J Karau and Kipling D Williams. Social loafing: A meta-analytic review and
theoretical integration. Journal of personality and social psychology, 65(4):681, 1993.

[30] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

46



[31] Adam Laud and Gerald DeJong. Reinforcement learning and shaping: Encouraging
intended behaviors. In ICML, pages 355–362, 2002.

[32] Martin Lauer and Martin Riedmiller. An algorithm for distributed reinforcement
learning in cooperative multi-agent systems. In In Proceedings of the Seventeenth
International Conference on Machine Learning. Citeseer, 2000.

[33] Angeliki Lazaridou, Alexander Peysakhovich, and Marco Baroni. Multi-agent coop-
eration and the emergence of (natural) language. arXiv preprint arXiv:1612.07182,
2016.

[34] Joel Z Leibo, Vinicius Zambaldi, Marc Lanctot, Janusz Marecki, and Thore Grae-
pel. Multi-agent reinforcement learning in sequential social dilemmas. arXiv preprint
arXiv:1702.03037, 2017.

[35] Eric Liang, Richard Liaw, Philipp Moritz, Robert Nishihara, Roy Fox, Ken Gold-
berg, Joseph E Gonzalez, Michael I Jordan, and Ion Stoica. Rllib: Abstractions for
distributed reinforcement learning. arXiv preprint arXiv:1712.09381, 2017.

[36] Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E Gonzalez, and
Ion Stoica. Tune: A research platform for distributed model selection and training.
arXiv preprint arXiv:1807.05118, 2018.

[37] Bingyao Liu, Satinder Singh, Richard L Lewis, and Shiyin Qin. Optimal rewards
for cooperative agents. IEEE Transactions on Autonomous Mental Development,
6(4):286–297, 2014.

[38] Boyi Liu, Qi Cai, Zhuoran Yang, and Zhaoran Wang. Neural proximal/trust region
policy optimization attains globally optimal policy. arXiv preprint arXiv:1906.10306,
2019.

[39] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mor-
datch. Multi-agent actor-critic for mixed cooperative-competitive environments. In
Advances in neural information processing systems, pages 6379–6390, 2017.

[40] Zhou Lu, Hongming Pu, Feicheng Wang, Zhiqiang Hu, and Liwei Wang. The ex-
pressive power of neural networks: A view from the width. In Advances in neural
information processing systems, pages 6231–6239, 2017.

[41] Michael W Macy and Andreas Flache. Learning dynamics in social dilemmas. Pro-
ceedings of the National Academy of Sciences, 99(suppl 3):7229–7236, 2002.

47



[42] Patrick Mannion, Jim Duggan, and Enda Howley. Generating multi-agent poten-
tial functions using counterfactual estimates. Proceedings of Learning, Inference and
Control of Multi-Agent Systems (at NIPS 2016), 2016.

[43] Laetitia Matignon, Guillaume J Laurent, and Nadine Le Fort-Piat. Independent re-
inforcement learners in cooperative markov games: a survey regarding coordination
problems. The Knowledge Engineering Review, 27(1):1–31, 2012.

[44] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy
Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods
for deep reinforcement learning. In International conference on machine learning,
pages 1928–1937, 2016.

[45] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. Human-level control through deep reinforcement learning. Nature,
518(7540):529–533, 2015.

[46] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw,
Eric Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I Jordan, et al.
Ray: A distributed framework for emerging {AI} applications. In 13th {USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI} 18), pages
561–577, 2018.

[47] AY Ng, D Harada, and SJ Russell. Policy invariance under reward transformations:
Theory and application to reward shaping. icml (pp. 278–287), 1999.

[48] Afshin OroojlooyJadid and Davood Hajinezhad. A review of cooperative multi-agent
deep reinforcement learning. arXiv preprint arXiv:1908.03963, 2019.

[49] Keiron O’Shea and Ryan Nash. An introduction to convolutional neural networks.
arXiv preprint arXiv:1511.08458, 2015.

[50] Elinor Ostrom. Governing the commons: The evolution of institutions for collective
action. Cambridge university press, 1990.

[51] Liviu Panait and Sean Luke. Cooperative multi-agent learning: The state of the art.
Autonomous agents and multi-agent systems, 11(3):387–434, 2005.

[52] Julien Perolat, Joel Z Leibo, Vinicius Zambaldi, Charles Beattie, Karl Tuyls, and
Thore Graepel. A multi-agent reinforcement learning model of common-pool resource

48



appropriation. In Advances in Neural Information Processing Systems, pages 3643–
3652, 2017.

[53] Bob Price and Craig Boutilier. Accelerating reinforcement learning through implicit
imitation. Journal of Artificial Intelligence Research, 19:569–629, 2003.

[54] Martin L Puterman. Markov decision processes. Handbooks in operations research
and management science, 2:331–434, 1990.

[55] Anatol Rapoport. Game theory as a theory of conflict resolution, volume 2. Springer
Science & Business Media, 2012.

[56] Anatol Rapoport, Albert M Chammah, and Carol J Orwant. Prisoner’s dilemma: A
study in conflict and cooperation, volume 165. University of Michigan press, 1965.

[57] Stuart Russell and Peter Norvig. Artificial intelligence: a modern approach. 2002.
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Appendix A

Implementation Details

A.1 NN Architecture

Inspired by [28], all models were trained with a single convolutional layer with a kernel of
size 3, stride of size 1, and 6 output channels. The output is flattened and connected to
two fully connected layers of size 32 each. Lastly, this is concatenated with the symbols
from the communication channel to be fed into an LSTM of 128 cells. The LSTM has three
output heads responsible for the value function, environmental policy, and communication
policy respectively. This architecture is visualized in Figure 3.1.

A.2 Hyperparameters

In addition to the obedience weight α and leadership weight β, there are a variety of
other hyperparameters that can be independently tuned for each model. We used grid
searches to identify the best hyperparameters over 250 training iterations as described in
Section 4.1. The below table gives the parameters found to be most effective for each
environment. Unfortunately due to limitations on computing power we were not able to
re-identify optimal hyperparameters for each experimental condition, so parameters are
shared between experimental conditions.
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Hyperparameter Harvest A3C
Baseline

Harvest A3C
Obedience

Cleanup A3C
Baseline

Cleanup A3C
Obedience

Entropy reg. .000687 .000687 .00176 .00176
lr init .00136 .00215 .00126 .00126
lr final .000028 .000028 .000012 .000013
α 0 .001 0 .01
β 0 .001 0 .001

The learning rate was annealled from an initial value lr init to lr final. Other RLlib-
specific configurations can be found within the codebase 1.

1https://github.com/gauravg11/sequential social dilemma games
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Appendix B

Supplementary Experiments

B.1 RL Algorithm Selection

We compared a handful of popular MARL techniques on our SSDs with and without
obedience-based learning to identify the most suitable algorithm, both in terms of reward
and computational performance.

While we intended to compare DQN, A3C, and PPO, our analysis of DQN was held back
by library limitations; as of publication reinforcement learning library RLlib does not yet
support the use of complex MultiDiscrete action spaces with their DQN implementation.
The results of our investigation can be seen in Figure B.1, where both algorithms were
allowed to run on Harvest until mean reward converged.

While both algorithms were eventually able to converge to similar reward values, A3C
needed less than a third of the time PPO required. Clearly, obedience-based learning is
flexible to the choice of algorithm but the asynchronous nature of A3C puts it ahead in
terms of performance.
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Figure B.1: Mean Reward per episode of agents playing Harvest. Obedient A3C agents
use α = .01, β = .001 while obedience PPO agents use α = .0001, β = .01. Baseline agents
can communicate and use α = 0, β = 0..
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