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Abstract 

With the increased development of new transportation technologies such as 

autonomous vehicles and ridesharing fleet services comes the possibility of a new mode of 

transportation: autonomous vehicle ridesharing services (AVRS). The speed, convenience, 

accessibility, and low cost that AVRS is likely to offer will put it in competition with 

traditional fixed-route transit services. The effect of this competition is studied through the 

use of a four-step transportation demand model applied to hypothetical idealized urban 

networks. Under the assumptions that AVRS will cost 9% less per kilometer than owning 

and operating a personal automobile, that the AVRS service will have average wait times of 

7 minutes, and that transit systems remain as they currently exist, the presence of AVRS in 

the network leads to an average loss per transit route of 49% of passenger-kilometers. 

Important transit route properties that correlate with decrease in passenger-kilometers 

include the passenger-kilometers before the introduction of AVRS and the headway. 

Additional effects of the introduction of AVRS could include an increase in delay due to 

congestion, an increase in travel times, and an increase in vehicle-kilometers travelled.  
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1 Introduction and Context 

New technologies are often the largest driver in changes to transportation, ranging 

from more efficient and safe variations of existing technology to entirely new modes. More 

dramatic changes such as the development of a new transportation mode tend to lead to 

changes in the built environment, new infrastructure requirements, shifts in societal 

behaviour, and increased economic development. During these larger developments in 

transportation technology, it is important to correctly anticipate their impacts to aid in 

administrative decisions and prevent undesired side-effects. 

In recent years, the most dramatic change in transportation has been the 

development and proliferation of ridesharing services provided by fleet operators such as 

Uber and Lyft. While this is not entirely a new form of transportation service, as taxis have 

been in existence for over 100 years, by taking advantage of the access to communication 

provided by smartphones and by restructuring wages, these ridesharing services have 

become more convenient and at lower cost for the customer. 

Another recent transportation technology development is the autonomous vehicle. 

Both the manufacturers and researchers (Ohnemus et al., 2016) have projected that 

autonomous vehicles will be safer, more energy efficient, increase traffic flow, and remove 

barriers to transportation. These two technological developments are expected to be 

combined in the form of ridesharing services using autonomous vehicles to provide 

transportation to users in response to demand. This type of transportation can be thought 

of as a new mode of transportation for the purposes of modelling travel decisions, in 

particular mode choice. This mode goes by a number of names in the literature, including 

connected autonomous vehicles (CAV), autonomous taxis (aTaxis), and autonomous vehicle 

ridesharing services (AVRS). For this thesis, the term AVRS will be used. 

In the context of this thesis, AVRS is assumed to operate similar to existing taxi 

services (i.e. a demand responsive mode providing transportation from origin to 

destination) but at a lower cost (due to the fact that there is no need to pay a driver). The 

term “ridesharing” indicates that the vehicle is not owned by the trip maker (as is the case 

with personally owned automobiles). It does not indicate that the service provides 
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simultaneous same-vehicle rides for multiple trip makers with different origins and 

destinations. 

It is anticipated that the widespread adoption of AVRS will have an impact on 

traditional fixed-route public transit services such as government-operated bus and rail 

systems, and the impact will likely be a decrease in demand for these services. Traditional 

transit in Canada plays a secondary role to the main transportation mode (personally 

owned automobiles) and is commonly seen as a fallback that is used when automobiles 

cannot be used. This includes captive transit riders: groups of people who do not have 

reliable access to automobiles. Only in rare cases is public transportation a first option, 

typically where congestion is high enough to cause significant reductions in travel time and 

convenience. Due to the role transit plays in ensuring transportation for everyone, it is 

typically government managed and funded. AVRS will likely compete favourably with 

transit in terms of travel time and convenience, and potentially cost. As a result, the future 

role that transit will occupy is unknown, but it may involve shifting to incorporate AVRS, 

increasing the number of separate right-of-way routes, or withdrawing to only the busiest 

corridors. 

The objective of this study was to gain an understanding of how the demand for 

traditional fixed-route public transit could change in the case where AVRS becomes a 

common form of transportation. More specifically, the objective is to quantify the changes 

in demand and to determine if changes in demand are correlated with the transit route 

characteristics. This includes how changes in transit demand will have an effect on the city 

as a whole, which characteristics of transit have relationships with changes in transit 

demand, and the nature of those relationships. 

Research on AVRS or relevant to AVRS can be broadly divided into three groups: 

research on the autonomous vehicles themselves, research on the fleet operations and 

systems needed to run an AVRS company, and research on the potential impacts AVRS 

systems could have on the existing transportation landscape. The autonomous vehicles 

themselves are not particularly relevant for this work. Most research on AVRS itself tends 

to be research on fleet operations, including work to examine the costs (Bösch et al., 2018), 

wait times, algorithms (Ma et al., 2017, Hanna et al., 2016, Winter et al., 2016), and fleet 

sizes (Fagnant et al., 2014, Fagnant et al., 2016, Winter et al., 2017) of potential AVRS 
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systems, and how components of AVRS can be integrated into transit systems often in a 

last-mile context (Liang et al., 2016). Research into the effects of AVRS is most often on the 

topic of city-wide impacts, benefits with respect to changes in congestion levels, and 

changes in the traffic flows of various infrastructures (Ghiasi et al., 2017). Some research 

has been done on the competition between AVRS and transit and how the demand for 

transit will evolve, such as Levin and Boyle (2015), who integrate autonomous vehicles into 

a Four-Step model but the autonomous vehicles are privately owned (there is no ride- or 

carsharing) and the effects on specific transit routes are not examined. 

In this thesis, impacts of AVRS on demand for public transit were investigated by 

constructing a four-step transportation demand model and applying this model to a set of 

urban networks of various sizes with and without the AVRS mode. A set of models were 

developed to create the networks, allowing for increased generalization and reducing data 

collection needs. Transit routes were measured and categorized by transit type, headway, 

length, and speed (among other measurements). These transit characteristics from the 

simulations with and without AVRS were compared to find relationships to the changes in 

demand, measured by passenger-kilometers per hour. Findings suggest that with the 

availability of AVRS, demand and usage of traditional fixed-route transit will decline 

dramatically (about 40%), and that this decrease is relatively consistent across the 

variations of transit routes. The characteristics that make transit routes more viable are 

short headways and separate rights-of-way. Additionally, AVRS could cause an increase in 

the vehicle kilometers travelled city-wide, increasing congestion and decreasing travel 

times for all travellers. 

The remainder of this thesis is structured as follows: 

Chapter 2 provides an overview of the methodological approach taken in the 

research, the structure of the model that was developed, and the details pertaining to each 

component of the model. Where appropriate, references are made to the literature with 

respect to elements of the model components, model parameter values, and/or data 

sources.  

Chapter 3 describes how the developed model was used to simulate a set of 

different hypothetical urban networks and presents the ensuing model results as well as an 

interpretation of these results. 
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Chapter 4 identifies limitations associated with this study and presents a set of 

recommendations for future research to extend this work.   
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2 Model Structure 

The overall goal of this research was to examine the impact that AVRS is likely to 

have on public transit ridership and thereby provide public transit agencies with some 

insight into how to plan for the introduction of AVRS.  

At the outset of this work, it was necessary to determine the most appropriate 

structure for the modelling. It was determined that two main approaches could be 

considered. 

The first would be to use conventional urban transportation models (such as the 

four-step model) to examine the impact of introducing AVRS into a specific community, 

such as Waterloo Region. The advantage to this approach is that the existing transportation 

network (e.g. roads, public transit routes, etc) and the land use data (e.g. population and 

employment distributions and density) would already be known and would be used as 

input to the four-step transportation model.  The disadvantage is that the results (i.e. 

impact of AVRS) would be restricted to the specific characteristics of the urban area that 

had been modelled.  

A second approach was to develop a modelling framework that creates hypothetical 

urban areas (i.e. cities) with user controlled attributes, and for these hypothetical cities, 

apply the four-step model to determine mode splits.  The advantage to this approach is that 

the impact of introducing AVRS could be evaluated over a range of conditions (e.g. size of 

urban area, characteristics of road and transit network, etc.).  The disadvantage is that this 

approach would require a model to generate the transportation network (roads and transit 

routes) and the population and employment densities in each zone and concerns about the 

validation of the modelling results.  

Factors such as time and complexity, accuracy, scaling, and control were taken into 

account when deliberating between these two modelling approaches.  Concerns associated 

with using a model to create the network are alleviated by recognizing that by nature this 

project has some limits to accuracy. The AVRS mode is an extremely new technology and 

mode, so its characteristics are not fully known. In light of having to make broad 

assumptions about AVRS costs, travel times, and more, it is unlikely that the increases in 

accuracy of a real-world network like the precise distribution of population and travel 
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destinations or the specific alignments of transit routes would have a substantial positive 

effect. This conclusion is strengthened by noting that the amount of variation found in real-

world cities makes it unlikely that studying any particular city is any better than studying a 

variety of generalized cities created by the model. Using a self-made model to create 

networks also gives more control over experimentation. 

Given these characteristics of the two different modelling approaches, it was 

decided to adopt the second approach, and develop a model to generate hypothetical urban 

areas and model each with the four-step transportation model. 

The complete model has a three part structure which together create transit routes, 

create a city with roads and population/employment, and simulate the travel demand and 

transportation infrastructure use. The model was created for this study and for the 

purposes of studying how transit ridership could be affected by the emergence of a new 

mode, specifically autonomous vehicle ride-sharing services (AVRS). In order to accomplish 

that goal, there are a number of requirements. The model needs to be able to simulate 

transportation demand, both the more mechanical aspects such as congestion, route 

planning, and road use, and the decision-based aspects like mode choice and destination 

choice. Such transportation demand modelling is traditionally done with the Four-Step 

Model, but has also been done (sometimes more accurately) by using activity or tour-based 

models. The model especially needs to be able to handle decisions regarding mode choice 

across a variety of situations: different demands, trip lengths, congestion levels, and types 

of public transit. Four-step models handle these mode choice decisions explicitly and in 

isolation, whereas activity-based models handle them in conjunction with other decisions, 

but however they are handled they are a crucial aspect of the model for this project. The 

model must also take into account effects such as the costs of using the modes and the 

effects of congestion (and especially the different ways in which congestion affects the 

different modes). 

The three part structure is made up of the Route Generator, the Network Generator, 

and a Four-Step model. The route generator was tasked with creating transit routes by 

creating sets of properties that were judged to be crucial to the nature of a transit route 

and to a travel (mode choice) decision. The network generator handled the creation of the 

city properties necessary for transportation modelling and for the modes being considered. 
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This structure is outlined in Figure 2.1. Each part of the overall model has inputs, many of 

which become outputs for another stage. There is a small number of inputs to the entire 

model which are used to control what type of city and transit scenario is modelled. The 

other inputs are calibrated parameters. These inputs and parameters are shown in Table 

2.1 and Table 2.2. 

 

Figure 2.1: Overview of model structure 

In these tables, inputs are considered to be the values that do not have a value with 

clear theoretical foundation, and therefore are values that need to be given by the user. 

They are also the values that are important in terms of controlling the scenario being 

modelled. Parameters are the values that do have a theoretical foundation and/or can be 

calculated/calibrated from applicable data, and therefore can be left to the default values. 

They can, however, still be changed to create a certain scenario. 
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Table 2.1: Model Inputs 

Input Sub-model Description   
Transit Dataset Route Table Controls whether bus routes are created to 

match a small city profile or a large city 
profile. 

Number of Bus 
Routes 

Route Table   

Number of Rail 
Routes 

Route Table   

Population Network Generator Goal population for the city, the actual 
population will be slightly above this. 

Minimum City Size Network Generator Minimum side length of the city square, in 
blocks (see block size). 

AVRS Cost Four Step Model Cost per kilometer, in 2019 CAD, of using an 
AVRS service 

AVRS Wait Time Four Step Model Average time in minutes that is spent 
waiting for AVRS services 
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Table 2.2: Model Parameters 

Parameter Sub-model Description 
Block Size (b) Network Generator The distance in meters between parallel 

roads in the road grid, and therefore also 
the distance between zone centres. 

Fill Density Network Generator Population density (in people/km^2) of 
rural areas surrounding the city. 

Bridge Gap Network Generator Mean distance in blocks (see block size) 
between bridges 

Bridge Deviation Network Generator Standard deviation, in blocks, of the 
distance between bridges 

Remove Percent Network Generator Percent of roads to remove from the basic 
grid. 

VDF parameters Network Generator 𝛼𝑎 and 𝛽𝑎 in the volume delay function 
(equation (2.20)) for each road type 

Number of Lanes Network Generator The number of lanes for each road type 
Road Capacity Network Generator Capacity, in vehicles per hour, for each road 

type. 
Free Speed Network Generator Free speed, in kilometers per hour, for each 

road type. 
Automobile Cost Four Step Model Cost per kilometer, in 2019 CAD, of owning 

and operating a personal automobile. 
Transit Fare Four Step Model Cost per trip, in 2019 CAD, of public transit. 
Walking Speed Four Step Model Walking speed, in meters per second 
Trips per Person Four Step Model Trips produced per person per day. 
Trips per 
Employment 

Four Step Model Trips attracted by each worker per day. 

Peak Hour Trips 
per Day 

Four Step Model The proportion of daily trips that take place 
during the peak hour. 

Impedance a Four Step Model a in the impedance function of the gravity 
model (equation (2.28)). 

Impedance b Four Step Model b in the impedance function of the gravity 
model (equation (2.28)). 

Mode Split 
Functions 

Four Step Model Includes the constants and coefficients for 
the utility function for each mode. 

 

When working on a project that seeks to integrate many different facets, it is 

important to be clear about the scope. Autonomous vehicles are projected to be part of 

technologies such as connected vehicles, automated intersections, platooning, and others 

that could change the nature of traffic flow compared to human-driven vehicles. These 

potential features are not included in this study because of the extra complexity, lack of 

consensus of how they operate or how they are modelled, and including them would mean 
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manually implementing the models. Another limitation to the scope is that the project 

assumes a Canadian context - the cities that the network generator creates are meant to 

capture the properties and distributions found in Canada. Where Canadian information is 

not present or available, information from the USA is used instead. 

2.1 Route Table Generator 

The job of the route table generator is to produce transit routes that are similar to 

those found in Canadian cities. There are many configurations of transit routes, and many 

ways to measure and characterize them. The route table generation should produce a 

variety of routes, but not a completely random variety as some of the possibilities may not 

be an accurate reflection of real transit routes. To address these needs, the route table 

generator samples from a data set of real-world transit routes, after that data set has been 

smoothed by kernel density estimation. This model has three areas that need 

configuration: 

1. Which characteristics of transit routes to include in the model, 

2. What data source to use as the basis for the model, and 

3. What type of sampling and smoothing to use. 

Transit routes have been characterized and described, qualitatively and 

quantitatively, for operational and research purposes. Vuchic (2007) describes some of the 

most common: the order of transit (i.e. higher order such as subway, and lower order such 

as fixed route bus), the headway, capacity, ridership, revenue/cost ratio, operating cost, 

passenger cost, and load factor. These characteristics have varying values to the route table 

generator, according to their ease of measurement, their significance in passenger mode-

choice decisions, the ease of modelling their impact, and the consistency with which they 

apply to all trips made using the route. Using these considerations, 9 characteristics were 

chosen to be studied in depth. These are shown in Table 2.3. 
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Table 2.3: Transit Route Characteristics 

Characteristics Symbol Unit Meaning 
Headway h min The time between successive visits by 

transit vehicles 
Route Length ℓ km The total distance covered by the transit 

vehicle from the beginning to the end of the 
route. 

Geodesic 
Distance 

g km The shortest distance between the starting 
and ending location of the route. 

Route 
Indirectness 

𝑖𝑟 n/a The route length divided by the geodesic 
distance; a higher ratio means the route 
takes a less direct path. 

Total Travel 
Time 

t min The total time elapsed during a single one-
way trip. 

Operating 
Speed 

s km/h The route length divided by the travel time; 
the average speed of the vehicle during a 
single one-way trip. 

Wait time 
percentage 

w n/a The average wait time† divided by total 
travel time; the typical proportion of a 
user’s trip that they spend waiting. 
†Average wait time is half of the headway. 

Cost c $ (2019 CAD) The average amount paid by a single 
passenger to use the route. 

Peak Ridership d passengers/hr The number of people using the route 
during the busiest hour of the day. 

 

Of these route characteristics, some will be a direct result from the route table 

generator: headway, route length, geodesic distance, and total travel time. The operating 

speed, route indirectness, and wait time percentage can be calculated from the headway, 

length, geodesic, and travel time: 

 
𝑠 =

ℓ

𝑡
 

(2.1) 

 
𝑖𝑟 =

ℓ

𝑔
 

(2.2) 

 
𝑤 =

ℎ

2𝑡
∙ 50% 

(2.3) 

Peak ridership is dependent on many factors and is not an inherent characteristic of 

the route. Instead, it is estimated during the simulation process and is an output of the 

four-step model. All of the characteristics produced by the route table generator are used 

as inputs to the network generator and indirectly to the four-step travel demand model. 
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For most Canadian transit systems, fare cost is the same across a given transit service (i.e. 

fixed fare regardless of the route(s) used), and therefore this is also assumed in this work. 

With Table 2.3 and the exceptions above, for the purposes of the route table 

generator a transit route is a collection of four characteristics: headway, length, geodesic 

distance, and travel time. The next sections describe the creation of a data set that includes 

those four characteristics, and the model used to create hypothetical routes with that data 

set. 

2.1.1 Characteristics of Public Transit Routes in Canada 

Many transit agencies provide data to the public formatted according to the General 

Transit Feed Specification (GTFS) (Google 2019), which includes schedule and route 

alignment information. GTFS data was obtained for 7 cities in Canada, chosen to cover a 

range of city sizes, transit services, and geographies: Toronto (City of Toronto 2018), 

Montréal (Société de transport de Montréal 2018), Vancouver (Translink 2018), Calgary 

(City of Calgary 2018), Hamilton (City of Hamilton 2018), Waterloo Region (Grand River 

Transit 2018), and London (London Transit Commission 2018). The routes and trips in the 

raw data sets for these 7 cities are summarized in Table 2.4. This data was then aggregated 

to create datasets that have a large number of routes, each with values for the four 

characteristics. 

GTFS data provides data as a set of tables. For this research, the most relevant tables 

are the route, trip, stop time, and shape tables. The route table lists all the routes managed 

by a transit agency, including their name and the type of transit (i.e. bus and rail). The trip 

table lists every trip made by a transit vehicle as well as information about what route the 

trip belongs to, the direction, and the shape of the trip. The stop times table lists the time 

that each trip is scheduled to stop at each stop along its trip, which can be used to know 

precisely when each vehicle is in which location. Finally, the shape table lists every physical 

path that the trips can take, by giving a sequence of latitude-longitude pairs for each shape. 
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Table 2.4: Raw GTFS Data Characteristics 

City Routes Bus Routes Rail Routes Trips Bus Trips Rail Trips 
Calgary 295 293 (99.3%) 2 (0.7%) 11,196 10,515 (93.9%) 681 (6.1%) 
Hamilton 44 44 (100%) 0 (0%) 3,830 3,830 (100%) 0 (0%) 
London 42 42 (100%) 0 (0%) 3,726 3,726 (100%) 0 (0%) 
Montreal 228 224 (98.2%) 4 (1.8%) 20,553 18,803 (91.5%) 1,750 (8.5%) 
Toronto 205 190 (92.7%) 15 (7.3%) 43,705 37,751 (86.4%) 5,954 (13.6%) 
Vancouver 242 239 (98.8%) 3 (1.2%) 24,303 22,304 (91.8%) 1,999 (8.2%) 
Waterloo 79 79 (100%) 0 (0%) 3,303 3,303 (100%) 0 (0%) 
All Cities 1,135 1,111 (97.9%) 24 (2.1%) 110,616 100,232 (90.6%) 10,384 (9.4%) 

 

2.1.1.1 Aggregation 

To obtain the desired data set, the GTFS data for each city had to be reformatted and 

aggregated, using a two-stage aggregation. First, the 4 characteristics are found for each 

trip. Then, the trips are aggregated into subroutes according to their physical alignment. 

The route length and geodesic distance were calculated using the shape files. An 

excerpt of a shape file is shown in Table 2.5. The shape file includes the sequence of 

locations the route visits as latitudes and longitudes, which can be used to calculate the 

route length, and the geodesic distance can be calculated using the first and last location. 

Table 2.5: Shape File Excerpt 

Shape ID Latitude Longitude Sequence 
10011 43.435221 -80.560327 10001 
10011 43.434987 -80.560079 10002 
10011 43.434688 -80.559763 10003 
10011 43.434681 -80.559753 10004 
10011 43.434663 -80.55978 10005 
     ⋮         ⋮          ⋮       ⋮ 
10011 43.422757 -80.440732 660011 
10011 43.422906 -80.440808 660012 
10011 43.423253 -80.441242 660013 

The travel time and the headway of each trip is calculated using a schedule table, 

such as the one shown in Table 2.6. The travel time and headways are calculated for each 

trip, then aggregated into a single value for the route. Let 𝑠𝑖,𝑘 be the scheduled stop time of 

trip i at stop k. The travel time of trip i is 

 𝑡𝑖 = 𝑠𝑖,𝑘𝑚𝑎𝑥 − 𝑠𝑖,𝑘𝑚𝑖𝑛 (2.4) 

The trip headway is calculated from the average of the headway at each stop: 
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ℎ𝑖 =

1

𝑛
∑ (𝑠𝑖𝑛𝑒𝑥𝑡,𝑘 − 𝑠𝑖,𝑘)

𝑘
 

(2.5) 

where 𝑖𝑛𝑒𝑥𝑡 is the index of the next trip after i that visits stop k and n is the number 

of stops. For example, trip 1 in Table 2.6 has a headway of 

 
ℎ1 =

1

45
((𝑠2,100 − 𝑠1,100) + ⋯ + (𝑠2,142 − 𝑠1,142) + (𝑠3,143 − 𝑠1,143)

+ (𝑠3,144 − 𝑠1,144)) 
 

 
ℎ1 =

1

45
(5 + ⋯ + 5 + 10 + 10)  

 ℎ1 = 5.22 minutes  
If the headway at any stop would be greater than 90 minutes, then that stop is 

omitted from the calculation. This ensures that breaks in service won't result in headways 

that are multiple hours long. 

Table 2.6: Example of a Schedule Table 

 Time at Stop Number 
Trip 100 101 102 142 143 144 
1 07:00 07:04 07:06 08:13 08:15 08:19 
2 07:05 07:09 07:11 08:18 n/a n/a 
3 07:10 07:14 07:16 08:23 08:25 08:29 
4 07:15 07:19 07:21 08:28 n/a n/a 
5 07:20 07:24 07:26 08:33 08:35 08:39 

Each trip within a route can have different values for the 4 characteristics calculated 

above, meaning that aggregating all these trips together would lead to problems. In fact, it 

is possible for two trips from the same route to have different physical paths, ranging from 

short-turns that only cover half the route, to trunk-and-branch routes with many paths at 

the ends, to breaking up a route into multiple back to back trips. To account for all this 

variation, the trips are aggregated by subroute: two trips belong to the same subroute if 

they have the exact same route length and geodesic distance. Naturally, this removes any 

variation in the length and geodesic. The variation in travel time over the course of a day is 

mostly due to changes in congestion, while the variation in headway is due to changes in 

service level which is driven by demand. For travel times, the variation is typically a 

difference of about 5 minutes, which is not significant relative to the travel times 

themselves (typically at least 20 minutes). Therefore, the subroute travel time is found by 

averaging the travel time for each trip. Figure 2.2 shows the distribution of the coefficients 

of variation (standard deviation divided by the mean) for the aggregated subroute travel 
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times. This figure demonstrates that taking the average travel time is not introducing a 

large amount of variation - the coefficients of variation are nearly always below 0.16. 

 

Figure 2.2: Distribution of coefficients of variation for subroute travel times. 

For the headways, a common pattern is that they are significantly longer in the early 

mornings and late nights than during the remainder of the day. It is most accurate in these 

cases to say that the headway of the subroute is the headway that occurred most 

frequently. Therefore, subroute headways are found using the mean of trips which begin 

their journey between 6 AM and 7 PM. Figure 2.3 compares the distributions of the 

coefficients of variation for the headway calculated by including all trips, and by including 

only trips from 6 AM to 7 PM. Excluding early morning and late night trips decreases the 

variation, meaning that the trips that have been excluded are atypical. 
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Figure 2.3: Distribution of coefficients of variation for subroute headways. 

After aggregation, there are 3,164 subroutes, 3,019 bus subroutes and 145 rail 

subroutes. It should be noted that 380 subroutes (12.0%) do not have any trips that start 

between 6 AM and 7 PM, which means that these subroutes are effectively filtered from the 

dataset. Table 2.7 shows the subroute counts by city and mode, and includes the 380 

subroutes without a daytime headway. 
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Table 2.7: Aggregated Data Counts 

City Subroutes Bus Subroutes Rail Subroutes 
Calgary 453 443 (97.8%) 10 (2.2%) 
Hamilton 116 116 (100%) 0 (0%) 
London 181 181 (100%) 0 (0%) 
Montreal 560 551 (98.4%) 9 (1.6%) 
Toronto 935 835 (89.3%) 100 (10.7%) 
Vancouver 778 752 (96.7%) 26 (3.3%) 
Waterloo 141 141 (100%) 0 (0%) 
All Cities 3,164 3,019 (95.4%) 145 (4.6%) 

2.1.1.2 Filtering 

After the aggregation work, the subroutes are filtered to ensure that the final data 

set doesn't include subroutes that are unrealistic. Two filters are applied: one to eliminate 

routes that start and end in the same location, and the other to ensure that the subroute 

has enough trips to be considered a proper route. 

The presence of routes that start and end in the same location (loop routes) creates 

a problem because they have a geodesic of zero, and therefore the route indirectness 

cannot be calculated. However, it is relatively easy for a route which, for all practical 

purposes, starts and ends at the same location to have a non-zero geodesic. For example, 

the starting and ending points may be on opposite sides of a street or building. To ensure 

that these routes are also eliminated, trips with a route indirectness greater than 6 and a 

geodesic less than 1 km are also considered loop routes. In short, after applying the loop 

route filter, all routes have a non-zero geodesic and must have an indirectness of 6 or less 

or a geodesic of 1 km or greater. The threshold of route indirectness was chosen after 

looking at the maps of various routes with high indirectness and observing that loop routes 

(as classified subjectively) tend to have route indirectness greater than 6. 

Another issue with the data is that there are a fairly large number of subroutes that 

have either a much shorter route length as compared to other subroutes of the same route, 

or have many fewer trips than similar length subroutes of the same route. Figure 2.4 shows 

the large number of subroutes that have very few trips - in fact, around 20% of all 

subroutes have 4 or fewer trips. These subroutes are found in the data as short turns, or 

because the transit agency represented a route as a set of smaller, interconnected route 

fragments. 
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Figure 2.4: Distribution of the number of trips in each subroute. 

Two additional measurements are introduced to filter out such routes: length 

percentage, and trip percentage. Length percentage is calculated for each subroute using 

Equation (2.6). 

 
𝑞𝑠 =

ℓ𝑠

max
𝑟∈𝑅

ℓ𝑟
∙ 100% (2.6) 

where 𝑞𝑠 is the length percentage of subroute s, ℓ𝑟 and ℓ𝑠 are the lengths of 

subroutes r and s, and R is the set of subroutes that make up the same route as s. Trip 

percentage is calculated as in equation (2.7). 

 
𝑧𝑠 =

∑ 𝑛𝑥𝑥∈𝐺

∑ 𝑛𝑦𝑦∈𝑅
∙ 100% (2.7) 

where 𝑧𝑠 is the trip percentage of subroute s, 𝑛𝑖  is the number of trips in subroute i, 

R is the set of subroutes that make up the same route as s, and G is the set of subroutes with 

a length percentage equal to ℓ𝑠 to the nearest ten. To clarify, if round() is the rounding 

function to the nearest ten, then 

 𝐺 ≡ {𝑥 ∈ 𝑅 | 𝑟𝑜𝑢𝑛𝑑(ℓ𝑠) = 𝑟𝑜𝑢𝑛𝑑(ℓ𝑥)}. (2.8) 
Subroutes are kept if they have a length percentage ≥25% and a trip percentage 

≥10%. 

Note that the calculation for trip percentage is not simply the percentage of trips 

that a given subroute contributes to the route as a whole. It was found that using a naive 

approach eliminated too many subroutes and upon further examination, it eliminated 

subroutes that subjectively were not atypical. These situations occurred when a route 

consisted of many similar subroutes, which individually did not represent a significant 
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amount of the route's trips, but together did. In other words, some subroutes display small 

variations that did not fundamentally change the subroute, and so are grouped together 

when calculating the trip percentage. Examples of these calculations are shown in Table 

2.8. 

Table 2.8: Example Length and Trip Percentage 

Route Subroute Length (km) Trips Length % Trip % 
A 1 8.6 6 100.0 (100) 12.2 
A 2 4.7 30 54.7 (50) 79.6 
A 3 1.2 4 14.0 (10) 8.2 
A 4 4.5 9 52.3 (50) 79.6 
B 1 10.0 107 100 (100) 52.5 
B 2 4.2 18 42 (40) 45.6 
B 3 3.9 19 39 (40) 45.6 
B 4 3.8 17 38 (40) 45.6 
B 5 4.1 19 41 (40) 45.6 
B 6 4.0 20 40 (40) 45.6 
B 7 2.0 4 20 (20) 2.0 

In combination, the filters described above as well as only using headways during 

daytime results in 5 separate filters. Figure 4.1 in the appendix details in the interactions of 

the logic more clearly, as well as containing information about how many subroutes are 

eliminated as a result of the filters. 

2.1.1.3 Resulting Dataset 

The resulting dataset consists of 2,264 subroutes, or 71.6% of the 3,164 initial 

subroutes. Since the transit routes come from a range of city sizes and transit modes, the 

data set is split into three: rail routes, bus routes from small cities (Calgary, Hamilton, 

Waterloo, and London), and bus routes from large cities (Toronto, Montréal, and 

Vancouver). The number of subroutes in each dataset is shown in Table 2.9. The appendix 

contains data summaries (Table 4.1-Table 4.3) and Figure 2.5 through Figure 2.9 show the 

characteristics of the datasets. 

Table 2.9: Number of subroutes in each dataset 

 Dataset Number of Subroutes  
 Rail 54  
 Bus, small cities 614  
 Bus, large cities 1596  
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The histograms of length and travel time (Figure 2.5 and Figure 2.6) display 

expected characteristics: the routes are the appropriate length to allow for mobility around 

a city, and the distributions are visually Normal with a slight right skew. Rail routes cover a 

larger range of lengths. 

Figure 2.7 shows the distribution of headway, and it is clear that the three datasets 

have different characteristics: rail routes have short headways, as they typically serve 

higher demand. Large cities also tend to have higher demand bus routes which requires 

shorter headways, whereas small cities tend to have more low-demand routes which are 

serviced with longer headways. In both of the bus histograms, the effect of clock-facing 

headway policies (headways which are factors of 60 minutes) can be seen in the spikes at 

headways such as 5, 20, and 30 minutes. 

Figure 2.8 shows the speed distribution. Buses typically travel at around 15-30 

km/h, with buses in larger cities traveling slower than those in smaller cities. This is likely 

due to higher congestion in larger cities. For rail routes, there is a bimodal structure. The 

rail dataset includes Toronto and Montréal's metros, Vancouver's SkyTrains, Calgary's LRT, 

and Toronto's streetcars. The bimodal speed distribution is caused by the large differences 

between streetcars and higher right-of-way trains: the slower group of subroutes (slower 

than most buses) are the streetcars, whereas the dedicated right-of-way rail routes 

typically operate at 30-40 km/h, faster than most buses. 

Figure 2.9 shows the distribution of route indirectness, and that rail routes are 

noticeably more direct that bus routes. This is likely because the higher infrastructure costs 

of rail, the increased permanence, and the higher capacity all mean that there is more focus 

on quick, direct, and efficient movement. It should be noted that there are 23 subroutes 

with route indirectness greater than 6 that are not shown in Figure 2.9, this is because if 

they are shown, the area near 1, which is where most routes are found, becomes a single 

spike. 
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Figure 2.5: Distribution of Transit Route Length (km). 
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Figure 2.6: Distribution of Transit Route Travel Times (minutes). 
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Figure 2.7: Distribution of Transit Route Headways (minutes). 
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Figure 2.8: Distribution of Transit Route Operating Speeds (km/h). 
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Figure 2.9: Distribution of Transit Route Indirectness. 
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2.1.2 Synthesizing Hypothetical Transit Routes 

As described in the previous section, routes are a vector of four characteristics: 

headway, length, geodesic distance, and travel time. By combining data (vectors) from 

many different transit routes from urban centres across Canada, it is possible to create 4-

dimensional empirical frequency distribution.  The route table generator creates routes by 

drawing samples from the empirical data set. Kernel density estimation (KDE) was used to 

smooth the 4-dimensional distribution before sampling. Smoothing was used to eliminate 

gaps in the distribution that do not appear to have any theoretical justification, and to 

include vectors on the edges of the distribution that do not appear in the data set but could 

exist. Kernel density estimation was chosen as a simple way to create a smooth 

distribution, and because it can easily handle multiple dimensions. 

Kernel density estimation creates a continuous distribution from a data set by 

placing a Gaussian (normal) distribution at each vector, with the Gaussian distributions 

being the same dimension as the vectors. Each Gaussian must have a standard deviation in 

each dimension, and by increasing the standard deviation, the distribution can be made 

smoother. 

For the implementation of the KDE, the scikit-learn software package was used. This 

package includes the creation of the smoothed distribution, the selection of the standard 

deviations (more commonly called bandwidths in the context of KDE), and sampling from 

the created distribution. For more on kernel density estimation and the scikit-learn 

package, see VanderPlas (2016) and Pedregosa (2011). After samples are drawn, a basic 

filter is applied to ensure that the smoothing hasn’t violated the following constraints: 

 𝑙 > 0 (2.9) 
 𝑔 ≥ 𝑏 (2.10) 
 𝑡 > 0 (2.11) 
 ℎ > 2.5 (2.12) 
 𝑙 ≥ 𝑔 (2.13) 

 

2.2 Network Generator 

Previously, a comparison was made between carrying out the demand modelling on 

city data collected from the real world or on data created through a model, with the 

conclusion being that model-created cities allowed more control, reduced the complexity of 
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fitting existing data to the exact requirements of this project, and did not sacrifice accuracy 

due to the goals and nature of the demand modelling. See the introduction to Chapter 3 for 

this discussion. The model that creates city data is called the network generator. 

The job of the network generator is to create the city data that is required by the 

four-step travel demand model. In that model, cities are represented by: 

1. Traffic analysis zone tables covering land use, 

2. Link tables describing the road network and transportation options, and 

3. Origin-destination matrices giving information such as travel times and costs for 

trips between those origins and destinations. 

To create this data, the network generator has five components: 

1. creating a road grid,  

2. creating alignments of the transit routes,  

3. giving properties to the traffic analysis zones,  

4. assigning volume-delay functions for the road network, and  

5. calculating origin-destination matrices. 

In some cases, these components are directly creating the data required for the four-

step model, and in other cases they are creating underlying structures that ensure an 

adherence to reality and can be converted into the four-step model inputs. 

Before further describing each of these components, it is worth considering what 

properties of a city are important and the required level of detail for the output. For roads 

and the road network, it is not important to have very high-resolution data that includes 

the paths the roads take, and includes all the possible types of intersections and road 

patterns. Instead, what is important is that for any origin and destination within the 

network, there are a number of route options, of which some use higher-order 

infrastructure, some use transit, some are direct, etc. As well, some origin-destination pairs 

may not have many route options, due to being constricted by some sort of linear barrier 

such as bodies of water, changes in elevation, or transportation rights-of-way. This 

diversity of options creates a space for the travel demand model to assess the factors 

influencing mode choice decisions. Traffic analysis zones are a way to abstract the land use 

properties of the city. When creating TAZs for an existing city they are made descriptively, 

seeking to combine areas of similar land use and follow natural and human boundaries. In 
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this project, they are used prescriptively to create a spatial variation of land uses, and the 

actual physical shapes or sizes of the TAZs are not important. Since the physical layout of 

neither the roads nor the TAZs is important, the city is represented by a grid. This creates 

TAZs of equal area at each point on the grid, with roads between each. As real cities are not 

perfect grids, some roads are removed to introduce irregularities, and to account for linear 

barriers. 

A visual summary of the components of the network generator is shown in Figure 

2.10. These components are further described in the following sections. 

 

Figure 2.10: Network generator components 

2.2.1 Road Grid 

The road grid component produces a rudimentary link table containing information 

about how the links connect to make up the city. As discussed previously, the city is made 

up of a grid, shown in Figure 2.11. Each point on the grid, also referred to as the grid points, 

serve as the connection points for the links. Links here refers to the one-way connection 

from one grid point to the next, and a pair of links connecting the same grid points in 

opposite directions make up a (road) segment. This component uses the route table as an 

input, as well the following user inputs and parameters: minimum city size, block size, 

bridge gap mean, and bridge gap standard deviation. See Table 2.1 for more information on 

these parameters. Block size has a default value of 1000 m, chosen to reduce computation 
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time but maintain a resolution of TAZ similar to those used in the Transportation 

Tomorrow Survey (for more on the TTS, see Section 3.3.3). The bridge parameters’ default 

values are 1.75 and 1.25 respectively, chosen through subjective analysis of bridge spacing 

carried out on maps of Canadian cities. 

 

Figure 2.11: Visual definition of the road grid. Only one TAZ is shown for visual clarity. 

Similarly, in following figures the simplification in the top right corner is used. 

The grid points also serve as the locations for the traffic analysis zones (TAZ, or 

zones). Defining the TAZ centroids in the same locations as the grid points reduces 

complexity and computation time, as it reduces the number of roads that have to be 

modelled. The size of the grid is max(𝑛𝑚𝑖𝑛, 𝑛𝑔), where 𝑛𝑔 is the number of blocks such that 

the width of the city is equal to the maximum geodesic distance of the transit routes. 

Dummy segments are used to connect the TAZ centroids to the nearest grid point, to model 

all the roads within zones. All road segments are made up of two links: there are no one 

way streets in the network.  

Two adjustments are made to the base grid to introduce variation and route choice 

complexity in the road network: random removals and linear barriers. A small percentage 

of road segments are removed to simulate the effect of parks, large properties, and other 

irregularities. By default, 7% of segments are removed. Segments are eligible for removal if 

removing them does not create a dead-end segment, which are segments that serve as the 
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only connection between a TAZ and the rest of the city. Eligible segments are chosen to be 

removed randomly, each with an equal probability. 

A linear barrier is also created to simulate the varieties of geographic barriers such 

as bodies of water, changes in elevation, and infrastructure rights-of-way. These types of 

barriers result in some segments being key routes as they magnify the differences between 

alternative routes and cause many origin-destination pairs to use the same key segment. 

Most often, these linear barriers are rivers, and the bridges are the key segments. To create 

a linear barrier, the network generator removes most links along a line passing through the 

city. To decide which links are kept and which are removed, the length of the gap, or the 

number of links removed between bridges, is defined by a normal distribution, using the 

bridge gap mean and standard deviation. 

The output from this sub-model of the network generator is a road network 

topology.  An example of a road grid with a linear barrier and randomly removed links is 

shown in Figure 2.12. Note that the classification of roadway types (e.g. arterial versus 

freeway) and associated capacity is determined in the fourth component as described in 

Section 2.2.4. 

 

Figure 2.12: Road grid with segments removed. 
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2.2.2 Transit Route Alignments 

The next step in the process is to determine transit route alignments. The user 

specifies the number of public transit (bus and rail) routes and the characteristics of each 

route is obtained from the route table (i.e. the output from the Route Table Generator). The 

Transit Route Alignments component generates alignments for the transit routes such that 

the route characteristics match those in the Route Table as closely as possible. In particular, 

care is taken to ensure that the geodesic distance and the route length match, since these 

are the measures that are most affected by the alignment of the route. The transit routes 

produced are represented by a list of the links that make up the route in the order they are 

traversed. It should be noted that due to the discrete nature of the road grid, the actual 

route characteristics may not exactly match the target characteristics as defined in the 

Route Table. 

The route alignment generation is stochastic subject to the need to adhere to the 

target characteristics as obtained from the Route Table. It may seem unintuitive for the 

transit route alignment to be generated absent of an underlying structure considering that 

in reality transit routes are carefully placed to be useful to travellers. However, in this 

model, we wish to simulate a set of transit routes with prescribed characteristics (i.e. to 

represent those existing in Canadian cities) and therefore, we define the routes first, and 

then define TAZ population and employment densities to correlate to the transit route 

characteristics (See Section 3.2.3 for details). 

Route alignments are creating by choosing an origin and destination pair, finding 

the shortest distance path between those, and if needed, diverting the path to increase the 

indirectness. Origin destination pairs are chosen randomly from the set of valid pairs for 

that route. A pair is valid if it meets two conditions: 

1. the Euclidean distance between the points is near the desired route geodesic 

distance, within a margin of error, and  

2. the ratio between the Manhattan distance and the Euclidean distance is greater 

than the desired route indirectness.  

The first condition ensures that the actual geodesic distance is close to the desired 

value, which is necessary due to the discrete nature of the road grid. The margin of error is 
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set to 𝑏√2, where b is the block size. This margin of error is the maximum Euclidean 

distance a point within a square with side length b can be from the square’s vertices – using 

this margin of error is equivalent to making the assumption that, for any point, all four of 

the surrounding grid points are close enough approximations. The second condition 

ensures that it is possible to create a sufficiently direct route. The route must necessarily 

follow the roads, which are all horizontal or vertical and therefore the Manhattan distance 

is the shortest distance. If this is not short enough, then an origin-destination pair must be 

chosen that is more horizontal or more vertical. 

The shortest path between the chosen origin and destination pair is an example of 

the shortest path problem found in graph theory, and solved using the 

scipy.sparse.csgraph.shortest_path function from the scipy software package. This function 

uses well defined algorithms such as Dijkstra’s algorithm (Dijkstra, 1959). 

The provisional route alignment created by Dijkstra’s algorithm may not be indirect 

enough according to the input values from the route table. To increase indirectness, a 

diversion is added to increase the length of the route. Figure 2.13 shows an example of a 

route with a diversion added. To create the diversion, an arbitrary section from point a to b 

of the original route is selected to be removed. It is replaced by a longer section, found by 

offsetting the original route. A vector 𝑣⃑ is found that is perpendicular to the vector 𝑢⃑⃑, which 

goes from a to b. Vector 𝑣⃑ is scaled to have a length of 𝑘/2, where k is the amount by which 

the route must be lengthened. Then the diversion section is created by finding the shortest 

path from a to 𝑎 + 𝑣⃑ to 𝑏 + 𝑣⃑ to b. In this way, the route is lengthened by approximately 

2‖𝑣⃑‖ = 𝑘. Implementing this process on the grid introduces a small unavoidable error. 
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Figure 2.13: Example transit route alignment, with diversion. 

2.2.3 Traffic Analysis Zone Properties 

The outputs of the network generator model are used for the Four-Step Model. In 

particular, the trip generation step needs each zone to have a population and a number of 

jobs in that zone. Note that the jobs number is not the number of employed people living in 

the zone, but the number of employees that businesses and other employers located in the 

zone have. 

The primary requirements of zone attribute assignment are that (1) high population 

and high employing areas should be served by a correspondingly high level of transit 

service, and (2) the amount of land at each population density level should be reasonable 

for a city of its size. To achieve the first goal, the placement of higher populations and 

higher number of jobs is biased towards zones with higher transit service. Further details 

are given in Section 2.2.3.2. To achieve the second goal, the population densities are drawn 

from real world data described in Section 2.2.3.1. 

2.2.3.1 Distribution of Population Density 

The population density dataset was obtained from the Canadian census. In order to 

include a variety of urban landscapes, a dataset was created using 12 of the 13 largest 

Census Metropolitan Areas (CMAs) in Canada: 
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 Toronto Québec  
 Montréal Winnipeg  
 Vancouver Hamilton  
 Calgary Kitchen  
 Ottawa London  
 Edmonton Halifax  

These cities were chosen to capture most Canadian cities that are large enough for 

significant transit systems, as well as to ensure representation for the various regions of 

Canada (St. Catharines was excluded in favour of Halifax to include the Maritimes). 

The Canadian census divides all of Canada into geographic regions on a range of 

different physical scales. The smallest region with data accessible to the public is the 

Dissemination Area (DA). The census defines a DA as a “small, relatively stable geographic 

unit composed of one or more adjacent dissemination blocks with an average population of 

400 to 700 persons based on data from the previous Census of Population Program. It is 

the smallest standard geographic area for which all census data are disseminated. DAs 

cover all the territory of Canada.” (Dictionary, Census of Population, 2016). Additionally, 

DA boundaries follow roads as much as possible, but may also follow railways, water 

features, power transmission lines, and other features. They are designed to be uniform in 

population and to be compact in shape. Dissemination areas make up many larger 

geographic regions used by the census and by governments, such as census subdivisions 

(roughly equivalent to municipalities), census divisions (similar to counties, regional 

municipalities, and other first-level administrative divisions), and census metropolitan 

areas (adjacent municipalities with high economic and social integration). 

The simplest way to obtain a distribution of population densities is to use the list of 

DAs. This creates a distribution in which each DA, regardless of population, area, 

population density, or any other attribute, counts the same. There are 28,654 DAs 

associated with the 12 CMAs included in the dataset. The distribution from this list of DAs 

is shown in Figure 2.14. Any zone (DA) with a population density above 30,000 

people/km^2 is excluded, as those are extreme outliers that form only 1.13% of the data. 
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Figure 2.14: Distribution of dissemination area densities 

However, this distribution is biased towards areas of high density. Due to the way 

that dissemination areas are defined (i.e. areas containing approximately 400 – 700 

people), dissemination areas vary in terms of their size.  For example a dissemination area 

can range from a single high-rise building, to two streets of suburban detached homes, to a 

large area of rural farms and homes. Conversely, the network generation model uses zones 

that have equal area but vary in terms of their population. Therefore, using the distribution 

above would result in more land being dedicated to high-density development than is 

actually found in the real world. In order to account for this, the census data from the 

dissemination areas was re-organized according to area as described below. 

A sample of the raw data from the Population and Dwelling Count Highlight Tables 

of the 2016 census is shown in Table 2.10. Note that some of the columns have not been 

shown, such as the dwellings counts and the geographic codes for provinces, census 

divisions, and census subdivisions. 

Table 2.10: Sample census data (Population and Dwelling Count Highlight Table) 

DA Code Province Population Area Population Density 
   km2 people/km2 
24230057 Quebec 301.0 0.19 1616.5 
24230633 Quebec 777.0 0.48 1615.0 
24230860 Quebec 383.0 0.24 1610.6 
35212143 Ontario 4682.0 2.59 1804.9 
35210226 Ontario 635.0 0.35 1801.9 
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In order to produce a distribution that accounted for area equally, the DAs were put 

into bins according to population density. The bins were 10 people/km2 wide. For each bin, 

the total land area was summed. An example of the output of this method, applied to the 

data above, is shown in Table 2.11. 

Table 2.11: Amount of land by population density (example) 

Population Density Bin Dissemination Area Total Land Area 
(people/km2) (count) (km2) 
1610-1620 3 0.91 
1800-1810 2 2.94 

Plotting the distribution of this data produces Figure 2.15. It is clear from this 

distribution that despite the dataset being composed of the largest CMAs in Canada and 

including over 20 million people, most of the land area encompassed by these 12 CMAs has 

very low population density. In fact, over 75% of the land area has a population density of 

50 people/km2 or lower. Some of this low density area is urban, such as parks, industrial 

areas, and transportation facilities. However, it also includes rural areas within municipal 

and CMA boundaries; these rural areas are not an area of interest for this research. The 

dataset clearly requires a filter to reduce the amount of low density area. 

 

Figure 2.15: Distribution of population densities 

In order to exclude rural land, the filter will need to operate on the scale of the 

geographic divisions that make up census metropolitan areas: census subdivisions and 

dissemination areas. Census subdivisions use the same boundaries as the municipalities 
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and municipality equivalents defined by provinces. These are administrative boundaries 

and therefore not designed to clearly delineate urban and rural areas. In fact, many 

municipalities in Canada include a ring of surrounding farmland. Therefore, the filter must 

operate on the DA area level. 

The dataset has 2 attributes for each DA that are relevant for identifying low density 

areas: population and area. From these the population density can be obtained. 

Unfortunately, the nature of the dataset is such that the lowest population density 

threshold that eliminates the low density spike in the figure above is 500 people/km2, 

which is too high to be sure that all suburban areas are included. As well, filtering out all 

low density DAs is not desirable regardless of the threshold as cities do contain 

unpopulated land, such as parks, industrial areas, and airports. 

As a filter is not practical, a compromise is used: with respect to population, the 

network generation model is most concerned with having the population densities at the 

suburban level and above be in accordance with the distribution above. The amount of low 

density area, especially low density area that surrounds the city, is effectively immaterial. 

Therefore, the distribution from 0-300 people/km2 was capped at the value of the 

distribution at 300 people/km2 (effectively “cutting off” the spike). This allows for the 

model to include these densities without them overwhelming the density ranges that are of 

more interest. Figure 2.16 and Figure 2.17 show the resulting distribution.  

 

Figure 2.16: Final population density distribution 
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Figure 2.17: Final population density distribution, detail 

2.2.3.2 Attribute assignment 

Zone attribute assignment makes use of the following input data: the locations of the 

traffic analysis zones (TAZs); the number of TAZs n; the paths and hourly capacity 

(passengers per hour) of the transit routes; a user specified target city population; a fill 

density (people/km2); an employment-to-population ratio; and the population density 

distribution. The target population, in people, is a user input to the entire modelling 

structure, and can be used to create different scenarios. The fill density is the population 

density of a typical rural area, and has a default value of 30 people/km2. The output of zone 

attribute assignment process is a population and employment value (units of number of 

people) for each TAZ in the modelled urban area. 

The algorithm itself consists of two stages. The first produces n population densities 

and n employment densities. The second takes those densities and assigns them as counts 

to the n TAZs. 

To create the set of population densities, an initial sample vector 𝐿⃑⃑ = 〈ℓ1, ℓ2, … , ℓ𝑛〉 

is drawn from the population density distribution. This sample can easily be converted 

from population densities to population using the area of the TAZ, which are all equal. 

Equation (2.14) shows how the population of the city can be calculated from 𝐿⃑⃑. 

 
𝑃𝐴 = ∑ ℓ𝑖 ∙ 𝑏2

𝑛

𝑖=1

= 𝑛𝑏2 ∑ ℓ𝑖

𝑛

𝑖=1

 (2.14) 
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where 𝑃𝐴 is the actual population of the city, n is the number of TAZ, b is the block 

size (in km), and ℓ𝑖 are the population densities of the TAZ. 

It is likely that 𝑃𝐴 is not going to be equal, or even close to, the target population 𝑃𝑇 . 

The vector 𝐿⃑⃑ is then adjusted: either lowered by replacing some elements of 𝐿⃑⃑ with the fill 

density, or raised by replacing elements of 𝐿⃑⃑ with greater values also drawn from the 

census population density distribution. If 𝑃𝐴needs to be lowered, a new vector 𝑀⃑⃑⃑ =

〈ℓ1, ℓ2, … , ℓ𝑘, 𝑓, … , 𝑓〉 is created which consists of the first k elements of 𝐿⃑⃑, and the 

remaining n-k values are the fill density f. The value of k is chosen so that 𝑛𝑏2 ∙ 𝑠𝑢𝑚(𝑀⃑⃑⃑) =

𝑃𝐴 is minimized and so that 𝑃𝐴 ≥ 𝑃𝑇 . 

If 𝑃𝐴needs to be increased, then a secondary sample of 2n population densities, 𝑆, is 

created. For each element s of 𝑆, a random value ℓ of 𝐿⃑⃑ is selected that is less than s. 

Assuming such a value exists, ℓ is replaced by s. In this way the actual population 𝑃𝐴 = 𝑛𝑏2 ∙

𝑠𝑢𝑚(𝐿⃑⃑) is increased. This is an iterative process, and once 𝑃𝐴 ≥ 𝑃𝑇 , the process is finished. 

If the process never finishes, then the entire model is run again with a larger size n until the 

total population is greater than the goal population. 

Once a vector 𝐿⃑⃑ of n population density values is acquired, the n population density 

values must be assigned to the n zones. For each zone i, the total transit capacity per hour 

𝐶𝑖 is summed from the transit routes that service the zone. 𝐿⃑⃑ is sorted from greatest to 

smallest, then assigned to zones in that order. Each zone is selected randomly, using a 

weight proportional to 𝐶𝑖
1.75. In this way, higher populations are more likely to be assigned 

to zones with more transit service. 

The entire process is repeated independently to acquire employment values. 

2.2.4 Road Network Properties 

Each link in the network must have the properties necessary to model how the link 

travel time responds to traffic demands. This relationship is modelled through the BPR 

volume-delay function shown in equation (2.15), where 𝑡0 is the free speed travel time on 

the link in minutes, v is the volume on the link in vehicles per hour, c is the capacity of the 

link in vehicles per hour, 𝛼 and 𝛽 are parameters, and t is the travel time in minutes on the 

link at volume v. Therefore, the result of this component of the network generator is that 
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the link table, which was created in the road grid component (Section 2.2.1), has the 

addition information required for equation (2.15). 

 
𝑡 = 𝑡0 (1 + 𝛼 (

𝑣

𝑐
)

𝛽

) 
(2.15) 

To simplify the assignment of these values to the road network, four profiles of 

different link types were created: highways, two tiers of arterials, and urban local roads. 

Each profile is a set of values for the uncongested travel time, the link capacity, the two 

parameters 𝛼 and 𝛽, and the number of lanes. The capacity is given as vehicles per hour 

across all lanes, which makes the inclusion of the number of lanes superfluous, though 

useful to include as an aid in understanding what type of infrastructure each of the profiles 

represents. Separate profiles are needed for the automobile and bus transit modes, as these 

two modes have differing characteristics with respect to speed and acceleration. A separate 

profile is not needed for the AVRS mode, as it is assumed to behave similarly to human-

driven automobiles. Additionally, in this research rail transit is assumed to operate on a 

separate right-of-way and therefore suffers no congestion effects.  The automobile profiles 

for the link types are shown in Table 2.12, and the equivalent profiles for bus transit are 

derived in Section 0. 

Table 2.12: Automobile-related parameters of link profiles 

Link Type Link Capacity Free Speed 𝜶𝒂 𝜷𝒂 Lanes 
  (veh/h) (km/h)       
Highway 6000 100 0.1500 5.000 3 
Arterial1 1568 52.51 0.9841 4.395 3 
Arterial2 984 47.58 0.8800 4.771 2 
Urban Local 420 41.31 0.8160 4.590 1 

It should be noted that a free speed is provided in place of a free speed travel time as 

speed is independent of block size. 

The values in Table 2.12 for the highway link type were obtained from course notes 

from Dr. Fu’s CIVE 640 course (Fu, 2016). 

2.2.4.1 Derivation of Link Profile Parameters 

The three non-highway link types are assumed to have a mix of signal-controlled 

and stop controlled intersections. For this type of road, the intersections have lower 

capacities than the midblock portions of the road, and as a result congestion occurs at the 

intersections. In order to reflect this, the parameters in Table 2.12 were obtained by fitting 
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equation (2.15) to the signalized intersection approach delay model found in the Canadian 

Capacity Guide (Teply, 2007, Section 4.8.1) . This model, shown in equations (2.16) to 

(2.18), gives the average approach delay (d, in seconds) as a function of the approach 

volume 𝜆, in passenger car units per lane per hour (pcu/l/h). Additional parameters are the 

approach green time g in seconds, the cycle time c in seconds, the saturation flow rate μ in 

pcu/l/h, the evaluation time period 𝑡𝑒 in minutes, and a progression factor k which is 

dependent on other nearby intersections. Since the model is being used to represent wide 

range of situations, the progression factor k is assumed to be 1. 

 

𝑑1 =
𝑐 (1 −

𝑔
𝑐)

2

2 (1 −
𝑔
𝑐 min (1,

𝜆𝑐
𝜇𝑔

))
 (2.16) 

 

𝑑2 = 15𝑡𝑒 (
𝜆𝑐

𝜇𝑔
− 1 + √(

𝜆𝑐

𝜇𝑔
− 1)

2

+
240𝜆

𝑡𝑒
(

𝑐

𝜇𝑔
)

2

 ) (2.17) 

 𝑑 = 𝑘𝑑1 + 𝑑2 = 𝑑1 + 𝑑2 (2.18) 
While the CCG model could have been used directly as the volume-delay function, its 

more complicated form led to problems in determining the values for bus transit mode. The 

derivation of the bus transit parameters is described in Section 0. 

Equation (2.18) gives delay, but the BPR function (equation (2.15)) gives a travel 

time. To reconcile this, a free speed between intersections was assumed and used to find 

the travel time t between intersections in seconds, as shown in equation (2.19), where b is 

the block size in meters (see Table 2.1) and 𝑣𝑓 is the free speed in km/h. 

 
𝑡 =

3.6𝑏

𝑣𝑓
+ 𝑑 (2.19) 

The parameters for equations (2.16) to (2.19) were assumed as part of the link type 

definitions, and are shown in Table 2.13. The capacities in Table 2.12 were calculated as 

𝑛𝑙𝜇𝑔 ÷ 𝑐 (the capacity in the CCG model) where 𝑛𝑙  is the number of lanes. The free speeds 

were found using the travel times at an approach volume of 0 pcu/l/h. Finally, 𝛼 and 𝛽 

were calibrated using nonlinear least squares to values obtained from equation (2.19) on a 

domain of 0 pcu/l/h to 𝜇𝑔 ÷ 𝑐 pcu/l/h. 
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Table 2.13: Parameters for CCG signalized intersection approach delay model 

Parameter Symbol Arterial1 Arterial2 Urban Local 
Block Size (m) b 1000 1000 1000 
Free Speed (km/h) 𝑣𝑓 80 60 50 

Free Speed Travel Time (s)  45 60 72 
Saturation Flow Rate (pcu/l/h) μ 1400 1200 1000 
Lanes 𝑛𝑙  3 2 1 
Cycle Time (s) c 120 90 90 
Lost Time per Cycle (s)  8 8 6 
Approach Green Time (%)  40 45 45 
Green Time (s) g 44.8 36.9 37.8 
Evaluation Time (min) 𝑡𝑒 30 30 30 

 

2.2.4.2 Derivation of Bus Transit Parameters 

To find the bus transit parameters, equation (2.15) can be rewritten as a function of 

the v/c ratio, which is common to both buses and automobiles: 

 
𝑡𝑚 (

𝑣

𝑐
) = 𝑡0,𝑚 (1 + 𝛼𝑚 (

𝑣

𝑐
)

𝛽𝑚

) 
(2.20) 

where m signifies mode and has a value of either a for automobile or b for bus. In 

order to solve for 𝛼𝑏 and 𝛽𝑏, the following assumptions are used: 

1. At a sufficiently high congestion level, the bus delay due to passenger loading 

and unloading becomes small enough relative to the delay due to congestion that 

buses and automobiles travel at effectively the same speed. Algebraically, this 

means that 𝑡𝑏(𝑥) = 𝑡𝑎(𝑥) for all x ≥ M. M is a constant greater than 1. 

2. Buses respond to congestion in a manner mostly similar to that of automobiles, 

meaning that the general shapes of the automobile and bus BPR functions should 

be similar. This is achieved algebraically by ensuring that 

𝑡𝑎(𝐹)

𝑡0,𝑎
=

𝑡𝑏(𝐹)

𝑡0,𝑏
 

for some value of F chosen to maintain the general shape. 

3. The free speed travel time for buses should be longer due to the need to stop for 

passenger loading and unloading. 

Using equation (2.20) with assumptions 1 and 2 creates a system of equations that 

can used to solve for 𝛼𝑏 and 𝛽𝑏: 
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𝛽𝑏 = log 𝐹

𝑀
[

𝑡0,𝑏(𝑡0,𝑎(1 + 𝛼𝑎𝐹𝛽𝑎) − 𝑡0,𝑎)

𝑡0,𝑎(𝑡0,𝑎(1 + 𝛼𝑎𝑀𝛽𝑎) − 𝑡0,𝑏)
] 

(2.21) 

 
𝛼𝑏 =

𝑡0,𝑎(1 + 𝛼𝑎𝑀𝛽𝑎) − 𝑡0,𝑏

𝑡0,𝑏𝑀𝛽𝑏
 

(2.22) 

Choosing both F and M is a somewhat subjective matter. A value of 0.5 was chosen 

for F to ensure that the automobile and bus functions grow at a similar rate for the v/c 

ratios that result in little congestion. For M, a different value was chosen for each link type: 

2 for highway, 1.5 for Arterial 1, 1.65 for Arterial 2, 1.7 for Urban Local. These values were 

chosen because at these values, travel times are significantly increased (by a factor of 

roughly 5 from the free speed travel times times) to the point that traffic is heavily 

congested and buses will be primarily boarding and alighting passengers when already 

stopped in a queue.  

Finally, free speed travel times must be found for the four link types in Table 2.12. 

An average stop spacing (p, in km/stop), dwell time (d, in seconds), and reduction of travel 

speed taking into account acceleration and deceleration (r, in a unitless proportion) were 

assumed for each of the link types. These values were used to find the bus transit free 

speed travel time, 𝑡0,𝑏, using equation (2.23). 

 𝑡0,𝑏 =
𝑏𝑑

60000𝑝
+

𝑡0,𝑎

𝑟
 (2.23) 

where b is the block size in meters. The resulting link profiles are shown in Table 

2.14, with a block size of 1000 m. 

Table 2.14: Bus transit-related parameters of link profiles 

Link Type r p d 𝒕𝟎,𝒂 𝒕𝟎,𝒃 𝜶𝒃 𝜷𝒃 

  km/stop s min min   
Highway 0.95 4 60 0.600 0.8816 0.1332 4.468 
Arterial1 0.9 1.5 30 1.143 1.603 0.7598 4.022 
Arterial2 0.9 0.4 30 1.261 2.651 0.5326 4.047 
Urban Local 0.9 0.4 30 1.452 2.863 0.5219 3.945 

Plots of equation (2.20) with each of the 8 sets of 𝑡0,𝑚, 𝛼𝑚, and 𝛽𝑚 parameters are 

shown in Figure 2.18. 
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Figure 2.18: BPR functions for automobile and bus transit. The solid line is automobile, the 

dashed line is bus. 

2.2.4.3 Assignment of Link Types to Links 

The set of links belonging to each profile is determined in sequence, starting from 

highways and moving down through to the urban local roads. The highways are created 

following the spoke and arc structure common to Canadian cities. The two tiers of arterials 

are created using a grid structure, and the urban local roads are defined as any road that 

isn’t a higher order. Both the highways and the arterials can be thought of a collection of 

paths – for the highways the paths are the individual spokes and the arc, and for the 

arterials the paths are the generally straight grid lines. The route of these paths is created 
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using a recursive depth-first search, which is an efficient way of finding a fairly direct path 

between a given starting point and a set of ending points. Vector fields are used to guide 

the depth-first search in creating the desired geometries: at each recursion, there is an 

option of what order to follow the links leading from the current location, and the order is 

determined by how well each link aligns with the vector field. 

For the highways, 2-4 spokes are created starting from the centre of the city and 

travelling to the edge. These use vector fields that evaluate to the same vector at all 

locations, resulting in linear paths. The number of spokes is chosen by a uniform random 

variable, and the angle of the spokes are chosen to be roughly evenly spaced. The arc part 

of the highways can range from non-existent to a full circle, but the arc always starts and 

ends at an intersection with a spoke. Again, the length of the arc is chosen by a uniform 

random variable. To create the path of the arc, a vector field such as the one in Figure 2.19 

is defined, centred on the centre of the city and with radius chosen with a random uniform 

variable ranging from 2000 meters to half the size of the city (meaning the arc would have 

a diameter equal to the width of the city). 

 

Figure 2.19: Vector field used to create a circular path. 
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Each tier of arterial has a grid that is tilted by a random angle. The two tiers share 

the same angle, but have different spacings: the default values are 7000 m for arterial 1 and 

1000 m for arterial 2. The grids are created by defining appropriately spaced starting 

points along the edge of the city, and finding paths from the starting points to the edge of 

the city using the recursive depth-first search. The vector fields for the arterials evaluate to 

the same vector at all locations, giving the linear structure that makes up a grid. 

An example of a city with the different road structures is shown in Figure 2.20. 

 

Figure 2.20: City map showing an example configuration of road types. The thick yellow 

roads are highways, the red is arterial1, the orange arterial2, and the grey urban local. 

2.2.5 Origin-Destination Matrix Calculation 

At the completion of the first four network generator components described in 

sections 2.2.1 to 2.2.4, the network is represented by a combination of three data 

structures: a zone table, a link table, and the transit routes. The transit routes are 

sequences of links in the order they are visited. The four-step model, described in section 

2.3, requires data to be in the format of origin-destination matrices. An origin-destination 

matrix is an 𝑛 × 𝑛 matrix, where n is the number of TAZ, such that entry 𝐴𝑖,𝑗 of the matrix is 

some measure of the trip from zone i to zone j. In particular, the four-step model requires 

an origin-destination matrix for the costs and for the 3 types of travel time. More explicitly, 
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in order to be used in the Mode Split stage of the four-step model each of the variables in 

the utility functions in equations (2.44)-(2.46) requires an origin-destination matrix. 

The calculation of these matrices is done following the principle that travellers 

choose their path in order to minimize the time spent travelling. In other words, while a 

given origin-destination pair may have a large number of different paths, whichever path 

has the shortest total travel time is the path that will be used for the calculation of the 

origin-destination matrix. In order to find these shortest travel time paths, a weighted, 

directed graph is constructed for both automobile and transit travel. AVRS travel uses the 

same graph as automobile travel. The edge weights for the automobile graph are the 

automobile travel times along each link taken directly from the link table, and in fact the 

automobile graph is merely a reformatting of the link table. With such a graph structure, 

the fastest route between any origin and destination can be found using well established 

graph theory algorithms such as Dijkstra's algorithm. 

The construction of the weighted, directed graph for transit travel is more 

complicated. It must include walking access and egress, transfers between transit routes, 

and wait times during the use of the transit services. These factors are accounted for by 

creating a graph which contains multiple graph nodes for a single TAZ: one node for the 

TAZ, and one node for each transit route that passes through that TAZ. An example of the 

structure of this graph is shown in Figure 2.21. In it, there are nodes belong to the TAZ in 

grey and nodes belonging to the Red and Blue routes in red and blue. The edges are 

coloured in the same manner, with the addition of dark red and dark blue edges that 

connect the transit route nodes to the TAZ nodes. (Not all the possible connecting edges are 

shown, only those included in the example trip. Not shown are the pair of connecting edges 

between each transit node and the corresponding TAZ node.) Each of the grey "road" edges 

has a travel time based on a walking speed of 1.15 m/s. The red and blue transit edges have 

travel times according to equation (2.20). The dark red and dark blue edge that are going to 

the TAZ nodes have a travel time of 0 minutes, and those going to the transit nodes have a 

travel time equal to the waiting of that transit route. 
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Figure 2.21: Structure of the graph used to calculate transit origin-destination matrices. 

For example, consider the transit trip from A to I, assume a block size of 1 km, and 

an average transit speed of 24 km/h. Edges AB and HI have a weight of 14.5 minutes of 

walking time, BC has a weight of 5 minutes waiting time, EF has a weight of 2.5 minutes 

waiting time, edges DE and GH have weights of 0 minutes, and each edge along the red and 

blue routes (from C to D and from F to G) has a weight of 2.5 minutes in-vehicle time. With 

this graph structure, the shortest path according to travel time can be calculated including 

a breakdown (29 minutes walking, 15 minutes in-vehicle, and 7.5 minutes waiting), as well 

as the distance (2 km walking, 6 km in-vehicle). 

The origin-destination matrices are calculated after the first four components of the 

network generator. They are also calculated using the updated travel time values from 

Traffic Assignment for iteration and analysis purposes. 

2.3 Four-Step Model 

In transportation demand planning, prediction of the transportation requirements 

of a city are commonly modelled using a four-step model, which can be most accurately 

thought of as a family of models that share the same large scale design structure. 

Transportation demand modelling is an attempt to model a number of human decisions, 



49 
 

such as where to live, work, play, and how to access these locations, taking into account the 

transportation options available. This is a complicated set of decisions with many 

interacting factors. The distinctive aspect that all four-step models share is the division of 

these decisions into sub-models: 

1. trip generation, which determines the number of trips leaving and entering each 

zone, 

2. trip distribution, which matches trip origins and destinations according to travel 

proximity and destination attractiveness, 

3. mode split, which chooses what mode is used to make each trip, mimicking 

human decisions, and 

4. traffic assignment, which routes all the trips to find the traffic on each link. 

These steps are expanded on in Sections 2.3.1-0. 

To model travel demand, the city needs to be represented in data in such a way that 

the various components of the four-step model can use, manipulate, and add to the city 

data. Two key aspects of the city are modelled in this four-step model: the land and how it 

is used, and the transportation network. (Many four-step models also include households 

as a subdivision of modelling land use). The land is divided into small, geographically 

contiguous areas most commonly called traffic analysis zones (TAZs). The delineation of 

the TAZ is commonly done to create zones that are as homogeneous as possible, with 

respect to the households and land use types (commercial, residential, industrial, 

recreational, etc.). The TAZ are commonly stored and referred to as a table called a zone 

table, where each row corresponds to a zone and each column a measurable zone 

characteristic. Common characteristics include population, population that is employed, 

population that is students, floor area by purpose, and number of jobs located in the zone. 

The transportation network is represented as a graph (in the mathematical graph theory 

sense), where each link represents a road segment between two intersections. Each link 

has properties such as length, capacity, free flow speed, and response to congestion in the 

form of a volume-delay function (see Section 0). The links are commonly stored in a single 

table called a link table. 

A four-step model is not the only way to model travel demand. Another grouping of 

models are called activity activity-based models, in which travel is seen as something that 
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enables various activities that people desire to engage in. Travel arises from the need to 

access specific locations at specific times. This is in contrast to trip-based models like the 

four-step model, which assigns a number of trips to each zone and then adds 

characteristics of the trip such as the destination, the mode, and the route in sequence and 

largely independently. For this project, the four-step model was chosen because it is well 

known, proven, and requires relatively little data. Additionally there are many resources to 

aid in implementation, such as textbooks and software options. In terms of data 

requirements, the four-step method of considering decisions in isolation reduces the need 

for complex disaggregate data (in time and space). A four-step model effectively only needs 

aggregate measures of population and land use. This is especially important for this project 

and its modelled city data, as aggregate data is easier to model accurately than highly 

disaggregate data. 

2.3.1 Trip Generation 

During the trip generation step, the number of trips that start from and end at each 

zone is determined. There are a variety of common ways to carry out this step, including 

zonal linear regression and household-based categorical models. The amount of data used 

can vary greatly both in resolution and the number of data fields used. In a full travel 

demand model carried out on a real-world city, it is advised to use a disaggregate 

household-based model, using attributes such as number of inhabitants, income, number of 

vehicles, access to transit passes and other transit discounts, number of student 

inhabitants, number of working inhabitants, etc. Categorical models are used to capture the 

complicated non-linear and multivariate relationships that often occur. This type of 

analysis requires a large amount of data and statistical work to ensure proper 

categorization. For a study carried out on a real city, this depth of analysis is possible and 

necessary to ensure that both the total amount of travel and the specific origins and 

destinations of travel are accurate. Different models are used for trips produced and trips 

attracted, as well as for the different types of trips such as home-based work, school, and 

discretionary, and non-home-based trips. For example, for trips attracted and non-home-

based trips, zonal linear regression models are used as the household is not a valid unit of 
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analysis. For more on the different types of trips and models, see Ortúzar and Willumsen, 

2011. 

However, for this study the purpose of trip generation is somewhat different: since 

the city being used as input is not a real city, the priorities of trip generation have changed. 

Instead of seeking to have the number, spatial origin and destination of the trips be highly 

accurate to the city data, it is more important that the travel demand is in the right range 

for a city of its size, and that the travel is spread out through varied origins and 

destinations. To meet these requirements without introducing unnecessary data 

requirements, a zonal linear regression model was used to acquire the number of trips 

starting from and ending in each zone. These two models were used for all trip types. The 

linear relationships that were used are shown in equations (2.24) and (2.25): 

 𝑂𝑖 = 𝑑ℎ𝑃𝑖  (2.24) 
 𝐷𝑖 = 𝑑ℎ𝐸𝑖  (2.25) 

where 𝑂𝑖 is the number of trips with origin zone 𝑖, 𝐷𝑖  is the number of trips with 

destination zone i, 𝑃𝑖  is the number of inhabitants of zone 𝑖, and 𝐸𝑖 is an abstract measure of 

the attraction strength of zone 𝑖 (this would be related to number of jobs as well as other 

attractions such as retail, etc).  𝑑 and h are coefficients for the number of trips per person 

per day and the proportion of daily trips that occur during peak hour, respectively. 

In a typical use of a zonal linear model for trip generation, the calibration of the 

equations is carried out through linear regression on a set of collected travel data from the 

study region. Similar to the discussion above about the differences in nature between a 

typical trip generation model and the trip generation model required for this project, the 

calibration of this model isn’t actually of the highest importance. Assuming a value of 1.8 

for d (i.e. 1.8 trips per day) was sufficient for the model to meet its design goals. The value 

of 0.091 for h was obtained from the Highway Capacity Manual Exhibit 8-9, which gives 

0.091 as the K-factor appropriate for urban settings (implying that 9.1% of daily trips occur 

during the peak hour). 

2.3.2 Trip Distribution 

Trip Distribution is the stage in which the trip origins and destinations are 

connected. The output of this step is an origin-destination matrix T with entries 𝑇𝑖,𝑗 where 

𝑇𝑖,𝑗 is the number of trips from zone i to zone j. Therefore 
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 𝐷𝑗 = ∑ 𝑇𝑖,𝑗

𝑖

 (2.26) 

is the sum of column j of T, and is equal to the value from the trip generation step. 

Similarly, 

 𝑂𝑖 = ∑ 𝑇𝑖,𝑗

𝑗

 (2.27) 

is the sum of row i of T, and is equal to the value from the trip generation step. These 

matrix properties mean that the trip distribution step has to find a matrix with these 

predefined row and column sums. However, there are many matrices which fit this 

requirement, and so the model also takes into account zonal and network properties. This 

ensures that the matrix solution found reflects transportation concepts. Zonal and network 

properties are taken into account through the use of a gravity model in which the amount 

of travel between each pair of locations is influenced by a level of travel attraction between 

that pair of locations. Equation (2.28) shows the form of this model. 

 𝜆𝑖,𝑗 = 𝑂𝑖𝐷𝑗𝑐𝑖,𝑗
𝑎 𝑒𝑏𝑐𝑖,𝑗  (2.28) 

where 𝜆𝑖,𝑗 is the travel attraction from zone i to j, 𝑂𝑖 is the number of trips with 

origin zone i, 𝐷𝑗  is the number of trips with origin zone j, 𝑐𝑖,𝑗 is a generalized travel cost 

from zone 𝑖 to j, and a and b are parameters. This model is called a gravity model because it 

is analogous to Newton’s famous law of universal gravitation. In this equation there are 

effectively two key influences on the amount of travel between an origin and destination: 

the amount of travel at each end of the trip, and the travel impedance between the two 

locations. The amount of travel is captured by the product 𝑂𝑖𝐷𝑗 , and the impedance is 

captured by 𝑐𝑖,𝑗
𝑎 𝑒𝑏𝑐𝑖,𝑗 . This function is called an impedance function, and is a decaying 

function that introduces a deliberate bias towards shorter trips. The value 𝑐𝑖,𝑗 is a measure 

of the ease of travel from zone i to j. For this project, the automobile in-vehicle travel time 

is used as a proxy for this measure. AVRS travel uses the same travel time, and while transit 

systems can have a different travel time for a given origin and destination, on the whole the 

travel times are similar. Additionally, automobiles are the dominant mode in all of Canada. 

In order to find the actual matrix that has the correct row and column sums and that 

uses the gravity model shown above, a doubly-constrained matrix balancing algorithm was 

used. A doubly-constrained model ensures that both the row and column sums are equal to 
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𝑂𝑖 and 𝐷𝑗 , respectively, as discussed above. This algorithm makes use of equations (2.29)-

(2.33). 

 
𝐵𝑗,𝑘 =

1

∑ 𝐴𝑖,𝑘−1𝑂𝑖𝑐𝑖,𝑗
𝑎 𝑒𝑏𝑐𝑖,𝑗

𝑖

 
(2.29) 

 
𝐴𝑖,𝑘 =

1

∑ 𝐵𝑗,𝑘−1𝐷𝑗𝑐𝑖,𝑗
𝑎 𝑒𝑏𝑐𝑖,𝑗

𝑗

 
(2.30) 

 𝑇𝑖,𝑗,𝑘 = 𝐴𝑖,𝑘𝑂𝑖𝐵𝑗,𝑘𝐷𝑗𝑐𝑖,𝑗
𝑎 𝑒𝑏𝑐𝑖,𝑗  (2.31) 

 
𝜀𝑂 = max

𝑖
|𝑂𝑖 − ∑ 𝑇𝑖,𝑗,𝑘

𝑗
| 

(2.32) 

 𝜀𝐷 = max
𝑗

|𝐷𝑗 − ∑ 𝑇𝑖,𝑗,𝑘
𝑖

| (2.33) 

In these equations, 𝑘 is the iteration, and 𝐴𝑖,𝑘 and 𝐵𝑗,𝑘 are balancing factors used for 

iteration 𝑘. Note that 𝑇𝑖,𝑗,𝑘 is not equal to 𝑇𝑖,𝑗 for all values of 𝑘. Pseudocode is shown below. 

Set 𝐴𝑖,0 = 0 for all 𝑖, and 𝐵𝑗,0 = 1 for all 𝑗. 

For iteration 𝑘 (starting at 𝑘 = 1): 

    Calculate 𝐵𝑗,𝑘 for all 𝑗 using equation (2.29). 

    Calculate 𝐴𝑖,𝑘 for all 𝑖 using equation (2.30). 

    Calculate 𝑇𝑖,𝑗,𝑘 for all 𝑖 and 𝑗 using equation (2.31). 

    Calculate 𝜀_𝑂 and 𝜀_𝐷 using equations (2.32) and (2.33). 

    If 𝜀𝑂 < tolerance and 𝜀𝐷 < tolerance, then exit the for 

        loop. 

A value of 0.1 was used for the tolerance. 

There are two parameters that need calibration in the gravity model: 𝑎 and 𝑏 from 

equation (2.28). Typically, these parameters are calibrated through the use of an origin-

destination matrix obtained from a travel survey. The parameters 𝑎 and 𝑏 are chosen so 

that the root mean square difference between the origin-destination matrices obtained 

from the gravity model (using the row and column sums from the survey matrix as input) 

and from the survey is minimized. The survey data is described in section 2.3.3.1. 

2.3.3 Mode Split 

The third step of the Four-Step model is to assign modes to each of the trips being 

modeled. After the second step, there are a number of trips that have been generated, and 

starting and ending locations are chosen for each trip. Using just this information, and 
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information about the network in which the travel will occur, the mode split model assigns 

a mode to each trip by weighing the different modes according to their properties with 

respect to the particular origin and destination of the trip. 

The most common mode split models are the family of discrete choice models, in 

which a utility (or a disutility) is calculated for each of the options. The utility is a measure 

of how valuable a given choice is to the person who may make that choice, compared to the 

other available choices. The utilities are calculated using functions that typically include 

properties of the trip and of the individual making the trip. There are a number of different 

types of models in this family such as multinomial logit models, nested multinomial logit 

models, multinomial probit models, mixed logit models, and others. The differences 

between these different models are generally found in how the utility functions are 

calculated and in how the utilities are used to make the choice. For more on discrete choice 

modeling in transportation modeling, see Ortúzar and Willumsen (2011). 

For this research, the mode split is carried out using a multinomial logit model. 

There are a total of 3 possible transportation modes: personal automobile (including being 

a passenger in a personal automobile), public transit (including both bus and rail transit), 

and autonomous vehicle ride-sharing services (AVRS). It should be noted that walking and 

other active transportation are not explicitly modeled as their own mode, primarily 

because this research is more concerned with the interplay of transit and AVRS modes. 

However, the public transit model includes walking for access and egress, and some trips 

modeled as public transit do not actually involve a public transit vehicle. In other words, 

the model does include walking-only trips but classifies them as transit trips that never 

find it necessary to board a transit vehicle. The form of the utility functions for the model is 

shown in equation (2.34), 

 𝑈𝑚 = 𝐾𝑚 + 𝛼𝑇,𝑚𝑇𝑚 + 𝛼𝐶,𝑚𝐶𝑚 + 𝛼𝑊,𝑚𝑊𝑚 + 𝛼𝐼,𝑚𝐼𝑚 (2.34) 
where 𝑈𝑚 is the utility of mode m, 𝐾𝑚 is the mode-specific constant for mode m, 𝑇𝑚 

is the in-vehicle travel time in minutes for mode m, 𝐶𝑚 is the out-of-pocket costs in 2019 

CAD for mode m, 𝑊𝑚 is the walk time in minute for mode m, 𝐼𝑚 is the wait time in minutes 

for mode m, and 𝛼𝑋,𝑚 is the weight coefficient for variable X and mode m. The coefficient 

values were obtained through a combination of calibration methods and using values 

advised through literature review. 
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In a multinomial logit model, the probability of making a given choice is given by 

 
𝑃𝑖,𝑚 =

𝑒𝑈𝑖,𝑚

∑ 𝑒𝑈𝑖,𝑘
𝑘∈𝑀

 
(2.35) 

where 𝑃𝑖,𝑚 is the probability of individual 𝑖 choosing mode 𝑚 and 𝑀 is the set of all 

modes. These probabilities then become the proportion of all individuals traveling between 

that origin and destination that use mode 𝑚. 

The multinomial logit model was chosen for its simplicity and relatively low 

requirements for data. More complicated and potentially more accurate models such as 

mixed logit models would require more complicated information about the characteristics 

of the 3 modes and the relationships between them. This type of information is difficult to 

obtain even without considering that one of the modes being modeled (AVRS) does not yet 

exist and its characteristics are not well understood. In contrast, the multinomial logit 

model only requires coefficients which weigh the relative value of money and time spent in 

various activities. These values have been studied in a number of contexts and are easily 

adapted between different modeling situations. As well, the multinomial logit model can 

handle complexities such as characteristics of the individual trip maker and mode-specific 

coefficients. 

The utility functions are structured as multivariate linear functions. This functional 

form is both commonly used for utility functions and is mathematically simple. The 

variables are all cost and time variables, two categories which are traditionally the most 

important factors for transportation choices. Time is broken down into different activities – 

walking, waiting, and in-vehicle – not only because there is evidence that people perceive 

time differently during these activities but also because doing so highlights the differences 

between the 3 modes involved in this study. Compared to personal automobiles, the 

necessity of waiting for and of walking to and from the transit access locations (the last 

mile problem) has played a major role in the frequent disutility of transit relative to 

automobile. A mode such as the AVRS in this project could solve the last mile problem and 

reduce wait times, and therefore this study seeks to understand what impact walking and 

waiting have on the competition of public transit with AVRS. This justifies their inclusion in 

the mode split model.  
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2.3.3.1 Calibration 

Multinomial logit models require the calibration of the utility function coefficients 

from equation (2.34): 𝛼𝑋,𝑚 and 𝐾𝑚, for all values of X and m. Though the coefficients 𝛼𝑋,𝑚 

could be specified for each mode, for this research they have been chosen such that 𝛼𝑋,𝑚 =

𝛼𝑋,𝑚 = 𝛼𝑋 for all modes 𝑚 and variables 𝑋. This requires the assumption that people 

perceive the various times and costs the same regardless of the mode. This assumption is 

made partly because the AVRS mode is not well understood, and therefore it is unknown 

how exactly people will respond to it. However, it shares properties with the other modes, 

which are well understood. For example, in-vehicle travel time using AVRS can be expected 

to be very similar to being a passenger in a personal automobile, and is comparable to 

being the driver as well (the key difference being that time spent as a passenger can be 

used for another purpose and isn’t necessarily lost, while time spent as a driver cannot 

really be used for other purposes). Additionally, money spent on AVRS can be expected to 

be perceived very similar to money spent on transit, as AVRS can be reasonably expected to 

use the same kind of payment methods and times as public transit. 

Applying the function form from equation (2.34) to the three modes results in the 

following set of utility functions: 

 𝑈𝑎𝑢𝑡𝑜 = 𝐾𝑎𝑢𝑡𝑜 + 𝛼𝑇𝑇𝑎𝑢𝑡𝑜 + 𝛼𝐶𝐶𝑎𝑢𝑡𝑜 (2.36) 
 𝑈𝑡𝑟𝑎𝑛𝑠𝑖𝑡 = 𝛼𝑇𝑇𝑡𝑟𝑎𝑛𝑠𝑖𝑡 + 𝛼𝐶𝐶𝑡𝑟𝑎𝑛𝑠𝑖𝑡 + 𝛼𝑊𝑊𝑡𝑟𝑎𝑛𝑠𝑖𝑡 + 𝛼𝐼𝐼𝑡𝑟𝑎𝑛𝑠𝑖𝑡  (2.37) 
 𝑈𝑎𝑣𝑟𝑠 = 𝛼𝑇𝑇𝑎𝑣𝑟𝑠 + 𝛼𝐶𝐶𝑎𝑣𝑟𝑠 + 𝛼𝐼𝐼𝑎𝑣𝑟𝑠 (2.38) 

Walk time for the automobile and AVRS modes has a value of 0 for all trips, as does 

waiting time for the automobile mode. Those terms have been omitted for clarity. In a 

standard multinomial logit model with three modes, two mode-specific constants (i.e. 𝐾𝑚) 

are required. The constant represents all other properties of the mode that are not 

otherwise included, part of which is the trip-makers’ attitudes towards the mode. Values 

for the coefficients in the utility functions, including the mode specific constants, are 

normally calibrated using observed mode choice data.  In this study, AVRS is a projected 

future mode and therefore it is not possible to calibrate a mode specific constant for AVRS 

using observed data. Furthermore, the goal of this project was to compare AVRS and transit 

based on the key mode attributes (i.e. cost and travel time) already included in the 
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equations. For these reasons, the constant for AVRS was set equal to 0 (the same as the 

mode specific constant for transit). 

Calibration of multinomial logit models is typically done using the Maximum 

Likelihood method. This methodology is required since the output of the model is the 

probability of making a certain choice, and any data will by necessity only include the 

choice that was actually made. Maximum Likelihood evaluates a set of parameters by the 

likelihood of those parameters to predict the calibration data – the probability of the model 

to predict the observed data. Maximum Likelihood calibration was carried out on a data set 

obtained from the Transportation Tomorrow Survey and the Regional Municipality of 

Waterloo, and done using the Biogeme software package (Bierlaire 2018). 

The Tranportation Tomorrow Survey (TTS) is a travel survey carried out by the 

University of Toronto in conjunction with the governmental agencies of the regions 

included in the study. It is carried out every 5 years and includes information on trip 

behaviour of participants. Due to the partnership with the regional governments, the data 

collected is not quite identical for each region. This project used the 2011 data from the 

Regional Municipality of Waterloo, a census metropolitan area with a 2011 population of 

496,383 people, which was divided into 578 traffic analysis zones (TAZ) for the purposes of 

the survey. 

The TTS data was reformatted as either origin-destination (OD) data in a matrix, or 

trip data. The OD data consisted of the automobile and the transit travel time between each 

origin and destination TAZ, although some OD pairs were missing transit data due to 

transit being unavailable. Each trip in the dataset had characteristics such as the origin and 

destination zones TAZ, the distance between those TAZ, the mode used to make the trip, 

the number of transit routes used (if transit was used at all), the departure time of the trip, 

and the trip purpose. Trip-maker characteristics were also available, including the number 

of vehicles in the household, possession of a licence by the trip maker, possession of a 

licence by anyone in the household, age, and employment/student status. Additional 

information was available; the data mentioned here is the most relevant to this project. The 

OD data was combined with the trip data to give expected transit and automobile travel 

time of each trip. 
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The utility functions in equations (2.36) to (2.38) require the in-vehicle travel time, 

the wait time, the walking time, and the cost for each trip. Note that despite calibration data 

being available for trip-maker characteristics, these were not included in the utility 

functions as the network generation model describe in section 2.2 does not provide 

individual characteristics. For the data that was not directly available, the wait time was 

calculated by multiplying the number of transit routes by an average wait time of 7 

minutes. The transit cost was a flat fare of $3.25 and the auto cost was the distance 

multiplied by 0.64 dollars per km. These parameters are the same as those used in Table 

3.1. The walking time was not available and was omitted from the functions for the 

calibration. Due to the literature-based approach described in section 2.3.3.2, this was not a 

major challenge. The TTS data included more modes than this project: private automobile 

driver, private automobile passenger, motorcycle, public transit, walking, bicycling, school 

bus, taxi, and rideshare. The auto mode for this project consisted of the drivers and 

passengers of private automobiles and motorcycles. 

Before using this data set, three filters were applied: 

1. Some of the OD pairs had no transit travel time information. Trips between these 

OD pairs were removed. 

2. Some of the OD pairs never had a transit trip made between them. This means 

that those trips also had no information about the transit routes used, and 

therefore couldn’t have wait times calculated. Trips between these OD pairs 

were removed. 

3. Some of the households had no vehicles, or had vehicles but no one with a 

driver’s licence. These households were considered transit captives since they 

had no real choice; in a transit versus auto situation they had to take transit. The 

mode split model is meant to capture the choices, meaning including these 

captives clouds the data. 

The application of these filters reduced the dataset from 49,549 trips down to 4,599. 

This is a dramatic reduction, but it was found that without this degree of filtering, the mode 

split model resulted in over 99% of trips being auto. Table 2.14 is a summary of the set of 

trips used for mode split calibration. 
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Table 2.15: Summary of TTS Trip Data 

Measure unit Auto Transit All Trips 
Number of Trips  3,104 1,495 4,599 
Percent of Trips  67.5 32.5 100 
Average Distance km 4.326 6.571 5.056 
Average Travel Time minutes 6.45 20.60 11.05 
Average Wait Time minutes 0 9.20 2.99 

This calibration is not guaranteed to produce results that are suitable for use in the 

full modeling context. There are a number of theoretical checks that can be used to evaluate 

the model. Ortúzar and Willumsen (2011) suggest ensuring that the sign matches with 

expectations and that the variables are statistically significant according to the t-test, and 

assessing these two with respect to the importance of the variable in question. They divide 

variables into two groups: policy variables and other variables. Policy variables are those 

that are included because there is strong theoretical evidence that they are relevant to the 

decision, or they are part of the goal of the modeling. For this project, the in-vehicle travel 

time and the out-of-pocket cost are both certainly policy variables, and the walk and wait 

times, while not crucial, are very valuable due to way that they distinguish between the 

different modes. This leads to the categorization of all the variables in equations (2.36)-

(2.38) as policy variables. Therefore, they should be included in some way regardless of the 

results of the calibration. 

However, the calibration results were not very meaningful. It is expected that both 

increasing the cost and increasing the time should make a trip less desirable, but in every 

configuration of the utility functions that was tried, there were sign issues. Additionally, 

many configurations had variables that were insignificant, but no consistent lack of 

significance was observed that would suggest not including one of the variables. In cases 

such as this, Ortúzar and Willumsen (2011) suggest reconsidering the model structure or 

turning to accepted values from other studies.  

2.3.3.2 Values of Time in Literature 

One of the challenges of finding calibration values from literature is that each study 

has its own goals, requirements, context, and scope. To mitigate these issues, a value of 

time was used instead of seeking to directly find the coefficients shown in equations (2.36)-

(2.38). Values of time have primarily been studied in the context of evaluating the 
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economic value of an improvement to transportation that results in less time spent in 

travel. The value of time is effectively the answer to the question of how many dollars a 

traveller would be willing to spend in order to reduce the travel time of a trip by 1 hour, 

and this is where a connection to utility functions can be made. By setting the change in 

utility resulting from an increase of 60 minutes of in-vehicle travel time equal to the change 

in utility resulting from an increase of $1 of out-of-pocket costs, a relationship can be found 

between the value of time and the utility function coefficients: 

 
𝑉𝑂𝑇 =

60𝛼𝑇,𝑚

𝛼𝐶,𝑚
 

(2.39) 

Reports describing methods for computing value of time and citing values of time 

have been published by various countries including the USA (US DOT, 2016), United 

Kingdom (UK DFT, 2009), Denmark (Fosgerau et al., 2007), France (Boiteux and 

Baumstark, 2001), Norway (Ramjerdi et al., 1997), Sweden (Algers et al., 1995), 

Switzerland (Axhausen et al., 2006) and others. Of these the most valuable is the US report, 

since the United States has the most similarities to Canada with respect to transportation, 

infrastructure, and culture. 

The US DOT report gives value of travel time recommendations for various types of 

travel. The major classification is between business and personal travel. Business travel 

includes all travel done by employees while they are being paid by their employers, 

meaning it excludes commuting. Special consideration is taken for vehicle operators such 

as truck drivers, bus drivers, transit rail operators, locomotive engineers, and airline pilots 

and engineers. Travel is also categorized by distance (local and intercity) and mode 

(surface, except high-speed rail; and air and high-speed rail). For this research, the relevant 

context is local surface travel. There is also a recommended aggregation method for all 

purpose travel: a weighted average of the personal and general business values of travel 

time. The weights are 0.954 for personal and 0.046 for business. 

The value of personal travel time is 50% of the hourly median household income. 

The 2016 Canadian census gives a value of $70,336 (2015 CAD), which is $75,695.46 (2019 

CAD). This is $36.39/hr, using the assumption (also made in US DOT (2016)) that there are 

2080 working hours in a year. The value of business travel time is equal to the hourly 

median individual total compensation. Due to differences in Canadian and American labour 
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statistics, the American value of $25.40/hr (2015 USD) was used. This becomes $35.60/hr 

(2019 CAD). This method results in a value of travel time of $19.00/hr (2019 CAD). Full 

calculations are shown in equation (2.40). 

 𝑉𝑂𝑇 = 0.954 (
0.5 ∙ $75,695.46/𝑦𝑒𝑎𝑟

2080 ℎ𝑜𝑢𝑟𝑠/𝑦𝑒𝑎𝑟
) + 0.046($35.60/ℎ𝑜𝑢𝑟) (2.40) 

  = $19.00/ℎ𝑜𝑢𝑟  
For the walking time and waiting time coefficients, it is sufficient to know the ratios 

between their values of time and the in-vehicle value of time. A number of values for these 

ratio have been suggested: Gwilliam (1997) suggests 1.5 for walking and waiting, Boiteux 

(2001) suggests 2 for walking and waiting, and both Zhang et al. (2005) and UK 

Department for Transport (2009) suggest 2 for walking and 2.5 for waiting. Taking these 

suggestions into account, a value of 2 is used for both walking and waiting. Incorporating 

the value of time and equation (2.39), the 𝛼 parameters from equations (2.36)-(2.38) for 

the in-vehicle, walking, and waiting time can be found in terms of 𝛼𝐶 . This results in 

equations (2.41)-(2.43) below. 

 𝑈𝑎𝑢𝑡𝑜 = 𝐾𝑎𝑢𝑡𝑜 + (
$19.00

60 𝑚𝑖𝑛
) 𝛼𝐶𝑇𝑎𝑢𝑡𝑜 + 𝛼𝐶𝐶𝑎𝑢𝑡𝑜 (2.41) 

 𝑈𝑡𝑟𝑎𝑛𝑠𝑖𝑡 = (
$19.00

60 𝑚𝑖𝑛
) 𝛼𝐶𝑇𝑡𝑟𝑎𝑛𝑠𝑖𝑡 + 𝛼𝐶𝐶𝑡𝑟𝑎𝑛𝑠𝑖𝑡 (2.42) 

  + (
2 ∙ $19.00

60 𝑚𝑖𝑛
) 𝛼𝐶𝑊𝑡𝑟𝑎𝑛𝑠𝑖𝑡 + (

2 ∙ $19.00

60 𝑚𝑖𝑛
) 𝛼𝐶𝐼𝑡𝑟𝑎𝑛𝑠𝑖𝑡  

 𝑈𝑎𝑣𝑟𝑠 = (
$19.00

60 𝑚𝑖𝑛
) 𝛼𝐶𝑇𝑎𝑣𝑟𝑠 + 𝛼𝐶𝐶𝑎𝑣𝑟𝑠 + (

2 ∙ $19.00

60 𝑚𝑖𝑛
) 𝛼𝐶𝐼𝑎𝑣𝑟𝑠 (2.43) 

These equations have only two values that need to be calibrated: 𝛼𝐶  and 𝐾𝑎𝑢𝑡𝑜. To 

find the value of 𝐾𝑎𝑢𝑡𝑜, the calibration process discussed in section 2.3.3.1  was used in 

conjunction with testing the performance of the mode split model when applied to 

idealized networks and the calibration data. The best values of 𝛼𝐶  and 𝐾𝑎𝑢𝑡𝑜 were found to 

be 1 and -6.62398, respectively. A negative value of 𝐾𝑎𝑢𝑡𝑜 indicates a bias against using 

auto and likely occurs because socio-economic characteristics (such as household income, 

car ownership, possession of a driver’s licence) of the trip makers are not included as part 

of the model.  The final utility functions are shown in equations (2.44)-(2.46). Unlike the 

calibration attempts discussed in section 2.3.3.1, the new model has no insignificant 

coefficients or sign issues. 
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 𝑈𝑎𝑢𝑡𝑜 = −6.62398 − 0.316673 𝑇𝑎𝑢𝑡𝑜 − 𝐶𝑎𝑢𝑡𝑜 (2.44) 
 𝑈𝑡𝑟𝑎𝑛𝑠𝑖𝑡 = −0.316673 𝑇𝑡𝑟𝑎𝑛𝑠𝑖𝑡 − 𝐶𝑡𝑟𝑎𝑛𝑠𝑖𝑡 (2.45) 
  −0.633347 𝑊𝑡𝑟𝑎𝑛𝑠𝑖𝑡 − 0.633347 𝐼𝑡𝑟𝑎𝑛𝑠𝑖𝑡  
 𝑈𝑎𝑣𝑟𝑠 = −0.316673 𝑇𝑎𝑣𝑟𝑠 − 𝐶𝑎𝑣𝑟𝑠 − 0.633347 𝐼𝑎𝑣𝑟𝑠 (2.46) 

 

2.3.4 Traffic Assignment 

With the number of trips calculated for each mode and for every origin and 

destination pair, the last remaining step of the four-step model serves this travel demand 

by finding a route for each trip. The most important principle for how to assign these 

routes is that of user equilibrium: no trip can be made in a shorter time by selecting an 

alternative route. Another way of saying this is that all routes used for a given origin and 

destination have the same travel time, and all unused routes for that origin and destination 

have a longer travel time. In both of these definitions a generalized cost could be used in 

place of the travel time, but travel time is typically the leading factor in user route choice, 

and so will be used for this project. 

At the completion of this step, a wide range of metrics can be calculated for analysis. 

The base metric is the volume on each link. From this, metrics such as the speed on links, 

the travel time on links, commonly used routes, travel time between any origin and 

destination, and more can be calculated. Of particular interest for analysis in this project 

are the travel times of links and between origins and destinations, as they can be used to 

recalculate the mode split and therefore the effects of the changes in transit usage. 

Congestion is a key phenomenon modelled during traffic assignment. Congestion is 

modelled through the use of volume demand functions, which relate the number of vehicles 

using a link to the travel time required to traverse that link. The specific volume demand 

function used was the BPR function, shown in equation (2.15). In section 2.2.4, the inputs 

into this equation such as the capacity and the 𝛼 and 𝛽 parameters were assigned to the 

road grid. These properties are then used as inputs into equation (2.15). 

Traffic assignment was carried out using Visum software. More specifically, the 

LUCE algorithm for static user equilibrium was used. For more on the LUCE algorithm, see 

Gentile, 2014. 
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2.3.5 Iteration 

The four-step model makes a major simplification for the sake of effective 

modelling: the human decisions in the model are divided into four and carried out in 

sequence. This is not really accurate to how travel decisions are actually made. In reality 

people generally take the many competing and complicating factors into account 

simultaneously, then make a decision once. While dividing this single human decision-

making process into a sequence of four separate decisions is beneficial for developing 

models with clear relationships, it also introduces a weakness: the earlier decisions 

(whether to travel, where to go) can’t be made using the information gained once the later 

decisions (how to get to the destination) are made. A common strategy to address this flaw 

is iterating between the four steps, so that the outputs of later steps can be used as inputs 

for earlier steps. 

Depending on the goals of the study and the exact formulation of each of the four 

sub-models, the iteration can take on a number of different forms. For example, if the 

effects of induced demand are a topic of study, the trip generation model could be adjusted 

to use measures such as travel speed or amount of delay time as an input. Iterations carried 

out on all four steps would then allow for the model to take into account effects such as the 

addition of lanes on a highway inducing more demand as more people find using that 

facility to be tolerable. 

The introduction of an AVRS mode will likely have an impact on all the decisions 

that make up the four-step model. For example, the introduction of an easier form of 

transportation has historically increased travel. This can be seen across nearly all types of 

transportation from the introduction of new technologies such as trains, automobiles, and 

airplanes to the completion of specific transit projects in cities. AVRS could also have an 

effect on trip distribution decisions as those decisions are heavily dependent on the 

amount of congestion in the city. Finally, as AVRS represents the introduction of a new 

mode, it will definitely have an impact on the mode split decisions. All of these effects could 

be modelled through iteration. However, as AVRS is an unknown and not in existence, it 

was decided that trying to model induced changes in city-wide demand was too large a 

problem to include in this research. For this reason, iteration was done over the last three 
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steps of the four-step model (i.e. the total number of trips remains constant between the 

without AVRS and the with AVRS scenarios). 

The results of the traffic assignment step (see Section 0) is that the link table has 

updated travel times. These travel times can be used to calculate new origin-destination 

matrices for costs and for the various travel times. These are the same matrices that are 

used as inputs into the trip distribution and mode split models, making for natural 

iteration. A diagram of the four-step model, with iteration, is shown in Figure 2.22. 

 

Figure 2.22: Four Step Model components with iteration. 

The convergence measurement was the maximum entry-wise absolute difference 

between the current and previous origin-destination demand matrix. The origin-

destination demand matrix is the result of the trip distribution, as discussed in Section 

2.3.2. Convergence was considered to have occurred if this difference was less than 5 trips, 

as shown in equation (2.47), where C is the convergence measurement, T is the origin-

destination demand matrix, i and j are matrix indices, and k is a counter of the iterations. 

 𝐶𝑘 = max
∀ 𝑖,𝑗

|𝑇𝑖,𝑗
𝑘 − 𝑇𝑖,𝑗

𝑘−1| ≤ 5 (2.47) 

Not every run converged, and there was a tendency for larger cities with more 

traffic to converge more slowly or not at all. However, the general pattern was that either 

convergence occurred within the first 12 iterations or not at all. For this reason, the model 
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was allowed to time-out after 12 iterations. Runs that did not converge were not used in 

the results.  
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3 Results 

3.1 Experimental Set-Up 

The impact of AVRS on traditional transit and on cities in general was studied by 

comparing control simulations against simulations which included AVRS as a 

transportation mode. The route and network generators were used to create cities and 

transit systems. The four-step model was applied to these cities under two different modal 

conditions: once with the traditionally dominant modes of private automobile and public 

transit, and once with AVRS alongside the traditional modes. The parameters for the cities 

were chosen to create cities comparable to the cities and transit systems that currently 

exist in Canada. Parameter choices are given in Table 3.1. The work done to produce 

realistic transit route characteristics (Section 2.1), transit alignments (Section 2.2.2), 

population distributions (Section 2.2.3), and road networks (Sections 2.2.1 and 2.2.4) 

informed the selection of many of these parameters. The AVRS cost was obtained from the 

work done by Bösch et al. (2018), who calculated the price (for the user) of a privately-

owned vehicle to be 0.47 CHF/km and the price for an AVRS service to be 0.43 CHF/km. 

This price calculation for AVRS includes business overhead, fuel, maintenance, 

depreciation, cleaning, parking and tolls, tax, insurance, interest, and a profit margin of 3%. 

These prices were applied to a Canadian context by assuming a constant ratio of 

automobile to AVRS price. 
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Table 3.1: Parameters used to create hypothetical networks 

Parameter Value 
Block Size 1000 
Fill Density 30 
Bridge Gap 1.75 
Bridge Deviation 1.25 
Remove Percent 7 
Trips per Person 1.8 
Peak Hour Trips per Day 0.091 
Impedance a 0 
Impedance b -0.2 
Automobile Cost 0.6458 
AVRS Cost 0.5908 
AVRS Wait Time 7 
Transit Fare 3.25 
Walking Speed 1.15 

 

In the running of the model, 6 cities were created. High-level characteristics of these 

cities are shown in Table 3.2. Note that the populations range from 0.5 million to 2 million. 

The original scope included cities up to about 8 million population, which would cover 

nearly all urban areas in Canada. However, simulation of larger cities required too much 

computation time to be practically analysed, and larger cities rarely converged. 

Consequently, the original scope was revised to model cities up to 2 million population. The 

number of transit routes and the city sizes were selected to be similar to the sizes of the 

transit systems observed during the examination of Canadian transit data (see Section 

2.1.1.3). The “City Size” column refers to which of the transit route datasets (Small vs Large 

cities, for bus routes) were used to generate transit routes. Note that the model is pseudo 

stochastic, and both Population and Population Density are outcomes, not inputs.  

Consequently, the values listed in the table are the values obtained for those particular 

runs.   
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Table 3.2: Modelled City Characteristics 

City City Size Bus Routes Rail Routes Population Population Density 
(people/km2) 

A Small 50 0 501,380 1,388.9 
B Small 50 0 500,135 1,134.1 
C Small 100 2 1,000,580 1,737.1 
D Small 100 2 1,009,945 2,086.7 
E Large 150 4 2,000,420 2,744.1 
F Large 150 4 2,000,335 1,836.9 

 

Additional tables of data characterizing the modelled cities are included in the 

appendix (Table 4.4 and Table 4.5). 

3.2 Impact of Autonomous Vehicle Ridesharing 

One of the main goals of this research was to examine the impacts of the 

introduction of AVRS on different characterizations of transit modes. To accomplish this, 

the relationship between transit route characteristics and the change in passengers was 

analyzed. Route characteristics were previously discussed in Section 2.1.1. The key route 

characteristics used were headway, length, geodesic distance, operating speed, route 

indirectness, and mode. The comparison of cases with and without AVRS allows for initial 

passengers of the route (i.e. the usage without the AVRS mode present) to be another route 

characteristic. 

The demand (which is effectively the usage) for each route was measured in 

passenger-kilometers (pkm). Correspondingly, the change in demand that results from 

comparing the two cases is measured in change in passenger-kilometers (Δp) and the 

relative change in passenger-kilometers (Δr). The calculation for relative change in 

passenger-kilometers is shown in equation (3.1) where 𝑟0 and 𝑟1 are the passenger-

kilometers for the case without AVRS and with AVRS, respectively, and Δr is the relative 

change in passenger-kilometers.  

 Δ𝑟 =
𝑟1 − 𝑟0

𝑟0
 (3.1) 

To characterize transit routes according to how many passengers they lose, the 6 

quantitative route characteristics listed above were compared against the change and 

relative change in passenger-kilometers.  
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The set of data available for analysis consisted of the set of routes from each of the 6 

city sizes that were modelled.  As per Table 3.2, this provided results for 600 bus routes 

and 12 rail routes.  However, a review of the results indicated a few issues and 

consequently some of these results were removed from the data set before analysis as 

follows: 

1. There are 75 routes (of 612) that had 0 initial passengers. The process of 

network generation, including transit route locations, service frequency, and 

population densities is stochastic and therefore sometimes transit routes are 

created that are not competitive relative to auto and/or traverse zone for which 

there are no or few trips. Whenever Δr is used in analysis, these routes are 

excluded to avoid division by zero. 

2. Doe to the stochastic nature of the modelling process there is the potential for 

extreme values (outliers) to occur within the output.  Filters were applied to 

each of the Δ𝑟 and Δ𝑝 analyses output to identify and remove these extreme 

values. It was observed that most of the outliers occurred during simulation runs 

which experienced issues with convergence. 

a. Seven routes had increases in passenger-kilometers after the 

introduction of AVRS or greater than or equal to 200,000. The results 

from these routes were excluded from Δp analysis. 

b. Two routes that satisfy Δ𝑟 > 3 ∨ (Δ𝑟 > 0 ∧ 𝑟0 < 10)) were excluded from 

Δr analysis.  

A correlation analysis was conducted (coefficients of correlation are shown in Table 

3.3) with the remaining data. Most of the route characteristics exhibit weak evidence of a 

relationship at best, with the exceptions being the initial passengers (correlates with Δp) 

and the headway (correlates with Δr). 
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Table 3.3: Correlation coefficients for quantitative route characteristics 

 Correlation Coefficient 
 Change in passenger-

kilometers (Δp) 
Relative change in passenger-
kilometers (Δr) 

Headway 0.20 -0.55 
Length -0.24 0.24 
Geodesic Length -0.15 0.29 
Indirectness -0.11 -0.08 
Operating Speed -0.28 0.28 
Initial Passengers -0.97 0.29 

 

The initial passenger-kilometers correlates strongly with change in passenger-

kilometers. Figure 3.1 shows this relationship. The linear coefficient of -0.4875 indicates 

that it can be reasonably expected that most transit routes could lose up to about half of 

their passenger-kilometers after the introduction of AVRS. The intercept was not 

statistically different from 0 and was therefore fixed to 0. The statistics associated with the 

regression shown in Figure 3.1 suggest that the relationship is meaningful: the p-value for 

the linear coefficient was 0, and the relationship explains 93.5% of the variance. This was 

the strongest relationship found using the route characteristics in Table 3.3. 

 

Figure 3.1: Relationship between initial passenger kilometers and change in passenger 

kilometers. Note that the axes limits have been chosen to show the detail of the majority of 

routes at the cost of excluding outliers. Full figure can be found in the appendix, Figure 4.2. 
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The relationship between headway and relative change in passengers is best 

modelled as the nonlinear relationship 

 Δ𝑟 = 15.2ℎ−1.55 − 1 (3.2) 
where Δr is the relative change in passenger-kilometers and h is the headway in 

minutes. This relationship was found by applying linear regression to the independent 

variable ln(ℎ) and the dependent variable ln(Δ𝑟 + 1), and is shown in Figure 3.2. The 

statistical significance of the regression is confirmed through the p-values of 6.1×10-14 and 

2.7×10-33 for the value of the coefficient 15.2 and power -1.55 respectively, and the F-test p-

value of 2.7×10-33. The R2 value is 0.238. The modelled relationship suggests that headway 

can have a large effect on the competitivity of transit against AVRS. Additionally, the 

benefits of decreased headway are felt most strongly at headways below about 15 minutes, 

whereas once headways become larger than 20 minutes, additional increases had a 

reduced impact. 

 

Figure 3.2: Relationship between route headway and the relative change in passenger-

kilometers. 

That headway and initial passengers have the strongest impact on future passengers 

is not a large surprise, especially in the context of the utility functions used to determine 

mode split. Comparing the transit and AVRS utility functions, both take in-vehicle travel 

time, waiting time, and cost into account, but transit also considers walking time. The effect 
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of walk time gives AVRS an inherent advantage over transit because AVRS has zero walk 

time, and this is reflected in the large number of passenger-kilometers lost by the transit 

routes. Depending on the length of the trip, the cost can give an advantage to either mode. 

Finally, the in-vehicle travel time for bus transit is largely the same as the in-vehicle travel 

time for AVRS, and when they differ the bus time is longer. This leaves only two 

opportunities for transit to consistently compete: lowering wait times and including more 

rail routes (i.e. routes that are not impacted by road congestion). For wait times, the 

assumed constant 7-minute wait time for all AVRS trips means that lowering the transit 

headways below 7 minutes provides transit with a competitive advantage. Rail routes are 

assumed to operate on separate rights-of-way than on-street modes and so there is a 

possibility to have increased operating speeds and therefore a lower in-vehicle travel time 

than AVRS. However, the inherent disadvantages of transit in the form of walk times and 

high in-vehicle travel times causes most routes to lose roughly half their passenger-

kilometers. 

What is somewhat more surprising is that the operating speed doesn’t seem to have 

a large effect on transits’ competitiveness with AVRS. This is likely due to the operating 

speed of bus transit being dependent on the amount of congestion on the roadways used. 

Therefore, any bus transit route that has a faster operating speed is going to be competing 

against an AVRS trip with a corresponding higher speed. The only exception to this are the 

rail routes, of which there are only 12 in the data set, likely too few to show a clear 

relationship. 

The possibility of a difference in the effect of AVRS on rail and bus transit was 

investigated using Welch’s t-test. Since the rail routes resulting from this model have 

higher initial passenger-kilometers than the bus routes, the t-test compared the relative 

change in passenger-kilometers between rail and bus routes. The t-test found that the 

mean relative change in passenger-kilometers was significantly different (t=-3.65, 

p=0.0038) for rail and bus, with the rail routes losing fewer passengers. 

The introduction of AVRS had an effect on the simulated cities and their 

transportation beyond just affecting the transit routes. Many trips that were formerly made 

using transit were instead made using AVRS, causing an increase in the number of 

automobiles on the road. This had further effects such as longer travel times, shorter trips, 
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and increased congestion. Other research suggests that there is some expectation that 

AVRS will increase the capacities of existing infrastructure and reduce collisions, as a result 

of autonomous vehicles being able to coordinate their movements. This study does not 

include these sorts of effects and therefore it cannot speak to whether they will be stronger 

than the effects caused by the decrease in transit usage. However, this study does 

demonstrate that there is reason to believe that AVRS could increase congestion.  
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4 Limitations and Recommendations 

As has been discussed throughout previous sections, there are many limitations of 

the modelling structure and their results. Since they have already been covered to some 

degree, this section will address large limitations and those that affect multiple 

components of the research. One limitation already discussed were that challenges with 

convergence limiting the study’s scope to medium-sized cities (sections 2.3.5 and 3.1). 

The model assumes that AVRS has been in existence for a sufficiently long time for 

the general population to accept it as a legitimate transportation option and to start using 

the availability of AVRS as a factor in making long-term decisions such as whether or not to 

own a vehicle, as well as the location of their home and location of their work (i.e. their trip 

origins and destination). This is not a short-term time scale and so the results should not be 

taken as an indication of the immediate future. 

Several recommendations are suggested to address specific limitations of the model. 

The first involves the mode split model, which is focussed primarily on the choice between 

transit and AVRS. While the study uses all steps of the Four-Step model, the mode split 

component is of particular importance as the goal of the study is to examine the impact of a 

new mode (AVRS) on an existing mode (transit). Future research could develop a more 

comprehensive mode split model by including trip-maker characteristics such as wealth, 

location of home and work and other destinations, access to public transit, willingness to 

use new technology, and whether or not the trip-maker is an auto captive, transit captive, 

or neither. This could also allow for investigations to address different planning horizons 

by having some of the population unwilling or unable to use the new mode. 

Another limitation to be addressed is that the model does not limit capacity on 

transit vehicles. As a result, the model outputs include some routes that have more 

passengers than the route could actually handle. A more complicated model could be 

constructed to limit the number of transit passengers specific to the type of transit vehicle 

and the number of passengers already using that transit vehicle, but this would require a 

less macroscopic model and could produce other unintended effects. 

Traffic assignment models account for the effect of traffic volume on travel times 

through the use of volume-delay functions. In this research, delays at intersections (which 
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are not relevant for the highway link type) were modelled via the BPR function calibrated 

to represent the delay function for signalized intersections.  An alternative approach would 

be to model the link travel time and the intersection delays separately.  This could be 

accomplished by using the BPR function to model the link travel time and then add an 

additional travel time for the intersection delay.  The intersection delay could also be a 

function of the type of turning movement being made (e.g. left turn vs right turn vs through 

movement). This approach would likely produce more realistic estimates of travel times. 

A final major limitation of the model is that AVRS could have effects on the behavior 

of highways, roads, intersections, parking based on expected communication among 

autonomous vehicles and the volume of autonomous vehicles without passengers. Other 

researchers have investigated some of these areas and these findings could be included in 

subsequent models. 

In addition to these suggestions for improving the model, another avenue of further 

research could investigate additional questions beyond the scope of this research. One area 

would be to investigate the research questions using network data from existing cities, 

which would eliminate the simplifications involved in using modelled networks and 

provide higher resolution data. Another possibility would be to use existing transportation 

software to take advantage of more complicated model structures, such as micro- or 

mesoscopic model structures. The experimental design of this research was a with-and-

without study focussed on the introduction of AVRS. These impacts could also be studied 

with other experimental designs. For example, the model could be used to compare two 

scenarios, both with AVRS, that had small differences in the transit systems to isolate the 

impact of AVRS on specific pieces of transit systems. This could be done by comparing two 

scenarios, the second of which would have rail transit routes in the place of some of the bus 

transit routes of the first. Transit routes could also be added and removed. Finally, in 

addition to the seven route characteristics in the model, many other characteristics could 

be investigated. Of particular interest would be route characteristics related to the 

surroundings of the route such as land use measurements (population density within 

walking distance of transit routes, density of trip attractors within walking distance of 

transit routes), and land use types (residential, commercial, education, industrial, mixed).  



76 
 

References 

Algers, S., J. L. Dillén, Transek consultancy, and S. Widlert. (1995). “The National Swedish 
Value of Time Study.” Östersund, Sweden: Swedish Institute for Transport and 
Communications Analysis (SIKA). 
www.trafikdage.dk/td/papers/papers95/metode/algers/algers.pdf. 

Axhausen, K.W., A. König, G. Abay, J.J. Bates, and M. Bierlaire. (2006). “Swiss value of travel 
time savings.” Zürich: ETH, Eidgenössische Technische Hochschule, IVT, Institut für 
Verkehrsplanung und Transportsysteme. http://e-
collection.ethbib.ethz.ch/view/eth:28966. 

Batley, Richard, John Bates, Michiel Bliemer, Maria Börjesson, Jeremy Bourdon, Manuel 
Ojeda Cabral, Phani Kumar Chintakayala, et al. “New Appraisal Values of Travel 
Time Saving and Reliability in Great Britain.” Transportation 46, no. 3 (April 2017): 
583–621. https://doi.org/10.1007/s11116-017-9798-7. 

Bierlaire, Michel. “PandasBiogeme: a short introduction.” Technical report TRANSP-OR 
181219. Transport and Mobility Laboratory, ENAC, EPFL. (2019). 

Boiteux, M., and L. Baumstark. (2001). “Transports: choix des investissements et coût des 
nuisances.” France: Commissariat général du plan. 
http://www.ladocumentationfrancaise.fr/rapports-
publics/014000434/index.shtml. 

Bösch, Patrick M., Felix Becker, Henrik Becker, and Kay W. Axhausen. “Cost-Based Analysis 
of Autonomous Mobility Services.” Transport Policy 64 (May 2018): 76–91. 
https://doi.org/10.1016/j.tranpol.2017.09.005. 

"Calgary Transit Scheduling Data | Open Calgary" City of Calgary. Accessed July 2018. 
https://data.calgary.ca/Transportation-Transit/Calgary-Transit-Scheduling-
Data/npk7-z3bj 

"Developers | Société de transport de Montréal" Société de transport de Montréal. Accessed 
July 2018. http://www.stm.info/en/about/developers. 

Dictionary, Census of Population, 2016. Ottawa, Ontario: Statistics Canada, 2018. 

Dijkstra, E. W. “A Note on Two Problems in Connexion with Graphs.” Numerische 
Mathematik 1, no. 1 (1959): 269–71. https://doi.org/10.1007/bf01386390. 

Fagnant, Daniel J., and Kara M. Kockelman. “The Travel and Environmental Implications of 
Shared Autonomous Vehicles, Using Agent-Based Model Scenarios.” Transportation 
Research Part C: Emerging Technologies 40 (March 2014): 1–13. 
https://doi.org/10.1016/j.trc.2013.12.001. 

Fagnant, Daniel J., Kara M. Kockelman, and Prateek Bansal. “Operations of Shared 
Autonomous Vehicle Fleet for Austin, Texas, Market.” Transportation Research 

http://www.trafikdage.dk/td/papers/papers95/metode/algers/algers.pdf
http://e-collection.ethbib.ethz.ch/view/eth:28966
http://e-collection.ethbib.ethz.ch/view/eth:28966
https://doi.org/10.1007/s11116-017-9798-7
http://www.ladocumentationfrancaise.fr/rapports-publics/014000434/index.shtml
http://www.ladocumentationfrancaise.fr/rapports-publics/014000434/index.shtml
https://doi.org/10.1016/j.tranpol.2017.09.005
https://data.calgary.ca/Transportation-Transit/Calgary-Transit-Scheduling-Data/npk7-z3bj
https://data.calgary.ca/Transportation-Transit/Calgary-Transit-Scheduling-Data/npk7-z3bj
http://www.stm.info/en/about/developers
https://doi.org/10.1007/bf01386390
https://doi.org/10.1016/j.trc.2013.12.001


77 
 

Record: Journal of the Transportation Research Board 2563, no. 1 (2016): 98–106. 
https://doi.org/10.3141/2536-12. 

Fosgerau, M., K. Hjorth, S.V. Lyk-Jensen. 2007. “The Danish Value of Time Study: Final 
report (Report 5).” Lyngby, Denmark: Danish Transport Research Institute. 
https://orbit.dtu.dk/fedora/objects/orbit:81617/datastreams/file_4049265/conte
nt. 

Fu, Liping. Modelling Travel Demand for Urban Transportation Planning: CIVE 640. 
University of Waterloo, 2016. 

Gentile, Guido. “Local User Cost Equilibrium: a Bush-Based Algorithm for Traffic 
Assignment.” Transportmetrica A: Transport Science 10, no. 1 (2012): 15–54. 
https://doi.org/10.1080/18128602.2012.691911. 

Ghiasi, Amir, Omar Hussain, Zhen (Sean) Qian, and Xiaopeng Li. “A Mixed Traffic Capacity 
Analysis and Lane Management Model for Connected Automated Vehicles: A Markov 
Chain Method.” Transportation Research Part B: Methodological 106 (December 
2017): 266–92. https://doi.org/10.1016/j.trb.2017.09.022. 

"GTFS Data" Translink. Accessed July 2018. 
https://developer.translink.ca/ServicesGtfs/GtfsData. 

"GTFS Static Overview  |  Static Transit  |  Google Developers." Google. Accessed July 2018. 
https://developers.google.com/transit/gtfs. 

Gwilliam, Kenneth M. 1997. “The value of time in economic evaluation of transport projects 
(English)”. Infrastructure notes; no. OT-5. Washington DC; World Bank. (1997). 
http://documents.worldbank.org/curated/en/759371468153286766/The-value-
of-time-in-economic-evaluation-of-transport-projects. 

Hanna, Josiah P., Michael Albert, Donna Chen, and Peter Stone. “Minimum Cost Matching for 
Autonomous Carsharing.” IFAC-PapersOnLine 49, no. 15 (2016): 254–59. 
https://doi.org/10.1016/j.ifacol.2016.07.757. 

"HSR Transit Feed | Open Hamilton" City of Hamilton. Accessed July 2018. 
http://open.hamilton.ca/datasets/6eeccf172c824c2db0484aea54ed7fe4. 

Levin, Michael W., and Stephen D. Boyles. “Effects of Autonomous Vehicle Ownership on 
Trip, Mode, and Route Choice.” Transportation Research Record: Journal of the 
Transportation Research Board 2493, no. 1 (2015): 29–38. 
https://doi.org/10.3141/2493-04. 

Liang, Xiao, Gonçalo Homem De Almeida Correia, and Bart Van Arem. “Optimizing the 
Service Area and Trip Selection of an Electric Automated Taxi System Used for the 
Last Mile of Train Trips.” Transportation Research Part E: Logistics and 
Transportation Review 93 (September 2016): 115–29. 
https://doi.org/10.1016/j.tre.2016.05.006. 

https://doi.org/10.3141/2536-12
https://orbit.dtu.dk/fedora/objects/orbit:81617/datastreams/file_4049265/content
https://orbit.dtu.dk/fedora/objects/orbit:81617/datastreams/file_4049265/content
https://doi.org/10.1080/18128602.2012.691911
https://doi.org/10.1016/j.trb.2017.09.022
http://documents.worldbank.org/curated/en/759371468153286766/The-value-of-time-in-economic-evaluation-of-transport-projects
http://documents.worldbank.org/curated/en/759371468153286766/The-value-of-time-in-economic-evaluation-of-transport-projects
https://doi.org/10.1016/j.ifacol.2016.07.757
http://open.hamilton.ca/datasets/6eeccf172c824c2db0484aea54ed7fe4
https://doi.org/10.3141/2493-04
https://doi.org/10.1016/j.tre.2016.05.006


78 
 

Ma, Jiaqi, Xiaopeng Li, Fang Zhou, and Wei Hao. “Designing Optimal Autonomous Vehicle 
Sharing and Reservation Systems: A Linear Programming Approach.” Transportation 
Research Part C: Emerging Technologies 84 (November 2017): 124–41. 
https://doi.org/10.1016/j.trc.2017.08.022. 

Ohnemus, Michael, and Anthony Perl. “Shared Autonomous Vehicles: Catalyst of New 
Mobility for the Last Mile?” Built Environment 42, no. 4 (2016): 589–602. 
https://doi.org/10.2148/benv.42.4.589. 

"Open data - Grand River Transit" Grand River Transit. Accessed July 2018. 
https://www.grt.ca/en/about-grt/open-data.aspx. 

"Open Data - London Transit Commission" London Transit Commission. Accessed July 
2018. http://www.londontransit.ca/open-data/. 
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Appendix 

 

Figure 4.1: Venn diagrams showing filtering logic. Numbers in diagram represent percent 

of total subroutes for that data set. The accepted subroutes are shown in black-outlined 

shape in the center. See section 2.1.1.2. 
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Figure 4.2: Extended view of Figure 3.1 including all data points. 
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Table 4.1: Transit route dataset summary for bus routes in small cities 

Aggregation Trip Route Geodesic Total Travel Headway Operating Wait Time Route 
 Count Length (km) (km) Time (min) (min) Speed (km/h) Percentage Indirectness 

Percentiles:         
0 (Minimum) 2.0 1.77 0.99 6.0 5.2 11.8 4.74 1.03 
5 2.0 4.68 2.26 12.0 11.3 16.5 9.10 1.21 
25 9.0 8.65 4.21 22.0 18.4 20.7 19.45 1.45 
50 (Median) 27.0 12.52 7.09 31.4 24.2 23.3 33.65 1.73 
75 41.0 17.37 9.74 44.0 30.2 27.3 64.98 2.16 
95 68.0 25.54 16.57 63.9 85.0 33.4 150.00 3.43 
100 (Maximum) 147.0 39.56 23.4 87.3 90.0 47.7 281.25 14.66 
Mean 28.2 13.43 7.57 34.1 29.2 24.2 51.71 2.01 
Median 27.0 12.52 7.09 31.4 24.2 23.3 33.65 1.73 
Mode 2.0 1.77 4.72 30.0 30.0 11.8 106.25 1.03 

 

Table 4.2: Transit route dataset summary for bus routes in large cities 

Aggregation Trip Route Geodesic Total Travel Headway Operating Wait Time Route 
 Count Length (km) (km) Time (min) (min) Speed (km/h) Percentage Indirectness 

Percentiles:         
0 (Minimum) 2.0 0.91 0.41 5.0 2.0 8.1 1.75 1.00 
5 5.0 3.62 2.01 11.8 5.4 12.6 4.40 1.07 
25 17.0 7.02 4.12 22.7 9.5 16.5 9.90 1.24 
50 (Median) 39.0 10.73 6.46 32.0 17.1 20.4 21.24 1.45 
75 63.0 15.25 10.77 45.0 27.8 24.1 39.25 1.81 
95 127.2 24.28 18.06 62.5 42.2 32.2 114.58 3.22 
100 (Maximum) 306.0 46.91 31.26 93.8 90.0 68.6 312.45 9.21 
Mean 47.3 11.93 8.02 34.0 19.9 21.1 33.30 1.72 
Median 39.0 10.73 6.46 32.0 17.1 20.4 21.24 1.45 
Mode 5.0 3.31 6.19 15.0 30.0 8.1 125.00 1.04 
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Table 4.3: Transit route dataset summary for rail routes 

Aggregation Trip Route Geodesic Total Travel Headway Operating Wait Time Route 
 Count Length (km) (km) Time (min) (min) Speed (km/h) Percentage Indirectness 

Percentiles:         
0 (Minimum) 2.0 3.81 2.95 5.5 1.6 11.9 1.44 1.00 
5 15.0 3.94 3.32 8.4 2.5 12.4 1.74 1.02 
25 140.0 7.39 5.82 25.0 4.0 14.0 2.99 1.11 
50 (Median) 183.0 15.09 8.81 40.0 5.0 31.2 4.72 1.20 
75 224.2 26.18 16.62 55.6 6.3 37.8 12.82 1.37 
95 297.5 34.15 24.23 75.4 11.6 42.1 34.43 4.87 
100 (Maximum) 357.0 38.90 28.72 78.8 12.0 42.5 41.67 5.23 
Mean 170.1 17.35 11.59 39.5 5.4 27.9 9.70 1.70 
Median 183.0 15.09 8.81 40.0 5.0 31.2 4.72 1.20 
Mode 140.0 3.81 3.21 25.0 5.9 11.9 1.44 1.11 
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Table 4.4: Mode usage for modelled cities 

  Without AVRS With AVRS 
City Mode Trips 

(number) 
Trips 

(%) 
Trips 

(number) 
Trips 

(%) 
A Auto 71,867 87.5 5,648 6.9 
A Transit 10,259 12.5 2,939 3.6 
A AVRS   73,539 89.5 
B Auto 62,924 76.8 5,157 6.3 
B Transit 18,998 23.2 5,934 7.2 
B AVRS   70,831 86.5 
C Auto 125,695 76.7 10,170 6.2 
C Transit 38,199 23.3 18,731 11.4 
C AVRS   134,992 82.4 
D Auto 84,359 51.0 8,233 5.0 
D Transit 81,070 49.0 48,010 29.0 
D AVRS   109,186 66.0 
E Auto 200,070 61.1 19,543 6.0 
E Transit 127,598 38.9 58,751 17.9 
E AVRS   249,373 76.1 
F Auto 184,395 56.3 18,118 5.5 
F Transit 143,258 43.7 66,052 20.2 
F AVRS   243,480 74.3 
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Table 4.5: Trip Characteristics for modelled cities 

  Without AVRS With AVRS 

City Mode 
Average 

IVTT 
(min/trip) 

Average 
Distance 

(km/trip) 

Total 
IVTT 

(min) 

Total 
Distance 

(km) 

Average 
IVTT 

(min/trip) 

Average 
Distance 

(km/trip) 

Total 
IVTT 

(min) 

Total 
Distance 

(km) 

A Auto 8.22 7.30 590,787 524,761 7.04 5.99 39,746 33,817 
A Transit 7.83 3.25 80,377 33,388 5.94 2.45 17,470 7,212 
A AVRS     7.99 7.01 587,580 515,316 
B Auto 8.34 8.66 524,980 544,645 6.97 6.76 35,960 34,838 
B Transit 12.10 5.66 229,858 107,528 10.87 5.00 64,525 29,685 
B AVRS     8.12 8.22 575,186 582,157 
C Auto 8.97 7.85 1,127,188 986,811 7.38 6.07 75,049 61,757 
C Transit 7.88 4.11 300,853 157,143 7.05 4.08 131,997 76,429 
C AVRS     8.49 7.26 1,145,940 979,686 
D Auto 8.17 7.70 689,339 649,628 7.06 6.09 58,142 50,161 
D Transit 12.13 7.52 983,666 609,298 11.11 7.34 533,561 352,500 
D AVRS     8.00 7.16 873,759 781,718 
E Auto 9.18 7.76 1,836,474 1,553,093 6.83 5.35 133,447 104,541 
E Transit 12.14 5.85 1,548,948 745,928 8.81 4.43 517,784 260,158 
E AVRS     7.79 6.36 1,943,856 1,585,346 
F Auto 8.98 8.19 1,655,903 1,510,434 7.53 6.33 136,494 114,651 
F Transit 14.78 8.21 2,116,854 1,176,061 13.77 7.95 909,305 525,305 
F AVRS     8.80 7.66 2,142,626 1,866,032 


