
Simulation of the Ferrofluid Interface

by

Michael Honke

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2020

c© Michael Honke 2020

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Ferrofluids were initially invented as an additive for rocket fuels. The commercial applica-
tions of ferrofluids have since expanded, and have become popularized as desktop toys as
well as an art form. Since 1987, ferrofluid simulations have been developed for engineer-
ing and physics applications. The Rosensweig instability, a visually appealing behaviour
of ferrofluids, has been one of the focuses for ferrofluid simulation. While some simula-
tions were successful, they have either placed restrictive assumptions on the problem, used
non-physical models, or failed to reproduce this phenomenon due to high computational
expense. One recent exception was a concurrent work from 2019 by Huang et al. that used a
particle based fluid simulation method [1]. They successfully reproduced this phenomenon
without these issues, but adopted a different computational approach.

We present a methodology for simulating ferrofluid with its accompanying Rosensweig
instability using finite difference schemes within a grid based simulation. This is the first
simulator to use a grid based methodology to approximately reproduce the Rosensweig
instability. After Huang et al., our simulator is the second to approximately reproduce
the Rosensweig instability with a nonrestrictive physically faithful model. The simulator
accommodates any magnetic field and initial configuration of the fluid. Due to the high
level of interface detail required by the Rosensweig instability we developed improved cur-
vature estimation and surface tracking methods. We use a normal-aligned height function
curvature stencil paired with a modified version of the particle level set. Instead of using
particles for error detection, they are directly seeded on the interface to track it. These
particles can then be used directly to determine the interface location for curvature esti-
mation. The new particle level set is also able run on a GPU for a twenty to thirty times
performance improvement compared to its CPU counterpart.

This coupling of methods produces curvature estimates that are two to five times more
accurate than when operating independently of each other. After verifying the curvature
and surface tracking methods, the ferrofluid simulator is demonstrated by inducing motion
into a ferrofluid droplet using an applied magnetic field. Lastly, the Rosensweig instability
is produced for a pool of ferrofluid sitting in a dish above a dipole magnet.

iii

Acknowledgements

Regarding the choice to attend grad school, a mentor once told me: finding a good
supervisor is critical, everything else is secondary. I want to thank Christopher Batty for
being that supervisor, who fostered my scientific curiosity and guided me throughout this
research project. His insightful perspectives on work-life balance, and research in academia
and industry are invaluable lessons.

My committee members, Stephen Mann and Justin Wan, deserve recognition for their
careful review of my thesis and subsequent helpful feedback. Outside of the committee
duties, I want to thank Stephen for his excellent instructorship and both Justin and Stephen
for the numerous engaging discussions.

I am grateful for the support and friendship of my fellow lab members and colleagues:
Chufeng, Eddie, Henry, Jade, JC, Jonathan, Nathan, Ryan, and Yu. There was rarely
ever a lonely moment. Our long discussions of research, work, and various other interests
will be dearly missed. Outside the lab, I want to thank BH, David and Sashika for their
continued friendship, interest in my research and long distance support.

The support, guidance, and time invested by my parents, Les and Lori, made embarking
on this and past endeavours possible. I cannot thank you enough.

iv

Dedication

To my loving parents,

Les and Lori Honke,

for your support and guidance.

v

Table of Contents

List of Figures viii

List of Tables x

1 Introduction 1

2 Previous Work 4

3 Physical Theory 7

3.1 Fluid Dynamics . 7

3.2 Ferrohydrodynamics . 9

3.2.1 Chemistry . 9

3.2.2 Magnetic Theory . 10

3.2.3 Macroscopic Description of the Rosensweig Instability 12

4 Methods for Fluids 15

4.1 General Simulation Data Structures . 15

4.1.1 The MAC Grid . 15

4.2 Standard Methods . 17

4.3 Surface Tracking . 18

4.3.1 Level Set . 19

4.3.2 Particle Level Set . 21

vi

4.3.3 Particle Level Set for GPU . 25

4.4 Extrapolating Velocity . 27

4.5 Surface Tension . 28

4.5.1 Determining Curvature . 29

5 Methods for Magnetic Fluids 36

5.1 Solving for Magnetic Potential . 36

5.1.1 Eliminating the Null Space . 38

5.1.2 The Interface Condition . 40

5.1.3 Discretization . 41

5.2 Applying the Magnetic Force . 42

6 Results 45

6.1 Surface Tracking Comparison . 45

6.2 Surface Curvature Measurement . 47

6.2.1 Curvature Method Comparison for Levelset 50

6.2.2 Curvature Method Comparison for Direct Particle Levelset 56

6.2.3 Choosing Column Widths . 59

6.2.4 Summary . 63

6.3 Fluid Simulation . 63

6.3.1 Verification of Surface Tension . 63

6.3.2 Free Fall . 66

6.4 Ferrofluid . 68

6.4.1 Field-Induced Motion . 68

6.4.2 Rosensweig Instability . 70

7 Conclusion and Future Work 77

References 79

vii

List of Figures

1.1 Example of a ferrofluid sitting in a dish with a magnet below exhibiting the
Rosensweig Instability. 2

3.1 Setup for a basic ferrofluid experiment. 10

4.1 Overview of one simulation time step. 16

4.2 A 2D staggered MAC grid. 17

4.3 A level set stored on a grid for a simple interface. 19

4.4 Visual depiction of how surface and sign particles might be seeded using the
DPLS method. 23

4.5 Velocities in air are used to interpolate velocities in the fluid. 28

4.6 The height function stencil applied along a sample interface. 31

4.7 The height function stencil is applied to a surface tracked by the DPLS
algorithm. 35

5.1 The locations of each magnetic force tensor component on a grid. 43

6.1 Frames of a rotating Zalesak’s disk simulation are shown. 46

6.2 The curvature of a circle is uniformly sampled along its complete circumfer-
ence. 48

6.3 The effect of redistancing on curvature measurement accuracy between Lapla-
cian and a leading height function method. 49

6.4 The errors of all height functions for low curvatures. 53

viii

6.5 High curvature, low resolution geometry causes a HF stencil column to miss
the interface. The NAHF stencil has no misses. 55

6.6 The errors of all height functions for high curvatures. 55

6.7 Curvature errors from Tables 6.5, 6.6 and 6.7 are plotted for comparison. . 58

6.8 HF-PLS and NAHF-PLS methods’ errors as a function of angle. 59

6.9 Oscillation of an ellipse in zero gravity due to surface tension. 65

6.10 Oscillation has stopped, leaving the fluid as a circle. 66

6.11 Cube evolving into a sphere due to surface tension. 66

6.12 Freefall of fluid in 3D. 67

6.13 Field-induced motion of a ferrofluid droplet. 69

6.14 The critical magnetic field is found by gradually increasing the applied field
until the Rosensweig instability starts to form. 71

6.15 The instability has already formed and is grown by increasing the applied
magnetic field. 73

6.16 Rosensweig instability formation as a function of time. 74

ix

List of Tables

6.1 Total L2 and L-inf errors for the grid-aligned height function and Laplacian
curvature measurement methods before and after level set redistancing. . . 50

6.2 The varying height function methods tested in this work. 51

6.3 Total L2 and L-inf errors for HF and NAHF methods comparing the use
of the iterative method to the original interpolation method for calculating
column heights. 51

6.4 Total L2 and L-inf errors for HF and NAHF methods for high curvature
data only. 52

6.5 Total L2 and L-inf errors for HF, NAHF, GCHF and GCNAHF methods
for low curvatures. 53

6.6 Total L2 and L-inf errors for HF, NAHF, GCHF and GCNAHF methods
for high curvatures. 54

6.7 Total L2 and L-inf errors for LS and DPLS height function methods. . . . 56

6.8 Total L2 and L-inf errors as a function of stencil column width ∆xP 60

6.9 Total L2 and L-inf errors as a function of stencil column width ∆xP for
circles. 61

6.10 Total L2 and L-inf errors as a function of stencil column width ∆xP for
ellipses. 62

6.11 Comparison of variable and fixed width stencil errors for ellipses. 62

6.12 Fluid parameters for the experiment in Figure 6.14. 72

x

Chapter 1

Introduction

Typical fluids are characterized by physical properties including but not limited to viscosity,
surface tension, and density. Another physical property, called magnetic susceptibility,
becomes relevant when studying fluids that contain dissolved ferromagnetic particles. Such
fluids are called ferrofluids. In the absence of any magnetic fields ferrofluids behave as a
conventional liquid. When a magnetic field is applied to a ferrofluid its high degree of
magnetic susceptibility means it experiences a magnetic force [2]. This force can then be
used to influence the movement of the fluid.

The ability to control a ferrofluid using magnetic fields meant they were once consid-
ered as a possible rocket fuel. In a zero gravity environment ferrofluids can be magnetically
moved to prime a rocket motor [2]. Ferrofluids are commonly used in commercial appli-
cations including rotary shaft seals, such as those for computer disk drives [3], as well as
a damping fluid for motors [4]. Loud speaker coils have used ferrofluids to manage heat,
and provide damping while using magnetization to position the fluid [5].

Beyond engineering applications the way ferrofluids respond to an applied magnetic
field creates several interesting visual phenomena. Complex labyrinthine patterns form
when an immiscible mix of ferrofluid and non-magnetic fluid is trapped as a thin layer in
a glass cell [3]. When a container of ferrofluid is exposed to a sufficiently strong magnetic
field a pattern of peaks occurs on its surface, such as in Figure 1.1. This is called the
normal field instability, also known as the Rosensweig instability, named after one of the
original inventors of ferrofluids. This particular phenomena has captured the attention of
artists. Mesplé, an artist who combines science and fine art, has used ferrofluids along
with magnetic fields to create sculptures1. The Rosensweig instability has also spawned an

1http://www.mesple.com/mesple-technology-art

1

http://www.mesple.com/mesple-technology-art

industry of desktop toys based on the interaction of contained ferrofluids with magnets2.

Figure 1.1: Example of a ferrofluid sitting in a dish with a magnet below exhibiting the
Rosensweig instability.3

The interest in ferrofluids, both visually and for engineering applications, has motivated
the development of various ferrofluid simulation techniques, which is the subject of this
thesis. Simulators have been developed both within the fields of computational physics and
more recently in computer graphics. Simulators such as these can be used by engineers
to simulate how a ferrofluid might act in a particular application. Also artists can use
simulations to plan and develop their next display. To accurately and easily represent a
ferrofluid in computer graphics applications, such as in games or films, a physically based
simulation is preferred to manual animation. However, despite the potential usefulness of
ferrofluid simulations of the Rosensweig instability, there has been only limited success.

A pair of 2D and 3D ferrofluid simulators have been developed as part of this current
work focused on recreating the Rosensweig instability. As far as this author is aware, the 3D
simulator presented here is the first to use a grid-based fluid simulation to approximately
simulate this instability, which includes characteristics such as peak growth and critical
onset of peaking. Our simulator is the second such attempt, regardless of methodology, to
use general conditions when simulating the instability. The first simulation to do so was
recently published in July 2019, while our simulator was in development. However, this
other simulator uses a particle based fluid simulation [1].

2https://www.czferro.com/
3Whats That? (64) CC BY 2.0 by jurvetson. Image was cropped.

2

https://www.czferro.com/
https://www.flickr.com/photos/jurvetson/136481113/
https://creativecommons.org/licenses/by/2.0/
https://www.flickr.com/people/jurvetson/

Most fluid simulation techniques can be classified as either particle (Lagrangian) based
methods, such as smoothed particle hydrodynamics (SPH), or grid based techniques, some-
times called Eulerian methods. There are also some hybrid methods such as particle in
cell (PIC) and fluid implicit particle (FLIP) that use both particles and grids. There are
a few advantages to using Eulerian methods. They have been shown to better resolve
interface instabilities between two fluids [6]. Also, the underlying grid makes it easier to
derive accurate finite differences [7], which are required for almost every method used in the
simulation. Using finite differences then allows the use of popular linear algebra packages
to calculate solutions for quantities such as pressure, viscosity and now also the magnetic
field.

In the process of developing the present simulator we encountered multiple challenges
related to representing the fluid’s interface. Our response was to further improve several
components of the basic grid-based fluid simulation framework. A massively parallelized
modified particle level set method, where particles are used to track the surface directly,
was developed. Additionally, we increased the accuracy of methods for measuring surface
curvature which are then used to simulate surface tension. Lastly, we developed a special-
ized version of this surface curvature function that specifically integrates with our particle
level set for further improved accuracy.

The contributions of our work is therefore two-fold. We demonstrate how grid-based
simulation methods can be used to produce crucial features of the Rosensweig instability.
However, our work extends beyond ferrofluid simulation. The particle level set method
that we developed can be used for other simulations. In addition, we modified a curvature
measurement method specifically for the aforementioned particle level set, producing a
combination that improves accuracy.

3

Chapter 2

Previous Work

There has been limited success simulating ferrofluids for computer graphics applications
until recently. However, in the field of computational physics the study of ferrofluids and
their simulation has been more successful. However, as will be shown in the selection of
previous works in these two fields, computational physics simulations tend to focus on sim-
ulating ferrofluids under specific conditions and assumptions, whereas graphics simulations
aspire to simulate ferrofluids in a more general environment.

The first research done in ferrofluid simulation takes place in the field of computational
physics. The earliest includes Rosensweig as an author in the work by Boudouvis et al.
in 1987 [8]. They simulated the formation of peaks under static conditions using the
Young-Laplace equations. They were able to replicate interface deflection trends with
their simulation. However, their simulator did not simulate a fully 3D surface, but rather
a heightfield. More recent examples include one from 2006 where Lavrova et al. simulated
the Rosensweig instability under static conditions, along with more microscopic ferrofluid
phenomena such as individual droplets [9] [10]. Like Boudouvis et al. their simulator also
uses a heightfield, which limits the applications of the simulation. Also, they used the
finite-element method (FEM), which requires generating a mesh, an expensive operation
that necessitates special handling of topology changes. Gollwitzer et al. in 2007 detail
their meshing process [11]. They strategically select their domain size to contain exactly
one peak. This requires a priori knowledge of the expected peak geometry. As a result,
the fluid configuration and applied magnetic field must be known before the simulation,
thereby limiting user interaction with the ferrofluid. Using a similar methodology, FEM
with height fields, Cao et al. in 2014 showed a simulation displaying a hexagonal pattern of
peaks, characteristic of ferrofluids [12]. The main drawback of these methods is that they
all make the assumption that fluid velocity is zero and has an interface representable by

4

a heightfield, which while simplifying the simulation, limits them to static fluids without
complex geometry.

In 2011, Yoshikawa et al. made the first attempt to simulate the Rosensweig instability
under non-static conditions [13]. They used the FEM coupled with the moving particle
semi-implicit (MPS) method, solving for the magnetic field and fluid respectively. The
MPS particles in the fluid were used to create a mesh extending out into space to use the
FEM. The magnetic forces were then calculated and applied to the fluid particles. This
process repeats on each time step requiring the generation of many meshes over the course
of a simulation. This constant conversion of data between MPS and FEM results in lengthy
runtimes. Due to this high computational cost and some issues with volume conservation
only one peak was generated over 24 hours of computation. No results with multiple peaks
were presented.

The work in computational physics either does not focus on producing the Rosensweig
instability under general conditions, or in reasonable runtimes for computer graphics ap-
plications. Ideally, such a simulator should simulate a dynamic ferrofluid, in 3D, with
reasonable runtimes such that multiple peaks of the Rosensweig instability are produced.
This type of simulation may also have applications in physics and engineering if it has
sufficient accuracy.

The first such simulation seeking to address these requirements is from Ishikawa et al.
in 2012 and 2013 [14] [15]. They used SPH fluid simulation, commonplace in graphics
[16], with magnetic forces applied to the individual particles to simulate the main fluid
body. This is unlike the previous works where the magnetic field is solved separately with
respective forces being applied to the fluid in an iterative fashion. However this method did
not produce peaks on its own. They proposed a couple of procedural models to add peaks
to the fluid surface being simulated by SPH. While the models are based on equations from
ferrohydrodynamic theory describing peak pattern and height for specific conditions, it is
unable to handle peak formation for general scenarios.

In 2019, Huang et al. developed a particle based simulation [1] capable of generat-
ing peaks using a fully physical model of magnetic and fluid forces. Like Ishikawa et al.
they use a SPH solver for their fluid. However, they employed a more sophisticated mag-
netism model, solving for the magnetic field separate from the fluid. One magnetic field
calculation, using the fast multipole method, is done for every 10 time steps of SPH fluid
simulation. Their simulator generates peaks without any post time step modifications,
and follows physical trends related to parameters such as surface tension and the applied
magnetic field. So far this is the most complete particle based ferrofluid simulation for
general conditions.

5

As shown, particle based methods have received the only attention for ferrofluid sim-
ulation in computer graphics. However, there are other models that have been proposed
that are capable of simulating a dynamic ferrofluid. In 2008 Afkhami et al. published such
a model applying it to the study of ferrofluid droplets [17]. Their model has been used
extensively since then for a number of other studies in computational physics [18] [19] [20],
but not for simulating the Rosensweig instability. Critically, it does not assume that the
fluid velocity is zero. It uses finite difference methods (FDM) on grids to solve for the mag-
netic field and the fluid. While the solves are done separately the shared data structure
means that transferring magnetic forces back to the grid is not computationally expensive.
The fluid is tracked using the volume of fluid method (VOF) avoiding the runtime cost
associated with meshing.

The numeric ferrohydrodynamic model of Afkhami et al. serves as a suitable base
for a general dynamic grid-based ferrofluid simulation. Therefore this thesis uses their
method, albeit with some modifications. Curvature measurement is a concern due to its
role in determining surface tension. This is an important component when attempting
to produce the Rosensweig instability. Therefore, instead of using VOF, we reimplement
their method using level set based surface tracking, which offers convenient calculation of
smooth properties such as curvature [21]. We require a general 3D simulation, which has
not been needed by Afkhami et al. as their simulations can use axisymmetric [17] [18] [19]
or 2D domains [20]. A new discretization for a 3D Cartesian coordinate system is derived
starting from their mathematical model.

With these modifications we present a simulator free of restrictive assumptions regard-
ing fluid and magnet configuration, 3D and able to produce multiple peaks in a reason-
able time. Multiple applications are possible with such a simulation. First for computer
graphics, due to its comparatively computationally efficient methods, and secondly for
engineering and physics due its physical basis.

6

Chapter 3

Physical Theory

The study of ferrohydrodynamics combines both fields of fluid dynamics and electromag-
netic theory. The essentials of both subjects will be presented here. The actual discretiza-
tions and methods of solving for the fluid will be presented in the subsequent methods
section (Chapter 4). Without any applied magnetic field ferrofluids resemble a typical
fluid and are subject to the same physics.

3.1 Fluid Dynamics

The partial differential equation that describe the fluid flows of interest is called the in-
compressible Navier-Stokes equation

∂~u

∂t
+ ~u · ∇~u+

1

ρ
∇P = ν∇ · ∇~u+

1

ρ

(
σκn̂δs + ~Fe

)
(3.1)

where ~u is the velocity, ρ is the density, P is pressure, ~Fe are external forces due to
gravity and/or magnetism and ν is the kinematic viscosity coefficient. The σκn̂δs term is
responsible for the surface tension force with σ being the surface tension coefficient and κ
the mean curvature of the fluid interface. The force is along the surface normal n̂ and only
applied on the interface as indicated by Dirac delta function δs. The velocity is subject to
a divergence-free condition

∇ · ~u = 0 (3.2)

which enforces incompressibility.

7

To optimize the solving of Equation 3.1 the common technique of splitting is used
instead of attempting to solve the entire equation at once [7]. This breaks the equation
first into an advection part

D~u

Dt
= 0 (3.3)

where ~u can be replaced by another quantity if one exists that requires advection such as
colour or smoke density. The material derivative is defined as follows.

D

Dt
=

∂

∂t
+ ~u · ∇ (3.4)

Next, a body forces part
∂~u

∂t
=

~Fe
ρ

(3.5)

which is used to apply the forces due to gravity and magnetism as a velocity update. Then
there is the viscosity part

∂~u

∂t
= ν∇ · ∇~u (3.6)

which is due to internal friction in the fluid. The accumulation of new velocities will result
in a pressure change. The following equation

∂~u

∂t
+

1

ρ
∇P = 0 (3.7)

calculates the associated pressure due to the updated ~u values. This equation is discretized
and solved in conjunction with Equation 3.2. A final velocity update is then done. At this
point in the process, the velocities are divergence-free. This pressure solve requires a careful
treatment of interface conditions when near the surface due to surface tension which will
be discussed in Section 4.5.

These steps are repeated in the order presented to simulate a fluid. Critically, the only
time the velocities are divergence-free and hence valid is immediately after the pressure
solve. The divergence-free condition is no longer true after advecting the velocities in their
own field [7]. Advection through a diverging or converging vector field can cause material
to be erroneously created or deleted. Therefore all other quantities are advected before the
velocities are.

8

3.2 Ferrohydrodynamics

Having reviewed fluid properties, the additional magnetic properties that define a ferrofluid
can now be presented. First the chemistry of a ferrofluid is reviewed to understand how
it is magnetic. Then some general magnetic theory is presented and isolated to the cases
applicable for ferrofluids giving the main equation that will be solved to find the magnetic
potential. Lastly, some theory regarding the macroscopic behaviour of ferrofluids related
to the Rosensweig instability is discussed. This can later be used to verify if a simulation
is performing as expected.

3.2.1 Chemistry

The simplest type of ferrofluid would be a homogeneous one. This type of fluid has not been
synthesized and remains only possible in theory [3]. In fact ferrofluids are not naturally
occurring and must be carefully synthesized as heterogeneous fluids. They are typically
colloidal suspensions of small (3-15nm) solid magnetic particles in water or oil. The indi-
vidual particles are coated in a surfactant. It is a single layer coating of molecules that are
attracted to the magnetic particle while being compatible with the solvent of the ferrofluid.

A usable ferrofluid is stable against a number of forces that seek to precipitate the
magnetic particles out of it. They are summarized here but are presented in more detail by
Rosensweig [3]. First, the force of gravity pulls the particles downwards. However, since the
magnetic particles are small the thermal motion, specifically Brownian motion, is sufficient
to keep them dispersed in the fluid. Since the particles are magnetic they can become stuck
together if they become too close (due to electromagnetic force strength being inversely
related to separation), which can randomly happen as they travel within the carrier fluid. If
the particles are kept sufficiently small then thermal motion is energetic enough to separate
them again. Similarly the particles can be attracted to each other through electrical forces
called the van der Waals force. This is due to electron interactions between two magnetic
particles. Steric hindrance, due to the surfactant coating, is necessary to keep these forces
from growing too strong and overpowering Brownian motion. Lastly, and an important
consideration for practical use, is what happens when a strong magnetic gradient is applied
to the ferrofluid? The magnetic particles will clump together near the source of the gradient
despite Brownian motion attempting to redistribute the particles. Figure 3.1 depicts this
happening for a basic ferrofluid experiment setup. Steric hindrance keeps the particles
sufficiently separated. When the magnetic field source is removed Brownian motion is able
to redistribute the particles without them becoming permanently clumped together due to
the previously mentioned interparticle forces.

9

N

S

Figure 3.1: A basic ferrofluid experiment. The magnet is applied at the bottom of the
ferrofluid container. Particles clump towards the magnetic source. Since they are ferro-
magnetic their average magnetic dipoles (represented by arrows) align almost perfectly

with the applied field ~H.

The compositional requirements of a ferrofluid leave it electrically insulating. It can
be safely assumed that there are no electrical currents within the fluid. This conveniently
simplifies the electromagnetic theory to just magnetic theory.

3.2.2 Magnetic Theory

The ferrofluid starts experiencing magnetic forces when an external magnetic field is ap-
plied. The individual particles become magnetized resulting in complex self-interacting
forces. To attempt to simulate this process requires creating magnetic fields that obey the
following physical laws. The first restriction is due to Gauss’s law for magnetism

∇ · ~B = 0 (3.8)

10

where ~B is the magnetic induction, measured in Tesla (T). The magnetic induction is
dependent on the properties of the surrounding material expressed by

~B = µ ~H (3.9)

where µ is the permeability of the respective material and ~H is the magnetic field measured
in amperes per meter (A m−1). The permeability µ is defined by

µ = µ0(1 + χ) (3.10)

where χ is called the magnetic susceptibility. The magnetic susceptibility is zero in a
vacuum, hence µ = µ0 where µ0 is the magnetic permeability of free space.

The magnetic field is restricted by Ampère’s law

∇× ~H = Jf +
∂D

∂t
(3.11)

where Jf is the free current and D is the electric displacement field [22]. However, in the
absence of electric charge Equation 3.11 simplifies to

∇× ~H = 0 (3.12)

which is a safe assumption due to the chemistry of ferrofluids [3].

Next, we introduce the concept of magnetic potential. Magnetic potential is defined as

~H = −∇Ψ (3.13)

and is called the scalar magnetic potential, which is only applicable when ~H is a conserva-
tive (or irrotational) field as shown by Equation 3.12. Using this relationship and Eq. 3.8
gives

∇ · (µ∇Ψ) = 0 (3.14)

allowing for Ψ to be solved for some given boundary and interface conditions. If µ is
assumed to be constant over all space then further simplifications can be made giving

∇2Ψ = 0 (3.15)

which is Laplace’s equation. The numerical discretization of this equation is straightfor-
ward and common. However Equation 3.15 is not valid for ferrofluid simulations because
µ cannot be assumed constant and removed from the equation. Using the product rule
Equation 3.14 becomes

µ∇2Ψ + (∇µ) · ∇Ψ = 0 (3.16)

11

which more clearly presents the effect of a non-constant µ. The air around a ferrofluid
is essentially non-magnetic µa = µ0, which will be an assumption used throughout this
work. However in a magnetically susceptible ferrofluid µf 6= µ0. At the interface between
the ferrofluid and air this non-constant µ results in ∇µ 6= 0. Furthermore, µf may not
be constant even within the ferrofluid. Equation 3.14 cannot be further simplified and is
called a varying coefficient Poisson equation. This particular case is non-trivial to solve as
there are various methods of treating the discontinuity of µ at the air-fluid interface.

Within the fluid µf can vary. Some simulators make the assumption that µf is constant,
but this assumption disregards the chemistry of the fluid. When a magnetic field is applied
the distribution of the magnetic particles in the fluid changes as discussed in Section 3.2.1.
The particles are responsible for the magnetic susceptibility of the fluid and as a result µf is
a function of the magnetic field strength. The experimentally verified [17] and theoretically
derived [3] relationship for the magnetization is

~M(~H) = MsL

(
µ0m| ~H|
kbT

)
~H

| ~H|
(3.17)

where L is the Langevin function L(α) = coth(α)−α−1 and ~M is the magnetization of the
fluid. Magnetization is the magnetic dipole moment per unit volume of the fluid [22]. The
total magnetization is the macroscopic result of many small magnetic domains aligning or
anti-aligning with each other. Magnetization also varies with the magnetic field according
to Equation 3.18.

~M = χ ~H (3.18)

Using Equations 3.10, 3.17 and 3.18 together give

µf = µ0

(
1 +MsL

(
µ0m| ~H|
kbT

)
1

| ~H|

)
(3.19)

which can be used to obtain µf for the fluid containing regions when solving Equation
3.14. Alongside µ0 the other physical constant is Boltzmann’s constant kb. The remaining
parameters are fluid-specific. Ms is the saturation magnetization, T is the temperature
and m is the total magnetic moment of each particle.

3.2.3 Macroscopic Description of the Rosensweig Instability

The following is a conceptual explanation of why the Rosensweig instability occurs. Con-
sider a flat ferrofluid surface with a sufficiently strong magnetic field applied perpendicu-
larly to it. Thermal motion, environmental vibrations and other disturbances cause small

12

random deformations to occur on the fluid’s surface. Magnetic flux concentrates at the top
of these deformations, and decreases towards the bottom of them [3]. The deformations
then continue to grow creating a feedback loop as they alter the total magnetic field. Their
growth is limited by surface tension and gravity reaching an equilibrium with the magnetic
forces [13].

Rosensweig has previously derived, using ferrohydrodynamic theory, a set of equations
that describe the empirical properties of the instability. To facilitate the derivation a
number of assumptions are made. For example, the ferrofluid is assumed to be infinite,
inviscid and in a vacuum [3]. However, the resulting equations are still useful for verification
purposes since they show the trends that should be observed in a simulated ferrofluid.
Trends such as these were used by Ishikawa et al. to procedurally generate peaks on their
ferrofluid surface [14] [15]. As previously explained, using these trend equations restricts the
output of the simulator to just the conditions those equations can describe. Besides using
Equation 3.19 to avoid simulating a ferrofluid at a molecular level, our simulation uses only
the Navier-Stokes equation (Equation 3.1) and the variable coefficient Poisson magnetic
potential equation (Equation 3.14) to model the ferrofluid. The following equations are
only used to check if our simulations have physically correct behaviour.

In addition to the previously mentioned assumptions, the trend equations [23] are
derived assuming that the ferrofluid peaks can be represented as a height field

z0 = ẑ0Re
(
ei(ωt−

~k·~x)
)

(3.20)

where ω is the frequency and ~k is the wavevector. Also assumed is that the magnetic
field and gravity are applied perpendicularly to the flat interface of the ferrofluid. Such
a predefined setup limits the usefulness of the trend equations to quantitatively verify a
general ferrofluid simulation. However, for simple simulations the conditions should be
similar enough that qualitative trends should hold true.

The critical magnetization Mc specifies the minimum magnetization M that is required
to induce the onset of the Rosensweig instability [23]:

M2
c =

2

µ0

(
1 +

µ0

µ

)
√
ρgσ (3.21)

indicating that as gravity, fluid density and surface tension are increased then intuitively the
fluid must have its magnetization increased to generate the Rosensweig instability. The
magnetization can be increased through using a stronger applied field or increasing the
saturation magnetization. The Mc as defined is a lower limit to establish a stable pattern

13

of peaks. Mc could be higher due to the effect of boundaries which are not considered here.
Regardless, there exists a Mc such that an accurate simulation should not generate peaks
with M < Mc, and can start generating peaks when M ≥Mc. The critical field is derived
from the critical magnetization and is also a useful parameter [24].

Hc =

(
2

µ0

µ0/µ+ 1

(µ0/µ− 1)2

)1/2

(ρgσ)1/4 (3.22)

After peaks initially form they can further develop. First define ε as the bifurcation
parameter

ε =
H2 −H2

c

H2
c

(3.23)

which is the relative strength of the externally applied magnetic field H. Here ε = 0
indicates the critical magnetic field for peak formation. Then the peak height h (for
hexagonal patterns) is given by

h = A
b(1 + ε) +

√
b2(1 + ε)2 + 4aε

2a
(3.24)

where a, A and b are used to fit the experimental data [12]. Intuitively the peak height
increases with additional magnetic field strength past the critical value required for peak
formation (ε > 0). The equations presented here are later referred to in Chapter 6 when
discussing our simulated version of the Rosensweig instability.

14

Chapter 4

Methods for Fluids

The methods used to implement the simulator based on the physics presented in Section
3 are detailed here. The details of the fluid solver are presented first since the magnetic
forces are added in as an external force later. However, the fluid solver was not designed in
isolation, but to specifically accommodate a ferrofluid’s features, such as the Rosensweig
instability. Therefore, such a solver would probably work well for other fluids that require
the ability to produce detailed static structures on their interface. A brief overview of the
simulation steps is provided in Figure 4.1.

4.1 General Simulation Data Structures

Our simulator is grid-based instead of being particle-based. While less common for the
study of ferrofluids, grid-based methods are common in other applications and this simu-
lator shares the same main data structures referenced by Bridson [7].

4.1.1 The MAC Grid

A staggered marker-and-cell (MAC) grid is used to store cell-centred and face-centred
(or edge-centred in 2D) data on the grid. The distance between adjacent cell-centres is
represented with ∆x. For nx grid cells, nx∆x gives the total size of the simulation domain
along the respective dimension. Each node is assigned an index (i, j, k). The faces of the
cells are referenced by using a half-index in the direction relative to their cell-centre. For

15

Extrapolate velocities

Advance level set

Advect velocities

Solve magnetic force

Apply magnetic force

Apply gravitational force

Apply viscosity

Apply pressure

Render simulation

Figure 4.1: Overview of one simulation time step.

example, the edges of the cell (i, j) are then located at (i+ 1/2, j), (i− 1/2, j), (i, j + 1/2)
and (i, j − 1/2). Refer to Figure 4.2 for a 2D example.

Cell-centred data includes pressure and level set values (discussed in Section 4.3.1),
whereas velocities are stored on the faces. It becomes apparent then that there is no clear
velocity vector ~v since each component is stored separately. However, interpolation can
be used to create a velocity vector anywhere on the grid. At the face-centred points the
interpolation is simply the average of the four surrounding values of the other velocity
component. Since for n cells there are n + 1 faces along a particular dimension, each
velocity component has its dimensions increased by one along the direction it is pointing
relative to the dimensions of the cell values. Each cell also has an assigned material type
label. For this simulation there are three labels, one each for air, fluid and solids.

While such a data structure seems unintuitive and perhaps error prone due to the
half-indexing and interpolation required, it naturally facilitates centred difference approx-
imations of PDEs which are used for numerically solving the pressure and magnetic field
equations.

16

Figure 4.2: A 2D staggered MAC grid with pressure P at the grid-centres represented by
circles and velocity components u and v at the cell-edges denoted by the horizontal and
vertical marks respectively.

4.2 Standard Methods

A number of methods used in our simulation are standard implementations of well known
algorithms and do not warrant in-depth discussion. They are briefly presented here so that
it is clear which version we used, along with any modifications that were made for our
particular simulator.

Solving for Pressure

The pressure is solved for using the method described by Bridson [7]. Bridson details a
specialized modified incomplete Cholesky conjugate gradient method. We instead use the
Eigen linear algebra package [25] to solve the sparse pressure matrix for 2D simulations.
For 3D simulations a cuSPARSE (part of NVIDIA’s CUDA environment) based conjugate
gradient is used due to the increased matrix size.

17

Solving for Viscosity

The viscosity solve modifies the velocities before the pressure solve, but after all external
forces have been applied to the fluid as shown in Figure 4.1. We use the method of Carlson
et al. [26] which is an implicit solve for viscosity. An important modification from Falt and
Roble [27], published a year later, is used to correct the artificial damping of translational
motion that was present in the original method. The correction is done by enforcing a
Neumann boundary condition (∇~u) ·~n = 0 at air-fluid interfaces. This boundary condition
still does not fix the damping of rotational motion [28]. However, damping of rotational
motion is not expected to have a significant effect on a simulation that seeks a static
equilibrium along a fluid’s interface as is the case in our setting.

Advection and Interpolation

To advect quantities we use the semi-Lagrangian method to solve the advection equation
(Equation 3.3) as further detailed by Bridson [7]. As suggested by Bridson, third-order
accurate Runge-Kutta is used from Ralston [29]. To interpolate quantities at non-grid
locations cubic interpolation is typically used. The interpolant is also taken from Bridson.

4.3 Surface Tracking

The ability to represent and track the position of a liquid’s surface is important for fluid
simulation. This is especially true when fine detail must be preserved on the surface as
it dynamically evolves its position and shape over time. Our simulator labels grid cells
according to their contents, so the surface must lie between the sets of fluid and solid/air
containing cells. However, labels only indicate whether or not a cell has fluid (empty or
full). Surface tracking methods keep a record of where exactly the interface is between
these cells. One method, volume of fluid (VOF), assigns a volume fraction between 0 and
1 to each cell to indicate how full it is. Alternatively, the level set method assigns each
cell-centre a distance from the interface, as shown in Figure 4.3. Surface tracking therefore
allows for a more precise representation of the surface. Here are some of the places that
our simulator uses surface tracking.

1. To update material labels which are then used in the pressure solve and viscosity
solve.

18

2. To allow for the selection of the correct permeability coefficients for the magnetic
potential solve and subsequent force application.

3. To create the surface mesh that is used for visualization.

4. To calculate surface curvature from, to determine how much surface tension to apply.

Low quality surface tracking will degrade all the above listed steps, especially the last one.
Since the Rosensweig instability exhibits a complex surface shape any degradation of the
surface quality affects the equilibrium between gravity, surface tension and the magnetic
force.

0.2

-0.2-0.3

-1.3 -1.1 -0.8 -0.6

0.4

0.7 0.8 1.1 1.4

Figure 4.3: A level set stored on a grid for a simple interface. Dark blue circles correspond
to cell-centres inside the fluid, while light grey circles are for cell-centres in the air. The
level set values stored at each cell-centre are listed adjacent to them. ∆x = 1.0 to allow
for intuitive level set values.

4.3.1 Level Set

The level set Φ(~x) is a scalar field defined as follows

Φ(~x)

> 0, when ~x is in air

< 0, when ~x is in fluid

= 0, when ~x is on the surface

(4.1)

although it is not uncommon to see the signs switched for interface side, since it is an
arbitrary convention. The other defining property is the Eikonal equation

|∇Φ(~x)| = 1 (4.2)

19

which implies that at the surface the gradient of the level set is also the surface normal.

~n = ∇Φ (4.3)

These two properties make the level set a signed distance field [30]. At the start of the
simulation, with a known geometry, the level set value is analytically calculated at each
grid-centre. Initially the level set satisfies Equations 4.1 and 4.2. The level set is then
advected in the velocity field during each time step evolving the surface. Advection intro-
duces error and the level set begins to lose its properties, no longer satisfying the Eikonal
equation. To correct these errors the level set must be redistanced. First the near-surface
level set (where the sign changes) is redistanced.

Φ′i,j,k = sgn(Φi,j,k)θ∆x (4.4)

Here θ ∈ [0, 1] represents where the surface is located between the two adjacent level set
grid values with differing signs.

θ =
Φi,j,k

Φi,j,k − Φi+1,j,k

(4.5)

The remaining cells are redistanced using the Eikonal equation which can be expanded as(
∂Φ

∂x

)2

+

(
∂Φ

∂y

)2

+

(
∂Φ

∂z

)2

= 1 (4.6)

and subsequently discretized as(
Φi+1,j,k − Φi,j,k

∆x

)2

+

(
Φi,j+1,k − Φi,j,k

∆x

)2

+

(
Φi,j,k+1 − Φi,j,k

∆x

)2

= 1 (4.7)

where Φi+1,j,k, Φi,j+1,k, and Φi,j,k+1 are the values closest to the surface in this example
[7]. Different discretizations are needed depending on which neighbours are closest. Our
simulator uses the fast sweeping method, an O(n) algorithm, which applies Equation 4.7
to the non-surface adjacent cells in every possible looping order. The fast sweeping method
allows for the smallest cell-to-surface distances to propagate in every direction. An example
implementation is provided by Bridson [7].

A Brief Word on Mesh-Based Surface Tracking

In addition to using the level set method for this simulator we also attempted to use
mesh-based surface tracking. This is a Lagrangian surface tracking tool meaning that the

20

surface mesh moves with the velocity field. This is in contrast to an Eulerian one, such
as level set where the values remain stationary but are updated to reflect surface motion.
Individual mesh vertices are initially placed on the interface. They are then advected for
each simulation time step evolving the entire mesh and tracking the ferrofluid surface. The
key advantage, and one that is attractive for simulating intricate surfaces, is that meshes
can preserve a large amount of visual detail [31]. However, to handle fluid merging and
separating, as well as keeping the mesh from self-colliding requires additional processing
compared to level sets. For example, the El Topo library maintains a collision-free mesh
while it is tracking an interface [32]. We integrated this library into our simulator and tested
it. While attempting to simulate the Rosensweig instability, we found that peaks separated
and merged as they reached equilibrium. It was therefore difficult to maintain a collision
free mesh, required for a successful simulation. Additionally, it was difficult to keep the
mesh operating at the same resolution as the underlying ferrofluid simulator without using
aggressive merging parameters. Once the peak size was below the simulation resolution it
was effectively invisible to the velocity field meaning that it would persist unless merged
out. The additional processing also resulted in significantly slower runtimes. Therefore it
was decided to not further pursue using a mesh for interface tracking.

The discussion above emphasizes the benefits of using level sets for ferrofluid simula-
tion. The level set keeps the fluid matched to the simulation domain resolution since they
share the same grid. Any features too small to resolve disappear instead of becoming in-
visible to the simulation grid and persisting. Merging and separation of fluid bodies occurs
automatically without any special treatment. However, the additional detail afforded by
using a Lagrangian tracking technique is still desired.

4.3.2 Particle Level Set

The particle level set (PLS) is a hybrid Eulerian and Lagrangian surface tracking method
that can combine the benefits of both techniques.

Traditional Particle Level Set

The first such scheme was proposed by Enright et al. in 2002 [33]. Two sets of particles
are used. They are seeded close to the interface but on opposite sides. Particles are
given either a positive or negative sign, corresponding to interface side. The particles are
passively advected in the velocity field using

d~xp
dt

= ~u(~xp) (4.8)

21

where ~xp is the particle position. This is a Lagrangian step. The particles are used as
an error detection and subsequent correction mechanism for the level set. The particles
are given radii ranging between 0.1∆x and 0.5∆x. They are randomly placed in the
cells surrounding the interface being limited to a particular range, called the bandwidth,
such as 3∆x. The particle positions are adjusted such that they sit on randomly selected
isocontours of the surface using

~xnew = ~xp + λ(Φiso − Φ(~xp))n̂(~xp) (4.9)

where n̂(~xp) is the surface normal calculated using the level set at the particle’s position.
Enright et al. set λ = 1 unless Equation 4.9 places the updated particle outside the com-
putational domain. Then λ is iteratively halved until the particle lies inside the domain.
Equation 4.9 may need to be solved iteratively.

After some simulation time steps take place the surface has moved, updating the level
set values and the particle positions. Inconsistencies regarding the location of the interface
may exist between the level set and the particles. Particles whose sign does not match the
interpolated value from the grid-based level set within a margin of error greater than their
respective radii indicate where the level set has degraded. The level set is then redistanced
by taking the distance between each level set point and that of the escaped particles. After
a number of simulation time steps particles may have strayed from the interface, while
remaining on the correct side, requiring that they be reseeded. Existing particles that are
near the interface are kept.

Direct Particle Level Set

The surface tracking scheme that we propose to use for our simulator is a modified version
of that by Enright et al. [33]. To closely track the interface position we use surface particles
that sit directly on it, instead of around it. To determine the sign of the regions adjacent
to either side of the interface we use an additional set of signed particles, that sit on their
respective side. Both sets of particles are advected in the fluid’s velocity field, and are used
to reconstruct a grid-based level set approximation of the surface at each time step.

Our surface tracking method operates more closely to a mesh-based one than that of
Enright et al. due to placing particles directly on the interface. Therefore, we refer to our
surface tracking scheme as a Direct Particle Level Set (DPLS). The idea of using particles
directly is a recent idea. Zhao et al. published a PLS method in 2018 that also uses particles
directly [34], although with significant differences compared to DPLS. When using DPLS
there are two sets of particles, the aforementioned surface particles and positive/negative

22

signed particles. See Figure 4.4 for a visual representation of particle placement. The
number of particles for each set is a simulation parameter. An overview of this method is
given in Algorithm 1.

Cell-center, air
Cell-center, fluid

Sign particle,
positive
Sign particle,
negative
Surface particle

Surface
Isocontour

Figure 4.4: Visual depiction of how surface and sign particles might be seeded using the
DPLS method. The surface is represented with a solid black line, with air above and
fluid below it. Particle density is underrepresented here for clarity. The bandwidth for
seeding and the distance of the isocontours are set the same (∆xiso = ∆b). Relevant to
the massively parallel version, the background grid shows how the particles can be sorted
and assigned to individual grid cells for efficient parallel searching.

The seeding algorithm (reseedParticles) for each surface particle starts by randomly
generating a position for the particle in a grid cell near the interface. The particle is then
projected onto the interface using both the level set as well as the gradient (surface normal)
of the level set. This requires iteratively solving

~x′p = ~xp − Φ(~xp)∇Φ(~xp) (4.10)

where −Φ(~xp)∇Φ(~xp) is a vector from ~xp to a point on the surface. The seeding error is
given by Φ(~xp) since if the particle is exactly on the surface it would be at the zero level
set. This process occurs in all cells that are within a certain bandwidth ∆b of the surface.
There is no point in initially seeding a particle in a cell outside of this bandwidth and
trying to iteratively march it towards the interface when it could just be initially placed
much closer. The signed particles are seeded along two isocontours, one on each side of
the surface. The signed particles’ positions are directly calculated from the seeded surface

23

Algorithm 1: advanceDirectParticleLevelSet()

/* Initialize particles on first iteration. */

1 reseedParticles();
/* Main time stepping loop. */

2 for time step ti do
3 advectParticles();
4 advectLevelSet();
5 redistanceBandwithCells();
6 propagateDistanceOut();
7 correctGridPointSigns();
8 if i mod stepsReseed == 0 then
9 reseedParticles()

particles’ positions using
~x± = ~xp ±∆xiso∇Φ(~xp) (4.11)

where ~x± indicate positive and negative signed particle positions respectively and ∆xiso
determines the distance the isocontours sit from the surface. In practise, fewer signed
particles than surface particles are needed since the surface details are being captured by
the latter. All the particles are advected (advectParticles) using Equation 4.8.

On each simulation time step the level set is redistanced from the particles. Using
particles directly for redistancing is a key difference from the original method of Enright et
al. where only escaped particles are used to correct the level set. The simplest approach to
redistancing in our method would be: for every level set grid point, find the closest surface
particle, and use its distance to the grid point as the new level set value at that point. This
would have O(npnc) complexity where np is the number of particles and nc is the number
of grid cells.

However, the only cells that need highly accurate distances are those within the band-
width of the level set. Instead of calculating new level set values for every cell, one can
calculate new values for cells within a neighbourhood of each particle instead (redistance-
BandwidthCells). Using the particle’s position vector, its containing cell can be calcu-
lated. If this particle is closer to the cell-centre than any other particle, then this closest
particle updates the cell’s level set value with the distance between them. A reference
to the closest particle is saved. This is now O(np) complexity. This process is shown in
Algorithm 2. For each cell with a known closest particle, the particle updates its cell’s
neighbours’ level set values with the distance between them and itself, always choosing the

24

Algorithm 2: redistanceBandwithCells()

1 foreach surface particle ~xp do
2 cellId = getCellId(~xp);
3 cell = getCell(cellId);
4 distance = abs(cell.position - ~xp);
5 if distance < abs(cell.LS) then
6 cell.LS = sgn(cell.LS) * distance;
7 cell.closestParticle = ~xp;

lesser of two possible level set values (propagateDistanceOut). A similar process is done
for the signed particles to assign which side of the surface the cells within the bandwidth
region are (correctGridPointSigns), always taking the sign of the particle that is closest.
For cells outside the bandwidth region the existing sign of the level set is used since the
surface is assumed to not move outside of the bandwidth region in a time step. To keep the
level set signs updated the level set is also advected on each time step (advectLevelSet).
Advecting the level set is also done if it is desired to avoid redistancing from particles on
each time step to reduce computation time.

Like the method of Enright et al., after a certain number of time steps the particle
distribution is likely to no longer provide a sufficiently uniform sampling of the updated
surface. At this point all the particles are deleted and reseeded. This would degrade the
accuracy in the method of Enright et al. because the particles and interface have been
advected separately since the start of the simulation. However, in our method the level set
is redistanced directly from the surface particles before reseeding. The particles should lie
on the same interface after reseeding, but with a more even distribution. However, there
will necessarily be some amount of error introduced due to interpolation of the level set
values. The number of time steps for reseeding is a simulation parameter.

4.3.3 Particle Level Set for GPU

Most of the operations of DPLS can be redesigned for a massively parallel computer.
We developed an implementation for NVIDIA’s GPUs using the CUDA library. Some
steps are embarrassingly parallel and do not warrant much discussion. These are typically
steps where each thread operates independently of all other threads. A prime example is
advection. Each thread represents one particle. Since particles do not interact with each
other there is no need for communication between these threads. The input data is the

25

particle’s position and the velocity field. The written data is the new particle’s position.
The velocity field is shared between all threads, but because it is not modified all threads
can share read only access to it. The position of each particle can be overwritten with its
updated position without issue by its respective thread. Similarly, for advecting the level
set each thread can be assigned one value to advect. Lastly, particle seeding is trivial to
parallelize. Ahead of time we create an array with a size equal to the maximum number
of particles that could be seeded. Each thread attempts to seed a particle. If successful it
then writes the particle to the pre-allocated array, indexing it with a unique value (e.g.,
thread ID). Unfortunately the remaining steps are not trivial to parallelize.

Recall that our method to avoid O(npnc) complexity on level set redistancing was to
rephrase the problem in terms of the particles updating the level set values simplifying it
to O(np) complexity. Attempting to follow the same pattern as for seeding and advection
would give each thread a particle to apply Algorithm 2 to. However, there is contention
between threads for “Cell.LS” on line 5. Two threads executing simultaneously might both
be closer to the cell than any previous particles and therefore try to update the level set
value. This creates a race condition and an unknown result for the level set value. It might
take on the value assigned by the farther of the two particles, or it might become corrupted,
causing redistancing to fail, both undesirable outcomes. Using a coarsely threaded proces-
sor (e.g., multicore CPU) mutual exclusion enforced by locks might be practical. With a
limited number of threads the probability of two threads processing particles in the same
cell would be low. However on the GPU, with thousands of threads, it is likely that many
particles in a cell are simultaneously trying to operate on the level set value resulting in
performance degradation.

Instead, the original naive cell-based redistancing can be used, albeit with one important
modification: sort the stored array of particles using their cell indices as keys. In this
implementation the corresponding cells of each particle are calculated on the GPU using
one thread per particle. Then a GPU-enabled sort by key algorithm from the CUDA
library Thrust is used. Next, the array of particles are binned together by the cell they are
closest to as shown in Figure 4.4. Then a thread per cell (within the bandwidth region) can
be launched on the GPU. Each thread initially searches only the particles that have been
binned for its cell. If no particles are in the thread’s cell it will search neighbouring cells
up to the preset bandwidth away. This way each particle is searched at most a few times,
usually only once, instead of by every grid cell. Each level set value is now being updated
by only one thread, removing the previously observed race condition. The complexity is
not as ideal as the serial version, while still being O(np), it has a larger coefficient, but is far
better than the naive implementation’s O(npnc) complexity. This same process is repeated
to find the closest signed particle per cell within the interface bandwidth, determining

26

the sign of the level set. Level set values are propagated outwards from the bandwidth
cells using the CPU since this step does not involve processing of all the particles and is
subsequently not performance intensive.

All the steps of this specific PLS implementation that directly operate on or with
particles can now take place on the GPU, but with identical surface tracking results.
Performance comparisons are given in Chapter 6.

4.4 Extrapolating Velocity

Bridson [7] provides a breadth-first search algorithm for extrapolating velocities from the
fluid into the surrounding air. Velocity must be extrapolated since the pressure solve only
updates velocities in fluid containing cells. However, velocities in the air adjacent to the
fluid surface are used when advecting quantities near the surface. Therefore it is desirable
that the air velocities are somewhat valid.

Having valid air velocities is especially important for a ferrofluid simulation where the
interface contains high levels of detail that must be maintained as the interface moves. A
simple extrapolation from the divergence-free velocities in the fluid adds significant diver-
gence when setting the air velocities. When advection is done for points along the interface,
as shown in Figure 4.5, the air velocities are used during the resulting interpolation. This
causes non-physical movement of the interface since the velocities are not all divergence-
free. This is a critical problem for our particle level set method since particles are being
advected near the surface.

To enforce incompressibility of the air velocities a second pressure solve is done after
the initial extrapolation. This second pressure solve is identical to the main pressure solve
except the liquid interface velocities serve as a Dirichlet boundary condition for the air
velocities. No modification of the pressure solve from Bridson is needed to achieve this,
other than temporarily labelling the fluid as a solid. If there are multiple regions of air
(e.g., the fluid has a pocket of air inside it) each region must be identified and treated
separately. The regions are identified by assigning a unique colour to each region of air
through a search of connectivity for all air cells.

Note that this procedure is not a replacement for a true two-phase fluid simulation.
The cells in the air are essentially treated as an extension of the fluid temporarily to avoid
interpolating non-divergence-free velocities for advection inside the fluid. This type of
algorithm, an extrapolation followed by a pressure solve, was first proposed by Sussman in
2003 [35] and was popularized in computer graphics by Rasmussen et al. [36] a year later.

27

*

Figure 4.5: The velocity is queried at the indicated point along the surface with cubic
interpolation. Vertical and horizontal velocities from both the air and fluid regions are
used for interpolation as indicated by the red and blue squares.

4.5 Surface Tension

Surface tension has a pivotal role to play in peak formation for ferrofluids. Recalling
Equation 3.21, surface tension is part of the equilibrium of forces that defines the critical
magnetization. In Section 3.1 it was mentioned that at the interface Equation 3.7 requires
a special case to handle surface tension. Bridson [7] shows that the surface tension results
in a pressure jump at the interface equal to

P = σκ (4.12)

where κ is the called the mean curvature of the surface. The interface is unlikely to be
positioned at a cell-centre where the pressure is stored. Therefore the surrounding pressure
values in the air are set such that the pressure interpolates to σκ when Φ(~xsurface) = 0.
These air pressures, that normally would be left zero, are called ghost pressures. Applying
the surface tension in this explicit manner introduces a new stability restriction on the
size of the simulation time step, ∆t ≤ O(∆x3/2

√
ρ/σ). Improving this restriction is an

active area of research and there are semi-implicit approaches [37]. However, some of the
methods affect equilibrium shapes and suffer from damping of lower-frequency modes as
well as being dimensionally inconsistent [38]. There is not a clear choice for the ideal model
of applying surface tension. Our simulation uses the explicit approach.

28

4.5.1 Determining Curvature

The surface tension force depends on curvature. Therefore any error in the measured
curvature will result in erroneous surface tension forces applied to the fluid. Three different
methods of curvature measurement are presented. One that is well known (Laplacian-
based curvature), one that is an improvement on a leading method (normal-aligned height
function for level set), and lastly one we propose specific to surfaces represented using the
DPLS method from the previous section (particle based height function for DPLS).

Laplacian-Based Curvature

The mean curvature of the interface can be defined as,

κ = ∇ · ~n (4.13)

where ~n is the surface normal determined from the level set. This implies that κ = ∇·∇Φ
gives the mean curvature as a function of the level set [7]. However Osher et al. [30] suggest
using

κ = ∇ · ∇Φ

|∇Φ|
(4.14)

to determine the curvature directly from the surface level set. In practise |∇Φ| 6= 1 due to
discretization and redistancing errors. Therefore dividing by |∇Φ| rescales the discretized
curvature to be correct. Expanding Equation 4.14 yields

κ =
φ2
xφyy − 2φxφyφxy + φ2

yφxx + φ2
xφzz − 2φxφzφxz + φ2

zφxx + φ2
yφzz − 2φyφzφyz + φ2

zφyy

|∇φ|3
(4.15)

where subscripts indicate the discrete derivative to take using finite standard differences.
The mean curvature can then be determined at all the cell-centres and stored for later use.
At specific locations off the grid interpolation can be used to obtain the curvature.

Height Function Based Curvature

Instead of using the level set directly to find curvature, an alternative method is to use
the height function. This function calculates the curvature based on the changing height
of the interface relative to a common reference. Sussman et al. were the first to use
height functions with level sets [39]. Beyond their work, research on height functions has

29

been focused for application to the volume of fluid method (VOF). Afkhami and Bussman
introduced their use for 2D and 3D VOF simulations and demonstrated their accuracy
compared to a VOF Laplacian method [40] [41]. Improvements have been presented for
the VOF version by both Owkes et al. [42] and Popinet [43]. In the present work the height
function method is described for level sets. Then the improved version from Owkes et al.
is modified and implemented for a level set. Lastly, we propose an implementation of the
height function specifically for DPLS.

The height function method relies on the fact that a reference plane can be defined
anywhere without affecting the perceived curvature, since the height function uses height
derivatives only. In two dimensions, the curvature is measured as

κ =
h′′y√

1 + h′y
2

(4.16)

where hy is the height referenced from a horizontal surface y = hy(x) [38]. If the surface is
vertical, then h′y tends to infinity and h is no longer well defined. In this case a different
reference should be used such as x = hx(y). Sussman et al. [39] and Popinet [38] explain
that the height function method is superior to the Laplacian curvature estimate presented
in Section 4.5.1 because the height function approximates curvature on the interface as
opposed to at cell-centres.

The discretization of the height function as in Equation 4.16 is given using central
differences.

κi =

hi−1 − 2hi + hi+1

[∆x]2√
1 +

[
hi+1 − hi−1

2∆x

]2
(4.17)

The heights can be calculated from the level set by determining in which cells the sign of φ
changes. The precise location is determined through interpolation with the two surrounding
opposite signed cells. This was also done by Sussman et al. [39]. Analytically for a
horizontal surface the height is

hi = n∆x+

[
|Φ(yn)|

|Φ(yn)|+ |Φ(yn+1)|

]
∆x (4.18)

where n is the number of cells before the interface was encountered and all Φ are taken
along the ith grid column. The height is also calculated using Equation 4.18 for the i− 1
and i+1 columns. Higher order discretizations would require more columns. To implement

30

a discretized height function requires the use of a stencil, so that a height can be determined
for each column, as shown in Figure 4.6. In this example, the stencil covers three cells in
width, and a variable number of cells in height. Equation 4.18 is used to calculate the
height of each column, as shown in red. In practise a stencil seven cells high worked well
for our experiments and those by Sussman. Various approaches could be used to select
the stencil size automatically, such as by expanding the stencil if a height column does not
encounter an interface. The stencil is centred at the requested point of curvature. If one
of the heights is not found it is set to zero. This preferentially underestimates the surface
curvature rather than causing it to overshoot.

Figure 4.6: The height function stencil applied along a sample interface. The curvature
query is where the surface intersects column hi. Here a 7×3 stencil is used. This size
is sufficient to capture the interface heights. The blue dashed line shows each individual
height required by Equation 4.17. The red solid lines show the measured heights. The
grey horizontal dashed line shows the reference base. Note that a 3×3 stencil would be too
small to capture the sample surface geometry.

To select the best reference plane (horizontal or vertical in 2D) the normal determined
by the level set is used. {

n̂ · {0, 1} > n̂ · {1, 0} then y = hy(x)

n̂ · {1, 0} > n̂ · {0, 1} then x = hx(y)
(4.19)

Naturally, neither choice is optimal for normal vectors that lie between the two cases.

31

Such a case occurs at a π/4 angle relative to a grid axis when sampling curvature along
the circumference of a circle. An improved method for selecting the reference plane was
introduced by Owkes et al. [42]. They suggest using a rotated normal-aligned stencil rather
than one fixed to a Cartesian axis. At the point where the curvature is requested the normal
is calculated to define a reference line in 2D or a plane in 3D. An additional advantage of
a normal aligned stencil is that it results in smaller stencil sizes. In the case of a straight
diagonal line at a π/4 angle to the grid the minimum stencil height remains unchanged.
Also, a normal aligned stencil eliminates the need for determining the reference case, thus
simplifying the implementation. Owkes et al. used VOF surface tracking, so we present
the normal-aligned height function for level set here.

Since we gave the original method in 2D, for completeness we also describe the natural
3D extension. Start with the 3D height function as follows

κ =
hy′y′ + hz′z′ + hy′y′h

2
z′ + hz′z′h

2
y′ − 2hy′z′hy′hz′

(1 + h2
y′ + h2

z′)
3
2

(4.20)

where the primed coordinates indicate the appropriate derivatives. All derivatives are
taken in a plane with the x-axis aligned to the surface normal. Therefore the plane is
defined as

N̂P = N̂(~xs) (4.21)

~xP = ~xs −
nP
2

∆xN̂(~xs) (4.22)

where N̂P is the plane’s normal, ~xs is the point on the surface where curvature is requested,
and nP is the height of the column counted in grid cells. The point ~xP lies in the plane, and
is also the position of the centre height column ~x(hi,j). To find the bases of the remaining
eight columns requires moving in the reference plane. Positioning of these columns around
the central one is arbitrarily set. Using a random vector ~v, a vector contained in the plane
is found ~vP = N̂P × ~v. A perpendicular vector to ~vP is found using ~v⊥P = N̂P × ~vP . The
general position of column hi+k,j+m, where {k,m ∈ Z;−1 ≤ k,m ≤ 1} can now be defined

~x(hi+k,j+m) = ~x(hi,j) + k∆xP v̂P +m∆xP v̂
⊥
P (4.23)

noting that all in-plane vectors have been normalized. Each column is aligned with ~NP

and has a reference allowing for a height to be found. The height calculation is similar to
Equation 4.18 for 2D and is given in Algorithm 3.

Step 5 from this algorithm can be replaced using an iterative method for improved
accuracy over the existing linear interpolation. Such an interative method was also needed

32

Algorithm 3: calculateHeightNormal()

1 foreach hi+k,j+m do
2 ~xh = ~x(hi+k,j+m)

/* Loop until surface is found with level set sign change. */

3 while sgn(Φ(~xh)) == sgn(Φ(~xh + ∆xN̂P)) do

4 ~xh = ~xh + ∆xN̂P

/* Find the surface fraction. */

5 ~xh = ~xh +

[
Φ(~xh)

Φ(~xh)− Φ(~xh + ∆xN̂P)

]
∆xN̂P

6 hi+k,j+m = ||~xh − ~x(hi+k,j+m)||

to solve Equation 4.10 for the DPLS method. However now the movement of the search
~xs must be restricted along the height column.

~x′s = ~xs − Φ(~xs)(∇Φ(~xs) · N̂P)N̂P (4.24)

The search error is given as the value of Φ(~xs) which indicates how far the search point is
away from the zero level set. This improvement can also be used for the regular axis-aligned
height function where N̂P points along the appropriate axis.

The column separation need not match the simulation resolution (∆xP 6= ∆x). Owkes
et al. experimented with using ∆xP = ∆x, 2∆x or 3∆x. They observed better convergence
for larger ∆xP as resolution was increased but worse error at lower resolutions. Choosing
∆xP > ∆x can cause curved features to be ignored despite being at or greater than
simulation resolution. We propose a new method for selecting ∆xP . The idea is to choose
the largest possible ∆xP without ignoring features at grid resolution. The effect of using
variable ∆xP is further analyzed in Section 6.2.3 using DPLS surface tracking.

There is another practical issue with using height functions. Since the columns can
sometimes cover a significant portion of the grid to fully capture an interface’s curvature
it is possible that one column may contain multiple interfaces. This is especially true with
features at near-grid resolution. In these scenarios the height that is closest to the position
of the requested curvature is used. This is simple to implement by keeping a list of all
interface heights found in the column.

33

Height Functions for DPLS

Using our DPLS surface tracking method introduces the possibility of a new method for
measuring surface height. The previous implementation of using the level set to measure
height is still compatible. However, the particle positions on the surface can be used directly
to determine surface height. The benefit of using particles is a more direct measurement
of height, removing the use of the level set except for initial positioning of the stencil. The
level set-only approach stores values at cell-centres, and then interpolation is required to
determine the height fraction in the surface-containing cell. Instead, using the particle
position directly reduces the amount of interpolation used. Algorithm 4 is the DPLS
version of Algorithm 3.

Algorithm 4: calculateHeightNormalPLS()

1 foreach hi+k,j+m do
2 ~xh = ~x(hi+k,j+m)
3 εmin = 2nmax∆x /* Set error to maximum value. */

4 while ~xh < nP∆x do
5 cellId = getCellId(~xh) /* ID of cell at this position. */

6 cell = getCell(cellId)
7 foreach ~xp in cell do

8 ~d = ~xp − ~x(hi+k,j+m) /* Distance from point to column base. */

9 hcandidate = ~d · N̂P/* Project distance along normal. */

10 ε =
√
d2 − h2

candidate/* Distance in reference plane. */

11 if εmin > ε then
12 εmin = ε
13 hi+k,j+m = hcandidate

14 ~xh = ~xh + ∆xN̂P

As before the procedure is repeated for each column in the stencil. The initial error
εmin is set to an upper limit, in this case twice the width of the grid. The entire stencil
is traversed looking for the closest particle to the column. The process is shown in 2D in
Figure 4.7. As described in Section 4.3.2 the particles are sorted into bins corresponding
to their closest cell. This is only done for the GPU DPLS algorithm but is a useful
preprocessing step to decrease the runtime of this height function. Only particles in the
cells covered by the height column need to be searched. The error is the distance from the

34

particle to the column base projected onto the reference plane. The height is this same
distance projected along the reference plane normal. The height which corresponds to the
closest particle to the column is taken.

Figure 4.7: The height function stencil is applied to a surface tracked by the DPLS method.
The selected particles for each height column are marked with blue circles. The dashed
red circles are the remaining surface particles. The dashed grey line is the reference plane.
Signed particles are omitted as they are not used to determine curvature.

Some practical considerations may involve saving all heights from particles within a
certain tolerance error of the column. This way if multiple interfaces are contained in a
column, the height closest to the distance between the point of requested curvature and
reference plane can be used. Also if the position along the column ~xh is on the border
of two cells then both cells should be searched to guarantee finding the closest particle.
This method is more computationally expensive than the standard level set based height
function due to the particle searching.

35

Chapter 5

Methods for Magnetic Fluids

The Navier-Stokes equation (Equation 3.1) has a term for external forces on the fluid.
One common external force is gravity, which is typically a constant vector. Similarly,
the magnetic forces that a ferrofluid experiences can also be applied as an external force.
However, the magnetic force is not constant, and changes with the magnetization of the
fluid. Therefore, a ferrofluid simulator must solve for this magnetic force, which can be
found if the magnetic potential is known.

5.1 Solving for Magnetic Potential

Recall that from Section 3.2.2 that Equation 3.14 is ∇·(µ∇Ψ) = 0 where Ψ is the magnetic
potential. What is needed are the magnetic forces to apply to the fluid so that it becomes a
ferrofluid. However, also recall the relationship between magnetic potential and magnetic
force given by Equation 3.13. By knowing the magnetic potential the force can be obtained.

Following the method of Afkhami et al. [17] let us rewrite the magnetic potential as

Ψ = φ+ ζ (5.1)

where φ is the applied magnetic potential and ζ is the magnetic potential due to the fer-
rofluid. Splitting the total potential allows us to set boundary conditions for the ferrofluid’s
potential without considering the contribution due to the applied magnetic potential. The
applied magnetic potential is known. For a homogeneous magnetic field the potential is

φ = (Gxx) + (Gyy) + (Gzz) (5.2)

36

where the G coefficients define the strength and direction of the resulting magnetic field
after using Equation 3.13. A more interesting magnetic potential to use is

φ =
~m · ~r

4π|~r|3
(5.3)

where ~m is the magnetic moment of the magnetic dipole and ~r is the separation vector.
There is no inherent constraint with respect to the type of applied magnetic field, as long
as it satisfies Gauss’s law (Equation 3.8). Note that the corresponding magnetic field of
Equation 5.3 does not satisfy Gauss’s law in a 2D coordinate system. 2D fluid simulation
is commonplace and the physics can be usually adapted by omitting the third basis of
the vector space. However, a true 2D simulation of magnetic fields requires a modified
magnetic dipole. For example

φ =
~m · ~r

4π|~r|2
(5.4)

has a magnetic field that satisfies a 2D Gauss’s law and is used as a magnetic source in
this work.

In any case, the magnetic potential due to the ferrofluid must be solved for a given
applied potential. Substituting Equation 5.1 into Equation 3.14 yields

∇ · (µ∇ζ) = −∇ · (µ∇φ) (5.5)

where due to constant µ in free space, Gauss’s law (Equation 3.8) and Equation 3.13 the
right hand side vanishes in air, and is only non-zero on the interface and inside the fluid.1

This leaves the problem of boundary conditions along the magnetic simulation domain ΩM .
A Dirichlet condition is undesirable. Conceptually at one point it would merely define the
potential’s value there, leaving the gradient of the magnetic field unaffected. However,
forcing the value along ∂ΩM would affect the gradient of the potential. If the domain was
infinitely large and far from the ferrofluid using a constant Dirichlet boundary condition
would not be a problem since a potential is defined to be constant (e.g., zero) at infinity.
However, an infinite domain cannot be handled using this method. A Neumann boundary
condition

∂ζ

∂n
= 0 (5.6)

along ∂ΩM is preferable instead. Using Equation 5.6 makes the assumption that the
boundaries are sufficiently far from the ferrofluid such that the magnetic field there is

1This is the case if µf varies, for example as in Equation 3.19. If µf is constant in the fluid then the
right hand side also vanishes, except at the interface.

37

approximately uniform. Such an approximation is a possible area of error. One way to
mitigate this error is to define the magnetic simulation domain to be larger than the fluid
simulation domain. The magnetic potential due to the ferrofluid is increasingly uniform
farther away from the fluid. As a result, placing the magnetic simulation domain boundaries
farther from the fluid better meets the assumption made by Equation 5.6.

5.1.1 Eliminating the Null Space

Notice that the only type of boundary conditions defined are Neumann. Previous simula-
tions had symmetry conditions [9] or knew approximately the geometry of their ferrofluid
and could use a Dirichlet condition [17] . Unfortunately, a general simulation is unable to
impose additional boundary conditions since the geometry of the fluid body is unknown
a priori. Equation 5.5 is therefore a pure Neumann varying coefficient Poisson prob-
lem. Fortunately this form of equation has been considered in scientific computing, and a
solution for solving it is taken from Yoon et al. [44].

The varying coefficient µ is ignored for now as Yoon et al. present their solution for the
more general Poisson equation.

∆u = f in Ω

∂u

∂n
= g on ∂Ω

(5.7)

The solution exists if the following compatibility condition is satisfied.∫
Ω

fdx+

∫
∂Ω

gds = 0 (5.8)

However, the solution is not necessarily unique. A constant can be added to u and still
satisfy Equation 5.7. The additional condition∫

Ω

udx = 0 or

u = 0 for a point q ∈ Ω

(5.9)

guarantees uniqueness of the solution. There is no such physically mandated condition for
Equation 3.14. Fixing the value at one point would not violate any physical law (only the
gradient of the potential is being used), but Yoon et al. show that fixing a value introduces
a sink or source at this point to the solution.

38

They prove that the correct method is to first guarantee existence by projecting bh onto
the range space R(Ah) where

Ahuh = bh (5.10)

is the linear system corresponding to Equation 5.7. After projection bh can be represented
as a combination of the columns in Ah. Projection simply requires subtracting the mean
of bh from each element within bh. Bridson shows that the same step must be done for the
pressure solve [7]. Next, to guarantee uniqueness it is necessary to ensure that the solution
uh is chosen from ker (Ah)⊥ where ker(Ah) = {vh ∈ Ah|Ahvh = 0}. The same procedure is
done as for guaranteeing the existence of the solution: subtract the mean of the elements
from the residual and search vectors of conjugate gradient on each iteration. The modified
conjugate gradient algorithm of Yoon et al. is given in Algorithm 5. The added steps are
listed in bold. The parameter xn is the approximate value for uh in Equation 5.10 after
n steps, rn is the residual and pn is the search direction. The inner product is defined as
〈α, β〉h =

∑
i,j αijβijh

2. The parameter h is the simulation resolution ∆x.

Algorithm 5: Modified Conjugate Gradient

1 for n = 1, 2, ..., do

2 xn+1 = xn +
〈rn, rn〉h
〈pn, Ahpn〉h

pn

3 rn+1 = rn − 〈rn, rn〉h
〈pn, Ahpn〉h

Ahpn

4 rn+1 = rn+1 − 〈r
n+1,1h〉h
〈1h,1h〉h

1h

5 pn+1 = rn+1 +
〈rn+1, rn+1〉h
〈rn, rn〉h

pn

6 pn+1 = pn+1 − 〈1
h,pn+1〉h
〈1h,1h〉h

1h

Following these steps Eigen’s conjugate gradient solver and NVIDIA’s sample CUDA
conjugate gradient solver were both modified to support the solving of pure Neumann
Poisson problems.

39

5.1.2 The Interface Condition

Now that the issues due to boundary conditions have been resolved, consider what happens
at the interface due to the varying coefficient µ. The interface conditions are

Ψa −Ψf = 0

(µa∇Ψa − µf∇Ψf)n̂ = 0
(5.11)

where the subscripts a and f denote components in air and ferrofluid respectively [20].

These conditions allow this particular problem to benefit from a method published by
Kang et al. without further work [45]. Their method is specialized for the varying coefficient
Poisson equation where the coefficient (µ here) may be discontinuous. Their method can
also handle cases when the solution itself is discontinuous. This numerical method does
not suffer from numerical smearing and is first order accurate. Kang et al. only modify the
right hand side of the Poisson equation. Since both interface conditions for this specific
problem are zero, these proposed right hand side terms become zero, returning the original
equation.

The last part of the method by Kang et al. involves interpolation when accessing the
varying coefficient at half points between cell-centres. They propose using

µk+1/2 =
µk+1µk(|Φk|+ |Φk+1|)
µk+1|Φk|+ µk|Φk+1|

(5.12)

where the specific variables have been substituted in for this problem 2. However, they
mention no strict requirement to use this specific interpolation method. Instead, we use
the following equation

µinterpolated = µf + (µa − µf)
(
tanh(αΦ) + 1

2

)
(5.13)

taken from [46]. Contrasting with Equation 5.12, Equation 5.13 gives the average of the
values when the interface is exactly in between two cell-centres. Equation 5.13 can also
be tuned using the α parameter. Lastly, Equation 5.13 naturally returns to either µa or
µf outside of the interpolation region and can be used anywhere the level set is defined.
The downside is that Equation 5.13 requires an additional step of interpolation, however
for the common case of µk+1/2, the result is just the average of the two surrounding level

2This is from Equation 55 in [45], which has a suspected typo where a β+ was replaced by a Φ+ in the
denominator. The more likely intended equation is used here.

40

set points. Regardless of method, smooth interpolation for µ has the benefit that it avoids
suddenly switching from µa to µf when the fluid first occupies the point in space where
µk+1/2 is located. Visually this produces an interface oscillation around that point since
an equilibrium of forces can not be achieved. For this reason, anytime µ is required near
the interface the level set based interpolation from Equation 5.13 is used.

5.1.3 Discretization

A Cartesian discretization is needed of Equation 3.14. The original method of Afkhami et
al. shows a derivation for axisymmetric coordinates [17], which does not meet the needs
for a general simulation. The Cartesian grid discretization used here is

∇ · (µ∇ζ)i,j,k =
µi+1/2,j,k

(
∂ζ
∂x

)
i+1/2,j,k

− µi−1/2,j,k

(
∂ζ
∂x

)
i−1/2,j,k

∆x

+
µi,j+1/2,k

(
∂ζ
∂y

)
i,j+1/2,k

− µi,j−1/2,k

(
∂ζ
∂y

)
i,j−1/2,k

∆x

+
µi,j,k+1/2

(
∂ζ
∂z

)
i,j,k+1/2

− µi,j,k−1/2

(
∂ζ
∂z

)
i,j,k−1/2

∆x

(5.14)

where (
∂ζ

∂x

)
i+1/2,j,k

=
ζi+1,j,k − ζi,j,k

∆x
(5.15)

and similarly for the remaining five partial derivatives. The discretization simplifies to a
form similar to the standard Laplacian one

∇ · (µ∇ζ)i,j,k =
−1

∆x2

[
µi+1/2,j,kζi+1,j,k + µi−1/2,j,kζi−1,j,k

+µi,j+1/2,kζi,j+1,k + µi,j−1/2,kζi,j−1,k

+µi,j,k+1/2ζi,j,k+1 + µi,j,k−1/2ζi,j,k−1

−(µi+1/2,j,k + µi−1/2,j,k + µi,j+1/2,k + µi,j−1/2,k + µi,j,k+1/2 + µi,j,k−1/2)ζi,j,k
] (5.16)

except the coefficients are in terms of µ instead of whole numbers. The right hand side
(RHS) is set as

RHS =

{
0 in air

∇ · (µ∇φ) in fluid or at interface
(5.17)

41

recalling that φ is the known potential of the applied field. While φ is known analytically,
µ is a discrete quantity, so the same discretization as ζ is used for the RHS.

The final system of linear equations is solved using Eigen’s conjugate gradient method
with diagonal preconditioner. On CUDA-enabled hardware, the sample CG program pro-
vided with the CUDA library is used. Along with the modifications for solving a pure
Neumann boundary condition problem, the CUDA CG program was modified to include
a diagonal preconditioner.

5.2 Applying the Magnetic Force

With the magnetic potential of the ferrofluid solved, the forces on the fluid can be applied.
First, remember that the solve is just for the ferrofluid potential ζ since the potential of the
applied magnetic field φ is known. We can then use Equation 5.1 to get the total potential
Ψ when calculating the force. Also recall Equation 3.13 which calculates the magnetic field
from the potential. The velocity update due to magnetic forces is given by

∂~u

∂t
=

1

ρ
∇ · τ (5.18)

where τ is the magnetic stress tensor [17]. The magnetic stress tensor is a rank two sym-
metric tensor. A stress tensor such as this contains the distribution of stress components
for a 3D cubic volume. One dimension of the tensor sets the side the force is applied on.
The other dimension sets the direction of that force.

τij = µ

(
HiHj −

| ~H|2δij
2

)

δij =

{
1, i = j

0, i 6= j

(5.19)

This definition for the magnetic stress tensor is given by Afkhami et al. [18]. Stierstadt
and Liu [47] show how to derive the magnetic stress tensor under a number of different
cases. The case for ferrofluids is a particularly simple example since there are no electric
field terms. The only difference from the derivation by Stierstadt and Liu is that µ is set
to its respective material (either µf or µa here).

42

Next the divergence of the tensor is taken.

∇ · τ =

[
∂τxx
∂x

+
∂τxy
∂y

+
∂τxz
∂z

]
x̂

+

[
∂τyx
∂x

+
∂τyy
∂y

+
∂τyz
∂z

]
ŷ

+

[
∂τzx
∂x

+
∂τzy
∂y

+
∂τzz
∂z

]
ẑ

(5.20)

The result will be referred to as a vector (Tx, Ty, Tz) for future convenience. Each compo-
nent of this vector is then applied to its partner velocity component, e.g., u′x = ux+(∆t

ρ
)Tx.

Therefore, each of the partial derivatives in Equation 5.20 needs to be discretized so that
their central differences are centred at the velocity update locations on the MAC grid.

Figure 5.1: The locations of each tensor component are shown on a grid cell. The point
at the centre is the cell-centre where the terms τxx, τyy and τzz are stored, as well as other
cell-centred data such as pressure. The velocity vector components u, v and w are located
at the red, blue and yellow boxes respectively. Indices are omitted for visual clarity.

The most straightforward terms are τxx, τyy and τzz since they only contribute to each
velocity component once, and in the direction of their derivatives. See Figure 5.1 to see
where each component of the tensor is located.

43

As an example, the central difference of[
∂τxy
∂x

]
i+ 1

2
,j,k

=
τxy(i+ 1

2
,j+ 1

2
,k) − τxy(i+ 1

2
,j− 1

2
,k)

∆x
(5.21)

gives the velocity update at grid index (i+ 1
2
, j, k) which is the location of ui+ 1

2
,j,k. The

tensor component is then located ideally for updating vi,j+ 1
2
,k with another central differ-

ence. This procedure is done for every tensor component to apply the ferrofluid forces as
a velocity update on the grid.

44

Chapter 6

Results

Before presenting the results of the ferrofluid simulation the methodology used needs to
be verified. The Rosensweig instability relies on the delicate balance between surface
tension, gravity and magnetic force. Poor results in one of these areas can prevent this
phenomena from occurring. Previously discussed in Section 4.3 was the importance of an
accurate surface tracking method, since it impacts multiple parts of the simulator, including
curvature measurement. Therefore, the performance of our DPLS surface tracking method
is tested against a standard level set. Then we compare different curvature measurement
techniques. Using the best performing one, surface tension is qualitatively verified. Some
basic fluid simulations are then shown. Finally, having tested the fluid simulator, the
full ferrofluid simulator is used to reproduce a couple ferrofluid phenomena, including the
Rosensweig instability.

6.1 Surface Tracking Comparison

A standard test of surface tracking methods is to advect a rigid body through a velocity
field. Ideally, the rigid body arrives unchanged. In reality, depending on the accuracy
of the method used, there will be some deformation from the original shape. A popular
setup is to use Zalesak’s disk in a constant vorticity velocity field [33]. The velocity field
is defined by

u =
(π

314

)(ny
2
− y
)

v =
(π

314

)(
x− nx

2

)
(6.1)

45

where nx and ny are the domain dimensions. Using this definition the centre of rotation
matches the centre of the domain. Zalesak’s disk is a circle with a radially-aligned rectan-
gular slot. The disk is offset from the centre of the domain. The period of rotation is 628
time units.

We used a 120×120 grid for this experiment. The disk has a 20 unit radius, and a 10
unit wide slot that cuts 30 units deep into the circle. The disk is initially centred at (60,
90). The disk is rotated two times around the domain centre for both standard level set
and DPLS. The disk is shown in Figure 6.1 at the experiment start, after one rotation and
after two rotations.

(a) Standard level set.

(b) Direct particle level set (DPLS).

Figure 6.1: Frames of a rotating Zalesak’s disk are shown. The times for each frame are 0,
625 and 1255 time units respectively, totalling two periods of rotation.

To ensure a fair comparison both surface tracking methods redistance their level set
after each time step. DPLS has the additional step of reseeding its interface, which is
done every 10 time steps. The disk experiences some deformation when rotated with both
methods. However, when rotated using DPLS the deformation is slight compared to using
standard level set. Numerically, the disk rotated with standard level set loses significant
mass, which can be quantified with area. There is a 9.75% reduction in area after two
rotations, while using DPLS results in only a 0.25% reduction. Clearly DPLS offers better

46

surface tracking accuracy. The positive effect of this will later be shown when measuring
surface curvatures.

6.2 Surface Curvature Measurement

The only variable, besides the scaling coefficient, that determines surface tension for this
simulation is surface curvature. Therefore the accuracy and robustness of surface tension is
heavily reliant on the curvature method. Testing curvature measurement requires applying
the method to an interface with theoretically known curvature. As in prior work [42] the
circle will be used where the curvature κc is simply 1/R where R is the radius. The level
set is then defined

Φ(~x) = |~x− ~xc| −R (6.2)

where ~xc is the centre of the circle. The error is now defined between the expected curvature
κc and the measured curvature κ.

ε = |κc − κ| (6.3)

Each method was tested using the following procedure. Multiple trials were performed to
prevent biases due to grid position and alignment among the methods. Every method was
run on each trials’ data so that direct per-trial comparison of data is possible. Each trial
consisted of the following steps. First a random circle position ~xc was generated inside
the simulation domain. Then a radius was also randomly chosen. Along the boundary of
the circle the curvature was requested using each method, uniformly sampling the entire
circumference. An example of a trial is given in Figure 6.2. At least 1000 sample points
were used to capture the methods’ errors at all circle angles from 0 to 2π. Using sampling
that is too coarse risks missing sudden jumps in error at particular angles for each method.
All other parameters including resolution, and scale remained fixed for each batch of trials
unless otherwise noted.

Both L2 and L-inf error metrics are used. L-inf is useful when an otherwise accurate
method has comparatively isolated cases where large errors can occur. Large errors in
curvature result in incorrect surface tension forces propagating into the simulation. L2
gives a better estimate of the total error for all trials. The error is presented in two ways.
First, as a function of the angle (position) along the circle’s circumference. This identifies
how a method’s accuracy varies with grid orientation. The two error metrics as a function
of angle θ are defined as

L2(θj) =
1

Ns

[
Ns∑
i=1

[
κi(θj)− κc,i(θj)

κc,i(θj)

]2
] 1

2

(6.4)

47

Figure 6.2: The curvature of a randomly generated circle is uniformly sampled 100 times
along its complete circumference. These points are denoted using short blue lines. Longer
grey lines indicate the angles 0, π/2, π and 3π/2. Denser sampling is typically used.

L-inf(θj) = max
i=1...Ns

∣∣∣∣κi(θj)− κc,i(θj)κc,i(θj)

∣∣∣∣ (6.5)

where Ns is the number of trials. Next the error for all trials and angles can be presented
as a single value per method.

L2 =
1

Ns

 Ns∑
i=1

[∑Na

j=1(κi(θj)− κc,i(θj))2
] 1

2

[∑Na

j=1 κc,i(θj)
2
] 1

2

 (6.6)

L-inf = max
i=1...Ns

[
max

j=1...Na

∣∣∣∣κi(θj)− κc,i(θj)κc,i(θj)

∣∣∣∣] (6.7)

Here Na is the number of angles, which is the number of points sampled. All errors
are taken relative to the curvature to avoid high curvatures from dominating the results.
Equations 6.6 and 6.7 are similar to those used by Owkes et al. [42].

The level set was redistanced in advance of each trial using the method given in Section
4.3.1, which solves the discrete Eikonal equation (Equation 4.7). Visually the initialized
circle remains unchanged, however redistancing introduces error into the level set. A
simulation uses redistancing constantly to maintain the level set properties. Therefore
a suitable curvature method for simulation must give reliable curvatures on redistanced

48

data. A motivating example shown in Figure 6.3 compares the Laplacian curvature (Section
4.5.1) to a well performing height function method, grid-centred height function (GCHF),
before and after the redistancing step.

0 0.5 1 1.5 2
Angle (Radians)

0.0002

0.0004

0.0006

0.0008

0.0010

L2
 E

rro
r

LP GCHF

0 0.5 1 1.5 2
Angle (Radians)

0.0000

0.0001

0.0002

0.0003

L-
In

f E
rro

r
(a) Before level set redistancing.

0 0.5 1 1.5 2
Angle (Radians)

0.00

0.01

0.02

0.03

L2
 E

rro
r

LP GCHF

0 0.5 1 1.5 2
Angle (Radians)

0.000

0.002

0.004

0.006

0.008

L-
In

f E
rro

r

(b) After level set redistancing.

Figure 6.3: The effect of redistancing on curvature measurement accuracy between Lapla-
cian (LP) and a leading height function method (GCHF). Simulations are performed on a
64×64 unit grid with circle radii distributed between 3 and 21 units.

The standard Laplacian method shows the best results for a level set initialized directly
for a circle. Both L2 and L-inf total errors significantly increase by about two orders of
magnitude for the Laplacian method after the level set has been redistanced. See Table 6.1
for exact errors. The height function method is far more robust to the errors introduced by
redistancing. The relationship of the error to angle is different before and after redistancing,
but the total error change is minor in comparison. The L2 error approximately doubles
while the L-inf error shows even less increase. The robustness of the height function
method could be, as explained by Sussman [39] and Popinet [38], due to the fact it samples
curvature directly at the interface.

49

Method No Redistancing With Redistancing
L2 L-inf L2 L-inf

Laplacian 0.00372 0.0286 0.223 3.03
GCHF 0.012 0.124 0.0257 0.151

Table 6.1: Total L2 and L-inf errors for the grid-aligned height function and Laplacian
curvature measurement methods before and after level set redistancing.

Another common trend among all data is shown in Figure 6.3. The curvatures tend to
be significantly more accurate at grid aligned locations as indicated by grey lines in Figure
6.2. A similar trend can be seen in the work by Owkes et. al. [42]. This trend is periodic
with the angle of the requested curvature relative to the grid axes. Therefore future errors
that are shown as a function of angle are limited to one period only (the circumference
between angles 0 and π/2).

6.2.1 Curvature Method Comparison for Levelset

Clearly from the previous results for redistanced data the GCHF method is superior to
the Laplacian. However, there are a number of different competing implementations of
the height function. The variations and abbreviations used are shown in Table 6.2. The
two main groups are the axis-aligned and normal-aligned height functions. They also have
grid-centred (GC) variants. Instead of positioning the height stencil exactly at the position
of requested curvature, the curvature is instead calculated at all grid-centres beforehand.
Then at runtime the values are interpolated to the specific locations on the circles. To
fully observe the performance differences randomized circle tests are used as before, how-
ever resolution becomes another variable. Specifically, the performance for high curvature
circles, such that they have a low resolution on a consistent grid, can serve as a stress
test. These low resolution high curvature tests may reveal previously unseen differences
between the methods. Therefore all tests are done for circles with radii between 2 and 5
grid cells, and then again for radii between 5 and 43 cells. Before analyzing their com-
parative performance there are some individual and shared optimizations that need to be
tested.

50

Name Abbreviation Description

Height Function HF Axis aligned height function centred at the posi-
tion of requested curvature.

Normal Aligned
Height Function

NAHF Surface normal-aligned height function centred at
the position of the requested curvature.

Grid Centred
Height Function

GCHF Axis aligned height function that only operates on
cell-centred locations. Curvature at off centre po-
sitions is interpolated from saved node values.

Grid Centred
Normal Aligned
Height Function

GCNAHF Surface normal-aligned height function that only
operates on cell-centred locations. Curvature at
off centre positions is interpolated from saved cell
values.

Table 6.2: The varying height function methods tested in this work.

Iterative Search

The first such optimization, as explained in Section 4.5, is to use an iterative method for
determining the fractional height in a partially filled cell of fluid. The HF and NAHF
methods are selected for this test. The first set of results are shown in Table 6.3. The goal
here is to first optimize the methods so that the best versions can be compared in the next
section. Direct comparison is saved until then.

Method Interpolation Iterative
L2 L-inf L2 L-inf

HF 0.158 2.52 0.143 2.40
NAHF 0.159 2.54 0.145 2.42

Table 6.3: Total L2 and L-inf errors for HF and NAHF methods comparing the use of
the iterative method to the original interpolation method for calculating column heights.
Circles had radii between 5 and 43 units.

A minor decrease in error using the iterative search for both methods is observed.
For small geometries (radii between 2 and 5 cells) a larger improvement using the iterative
search was observed. This is an important consideration for ferrofluids due to the potential

51

small scale of the Rosensweig instability. The high curvature data is presented in Table
6.4.

Method Interpolation Iterative
L2 L-inf L2 L-inf

HF 0.149 1.94 0.132 1.94
NAHF 0.162 0.685 0.113 0.500

Table 6.4: Total L2 and L-inf errors for HF and NAHF methods for high curvature data
only (radii of circles between 2 and 5 units).

While the improvements were similar between HF and NAHF methods for the low
curvature tests, now the NAHF method has significantly better error using the iterative
method (see Table 6.4). The HF method generally improved although to a much smaller
degree than NAHF did. As will be further explored in the next section, HF does not
perform well on small geometries due to poor alignment of its stencil with the interface.
This is especially true when non-axis-aligned such as near π/4. This error makes the
benefits of iterative search less relevant for HF.

Reviewing the total L2 and L-inf errors the overall error decreased for every dataset
and height function variant using the iterative method. The runtime cost compared to
the rest of the simulation is minor so for ease of implementation the iterative method is
used, unless otherwise stated, for all height functions, although the benefit is mostly for
low resolution high curvature geometry. This is likely due to interpolation losing accuracy
as the geometry is being represented with fewer grid cells.

Height Function Comparison

Naturally the question becomes which height function is superior. HF and NAHF are
tested along with their grid-centred (GC) variants. They all use the iterative method
except for GCHF. Note that for the GCHF the iterative method performs similarly to
straight interpolation. Since the stencil is always grid-centred interpolating the fractional
height only requires linear instead of bilinear interpolation. The GCNAHF method, while
also calculating curvature at grid-centred locations, does benefit from using the iterative
method since its columns are not grid aligned. All the methods are tested as before, on
randomly generated circles. The first test is for low curvatures (radii between 5 and 43
cells).

52

0 0.5
Angle (Radians)

0.000

0.005

0.010

0.015

L2
 E

rro
r

0 0.5
Angle (Radians)

0.000

0.001

0.002

0.003

0.004

0.005

L-
In

f E
rro

r HF
NAHF
GCHF
GCNAHF

Figure 6.4: The errors of all height functions for low curvatures. All heights are measured
using the iterative method except for GCHF. These simulations were performed with radii
between 5 and 43 units.

Method L2 L-inf

HF 0.141 2.00
NAHF 0.144 2.11
GCHF 0.0210 0.162
GCNAHF 0.0634 0.929

Table 6.5: Total L2 and L-inf errors for HF, NAHF, GCHF and GCNAHF methods for
circle radii between 5 and 43 units.

The total errors recorded in Table 6.5 show that the GCHF method performs the
best over all tests followed by GCNAHF and a near tie between HF and NAHF. The
GC variants outperform their counterparts most likely due to the decrease in interpolation
required. The similar performance between HF and NAHF further supports this reasoning.
When the curvature is well defined, such as for circles with a radius of multiple cells, the
interpolation errors of HF and NAHF outweigh any other improvements. Although they
use the iterative method, interpolation is still used to find the zero level set. Not only are
their total errors close or identical, the dependency of the error due to angle, as seen in
Figure 6.4, is also identical. However, there is a difference when using normal alignment
for the GC family of methods.

GCHF strongly benefits from reduced use of interpolation compared to GCNAHF for

53

finding column heights. Since GCHF uses columns aligned with the grid, interpolation is
always linear between two points. GCNAHF also places its reference base at a grid-centre
but because it is normal-aligned the columns are not grid aligned requiring bilinear inter-
polation of the level set. A simple use of error propagation shows that linear interpolation
has less error than bilinear. Therefore GCHF will benefit from less error due to using only
linear interpolation. However, at near axis-aligned angles GCNAHF essentially uses linear
interpolation giving a performance improvement over NAHF. The performance improve-
ment of both GC methods is also partially due to the averaging effect of storing curvatures
at grid-centres. Since the circular geometry has consistent curvature all the stored curva-
ture values at grid-centres should be the same. Interpolation for off grid points essentially
averages these stored values. Therefore when using a synthetic test with constant curvature
the GC variants will have an advantage.

Method L2 L-inf

HF 0.142 1.96
NAHF 0.116 0.512
GCHF 0.0906 0.618
GCNAHF 0.0812 0.450

Table 6.6: Total L2 and L-inf errors for HF, NAHF, GCHF and GCNAHF methods but
now for circle radii between 2 and 5 units.

For curvatures of small geometries, in this case circles with radii between 2 and 5 grid
cells, GCHF is no longer the best method. Referring to Table 6.6, GCNAHF has the
best overall performance. Picking GCHF or NAHF as the next best performing depends
on the priority given to L2 versus L-inf error while HF is the worst performing. The
HF/GCHF stencil, while three cells wide like the NAHF/GCNAHF height functions, will
poorly sample the surface since the stencil is not well positioned over it. Normal alignment
allows the stencil to rotate to better fit on small geometries. When the stencil does not
fit the geometry, as shown in Figure 6.5, a column might entirely miss the surface and not
return a height. In this case the height is set to zero, which overestimates the curvature,
resulting in a jump of error as shown in Figure 6.6. At grid aligned angles the performance
of GCHF is the best of all methods. Here the stencil is centred over the circle negating the
previously discussed issue. GCNAHF, which is the best performing method with respect
to overall error, while grid-centred, always has its stencil aligned with the surface normal
meaning the stencil is well positioned to sample the surface.

Reviewing all the tests the GC methods had the best performance. GCHF performed

54

*

Figure 6.5: Curvature is requested at the orange ∗. HF uses a vertically aligned stencil,
shown with solid gray lines, which results in the right most column missing the circle
entirely. The NAHF stencil, shown with dashed blue lines, aligns better with the interface
and all columns can record a valid height.

0 0.5
Angle (Radians)

0.005

0.010

0.015

0.020

L2
 E

rro
r

0 0.5
Angle (Radians)

0.0005

0.0010

0.0015

0.0020

L-
In

f E
rro

r HF
NAHF
GCHF
GCNAHF

Figure 6.6: The errors of all height functions for high curvatures. All heights are measured
using the iterative method except for GCHF. These simulations were performed with radii
between 2 and 5 grid cells.

the best for low curvatures and GCNAHF for high curvatures. Normal alignment of the
stencil does not seem to have a direct benefit using level sets. Instead it allows height
functions to be successfully used on small geometries. Interpolation operations seem to

55

be the most significant source of error given the improvement seen when using the GC
methods. Note that in the work of Owkes et al. [42] they found that their normal-aligned
method was only better for high curvature, low resolution data as well. They were using
VOF surface tracking instead of level set which makes direct comparison difficult. They
proposed a hybrid model to take advantage of their HF equivalent method that performed
better on high resolution data. A similar idea could be applied here, switching between
GCNAHF and GCHF. However, GCNAHF would be the best option if used exclusively
due to its reliable performance on high curvature geometry, while still outperforming HF
and NAHF on low curvature data.

6.2.2 Curvature Method Comparison for Direct Particle Levelset

A height function specific for DPLS was given in Section 4.5. Instead of using the level
set to measure heights the actual particles tracking the surface are used. As previously
shown, when height functions are used with level sets the interpolation error is the most
significant problem. Using DPLS individual particles are selected eliminating interpolation
error differences between methods. Therefore the GC family of methods are not relevant
when using particles directly since there is no longer a grid present. This also revitalizes
the possible benefits of NAHF beyond just better stencil alignment. However, the height
functions from the previous section that use level set data are still valid for use on a DPLS.
A level set is available, being reconstructed from the particles’ positions. Therefore, we
include in our comparison these methods as well.

Method Low Curvature High Curvature
L2 L-inf L2 L-inf

HF 0.0157 0.144 0.0749 1.92
NAHF 0.0192 0.156 0.0570 0.293
GCHF 0.0115 0.145 0.0982 0.976
GCNAHF 0.0147 0.153 0.0615 0.284

HF-PLS 0.0118 0.163 0.0395 0.447
NAHF-PLS 0.00489 0.0281 0.0295 0.122

Table 6.7: Total L2 and L-inf errors for LS and DPLS height function methods. Low
curvature is for circles with radii between 5 and 43 grid cells. High curvature is for circles
with radii between 2 and 5 grid cells.

56

As before results are split into two groups: first high resolution, low curvature circles
and lastly low resolution, high curvature circles. Throughout this section the DPLS specific
methods are appended with “-PLS”. Reviewing the results in Table 6.7 gives a conclusion on
whether level set based height functions or DPLS based ones should be used. The HF-PLS
method is competitive with the level set height functions while NAHF-PLS reduces error
compared to the next best performing level set height function between 2-5× depending
on the test and error metric. It should be noted that a full reseed cycle has taken place.
The level set has been redistanced once, and the particles reseeded on that data, so that
none of the methods can artificially benefit from an analytically initialized surface.

Figure 6.7 compares all height function methods for both pure level sets (Section 6.2.1)
and those using DPLS. We observe an overall improvement for most methods when using
DPLS. Note the only variable between these tests is the surface tracking method. HF
and NAHF show an order of magnitude improvement for the low curvature tests. Clearly,
NAHF-PLS integrates best with DPLS, but DPLS offers a more accurate representation of
the surface than a standard level set as was shown in Section 6.1. This naturally benefits all
methods with one exception. GCHF improves slightly on DPLS with low curvature data,
and has slightly worse results on high curvature data. Since GCHF optimized interpolation
error when using pure level set data it is not surprising that it benefits the least from a
DPLS level set. Both GCHF and GCNAHF benefit from averaging multiple queries of
curvature (which are theoretically identical for a circle) so their performance is artificially
increased on pure level set data minimizing the effect that a DPLS level set has on their
performance. GCNAHF does show a clear performance improvement on a DPLS level set.

The DPLS-specific methods can now be further examined. Their error as a function
of angle is given in Figure 6.8. NAHF-PLS outperforms HF-PLS for both low and high
curvature datasets. The better performance of NAHF compared to HF can now be observed
since the interpolation error has been mostly negated through the use of particles. NAHF-
PLS columns will pass through the interface at a more perpendicular angle than those of
HF-PLS. A more perpendicular angle to the surface allows better selection of the seeded
particle. Recall that the particles are seeded to the zero level set by being moved along the
normal of the interface. Therefore seeding error displaces the particle along the interface
normal. Displacement along the normal does not affect which particle is selected by NAHF
since the distance between the column and the particle is perpendicular to the surface
normal. Movement along the interface normal is not necessarily parallel to the column of
a regular height function. Seeding error can result in the wrong particle being selected for
HF-PLS, while for NAHF-PLS it just affects the measured height of the correct particle.

At low curvatures NAHF-PLS does not experience a jump in error reading curvature
near the non-grid aligned π/4 angles. Note that at angles 0 and π/2 NAHF-PLS and

57

0.02 0.04 0.06 0.08 0.10 0.12 0.14

L2 Low Curvature

HF-L
S
NAHF-L

S

GCHF-L
S

GCNAHF-L
S

HF-P
LS

NAHF-P
LS

0.0 0.5 1.0 1.5 2.0

L-inf Low Curvature

HF-L
S

NAHF-L
S

GCHF-L
S

GCNAHF-L
S

HF-P
LS

NAHF-P
LS

0.02 0.04 0.06 0.08 0.10 0.12 0.14

L2 High Curvature

HF-L
S

NAHF-L
S

GCHF-L
S

GCNAHF-L
S

HFNAHF
GCHF

GCNAHF

HF-P
LS

NAHF-P
LS

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

L-inf High Curvature

HF-L
S

NAHF-L
S

GCHF-L
S

GCNAHF-L
S

HFNAHF
GCHF

GCNAHF

HF-P
LS

NAHF-P
LS

Pure Level Set DPLS Level Set DPLS Particle

Figure 6.7: Curvature errors from Tables 6.5, 6.6 and 6.7 are plotted for comparison.
“-LS” is appended to height functions operating on a pure level set from the previous
section (6.2.1) and are denoted with blue markers. “-PLS” denotes height functions using
DPLS particles directly to obtain heights as indicated with green markers. The remain-
ing methods are using the level set generated from DPLS and are indicated with orange
markers. For low curvature errors the labels of this last group are omitted due to similar
performance.

HF-PLS have the same error. At these angles both methods are simultaneously normal
and grid aligned. This shows that both implementations are operating as expected. For
high curvatures NAHF-PLS benefits similarly to NAHF for pure level set data by having a
better fitted stencil to small geometries. Near π/4 angles the HF-PLS error jumps due to
poor stencil fitment on the small geometry. NAHF-PLS is therefore the best choice when

58

0 0.5
Angle (Radians)

0.0005

0.0010

0.0015

0.0020

0.0025

L2
 E

rro
r

0 0.5
Angle (Radians)

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

L-
In

f E
rro

r

HF PLS
NAHF PLS

(a) Low curvature data (radii between 5 and 43 grid cells).

0 0.5
Angle (Radians)

0.002

0.004

0.006

0.008

L2
 E

rro
r

0 0.5
Angle (Radians)

0.0002

0.0004

0.0006

0.0008

0.0010

L-
In

f E
rro

r

HF PLS
NAHF PLS

(b) High curvature data (radii between 2 and 5 grid cells).

Figure 6.8: HF-PLS and NAHF-PLS methods’ errors as a function of angle.

using DPLS surface tracking. There is no need for hybrid methods such as found for level
set in the previous section and by Owkes et al. for VOF. Lastly, NAHF-PLS on DPLS
even outperforms all methods on level sets due to direct particle access and more accurate
surface tracking.

6.2.3 Choosing Column Widths

It was mentioned in Section 4.16 that the stencil column spacing ∆xP does not necessarily
have to be ∆x. Owkes et al. [42] also experimented with different stencil widths and

59

their results will be compared to the ones here. However their results were limited to
measuring curvature on randomly generated circles. The constant curvature of circles,
while convenient for testing, may not expose certain properties of height functions. Here
another set of tests are introduced. The use of ellipses provide theoretically known non-
constant curvature. Similar to the circles they are randomly generated except now the
semi-major and semi-minor axis lengths have to be set. Both are randomly set, where the
second one uses a uniform distribution centred on the value of the first.

The DPLS interface tracking method is used for testing since it reduces the effect of
interpolation error. While particles are used, the grid resolution still affects how accurately
the particles can be seeded to represent the circles initially defined on the underlying level
set. This motivates the selection of a column width that best samples the heights without
over or under sampling the data. The first set of tests are done with circles of varying
locations and large radii to replicate some results from [42].

Circle Tests

Owkes et al. observed that large stencil widths (testing up to ∆xP = 3∆x) improve the
accuracy of their NAHF for low curvature geometry. Therefore low curvature circles are
used with radii between 47 and 50 grid cells to test if this implementation has the same
property. This is approaching the upper limit for a 128 by 128 resolution grid while still
allowing for some variance in position. In Section 6.2.1 it was shown that ill-fitting stencils
perform poorly. Low curvature geometry may benefit from NAHF-PLS using a wider
stencil provided it fits.

∆xP L2 L-inf

1.0 0.00259 0.0314
1.5 0.00172 0.0172
2.0 0.00134 0.00905
2.5 0.00121 0.00817

Table 6.8: Total L2 and L-inf errors as a function of stencil column width ∆xP . Dataset
was composed of circles with radii between 47 and 50 grid cells.

The results of the tests are in Table 6.8. There is a decrease in both errors as stencil
width is increased. As the stencil width is increased the height differences between columns
also increases. However the height sampling error remains fixed, reducing the relative error.

60

For higher curvatures (radii between 15 and 40 grid cells) the result is no longer true as
shown in Table 6.9.

∆xP L2 L-inf

1.0 0.00259 0.0275
1.5 0.00205 0.0146
2.0 0.00239 0.0109
2.5 0.00327 0.0119

Table 6.9: Total L2 and L-inf errors as a function of stencil column width ∆xP . Dataset
was composed of circles with radii between 15 and 40 grid cells.

While all these stencil widths still fit the geometry there is a limit to beneficial stencil
width. An optimum column width is now 1.5∆x or 2.0∆x if preference is given to L-inf
error. A possible issue for stencils that are too wide is that they lose normal alignment
of their left and right columns. Recall that only the centre stencil height column is truly
ever normal-aligned. This also matches the results from Owkes et al. when they used large
stencils on small geometries.

Ellipse Tests

Circles have constant curvature. Wider stencils may be artificially benefiting from this
property as there is no penalty in accuracy due to missing surface curvature. In the
reference frame of the normal-aligned stencil a circle’s interface is always symmetrical.
Using ellipses ensures that there is non-constant curvature. The ellipse axes are constrained
between 15 and 40 grid cells for this test. As seen in Table 6.10 there is still a benefit to
using a wider stencil than the minimum width.

Comparing Table 6.10 to the results in Table 6.9 a stencil that is too wide quickly
is penalized due to the changing curvature of the ellipse. This may mean using a wide
stencil is not applicable for real world data. However, given the benefit in accuracy for low
constant curvature surfaces, the option to use a wider stencil would still be useful.

Inspired by these results we propose the use of a variable width stencil. Given an
estimate of the curvature κE an appropriate stencil width can be chosen. Such an estimate
can be achieved by using NAHF-PLS with ∆xP = 1.0∆x. First a relative curvature κR is

61

∆xP L2 L-inf

1.0 0.00271 0.0434
1.5 0.00239 0.0169
2.0 0.00312 0.0143
2.5 0.00451 0.0457

Table 6.10: Total L2 and L-inf errors as a function of stencil column width ∆xP . Dataset
was composed of ellipses with the one axis set between 15 and 40 grid cells and the other
randomly selected between 0.5 and 6.0 grid cells times the first.

calculated.
κR =

κE(
1

α∆x

) (6.8)

Fedkiw et al. [30] note that 1/∆x is the smallest curvature that can be represented by a
grid. For the purposes of selecting stencil width the smallest stencil should be chosen well
before the smallest curvature is reached. This is adjusted by the α parameter. In practise
setting α = 8 works well for all the tests presented here where ∆xPmax = 2.5∆x is the
maximum stencil width. The stencil width is then calculated using Equation 6.9.

∆xP =

[
1 + min(κR, 1.0)

(
∆xPmax

∆x
− 1

)]
∆x (6.9)

Test Best Fixed Variable
L2 L-inf L2 L-inf

Low Curvature Circles 0.00121 0.00817 0.00124 0.00783
High Curvature Circles 0.00205 0.0109 0.00223 0.0119
Ellipses 0.00239 0.0143 0.00263 0.0135

Table 6.11: The best L2 and L-inf errors are taken for low curvature circles (Table 6.8),
high curvature circles (Table 6.9) and ellipse (Table 6.10) fixed stencil width tests. The
corresponding variable width stencil errors are listed.

Using this method may not always give optimal results compared to handpicking the
stencil width. Shown in Table 6.11 are the errors of the variable stencil compared to the
best L2 and L-inf errors from the fixed widths. In many of these cases the best L2 and L-inf

62

errors come from different stencil widths. The variable method is left unchanged between
tests, as if being used with unknown geometry. The variable method is able to closely
match both error metrics since it can dynamically change its width depending where it is
sampling the ellipse. The errors of the variable width stencil are always smaller than the
errors of the second best performing fixed stencil width, while not always matching the
lowest observed individual L2 and L-inf errors. The main benefit is a variable width stencil
eliminates the need to hand pick a stencil width.

6.2.4 Summary

We first demonstrated that the Laplacian type curvature measurement does not work
well in practise on redistanced data. Height functions were shown to be less affected
by redistancing, with an error one order of magnitude less than the Laplacian method.
Testing a variety of height functions we determined that the normal-aligned types do not
reduce error for a plain level set, except when due to better stencil alignment. However,
normal alignment does show a significant reduction in error, for all tests, compared to axis
alignment when integrated with DPLS surface tracking. Using DPLS with NAHF-PLS
resulted in the lowest error for all tests, hence it will be used for the fluid simulation in
subsequent sections. Our study of optimal column widths adds to the work of Owkes et
al. [42] showing that the optimal stencil width depends on the geometry being measured.
We proposed a simple column width estimate that closely matches the errors of stencils
with handpicked widths. Since the ferrofluid simulation generates small features relative
to grid resolution a column width of ∆x is used instead of Equation 6.9.

6.3 Fluid Simulation

Our ferrofluid simulation will first be verified for non-magnetic fluids because a failure to
simulate these precludes the successful simulation of a ferrofluid.

6.3.1 Verification of Surface Tension

Having verified a number of curvature measurement techniques, surface tension can now
be tested. Surface tension applies a force such that the subsequent velocity moves the
interface to minimize the curvature. In a zero gravity environment a successful surface
tension model will evolve the interface towards a circle in 2D or a sphere in 3D.

63

Therefore, the surface tension model here is verified by initializing the fluid as an ellipse.
The fluid is placed in a zero gravity environment. Surface tension is the only force to cause
initial motion of the fluid. The fluid should evolve towards a circular shape. The ultimate
combination of DPLS surface tracking and NAHF-PLS curvature measurement is used.
Viscosity is added to remove energy so that the simulation resolves to a circle, rather than
infinitely oscillating. The simulation results are given in Figure 6.9 as select key frames.

The simulation begins at time step 0, with the fluid initialized as an ellipse. Immediately
the semi-major axis begins to shrink as the surface tension starts to minimize the high
curvature at the ends. Time step 250 shows an intermediate step of this occurring. By
time step 485 the fluid is now a circle, but due to the momentum imparted previously the
semi-major and semi-minor axis switch. The circle becomes an ellipse stretching along the
vertical direction. This continues until time step 1190, at which the stretching stops and
the ellipse begins to approach circular form again as shown in time step 1520. The process
is a decaying oscillation completing the first period at time step 2100. The viscosity reduces
the total fluid’s energy decreasing the maximum curvature and semi-major axis length at
the end of each period.

Shown in Figure 6.10 is the final simulation frame (after 11173 time steps). As ex-
pected the oscillation has decayed due to viscosity and the surface tension forces attain an
equilibrium state by forcing the fluid to be a circle.

Another type of surface tension test involves initializing a cube in the centre of the
domain (for a 3D simulator). There is no initial velocity or gravity applied. In the absence
of surface tension no forces act to disturb the shape, and the cube would remain stationary.
However with surface tension, the sharp curvature at the corners of the cube results in forces
that cause a gradual transition to a sphere. This behaviour can be observed in Figure 6.11.

Immediately the sharp edges of the cube begin to round at the start of the simulation,
starting the cube’s transition to a sphere. This test is fairly trivial for surface tension
using the Laplace style curvature discussed in Sections 6.2 and 4.5.1 since it is calculated
directly from the level set. However, transitioning a cube to a sphere is an excellent stress
test for height function based curvature measurement since it shows that the stencil can
be correctly placed on areas of extreme curvature. Measuring curvature at the edges of
a cube motivates the use of the NAHF method since the stencil sits at a π/4 angle to
the side of the cube allowing for all height columns to intersect the cube’s surface. With
standard axis-aligned height functions (on an axis-aligned cube) some columns of the stencil
would never intersect the cube surface requiring an additional case to prevent returning an
infinite value for curvature. Strictly speaking, this is correct for a cube, but is not desirable
computationally.

64

(a) Horizontal contraction during time steps 0, 250, and 485.

(b) Vertical expansion and contraction during time steps 650, 1190, and 1350.

(c) Horizontal expansion during time steps 1520, 1700 and 2100.

Figure 6.9: Oscillation of an ellipse in zero gravity due to surface tension.

65

Figure 6.10: Final simulation result. Oscillation has stopped, leaving the fluid as a circle.

Figure 6.11: Cube evolving into a sphere due to surface tension. Viscosity is present to
prevent oscillation.

These tests provide a qualitative verification of the surface tension algorithm. This
demonstrates the successful integration of our curvature methods with the fluid simulator.

6.3.2 Free Fall

To verify that gravity and pressure can form an equilibrium a free fall test is performed.
A fluid dropped from air into a containing vessel will accelerate due to gravity eventually
hitting the vessel’s bottom. A pressure forms to counteract the force of gravity preventing
the fluid from moving through the bottom wall. Following basic fluid properties the fluid
should flow outwards and fill the container. Viscosity should then cause the fluid to lose

66

energy and eventually come to rest. The results are presented using the 3D simulator’s
output. Select frames are show in Figure 6.12.

(a) Free fall frames 15, 100 and 300 without viscosity.

(b) Free fall frames 15, 100 and 300 with added viscosity.

Figure 6.12: Freefall of fluid in 3D. The fluid was initialized as a cube. The effect of
viscosity is shown. Simulation resolution was 603.

The fluid is initialized as a cube centred above the bottom of the domain’s solid lower
bound. The simulation starts and the fluid accelerates downwards. As expected, when the
fluid contacts the bottom of the domain a spreading behaviour is observed. This is shown
in frame 15 of Figure 6.12. The fluid continues spreading until it contacts the edges of the
domain. The fluid then travels back towards the centre of the domain forming a jet there

67

as seen in frame 100. A wave occurs halfway between each wall in the viscous version as
the fluid that reflects off the walls comes back and collides midway. The effect of viscosity
is clearly seen, with the viscous version forming clear waves and just one jet in the centre.
The inviscid version allows for small waves to form. This comparison continues for frame
300 where the viscous version has nearly come to an equilibrium, while substantial activity
is observed for the inviscid fluid. Both sets of results show good symmetry throughout all
frames. This is expected as the initial conditions and the container are symmetrical.

For this example running DPLS surface tracking on GPU yielded a twenty times
speedup on average when advancing the level set. When a step called for a reseed of
particles the performance improvement jumped to over thirty times that of CPU. The
performance improvements should continue to increase with the number of particles used
since GPU-specific overheads would become less significant. Note that the CPU DPLS
implementation includes multithreaded particle advection.

6.4 Ferrofluid

Finally the magnetic components of the simulation can be demonstrated. Having verified
the fluid components of the simulation any additional behaviour observed is due to the
unique magnetic nature of the ferrofluid. The simplest test is to see that the ferrofluid
responds to an applied magnetic field.

6.4.1 Field-Induced Motion

Since this simulator is based on the computational ferrofluid model of Afkhami et al. it
should be able to reproduce their results [17]. A significant difference is their simulation was
done with two fluid phases, that is, a ferrofluid moving in a non-magnetic fluid. Therefore
some behaviour cannot be reproduced but the basic result from their field-induced motion
of a ferrofluid droplet experiment can be recreated here.

The experiment is done in a zero gravity environment. A ferrofluid droplet is sus-
pended in air with zero initial velocity. A magnetic dipole, as defined in Equation 5.3, is
placed below the simulation domain. The ferrofluid droplet should experience a force that
accelerates it towards the magnet. The results of this test are shown in Figure 6.13.

Experiments are done in both 2D and 3D simulators to verify the magnetic solver
implementations. As observed the ferrofluid droplet moves towards the magnet below the

68

(a) Field-induced motion of a ferrofluid droplet in a zero gravity 2D environment. Time steps 1,
50, 100, 150 and 200 are shown. Resolution is 602 with a magnetic field between 40 and 199 A/m
corresponding to the top and bottom of the domain respectively.

(b) Field-induced motion of a ferrofluid droplet in a zero gravity 3D environment. Time steps 1,
100, 200, 235 and 250 are shown. Resolution is 603 with a magnetic field between 36 and 386
A/m corresponding to the top and bottom of the domain respectively.

Figure 6.13: Field-induced motion of a ferrofluid droplet in both 2D and 3D simulators.
Since the physics are not directly comparable as discussed in Section 5.1 the two results
are not analagous due to differing applied magnetic fields. Time steps are constant at
∆t = 0.5s each and µr = 1.25 for the ferrofluid.

domain. The magnetic force is kept lower than that used for creating the Rosensweig
instability, hence the ferrofluid responds to the magnetic force in a similar fashion to
gravity. However, the magnetic field is stronger at the bottom of the domain resulting
in higher acceleration as the droplet moves down. Once the drop hits the bottom of the
container it flows outward. This sequence of behaviour is also observed by Afkhami et al.
[17]. However, due to our simulation being only single phase we are unable to reproduce
droplet shape changes as there is no fluid surrounding the droplet. Nevertheless, this
test shows that the magnetic potential solve, formation of the magnetic force tensor, and

69

application of magnetic force produce a physically reasonable output when added to the
fluid simulator. Additional testing shows that when µr < 1, indicating a diamagnetic
material repelled by magnetism, the droplet moves away from the magnet hitting the top
of the domain. This does not simulate a ferrofluid’s behaviour, since ferrofluid is attracted
to magnets, but shows that the simulator can also handle diamagnetic materials if desired.

6.4.2 Rosensweig Instability

Mass motion of the ferrofluid was studied in the previous section. Here, the interactions of
the ferrofluid with itself are presented. Namely, we will evaluate this simulator’s ability to
capture the Rosensweig instability. A typical experiment starts with the ferrofluid resting
in the bottom of a container. A magnetic field is then applied, usually with the source
below the ferrofluid. Different strengths and types of magnetic field change the behaviour
of the ferrofluid.

Critical Magnetization

The ferrofluid experiences a force at all magnetic field strengths. However, the Rosensweig
instability can only form above a critical magnetization Mc or critical field Hc of the fluid
as defined in Equations 3.21 and 3.22. In Section 6.4.1 the critical field was purposely
kept less than Hc to avoid creating the instability. We now demonstrate that the simulator
reproduces this critical field behaviour in Figure 6.14.

The magnetic field is gradually increased until the Rosensweig instability is observed.
In each trial the fluid starts resting in the bottom half of the domain. A dipole magnet
is centred 20cm below the fluid. The field decreases according to 1/r3 and is strongest
along the central vertical axis of the domain. Recall that Hc is only a lower limit for
the instability to form, it may not be sufficient for a particular experiment. For this
experiment’s parameters, as listed in Table 6.12, Hc is 7300 A m−1. These parameters
are selected to maximize both the development and stability of peaks. The magnetic
saturation Ms is higher than a typical ferrofluid to encourage peak growth. The viscosity ν
is high to filter temporally localized velocities that may cause a peak to become unstable.
The surface tension σ is slightly higher than that for water. The simulation resolution is
60×60×30, where 30 is the vertical resolution. The scale ∆x = 1/240 yields a 25cm by
25cm by 12.5cm domain.

In Figure 6.14a the applied magnetic field is weaker at the centre than Hc, so no peaks
are expected. Zero movement of the surface is observed, indicating that gravity and surface

70

(a) m = 500 A m2, H = 2300 → 9900 A m−1 (b) m = 1500 A m2, H = 7000 → 30000 A m−1

(c) m = 1821 A m2, H = 8400 → 36000 A m−1 (d) m = 2250 A m2, H = 10000 → 45000A m−1

Figure 6.14: The critical magnetic field is found by gradually increasing the applied field
until the Rosensweig instability starts to form. The parameter m denotes the magnetic
moment of the magnet, and H is the magnetic field at the top and bottom of the domain
respectively. Images are taken at 1.6s of simulated time.

tension are cancelling out any forces due to magnetism. This also demonstrates that the
selected surface tension coefficient allows for a stable simulation.

Ripples on the fluid’s surface can be observed in Figure 6.14b. The magnetic forces are
now high enough to move the fluid, but not high enough to form the instability. Figure
6.14c starts to show the instability seeding itself in the centre of the domain. This is where
the magnetic field is the strongest. There is also activity on the boundaries since their
sharp curvature also serves as a location to seed peaks. However, this activity is below the

71

ρ σ ν Ms m
(kg m−3) (N m−1) (m2 s−1) (A m−1) (A m2)

1000 0.1 0.02 1824000 2 · 10−19

Table 6.12: Fluid parameters for the experiment in Figure 6.14.

resolution of the simulator. The instability is first definitively observed in Figure 6.14d.
The magnetic field is 19000 A m−1 as measured at the domain centre on the surface of the
fluid. Peaking is localized to the centre of the domain since only here is the field stronger
than the effective Hc. The effective Hc measured by our simulation is higher than the
theoretical Hc of 7300 A m−1. The boundaries and high viscosity may be increasing the
effective Hc since they are not accounted for in the derivation of Equation 3.22. The scale,
resolution, time step, and surface tracking limitations of the simulator also increase the
effective Hc value.

Observing the instability under the theoretical Hc would indicate that the simulator is
artificially contributing to the instability. Whereas observing the instability over Hc may
not indicate any problems due to the limitations of the theoretical basis for its derivation.
At worst, it indicates that there are shortcomings to the simulator that resist the formation
of the instability. This test of critical magnetization is therefore a good indicator that the
simulator is producing the instability due to its physical model of ferrofluids and not from
other sources.

Magnetic Field

Once the instability has started, further increasing the applied magnetic field continues to
grow the instability. Recall that the bifurcation parameter from Equation 3.23 is now ε > 0
since H > Hc. The peak height should therefore grow as the magnetic field is increased as
predicted by Equation 3.24. The critical field experiment from Figure 6.14 is continued in
Figure 6.15 to show this property.

Starting with Figure 6.15a the magnetic field has further increased from Figure 6.14d.
The area of peaking is increased since the region where H > Hc on the fluid’s surface is
larger. Figure 6.15b continues this trend, with an expanded area of peaking. Figure 6.15c
and 6.15d shows peaking over most of the fluid’s surface. Note that the surface near the
four corners of the domain displays minimal peaking since the magnetic field is the smallest
there. Figure 6.15d has taller peaks than Figure 6.15c and much more noticeably so than
in Figure 6.15a. There are also sizable peaks forming along the walls of the domain due

72

(a) m = 2360 A m2, H = 11000 → 47000A m−1 (b) m = 2570 A m2, H = 12000 → 51000A m−1

(c) m = 2680 A m2, H = 12400 → 53000A m−1 (d) m = 3000 A m2, H = 14000 → 60000A m−1

Figure 6.15: Continuation of experiment from Figure 6.14. The instability has already
formed and is grown by increasing the applied magnetic field. The parameter m denotes
the magnetic moment of the magnet, and H is the magnetic field at the top and bottom
of the domain respectively. Images are taken at 1.6s of simulated time.

to the presence of the boundary along with an area of sharp curvature encouraging the
growth of peaks. This is likely a numerical artifact.

This result confirms that peaking occurs primarily due to the presence of a sufficiently
strong magnetic field. In addition, increasing the magnetic field creates more peaks, and
eventually taller peaks as well. Both of these trends follow our expectation of how a fer-
rofluid should respond to a magnetic field. This supports the hypothesis that the simulator
is using a correct physical model.

73

Time Dependence

The effect of increasing the magnetic field has been presented after the ferrofluid surface
has already come to equilibrium. Each of these simulations also has time-dependence. As
an example the simulation from Figure 6.15d is shown in Figure 6.16 as a function of time.

(a) t = 0.039s (b) t = 0.12s (c) t = 0.38s

(d) t = 0.54s (e) t = 0.78s (f) t = 1.7s

Figure 6.16: Select frames from the simulation that produced the final result in Figure
6.15d are shown as a function of time.

The simulation starts as a fluid at rest in the bottom half of the domain. The fluid
responds to the magnetic force immediately after the start of the simulation as seen in
Figure 6.16a. Note the raised corners of the fluid. No instability is present at this point.
However, the start of it can be observed in Figure 6.16b, primarily at the centre of fluid
surface since the magnetic field is the strongest there.

Figure 6.16c now shows definitive peaks at this location. Peaks are starting to form
away from the centre of the domain as well, but are less developed as the total impulse is
less. Observed in other ferrofluid simulations is a lack of symmetry [12]. In this example
the initial peaking occurs in the centre, but subsequent peaking occurs at random locations
that break symmetry. Starting in this frame, and continuing in Figure 6.16d is a localized
set of peaks on the bottom right of the surface. They eventually disperse into the pattern

74

of peaks by the final time step in Figure 6.16f. As the simulation reaches an equilibrium
the rate of peak formation decreases noting the jump of one second between the last two
shown frames of this simulation.

Simulation Challenges

We have demonstrated that our simulator is able to model several qualitative trends and
properties of ferrofluids. We were able to capture the critical magnetization property
of ferrofluids. Additionally, our simulated Rosensweig instability grows as the applied
magnetic field is increased. The peaks also evolve as a function of time, developing over
multiple time steps before reaching an equilibrium.

We believe that two key limitations prevent our simulator from producing the well-
ordered hexagonal pattern characteristic of ferrofluids as shown in Figure 1.1. First, a
stable equilibrium of forces is necessary to form such a pattern. Any erroneous forces
cause peaks to shift positions resetting the pattern formation process. An easy way to
reduce these forces is to use a highly viscous fluid such as in the examples shown. Parasitic
currents, due to slight imbalances between surface tension and pressure, cannot cause as
much movement in one time step with viscosity present. This is not a problem unique
to a ferrofluid simulation, but has been a general problem for fluid simulation [38], with
recent progress [48]. In addition to surface tension, a ferrofluid simulation also requires the
balancing of gravitational and magnetic forces for peak formation to occur. This is likely
an even more delicate equilibrium to obtain.

There are also semi-implicit surface tension schemes such as by Hysing et al. [37], or
ones that relax the stability constraint (Section 4.5) such as by Sussman et al. [39]. Using
these more stable methods could yield higher quality results. Popinet et al. [38] argues
that these methods also damp lower frequency modes. While not ideal, the Rosensweig
instability is a high frequency phenomena, meaning these methods may still work well.
Another method to improve equilibrium quality is to use smaller time steps, however this
also increases the simulation time. Extending the simulation to operate over multiple GPUs
and CPUs would aid in reducing the resulting runtimes. All the results in this section took
approximately 21 minutes each to generate using an AMD Ryzen 1700x CPU and NVIDIA
GTX1070 GPU.

Another barrier to pattern formation is the underlying resolution and grid of the simu-
lation. A regular grid does not naturally match a hexagonal pattern of peaks at near-grid
resolution. This necessitates using a higher resolution, which incurs significant compu-
tational cost. Especially considering that only the surface of the ferrofluid requires this

75

additional resolution, increasing the resolution throughout the entire domain would be
inefficient. The use of octrees [49], which allow for the refinement of the grid in desired
locations such as on the fluid’s surface, would be a useful extension of the present simula-
tor. However transferring an algorithm for regular grids to an octree adaptive grid is not a
trivial procedure. For example, resulting discretizations must handle T-junctions between
grid refinement level transitions [50]. Therefore, the switch to using an octree adaptive
grid is left as future work.

76

Chapter 7

Conclusion and Future Work

We developed a general 3D Eulerian ferrofluid simulator capable of approximately produc-
ing the Rosensweig instability. The model for ferrofluid magnetism published by Afkhami
et al. [17], which has been previously only used to simulate droplet level phenomena under
well defined conditions, was discretized and solved for general conditions. For the sim-
ulator to better produce the Rosensweig instability we developed a direct particle level
set method, denoted DPLS. To improve surface tension a leading curvature estimation
algorithm was analyzed and adapted for improved performance with the DPLS method.

The use of height functions was thoroughly analyzed for both level sets and DPLS.
When used on data that has been redistanced, such as in a simulation, height functions
greatly reduce the error when compared to the traditional Laplacian curvature method.
Iterative searching to determine column height values is also shown to have a minor benefit.
The use of normal-aligned height functions does not provide a direct improvement of error
compared to axis-aligned height functions for level sets. Their main advantage is to improve
the fit of stencils on small geometry, reducing error for these specific cases.

DPLS and the normal-aligned height function method were combined so that parti-
cle location data is used directly, rather than level set data, to determine the interface
position. When using this combined method normal alignment benefits directly through
better estimates of column heights as well as improving stencil fit on small geometry. The
combination of normal-aligned height functions and DPLS gave the lowest error in all
tests motivating their use for the ferrofluid simulations. Lastly, an optimal column spacing
method was presented and verified for normal-aligned height functions on DPLS data. The
usefulness of our combined surface tracking and curvature methods can certainly extend
beyond just ferrofluid simulation. Any simulation that requires maintaining a high level

77

of detail on the fluid interface could benefit from this approach. The surface tracking and
curvature methods could be packaged as an independent library for use. The CUDA GPU
implementation of DPLS allows for substantial performance gains as well.

The results presented from our ferrofluid simulator were focused on reproducing the
Rosensweig instability for a dish of ferrofluid. The simulator itself is not limited by any
assumptions regarding this initial configuration. While the results do not rival those by
Huang et al. [1], there are several areas of improvement for our simulator. The most
significant would be switching to an octree based adaptive grid. This would be a significant
change, requiring every simulation step to be updated. However proving that the fixed
resolution version works is an important step in this process. For any methodology e.g.,
viscosity [50], the adaptive version follows the implementation of a fixed one. Reformulating
the most performance intensive methods to use multiple CPUs/GPUs would also allow for
higher resolution simulations in reasonable time frames. This could still be coupled with
an adaptive grid method for additional performance if necessary.

Simulating the Rosensweig instability requires a stable, detail-preserving simulation.
The Rosensweig instability provides an excellent stress test of a simulator due to this. Be-
sides contributing the first implementation of a 3D Eulerian-based general ferrofluid sim-
ulator that can produce the Rosensweig instability, the demands of ferrofluid simulation
motivated the development of new surface tracking and curvature estimate methods. Since
1987 there has been multiple attempts at simulating the Rosensweig instability. Simula-
tions have resorted to non-physical models, restrictive assumptions, or have been hindered
by their computational performance to the point of only producing one peak. A simulator
without these limitations was recently developed using particle based simulation [1], and
our work has developed one using grid based simulation. Both methods can reproduce
qualitative trends. The next challenge for simulating the Rosensweig instability will be to
achieve quantitative accuracy under non-restrictive conditions.

78

References

[1] Libo Huang, Torsten Hädrich, and Dominik L. Michels. On the accurate large-scale
simulation of ferrofluids. ACM Trans. Graph., 38(4):93:1–93:15, July 2019.

[2] Joseph L. Neuringer and Ronald E. Rosensweig. Ferrohydrodynamics. The Physics
of Fluids, 7(12):1927–1937, 1964.

[3] R. E. Rosensweig. An Introduction to Ferrohydrodynamics. Dover Publications, Inc.,
Mineola, New York, 2014.

[4] C. Scherer and A. M. Figueiredo Neto. Ferrofluids: Properties and applications.
Brazilian Journal of Physics, 35(3A), 2005.

[5] D. B. Hathaway. Use of ferrofluid in moving-coil loudspeakers. DB-Sound Eng. Mag.,
13(2), 1979.

[6] Oscar Agertz, Ben Moore, Joachim Stadel, Doug Potter, Francesco Miniati, Justin
Read, Lucio Mayer, Artur Gawryszczak, Andrey Kravtsov, Åke Nordlund, Frazer
Pearce, Vicent Quilis, Douglas Rudd, Volker Springel, James Stone, Elizabeth Tasker,
Romain Teyssier, James Wadsley, and Rolf Walder. Fundamental differences between
SPH and grid methods. MNRAS, 380(3):963–978, Sep 2007.

[7] R. Bridson. Fluid Simulation for Computer Graphics. CRC Press, Boca Raton,
Florida, 2nd edition, 2016.

[8] A.G. Boudouvis, J.L. Puchalla, L.E. Scriven, and R.E. Rosensweig. Normal field
instability and patterns in pools of ferrofluid. Journal of Magnetism and Magnetic
Materials, 65(2):307 – 310, 1987.

[9] O. Lavrova, G. Matthies, T. Mitkova, V. Polevikov, and L. Tobiska. Numerical treat-
ment of free surface problems in ferrohydrodynamics. Journal of Physics: Condensed
Matter, 18(38):S2657–S2669, sep 2006.

79

[10] Olga Lavrova, Gunar Matthies, and Lutz Tobiska. Numerical study of soliton-like
surface configurations on a magnetic fluid layer in the rosensweig instability. Commu-
nications in Nonlinear Science and Numerical Simulation, 13(7):1302 – 1310, 2008.

[11] Christian Gollwitzer, Gunar Matthies, Reinhard Richter, Ingo Rehberg, and Lutz
Tobiska. The surface topography of a magnetic fluid: a quantitative comparison
between experiment and numerical simulation. Journal of Fluid Mechanics, 571:455–
474, 2007.

[12] Yuan Cao and Z.J. Ding. Formation of hexagonal pattern of ferrofluid in magnetic
field. Journal of Magnetism and Magnetic Materials, 355:93 – 99, 2014.

[13] G. Yoshikawa, K. Hirata, F. Miyasaka, and Y. Okaue. Numerical analysis of transi-
tional behavior of ferrofluid employing mps method and fem. In Digests of the 2010
14th Biennial IEEE Conference on Electromagnetic Field Computation, May 2010.

[14] Tomokazu Ishikawa, Yonghao Yue, Kei Iwasaki, Yoshinori Dobashi, and Tomoyuki
Nishita. Visual simulation of magnetic fluid taking into account dynamic deformation
in spikes. In IEVC2012, 2012.

[15] Tomokazu Ishikawa, Yonghao Yue, Kei Iwasaki, Yoshinori Dobashi, and Tomoyuki
Nishita. Visual simulation of magnetic fluid using a procedural approach for spikes
shape. In Gabriela Csurka, Martin Kraus, Robert S. Laramee, Paul Richard, and
José Braz, editors, Computer Vision, Imaging and Computer Graphics. Theory and
Application, pages 112–126, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[16] Markus Ihmsen, Jens Orthmann, Barbara Solenthaler, Andreas Kolb, and Matthias
Teschner. SPH Fluids in Computer Graphics. In Sylvain Lefebvre and Michela Spag-
nuolo, editors, Eurographics 2014 - State of the Art Reports. The Eurographics Asso-
ciation, 2014.

[17] S. Afkhami, Y. Renardy, M. Renardy, J. S. Riffle, and T. St Pierre. Field-induced
motion of ferrofluid droplets through immiscible viscous media. Journal of Fluid
Mechanics, 610:363–380, 2008.

[18] S. Afkhami, A. J. Tyler, Y. Renardy, M. Renardy, T. St Pierre, R. C. Woodward, and
J. S. Riffle. Deformation of a hydrophobic ferrofluid droplet suspended in a viscous
medium under uniform magnetic fields. Journal of Fluid Mechanics, 663:358–384,
2010.

80

[19] Shahriar Afkhami, Linda J. Cummings, and Ian M. Griffiths. Interfacial deformation
and jetting of a magnetic fluid. Computers & Fluids, 124:149 – 156, 2016. Special
Issue for ICMMES-2014.

[20] Mingfeng Qiu, Shahriar Afkhami, Ching-Yao Chen, and James J. Feng. Interaction
of a pair of ferrofluid drops inarotating magnetic field. Journal of Fluid Mechanics,
846:121–142, 2018.

[21] Nikolaos D. Katopodes. Chapter 13 - level set method. In Nikolaos D. Katopodes,
editor, Free-Surface Flow, pages 804 – 828. Butterworth-Heinemann, 2019.

[22] D. J. Griffiths. Introduction to Electrodynamics. Prentice-Hall, Inc., Upper Saddle
River, New Jersey, 3rd edition, 1999.

[23] R E Rosensweig. Magnetic fluids. Annual Review of Fluid Mechanics, 19(1):437–461,
1987.

[24] Bérengère Abou, José-Eduardo Wesfreid, and Stèphane Roux. The normal field insta-
bility in ferrofluids: hexagonsquare transition mechanism and wavenumber selection.
Journal of Fluid Mechanics, 416:217–237, 2000.

[25] Gaël Guennebaud, Benôıt Jacob, et al. Eigen v3. http://eigen.tuxfamily.org, 2010.

[26] Mark Carlson, Peter J. Mucha, R. Brooks Van Horn, III, and Greg Turk. Melting and
flowing. In Proceedings of the 2002 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, SCA ’02, pages 167–174, New York, NY, USA, 2002. ACM.

[27] Henrik Fält and Douglas Roble. Fluids with extreme viscosity. In ACM SIGGRAPH
2003 Sketches & Applications, SIGGRAPH 03, page 1, New York, NY, USA, 2003.
ACM.

[28] Christopher Batty and Robert Bridson. Accurate viscous free surfaces for buck-
ling, coiling, and rotating liquids. In Proceedings of the 2008 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, SCA 08, pages 219–228,
Goslar, Germany, 2008. Eurographics Association.

[29] Anthony Ralston. Runge-kutta methods with minimum error bounds. Mathematics
of Computation, 16(80):431–437, 1962.

[30] S. Osher and R. Fedkiw. Level Set Methods and Dynamic Implicit Surfaces. Springer-
Verlag, New York, 2003.

81

[31] Chris Wojtan, Matthias Müller-Fischer, and Tyson Brochu. Liquid simulation with
mesh-based surface tracking. In ACM SIGGRAPH 2011 Courses, SIGGRAPH ’11,
pages 8:1–8:84, New York, NY, USA, 2011. ACM.

[32] Tyson Brochu and Robert Bridson. Robust topological operations for dynamic explicit
surfaces. SIAM J. Sci. Comput., 31(4):2472–2493, June 2009.

[33] Douglas Enright, Ronald Fedkiw, Joel Ferziger, and Ian Mitchell. A hybrid particle
level set method for improved interface capturing. J. Comput. Phys., 183(1):83–116,
November 2002.

[34] Lanhao Zhao, Hongvan Khuc, Jia Mao, Xunnan Liu, and Eldad Avital. One-layer
particle level set method. Computers & Fluids, 170:141 – 156, 2018.

[35] Mark Sussman. A second order coupled level set and volume-of-fluid method for
computing growth and collapse of vapor bubbles. J. Comput. Phys., 187(1):110–136,
May 2003.

[36] N. Rasmussen, D. Enright, D. Nguyen, S. Marino, N. Sumner, W. Geiger, S. Hoon,
and R. Fedkiw. Directable photorealistic liquids. In Proceedings of the 2004 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation, SCA 04, pages 193–
202, Goslar, Germany, 2004. Eurographics Association.

[37] S. Hysing. A new implicit surface tension implementation for interfacial flows. Inter-
national Journal for Numerical Methods in Fluids, 51(6):659–672, 2006.

[38] Stéphane Popinet. Numerical models of surface tension. Annual Review of Fluid
Mechanics, 50(1):49–75, 2018.

[39] M. Sussman and M. Ohta. A stable and efficient method for treating surface tension in
incompressible two-phase flows. SIAM Journal of Scientific Computing, 31:2447–2471,
2009.

[40] S. Afkhami and M. Bussmann. Height functions for applying contact angles to 2d vof
simulations. International Journal for Numerical Methods in Fluids, 57(4):453–472,
2008.

[41] S. Afkhami and M. Bussmann. Height functions for applying contact angles to 3d vof
simulations. International Journal for Numerical Methods in Fluids, 61(8):827–847,
2009.

82

[42] Mark Owkes and Olivier Desjardins. A mesh-decoupled height function method for
computing interface curvature. Journal of Computational Physics, 281:285 – 300,
2015.

[43] Stéphane Popinet. An accurate adaptive solver for surface-tension-driven interfacial
flows. Journal of Computational Physics, 228(16):5838 – 5866, 2009.

[44] M. Yoon, G. Yoon, and C. Min. On solving the singular system arisen from poisson
equation with neumann boundary condition. Journal of Scientific Computing, 69:391–
405, 2016.

[45] Xu-Dong Liu, Ronald P. Fedkiw, and Myungjoo Kang. A boundary condition cap-
turing method for poisson’s equation on irregular domains. Journal of Computational
Physics, 160(1):151 – 178, 2000.

[46] Alice Raeli, Michel Bergmann, and Angelo Iollo. A finite-difference method for the
variable coefficient poisson equation on hierarchical cartesian meshes. Journal of Com-
putational Physics, 355:59 – 77, 2018.

[47] Klaus Stierstadt and Mario Liu. Maxwell’s stress tensor and the forces in magnetic
liquids. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift fr
Angewandte Mathematik und Mechanik, 95(1):4–37, 2015.

[48] Moataz O. Abu-Al-Saud, Stéphane Popinet, and Hamdi A. Tchelepi. A conservative
and well-balanced surface tension model. Journal of Computational Physics, 371:896
– 913, 2018.

[49] Frank Losasso, Ronald Fedkiw, and Stanley Osher. Spatially adaptive techniques for
level set methods and incompressible flow. Computers & Fluids, 35(10):995 – 1010,
2006.

[50] Ryan Goldade, Yipeng Wang, Mridul Aanjaneya, and Christopher Batty. An adaptive
variational finite difference framework for efficient symmetric octree viscosity. ACM
Trans. Graph., 38(4), July 2019.

83

	List of Figures
	List of Tables
	Introduction
	Previous Work
	Physical Theory
	Fluid Dynamics
	Ferrohydrodynamics
	Chemistry
	Magnetic Theory
	Macroscopic Description of the Rosensweig Instability

	Methods for Fluids
	General Simulation Data Structures
	The MAC Grid

	Standard Methods
	Surface Tracking
	Level Set
	Particle Level Set
	Particle Level Set for GPU

	Extrapolating Velocity
	Surface Tension
	Determining Curvature

	Methods for Magnetic Fluids
	Solving for Magnetic Potential
	Eliminating the Null Space
	The Interface Condition
	Discretization

	Applying the Magnetic Force

	Results
	Surface Tracking Comparison
	Surface Curvature Measurement
	Curvature Method Comparison for Levelset
	Curvature Method Comparison for Direct Particle Levelset
	Choosing Column Widths
	Summary

	Fluid Simulation
	Verification of Surface Tension
	Free Fall

	Ferrofluid
	Field-Induced Motion
	Rosensweig Instability

	Conclusion and Future Work
	References

